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1

1 Introduction

As suggested by the titles of several seminal earlier works, such as The Fractal Geometry of Nature 
(Mandelbrot 1.983.) and Fractals Everywhere (Barnsley 1.993.), one could expect to find fractal and 
multifractal properties everywhere. This might indeed be the case, as the Science Citation Index 
returned more than 1.2,500 and 1.,600 articles respectively containing fractal and multifractal in 
their title between 1.987 and 2008.

The fractal character of a system has many implications for its properties. In particular, a fractal 
set tends to fill the whole space in which it is embedded and has a highly irregular structure, while 
it possesses a certain degree of self-similarity; that is, when viewed at increasing levels of magnifi-
cation, a fractal set appears to be the union of many ever smaller copies of itself (Figure 1..1.). This 
character is captured by the so-called fractal dimension, DF, of the set and can be regarded as one 
measure of the complexity of the system and as the degree at which a set fills the Euclidean space 
in which it is embedded. The compelling reasons for the emerging fractal theory in many scientific 
fields are based on the hope that complex systems could be explained using a relatively low number 
of parameters, say, the fractal dimension DF .

One of the most illustrative processes where the concept of fractals applies relates to atmospheric 
and oceanic turbulence. Originally, the word turbulence referred to the random motion of a crowd, 
turba being the Latin for crowd. The complex and self-similar nature of flows is present in the early 
work of Leonardo da Vinci (1.442–1.51.9). In his study of flowing and running water (1.508–1.51.0), 
he captured the transition from ordered to chaotic fluid motions (Figure 1..1.A) and the complexity 
and self-similar nature of turbulent flows (Figure 1..1.B). Later pictorial work by Katsushika Hokusai 
(1.760–1.849) (Figure 1..2A), Utagawa Hiroshige (1.797–1.858) (Figure 1..2B,C), and Vincent van Gogh 
(1.853.–1.890) (Figure 1..2D) clearly expressed the multiscale nature of the surface of the turbulent ocean 
(Figure 1..2A,B,C) and atmospheric flows (Figure 1..2D). The self-similarity evidenced by Jonathan 
Swift in his satiric verse, “So, Nat’ralists observe, a Flea Hath smaller Fleas that on him prey, 

Figure 1.1 Flowing and running water (1.508–1.51.0) by Leonardo da Vinci (1.442–1.51.9).
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A

B

D

C

Figure 1.2 Turbulence in art. (A) The Great Wave of Kanagawa by Katsushika Hokusai (1.760–1.849);  
(B) Naruto Straight Eddies at Awa; (C) Vortices in the Konaruto Stream by Utagawa Hirshige (1.797–1.858); 
and (D) The Starry Night by Vincent van Gogh (1.853.–1.890).
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So, Nat’ralists observe, a Flea
Hath smaller Fleas that on him prey,
And these have smaller yet to bite ‘em,
And so proceed ad infinitum.

A

B

C

Jonathan Swift, 1733

Modified from Hegner, R. (1938)
Big Fleas Have Little Fleas, or Who’s Who Among the Protozoa.

Williams and Wilkins, Baltimore.

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity

Lewis Fry Richardson, 1922

Log E(k)

Injection

Log (k)

Viscous
dissipation

Inertial subrange

1/L 1/1 1/1k

Figure 1.3 The verse of the Irish satirist Jonathan Swift on fleas, originally meant as a swipe at lesser poets 
(A); parodied by the meteorologist L. F. Richardson to describe the multiscale nature of turbulence (B); which 
was later formalized by the Kolmorogov turbulent cascade (C).

And these have smaller yet to bite ‘em, And so proceed ad infinitum” (Figure 1..3.A), seemingly led to 
the crude, but picturesque, seminal description of turbulence by L. F. Richardson (1.922), “Big whirls 
have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscos-
ity” (Figure 1..3.B). This qualitative description of fully developed turbulence was later formalized 
by the Kolmogorov turbulent cascade, which describes how turbulent kinetic energy generated at 
large scales L, cascade through a hierarchy of eddies of decreasing size down to the viscous scale lk, 
where energy is dissipated into heat (Figure 1..3.C). This self-similarity of turbulent flows is clearly 
visible from natural and simulated turbulent flows (Figure 1..4), as well as from large-scale patterns 
such as von Karman vortex streets and cloud cover (Figure 1..5).
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More specifically, most processes in natural sciences—for example, physical forcings, population 
and community dynamics—are sources of heterogeneity and create space-time structures such as 
gradients, patches, trends, and other complex patterns (Figure 1..6). Note that natural landscapes are 
consistently more complex, exhibiting high levels of structural and organizational complexity that 
can barely be compared to man-made landscapes (Figure 1..7). These heterogeneous structures are 
particularly well developed in most aquatic environments where resources such as plankton exhibit 
patchiness over a continuum of scales. The multiscale variability of marine environments leads to 
a view of the ocean as a landscape—that is, a seascape—in the sense that it can be described by 
patterns of different temporal and spatial scales. Many physical and biological oceanographers then 
relate their findings to the spectrum of physical processes of circulation patterns in oceanic basins 
or large gyres to fine-scale eddies or rips. Ecologists also recognize spatial heterogeneity as a major 
factor regulating the distribution of species. Terrestrial and aquatic ecology must deal with scale, 
because the objects it focuses on—the organisms and types of environments—are rarely found to 
have regular shapes and to be homogeneously distributed through time or space; the “geometry 
of Nature” is barely understandable and quantifiable in terms of human geometry (Figure 1..8 and 
Figure 1..9).

Yet until recently no quantitative or qualitative theory has described the origin, dynamics, and 
consequences of heterogeneity in ways that increase the accuracy of predictions about ecological 
processes in a complex environment. Dealing with scales has therefore required overcoming the 
difficulties generated by space-time dependencies associated with the heterogeneous distribution 
of ecological variables. Classical statistical theory works well to predict changes in variance due to 
different sizes of sampling units or different grains of sampling strategies when the sampling units 
are independent. The basic independence of replicates assumption, however, is rarely verified in 
natural science, and therefore the use of classical theory is questionable. Moreover, the more tradi-
tional, widely used mathematical descriptors have little meaning in a multiscale spatial context.

A B

Figure 1.4 Black smoker at (A) a midocean ridge hydrothermal vent and (B) numerical simulation of a 
turbulent jet at a Reynolds number of 4500. [(A) From OAR/National Undersea Research Program (NURP), 
National Oceanic and Atmospheric Administration. (B) Courtesy of Peter Moore and Bendiks Jan Boersma, 
Laboratory for Aero and Hydrodynamics, Delft University of Technology, The Netherlands.]
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Introduction 5

Scale is undoubtedly one of the central themes of landscape ecology (see, for example, Peterson 
and Parker 1.998; Wiens 1.989, 2001.). Most, if not all, of the landscape properties playing a role in 
the biology and ecology of populations (such as gradients, patch quality, boundaries, connectivity, 
and organism response) change with changes in scale. The notion of scale (sensu lato) is quite broad 
and involves a wide range of terms and concepts that can be clustered under key categories such 
as heterogeneity, hierarchy, and size. The first one (heterogeneity) includes spatial patchiness and 
temporal variability, and has been acknowledged as an essential property of nature (Kolasa and 
Pickett 1.991.). The second one (hierarchy) is an intrinsic property of ecosystems, which are always 
hierarchically organized (O’Neill et al. 1.986; Kolasa 1.989), and this implies the consideration of 
an organizational scale. Finally, the evident, thought widely neglected, size-dependence of species’ 

A

B

Figure 1.5 Self-similarity in the atmospheric von Karman vortex streets observed off the Mexican coast 
near Guadalupe Island on June 1.1., 2000 (A) and off the Chilean coast near the Juan Fernandes Islands on 
September 1.5, 1.999 (B). Also note the self-similarity in cloud patterns. [(A) From Robert F. Cahalan, NASA/
GSFC (see Cahalan et al. 2001., http://climate.gsfc.nasa.gov/viewPaperAbstract.php?id=69). (B) From NASA/
GSFC/JPL.]
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A B

DC

Figure 1.6 Natural landscapes and seascapes. (A) Vertical vegetation zones in Honfleur Harbor, France;  
(B) a “snail’s-eye-view” of an intertidal rocky shore, Lincoln National Park, South Australia; (C) reefs built by 
the colonial tube-polychaete Ficopomatus enigmatus in the Coorong, South Australia; and (D) local alterna-
tion between meadows and thickets, La Cauchie, France. 

Figure 1.7 South Australian landscapes, with (A) and without (B) anthropogenic influences. Both pictures 
were taken from an altitude of 20 km. (See color insert following page 80.)
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Figure 1.8 Contrast between the complexity of the geometry of nature (A) and the Euclidean geometry of 
human architecture (B) in Tokyo (Japan), and an example of self-similarity in Hindu architecture, the Sri Siva 
Subramaniya Temple (Nadi, Fiji) in an ensemble (C) and detail view (D).

Figure 1.9 Contrast existing between the geometry of a man-made surface, a brick wall (A) and (B) the bark 
patterns of white fig (Ficus virens), (C) the English oak (Quercus robur), and (D) the cotton palm (Washingtonia 
filifera). (See color insert.)
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8 Fractals and Multifractals in Ecology and Aquatic Science

features (Peters 1.983.) is critical to our understanding of how organisms—hence, populations and 
communities—respond to the abiotic and biotic properties of their environment. The size of the “win-
dow” through which an organism views or responds to the structure of its landscape (its extent), for 
example, may differ for organisms of different body sizes or mobility, and organisms may discern 
the patch structure of the landscape within the window with different levels of resolution (grain).  
As a result, the organism-defined “landscape” is intrinsically scale dependent (Figure 1..1.0). Note 
that the organisms’ extent and grain defined above fundamentally differ from the measurement 
scales imposed by the observer.

In heterogeneous data sets, where estimates of quantities such as biomass vary precisely with the 
scale at which measurements are made, fractal dimension then appears to be a useful measure of 
space-time complexity and provides several advantages over other descriptive indices of ecological 
patchiness. However, despite some insightful description of various possible applications of fractals 
in ecology (Frontier 1.987; Sugihara and May 1.990a; Hastings and Sugihara 1.993.) and successful 
applications in landscape ecology, entomology, and behavioral ecology, they are still hardly ever 
used. The situation is even more dramatic for multifractals, where use is often restricted to the fields 
of nonlinear dynamical systems, fully developed turbulence, rainfall modeling, spatial distribution 
of earthquakes, financial time-series modeling, and Internet traffic modeling. Applications of multi-
fractals in ecology appear limited to a few papers published over the past 1.0 years dealing with the 
characterization of the dynamics of forested systems (Scheuring and Riedi 1.994; Solé and Manrubia 
1.995, 1.996; Manrubia and Solé 1.996; Drake and Weishampel 2000, 2001.), patchiness of marine 
systems (Pascual et al. 1.995; Seuront et al. 1.996a, 1.996b, 1.999, 2001., 2002; Seuront and Schmitt 
2005a, 2005b; Lovejoy et al. 2001.; Seuront and Spilmont 2002), and species-area relationships 
(Borda-de-Água et al. 2002).

Two main reasons are suggested for the still very limited applications of fractals and multifractals 
in ecology and aquatic sciences. First, the fractal and multifractal formalisms, mainly developed 
and used in the fields of nonlinear dynamical systems and physical sciences, might be impenetrable, 
at least for ecologists without a reasonable mathematical and statistical background or for those who 
do not have the time to devote to such studies. Second, unlike most of the numerical techniques 
used to analyze spatial data sets and time series, no software is commercially available for fractals 
and multifractals. As a consequence, the main aim of this book is to bridge the gap between the 
potentially obscure fractal and multifractal concepts and tools and the end-user ecologists. Fractals 
and multifractals have thus been theoretically, mathematically, and practically treated at a level that 
is reasonably accessible to the ecologists willing to fully understand and use them. Detailed consid-
erations on the construction and properties of theoretical fractals, such as the Cantor set, Sierpinski 

Figure 1.10 Self-similar rabbits, originally used to illustrate concepts in population dynamics. (Courtesy of 
Professor M. Bull, Flinders University, Adelaide, Australia.)
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Introduction 9

gasket and carpet, Pascal triangle, and Koch curve or the Mandelbrot and Julia sets widely investi-
gated elsewhere (such as Peitgen et al. 1.992; Schroeder 1.991.; Barnsley 1.993., 2000; Falconer 1.985, 
1.993.) were intentionally omitted to put more focus on real case studies.

The book naturally starts with basic definitions and illustrations related to Euclidean and fractal 
geometries and dimensions. In particular, a special effort was made to define the too-seldom-used 
concepts of fractal codimension and sampling dimension. In Chapters 3. and 4, the concepts 
of self-similar and self-affine fractals are introduced and the fundamental differences existing 
between them are discussed, as well as the concepts of statistical self-similarity and statistical 
self-affinity. Chapter 5 introduces a family of fractal dimensions derived from frequency dis-
tributions. Chapter 6 has subsequently been devoted to clarify the relationship between fractal 
theory and concepts such as chaos theory, strange attractors, self-organization, and self-orga-
nized criticality. In Chapter 7, the intrinsic limitations of fractal analysis are addressed in detail, 
and some criteria and easy-to-handle procedures to ensure the relevance of fractal analysis are 
provided. In Chapter 8, the concept of a multifractal is defined, the different multifractal analy-
sis techniques available are reviewed and exemplified, and a very intuitive, “without the math” 
multifractal technique is introduced and illustrated using a step-by-step procedure applied to a 
real case study. The seldom-used joint multifractal framework is also introduced, defined, and 
illustrated.

It is finally stressed that the motivation to write the present book stems from a report that non-
mathematically acquainted ecologists might not be able to appreciate the strength of fractals and 
multifractals in analyzing their data sets because of the lack of nontechnical—hence, accessible—
books on the subjects. As such, the present work has been thought, designed, and written with 
ecologists in mind. It has been written in a “handbook fashion” to promote the understanding and 
the use of fractals and multifractals in ecological sciences. More technical sections are nevertheless 
provided throughout the text for readers interested in getting into the (more mathematical) details of 
fractal and multifractal techniques. As a consequence, it is, of course, statistically and mathemati-
cally colored. As such, the readers willing to get the details behind what could be referred to as the 
“fractal/multifractal black box” can understand where a given equation comes from. However, what 
ecologists do care about is ecology! Most of the techniques presented and discussed here have then 
been illustrated with concrete examples from recent works but mostly using original data sets to 
allow the readers to understand what they could get out of fractal and multifractal analysis without the 
hassle of going through the math, or at least before eventually feeling the need to go through the math. 
The less-mathematical readers will hopefully find the hooks they need to appreciate the strength 
and usefulness of fractals and multifractals in the field of ecological sciences. Each example has 
been treated as a short paper, including a description of the species and the system considered, and 
the experimental procedures used to get the data, before presenting their results and discussing 
them in an ecological context. More generally, the relevance of fractals and multifractals to describe 
branched patterns and growth processes, habitat complexity, organism distribution, behavioral pro-
cesses, predator–prey and population dynamics, turbulent processes, and species diversity and evo-
lution are reviewed, exemplified, and discussed.
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11

2 About Geometries 
and Dimensions

2.1 From euclidean to Fractal geometry

The geometries of shores, rocks, plants, waves, hydrodynamic flow, organism trajectories, and 
many other natural phenomena are important in different scientific disciplines, and each field 
tends to adapt specific concepts to describe the complexity of Nature. Ecological models often 
approach natural shapes as simple geometrical approximations. Lakes are approximated as cir-
cles, particles as spheres, patches as squares and rectangles, and trees as cones (Figure 2.1.). Many 
patterns and shapes in Nature, however, are so irregular and fragmented that they present not sim-
ply a higher degree but an altogether different level of complexity, as compared with Euclidean 
approximations. Curves, surfaces, and volumes in Nature can thus be so complex that ordinary 
measurements become meaningless. Mandelbrot (1.977, 1.983.) coined the term fractal geometry, 
introducing a new concept that has rapidly provided a unifying and cross-disciplinary basis to 
the description of Nature’s complexity. Many natural phenomena have a nested irregularity and 
may look similarly complex under different resolutions (for example, turbulent water flow or 
clouds) (Figures 2.2 and 2.3.). Although this nested structure, referred to as scale invariant, could 
be thought of as an additional source of complexity, it becomes a source of simplicity in fractal 
geometry.

A

B

Figure 2.1 Illustration of the fundamental differences between human schematic depictions (A) of natural 
forms such as trees (B).
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Figure 2.2 Nested structure perceptible in time series of microscale turbulent kinetic energy dissipation 
rates (m2 ⋅ s−3.). At increasing resolution, the local and global structures remain very similar.
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About Geometries and Dimensions 13

Scale invariance means that the observed structure remains unchanged under magnification or 
contraction. A scale-invariant pattern is thus scale dependent and cannot be characterized by a 
single scale. Fundamental to most definitions of fractals is then the idea of “measurement at scale 
d.” For each d, we measure a set in a way that ignores irregularities of size less than d, and we see 
how these measurements behave as d → 0. For instance, if one considers a plane curve C, then the 
measurements, M(d), might be the number of steps required by a pair of dividers set at length d to 
traverse C. In case of a fractal, the relationship between the measurements M(d) and the scale d must 
obey a power-law form:

 M(d) = kd-f (2.1.)

where k and f are empirical constants, the constant f being referred to as the scaling exponent. 
Taking logarithms, Equation (2.1.) can be written as:

 log M(d) = log k − f log d (2.2)

These relationships are appealing for computational and experimental purposes, since f can be 
estimated as the slope of a log-log graph plotted over a suitable range of d, and k is the intercept (see 
Figure 2.4A). Over a wide range of scales—typically many orders of magnitude—the same rela-
tionships among critical structural and functional variables are maintained. One may nevertheless 
note that for real phenomena, we can only work with a finite range of d. In the ideal case, theory and 
experiment diverge before an atomic scale is reached, but practically, there may be several scaling 
regions, separated by breakpoints, that are fractal within each region but failing when a breakpoint 
is crossed (Figure 2.4B). This question will be studied more thoroughly in Chapter 7. Such similar-
ity is said to be fractal, and the relationship among variables can be described by a fractal dimension 
or a power law. Although the concept of fractals is fairly new (Mandelbrot 1.983.), the use of power 
functions to characterize scaling laws has a venerable history.

Figure 2.3 Nested structure perceptible in the geometry of clouds. At increasing resolution, the local and 
global structures remain very similar. (See color insert following page 80.)
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14 Fractals and Multifractals in Ecology and Aquatic Science

In particular, the use of power laws is so well established that they are called allometric equa-
tions (McMahon and Bonner 1.983.; Schmidt-Nielsen 1.984). They are of the form:

 y = axb (2.3.)

where y is some dependent variable, a is a normalization constant, x is some independent variable 
(typically a body mass), and b is referred to as the scaling exponent introduced above.

Biological scaling relationships are called allometric because the exponent, b, typically differs 
from unity. If b = 1., the relationship is called isometric, and it plots as a curve on linear axes. When 
b ≠ 1., the relationship is called allometric, and it plots as a curve on linear axes. However, power 
functions have the nice property that they are linear when plotted on logarithmic axes. This is read-
ily seen by taking the logarithms of both sides of Equation (2.3.)

 log y = log a − b log x  (2.4)

which is conceptually equivalent to Equation (2.2). This is equivalent to the equation for a straight 
line, where the dependent variable, log y, is equal to an intercept, log a, plus the product of the 
slope, b, times the independent variable, log x. As stated above for Equation (2.2), the scaling expo-
nent of the power function is the slope of the linear plot on logarithmic axes. The mathematical 

Log M (δ)

Log M (δ)

Log δ

Log δ

Log k
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Figure 2.4 Schematic illustration of the expected behavior of M(d) vs. d  in a log-log plot in case of a single 
scaling regime (A) and multiple scaling (B). The slope of the linear parts of the graph provides an estimate of 
the scaling exponent f.
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equivalence of Equations (2.3.) and (2.4) means that it is fairly straightforward to derive empirical 
allometric relationships by using a least-squares regression technique to fit a linear regression to 
log-transformed data. We will, nevertheless, see in Chapter 7 that great care must be exercised to 
choose the appropriate regression procedure.

The most familiar example of allometry is simple geometric scaling. If we have spheres or any 
objects of self-similar shapes, one can describe changes in surface area, A, or volume, V, as a func-
tion of a linear dimension, the radius, r, as follows:

 A = pr2 (2.5)

and

 
V r= 4

3.
3.π
 

(2.6)

in which the scaling exponents are the dimensions of the objects. In addition, if the objects maintain a 
constant density as they vary in size, then the mass, M, is proportional to the volume, V (that is, M ∞ V), 
and we can express their linear dimension, L, or surface areas, A, as functions of their mass M as:

 L = c1.M 1./3. (2.7)

and

 A = c2M 2/3. (2.8)

where the values of the normalization constants, c1. and c2, depend on the units of measurements. 
Since the same equations apply to any shape, if living organisms preserve self-similar shapes as 
they vary in size (Peters 1.983.; Schmidt-Nielsen 1.984), then their linear dimensions and their sur-
face areas should vary as one-third and two-thirds of their body mass respectively, but with some 
intrinsic restrictions.

Although the power laws shown in Equations (2.7) and (2.8) provide sharp limits on the form 
and metabolic requirements of many families of living organisms, organisms do not usually exhibit 
such simple geometric scaling as expected, for example, in the ideal case of size-nested painted 
wooden dolls from Russia. This is because there are powerful constraints on structure and function 
that do not allow organisms to maintain the same geometric relationships among their components 
as size changes over several orders of magnitude. This was pointed out by Galileo, who noticed that 
some laws of physics and biology are not necessarily unchanged under changes of scale. Referring 
to the strength of bones, he argued that an animal twice as long, wide, and tall will weight eight 
times more. He nevertheless pointed out that bones that are twice as wide have only four times the 
cross-section and can only support four times the weight. Thus, to support the full weight, bone 
width must be scaled by a factor greater than 2. This deviation from simple similarity introduces a 
natural scale in the design of organisms, both animal and vegetal, land bound and aquatic. At some 
roughly predictable size, the bones become larger than the rest of the animal, and scaling breaks 
down; see Haldane (1.928). For instance, as trees increase in size, the cross-sectional areas of their 
trunks and the total surface areas of their leaves increase more rapidly than expected from purely 
geometric considerations, as M3./4 rather than M 2/3.. The differential increase in trunk area provides 
for mechanical resistance to buckling due to gravity and wind, while the scaling of leaf area allows 
for increased gas exchange to support the increased phytomass. Similarly, as mammals increase in 
size, there is a differential increase in the thickness of their bones to provide mechanical support 
and in the surface area of the lungs to provide gas exchange for metabolism. Another well-known 
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16 Fractals and Multifractals in Ecology and Aquatic Science

instance of scaling in biology is the energy dissipation of homeothermic animals as a function of 
their weight or mass. A “naïve” approach would expect the energy dissipation, E, to be proportional 
to the animal’s surface area, which for similar animals is proportional to the two-thirds power of its 
volume or mass M (see Equation 2.8), leading to E = C3.M2/3. where C3. is a constant. However, it appears 
that larger animals dissipate more energy than the relation E = C3.M2/3. would predict. The data for a wide 
variety of species, ranging from unicellular organisms to whales, are much better fitted by an exponent of 
3./4 (Peters 1.983.; Schmidt-Nielsen 1.984), suggesting that larger animals are less energy efficient.

Although the origin and the phenomenological relevance of the previous allometric (scaling) 
exponents have been widely discussed elsewhere (Brown and West 2000), one must note here from 
the comparison of Equations (2.5) and (2.6) with Equations (2.1.) and (2.3.) that the scaling exponents 
f and b are conceptually similar to a fractal dimension. Before going further into the refinements 
of fractal geometry, I will discuss extensively the meaning of what we usually call a “dimension”—
with regard to “dimensions” in the fractal framework specifically—and some related concepts.

2.2 dimensions

2.2.1 EuclidEan, Topological, and EmbEdding dimEnsions

2.2.1.1 euclidean dimension
We learn from an early age that lines and curves are one-dimensional, planes and surfaces are two-
dimensional, and solids such as a cube are three-dimensional. The concepts refer to the traditional 
Euclidean geometry and Euclidean dimension. More generally, any space that can be conceived 
of has a characteristic number associated with it called a dimension. But what is a dimension? 
Surprisingly, despite the a priori naïve character of the question, it is far from being easy to provide 
a complete definition of dimension.

A definition of dimension could be the number of real-number parameters needed to 
uniquely describe all the points in a space. Thus, the real-number line is one-dimensional as 
it only takes one parameter to describe each point. Dimension is invariant so that a plane, for 
example, requires two parameters in rectangular (x, y) or polar (r, q) coordinates. Other suitable 
examples come to mind. The set of lines in a plane is two-dimensional, as describing any one 
of them uniquely requires two parameters: the slope and y intercept or the x and y intercepts, 
for example. The set of all circles in a plane is three-dimensional (two for the coordinates of the 
center and one for the radius), and the set of all conic sections in a plane is five-dimensional. 
More formally, we say a set is d-dimensional if we need d independent variables to describe a 
neighborhood of any point.

Another way to think of dimension is as the degree of freedom available within the space 
(see, for example, Grassberger 1.983.; Hentschel and Procaccia 1.983.). Physical (Euclidean) space is 
three-dimensional because there are three independent directions that objects within the space 
can move (up/down, left/right, and forward/backward). The surface of the Earth, on the other 
hand, is two-dimensional, as we are only free to move in one of two directions (left/right and 
forward/backward). Any vertical motion is the result of moving in the other two directions. Under 
these constraints, a countable set of points is now zero-dimensional as we have zero degrees of 
freedom. It is not possible to move through such a space from one point to another without leav-
ing the space.

2.2.1.2 topological dimension
From earlier work in topology, the dimension of any set can be defined as one greater than the 
dimension of the object that could be used to completely separate any part of the first set from the rest.  
A line has thus a dimension 1. since it can be separated by a point (0 + 1. = 1.), a plane has dimension 
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2 since it can be separated by a line (1. + 1. = 2), and a volume has dimension 3. since it can be sepa-
rated by a plane (2 + 1. = 3.). This notion of dimension is called the topological dimension DT of a 
set (Hurewicz and Wallman 1.941.; Dugundji 1.966). Strictly speaking, the topological dimension of 
any set is defined as one greater than the dimension of the object that could be used to completely 
separate any part of the first space from the rest. However, when referring to composite sets such 
as an x-shaped set (×) or the union of a point and a filled circle (· •), the above definition seems, 
however, incomplete. Indeed, locally the former set is one-dimensional except at the intersection 
of the two segments where it becomes zero-dimensional (that is, a single point), and thus is obvi-
ously one-dimensional. The latter is a bit more challenging, as it is a union of completely separated 
components, where the point component (·) is zero-dimensional while the circle component (•) is 
two-dimensional.

Introducing the concepts of local dimension and global dimension, one can thus characterize the 
composite set (· •) via the local dimensions of its components. To get the global dimension of the 
set, the above definition needs to be slightly modified. The dimension of any set should be the maxi-
mum of its local dimensions where the local dimension is defined as one more than the dimension 
of the lowest-dimensional objects needed to separate any neighborhood of the space into two parts. 
According to this definition, the composite set (· •) is indeed two-dimensional.

More practically, the dimension of the union of finitely many sets is the largest dimension of any 
one of them, so if we “grow grass” on a plane, the result is still a two-dimensional set. We should 
nevertheless note here that if we take the union of an infinite collection of sets, the dimension can 
grow. For example, a line, which is one-dimensional, is the union of an infinite number of points, 
each of which is a zero-dimensional object.

2.2.1.3 embedding dimension
There can nevertheless occasionally be a little confusion about the dimension of an object. Sometimes 
people call a sphere a three-dimensional object because it can only exist in space, not in the plane. 
However, a sphere is two-dimensional. Any little piece of it looks like a piece of the plane, and in 
such a small piece, you only need two coordinates to describe the location of a point. More formally 
speaking, this is only a different measure of dimension, called the embedding dimension DE: A 
set has embedding dimension DE if DE is the smallest integer for which it can be embedded into 
DE without intersecting itself. Thus, the embedding dimension of a plane is 2 and the embedding 
dimension of a sphere is 3., even though they both have (topological) dimension 2.

A topological property of an entity is one that remains invariant under continuous, one-to-one 
transformations or homeomorphisms. A homeomorphism can best be envisioned as the smooth 
deformation of one space into another without tearing, puncturing, or welding it. Throughout such 
processes, the topological dimension does not change. A sphere is topologically equivalent to a 
cube since one can be deformed into the other in such a manner. Similarly, a line segment can be 
pinched and stretched repeatedly until it has lost all its straightness, but it will still have a topologi-
cal dimension of 1..

The meaning of dimension can be questioned, however, when dealing with geometric constructs 
initially referred to as “mathematical monsters.” For the sake of illustration, consider two case-
study mathematical constructs (Figure 2.5). First, we consider the Koch curve, or Koch snowflake 
(Koch 1.904, 1.906). To build the Koch curve (Figure 2.5A), consider a triangle. First, take each line 
segment and divide it into thirds. Second, place the vertex of an equilateral triangle in the middle 
third, copy the whole curve, and reduce it to 1./3. its original size. Place these reduced curves in 
place of the sides of the previous curve. This procedure is subsequently iterated n times. With each 
iteration, the curve length increases by a factor of 4/3.. An infinite repeat of this procedure would 
send the length off to infinity. Such a geometric construct is unusual but not disturbing regarding 
the above definition of dimension.
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This is not the case, however, with the second construct investigated here, the Peano curve 
(Schroeder 1.991.) (Figure 2.5B). First, take a square and divide it into four identical copies of the 
original. Second, draw a line starting in one square so that it passes through the center of every other 
square until it returns to the starting position. Iterating this procedure n times leads to a curve so 
twisted that it has infinite length. The resulting object is specifically referred to as a Peano monster 
curve (Mandelbrot 1.983.), so called because of its monstrous or pathological nature; note the refer-
ence to the demiurgical nature of such objects. More remarkable is that it will ultimately visit every 
point in the initial square. This construct thus generates a one-to-one mapping from the points in the 
unit interval to the points in the unit plane. An object with topological dimension 1. can then be trans-
formed into an object with topological dimension 2. This iteration procedure could also be imple-
mented in a cube and would ultimately lead to a space-filling curve (Gilbert 1.984). Simple bending 
and stretching should leave the topological dimension unchanged, however. These apparently para-
doxical results thus raise questions about the meaning of dimension, especially when one knows that 
the Koch and Peano curves are both regarded as basic examples of geometrical fractals.

2.2.2 FracTal dimEnsion

What about the dimension of the so-called fractal objects? For example, what is the dimension of 
the Koch snowflake (Figure 2.5A)? It has topological dimension 1., but it is by no means a curve; the 
length of the “curve” between any two points on it is infinite. No small piece of it is linelike, but 
neither is it like a piece of the plane or any other d. In some sense, we could say that it is too big to 

A

B

Figure 2.5 Building process of two theoretical fractals: the Koch snowflake (A) and the Peano curve (B).
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be thought of as a one-dimensional object but too small to be a two-dimensional object. Maybe its 
dimension should be a number between one and two. In order to make this kind of thinking more 
precise, one must look at the dimension of familiar objects another way.

Strictly speaking, a mathematical fractal is defined as any patterns for which the dimension 
exceeds the discrete topological dimension (Mandelbrot 1.977, 1.983.). Formally, the concept of scal-
ing exponent defined above can be extended and generalized through the concept of Hausdorff 
dimension (Carathéodory 1.91.4; Hausdorff 1.91.9), which can be regarded as the “core” of a whole 
family of fractal dimensions. The Hausdorff dimension DH of a subset S embedded in an Euclidean 
space of dimension DE (that is, S ∈ DE) arises from asking “What is the size of S?” Note that this question 
is fairly general and can be applied to a wide variety of sets as “How long is S?” referring to the length of 
a coastline or the Koch curve, “How large is S?” referring to the surface of an island or a vegetation patch, 
or “How big is S?” referring to the volume of a cloud or a sponge. The answer comes from counting the 
number of open balls needed to cover the set S (Figure 2.6). For each d > 0, consider N(d) the smallest 
number of open balls of radius d needed to cover S. One can then show that the limit:

 D NH = −( )
→

lim log ( ) / log
δ

δ δ
0

  (2.9)

exists (see, for example, Mandelbrot 1.977). DH is the Hausdorff dimension of the set S. Equation (2.9) 
is equivalent to the approximate power law

 N k DH( )δ δ≈ −  (2.1.0)

S

δ

Figure 2.6 Hausdorff dimension of a set S. The Hausdorff dimension DH is estimated from counting the 
number of open circles of radius d needed to cover the set S, where d → 0.
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where k is a constant and ≈  refers to an asymptotic behavior. Equation (2.1.0) must then be written 
as “N(d) scales asymptotically as d −DH,” or more loosely as “N(d) scales as d −DH.” Although several 
equivalent definitions can be found in the literature (see, for example, Rogers 1.970; Federer 1.969; 
Falconer 1.985) (Figure 2.7), the generality of the Hausdorff dimension makes it difficult to com-
pute and to determine its properties (Mandelbrot 1.977, 1.983.). In particular, the intrinsic asymptotic 
condition, d → 0 (compare this to Equations 2.9 and 2.1.0), is difficult to fulfill in most applications. 
More practical methods devoted to estimate fractal dimensions can be found in Chapters 3. and 4. 
Hereafter, we will thus refer to the more general fractal dimension DF.

It can be understood that a fractal is a complex geometrical shape, constructed of smaller copies 
of itself. The fractal dimension DF subsequently quantifies how the “size” of a fractal set changes 
with decreasing observation scales. However, while geometrical objects in Euclidean geometry are 
described using integer dimensions (0 for a point, 1. for a line, 2 for a plane, and 3. for a volume), 
fractal dimensions are not necessarily an integer and may take values between the boundaries of 
integer topological dimensions. Topologically, a line is one-dimensional. The dimension DF of a 
fractal pattern on the plane, however, is a continuous function with range 1. ≤ DF ≤ 2. A completely 

δ

CS

A D

B E

δ δ

δ δ

Figure 2.7 Different ways of estimating the Hausdorff dimension DH of a set S. The number N(d) (see 
Equation (2.1.0), is taken as (A) the least number of circles of radius d that cover S; (B) the greatest number of 
disjointed circles of radius d with centers in S; (C) the least number of boxes of radius d that cover S; (D) the 
number of boxes of size d that intersect S; and (E) the least number of sets of diameter at most d needed to 
cover S. In all cases, the procedure is iterated until d → 0.
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differentiable series has a fractal dimension DF = 1. (the same as the topological dimension), while 
a Brownian motion completely occupies two-dimensional topological space and therefore has a 
fractal dimension DF = 2. Fractal dimensions 1. ≤ DF ≤ 2 quantify the degree to which a pattern fills 
the plane. In the same way, a planar curved surface is topologically two-dimensional, while a fractal 
surface has dimension 2 ≤ DF ≤ 3..

Consider now a measure unit defined as d DE; for DE = 1., 2, and 3., one refers to a length, a surface, 
and a volume, respectively expressed in m, m2, and m3.. Following Equation (2.1.0), a given set S  

thus measures N(d)dDE ≈ dDE-DF “meters at the power (DE − DF).” A set S characterized by a fractal 
dimension DF = 2 will then have a finite surface (DE = 2), while its length (DE = 1.) will be infinite, 
and its volume (DE = 3.) nil. When DF is a noninteger, length, surface, and volume become useless to 
characterize S because these metrics are nil or infinite.

So what is the dimension of the Koch snowflake? For such a self-similar mathematical fractal 
(we will see in Chapter 3. that the fractal concept can nevertheless be significantly complex) that 
can be divided into N similar parts, each of which is a copy of the whole reduced k times, the fractal 
dimension DF can simply be written as

 
D

N
kF = log

log  
(2.1.1.)

In the case of the Koch snowflake (Figure 2.5A), each part of the “curve” can be decomposed into 
four rescaled copies of itself, contracted by a linear factor of 3.. Equation (2.1.1.) thus leads to a fractal 
dimension DF = 1..262 for the Koch snowflake. Consider now two other basic geometrical fractal 
objects: the Sierpinski carpet and gasket (Figure 2.8). Each component of the Sierpinski carpet and 
gasket can be decomposed into eight and nine copies of itself, contracted by linear factors of 3. and 
4, respectively. The related fractal dimensions are then DF = 1..893. and DF = 1..585 for the Sierpinski 
carpet and gasket, respectively. In other words, the Sierpinski carpet covers space more intensively 
than the Sierpinski gasket and the Koch curve. One must finally note that any set exhibiting integer 
fractal dimensions can simply be thought as a specific case of fractal patterns. The fractal dimen-
sion can thus be thought of as a measure of sparseness of any set embedded in a Euclidean space. 
Consider a set embedded in a two-dimensional space. Homogeneous, regularly spaced sets will 
then be characterized by a higher fractal dimension than more sparse sets (Figure 2.9). At the 
limit, a plane-filling set has a fractal dimension DF = 2, while the fractal dimension of a set so 
sparse that it is reduced to a single point is nil, DF = 0 (Figure 2.9). These different statements can 
nevertheless be refined with the introduction of the concepts of fractal codimension and sampling 
dimension.

A B

Figure 2.8 Building process of two theoretical fractals: the Sierpinski carpet (A) and the Sierpinski gasket (B).
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2.2.2.1 Fractal codimension
Consider a set S characterized by a fractal dimension DF embedded in a space of topological dimen-
sion DT. The fractal codimension, cF, of the set S is given by:

 cF = DT  − DF (2.1.2)

The fractal codimension thus appears as a measure of the relative sparseness of the set S, while the 
fractal dimension is a measure of its absolute sparseness. As a consequence, Koch and Sierpinski 
constructs considered in a plane or in a three-dimensional space have the same fractal dimension, 
while their codimension is increased a unit. The fractal codimension can thus be regarded as being 
a more fundamental measure than the fractal dimension, especially in a probabilistic framework 
where it can be introduced directly.

Consider the number of open balls of radius d needed to cover a set S. The probability Pr(Bd ∩ S) 
for a ball Bd to intersect S is given by:

 Pr( )
( )

( )
B S

N B S

N B

D

D
c

F

T

F
δ

δ

δ

δ
δ

δ∩ ≈
∩

≈ ≈
−

−  (2.1.3.)

where N(Bd ∩ S) [N B S DF( )δ δ∩ ≈ −  (see Equation 2.1.0) is the number of balls Bd intersecting S, and 
N(Bd) [N B DT( )δ δ≈ − ] is the total number of boxes. It is straightforward from Equation (2.1.3.) that the 
most infrequent events are characterized by the highest fractal codimensions and thus the lowest

B

C D

A

Figure 2.9 Fractal dimensions and codimensions of different point patterns. (A) Regular point pattern, 
DF = 2 and cF = 0; (B) random point pattern, DF = 1..8 and cF = 0.2; (C) random clumped point pattern, DF = 1..4 
and cF = 0.6; and (D) aggregated clumped point pattern, DF = 1..1. and cF = 0.9.
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fractal dimensions (see Figure 2.9). One may note here that Equations (2.1.2) and (2.1.3.) are equiva-
lent when cF ≤ DT, or equivalently DF ≥ 0. Equation (2.1.3.), however, does not imply any constraint 
on the fractal codimension cF. When cF > DT, Equations (2.1.2) and (2.1.3.) thus lead to DF < 0. This 
statement is totally inconsistent with the essence of a fractal dimension, defined as a strictly positive 
measure (Mandelbrot 1.977, 1.983.) (see, for example, Equations (2.1.), (2.2), (2.9), (2.1.0), and (2.1.1.).  
A purely geometrical definition is no longer satisfactory in a probabilistic framework where the 
effective dimension of the probability space is a function of the sampling effort.

2.2.2.2 sampling dimension
Mainly for practical reasons present in most scientific areas, statistics implicitly deal with samples 
of finite size. The dimension of the probability space can nevertheless increase with the number of 
independent samples considered (Figure 2.1.0). Considering NS independent samples of dimension 
DT, the related quantity of information can be expressed as:

 N × NS = d − (DT+DS) (2.1.4)

where DS is the sampling dimension (Seuront 1.998) defined as:

 D NS S≈ ( log / log )− δ  (2.1.5)

In particular, Equations (2.1.4) and (2.1.5) show that the dimension of the probability space can be 
increased above DT (a single sample) and to overcome the a priori paradoxical limitation related 
to the occurrence of negative fractal dimensions. Thus, considering a rare event S such as cF > DT, 
Equation (2.1.2) can be rewritten as:

 DFS = DT + DS − cF (2.1.6)

Probability Space

Ph
ys

ic
al

 S
pa

ce

S

Physical Space

Independent Realizations
 NS ~ δ–DS

Figure 2.10 Sampling fractal dimension. Considering an increasing number of independent realizations 
(NS) increases the effective dimension of the probability space. The probability of finding a set S embedded 
in a DT-embedding space increases with NS. One may also note that as NS → +∞, the entire probability space 
is explored.
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where the sampling fractal dimension DFS verifies DFS > 0 for DS > cF − DT. The extreme case DFS = 0 
corresponds to single points isolated in the sample; when DS > cF and DS > cF, S is present and absent 
in the sample, respectively.

The so-called fractal dimension and codimension referred to in the previous section are com-
monly estimated from the regression slope of a log-log power-law plot; see, for example, Equations 
(2.1.), (2.3.), (2.1.0), (2.1.4), and (2.1.5). However, this procedure is not necessarily as straightforward 
as it may appear at first glance and relies on many successful consecutive steps, the minimum 
prerequisite being to choose the appropriate analysis techniques (that is, an appropriate power 
law). To achieve this goal, one needs first to know the difference between self-similar and self-
affine fractals as well as to identify the limits of fractal analysis, such as those related to both 
anisotropy and nonstationarity conditions often encountered in aquatic ecology. Objective crite-
ria are also needed to select the appropriate range of scales to include in the regression analysis. 
Then comes the question of distinguishing scaling from multiple scaling behaviors. The final 
question that needs to be addressed is to know whether fractal concepts can be powerful enough 
to measure the extreme complexity emerging from the highly intermittent patterns encountered 
in both terrestrial and aquatic ecosystems.
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3 Self-Similar Fractals

As stated in Chapter 2, fractals are defined to be scale-invariant geometric objects. However, scale 
invariance can be dichotomized into self-similar and self-affine fractals. Strictly speaking, an object 
is called self-similar if it may be written as a union of rescaled copies of itself with the rescaling iso-
tropic (that is, uniform in all directions). Regular fractals such as the Koch snowflake (Figure 2.5a) 
and the Sierpinski carpet and gasket (Figure 2.8) display exact self-similarity. Random fractals such 
as the random Koch snowflake (Figure 3..1.) display a weaker, statistical version of self-similarity 
or, more generally, statistical self-similarity. More formally, a geometric object is called self-affine 
if it may be written as a union of rescaled copies of itself, where the rescaling is anisotropic (that 
is, dependent on the direction). Thus the trace of particulate Brownian motion in two-dimensional 
space is self-similar, whereas a plot of the x coordinate of the particle as a function of time is self-
affine (Figure 3..2).

3.1 selF-similarity, Power laws, and the Fractal dimension

Mathematical fractals exhibit exact self-similarity across all spatial or temporal scales, such that suc-
cessive magnifications reveal an identical structure. A self-similar object is composed of N copies of 
itself (with possible translations and rotations), each of which is scaled down by a scale ratio d in all 
directions of the DE dimensional available space. More formally, consider a set S of points at posi-
tions x x x xDE



=( , , , )1 2 in Euclidean space of dimension DE. Under a similarity transform with a 
scale ratio d (0 < d  < 1.), the set S becomes d S with points at positions δ δ δ δx x x xDE



= (    1 2, , , ).
 
A 

bounded set S is self-similar when S is the union of N nonoverlapping subsets, each of which is iden-
tical (under translations and rotations) to d S. A basic example of a self-similar fractal is the Cantor 
set (Cantor 1.883.). Consider a line segment ([0, 1.]), divide it into thirds, and remove the central part. 
Repeat the procedure on the two remaining thirds, and after an infinite number of iterations, one 
converges to a set of points or Cantor set, also referred to as Cantor dust (Figure 3..3.).

A B

Figure 3.1 Difference between self-similar and statistical self-similar fractals. The Koch snowflake  
(A) displays exact self-similarity, while the random Koch snowflake (B) displays a weaker, statistical version 
of self-similarity, referred to as self-affinity.
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The construction rules of such simple sets lead to a simple way to calculate their related fractal 
dimensions. In the case of the Cantor set (which can be easily extended to other geometrical frac-
tals), at stage n of the construction process, the set is characterized by 2n intervals of length 3.−n; its 
total length is thus (2/3.)n. At the limit n → ∞, the length of the Cantor set is then nil, and its topo-
logical dimension is DT = 0. To estimate its fractal dimension, consider a cover of the sets by line 
segments of length d n = (1./3.)n. From the previous statements, it comes that only N(d n) = 2n segments 
cover a part of the Cantor set. The length of the Cantor set can thus be expressed as L n + 1. = (2/3.) Ln, 
whose solution is of the form:

 L n n
DF( )δ = −δ1  (3..1.)

A

X (t)

Time

Bm
 (t

)
Y 

(t)

B

Figure 3.2 Difference between self-similar and self-affine fractals. The trace of a Brownian motion in a 
two-dimensional space is self-similar (A), whereas the plot of the x coordinate of the particle as a function of 
time is self-affine (B). The major difference is that the rescaling is dependent on the direction in the latter case; 
that is, the horizontal and the vertical axes do not have the same meaning in (B).
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The number of length elements required to cover the total length is given by L(d n)/d n 
 and equal to:

 N n n
DF( )δ δ= −  (3..2)

The fractal dimension DF  can finally be generally expressed as:

 DF = log N(d n)/log(1./d n).   (3..3.)

or equivalently:

 DF = log N(d n)/logl n   (3..4)

where the scale-ratio l is defined as:

 l = d n +1. /d n (3..5)

where d n +1. and d n  are respectively the length elements required to cover a piece of the Cantor set at 
steps n + 1. and n of the construction process. For the Cantor set, l = 3., and the fractal dimension 
DF = log 2/log 3. = 0.63.1.. A generalization for the areas and volumes of fractal surfaces and volumes 
can be easily derived from Equation (3..1.) as:

 S n n
DF( )δ δ= −2   (3..6)

and

 V n n
DF( )δ δ= −3

  (3..7)

It is stressed here that the fractal dimensions DF  introduced in Equations (3..2), (3..6), and (3..7) can be 
referred to as “fractal line dimension,” “fractal surface dimension,” and “fractal volume dimension,” 
respectively. The exponents in Equations (3..1.), (3..6), and (3..7) also directly refer to the codimension 
concept introduced in Section 2.2.2.1., Equation (2.1.2).

n = 0

n = 1

n = 2

n = 3

n = 4

Figure 3.3 Construction of the Cantor set, by repeated removal of the middle third of each interval; at 
each step, there are two elements that are three times smaller, leading to a fractal dimension DF = log 2/ 
log 3. = 0.631.
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A set S is also self-similar if each of the N subsets is scaled down from the whole by a different 
similarity ratio d i . The fractal dimension DF is then given by

 
δi

D

i

N

F

=
∑ =

1

1
  

(3..8)

which is strictly equivalent to Equation (3..2) when all the d i  are equal (Voss 1.985).
Unlike mathematical fractals, natural objects do not display exact self-similarity. 

Nevertheless, many natural objects do display some degree of “statistical” self-similarity, at 
least over a limited range of spatial or temporal scales, corresponding to partial self-similarity. 
For example, lung branching shows self-similarity over 1.4 dichotomies, and tree branching 
over 8 dichotomies (Schroeder 1.991.). In addition, the existence of stepwise behavior (that is, 
changes in fractal dimension when shifting between scales) implies that in place of true self-
similarity, we observe only partial self-similarity over limited ranges of scales separated by 
transition zones, where the environmental properties or constraints acting upon organisms are 
probably changing rapidly (Frontier 1.987; Seuront and Lagadeuc 1.998; Seuront et al. 1.999). 
This is of prime interest in aquatic ecology since the extent of a given power law (referred to 
as the scaling range hereafter) allows the identification of the characteristic scales of organi-
zation of any pattern or process. Several objective procedures devoted to the identification of 
scaling ranges (that is, a key step for the result of fractal analysis to be meaningful) will thus 
be introduced in Chapter 7.

Statistical self-similarity refers to scale-related repetitions of overall complexity but not of the 
exact pattern. Specifically, details at a given scale are similar, though not identical, to those seen 
at coarser or finer scales. A set S is statistically self-similar if it is composed of N distinct subsets, 
each of which is scaled down by a ratio d  from the original and is identical in all statistical respects 
to dS. The related fractal dimension is still given by Equation (3..1.) and Equation (3..2). In that way, 
the prevalence of power law with respect to the scale of observation in a certain range is commonly 
used to discern a fractal, especially when the scale of similarity is statistical and cannot be identi-
fied by sequential enlargement of segments of the fractal object. A collection of methods devoted to 
the characterization of different kinds of self-similar natural objects (for example, branching pro-
cesses such as vascularization, lung systems, or stream orders and discrete patterns such as islands 
or pancreatic islets) are provided in Section 3..2.

It should be emphasized that self-similarity is not a prerequisite to applying fractal theory. Self-
similar or statistically self-similar patterns are characterized by fractal dimensions that remain 
constant for each subpart of the whole (Mandelbrot 1.983.; Tricot 1.995). Geographic lines, such as 
coastlines, are nevertheless very complex curves, whose local dimensions (see Section 2.2.1.) are not 
the same everywhere. Such curves are not self-similar, not even statistically (Normant and Tricot 
1.993.). As a consequence, we stress that (strictly speaking) fractal does not imply self-similar, and 
thus coastlines are not self-similar but fractal. Self-similarity is thus a restrictive point of view. 
This has also briefly been addressed by Voss (1.985), who stressed that “in practice it is impossible 
to verify that all moments of the distributions are identical, and claims of statistical self-similarity 
are usually based on only a few moments.” This specific point is nevertheless beyond the scope of 
this section and will be discussed more extensively hereafter with the introduction of the concept of 
multifractals (see Chapter 8).

3.2 methods For selF-similar Fractals

There is no unique definition of self-similar fractal dimension; rather, there are a variety of meth-
ods used to measure it. Unfortunately, this statement also implies that the fractal dimensions are 
not all the same. As a consequence, in order for comparisons between fractal dimensions to be 
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meaningful, I strongly recommend the reader to be aware of the methods used in the studies he 
or she refers to.

The choice of a method is usually a matter of convenience, as different methods are tailored to 
different types of data sets. This section includes methods suitable for measuring the dimension 
of a set of zero- and one-dimensional objects lying in a plane (such as organisms, trajectories, and 
coastlines) and of sets of two-dimensional objects (such as islands, patches, and mountains) lying 
in a plane.

Loosely speaking, the methods described are quite similar. In all cases, one measures some 
characteristic of the data set that should be related through a power law to a length scale. The results 
are plotted in log-log space and, if the set is fractal, they should follow a straight line. The fractal 
dimension is a simple function of the exponent of the power law, that is, of the slope of the straight 
line in log-log space. The slope is estimated by fitting a line using the objective methods described 
and discussed in Chapter 7.

3.2.1 dividEr dimEnsion, Dd

3.2.1.1 theory
Consider the problem of estimating the fractal dimension of a convoluted line, such as a coastline, 
vegetation patch edge, or movement pathway. Using the dividers procedure, the fractal dimension 
Dd is estimated by measuring the length of a curve at various scale values d (Figure 3..4). The pro-
cedure is analogous to moving a set of dividers (like a drawing compass) of fixed length d  along the 
curve. The estimated length of the curve is the product of N(d ) (the number of compass dividers 

A

B

C

δ1

δ2

δ3

Figure 3.4 Schematic illustration of three successive steps of the divider procedure using dividers d1. (A), d2 (B), 
and d3. (C) of decreasing lengths.
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required to “cover” the object) and the scale factor d. The number of dividers necessary to cover 
the object increases with decreasing measurement scale, leading to the power-law relationship:

 L(d) = kd m (3..9)

where d  is the measurement scale, L(d ) is the measured length of the curve, L(d ) = Nd, and k is 
a constant. Practically, the fractal dimension Dd is estimated from the slope m of the log-log plot 
of L(d ) versus d  for various values of d  where:

 Dd  = 1. − m  (3..1.0)

One must note that, because L(d) = N(d )d, Equation (3..1.0) can be equivalently written as:

 N(d) = kd −Dd   (3..1.1.)

The fractal dimension Dd is then directly estimated from the slope of the log-log plot of N(d ) ver-
sus d. Note that the fractal properties of a curve have also been investigated using the mosaic tile 
amalgamation method, or boundary method (Kaye 1.989). In this method, a curve is covered by a 
grid with each box having a length d, called the mosaic tile size, and the perimeter of the curve is 
calculated for each tile size as the product of the number of boxes that intersect the curve and the 
size of the box. By superimposing many different grid sizes, the perimeter of a curve is then given 
by the scaling relationship (Kaye 1.989):

 P D b∝ −δ 1    (3..1.2)

where D1.b is the boundary fractal dimension, and  means proportionality.
The fractal dimension Dd is bounded between 1. and 2 when the curve is Euclidean and space fill-

ing, respectively. In the former case, the length of the curve is a constant independent of the length 
scale d. This lower bound is nevertheless proven to be true only when d  is sufficiently small when 
compared to the characteristic external scale of a given object. For instance, the perimeter of a circle 
of radius r is constant when d = r. When Dd = 2, the curve is so convoluted that it fills the whole 
available (two-dimensional) space; the length of the curve is linearly related to d.

Even though coastlines, patch boundaries, and movement pathways are curves, their wiggli-
ness is so extreme that it is practically infinite. For example, it is not useful to assume that they 
have either well-defined tangents (Perrin 1.91.3.) or a well-defined finite length (Mandelbrot 1.967). 
Specific measures of the length depend on the method of measurement and have no intrinsic mean-
ing. For example, let a pair of dividers “walk” along the coast; as the step length d  is decreased, the 
number N(d ) of steps necessary to cover the coast increases faster than 1./d. Hence, the total distance 
covered, L(d ) = N(d )d, increases without bound.

3.2.1.1.1 Divider Dimensions and the Length of Coastlines
The dividers method was originally used to describe the fractal nature of coastlines. From 
Mandelbrot’s (1.967) seminal paper “How Long Is the Coast of Britain? Statistical Self-Similarity 
and Fractional Dimension,” chapters in standard monographs and textbooks on fractals (for exam-
ple, Feder 1.988; Turcotte 1.992) discussed the fractal nature of coastlines at length. Mandelbrot 
(1.983.) examined a small set of coastlines and found their fractal dimension to be in the range of 
1..2 to 1..3.. Later work investigated the fractal dimension Dd for a limited sample of other coastlines 
(Dietler and Zhang 1.992; Feder 1.988; Carr and Benzer 1.991.; Pennycuick and Kline 1.986; Korin 
1.992; Paar et al. 1.997; Jiang and Plotnick 1.998; Zhu et al. 2000, 2004) (see Table 3..1.). For instance, 
Jiang and Plotnick (1.998) showed that the Atlantic coast of the United States was much more complex 
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than the Pacific coast. This is consistent with previous qualitative statements describing the Pacific 
coast as being unique among the coastlines of the world in that the evenness of its contour is almost 
unbroken by embayments (Keen 1.971.). In contrast, the Atlantic coast is extensively embayed, with 
numerous fjords and river systems. In addition, no latitudinal gradient was detected in the fractal 
dimensions estimated over 1.° latitudinal ranges, although they significantly increased from North 
to South on the Atlantic coast. Hypothesizing that the spatial complexity of a coastline can be 
regarded as a proxy of the bathymetric complexity of the related ocean floor, Jiang and Plotnick 
(1.998) suggested that the bathymetric complexity of the Atlantic Ocean floor adjacent to the United 
States is far more complex than that of the corresponding Pacific Ocean floor. In an attempt to 
assess the potential impact of the lithologic properties of faults on the development of the east coast 
of Britain, Philip (1.994) found that in some areas the coastlines were parallel to the faults. This 
was later confirmed by a fractal analysis of the coastline of China showing both direct and indirect 
effects of faults on coastline complexity (Zhu et al. 2004). Although the general trends of coast-
lines are forced by the geometry of the faults, the more active the faults are, the smaller the fractal 
dimension of the coastline is (Zhu et al. 2004). The potential implications of the fractal nature of 
coastlines (and ultimately of any potential habitat) on species diversity and species extinction are 
discussed hereafter.

3.2.1.1.2 Coastline Complexity and Marine Species Diversity
Many explanations for diversity patterns have been proposed, and there have been several early 
reviews of the subject (for example, Pianka 1.966, 1.974; Pielou 1.975). High diversity has been attrib-
uted both to intense competition, which forces niche restriction (MacArthur and Wilson 1.967; 
Hutchinson and MacArthur 1.959; MacArthur 1.965), and reduced competition resulting from pre-
dation (Risch and Carroll 1.986). However, along with a variety of ecological and evolutionary 
processes, historical events, and geographical circumstances, habitat complexity on a wide range 
of scales plays an important role in community structure (Schluter and Ricklefs 1.993.; Rahbek and 

table 3.1  
Fractal divider dimension Dd of a range of coastlines

coastline Dd   sources

Adak Island, Alaska (USA) 1..20          Pennycuick & Kline (1.986)

Amchitka Island, Alaska (USA) 1..66          Pennycuick & Kline (1.986)

West Coast (Great Britain) 1..27           Carr & Benzer (1.991.)

North Coast (Australia) 1..1.9           Carr & Benzer (1.991.)

South Coast (Australia) 1..1.3.           Carr & Benzer (1.991.)

West Shore, Puget Sound (USA) 1..1.9           Carr & Benzer (1.991.)

East Shore, Puget Sound (USA) 1..1.5           Carr & Benzer (1.991.)

West Shore, Gulf of California (USA) 1..03.           Carr & Benzer (1.991.)

East Shore, Gulf of California (USA) 1..02           Carr & Benzer (1.991.)

Ria Coast from Kamaishi (Japan) 1..21.–1..3.7           Korin (1.992)

Louisiana (USA) 1..20           Lam & DeCola (1.993.)

Pacific Coast (USA) 1..00–1..27         Jiang & Plotnick (1.998)

Pacific Coast (USA) 1..00–1..70         Jiang & Plotnick (1.998)

Jiangsu Province (China) 1..07            Zhu et al. (2000)

Coastline of China 1..04–1..24            Zhu et al. (2004)

Van Koch Curve 1..21.             Carr & Benzer (1.991.)

Fractal Brownian Coastline 1..3.0               Mandelbrot (1.977)
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Graves 2001.). Environmental heterogeneity is critical for species coexistence, with structurally 
complex habitats offering a great variety of different microhabitats and niches, thereby allowing 
species to coexist and contributing to within-habitat diversity (Pianka 1.988). Habitat heterogeneity 
provides a diversity of resources that can lead to coexistence of competitors, which would not be 
possible in homogeneous environments (Levin 1.992) and is, de facto, a critical mechanism in the 
maintenance of biological diversity (Levin 1.981.). Although theoretical support for the importance 
of habitat heterogeneity is overwhelming, empirical evidence is not always clear and can be con-
founding (Kareiva 1.990). Many studies conducted in a variety of ecosystems thus support a positive 
relationship between habitat complexity and species diversity (Petren and Case 1.998; Kerr et al. 
2001.; Rahbek and Graves 2001.), although evidence exists for diversity decreasing with or being 
independent of habitat heterogeneity (Eadie and Keast 1.984; Kelaher 2003.; Taniguchi et al. 2003.). 
According to the above-mentioned statements, the increase in complexity of the Atlantic coast of the 
United States identified by Jiang and Plotnick (1.998) should favor a higher species diversity when 
compared to the Pacific coast. Valentine (1.989) identified 468 shallow-water gastropod species from 
the Californian faunal province of the Pacific coast, while for similar latitudes in the Atlantic, Allmon 
et al. (1.993.) found 778 gastropod species from the east coast of Florida. These results support the long-
standing hypothesis of a positive relationship between habitat complexity and species diversity, and the 
potential for fractal analysis to be related with more traditional biological and ecological approaches 
in entangling the complex relationship between habitat heterogeneity and species diversity.

3.2.1.1.3 Coastline Complexity and Species Extinction
A mass extinction of coastal marine mollusks along the Atlantic coast of the United States in the 
late Pliocene has been well documented (Schopf 1.970; Stanley 1.981.; Allmon et al. 1.993.); only 
22% of Early Pliocene bivalve species have survived (Stanley 1.986). In contrast, 80% and 75% of 
the Pacific coast Pleistocene fossil species of bivalves and gastropods, respectively, are still living 
(Valentine 1.989). Stanley (1.986) has suggested that the western Atlantic extinction was produced 
by cooling associated with the onset of glaciation. The cooling of the Pacific was proposed to be 
much weaker, so that no extinction resulted. However, an alternative explanation may lie in the 
topographic changes related to sea-level drop and climate change (Jiang and Plotnick 1.998). As 
Valentine (1.989) suggested, the early Pliocene coastline of the U.S. Atlantic coast was less com-
plex than that of today, so an increase in coastline complexity may have increased speciation rates, 
resulting in the observed increase in diversity. Considering the observed higher complexity of the 
coastlines of the Atlantic coast, it is likely that the sea-level changes related to climate forcing 
induced sharper changes in the local properties of habitat complexity, which might have also con-
tributed to species extinction.

3.2.1.2 case study: movement Patterns of the ocean sunfish, Mola Mola
3.2.1.2.1 Study Organism
The ocean sunfish, Mola mola, inhabit tropical and temperate regions of the Mediterranean Sea and 
the Atlantic, Indian, and Pacific oceans (Fraser-Brunner 1.951.; Wheeler 1.969; Miller and Lea 1.972). 
Key aspects of their biology and behavior, such as annual movement and the mode and location 
of breeding, are still largely unknown (Fraser-Brunner 1.951.; Reiger 1.983.). It has been suggested 
that the main part of their life is spent in deep water (Fraser-Brunner 1.951.; Lee 1.986); however, 
ocean sunfish are frequently observed during daylight hours at the sea surface (Fraser-Brunner 
1.951.; McCann 1.961.; Schwartz and Lindquist 1.987; Sims and Southall 2002; Seuront et al. 2003.). In 
a recent study of their fine-scale movements, ocean sunfish were found to exhibit nocturnal vertical 
movements within the surface mixed layer and thermocline, while diurnal vertical movements were 
characterized by repeated dives below the thermocline (Cartamil and Lowe 2004). Although ocean 
sunfish have been previously regarded as planktonic fish, primarily passively transported by oce-
anic currents (McCann 1.961.; Lee 1.986), Cartamil and Lowe (2004) showed that ocean sunfish are 
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active swimmers not significantly affected by the velocity or the direction of the currents, and with 
cruising speeds similar to those found for yellowfin tuna Thunnus albacares (Block et al. 1.992).

3.2.1.2.2 Experimental Procedures and Data Analysis
The data used here to investigate the diel variability of the fine-scale properties of ocean sunfish 
movement patterns were originally described in a previous study (Cartamil and Lowe 2004). As a 
consequence, we only provide hereafter the basics of capturing, tagging, and tracking procedures 
(Figure 3..5) and refer the reader to Cartamil and Lowe (2004) for further details. Eight ocean sun-
fish were captured by dipnetting while basking at the surface or found in association with kelp pat-
ties, and measured and tagged with a temperature and depth-sensing acoustic transmitter (Vemco, 
Model V22TP, 22 mm diameter × 1.00 mm length, frequencies 3.4 to 40 kHz). The acoustic output 
of the transmitters was detected using a fixed directional hydrophone mounted through the vessel’s 
hull, and decoded by a receiver unit (Vemco, Model VR-60) mounted above the boat console (see 
Cartamil and Lowe 2004 for more details). Depth, temperature, and GPS-derived location of the 
vessel were recorded every 3. minutes.

Although the fractal nature of fish movement patterns have seldom been studied (Coughlin et al. 
1.992; Dowling et al. 2000; Faure et al. 2003.), it may nevertheless be thought of as a unifying frame-
work to model and compare movement patterns of other groups of organisms (Turchin 1.998; Faure 
et al. 2003.). Although movement patterns of ocean sunfish have been limited to scale-dependent 
measurements, such as rate and directionality of movement, the same data used to determine these 
metrics can be used to calculate and compare the fractal dimension of these movements (Cartamil 
and Lowe 2004). The use of the dividers dimension Dd is illustrated on the basis of acoustic telem-
etry tracking data for Mola mola off the southern California coast (Figure 3..6A) and demonstrates 
the fractal nature of diurnal and nocturnal movement patterns (Figure 3..6B).

3.2.1.2.3 Results
For the eight trajectories considered, log-log plots of L(d ) versus d (Equation 3..9) exhibit very strong 
linear behaviors over the whole range of considered scales, with coefficients of determination rang-
ing from 0.98 to 0.99 (Figure 3..6C). This unambiguously demonstrates the scale-dependent (fractal) 

Figure 3.5 An ocean sunfish, Mola mola, released immediately after tagging with a temperature and depth-
sensing acoustic transmitter. (Courtesy of Dr. C. G. Lowe, California State University, Long Beach, California.)
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nature of sunfish movement patterns. Although no differences were “visually” perceptible between 
diurnal and nocturnal movement patterns, the resulting fractal dimensions, plotted as a function of 
diurnal and nocturnal movement patterns for each individual’s swimming path, ranging from 1..05 
to 1..3.1., show a high individual variability (Figure 3..6D). Except for the paths 5, 6, and 8, nocturnal 
fractal dimensions were significantly higher than diurnal ones (analysis of covariance and subse-
quent Tukey test, p < 0.01., Figure 3..6D). A significant negative correlation ( p < 0.05) was found 
between sunfish size and both diurnal and nocturnal fractal dimensions. A significant ( p < 0.05) 
positive correlation was found between nocturnal temperature and fractal dimensions. This relation 
was nonsignificant ( p > 0.05) during daylight hours.

3.2.1.2.4 Ecological Interpretation
The difference between diurnal and nocturnal fractal dimensions suggests two specific swimming 
strategies (Figure 3..6D). The relative linearity associated to the low fractal dimension during daylight 
hours suggests individuals are moving in a direct manner. In contrast, the more complex, convoluted 
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Figure 3.6 (A) Movements of eight ocean sunfish, Mola mola, tracked by acoustic telemetry, near Santa 
Catalina Island, California. (B) Details of diurnal and nocturnal (shaded area) movement patterns for the indi-
viduals. (C) Illustrations of the related diurnal (open symbols) and nocturnal (black symbols) scaling behaviors 
of the log-log plot of L(d ) versus d (see Equation 3..9). (D) Fractal dimensions Dc are shown for the diurnal 
(white bars) and nocturnal (black bars) movement patterns of the eight individuals.
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paths observed during the nighttime period suggest that sunfish are interacting with environmental 
heterogeneity on a finer scale (Wiens et al. 1.995). As shown for a variety of organisms ranging from 
minute invertebrates (Crist et al. 1.992; With 1.994; Hoddle 2003.; Seuront 2006) to large mammals 
(Bascompte and Vilà 1.997; Ferguson et al. 1.998a, 1.998b; Mouillot and Viale 2001.; Mårell et al. 
2002; Laidre et al. 2004), an increase in the complexity of spatial movements may also indicate an 
increase in foraging or searching efforts in a localized area. Therefore, this may suggest that sunfish 
were searching for more clumped resources at night. Ocean sunfish vertical dive profiles observed 
during daylight hours may enable them to feed on vertically migrating gelatinous zooplankton at their 
diurnal depths below the thermocline (Cartamil and Lowe 2004). Here, the higher fractal dimension 
observed at night for five of the eight ocean sunfish investigated might be related to an increased 
foraging activity on gelatinous zooplankton occurring near the surface nocturnally. This result does 
not contradict previous work suggesting that sunfish are feeding primarily during the day. Instead, 
this may further substantiate the hypothesis that the movement patterns of ocean sunfish could have 
evolved as a means of foraging on vertically migrating organisms, and previous observations of noc-
turnal vertical movements were confined to the surface layer and thermocline (Cartamil and Lowe 
2004). Ocean sunfish may also be feeding during both day and night but use different movement 
patterns to fully exploit prey that vertically migrate. The potential link between environmental het-
erogeneity and sunfish behavior was previously investigated by looking at sunfish movements relative 
to sea-surface temperature fronts (Cartamil 2003.). However, the cloud cover that limited sea-surface 
temperature image quality and availability over the study area hampered the identification of any 
relationship (Cartamil 2003.). The observed changes in fractal dimensions of swimming trajectories 
may then provide an efficient, alternative tool to infer changes in environmental properties.

The significant negative correlation between ocean sunfish size and the fractal dimension  
(p < 0.05) of their swimming paths suggests that larger individuals interact with their environment 
at a finer scale resolution than do smaller ones. Assuming that larger sunfish have increased remote 
sensing ability and motility, they may achieve more convoluted (that is, high D value) swimming 
paths, likely to increase their encounter rates with their intrinsically patchy zooplankton prey. A 
more convoluted swimming strategy also increases predation risk (see, for example, Tiselius et al. 
1.997), and ocean sunfish are typically hunted by fast-swimming predators such as large sharks 
(Fergusson et al. 2000) and California sea lions (Cartamil and Lowe 2004). However, since preda-
tion risk is less likely at large sizes, their size may enable them to use this type of movement rela-
tively safely. In contrast, the more linear swimming behavior of the smallest and slowest sunfish 
(that is, D 1.14 0.01;= ± ±x SD) could then be thought as an antipredator strategy.

The significant positive correlation between temperature and the tortuosity of nighttime move-
ment patterns suggests that the foraging activity of ocean sunfish may be temperature dependent. 
This may be directly related to an increased motility in warmer waters but also to different foraging 
strategies. This is consistent with the high individual variability observed in the movement patterns 
(Figure 3..6D) as different individuals moved over similar areas (see Figure 3..6A) but at different 
times. These areas likely differed in their biotic and abiotic properties during each tracking period. 
In particular, studies have documented the hierarchical nature of marine species’ responses to food 
patch structure (Fauchald et al. 2000), indicating that organisms may be specifically responding to 
different prey distribution or density (Seuront et al. 2001.).

3.2.1.3 methodological considerations
3.2.1.3.1 How to Start the Analysis?
As illustrated in Figure 3..4, the implicit easiest way to conduct the analysis is to use the first point 
of the object under consideration as a starting point for the divider algorithm. However, the val-
ues L(d ) = Nd  may vary depending on the starting position along the curve, especially at large 
scales (Sugihara and May 1.990a; With 1.994; Nams 1.996). This issue can nevertheless be circum-
vented by starting the dividers procedure at different, randomly chosen positions, walking forwards 
and backwards, and using the distribution of the resulting divider dimensions (also referred to as 
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“compass dimension” in the literature) as an estimate of Dd. This procedure has been applied on 
nine three-dimensional swimming paths of the freshwater crustacean, the water flea Daphnia pulex 
(see Figure 3..1.2). Taking 1.0 random starting positions for each of the swimming paths available, 
Seuront et al. (2004a) did not identify any spurious effect related to the first point considered in the 
analysis, as all the divider dimensions returned were not found significantly different (analysis of 
covariance, p > 0.05). It is strongly advised, however, to systematically infer this potential bias to 
ensure the relevance of the divider dimension returned by the analysis.

3.2.1.3.2 On the Relevance of Fractal Analysis in Movement Ecology
3.2.1.3.2.1 Fractal Analysis in Movement Ecology
Since its introduction to characterize tortuosity of animal trails (Dicke and Burrough 1.988), frac-
tal analysis has been widely used to describe movement pathways of a wide variety of organisms 
ranging from invertebrates to large vertebrates (Table 3..2). The fractal analysis of animals’ paths 
appeared to be an alternative and promising method for measuring tortuosity of foraging behavior. 
Although Dd is primarily a measure of the extent to which a given (fractal) object fills the space in 
which it is embedded, the logic of the use of fractals to characterize motion behavior lies behind 

table 3.2 
nonexhaustive literature survey of movement Pathways analyzed using Fractal 
dimensions 

organism terrestrial aquatic sources

Vertebrate + Cody (1.971.)

Invertebrate* + Shlesinger (1.986)

Invertebrate + Dicke & Burrough (1.988)

Invertebrate* + Levandowski et al. (1.988)

Invertebrate + Wiens & Milne (1.989)

Invertebrate + Turchin et al. (1.991.)

Invertebrate + Crist et al. (1.992)

Invertebrate + Johnson et al. (1.992)

Invertebrate + Coughlin et al. (1.992)

Invertebrate + Bundy et al. (1.993.)

Invertebrate + Gautestad & Mysterud (1.993.)

Invertebrate + With (1.994)

Invertebrate + Erlandson & Kostylev (1.995)

Invertebrate + Wiens et al. (1.995)

Invertebrate + Cole (1.995)

Invertebrate + Brewer (1.996)

Vertebrate* + Viswanathan et al. (1.996)

Invertebrate* + Schuster & Levandowsky (1.996)

Vertebrate + Nams (1.996)

Vertebrate* + Focardi et al. (1.996)

Invertebrate + Turchin (1.996)

Invertebrate + Jonsson & Johansson (1.997)

Vertebrate* + Kafetsopoulos et al. (1.997)

Vertebrate + Bascompte & Vila (1.997)

Invertebrate + Turchin (1.998)

Vertebrate + Ferguson et al. (1.998a)

Vertebrate + Ferguson et al. (1.998b)

Vertebrate + Etzenhouser et al. (1.998)

Vertebrate + Dowling et al. (2000)
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the two extreme representations of organism movement. The first extreme is an organism mov-
ing along a perfectly linear path. As previously described, since the path is a line, its length L(d ) 
will always be the same whatever the measurement scale d (that is, the size of the divider) and its 
fractal dimension is unity. The second extreme is the Brownian motion, which results in a fractal 
dimension Dd  = 2, suggesting that all points in the available space have been visited, leaving no 
area unfilled. The fractal dimension is then expected to provide a measure of the path sinuosity or 
tortuosity. However, the critique made by Turchin (1.996), and to a lesser extent Benhamou (2004), 
might throw some doubt on the reliability of the fractal dimension for measuring organisms’ path 
tortuosity. The advantages of using fractal analysis instead of more traditional behavioral metrics 
and the rationale for criticism against the fractal approach in behavioral ecology are addressed in 
details hereafter.

3.2.1.3.2.2  Scale Independence or Scale Dependence of Fractal Dimension of Movement 
Pathways?

The key assumption of fractal analysis is that the fractal dimension is scale independent; that is, 
the fractal dimension estimated from a movement path that is tens of meters long is the same for 
paths measured at the scale of meters to kilometers. This is not the case, however, for traditional 
behavioral metrics (Box 3..1.).

Invertebrate + Schmitt & Seuront (2001.)

Vertebrate + Mouillot & Viale (2001.)

Vertebrate* + Marell et al. (2002)

Vertebrate* + Atkinson et al. (2002)

Vertebrate + Fritz et al. (2003.)

Invertebrate + Hoddle (2003.)

Invertebrate* + Bartumeus et al. (2003.)

Vertebrate + Laidre et al. (2004)

Vertebrate + Faure et al. (2003.)

Invertebrate + Martin (2004)

Vertebrate* + Austin et al. (2004)

Invertebrate + Seuront et al. (2004a)

Invertebrate + Seuront et al. (2004b)

Invertebrate + Seuront et al. (2004c)

Vertebrate* + Ramos-Fernández et al. (2004)

Invertebrate + Biesinger & Haefner (2005)

Vertebrate + Nams (2005)

Vertebrate + Garcia et al. (2005)

Invertebrate + Uttieri et al. (2005)

Invertebrate + Uttieri et al. (2007)

Invertebrate + Seuront (2006)

Invertebrate* + Reynolds (2006)

Invertebrate* + Reynolds & Frye (2007)

Invertebrate* + Reynolds et al. (2007)

Invertebrate* + Seuront et al. (2007)

Vertebrate** + Bertrand et al. (2007)

Vertebrate** + Brown et al. (2007)

Vert/Invert* + + Edwards et al. (2007)

Vertebrate* + Sims et al. (2008)

*Movement pathways analyzed indirectly as Lévy flights using cumulative frequency distributions, see Chapter 5. 
**Humans.
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Box 3.1 on thE SCALE DEPEnDEnCE oF 
tRADItIonAL BEhAvIoRAL MEtRICS

Movement pathways have been characterized by a variety of measures, including path length 
(the total distance traveled, or gross displacement), move length (the distance traveled between 
consecutive points in time), move duration (time interval between successive pauses, as well 
as between successive spatial points), speed (move length divided by move duration), turning 
angle (the difference in direction between two successive moves), turning rate (turning angle 
divided by move duration), net displacement (the linear distance between starting and ending 
points, often used as a metric when making comparisons with diffusion or correlated ran-
dom walk models; see, for example, Kareiva and Shigesada 1.983.; McCulloch and Cain 1.989; 
Turchin 1.991.; Johnson et al. 1.992), and NGDR (net to gross displacement ratio; Wilson and 
Greaves 1.979). As discussed by Seuront et al. (2004a), the values of all the metrics are implic-
itly a function of their measurement scale. The scale dependence of these ratio metrics—that 
is, the path length and the turning angle (Figure 3..B1..1.)—implies that there is no single scale 
at which movement paths can be unambiguously described.

Figure 3.b1.1 Illustration of the scale dependence of path length (A) and turning angle (B) of the 
swimming trajectories of the water flea, Daphnia pulex, investigated at different temporal resolution 
and spatial scale, respectively. (Modified from Seuront et al., 2004a.)
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Scale measurement is the central tenet of one of the main issues faced by landscape ecolo-
gists: understanding how to meaningfully extrapolate ecological information across spatial scales 
(Gardner et al. 1.989; Turner and Gardner 1.991.). The scale independence of the fractal dimension 
is mainly driven by the belief that the same process is controlling the observed patterns from the 
smallest to the largest available scales. Strictly speaking, fractals are mathematical constructs 
characterized by a never-ending cascade of similar structural details that are revealed upon mag-
nification on all scales. A fractal object, considered in its mathematical sense, then requires 
“many” orders of magnitude of power-law scaling, and subsequent interpretation of empirical 
data as indicating fractality must require “many” orders of magnitude (Avnir et al. 1.997). While 
the concept of “many orders of magnitude” might be thought of as fairly vague in itself, it refers 
to several key processes involving equilibrium-critical phenomena (such as magnets, liquids, 
percolations, and phase transitions) and some nonequilibrium growth models (such as diffusion-
limited aggregation, stopovers of Lévy flights) that are backed by intrinsically scale-free theories 
and lead therefore to power-law scaling behavior on all scales. It is then legitimate to expect con-
stant fractal dimensions over up to five decades (Avnir et al. 1.997). This is, however, very unlikely 
to happen in ecology due to the heterogeneous and hierarchical organization of landscapes and 
ecosystems.

Wiens et al. (1.993.) concluded their investigation of insect movement in microlandscape mosa-
ics, stating that “because the fractal dimension has the desirable feature of being constant over 
a finite range of measurement scales, it is useful in comparing movements of insects that may 
respond to the patch structure of the environment at different absolute scales.” A fractal motion 
behavior is also implicitly limited by the sizes of the organisms and their home range, or more 
prosaically by the size of the enclosure in which their behavior has been investigated. These 
potential changes in fractal dimensions then define transitions between different spatial domains 
for which the fractal dimension is scale independent (Wiens 1.989). As a consequence, the fractal 
dimensions of organisms’ movements are expected to apply to a limited range of scales or to 
change with scales (Box 3..2).

Box 3.2 on thE SCALE InDEPEnDEnCE oF FRACtAL 
DIMEnSIonS In AnIMAL BEhAvIoR

The traditional dividers method (Section 3..2.1..1.) can be adapted to measure Dd over dif-
ferent ranges of scales (Krummel et al. 1.987; Sugihara and May 1.990a; Nams 1.996). First, 
consider a regression window varying over a range of divider lengths d (where a minimum 
of five values is expected to ensure the statistical relevance of a regression analysis; Seuront 
et al. 2004a), and estimate the slope of the log-log plot of L(d ) vs. d over that range, thus the 
fractal dimension Dd . Then shift the range of the d value along the x axis, and estimate Dd  
again. This procedure is illustrated using swimming paths of adult males and females of the 
subtropical copepod, Oncaea venusta (Figure 3..B2.1.), which have been investigated using the 
dividers method (Section 3..2.1..1.) and the sliding regression-window method described above 
(Figure 3..B2.2).

The very strong linear behavior of log-log plot of L(d ) vs. d for the male trajectory 
over more than two decades (Figure 3..B2.2A) and the lack of variability in the fractal 
dimension Dd obtained from the sliding regression-window procedure (Figure 3..B2.2C) 
suggest the fractal character of the motion behavior of O. venusta. Similarly, the female 
swimming path clearly exhibits two distinct scaling behaviors below and above a critical 
scale of 1.0 mm (Figure 3..B2.2B), which have been confirmed by the sliding window 
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regression procedure (Figure 3..B2.2D). As the identified behaviors significantly differed from 
a correlated random walk model ( p < 0.05; see the procedure described in Box 3..3.), it is legiti-
mate to conclude the fractal character of the movement pathways of both male and female O. 
venusta.

Because different scales are often associated with different driving processes, the fractal 
dimension may have the desirable feature of only being constant over a finite, instead of 
an infinite, range of measurement scales. It is then useful for (1.) identifying characteristic 
scales of variability, and (2) comparing movements of organisms that may respond, for 
instance, to the patchy structure of their environment at different absolute scales. Changes 
in the value of the fractal dimension with scale may indicate that a new set of environmental 
or behavioral processes is controlling movement behavior (for example, decreased influence 
of patch barriers or the effect of home-range behavior). Thus, the scale dependence of the 
fractal dimension over finite ranges of scales may carry more information, both in terms of 
driving processes and sampling limitation, than its scale independence over a hypothetical 
infinite range of scales. Alternatively, although the point of slope change may indicate the 
operational scale of different generative processes, it may simply reflect the limited spatial 
resolution of the data being analyzed (Kenkel and Walker 1.993.; Gautestad and Mysterud 
1.993.). However, discussed elsewhere (Seuront et al. 2004a), the effect of spatial resolution 
in the data will manifest itself as a gradual change of the fractal dimensions toward Dd →1 
or Dd → 2,  and cannot be confused with a transition zone between two different scaling 
regions as illustrated here.

In order to measure if—and then eventually how and why—organisms use habitats at different 
scales, it is critical not only to measure the overall fractal dimension but also to measure how the 
fractal dimension changes with scale. The signatures of the log-log plot of L(d ) vs. d  returned by 

Figure 3.b2.1 Examples of swimming paths of adult female (A) and male (B) of the subtropical 
copepod, Oncaea venusta.
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the swimming paths of ocean sunfish (Figure 3..6) and the subtropical copepod, Oncaea venusta 
(Figure 3..B2.2A), typically spanning more than two decades and satisfying objective optimization 
criteria (see Chapter 7), can then reliably be considered as fractal and exhibit the same move-
ment pattern over the whole range of available scales. In contrast, the two distinct movement pat-
terns observed in the female of the copepod, Oncaea venusta, above and below 1.0 mm (Box 3..2) 
reveal two distinct foraging strategies over two distinct ranges of scales. Similar results have been 
reported for the American marten (Martes americana), which displayed different responses to 
their environment at scales smaller and greater than 3..5 m (Nams and Bourgeois 2004). At scales 
smaller than 3..5 m, marten moved in a more direct way (that is, at a lower fractal dimension Dd ) 
than at larger scales, suggesting different habitat use. This is consistent with earlier work by 
Benhamou (1.990), who showed that at a smaller scale wood mice (Apodemus sylvaticus) travel 
in a directed path toward individual bushes, but at a larger scale they move from bush to bush 

Figure 3.b2.2 Illustration of the “traditional” log-log plots of L(d) vs. d showing (A) the unique 
scaling behavior of the swimming path of an adult male for scales ranging from 1..2 to 200 mm  
(Dd = 1..3.7; A), and (B) the two distinct scaling behaviors of the swimming path of an adult female 
for scales ranging from 1..2 to 1.0 mm (Dd = 1..40) and from 1.0 to 200 mm (Dd = 1..05; B). The fractal 
dimension Dd calculated from the plots (A) and (B) using a sliding window of five points along the x 
axis clearly confirms the results of the divider method. The dashed gray lines in (A) and (B) identify 
the limits of the regression window, and the gray arrow indicates the related fractal dimension Dd 
estimate.
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randomly. At the smaller scale, the directed path would show a constant Dd, but at the larger 
scale the correlated random walk would show an increasing Dd. What is critical for a proper 
interpretation of fractal dimensions is then the identification of the range of scales over which a 
fractal dimension is invariant, as shown here for the ocean sunfish (Mola mola) and the copepod 
(Oncaea venusta).

However, changes in fractal dimensions are not always as clear as the one observed for O. 
venusta (Box 3..2) (Figure 3..B2.2D). Instead, the fractal dimension can smoothly change with 
scales as observed for the wandering albatrosses (Fritz et al. 2003.) (Figure 3..7A) and the American 
marten (Nams and Bourgeois 2004) (Figure 3..7B). The limits of the transition scales have been 
defined as the first significant break in the slope of the relationship between the path length and 
the divider length (Nams 1.996; Fritz et al. 2003.; Nams and Bourgeois 2004). Transition scales 
are then centered on a minimum or maximum fractal dimension, with the surrounding dimen-
sions gradually increasing or decreasing (Figure 3..7). The above-mentioned definition of transi-
tion scales should consequently be refined as “the transition between different spatial domains 
for which the fractal dimension is changing continuously with scale.” Using this concept allowed 
Fritz et al. (2003.) to identify a consistent pattern in the foraging paths of wandering albatrosses 
(Diomedea exulans) over scales ranging across five orders of magnitude (1.0 m to 1.000 km). The 
1.1. birds considered thus consistently adjust the tortuosity of their paths to different environmental 
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Figure 3.7 Patterns of the fractal dimension Dd estimated at different spatial scales (that is, divider length d) 
using the method described in Box 3..2, and used to identify transition scales in the movement pathways of (A) 
wandering albatrosses (Diomedea exulans) (modified from Fritz et al. 2003.); and (B) the American marten 
(Martes americana) (modified from Nams and Bourgeois 2004). The transition scales originally chosen by the 
authors are indicated by the thick arrows, and the question marks and thin arrows indicate additional transi-
tion scales that might also have been chosen given the shape of the relationship between Dd and the spatial 
scale and the definition found in Nams (1.996), Fritz et al. (2003.), and Nams and Bourgeois (2004).
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and behavioral constraints over three distinct scale-dependent nested domains. At small scales, 
they exhibit a zigzag movement to adjust for optimal use of wind; at intermediate scales, the 
movement shows changes in tortuosity consistent with food-searching behavior; and at a large 
scale, the movement relates to commuting between patches and to large-scale weather systems. 
The absence of such transitions in sunfish trajectories implies that they were using the same for-
aging strategies over the whole range of scales considered. It is nevertheless acknowledged that 
the choice of transition scales can sometimes seem fairly arbitrary (Figure 3..8) (see also Fritz et al. 
2003., Figure 2A), stressing the need to use objective, statistically sound procedures to ensure 
the relevance of the measured fractal dimensions and transitions scales. The uses, misuses, and 
abuses of fractal analysis that may lead to spurious results and conclusions are addressed in detail 
in Chapter 6.

3.2.1.3.2.3 Movement Pathways, Correlated Random Walks, and Fractal Analysis 
An alternative hypothesis is that “the fractal dimension is not constant but changes continuously 
with scales” (Turchin 1.996). Turchin (1.996) suggested that if an organism moves according to a cor-
related random walk (Box 3..3.), then fractal analysis of that movement is not justified.
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Figure 3.8 Influence of the mean cosine of turning angles c (c = 0.0, 0.4, 0.6, 0.8, 0.9, and 1..0 from bottom 
to top) (modified from Benhamou, 2004) of a simulated correlated random walk on the log-log plot of L(d ) vs. 
d (A); and (B) illustration of the r2 values returned by the power-law L( ) .δ δ −0 3 (black symbols) and a sur-
rogate slightly nonlinear curve (open symbols).
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Box 3.3 MovEMEnt PAttERnS AS CoRRELAtED RAnDoM WALkS

The correlated random walk (CRW) model has proved its worth in many applications 
(Kareiva and Shigesada 1.983.; Cain 1.990, 1.994; Turchin 1.991.). Here, the applicability of CRW 
to describe organism movement behavior is illustrated using the movement patterns of the 
ocean sunfish, Mola mola, investigated in Section 3..2.1..2. CRW formulation assumes that 
move lengths and turning angles are not correlated serially. This was tested by calculating 
the autocorrelation function (ACF) and the Ljung–Box Q-statistic for all lags up to six moves 
for move length (Turchin 1.998). Angular correlation was determined by defining sequential 
turns as left or right and performing a run test to check for nonrandomness (Turchin 1.998). 
For each individual Mola mola, move lengths and turning angles were pooled together within 
two groups corresponding to the trajectories recorded during daylight hours and during the 
night to calculate an average expected net squared displacement and 95% confidence intervals 
using a bootstrap simulation of 1.000 iterations. Net squared displacements were used because 
of the prohibitive difficulty inherent in calculations necessary to predict nonsquared displace-
ment (McCulloch and Cain 1.989) and because they show a linear relationship with time and 
thus are directly related to the rate of population spread (Turchin 1.998).

180,000

150,000

A

120,000

90,000

60,000

30,000

0
0 50

Number of Moves

N
et

 S
qu

ar
ed

 D
isp

la
ce

m
en

t

100 150 200 250

180,000

150,000

120,000

90,000

60,000

30,000

0
0 50

Number of Moves
100 150 200 250

B

Figure 3.b3.1 Examples of observed (continuous thick line) and expected (dotted line) net squared 
displacements in case of a correlated random walk (CRW) model for diurnal (A) and nocturnal 
(B) movements of individual eight (see Figure 3..6). The dashed lines are the upper and lower limits of 
the 95% confidence interval.
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We calculated the expected net squared displacement Rn
2  following Kareiva and Shigesada 

(1.983.):
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(3..B3..1.)

where Rn
2  (km2) is the squared displacement from the first location, n the number of moves 

from the first location, l the mean move length (km), and c the mean of the cosines of the turn-
ing angles. The total number of moves per path simulated by the model varied among Mola 
mola tracks and was equal to the largest number of moves taken by an M. mola in a given 
track. The observed net squared displacements were then compared to the value predicted by 
the CRW model (Figure 3..B3..1.).

It is usually unambiguous if the M. mola fit the model or not (Figure 3..B3..1.A), but in some 
cases the track crossed the 95% confidence interval for some portion of the displacement 
(Figure 3..B3..1.B). To determine if M. mola fit the model, we used the I statistics as an objective 
index of the proportion of observations that lie outside of the 95% confidence intervals of the 
model prediction (Austin et al. 2004):
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where i n=1, ,  are the successive moves; j =1 if O i E iu( ) ( )> and j = 0 if O i E iu( ) ( )< ; k =1 
if O i E il( ) ( )> and k = 0 if O i E il( ) ( )< ; u and l are the upper and lower limits of the 95% 
confidence intervals; O i( )  the observed Rn

2, and E il ( ), E iu( ), and E im( )  the expected lower, 
upper, and mean Rn

2 values. The 95th percentile of the expected Rn
2 is used as the critical 

value and compared to the observed trajectories. Paths with an l value greater than the criti-
cal value were considered to significantly differ from the CRW model. The movements of 
the eight M. mola were systematically underpredicted by the CRW model (Figure 3..B3..1.) for 
daytime and nighttime movements. Sunfish then exhibited greater directionality of movement 
and longer move lengths than expected under the CRW assumption.

Benhamou (2004) also stated that “animals’ random search paths, at least when they are mod-
eled as correlated random walks, are not fractal.” Although this is common sense since correlated 
random walks are classical (nonfractal) models, they may erroneously return a fractal signature 
(that is, a linear behavior of the log-log plot of L(d ) vs. d), especially when the range of scales avail-
able in the analysis (that is, the number of data points) is limited (Turchin 1.996; Benhamou 2004), 
which is a recurring issue in ecological studies and may lead to what is called apparent fractality 
(Hamburger et al. 1.996; Halley et al. 2004). A typical example of a mishandling of both correlated 
random walks and fractal analysis is provided by, for example, Uttieri et al. (2005). Despite the non-
fractal character of correlated random walks (Turchin 1.996; Benhamou 2004); Uttieri et al. (2005) 
analyzed the fractal properties of simulated three-dimensional correlated random walks of increas-
ing length (5,000, 1.0,000, and 50,000 points) using a three-dimensional box-counting method (see 
Section 3..2.2). Although they did not provide any figure to support their findings, they claim that 
“the regression lines of the log-log plots fit the points with good accuracy” (i.e. r2 ≈ 0.99) and their 
fractal analysis returned decreasing fractal dimensions (1..69, 1..48, and 1..41.), interpreted as the 
expression of “a decrease in morphological complexity of the trajectories.” These results are irrel-
evant given the nonfractal nature of correlated random walks. They may nevertheless be explained 
by the shape of the log-log plots of L(d ) vs. d  returned by the fractal analysis of a correlated random 
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walk (Figure 3..8A). These plots can indeed appear relatively, even very, linear depending on the 
parameters used to simulate the correlated random walk (Figure 3..8A). As a consequence, in some 
instances, linear fits can return very high values of r2 and hence lead to identification as linear a 
nonlinear plot of log L(d ) vs. log d  (Figure 3..8B). It is also likely from their subsequent analysis of 
the three-dimensional swimming path of the water flea Daphnia pulex that Uttieri et al. (2005) did 
not use any objective criteria to choose the range of scales used to estimate fractal dimensions (see 
their Figure 4C).

To avoid erroneously considering a correlated random walk as returning a fractal signature 
prior to fractal analysis, it is then necessary to test, as a null hypothesis, whether a correlated ran-
dom walk model adequately describes the path properties (Box 3..3.). If the null hypothesis is to be 
rejected, it is still necessary to assess objectively the nature of the signature of the log-log plot of 
L(d ) vs. d (see Box 3..2 and Chapter 6). This is critical to ensure the relevance of fractal analysis, as 
a number of previous works on fractal analysis have implicitly made the assumption that the slopes 
of log-log plots were linear without preliminary critical assessment (for example, Crist et al. 1.992; 
Crist and Wiens 1.994; With 1.994; Laidre et al. 2004; Uttieri et al. 2005, 2007). It is stressed that the 
“fractal signature” of correlated random walks can only be erroneously considered as the expres-
sion of a fractal behavior if the scaling range is narrow, that is, typically smaller than one decade 
(see Figure 3..8A).

3.2.2 box dimEnsion, Db

3.2.2.1 theory
This procedure, like the divider method, can be used to measure the fractal dimension of a curve 
(Longley and Batty 1.989). In addition, it can be applied to overlapping curves (Peitgen et al. 1.992) 
and structures lacking strict self-similar properties such as vegetation (Morse et al. 1.985). Formally, 
the method finds the “d  cover” of the object—that is, the number of boxes of length d (or circles of 
radius d) required to cover the object (Voss 1.988). A more practical alternative is to superimpose 
a regular grid of pixels of length d on the object and count the number of “occupied” pixels. This 
procedure is repeated using different values of d. The volume occupied by a curve is then estimated 
with a series of counting boxes spanning a range of volumes down to some small fraction of the 
entire volume. The number of occupied boxes increases with decreasing box size, leading to the 
following power-law relationship (Loehle 1.990):

 N(d ) = kd −Db (3..1.3.)

where d  is the box size, N(d ) is the number of boxes occupied by the curve, k is a constant, and 
Db is the box fractal dimension. Db  is estimated from the slope of the linear trend of the log-log 
plot of N(d ) versus d. Note that Equation (3..1.3.) can indifferently be used with one-, two- or three-
dimensional objects.

It is stressed that both interior and border boxes contribute to the total number of boxes N(d )
intersected by the set. Interior boxes are fully contained within the fractal set; that is, they only 
contain a part of the set. In contrast, border boxes contain at least one white pixel and contain or 
adjoin at least one black pixel. Thus,

 N(d ) = Nb(d ) + Ni(d ) (3..1.4)

The border-box fractal dimension, Dbb
, is then estimated as the linear trend of the log-log plot of 

Nb(d ) versus d. The interior-box fractal dimension, Dbi
, is similarly estimated as the linear trend of 

a log-log plot of (N(d ) − 0.5Nb(d )) against d . The substraction term is necessary to avoid an overes-
timate of the area of the structure at large box sizes since the border boxes are not entirely filled by 
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the set (Kaye 1.989). Note that the border box dimension Dbb 
is strictly equivalent to the boundary 

fractal dimension D1.b (see Equation 3..1.2, Section 3..2.1..1.).
In the case of real data sets, one must always work with a finite set S (which may or may not be 

interpreted as a sample of the points from some infinite set). The above limit of a finite set is thus 
always zero (Db = 0) because eventually d will be so small that there will only be one point in each 
occupied cell. Once d becomes sufficiently small, N(d ) becomes equal to the number of points in 
the set, and the limit above this is (see Equation 3..9):

 D
N

b =
→

lim
log ( )

log( / )δ

δ
δ0 1  (3..1.5)

where Db = 0, because log ( )N δ  is a constant and log( / )1 δ → + ∝ as δ → 0. This is a consequence of 
all finite sets being zero-dimensional; they have the same dimension as a single point (see Section 
2.2.1. for further details). In practice, the dimension Db will thus be estimated using a range of d 
values that are always greater than the resolution of the studied set, which can be significantly 
greater than a pixel in the case of digitized objects. This potential limitation has to be taken into 
account when writing (or, more prosaically, using) a computer program for automatic estimation of 
Db. In addition, this method does not take into account the frequency with which the set in question 
might visit the covering cells, and thus local properties of the set (that is, properties pertaining to 
neighborhoods of individual points) are not distinguishable. It will nevertheless be shown below 
with the introduction of the cluster dimension, Dc, and the family of dimensions related to frequency 
distributions that this difficulty can easily be overcome.

Finally, for Euclidean objects, Equation (3..1.3.) directly defines their dimensions. A number of 
boxes proportional to d −1. are needed to cover a smooth line, and proportional to d−2 and to d−3. to 
cover a curve convoluted on a plane and in a volume, respectively.

3.2.2.2 case study: burrow morphology of the grapsid crab, Helograpsus Haswellianus
3.2.2.2.1 Study Organism
The Australian grapsid crab or mud shore crab, Helograpsus haswellianus (Figure 3..9A) is common 
in sheltered bays and estuaries along the eastern coastline of Australia from Queensland south to 
Tasmania. H. haswellianus is a nocturnal species often found well above high-tide level in areas of 
mud, and forages widely on the shore between tides (Breitfuss 1.982). These crabs can be especially 
abundant on salt-marsh flats (Figure 3..9B), and some are found well upriver in fairly low salinity 
areas (Marsh 1.982). They are also found among mangrove roots, especially those of Avicenna 
marina, often in association with the red-fingered marsh crab, Sesarma erythrodactyla, and the 
semaphore crab, Heloecius cordiformis (Campbell and Griffen 1.966).

H. haswellianus burrow in a variety of soft sediments, ranging from dirty sand to moist clay, and 
shelter under debris or rocks. Such burrowing may create quite distinct systems of interconnecting 
burrows in muddy estuaries. Burrows increase the surface area available for tidal infiltration of sea-
water (Smith et al. 1.991.), thus maintaining a critical chemical pathway between anoxic sediments 
and seawater (Nomann and Pennings 1.998), and provide crabs daytime protection from desiccation 
and predation as well as being used for courting, breeding, and molting (Morrisey et al. 1.999).

Typically, studies of burrow shape have examined metrics such as burrow system shape, burrow 
system area, number of segments, linearity, turn angle, number of branches, segment length, and 
branch length; see Romaña et al. (2005) for a detailed explanation of these terms. However, because 
the interactions between these variables are not clear (Le Comber et al. 2006), recent studies have 
begun to use fractal dimension to provide a single measure of shape that has the desirable advan-
tage of being independent of burrow length (Puche and Su 2001.; Sumbera et al. 2003.; Romaña and  
Le Comber 2004).
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3.2.2.2.2 Experimental Procedures and Data Analysis
The morphology of H. haswellianus burrows was investigated by pouring a liquid epoxy resin 
into openings, leaving it to harden, and digging the cast out after 3.6 hours. The three-dimensional 
complexity of the burrows (Figure 3..9C,D,E,F) was investigated using Equation (3..1.3.), a proce-
dure previously successfully applied to other branched structure–like vegetation (Morse et al. 
1.985; Critten 1.993.; Zeide and Gresham 1.991.; Zeide 1.998; Eshel 1.998; Alados et al. 1.998, 1.999; 
Forountan-pour et al. 1.999, 2000, 2001.). Seaweeds (Corbit and Garbary 1.995; Kübler and Dugeon 
1.996; Davenport et al. 1.996), corals (Basillais 1.997), sponges (Kaandorp 1.991.; Kaandorp and 
de Kluijver 1.992; Abraham 2001.) and gorgonians (Burlando et al. 1.991.; Mistri and Ceccherelli 
1.993.) provide instances of marine organisms that have been shown to have fractal properties 
using the box-counting method (Figure 3..1.0A,B,C). However, because the fractal characterization 
of three-dimensional (3.D) structures would have nontrivially requested a rebuild of the digitized 
version of the original burrow, the problem has been simplified by obtaining two orthogonal 
photographic images of the burrow and subsequently estimating their two-dimensional (2D) 
fractal dimensions.

B

E

C

F

D

A

Figure 3.9 (A) Grapsid crab, Helograpsus haswellianus, shown together with (B) its typical salt-marsh 
environments, and illustrations of the resin casts sampled at (C) Goolwa, (D) Torrens Island, (E) Middle 
Beach, and (F) Port Noarlunga. The scale bars represent 1.0 cm. (Courtesy of G. Katrak, Flinders University, 
Australia.)
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H. haswellianus burrow morphology was investigated from four distinct South Australian salt 
marshes located at Goolwa (Figure 3..1.1.A; N = 2), Torrens Island (Figure 3..1.1.B; N = 7), Middle Beach 
(Figure 3..1.1.C; N = 1.3.), and Port Noarlunga (Figure 3..1.1.D; N = 1.4). The vegetation of the four sites is dom-
inated by Sarcocornia quinqueflora and characterized by the presence of Halosarcia haswellianus.

3.2.2.2.3 Results
All the burrows investigated exhibited very strong scaling behavior for Equation (3..1.3.) (Figure 3..1.0D) 
with the coefficient of determination r2 ranging from 0.96 to 0.99 over the whole range of available 
scales, that is, between 0.5 and 1.5 cm, and 0.5 and 50 cm for the smallest and largest burrows, respec-
tively. This is illustrated by the log-log plot of N(d ) versus d (Figure 3..1.0D) estimated for the burrows 
shown in Figure 3..1.0A,B,C. The two-dimensional fractal dimensions Db(0°) and Db(90°) were never 
significantly different (covariance analysis, p > 0.05; Zar 1.996) for the burrows investigated at Goolwa 
and Port Noarlunga, and only one burrow each at Torrens Island and Middle Beach exhibited sig-
nificant differences between Db(0°) and Db(90°) (Figure 3..1.2). The resulting mean two-dimensional 
fractal dimensions ranged between 1..59 and 1..62 at Goolwa (Db = ± ±1.60 0.02; SDx ), 1..3.4 and 
1..67 at Middle Beach (Db =  1..56 ± 0.05), 1..3.9 and 1..54 at Port Noarlunga (Db =  1..49 ± 0.03.), and 
1..50 and 1..62 at Torrens Island (Db =  1..55 ± 0.04). Significant differences were found between the 
fractal dimensions obtained from the burrow resin casts sampled at Goolwa, Middle Beach, Port 
Noarlunga, and Torrens Island (Kruskal-Wallis test, p < 0.01.). A subsequent multiple-comparison 
procedure showed that the fractal dimensions estimated at Middle Beach and Torrens Island were 
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Figure 3.10 Schematic illustration of the box-counting method used to describe the complexity of burrow archi-
tecture with fractal dimension. Three steps are shown, using three different characteristic scales d1. (A), d2 (B), and 
d3. (C) defined as d1. = 2d2  = 4d3.. The gray areas are the squares of size that do not include a part of the burrow. 
The scaling behavior of the log-log plot of N(d) vs. d for the burrow shown in (A, B, C) is shown in (D).
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not significantly different (p > 0.05), but significantly lower and higher (p < 0.05) than those esti-
mated at Goolwa and Port Noarlunga, respectively. This leads to the identification of three groups 
of burrow morphology based on the box dimension Db (Figure 3..1.3.): a group of highly complex 
burrows at Goolwa (Db = 1..62 ± 0.02), a group of burrows of intermediate complexity at Middle 
Beach and Torrens Island (Db = 1..56 ± 0.05), and a group of less complex burrows at Port Noarlunga 
(Db = 1..49 ± 0.03.).

3.2.2.2.4 Ecological Interpretation
No significant differences were found between the fractal dimensions of the burrows investigated 
at Port Noarlunga whether the dominant vegetation was Sarcocornia quinqueflora (20 to 3.0%) 

A B

DC

Figure 3.11 Salt-marsh environments where H. haswellianus burrow morphology was investigated in 
(A) Goolwa, (B) Torrens Island, (C) Middle Beach, and (D) Port Noarlunga. (Courtesy of G. Katrak, Flinders 
University, Australia.) (See color insert following page 80.)
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Figure 3.12 Comparisons of the two-dimensional fractal dimensions  estimated from two orthogonal 
projections of the original burrow resin casts sampled at Goolwa (black diamonds), Middle Beach (open 
squares), Port Noarlunga (black dots), and Torrens Island (gray diamonds). The dashed line is the first bisectrix  
Db(0°) = Db(90°), and the dotted lines indicate the corresponding 5% confidence intervals.

2782.indb   50 9/11/09   12:04:25 PM



Self-Similar Fractals 51

or Suaeda australis (20 to 3.5%). This suggests that the qualitative nature of the vegetation cover 
does not influence the complexity of burrows. In turn, the quantitative nature of the vegetation 
cover might influence the complexity of H. haswellianus burrows. The fractal dimensions of the 
burrows investigated at Goolwa, Middle Beach, Torrens Island, and Port Noarlunga on substrates 
respectively covered at 1.00%, 85 to 90%, 85%, and 20 to 3.0% are significantly decreasing with the 
vegetation cover (Figure 3..1.3.). Finally, the nonsignificant differences found between the burrows 
investigated at Middle Beach on bare substrate and on a substrate covered by S. quinqueflora might 
also suggest that within a given site, the percentage of vegetation cover has a rather limited effect 
on burrow morphology. The nonsignificant differences found between the two 2D fractal dimension 
estimates D2(0°) and D2(90°) (Figure 3..1.2) indicate that the morphology of H. haswellianus bur-
rows is mainly isotropic, suggesting a fully three-dimensional burrowing behavior.

As burrowing might be thought as a way of foraging underground, the use of fractals to 
quantify burrow architecture is conceptually equivalent to the use of fractals to characterize 
the complexity of three-dimensional trajectories of swimming organisms (Seuront et al. 2004a, 
2004b; Uttieri et al. 2005). As most behavioral metrics are also scale dependent (see Seuront et al. 
2004a, 2004b for a review), there is no single scale at which swimming paths can be unambigu-
ously described. As a consequence, when using standard metrics, there is no single scale at which 
swimming paths (and burrow morphology) can be compared without leading to potentially spuri-
ous conclusions. Fractal dimension is a natural choice for a measure of burrow shape complexity, 
as it is essentially a measure of the extent to which a one-dimensional structure fills a plane, with 
low fractal dimension (Db ≈  1.) describing a burrow that explores relatively little of the surround-
ing area, and high fractal dimension (Db ≈  2) describing a burrow that explores the surrounding 
area more thoroughly. Fractal dimension seems thus particularly well suited as a measure of 
burrow shape when burrows are used for foraging.

3.2.2.3 methodological considerations
The procedure described above can be used to estimate the box dimension of two- and three-
dimensional objects through the superposition of squares (or circles) and boxes (or spheres) of dif-
ferent side lengths and radii to the object of interest. Two potential limitations intrinsically related 
to the method have nevertheless been identified in both cases: (1.) slight reorientation of the overly-
ing grid can produce different values of N(d ) (Equation 3..1.3.; Appleby 1.996), and (2) the values of 
box dimensions may be positively correlated to the object length (Erlandson and Kostylev 1.995). 
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Figure 3.13 Fractal dimensions of burrows architecture, estimated as D2 = [D2 (0°) + D2 (90°)]/2 at Goolwa 
(G), Middle Beach (MB), Port Noarlunga (PN), and Torrens Island (TI). D2(0°) and D2(90°) are the fractal 
dimensions of two random, orthogonal views of the burrows resin casts.
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Consequently, the behavior of Equation (3..1.3.) will be biased, as will be the subsequent box dimen-
sion estimates.

As described for the divider dimension, a distribution of the box dimension, Db, can be obtained 
from random replicates of the grid placements in the box-counting algorithm. For two-dimensional 
objects (see, for example, Figure 3..1.0), the initial 2D orthogonal grid is rotated in 5° increments 
from a  = 0° to a = 45°. Alternatively, for three-dimensional objects, the initial 3.D orthogonal grid 
is rotated in 5° increments from a  = 0° to a  = 45° in the x − y plane and from b = 0° to b  = 45° 
in the x − z plane. The resulting distributions of dimensions can thus be used as estimates of the 
box dimensions of the two- and three-dimensional objects. The limitation of the method raised by 
Erlandson and Kostylev (1.995)—that is, values of box dimensions might be positively correlated to 
a path’s length—can be addressed by comparing the box dimensions of randomly chosen subsets of 
decreasing length within the same set.

Applying these procedures to nine swimming trajectories of the water flea, Daphnia pulex, rang-
ing in duration from 1..5 to 4 minutes; Seuront et al. (2004a) did not find any effects related to 
the orientation of the three-dimensional grid or to the length of the trajectories. It is nevertheless 
advised that this potential bias should be thoroughly investigated to ensure the robustness of any 
box dimension estimated through Equation (3..1.3.).

3.2.2.4 theoretical considerations
3.2.2.4.1 Two-Dimensional versus Three-Dimensional Fractal Dimensions
The ability to characterize 3.D paths based on 2D projections of these paths is an attractive proposition, 
as the reduction in complexity of both the data-gathering equipment and the analysis procedures 
is significant. However, the reliability of conclusions based on such a procedure is not clear. The 
consequences of extrapolating fractal dimensions estimated in a 2D framework to three dimensions 
have been assessed by the following:

Testing the validity of the extrapolation procedures proposed in the literature (Morse et al. •	
1.985; Shorrocks et al. 1.991.; Gunnarsson 1.992).
Investigating the potential disparity among the fractal dimensions estimated from the three •	
orthogonal two-dimensional projections of three-dimensional objects.
Demonstrating the necessity of three-dimensional isotropy of a given object as a prerequi-•	
site for extrapolating two-dimensional fractal information into a three-dimensional space.

The philosophy behind the extrapolation of two-dimensional fractal estimates to three dimen-
sions is simple. Morse et al. (1.985) described a box-counting method for estimating the fractal 
dimension of vegetation habitats (2 ≤ D3. ≤ 3., where the subscript 3. indicates a fractal object embed-
ded in a three-dimensional space). Consider now the problem of estimating the fractal dimension 
of a tree. In theory, a three-dimensional grid system could be superimposed on the tree and the 
size of “counting-cubes” varied. Such a procedure would nevertheless require a digital reconstruction 
of the tree from photographs, which is still extremely challenging (see, for example, Shlyakhter et al. 
2001.). Morse et al. (1.985) simplified the problem by obtaining a 2D photographic image of the 
habitat, the fractal dimension of which was determined using the box-counting method (1. ≤ D2 ≤ 2, 
where the subscript 2 indicates a fractal object embedded in a two-dimensional space). Following 
Mandelbrot (1.983.), they determined heuristic lower (D3.min = D2 + 1.) and upper (D3.max = 2D2) limits 
of the “habitat” fractal dimension under the assumption that the photograph is a randomly placed 
orthogonal plane. This procedure has subsequently been used to estimate the fractal dimensions of 
various habitats (for example, Shorrocks et al. 1.991.; Gunnarsson 1.992). However, it is argued here, 
on the basis of both simple theoretical and empirical arguments, that the use of this procedure to 
characterize three-dimensional movement pathways is highly questionable. This issue is illustrated 
using records of the mud shore crab burrow morphology (Section 3..2.2.2) and the three- 
dimensional motion behavior of the water flea, Daphnia pulex (Box 3..4, Figure 3..1.4).
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Box 3.4 thREE-DIMEnSIonAL AnALySIS oF thE 
WAtER FLEA, DAPhnIA PuLEx, SWIMMInG PAth

A clone of Daphnia pulex was cultured in aged tap water under cool white fluorescent bulbs, 
in a 1.6–8 light–dark cycle. The cultures were maintained at the experimental temperature 
(20°C) and fed every day with a 1.:1. mixture of the green algae Ankistrodesmus sp. and 
Scenedesmus sp. at a final concentration of about 5 × 1.05 cells/ml−1.. Algae were grown in mul-
tiple 250 ml batch cultures under cool white fluorescent bulbs, in an 1.8–6 light–dark cycle, at 
20°C, in Bold’s basal medium.

All paths analyzed here are the movements of solitary D. pulex swimming in the 5-liter 
(1.8 × 1.8 × 1.5.5 cm high) Plexiglas recording vessel of the CritterSpy, a high-resolution 3.D 
recording system. All recordings were made with animals swimming in an algal concentra-
tion of 5 × 1.04 cells/ml−1., which is an intermediate food concentration, well below D. pulex’s 
incipient limiting concentration (Lampert 1.987). The test chamber was illuminated with a 
diffused, fiber-optic light placed 0.5 meter directly overhead that resulted in an illumination 
of about 1.2 µEm −2 s−1. in the vessel, approximately equal to full daylight. At least 1. hour prior 
to experiments, adult, gravid females ( 2 1. 0 2. .±  mm) were transferred from their culturing 
vessels and acclimated to experimental light and food conditions in holding vessels. A single 
animal was then transferred from its holding vessel to the recording chamber with a large-
bore pipette and allowed to acclimate for at least 1.0 minutes before recording began.

The CritterSpy uses a schlieren optical system consisting of a collimated red laser beam  
(λ = 623. nm) that serves as the light source for two orthogonally mounted video cameras, two 
frame-number generators, two 20” video monitors, and two VHS videocassette recorders; 
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Figure 3.14 Illustration of the three-dimensional swimming path of the water flea, Daphnia pulex (A), and 
the corresponding two-dimensional projections on the planes x − y (B), x − z (C), and y − z (D).

2782.indb   53 9/11/09   12:04:31 PM



54 Fractals and Multifractals in Ecology and Aquatic Science

see Strickler (1.985) and Bundy et al. (1.993.) for further details. This system simultaneously 
records orthogonal front (x − y) and side (x − z) views of the experimental chamber as dark 
field images. To run the system, two operators viewed the camera images in real time. As the 
animal swam away from the center of either camera’s view (marked with cross hairs on the 
monitors), one operator used a trackball (x and z dimensions) and the other a rotating cylinder 
(y dimension) to bring the animal back into the center of both views. The actual recentering 
of the image was achieved via three computer-controlled linear positioning motors (one for 
each axis) that moved the entire optical system in response to the operators’ input. A computer 
recorded the motor movements necessary to keep the animal centered in the two views as 
x, y, and z coordinates. Because the computer only recorded coordinates when the trackball 
or cylinder was moved, the coordinates were recorded at an uneven sampling rate (ranging 
from about 5 to 1.5 Hz). Paths were then interpolated to produce an even time interval (1.0 Hz) 
between successive position measurements. The 1.0 Hz rate is rapid enough that coordinates 
recorded at that temporal scale are the result of very small movements of the cross hairs cor-
responding to Daphnia’s characteristic hop-and-sink behavior.

Each individual Daphnia was recorded swimming for at least 3.0 minutes, after which the 
videotapes were reviewed and valid segments were identified for analysis. Valid segments con-
sisted of video in which the animals were swimming freely, at least two body lengths away from 
any of the chamber’s walls or the surface, and the animals were always within one half-body 
length of the cross hairs in the center of the video monitors. To ensure that there would be a 
significant range of scales in each path, we only used paths that were at least 3.0 seconds in dura-
tion. After identifying valid sequences, the frame numbers imprinted on the video were used to 
isolate the corresponding time interval from the three-dimensional coordinate data stored on the 
computer. These time series of coordinates formed the 3.D trajectories used in the analysis.

First, from a purely theoretical perspective, it appears that the limits of the extrapolated three-
dimensional fractal dimension D3. are not constant (Table 3..3.). Instead they increase with increas-
ing values of the two-dimensional fractal dimension D2. The disparity between the upper and lower 
limits range from 4.8 to 3.1..0% for values of the two-dimensional fractal dimension, D2, bounded 
between 1..1.0 and 1..90, respectively (Table 3..3.). Moreover, for values of D2 greater than 1..5, the 
upper limit of the extrapolated fractal dimension D3. is beyond the maximum space-filling limit  
D3. = 3.. Consider now the extreme case of an organism moving according to a Brownian motion 
model, that is, D2 → 2. The resulting D3. values would always be unrealistically found beyond 
the space-filling limit, D3. = 3., that is, D3.min → 3. and D3.max → 4. This is illustrated using the frac-
tal dimensions estimated from the two-dimensional swimming paths of barramundi fish larvae, 
which drop from 1..8 prior to metamorphosis to 1..1. following metamorphosis (Dowling et al. 2000). 
Extrapolating the fishes’ behavior to three dimensions will lead to reasonable values of D3. for fish 
before metamorphosis, D3. ∈ [2.1.0 − 2.20]. However, for postmetamorphosis fishes, 75% of the D3. 
values are beyond the space-filling limit, D3. ∈ [2.80 − 3..60], and cannot therefore be considered 
legitimate. Similar conclusions can be reached from the three-dimensional extrapolation of the 
mud shore crab two-dimensional burrow morphology (Section 3..2.2.2b). Although the lower three- 
dimensional fractal dimensions ranged from 2.49 to 2.60, their upper limits are consistently higher 
than the space-filling limit D3. = 3., with D3. ∈ [2.98 − 3..20] (Table 3..3.). The validity of this extrapo-
lating procedure is then highly questionable. In addition, to be meaningful such extrapolation proce-
dures should, de facto, only be applied to perfectly isotropic three-dimensional objects, a property 
impossible to assess objectively a priori.

The similarity or the difference between the fractal dimensions estimated from orthogonal two-
dimensional projections of three-dimensional objects on the x − y , x − z, and y − z planes may 
instead be much more informative than trying to extrapolate two-dimensional fractal estimates to 
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three dimensions. This has been illustrated above for the morphology of the grapsid crab Helograpsus 
haswellianus burrow morphology (Section 3..2.2.2). The nonsignificant differences between the frac-
tal dimensions of the two orthogonal projections of the actual burrow observed in most cases (see 
Figure 3..1.2) thus illustrate three-dimensional isotropy in the whole burrow. This is, however, not 
always the case, as illustrated by the three-dimensional swimming behavior of the water flea, Daphnia 
pulex (Figure 3..1.4A). The box dimensions estimated from the x − y , x − z, and y − z projections of the 
same three-dimensional swimming path (D2xy, D2xz, and D2yz, respectively) are always significantly 
different (Kruskal-Wallis test, p < 0.05). More specifically, the dimensions D2xz and D2yz (side views; 
Figure 3..1.4C,D) cannot be distinguished (Jonckheere test, p > 0.05; Figure 3..1.5) and are both signifi-
cantly higher than the dimension D2xy (top view; Figure 3..1.4B) (Jonckheere test, p < 0.05; Figure 3..1.3.). 
The complexity of the vertical components of the D. pulex swimming path is then higher than that of 
its horizontal components, suggesting that the vertical swimming behavior of D. pulex is more com-
plex than the horizontal ones. On the other hand, the average of D2xy, D2yz, and D2yz is not significantly 

table 3.3
evaluation of the Procedures used to extrapolate the two-dimensional Fractal 
dimension, D2, of a three-dimensional object to the corresponding three-dimensional 
Fractal dimension, D3

D2 D3 = D2 + 1 D3 = 2D2 %D3 %D3 > 3

1..1.0 2.1.0 2.20   4.76                 -

1..20 2.20 2.40   9.09                 -

1..3.0 2.3.0 2.60 1.3..04                 -

1..40 2.40 2.80 1.6.67                 -

1..50 2.50 3..00 20.00                 -

1..60 2.60 3..20 23..08                  3.3..3.3.

1..70 2.70 3..40 25.93.                  57.1.4

1..80 2.80 3..60 28.57                  75.00

1..90 2.90 3..80 3.1..03.                  88.89

Note: D3. = D2 + 1. and D3. = 2D2 are respectively the lower and upper limits of the extrapolated 3.D fractal dimensions, %D3. 
is the percentage of increase between D3. = D2 + 1. and D3. = 2D2 for a given D2, and %D3. > 3. is the percentage of 
extrapolated 3.D fractal dimensions that falls outside the space-filling limit, D3. = 3..
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Figure 3.15 Box fractal dimension Db of the two-dimensional projections of the actual three-dimensional 
path on the planes x − y (D2xy ), x − z (D2xz ), and y − z (D2yz ), compared to the box dimension of the three-
dimensional path (D3.).
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different from D3. ( p > 0.05) due to the intrinsic three-dimensional integrative properties of Equation 
(3..1.3.). Finally, as expected following the results presented in the previous subsection, the three-
dimensional extrapolations of the two-dimensional fractal dimensions D2xy, D2yz, and D2yz are always 
significantly higher than the actual three-dimensional fractal dimensions. This has been systematically 
verified for both divider and box dimensions, estimated in two and three dimensions. Consequently, it 
appears that a two-dimensional fractal dimension is not sufficient to characterize three-dimensional 
swimming behavior if the swimming path is not isotropic.

3.2.2.4.2  Three-Dimensionally Branched Processes versus 
Three-Dimensionally Convoluted Processes

The seemingly paradoxical result that fractal dimensions estimated from three-dimensional paths 
are always significantly smaller than 2, the expected lower bound of values for objects embedded in a 
three-dimensional space, is detailed hereafter. Following basic fractal theory, an object embedded in a 
d-dimensional space should have a fractal dimension bounded between d − 1. and d (see Section 2.2). 
A linear succession of spaced dust particles will thus have a dimension bounded between 0 and 1. 
as they occupy a fraction of the available space greater than a single point (dimension 0) and lower 
than a line (dimension 1.). Similarly, a convoluted curve—a coastline, for instance—will occupy a 
fraction of space between a line (dimension 1.) and a surface (dimension 2), while the dimension of a 
tree will be bounded between 2 (a surface) and 3. (a volume). Now consider again the case of move-
ment paths. The path of an ant foraging on a flat surface occupies a fraction of a two-dimensional 
space (see, for example, Figure 3..1.4B,C,D). Its dimension is then bounded between 1. (a perfectly 
linear path) and 2 (a plane-filling path). Similarly, the swimming path of Daphnia pulex is obviously 
embedded in a three-dimensional space, the volume of water (Figure 3..1.4A). However, it does not 
present a three-dimensional branching structure as does a tree, and each change of direction occurs 
within a two-dimensional space. Therefore, even in three-dimensional space, a zooplankton swim-
ming path or the flying path of a foraging bee will intrinsically remain a convoluted two-dimensional 
curve. The fractal dimensions of movement paths are then bounded between a one-dimensional 
space (a line, D = 1. ) and a two-dimensional space (a surface, D = 2). The practical consequence 
of this specific property of movement paths is to call into question the validity of previous reports 
of fractal dimensions that fall beyond the 1. ≤ D ≤ 2 limits discussed above for both two-dimensional 
(Dc < 1., Dowling et al. 2000; and Dc > 2, Bascompte and Vilà 1.997) and three-dimensional  
(Dc > 2, Coughlin et al. 1.992) analyses. As explored elsewhere (Chapter 7), these discrepancies 
might result from the lack of objective procedures to identify the scaling ranges, and the subsequent 
fractal dimensions of movement paths. All of the fractal dimensions estimated from D. pulex paths 
were always consistently significantly higher than 1. (linear movement, p < 0.01.) and lower than 2 
(Brownian motion, p < 0.01.).

3.2.3 clusTEr dimEnsion, Dc

3.2.3.1 theory
Formally, the box dimension can be generalized to characterize the extent of self-similar spatial clus-
tering in point patterns. This is of salient importance in ecology, where organisms can be regarded 
as discrete events distributed in two- and three-dimensional spaces. For instance, the distribution of 
trees in a forest, cows and sheep in a pasture, or phytoplankton and zooplankton in a water column 
can be regarded as points presenting different degrees of clustering. The cluster dimension, Dc, is 
conceptually equivalent to the box dimension Db, and is defined rewriting Equation (3..1.3.) as

 N(d ) = kd −Dc (3..1.6)

where d is still the box size, N(d ) the number of boxes occupied by at least a single point (that is, 
an organism), k a constant, and Dc the cluster dimension, estimated as described in Section 3..2.2).  
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The cluster dimension Dc can also be computed using “counting disks” instead of boxes (Frontier 
1.987). Robertson et al. (1.995) used a three-dimensional “cube-counting version” of the cluster 
dimension to study the distribution of earthquake hypocenters in space. As the one-to-one corre-
spondence between the box dimension, Db (Section 3..2.2) and the cluster dimension, Dc, might not 
be obvious from the literature, the reader should note that:

 Db =  Dc (3..1.7)

A variant of the above methods has been suggested by Hastings et al. (1.992) in a study of the distri-
bution of pancreatic islets. Assuming a Poisson distribution, the cumulative number of points n(d ) 
within a distance d scales as:

 n k Dc( )δ δ= ′   (3..1.8)

where k is a constant.
Alternatively, King et al. (1.989) suggested counting the number of points n(d ) within each grid 

unit of size d and estimating the relative dispersion RD(d ) as the ratio between the standard devia-
tion, CV(d ), and the mean, x( )δ , of grid counts; that is, RD(d ) = CV(d )/ x( )δ . This results in a 
power-law relationship between relative dispersion and the grid unit size d  defined as:

 RD k Dc( )δ δ= ′′−1

 (3..1.9)

where RD(d ) is the relative dispersion at the spatial scale d, and k is a constant. A set of points 
randomly distributed will have a fractal dimension Dc˝  = 1..5, while a value of Dc˝  = 1..0 reflects uni-
formity of the property over all length scales. Interestingly, the fractal dimension Dc˝  can be used to 
quantify the spatial correlation r between clusters over the range of scales d as (King et al. 1.989):

 r Dc= − −′′23 2 1.  (3..20)

For Dc˝  = 1..5 (random pattern), Equation (3..20) leads to the minimal correlation r = 0, while the 
correlation is maximal (r = 1.) for Dc˝  = 1..0.

3.2.3.2 case study: the microscale distribution of the amphipod Corophium Arenarium
3.2.3.2.1 Study Organism
Corophium arenarium is a small (up to 7 mm) amphipod, an order of crustaceans in the subclass 
Malacostraca. C. arenarium lives in soft sand or mud on intertidal flats of the coasts of France, 
England, the Netherlands, and Germany. They usually form U-shaped tubes that extend down to 
3. cm in summer and to 1.2 cm in winter to escape the freezing point. C. arenarium feeds on the 
organic matter deposited on the sediment surface, scratching along the surface with its elongated 
second pair of antennae, producing starlike patterns.

3.2.3.2.2 Experimental Procedures and Data Analysis
The study site is located in the Bay of Somme (France), at Le Crotoy (50°1.3.′524 N, 1.°3.6′506 E), 
which is the second-largest estuarine system, after the Seine estuary, and the largest sandy-muddy 
(72 km2) intertidal area on the French coasts of the eastern English Channel. The sampling site 
was chosen in a topographically homogeneous area, where the substrate grain size typically varied 
between 1.25 and 250 µm (modal size). The abundance of the amphipod C. arenarium was estimated 
nonintrusively from the number of opened burrows using digital images of every 20 cm × 20 cm 
subsection of a 1. m2 quadrat (Figure 3..1.6A). Preliminary investigations showed a highly significant 
positive relationship (r2 = 0.95, p < 0.001.; Figure 3..1.6B) between the number of C. arenarium 
estimated from core samples sieved through a 500 µm screen and from the above-mentioned non-
intrusive technique.
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3.2.3.2.3 Results and Ecological Interpretations
The two-dimensional distribution of the 800 C. arenarium burrow openings found over one 
square meter (Figure 3..1.7A) was visually very distinct from the random point patterns simulated 
with the same number of data points (Figure 3..1.7B). In both cases, Equation (3..1.6) exhibited a 
highly significant linear behavior over two decades—that is, 1. cm to 1. m—resulting in cluster 
dimensions Dc = 1..3.3. ± 0.01. (Figure 3..1.7C) and Dc = 1..84 ± 0.02 (Figure 3..1.7D) for the empirical  
C. arenarium distribution and the simulated random point pattern, respectively. The cluster 
dimension of C. arenarium distribution is consistent with the fractal dimensions found for micro-
phytobenthos biomass in the same environment, which range from 1..07 to 1..89, depending on the 
concentration threshold considered (Seuront 2005a); (see also Section 3..2.4.2; Figure 3..21.). A frac-
tal dimension Dc = 1..3.3. ± 0.01. corresponds to the fractal dimension found for microphytobenthos 
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Figure 3.16 Nonintrusive photographic technique used to estimate the number of opened burrows (Nb) 
using digital images of every 20 cm × 20 cm subsection of a (A) 1. m2 quadrat and (B) relationship between 
the number of opened burrows and the number of C. arenarium (Nca ) estimated from core-samples sieved 
through a 500 µm screen.
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concentrations higher than 78 mg chlorophyll a m −2 (Seuront 2005a; for microphytobenthos bio-
mass ranging from 42 to 1.1.4 mg chlorophyll a m −2). This suggests that (1.) C. arenarium might 
have a preferential concentration for the food they prey on, (2) the spatial distribution of food 
items (assessed through their fractal dimension) has the potential to drive the fractal distributions 
of their motile predators, and (3.) the fractal dimension of predators might be used to infer the 
spatial distributions of their prey items, and vice versa.

3.2.3.3 methodological considerations: constant numbers or constant radius?
Using a two- or three-dimensional grid, at each node of the grid, the nearest neighbors are sampled 
in two or three dimensions, resulting in circular surfaces or spherical sampling volumes of either 
constant sample size or constant radius. Either approach is equally valid, and comparing the surface/
volume of both is recommended to ensure that they are independent of the choice of the sampling 
method. By sampling a constant number of events at each node, the sample size, and hence uncer-
tainty, is approximately constant, and the best spatial resolution possible at each node is achieved. 
In this case, the radii of sampling surfaces/volumes, or resolution, are inversely proportional to the 
local density of events and consequently are variable across a region. When using constant radii 
for sampling, the resolution does not vary spatially, but the sample size, and hence the uncertainty, 
does. It is necessary to exclude nodes where fewer than a minimum number of events are sampled, 
or one can use a cutoff, based on a maximum for the allowed uncertainty.
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Figure 3.17 Two-dimensional microscale distribution of (A) the amphipod Corophium arenarium com-
pared to (B) a random point pattern simulated with the same number of data points and the results of the cor-
responding box-counting method used to estimate the cluster dimension, Dc. The distribution of C. arenarium 
returned (C) a cluster dimension, Dc = 1..3.3., significantly different from (D) the dimension of the random point 
pattern, Dc = 1..84.
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3.2.4 mass dimEnsion, Dm

3.2.4.1 theory
This method has initially been developed to analyze point pattern data (Voss 1.988) but can easily be 
applied to any objects embedded in two- or three-dimensional spaces. It can be applied to digitized 
images as the area-perimeter methods (see Section 3..2.7) but does not required discrete patterns. 
Formally, the method counts the number of pixels occupied by an object in square (d × d) sampling 
windows (or equivalently circles of radius d) as NO(d). The mass m(d) of occupied pixels is then 
defined as:

 m
N

N
O

T

( )
( )

( )
δ

δ
δ

=   (3..21.)

where NO(d ) and Nt(d ) are the number of occupied pixels and the total number of pixels within an 
observation window of size d. These computations are repeated for various values of d, and the 
mass dimension Dm is defined as:

 m k Dm( )δ δ=  (3..22)

where k is a constant. Practically, the mass m(d ) can be estimated using squares or circles of increas-
ing size d starting from the center of the domain (Figure 3..1.8A). This approach is best suited to 
objects that follow some radial symmetry, such as diffusion-limited aggregates (see, for example, 
Meakin 1.983.). In addition, we stress here that increases in the window size (d ) may result in exclusion 
of a greater proportion of pixels along the periphery of the domain. Under assumption of isotropy, 
a toroidal edge correction can nevertheless be applied to circumvent this problem. Alternatively, in 
the case of point-pattern data sets, calculating the mass m(d) as the average mass in a number of 
squares or circles of radius d (Figure 3..1.8B) is recommended. A surprising application of the mass 
dimension, Dm, to assess the existence of a “master plan” in the design of the Teotihuacan archaeo-
logical zone located 50 km northeast of Mexico City is provided in Box 3..5.

A B

Figure 3.18 The mass dimension method. Using squares of increasing size starting from the center (A) 
or the side (B) of the domain under interest, one counts the number of occupied pixels (shown in black), and 
estimates the mass, m(d) (see Equation 3..1.9). The slope of the linear behavior of m(d) vs. d in a log-log plot 
provides an estimate of the mass dimension, Dm  (see Equation 3..22).
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Box 3.5 MASS FRACtAL DIMEnSIon In 
ARChEoLoGy AnD ARChItECtuRE

The history of the Teotihuacan archaeological zone, located 50 km northeast of Mexico City, 
spans from 1.00 b.c. to 700 a.d. and is recognized to have greatly influenced civilizations in 
Mexico and Guatemala. The general design of this zone has been suggested as an integrated 
display of mathematical and geodetic information (Oleschko et al. 2000a). Teotihuacan was 
modified nearly continuously over more than 800 years. However, a range of anthropologists 
claim that the standardization in architectural orientation and construction, and the symmetry 
and proportionality in the spatial distribution of buildings, suggest that the major structures of 
Teotihuacan were laid out from its foundation according to a master plan intended to express 
a specific view of the world in material form (Sugiyama 1.993.). Using a range of gray-level 
radar images and aerial photographs of the Teotihuacan site, Oleschko et al. (2000a) refined 
those previous hypotheses, showing that the fractal dimension of the major monuments of 
Teotihuacan site were very similar, ranging from 1..8767 to 1..8993.. In addition, those dimen-
sions were very close to the dimension of the Sierpinski carpet, one of the best known theo-
retical fractals (see Figure 2.8A and the “negative” Sierpinski carpet, Figure 3..B5.1.), 1..8928. 
The Sierpinski carpet was subsequently proposed as the model (that is, the master plan) for 
Teotihuacan (Oleschko et al. 2000a). Although it is difficult to explain the existence of a 
unique master plan for a site that continuously evolved over 8 centuries, this represents an 
illustration of fractal geometry not only being the geometry of nature but also representing 
the fractal structure of cities (see, for example, Batty and Longley 1.994; Frankhauser 1.994; 
Batty 1.995), as well as a striking example of the similarity between a man-made structure and 
a theoretical fractal object created more than a millennium apart.

3.2.4.2 case study: microscale distribution of microphytobenthos biomass
3.2.4.2.1 The Study Organism
Microphytobenthos are photosynthetic cells living within the surface layers of coastal sediments. 
They provide as much as 50% of the carbon fixed in some coastal systems (MacIntyre et al. 1.996; 
Serôdio and Catarino 2000), especially in intertidal mudflats (MacIntyre et al. 1.996; Barranguet 
1.997) and shallow subtidal locations (Miles and Sundbäck 2000; Glud et al. 2002). They are eco-
logically critical as a food resource (Blumenshine et al. 1.997) and as “ecosystem architects,” alter-
ing the erosion potential of coastal sediments (Rietmüller et al. 2000). The majority of the cells that 
can be found in the near-shore sediments, either attached to sand grains or rocks (epilithic cells) or 

Figure 3.b5.1 Similarity between two-dimensional projections of the “negative” of the Sierpinski 
carpet (left) and the Great Compound, Ciudadela, of the Teotihuacan archeological site (right). (Modified 
from Oleschko et al., 2000a.)
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living in the interstitial water (epipelic cells) are diatoms (Medlin 2006), characterized by robust 
and heavily silicified frustules (such as Caloneis sp., Diploneis sp.; Figure 3..1.9). Some of them are 
motile, and they secrete mucus that allows them to glide freely on the sediment. Vertical migration 
can be observed on both sandy and muddy flats, and exhibit diel rhythms. Microphytobenthos cells 
migrate to the surface of the sediment during daytime emersion, thus when photosynthesis and pri-
mary production occur (Janssen et al. 1.999; Serôdio and Catarino 2000). The migration results in 
the formation of a biofilm, which consists of a dense layer of cells at the sediment surface (Paterson 
and Crawford 1.986). While most cells migrate back into the sediment before the rising tide or at 
nightfall (Serôdio et al. 1.997; Guarini et al. 2000), a portion of the biofilm may also remain on the 
sediment surface during the rising tide, leading to cell resuspension into the water column. Recent 
results have also revealed that the high diversity and rapid turnover of microphytobenthos popula-
tions make them ideal as a model system for the study of ecological theory (such as diversity vs. pro-
ductivity issues) and aspects of ecosystem change (such as global warming; Riaux-Gobin 1.997).

3.2.4.2.2 Experimental Procedures and Data Analysis
The study site, an intertidal sand flat in Wimereux (France), is typical of the hydrodynamically 
exposed sandy beach habitats that dominate the littoral zone along the French coast of the eastern 
English Channel. The sampling area (50°45′896 N, 1.°3.6′3.64 E), located in the upper intertidal 
zone, did not exhibit any elevational gradient or sharp topographical features as ripple marks, high 
pinnacles, or deep surge channels, and was characterized by homogeneous medium-size sand (200 
to 250 µm, modal size), typical of the surrounding sandy habitat (Seuront and Spilmont 2002). Air 
temperatures at the sampling site range from about 1. to 1.0°C in the winter to highs of about 1.0 to 
25°C in the summer (Seuront 2005a). Water temperatures vary from 5°C to approximately 20°C 
depending on the season. Salinity is usually about 3.1.% but can also vary with the season, being 
lower in late winter and early spring and higher in late summer and fall.

5 μm
20 μm

10 μm
20 μm

A B

C D

Figure 3.19 Electron microscopy photographs of microphytobenthic diatoms: (A) Nitzchia sp.; (B) 
Gyrosigma sp.; (C) Amphora sp.; and (D) Diploneis sp.

2782.indb   62 9/11/09   12:04:50 PM



Self-Similar Fractals 63

Measurements were performed at low tide, in the middle of the emersion period, on 27 September 
2001.. Samples were collected in a rigid 1.-m2 aluminum quadrat constructed from 225 1..9-cm2 plas-
tic cores resulting in an intersample distance of 6.67 cm. The cores were pushed into the sediment 
down to a depth of 1. cm, where the majority of the active cells are concentrated. This ensures that 
the observed spatial structure is not biased by any change in the spatial (that is, vertical) organiza-
tion of the microphytobenthos during the sampling process. Sediment samples were then placed in 
8 ml acetone, and pigments were extracted for 4 hours in the dark at 4°C (Seuront and Spilmont 
2002; Seuront and Leterme 2006). After extraction, samples were centrifuged at 4000 rpm for 
1.5 minutes. Chlorophyll a concentrations (mg) in the supernatant were determined by spectropho-
tometry following Lorenzen (1.967). Chlorophyll a concentrations estimated in the supernatant have 
subsequently been expressed in terms of chlorophyll a per surface unit (mg m−2), taking into account 
the 1..9-cm2 surface of the sampling unit.

3.2.4.2.3 Results
Microphytobenthos chlorophyll a concentration exhibits a very intermittent behavior, where sharp 
fluctuations occurring locally are clearly visible (Figure 3..20A). Chlorophyll a concentration ranged 
between 1..90 and 27.1.5 mg Chl.a m−2, that is, 1.0.79 ± 4.1.5 mg m−2 ( )x SD± . Results of descriptive 
analysis, including skewness and kurtosis estimates, show that the 225 microphytobenthos chloro-
phyll a concentration estimates are not normally distributed (Kolmogorov-Smirnov test, p < 0.01.). 
Their frequency distribution rather exhibits a positively skewed behavior (g1. = 0.60), reflecting a 
distribution characterized by a few dense patches and a wide range of low density patches. Finally, 
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Figure 3.20 Two-dimensional microscale distribution of microphytobenthos chlorophyll a concentra-
tion (mg Chl.a m−2) illustrated (A) as a continuous pattern and (B) as a discrete pattern with concentrations 
C > 1.0.79 mg Chl.a m−2 shown in black, and the scaling behavior of the log-log plot of m(d ) vs. d for the 
distribution shown in (C).
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the positive kurtosis shows a distribution that is more peaked than expected in the case of normal-
ity (g2 = 1..83.). As organisms foraging for food (for example, the amphipod C. arenarium; see  
Section 3..2.3.) are likely to actively select areas of high chlorophyll a concentration, they may take 
advantage of positively skewed distribution. Equation (3..22) was then applied to the distribution pat-
tern of chlorophyll a concentration higher than a given threshold (such as C > 8.85 mg Chl.a m–2; 
Figure 3..20B) to investigate the relative advantages that foraging organisms may have to actively select 
a specific range of food concentrations. The whole plot has size 1.5 × 1.5 in plot units, and each pixel 
represents a surface of 6.67 × 6.67 cm in the field. The log-log plot of m(d) vs. d exhibits a very clear 
scaling behavior, resulting in the mass dimension Dm = 1..82 for C > 8.85 mg Chl.a m−2 (Figure 3..20C). 
More generally, the fractal dimensions Dm related to chlorophyll a concentrations ranging from 1..9 to 
26.6 mg Chl.a m−2 clearly decrease with increasing chlorophyll a concentration (Figure 3..21.).

3.2.4.2.4 Ecological Interpretation
Low chlorophyll densities (C ≤ 6.65 mg Chl.a m−2) are characterized by high fractal dimensions,  
Dm = 1..89 ± 0.01.. Such high dimensions (the maximum value that Dm can reach is Dm = 2.00) char-
acterize very complex processes where short-range, local variability is highly developed and tends to 
obfuscate long-range trends; the variable is more evenly or regularly distributed (that is, less struc-
tured) in space. In other words, this indicates that the variation within a sampling unit is equal to 
the variation among the sampling units. Alternatively, the dimensions Dm related to high chlorophyll 
concentrations (C ≤ 6.65 mg Chl.a m−2) are very low (Dm = 1..03. ± 0.02) and cannot be distinguished 
from the lower Dm value (Dm = 1.). This indicates that the variability of high microphytobenthos 
concentrations is characterized by the so-called random point pattern (Li 2000) (see Figure 2.9D). 
Finally, patches corresponding to intermediate chlorophyll a concentrations (7.60 ≤ C ≤ 21..85 mg 
Chl.a m−2) are characterized by decreasing fractal dimensions Dm from Dm = 1..85 to 1..07. According 
to the optimal foraging theory (Pyke 1.984), organisms are expected to optimize the energy required 
to capture a given amount of food. This is particularly relevant here as food availability changes 
depending on its fractal dimension. A low fractal dimension relates to a smooth and predictable dis-
tribution of food items gathered in a small number of patches. In contrast, a high fractal dimension 
means rough, fragmented, space-filling and less predictable distribution. When a predator has no 
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Figure 3.21 Mass fractal dimension Dm estimated from discrete patterns of increasing microphytobenthos 
chlorophyll a concentrations. The dimension Dm is estimated as the slope of the log-log plot of m(d ) vs. d 
(Equation 3..20). (See Figure 3..20C.)
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detection ability, prey distributions with high dimensions should be more efficient, as food avail-
ability (which is here equivalent to the predator–prey encounter rates) becomes proportional to the 
searched volume as fractal dimension increases. When a predator can remotely detect food items, 
prey distributions with low fractal dimension should be relatively better. Given the sensory abilities 
of intertidal organisms preying on microphytobenthos (see, for example, Erlandson and Kostylev 
1.995; Hutchinson et al. 2007), in the specific case studied here, microphytobenthos grazers should 
then derive maximum benefit from high concentration patches.

3.2.4.3 comparing the mass dimension Dm to other Fractal dimensions
From Equations (3..9) and (3..1.0), and from Equations (3..1.9) and (3..20), it is readily seen that for 
strictly self-similar mathematical fractals, such as the Cantor dust (Figure 3..3.) and the Sierpinski 
carpet and gasket (Figure 2.8), the mass dimension Dm is the same as the Hausdorff dimension DH, 
and strictly speaking to any other fractal dimension related to Equations (3..9) and (3..1.0) in this 
section. However, for real-world fractals, there are significant differences. The mass dimension can 
nevertheless still be directly compared to the box dimension, Db.

Consider the mass of occupied pixels in a window (that is, box) of size (d ) as:

 m
N

Ni
O i

T i

( )
( )

( )
δ

δ
δ

=   (3..23.)

wherem i( )δ is the mass of the occupied pixels NO ( )δ , and NT i( )δ the total number of pixels in the 
ith box of size d. The average mass, m( )δ , in N( )δ  boxes of size d is then:
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  (3..24)

Now, rethinking Equation (3..23.) in terms of probabilistic arguments leads to expressing count fre-
quencies as probability density function p(d) following:
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=

∑
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(3..25)

One may note here that for a given value of d, the mass m(d ) is expressed as the first moment (that 
is, the mean) of the probability distribution as:

 

m N pO i

i

N

( ) ( )δ δ δ( )=
=

∑
1   

(3..26)

Using Equations (3..25) and (3..24) can be equivalently thought of as m N( ) / ( ),δ δ=1  leading to 
rewrite Equation (3..22) as:

 N k Dm( )δ δ= −   (3..27)

which is fully similar to the power-law relationship used to estimate the box dimension (N k Db( )δ δ= − ), 
leading to:

 D Dm b=   (3..28)
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and using Equation (3..1.7) to

 Dm = Db = Dc (3..29)

The mass and box dimensions estimated for the distribution pattern of Corophium arenarium 
shown in Figure 3..1.7A are respectively Dm = 1..29 ± 0.02 and Db = 1..28 ± 0.01., and cannot statisti-
cally be distinguished (p > 0.05) from the cluster dimension estimated in Section 3..2.3..2, Dc = 1..28 ± 
0.02. Similarly, the mass, box, and cluster dimensions estimated from the microscale distribution 
patterns of microphytobenthos chlorophyll biomass (Figure 3..20A) cannot be statistically distin-
guished whatever the chlorophyll a concentration C considered.

3.2.5 inFormaTion dimEnsion, Di

3.2.5.1 theory
The information dimension, Di, can be conceptually related to the box dimension Db and 
the cluster dimension Dc, because it is based on a count of occupied boxes of varying size d 
(Figure 3..22). However, in the box and the cluster dimension estimates, a box is counted as occu-
pied (Figure 3..22A,B,C) and enters the calculations of N(d) (see Equations 3..1.2 and 3..1.4), regardless 
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Figure 3.22 Schematic illustration of three successive steps of the box-dimension procedure, or equiva-
lently the cluster dimension procedure (A, B, C) and information dimension procedure (D, E, F) using three 
different characteristic box sizes: d1.(A, D), d2 (B, E), and d3. (C, F) defined as d1. = 2d2 = 4d3..
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of whether it contains one point or a relatively large number of points. The information dimen-
sion provides more details, as the number of points ni within each occupied box are counted 
(Figure 3..22D,E,F), and is expressed as the relative frequency fi:

 f
n

Ni
i=  (3..3.0)

where N is the total number of points in the set Σi
N

if= =1 1( )δ , and N( )δ is the number of occupied 
boxes of size d. A weight is then assigned to each box; the boxes containing a greater number of 
points count more than boxes with fewer points. The information entropy, or Shannon entropy H( )δ  
at a scale d is subsequently defined as:

 H f fi i

i

N

( ) log
( )

δ
δ

= −
=

∑
1

 (3..3.1.)

Consider now a uniformly distributed point pattern in one-, two-, and three-dimensional spaces. 
The number of points ni and the frequencies fi  are thus proportional to δ −1, δ −2, and δ −3 and to δ1, 
δ 2, and δ 3, respectively. Equations (3..1.2) and (3..1.4) are subsequently rewritten as;

 H k DE( ) log logδ δ= −  (3..3.2)

where k  is a constant. For nonuniformly distributed point patterns, the information dimension Di  
is subsequently defined as:

 H k Di( ) log logδ δ= −  (3..3.3.)

where k is still a constant.

3.2.5.2 comparing the information dimension Di to other Fractal dimensions
Although the above-mentioned arguments lead us to consider the information dimension as a gen-
eralization of the box dimension, these dimensions are nevertheless not equal. Consider a uni-
form point pattern embedded in a DE-dimensional space. All the frequencies fi  are equal, each 
f Ni =1/ ( )δ  and Equation (3..3.1.) leads to H N( ) log ( )δ δ= , that is, the maximum value of H( )δ . All 

the other (that is, smaller) values of H( )δ thus quantify the nonuniformity of the point pattern or 
alternatively correct the dimension estimate by giving less weight to the boxes that contain relatively 
fewer points. In other words, if one defines the information dimension as:

 D
H

i =
→

lim
( )

log( / )δ

δ
δ0 1

 (3..3.4)

and goes back to the formulation of the box dimension (Equation 3..1.5), it comes that:

 D Di b=  (3..3.5)

for uniform point patterns, and

 D Di b<  (3..3.6)

for nonuniform point patterns. The validity of Equations (3..3.3.) and (3..3.4) is illustrated by the infor-
mation dimension analysis of the microscale distribution of the amphipod Corophium arenarium 
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(Section 3..2.3.; Figure 3..1.7A) and the related simulated uniform point pattern (Section 3..2.3.) 
(Figure 3..1.7B). As predicted by Equation (3..3.5), the information and box dimensions of the uni-
form point pattern cannot be statistically distinguished (p > 0.05). In turn, the information dimen-
sion Di is significantly different from the box dimension Db for the point pattern of C. arenarium 
(p < 0.01.). Farmer et al. (1.983.) refined the definitions of both box and information dimensions, 
stating that Db is a “metric dimension” (that is, it depends only on metric scaling properties, d), 
while Di is a “probabilistic dimension” (that is, it depends on both metric, d, and probabilistic, fi, 
properties).

3.2.6 corrElaTion dimEnsion, Dcor

3.2.6.1 theory
The correlation dimension is well adapted to the characterization of spatial clustering in point pat-
terns and was initially introduced to characterize the dimension of strange attractors (see Section 
6.1..3.). This method, widely used in empirical analyses of dynamical systems (Grassberger and 
Procaccia 1.983.) and in cosmology (McCauley 2001.), has, to our knowledge, never been used in 
ecology. A generalization of this method to the stochastic process has been applied by Ibanez (1.986) 
and Seuront (1.999, 2004) to plankton transects and time series, respectively (see Chapter 6). The 
correlation function of a point pattern, usually referred to as the correlation integral C( )δ , is calcu-
lated as (Hentschel and Procaccia 1.983.):

 

C
N

Ci

i

N

( ) ( )δ δ=
=

∑1

1  

(3..3.7)

where C di N i j
N

i j( ) ( ),δ θ δ= −≠ =
1

1Σ  is the number of distinct pairs of points in a circle (or equivalently 
a sphere if the point pattern is embedded in three dimensions) of radius δ, centered on the ith of 
N points, di j, is the Euclidean distance between the ith and the jth points (d x xi j i j, | |= − ), and q(x)  
is the Heaviside function, defined as θ( )x = 0 and θ( )x = 1 for x < 0 and x ≥ 0, respectively. It is 
possible to take 0 < d < 1.. This means that the original dimensional variable d for each point has 
been rescaled by dividing it by dmax,i, where dmax,i is the value of the unscaled variable d for which 
the radius d, centered on point i, just touches the boundary of the data set (Figure 3..23.).

δ

Figure 3.23 A point pattern, illustrating which clusters are used (solid circles) and not used (dashed circles) 
in the search for scale invariance.
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Equation (3..3.7) can be rewritten more simply as:

 C
N

Ni j( ) ,δ = 1
2

 (3..3.8)

where N is the total number of pairs of points in the set, and Ni j, is the number of pairs with 
di j, .<δ  In other words, the correlation integral C( )δ represents the probability that the distance 
between a pair of randomly chosen points will be less than a distance d apart. In the case of a uni-
form point pattern, the correlation integral scales with the distance d  as:

 C(d ) = kd DE (3..3.9)

while for nonuniform distributions, C(d) is given by:

 C(d ) = kd Dcor  (3..40)

where k  is a constant and the exponent Dcor  is the correlation dimension, estimated as the slope of 
the log-log plot of C(d ) vs. r.

3.2.6.2 comparing the correlation dimension Dcor to other Fractal dimensions
Considering the correlation dimension as:

 D
C

cor =
→

lim
log ( )

log( )δ

δ
δ0

 (3..41.)

leads to:

 D D Dcor i b= =  (3..42)

for uniform point patterns, and it is seen from the comparison of Equations (3..1.3.), (3..3.2), and (3..3.9) that:

 D D Dcor i b< <  (3..43.)

for nonuniform distributions. The correlation dimension Dcor , information dimension Di, and box 
dimension Db returned by respectively applying Equations (3..3.6), (3..29), and (3..1.2) to the microscale 
point pattern of the amphipod Corophium arenarium (see Section 3..2.3., Figure 3..1.7A) and the 
related uniform point pattern simulated with the same number of data points (see Section 3..2.3., 
Figure 3..1.7B). As predicted by Equation (3..42), the correlation, information, and box dimensions of 
the uniform point pattern are not statistically different ( p > 0.05) (Figure 3..24). On the other hand, 
the three dimensions Dcor , Di, and Db are significantly different (p < 0.05) for the point pattern 
of C. arenarium, with Dcor = 1..1.5 ± 0.01., Dcor = 1..22 ± 0.02, and Dcor = 1..28 ± 0.02 (Figure 3..24), 
hence verifying Equation (3..43.). Chapter 5 shows in detail how the correlation dimension Dcor , the 
information dimension Di, and the box dimension Db can also be related using a generalization of 
the entropy formulation introduced in Equation (3..3.1.).

3.2.7 arEa-pErimETEr dimEnsions

Area-perimeter methods have generally been used to estimate the fractal dimension of objects 
coded as digitized images. Consider as an example a landscape consisting of a set of vegetation 
patches (Figure 3..25). These patches can be either monospecific (Figure 3..25A,B) or plurispecific 
(Figure 3..25C). Area-perimeter dimension methods can be used to determine the fractal dimen-
sion of a set of patches as a function of the complexity of their boundaries or their space-filling 
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character and also as a function of the quality of the surrounding patches. Three approaches are 
thus possible:

Perimeter-based•	 , to determine the extent that a patch perimeter fills the plane
Area-based•	 , to determine the extent that a patch fills the plane
Landscape-based•	 , to compare patch complexity in an environment characterized by 
patches of different types

Each of the three methods described in this section measures a fractal dimension, but it will be 
shown that their application and interpretation are quite different.

3.2.7.1 Perimeter dimension, Dp

The perimeter dimension (Dp) method basically provides a measure of the perimeter-area ratio for 
a patch or a set of patches (Figure 3..25A). Consider an “ideal” circular patch (for example, Okubo 1.980) 
in a two-dimensional space. The area A and the perimeter P are related as:

 

P r r A A

A r
P

P

= = ≈

= = ≈

2

4
2

2
2

π π

π
π  

(3..44)

where r is the radius of the patch, and “≈” means proportionality. In case of a non-Euclidean patch 
structure, Equation (3..44) leads to the following perimeter-area relationship:

 P kADp= /2
 (3..45)

where k is a constant, the area A is the number of pixels needed to cover a given object, the perimeter 
P is the number of pixel edges, and Dp is the perimeter dimension. For a single patch, the perimeter 
dimension is thus simply written as:

 D P Ap = 2log / log  (3..46)
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Figure 3.24 Correlation dimension Dcor, information dimension Di, and box dimension Db estimated for the 
microscale point pattern of the amphipod Corophium arenarium (see Figure 3..1.6) and a simulated uniform 
point pattern with the same number of data points.
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Figure 3.25 Area-perimeter dimensions. (A) Perimeter dimension Dp is based on estimates of patch areas 
(light gray) and perimeter (indicated by a black solid line). (B) Area dimension Da is based on estimates 
of patch areas and largest horizontal or vertical dimension (n). (C) Landscape/seascape dimension Ds is 
a generalization of the perimeter dimension to patches of different species, here shown by different gray 
intensities.
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Alternatively, the slope of the log-log area-perimeter plot for a set of objects gives a fractal dimen-
sion (Burrough 1.986). Patterns characterized by perfectly circular patches (that is, a low perimeter-
area ratio) have a fractal dimension Dp =1, while those containing highly convoluted patches (that 
is, a high perimeter-area ratio) have a fractal dimension Dp → 2. This method is thus well adapted 
to studies focusing on ecotonal boundaries (edges).

However, a digitized image of any fractal object is Euclidean by virtue of its projection onto a 
grid, and thus leads to biased estimates of Dp; see, for example, Falconer (1.993.), and Section 7.2.1.. 
As a remedial procedure, the expression of the perimeter P in Equation (3..45) needs to be modified 
as (Olsen et al. 1.993.):

 P P A1

1

4
2 1= + −[ ( )]  (3..47)

The ratio 1.:4 is determined as the proportionality constant for pixelized systems, and 2 1( )A −  is 
the maximum value of the perimeter fractal dimension Dp of an object of area A considered on 
a square grid. The corrected perimeter P1 should then be used instead of P when estimating Dp  
from Equation (3..45). Some additional limitations related to the representation of digital images are 
discussed in Section 7.2.1..

3.2.7.2 area dimension, Da

To quantify the space-filling characteristics of a patch (Figure 3..25B), Voss (1.988) modified the stan-
dard box-counting framework (see Section 3..2.2) and suggested that the fractal dimension of a patch 
can be instead measured as Da = log A/log L, where L  is the maximum of the row and column lengths 
of the pixelized patch. Square patches of size n (L n= , A n= 2 ) completely fill a two-dimensional 
space (that is, D n na 2= =log /log2 ), while for a “rectangular” patch of length n  and width 1.  
( L n= , A n= ), D n na = =log / log 1. The corresponding length-area relationship is written as:

 A = kLDa  (3..48)

where k is a constant, and Da  the area dimension. This method returns high fractal dimensions for 
patches that best fill their embedding space (that is, circular patches). Thus, in studies focusing on 
acquisition and retention of space—for instance, in the framework of invading species (Kooi and 
Kooijman 2000)—a circular patch (where the area-to-edge ratio is high) would be more likely to 
retain space than a thin, convoluted patch (that is, where the area-to-edge ratio is low).

3.2.7.3 landscape/seascape dimension, Ds

This framework is a generalization of the perimeter-area relationship provided above to a set of 
patches of different types (for example, patches of different seagrass species; Figure 3..25C) to esti-
mate the extent to which the perimeter of a given patch interacts with neighboring patch types. 
The related measure of fractal dimension, the so-called landscape/seascape dimension Ds, can be 
estimated using a modified perimeter length Pm (Olsen et al. 1.993.):

 Pm = P + [2(A − 1.)(N/(N − 1.))]  (3..49)

where P and A are respectively the patch perimeter and area, N is the number of adjacent patch 
types, and Nt is the number of all patch types in the landscape/seascape. The related fractal dimen-
sion for the seascape is subsequently estimated by substituting Equation (3..48) into the perimeter-
area relationship given by Equation (3..45). This method can be extremely useful to estimate the 
impact of intra- and interspecific competition for space and resources—for instance, in the frame-
work of zoobenthic community establishment and maintenance (Boström and Bonsdorff 2000; 
Hovel et al. 2002).
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3.2.7.4 Fractal dimensions, areas, and Perimeters
Although the perimeter and the area fractal dimensions introduced in Section 3..2.7 specifically 
describe the relationships between the perimeter P and the area A of a patch, they can more generally 
be used to quantify the structure of any rough object such as proteins, biological aggregates obtained 
from natural environments (for example, marine snow) or bioreactors (for example, bioflocculated 
microbial aggregates generated by the activated sludge process), inorganic colloidal aggregates (for 
example, clays, alum, ferric hydroxides), and growth patterns of inorganic and organic systems (for 
example, cluster formation, dendritic growth, diffusion-limited aggregation). However, it appears 
that many fractal relationships involving the perimeter or the area of an object significantly differ 
from the concepts introduced above. These relationships are reviewed hereafter and discussed in 
relation to the related fractal dimensions.

3.2.7.4.1 Fractal Structure of Surfaces
3.2.7.4.1.1 On the Fractal Surface Dimension of Proteins 
The characteristic roughness and corrugation of protein surfaces are of extreme biological relevance 
in their function, including (1.) the association of different subunits; (2) the recognition, diffusion, 
and binding of a ligan; and (3.) the release of products. Typically, the surface areas of proteins is 
defined by the area accessible to a probe sphere (Lee and Richards 1.971.; Richards 1.977) and the 
related fractal surface dimension Ds, estimated as

 

D
d A

d Rs
p

= −2
log

log
  

(3..50)

or equivalently

 A kRP
Ds= −2

 (3..51.)

where k is a constant, A the molecular surface area, and RP the probe radius (Lewis and Rees 1.985). 
Note that Equation (3..51.) is the strict equivalent of Equation (3..6), and consequently of the box-
counting dimension Db described in Section 3..2.2. This approach has been used to investigate the 
fractal surface dimension of three enzymes (lysozyme, ribonuclease A, and superoxide dismutase), 
which was Db = 2.44 on average for scales ranging from 0.1. and 0.3.5 nm (Lewis and Rees 1.985). 
The variation in Ds over the protein surfaces revealed high fractal dimensions (Ds > 2.5) for surface 
regions of lysozyme characterized by elevated reactivity, while lower Ds values (Ds ∈[2.3. − 2.5]) 
were obtained from regions located near the activity surface of the enzyme (Lewis and Rees 1.985). 
The region of greatest surface roughness corresponded to the dimmer interface and to the subunit 
interface in superoxide dismutase and ribonuclease A, respectively. Regions involved in the forma-
tion of tight complexes and permanent binding (for example, interfaces between subunits, antibody-
combining regions) appeared to be more irregular than average (Ds > 2.4). In contrast, regions of 
proteins that interact transiently with ligans and cannot tolerate formation of stable complexes (for 
example, active sites) appear to be smoother than average. Despite the very narrow range of scales 
used to estimate the fractal dimensions and in the absence of any discussion related to the obvious 
changes in the values of Ds with the size of the probe (Lewis and Rees 1.985; see their Figure 2b), 
this work indicates that increased roughness favors strong bounds, thus relating the fractal structure 
to specific functions and suggesting that fractal dimension could actually be used to predict protein 
functional sites, as functional surfaces are much rougher than protein surfaces in general (Pettit and 
Bowie 1.999). Note that Equation (3..50) has further been modified to account for statistical errors 
resulting from local variations in roughness at specific sites on a protein surface as
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(3..52)
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where fi is the smoothed atomic fractal dimension for atom i, Aj the contact area (Richards 1.977) of 
atom j, and the sum accounts for all neighbor atoms j within 5 Å of atom i (Pettit and Bowie 1.999) 
(Figure 3..26).

More generally, investigations of the global fractal surface dimensions of 1.4 proteins indicated 
that most of them were bounded between 2.1. and 2.2, which suggests that the surface dimension of 
proteins may have a physical basis and control some biologically relevant processes of proteins (Elber 
1.989). This might be the case for substrate diffusion to and along the protein surface. Molecules 
close to the surface are therefore captured at a rate that increases exponentially with Ds. In contrast, 
the slower the substrate migrates along the surface to the active site, the higher the Ds is (Pfeifer et al. 
1.985). However, while high Ds accelerate the diffusion rates to the surface, they slow it down on 
the surface (Pfeifer et al. 1.985). As a consequence, the overall activity of proteins is likely to result 
from the balance between efficient diffusion to the surface and efficient trapping on the surface by 
active sites. The value of the global fractal surface dimensions obtained for a range of proteins,  
Ds ≈ 2.2 (Lewis and Rees 1.985; Aqvist and Tapia 1.987; Elber 1.989), might then represent the opti-
mum surface complexity needed to achieve enzymatic activity.

3.2.7.4.1.2 On the Fractal Surface Dimension of Vegetation and Soil 
The roughness of surface areas of vegetation and of soil pores is of particular biological and ecologi-
cal relevance, as it defines the habitat space available to species and individuals at their character-
istic scales. This has been used to relate body size to population density in fractal habitat (Morse et 
al. 1.985; Kampichler and Hauser 1.993.).

In a study of the impact of human activities on the shape of remnant riparian forest patches in 
Iowa (Rex and Malanson 1.990), Equation (3..45) has been rewritten as:

 
C

P

ADP
=

/2
  

(3..53.)

where C is defined as the patch shape, P the patch perimeter, A the patch area, and DP the perim-
eter dimension. Equation (3..53.) implies that if a patch has a smooth outline (that is, low DP) 
the shape C will be large. In contrast, a very rough patch (that is, high DP) results in a smaller 
patch shape for constant perimeter and area. Note that Equation (3..53.) is strictly equivalent to 
Equation (3..45); that is, C = k. The prefactor (that is, constant) k is barely taken into account in 
fractal analysis, mainly due to early criticisms stating that it did not appear important and that 

Atom i

Rp

Contact areas Aj

Figure 3.26 Smoothed atomic fractal dimension fi . fi  is used to map local variations in roughness of protein 
surfaces based on a sphere of radius Rp centered on each atom and used to estimate the contact areas Aj  of 
neighboring atoms.
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a geometrical framework was lacking (Longley and Batty 1.989). However, patch shape signifi-
cantly affects ecological processes such as distribution and abundance of organisms (Hamazaki 
1.996; Hawrot and Niemi 1.996; Muriel and Grez 2002), predator–prey interactions (Orrock  
et al. 2003.), response to habitat fragmentation (Collinge and Palmer 2002), and species richness 
(Heegaard et al. 2007). Patch shape, but more generally the prefactors k of any scaling relation-
ships and their relationships with fractal dimensions, should consequently be more thoroughly 
investigated.

Besides the widely reported fractal organization of vegetation patches (Palmer 1.988; DeCola 
1.989; Rex and Malanson 1.990; Williamson and Lawton 1.991.; van Hees 1.994; deJong and Burrough 
1.996; Cantero et al. 1.998; Despland 2003.; Alados et al. 2005) and their influence on foraging 
organisms (Russel et al. 1.992; Ritchie 1.998; Etzenhouser et al. 1.998; Cuddington and Yodzis 2002; 
Hoddle 2003.; Phillips et al. 2004; Nams and Bourgeois 2004), plant surfaces were also found to 
be fractal, thus influencing the type, size, and abundance of arthropods living on them (see, for 
example, Morse et al. 1.985; Gunnarsson 1.992; Shorrocks et al. 1.991.; Jeffries 1.993.). Applying the 
box-counting approach described in Section 3..2.2 to a selection of woody plants, Morse et al. (1.985) 
found box dimensions Db ranging between 1..28 and 1..79. Based on the assumption that animals 
perceive and use vegetation surfaces in a way proportional to their body length, replacing the box 
size d by the body length L in Equation (3..1.3.) leads to:

  N L L Db( ) ∝ −
 (3..54)

where N(L) can be equivalently thought of as the number of boxes of size L or the number of body 
lengths necessary to cover the vegetation surface. From Equation (3..54), it comes that for Db = 1..5 
the area perceived by an organism 3. mm in length is 3..1.6-fold greater than the same area perceived 
by a 3.0-mm organism, hence the available surface area increases with decreasing body length. 
This increase in available space for smaller organisms was then combined with the way in which 
metabolic rate r scales with body length (that is, r ∝ W 0.75 = (L3.)0.75, where W is the body weight; 
Peters 1.983.; Schmidt-Nielsen 1.984) to make predictions about the distribution of body lengths of 
animals living on vegetation. As population densities scale reciprocally of metabolic rates (Peters 
1.983.), the number of arthropods N(L) of size L living on a vegetation of fractal surface dimension, 
Db, scales as:

 N L L( ) .∝ −225
  (3..55)

A 1.0-fold decrease in body length results in a 1.78-fold increase in the density of organisms. The 
3..1.6-fold increase in the surface area available predicted for a 1.0-fold decrease in body length 
results in an expected increase of 560-fold in the number of individuals. The predictions of Morse 
et al. (1.985) have been confirmed for both terrestrial and aquatic invertebrates (Gunnarsson 1.992; 
Shorrocks et al. 1.991.; Jeffries 1.993.). They are nevertheless likely to significantly underestimate 
the number of animals found on the vegetation surface of known fractal dimension Db estimated 
from the two-dimensional projection of a three-dimensional structure; see Section 3..2.2.4. Note 
that under the assumption that all the individuals present on the vegetation surface can be col-
lected, Equation (3..54) allows us to predict the box dimension Db of the three-dimensional surface 
of the vegetation from the slope of the log-log plot of the number of arthropods N(L) versus their body 
length L. This is a consequence of the applicability of Equation (3..1.3.) to two- and three-dimensional 
structures (see Section 3..2.2.4; Seuront et al., 2004a). This is also consistent with the divergence 
between the fractal dimension estimated by Morse et al. (1.985) from the two-dimensional projec-
tions of three-dimensional vegetation surfaces—that is, Db ∈ [1..28 − 1..79]—and the dimension Db 
(Db = 2.78) predicted from Equation (3..1.3.) using data collected by pyrethrum knockdown of a 
tree canopy.
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Fractal dimensions have also been used as a measure of the roughness of soil pore walls to 
estimate the available pore area for microarthropods of different sizes and to predict the relative 
abundance of various size classes and body sizes of soil microarthropod communities (Kampichler 
and Hauser 1.993.). Photographic images of thin sections of soil and of pores actually habitable 
by microarthropods (that is, pores having an area larger than 0.003. mm2) were analyzed as two-
dimensional patches. The fractal dimension of the patch perimeter was assessed using the perimeter 
dimension DP (see Section 3..2.7.1., Equation 3..45), and from Equations (3..1.) and (3..6), it shows that 
the related pore-surface dimension Ds can be calculated as:

 Ds = DP + 1. (3..56)

Ds varied slightly around 2.3.2. A decrease of an order of magnitude of body length would increase 
habitat space approximately four times and results in a fourfold increase in the density of microar-
thropods in a given pore area (Kampichler and Hauser 1.993.). The relation between the size of 
organisms and habitat availability through considerations of habitat spatial complexity is critical 
for population dynamics of soil microorganisms and for the dynamics of cycling and transport 
of nutrients via the soil microbial population. The persistence of soil bacterial communities then 
depends on the existence of refuge sites in soil, that is, niches of microscale structure accessible 
to bacteria but excluding predatory protozoa. Bacteria tend to reside on the surface of pore walls 
where they may be subjected to predation by protozoa (see, for example, Coleman and Crossley 
2004). As a consequence, information related to the fractal properties of soil structure (see also 
Section 3..2.7.4.1.) allows the prediction of (1.) the magnitude of the area of refuge sites for prey spe-
cies of various sizes, and (2) the fraction of the potential habitat of the prey species that is accessible 
to predators (Crawford et al. 1.993.a). For instance, only half of the potential habitable area of the 
bacteria has been estimated to be inaccessible to predation by protozoa in a soil of fractal dimen-
sion 2.3.6 (Crawford et al. 1.993.b). The fractal nature of soil is also likely to influence the motility of 
organisms as a function of their size. From fractal data of soil structure and measurements of the 
diffusion rate to body size, Fujikawa (1.994) estimated that, despite their low motility, large species 
could move more rapidly than expected through soil because the effect of constricting pore necks 
is to limit the effective tortuosity, thus permitting a greater mobility to an otherwise more slowly 
moving large predator.

Fractal geometry provides a valuable theoretical and quantitative framework with which to 
analyze, infer, and forecast the role of vegetation and soil structure in the space-time dynamics 
of invertebrates and microbial organisms and the related processes involved in matter cycling 
and transport.

3.2.7.4.2 Fractal Structure of Aggregates
3.2.7.4.2.1 On the Fractal Structure of Protein Aggregates 
The aggregation of monomers and the formation of clusters are of central interest in biology and 
polymer and colloid chemistry, including the physical chemistry of macromolecules (for example, 
Antonietti 2003.; Antonietti and Förster 2003.; Antonietti and Tauer 2003.; Sun 2004). As stressed 
earlier, for protein surface, fractal properties of protein aggregates can provide valuable insight into 
the structural basis and a better understanding of protein–protein interactions and aggregation in 
biomembranes, thus allowing a better assessment of their functional role. The fractal dimension of 
protein aggregates is typically estimated as:

  

N
r

R

D

∝




0  

(3..57)

where N is the number of monomers inside a radius r from the center of the aggregate, and R0 is 
the monomer radius (Mandelbrot 1.983.). Note that the fractal dimension D estimated from Equation 
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(3..57) is conceptually similar to the cluster dimension Dc´ introduced in Equation (3..1.8). More gen-
erally, the characteristic radius, Ri, of an aggregate is related to the number of monomers, i, in a 
cluster as:

 Ri = R0ib  (3..58)

where the cluster exponent b = 1./D. The cluster resulting from the heat-induced aggregation kinet-
ics of immunoglobulin followed Equation (3..58) with D = 2.56 ± 0.3. (Feder et al. 1.984), a value 
significantly lower than the space-filling dimension D = 3..

The fractal dimension of aggregating protein systems have also been estimated using small angle 
X-ray, neutron scattering, and light scattering techniques (for example, Horne 1.987, 1.989a, 1.989b; 
Khlebtsov and Melnikov 1.994; Schuler et al. 1.999). These procedures measure the mean scattered 
intensity, I, as a function of scattering angle and subsequently as a function of the magnitude of the 
scattering vector Q, or momentum transfer vector. For mass fractals (Gouyet 1.992; Pfeifer and Ober 
1.989), there is a power-law relationship between the scattered intensity, I, and the magnitude of the 
momentum vector, Q (Schmidt 1.989):

 I Q Q Dm( )∝ −
  (3..59)

where the mass fractal dimension Dm ≤ 3. and Q is a function of the scattering angle q, that is,  
Q = (4pn/l) sin(q/2) , where n and l are the refractive index of the medium and the wavelength of 
the laser light, respectively. Equation (3..59) is valid if the cluster size is large compared with the 
primary particle size, that is, R0 < Q−1. < r (Raper and Amal 1.993.). In contrast, for surface fractals, 
Equation (3..59) rewrites as:

 I Q Q Ds( ) ( )∝ − −6
  (3..60)

where the surface fractal dimension Ds is in the range 3. ≤ 6 − Ds ≤ 4 (Schmidt 1.989). Equation (3..57) 
has been successfully applied to ramified clusters of α-elastin obtained by reversible aggregation of 
a nondispersed elastin solution upon increasing temperature (Dm = 2.24; Tamburro and Guantieri 
1.991.) and casein aggregates under different conditions of temperature, Dm ∈ [2.1.1. − 2.44] (Vétier et al. 
1.997, 2003.). These values are comparable with the values reported for renneted casein and casein 
aggregation induced by ethanol, Dm = 2.40 and 2.3.3., respectively (Horne 1.987, 1.989a, 1.989b) and for 
acidified sodium caseinate aggregates, Dm = 2.27 (Bremer and Walstra 1.989).

Fluorescence-resonance energy transfer was used to estimate the fractal properties of the contour 
of membrane protein aggregates (Dewey and Datta 1.989). This method lies on the general expres-
sions relating energy transfer from a donor to acceptors randomly distributed on a fractal structure 
(Klafter and Blumen 1.984). For multiple donors and multiple acceptors, the ratio of quantum yields 
of donor in the presence, QP, and absence, QA, of acceptor is given by:

 

Q

Q
N R RP

a
A B= −1. 0

6
, ( )/

 

(3..61.)

where NA,B  is the total number of donors in the presence of acceptors equivalent to the efficiency 
of the energy transfer between donors and acceptors, R0 the protein diameter, and R the distance 
between donor and acceptor. Because NA,B cannot be controlled experimentally, it must be related to 
NA, the total number of acceptor molecules (Dewey and Datta 1.989). First, consider the surface area, 
SA, of the acceptor molecules. Equation (3..45) thus leads to:

 P SA

Dp∝ /2

  (3..62)
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where P is the perimeter of the acceptor molecules. The surface area is assumed to be directly pro-
portional to NA, the total number of acceptor molecules, and to the surface density of acceptors, s. 
Because:

 NA,B = P/d  (3..63.)

where d is the width of the protein, it becomes:

 
N NA B A

Dp

,

/∝ 2

 
(3..64)

Combining Equation (3..61.) and Equation (3..64), it finally becomes:

 E Dp∝σ /2
  (3..65)

The value of Dp obtained for bacteriorhodopsin (Dp = 1..6; Dewey and Datta 1.989) is comparable 
to the value Dp = 1..56 found for lattice animals (Jullien and Kolb 1.984; Kolb and Jullien 1.984; 
Brown and Ball 1.985) and Dp = 1..55 for chemical cluster-cluster aggregates (Stauffer 1.979). These 
Dp values were consistent with favorable and relatively nonspecific protein–protein interactions, 
which probably produced extended aggregate structures. In contrast, the higher fractal dimension 
(Dp = 1..80) found for calcium-ATPase was close to values obtained for percolation clusters (Stauffer 
1.979). This may suggest that purified ATPase vesicles have such a high protein-to-lipid ratio, lead-
ing to an almost totally contracted network (that is, filling uniformly a two-dimensional space).

3.2.7.4.2.2 On the Fractal Structure of Marine Snow Aggregates 
The interior of deep lakes and oceans is far from the pristine vision of an idyllic deep blue sea that 
may intuitively come into mind (Figure 3..27A). Instead, it is often characterized by the occurrence 
of marine snow (Figure 3..27B). Marine snow refers to the continuous flow of inorganic and organic 
detritus falling from the productive euphotic zone down toward the ocean’s interior, and somehow 
similar to snow on land. It is formed by the collision and subsequent coagulation of large macromol-
ecules such as the transparent exopolymer particles secreted as a waste product by bacteria and phy-
toplankton, and a variety of inorganic and organic materials such as dying or dead organisms (either 
plants or animals), secretion and excretion of organisms, terrigenic dust particles, and resuspended 
sediment. Although marine snow can sometimes be identified as having been formed from specific 

Figure 3.27 Classical view of the pristine waters of the ocean interior (A) compared to a more realistic view 
illustrating the occurrence of marine snow particles (B). (See color insert.)
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particles in the water column (for example, fecal pellets, larvacean houses, or diatoms), it may also 
be highly amorphous and not recognizable as having any distinct origin (Alldredge and Gotschalk 
1.988, 1.990). Marine snow aggregates grow over time as they sink through coagulation with other 
particles and aggregates at a rate controlled by turbulent diffusion and differential sedimentation 
(Kiørboe and Hansen 1.993.; Kiørboe et al. 1.994, 1.996, 1.998; Kiørboe 1.997; Li and Logan 1.997a, 
1.997b) (Figure 3..28) and can reach up to several centimeters in diameter, sinking for weeks before 
reaching the ocean floor (Alldredge and Gotschalk 1.988). Marine snow is a critical component of 
the ocean biogeochemical cycles through the transport of organic and inorganic material from the 
water column to the ocean floor (Azam and Long 2001.). Little is still known about the geometrical 
properties of different types of aggregates. These properties can, however, affect the coagulation and 
sedimentation of these particles (Jiang and Logan 1.991.). In addition, as the geometry of aggregates 
in general—and marine snow aggregates in particular—conditions the surface and space available 
to microorganisms (for example, heterotrophic bacteria, micro- and mesozooplankton) that colonize 
their surface and degrade their organic content as inorganic compounds (Figure 3..29), a thorough 
assessment of their properties is critical to infer their overall contribution to biogeochemical cycles 
(Jackson 1.990; Hill 1.992; Riebesell and Wolf-Gladrow 1.992).

A

B

C

Figure 3.28 Physical processes contributing to particle collisions. (A) Differential sinking, (B) turbulence, 
and (C) Brownian motion.
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Coagulation is a critical mechanism of particle removal in natural systems, transforming many 
small, slowly settling particles into larger, faster-settling aggregates. Aggregate properties formed 
by coagulation have been shown to have a fractal structure (see, for example, Witten and Cates 
1.986; Meakin 1.988; Logan and Wilkinson 1.990). More specifically, aggregates formed by Brownian 
motion (Figure 3..28C) have fractal dimensions that are only a function of particle stickiness (Meakin 
1.988; Lin et al. 1.989; Torres et al. 1.990). More specifically, very sticky particles that undergo fast 
cluster-cluster aggregation by Brownian motion yield fractal dimensions of ca. 1..8 (Jullien et al. 
1.984; Schaefer et al. 1.984; Schonauer and Kreibig 1.985). In contrast, less-sticky particles that need 
to collide many times before adhesion produce aggregates with fractal dimensions between 1..9 and 
2.2 (Jullien and Kolb 1.984; Weitz and Oliveria 1.984; Meakin and Family 1.987). Fractal dimensions 
ranging from 1..0 and 3..0 have been found for aggregates of different types of particles formed by 
either shear motion or differential sedimentation (Li and Ganczarczyk 1.989; Logan and Wilkinson 
1.990, 1.991.). Computer simulations of aggregate growth also show that the magnitude of the fractal 
dimension is determined by the mechanism of aggregate growth. Aggregates formed through the 
addition of particles into the cluster one at a time (particle-cluster) have three-dimensional fractal 
dimensions in the range of 2.5 to 3..0 (Schaefer 1.989). In contrast, aggregates formed through colli-
sion of clusters (cluster-cluster) have lower fractal dimensions, typically with D ranging from 1..6 to 
2.2 (Witten and Cates 1.986).

Two standard expressions of aggregate size used in biology and ecology are (1.) the average dis-
tance between two points in the outline of a particle (that is, the statistical diameter; Herdan 1.953.), 
and (2) the diameter of a circle having the same area as the projected image of the particle, when 

A

B

Figure 3.29 Illustration of the impact of an increase in the surface/volume ratio of a marine snow particle 
from (A) an idealized spherical particle to (B) a complex geometry on its potential to host microorganisms 
such as heterotrophic bacteria (small gray dots), microzooplankton (large black dots) and mesozooplankton 
(that is, copepods). Note that for the sake of simplicity, the marine snow particles, heterotrophic bacteria, and 
micro- and mesozooplankton have not been drawn at the same scale.
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viewed in the direction perpendicular to the plane of greatest stability (that is, the circular, or spheri-
cal, equivalent diameter, [SED]) (Herdan 1.953.). Shape factors (Box 3..6), including fractal dimension, 
have further been introduced as size-independent features calculated from geometric dimensions.

Box 3.6 ShAPE FACtoRS In PARtICLE IMAGE AnALySIS

The different morphological features of particles and aggregates can be measured using shape 
factors as size-independent descriptors calculated from basic geometric dimensions. Four 
shape factors are defined hereafter following Yonekawa et al. (1.996):

Elongation, E:

 E
w

= 1
  (3..B6.1.)

Circularity, C:

 C
a

p
= 4

2

π   (3..B6.2)

Roundness, R:

 R
a

l
= 4

2π
  (3..B6.3.)

Porosity, P:

 P
a a

a
d=

−
× 100   (3..B6.4)

where a is the total area of the particle (the integral of the particle surface excluding enclosed 
holes), ad the detected area (the area of the particle taking into account the holes), l the maxi-
mum distance between two points located on the boundary of the particle/aggregate, w the 
width (diameter orthogonal to the length), lf the Feret length (diameter parallel to the y axis), 
wf the Feret width (width parallel to the x axis), and p the perimeter (the sum of distances 
between midpoints of the vectors forming the boundary (Figure 3..B6.1.).

Figure 3.b6.1 The morphological features of a particle used to define shape factors. Length l, width w, 
Feret length lf , Feret width wf , perimeter p, total area a, and detected area ad.

 

a ad

pl

lf

w f

w
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These factors are used to characterize the shapes of particles, regardless of their sizes. Shape 
factors have been used to discriminate, for example, rock particles (Schäfer and Teyssen 1.987) 
and plant leaves (Yonekawa et al. 1.996). Examples of shape factors are given in Box 3..6. Applying 
Equations (3..9) and (3..1.0) to photographs of suspended particulate matter, Billiones et al. (1.999) 
found fractal dimensions Dd bounded between 1..04 and 1..3.7 and between 1..25 and 1..86 for detritus 
originated from monocotyledon and dicotyledon plants, respectively. The observed difference in Dd 
values could be due to the different venation patterns on the leaves of the two groups of plants, the 
monocotyls having parallel venation while the dicotyls having net venation (Muller 1.979). Assuming 
that during the fragmentation of the leaves into detrital particles, the breaking up follows along the 
lines of the venation pattern: Monocotyl detritus will have the tendency to break up into somewhat 
rectangular shapes, following parallel lines of venation, while dicotyls will have more irregular 
borders, like the fringes of a torn net. The ability to discriminate detritus of different sources is 
highly relevant in aquatic environments where a large portion of the detritus is of terrestrial plant 
origin (Pomeroy 1.980).

More specifically, the n-dimensional fractal dimension Dn of aggregates relates how aggregate 
properties vary with their characteristic length, in which n is the Euclidean dimension the object 
is embedded in (see Section 2.2). Fractal dimensions of aggregates embedded in one-, two-, and 
three-dimensions are:

  P l D∝ 1.  (3..66)

 A l D∝ 2   (3..67)

 
N lp

D∝ 3.

 
(3..68)

where l is the maximum aggregate size, P the aggregate perimeter, A the projected aggregate area, 
and Np the number of particles in the aggregate. Since these three fractal dimensions characterize 
how the aggregate properties change with size, their magnitude is related to aggregate morphology. 
Aggregates with highly irregular perimeters have fractal dimension D1. greater than unity. Similarly, 
aggregates tend to become more porous with increasing size, resulting in two- and three-dimensional 
fractal dimensions that are usually less than their corresponding integer (that is, space-filling) val-
ues; that is, D2 < 2 and D3. < 3.. This approach led to identifying different fractal dimensions among 
different types of aggregates and with the type of fluid motion forming the aggregates (Logan and 
Wilkinson 1.990).

The porosity, p, of biological aggregates relates to aggregate size as (Alldredge and Gotschalk 
1.988; Logan and Alldredge 1.989):

 1. − p = alb  (3..69)

where a and b are constants, and to the volume, Vc, of cells composing the aggregate and the volume, 
V, of the aggregate as:

 1. − p = NVc / V   (3..70)

Equations (3..68) and (3..70) then lead to:

 1. 3. 3.− ∝ −p l D

 (3..71.)

where Equations (3..69) and (3..71.) lead to D3. = 3. + b (see also Table 3..4). Using porosity data 
determined directly from gravimetry assuming an average particle density (Alldredge and 
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Gotschalk 1.988; Logan and Alldredge 1.989), Equation (3..71.) returned D3. = 1..3.9 ± 0.1.5 for general 
marine snow aggregates, D3. = 1..52 ± 0.1.9 for diatom aggregates, and D3. = 1..8 ± 0.3. for microbial 
aggregates of the rod-shaped, gram-negative bacterium Zooglea ramigera (Logan and Wilkinson 
1.990). Assuming that A l D∝ 2  (Equation 3..67), fractal dimensions have also been estimated from 
the settling velocity, u, of aggregates using the scaling relationship:

 u l D D∝ + −3. 21.
 (3..72)

as D3. = 1..26 ± 0.06 for marine snow aggregates (Logan and Wilkinson 1.990). From digitized in situ 
photographs of a variety of marine snow aggregates, Kilps et al. (1.994) found that the lowest fractal 
dimensions D2 (D2 = 1..28 ± 0.1.1.) were found for aggregates composed predominantly of a single 
type of particle (for example, diatoms or fecal pellets) containing a large amount of miscellaneous 
debris. Marine snow formed of fecal pellets  (D2 = 1..3.4 ± 0.1.6), nonidentifiable amorphous particles  
(D2 = 1..63. ± 0.72), and diatoms  (D2 = 1..86 ± 0.1.3.) had increasingly larger fractal dimensions.

Meakin (1.988) demonstrated that when the three-dimensional fractal dimension D3. ≤ 2, then  
D2 = D3.. As a consequence, Equations (3..67) and (3..68) lead to:

 
A N p∝ φ

  
(3..73.)

where f = D2/D3.. Equation (3..73.) can be used to test whether f = 1. when D3. ≤ 2, or alternatively to 
test whether D3. ≤ 2 when f  = 1.. Note that the two- and three-dimensional fractal dimensions D2 = D3. 
and D2 = D3. can also be calculated using a series of scaling relationships involving aggregate vol-
ume, mass, density, porosity, and settling velocity (Table 3..4). Based on the consistency in the slopes 
of particle size distributions observed in the ocean and in laminar shear devices during coagulation 

table 3.4
relationships between the Physical and Fractal Properties of aggregates

aggregate Property equation scaling relationship

Solid volumea (v)
                         

v l lD D D= −ψ ξ3. 3. 3.3.
0 0

3./
                      v lD 3.

Encased volumeb (vc)                                   
v lc = ξ 3.

                      v lc  3.

Mass (m)
                       

m l lD D D= −ρ ψ ξ0
3.

0 0
3.

3. 3. 3./                      m lD 3.

Density (r) ρ ρ ψ ξ ξ= ( )( ) −

0
3.

0 0

3.
3.

3.D
D

l l/ / /                     ρ  lD3. 3.−

Porosity (e) ε ψ ξ ξ= − ( )( ) −
1. 3.

3.3.
0 0

3.
D

D
l l/ / /                     ε  lD3. 3.−

Settling velocity (u)

   

u
g l v

a
lw

D D D b

w

D b D=
−





+ − −
+ −2 0 0

3.
0
1.

2

3. 2 3.

3. 2
ξ ρ ρ ψ

ρ ξ
( ) / 





−1. 2/( )b
               u l D b D b ( )/( )3. 2 2+ − −

Source: Modified from Logan and Kilps (1.995).
a x0 and x0 are the packing and shape factors of primary particles in the aggregate of size l0 and density ρ0; ζ  and ξ  are 

the packing and shape factors of the aggregate; g the gravitational constant; ρw the density of water;  
ψ ζξ ξ= / 0; and a  and b are constants relating the drag coefficient of spheres CD  to the Reynolds number Re. For 
Re .≤ 0 1., a = 24 and b = 1., and for 0 1. 1.0. Re< < , a = 29 and b = 0 871.. . The Reynolds number of an aggregate 
of size l  is defined as Re = ul /ν , where ν is the fluid kinematic viscosity, and relates to the drag coefficient CD

as C aD
b= −Re . (See Jiang and Logan [1.991.] for more details.)

b The difference between the solid volume and the encased volume is that the latter includes both the volume of particles 
and the volume of pores.
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of clay particles (Hunt 1.982), Jiang and Logan (1.991.) showed that for shear coagulation the three-
dimensional fractal dimension D3. could also be described as:

 

s l
D

( ) = − +






1.
2

1.
3.

3.   

(3..74)

 

s v
D

( ) = − +






3.
2

1.
1.

3.  

(3..75)

where s(l) is the slope of a discrete particle size distribution, n(l), as a function of maximum aggre-
gate length l, and s(v) is the slope of a discrete particle size distribution, n(v), as a function of solid 
volume, v. The equations obtained for coagulation by differentiated sedimentation are shown in 
Table 3..5. The particle size and volume distribution are given by (Jiang and Logan 1.991.):

 
n l A ll

s l( ) ( )=
  (3..76)

 
n v A vv

s v( ) ( )=
  

(3..77)

where Al and Av  are proportionality constants. Using the expression for the solid volume of an aggre-
gate (Table 3..4), Equations (3..74) and (3..75) lead to:

  
A l l l D A vl

s l D D D
v

s v( ) / ( )= − −Ψ ξ3. 3. 3.3.
0 0

3. 1.
3.  

(3..78)

table 3.5
three-dimensional Fractal dimension D3 of Particles expressed as a Function of length 
and Volume distributions and the coagulation mechanisms

basis distribution type mechanism

 
shear

differential  
sedimentation

mechanism   
 independent

Steady state Discrete length − −2 5s l( ) s l b b D

b

( )( )2 4 3. 8

3.
2− + + −

−

Cumulative length − −2 3.S l( )
S l b b D

b

( )( )2 4 4

3.
2− + + −

−

Discrete volume
−

+
3.

2 3.s v( )

D b

s v b b
2 4

4 2 3. 7

+ −
− − +( )( )

Cumulative volume
−

+
3.

2 1.S v( )

D b

S v b b
2 4

4 2 3.

+ −
− − +( )( )

Non-steady state Discrete, both 
volume and length              

s l

s v

( )

( )

+
+

1.

1.

Cumulative, both 
volume and length                 

S l

S v

( )

( )

Source: Modified from Logan and Kilps (1.995).
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or equivalently:

 l l ls l D D s v( ) ( )∝ −3. 3.1.
  (3..79)

The three-dimensional fractal dimension D3. can then be expressed from Equation (3..79) indepen-
dently of the coagulation mechanism as:

 
D

s l

s v3.

1.

1.
= +

+
( )
( )   

(3..80)

Note that a similar relationship can be derived using the slopes obtained from log-log plots of cumu-
lative size distributions (Table 3..5):

 
D

S l

S v3. = ( )
( )   

(3..81.)

where S(l) and S(v) are the slopes of the cumulative size distributions N(l) and N(v) based on particle 
maximum length l and solid volume v, respectively. Equation (3..81.) has been successfully used to 
estimate the fractal dimension D3.(D3. = 1..99 ± 0.08; x SD± ) of Escherichia coli flocs (Tang et al. 
2001.). Calculation of fractal dimension does not require an assumption of steady-state conditions if 
(1.) both the size and the volume distributions are known for the same population of particles, and (2) 
the fractal dimension is unchanged over the distribution considered. As a consequence, discrepan-
cies between the values of D3. returned by Equations (3..74) and (3..75) would indicate that the system 
under consideration was not at steady state, and that the fractal dimensions should be more reliably 
estimated using the non-steady-state equations, that is, Equations (3..80) and (3..81.). Table 3..5 provides 
estimates of steady-state and non-steady-state conditions for both shear and differential sedimenta-
tion as coagulation mechanisms.

3.2.7.4.2.3 On the Fractal Structure of Soil Aggregates 
Although used relatively early to investigate various soil properties (Jenkins and Watts 1.968; Serra 
1.968; Webster and Butler 1.976; Campbell 1.978; Burgess and Webster 1.980), fractal concepts and 
the fractal dimension were formally introduced to soil science by Burrough (1.981., 1.983.a, 1.983.b), 
who showed that the nature of the spatial variation of some soil properties, including pH, bulk 
density, percentage of clay, sand, and silt, and sodium content could be described by examining 
their fractal dimension; see also Pachepsky et al. (2000a, 2000b) for a review of the applications of 
fractals in soil science. Fractals have subsequently been applied to a wide range of soil properties 
and processes (Tyler and Wheatcraft 1.990, 1.992; Perfect and Kay 1.991.; Turcotte 1.991.; Rieu and 
Sposito 1.991.; Brakensiek et al. 1.992; Rawls et al. 1.993.). One of the most critical purposes of soil 
morphological analysis is to describe the soil aggregate and associated pore morphologies, continu-
ities, and sizes (Bullock et al. 1.985). This has reached a new dimension with the recognition that, 
because soil is both a fragmented material and a porous medium, a fractal representation may be 
particularly suitable (Rieu and Sposito 1.991.). Two main streams can be identified in “fractal soil 
science”: approaches dealing with the complexity of soil aggregate structure and those dealing with 
soil aggregate-size distributions.

Soil structure has typically been investigated using thin section photographs (Figure 3..3.0) that were 
digitized and analyzed in terms of fractal surfaces (that is, pore-solid interface) (Pfeifer and Avnir 1.983.; 
Friesen and Mikula 1.987; Davis 1.989; Toledo et al. 1.990; Bartoli et al. 1.991.; Crawford et al. 1.993.a, 
1.993.b) and fractal mass dimension Dm (Bartoli et al. 1.991.; Young and Crawford 1.991.; Anderson and 
McBratney 1.995; Anderson et al. 1.996, 1.998; Oleschko et al. 1.997; Giménez et al. 1.998, 2002; Millán 
and Orellana 2001.; Bird et al. 2006) (see Section 3..2.4 and Equation 3..22). However, because soils 
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are intrinsically porous and do not have a uniform internal mass distribution, soil structure can also 
be characterized from digitized images on the basis of the space-filling ability of both solid and pore 
networks, respectively. Two mass dimensions can then be defined, the solid mass dimension, Dms, and 
the porous mass dimension, Dmp. Note that the porous mass fractal dimension, Dmp, has rarely been 
reported in the literature (Katz and Thompson 1.985; Ghilardi et al. 1.993.). Using a similar approach 
on vertical sections of Melanic Andosol (developed from volcanic ashes), Eutric Vertisol (originated 
from deposition of different types of alluvium derived from basalt and other igneous extrusive rocks), 
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Figure 3.30 Examples of the thin section images typically used to estimate the solid mass dimension, Dms, 
and the porous mass dimension, Dmp. Images are from the first few centimeters of (A) Melanic Andosol devel-
oped from volcanic ashes; (B) Eutric Vertisol originated from deposition of different types of alluvium derived 
from basalt and other igneous extrusive rocks; (C) Texcoco Lake deposits, lacustrine clay accumulation; and 
(D) Tepetates, hardened soil of volcanic origin, from Mexico. (Modified from Oleschko et al., 2000.)
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Texcoco Lake deposits (lacustrine clay accumulation), and Tepetates (hardened soil of volcanic ori-
gin), Oleschko et al. (2000b) found that fractal dimensions discriminated between different soil 
structures (that is, materials with contrasting genesis) through significant correlations with soil prop-
erties (that is, bulk density, dielectric constant) and depth. However, for many soil properties affecting 
water movement and root growth, the pore size distribution pattern has much greater importance than 
total porosity, bulk density, and mass fractal dimensions. This led a range of studies to investigate 
both theoretically and practically fractal pore size distributions (Friesen and Mikula 1.987; Ahl and 
Niemeyer 1.989; Tyler and Wheatcraft 1.990; Rieu and Sposito 1.991.; Perrier et al. 1.996) and particle 
size distributions (Tyler and Wheatcraft 1.989, 1.992; Wu et al. 1.993.).

The fractal characterization of aggregate size distribution of fragmented soil material was origi-
nally introduced to assess the influence of cropping and wetting treatments on aggregate fragmentation 
(Perfect and Kay 1.991.; Rasiah et al. 1.992) using the number-size relation (Turcotte 1.986) and mass-
size relation (Tyler and Wheatcraft 1.992). The related number-size and mass-size fractal dimensions 
belong to a specific class of fractal processes that are investigated in Chapter 5. Specifically, the reader 
is referred to Section 5.4 for more details on the fragmentation and mass-size fractal dimensions.

3.2.8 ramiFicaTion dimEnsion, Dr

3.2.8.1 theory
Consider a tree trunk of diameter d(1.) bifurcating into two main branches with diameters d1.(2) and 
d2(2). Assuming a constant bifurcation ratio, a general relationship can be proposed to connect the 
diameter of two successive bifurcations (Rouse and Ince 1.963.):

 d d d( ) ( ) ( )1. 2 21. 2
∆ ∆ ∆= +   

(3..82)

where Δ = 2 for the confluence of two rivers, and d(1.), d1.(2), and d2(2) are the river widths (Schroeder 
1.991.), Δ = 2.7 over 20 bifurcations in mammalian vascular systems (Suwa and Takahashi 1.971.), 
and Δ = 3. over 1.5 bifurcations in human bronchial tree (Thompson 1.961.). Equation (3..82) can be 
generalized following Equations (3..1.) and (3..2) as:

 d n kn Dr( ) = −
  (3..83.)

and

 L n kn Dr( ) = −1.
  (3..84)

where d(n) and L(n) are the mean tube diameter and tube length after n ramifications, k is a constant, 
and Dr is the ramification dimension; see, for example, West and Goldberger (1.987) and Crawford 
and Young (1.990). Extensive studies of the relationship between fractal geometry and allometric 
scaling of organisms can be found in West et al. (1.997, 1.999) and Enquist et al. (1.998, 1.999).

3.2.8.2 Fractal nature of growth Patterns
A nearly infinite multitude of forms is found in living organisms. Many natural objects, in contrast 
with man-made objects, show at first sight a high degree of irregularity, nonsmoothness, and frag-
mentation. As a consequence, the description of indeterminate growth forms of many organisms—
including canopies, root systems, sessile marine invertebrates, and microbial growth patterns 
and morphologies—is often only achievable in qualitative terms. The lack of ability to describe 
growth forms accurately has hampered the use of external morphology as a diagnostic character 
and has made interpretation of the interaction between the growth form and the environment dif-
ficult to achieve. Fractal analysis can then be thought of as a convenient alternative to describing 
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the complexity of growth patterns from a dynamic perspective. This is briefly illustrated hereafter 
from previous studies conducted on microbial and fungal growth and morphology and plant root 
systems.

3.2.8.2.1 On the Fractal Nature of Microbial and Fungal Growth and Morphology
Fractal analysis has been introduced to microbiology as a tool to describe growth patterns and mor-
phology of a variety of microorganisms under a wide spectrum of growth conditions. This is par-
ticularly relevant because of the critical role that microbial growth patterns and morphologies play 
in, for example, pathogenicity, metabolic activity, and enzyme production. Fractal geometry is thus 
expected to provide a powerful tool for the geometric, pattern-oriented description and measure of 
irregularity of the complex structure of bacteria and mycelia, which are still widely described in 
empirical terms such as diffuse, compact, smooth, and rough. However, simple, nonequilibrium, 
probabilistic growth models resulting from computer simulations can also lead to complex struc-
tures that mimic certain types of biological morphologies and exhibit fractal properties (Meakin 
1.986). The first evidence of fractal growth in microbial systems was reported for the enteric patho-
genic bacterium Serratia marcescens growing on a minimal-nutrient agar medium (that is, Davis or 
Vogel-Bonner agar medium) after a week at 3.0°C (Matsuyama et al. 1.989; Fujikawa and Matsushita 
1.989). In contrast, it formed a typical round colony (that is, nonfractal) on normal nutrient agar after 
1. day of culture (Matsuyama et al. 1.989; Matsuyama and Matsushita 1.992). The role of nutritional 
conditions on the induction of microbial fractal colony growth has been confirmed on the soil 
bacterium Bacillus subtilis (Fujikawa and Matsushita 1.989, 1.991.; Matsushita and Fujikawa 1.990; 
Fujikawa 1.994). More specifically, it appears that the box dimension Db(Db = 1..73. ± 0.02) of Bacillus 
subtilis colonies is very close to the value (Db = 1..70) expected from two-dimensional simulations of 
diffusion-limited aggregation (DLA) patterns (Figure 3..3.1.) (Meakin 1.986). It is also stressed that the 
macroscopic growth patterns of B. subtilis exhibit clear macroscopic similarities with the modeled 
DLA (Figure 3..3.2A), including (1.) the repulsion between two neighboring colonies (Figure 3..3.2B), 
(2) the tendency of the colony to grow toward the nutrient (Figure 3..3.2C), and (3.) the appear-
ance of a screening effect of protruding main branches against inner ones with elapsing time from 

A B

C D

Figure 3.31 Two-dimensional simulations of clusters generated by a diffusion-limited process from one 
central point with growth exponents (A) 1..0 and (C) 2.0, and from two points with growth exponents (B) 1..0 
and (D) 2.0. (Modified from Meakin, 1.986.)
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inoculation (Figure 3..3.2D,E,F) (Matsushita and Fujikawa 1.990; Fujikawa and Matsushita 1.991.). 
Those results have later been generalized to various strains of Enterobacteriaceae (that is, Proteus 
mirabilis, Citrobacter freundii, Escherichia coli, Salmonella anatum, Salmonella typhimurium, 
and Klebsiella pneumoniae), which all form fractal colonies after relatively long incubations in 
minimal-nutrient agar enriched with 0.4% glucose (Matsuyama and Matsushita 1.992). The related 
fractal dimensions were in the range 1..7 to 1..8, similar to the one of the DLA model.

Mycelia have also widely been described in terms of fractal dimensions on soil (Bolton and 
Boddy 1.993.; Donnelly et al. 1.995; Abdalla and Boddy 1.996; Donnelly and Boddy 1.997a, 1.997b, 
1.998; Wells et al. 1.997) and agar (Ritz and Crawford 1.990, 1.991.; Crawford et al. 1.993.a; Mihail et al. 
1.994, 1.995; Baar et al. 1.997). Fractal dimensions, in turn, are used to quantify the extent to which 
mycelia permeate space in relation to extent of the system. Fractal geometry has then been used to 
quantify interspecific differences in mycelial morphology and relate these to habitat (Donnelly et al. 
1.995; Mihail et al. 1.995), and intraspecific changes induced by introducing new carbon resources or 

A D

B E

C F

Figure 3.32 Illustration of diffusion-limited aggregation in (A) a Bacillus subtilis colony pattern, showing 
the repulsion between (B) two neighboring colonies, (C) the tendency of the colony to grow toward a nutrient 
gradient, and the appearance of a screening effect of protruding main branches against inner ones (identified 
by the arrows) with elapsing time from inoculation. (Modified from Matsushita and Fujikawa, 1.990.)
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competing fungi to established or establishing mycelia systems (Bolton and Boddy 1.993.; Donnelly 
and Boddy 1.997b, 1.998). For instance, fractal analysis has been used to assess the mechanisms of 
resource acquisition and the adaptation of Trichoderma viride colony morphology to the nutrient 
status of the substrate (Ritz and Crawford 1.991.). Under low-nutritional conditions, the colonies 
formed a low fractal-dimensional morphology by distributing as little hyphal mass as possible across 
a maximal area. In contrast, under elevated nutrient concentration, the fractal dimension increased, 
with the fungus filling the space as effectively as possible to exploit fully the substrate, suggest-
ing that the fractal dimension reflected a compromise between exploitative and explorative growth 
forms (Ritz and Crawford 1.991.). The response of T. viride colonies to a heterogeneous distribution 
of resources indicates that the fractal dimension of the colony structure that developed in the direc-
tion of the nutrient source did not differ significantly from 2, whereas that of the structure growing 
away from the nutrient source had a dimension significantly lower than 2 (Crawford et al. 1.993.). 
However, a greater amount of hyphal mass was measured in the direction away from the nutrient 
source (Crawford et al. 1.993.a). Those results suggest that (1.) the space-filling capacity of the pattern 
adjusted to the heterogeneous levels of nutrition, and (2) the processes controlling branching (that is, 
space-filling efficiency) and the phenomenon of mass distribution were independent (Crawford et al. 
1.993.a). Subsequent studies focusing on the ecological significance of the fractal nature of mycelia 
have studied development in nonsterile soils. These studies have revealed interspecific differences 
in fractal morphology, especially at initial stages of outgrowth from resources. Some produce sur-
face fractal systems while others produce mass fractal systems, though with time as surface fractal 
systems cover a large area they become increasingly mass fractal (Donnelly et al. 1.995). This may 
indicate the development of a biomass-efficient, persistent mycelial network set up behind the for-
aging margin. Significantly, differences in morphology appear to be associated with differences 
in extension rate, with more aggregated systems (that is, mass fractal systems) extending faster 
than surface fractal systems (Donnelly et al. 1.995). Morphological and physiological differences 
have been related to resource specificity, broad-fronted, slowly extending systems utilizing diverse 
locally abundant resources, while narrow-fronted rapidly extending systems utilize bulky, disparate 
resources. These contrasting strategies have also been described for clonal plants, the former strat-
egy being termed “phalangeal” and the latter “guerrilla” (Schmid and Harper 1.985).

This stresses the need to be able to quantify both the space filling occurring at mycelia margins 
(that is, the search fronts) and within the system. This effectively allows us to discriminate between 
systems that are only fractal at their boundaries (that is, surface/border fractal) having entirely plane-
filled interiors, and those that are fractals where the interior of the system has gaps (Obert et al. 1.990). 
This is when it becomes critical to estimate two complementary fractal dimensions, the interior 
and the border fractal dimensions, Dbi

and Dbb
, as described in Section 3..2.2.1.. Using this approach, 

Boddy et al. (1.999) found distinct temporal patterns for Dbi
and Dbb

during the development of the 
mycelial systems of Hypholoma fasciculare but relatively similar patterns for Phallus impudicus. 
This suggests that (1.) interior and the border fractal dimensions are critical to understanding the 
dynamics of growing microbial and fungal structures, and (2) the intrinsic dynamics of search fronts 
and space-filling properties may differ at the intra- and interspecific levels.

3.2.8.2.2 On the Fractal Nature of Plant-Root Systems
Fractal geometry is a relatively new approach to the analysis of root system architecture and was 
first introduced by Tatsumi et al. (1.989). Several studies have since demonstrated that the fractal 
dimension increases as root systems grow and become larger (Fitter and Stickland 1.992; Lynch 
and van Beem 1.993.) and also between plants of equal age but different size (Eghball et al. 1.993.; 
Berntson 1.994; Lynch and van Beem 1.993.). However, fractal dimension ontogenically increases 
during early growth and then levels off (Fitter and Stickland 1.992), suggesting that consideration 
of fractal dimension as an estimate of root system size is appropriate only during initial growth. 
The fractal dimension of root systems has also been shown to be positively related to the density of 
roots (Berntson 1.994), to vary significantly between different species and genotypes (Berntson et al.  
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1.998; Nielsen et al. 1.999), and to increase significantly with nutrient supply (Eghball et al. 1.993.; 
Berntson 1.994). More specifically, fractal dimension of the common bean (Phaseolus vulgaris) root 
system was found to correlate with root phosphate content, suggesting fractal dimension to be a 
possible indicator for root phosphate uptake (Nielsen et al. 1.999). Fractal geometry may then offer 
improved ways to quantify and summarize root system complexity as well as yield ecological and 
physiological insights into the functional relevance of specific architectural patterns (Tatsumi et al. 
1.989; Berntson 1.994; Lynch and van Beem 1.993.; Nielsen et al. 1.997).

The relative simplicity of the roots branching system, especially when compared to the DLA-
type of growth observed for microbial and fungal colonies, allowed the introduction of a variety of 
models meant to link root architecture to root length and biomass. As described in Section 3..2.8.1., 
the self-similarity principle applied to a tree-root system predicts that roots follow the same bifurca-
tion pattern from proximal roots to the smallest transport roots. The basic parameters of fractal root 
models describe the ratio of the sum of root cross-sectional areas after a bifurcation to the cross-
sectional area before bifurcation, a, and the distribution of the cross-sectional areas after bifurca-
tion, q (Spek and van Noordwijk 1.994; van Noordwijk et al. 1.994). Independency of ratios a and q 
on root diameters has been observed in tropical legume trees over a large range of diameters (Van 
Noordwijk and Purnomosidhi 1.995; Ozier-Lafontaine et al. 1.999). However, large variability within 
the whole root system was observed, which affected the precision of the root length and biomass 
estimates and the architecture generated by the model. West et al. (1.999) presented a general fractal 
allometric model for vascular plants that takes into account the tapering of the water-conducting 
vessels. Model parameters are derived from fractal geometry and hydrodynamics rather than from 
empirical observations. A general fractal root model derived from previous modeling attempts (Van 
Noordwijk and Purnomosidhi 1.995; Ozier-Lafontaine et al. 1.999; West et al. 1.999) with the ability 
of describing root systems with different branching properties (that is, number of new segments at 
each ramification, root ramification angle) is described in Salas et al. (2004); see also Box 3..7.

Box 3.7 FRACtAL Root MoDEL

Root systems are described as networks of connected links whose length and diameter are 
root-order dependent (Van Noordwijk and Purnomosidhi 1.995; Ozier-Lafontaine et al. 1.999). 
At a given bifurcation level, a root segment (order n, segment i) is divided into several new 
segments that form the next higher order (order n + 1., segment j). A recursive algorithm is 
then applied until the final ramification of the network (that is, roots of minimum diameter dm) 
is reached. The scaling factor a is defined as the ratio of the square of root diameter before 
bifurcation ( db

2 ) to the sum of squares of the diameters of bifurcating roots (Σda
2 ):

 
α = ∑d db a

2 2/
  

(3..B7.1.)

and the allocation factor of root cross-sectional area, q, is given as:

 
q d da a= ∑max( ) /2 2

  
(3..B7.2)

First, the relative frequency distribution of both vertical and horizontal bifurcation angles in 
0.1.75 rad (1.0°) classes was generated from field data. From this distribution, the cumulative 
frequency range that corresponds to each class was computed. The cumulative frequency 
was then compared to a random number bounded between 0 and 1.00, and the angle within 
the probability range of which the random number corresponded was used as the angle of 
the following bifurcation. This algorithm provides reliable estimates of the root bifurcation 
angles independently of the form and density of the angle distribution, and no fitting of a 
theoretical distribution to data is necessary.
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3.2.9 surFacE dimEnsions

Although the methods related to the estimations of the fractal dimensions of surfaces were initially 
designed to studies of topographic surface (see, for example, Goodchild 1.980; Mandelbrot 1.983.), in 
ecology a surface can also be thought of as the two-dimensional distribution of a given descriptor, 
the “elevation” being thus referred to as the values of the descriptor. This can be illustrated by the 
“mountain shape” aspect of two-dimensional microscale distributions of bacterioplankton abun-
dance (Figure 3..3.3.A) and microphytobenthos biomass (Figure 3..3.3.B).
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Figure 3.33 Two-dimensional “mountain shape” patterns of (A) microscale distributions of active bacterio-
plankton (data courtesy of Dr. J. Seymour) and (B) microphytoplankton biomass. The active bacterioplankton 
was estimated through flow cytometric analysis of 1. ml samples taken every 1. cm using a spring-loaded micro-
sampler (n = 1.00); see Seymour et al. (2004) for more details. The microphytobenthos biomass was estimated 
through estimates of chlorophyll a concentrations in 1. cm deep sediment core samples every 5 cm on a 1. m2 
surface (n = 225). (For further details see Seuront and Spilmont, 2000; Seuront and Leterme, 2006.)
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3.2.9.1 transect dimension, Dt

The method is very simple to implement and very intuitive. First, consider a surface (Figure 3..3.4A) 
characterizing the topographic elevation or the values of a descriptor X(i, j) on a plane. Second, 
consider a series of one-dimensional transects taken from that surface (Figure 3..3.4B). One can then 
apply a one-dimensional variant of the cluster algorithm (see Section 3..2.3.) to each transect; for 

Figure 3.34 The transect dimension. Schematic illustration of the way to estimate (A) the two-dimensional 
fractal dimension of a pattern from (B) the one-dimensional fractal dimensions of horizontal and vertical 
subsections of the initial pattern. The two-dimensional fractal dimension is estimated as the mean of both the 
horizontal and vertical dimensions.
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each box of length d, the mean values xi(d ) and xj(d ) of the descriptor X(i, j) along longitudinal and 
latitudinal transects are recorded and expressed, modifying Equation (3..3.4) as:

 
x k i ni

D
i

ti( ) , ,δ δ= = 1.
  (3..85)

 
x k j nj

D
j

tj( ) , ,δ δ= = 1.
  

(3..86)

where k is a constant, ni and nj are the numbers of lines and columns of the Euclidean domain 
supporting the descriptor X(i, j), and Dti

and Dt j
the transect dimensions of the ith and jth lon-

gitudinal and latitudinal transects, respectively. Note that the transect dimensions Dti
and Dt j  are conceptually similar to the cluster dimension introduced in Section 3..2.3..

The mean fractal dimensions of the latitudinal and longitudinal transects are given as:

 

D
n

Dt
i

t

i

n

i i

i

=
=

∑1.

1.   
(3..87)

 

D
n

Dt
j

t

j

n

j j

j

=
=

∑1.

1.  
(3..88)

The resulting one-dimensional transect dimension Dti j,
 of the surface is subsequently given as:

 
D D Dt t ti j i j,

( )= +1.
2   

(3..89)

and the two-dimensional transect dimension of the surface is finally estimated as:

 
D Dt ti j i j, ,

= +1.
  

(3..90)

Note that Equation (3..87) through Equation (3..89) are relevant only when the isotropy condition is 
fully satisfied (see Section 7.2.2), and then requires an appropriate statistical test of homogeneity 
between the ni and nj dimensions Dti

an Dt j
; see Zar (1.996).

3.2.9.2 contour dimension, Dco

This method is based on a conversion of a surface plot to a contour map, and using the dividers 
method (see Section 3..2.1.) to estimate the fractal dividers dimension Ddi

 of each of the n contours 
(Figure 3..3.5). The contour dimension Dco is directly expressed as:

 

D
n

Dco d

i

n

i
= +

=
∑1.

1.

1.   
(3..91.)

However, this method is implicitly highly dependent on the number of isolines used in the com-
putation of the fractal dimension Dco. In particular, when applied to a topographic surface, the 
consideration of more isolines should result in an increase of the resolved details and in subsequent 
modifications of the fractal dimension estimates.
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On the other hand, in the specific case of the two-dimensional distribution of a descriptor X(i, j), the 
fractal dimension estimates returned by this method will be strongly influenced by the interpolation pro-
cedure used to build the two-dimensional contour plots, which might themselves appear as being very dif-
ferent (Figure 3..3.6). As a consequence, any fractal dimension estimated using the contour method should 
make explicit reference to the interpolation procedure used to build the two-dimensional contours.

3.2.9.3 geostatistical dimension, Dg

The geostatistical dimension Dg is a two-dimensional generalization of the variogram dimension 
introduced in Section 4.2.8 to self-similar patterns. The fractal dimension of a landscape surface is 
based on the semivariance g  (h) defined as (Huang and Turcotte 1.989):

 

γ ( )
( )

[ ( , ) ( , ) ( , ) (
( )

h
N h

X i j X i h j X i j X i
i

N h

= − + + −
=

∑1.
4

1.

2 ,, ) ]
( )

j h
j

N h

+
=

∑ 2

1.  

(3..92)
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Figure 3.35 The contour dimension. Schematic illustration of the way to estimate (A) the two-dimensional 
fractal dimension of a pattern from (B) the one-dimensional fractal dimensions of its n contours. The two-
dimensional fractal dimension is estimated as the mean of one-dimensional contour dimensions. The gray and 
black broken lines indicate two successive steps of the divider method.
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where X(i + h, j) and X(i,  j + h) are the values of the dependent variable X(i, j), that is, bacterioplank-
ton abundance, or microphytobenthos chlorophyll concentration in the above examples, at locations 
separated by a distance h, and N(h) is the number of pairs of data points separated by the distance h. 
The plot of g (h) as a function of h is referred to as a semivariogram, and the fractal dimension is 
estimated from the slope m of the log-log plot of g (h) vs. h as:

 Dg = 3. − m/2  (3..93.)

where Dg is the geostatistical dimension.

3.2.9.4 elevation dimension, De

This method, based on the mean absolute elevation difference |Δ h| between two points separated 
by a distance d, has been specifically developed to estimate the fractal dimension of topographic 
surfaces (Polidori et al. 1.991.). The related fractal dimension De is given as:

 | |∆h k De= −δ 3.
 (3..94)

where k is a constant. Considering the two-dimensional distribution of a descriptor X(i, j), Equation 
(3..94) is rewritten as:

 
| |∆X i j k De( , )δ δ= −3.

  
(3..95)

where k is a constant and |ΔX (i, j)d| is the mean absolute difference between the values of X(i, j) 
separated by a distance d in the x-y plane and expressed as:

 
∆X i j

N
X i j X i j X i j X i j( , ) ( ( , ) ( , )) ( ( , ) ( , ))δ

δ

δ δ= − + + − +1.

  
(3..96)
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Dco = 1.30Dco = 1.15

Figure 3.36 Illustration of the potential effects of the interpolation procedure used to build the two-dimen-
sional contour plots, that is, quadratic (A), mean square (B), negative exponential (C), and splines (D), on the 
resulting contour dimensions.
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Although the geostatistical and the elevation dimensions can provide a valuable estimate of the 
two-dimensional fractal structure of a descriptor X(i, j)—for example, bacterioplankton abundance 
or microphytobenthos biomass—it is straightforward to see that Equations (3..92) and (3..96) imply 
different forms of spatial averaging. These two methods are then implicitly based on the stationarity 
hypothesis discussed in Section 7.2.3. and cannot provide any information regarding potential differ-
ences in the local fractal structures. Such information is available using the transect and the contour 
dimensions. The transect and the contour dimensions and the geostatistical and elevation dimen-
sions can be referred to as local fractal dimensions and global fractal dimensions, respectively.
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4 Self-Affine Fractals

4.1 seVeral stePs toward selF-aFFinity

4.1.1 dEFiniTions

Consider, for example, a turbulent velocity component measured as a function of time at a single 
point. As shown in Figure 4.1., it looks rough, like the boundary of a random fractal, but with the 
difference that the two axes correspond to different physical quantities (velocity and time) that are 
intrinsically different. Different units can be chosen for the two axes to make the trace look either 
very steep or nearly smooth. Similarly, from a scalar field in two dimensions, one can construct a 
mountain-like structure in which the height at each point equals the magnitude of the local con-
centration (see Figure 3..3.3.). Again, the height and the two spatial coordinates are intrinsically 
different and independent, so that the mountain can be made to look jagged or relatively smooth 
depending on the choice of units for the two quantities. In general, whenever different quantities 
involved in such constructions scale differently, the notion of self-similarity contained in Equations 
(3..1.) through (3..3.) will not be adequate; to describe these phenomena, one needs the more versatile 
machinery of self-affinity.

An affine transformation is one that transforms a set S of points at positions 


x x x xDE
=( , , , )1 2  

into a new set d(S) with points at δ δ δ δ( ) ( , , , )


x x x xD DE E
= 1 1 2 2 , where the scale ratios ( , , , )δ δ δ1 2  DE

 
are all different. A bounded set S is self-affine when S is the union of N nonoverlapping subsets, 
each of which is identical (under translations and rotations) to d(S). In other words, if a subset of a 
pattern is similar to the whole under an affine transformation, the pattern is said to be self-affine. 
In addition, S is statistically self-affine when S is the union of N distinct subsets, each of which is 
identical in distribution to d(S). One cannot, however, define fractal dimension using Equation (3..1.) 
through Equation (3..3.) for even the simplest self-affine fractal curve. If one evaluates this dimen-
sion mechanically, pretending the curve in Figure 4.1. to be like a coastline, the value depends on 
the expansion used for one quantity relative to the other. If, for example, the time scale is stretched 
enough to render the signal to appear as a collection of smooth increments, it is intuitively clear 
that the dimension (called the global dimension) will be unity. If, on the other hand, the ordinate 
is stretched over a wide range of values, one can define the usual fractal dimension according 
to Equation (3..1.). This is the so-called local dimension of the self-affine fractal. Although it has 
been pointed out that more than one dimension is necessary to characterize self-affine fractals 
(Mandelbrot 1.986), and thus referring to the concept of multifractals studied more thoroughly here-
after (see Chapter 8), one must note that the fractal dimension for self-affine fractals is not as easily 
defined as with self-similar ones.

4.1.2 FracTional brownian moTion

First, one needs to introduce the concept of fractional Brownian motion (fBm) (Mandelbrot and 
Wallis 1.969; Mandelbrot 1.977, 1.983.), which can be thought of as a generalization of the so-
called concept of Brownian motion that played such an important role in both physics and math-
ematics. A fractional Brownian motion, BH(x), is a single valued function of one variable, x (that 
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is, time or space) defined by its increments BH(xi) − BH(xi−1.) that have a Gaussian distribution 
with variance

 | ( ) ( )| | |B x B x k x xH i H i i i
H− = −− −1

2
1

2  (4.1.)

where k is a constant, the angle brackets “ 〈〉” denote ensemble averaging, and the parameter H,  
0  <  H  <  1.. Practically, Equation (4.1.) means that its mean square increments depend only on the differ-
ence (ti − ti−1.). In case of H  =  0.5, Equation (4.1.) recovers the Brownian motion where ΔB2  =  kΔt. More 
formally, for any three time (xi−1., xi, and xi+1.) such that xi−1. < xi < xi+1., ΔB1.  =  BH(xi) − BH(xi−1.) is statisti-
cally independent of ΔB2  =  BH(xi+1) − BH(xi) for H  =  0.5. This means that at every stage and at every 
scale of Δt, all directions of displacement are equally likely. For H > 0.5 and H < 0.5, the increments 
are positively and negatively correlated, respectively. More specifically, if H > 0.5, the increments of 
the displacement may be roughly thought of as overlapping each other, above time increments that 
do not overlap. Such a process may be said to be positively correlated, or persistent, in the sense that 
a particle moving in some direction at time t will tend to move in the same direction regardless of Δt. 
Alternatively, if H < 0.5, the process is said to be negatively correlated, or antipersistent.

It can be seen that Equation (4.1.) is qualitatively similar to a power law. Any change by a factor 
of d in the scale t will change ΔBH by a factor of dH as:

 ∆ = ∆B x k B xH
H

H( ) ( )δ δ2 2 2  (4.2)

where k is a constant. Practically, Equation (4.1.) introduces a major difference to the self-similar 
power law; see, for example, Equations (3..1.) and (3..2). Indeed, a fractional Brownian trace requires 
different scaling factors in the two coordinates (d for x, and dH for BH). Each value of x corresponds 
to only one value of BH, while any value of BH may occur at multiple values of x. This specific non-
uniform scaling provides an additional definition to self-affinity.

4.1.3 dimEnsion oF sElF-aFFinE FracTals

Consider a trace of B(x) covering a time span Δt  =  1. and a vertical range B(x)  =  1.. B(x) is statistically 
self-affine when t is scaled by d and B(x) is scaled by dH. Divide now the time span into N equal 
intervals, each with Δt  =  1./N. Each of these intervals contains one portion of B(x) with vertical range 

Tu
rb

ul
en

t V
el

oc
ity

 (r
el

at
iv

e u
ni

ts
) 3100

3050

3000

2950

2900

2800

2750
0 1000 2000 3000 4000 5000 6000

Time (s/100)

2850

Figure 4.1 A time series of microscale turbulent velocity fluctuations, as an illustration of a self-affine 
fractal.
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ΔB  =  ΔtH. Since 0 < H < 1., each of these new sections will have a large vertical and horizontal size 
ratio and the occupied portion of each interval will be covered by ΔB/Δt  =  (1./NH)/(1./N)  =  N/NH 
elements of size d n  =  1./N. The number of length elements required to cover the trace goes from 1. 
to N(d n) as:

 N N N Nn
H

n
H( ) / /δ δ= × = −1 2  (4.3.)

Finally, comparing Equations (3..2) and (4.3.) leads to the fractal dimension DF:

 DF  =  2 − H (4.4)

A Brownian motion will thus have a fractal dimension DF  =  1..5.
Fractional Brownian motion, illustrated here in a one-dimensional framework, can be general-

ized to higher dimensions, namely to self-affine surface and volume. For instance, replacing the 
single variable x by the coordinates (x, y) in a plane leads to considering the resulting fBm BH(x, y) 
as the surface altitude at position (x, y). In analogy with Equation (4.1.), the increments BH(xi, yi) − 
BH(xi−1., yi−1.) of BH(x, y) have a Gaussian distribution with variance:

 | ( , ) ( , )| [( ) (B x y B x y k x x y yH i i H i i i i i− = − + −− − −1 1
2

1
2

ii
H

−1
2) ]  (4.5)

From Equation (4.4), the fractal dimension of a fractal landscape can be derived as:

 DF  =  3. − H (4.6)

Note that the intersection of a vertical plane with the surface BH(x, y)—that is, the altitude fluctua-
tions of a mountain sheep following any straight path in the (x, y) plane—is a self-affine fractional 
Brownian motion fully similar to those observed in Figure 4.2 with DF  =  2 − H. Alternatively, the 
intersection of a horizontal plane with the surface BH(x, y)—that is, the coastline of a mountain 
lake—has a fractal dimension DF  =  3. − H, but since the two coordinates x and y are equivalent, the 
coastlines of BH(x, y) are self-similar, not self-affine. A fractal volume—that is, a fractal cloud—has 
the fractal dimension:

 DF  =  4 − H (4.7)

Generally speaking, a self-affine fractional Brownian function, B xH ( ),


in a DE Euclidean space 
satisfies:

 | ( ) ( )| | |B x B x k x xH i H i i i
H

     

− = −− −1
2

1
2  (4.8)

with 


x x x xDE
=( , , , ),1 2 and its fractal dimension is written as:

 DF  =  DE + 1. − H (4.9)

Finally, the intersection of B xH ( )


with a DE-dimensional object form a self-similar fractal with 
dimension DF  =  DE − H.
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4.1.4 1/f noisE, sElF-aFFiniTy, and FracTal dimEnsions

Self-affine functions have been defined (via fractional Brownian motion) as being a function of 
a single variable x that can be regarded as either space or time, mainly because changes in space 
have many of the same similarities at different scales as changes in time. However, unpredictable 
changes of any quantity x( t ) varying in time t are known as noise. More specifically, Montroll and 
Badger (1.974), Montroll and Shlesinger (1.982), and West and Shlesinger (1.990) have reported a 
number of examples showing that when the spectral density EQ( f  ) (that is, an estimate of the mean 
square fluctuations at frequency f, and consequently of the variations over a time scale of order 1./f  ) 
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Figure 4.2 Self-affine fractional Brownian motion (fBm) characterized by different fractal dimensions. 
Note that the case DF  =  1..5 corresponds to the basic Brownian motion.
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of certain data are presented on log-log plots, the data appear as a straight line over a certain range. 
Beyond that range, the straight line assumes the shape of a curve according to an inverse power law 
of the form E f fQ( ) / ,≈1 β where f is the frequency and b a positive exponent referred to as the spec-
tral exponent. In particular, the 1./f b law, referred to as scaling 1./f noise (Mandelbrot 1.983.), can serve 
as a powerful tool to describe music, speech, and a wide variety of noise. For instance, studying dif-
ferent compositions such as the First Brandenburg Concerto and Scott Joplin rags, Voss and Clark 
(1.975, 1.978) found that composition having a frequency generated by 1./f sources sounded pleasing, 
while those generated by 1./f  2 sounded too correlated, and those sounds generated from white noise, 
namely by 1./f  0 sources, sounded too random. The spectral density of 1./f noise thus varies with a 
predictability between white noise (1./f  0, no correlation in time) and Brownian motion (1 2/ ,f no 
variability between increments; see Section 4.1..2). More generally, the so-called 1./f noise has been 
observed in a wide variety of phenomena in nature, ranging from earthquakes (Bak and Tang 1.989; 
Carlson and Langer 1.989), turbulence (Gollub and Benson 1.980), cosmology (Chen and Bak 1.989), 
relaxation in nonperiodic solids (Evangelou and Economou 1.990), ionization of excited hydrogen 
atoms (Jensen 1.990), microcirculatory control of blood flow (Intaglieta and Breit 1.991.), and human 
interbeat dynamics (Nunes Amaral et al. 1.998; Ivanov et al. 1.999) to complex systems involving a 
large number of interacting subunits that display “free will,” such as city growth (Makse et al. 1.995) 
and economics (Mantegna and Stanley 1.995). An illustration of different 1/f noises, together with 
the related power spectra, is given in Figure 4.3..

Both white noise (1./f  0, no correlation in time) and Brownian motion (1./f  2, no correlation between 
increments) are well understood in terms of mathematical physics. On the other hand, the origin of 
1./f b noise, which represents the most common type of noise found in nature, nevertheless remains 
a mystery after almost a century of investigations. The universality of 1./f noise suggests that it does 
not represent a consequence of particular physical interactions but instead is a general manifestation 
of complex dynamical systems that have remarkably similar critical components, perhaps because 
the “interaction parts” between the constituent subunits in such extremely complex systems domi-
nate the observed cooperative behavior more than the detailed properties of the subunits themselves 
(Stanley 1.995). From a mathematical point of view, this universality may be attributed to a very rich 
random statistical ensemble that has typical configurations dominating over the usual mean values 
(West and Shlesinger 1.989).

4.1.5 FracTional brownian moTion, FracTional gaussian noisE, and FracTal analysis

Fractional Gaussian noise (fGn) represents another family of self-affine processes, defined as the 
series of successive increments in an fBm. An fBm signal is nonstationary with stationary incre-
ments. The increments, y( t )  =  x( t ) − x(t − 1.), of a nonstationary fBm signal x( t ) yield a stationary fGn 
signal and vice versa. Fractional Gaussian noise and fractional Brownian motion signals are then 
interconvertible: When an fGn is cumulatively summed, the resultant series constitutes an fBm, and 
when an fBm is differenced, the resultant constitutes an fGn. Each fBm is then related to a specific 
fGn, and both are characterized by the same H exponent. These two processes, however, possess 
fundamentally different properties: fBm is nonstationary with time-dependent variance, while fGn 
is a stationary process with a constant mean and variance expected over time. Examples of fBm and 
fGn corresponding to three values of H are presented in Figure 4.4. The H exponent can be assessed 
from an fBm series as well as from the corresponding fGn, but because of the different properties 
of these processes, the methods of estimation are necessarily different. The dichotomy between fGn 
and fBm motivated a systematic evaluation of fractal analysis methods (Caccia et al. 1.997; Cannon 
et al. 1.997; Eke et al. 2000, 2002) that showed that most methods gave acceptable estimates of the 
Hurst exponent H when applied to a given class (fGn or fBm) but led to inconsistent results for 
the other. The first step in a fractal analysis is to identify the class to which the analyzed data set 
belongs, fGn or fBm (Figure 4.5). The Hurst exponent H can subsequently be properly estimated, 
using a method relevant for the identified class. The nature of 1./f b noises described can here be very 
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useful as a diagnostic tool to identify the class of a given signal. More specifically, signals with  
−1. < b < 1. have constant variance at all values of x, which classifies them as stationary signals, that 
is, fractional Gaussian noise. In contrast, signals with 1. < b < 3. are nonstationary (that is, fractional 
Brownian motion) because their variances increase with x, such that (Mandelbrot and van Ness 
1.968; Beran 1.994):

 var [B(x)] ∝ x2H (4.1.0)

Those fractional Brownian motions have a spectral slope b fbm defined as:

 b fbm  =  b fGn − 2 (4.1.1.)

Fractional Brownian motions and fractional Gaussian noises characterized by the same Hurst expo-
nent H will then have different spectral exponents b. The dichotomy between fractional Brownian 
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Figure 4.3 Self-affine fractional Brownian motion, shown together with their corresponding power spectra.
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motions and fractional Gaussian noises has largely been ignored in the ecological literature in the 
past. As such, a number of former empirical analyses and theoretical interpretations are likely to be 
questionable. In this context, Section 4.2 provides a series of self-affine methods that are discussed 
upon their applicability to fractional Brownian motions or fractional Gaussian noises, and finally the 
step-by-step analysis introduced in Figure 4.5 is refined based on the performances of each method.

4.2 methods For selF-aFFine Fractals

Because of the fundamental differences between self-similar and self-affine fractals described and 
discussed in Sections 4.1..3. and 4.1..4, methods for self-similar fractals are not immediately appli-
cable to self-affine traces. All the methods presented hereafter have all been specifically developed 
to analyze self-affine traces. As the distinction between fractional Brownian motion (fBm) and 
fractional Gaussian noise (fGn) has rarely been addressed in the literature, the techniques that can 
be used to distinguish fBm from fGn, and vice versa, are clearly identified, as well as techniques 
that have specifically been developed for fBm and fGn.

4.2.1 powEr spEcTrum analysis

4.2.1.1 theory
Power spectrum analysis (PSA) is probably the most extensively used technique to detect both spa-
tial and temporal patterns in aquatic ecology since the seminal work of Platt and Denman in the 

Signal, Q(t)

Descriptive Statistics

Power
Spectrum

Fractal Analysis to Estimate H

Signal Class

Stationary
Q(t) is fGn

Undefined
Q(t) is fGn or fBm

Nonstationary
Q(t) is fBm

β > 1β < 1

β = 1

Not
Fractal

Figure 4.5 Use of power spectrum analysis to identify the class to which a given data set belongs, fractional 
Gaussian noise (fGn) or fractional Brownian motion (fBm), prior to further fractal analysis devoted to estimate 
the Hurst exponent H, and the related fractal dimension.
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early seventies (Platt 1.972; Platt and Denman 1.975; Denman and Platt 1.976; Denman et al. 1.977) 
but has still seldom been related to the concept of fractal dimension (Seuront et al. 2002). Formally 
speaking, a power spectrum is defined as the square of the amplitude of the Fourier transform of a 
time series and can thus be regarded as an expression of the variance of the underlying process at 
different spatial or temporal scales. In practice, the power spectral density E(x) is given by:

 E(x) ∝ x−b (4.1.2)

where x is the frequency f (s−1.; f  =  1./t, where t is time) or the wave number k (m−1.; k  =  1./l, where 
l is space) for temporal and spatial self-affine processes, respectively. The spectral exponent b is 
related to the Hurst exponent H as:

 
H = −β 1

2  (4.1.3.)

for fractional Brownian motions, and

 
H = +β 1

2  (4.1.4)

for fractional Gaussian noises. Fractional Brownian motions characterized by b < 2 (that is, H  <  0.5) 
and b > 2 (H > 0.5) are respectively antipersistent and persistent. In contrast, antipersistent and 
persistent fractional Gaussian noises are characterized by b < 0 and b > 0 , respectively. This subse-
quently leads to expressing the Fourier dimension DFFT as (Schroeder 1.991.):

 DFFT  =  DE + 1. − H (4.1.5)

where DE is the Euclidean dimension of the embedding space. Following Equation (4.9), Equation 
(4.1.3.) and Equation (4.1.4) can also be rewritten as:

 D DFFT E= + − −
1

1

2

( )β
 (4.1.6)

for fractional Brownian motions, and

 D DFFT E= + − +
1

1

2

( )β
 (4.1.7)

for fractional Gaussian noises.
Practically, the power spectral density E(x) of a signal x( t ) is estimated by the fast Fourier trans-

form (FFT) (Aho et al. 1.974; Horowitz and Sahni 1.978; Burrus and Parks 1.985; Kreyszig 1.988), 
which uses complex exponentials in place of the equivalent sine and cosine terms of a traditional 
Fourier series (for example, Bloomfield 2000). This provides the spectral density E(x) at frequencies 
f (x  =  f  ) or wave numbers k (x  =  k) increasing by a factor of 2n, where n is a positive integer. Note 
that series whose length is smaller than 2n may be extended to a length 2n by adding zeros to the end 
of the series. Although this “zero padding” procedure shifts the apparent fundamental frequency, 
it does not distort the spectrum. To improve the consistency of spectral estimates for fBm, it is 
recommended to proceed successively to parabolic windowing and bridge detrending of the fBm 
signals before running FFT analysis. The parabolic window for a series of length n is a function that 
multiplies each value in the series and is given as (Fougere 1.985):

 w i
i

n
( ) = −

+
−







1
2

1
1

2

 (4.1.8)
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where i  =  1.,…, n. Bridge detrending (Cannon et al. 1.997) is done by substracting from the data the 
line connecting the first and last points of the series.

4.2.1.2 spectral analysis in aquatic sciences
In aquatic ecology, the origin of 1./f noise can be traced to the seminal work of Platt (1.972), who 
showed for the very first time that the spectral density of fluorescence (that is, a proxy of phy-
toplankton biomass) exhibits an inverse power law of the form E f fF ( ) / /≈1 5 3 (Figure 4.6A). The 
spectral exponent fairly similar to the theoretical value ( b  =  5/3.) expected for purely passive scalar 
advected by three-dimensional and isotropic turbulent processes indicates that the phytoplankton is 
fully controlled by physical processes over a wide range of scales (that is, from a meter to thousands 
of meters). This has subsequently been verified in many environments, ranging from lakes (Powell 
et al. 1.975; Abbott et al. 1.982), coastal and open ocean waters (Weber et al. 1.986; Seuront et al. 
1.996a, 1.996b, 1.999; Lovejoy et al. 2001.), and estuaries (Lekan and Wilson 1.978). Conceptually 
similar results have been found from remote sensing observations of sea-surface temperature and 
chlorophyll (Gower et al. 1.980; Barales and Trees 1.987; Denman and Abbott 1.988, 1.994; Smith et al. 
1.988), with chlorophyll exhibiting a 1./f 3. behavior and thus fully controlled by two-dimensional 
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Figure 4.6 Schematic illustration of 1./f noise observed in marine ecology for phytoplankton biomass fluc-
tuations (see text for explanation).
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turbulence (Figure 4.6B). It is stressed here that if a 1./f 3. is expected for the energy spectrum of 
quasi-geostrophic flows (Kraichnan 1.967; Charney 1.971.), a 1./f  has nevertheless been suggested for 
inert particles such as phytoplankton cells when their distribution is driven by the enstrophy cascade 
instead of the energy cascade (Lesieur and Sadourny 1.981.; Bennett and Denman 1.985). Note that 
the b  =  5/3. (H  =  1./3. and DFFT  =  5/3.; Equation 4.1.3. and Equation 4.1.6) spectral exponent expected 
in the case of turbulent velocity fluctuations as well as a purely passive scalar advected by turbulent 
fluid motion is then indicative of an antipersistent memory in turbulence-driven processes.

Alternatively, both empirical and theoretical investigations have demonstrated that the spectral 
exponent b could be whitened or reddened, that is, a decrease or increase in b values (Denman and 
Platt 1.976; Denman et al. 1.977; Powell and Okubo 1.994). On the basis of both dimensional analysis 
and modeling approaches, potential changes in the phytoplankton 1./f b noise have been attributed 
to the combination of turbulence, phytoplankton growth, and predator–prey relationships. Thus, 
in the absence of predation, a phytoplankton species with both negative and nil growth rates is 
characterized by a spectral exponent b =  5/3. whatever the scales (Figure 4.6A). When the growth 
rate is positive, two spectral exponents should be expected, b =  5/3. and b =  1., below and above the 
critical scale where growth dynamics overcome the diffusive dynamics of turbulence (Figure 4.6C). 
These theoretical scale breakings have been observed only a few times for temporal and spatial 
scales compatible with phytoplankton growth dynamics (Powell et al. 1.975; Lekan and Wilson 
1.978; Abbott et al. 1.982; Weber et al. 1.986). More recently, three kinds of transitions have been 
reported (Figure 4.6):

 1.. A transition from b  =  5/3. at small scales (t < 25 s) and b  =  0.68 at larger scales (Seuront et al. 
1.996a; Seuront 1.999) (Figure 4.6D).

 2. A transition from b  =  5/3. at large scale (t > 1.60 s) to b  =  1..22 at smaller scales (Seuront 
1.998, 1.999) (Figure 4.6E).

 3.. A transition from b  =  5/3. at small scales (t > 20 s), to b  =  0.67 over intermediate scales  
(20 < t < 1.000 s) and to b  =  1..96 for larger scales (Seuront et al. 1.999) (Figure 4.6F).

However, the temporal and spatial scales involved are far too small to be related to growth dynamics 
and have rather been related to coagulation processes ( / ;β β= → =5 3. 0.67  cases (1.) and (2); Seuront 
et al. 1.996a, 1.999), zooplankton grazing pressure ( / ;β β= → =5 3. 1..22  Seuront 1.999; Lovejoy et al. 
2001.), and to the presence of a frontal area ( ;β β= → =0.67 1..96  

case (3.); Seuront et al. 1.999). 
Finally, the introduction of predation reddened the spectral exponent from b  =  5/3. to b  =  3. for a three- 
dimensional turbulence, and whitened the spectral exponent from b  =  3. to b  =  1. for a two-dimensional 
turbulence (Powell and Okubo 1.994). To our knowledge, only the latter case has been verified from 
remote sensing observations of sea-surface chlorophyll concentrations (Barale and Trees 1.987; Smith 
et al. 1.988). More generally, 1./f b noise have also been identified in the distribution of nutrients (Seuront 
et al. 2002); β ∈ −[ ])1..20 1..69 and zooplankton abundance (Seuront and Lagadeuc 2001.) (b  =  1..42).

4.2.1.3 case study: eulerian and lagrangian scalar Fluctuations in turbulent Flows
Sessile and motile organisms intrinsically perceive their environments in a Eulerian and 
Lagrangian framework, respectively (Figure 4.7). More specifically, sessile organisms will only 
perceive environmental fluctuations from a Eulerian perspective. In contrast, motile organisms 
will perceive environmental fluctuations occurring at scales smaller and larger than they in 
Eulerian and Lagrangian ways, respectively (Figure 4.7). As a consequence, these two frame-
works need to be thoroughly investigated and understood to critically assess the impact of 
environmental fluctuations on their biology and ecology. In this context, the theoretical scaling 
relations expected for Eulerian and Lagrangian fluctuations of turbulent velocity and passive 
scalars are briefly reviewed hereafter before being tested using oceanic biophysical time series 
recorded from a fixed and a drifting platform used to mimic respectively the perception of ses-
sile and free-living organisms.

2782.indb   109 9/11/09   12:08:10 PM



110 Fractals and Multifractals in Ecology and Aquatic Science

4.2.1.3.1 Eulerian and Lagrangian Scaling Relations for Velocity and Passive Scalars
Scaling relations for turbulent velocity and passive scalars (originally temperature) fields have been 
expressed in Eulerian turbulence using the energy flux e as (Kolmogorov 1.941.; Obukhov 1.941.):

 ε ≈ ∆( )V

l
l

3

 (4.1.9)

and the scalar variance flux c as (Obukhov 1.941., 1.949; Corrsin 1.951.):

 χ ≈ ∆ ∆( ) ( )S V

l
l l

2

 (4.20)

where ΔVl  =  |V(x + l) − V(x)| and ΔSl  =  |S(x + l) − S(x)| are the velocity shear and passive scalar gra-
dients at scale l and ΔVl /l is the inverse of the local eddy turnover time. These scaling relations were 

A C

B D

E

Figure 4.7 Lagrangian and Eulerian perceptions of the environment by living organisms. For (A, B) swim-
ming and (C) flying organisms, the perception of their environment is intrinsically linked to their size. Velocity 
fluctuations larger than the organisms are then perceived in a Lagrangian way (gray arrows), while velocity 
fluctuations smaller than the organisms will be perceived in a Eulerian way (black arrows). In contrast, non-
motile organisms always perceive their environment in a Eulerian way (D, E), black arrows. (Modified from 
Seuront, 2008.)
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originally considered in the framework of homogeneous turbulence; that is, the fluxes e and c were 
considered as homogeneous, exhibiting no scale dependence. The statistics of turbulent velocity and 
passive scalar fluctuations were then regarded as universal and determined by the mean dissipation 
rate e and the mean scalar variance flux c. Consequently, a unique exponent was required for the 
velocity and passive scalar, the so-called 1./3. law in physical space:

 ∆ ≈V ll
1 3/  (4.21.)

 ∆ ≈S ll
1 3/  (4.22)

In Fourier space, assuming local isotropy and three-dimensional homogeneity of turbulence in the 
inertial subrange, Equations (4.21.) and (4.22) can be rewritten to describe the velocity fluctuations 
and the fluctuations of a passive scalar using the spectral densities EV(k) and ES(k) as:

 E k kV
V( )≈ −β  (4.23.)

 E k kS
S( )≈ −β  (4.24)

where k is either the frequency (Hz) or the wave number (m−1.) whether velocity and passive scalar 
fluctuations are considered in time or in space, and bV and bS are characteristic spectral exponents 
defined as bV  =  bS  =  5/3.. This has been verified for velocity and temperature fluctuations in the 
atmosphere (Gurvich 1.960; Grant et al. 1.962), in the ocean (Seuront et al. 1.996a, 1.996b, 1.999; 
Lovejoy et al. 2001.), and in laboratory experiments (see, for example, Baumert et al. 2005), and 
for phytoplankton biomass in a variety of marine environments (Seuront et al. 1.996a, 1.996b, 1.999; 
Currie and Roff 2006; Yamazaki et al. 2006).

In a Lagrangian framework, the scaling relations given by Equations (4.1.9) and (4.20) are now 
a function of the time between observations instead of the spatial separation considered in the 
Eulerian framework. Replacing ΔVl/l by 1./t in Equations (4.1.9) and (4.20) leads to (Inoue 1.952a, 
1.952b; Monin and Yaglom 1.975):

 ε ≈ ∆V

t
l
2

 (4.25)

and the scalar variance flux c as:

 χ ≈ ∆S

t
l
2

 (4.26)

where ΔVt  =  |V(t + t) − V(t)| and ΔSt  =  |S(t + t) − S(t)| are the velocity shear and passive scalar gra-
dients for an element of fluid at the scale t. In Fourier space, Equations (4.25) and (4.26) directly 
lead to:

 E k kV
V( )≈ −β  (4.27)

 E k kS
S( )≈ −β  (4.28)

where bV and bS are characteristic spectral exponents defined as bV  =  bS  =  2. Note that for a given 
data set, the difference in spectral slope can then be used to identify Lagrangian and Eulerian 
regimes in atmospheric and oceanic data.
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4.2.1.3.2 Eulerian Sampling Procedure
Sampling was carried out from two anchor stations located in the inshore (9/23./1.997) and off-
shore (9/23./1.997) waters of the eastern English Channel (Figure 4.8). Time series of temperature, 
salinity, and in vivo fluorescence (that is, a proxy for phytoplankton biomass) were recorded using 
a Sea-Bird 25 Sealogger CTD probe and a Sea Tech fluorometer at a frequency of 2 Hz. This 
led to 28,590 and 28,777 data points available for analysis from inshore and offshore waters, 
respectively.

In coastal waters, the power spectra of temperature and salinity both fully agree with the theo-
retical b  =  5/3. expectations over four decades (Figure 4.9A,B). In contrast, in vivo fluorescence 
power spectrum clearly flattens for frequencies smaller than 0.01. Hz (that is, 1.00 seconds) with 
b  =  0.3.4 (Figure 4.9C). For frequencies larger than 0.01. Hz, the fluorescence spectrum follows a 
power law with b  =  1..71., which cannot be statistically distinguished from b  =  5/3. (p > 0.05). This 
shows that fluorescence fluctuations belong to the classes of fractional Gaussian noise and frac-
tional Brownian motion for scales smaller and larger than 1.00 seconds, respectively. Temperature 
and salinity fluctuations are, however, fully compatible with fractional Brownian motions. More 
specifically, this indicates that temperature and salinity can be considered as passive scalars 
advected by turbulent flows, while phytoplankton biomass can only be thought of as a passive 
scalar for scales larger than 1.00 seconds. For scales smaller than 1.00 seconds, the flattening of 
the phytoplankton power spectrum suggests that biological activity overcomes turbulent diffusion. 
The fractal dimensions and Hurst exponents for temperature and salinity, and fluorescence for 
scales larger than 1.00 seconds, are DFFT  =  5/3. and H  =  1./3. using Equations (4.1.3.) and (4.1.5). In 
contrast, Equations (4.1.4) and (4.1.5) lead to DFFT  =  1..3.3. and H  =  0.67 for fluorescence for scales 
smaller than 1.00 seconds. This suggests that biological activity modifies the intrinsic properties 
of fluorescence signals from an antipersistent fractional Brownian motion to a persistent fractional 
Gaussian noise.

In offshore waters, the temperature and salinity power spectra still exhibit power-law behaviors 
over four decades but with different spectral exponents (Figure 4.9D,E); the temperature spectrum 
is in perfect agreement with b  =  5/3. (Figure 4.9D) while the salinity one exhibits a b  =  7/5 behavior 
(b  =  1..4) (Figure 4.9E), characteristic of a buoyancy area where salinity fluctuations are controlled 
by gravity rather than by temperature fluctuations (Nozdrin 1.974; Monin and Ozmidov 1.985). The 
power spectrum observed for in vivo fluorescence unambiguously followed a scaling behavior over 

0°12'E

2°24'E

30 km 49
°5

7'N

51
°2

9'N

ENGLAND
Dover

Dover Straits

North Sea

Boulogne sur Mer

‘C
oa

st
al

 fl
ow

’

FRANCE

Bay of Somme
English Channel

Figure 4.8 Study area and location of the sampling stations in the inshore (black star) and offshore (open 
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the whole range of available frequencies with b  =  5/3. (Figure 4.9F). The resulting fractal dimensions 
and Hurst exponents for temperature and fluorescence (DFFT   =  5/3. and H  =  1./3.), and for salinity 
(DFFT  =  1..80 and H  =  0.2) using Equation (4.1.3.) and Equation (4.1.5) then suggest that in the buoy-
ancy regime salinity fluctuations are more negatively correlated than temperature and phytoplank-
ton biomass fluctuations.

4.2.1.3.3 Lagrangian Sampling Procedure
Sampling was carried out between March 1.995 and December 1.996 adrift in the coastal waters of 
the eastern English Channel at different depths, and in different tidal and meteorological conditions 
(Table 4.1.) aboard the N/O Sepia II (CNRS-INSU), and on April 2, 1.998, aboard the N/O Côte 
de la Manche (CNRS-INSU). During each sampling experiment (Table 4.1.), physical parameters 
(temperature, salinity, light transmission) and in vivo fluorescence (that is, a proxy of phytoplankton 
biomass) were simultaneously recorded at 1. to 2 Hz from a single depth with a SBE 25 Sealogger 
CTD and a Sea Tech fluorometer, respectively. The present analysis is based on 22 time series 
labeled from S1. to S22 (Table 4.1.) that contain temperature, salinity, light transmission, and in vivo 
fluorescence data, that is, 1.,43.1.,084 data points.
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Figure 4.9 Power spectra of (A, D) temperature, (B, E) salinity, and (C, F) in vivo fluorescence recorded 
in the inshore and offshore waters of the eastern English Channel in a Eulerian framework (that is, a fixed 
location). Dashed lines are the b  =  5/3. theoretical slope expected in case of purely passive scalars advected 
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Samples of the double logarithmic power spectra for the studied time series together with their 
best fitting lines are given in Figure 4.1.0. The power spectra present a mixed behavior with two 
scaling tendencies, the change of behavior of the power spectra occurring for frequencies f ranging 
from 0.02 to 0.1.1. Hz ( 0.06 0.03.± Hz, x ±SD), which are associated with characteristic time scales 
t ranging from about 9 to 54 seconds ( 23..3. 1.2.9± sec, x ±SD). Within each data set, the transition 
scales are very similar whatever the variables in question, as shown by the weak dispersion of the 
estimates of the transition frequencies f ( SD f = ±0.005 0.001.).

Those temporal transition scales can be associated with spatial scales using Taylor’s hypothesis 
of frozen turbulence (Taylor 1.93.8), which basically states that temporal and spatial averages t and 
l, respectively, can be related by a constant velocity V , l V t= ⋅ . Then, using the mean tidal drift 
observed during each field experiment (Table 4.1.), we estimate that the associated length scales 
were ~1.2 meters (1.2.1. 1..6± m, x ±SD) for sampling experiments S1. to S21. and 24.6 meters for 
sampling experiment S22. These length scales are close to the size of the ships used during the 
sampling experiment, that is, 1.2.5 m and 24.9 m for N/O Sepia II and N/O Côte de la Manche, 
respectively. These results thus confirm and generalize the results obtained by Seuront et al. (1.996b) 
from a single sampling experiment conducted at the end of March 1.995 during a period of spring 
tide (Table 4.2; Figure 4.1.1.).

In order to interpret this change of behavior of the power spectra, remember that the measure-
ments were taken from a boat adrift in the channel. This means that for the high-frequency range 

table 4.1
summary of the date, location, sampling Frequency f (hz), tide (m s–1), wind speed  
(m s–1), and direction (°) for the 22 sampling experiments

code date latitude longitude f depth tidal current wind

speed direction speed direction

S1. March 3.0,1.995 50°40900 l°3.1.900 2 1.5.7 1..00 1.80 7 1.20

S2 November 29,1.995 50°48956 1.°29945 2 1.4.7 0.22 90 5 22

S3. January 1.9, 1.996 50°52924 1.°3.4993. 1. 7.6 1..1.2 0 6 23.0

S4 February 1., 1.996 50°42973. 1.°27949 1. 1.5.8 0.60 0 3. 220

S5 February 22,1.996 50°43.909 l°3.293.0 1. 6.2 0.88 1.80 4 90

S6 March 28,1.996 50°45956 1.°3.3.982 2 1.0.4 0.28 1.80 8 90

S7 April 26, 1.996 50°55926 1.°3.2964 2 1.6.8 0.45 90 3. 1.70

S8 May 28, 1.996 50°49993. 1.°3.2993. 2 1.5.6 0.75 0 3. 90

S9 June 3., 1.996 50°4993.5 1.°3.1.962 2 1.6.1. 1..50 0 6 1.3.0

S1.0 June 1.9, 1.996 50°42942 1.°2895I 2 1.0.5 1..01. 1.80 1. 260

S1.1. June 25, 1.996 50°51.921. 1.°29965 2 21..2 0.91. 1.80 1. 3.3.0

S1.2 September 4, 1.996 50°40953. 1.°3.0963. 2 5.9 0.99 1.80 5 3.1.0

S1.3. September 25, 1.996 50°44973. l°3.3.905 2 6.2 0.3.9 0 5 21.0

S1.4 September 25, 1.996 50°44991. 1.°3.3.91.9 2 1.1..2 0.3.9 0 5 21.0

S1.5 September 25, 1.996 50°4593.9 1.°3.3.945 2 1.5.8 0.3.9 0 5 21.0

S1.6 October 2, 1.996 50°42908 l°3.2990 2 6.6 0.69 1.80 1. 1.00

S1.7 October 2, 1.996 50°42908 l°3.2990 2 6.0 0.69 1.80 1. 1.00

S1.8 October 2, 1.996 50°42908 l°3.2990 2 6.2 0.69 1.80 4 40

S1.9 October 8, 1.996 50°47979 l°3.3.968 2 6.3. 0.50 0 1. 220

S20 December 5, 1.996 50°45950 1.°3.2985 2 6.6 0.3.0 0 2 1.90

S21. December 1.8, 1.996 50°45946 1.°3.2987 2 5.9 0.60 0 6 21.0

S22 April 2, 1.998 50°45’00 l°3.3.’50 2 6.0 0.60 0 2 1.00
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table 4.2 
temporal and spatial transition scales between eulerian and lagrangian regimes

time series time (s)1 time (s)2 space (m)1 space (m)2

* 1.2.3.0 1.2.70 1.2.3.0 1.2.70

S1. 1.2.59 1.2.70 1.2.59 1.2.70

S2 53..70 54.00 1.1..81. 1.1..88

S3. 1.0.23. 1.0.50 1.1..46 1.1..76

S4 21..3.8 21..00 1.2.83. 1.2.60

S5 1.2.88 1.2.67 1.1..3.4 1.1..1.6

S6 44.67 44.00 1.2.51. 1.2.3.2

S7 25.70 26.00 1.1..57 1.1..70

S8 1.6.22 1.6.50 1.2.1.6 1.2.3.8

S9 8.91. 9.00 1.3..3.7 1.3..50

S1.0 1.2.3.0 1.2.00 1.2.43. 1.2.1.2

S1.1. 1.4.1.3. 1.4.00 1.2.85 1.2.74

S1.2 1.2.3.0 1.2.50 1.2.1.8 1.2.3.8

S1.3. 3.3..3.3. 3.3..50 1.3..00 1.3..07

S1.4 3.0.90 3.1..00 1.2.05 1.2.09

S1.5 3.3..88 3.4.00 1.3..21. 1.3..26

S1.6 1.8.62 1.9.00 1.2.85 1.3..1.1.

S1.7 1.7.78 1.8.00 1.2.27 1.2.42

S1.8 1.9.50 20.00 1.3..45 1.3..80

S1.9 26.92 27.00 1.3..46 1.3..50

S20 40.74 41..00 1.2.22 1.2.3.0

S21. 1.9.50 1.9.50 1.1..70 1.1..70

S22 44.68 44.50 24.58 24.48

Note:  The association between temporal and spatial transition scales has been done via the Taylor’s hypothesis of frozen 
turbulence. 

1. Power spectra. 
2 Structure functions.
Source: From Seuront et al. (1.996b).
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Figure 4.10 Power spectrum of temperature fluctuations recorded in the inshore waters of the eastern 
English Channel from a drifting boat 1.2.5 m long. Two scaling regimes with E(  f  )  ≈  f  −2 and E(  f  )  ≈  f  −5/3. 
respectively occur above and below a critical time scale t  =  22 seconds. The high and low frequency regimes 
correspond to Eulerian and Lagrangian regimes, respectively.
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of the measurements we can consider the boat as not moving, so the measurements correspond to 
a fixed-point procedure, that is, Eulerian sampling. This is confirmed by the slopes of the small-
scale temperature, salinity, and in vivo fluorescence power spectra (Table 4.3.), which were not 
significantly different (Kruskal-Wallis test, P > 0 05. ) and cannot be statistically distinguished 
from the theoretical spectral value β = 5 3/  (Binomial test, p  >  0.05) (Siegel and Castellan 1.988) 
expected in the case of an isotropic three-dimensional homogeneous turbulence (Obukhov 1.949; 
Corrsin 1.951.). Nevertheless, for each sampling experiment, an analysis of covariance (Zar 1.996) 
has been conducted for the slopes of the power spectra for temperature, salinity, and in vivo fluo-
rescence. It is found that the chlorophyll a concentration exhibits highly significant positive corre-
lation ( p  =  0.01.) with the F-statistic, used here as a measure of any significant difference between 
the slope of temperature, salinity, and fluorescence power spectra for a given sampling experi-
ment. Subsequent multiple comparison procedures based on the Tukey test (Zar 1.996) conducted 
to determine which β  was different from the others then confirmed and specified the previous 
results. These analyses indicate that rejection of the null hypothesis was always due to β  values 
for in vivo fluorescence significantly higher than those for temperature and salinity. On the con-
trary, light transmission power spectra (Table 4.3.) appear significantly smaller than the theoretical 
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Figure 4.11 Theoretical vs. empirical scale breakings (Hz) between Eulerian and Lagrangian scales. 
Theoretical scale breaking has been estimated by multiplying the size of the boat used during the sampling 
experiment by the mean tidal drift observed during each experiment. Empirical scale breaking has been esti-
mated as the mean transition scale from the power spectra of temperature, salinity, and in vivo fluorescence. 
The result obtained by Seuront et al. (1.996b) is shown for comparison (black dot).

table 4.3 
mean Values of the spectral exponent ββ  estimated from time series of temperature, 
salinity, In Vivo Fluorescence, and light transmission

temperature salinity Fluorescence transmission

E 1..70 (0.05) 1..72 (0.06) 1..69 (0.03.) 1..3.1. (0.3.6)

L 2.03. (0.05) 2.03. (0.04) 1..03. (0.24) 1..02 (0.24)

Note: The numbers in parentheses are the standard deviations; Eulerian (E; n  =  22) and Lagrangian (L; n  =  1.3.) scales.
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β = 5 3./ value ( . ).p < 0 05  Finally, one may also note here that analyses of covariance showed that 
the 22 spectral exponents β  were not all equal for each parameter, indicating potential differen-
tial spectral structures of the variables in question at the space-time scales of the whole sampling 
experiment.

For frequencies smaller than the observed scale breakings, the inertia of the boat becomes neg-
ligible and the measurements are effectively taken following the flows, that is, in a Lagrangian 
framework. One may note here that we had to average the original time series up to the Eulerian/
Lagrangian transition scale (Table 4.2) in order to be in the Lagrangian scales. In that way, our 
characterization of the Lagrangian behavior of time series of temperature, salinity, light transmis-
sion, and in vivo fluorescence is based on time series exhibiting at least 256 data points (that is, the 
lower recommended bound for a data set to lead to reliable spectral analysis). In the following, we 
then focused on 1.3. time series S1.–S3., S5, S7, S9, S1.0–S1.2, S1.4, S1.9, and S21.–S22. The previously 
described transition is also confirmed by the similar scaling behaviors exhibited by temperature 
and salinity time series (Table 4.3.), which cannot be statistically distinguished from the theoreti-
cal slope β = 2 (Binomial test, p > 0 05. )expected in the case of purely passive scalars advected by 
Lagrangian fluid motions (Monin and Yaglom 1.975). On the contrary, in vivo fluorescence and light 
transmission spectral exponents show very specific behaviors (Table 4.3.) that cannot be statistically 
distinguished (Wilcoxon-Mann-Whitney U-test, p > 0.05). Moreover, analyses of covariance con-
cluded that the 1.3. spectral exponents β  were not all equal ( p < 0.05) for both light transmission and 
fluorescence power spectra.

4.2.2 dETrEndEd FlucTuaTion analysis

4.2.2.1 theory
Detrended fluctuation analysis (DFA) is an elegant tool to quantify simply and reliably the corre-
lations found in both stationary and nonstationary data (Peng et al. 1.992, 1.993., 1.994). Compared 
to more traditional analyses used to estimate the degree of correlation in temporal signals, such 
as power spectrum analysis (see Section 4.2.1.), Hurst analysis (Section 4.2.5), and autocorrela-
tion analysis (Section 4.2.7), the advantage of the DFA method is that it can accurately quantify 
the correlation property of signals masked by polynomial trends (Hu et al. 2001.; Chen et al. 
2002). Here, a temporal signal (note that the method described hereafter is also applicable to 
a spatial signal x(l)), is integrated by computing for each t the accumulated departure from the 
mean of the whole series:

 X t x i x
i

N

( ) [ ( ) ]= −
=

∑
1

 (4.29)

where N is the length of the data set. This integrated series is divided into nonoverlapping intervals 
of length n. In each interval, a least-squares regression representing the trend in the interval is fitted 
to the data (Figure 4.1.2). The series X( t ) is then locally detrended by substracting the theoretical 
values Xn( t ) given by the regression. For a given interval length n, the characteristic size of fluctua-
tions for this integrated and detrended series is calculated by:

 F n
N

X t X tn

t

N

( ) [ ( ) ( )]= −
=

∑1
2

1

 (4.3.0)

This computation is repeated over all possible interval lengths. Note, however, that the width of 
the regression windows ranged from six data points and to N/4 (Peng et al. 1.994). The degree of 
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correlation in the signal is finally quantified as:

 F(l) ∝ l DFAα  (4.3.1.)

where the exponent a is estimated as the slope of the linear trend of the log-log plot of F(l) versus l. 
The use of a linear regression on the log-transformed data instead of nonlinear regression on the 
raw data is recommended, as the residual error will be distributed as a quadratic and the mini-
mum error is not guaranteed. This is not the case with nonlinear regression (Seuront and Spilmont 
2002).

As with power spectrum analysis, DFA allows the distinction between fGn and fBm signals; fGn 
correspond to aDFA exponents ranging from 0 to 1., and fBm to exponents bounded between 1. and 2 
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Figure 4.12 Three successive steps of the implementation of the detrended fluctuation analysis (DFA). DFA 
is applied to intervals of size (A), 1.00 (B), and 50 (C). The gray lines are the best least-squares fit to the data 
in each interval.
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(Figure 4.1.3.). Note that the correspondence between a and H is:

 H  =  aDFA − 1. (4.3.2)

for fractional Brownian motions, and

 H  =  aDFA (4.3.3.)

for fractional Gaussian noises. The corresponding fractal dimensions, DDFA, are given by (Equation 4.9):

 DDFA  =  2 − H (4.3.4)

Note here that combining Equations (4.3.2) and (4.3.3.) with Equations (4.1.3.) and (4.1.4) leads to relate 
the exponents a and b as a  =  ( b + 1.)/2, and reciprocally b  =  2a − 1..

4.2.2.2 case study: assessing stress in interacting bird species
4.2.2.2.1 The Study Organisms
The New Holland honeyeater (Phylidonyris novaehollandiae; Figure 4.1.4A) and the red wattle-
bird (Anthochaera carunculata; Figure 4.1.4B) are Australian nectar-feeding passerines. The New 
Holland honeyeater is a medium-sized (up to 1.8 cm) very active bird found throughout southern 
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Figure 4.13 Use of detrended fluctuation analysis (DFA) to identify the class to which a data set belongs, 
fractional Gaussian noise (fGn) or fractional Brownian motion (fBm), prior to further fractal analysis devoted 
to estimate the Hurst exponent H, and the related fractal dimension.
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and southeastern Australia. It has a white iris, white facial tufts, and yellow markings on its wings 
and tail feathers (Figure 4.1.4A). Although the New Holland honeyeater primarily feeds on nec-
tar, a large part of its diet may also consist of insects (Clarke and Clarke 1.999; Kleindorfer et al. 
2006). The red wattlebird is a larger (up to 3.5 cm) honeyeater and is considered a dominant hon-
eyeater species. It has red eyes, distinctive red wattles on either side of the neck (Figure 4.1.4B), 
gray-brown body plumage, white streaks on the chest and belly, and a bright yellow patch on the 
abdomen. Its range largely overlaps with that of the New Holland honeyeater but extends slightly 
further inland, also occurring in southern and southeastern Australia. Red wattlebirds inhabit 
coastal and woodland areas across a range of elevations. Both species thrive near habitation. Like 
the New Holland honeyeater, red wattlebirds complement their diet with insects, berries, and 
other fruits.

4.2.2.2.2 Experimental Procedures and Data Analysis
The behavior of New Holland honeyeaters and red wattlebirds was investigated when the birds were 
eating the nectar of aloe flowers separately (Figure 4.1.5A,B) and simultaneously (Figure 4.1.5C); the 
objectives of this work were to investigate if their feeding behavior exhibited any long-term correla-
tion and if the presence of another species would affect the feeding behavior of a given species. The 
behavior of those two species was recorded with a digital camera (DV Sony DCR-PC1.20E) at a rate 
of 25 frame s−1. on July 22, 2007, in West Beach, South Australia. The behaviors of New Holland 
honeyeaters and red wattlebirds typically were very similar and consisted of either eating the nectar 
with their beak in the flower or scanning their surroundings. The nature of the behavioral sequences 
observed in the New Holland honeyeaters and the red wattlebirds was assessed through the con-
struction of a binary sequence zt(i) for each behavioral activity i taken from continuous observations 
(Figure 4.1.6A,B). When a specific activity was observed, zt(i)  =  1., and zt(i)  =  −1. otherwise. Here 
zt(i)  =  1. and zt(i)  =  −1. when the beak of either the New Holland honeyeater or the red wattlebird 
was respectively inside and outside the flower. This generated binary sequences zt(i)  taken at 0.04-
second time intervals t for each behavioral activity. Behavior sequence random walks wi( t ) were 
subsequently obtained as

 w t z ii t

i

N

( ) ( )=
=

∑
1

 (4.3.5)

where N is the number of behavioral observations. Equation (4.3.5) provides a graphical representa-
tion to calculate the degree of correlation in the behavioral time series (Figure 4.1.6C,D). Note the 
clear difference between the behavioral zi( t ) and wi( t ) shown in Figure 4.1.6 and Figure 4.1.7 and 
those obtained in case of a purely random process (Box 4.1.).

A B

Figure 4.14 The Australian nectar-feeding passerines (A) New Holland honeyeater (Phylidonyris novae-
hollandiae) and (B) red wattlebird (Anthochaera carunculata). (See color insert following page 80.)
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4.2.2.2.3 Results
Behavior sequence random walks wi( t ) obtained for New Holland honeyeaters (Figure 4.1.7A) and red 
wattlebirds (Figure 4.1.7B) were visually clearly different, as was New Holland honeyeater behavior 
in the absence (Figure 4.1.7B) and presence of red wattlebirds (Figure 4.1.7C). Specifically, applying 
Equations (4.3.0) and (4.3.1.) to the behavior sequence random walks shown in Figure 4.1.7 leads to val-
ues of the exponent aDFA  =  1..65 for New Holland honeyeaters and aDFA  =  1..72 for red wattlebirds. The 
values of aDFA obtained for the red wattlebird were not affected by the presence of the New Holland 
honeyeater. In contrast, the exponent aDFA significantly decreased down to aDFA  =  1..48  for the New 
Holland honeyeater in the presence of red wattlebirds.

4.2.2.2.4 Ecological Interpretation
The estimates of aDFA for the sequential behavior of the New Holland honeyeaters and the red wat-
tlebirds were consistently larger than 1., indicating that the behavior sequence random walks wi( t ) 
consistently belong to the class of fractional Brownian motions. Specifically, the Hurst exponents 
H estimated from Equation (4.3.2) lead to values higher than H  =  0.5 for the New Holland hon-
eyeater (H  =  0.65) and the red wattlebird (H  =  0.72). Both species then exhibit a persistent behavior; 
that is, a feeding bout is more likely to be followed by a feeding bout than by nonfeeding bout. 

Box 4.1 PuRE RAnDoMnESS: CoIn FLIPPInG

The archetypical example of a purely random process is the flipping coin experiment in which 
the probability of obtaining the obverse (heads) or the reverse (tails) is the same (that is, 0.5). 
In addition, the probability of obtaining one event is totally independent of the previous event 
(tails or heads); the coin-flipping process does not have memory.

The subsequent detrended fluctuation analysis of w ti( ) results in αDFA =1..50, hence H = 0.50.
The sequential random walk w ti( ) resulting from successive coin flipping is then a Brownian 
motion; that is, no form of persistence ( )H > 0.50  or antipersistence ( )H < 0.50   exists in the 
signal.

Figure 4.b1.1. Binary sequence obtained from 1.000 iterations of a coin-flipping experiment, where 
zt(i)  =  1. for tails (black vertical lines, top panel) and zt(i)  =  −1. for heads (white vertical lines, top panel), 
and the resulting sequential random walk w t z ii t

N
t( ) ( )= =Σ 1 (bottom panel).
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In contrast, in the presence of the red wattlebird, the exponent H of the New Holland honeyeater 
decreased to H  =  0.48 and is nonsignificantly different from the special case H  =  0.50 expected for 
Brownian motion, which indicates no correlations in the behavior sequence wi( t ); in other words, 
the probability of feeding bouts is independent of the probability of nonfeeding bouts. Those results 
are consistent with previous behavioral studies using DFA to assess the health and stress from 
binary behavioral sequences of wild chimpanzees (Alados and Huffman 2000) and captive chick-
ens (María et al. 2004). The exponents aDFA were consistently lower in sick chimpanzees than in 
healthy ones, and decreased with chicken stress. The present results then suggest that the presence 

A

B

C

Figure 4.15 The New Holland honeyeater (Phylidonyris novaehollandiae) and red wattlebird (Anthochaera 
carunculata) foraging around aloe flowers separately (A, B), and simultaneously (C).
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of the large red wattlebirds increases the level of stress in the New Holland honeyeaters, while the 
significantly higher aDFA observed for the red wattlebirds suggests an overall higher behavioral per-
sistence than might be related to their larger size. This is also consistent with other results based on 
the use of cumulative frequency analyses and spectral analysis showing that the sequential behavior 
of parasited Spanish ibex, Capra pyrenaica, which returned lower exponents in cumulative fre-
quency analyses (see Chapter 5) and spectral analysis than nonparasited ones (Alados et al. 1.996). 
A cumulative frequency analysis of the move duration observed in the marine zooplankton species 
Centropages hamatus also showed a decrease in scaling exponent under conditions of naphtha-
lene contamination (Seuront and Leterme 2007). As a conclusion, detrended fluctuation analysis of 
sequential behavior in particular, and scaling analysis of sequential behavior in general, provide an 
effective noninvasive method to record and evaluate the general state of health and related stress of 
captive and wild animals.

Note that in their analysis of wild chimpanzee behavioral sequences, Alados and Huffman (2000) 
seem to have mixed up the values of aDFA expected for fractional Brownian motions and fractional 
Gaussian noises, as well as the concepts related to aDFA and H. They indeed claim that “a  =  1./2 
indicates no correlation in the sequence (white noise), and a  ≠  1./2 indicates long-range power law 
correlations. If a exceeds 1./2, the sequence is persistent; if a  <  1./2 the sequence is anti-persistent.” 
However, as discussed in Section 4.2.2.1., this is only true for fGn in which case aDFA  =  H and is 
bounded between 0 and 1.. Over the 20 values of aDFA provided in their Table 3., 1.9 are greater than 1. 
and range between 1..1.1.4 and 1..43.6, suggesting that their random walks wi( t ) belong to the family of 
fractional Brownian motions. As such, Equation (4.3.2) leads to a reinterpretation of the sequential 
behavior of wild chimpanzees as being antipersistent (that is, aDFA < 1..5 and H <  0.5) and not per-
sistent as originally claimed (Alados and Huffman 2000). This stresses the critical need to identify 
unambiguously the nature of a signal to be analyzed to ensure the results of the analysis are relevant 
and meaningful.
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Figure 4.16 Examples of binary behavioral sequences zt(i) recorded for the New Holland honeyeater in 
the (A) absence and (B) presence of the red wattlebird and respectively visualized as black and white vertical 
lines for zt(i) = 1. (bird’s beak inside aloe flower) and zt( i ) = −1. (bird’s beak outside aloe flower). The binary 
sequences zt(i) are subsequently used to build behavior sequence random walks wi( t ) as w t z ii t

N
t( ) ( ),= =Σ 1  where 

N is the number of behavioral sequences.
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4.2.3 scalEd windowEd variancE analysis

4.2.3.1 theory
Scaled windowed variance (SWV) analyses, also referred to as roughness-length analyses, are 
applicable only to fBm signals. Those methods are based on dividing a temporal signal x( t ) into 
nonoverlapping windows of size t and computing the standard deviation, SD(i), in each of these 
windows as:

 SD i x t xi

t

( ) [ ( ) ]
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=
−

−










=
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Figure 4.17 Behavior sequence random walks wi( t ) obtained for (A) the New Holland honeyeater and (B) 
the red wattlebird, and (C) for the New Holland honeyeater in the presence of red wattlebird.
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where xi is the average within each interval. The average standard deviation, SD(t), for each win-
dow size t is further expressed as:

 SD
n

SD i
i

n

( ) ( )τ =
=

∑1

1
 (4.3.7)

where n is the number of nonoverlapping windows of size t. This procedure is iterated for all pos-
sible window sizes. For a fractal signal x( t ), SD(t) scale with t as:

 SD(t) ∝ tH (4.3.8)

where H is the Hurst exponent described above. The subsequent fractal dimension DSWV is derived 
from Equation (4.9) as:

 DSWV  =  2  −  H (4.3.9)

Initially introduced by Mandelbrot (1.985), this method applies no correction to the trends present 
within a given window and potentially leads to bias in H estimates (Schmittbuhl et al. 1.995; Turcott 
and Teich 1.995). Trends in the signal seen within a given window can, however, be corrected either 
by subtracting a linearly estimated trend (that is, line-detrended scaled windowed variance analy-
sis, ldSWV) or the values of a line bridging the first and last values of the signal (bridge-detrended 
scaled windowed variance analysis [bdSWV]) (Cannon et al. 1.997). Note that line detrending and 
bridge detrending are conceptually similar to the detrending procedure used in detrended fluctua-
tion analysis (Section 4.2.2) and illustrated in Figure 4.1.2.

4.2.3.2 case study: temporal distribution of the calanoid copepod Temora Longicornis
4.2.3.2.1 The Study Organism
Copepods are the largest and most diversified group of crustaceans, they are the most numerous 
metazoans (that is, multicelled organisms) in the aquatic communities, and they are considered 
the most plentiful group on Earth, outnumbering even the insects, which include more species but 
fewer individuals. As an example, considering a mean density of just one copepod per liter of the 
overall volume of the open ocean (that is, 1.3.47 × 1.06 km3.) would suggest a total world population 
in the order of 1..3.5 × 1.021. (Boxshall 1.998). They include over 1.4,000 species, 2,3.00 genera, and 21.0 
families, a surely underestimated number. Their habitat ranges from freshwater to hypersaline con-
ditions, from subterranean caves to water collected in bromeliad leaves or leaf litter on the ground, 
from streams, rivers, and lakes to the sediment layer in the open ocean, from the highest mountains 
to the deepest ocean trenches, and from the cold polar ice–water interface to the hot active hydro-
thermal vents. Copepods may be free-living, symbiotic, internal, or external parasites on almost 
every phylum of animals in water. The usual length of adults is 1. to 2 mm, but adults of some spe-
cies may be as small as 0.2 mm and others may be as large as 1.0 mm. Copepods are the dominant 
forms of the marine plankton that constitute the secondary producers in the marine environments. 
As such, they constitute a fundamental step in the oceanic food chain, linking microscopic algal 
cells to juvenile fishes and whales, and play a pivotal role in the functioning of marine systems and 
biogeochemical cycles (Roemich and McGowan 1.995).

More specifically, the calanoid copepod Temora longicornis (Figure 4.1.8A) is a very abundant 
and nearly ubiquitous species in coastal waters. It is also of great ecological significance in many 
areas as it represents 3.5 to 70% of the total copepod population in the Southern Bight of the North 
Sea (Daan 1.989) and in the eastern English Channel (Seuront 2005c); in Long Island Sound (USA), 
it is able to remove up to 49% of the daily primary production (Dam and Peterson 1.993.).
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4.2.3.2.2 Experimental Procedures and Data Analysis
Sampling was conducted in the coastal waters of the eastern English Channel (see Figure 4.8) for 66 
hours. Water was continuously sampled from a depth of 1.0 m through a weighted seawater intake 
and directly brought through a 200-mm mesh plankton net using a Flight pump with a 3.00 l-min–1. 
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Figure 4.18 The calanoid copepod Temora longicornis (A), a high-frequency time series of the abundance 
of adult male and female T. longicornis sampled in the inshore waters of the eastern English Channel (B), and 
the related log-log plot of S(t) vs. t (Equation 4.3.8) resulting from the scaled windowed variance analysis.
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output, connected to a 1.0-cm-diameter plastic tubing. Every 3. minutes, filtered organisms were 
collected and immediately preserved in a 1.0% formaldehyde solution. This resulted in a total of 
1.3.21. samples. Adult males and females from each sample were subsequently enumerated under 
a dissecting microscope. The resulting time series (Figure 4.1.8B) exhibits significant semidiurnal 
tidal cycle (that is, 1.2.5 hours) but was also characterized by very violent and erratic fluctuations. 
A previous power spectrum analysis showed a very strong scaling behavior over more than two 
decades, with b  =  1..42 (Seuront and Lagadeuc 2001.), thus suggesting that the temporal distribution 
of T. longicornis belongs to the family of fractional Brownian motions. After detrending, the scal-
ing properties of the time series shown in Figure 4.1.8B were investigated using Equation (4.3.8) and 
the fractal dimension derived from Equation (4.3.9).

4.2.3.2.3 Results and Discussion
The log-log plot of s(t) versus t shows a unique scaling regime over the whole range of available 
scales (Figure 4.1.8C), with H  =  0.3.7, thus DSWV  =  1..64. The presence of a unique scaling regime 
suggests that the same process, or similar processes, is responsible for the scaling structure of the 
abundance of T. longicornis for time scales ranging from 6 minutes to 66 hours. Using Taylor’s 
hypothesis of frozen turbulence, the related spatial scales range between 92 m and 1.20 km. Note 
that applying rescaled range (R/S) analysis (see Section 4.2.6) to the same data set returned a very 
similar value for the Hurst exponent; that is, H  =  0.3.4, thus DH  =  1..66. In contrast, the Hurst expo-
nent derived from power spectrum analysis led to a significantly lower value for H, H  =  0.21. (that 
is, DFFT   =  1..79). This is in agreement with previous studies that showed the potential differences 
in the H values returned by R/S analysis (Section 4.2.6), power spectrum analysis (Section 4.2.1.), 
roughness-length analysis (Section 4.2.3.), variogram analysis (Section 4.2.8), and wavelet analysis 
(Section 4.2.8); see, for example, Mulligan (2004) for a review. This issue is addressed hereafter in 
Section 4.2.1.0.

4.2.3.2.4 Ecological Interpretation
The fractal dimensions obtained for the temporal distribution of Temora longicornis, bounded 
between 1..76 and 1..79, are higher than those expected for passive scalar advected by three-dimen-
sional turbulence (see Section 4.2.1.). Those fractal dimensions are also lower than those found 
for phytoplankton distribution from in situ time series of in vivo fluorescence ( [ . . ];D ∈ −1 61 1 67  
Seuront et al. 1.996a, 1.996b, 1.999) and from satellite images of sea-surface chlorophyll patterns
( [ . . ];D ∈ −0 98 1 69 Denman and Abbott 1.988, 1.994; Smith et al. 1.988). This can be related to the 
differences existing between phytoplankton and zooplankton in terms of size and motility, suggest-
ing that copepod behaviors such as diel migration, phototaxis, rheotaxis, social behaviors, and pre-
dation pressure—behaviors relevant at the space and time scales of the present study—induce larger 
fractal dimensions (that is, a flatter power spectrum and weaker scale dependence) in comparison 
with phytoplankton. This is consistent with numerical experiments based on simple predator–prey 
formulations considered in a turbulent frame that demonstrated that the interactions between diel 
vertical migration and turbulent shear could lead to a flatter zooplankton power spectrum (Steele 
and Henderson 1.992). Similar conclusions were reached by Powell and Okubo (1.994) from their 
study of interacting plankton populations in two-dimensional turbulence. In addition, the fractal 
dimension estimated here from the distribution of T. longicornis is very similar to that estimated for 
the oceanic copepod Neocalanus cristatus abundance transects from the subarctic Pacific, D =180.
(Tsuda 1.995), over a similar range of scales (that is, between tens of meters and over 1.00 kilome-
ters), suggesting that the distribution of zooplankton species could be very similar independent of 
their surrounding environments. This is also consistent with the white spectra ( b  =  0) found for 
total zooplankton density in the St. Laurence estuary (Currie and Roff 2006), leading to fractal 
dimension D → 2.
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4.2.4 signal summaTion convErsion mEThod

The signal summation conversion (SSC) method is used to refine the analysis of signals for which 
b (power spectrum analysis; see Section 4.2.1. and Figure 4.5) or a (detrended fluctuation analysis; 
see Section 4.2.2 and Figure 4.1.3.) are near 1.. This method is then used to refine fractal analysis 
near the fGn/fBm boundary. Taking the cumulative sum of a signal x( t ) converts an fGn to an fBm 
signal or an fBm to a summed fBm signal. Corrected scaled windowed variance analyses—that is, 
line-detrended scaled windowed variance analysis (ldSWV) or bridge-detrended scaled windowed 
variance analysis (bdSWV)—are then applied to the cumulate series to estimate the Hurst exponent 

′H .  When 0 1< ′ ≤H  the signal is an fGn with H H= ′. In contrast, when 1 < ′H , the signal is a frac-
tional Brownian motion with H H= ′ −1.

4.2.5 dispErsion analysis

The dispersion analysis, originally introduced using relative dispersion of spatial data 
(Bassingthwaighte 1.988), was later extended to the temporal domain (Bassingthwaighte and 
Raymond 1.995). It is very similar to the original scaled windowed variance method but uses the 
standard deviation of the windows means (Figure 4.1.9). Specifically, a temporal signal x( t ) is divided 
into nonoverlapping windows of size t. The mean xi of each window is computed as:
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The standard deviation of the local means is subsequently estimated as:
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where n is the number of nonoverlapping windows of size t and xτ the average of the n xi values. 
This procedure is iterated for all possible window sizes, and for a fractal signal, SDxi

( )τ is related 
to t following the power-law form:

 SDx
H

i
( )τ τ −1  (4.42)

where H is the Hurst exponent. The dispersion analysis is applicable to fGn signals or to differenti-
ated fBm signals.

4.2.6 rEscalEd rangE analysis and ThE hursT dimEnsion, DH

4.2.6.1 theory
Historically, the rescaled range (R/S) analysis is the first method developed for assessing H. R/S 
analysis was initiated by Hurst (1.951.) and Hurst et al. (1.965) to describe the long-term depen-
dence of water levels in river and reservoirs. Specifically, R/S analysis was developed to con-
front the question of how high the Aswan Dam had to be built so that it would contain the 
greatly varying levels of the Nile within a given temporal window of size t (Figure 4.20). The 
rationale used to develop this method lies behind the three criteria of an ideal reservoir: (1.) the 
outflow is uniform, (2) the water level is the same at the beginning and at the end of the obser-
vation window, and (3.) the reservoir never overflows. Looking at retrospective records of water 
levels, x( t ), Hurst (1.951.) estimated the time series of the increase in water volume in the dam 
as the summed difference of inflow and outflow, y( t ). The range R of y( t ), R  =  ymax( t ) − ymin( t ), 
then defines how high the dam should be built. Finally, dividing the range by the standard devia-
tion of outflow fluctuations, S(t), Hurst (1.951.) found that the ratio R/S(t) showed a power-law 
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relationship with the size of the observation window t as R S H/ ( ) ,τ τ where H is the so-called 
Hurst exponent. This relation provides a sensitive method for revealing long-run correlations in 
random processes. It comes directly from the above and Figure 4.20 that R/S analysis was theo-
retically developed to work on fGn signals (or differentiated fBm signals) but provides irrelevant 
results for fBm signals.

R/S analysis can, however, more generally be applied to any regularly sampled temporal signal. 
Consider a discrete time series x( t ) and the interval, or window, of length t. Within this window, 
one can define two quantities: R(t), the range taken by the values of x( t ) in the interval t, and S(t), 
the standard deviation of the values of x( t ) within the window. R(t) is measured with respect to a 
trend in the window, where the trend is estimated as the line connecting the first and the last points 
within the window. R(t) is thus expressed by the following:

 R X t X t
t t

( ) max ( , ) min ( , )τ τ τ
τ τ

= −
≤ ≤ ≤ ≤1 1  (4.43.)

where X(t, t) is the variable defined as X t x t x tt( , ) ( ( ) ( ) )τ τ
τ

= −=Σ 1 . The mean over the time lag t is 
substracted to remove a trend in the window when the expectation of x( t ) is not zero. R(t) is then the 
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Figure 4.19 Principles of the scaled windowed variance (SWV) and dispersional (Disp) methods. SWV 
and Disp both use local statistical measures to derive the Hurst exponent H from fractional Brownian motion 
(fBm) and fractional Gaussian noise (fGn) signals, respectively. For a given interval size, these local statistical 
measures are the standard deviation SDi for SWV and the mean xi for Disp, and the related scale-dependent 
measures are the mean of local standard deviation  ( )xSDi

and the standard deviation of local means ( ).SDxi  
(See Equations 4.3.7, 4.3.8, 4.41., and 4.42.)
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self-adjusted range. S(t) is defined as:
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A reliable measurement of S(t) requires data with a constant sampling interval, because the expected 
difference between successive values of x( t ) is a function of the distance separating them. Here, S(t) 
is used to standardize the range R(t) to allow comparisons of different data sets; if S(t) is not used, 
the range R(t) can be calculated on data sets that have a nonconstant sampling interval. A discus-
sion of the importance of the division by the standard deviation S(t) to obtain a statistical quantity 
of extreme robustness can be found in Mandelbrot and Wallis (1.969).

The R/S statistics is subsequently defined as follows:

 R S R S/ ( ) ( )/ ( )τ τ τ=  (4.45)

where R/S(t) is the self-rescaled self-adjusted range. The basis of the method is that, because of self-
affinity, one expects the range taken by the values of x( t ) in a window of length t to be proportional 
to the window length to a power equal to the so-called Hurst exponent H following:

 R/S(t)  =  kt H (4.46)
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Figure 4.20 Principle of the rescaled range method. The standard deviation (SD) of a fractional Gaussian 
noise (fGn) and the range R of the corresponding fractional Brownian motion (fBm) are estimated over a 
window of size t. The Hurst exponent H is subsequently estimated as the slope of the power-law relationship 
between the ratio between R and SD and the scale of observation t; see Equation (4.46).
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where k is a constant. In particular, Feller (1.971.) proved that the asymptotic behavior for any inde-
pendent random process with finite variance is given by:

 R/S(t)  =  kt1./2 (4.47)

and are most of the time referred to as “Brownian” processes.
However, many (if not most) processes in nature are not independent random processes but show 

significant long-term correlations. In this case, the asymptotic scaling law is modified and R/S(t) is 
asymptotically given by a power law, t H. The corresponding exponent H is referred to as the Hurst 
exponent, and can be conveniently used to characterize the long-range dependence of a random 
variable. A persistent behavior (that is, an increase in the value of the random variable is expected 
to be followed by another increase) is characterized by 0.5 < H < 1.. An antipersistent behavior (that 
is, an increase in the value of the random variable is expected to be followed by a decrease) is char-
acterized by 0 < H < 0.5. Many data on natural phenomena that show persistent behavior can be 
found in the literature, including fluctuations of argon concentration (Bejar et al. 1.995), Rhine and 
Nile flush (Mandelbrot and Wallis 1.969), and genome organization (Almirantis and Provata 1.999). 
To contrast with the aforementioned Brownian processes, Mandelbrot (1.983.) introduced the concept 
of “fractional Brownian motion” to describe random processes characterized by Hurst exponents 
H such as H ≠ 0.5.

In practice, for a given window length t, one subdivides the input series in a number of inter-
vals of length t, measures R(t) and S(t) in each interval, and calculates R/S(t) as the average ratio 

R S( )/ ( ) ,τ τ  as in Equation (4.45). This process is iterated for a number of window lengths, and the 
logarithms of R/S(t) are plotted vs. the logarithm of t. If the trace is self-affine, this plot follows a 
straight line whose slope equals the Hurst exponent H. The fractal dimension of the trace can then 
be calculated following:

 DH  =  2 − H (4.48)

where H is the Hurst exponent and DH the Hurst fractal dimension.
Finally, although the R/S analysis described above has been illustrated in the framework of a 

temporal random process x( t ), one must note that it can be equivalently applied to any random pro-
cess, recorded in time or in space.

4.2.6.2 example: r/s analysis and river Flushing rates
R/S analysis was illustrated using the daily flushing rate of the Seine River (France) from 1.993. to 
2001. (Figure 4.21.A). The resulting log-log plot of R/S(t) vs. t does not follow a straight line over 
the whole range of available t, but instead two scaling regions are separated by a clear break for 
t  =  63. days (Figure 4.21.B). The related Hurst exponents are H  =  0.67 and H  =  0.43. for t < 63. and 
t  >  63. days, respectively. These exponents reflect the presence of both persistence and antipersis-
tence in the Seine water-flow statistics. The corresponding Hurst fractal dimensions are DH  =  1..3.3. 
and DH  =  1..57. This observation clearly diverges from the water-flow statistics of the Rhine (1.808–
1.966), which is characterized by its Brownian properties (H ≈ 0.55 and DH  =  1..45), and also from 
the water-level statistics of the Nile (622 to 1.469), which show a high degree of persistence, and 
H  ≈  0.51. (DH  =  1..09) (Mandelbrot and Wallis 1.969).

4.2.7 auTocorrElaTion analysis

Autocorrelation (AC) functions are widely used in time-series analysis to describe to what extent the 
value of a given event, x( t ), of a time series depends on its past values h lag apart, that is, x(t − h); see, 
for example, Legendre and Legendre (2003.). Autocorrelation functions have, however, rarely been 
directly used to estimate the Hurst exponent H and the related fractal dimension.
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The h-lagged autocorrelation coefficient, r(h), defines how strongly the local value of the signal 
x( t ) depends on the one h lag before, that is, x(t − h). The h-lagged autocorrelation coefficient is 
bounded between −1. and 1.. Specifically, a positive correlation indicates that the trends of deviation 
of x( t ) and x(t − h) relative to the mean of the signal are in the same direction. In contrast, negative 
values of r(h) reveal opposite trends of deviation of x( t ) and x(t − h) relative to the mean of the signal, 
that is, anticorrelation. The autocorrelation coefficient, r(h), for lags h (h  =  0, 1., . . . , n) is defined as:

 r
N h

x t x x t h x
Nh

i h

N

=
− −

− − −










 −

= +
∑1

1

1

1
1

( ( ) )( ( ) ) (xx t x
t

N

( ) )−










=

∑ 2

1

  (4.49)

Using the classical definition of the correlation coefficient (see Feller 1.968), van Beek et al. (1.989) 
derived that in the special case h  =  1. the nearest-neighbor correlation between values of an fGn 
signal was expressible directly by the correlation coefficient r:

 r  =  2r − 1. (4.50)
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Figure 4.21 The Hurst dimension, illustrated using a time series of daily flushing rate of the Seine River 
(France) from 1.993. to 2001. (A) that clearly show two scaling regimes (B), with DH = 1..3.3. and DH = 1..57 for 
scales lower and higher than 63. days, respectively.
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where the exponent r relates to the Hurst coefficient of the fBm signal whose increments yield 
the fGn signal in question as r  =  2HfGn − 1.. Equation (4.50) has further been extended to correla-
tion between nonadjacent neighbors through the autocorrelation function of an fGn signal with 
0  ≤  H  ≤  1. (Bassingthwaighte and Beyer 1.991.) as:

 r h h hh
H H H= + − + −1

2
1 2 12 2 2(| | | | | | )  (4.51.)

The closer H is to 1., the slower r(h) decays (Figure 4.22), that is, the longer the memory of the 
process. More generally, long-memory correlation (or long-term dependence) is for 0.5  <  H  <  1., 
H  =  0.5 when there is no correlation in the fGn signal, and when H  =  0.5 the fGn signal shows 
anticorrelation. Note that Equation (4.51.) is applicable to fGn or differenced fBm signals for both 
discrete and continuous values of h (Bassingthwaighte and Beyer 1.991.).

4.2.8 sEmivariogram analysis

4.2.8.1 theory
Semivariogram (SV) analysis is based on geostatistics and regionalized variables (RV) theory 
(Matheron 1.971.; Journel and Huijbregts 1.978), and is applicable to stationary signals. RVs are con-
tinuous variables whose variations are too complex to be described by traditional mathematical 
functions (Phillips 1.985). Patterns of variation in RVs can then be expressed by their semivariance 
g(h) defined as:

 γ ( )
( )

[ ( ) ( )]
( )

h
N h

x t x t h
t

N h

= − +
=

∑1

2
2

1

 (4.52)

where x(t + h) is the value of the dependent variable x( t ) at a point separated from point t by distance, 
or lag h, and N(h) is the number of pairs of data points separated by the lag h. The semivariogram is 
the plot of g  (h) as a function of h. The semivariance has, under certain conditions (see, for example, 
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Figure 4.22 The autocorrelation function r(h) of simulated fractional Gaussian noise (fGn) signals with 
different Hurst exponents H shown as a function of the lag, h. The correlation is trivially maximum at r(0)  =  1., 
and the closer H is to 1., the slower n decays (that is, the longer the memory of the process). Long-term depen-
dence (or long-memory correlation) occurs for 0.5 < H < 1., H = 0.5 when there is no correlation, and when 
H  <  0.5 the fGn signal shows anticorrelation.
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Berry and Lewis 1.980 for further developments), the form of a fractal function that scales with h4−2D 
at the origin; the fractal dimension Dv of the RV x( t ) can then be estimated from the slope m of a 
log-log plot of the semivariogram of x( t ):

 D
m

v = −( )4

2
 (4.53.)

Because semivariogram estimates tend to deteriorate with increasing lag h for finite-length sample 
series (that is, greater distances are more affected by low sample sizes and spurious properties of the 
data) (Journel and Huijbregts 1.978), it is recommend that consideration be given to h values greater 
than N(h)/3. to N(h)/2.

4.2.8.2  case study: Vertical distribution of Phytoplankton 
in tidally mixed coastal waters

4.2.8.2.1 Ecological Framework
As discussed in Section 4.2.1..3., marine systems exhibit intimate relationships between physical and 
biological processes (Legendre and Demers 1.984; Mackas et al. 1.985), as shown by the coupling 
between the distribution of phytoplankton populations and the structure of their physical environ-
ment over a wide range of spatial and temporal scales (Haury et al. 1.978). Specifically, in tidally 
mixed coastal waters such as the eastern English Channel (Figure 4.8), the dissipation of tidal 
energy is regarded as responsible for the vertical homogenization of the shallow (50 m maximum 
depth) inshore and offshore water masses. However, recent investigations have shown that the 
vertical distribution of phytoplankton biomass, regarded as vertically homogenized by vertical 
mixing—and then characterized by a mean concentration and its associated variability (that is, the 
variance S2)—should also be regarded as being vertically structured in terms of fractal dimension 
(Seuront and Lagadeuc 1.998). Moreover, this fractal structure appears to be both space and time 
dependent, in relation respectively with the inshore–offshore hydrological gradient and the tidal 
advective processes (Seuront and Lagadeuc 1.998). However, these results, based on the analysis of 
the data recorded along an inshore–offshore transect and characterized by an extreme intricacy of 
space-time scales and processes and by severe limitations in terms of sampling temporal resolution, 
led to a lack of generality concerning the processes responsible for the observed structure for both 
inshore and offshore locations.

Herein, the goal of this section is to provide a precise quantification of the vertical structure of 
phytoplankton distribution at the scale of the high-low tidal cycles and at the scale of neap-spring 
tidal cycles for both inshore and offshore waters of the eastern English Channel in order to specify 
and generalize preliminary results by Seuront and Lagadeuc (1.998).

4.2.8.2.2 Experimental Procedures and Data Analysis
The data set studied in this paper consists of hourly measurements of physical parameters (tempera-
ture, salinity, and light transmission) and in vivo fluorescence (an index of phytoplankton biomass) 
taken from the surface to bottom with an SBE 25 Sealogger CTD and a Sea Tech fluorometer dur-
ing seven sampling experiments (numbered from S1. to S7) conducted between 1.993. and April 1.997 
in different tidal conditions both in offshore and inshore waters of the eastern English Channel 
(Figure 4.8; Table 4.4). Current speed and direction were recorded with an Aanderaa current meter 
every 5 minutes at different depths (Table 4.4). Water samples were collected from each sampled 
depth at 2-hour intervals for data sets S1. to S4 and at 1.-hour intervals for data sets S5 to S7, and 
chlorophyll a concentrations (1.-liter filtered frozen samples, extracted with 90% acetone, assayed 
in a spectrophotometer and the chlorophyll a concentration calculated following Strickland and 
Parson, 1.972) were estimated for each sampled depth.
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4.2.8.2.3 Results
Fractal dimensions Dv were estimated for in vivo fluorescence, temperature, and salinity, which exhib-
ited a scaling behavior over the whole range of studied scales, for the whole data set (Figure 4.23.). 
Their linearity over the whole range of spatial scales illustrates spatial dependence, suggesting that 
the same process, or at least similar processes, can be regarded as the source of physical and biologi-
cal patterns, whatever the sampling locations or the hydrodynamical conditions. However, although 
the mean fractal dimensions of temperature, salinity, and in vivo fluorescence estimated for the whole 
data set respectively as 1..52 ± 0.02 ( x ±SD  SD), 1..53. ± 0.02, and 1..63. ± 0.1.4 were significantly differ-
ent (Kruskal-Wallis test, p < 0.05), the temperature and salinity fractal dimensions were not signifi-
cantly different (Dunn test, p > 0.05; Siegel and Castellan 1.988). At the scale of the whole sampling 
experiment, the vertical distribution of phytoplankton cells then cannot be regarded as being wholly 
driven by vertical mixing. Finally, as previously shown by Seuront and Lagadeuc (1.998), it must be 
added that light transmission did not exhibit even a partial scaling behavior (that is, its variability is 
independent of scale), and therefore could not have been subjected to fractal analysis.

The mean empirical estimates of the fractal dimensions Dv of temperature, salinity, and in vivo 
fluorescence estimated for each sampling experiment led to further results (Table 4.5). There were 
no significant differences between salinity and temperature fractal dimensions between sampling 
experiments (Kruskal-Wallis test, p > 0.05). On the contrary, in vivo fluorescence fractal dimen-
sions were significantly different (p < 0.05) and exhibited very specific behaviors. Fluorescence 
fractal dimensions were consistently significantly lower for inshore than for offshore locations 
(Wilcoxon-Mann-Whitney U-test, p < 0.05), with values ranging from 1..54 ± 0.1.2 to 1..82 ± 0.07, 
respectively. Moreover, correlation analysis demonstrated that fluorescence fractal dimensions were 
significantly correlated (p < 0.05) with current direction for each sampling experiment for both 
inshore and offshore waters (Table 4.6), except for sampling experiment S1. and S2, characterized 
by their very low chlorophyll a concentrations (cf. Table 4.4). There were no significant correlations 
between fluorescence fractal dimension and current speed, or between fluorescence fractal dimen-
sion and phytoplankton biomass at the scale of the high-low tidal cycles. In contrast, at the scale of 
the neap-spring tidal cycles, fluorescence fractal dimension exhibited significant (p < 0.05) positive 
correlations with current speed for both inshore and offshore waters (Figure 4.24). In vivo fluores-
cence fractal dimensions increased with hydrodynamical conditions. There was also a significant 
correlation (p < 0.05) between mean fluorescence fractal dimensions and mean chlorophyll a con-
centrations (Figure 4.25), suggesting a density-dependent control of the vertical fractal structure of 
phytoplankton biomass distribution.

table 4.4
characteristics of the seven sampling experiments considered in the Present study

sampling date tidal conditions sampling site chl. a ( g. l )1µµ −− n

S1. 04/29/93.—05/01./93. NT OW 1..50 3.6

S2 03./20/94—03./21./94 NT IW 1..50 3.6

S3. 09/07/94—09/08/94 ST IW 7.50 24

S4 02/04/96—04/04/96 ST IW 1.3..80 47

S5 04/6/1.996 ST IW 1.5.00 1.5

S6 04/7/1.996 ST OW 3..00 1.3.

S7 06/21./1.998 ST IW 8.40 24

Notes:  NT: neap tide; ST: spring tide; OW: offshore waters; IW: inshore waters. Chl. a: chlorophyll a concentration; 
N: number of vertical profiles.
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Figure 4.23 Double logarithmic semivariograms of temperature (A), salinity (B) and in vivo fluorescence (C) 
for sampling experiment S1., shown together with their best fitting line. The fractal dimension Dv is estimated 
as Dv = (4 − m)/2, where m is the slope of the log-log plot of the empirical semivariance g (h) vs. the lag h, 
in a log-log plot. Here, m = 1..01. (r2 = 0.99), 0.99 (r2 = 0.97), and 0.4 (r2 = 0.99) for temperature, salinity, and 
fluorescence, respectively.
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4.2.8.2.4 Ecological Interpretation
The fractal dimensions Dv estimated over the whole range of available spatial scales suggest that 
the scales of spatial dependence are very similar for in vivo fluorescence, salinity, and tempera-
ture, indicating similar sources of physical and biological patterns. However, the differences shown 
between fractal dimensions of temperature, salinity, and fluorescence fractal dimensions suggest 
that the vertical distribution of phytoplankton cells is very specific and cannot be regarded as being 
passively advected by mixing processes, even when chlorophyll a concentrations are very low, as 
it is the case for sampling experiments S1. and S2 (cf. Table 4.5). Thus, as shown by the correlation 
analysis, fractal dimensions of temperature and salinity are tidally and geographically independent, 
as opposed to fluorescence fractal dimensions, which are (1.) significantly higher in offshore loca-
tions, (2) dependent on the current direction at the scale of the high-low tidal cycle, (3.) dependent 
on the current speed at the scale of the neap-spring tidal cycles, and (4) dependent on phytoplankton 
concentration at the biological annual cycle. The vertical structure of the phytoplankton biomass 
is then more homogeneous, or less structured, in offshore locations and during flood tide, but also 
when hydrodynamical conditions are high and phytoplankton concentrations are low, showing that 
the structure of the vertical distribution of phytoplankton biomass is determined by different pro-
cesses following the implied temporal scales.

table 4.5
mean Fractal dimension of temperature, salinity, and In Vivo Fluorescence Vertical 
Profiles for the seven sampling experiments

temperature salinity In Vivo Fluorescence

S1. 1..50 (0.05) 1..52 (0.04) 1..82 (0.07)

S2 1..52 (0.06) 1..53. (0.05) 1..63. (0.09)

S3. 1..54 (0.03.) 1..50 (0.04) 1..57 (0.09)

S4 1..52 (0.04) 1..54 (0.06) 1..46 (0.1.2)

S5 1..53. (0.05) 1..53. (0.04) 1..54 (0.1.0)

S6 1..49 (0.03.) 1..52 (0.05) 1..82 (0.06)

S7 1..53. (0.04) 1..55 (0.06) 1..56 (0.1.0)

Note: The numbers in parentheses are the standard deviations.

table 4.6
spearman’s rank correlation coefficients between in vivo Fluorescence Fractal 
dimensions D and current direction (D/cdirection), current speed (D/cspeed),  
and mean chlorophyll a concentration (D/chl. a)

d/cdirection d/cspeed d/chl. a

S1. 0.22 0.22 0.1.0

S2 0.1.9 –0.1.0 0.20

S3. 0.76 ** –0.3.3. 0.01.

S4 0.79 ** –0.1.4 –0.1.9

S5 0.95 ** –0.1.2 0.3.6

S6 0.80 ** -0.20 -0.3.7

S7 0.89 ** -0.1.3. 0.28

** 1.% Significance level.
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These results confirm and generalize previous studies conducted in the same environment 
(Seuront and Lagadeuc 1.998). In particular, with fluorescence fractal dimensions higher for offshore 
than for inshore waters, these differences could be associated to a purely density-dependent effect 
(Seuront and Lagadeuc 1.998), to a qualitative effect relative to the specific composition of phyto-
plankton assemblages (Truffier et al. 1.997; Peta et al. 1.998), or to a combination of the two previous 
hypothesized phenomenologies. Whatever that may be, an increase in fluorescence fractal dimen-
sions should have been expected during flood tide because of the offshore water advection associated 
with the semidiurnal M2 tidal component, instead of the significant decrease generally observed. 
At the scale of the high-low tidal cycles, it can then be suggested that the observed differential tidal 
structure of phytoplankton distribution could be associated with the differential mixing occurring 
during a tidal cycle between water masses qualitatively and quantitatively different in terms of 
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Figure 4.24 Relationship between the fractal dimensions Dv estimated for in vivo fluorescence vertical 
profiles and the speed of the tidal current (m s–1.) for inshore (black dots) and offshore waters (open dots) of 
the eastern English Channel. The best linear fit between Dv and current speed (dotted line) is significant at the 
5% confidence level.
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Figure 4.25 Relationship between the fractal dimensions Dv estimated for in vivo fluorescence vertical 
profiles and chlorophyll a concentration for inshore (black dots) and offshore waters (open dots) of the eastern 
English Channel. The best linear fit between Dv and chlorophyll a concentration (dotted line) is significant at 
the 5% confidence level.
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phytoplankton populations that could then be regarded as a secondary source of heterogeneity. On the 
other hand, at the scale of the neap-spring tide cycles, phytoplankton distributions appear controlled 
by hydrodynamical conditions; high hydrodynamical conditions lead to more homogeneous distribu-
tions characterized by high fractal dimensions. Finally, comparisons between mean fractal dimen-
sions of fluorescence and mean chlorophyll a concentrations for each sampling experiment confirm 
the density-dependent control of phytoplankton structure proposed by Seuront and Lagadeuc (1.998) 
as a potential explanation of the different fractal dimensions observed for the vertical distribution 
of phytoplankton biomass between inshore and offshore waters. In particular, this means that the 
heterogeneity of phytoplankton is all the more high as its density is high, and the observed density-
dependence could be a consequence of the aggregation processes of phytoplankton cells, mainly 
driven by phytoplankton density and hydrodynamism (see, for example, Kiørboe 1.997).

4.2.9 wavElET analysis

This method is only briefly described here, as the interested reader can refer to Dremin et al. (2004) 
and Fisher et al. (2004) for an introduction on the subject, and to Arnéodo et al. (1.995), Jones et al. 
(1.996), and Simonsen et al. (1.998) for details on different wavelet methods to estimate the Hurst 
exponent H. Briefly put, a wavelet is a waveform of limited duration with an average value of zero. 
Although Fourier analysis breaks up a signal into cosine wave components of various frequencies, 
wavelet analysis decomposes a signal into shifted and stretched versions of the original wavelet. 
Wavelets are then parametrized by a scale parameter (a > 0) and a translation parameter (−∞  <  b  <  ∞) 
that are incorporated into one single function y(x) as (for example, Simonsen et al. 1.998):

 ψ ψa b x
x b

a, ( )= −



  (4.54)

The wavelet transform of a signal x( t ) is then defined as:

 W a b
a

t x t tx a b( , ) ( ) ( ),
*=

−
∫1 ψ d





 (4.55)

where y*
a, b( t ) is the complex conjugate of ya, b( t ). It comes from Equation (4.1.) that any self-affine 

signal x( t ) scales with the time scale t  as:

 x t H( )τ τ  (4.56)

Incorporating Equation (4.56) into Equation (4.55) leads to:

 W a ax
w( )  (4.57)

where w H= +1
2 , and W a W a bx x b

( ) ( , )= is the average of Wx(a, b) over all location parameters b. 
This method, referred to as the average wavelet component (AWC) (Simonsen et al. 1.998) has been 
proven to be very useful in time-series analysis (Simonsen 2003.) and basically consists in finding 
a representative wavelet amplitude for a given scale a. The exponent H is then estimated from the 
slope of Wx(a) versus a on a log-log scale. The exponent H obtained from the time series of the abun-
dance of the calanoid copepod Temora longicornis (Figure 4.1.8B) using power spectrum analysis 
(Figure 4.26A) and the AWC method (Figure 4.26B) are statistically undistinguishable. Note that 
this method can be applied to fBm signals or to cumulatively summed fGn signals.
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It is finally stressed that wavelet-based spectra might be a preferable approach because wavelets 
are localized, in contrast to the infinite sine waves used in Fourier analysis, and can thus be directly 
applied to data that are anisotropic and nonstationary, resulting in one-dimensional series that have 
both inherent directionality and trend (Malamud and Turcotte 1.999).

4.2.10 assEssmEnT oF sElF-aFFinE mEThods

4.2.10.1 comparing self-affine methods
Despite the dichotomy between fGn and fBm signals (see Section 4.1..5) and the related analysis 
techniques to be chosen to estimate the Hurst exponent H (Figure 4.27 and Figure 4.28), the fractal 
measures reported in this chapter relate to each other in a simple manner as shown in Table 4.7. 
However, inconsistencies between fractal measures can be found in the literature. For instance, a 
recent paper by Sims et al. (2008) that identified a consistent power law in the foraging behaviors 
of a range of marine predators reported mean values of a  =  1..08 and b  =  0.8 for the diving time 
series of the five species they considered. However, from Table 4.7, it readily comes that b  =  2a − 1., 
which is not the case here. Similarly, for the same krill abundance time series, they contradic-
torily report a  =  0.9 and b  =  0.3.. A successful and meaningful fractal analysis requires that 
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Figure 4.26 Hurst exponents estimated using power spectrum analysis (A) and the average wavelet com-
ponent (AWC) (B). The power spectrum Hurst exponent is estimated from Equation (4.1.3.) as (b  − 1.)/2 = 0.21. 
(Section 4.2.1..1.); and the wavelet Hurst exponent from Equation (4.57) as w  − 1./2 = 0.22.
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Figure 4.27 Flowchart for fractal analysis initiated through power spectrum analysis (PSA). First, power 
spectrum analysis is used to assess the existence of a power-law behavior, in which case the class to which the 
data set belongs (fGn or fBm) is identified using the value of the PSA exponent b. The signal is then analyzed 
with methods appropriate for fGn or fBm, and the average of method-specific H values is considered as the 
most reliable estimate of the Hurst exponent of the original signal. (*: a signal is considered as nonfractal in 
the absence of power-law behavior and when the power-law behavior spans less than 1. decade; **: a signal is 
considered as fractal in the presence of a power-law behavior spanning more than one decade, ideally more 
than two decades; AC: autocorrelation analysis; R/S: rescaled range analysis; Disp: dispersional analysis; SV: 
semivariogram analysis; SWV: scaled windowed variance analysis; AWC: average wavelet analysis; SSC: signal 
summation conversion method; ldSWV: line-detrended scaled windowed analysis; bdSWV: bridge-detrended 
scaled windowed analysis.)
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Figure 4.28 Flowchart for fractal analysis initiated through detrended fluctuation analysis (DFA). First, 
detrended fluctuation analysis is used to assess the existence of a power-law behavior, in which case the class 
to which the data set belongs (fGn or fBm) is identified using the value of the DFA exponent a. The signal is 
then analyzed with methods appropriate for fGn or fBm, and the average of method-specific H values is con-
sidered as the most reliable estimate of the Hurst exponent of the original signal. (*: a signal is considered as 
nonfractal in the absence of power-law behavior and when the power-law behaviour spans less than 1. decade; 
**: a signal is considered as fractal in the presence of a power-law behavior spanning more than one decade, 
ideally more than two decades; AC: autocorrelation analysis; R/S: rescaled range analysis; Disp: dispersional 
analysis; SV: semivariogram analysis; SWV: scaled windowed variance analysis; AWC: average wavelet anal-
ysis; SSC: signal summation convertson method; ldSWV: line-detrended scaled windowed analysis; bdSWV: 
bridge-detrended scaled windowed analysis.)
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fractal measures returned by different methods be consistent with each other. In addition, due to 
the dichotomy between fGn and fBm signals that underlie the choice of an appropriate analysis 
(Figure 4.27 and Figure 4.28), a reliable and meaningful fractal analysis will be achieved through 
the following steps:

 1.. Identify the class of the signal using either power spectrum analysis (Section 4.2.1., 
Figure 4.5) or detrended fluctuation analysis (Section 4.2.2, Figure 4.1.3.).

 2. Analyze the signal with different methods, and take the average of the resulting H values 
as the most reliable estimate of the Hurst exponent (Figure 4.27 and Figure 4.28).

 3.. Systematically report estimates of the Hurst exponent H along with the following:
 a. The class of the signal as HfGn and HfBm.
 b. The numerical method used to estimate HfGn and HfBm.

4.2.10.2 From self-affinity to intermittent self-affinity
It is, however, implicit from the content in this chapter that all of the above methods return relevant 
results if the signals to be analyzed belong to fGn or fBm signal class. Instead, many natural phe-
nomena are characterized by their deviation from “Gaussianity” and are characterized by local, 
sharp fluctuations over a wide range of low-density values (Figure 4.29A). In the context of those 
intermittent signals, the linear relationship assumed between, for example, the spectral exponent 
b and the Hurst exponent H—that is, HfBm  =  (b − 1.)/ 2 (see Equation 4.1.3.) and HfGn  =  (b + 1.)/ 2 
(see Equation 4.1.4)—does not hold anymore. Because the power spectrum signatures of a frac-
tional Brownian motion and intermittent fractional Brownian motion do not significantly differ 
(Figure 4.29B), the identification of the class to which a data set belongs requires the dichotomy 
between fractional Brownian motion (fBm) and intermittent fractional Brownian motion (ifBm). 
This can be achieved using the qth-order structure functions that are an empirical generalization 
to high orders of moments in physical space of the power spectrum. The structure functions are 
defined as

 | ( )| ( )∆Q q qτ τ ς  (4.58)

table 4.7
correspondence between the characteristic exponents derived through methods for self-
affine Fractals and the hurst exponents of fbm, HfBm, fgn, and HfGn

technique exponent hurst exponent

HfBm HfGn

Power spectrum analysis b 2HfBm+1. 2HfGn −1.

Detrended fluctuation analysis a HfBm +1. HfGn

Scaled windowed variance analysis H HfBm —

Dispersional analysis H — HfGn

Rescaled range analysis H — HfGn

Autocorrelation analysis r — 2 HfGn −1.

Semivariogram analysis m — 2HfGn

Average wavelet component analysis w 1./2 + HfBm —
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where ΔQ(t) is the fluctuations of a scalar signal at scale t and “ . ” means statistical average; 
that is, | ( )|∆Q qτ  is the statistical moments of the fluctuations ΔQ(t)  =  Q(t + t) − Q( t ). Here, 
instead of considering discrete statistical moments as the mean (q  =  1.), variance (q  =  2), skew-
ness (q  =  3.), and kurtosis (q  =  4), Equation (4.58) gives the scale-invariant structure functions’ 
exponent z(q), which continuously characterizes all the statistics of the signal. The first moment 
z(1.) gives the “intermittent Hurst exponent” and defines the scaling of the average fluctuation; 
z(1.)  =  0 for scale-independent signals. The second moment is linked to the power spectrum expo-
nent b as b  =  1.  +  z(2). For fractional Brownian motion signals, z(q) is linear (Figure 4.3.0). In 
contrast, for intermittent signals, this function is nonlinear and convex (Figure 4.3.0). Further the-
oretical and practical developments of structure function can be found in Chapter 8. Specifically, 
Equations (4.1.3.) and (4.1.4) would lead to a systematic underestimation of the Hurst exponent 
HfBm for intermittent fractional Brownian motion (ifBm; b  >  1.) and a systematic overestimation 
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Figure 4.29 Time series of grid-generated turbulent velocity recorded by hot-wire velocimetry at 1.00 Hz 
in a circular flume (Seuront et al. 2004) and a synthetic fractional Brownian motion time series with the same 
spectral properties as the empirical one (A). Although the empirical time series is clearly more intermittent 
than the synthetic one, their power spectra are very similar, showing a power-law behavior with b = 5/3. over 
more than three decades (B). The roll-off observed for the empirical power spectrum at high frequencies is 
related to the electronic limitations of the instrument.
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of HfGn for intermittent fractional Gaussian noise (ifGn; b  <  1.) (see Figure 4.3.1.). A meaning-
ful fractal analysis thus requires first the dichotomy between intermittent and nonintermittent 
signals. Nonintermittent signals can be analyzed following the step-by-step approach proposed 
in Section 4.2.1.0.1.. Intermittent signals have to be analyzed using appropriate techniques, as 
described in detail in Chapter 8.
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Figure 4.30 Structure function analysis of the empirical and simulated time series shown on Figure 4.29. 
The exponent z (q) is nonlinear and convex for the empirical (intermittent) time series (gray dots), while z (q) is 
linear for the simulated fractional Brownian motion (black dots) and fits the theoretical expectation z (q)  =  qH, 
where H = z (1.).
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Figure 4.31 Comparison of the “Hurst” exponents H obtained for the time series of temperature (black 
diamonds), salinity (gray diamonds), in vivo fluorescence (open dots), dissolved inorganic nutrients (open 
triangles), and zooplankton abundance (open square) using methods developed for the analysis of fBm and 
fGn signals (HfBm /HfGm); and using structure function analysis, Hz(q). (Temperature, salinity, and fluorescence 
data are from Seuront et al., 1.996a, 1.999; Seuront, 1.999, 2005b. The dissolved inorganic nutrient data are 
from Seuront et al., 2002; zooplankton data are from Seuront and Lagadeuc, 2001..)
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5 Frequency Distribution 
Dimensions

A common procedure for looking at the level of organization of any data set is to study the prob-
ability density function (PDF) or the cumulative density function (CDF). In particular, cumulative 
hypergeometric frequency distributions have been found in many areas of the natural sciences (see, 
for example, Laherrere and Sornette 1.998 for a review) and imply a wide range of values with many 
small values and few large values. This chapter focuses on several aspects of the cumulative fre-
quency distribution of self-similar and self-affine patterns. This includes theoretical investigations 
of the correspondence between cumulative distribution functions and probability density functions 
(Section 5.1.) and the descriptions of the frequency distributions of intensities, areas, and volumes 
(Sections 5.2, 5.3., and 5.4). Special attention is finally given to rank-frequency distributions, from 
their original development in linguistics and their link to information theory and entropy to their 
effectiveness as a simple and direct diagnostic tool for ecologists to assess ecosystem complexity 
and their applicability to the analysis of symbolic sequences (Section 5.5).

5.1 cumulatiVe distribution Functions  
and Probability density Functions

5.1.1 ThEory

The Pareto law was originally introduced in economics to describe the number of people whose per-
sonal incomes exceeded a given value (Pareto 1.896). More generally, the Pareto law of any random 
variable X is described in terms of the cumulative density function (CDF):

 P[X ≥ x] ∝ x−f (5.1.)

where x is a threshold value, and f is the slope of a log-log plot of P[X ≥ x] vs. x. Note that Equation (5.1.) 
can be equivalently rewritten in terms of the PDF as (Faloutsos et al. 1.999):

 P[X = x] ∝ x−m (5.2)

where m ( m = f  + 1.) is the slope of a log-log plot of P[X = x] vs. x. Note that Pareto’s law has also been 
used to describe self-organized criticality (SOC) in a range of natural phenomena (see Section 6.3.).

5.1.2 casE sTudy: moTion bEhavior oF ThE inTErTidal gasTropod Littorina Littorea

5.1.2.1 the study organism
The common periwinkle, Littorina littorea (Linnaeus 1.758), is among the most abundant herbivo-
rous gastropod molluscs of the Western and Northern European coasts. L. littorea is probably the 
best known of its family, as it has been collected and eaten for centuries. L. littorea was introduced 
to North America from Europe in the mid-1.800s to Nova Scotia either through ballast waters or for 
food (Bertness 1.999). Since their arrival, they have managed to outcompete most local species to 
become the dominant herbivore in the rocky intertidal zone from New England to Chesapeake Bay 
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(Bertness 1.999). Their spread was limited to most of the East Coast of North America, which is 
compatible with the temperature ranges that exist in Europe (Levinton 2001.).

Littorina littorea normally grow to about 2 to 3. centimeters in length (Bertness 1.999) and have 
an average life span of 5 to 1.0 years (Buczaki 2002). The general morphology differs from region to 
region, but they have a dark grey or black conical shell (Figure 5.1.a) with spiral ridges that evolves 
toward a smooth surface with age. L. littorea is widely distributed on most rocky shores from the 
upper shore into the sublittoral, except in the most exposed areas. It can also be found in sandy and 
muddy habitats such as estuaries and mud flats, and is fairly tolerant of brackish water.

Like its land relative, the snail, L. littorea move on a muscular, ciliated foot, secreting a film of 
slimy mucus on which they can slide and move (Brusca and Brusca 1.990). They forage primarily 
underwater or during cool, low tides, or when ocean spray moistens the rocks (Figure 5.1.b). The 
pedal retractor muscle shortens and lengthens the foot so that the organism can have the option of 
hiding in its shell for periods of time. When not walking or exposed to the sun for a long time, the L. 
littorea often seeks shelter in a shaded crevice and seals the gap between its shell and the rock with 
mucus to avoid desiccation or being swept away by currents and breaking waves (Lerman 1.986).

Periwinkles graze on a wide range of food items from nonsiliceous microalgae over diatoms 
to leathery and coralline algae (Steneck and Watling 1.982). L. littorea, however, graze preferen-
tially on periphyton (that is, a complex matrix of microalgae, cyanobacteria, heterotrophic bac-
teria, and detritus attached to submerged surfaces such as rocks) and ephemeral macroalgae such 
as Enteromorpha sp. (Figure 5.1.c). This species is so voracious that at high densities (up to 600 to 
1.000 per square meter; Bertness 1.999), it will consume all ephemeral algae, similar to the destruc-
tive feeding patterns of sea urchins (Bertness 1.999). L. littorea are important grazers in intertidal 
ecosystems and often control the dominant algae (Lubchenco 1.983.).

5.1.2.2 experimental Procedures and data analysis
The motion behavior of L. littorea was investigated on a rocky platform typical of the rocky habitats 
found along the French coast of the eastern English Channel. This platform ranges over the whole 
intertidal zone, bounded between the upper and lower limits reached by the tidal flow at high and 
low tide, respectively. The platform was topographically homogeneous, dominated by bare rocks 
partially covered by the common barnacle Balanus balanoides and with a few cracks and crevices 
occupied by the blue mussel Mytilus edulis. Three sites were chosen for their decreasing immersion 

Figure 5.1 The intertidal gastropod Littorina littorea in its typical rocky environment while sealed to a dry 
rock. (Modified from Seuront et al., 2007.)
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time during high tide at 50 m (site A), 70 m (site B), and 1.3.0 m (site C) from the lower limit of 
the low tide and were all submersed at high tide. At each of the three locations, 3.0 specimens of  
L. littorea were captured, individually measured, and marked with numbered plastic tags (2 mm × 
3. mm) fixed to the dorsal part of the shell with inert glue and released from a single point. The shell 
sizes of the three groups of individuals were significantly different (Kruskal-Wallis H-test, p < 0.01.) 
with 1.5.27 ± 0.15 mm at site A, 1.4.68 ± 0.17 mm at site B, and 1.3..69 ± 0.18 mm at site C. After the 
release of individuals on 20 March 2006, the three release areas were searched on 1.4 successive 
daylight low tides. The direction of a sighted L. littorea from the release stake was measured with a 
compass and distance (nearest centimeter) with a tape, and the apparent distances traveled from one 
low tide to the next were estimated. Each site thus provided 420 measurements of distance traveled. 
No movements were observed at low tide during the distance measurements.

5.1.2.3 results
The successive displacements of L. littorea are consistently characterized by a very intermit-
tent behavior, with a few localized large displacements over a wide range of small displacements 
(Figure 5.2). The corresponding displacements ranged from 1. to 1.558 cm in site A, 1. to 71.5 cm in 
site B, and 1. and 1.084 cm in site C. These intermittent distributions result in a significantly non-
normal distribution (p < 0.01.) with elevated positive skewness g1., g1. = 6.1, 3..4, and 5.1. in sites A, B, 
and C, respectively. None of the distributions were statistically different from the others (Kruskal-
Wallis H-test, p > 0.05).

To further quantify the property of the extreme displacements leading to the observed positively 
skewed distributions, Equation (5.1.) has been rewritten as:

 P[ld = l] ∝ l−m (5.3.)

where ld is the displacement length, l a threshold value, and m (1. < m ≤ 3.) characterizes the power-
law behavior of the tail of the distribution. Equation (5.3.) corresponds to a family of distributions 
defined according to the values of m. These distributions mean that extremely long movements 
occurred more often than would be expected if the forager exhibited movement lengths with a 
normal distribution. For m ≥ 3., the distribution is Gaussian (which according to the central-limit theo-
rem has a finite variance) and the motion is equivalent to Brownian motion walks. For 2 ≤ m < 3., the 
scaling is superdiffusive (Shlesinger et al. 1.996), while the value m = 2 indicates that the scaling 
becomes quadratic in time and corresponds to the lower extreme of superdiffusive processes, 
that is, Lévy flight (Shlesinger et al. 1.996). In contrast, values m ≤ 2 do not correspond to prob-
ability distribution that can be normalized (Shlesinger et al. 1.996). The smaller m is, the more 

900
1000

700
600
500
400

200
300

100
0

Littorina littorea Individuals

D
ist

an
ce

 T
ra

ve
le

d 
(c

m
)

800

Figure 5.2 Intermittent in the successive displacements in Littorina littorea motion behavior observed at 
site A, located 50 m away from the lower limit of low tide. Each dotted line separates the 1.4 successive records 
of each of the 3.0 tracked individuals.
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intermittent the distribution is. When m ≤ 3., the variance of the process diverges, and when m ≤ 2 
the mean is not defined. The parameters m were estimated for sites A, B, and C as the slope 
of P(ld) vs. ld in log-log plots (Figure 5.3.). The values of m estimated from L. littorea displace-
ments were all significantly smaller than 2 (p < 0.01.), and significantly different from each other  
(p < 0.01.) with m = 2.22 ± 0.02 for site A, m = 2.43. ± 0.05 for site B, and m = 2.67 ± 0.04 for site C. 
The scaling then falls into the category of superdiffusive processes, that is, 2 ≤ m.

5.1.2.4 ecological interpretation
The increase in the parameter m with increasing distances from the lower limit of the low tide sug-
gests that the intermittency of movement patterns increases with increasing immersion time. This 
is consistent with reported increase in periwinkle foraging activity when underwater at high tide 
(Lubchenco 1.978). In addition, the maximum displacements observed here (1.558, 858, and 1.084 cm 
for sites A, B, and C, respectively) are consistent with the movement speed found in the literature for 
L. littorea, ranging from 3. to 5 cm mn−1. (Erlandson and Kostylev 1.995). Considering that between 
two successive daylight low tides (ca. 24 hours), the three sites were submersed between 3.0% and 
50% of the time (that is, 8 to 1.2 hours), the expected displacements ranged from 1.440 to 3.600 cm. 
We also investigated the potential causal relationships between L. littorea successive displacements 
and the main abiotic forcing factors characterizing the sampling sites. Immersion time, seawa-
ter temperature, and sea conditions are thus likely to impact L. littorea motion behavior as these 
organisms increase their activity when underwater (Lubchenco 1.978) or when the temperature is 
rising (Lubchenco 1.978), and increased hydrodynamic conditions such as tidal currents and break-
ing waves may dislodge them and advect them far away. However, no significant correlations were 
observed with immersion time, seawater temperature, or sea conditions (approximated by wind 
speed, as winds are the main factor responsible for the formation of breaking waves in this area) 
(Seuront et al. 2006). As L. littorea successive displacements exhibit heavy-tailed distributions, it is 
hypothesized that similar driving processes, expectedly biotic, are driving the dynamics of distance 
traveled by L. littorea.

By simulating a limiting generalized searcher-target model (for example, predator–prey, mat-
ing partner, pollinator-flower, parasite-host), recent theoretical results indicate that Lévy walks 
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Figure 5.3 Log-log plot of the probability distribution function (PDF) of Littorina littorea successive dis-
placements investigated at site B located 70 m away from the lower limit of low tide. The dotted lines cor-
respond to the best linear fit of  P(ld) vs. ld, leading to estimate the exponent m as m = 2.43. ± 0.05. (Modified 
from Seuront et al., 2007.)
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confer a significant advantage over the usual Gaussian (that is, Brownian) motion for increasing 
encounter rates when the searcher is larger or moves rapidly relative to the target, and when the 
target density is low (Viswanathan et al. 2001., 2002; Bartumeus et al. 2003.). The heavy-tailed 
distributions observed here (with m = 2.22, 2.43. and 2.67) significantly diverge from Lévy walks 
where m = 2. According to optimal foraging theory (Stephens and Krebs 1.986), evolution through 
natural selection should favor flexible behavior, leading to different optimum searching strategies 
(that is, searching statistics) under different conditions. Our results then suggest that the biotic 
conditions encountered at each of our three sites might have been different, leading to different 
(heavy-tailed) distributions for the most extreme displacements. Note that power-law behaviors 
have also been widely described from pause or flight duration in flies (Cole 1.995), albatrosses 
(Viswanathan et al. 1.999), rats (Kafetsopoulos et al. 1.997), gilts (Harnos et al. 2000), and zoo-
plankton (Bartumeus et al. 2003.), and subsequently interpreted as a Lévy flight signature. A Lévy 
flight, however, is diagnosed by a power law in the probability density function (or cumulative 
density function) of flight amplitudes (see, for example, Shlesinger et al. 1.996). This is funda-
mentally different from a power law in the probability density function of pause duration and 
flight duration. Specifically, a power law in the probability density function of flight duration is 
equivalent to a power law in the probability density function of flight length only if the consid-
ered organisms are moving at a constant velocity, which is very unlikely considering the intrin-
sic intermittent nature of animal locomotion (see, for example, Kramer and McLaughlin 2001.; 
Seuront et al. 2004c, 2004d, 2007); see also Figure 8.1.B and Figure 8.2A,B.

Although an inverse square probability density distribution P(ld) ∝ l−2
d of step lengths ld leads 

to an optimal random strategy for organisms searching for randomly located objects that can be 
revisited any number of times (Viswanathan et al. 2001.; Stephens and Krebs 1.986), we are not 
aware of any attempt to investigate this issue when prey items are heterogeneously distributed 
as previously reported for the sampling site (Seuront and Spilmont 2002; Seuront and Leterme 
2006). Although this is not an easy task, future work should concentrate on getting simultaneous 
measurements of predator motion behavior and prey concentration and distribution. As the main 
biotic factors driving organism motion behavior are the presence/absence, abundance, and distri-
bution of prey items, predators, and mates, further investigations on the interplay between motion 
behavior statistics and the qualitative and quantitative nature of the biotic environments are essen-
tial to gain new insights into the origin of heavy-tailed distributions in biological systems.

5.2 the Patch-intensity dimension, Dpi

Equation (5.1.) has also been independently used to describe the space-time dynamics of self-affine 
processes (see Chapter 4) that build up stress and then release the stress in intermittent pulses, such 
as earthquakes (Olami et al. 1.992; Correig et al. 1.997), landscape formation (Somfai et al. 1.994a, 
1.994b), avalanches (Noever 1.993.), volcanic eruption (Diodati et al. 1.991.), and sediment deposition 
in the ocean (Rothman et al. 1.994); the Gutember-Richter law of geophysics states that the number 
of earthquakes N with energy E greater that a given threshold E0 scales with E0 (Feder and Feder 
1.991.). Equation (5.1.) can then be rethought and adapted to a mosaic landscape/seascape composed 
of patches of different intensities as:

 N(C ≥ c) = kc−Dc (5.4)

where k is a constant, N is the number of patches of concentration C greater than c, and Dpi is 
the related fractal dimension (Figure 5.4). Equation (5.4) has recently been successfully used to 
characterize the distribution of microscale microphytobenthos biomass distribution on an inter-
tidal sandy flat, leading to a patch-intensity dimension Dpi = 5.3.1. (Seuront and Spilmont 2002). 
Evidence for such distributions in ecological sciences is still scarce but nevertheless includes a 
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wide spectrum of ecological fields ranging from tree-fall gap formation in tropical rainforests 
(Manrubia and Solé 1.996) and bird population dynamics (Keitt and Marquet 1.996) to models of 
ecosystem (Bak et al. 1.989) and evolution (Bak and Sneppen 1.993.; Paczuski et al. 1.995). In par-
ticular, data sets related to the introduced Hawaiian avifauna support a scenario in which island 
communities build up to a critical number of species, above which avalanches of extinction occur 
(Keitt and Marquet 1.996). The avalanches of extinction observed in the fossil record (Raup 1.982) 
may then be indicative of a self-organized critical state, as suggested from simple coevolutionary 
models (Bak and Sneppen 1.993.; Kauffman and Johnsen 1.991.; Flyvbjerg et al. 1.993.). In the case of 
coevolving species, one may note that exact analytical solutions have been given and demonstrate 
that extinction cascades following the distributions given in Equation (5.4) can emerge spontane-
ously in simple models of coevolution (Flyvbjerg et al. 1.993.; de Boer et al. 1.994). More gener-
ally, these results suggest that ecological communities are not characterized by a well-defined 
equilibrium but rather by a detailed balance that is minimally stable to perturbations such that 
the introduction of species can trigger extinction cascades. In particular, an interesting feature of 
Equation (5.4) is its applicability to self-similar patterns and also to self-affine processes; its con-
nections with self-organized criticality and multifractals are respectively discussed in Section 6.3. 
and Chapter 8.

Equation (5.4) can be generalized to the analysis of surface structure previously described in 
a self-similar fashion using the transect dimension described in Section 3..2.9.1.. If one considers 
the cumulative frequencies fi(x) and fj(x) of observing values of the descriptor X(i, j) greater than 
a threshold value x, the patch-intensity dimensions of the ith and jth longitudinal and latitudinal 
transects are given, following Equation (5.4), as:

 N(C ≥ ci) = kc−Dpii

 N(C ≥ cj) = kc−Dpij 
(5.5)

where i = 1.,…, ni, i = 1.,…, nj, k is a constant, and Dpii
 and Dpij

 are the patch-intensity dimensions of 
the ith and jth longitudinal and latitudinal transects, respectively.

2.5

2.0

1.5

1.0

0.5

0.0

–0.5
0 0.3 0.6 0.9 1.2 1.5

Log c

Lo
g 

[P
r (

C
≥

c)
]

Pr (C ≥ c) = k.c–5.31

      r2 = 0.99

Figure 5.4 Patch-intensity dimension. From a two-dimensional pattern (here, microphytobenthos chloro-
phyll a concentration C; left panel), one can define a series of increasing thresholds (in white, the areas where 
the biomass exceeds a critical concentrations c such as C ≥ c with white areas indicating locations where C ≥ c). 
The slope of the linear behavior of a log-log plot of the probability of exceeding a given threshold as a func-
tion of the threshold is an estimate of the patch-intensity dimension (right panel). (Adapted from Seuront and 
Spilmont, 2002.) (See Section 3..2.4.2 for a description of the data and their analysis using the mass dimension 
method, see Section 3..2.4.)
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The mean fractal dimensions of the latitudinal and longitudinal transects are subsequently given as:
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 (5.6)

The one-dimensional patch-intensity dimension Dpii j,
 is then defined as:

 D D Dpi pi piij i j
= +1

2
( )  (5.7)

and the two-dimensional patch-intensity dimension of the surface finally comes as:

 D Dpi piij ij
= +1  (5.8)

As stressed in Section 3..2.9, note that Equation (5.6) and consequently Equation (5.7) and Equation (5.8) 
are relevant only when the isotropy condition is fully satisfied (see Section 7.2.2) and then requires 
an appropriate statistical test of homogeneity between the ni and nj dimensions Dti

 and Dtj
. (see Zar 

1.996).

5.3 the KorcaK dimension, DK

Looking for structure in the complex distribution of areas of islands in the Aegean Sea, Korcak 
(1.93.8) used the conventional cumulative frequency distribution and empirically found a rela-
tionship between the number of islands of area greater than the threshold area a:

 N(A ≥ a) = ka−K (5.9)

where K is referred to as the Korcak exponent of patchiness (0 ≤ B ≤ 1.) and k is a constant. It was 
later demonstrated (after Mandelbrot’s discovery of fractal geometry) that the Korcak exponent of 
patchiness K and the fractal dimension DK were related as:

 
K

D
D

E
K= 1

 
(5.1.0)

where DE is the dimension of the embedding Euclidean space; see Mandelbrot (1.977, 1.983.), and 
Hastings and Sugihara (1.993.) for mathematical proof. An examination of the data of the whole 
world yields K = 0.65, thus DK = 1..3.0; see Equation (5.1.0). More local estimates using restricted 
regions range from K = 0.50 (that is, DK = 1..00) for Africa (typically an enormous island with 
smaller islands whose sizes decrease rapidly) up to K = 0.75 (that is, DK = 1..50) for Indonesia and 
North America (where the predominance of the largest islands is less overwhelming; Mandelbrot 
1.975). The Korcak exponent K measures the number of small patches relative to the number of 
larger patches, with smaller values of K corresponding to fewer small patches. Distributions with 
high Korcak exponents of patchiness (that is, low Korcak dimension DK) are thus patchier (more 
small patches) than distributions characterized by smaller values of K (that is, larger values of DK). 
Hastings et al. (1.982) used this method to measure patchiness in vegetative ecosystems, while 
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Sugihara and May (1.990a) discussed its general relevance for a variety of different systems, ranging 
from remote sensing to patch dynamics of bryozoans and coral colonies. In particular, they showed 
the relationship between the Korcak dimension DK and the exponent H characterizing fractional 
Brownian motions (Sugihara and May 1.990a) (see also Chapter 4):

 DK = 2 − H (5.1.1.)

where H characterized the degree of persistence (or autocorrelation) of a pattern: For H < 0.5 
and H > 0.5, a pattern is respectively negatively and positively autocorrelated, while H = 0.5 cor-
responds to the Brownian (that is, random) case (see Chapter 4 for further details). Sugihara and 
May (1.990a) additionally stated that increased persistence (more memory in the process) should 
correspond to smoother boundaries and patches with larger and more uniform areas, whereas 
reduced persistence will correspond to more complex and highly fragmented landscapes domi-
nated by many small areas.

5.4 Fragmentation and mass-size dimensions, Dfr and Dms

The Rosin law, widely used to describe the distribution of particle size in soils and other geologi-
cal material (Turcotte 1.992), can be regarded as the volumetric analogy to the Korcak patchiness 
exponent (Equation 5.9) and is defined as:

 N(R ≥ r) = kR−Dfr (5.1.2)

where k is a constant, N(R ≥ r) is the number of particles whose radius R is greater than a thresh-
old radius r, and Dfr is referred to as the fragmentation dimension, and condenses the information 
about the scale dependence of the number-size distribution of soil aggregates (Turcotte 1.986, 1.989; 
Perfect and Kay 1.991.; Perfect et al. 1.992; Rasiah et al. 1.992). A soil with a high fragmentation 
dimension is then more fragmented and dominated by small particles, while Dfr = 0 is indicative of 
a homogeneous soil where all particles are of equal diameter.

However, counting the total number of aggregates of a given size is not always possible, espe-
cially for smallest sizes. This inconvenience can be avoided by inferring the number-size distribu-
tion from the mass-size distribution function M(x < X) of the cumulative mass of aggregates of 
characteristic size less than X as (Perfect et al. 1.992; Rasiah et al. 1.993.; Kozac et al. 1.996):

 M(x < X) = kXDms (5.1.3.)

where k is a constant, x is the aggregate size, and Dms is the so-called mass-size dimension. The 
relationship between the fragmentation dimension Df and the mass-size dimension Dms is given by 
(Tyler and Wheatcraft 1.992):

 Dms = 3. − Df (5.1.4)

The fractal structure of soil aggregates has also been investigated following (Perfect et al. 1.994):

 N(X ≥ x*) = kx*
−Dfr (5.1.5)

where x* is a normalized measure of aggregate size (for example, sieve aperture divided by aperture 
of the largest sieve), N(X ≥ x*) is the cumulative number of fragments with normalized length X ≥ x* 
and k is the number of fragments not passing the largest sieve. Note that Equation (5.1.5) is strictly 
equivalent to the size distribution of fragments resulting from a fractal reduction of a Euclidean 
initiator (Mandelbrot 1.983.; Turcotte 1.986) and to the Rosin law; see Equation (5.1.2).
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5.5 ranK-Frequency dimension, Drf

5.5.1 ZipF’s law, human communicaTion, and ThE principlE oF lEasT EFForT

One of the most surprising instances of power laws is probably Zipf’s law, named after the Harvard 
linguistic professor G. K. Zipf (1.902–1.950), which is the observation of frequency of occurrence of 
any event as a function of the rank r, when the rank is determined by the above frequency of occur-
rence (that is, from n events, the most and least frequent ones will then have ranks r = 1. and r = n, 
respectively). More specifically, the Zipf law states that the frequency fr of the rth largest occur-
rence of the event is inversely proportional to its rank r as:

 
f

f

rr = 1

 (5.1.6)

where f1. is the frequency of the most frequent event in the distribution. Zipf’s law emerges from 
almost all languages’ letters and words as an approximate slope of −1. in log-log plots of fr vs. r, 
a result Zipf (1.949) stated due to the “Principle of Least Effort” in communication systems, rep-
resenting a balance between the repetition desired by the listener and the diversity desired by the 
transmitter.

Zipf’s law is based on what Zipf (1.949) termed the “Principle of Least Effort” in which he pro-
poses that human speech and language are structured optimally as a result of two opposing forces: 
unification and diversification. If a repertoire is too unified or repetitive, a message is represented 
by only a few signals, and therefore less communication complexity is conveyed. Alternatively, if 
a repertoire is too diverse or randomly distributed, the same message can be overrepresented by a 
multitude of signals and, again, less communication is conveyed. These two opposite forces result in 
a balance between unification and diversification. Zipf’s Principle of Least Effort can be statistically 
represented by regressing the log of the frequency of occurrence of some event (that is, letters, char-
acters, words, morphemes, phonemes) as a function of the rank, where the rank is determined by 
the above-mentioned frequency of occurrence. The balance between unification and diversification 
leads to a power-law function with a slope close to unity. Zipf subsequently showed that a multitude 
of diverse human languages (for example, English words, Nootka varimorphs and morphemes, 
Plains Cree holophrases, Dakota words, German stem forms, Chinese characters, Gothic root mor-
phemes and words, Aelfric’s Old English morphemes and words, English writers from Old English 
to Present, Old and Middle High German and Yiddish sources, and Norwegian writings), whether 
letters, written words, phonemes, or spoken words, followed this principle and the predicted slope 
of ca. −1..00. This balance has also been found in the study of manuscripts of unknown origin 
such as the Voynich manuscript* (see, for example, Landini 2001.; Schinner 2007) and optimizes 
the amount of potential communication that can be carried through a channel from speaker to 
receiver or from writer to reader. The structure of the system is thus neither too repetitive (the 
extreme would be one signal for all messages) nor too diverse (the extreme would be a new signal 
for each message, and in practice a randomly distributed repertoire would represent the highest 
degree of diversity). A system exhibiting such a balance (that is, a –1..00 slope in a log-log plot of 
frequency of occurrence vs. rank) can be thought to have a high potential capacity for transfer-
ring information, and as such has a high communication capacity. Note, however, that it only has 
the potential to carry a high degree of communication, because Zipf’s statistic only examines the 
structural complexity of the repertoire, not how the composition is internally organized within 
the repertoire.

* The Voynich manuscript is a 1.6th-century manuscript written in an unknown language and alphabet.
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5.5.2 ZipF’s law, inFormaTion, and EnTropy

Information theory (Shannon 1.948, 1.951.; Shannon and Weaver 1.949), although originally illus-
trated using statistically significant samples of human language, generally provides quantitative 
tools to assess and compare communication systems across species. Specifically, this theory has 
been applied to a wide range of animal communicative processes or sequential behavior (for exam-
ple, MacKay 1.972; Slater 1.973.; Bradbury and Vehrencamp 1.998). These include aggressive displays 
of hermit crabs (Hazlett and Bossert 1.965), aggressive communication in shrimp (Dingle 1.969), 
intermale grasshopper communication (Steinberg and Conant 1.974), dragonfly larvae communica-
tion (Rowe and Harvey 1.985), social communication of macaque (Altmann 1.965), waggle dance 
of honeybees (Haldane and Spurway 1.954), chemical paths of fire ants (Wilson 1.962), structure of 
songs in cardinals and wood pewees (Chatfield and Lemon 1.970), vocal recognition in Mexican 
free-tailed bats (Beecher 1.989), and bottlenose dolphin whistles (McCowan et al. 1.999). In contrast, 
only few investigations have assessed animal behavior using Zipf’s law (Hailman et al. 1.985, 1.987; 
Hailman and Ficken 1.986; Ficken et al. 1.994; Hailman 1.994). The Zipf law and Shannon entropy* 
are conceptually and mathematically related but nevertheless subtly differ. Zipf’s law measures 
the potential capacity for information transfer at the repertoire level by examining the “optimal” 
amount of diversity and redundancy necessary for communication transfer across a “noisy” channel 
(that is, all complex audio signals will require some redundancy). In comparison, Shannon entro-
pies were originally developed to measure channel capacity, and the first-order entropy differs from 
Zipf’s statistic as Zipf does not specifically recognize language as a noisy channel.

Both the similarity and difference between Zipf’s law and Shannon entropy prompted Mandelbrot 
(1.953.) to analyze the question of how the value of the Zipf exponent a relates to the Shannon entropy† 
H0 (Equation 5.20; see also Box 5.1.) for an information source following a Zipf’s distribution.

The main problem here is that the maximum rank is intrinsically controlled by the length of the 
data set—that is, the vocabulary or repertoire size, or the number of species. In theory, the maxi-
mum rank can grow to infinity. In practice, however, the maximum rank is limited to a finite value

* Here, Shannon entropy specifically refers to the first-order Shannon entropy; Shannon higher-order entropies provide a 
more complex examination of communicative repertoires and are discussed and illustrated in Section 5.5.6.

† Note that entropy is defined here as a measure of the informational degree of organization and is not directly related to 
the thermodynamic property used in physics; see also Box 5.1..

Box 5.1 thERMoDynAMIC EntRoPy

In scientific fields such as information theory, mathematics, and physics, entropy is generally 
considered as a measure of the disorder of a system. More specifically, in thermodynam-
ics (the branch of physics dealing with the conversion of heat energy into different forms  
of energy—for example, mechanical or chemical), entropy, S, is a measure of the amount of 
energy in a system that cannot be used to do work. Entropy can also be seen as a measure of 
the uniformity of the distribution of energy. Central to the concept of entropy is the second 
law of thermodynamics, which states that “the entropy of an isolated system which is not in 
equilibrium will tend to increase over time, approaching a maximum value at equilibrium.”

Ice melting illustrated in Figure 5.B1..1. is the archetypical example of entropy increase 
through time. First, consider the glass containing ice blocks as our system. As time elapses, 
the heat energy from the surrounding room will be continuously transferred to the system. 
Ice will then continuously melt until it reaches the liquid state, and the liquid will then keep 
receiving heat energy until it reaches thermal equilibrium with the room. Through this pro-
cess, energy has become more dispersed and spread out in the system at equilibrium than 
when the glass was only containing ice.
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due to finite sample size. This limitation, referred to as “rank truncation,” is at the core of the link 
between a and H0 (Figure 5.5):

The entropy of a Zipf’s distribution cannot be defined for •	 a ≥ −1. because the sum of all 

probabilities is an infinite series ∑ =r 1
∞

p(r), where p(r) = cra, that diverges (Figure 5.5). In 
contrast, for the region a < −1., where a ≈ −1., H0 changes sharply with a. H0 is then much 

A striking property of entropy, the arrow of time, coined in the seminar work of the Nobel 
laureate Ilia Prigogine, is implicit in the second law of thermodynamics. As the entropy of an 
isolated system naturally tends to increase over time, it cannot decrease. This gives to ther-
modynamic processes a temporal directionality and irreversibility, especially clear from the 
case of ice melting (Figure 5.B1..1.).

Figure 5.b1.1 Ice melting as an example of entropy increase over time.

A B C

Shannon entropy
H0(bit)Entropy sensitive

to rank truncation

Entropy insensitive
to rank truncation

Rank extend to infinity

Rank up to p

α = –1 α

log2p

log2 (p)1/2logelog2 p

Entropy not 
defined unless 
rank truncates

Figure 5.5 Shannon entropy H0 shown as a function of the Zipf’s exponent a. The solid curve is the theo-
retical case where the rank r as no upper bound, that is, r → ∞. The dashed curve is the “rank truncation” case 
that is practically encountered. (Modified from Mandelbrot, 1.953..)
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more sensitive than a to a change in the source properties. As a consequence, two infor-
mation sources with very different values of H0 will have similar values of a. a is thus a 
poor parameter to characterize the communicative properties of information sources.
Rank truncation distorts entropy estimates in the region •	 a ≈ −1., which is also the region of 
greatest interest for information sources close to the Zipf law (see Equation 5.1.6). Considering 
the rank r of the least frequent word, Mandelbrot (1.953.) identified two cases where H esti-
mates are erroneously finite; that is, H0 = log2 r when a = 0 (the case where words are uni-

formly distributed) and H0 = log2
r + loge log2 r when a = 1..

As a consequence, while both Zipf’s law and Shannon entropy directly relate to information theory, 
this suggests that the Zipf distribution parameter a is a less reliable estimate and a less reliable rep-
resentation of the source properties than Shannon entropy.

5.5.3 From ThE ZipF law To ThE gEnEraliZEd ZipF law

Ferrer i Cancho and Solé (2001.) described a double law for Zipf; that is, the Zipfian curve given by 
Equation (5.1.6) is best described by two functions (Figure 5.6). This suggests the existence of two 
regimes in English and questions the generality of Equation (5.1.6), as clear deviations from the expected 
a ≈ 1. have been documented. This is the case for language-affecting diseases such as schizophrenia 
(Ferrer i Cancho 2005a) and also certain types of words such as English nouns and verbs (Ferrer i 
Cancho 2005b, 2005c). Studies on multiauthor collections of texts showed two distinct regimes for the 
most frequent words (the core lexicon) and for the less frequent words (the peripheral lexicon; Ferrer 
i Cancho and Solé 2001.). Shakespearean works also exhibit the shape of a peripheral lexicon, which 
leads to the controversial statement that it can be a case of multiauthorship (Michell 1.999).

In many natural phenomena, large events are scarce but small ones quite common. For example, 
there are few large earthquakes and avalanches but many small ones. There are a few words, such as 
“the,” “of” and “to” that occur very frequently, but many that occur rarely, such as “Zipf.” The Zipf 
law (Equation 5.1.6) can thus be a generalized Zipf’s law and subsequently rewritten as:

 f
f

rr = 1
α  

(5.1.7)

where the log-log plot can be linear with any slope a.
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Figure 5.6 Word frequency as a function of rank for English language, showing two distinct regimes scal-
ing with a ≈ 1. (dotted line) and a ≈ 2 (dashed line). The arrow indicates the cutoff rank between the two 
regimes identified as dashed and dotted lines. (Modified from Ferrer i Cancho and Solé, 2001..)
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This family of power laws has been successfully applied to a wide variety of problems related to 
species competition (Lotka 1.926) (a = 2), linguistics and social dynamics (Zipf 1.949) (a = 1.), and 
species diversity (Frontier 1.985, 1.994); see also Table 5.1.. In particular, Mandelbrot (1.977, 1.983.) 
demonstrates that the fractal dimensions of such power laws are given by:

 Drf  = 1. /a (5.1.8)

The original law, Equation (5.1.6), was further modified by Mandelbrot (1.953.) as:

 fr = f0 (r + f)−a (5.1.9)

Equation (5.1.9) has proven to be extremely useful to describe living communities in both aquatic 
and terrestrial ecosystems (Frontier 1.985, 1.994). Thus, in Equation (5.1.9) fr must be thought of as 
the frequency of the rth species after ranking the species in decreasing order of their frequency. 
The two parameters a and f are conditioning the species diversity and the evenness of a given com-
munity, where the diversity H is given by (Shannon and Weaver 1.963.):

 
H f fi

i

N

i= −
=

∑
1

2log
 

(5.20)

and the evenness J by (Pielou 1.966):

 
J

H

N
=

log2  
(5.21.)

where fi is the relative frequency of the species i and N is the number of species. It can be easily 
seen from Equations (5.20) and (5.21.) that for the same number of species, the diversity is high 
when species have equivalent probability (high evenness) and low when a weak number of species 
is frequent and others are scarce (low evenness). Strictly speaking, it is implicit from Equation (5.1.9) 
that a depends on the average probability of a species; all the prerequisite conditions necessary 
for the development of this species have thus been fulfilled. f depends on the average number of 
alternatives per category of previous conditions, hence the potential diversity of the environment. 
More specifically, a low value of a means a slow decrease in the species abundance (that is, a more 
even distribution of individuals among species), and a high value of a means a rapid decrease of 
species abundance (that is, a more heterogeneous distribution). The former and the latter give less 
and more vertical rank-frequency distributions (RFDs), hence high and low evenness and diversity. 
On the other hand, a positive value of f (Figure 5.7) results in a greater evenness among the most 
frequent species than a higher diversity index. Alternatively, a negative f (Figure 5.7) describes a 
community marked by the dominance of a few (even one) species and provides a low diversity index 
and a low evenness. In summary, both f and a act upon the diversity and evenness respectively 
through the niche diversity (that is, the number of alternatives in each type of previous environ-
mental condition) and through the predictability of the ecosystem (probability of the appearance 
of a species when its environmental conditions are satisfied; Frontier 1.985). Despite appealing and 
meaningful properties, Equation (5.1.9) has seldom been used in ecology. For instance, Margalef 
(1.957) was the first to fit the Mandelbrot distribution to Mediterranean tintinnids with f = 0.84 and 
a  = 0.45, while Frontier and Bour (1.976) and Frontier (1.977) respectively estimated a = 1. and a  = 
2 for chaetognaths and pteropods. Changes in the shape of the RFDs characterize temporal changes 
in the community structure (Frontier 1.985). More specifically, a linear-concave curve (or S-shaped 
curve) indicates the dominance of one or two species that have fast growth and reproduction rates 
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in a low-species-richness assemblage (that is, stage 1., pioneer community). In contrast, a more convex 
shape among the first-ranked species indicates a more even distribution among species (that is, stage 
2, mature community), and a linear RFD is observed at the end of an ecological succession when the 
first-ranked species becomes more dominant and the species richness is lower (that is, stage 3., senes-
cent community). After a disturbance,* few species can quickly develop (that is, “r strategists” and 
“opportunists”) so the RFD appears coarsely rectilinear with successive steps (stage 1.’, intermediate 
stage between stages 1. and 2) (Frontier 1.985; Legendre and Legendre 2003.).

5.5.4 gEnEraliZEd rank-FrEquEncy diagram For EcologisTs

Equations (5.1.6) and (5.1.7) can be more generally written as:

 Xr ∝ r−a (5.22)

where Xr is the value taken by any random variable relative to its rank r , and a = 1. and a ≠ 1. for the 
Zipf’s and the generalized Zipf’s law, respectively. The concept related to Xr is very general and refers 
without distinction to frequency, length, surface, volume, mass, or concentration. Discrete processes 
such as linguistics, species assemblages, and genetic structures would nevertheless still require fre-
quency computations, and thus refer to Equations (5.1.6) and (5.1.7). Alternatively, Equation (5.22) can 
be thought of as a more practical alternative that can be directly applied to any continuous process. 
The relevance of Equation (5.22) to describe and interpret ecological patterns is extensively discussed 
and illustrated in Section 5.5.5 hereafter. Note that the appeal of both Zipf’s law (Equations 5.1.7, 5.1.9, 

* Here, the concept of disturbance is very general and includes, for example, seasonal overturn, massive enrichment events (such 
as upwelling or eutrophication), substrate destruction (such as fire or flood), and human disturbance (such as pollution).

Log fr

Log rr = 1

Log f1

α
φ > 0

φ < 0

Figure 5.7 Schematic illustration of the expected shape of a log-log plot of the rank-frequency diagram. 
The dashed line is the best fit of the linear part of the rank-frequency diagram in a log-log plot, and its slope a   
provides an estimate of the rank-frequency dimension as Drf  = 1./a. Negative and positive values of the param-
eter f lead to different shapes of the rank-frequency diagram, and describe communities marked respectively 
by the dominance of a few (even one) species (low diversity and low evenness) and a greater evenness among 
the most frequent species, than a higher diversity index.
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and 5.22) and Pareto’s law (Equation 5.1.1.) lies in the fact that they do not require any assumptions 
about the distribution of the data set or the regularity of the sampling interval, and are easy to imple-
ment. Zipf and Pareto laws have then been widely used in areas such as human demographics, linguis-
tics, genomics, and physics, but surprisingly seldom in terrestrial and marine ecology (see Table 5.1.).

5.5.5 pracTical applicaTions oF rank-FrEquEncy diagrams For EcologisTs

5.5.5.1 zipf’s law as a diagnostic tool to assess ecosystem complexity
Before illustrating the applicability of Zipf’s law to original data sets of centimeter-scale, two-dimen-
sional spatial distributions of bacterioplankton, phytoplankton, and microphytobenthos (Section 5.5.5.2), 
the characteristic shapes expected for Zipf’s law when a distribution of interest is driven by (1.) pure 
randomness, (2) power-law behavior, (3.) power-law behavior contaminated by internal and external 
noise, and (4) competing power laws are investigated.

5.5.5.1.1 Zipf’s Law of Random Processes
Figure 5.8 shows the characteristic signatures of five simulated random processes (that is, white 
noise) with 1.00, 500, 1.,000, 5,000, and 1.0,000 data points in linear and logarithmic plots of Zipf 
distributions. In linear plots (Figure 5.8A), the Zipf’s law for random noise appears as linear. On 
log-log plots (Figure 5.8B), the simulated random noises do not produce any power-law behavior as 
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Figure 5.8 Linear and log-log plots of random processes with 1.00, 500, 1.000, 50,000, and 1.00,000 data 
points (from left to right). (Modified from Seuront and Mitchell, 2008.)
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table 5.1
nonexhaustive review of the systems studied using Pareto or zipf laws in Physical,  
biological, and ecological sciences

system Pareto/zipf law reference

X-ray intensity from solar flares Pareto 1.
Ecosystem model dynamics Pareto 2
Sand pile dynamics Pareto 3.
Volcanic acoustic emission Pareto 4
Earthquake dynamics Pareto 5–6
Granular pile dynamics Pareto 7
Himalayan avalanches Pareto 8
Intensity of “starquakes” Pareto 9
Evolution model dynamics Pareto 1.0–1.1.
Noncoding DNA sequences Zipf 1.2
Landscape formation Pareto 1.3.–1.4
Sediment deposition in the ocean Pareto 1.5
Coding/noncoding DNA sequences Zipf 1.6
Word frequencies Zipf 1.7
Word frequencies Zipf 1.8
Formation of river networks Pareto 1.9–20
Rice pile dynamics Pareto 21.
Noncoding DNA sequences Zipf 22
Percolation process Zipf 23.
Linguistics Zipf 24
Tropical rain forest dynamics Pareto 25–27
City formation Zipf 28
Bird population dynamics Pareto 29
Aftershock series Pareto 3.0
City distribution Zipf 3.1.
Discrete logistic systems Pareto 3.2
Procaryotic protein expression Zipf 3.3.
Ion channels Pareto 3.4
Dynamics of atmospheric flows Pareto 3.5
U.S. firm sizes Pareto 3.6
Distribution of city populations Pareto 3.7
Economics Pareto 3.8
Microphytobenthos 2D distribution Pareto 3.9–40
Marine species diversity Zipf 41.–45
Size spectra in aquatic ecology Pareto 46
Phytoplankton distribution Zipf 47–48

Sources: 1.McHardy and Czerny (1.987); 2Bak et al. (1.989); 3.Held et al. (1.990); 4Diodati et al. (1.991.); 5Feder and Feder (1.991.); 
6Olami et al. (1.992); 7Jaeger and Nagel (1.992); 8Noever (1.993.); 9Garcia-Pelayo and Morley (1.993.); 1.0Bak and 
Sneppen (1.993.); 1.1.Paczuski et al. (1.995); 1.2Mantegna et al. (1.994); 1.3.Somfai et al. (1.994a); 1.4Somfai et al. (1.994b); 
1.5Rothman et al. (1.994); 1.6Mantegna et al. (1.995); 1.7Kanter and Kessler (1.995); 1.8Czirók et al. (1.995); 1.9Rigon et al. 
(1.994); 20Rinaldo et al. (1.996); 21.Frette et al. (1.996); 22Israeloff et al. (1.996); 23.Watanabe (1.996); 24Perline (1.996); 
25Solé and Manrubia (1.995a); 26Solé and Manrubia (1.995b); 27Manrubia and Solé (1.996); 28Makse et al. (1.995); 
29Keitt and Marquet (1.996); 3.0Correig et al. (1.997); 3.1.Marsili and Zhang (1.998); 3.2Biham et al. (1.998); 3.3.Ramsden and 
Vohradsky (1.998); 3.4Mercik et al. (1.999); 3.5Joshi and Selvam (1.999); 3.6Axtell (2001.); 3.7Malacarne et al. (2002); 
3.8Burda et al. (2002); 3.9Seuront and Spilmont (2002); 40Seuront and Leterme (2006); 41.Margalef (1.957); 42Frontier and 
Bour (1.976); 43.Frontier (1.977); 44Frontier (1.985); 45Frontier (1.994); 46Vidondo et al. (1.997); 47Mitchell (2004); 
48Mitchell and Seuront (2008).
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expected from Equation (5.22) but instead produce a continuous roll-off from a horizontal line (that 
is, a → 0) to a vertical line (that is, a → ∞). This is representative of the fact that no value is more 
likely to be more common than any other value.

The previous observations can be extended to fractional Brownian motions (fBm) (Figure 5.9A 
and Figure 5.9B). Because fBm have the desirable property of exhibiting antipersistent (an increase 
in the value of the random variable is expected to be followed by a decrease) and persistent (an 
increase in the value of the random variable is expected to be followed by another increase) behav-
ior, they explore a certain range of values before moving off more or less gradually to another 
range of values. These properties lead to a weaker version of randomness in the Zipf framework 
(Figure 5.9C,D,E,F). For antipersistent fBm (Figure 5.9A), the Zipf plots do not exhibit any clear 
linear behavior (Figure 5.9C), mainly because of the upward and downward roll-off observed for 
low and high rank values, respectively. This is, however, simply the result of an undersampling of 

1.0A B

C

E
F

D

0.8

0.6

fB
m

0.4

0.2

0.0

1.0

0.8

0.6

fB
m

0.4

0.2

0.0
0 200 400

θ (Relative units)
600 800 1000 0 200 400

θ (Relative units)
600 800 1000

1.0

0.8

0.6

X r

0.4

0.2

0.0

1.0

0.8

0.6

X r

0.4

0.2

0.0

1

X r 0.1

0.01

1

X r 0.1

0.01

0 200 400
r

600 800 1000 0 200 400
r

600 800 1000

1 10
r

100 1000
1 10

r
100 1000

Figure 5.9 Antipersistent (A) and persistent (B) fractional Brownian motions (fBm), shown together with 
their characteristic signatures in linear (C, D, E) and log-log (D, E, F) plots. In antipersistent and persistent 
processes, an increase in the value of a random variable is expected to be followed by a decrease and an increase, 
respectively. The resulting Zipf plot exhibits different deviations from randomness. The dashed lines in (B, C, D) 
indicate a range of values explored by the fBM before moving off more or less gradually to another range of 
values. The same colors have been used for the different fBm (A, B) and their related Zipf plots (C, D, E, F); the 
darker colors characterize the more antipersistent/persistent fBm. In both cases, the symbol q represents space 
or time in case of time series or transect studies, respectively. (Modified from Seuront and Mitchell, 2008.)
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the highest and lowest values that can be regarded as an implicit consequence of antipersistence. The 
distributions are characterized by a weak evenness for high and low values, the distribution being 
dominated by a few (ultimately one) high and low values. On the other hand, for persistent fBm 
(Figure 5.9B), the step shape of the Zipf plot (Figure 5.9D,F) reflects the property of persistent 
processes to visit one particular range of values and then to change to another range sharply. 
This step function becomes clearer when the fBm exhibit more persistence (Figure 5.9D,F). 
The main difference between antipersistent and persistent Zipf plots then relies on the quantity 
of values taken by the fBm between transitions, which will be more gradual in the antipersis-
tent case and thus contain more points than in the persistent case. Because the scale expansion 
related to log-log plots may hide, at least partially, the specific structural features of Zipf plots 
when compared to noise (see Figure 5.9C,D,E,F), the use of both linear and logarithmic plots is 
recommended. Finally, it is stressed that any step in Zipf plots indicates structural discontinui-
ties within the data set.
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Figure 5.10 Simulated monotonic and periodic trends before (gray curve) and after (open diamonds) being 
contaminated by observational white noise (A, D), their subsequent Zipf signatures in linear (B, C), and log-
log (D, E) plots. In both cases, the symbol q represents space or time in case of time series or transect studies, 
respectively. (Modified from Seuront and Mitchell, 2008.)
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5.5.5.1.2 Zipf’s Law of Deterministic Processes
Deterministic patterns and processes are well known in time-series analysis and referred to as 
monotonic and periodic trends. Gradients and sine waves are archetypical examples. Periodicity 
is common in both terrestrial and marine ecology. Here, we simulate an increasing linear trend 
and a sine wave trend. Both of them have been subsequently contaminated by observational white 
noise (Figure 5.1.0A,D). The Zipf plots of the increasing trends exhibit the characteristic signature 
of white noise (Figure 5.1.0B,C). In contrast, the Zipf plots of the sine waves exhibit distinct features 
(Figure 5.1.0E,F). The sine wave has the characteristic Zipf shape of a pattern oversampled for its 
higher and lower values, while the noisy sine wave converges toward a random Zipf signature.

5.5.5.1.3 Zipf’s Law of Pure Power Laws
Patterns and processes characterized by a power law function (for example, Equation 5.22) will 
appear as a straight line in log-log plots (Figure 5.1.1.). However, this theoretical case is rare in 
nature, and a more realistic series where power laws may be hidden by a wide range of contaminat-
ing processes is investigated hereafter.

5.5.5.1.4 Zipf’s Law of Contaminated Power Laws
Before focusing on the processes susceptible to modify the characteristic exponents of Zipf power laws, 
we will consider the potential effects of external and internal noise on the extent of the power laws. In 
the first approach, the variability of a given descriptor is driven by “new” events, which represent exog-
enous variables (exogenous in the sense that they are not a part of an internal mechanism that drives 
the descriptor fluctuations), for instance, the motion of dinoflagellate cells induced by vertical turbulent 
eddy diffusivity. On the other hand, internal noise refers to the existence of an engine within the cells 
(that is, endogenous) that generates motion by mechanisms of feedback of the motion of the cells upon 
themselves.

5.5.5.1.4.1 Zipf’s Law of Power Laws Contaminated by External (White) Noise 
If varying amounts of noise are added to the power function Xr ∝ r−a as:

 Yr = (r−a + e) (5.23.)
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Figure 5.11 Log-log signature of a power law (dots) with different percentage of additive noise (0.01.%, 
0.1.%, 1.%, and 1.0%, from bottom to top). (Modified from Seuront and Mitchell, 2008.)
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where e is a white noise whose amplitude is defined as being a given percentage of the maximum 
value of Xr, then the noise causes a rightward departure from the straight line at a rank proportional 
to the amount of noise added (Figure 5.1.1.). Measuring the point of departure from a power law for 
a variety of noise levels (here, 0.01.%, 0.1.%, 1.%, and 1.0%) recovers the original function for Zipf 
plots. Such a graphical approach could be very valuable to estimate the extent to which noise con-
taminates or contributes to the measured signal.

Consider two situations where a simulated power-law function (Xr ∝ r−a, with a  = 0.1.8) is mixed with 
a random noise e1., vertically offset so as not to overlap, that is, e2 ∈ [min Xr, c1.] and e2 ∈ [c2, min Xr], as 
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Figure 5.12 Power-law distribution Xr ∝ r−0.1.8 combined with a white noise distribution e i as Yr = Xr + e i, 
as a caricature of two populations separated by a sharp gradient (A, B), or mixed (C). The two populations, 
characterized by a power law Xr and a random distribution e i, have been considered as fully separated (A, B), 
with e i = e1.(e1. ∈ [max Xr, c1.]) and e i = e2 (e2 ∈ [c2, max Xr]), and fully mixed, with e i = e1. (C). The symbol q 
represents space or time in case of time series or transect studies, respectively. (Modified from Seuront and 
Mitchell, 2008.)
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Yr = Xr + ei. This could illustrate the expected outcome of a transect crossing a boundary separating 
two distinct structural entities or a vertical profile crossing a strong thermocline (Figure 5.1.2A,B). 
In both cases, the subsequent Zipf plots exhibit a clear step function indicative of a structural dis-
continuity (Figure 5.1.3.A,B) between the characteristic behaviors expected in cases of randomness 
and power law. However, while we used the same power law in both cases, the exponents and the 
goodness of the power-law fits are different (Figure 5.1.3.).

This result could lead to misinterpretation of Zipf plots. The widely acknowledged assump-
tion that any range of values with the same extent (for example 1.0 to 1.00, or 1.0,000 to 1.0,090) 
on the x axis produces the same range of values of the y axis is no longer valid in the nonlinear 
framework of power laws. Thus, different ranges of rank, r, values 225 to 450 (Figure 5.1.2A) 
and 1. to 450 (Figure 5.1.2B), return different ranges on the y axis, and thus different laws. As 
a consequence, to conduct Zipf analyses successfully and for the results to be meaningful, we 
recommend separate analyses of the different ranges of values identified in a preliminary global 
analysis as being separated by a step function. Figure 5.1.4 thus illustrates how the simulated 
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Figure 5.13 Zipf plots of the two theoretical situations illustrated in Figure 5.1.2A (A) and Figure 5.1.2B (B). 
Note that while the same power laws have been used in both situations, the original power law Xr ∝ r−0.1.8 is 
recovered only when Xr > ei (b); when Xr < ei the power law fit to the power law population is not significant (A). 
The circles indicate the step function behavior of the Zipf plot that should be regarded as being indicative of 
structural changes within the data set. (Modified from Seuront and Mitchell, 2008.)
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power law Xr ∝ r−a is recovered by separately analyzing the values characterized by ranks rang-
ing from 225 to 450 for e1. (see Figure 5.1.2A and Figure 5.1.3.A).

The combination of randomized values of the power law Xr ∝ r−a and the nonoverlapping noise, 
ei, (Figure 5.1.2A,B,C), leads to results similar to those in Figure 5.1.3.. Zipf analysis is then revealed 
to be extremely powerful and valuable in the identification and quantification of hidden structural 
properties of any data sets.

5.5.5.1.4.2 Zipf’s Law of Power Laws Contaminated by Internal (Process) Noise 
Instead of considering an external process (that is, observational or instrumental noise), the power law 
itself can be contaminated by internal variability. In such cases, the power-law function Xr ∝ r−a (with 
a = 0.1.8) is rewritten as

 Yr = (r  ± r  × e)−a (5.24)

where e is still a white-noise term whose amplitude is defined as being a given percentage of the 
maximum value of Xr, here randomly chosen as being positive or negative. Whatever the amount 
of noise considered (here, between 5% and 1.00%), the exponents a estimated from Equation (5.24) 
cannot be statistically regarded as being different from the expected values of 0.1.8 (p < 0.01.).

5.5.5.1.5 Zipf’s Law of Competing Power Laws

5.5.5.1.5.1 Case Study 1: Mixing Noninteracting Species 
Consider two theoretical phytoplankton populations separated by a sharp hydrological gradient. 
One is composed of diatoms that can reasonably be thought of as following a power-law form, 
Xr ∝ r−a (here, a = 0.1.8), with respect to their large size and aggregative properties. The other one 
is composed of dinoflagellates that, because of their smaller size, high concentration, and motility 
are more homogeneously distributed and are then simply represented here as a background con-
centration ki. The resulting pattern can then be thought of as the combination Yr = Xr + ki. It is 
emphasized here that any change in the background concentration ki does not affect the power-law 
nature of the original data set Xr. However, the exponent a ′ of the resulting power laws Yr ∝ r −a′ 
decreases with increasing values of ki. The addition of an increasing background concentration 
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Figure 5.14 Density dependence of a Zipf plot. The Zipf behavior of the power-law population Xr character-
ized by Xr > e i (black squares) (Figure 5.1.3.A), is recovered (open squares) when the range of values identified 
as being separated by a step function (see Figure 5.1.3.A,B) have been analyzed separately. (Modified from 
Seuront and Mitchell, 2008.)
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thus smoothed out the differences between ranks. The observation of such a decrease in empirical 
power-law exponents from field data sampled at the same point before and after the disruption of a 
hydrological gradient, or at different period of the seasonal cycle, would strongly indicate a struc-
tural change in the relative organization of the studied biological communities.

Now consider a situation where two spatially separated phytoplankton populations are mixed—
for example, two monospecific diatom populations—characterized by overlapping ranges of con-
centrations and distinct power-law forms, X1.r ∈ [2.99, 1.3..79] and X1.r ∝ r−a1 with a1. = 0.1.8, and X2r ∈ 
[3..1.9, 3.1..3.7] and X2r ∝ r−a2 with a1. = 0.24, respectively. Evenly mixing these two populations with-
out considering any interactions will result in the Zipf structures shown in Figure 5.1.5. The range of 
values corresponding to the overlapping of the two power laws presents an intermediate power-law 
behavior with a characteristic exponent a′ = 0.1.96 (Figure 5.1.5). More generally, the values of a′ 
are implicitly bounded between a1. < a′ < a2, where a1. and a2 are the Zipf exponents of the original 
power laws and depend on the proportion of values from each original power law, following a′ = 
ka1. + (1. − k)a2. Finally, as stated above, a separate analysis of the values greater than the critical 
concentration (1.3..79) associated with the step function shown in Figure 5.1.5 is necessary to recover 
the original exponents a2 = 0.24.

5.5.5.1.5.2 Case Study 2: Mixing Interacting Species 
Here, we consider one of the previous phytoplankton populations whose concentration Xr is charac-
terized by a power-law form Xr ∝ r−a, with a = 0.24. We will now investigate the effects of processes 
capable of locally decreasing (that is, mortality related to inter- and intraspecific competition, or 
grazing) or increasing (phytoplankton growth or coagulation processes) phytoplankton concentra-
tion on the Zipf signature of the population Xr ∝ r−0.24. Note that while the following examples are 
based on the interactions between phytoplankton and zooplankton organisms, this does not hamper 
the generality of the results, as the same approach can be used to describe the interactions between 
terrestrial plants and grazers.

Decrease in local phytoplankton concentration. First, under the assumption of evenly distrib-
uted grazers, the grazing impact of copepods can be estimated as a percentage or a Michaelis-
Menten function of the local phytoplankton concentration. Assuming the ingestion of phytoplankton 
cells by copepods is a percentage of a random function of food availability, the resulting food 
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Figure 5.15 Log-log plot signature of the Zipf behavior resulting from mixing two theoretical populations 
characterized by two distinct power laws and overlapping ranges of concentrations. The range of values corre-
sponding to the overlapping of the two power laws presents an intermediate power-law behavior with a character-
istic exponent a′ defined as a1. < a′ < a2 and a′ = ka1. + (1. − k)a2. (Modified from Seuront and Mitchell, 2008.)
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distributions can be described by

 Y1.r = Xr − kXr (5.25)

and

 Y2r = Xr − eXr (5.26)

where k is a constant, 0 ≤ k ≤ 1., and e is a random-noise process, that is, e ∈ [0, 1.]. For increasing 
values of k, the function Y1.r is simply shifted downward on a log-log Zipf plot (not shown), indicat-
ing a decrease in the background concentration of the population. A similar trend can be identified 
in the variable Y2r for an increasing amount of noise, but with a characteristic “noise roll-off” for 
low rank values (Figure 5.1.6).

Alternatively, following laboratory data on the feeding of copepods suggesting that ingestion 
rate can be fairly represented by a Michaelis-Menten function (see, for example, Mullin et al. 1.975), 
Equations (5.25) and (5.26) are modified as:

 Y3.r = Xr − Imax Xr /(ks − Xr) (5.27)

where Imax is the maximum ingestion rate, ks is the half-saturation constant for feeding, and Xr the 
concentration of food. Figure 5.1.7 shows the Zipf structure of the resulting phytoplankton concen-
tration Y3.r for different values of the half-saturation constant ks and the maximum ingestion rate Imax. 
It clearly appears that the effect of grazing is mainly perceptible for low values of Y3.r, a direct conse-
quence of the convex form of the Michaelis-Menten function (see Equation 5.27), and leads to a sig-
nificant divergence from a power law when Imax is high and ks is low (compare Figure 5.1.7A,B,C).

However, the two previous approaches are implicitly based on the hypothesis of a homogeneous 
phytoplankton distribution, which is now recognized as an oversimplified hypothesis (Seuront et al. 
1.996a, 1.999; Waters and Mitchell 2002; Waters et al. 2003.) and did not take into account potential 
behavior adaptation of grazers to varying food concentrations (Tiselius 1.992). If one considers 
that the remote sensing abilities (Doall et al. 1.998) of copepods can lead to aggregation of grazers 
in areas of high phytoplankton concentrations as investigated both empirically and numerically 
(Tiselius 1.992; Saiz et al. 1.993.; Leising and Franks 2000; Seuront et al. 2001.), Equation (5.26) can 
be modified as:

 Y4r = Xr − 1.0 
(Xr /k) (5.28)
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Figure 5.16 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) com-
peting with a random mortality component (Y2r = Xr − eXr), e = 0.05, 0.25, 0.50, and 0.75 (from top to bottom). 
(Modified from Seuront and Mitchell, 2008.)
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Figure 5.17 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) com-
peting with a Michaelis-Menten grazing component (Y3.r = Xr − Imax Xr/(ks + Xr)). For a given maximum ingestion 
rate Imax, the effect is stronger for high values of the half-saturation constant ks. (Modified from Seuront and 
Mitchell, 2008.)
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where k is a constant and the ingestion function I (Xr) = 1.0 
(Xr /k) represents an increased preda-

tion impact on higher phytoplankton concentration. The advantage of the function I (Xr) is that 
it can be regarded as a representation of both aggregation of copepods with constant ingestion 
rates and evenly distributed copepods with increasing ingestion rates in high-density phytoplankton 
patches. Decreasing values of the constant k increases the grazing impact on high-density patches 
(Equation 5.28). The grazed phytoplankton population then diverges from a power-law form for 
high values of Y4r but asymptotically converges to the original power law for the smallest values 
of Y4r; that is, Y4r  ∝ r−a for r → rmin (Figure 5.1.8).

Although the previous examples are based on zooplankton grazing on phytoplankton, we never-
theless stress the generality of our approach, as similar results could have been obtained considering 
two phytoplankton populations competing for the same nutrient resource using Michaelis-Menten 
or Droop functions.

Increase in local phytoplankton concentration. For the sake of simplicity, consider that phyto-
plankton growth (in response to physical coagulation or nutrient uptake) could be represented as a 
percentage or a random function of the actual phytoplankton concentration Xr. Equations (5.25) and 
(5.26) are then respectively rewritten as:

 Y5r = Xr + kXr (5.29)

and

 Y6r = Xr + eXr (5.3.0)

where k is a constant, 0 ≤ k ≤ 1., and e is a random noise process, that is, e ∈ [0, 1.]. For increasing 
values of k, the function Y5r is, in full agreement with what has been concluded from Equation 
(5.25), shifted upward on a log-log Zipf plot (not shown), indicating an increase in the background 
concentration of the population. Using different values of k in Equation (5.29) has no effect on the 
shape of the related Zipf plots and exponents a ′ (Y5r  ∝ r−a′), which remain equal to the original 
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Figure 5.18 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) com-
peting with a preferential grazing component for high phytoplankton concentrations (Y4r = Xr − 1.0(Xr/ ks)). The 
grazed phytoplankton population diverges from a power-law form for high concentrations, but asymptotically 
converges to the original power law for the smallest values. The extent of the observed divergence is controlled 
by increasing grazing pressure k (from top to bottom). (Modified from Seuront and Mitchell, 2008.)
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power law, that is, Y5r  ∝ r−0.24. Slightly different conclusions can be drawn from the behavior of 
the Zipf plots of function Y6r (Figure 5.1.9). First, increases in the amount of noise e (ranging from 
25% to 1.00%) lead to a vertical offset of function Y6r when compared to the original power law. 
The resulting functions exhibit the characteristic downward roll-off signature related to random-
ness and might also locally show increasing trends that are intrinsically caused by the random 
component in Equation (5.3.0). They could be misleading, especially when they occur over the 
highest rank range and must not be related to breakpoints indicative of structural discontinuities 
that would erroneously lead to a separate analysis of different subsections of the original data set. 
Finally, even if the exponents a ′ fluctuate around the original value, they are never significantly 
different (p < 0.05).

Increase vs. decrease in local phytoplankton concentration. Because the two previous situations 
are unlikely to be found individually in the ocean but should also occur concomitantly, combining 
Equations (5.25) and (5.29) with Equations (5.26) and (5.3.0) leads to:

 Y7r = Xr + (k1. − k2) Xr (5.3.1.)

and

 Y8r = Xr + (e1. − e2) Xr (5.3.2)

where k1. and k2 are constants (0 ≤ k1. ≤ 1., and 0 ≤ k2 ≤ 1.), and e1. and e2 are random-noise processes; 
that is, e1. ∈ [0, 1.] and e2 ∈ [0, 1.]. The resulting functions Y5r and Y6r exhibit intermediate behaviors 
between what have been observed from Equations (5.25) and (5.29), and Equations (5.26) and (5.3.0). 
For k1. = k2, the original power law, Y7r  ∝ r−0.24, is recovered; the growth component compensates 
for the death component. In contrast, when k1. < k2 and k1. > k2, the resulting function Y7r is shifted 
downward and upward on a log-log plot as previously observed from Equations (5.25) and (5.29). 
Although the overall structure is preserved, the latter and the former cases lead to decreases and 
increases in the background concentration of the population. The Zipf plot of function Y8r, shown in 
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Figure 5.19 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) com-
peting with a random growth component (Y6r = Xr − eXr), where e = 0.25, 0.50, 0.75, and 1..00 (from bottom to 
top). The arrows indicate the minimum of a range of Y6r values locally diverging from a power law because of 
successively increasing random increments. The dashed lines indicate slope of the power-law behavior of the 
initial values Xr. (Modified from Seuront and Mitchell, 2008.)
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a log-log plot, exhibits the different characteristic features previously identified: a power-law behav-
ior not significantly different from the original one (that is, a ′ ≈ a = 0.24) followed by a roll-off 
toward low Y8r values (Figure 5.20). As stated above, successive positive random fluctuations might 
lead to local increasing trends slightly diverging from a power law (gray arrow) but should not be 
associated with a step function.

Next, consider a situation where the positive and negative fluctuations are purely randomly 
driven as:

 Y9r = Xr ± kXr (5.3.3.)

and

 Y1.0r = Xr ± eXr (5.3.4)

where k is a constant (0 ≤ k ≤ 1.) and e is a random-noise process, that is, e ∈ [0, 1.], whose amplitude 
is defined as being a given percentage of the maximum value of Xr; k and e are randomly chosen as 
being positive or negative. The resulting Zipf signatures of the functions Y9r and Y1.0r are shown in 
Figure 5.21. as log-log plots. The positive and negative components of Equation (5.3.3.) clearly appear 
as separated by a step function (Figure 5.21.A). The positive components lead to power laws that are 
not significantly different from the original. A separate analysis of the range of values separated 
from the power laws by step functions (arrows; Figure 5.21.A) did not show any power-law behavior. 
Alternatively, the effects of Equation (5.3.4) on the initial power-law behavior are the characteristic 
downward roll-off signature related to randomness and the fluctuations around a power-law behav-
ior that are not significantly different from the original (Figure 5.21.B). To ensure the relevance of 
Zipf analysis, as introduced by Equations (5.1.7) and (5.22), the few data points diverging upward, 
or flattening, toward the first-rank values must not be included in the regression analysis aimed at 
estimating a. Indeed, the former case describes a distribution marked by the dominance of a few 
(ultimately one) “hotspots” that is likely to be chronically undersampled (Seuront et al. 1.999), while 
the latter case refers to a distribution that has been systematically oversampled. These issues have 
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Figure 5.20 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) 
competing with random growth and mortality components (Y8r = Xr + (e1. − e2) Xr), where the random processes 
e1. and e2 have been chosen as e1. = 0.75 and e1. = 0.25, e1. = 0.50 and e1. = 0.25, and  and e2 = 0.75 (from bottom 
to top). The dashed lines indicate the power-law behavior of the initial values Xr . (Modified from Seuront and 
Mitchell, 2008.)
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been specifically detailed elsewhere in the framework of information theory (Mandelbrot 1.953.) and 
led to the modified version of the generalized Zipf law presented above; see Equation (5.1.9).

It is now known that the distributions of nutrients, phytoplankton, and zooplankton exhibit differ-
ent levels of persistence (Tsuda 1.995; Seuront et al. 1.996a, 1.996b, 1.999, 2002; Seuront and Lagadeuc 
2001.). In addition, the interplay between the biotic properties of individuals and populations and 
abiotic processes produce space-time structures characterized by long-range correlation (that is, 
persistence) (Kendall et al. 2000). We consider, finally, a situation where the local concentration of 
a phytoplankton population initially driven by a power law (Xr ∝ r−0.24) could be influenced by a 
fractional Brownian motion resulting from the combined effects of local biological (nutrient uptake, 
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Figure 5.21 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) 
competing with combined constant random and growth components (Y9r = Xr ± kXr; (A) and combined random 
growth and mortality components (Y9r = Xr ± eXr; (B), where the constant k and the noise e have been chosen 
as k = 0.25, 0.50, and 0.75, and e = 0.25, 0.50, 0.75, and 1.00 (from bottom to top). The arrows indicate a step 
function (A) and the beginning of a local departure from a pure power law due to successively increasing 
random increments (B). The dashed lines indicate the power-law behavior of the initial values Xr . (Modified 
from Seuront and Mitchell, 2008.)
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inter- and intraspecific competition, grazing pressure, infection) and physical (advection, diffusion, 
turbulence) processes following

 Y1.1.r = Xr ± fBmXr (5.3.5)

where fBm is a persistent fractional Brownian motion (see Figure 5.9b) whose amplitude is defined 
as being a given percentage of the maximum value of Xr, and randomly chosen as being positive 
or negative. The resulting Zipf signature (Figure 5.22) exhibits the downward roll-off characteris-
tic of randomness for high rank values, and long-range correlations around a power-law behavior 

(Y1.1.r  ∝ r−a′, with a ′ = 0.240 ± 0.005; x ±SD) that is significantly different from the original power 
law (Xr ∝ r−0.24, p > 0.05). These long-range correlations exist whatever the values of r  but are more 
clearly visible for the low values of r , that is, high values of Xr in Equation (5.3.5).

5.5.5.1.6 On the Relevance of Zipf’s Law to Diagnose Ecosystem Complexity
The previous sections illustrate the potential for the seldom-used Zipf’s law to be a powerful tool in 
the analysis and the classification of marine and terrestrial ecosystems in the presence of random-
ness, monotonic and periodic trends, internal and external noise, and both biotic and abiotic forc-
ings. Specifically, Zipf analysis can be directly and easily applied to any data set without intensive 
computational, mathematical, or statistical analysis, and with a minimum amount of calculation. 
It can be conducted in a few minutes with most standard software packages, even for a data set 
of several thousand data points. The results of Zipf analysis should not, however, be used without 
a preliminary visual inspection of the data (an absolute prerequisite in data analysis that is often 
neglected, especially by undergraduate students), as they could erroneously be used as a direct index 
of patchiness. For instance, a distribution characterized by a patch of 1.0 high-density data points, 
1.0 randomly or regularly spaced hotspots, or 1.0 ranked hotspots will return exactly the same Zipf 
shape. This issue has also been raised in the framework of power spectrum analysis in marine ecol-
ogy (Franks 2005).

The one-to-one correspondence between Zipf and Pareto distributions analytically derived here 
(see Box 5.1.) could be regarded as a way to reconcile previous and future works using one or 
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Figure 5.22 Log-log plot signature of the Zipf behavior expected in case of a power law Xr (open dots) com-
peting with a persistent fractional Brownian motion. (Modified from Seuront and Mitchell, 2008.)
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the other technique. The strength of the Zipf framework also has the desirable properties of not 
requiring any assumptions about the statistical distribution, regularity of sampling intervals, and 
stationarity of the data set that are sometimes absolute prerequisites to some statistical data analy-
sis techniques.

Finally, the Zipf framework can be conveniently used as a tool to identify and classify structures 
in marine ecosystems and also to infer the underlying processes that generate the observed pat-
terns. The characteristic shapes introduced above, and most importantly their potential changes in 
time and space, make it possible to hypothesize the origin and the ecological implications of such 
modifications, as well as providing useful insights on what further analysis to conduct and how to 
design sampling schemes. For instance, a transect study providing a step function in a Zipf plot (see 
Figure 5.9d) will indicate different levels of organization within the same populations, and maybe 
different subpopulations, that would require separate analysis or additional sampling. In the specific 
case of phytoplankton distribution, it is easy to imagine that mixing or changing nutrient and/or 
zooplankton concentrations will alter distribution and intensity to the extent that the characteristic 
exponents a and b for a set of data will vary due to natural processes. Thus, a phytoplankton popu-
lation exhibiting a single power-law behavior before wind stratification and investigated temporally 
from a fixed point might exhibit successive changes (see, for example, Figure 5.1.7 and Figure 5.1.8), 
and the identification and the classification of the Zipf shapes will then allow one to infer the nature 
of the observed changes. In turn, a study mainly focusing on phytoplankton distributions that results 
in transitions such as those shown in Figure 5.1.3. and Figure 5.1.5 in spring and autumn respectively 
may well be modified and adapted to investigate the potential differences in the grazer community. 
More generally, if phytoplankton properties such as growth or distribution follow a power law, then 
mortality processes such as grazing and lysis may well follow a similar but competing power law, as 
hypothesized and illustrated above. Thus, if such power-law behavior can be shown in phytoplank-
ton, the removal of the first ranks (large values) could be interpreted as an indication of predation. 
However, the ubiquity of power laws is not an absolute requirement as many non-power-law pro-
cesses could be involved in the modification of the pure power-law behavior as well as the removal 
of the last ranks (low values).

5.5.5.2 case study: zipf laws of two-dimensional Patterns
5.5.5.2.1 Ecological Framework
An extensive amount of work has still to be done to cover spatial gaps between remote sensing, 
which provides low-resolution data over large areas, and experimental approaches, which give infor-
mation about local processes but are unable to provide continuous, spatially explicit data over large 
areas. This is a particularly salient issue considering the increasing awareness of the heterogeneous 
nature of the microscale distribution of nutrient, bacteria, phytoplankton, and microphytobenthos 
(Seymour et al. 2000, 2004, 2007, 2008; Seuront and Spilmont 2002; Seuront and Leterme 2006; 
Seuront et al. 2002; Waters and Mitchell 2002; Waters et al. 2003.). Large-scale and small-scale pat-
terns and processes could thus be reconciled by achieving a full understanding of how the effects 
of small-scale and microscale processes on the biology and the ecology of individual organisms 
propagate toward larger scales, for example, at the population level.

In this framework, the objective of the present case study is to demonstrate the applicability of 
the Zipf method described above (Section 5.5.5.1.) to characterize two-dimensional patterns. This 
method, investigated theoretically by Seuront and Mitchell (2008) and applied to one-dimensional 
data sets (Mitchell and Seuront 2008), does not require any assumptions about the distribution of 
the data set or regular sampling intervals, and presents the desirable feature of being extremely 
easy to implement. To ensure the generality and the relevance of this work, original data sets of 
centimeter-scale spatial distributions of bacterioplankton, phytoplankton, and microphytobenthos 
are considered.
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5.5.5.2.2 Experimental Procedures and Data Analysis

5.5.5.2.2.1 Centimeter-Scale (1.2 cm) Bacterioplankton Distribution 
Sampling sites. The distribution of bacterial marine populations has been investigated from two 
coastal sites, Port Noarlunga and Port River, in the metropolitan area of Adelaide, South Australia. 
These sites have been chosen, first, because their bacterial concentrations have been shown to dif-
fer by one order of magnitude and exhibit different degrees of variability in their total abundance 
(Seymour et al. 2000, 2004) and, second, because they are characterized by two different hydrody-
namic and hydrological regimes. Port Noarlunga is an oligotrophic environment, exposed to turbu-
lence induced by waves breaking over a reef, while Port River is located in a eutrophic, sheltered 
estuary influenced by high levels of urban and industrial waste and intermittent flows of freshwa-
ter. Samples were taken from subsurface waters from the end of a coastal pier at Port Noarlunga 
(3.5°09′S, 1.3.8°28′E) on March 21., 2002, and from a floating pontoon platform at Port River (3.4°49′S, 
1.3.8°3.0′E) on May 9, 2002.

Microscale sampling. The two-dimensional distribution of bacterial distributions has been 
investigated using a sampling device conceptually similar to the millimeter-scale resolution system 
extensively described elsewhere (Seymour et al. 2000). The system consists of a 1.0×1.0 array of 1. ml 
syringes, each separated by a distance of 1..2 cm and set to sample volumes of 1.00 µl. A messenger 
weight would release the sampling mechanism and 1.00 subsamples would simultaneously be taken 
across an area of 1.1.6 cm2 (Seymour et al. 2004). Subsamples were subsequently transferred to 1. 
ml cryovials and immediately incubated with 2.5% paraformaldehyde for 20 minutes, before being 
quick-frozen in liquid nitrogen and subsequently stored at –80°C.

Enumeration of bacterioplankton. Prior to flow cytometric analysis, frozen samples were quick-
thawed and transferred to 5 ml cytometry tubes. Samples were then stained with SYBR-I Green 
solution (1.:1.0000 dilution; Molecular Probes), and incubated in the dark for 1.5 minutes (Marie et al. 
1.997, 1.999). Fluorescent beads of 1. µm diameter (Molecular Probes) were added to samples in a 
final concentration of ca. 1.05 beads ml-1. (Gasol and del Giorgio 2000), and all measured cytometry 
parameters were normalized to bead concentration and fluorescence. After each cytometry session, 
working bead solutions were enumerated using epifluorescent microscopy to ensure consistency 
of the bead concentration (Gasol and del Giorgio 2000). Samples were analyzed using a Becton 
Dickinson FACScan flow cytometer, with phosphate buffered saline (PBS) solution employed as a 
sheath fluid. For each sample, forward-angle light scatter (FALS), right-angle light scatter (RALS), 
green (SYBR-I) fluorescence, red fluorescence, and orange fluorescence were acquired. Acquisition 
was run until at least 50 to 1.00 µl of the sample was analyzed at an approximate rate of 40 µl mn−1.. 
To avoid coincidence of particles, it was ensured that the rate of analysis was kept below 1.000 
events sec−1. by diluting samples with 0.2 µm filtered seawater collected from the study site at time 
of sampling when necessary (Gasol and del Giorgio 2000). Data were analyzed and bacterial popu-
lations were identified and enumerated using WinMDI (Scripps Research Institute) and CYTOWIN 
(Vaulot 1.989) flow cytometry analysis software.

5.5.5.2.2.2 Centimeter-Scale (1.2 cm) Phytoplankton Distribution 
Sampling sites. Sampling was conducted on 9 December 2003., from a floating pontoon platform, in 
the above described Port River estuary, Adelaide, South Australia (3.4°49′S, 1.3.8°3.0′E).

Microscale sampling. Two-dimensional samples were collected using the above-mentioned spring-
loaded 1.0×1.0 syringe array sampler, set up to simultaneously collect 1.00 samples of 200 µl each. 
During sample collection, the array sampler was oriented vertically, 1.0 cm below the water surface 
with the syringe inlets facing upstream. Sampling consisted of four sets of 1.00 samples, collected in 
succession, at a time interval of 1.0 minutes, and referred to as P1., P2, P3., and P4 hereafter. At the 
completion of sampling, syringe contents were subsampled (1.50 µl), transferred to cryovials with 2% 
final concentration paraformaldehyde, frozen in liquid nitrogen, and subsequently stored at −80°C.
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Enumeration of phytoplankton. Total phytoplankton cell concentrations were estimated using 
a FACScan flow cytometer (Becton Dickinson) at the Flinders Medical Centre of South Australia. 
The nozzle diameter of the flow cytometer was 70 µm, which was taken to be the maximum size of 
cells enumerated. Samples were quick-thawed and analyzed at a rate of approximately 20 µl min−1., 
employing PBS as sheath fluid. For each sample, natural orange fluorescence (from phycoerythrin) 
and red fluorescence (from chlorophyll), together with FALS and RALS parameters, were recorded 
on three decade logarithmic scales, sorted in list mode, and analyzed using CYTOWIN custom-
designed software (Vaulot 1.989). All parameters were normalized to a known concentration of 1. 
µm fluorescent marker beads (Molecular Probes), which were added to the sample prior to analysis 
at a final concentration of ca. 1.05 beads ml−1..

5.5.5.2.2.3 Centimeter-Scale (6.6 cm) Microphytobenthos Distribution 
Sampling sites. The two study sites, located on the French coast of the eastern English Channel, were 
chosen because of their intrinsic sharp differences in terms of hydrodynamic exposure, sediment 
nature, and biotic properties.

The first study site, an intertidal flat of sand in Wimereux (50°45′896 N, 1.°3.6′3.64 E), is typi-
cal of the hydrodynamically sandy beach habitats that dominate the littoral zone along the French 
coast of the eastern English Channel. Measurements were performed on a flat area located in the 
upper intertidal zone, without sharp topographical features such as ripple marks, high pinnacles, or 
deep surge channels. The substrate was homogeneous, medium-size sand (200 to 250 µm, modal 
size), typical of the surrounding sandy habitat. Because of the substrate homogeneity and the weak 
biomass, productivity and production of phyto- and zoobenthic organisms, the microphytobenthos 
biomass distribution is a priori expected to be rather homogeneous (Seuront and Spilmont 2002). In 
addition, due to the highly dynamic environment, microphytobenthos is resuspended, and surface 
concentrations at low tide are low.

The second study site is located in the Bay of Somme, at Le Crotoy (50°1.3.′524 N, 1.°3.6′506 E), 
which is the second-largest estuarine system in France, after the Seine estuary, and the largest 
sandy-muddy (72 km²) intertidal area on the French coasts of the eastern English Channel. The 
sampling site was chosen in a topographically homogeneous area, where the substrate grain size 
typically varied between 1.25 and 250 µm (modal size), and is characterized by higher phyto- 
and zoobenthos biomass, activity, and spatial heterogeneity when compared to the Wimereux site 
(Seuront and Leterme 2006). Because of the weak hydrodynamic conditions, the microphytoben-
thos biomass is only weakly influenced by resuspension processes, and surface concentrations at 
low tide are high.

Microscale sampling. All measurements were performed at low tide, on October 9 and 1.0, 2003., 
at the Wimereux and Bay of Somme study sites, respectively. The two-dimensional spatial distri-
bution of microphytobenthos was investigated for scales smaller than 1. m2, which is usually the 
finest grain considered in both landscape ecology (He et al. 1.994) and intertidal benthic ecology 
(MacIntyre et al. 1.996; Blanchard and Bourget 1.999). A rigid 1. m2 aluminum quadrant was used, 
and 225 sediment samples were collected every 6.67 cm using 1..9 cm2 plastic cores. The cores were 
pushed into the sediment down to a depth of 1. cm, where the most of the active cells are concen-
trated, carefully removed, mixed with 5 ml of methanol, and then stored in an insulated, cool box, 
brought back to the laboratory, and stored in the dark at –20°C.

Chlorophyll content analysis. Five ml of methanol were added directly to the sampled sediment 
sections, and the chlorophyll content was assayed in a Turner 450 fluorometer previously calibrated 
with a pure chlorophyll a solution (Anacystis nidulans extract, Sigma Chemicals) after an extraction 
time of 4 hours. Chlorophyll a concentrations in the sediment sections were then converted in terms 
of Chl.a m−2, taking into account the surface (1..9 cm2) of the sampling units.
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5.5.5.2.3 Results

5.5.5.2.3.1 Centimeter-Scale Bacterioplankton Distribution 
Zipf analyses clearly show that the two-dimensional bacterial distributions (Figure 5.23.) are not 
uniformly distributed (Figure 5.24). The Zipf plots estimated for bacterial populations sampled at 
Port Noarlunga and Port River exhibit a linear behavior with a = 0.05 (r 2 = 0.98) for bacterial 
concentrations ranging from 3..1. × 1.05 to 3..7 × 1.05 cell ml−1. (Figure 5.24A), and with a = 0.03. 
(r 2 = 0.98) for bacterial concentrations ranging from 3.7.7 × 1.05 to 3.9.8 × 1.05 cell ml−1. (Figure 5.24B). 
Respectively, 3.3.% and 28% of the values observed in Port Noarlunga and Port River are included 
in the identified power-law behaviors. While the Port Noarlunga Zipf plot exhibits a power-law 
behavior up to the highest bacterial concentrations (Figure 5.24A), note that the three highest con-
centrations (that is, the three first ranks) observed in Port River were not included in the regression 
analysis (Figure 5.24B). As discussed on the basis of Zipf analyses of simulated data (Seuront and 
Mitchell 2008), such a local increasing trend is intrinsically caused by random fluctuations and 
should be regarded as a source of contamination of the observed power law resulting in a distribu-
tion dominated by a few hotspots rather than a breakpoint indicative of structural discontinuities 
(see Section 5.5.5.1.). A proper normalization further shows that for concentrations lower than 0.3.7 
× 1.06 cell ml−1. and 3..98 × 1.06 cell ml–1. respectively at Port Noarlunga and Port River, the Zipf plots 
are extremely similar (Figure 5.25A), continuously diverging from a power-law behavior as a step 
function toward the lowest concentrations (Figure 5.24A,B and Figure 5.25A). Because a step func-
tion might be indicative of the presence of structural discontinuities within the distributions, we 
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Figure 5.23 Two-dimensional distributions of the bacterioplankton abundance sampled in (A) Port 
Noarlunga (×1.04 cell ml−1.) and (B) Port River (×1.05 cell ml−1.) with a spatial resolution of 1..2 cm.
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performed separate Zipf analyses for the ranges of concentrations separated by identified break-
points (gray arrows in Figure 5.24A,B). The resulting Zipf plots (Figure 5.25B), shown here for con-
centrations lower than 0.3.7 × 1.0−6 cell ml−1. at Port Noarlunga and 3..98 × 1.0−6 cell ml−1. at Port River, 
do not exhibit any power-law behavior, but instead produce a continuous roll-off from a horizontal 
line (that is, a → 0) to a vertical line (that is, a → ∞). This is representative of the fact that no value 
is more likely to be more common than any other one, a characteristic of uniformity.

5.5.5.2.3.2 Centimeter-Scale Phytoplankton Distribution 
The 1..2-cm resolution, two-dimensional phytoplankton distributions obtained from the four “replicate” 
experiments conducted in this study (hereafter referred to as P1., P2, P3., and P4) exhibit specific 
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Figure 5.24 Zipf plots of the bacterioplankton abundance in Port Noarlunga (A) and Port River (B), shown 
in log-log plots. The black diamonds correspond to the range of abundance values exhibiting a power-law 
behavior, and used to estimate the exponent a as the slope of the linear fit maximizing the coefficient of 
determination and minimizing the total sum of the residuals in the regression (dotted lines). The continuous 
black and gray lines correspond to the Zipf plots obtained from 1.00 simulated uniform distributions with the 
same minimum and maximum values as the empirical ones and from 1.00 simulated normal distributions with 
the same mean and variance as the empirical ones, respectively. The gray arrows indicate the structural break 
points in the Zipf distributions.
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Figure 5.26 Replicate two-dimensional distributions of the phytoplankton abundance (×1.03. cell ml−1.) sam-
pled in Port River with a spatial resolution of 1..2 cm.
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features such as localized gradients, hotspots, and “coldspots” (Figure 5.26) that are not compatible 
with a homogeneous or a normal distribution. As previously observed for bacterioplankton distribu-
tions, the Zipf analysis of two-dimensional phytoplankton patterns shows that phytoplankton cells 
are not uniformly distributed (p < 0.01.) and exhibit two different types of organization (Figure 5.27). 
P2 and P4 thus exhibit a linear behavior starting from the highest values, while distributions P1. 
and P3. present local increasing trends characterizing a distribution dominated by a few hotspots. 
Phytoplankton patterns thus exhibit a power-law behavior for cell concentrations ranging from 3.8.2 
× 1.03. to 3.1..8 × 1.03. cell ml−1. with a = 0.1.2 (r 2 = 0.99) for P1. (Figure 5.27A), 3.5.9 × 1.03. to 24.3. × 1.03. 
cell ml–1. with a = 0.1.3. (r 2 = 0.99) for P2 (Figure 5.27B), 26.7 × 1.03. to 22.8 × 1.03. cell ml−1. with a 
= 0.09 (r 2 = 0.97) for P3. (Figure 5.27C), and 29.8 × 1.03. to 25.6 × 1.03. cell ml−1. with a = 0.06 (r 2 = 
0.97) for P4 (Figure 5.27D). The percentage of values contributing to the power laws are 20% for 
P1., 23.% for P2, 3.6% for P3., and 1.1.% for P4. As stated above, separate analyses were performed for 
the ranges of concentrations separated by breakpoints (arrows in Figure 5.27). Except in the case of 
the distribution P4 that shows a power law for concentrations ranging from 21..4 × 1.03. to 25.1. × 1.03. cell 
ml−1. with a = 0.05 (r 2 = 0.97), no power laws were observed. The corresponding Zipf plots instead 
exhibit a continuous roll-off from a horizontal line (that is, a → 0) to a vertical line (that is, a → ∞), 
representative of uniformity (Seuront and Mitchell 2008).

4.0
0.0 0.3 0.6

α = 0.119 (r2 = 0.988)

1.2 1.50.9
Log r

1.8 2.1

4.2

4.4

4.6

Lo
g 
X r

4.8

5.0

5.2A

4.0
3.9
3.8

0.0 0.3 0.6

α = 0.125 (r2 = 0.991)

1.2 1.50.9
Log r

1.8 2.1

4.1
4.2
4.3

Lo
g 
X r

4.4
4.5
4.6B

4.0
0.0 0.3 0.6

α = 0.089 (r2 = 0.969)

1.2 1.50.9
Log r

1.8 2.1

4.1

4.2

4.3Lo
g 
X r 4.4

4.5

4.6

4.7C

4.0
0.0 0.3 0.6

α = 0.059 (r2 = 0.968)

1.2 1.50.9
Log r

1.8 2.1

4.1

4.2

4.3

Lo
g 
X r

4.4

4.5D

Figure 5.27 Zipf plots of the phytoplankton abundance sampled in Port River, shown in log-log plots. The 
black diamonds correspond to the range of abundance values exhibiting a power-law behavior, and used to 
estimate the exponent a as the slope of the linear fit maximizing the coefficient of determination and minimiz-
ing the total sum of the residuals in the regression (dotted lines). The continuous black lines correspond to the 
Zipf plots obtained from 1.00 simulated uniform distributions with the same minimum and maximum values 
as the empirical ones. The gray arrows indicate the structural breakpoints in the Zipf distributions.
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5.5.5.2.3.3 Centimeter-Scale Microphytobenthos Distribution 
Microphytobenthos biomass variation is very intermittent, where sharp fluctuations occurring 
locally are clearly visible in both study sites (Figure 5.28). The subsequent Zipf analysis shows 
that microphytobenthos biomass is not uniformly distributed (Figure 5.29). The Zipf plots show 
instead a strong linear behavior with a = 0.08 (r 2 = 0.98) for concentrations ranging from 82.60 
to 1.1.3..98 mg m−2 in Le Crotoy (Figure 5.29A), and with a = 0.07 (r 2 = 0.98) for concentrations 
ranging from 24.1. to 28.2 mg m−2 in Wimereux (Figure 5.29B). Although the power-law behav-
ior expands to the maximum microphytobenthos concentration in Le Crotoy (Figure 5.29A), in 
Wimereux, the Zipf plot clearly diverges from a power law for concentrations higher than 28.2 
mg m−2 (Figure 5.29B). In the former case, this indicates that the probability of the occurrence of 
high-density patches is lower than expected in the case of a power law. For lower concentrations 
(that is, for concentrations lower than 82.6 mg m–2 in Le Crotoy and 24.1. mg m–2 in Wimereux), 
the Zipf plots progressively roll-off with a step-function behavior toward the behavior expected 
in the case of randomness (Figure 5.29). The percentage of values contributing to the power laws 
are 26% and 29% in Le Crotoy and Wimereux, respectively.

In contrast to what has been observed for bacterioplankton distributions (Figure 5.24 and 
Figure 5.25) and phytoplankton distributions (Figure 5.27), the continuous roll-offs toward the low-
est concentrations are clearly different for microphytobenthos (Figure 5.29). This could be indica-
tive of differential driving processes competing with the pure power-law behavior observed for 
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Figure 5.28 Two-dimensional distributions of the microphytobenthos biomass (mg Chl. a m−2) sampled in 
Le Crotoy (A) and Wimereux (B) with a spatial resolution of 5 cm.
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higher concentrations. In particular, the more progressive roll-off observed in Le Crotoy when com-
pared to Wimereux (Figure 5.29) could be related to the differences in grazing pressure observed in 
these two study sites or to the ease of moving in different grain size or organic matter contents. The 
grazing pressure is expected to be low in Wimereux where the meiobenthic biomass is negligible 
(Seuront and Spilmont 2002; Seuront and Leterme 2006). In contrast, considering the elevated 
abundance of the deposit-feeding amphipod Corophium sp., estimated as 800 ± 1.00 ind. m−2, dur-
ing the sampling experiment in Le Crotoy (Seuront, unpublished data; Figure 3..1.7A), the grazing 
pressure on microphytobenthos population should be high. This is fully congruent with the theoreti-
cal roll-off expected in the case of a grazing process driven by a Michaelis-Menten function (see 
Figure 5.1.7A).
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Figure 5.29 Zipf plots of the microphytobenthos biomass sampled in Le Crotoy (A) and Wimereux (B), 
shown in log-log plots. The black diamonds correspond to the range of abundance values exhibiting a power-
law behavior, and used to estimate the exponent a as the slope of the linear fit maximizing the coefficient of 
determination and minimizing the total sum of the residuals in the regression (dotted lines). The continuous 
black and gray lines correspond to the Zipf plot obtained from 1.00 simulated uniform distributions with the 
same minimum and maximum values as the empirical ones and from 1.00 simulated normal distributions with 
the same mean and variance as the empirical ones, respectively.

2782.indb   185 9/11/09   12:12:08 PM



186 Fractals and Multifractals in Ecology and Aquatic Science

5.5.5.2.4 Discussion
In the extensive amount of work published in areas related to scaling and power laws (see, for 
example, Seuront and Strutton 2004 for a review), most attention has been given to the values of 
the so-called scaling exponents (for example, the Zipf exponent a), while the range of scales and 
values contributing to their goodness of fit have been widely neglected. However, because the value 
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values used to estimate a, for bacterioplankton (gray triangles), phytoplankton (black squares), and micro-
phytobenthos (open diamonds).
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of any scaling exponent may intrinsically be scale dependent (Seuront et al. 1.999) or density-de-
pendent (Seuront and Mitchell 2008; Mitchell and Seuront 2008), their values are likely to change 
depending on the range of scales or values at which they are estimated. Consequently, without 
relevant information relative to their scaling range, there is no way to interpret and to compare 
Zipf exponents without leading to potentially spurious conclusions. Here, the Zipf exponents 
and the percentage of values that contribute to their goodness of fit (that is, their scaling range) 
range respectively from 0.03. to 0.1.3. and from 1.1.% to 3.3.% (Figure 5.3.0) and are significantly 
negatively correlated (p < 0.01.). While Zipf analysis should be applied to a wider range of data-
sets, it is suggested that the combined knowledge of the Zipf exponents and their scaling range 
may represent the first step toward a seascape Zipf typology. The concept of “Zipf typological 
mandala” (Figure 5.3.1.) is then introduced as a potential tool to classify the structure of marine 
and terrestrial ecosystems.

The fact that bacterioplankton, phytoplankton, and microphytobenthos abundance greater (or 
smaller) than a given threshold have a specific slope in a Zipf plot indicates that there is something 
unique about this set of values. Due to the implicit link between Pareto’s and Zipf’s laws (Box 5.2), 
then to self-organized criticality (see Section 6.3.), the range of abundance values characterized by 
a Zipf power law can be considered as being in a critical state.

Box 5.2 FRoM ZIPF to PAREto LAWS

Zipf and Pareto laws have often been described as separate power laws (Faloutsos et al. 1.999), 
having been compared in a paper demonstrating that Zipf’s law for the rank statistics is strictly 
equivalent to a power-law distribution of frequencies (Troll and Graben 1.998). This compari-
son is unfortunately based on complicated mathematical analyses and does not provide any 
link between the Zipf and Pareto exponents a and f. Such a comparison is nevertheless a 
crucial prerequisite step to reconciling and comparing results that could be obtained using 
one of these two methods. We demonstrate in a simple manner that Zipf and Pareto laws are 
strictly equivalent, and subsequently provide a one-to-one correspondence between the expo-
nents a, f, and m.

Practically, Equation (5.22):

 Xr ∝ r−a (5.B2.1.)

shows that there are kr variables Xr (where k is a constant) greater than or equal to r−a. This 
leads us to rewrite the cumulative distribution function (CDF) of Pareto’s law:

 P[Xr ≥ x] ∝ x−f (5.B2.2)

as

 P[X ≥ kr−a] ∝ r (5.B2.3.)

and

 P[X > Xr] ∝ Xr
−1./a (5.B2.4)
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Alternatively, below and above these values (identified as structural breakpoints in the log-log 
Zipf plots), the system is in a subcritical state. It could be thought, in analogy with the sand pile, 
that a patch builds up from a cluster in which more and more cells are added, and eventually 
gets so that the patch gets bigger than some critical size, at which point it is split or spread. It 
is nevertheless still difficult to provide a clear phenomenological explanation of the processes 
involved in the generation of the observed critical distributions. However, it is likely that a 
simple combination of short-term and long-term cooperative and antagonistic processes (for 
example, predation, inter- and intraspecific competition, growth, death, reproduction), together 
with the intrinsically intermittent properties of the surrounding environment (Pascual et al. 
1.995; Seuront et al. 1.996a, 1.996b, 1.999, 2002; Lovejoy et al. 2001.), generates intermittent, 
critical patterns and dynamics. However, the resolution of this issue, numerically investigated 
elsewhere (Bak et al. 1.989; Solé et al. 1.992; Manrubia and Solé 1.996), is beyond the scope of 
the present work.

5.5.5.3 distance between zipf’s laws
Based on the observations that although the Zipf laws of two books may look very similar, the same 
words may have different frequency (and rank) in both books, Havlin (1.995) introduced a “distance” 
to characterize the differences between the Zipf structures of groups of words contained in books. 
This concept can be generalized to compare the difference between the rank-frequency distributions 
of two groups of discrete elements as described by Equation (5.1.7)—for example, DNA base pair 
sequences from two different organisms, species compositions of two samples or locations, or vocal-
izations of two organisms. Specifically, consider the species observed in two distinct environments.* 
Let rA(Si) and rB(Si) be the ranks of species Si in environments A and B, respectively. The distance 
dAB(Si) between the ranks of Si in the two environments is:

 dAB(Si) = [(rA(Si) − rB(Si))2]1./2 (5.3.6)

* Here, “environment” is considered in the general sense and could also be thought of as “sample” or “location.”

From Equations (5.B2.1.), (5.B2.2), and (5.B2.4), the relationship between the exponents a, f, 
and m is given by
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µ
α

=

= +










1

1
1

 (5.B2.5)

where m comes from Equation (5.2):

 P[X = x] ∝ x−m (5.B2.6)

As a consequence, the Zipf and Pareto laws can be regarded as equivalent. Specifically, the 
x axis of the Zipf law is conceptually identical to the y axis of the Pareto law, Equation 
(5.B2.3.) and Equation (5.B2.4). The use of one or the other distribution is simply a matter of 
convenience.
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The distance between the two environments is then defined as the mean square root distance 
between the ranks of all common species as:
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where N is the total number of common species, Gi, that appear in both environments. Equation 
(5.3.7) has been used to estimate the distance between each pair of books from a set of nine books, 
written by Herbert G. Wells (Dr. Moreau, The Time Machine, and The War of the Worlds), Jules 
Verne (20,000 Leagues under the Sea, Around the World in 80 Days, and From the Earth to the 
Moon), and Mark Twain (The Adventures of Huckleberry Finn, The Adventures of Tom Sawyer, and 
What Is a Man? And Other Essays). The mean distance between books written by different authors 
(d = 21..8 ± 2.8) significantly differs from the distance between books written by the same author  
(d = 1.6.1. ± 1..3.), showing that each author has his own hierarchy of words (Havlin 1.995). In ecology, 
Equation (5.3.6) and Equation (5.3.7) have only been applied to the characterization of microscale 
spatial heterogeneity in flow cytometrically defined populations of heterotrophic bacteria (Seymour 
et al. 2004; see their Figure 5B).

5.5.6 bEyond ZipF’s law and EnTropy

This section explores how techniques initially developed for the analysis of natural languages 
(Ebeling and Nicolis 1.992; Ebeling and Pöschel 1.995) and essentially applied to the analysis 
of coding and noncoding DNA sequences (Mantegna et al. 1.994, 1.995; Stanley et al. 1.999), 
the complexity of time series of electroencephalograms (Graben et al. 2000), and the neuronal 
activity of sensory receptors (Steuer et al. 2001.) can be more generally applied to the symbolic 
dynamics of ecological processes. The basic idea of symbolic dynamics is to represent a con-
tinuous time process (that is, the behavior of an organism) by a series of sequences labeled by 
a symbol, each of which corresponds to a state of the system (Alekseev and Yakobson 1.981.). 
For instance, the behavior of the ferret (Mustela putorius furo) can be decomposed into a series 
of activities, each identified by a letter. Similarly, behavioral states can be identified in the 
swimming behavior of the copepod Centropages hamatus, that is, slow swimming, fast swim-
ming, sinking, and breaking. Subsequent questions of critical ecological relevance are then to 
assess the complexity of the behavioral repertoire of the organism in relation to, for example, 
interaction with conspecifics, humans, and abiotic forcings such as turbulence and pollutants. 
These different issues will be illustrated on the basis of the symbolic dynamics of both ferret 
and zooplankton hereafter.

5.5.6.1 n-tuple zipf’s law
5.5.6.1.1 Theory
As stated above, Zipf behavior (Equation 5.1.6) has been universally observed in analyses of 
natural and technical languages. Note that Zipf analysis can be performed on texts of unknown 
languages, with the only limitation being the ability to recognize the basic semantic unit: the 
word. Conventional Zipf analysis has, however, been criticized since Zipf scaling can emerge in a 
purely random symbolic sequence if one character is defined as a “word” delimiter (Mandelbrot 
1.983.; Li 1.992). Hence, while the observation of a power-law behavior in a conventional Zipf 
analysis is necessary in natural and formal languages, it is not sufficient to prove the existence of 
non-Markovian correlations in the analysis of symbolic sequences. Although Zipf analysis can be 
performed on texts of unknown languages, a critical limitation is then to be able to identify the 
basic semantic unit.
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In this context, n-tuple Zipf analysis has been introduced to analyze the complexity of symbolic 
sequences when the elementary semantic unit is not immediately recognizable. Symbolic sequences 
may not be composed of natural words but instead of strings of characters carrying information 
such as DNA. In the case of coding DNA, the words are the 64 3.-tuples that code for the amino-
acids, that is, AAA, AAT,…, GGG. In contrast, for noncoding DNA, the words are not known. In 
n-tuple analysis, the length n of a word is considered as a free parameter, and a “word” defined as 
an n-digit-long string of a sequence. Practically, an n-tuple analysis is carried out moving a window 
of length n along the sequence by shifting progressively by one character a window of length n. 
The number of occurrences of each n-tuple is then ranked ordered, and the relative occurrence w(r) 
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Figure 5.32 n-tuple Zipf plots of (A) a Markovian sequence with transition probability 0.80 (the steps 
are due to the fact that w is determined by the number of consecutive digit pairs with both digits different, 
hence many words have the same frequency of occurrence); and (B) long-range correlation sequences gen-
erated from top to bottom by inverse Fourier transform, Lévy walk, and the expansion-modification system 
and exhibiting similar power-law behaviors with a = 0.80 ± 0.02 in the range 1.0 < R < 3.00. (Modified from 
Czirók et al., 1.995.)
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plotted against rank r. For a sequence of length L, there are L − n + 1. words.* The set of possible 
words is finite; for example, for binary sequences (0 or 1.) there are N = 2n different n-tuples and for 
the DNA alphabet of four characters (A,C,G,T), there are N = 4n different n-tuples. More generally, 
an alphabet with l letters will be characterized by N = l n different n-tuples. The n-tuple analysis of 
simulated Markovian process and long-range correlation respectively resulted in a stepwise decay 
and a power-law behavior of the log-log plots of w(r) vs. r (Czirók et al. 1.995; Figure 5.3.2). In con-
trast, if each character is considered as an independent variable, all possible n-tuples tend to have 
the same frequency (1./N), so the Zipf plot is horizontal, that is, a = 0.

n-tuple Zipf analysis has previously been successfully applied to noncoding and coding DNA 
sequences (Mantegna et al. 1.994, 1.995), which exhibited significant differences in the exponents an 
(Figure 5.3.3.). The consistently higher values of an found for noncoding DNA suggest that noncod-
ing sequences bear more resemblance to a natural language than coding sequences. The applicability 
of n-tuple Zipf analysis to “nonnatural languages” (here, symbolic sequences) has been confirmed 
through the analysis of a collection of articles taken from an encyclopedia comprising 500,000 letters 
that returned an = 0.57. In contrast, a conventional analysis of the same text using the actual words 
led to a = 0.85.

5.5.6.1.2 Case Study: On the Behavioral Activities of the Ferret (Mustela Putorius Furo)
The ferret (Mustela putorius furo) (Figure 5.3.4A) has become an increasingly popular pet animal, 
yet little is still known about their behavior. Two aspects of ferret behavior are considered here: 
noninteractive and interactive behaviors. Noninteractive behavior corresponds to the behavioral 
activities conducted by the animal in its enclosure without any external disturbances. In contrast, 
interactive behavior corresponds to the activities conducted by the animal outside its enclosure 
when stimulated by its owner with a familiar toy, that is, play behavior. Noninteractive and interac-
tive behaviors were categorized in, respectively, 1.2 and 7 activities, and each of them was associ-
ated with a symbol (here, a letter; Table 5.2). Noninteractive behavioral activities (Table 5.2) were 
observed in a four-level enclosure, dimension 80 cm (length) × 50 cm (width) × 1.00 cm (height), 
and behavior was recorded with a digital camera (DV Sony DCR-PC1.20E) at a rate of 25 frame s−1.. 

* Note that if the window is moved n character at a time, this results in  different “reading frames,” each of which contains  
words. In coding DNA, n = 3., and there are three distinct reading frames.
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Figure 5.33 Exponents a returned by n-tuple Zipf analyses of noncoding and coding DNA of mammals 
(black square), the free-living nematode Caenorhabditis elegans roundworm living in temperate soils (open 
dot), other invertebrates (black triangle), yeast chromosome III (black dot), and eukaryotic viruses (open dia-
mond). (Data from Mantegna et al., 1.994, Table 1..)
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table 5.2
ethogram used in the assessment of noninteractive and interactive behavioral activities 
of the Ferret (Mustela Putorius Furo)

main Pattern subpattern description symbol

Noninteractive behavior Exploring Walking around A
  Sniffing B
  Scratching C
  Climbing D
 Defecating Animal defecates or urinates E
 Rubbing Animals rubs the ground or wall with face or neck F
 Fur shaking Animals shake water off of fur G
 Grooming Animal licks or rubs its pelt with forepaws and tongue H
 Coughing Animal coughs/sneezes I
 Alerting Animal actively observes surrounding J
 Drinking Drinking K
 Eating Eating L

Interactive behavior Locomotory play Facing still A
(play behavior)  Galloping forward (bouncing jerky gait) B
  Galloping away C
  Jumping on toy D
 Rough and tumble play Rolling over E
  Pushing with paws F
  Warding off with paw G

A

B

Figure 5.34 (A) Sasha, the 1.-year-old female ferret (Mustela putorius furo) and (B) her favorite toy.

2782.indb   192 9/11/09   12:12:22 PM



Frequency Distribution Dimensions 193

Interactive behavioral activities (Table 5.2) were stimulated by presenting a familiar toy to the test 
animal (Figure 5.3.4B) and recording the resulting behavioral responses with a digital camera (DV 
Sony DCR-PC1.20E) at a rate of 25 frame s−1. in a 2 m × 2 m enclosure. The n-tuple Zipf analyses 
were conducted on three data sets containing 5245, 6578, and 7027 successive symbols for noninter-
active behavioral activities and on five data sets containing 7854, 8241., and 8759 successive symbols 
for interactive behavioral activities.

n-tuple Zipf analyses were conducted for all values of n in the range 3. to 6. Considering alphabets 
with 1.2 and 7 symbols of noninteractive and interactive behavioral activities, they will be character-
ized by N = 1.2n (1.728 ≤ N ≤ 2985984) and N = 7″ (3.43. ≤ N ≤ 1.1.7649) different words. The n-tuple 
Zipf analysis resulted in clear power-law behaviors for both behavioral activities (Figure 5.3.5). 
The resulting exponents a were not significantly different for different n-tuples for both behavioral 
activities, that is, for values of n from 3. to 6. The exponents a n (a n = 0.64 ± 0.03.) estimated for inter-
active activities were, however, significantly higher than those returned by the n-tuple Zipf analysis 
of noninteractive behavioral activities, a n = 0.47 ± 0.02. Note than in both cases, the exponent a n is 
significantly larger than the value a n = 0 expected for a control sequence of random numbers.

5.5.6.2 n-gram entropy and n-gram redundancy
5.5.6.2.1 n-Gram Entropy
Most past research has focused almost exclusively on the use of Shannon’s measure for information 
(Shannon 1.948; Shannon and Weaver 1.949). Shannon’s entropies, however, examine the informa-
tion content at increasingly complex levels of signaling organization. As an example from human 
speech, information content can be evaluated at the phonemic or letter level, the word level, and var-
ious levels of sentence organization. Each level can be represented by a series of increasing orders 
(for example, zero, first, second, and so on) of entropy. Entropy is defined here as a measure of the 
informational degree of organization and is not directly related to the thermodynamic property used 
in physics; see Box 5.1.. Specifically, the Shannon n-gram entropies are defined as (Shannon 1.948):
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Figure 5.35 n-tuple Zipf analysis of noninteractive (gray) and interactive (black) behavioral activities in the 
ferret (Mustela putorius furo). For n = 6, both behavioral sequences exhibit a power-law behavior over nearly 
four decades, with a6 = 0.64 ± 0.03. and a6 = 0.47 ± 0.02 for interactive and noninteractive behaviors, respec-
tively. No significant differences were found between a n values for n in the range 3. to 6.
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where p(Ei…En) is the probability of the n-tuple and N = l n is the number of different n-tuples, with 
l the number of letters (or symbols) in the alphabet. The zero-order entropy H0:

 H0 = log2 N (5.3.9)

is the number of bits of information required to represent a particular sample of different events 
N (for example, letters, words, phonemes, musical notes, or behavioral activities). The first-order 
entropy takes into account the probability of occurrence of each event as:

 
H p E p E

i

i i1

1

2= −
=

∑ ( )log ( )
λ

 
(5.40)

where p(Ei) is the probability of event Ei. Note that Equation (5.40) is equivalent to the Shannon 
information index widely used in ecology to describe species diversity (Rosenzweig 1.995); see also 
Equation (5.20). The second-order entropy introduces conditional probabilities into the structure of 
the stream of events (letters, words, phonemes, musical notes, behavioral activities):
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where p(Ei Ej) is the probability of event Ej given that event Ei has occurred. Similarly, the third-
order entropy of an event Ek includes the conditional probability that both events Ei and Ej have 
occurred:
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As n-gram entropies, Hn is a measure of uncertainty and gives the average amount of information 
contained in a word of length n; it comes from Equation (5.3.8) that the conditional entropies hn 
(Ebeling and Nicolis 1.991., 1.992):

 hn = Hn+1. −  Hn (5.43.)

where h0 = H1. gives the average amount of information required to predict the (n + 1.)th symbol 
when the preceding n symbols are known (Ebeling 1.997). Note that hn is decreasing as Hn+1. ≤  Hn. 
The slope of the conditional entropy hn plotted against n provides information on the complexity 
of languages or, more generally, symbolic sequences. In the presence of long-range correlations, 
the entropies hn decrease, hence predictability increases. In contrast, a truly random sequential 
system would show a slope of zero. As high-order conditional entropies drop from one order to the 
next, less statistical information and more organizational complexity are present. The sharper the 
decrease in hn, the more sequential organization in the system. It is then suggested that “entropic 
slope” can provide a measure of organizational complexity that can be used to evaluate the impor-
tance of sequential order in the communication systems of different species.

5.5.6.2.2 n-Gram Redundancy
Redundancy is another common feature of languages. Letters or even entire words can be omitted 
or changed without the text becoming indecipherable; a text with typing errors does not become 
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unintelligible. The concept of redundancy, which can be estimated from entropy, then also stems 
back to the seminal work of Shannon (1.948). The n-gram redundancy present in a text or a symbolic 
sequence is defined as (Almagor 1.985; Mantegna et al. 1.994):

 R
H

knn
n= −1  (5.44)

where k = log2 l, with l being the number of letters (or symbols) in the alphabet. The redundancy is 
a manifestation of the flexibility of the underlying language. Note that a sequence of random num-
bers will return values of Rn =  0 (Mantegna et al. 1.994).

5.5.6.2.3 Case Study: Zooplankton Behavioral Response to Hydrocarbon Contamination

5.5.6.2.3.1 Ecological Framework 
Massive crude oil spills such as Torey Canyon (1.967), Amoco Cadiz (1.978), Ixtoc-I (1.979–1.980), 
Exxon Valdez (1.989), Sea Empress (1.996), Erika (1.999), and Prestige (2002) are a major source 
of polycyclic aromatic hydrocarbons (PAHs) in estuarine and coastal waters (Cachot et al. 2006). 
However, leakage from ships, petroleum transport, refining, and intentioned spills are more perni-
cious, but equally important, sources of PAHs in the ocean (Fernandes et al. 1.997; Cachot et al. 
2006), especially in coastal and shelf waters (Doval et al. 2006).

The effects of PAHs contamination on marine planktonic organisms have been studied exten-
sively in the laboratory and in the field, and a variety of reactive changes have been found in rela-
tion to incidental oil spills for a range of plankton species, manifested as alterations of biomass, 
abundance, and ecophysiological effects. To date, the few studies regarding sublethal effects of 
hydrocarbons on copepods show, however, a very variable scenario depending on the chemicals 
used, their concentrations, and time of exposure, including anomalous metabolism (Samain et al. 
1.981.), decreased or inhibited feeding (Barata et al. 2002), increased mortality (Gajbhiye et al. 1.995), 
reduction in egg production (Ott et al. 1.978), hatching rates (Cowles and Remillard 1.983.), and clutch 
size (Barata et al. 2005).

At low concentration and for short time exposure, hydrocarbons did not have any significant 
effect on feeding and egg production (Calbet et al. 2007). Decreases in egg production are observed, 
however, after long exposures to low hydrocarbon concentrations (Ott et al. 1.978), indicating det-
rimental cumulative effects unidentifiable under short-term incubations. PAHs concentrations can 
reach dramatic concentrations. However, the “natural” concentrations of PAHs typically range 
between 1. and 1.00 μg l–1. (Doval et al. 2006). The ability to assess rapidly any increase in the 
background concentration of PAHs related to, for example, incidental, localized oil spills is then 
critical to anticipate their pernicious cumulative effects on copepod biology and ecology.

Since swimming and feeding are intertwined in most copepod species, any disruption of copepod 
swimming is predicted to have detrimental consequences to copepod biology and ecology. Despite 
the few attempts to use the swimming behavior of the freshwater cladoceran Daphnia sp. as an indi-
cator of exposure to toxic chemicals (Piao et al. 2000; Shimizu et al. 2002), similar information for 
marine invertebrates is still very limited (Burlinson and Lawrence 2006). In particular, no attempts 
have been made to assess the effects of hydrocarbons on copepod behavior, despite an impressive 
body of literature devoted to their behavioral ecology; see, for example, Kiørboe (2008).

In this context, the potential for n-gram entropy and redundancy to detect behavioral changes 
relates to exposure to “natural” and dramatic concentrations of naphthalene, the most abundant 
hydrocarbon dissolved in oil-contaminated waters.

5.5.6.2.3.2 Toxicity Assay 
The polycyclic aromatic hydrocarbon tested was naphthalene, as it has been widely used in toxicologi-
cal assays involving copepods (Calbet et al. 2007) and is one of the most abundant hydrocarbons dis-
solved in oil-contaminated waters. Naphthalene (96% purity, Sigma-Aldrich, St. Louis) stock solutions 
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were prepared using acetone as a carrier (HPLC grade, 0.5 ml l−1.). Naphthalene stock solutions were 
transferred into the behavioral container and diluted with GF/C filtered (porosity 0.45 µm) in situ 
seawater at 50, 1.00, 500, 1.,000, 2,500, 5,000, and 1.0,000 µg 1.−1. to assess the effect of natural (1. 
to 1.00 µg l−1.) and extreme (up to 1.0,980 µg l−1.) PAHs concentrations encountered in the ocean. In 
addition to the toxicity experiments, two controls were considered with (0.5 ml l−1. in GF/C filtered 
in situ seawater) and without (GF/C filtered in situ seawater) acetone to assess the potential effect of 
acetone on C. hamatus swimming behavior (Box 5.3.).

Box 5.3 nAPhthALEnE ContAMInAtIon AnD SyMBoLIC 
SEquEnCES oF CEntRoPAGES hAMAtuS SWIMMInG BEhAvIoR

Copepods were collected in the coastal waters of the eastern English Channel using a WP2 net 
(200-μm mesh size) with closed end horizontally towed between 0 and 5 m. Specimens were 
gently diluted in 3.0-liter isotherm tanks using in situ seawater (S = 3.4 PSU) and transported 
to the laboratory, where Centropages hamatus adult females (Figure 5.B3..1.) were sorted by 
pipette under a dissecting microscope and acclimated for 1.2 hours in a 2-liter beaker contain-
ing fresh in situ seawater vacuum filtered through Whatman GF/C glass-fiber filters (porosity 
0.45 μm) prior to the behavioral experiments. All subsequent handling of animals was done at 
1.8°C in a temperature-controlled room.

Behavioral experiments were conducted in a temperature controlled room (1.8°C), in aer-
ated (1.00% air saturation) fresh in situ seawater (S = 3.4 PSU) in the dark and at night to 
avoid any behavioral artifact related to endogenous swimming rhythms. Prior to each experi-
ment, 1.0 females (1..3.1. ± 0.05 mm cephalotorax length, mean ± SD) were randomly selected 
from the female stock, transferred into the experimental container (a cubical glass container,  
1.5 × 1.5 × 1.5 cm) filled up with the test solutions, and allowed to acclimatize for 1.0 minutes 
(Seuront 2006). The free-swimming behavior of C. hamatus was recorded in three dimen-
sions at a rate 25 frame s−1. using two orthogonal, synchronized infrared digital cameras (DV 
Sony DCR-PC1.20E) facing the experimental container. To avoid any bias related to photot-
ropism, the only light source was provided by six arrays of 72 infrared light emitting diodes 
(LEDs). For each test condition, 1.0 individual females were recorded swimming for 20 minutes, 
after which valid video clips were identified for analysis. Valid video clips consisted of path-
ways in which the animals were swimming freely, at least two body lengths away from any 
chamber’s walls or the surface of the water.

Free-swimming C. hamatus patterns typically exhibit slow- and fast-swimming bouts 
separated by breaking events during which they remain motionless or sink with a horizontal 
orientation with tail pointed upward. Fast-swimming bouts were identified as movements lon-
ger than 1. body length within 0.08 second. These four behavioral sequences were associated 

Figure 5.b3.1 Calanoid copepod Centropages hamatus; scale bar: 0.2 mm.
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5.5.6.2.3.3 Results 
Centropages hamatus adult females consistently swam in helical loops, and no differences were 
perceptible between uncontaminated control seawater (Figure 5.3.6A) and naphthalene-contami-
nated seawater (Figure 5.3.6B). More specifically, the slow-swimming speed (6.3.2 ± 0.04 mm s−1.), fast-
swimming speed (27.3. ± 0.1.1. mm s−1.), sinking speed (1..52 ± 0.05 mm s−1.), and time spent motionless 
(1..52 ± 0.05 mm s−1.) were not significantly different for the control experiments with and with-
out acetone (p > 0.05). No significant differences in swimming and sinking speeds were found 
between C. hamatus considered in uncontaminated and naphthalene-contaminated seawater  
(p > 0.05). In contrast, the time spent swimming exhibits a significant linear increase (p < 0.01.) 
with naphthalene concentration from 66% to 81.%. This indicates an increase in swimming activ-
ity under conditions of naphthalene contamination and is consistent with previous observations 

to four letters, that is, S (slow swimming), F (fast swimming), M (motionless), and D (sinking) 
for each video frame.

A total of 270,000 swimming sequences were analyzed, corresponding to ca. 3.0,000 
sequences for each experimental conditions, that is, 7 naphthalene solutions and 2 controls 
with (0.5 ml l–1. in GF/C filtered in situ seawater) and without (GF/C filtered in situ seawater) 
acetone to assess the potential effect of acetone on C. hamatus swimming behavior.
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Figure 5.36 Swimming behavior of the calanoid copepod Centropages hamatus in uncontaminated seawa-
ter (A) and in naphthalene contaminated (1.000 μg 1.−1.) seawater (B).
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showing an increase in the foraging activity of C. hamatus exposed to microscale turbulence, 
a ubiquitous natural stressor of the marine environment. Note, however, that no increase in the 
occurrence of fast-swimming events, considered as an escape behavior, was recorded.

The n-gram entropies Hn (Equation 5.3.8) were used to estimate the conditional entropies hn 
(Equation 5.43.) and n-gram redundancies Rn (Equation 5.44) for n in the range 1. to 5 (Figure 5.3.7). 
The two controls with and without acetone did not exhibit any significant differences in the result-
ing behavioral sequence organization. The conditional entropies hn (Figure 5.3.7A) consistently 
decrease with increasing sequence length, indicating correlations and long memory in C. hamatus 
behavioral activities. However, this decrease is much sharper for uncontaminated than contami-
nated seawater (Figure 5.3.7A). This shows that the complexity of the behavioral sequences of C. 
hamatus decreases with increasing naphthalene concentrations, thus the predictability of the related 
symbolic sequences decreases. In addition, the slopes of the function hn vs. n found for naphthalene-
contaminated seawater were not significantly different from the zero-slope expected for a truly 
random sequential system (that is, Markovian sequences) for n ranging from 1. to 4. Similarly, the 
n-gram redundancies Rn were consistently higher for uncontaminated seawater than for naphtha-
lene treatments (Figure 5.3.7B). The swimming sequences of the copepod C. hamatus observed 
for uncontaminated seawater then possess a larger amount of structure than those observed for 
naphthalene-contaminated water, which are closer to random.

5.5.6.2.3.4 Discussion 
The previous results, derived from methods originally designed to investigate the complexity of 
natural and artificial languages, are consistent with the existence of a structured “behavioral lan-
guage” present in the sequential swimming behavior of the copepod C. hamatus. Both the existence 
of long-range correlation in this sequential behavior in uncontaminated seawater and disruption of 
the complexity of this language under conditions of naphthalene contamination are consistent with 
previous results showing that behavioral time series, though they often appear erratic, reveal 1./f -like 
spectra (Quenette and Desportes 1.992; Alados et al. 1.996). Long-range correlation in biological sys-
tems is thus adaptive because it serves as an organizing principle for highly complex, nonlinear pro-
cesses, and it avoids restricting the functional response of an organism to highly periodic behavior 
(Buldyrev et al. 1.994). For example, 1./f temporal fluctuations are found in the heart rate of healthy 
individuals (Meesmann et al. 1.993.), respiratory intervals in animals (Kawahara et al. 1.989), and 
neuronal discharges during sleep (Yamamoto et al. 1.986). The time series of interbeat intervals in 
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Figure 5.37 The conditional entropies hn (A) and n-gram redundancies Rn (B) estimated for the sequential 
behavior of the copepod Centropages hamatus in uncontaminated seawater (black dots), and in seawater con-
taminated with increasing naphthalene concentrations, that is, 50 (open diamonds), 1.000 (gray diamonds), and 
1.0,000 μg 1.−1. (black diamonds). The dashed lines in (A) are the best linear fits of hn vs. n.
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healthy subjects have more complex fluctuations than patients with severe cardiac disease (Stanley 
et al. 1.992; Buldyrev et al. 1.994). Long-range correlations have been also observed in the stride 
interval of human gait (Hausdorff et al. 1.995, 1.997). This present analysis, conducted on marine 
invertebrates, then generalizes previous studies conducted on a range of vertebrates (from fish to 
primates) and shows that fractal dimension can detect impairments in the behavior sequences of 
individuals under stress, indicating its value in early stress assessment (Alados et al. 1.996; Alludes 
and Huffman 2000).
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6 Fractal-Related Concepts: 
Some Clarifications

6.1 Fractals and deterministic chaos

6.1.1 chaos ThEory

Chaos theory has been epitomized by the “butterfly effect” detailed by Lorenz (1.963.), and subse-
quently extensively investigated from popular descriptions (Gleick 1.987; Kauffman 1.995; Smith 
2007) to more rigorous mathematical underpinning and specific algorithms (Baker and Gollub 
1.990; Peitgen et al. 1.992; Turcotte 1.992; Çambel 1.993.; Ott 1.993., 2002; Hilborn 1.994; Strogatz 
1.994; Kaplan and Glass 1.995; Alligood et al. 1.996; Williams 1.997; Sprott 2003.). In his attempt to 
simulate numerically a global weather system, Lorenz discovered that minute changes in initial con-
ditions steered subsequent simulations toward radically different final states. This dependence on 
initial conditions is generally exhibited by systems containing multiple elements in nonlinear inter-
actions, particularly when the system is forced or dissipative. A system is said to be forced when its 
internal dynamics are driven by externally supplied energy (for example, solar energy driving the 
global weather system). A system is considered dissipative when useful energy* is converted into 
a less useful form, most prominently through friction. In aquatic ecology, examples of dissipative 
systems are numerous, if not the rule. For instance, in the well-known turbulent energy cascade, the 
kinetic energy generated at a large scale by processes such as wind and tide are transferred without 
dissipation through the inertial subrange (that is, a hierarchy of eddies of decreasing size) to the 
viscous Kolmogorov scale where it is dissipated into heat. On the other hand, the solar energy first 
converted into chemical energy is subsequently transferred from one trophic level to the other one 
with considerable losses, responsible for the low energetic efficiency of both benthic and pelagic 
food chains.

Sensitive dependence on initial conditions is not only observed in complex systems but also in 
the simplest logistic equation model in population biology (May 1.976). This equation describes 
the size of a self-reproducing population, P, at time t + 1. as a nonlinear function of the popula-
tion at time t:

 Pt+1. = Pt (a − bPt ) (6.1.)

Considering the normalized population size xt = bNt /a, Equation (6.1.) rewrites as:

 xt+1. = axt (1. − xt ) (6.2)

or equivalently as:

 xt+1. = axt − axt
2 (6.3.)

* Energy able to perform work.
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where the driving parameter a is positive, thus axt represents a linear growth.* When xt is small 
(that is, xt → 0), the nonlinear term axt

2 can be neglected, thus xt+1. ≈ axt, and the growth of the 
population is indeed linear. It then comes that when a > 1., the population should increase. 
However, because of the recursive nature of Equation (6.3.), axt

2 becomes significant as xt 
increases; first an inflection point occurs and then a steady state (Figure 6.1.A) when the two 
terms oppose one another because of their opposite signs. In contrast, when a < 1., the popula-
tion will always decrease and eventually becomes extinct regardless of the size of the initial 
population (Figure 6.1.B). More specifically, when a > 1. the value of parameter a determines 
whether a population stabilizes at a constant size, oscillates between a limited sequence of 
sizes, or behaves erratically in an unpredictable pattern (Figure 6.2).

The dichotomy between those different states can be established using bifurcation diagrams 
(Figure 6.3.). A bifurcation diagram is a plot of the normalized population size xt as a function of 
the values of the driving parameter a. This is illustrated in Figure 6.3. starting with an initial value 
of x0 (here, x0 = 0.05) and the driving parameter a in the range 2.95 < a < 4.00. For low values of 
a (that is, a < 3.), xt (as t goes to infinity) eventually converges to a single number that represents 
the population of the species (Figure 6.3.A). Now, when a = 3., xt no longer converges but oscillates 

* The growth will be steady if a is constant, but we will see that a nonconstant a may lead to counterintuitive results.
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Figure 6.1 The logistic equation, xt+1. = axt(1. − xt), shown for values of  ranging from (A) a = 0.50, 0.95, 1..00, 
1..50, 2.00, and 3..90 from bottom to top, and (B) from a = 0.50, 0.95, and 1..00 from bottom to top. The initial 
value x0 was set at x0 = 0.05.

2782.indb   202 9/11/09   12:12:40 PM



Fractal-Related Concepts: Some Clarifications 203

between two values (Figure 6.3.B). This characteristic change in behavior is called a bifurcation. 
Turn up the driving parameter even further and xt oscillates between four values (Figure 6.3.C), 
and further goes through bifurcations of period 8, then 1.6, and then chaos (Figure 6.3.E). When the 
value of the driving parameter a equals 3..57, Pt neither converges nor oscillates; its value becomes 
completely random (Figure 6.3.D). For values of r larger than 3..57, the behavior is largely chaotic 
(Figure 6.3.E,G). However, in the range 3..00 < a < 4.00, there is a particular value of a where the 
sequence again oscillates with period of three (a = 3..828427) (Figure 6.3.F). The bifurcations then 
begin again with period 6, 1.2, 24, and then back to chaos (Figure 6.3.G). Within the chaotic regime 
are evident bands or windows containing few points that can result in attractors (Rasband 1.990; see 
Section 6.1..2). Ultimately, for a ≥ 4, values of xt > 1. can be generated, and therefore xt+1. < 0; that is, 
the equation becomes unphysical (unbiological) beyond this point.

As stressed above, a bifurcation diagram contains regions with singular equilibrium populations 
for low values of a, bifurcating into an oscillating population as the parameter a increases and in 
turn deteriorating into a chaotic pattern as a reaches a critical value (Strogatz 1.994). Within the 
chaotic region, however, smaller areas of stable periodicity are discernible (associated with certain 
minute ranges of the value of a), and these stable areas appear over and over on every possible scale 
of examination. Note that the repetition of this pattern across different scales (Figure 6.4) presents 
the intrinsic properties of self-similarity reviewed above, and has thus widely been identified as a 
fractal (Turcotte 1.992; Strogatz 1.994).
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Figure 6.2 1.00 realizations of the logistic equation, xt+1. = axt(1. − xt), for values of a ranging from a = 
2.000000, 3..261.205, and 3..51.1.687 from top to bottom (left), and from a = 3..57494, 3..683.73.5, and 4.000000 
from top to bottom (right). The initial value x0 was set at x0 = 0.05.
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Figure 6.3 Depiction of the bifurcation diagram of the logistic equation after 1.0,000 iterations, xt, of the 
recursive equation xt+1. = axt(1. − xt) for each value of a in relation to time series xt obtained for increasing 
values of a; a = 2.00 (A), a = 3..261.205 (B), a = 3..51.1.687 (C), a = 3..57494 (D), a = 3..683.73.5 (E), a = 3..828427  
(F), a = 4.00 (G). The initiating value x0 is set to x0 = 0.05. (The bifurcation diagram was created with the 
freeware Fractint of the Stone Soup Group.)
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Figure 6.4 Depiction of the bifurcation diagram of the logistic equation after 1.0,000 iterations, xt, of the 
recursive equation xt+1. = axt(1. − xt) for each value of a. The initiating value x0 is set to x0 = 0.05. Upon magni-
fication of a chaotic region (box) self-similar areas appear (inset). (The bifurcation diagram was created with 
the freeware Fractint of the Stone Soup Group.)
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6.1.2 FEigEnbaum univErsal numbErs

As stressed above, the intervals between bifurcations decrease as a increases. Feigenbaum (1.979) 
recognized a universal pattern in the bifurcation events of a range of nonlinear dynamical equations 
and characterized by the so-called Feigenbaum bifurcation constant d as (Figure 6.5):

 
δ = 

a a

a a
n n

n n

−
−

−

+

1

1  
(6.4)

For the logistic map (Figure 6.3.), the Feigenbaum constant d has been estimated by Briggs (1.991.) to 
84 decimal places and Briggs (1.997) to 576 decimal places.

6.1.3 aTTracTors

The evolution of a dynamic system through time can be observed by tracing the instantaneous 
values of n-state variables in n-dimensional space, the phase-space. A system in a steady state 
will appear as a point in phase-space (that is, a stable equilibrium), while a stable oscillator traces 
a closed loop through phase-space (that is, a stable limit cycle). The point and the closed loop are 
both attractors for their respective systems; the systems develop toward those states regardless of a 
range of boundary conditions and perturbations. The stable equilibrium and the stable limit cycles 
are classical examples of attractors. A forced and damped oscillator (for example, a magnetically 
driven pendulum with friction) may be represented in a 2D phase-space by its instantaneous angular 
deflection and speed (the two-state variables). An overdamped oscillator will spiral toward a point 
attractor as it grinds to a halt, while under a range of forcing–damping ratios, the oscillating system 
will trace out a closed loop in phase-space. However, this nonlinear system also exhibits chaotic 

a1

a2

a3

Figure 6.5 First set of three successive values of the driving parameter a of the logistic equation bifurcation 
diagram used to estimate the Feigenbaum number d. (The bifurcation diagram was created with the freeware 
Fractint of the Stone Soup Group.)
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behavior under the right conditions, and it traces as a fractal in phase-space. This fractal is an attrac-
tor for the system in phase-space, termed a strange attractor. After introducing the Packard-Takens 
method used to visualize attractors (Section 6.1..3..1.), these concepts are illustrated on the basis of 
the phase-space signatures of purely deterministic signals (Section 6.1..3..2), random signals (Section 
6.1..3..3.), and chaotic signals (Section 6.1..3..4).

6.1.3.1 Visualizing attractors: Packard-takens method
Dissipative dynamical systems that exhibit chaotic behavior often have a strange attractor in phase-
space (Grassberger and Procaccia 1.983.). It is, for instance, the case for the movements of atmo-
spheric flows, which produce a specific phase-space trajectory now widely known as the Lorentz 
attractor (Lorenz 1.963.). More precisely, a strange attractor has orbits that lie within a defined region 
of phase-space but the orbits never intersect and never follow the same trajectory twice.

The phase-space attractor of a system is then a map of the changing conditions in the system; 
each point on the attractor is a summary of all the variables affecting the system at a moment in 
time. As the system evolves, changes in the variables result in a different location of the point 
in phase-space. The points in phase-space trace a trajectory that summarizes the changes of the 
system. Three-dimensional phase-space diagrams of the attractor describing the time series were 
produced using the “time delay” method (Packard et al. 1.980; Takens 1.981.). In practice, a one-
dimensional time series, and thus all the factors affecting it, can be represented by the trajectory of 
points in three-dimensional phase-space. The attractor is created by plotting each value as a func-
tion of its preceding value, or in other words, from the plot of x (t + 1.) vs. x(t), where x is the actual 
value and t is the index of the point. Note that an attractor with a regular shape will also emerge in 
plots using x (t + 2) or x (t + 3.), for example, or x (t + n), with many n. This procedure is repeated for 
each successive point in the time series and the resultant points are connected producing the phase-
space trajectory.

6.1.3.1.1 Periodic Attractors
Consider a periodic function Yt with a single frequency, Yt = 0.4 sin (1.00t), where t is time. The 
periodicity of Yt is obvious in the raw data (Figure 6.6A) and results in a stable orbit in phase-
space (Figure 6.6B,C). In contrast, in the case of a function without periodicity (that is, Yt = 0.4t + 0.4 
and Yt = 0.4t2), the phase-space signature will consistently be a straight line (not shown). Now 
consider a periodic function with two characteristic frequencies (Figure 6.6D), Yt = 0.4 sin (1.00t) + 
0.4 sin (400t). An attractor with a regular shape will appear in phase-space using Yt+n, with any n 
(Figure 6.6E,F). When the periodic function becomes more elaborate (Figure 6.6G), for example,  
Yt = 0.2 sin (20t) + 0.3. sin (1.00t) + 0.4 sin (400t), a clear attractor may still emerge depending on 
the nature of the sine waves (Figure 6.6H,I), and may eventually need to be analyzed in more than 
three dimensions to show any regularity.

6.1.3.1.2 Random Attractors
When a random noise is added to an otherwise periodic relationship (Figure 6.6J), the characteristic 
shape of the attractors becomes very difficult to discern (Figure 6.6K,I). The phase-space portrait of 
a random distribution (Figure 6.6M), in turn, does not exhibit any specific signature with simulated 
points filling more or less the whole space evenly (Figure 6.6N,O).

6.1.3.1.3 Chaotic Attractors
Three of the most well-known and studied dynamical systems are briefly presented hereafter, the 
Hénon attractor and the Rössler and Lorenz attractors.
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The Hénon attractor is defined by a recursive equation, H(x, y) = (y + 1. − ax2, bx), where a and 
b are adjustable parameters. An orbit, or trajectory, of the system consists of a starting point (x0, y0) 
and its iterated images:

 (xt+1., yt+1.) = (yt + 1. − axt
2, bxt) (6.5)

for k = 0, 1., … n. As previously discussed for the logistic equation, the dynamics of Equation (6.5) 
strongly rely on the choice of the constants a and b. For a range of values for a and b, most orbits 
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Figure 6.6 Time series of different simulated signals Yt and the related phase-space portrait, Yt vs. Yt+2. 
From top to bottom, a sine wave, Yt = 0.4sin(1.00t), a combination of two sine waves, Y(t) = 0.4 sin(1.00t) + 0.4 
sin(400t), a combination of three sine signals Y(t) = 0.4 sin(1.00t) + 0.3. sin(1.00t) + 0.4 sin(400t), a combination 
of the three sine signals and additive noise bounded between −1. and 1., and a random noise bounded between 
−1. and 1..
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tend to a unique periodic cycle, while chaos dominates for a = 1..4 and b = 0.3. (Hénon 1.976). The 
resulting attractor is shown on a plot of yt vs. xt, for t = 1.0,000 (Figure 6.7).

Both the Rössler and Lorenz attractors differ from the recursive logistic and Hénon equations as 
they basically emerge from two systems of differential equations. Rössler’s system of differential 
equations is (Rössler 1.976):

 

dx

dt
y z

dy

dt
x ay

dz

dt
b x z cz

t
t t

t
t t

t
t t t

= − −

= +

= + −

( )

 (6.6)

The resulting attractor is shown in Figure 6.8A for a = 0.2, b = 0.2, and c = 5.7. Although the Rössler 
system was artificially designed to create a model for a strange attractor, the Lorenz model was 
initially developed to simulate a global weather system (Lorenz 1.963.):
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 (6.7)

where s, B, and R are the weather system parameters, fixed at s = 1.0, B = 8/3., and R = 28. The cor-
responding attractor is shown in Figure 6.8B.

0.5

0.3

0.1

–0.1

–0.3

–0.5
–1.5 –1.0 –0.5 0.0

xt

y t

0.5 1.51.0

Figure 6.7 Phase-space portrait of the Hénon attractor. 1.0,000 points computed from Equation (6.5) with 
(x0 , x0) = (0, 0), a = 1..4 and b = 0.3..
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6.1.3.2 quantifying attractors: diagnostic methods for deterministic chaos
In the following, our data sets are regarded as finite sets of time observations, x(t), taken at regular 
intervals:

 X(t) = {x(1.), x(2), …, x(n)} (6.8)

where n is the total number of observations in each set. The time length of any observed period, T, 
is related to n as:

 T = nΔt (6.9)

More specifically, the three methods presented here—the Packard-Takens (PT) method (see 
Section 6.1..3..1.), Lyapunov exponents estimates (Wolf et al. 1.985), and the correlation integral 
method (Grassberger and Procaccia 1.983.)—are based on the assumption that the dynamics of any 
underlying dynamical systems can be described in some multidimensional phase-space from the 
knowledge of the time series of a single observation x(t) by constructing E-dimensional vectors 
defined by:

 


X t x t x t x t DE( ) ( ( ), ( ), , ( ( ) ))= − − −τ 1 τ  (6.1.0)

A

B C

Figure 6.8 Three-dimensional phase-space portrait (xt , yt, zt) of the Rössler attractor (A) and two- 
dimensional phase-space portraits (xt , yt) (B) and (xt , zt) (C) of the Lorenz attractor, shown for 5000 iterations.
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where DE is the embedding dimension (that is, the dimension of the vectors), and t is the lag (that is, 
the number of data points separating each of the vector’s elements). For DE = 3. and t = 1., the vector 


X t( ) consists of x(t) and the DE − 1. immediately preceding points of the time series; that is, the set 
of vectors { ( ), ( ), , ( )}

 





X X X n3 4  is denoted as:

 {( ( ), ( ), ( ),(( ( ), ( ), ( )), ,((x x x x x x x3 2 1 4 3 2  (( ), ( ),( ( ))}n x n x n− −1 2 .

In the above case, the delay time t must be chosen so that it results in points that are not cor-
related to previously plotted points. Thus, a first choice of t should be in terms of the decorrelation 
time of the time series (Tsonis et al. 1.993.). A straightforward procedure is to consider the decorrela-
tion time equal to the lag at which the autocorrelation function for the first time attains the value of 
zero. Also note that no averaging or filtering should be employed since such data manipulations can 
obscure the presence of chaos (Ellner 1.992).

6.1.3.2.1 Largest Lyapunov Exponents
The limits of predictability are set by how fast the trajectories diverge from nearby initial condi-
tions. This feature is quantified by Lyapunov exponents, which are the average exponential rates 
of divergence or convergence of nearby orbits in phase-space. Any system containing at least one 
positive Lyapunov exponent is defined to be chaotic, with the magnitude of the exponent reflecting 
the time scale at which the system dynamics become unpredictable. In other words, the larger the 
positive exponent, the more chaotic the system and the shorter the time scale of system predictabil-
ity (Wolf et al. 1.985).

To define the Lyapunov exponents, imagine an infinitesimal hypersphere of initial condi-
tions in the n-dimensional phase-space. There is one Lyapunov exponent for each degree of 
freedom of the system. We observe the evolution of the hypersphere as time progresses. The 
hypersphere will be deformed into a hyperellipsoid because of the evolution of the system. 
Then the ith Lyapunov exponent can be defined in terms of the length of the ith principal axis, 
pi, of the ellipsoid as:

 
λ

τ
τ

τL
i

i

p

p
=

→
lim ln

( )

( )∞

1

0  
(6.1.1.)

where the lL are ordered from largest to smallest in an algebraic sense (Wolf et al. 1.985; Mundt 
et al. 1.991.). A minimum condition for chaos is that the largest Lyapunov exponent (LLE), lL, 
is positive.

In practice, the algorithm developed by Wolf et al. (1.985) is recommended to estimate the larg-
est Lyapunov exponent, lL, from a time series, since it uses a relatively simple procedure and has 
been demonstrated to be robust over a large range of input parameters and relatively accurate for 
small, noisy data sets (Mundt et al. 1.991.). The delay time t should be chosen as the decorrelation 
time of the time series, as previously mentioned. 

6.1.3.2.2 Correlation Integral

Although the LLE is used to estimate the limits of predictability of a given time series, the comple-
mentary correlation integral (CI) algorithm is devoted to the quantitative characterization of the 
attractor of the series. In particular, this method can be regarded as a generalization of the correla-
tion dimension described in Section 3..2.6. As demonstrated by Takens (1.981.), an attractor topologi-
cally equivalent to the attractor of the system producing the data is obtained for every value of t and 
for DE sufficiently greater than the fractal dimension, that is, DE ≥ (2D + 1.).
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From the new multidimensional time series defined by Equation (6.1.0), the correlation integral 
(Grassberger and Procaccia 1.983.) is defined as:

 
C r
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r X X
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i j
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i j( ) lim= − −( )→
= +=
∑∑∞

1
2

11

θ
 

 (6.1.2)

where N is the number of distinct pairs in the embedding space, | |
 

X Xi j−  is the Euclidean distance 
operator between the ith and jth sample, r is an arbitrary time called “lag time” (distance between 
vectors), and q(x) is the Heaviside function, defined as follows:

 
θ ξ

ξ
ξ

( ) =
≥







0

1

for < 0

for 0  
(6.1.3.)

The correlation integral C(r) represents the probability that the distance between a pair of randomly 
chosen points on the DE-dimensional reconstruction will be less than a distance r apart (Grassberger 
and Procaccia 1.983.). In the case of random processes, the phase-space trajectory is directly linked 
to the volume of the considered DE-dimensional space as:

 C(r) ∝r→0 rDE (6.1.4)

while for an attractor, the phase-space trajectory is more compact and the correlation integral is then 
characterized by the following scaling properties:

 C(r) ∝r→0 rv (6.1.5)

where the exponent v is the correlation exponent (or correlation dimension); it can be estimated as 
the slope of the log-log plot of C(r) vs. r, using a simple least-squares method.

For chaotic data, v will approach a constant value as the embedding dimension E is increased. 
That constant value is an estimate of the correlation dimension that measures the local structure of 
the strange attractor. The dimension v of the strange attractor indicates at least how many variables 
are necessary to describe evolution in time. For instance, v = 2.5 indicates that a given time series 
can be described by a system equation containing three independent variables.

6.1.3.2.3 Nonlinear Forecasting: Nearest-Neighbor Algorithm
Based on various prediction theories (Lorenz 1.963.; Tong and Lim 1.980; Priestley 1.980; Farmer 
and Sidorowich 1.989), this method was initially developed for (1.) making short-term predic-
tions about the trajectories of chaotic dynamical systems, and (2) distinguishing between the 
complexity of natural dynamical systems where deterministic dynamics can lead to chaotic tra-
jectories and the fluctuations intrinsically related to the sampling and measurement processes 
(Sugihara and May 1.990b; Sugihara et al. 1.990; Sugihara 1.994). A direct consequence of the 
sensitive dependence on initial conditions of a chaotic system is that prediction will become 
exponentially less accurate as one attempts to predict further ahead. The nearest-neighbor (NN) 
algorithm quantifies this prediction accuracy as a function of the distance into the future that 
they are made. Specifically, the DE-dimensional vectors introduced in Equation (6.1.0), that is, 


X t x t x t x t DE( ) ( ( ), ( ), , ( ( ) ))= − − −τ 1 τ , are used to calculate the distance between 


X t( ) and the k 
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nearest-neighbors vectors 
 

X t X t x t x t x t Di i i i i E( ), ( ) ( ( ), ( ), , ( ( ) ))= − − −τ τ1 , and the predicted value 
of each x(t) is given as:

 
x t p

k
x t pi

i

k

( ) ( )+ = +
=

∑1

1  
(6.1.6)

where p is the prediction distance, that is, the number of steps ahead that one is attempting to pre-
dict. The predicted values x(t + p) are then plotted against the actual values x(t), and the strength 
of the predictions evaluated through their coefficient of correlation r. Practically, the first half of a 
given data set X(t), see Equation (6.8), is used to estimate x(t + p), which is then plotted against the 
second half of X(t).

Two sets of information are subsequently derived from the coefficient of correlation r, and used 
to classify the dynamics of the system under study. First, a plot of the coefficient of correlation r as 
a function of the prediction time provides information on the deterministic vs. chaotic nature of the 
system. For instance, purely deterministic (that is, nonchaotic) processes will return consistently 
high values of r whatever the prediction distance (Figure 6.9). In contrast, chaotic systems such as 
the logistic equation in the regime where a > 3..5749 lead to an exponential decrease of r as prediction 
time increases (Figure 6.9A). Note that the contamination of the logistic equation by external (white) 
noise* decreases uniformly the predictability of nonchaotic systems, depending on the amplitude of 

* In which case, Equations (6.2) and (6.3.), respectively, rewrite as xt+1. = axt(1. − xt) + e(t) and xt+1. = axt − axt
2 + e(t). 
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Figure 6.9 Nearest-neighbor technique applied to the logistic equation (see Equations 6.2 and 6.3.). Top 
panel: a = 2.5 (A: dashed line), a = 3..5 (A: open dots) and a = 4.0 (thick black curve), a = 4.0 with external noise 
e t, e(t) = ±0.005 (thick gray curve), and a = 4.0 with external noise e t, e(t) = ±0.05, (thin black curve). Bottom 
panel: a = 3..5 with external noise e t, e(t) = ±0.005, (black line) and e(t) = ±0.05, (gray line) and a = 3..5 with 
process noise e t, e(t) = ±0.005 (open triangles) and e(t) = ±0.05 (open diamonds), and a = 2.5 with external 
noise e t, e(t) = ±0.005 (dashed line) and e(t) = ±0.05 (not shown, indistinguishable from r = 0) and a = 25 with 
process noise e t, e(t) = ±0.005 (dashed thick gray curve) and e(t) = ±0.05 (black dots).
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the noise (Figure 6.9B). In contrast, noise-contaminated chaotic systems will steepen the exponen-
tial decay of predictability (Figure 6.9A). Internal noise,* in turn, leads to a nonexponential decay 
in the predictability of a nonchaotic system (Figure 6.9B), unless the magnitude of the noise is suf-
ficient to drive the system into the unstable chaotic regime (Sugihara 1.994) (Figure 6.9B). Second, 
the shape of a plot of r as a function of the embedding dimension DE informs on the dimensionality 
of the system; chaotic systems show optimal predictability for low embedding dimensions, while 
random processes exhibit increasing predictability at higher embedding dimensions.

6.1.3.3 case study: Plankton distribution in turbulent coastal waters
6.1.3.3.1 Ecological Framework
A range of empirical and theoretical studies have demonstrated that fully developed turbulence is 
rather characterized by its multifractal properties (that is, high-order stochasticity and high dimen-
sionality); see, for example, Frisch (1.996) and references therein. Ruelle and Takens (1.971.) also 
showed that near the transition to turbulence, the many degrees of freedom of turbulence are cou-
pled coherently and lead to an enormous reduction in dimension (that is, low-order deterministic 
chaos emerges). It is then likely that in aquatic environments characterized by fluctuating turbu-
lent intensities (for example, shallow coastal and estuarine regions), the structure of both physical 
(temperature and salinity) and biological (phytoplankton biomass) parameters vary considerably. 
In other words, the dimensionality and predictability of a system might be related to the turbulent 
conditions.

Specifically, such transitions between low-order deterministic chaos and high-order stochas-
ticity may be observed in the tidally mixed waters of the eastern English Channel (Figure 4.8), 
where turbulence intensities may vary by more than two orders of magnitude over one tidal cycle 
(Seuront 2005b; Seuront et al. 2002) and are generally thought to drive phytoplankton biomass 
variability (Seuront et al. 1.996a, 1.996b, 1.999). Herein, the goal of this case study is, first, to find 
out whether time series of physical (temperature and salinity) and biological (phytoplankton bio-
mass) parameters recorded in tidally mixed waters are chaotic or not, and second, to investigate 
the potential effects of differential tidal forcing on the chaotic or stochastic nature of the variables 
in question.

6.1.3.3.2 Experimental Procedures and Data Analysis
The sampling experiment was conducted during 60 hours (that is, five tidal cycles) in a period of 
spring tide, from March 28 to 3.0, 1.998, at an anchor station located in the coastal waters of the 
eastern English Channel (50°47′3.00 N, 1.°3.3.′500 E) (Figure 4.8). The tidal range in this system 
is one of the largest in the world, ranging from 3. to 9 m, and the water column is believed to be 
fully homogenized by tide-generated turbulent mixing. Temperature, salinity, and in vivo fluores-
cence were simultaneously recorded at 2 Hz from a single depth (5 m) with a SBE 25 Sealogger 
CTD (conductivity-temperature-depth) probe, and a Sea Tech fluorometer, respectively. Every hour, 
samples of water were taken at 5 meters depth to estimate chlorophyll a concentrations, which 
appear significantly correlated with in vivo fluorescence (Kendall’s t = 0.778, p < 0.01.). In the fol-
lowing, the latter parameter will then be regarded as a direct estimate of phytoplankton biomass.  
To investigate the potential effect of varying turbulent forcings on the local structure of physical and 
biological parameters, the data analyzed here consist of 24 time series (labeled from S1. to S24) of  
1. hour duration (7200 data points), resampled from the original data set in order to be representative 
of the different conditions of tidal current speed and direction, taken every 1.0 minutes, from the 
sampling depth (Table 6.1.).

Time-series analysis requires the assumption of at least reduced stationarity; that is, the mean 
and the variance of a time series depend only on its length and not on the absolute time (Legendre 

* Now Equations (6.2) and (6.3.), respectively, rewrite as xt+1. = a(xt + e(t))(1. − (xt + e(t)) and xt+1. = a(xt + e(t)) − a (xt + e(t))2.
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and Legendre 2003.). The existence and the significance of any potential linear trends were tested 
calculating Kendall’s t correlation, which does not require any hypothesis about the characteris-
tics of the original data-set distribution. (Kendall’s coefficient of correlation was used in pref-
erence to Spearman’s coefficient of correlation r because Spearman’s r gives greater weight 
to pairs of ranks that are further apart, while Kendall’s t weights each disagreement in rank 
equally) (see Sokal and Rohlf 1.995 for further developments). We then eventually detrended the 
time series, fitting linear regressions to the original data by least squares, and used the regres-
sion residuals in further analysis. The purpose of this is to eliminate aliasing in further analysis 
due to large-scale structures present in the data sets, such as in monotonically increasing or 
decreasing trends.

In order to provide direct comparisons between the different parameters investigated here, the 
time observations, xi, were converted into normalized, dimensionless descriptors, yi, following:

 
y

x x

x xi
i= −

−
min

max min  
(6.1.7)

where xmax and xmin are the maximum and minimum values of the series, respectively. Samples of 
the resulting time series are given in Figure 6.1.0, and the Packard-Takens, largest Lyapunov expo-
nents, and correlation integral methods were used to investigate their properties.

table 6.1 
tidal Velocity (m s–1) and direction (dir, °), water column depth (m) and mean Values  
of temperature (°c), salinity (Psu), and In Vivo Fluorescence (Fluorescence relative  
units) for the 24 studied data sets

 tidal current

 speed dir (°) depth t s F

S1. 0.55 240 21..56 6.55 3.4.60 1.8.3.2
S2 0.45 220 22.49 6.53. 3.4.60 1.5.20
S3. 0.1.0 60 27.3.8 6.51. 3.4.62 1.0.90
S4 0.95 1.5 28.28 6.50 3.4.66 9.3.9
S5 0.90 1.0 26.21. 6.49 3.4.70 8.23.
S6 0.1.5 1.0 23..25 6.51. 3.4.65 1.0.25
S7 0.3.2 260 21..52 6.53. 3.4.61. 1.5.02
S8 0.62 23.0 22.21. 6.52 3.4.62 1.7.24
S9 0.1.0 85 27.1.9 6.50 3.4.65 1.1..45

S1.0 0.98 1.0 28.47 6.49 3.4.72 6.80
S1.1. 1..00 1.0 26.53. 6.49 3.4.67 7.29
S1.2 0.3.0 1.0 23..66 6.50 3.4.64 1.1..00
S1.3. 0.3.5 290 21..3.8 6.53. 3.4.62 1.7.40
S1.4 0.3.0 200 21..72 6.55 3.4.62 1.5.82
S1.5 0.1.1. 1.40 26.1.9 6.52 3.4.66 1.3..46
S1.6 0.80 1.0 28.65 6.50 3.4.69 1.0.75
S1.7 1..1.0 1.0 27.1.5 6.49 3.4.70 6.64
S1.8 0.40 1.0 24.1.5 6.51. 3.4.68 7.3.5
S1.9 0.3.5 260 21..75 6.53. 3.4.63. 1.2.64
S20 0.87 250 21..68 6.55 3.4.62 1.7.69
S21. 0.73. 23.0 25.23. 6.55 3.4.61. 1.5.1.6
S22 0.1.8 1.0 28.65 6.53. 3.4.71. 8.3.0
S23. 1..04 1.0 27.50 6.50 3.4.66 5.3.7
S24 0.60 1.0 25.95 6.50 3.4.62 3..87
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6.1.3.3.3 Results
The delay time t has been chosen as the decorrelation time of the time series (Tsonis et al. 1.993.) as 
75, 95, and 3.0 seconds for temperature, salinity, and in vivo fluorescence time series, respectively 
(Figure 6.1.1.). This delay time was also used for the following calculations of Lyapunov exponents 
and correlation dimensions.
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Figure 6.10 Samples of normalized temperature (A), salinity (B), and in vivo fluorescence (C) time series 
recorded in the inshore waters of the eastern English Channel; shown for data set S1.. (Modified from Sueront, 
2004.) (Kraichnan, R.H., 1.967), Inertial ranges in two-dimensional turbulence, Physics of Fluids, 1.0, 1.41.7–1.423..
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The three-dimensional phase-space portraits of the attractors produced by the Packard-Takens 
method did not clearly exhibit any attractor (Figure 6.1.2). Note, however, the differences between 
the phase-space portraits of fluorescence on the one hand and temperature and salinity on the other 
hand. The phase-space portraits for temperature and salinity appear as somewhat elongated and 
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Figure 6.11 Autocorrelation functions r(h) of temperature (A), salinity (B), and in vivo fluorescence 
(C) time series recorded in the inshore waters of the eastern English Channel; shown for data set S1.. The 
dashed line is the special case r(h) = 0 leading to the decorrelation time of the time series.
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relatively narrow spatial distributions (Figure 6.1.2A,B). Phase-space trajectories of in vivo fluo-
rescence, however, did not exhibit any characteristic shape, suggesting a more space-filling—or 
“random”—behavior (Figure 6.1.2C). Moreover, comparison of phase-space portraits obtained from 
time series recorded in high and low hydrodynamic conditions leads to further results. Phase-space 
trajectories of temperature and salinity then appear clearly more structured in lower hydrodynamic 
conditions (Figure 6.1.2D,E), while the apparent randomness of in vivo fluorescence phase-space 
trajectories remains whatever the hydrodynamic conditions (Figure 6.1.2F).

The largest Lyapunov exponents, LLE, lL, calculated over a range of embedding dimensions E 
exhibit clearly different behaviors (Figure 6.1.3.). By embedding dimension 8, the temperature and 
salinity LLE converge to positive values that are larger when the hydrodynamic conditions are high 
(Figure 6.1.3.A,B). In other words, the higher the hydrodynamic conditions, the larger the positive 
exponent, the more chaotic the system, and the shorter the time scale of system predictability (Wolf 
et al. 1.985). This is confirmed by the significant negative correlation between largest Lyapunov 
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Figure 6.12 Three-dimensional phase-space portraits of normalized temperature, salinity, and in vivo 
fluorescence time series. (A, B, C) represent conditions of low hydrodynamic conditions for data set S3., and 
(D, E, F) represent conditions of high hydrodynamic conditions for data set S1.7.
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Figure 6.13 The largest Lyapunov exponent lL estimated for temperature (A), salinity (B), and in vivo 
fluorescence (C) time series under high (open diamonds: S1.5) and low (black diamonds: S23.) hydrodynamic 
conditions. The dashed and dotted lines in (A, B) indicate the convergent values of lL under low and high 
hydrodynamic conditions, respectively. (Kraichnan, R.H., 1.967, Inertial ranges in two-dimensional turbu-
lence, Physics of Fluids, 1.0, 1.41.7–1.423..)
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exponents of both temperature and salinity, and tidal current speed direction. The largest Lyapunov 
exponents and the associated time scale of predictability are shown in Table 6.2. In contrast, fluores-
cence LLE remain significantly higher than temperature and salinity LLE irrespective of the hydro-
dynamic conditions, but never converge to any constant value, even when the embedding dimension 
E is increased up to 1.0 (Figure 6.1.3.C). This indicates more chaotic behavior and less predictability 
in phytoplankton biomass than in temperature and salinity fluctuations.

Figure 6.1.4 shows the correlation integral C(r) on logarithmic scales as a function of distance 
r by varying embedding dimension E from 1. to 1.0. Estimates of the correlation dimension v (see 
Equation 6.1.5) for temperature and salinity did not converge to any constant value whatever the 
hydrodynamic conditions (Figure 6.1.5A,B) and indicate the lack of empirical evidence for deter-
ministic chaos. Moreover, no significant differences were observed between temperature and salin-
ity correlation dimensions, or between the different time series for either parameter, suggesting very 
similar behaviors of temperature and salinity time series in phase-space. The results for in vivo fluo-
rescence time series are very similar with those of temperature and salinity. Clearly no saturation, 

table 6.2
largest lyapunov exponents lL estimates for temperature, salinity, and in vivo Fluorescence 
from the 24 available data sets, and the related time scale of system Predictability

 iL Predictability (seconds)

 t s F* t s F

S1. 0.048 0.045 0.21.2 20.83. 22.22 4.72
S2 0.044 0.043. 0.223. 22.73. 23..26 4.48
S3. 0.01.2 0.009 0.225 83..3.3. 1.1.1..1.1. 4.44
S4 0.098 0.1.05 0.243. 1.0.20 9.52 4.1.2
S5 0.092 0.094 0.1.72 1.0.87 1.0.64 5.81.
S6 0.021. 0.023. 0.221. 47.62 43..48 4.52
S7 0.03.1. 0.03.5 0.23.6 3.2.26 28.57 4.24
S8 0.055 0.057 0.1.98 1.8.1.8 1.7.54 5.05
S9 0.01.1. 0.009 0.21.7 90.91. 1.1.1..1.1. 4.61.

S1.0 0.091. 0.088 0.1.71. 1.0.99 1.1..3.6 5.85
S1.1. 0.095 0.084 0.223. 1.0.53. 1.1..90 4.48
S1.2 0.03.8 0.03.9 0.1.81. 26.3.2 25.64 5.52
S1.3. 0.041. 0.03.9 0.23.4 24.3.9 25.64 4.27
S1.4 0.042 0.03.9 0.1.82 23..81. 25.64 5.49
S1.5 0.01.2 0.01.6 0.23.4 83..3.3. 62.50 4.27
S1.6 0.076 0.079 0.1.72 1.3..1.6 1.2.66 5.81.
S1.7 0.1.21. 0.1.3.3. 0.228 8.26 7.52 4.3.9
S1.8 0.03.8 0.041. 0.1.96 26.3.2 24.3.9 5.1.0
S1.9 0.03.2 0.03.4 0.253. 3.1..25 29.41. 3..95
S20 0.085 0.088 0.228 1.1..76 1.1..3.6 4.3.9
S21. 0.076 0.074 0.23.4 1.3..1.6 1.3..51. 4.27
S22 0.025 0.01.7 0.254 40.00 58.82 3..94
S23. 0.097 0.096 0.1.74 1.0.3.1. 1.0.42 5.75
S24 0.071. 0.075 0.1.87 1.4.08 1.3..3.3. 5.3.5
Mean 0.056 0.057 0.21.2 28.53. 3.0.06 4.79
SD 0.03.2 0.03.3. 0.027 24.3.6 28.84 0.64
Min 0.01.1. 0.009 0.1.71. 8.26 7.52 3..94
Max 0.1.21. 0.1.3.3. 0.254 90.91. 1.1.1..1.1. 5.85

*  Following the absence of convergent behavior for the fluorescence Lyapunov exponents, we report here the λL estimated 
for E = 1.0.
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Figure 6.14 Log-log plots of correlation integral C(r) versus distance r for various embedding dimensions E 
for temperature (A), salinity (B), and in vivo fluorescence (C) time series; shown for database S8. (Kraichnan, 
R.H., 1.967, Inertial ranges in two-dimensional turbulence, Physics of Fluids, 1.0, 1.41.7–1.423..)
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Figure 6.15 Correlation dimensions v vs. embedding dimensions E for temperature (A), salinity (B), and 
in vivo fluorescence (C) under high (open diamonds; dataset S1.5) and low (black diamonds; data set S23.) 
hydrodynamic conditions. (Kraichnan, R.H., 1.967, Inertial ranges in two-dimensional turbulence, Physics of 
Fluids, 1.0, 1.41.7–1.423..)
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and therefore no evidence of low-order deterministic chaos, exists whatever the hydrodynamic con-
ditions (Figure 6.1.5C). As previously shown for temperature and salinity time series, no significant 
differences exist between the correlation dimensions v. These results confirm the previous lack of 
convergence of fluorescence LLE (see Figure 6.1.3.C), and indicate that there is no evidence for deter-
ministic chaos in the temporal fluctuations of phytoplankton biomass time series.

6.1.3.3.4 Discussion
6.1.3.3.4.1 Phase-Space Portraits 
The Packard-Takens method is probably the fastest and most direct method to infer the potential 
existence of deterministic chaos. Creating the phase-space attractor of a system with a computer 
is a very simple task. All that is needed is the copy of the data file, paste it shifted by one, two, or 
more places, and plot the data. Thus, a subjective assessment of the “degree of randomness” can be 
reached almost instantaneously from this kind of plot. It is nevertheless stressed that the charac-
teristic shape of the attractor is not easy to describe in simple terms. Figure 6.1.2 shows projections 
of phase-space trajectories onto three-dimensional space, so that the fact that no attractors can be 
seen does not imply that they do not exist when embedding in higher-dimensional space. However, 
a strange attractor of higher-dimensional space often reflects its shape onto the lower-dimensional 
space as well. For instance, the trajectory onto the two-dimensional phase-space (embedding dimen-
sion E = 2 in Equation 6.1.0), reconstructed from the time series of variable x of the Lorenz equa-
tions, shows a clear strange attractor (Figure 6.8B). These results can then instead be regarded as a 
qualitative prerequisite analysis and demonstrate that inferring the existence of any deterministic 
structure beyond the highly fluctuating behavior exhibited by temperature, salinity, and in vivo 
fluorescence time series (Figure 6.1.0) is a far more difficult task.

6.1.3.3.4.2 Largest Lyapunov Exponents 
The LLE estimates quantitatively confirm the subjective results of the Packard-Takens method, that 
is, a lower-dimensional behavior in low hydrodynamic conditions for temperature and salinity time 
series, and a higher-dimensional behavior for phytoplankton biomass time series that did not exhibit 
any convergent behavior of their LLE for values of the embedding dimension E up to 1.0 irrespec-
tive of the hydrodynamical conditions. What may be regarded as being very important for ecolo-
gists is that, unlike fractal dimensions, Lyapunov exponents remain well defined in the presence 
of dynamical noise and can be estimated by methods that explicitly incorporate noise (Ellner et al. 
1.991.; Nychka et al. 1.992). This leads us to consider that estimating Lyapunov exponents is the best 
approach for detecting chaos in ecological systems (Hastings et al. 1.993.). A number of limitations 
in Lyapunov exponent estimates to detect deterministic chaos can, however, be raised and regards 
both estimate accuracy and the minimum number of data points required in the analysis.

First, although the algorithm used in this chapter (Wolf et al. 1.985) provides a good estimation 
of the largest Lyapunov exponents for noise-free, synthetically generated time series from cha-
otic dynamics, the estimation for experimental time series is still relatively imprecise (Rodriguez-
Iturbe et al. 1.989). Second, it has been stressed that to detect a chaotic attractor of dimension 3., at 
least 1.,000 to 3.0,000 data points are needed (Wolf et al. 1.985), while others (Ramsey and Yuan 
1.989) found that 5,000 data points is a lower bound for the detection of chaos on some simple 
dynamical systems known to display chaotic behaviors in certain regimes. Moreover, Vassilicos et 
al. (1.993.) demonstrated how the tests for chaos can give positive answers—for example, positive 
Lyapunov exponents—when subsamples with a smaller number of data points are used, and how 
these Lyapunov exponents converge to zero when the number of data points is increased.

The latter limitation has been specified through estimates of the largest Lyapunov exponents of 
the larger original time series (that is, 1.72,800 data points) of temperature, salinity, and in vivo fluo-
rescence that were divided into 24 subsections of 7,200 points in the present work. Subsequent results 
(Figure 6.1.6A) then indicated that LLEs of temperature, salinity, and phytoplankton biomass time 
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series remain positive but converge to zero. As previously mentioned, a positive largest Lyapunov 
exponent indicates chaotic dynamics, but values quite close to zero should therefore only be inter-
preted as an order of magnitude. As a consequence, the different convergent positive values of the 
different LLEs estimated for temperature and salinity time series in high and low hydrodynamic 
conditions (Figure 6.1.3.A,B) suggest a phenomenological shift between low-dimensional chaos and 
high-dimensional stochasticity as the one observed by Ruelle and Takens (1.971.) near the transition 
to turbulence. Alternatively, a positive largest Lyapunov exponent close to zero can be interpreted 
as having been derived from a stochastic time series with many degrees of freedom (Jeong and Rao 
1.996). More generally, systems with a Lyapunov exponent of zero are associated with a state called 
the edge of chaos, where complex behavior is the rule. The exact meaning of the edge of chaos 
depends on the context within which it is used but, roughly speaking, it describes the vicinity of 
some instability point separating a region of more ordered (or less random) behavior from a region 
of less ordered (or more random) behavior. The edge of chaos has attracted considerable interest 
among biologists and ecologists because processes such as evolution or adaptive behavior have 
been precisely shown to be just at the edge of chaos (Kauffman and Johnson 1.991.; Langdon 1.992; 
Kauffman 1.993.). Such a critical state would increase the adaptive efficiency of a given system—for 
instance, in response to fluctuating environmental conditions—and could then be of prime interest 
in the future understanding of ecosystem functioning.

6.1.3.3.4.3 Correlation Integrals 
Although it has been shown that if the data set is small, the correlation dimension v (see Equation 
6.1.5) appears to converge toward a finite value even in the absence of chaos (Smith 1.988), this 
is obviously not the case here (Figure 6.1.5). Moreover, correlation dimension v estimates for the 
1.72,800 data-point time series (Figure 6.1.6B) did not converge to any constant value and confirm 
the lack of empirical evidence for deterministic chaos previously shown with smaller time series 
(Figure 6.1.5). Our results then cannot be associated with sampling limitation. A correlation dimen-
sion of 2 has thus been identified on the basis of a 1.,200 values of chlorophyll transect recorded 
in the central waters of the Ligurian Sea (NW Mediterranean Sea; Ibanez 1.986). This result 
then confirms the efficiency of the correlation algorithm to detect low deterministic chaos when 
applied to small data sets. This also confirms that different hydrodynamic conditions might be 
at the origin of differential space-time structures, in terms of low-order deterministic chaos or 
high-order stochasticity. Then, high hydrodynamic conditions, such as those occurring in the 
eastern English Channel, could be at the origin of temperature, salinity, and phytoplankton 
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expected for an uncorrelated noise (B).
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biomass distributions characterized by their high-order stochasticity, while in low hydrody-
namic conditions, as those encountered in the stable waters of the Ligurian Sea, phytoplankton 
distribution could be rather characterized by a low-order deterministic behavior.

Although our results suggest that temperature, salinity, and phytoplankton biomass exhibit a 
higher dimensionality in high hydrodynamic conditions, we cannot conclude, on the basis of the 
three previously used analysis techniques, the existence of low-order deterministic chaos, but only 
to a lower dimensionality in low hydrodynamic conditions.

6.1.3.4 chaos, attractors, and Fractals
Fractals can be temporal, spatial, or phase-space manifestations of chaos in nonlinear dynamic sys-
tems. Fractals in phase-space can either be attractors themselves—that is, strange attractors, such 
as the bifurcation diagram of the logistic equation or the Hénon map—or they can constitute the 
dividing line between separate attractor basins in phase-space (see, for example, Peitgen and Saupe 
1.988; Peitgen et al. 1.992). The study of attractors is important because the geometry of an attractor 
frequently captures much of the underlying dynamics and allows one-dimensional (fractal) descrip-
tion. We will nevertheless see hereafter that the geometry of strange attractors can be so complex 
that it becomes impossible to describe them in terms of fractal dimensions and (low-order) deter-
ministic chaos. In particular, this statement precludes the introduction of the multifractal, high-
order stochastic framework.

6.1.4 chaos in Ecological sciEncEs

Since the seminal studies of chaos in discrete time models in population ecology (May 1.974, 1.975, 
1.976), the issue of chaotic dynamics in ecological systems has been widely controversial (Hassell 
et al. 1.976; Berryman and Millstein 1.989; Pool 1.989). Chaos in ecology has nevertheless been the 
subject of an increasing amount of literature. In theoretical ecology, there are many examples of 
temporal population models that exhibit chaos. The interaction of three variables in a predator–prey 
nutrient system (Kot et al. 1.992) is now a well-studied chaotic system, as chaotic dynamics expected 
through a trophic coupling of three species (Hastings and Powell 1.991.). Recently, an ocean ecosys-
tem model also exhibited chaotic properties related to external seasonal forcing (Popova et al. 1.997). 
In particular, the issues raised by chaos theory in ecology have been the subject of several reviews 
(May 1.980, 1.987; Godfrey and Blythe 1.991.; Ellner 1.992; Logan and Allen 1.992; Hastings et al. 
1.993.; Little et al. 1.996).

As briefly suggested in the above section, the compelling reasons for the emerging chaos theory 
to ecology are based on the hope that complex systems could be explained by relatively low-order 
processes. This leads to the development of a suite of algorithms aimed at the detection of chaotic 
behavior and the classification of system dynamics; see, for example, Hastings et al. (1.993.) and Ellner 
and Turchin (1.995) for reviews. While such approaches have been applied to a wide variety of time 
series (Farmer and Sidorowich 1.987; Ellner 1.992; Theiler et al. 1.992) to detect dynamic spatial chaos 
(Rubin 1.992; Rand 1.994; Solé and Bascompte 1.995), the development of nonlinear thinking to aquatic 
ecology has a more recent history. Only a few studies have been devoted to detecting chaotic signature 
in both marine time series and transects, and led to controversial results. Sugihara and May (1.990b) 
found evidence for chaotic dynamics in time series of weekly diatom counts, and Scheffer (1.991.) 
argued that chaotic deterministic dynamics should be commonplace in plankton communities. Ascioti 
et al. (1.993.), Strutton et al. (1.996, 1.997) and Seuront (2004), however, did not find any evidence of 
chaotic dynamics in both zooplankton and phytoplankton time series, phytoplankton transects, and 
temperature, salinity, and in vivo fluorescence time series, respectively. Ascioti et al. (1.993.) found a 
significant level of predictability of zooplankton abundance from that of phytoplankton, indicative of 
a deterministic trophic link. A recent application of the nearest-neighbor algorithm to time series of a 
range of physical and biological variables for the north Pacific Ocean (Hsieh et al. 2005) showed that 
physical variables were characterized by a high dimensionality (E bounded between 1.3. and 20) and 
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were best modeled as linear autoregressive processes of high order. In contrast, time series of biologi-
cal variables such as Scripps Pier (California) diatoms and California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) larval fish and zooplankton consistently exhibit a low-dimensional non-
linear signature (3. ≤ E ≤ 8). Recently, chaos has been identified in models of planktonic biodiversity 
(Huisman and Weissing 1.999), the temporal dynamics of the deep chlorophyll maximum from Station 
ALOHA in the subtropical Pacific Ocean (Huisman et al. 2006), and the long-term dynamics of an 
experimental plankton community (Benincà et al. 2008)

6.1.5 a FEw misconcEpTions abouT chaos

Several misconceptions about chaos precisely pertain to its relationship to stochastic behavior 
(Hastings et al. 1.993.). Chaos and stochasticity are nevertheless not equivalent; not only do the 
underlying mechanisms differ, but the consequences for observers are also very different. In purely 
deterministic systems, predictions made from the governing equations will be perfect. Chaotic sys-
tems are predictable over short time scales because they are deterministic; the lack of predictive 
power over long time scales stems from the lack of complete information about the exact location 
of initial conditions. In contrast, purely stochastic systems are unpredictable over any time scale 
because of their probabilistic nature. In such approaches, the variability of a given descriptor is 
driven by “new” events, which represent exogenous variables—exogenous in the sense that they are 
not a part of an internal mechanism that drives the descriptor fluctuations. The branches of a tree 
move because of the wind, which is “exogenous” to the tree, and therefore “new” to it, whereas a cha-
otic model of the motion of trees would assume the existence of a simple deterministic “nonlinear” 
engine within the tree (that is, endogenous) that generates chaotic motion by a simple mechanism 
of feedback of the motion of the tree upon itself. Finally, the distinction between stochastic and 
deterministic dynamics has important practical implications. For instance, if fluctuations in popula-
tion sizes are driven primarily by deterministic factors, and if those factors are understood, then the 
dynamics are predictable over short time scales. Management of such populations is feasible. On the 
other hand, if fluctuations are driven primarily by exogenous stochastic forces, then prediction and 
management become much more difficult.

Now, given that deterministic equations in a small number of variables can generate complicated 
behavior—see, for example, Equations (6.2), (6.5), (6.6), and (6.7), and Figure 6.3.—the question 
arises: How much of the complicated behavior observed in nature can be described by a small 
number of variables? This question has been widely addressed in the framework of turbulence. 
Ruelle and Takens (1.971.) showed that near the transition to turbulence, the many degrees of free-
dom of turbulence are coupled coherently and lead to an enormous reduction in dimension (that is, 
low-order deterministic chaos). However, both empirical and theoretical studies have demonstrated 
that fully developed turbulence (for example, Frisch 1.996 and references therein) was character-
ized by its multifractal properties (that is, high-order stochasticity). Moreover, the effects of both 
hydrodynamic and advective processes on the multifractal structure of both physical (temperature 
and salinity) and biological (phytoplankton biomass) parameters have been identified in a study of 
phytoplankton patchiness in turbulent environments (Seuront 2005b). This issue, together with the 
fundamental differences between fractals and multifractals, will be emphasized in Chapter 8.

6.1.6 ThEn, whaT is chaos?

When we look at the changing world that we are living in, we can categorize observed changes into 
a few fundamental categories: growth and recession, stagnation, cyclic behavior, and unpredictable, 
erratic fluctuations. All of these phenomena can be described with very well-developed linear math-
ematical tools. Here linear refers to the result of an action being always proportional to its cause: if we 
double our effort, the outcome will also double. Patterns and processes descriptive in terms of linearity 
(for example, clocks, motion of planets) are referred to as being ordered. Their predictability is strong, 
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and their characteristic attractors will be single points (that is, stable equilibrium), closed loops or tora 
through phase-space (that is, a stable limit cycles), thus revealing their finite dimensionality.

However, most of nature is nonlinear in the same sense that most of ecology is nonaquatic ecol-
ogy. The situation where most of traditional science is focusing on linear systems can be compared 
to the story of the person who looks for the lost car keys under a street lamp because it is too dark to 
see anything at the place where the keys were lost. One whole class of phenomena that does not exist 
within the framework of linear theory has become known under the vague term of chaos. The mod-
ern notion of chaos describes irregular and highly complex structures in time and in space that follow 
deterministic laws and equations. This concept is specifically referred to as low-order deterministic 
chaos. Deterministic chaotic systems are characterized by a finite, short-term predictability, strange 
(that is, fractal) attractors, and then a low dimensionality. The dimension of the attractor estimated 
using specific techniques (see Section 6.1..3..2) indicates at least how many variables are necessary to 
describe evolution in time. For instance, a dimension of 2.5 indicates that the pattern or process of 
interest can be described by a system of equations containing three independent variables.

In contrast, the structure of a given system can be so complex, and its variability so violent 
(see Figure 2.2), that the methods devoted to the identification of (low-order) deterministic chaos 
become inefficient. No more evidence for organization in the phase-space (Figure 6.1.2), no more 
evidence for short-term predictability (Figure 6.1.3.), no more evidence for low-order dimensionality 
(Figure 6.1.4): this is the signature of high-order stochasticity. In this framework, the systems do not 
show strange attractors in the phase-space, their predictability is extremely weak, and their descrip-
tion requires a large (even infinite) number of parameters. In the example shown in Figure 6.1.6B, 
the nonconvergence of the correlation dimension for embedding dimensions DE = 1.0 means that 
the description of the studied temperature, salinity, and fluorescence time series would require a 
system of equations involving at least 1.0 independent variables for their description. These different 
features are illustrated in Figure 6.1.7.

6.2 Fractals and selF-organization

The scale-invariance of fractals is frequently related to self-organization in nonlinear dynamic sys-
tems consisting of large aggregations of interacting elements. As such a system moves on a strange 
attractor in phase-space, any particular length scale from external forcing is lost (“forgotten”), and 
instead, the smallest length scale of the individual elements propagates its effect across all scales. This 
generates pattern formation that may or may not exhibit fractal properties. An archetypical example 
is Rayleigh-Bénard convection, where individual fluid motions are chaotic while a pattern of convec-
tive cells is formed that scales with the viscosity of the fluid (instead of with the amount of heat dis-
sipation or the dimension of the container). The emergence of structure, or order, in a system through 
its internal dynamics and feedback mechanisms is the essence of self-organization, as opposed to 
the generation of regularity as a result of external forcing. In a thermodynamic perspective, self-
organization arises in nonlinear systems that are far from equilibrium and dissipative (irreversible). 
Coherent motion and patterns created in such systems are therefore called dissipative structures. 
Further thermodynamics interpretations of complex systems lead to principles of minimum entropy 
production in open systems and maximum entropy states in closed systems. The stochastic interpre-
tation of these entropy principles in complex systems can in turn be related to information theory 
(Shannon and Weaver 1.949; Jaynes 1.957; Brillouin 1.962; Kapur and Kesavan 1.992).

6.3 Fractals and selF-organized criticality

6.3.1 dEFining sElF-organiZEd criTicaliTy

A variation of the self-organization concept is the model of self-organized criticality (Bak and Chen 
1.991.; Bak et al. 1.987, 1.988). The archetypical example is the accumulating sand pile, in which the 
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nonlinear dynamics between disturbed and avalanching sand grains retain the system in a critical 
state with the slopes of the pile at the angle of repose. The properties (such as angularity and size of 
the sediment) of the smallest element, the grain, determine the large-scale properties of the system 
as a whole (the critical angle of repose). A small disturbance (for example, the addition of another 
grain of sand at the top) can trigger avalanches that can attain any size, constrained only by the size 
of the pile itself. More specifically, when the pile is flat there is little interaction among the different 
regions of the pile and adding a single grain will only affect a few other grains nearby. The system is 
in a subcritical state (Figure 6.1.8). As the pile grows by adding grains of sand, avalanches of grains 
spill down the sides such that adding a single grain can initiate a cascade, affecting many other 
grains. Eventually, the slope of the pile grows until the angle of repose is reached. The pile reaches 
a critical state and essentially does not get any steeper (Figure 6.1.8). Now if grains are added, 
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Stochastic chaos

Multifractality

Deterministic

Deterministic chaos
Strange attractor

Short-term predictability
Low dimensionality

No attractor
No predictability

High dimensionality

UnstableUnstableStable Stable

Figure 6.17 Schematic diagram showing the dichotomy leading to the characterization of a data set in 
terms of low-order deterministic chaos, or high-order stochasticity.
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avalanches occur with a wide range of sizes. The critical state is defined by a stationary statistical 
distribution of avalanches that propagate across all spatial and temporal scales (only limited by the 
finite size of the pile), as opposed to the uniform power spectrum of a purely stochastic process. 
Alternatively, the pile could be started in a supercritical state by forming a vertical cylinder of sand. 
A supercritical pile is highly unstable and is expected to collapse down to a critical state as grains 
are added (Figure 6.1.8). One can think of the critical state as an attractor for the dynamics of the 
pile. Note that the dynamical and structural properties of self-organized criticality are characterized 
by a power law stating that the probability of events with intensity I greater than a critical threshold 
Ic follows Equation (5.1.) as:

 P (I ≥ Ic) ∝ Ic
−φ  (6.1.8)

In the sand pile case, the events are avalanches of sand grains and the intensity of the events is the 
number of grains in an avalanche. Similarly, the number of grains N(d) falling a distance d follows 
the power-law form N(d) ∝ d−D where D is the fractal dimension of the avalanches. More generally, 
for a critical system, the distribution of fluctuation sizes s is described as:

 F(s) ∝ s−D (6.1.9)

where F(s) is the frequency of s and D is the related fractal dimension. In the sand pile case, the 
events are avalanches of sand grains, and the size of an event is the number of grains in a particular 
avalanche. Frequency is estimated as the number of events of size s divided by the total number 
of events. Note that Equation (6.1.9) is conceptually similar to Equation (5.4), hence, D = Dpi (see 
Section 5.2).

Because of the above-mentioned intrinsic scaling properties, self-organized structures can be 
described in terms of fractality. The negative exponent in Equation (6.1.9) leads to many small events 
or fluctuations punctuated by progressively larger events, hence the notion of intermittency that will 
be introduced in Chapter 8. From the previous statements, it also appears that self-organized criticality 

Critical state

Hypercritical state Hypercritical state

Subcritical state Subcritical state Subcritical state

Subcritical state Subcritical state

Subcritical state

Figure 6.18 Schematic illustration of the concept of self-organized criticality (SOC) using the archetypical 
example of the dynamics of the sand pile. (See text for explanations.)
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occurs in systems that build up stress and then release the stress in intermittent pulses, that is, large 
fluctuations interspersed among period of relative stasis. In that way, self-organized criticality can also 
be related to the concept of multifractals, basically designed to characterize the spectrum of the differ-
ent intensity levels observed in the intermittent fluctuations of a given descriptor; see Chapter 8.

6.3.2 sElF-organiZEd criTicaliTy in Ecology and aquaTic sciEncEs

Self-criticality has been identified in a range of ecological areas, ranging from tree-fall gap forma-
tion in tropical rainforests (Manrubia and Solé 1.996), bird population/extinction dynamics (Keitt 
and Marquet 1.996), and species extinction observed in fossil records (Raup 1.982) to models of 
ecosystems (Bak et al. 1.989) and evolution (Kauffman and Johnsen 1.991.; Bak and Sneppen 1.993.; 
Flyvbjerg et al. 1.993.; Paczuski et al. 1.995; de Boer et al. 1.994). In aquatic ecology, the only known 
reference to self-organized criticality is a very recent work that found evidence for a critical state—
more specifically, a critical biomass—in the microscale spatial organization of microphytobenthos 
in the sediment* (Seuront and Spilmont 2002) (Figure 3..21.). It may be difficult to make the con-
ceptual connection between the sand-pile model and the spatial patchiness of microphytobenthic 
organisms. Such an understanding is nevertheless a salient issue to bridge the gap still remaining 
between the physics of nonlinear, nonequilibrium systems and aquatic ecology. We try to make this 
point clearer hereafter.

The decrease in the number of patches above a critical biomass (see Figure 5.4) suggests that the 
dynamics of patch formation are structured by conflicting constraints. In the case of the sand pile 
model, the constraints are gravity, which acts to lower the height of the pile, and the addition of sand 
grains, which raises the height of the pile. The structure of the pile emerges from the interaction of 
these forces. It is a salient issue to realize that, although gravity acts uniformly on all grains in the 
pile, the probability of an avalanche is not spatially uniform across the pile. Some areas of the pile 
will have steeper slopes and thus a higher probability of sliding. Each avalanche changes the spatial 
pattern of slopes and thereby affects the size of subsequent avalanches, which in turn determine the 
structure of the pile yet again. It is this pattern of long-range correlations among avalanches that is 
the key to understanding self-organized criticality. The constraints, and their potential effects, that 
act on the structure and dynamics of a microphytobenthic assemblage are outlined hereafter. In 
the case of microphytobenthos biomass, the microscale distribution of patches is the result of both 
endogenous (for example, microphytobenthos growth, migration, and death) and exogenous pro-
cesses (for example, tides, hydrodynamism, sediment quality, interspecific and intraspecific com-
petition for nutrient, grazing) that can act to decrease or increase the microphytobenthos biomass. 
As illustrated in the sand pile model, these constraints do not act uniformly over the whole spatial 
domain. For instance, biomass losses related to grazing are dependent on both the spatial distribu-
tion and foraging abilities of predators. Growth and death are dependent on nutrient and light avail-
ability that is also a function of the burying depth of microphytobenthos cells, the density, and the 
spatial distribution of the sediment and the duration of the emersion. The microphytobenthic com-
munity at the sediment surface may be disturbed by turbulence and shear stress generated by tidal 
currents or wind waves and lead to microphytobenthos cell load in the water column. The degree 
of disturbance depends on the interplay of a number of factors, including sediment type, stability of 
the sediment surface, mean water depth, tidal height, magnitude of tidal currents, wave height, and 
macrofaunal abundance and activity. In particular, resuspension processes occur during immersion 
and lead to biomass losses for the microphytobenthic system. On the other hand, resettling of cells 
occurring at the beginning of emersion can be regarded as playing a major role in the observed 
patch pattern.

These constraints, acting quite obviously to increase or decrease microphytobenthos biomass, 
result in a dynamic balance as in the sand-pile model. However, the cause of patchiness, and 

* See Section 3..2.4.2 for a description of the data and their analysis using the mass dimension method.
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in particular the self-organized criticality observed in patch patterns, is less clear. A potential 
mechanism for patch formation is discussed hereafter, with specific reference to the critical bio-
mass observed in the microphytobenthos patch pattern. A candidate mechanism for patchiness 
is competition among species. If competition is a driving force in structuring a microphytoben-
thos community, then the important dynamics would be observed in the niche space occupied 
by different species (MacArthur 1.960; Hutchinson 1.961.; Odum 1.971.). Competitive pressure 
would be expected to be high in regions of niche space where species are densely packed, as 
would happen, for instance, when a number of species share the same food resource. It is pos-
sible that, like the steep region of the sand-pile, species occupying dense regions of niche space 
(that is, where chlorophyll concentration is higher than the observed critical biomass) are subject 
to higher extinction probabilities, and then reduce the probability of high-density patches. The 
loss of species would change the distribution of species in a niche space and, in turn, change 
the probability of extinction and patches, much like the dynamics of the sand pile model. The 
system is in a critical state. In contrast, species occupying sparse regions of the niche space (that 
is, where chlorophyll concentration is smaller than the observed critical biomass) are subject to 
weaker competition pressure and extinction probabilities. The system is then in a more stable, 
or subcritical state, and does not exhibit any fingerprints of self-organized criticality.
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7 Estimating Dimensions 
with Confidence

As stated by Hastings and Sugihara (1.993.), the first key steps in fractal analysis are (1.) the choice 
of an appropriate power law, (2) the application of log transforms, and (3.) the use of linear regres-
sion to fit a log-transformed linear model. In Chapters 3. and 4, we thus summarize some of the 
more commonly used methods, together with more original ones, for estimating the fractal dimen-
sion DF of both self-similar and self-affine natural objects. Formal mathematical derivations and 
proofs have been omitted; readers interested in fractal theory should consult Mandelbrot (1.983.), 
Voss (1.985, 1.988), Falconer (1.985, 1.993.), Frontier (1.987), Feder (1.988), Sugihara and May (1.990a), 
Schroeder (1.991.), Peitgen et al. (1.992), Hastings and Sugihara (1.993.), Tricot (1.995), and Gouyet 
(1.996). Note, however, that some of the methods used to estimate the fractal dimension are empiri-
cally, not mathematically, derived. Other reviews that have summarized fractal dimension esti-
mation methods include Loehle (1.983.), Frontier (1.987), Milne (1.988, 1.991.), Kaye (1.989, 1.994), 
Williamson and Lawton (1.991.), Kenkel and Walker (1.993.), Klinkenberg (1.993.), Nonnenmacher 
et al. (1.994), Johnson et al. (1.995), and Seuront (1.998). Most of these reviews have been somewhat 
selective or have focused on a specific subdiscipline within the biological sciences. The diversity of 
available approaches for determining the fractal dimension reflects differences in objectives and in 
the type of data analyzed.

However, we stress here that these key steps are not as straightforward as might appear at first 
glance and that several intrinsic characteristics of fractal patterns and processes have to be clearly 
identified and carefully checked for identifying potential deviation from fractal behavior, and thus 
for the results of fractal analysis to be meaningful. It is clear that if the basic methodology is 
unreliable, a great deal of research effort is being compromised; briefly put, a dimension estimate 
is always produced, with no indication of its reliability of likely error. Reliable procedures giving 
some guidance as to the degree of confidence can be placed on its estimates are essential to prevent-
ing embarrassing errors. Such errors can have salient consequences, for instance, when dimension 
estimation is used as a possible diagnostic tool (see, for example, Zbilut 1.988; Nunes Amaral et al. 
1.998; Ivanov et al. 1.998, 1.999). In this chapter, we thus address in detail several potential devia-
tions from fractal behavior and propose some simple procedures to ensure the relevance of fractal 
dimension estimates.

7.1 scaling or not scaling? that is the question

Fractal analysis is implicitly based on the identification of power laws in log-log plots and on the 
subsequent use of linear regression to fit a log-transformed linear model. However, as stated above, 
the apparent scaling can be simply the result of the generic property of the quantity to increase 
or decrease monotonically as the scale goes to zero irrespective of the geometry of the object. 
Consequently, one must question the validity of fitting a straight line over the whole range of avail-
able scales. We thus introduce here objective, statistically sound procedures for testing the exis-
tence of scaling properties, and then we briefly discuss the implications of finding multiple scaling 
properties.
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7.1.1 idEnTiFying scaling propErTiEs

When we are dealing with exact fractals (see, for example, Figures 2.5, 2.8, 3..1., and 3..3.), there are 
no difficulties in calculating a fractal dimension. The log-log plots are very linear and we always 
recover an expected and a priori known result whatever the methods employed; see Seuront et al. 
(2004a, their Figures 6 and 7). Conversely, when we are dealing with any patterns and processes 
whose properties are not known a priori (for example, coastlines, time series of plankton abun-
dance), complications begin to arise. In such cases, many analysts have implicitly made an assump-
tion of linearity in the log-log plot (see, for example, Crist et al. 1.992; With 1.994; Erlandson and 
Kostylev 1.995; Snover and Commito 1.998; Dowling et al. 2000). As a result, the scaling region was 
estimated subjectively and its relevance simply related to the statistical significance of the coef-
ficient of determination (r2). We will nevertheless demonstrate here—on the basis of several very 
simple examples of log-log plots exhibiting extremely strong, and then a priori statistically signifi-
cant, linearity (Figure 7.1.)—that ensuring the significance of the coefficient of determination (r2) is 
far from sufficient to conclude the presence of fractality in any patterns and processes.

Consider, for instance, the four test-case log-log plots shown in Figure 7.1.. They correspond to 
the power law M(d) ≈ d−1..2 (Figure 7.1.A; see Equation 2.1.), to a smooth second-order polynomial, 
logM(d) = −0.3.2(logd)2 − 0.86 logd  − 0.06 (Figure 7.1.B), to a combination of a power-law behavior 
for the seven medium points and a second-order smooth polynomial (Figure 7.1.C) for the extreme 
points, and to the addition of 1.0% random noise to the original power law (Figure 7.1.D). They all 
exhibit an extremely strong and a priori significant (p < 0.001.) linearity that could have led to the 
spurious conclusion of the presence of fractality in each of these four case studies. We will see here-
after why it is not the case and how this misinterpretation can be avoided.
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Figure 7.1 Scaling behavior of four distinct signals, shown as log-log plots of M(d) vs. d (see Equation 2.1.): 
a power law (A; M(d) = d1..2), a smooth second-order polynomial (B; log M(d) = −0.3.2(log d)2  − 0.86 log d − 
0.06), a combination of the two previous signals (C), and the power law contaminated with additive noise (D). 
A first examination, based on the values of the coefficient of determination r2, r2 ∈[0.995  − 1.], could lead to 
conclude strong linear behavior in all cases.
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7.1.1.1 Procedure 1: R² – SSR Procedure
Consider a regression window of a varying width that ranges from a minimum of five data points 
(the least number of data points to ensure the statistical relevance of a regression analysis) to the 
entire data set. The smallest windows are slid along the entire data set, with the whole procedure 
iterated (n − 4) times, where n is the total number of available data points (Figure 7.2). Within each 
window and for each width, we estimate the coefficient of determination (r2) and the sum of the 
squared residuals (SSR) for the regression. Finally, we use the values of d (Equation 2.1.), or more 
generally the scale values (see Chapters 3. and 4), which maximized the coefficient of determination 
and minimized the total sum of the squared residuals (Seuront and Lagadeuc 1.997) to define the 
scaling range and to estimate the related fractal dimensions (Figure 7.3.; Table 7.1.). This optimiza-
tion procedure will be referred hereafter to as the R2 − SSR criterion. Applying this procedure to 
cases B, C, and D shown in Figure 7.1. thus leads to identify scaling behaviors over a limited range of 
scales and over the whole range of available scales for case studies C and D, respectively (Figure 7.3. 
and Figure 7.4). On the other hand, the log-log plot of case study B never satisfies the R2 − SSR cri-
terion, revealing the nonfractal nature of the underlying process.

However, the definition of “independent” and “dependent” variables required in least-squares 
regression analysis is not straightforward in power-law applications (see Zeide and Gresham 1.991.). 
This is a serious but largely unrecognized problem, and using least-squares regression in this way 
may result in biased slope estimates (Kenkel and Walker 1.993.; Loehle and Bai-Lian 1.996). Two 
methods—(1.) principal axis regression (equivalent to principal components analysis) and (2) reduced 
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Figure 7.2 Schematic illustration of the R2 − SSR criterion: a regression window of a varying width that 
ranges from a minimum of five data points (dark lined rectangle) to the entire data set (dotted lines). The 
smallest windows are slid along the entire data set, with the whole procedure iterated (n − 4) times, where n is 
the total number of available data points. Within each window and for each width, the coefficient of determi-
nation (r2) and the sum of the squared residuals (SSR) for the regression are estimated.
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major axis regression—are available (Zar 1.996) and should be used instead. In particular, the 
reduced major axis slope is obtained very simply, as the least-squares slope divided by the product-
moment correlation between the two variables (Niklas 1.994).

7.1.1.2 Procedure 2: zero-slope Procedure
One may note that Equation (2.1.) can be rewritten as:

 d log M(d )/d log d = −DF (7.1.)

Then if scaling exists, it will manifest itself as a zero-slope behavior in plots of d logM(d)/d log d vs. 
logd (Figure 7.5A). Equation (7.1.) can thus equivalently be written as:

 d [d logM(d )/d log d]/log d = 0 (7.2)

From Equations (7.1.) and (7.2), it can be easily seen that the intersection of the range of scales 
exhibiting a zero-slope behavior with the y axis (that is, d logM(d)/d log d) provides an estimate of 
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Figure 7.3 The R2 − SSR criterion applied to the combination of a power law and a polynomial (Figure 7.1.C). 
The values of log d maximizing the coefficient of determination (r2) and minimizing the sum of the squared residu-
als (A; arrow), correspond to the range of scales over which the data effectively exhibit a scaling behavior, shown 
as open symbols (B).
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table 7.1 
R2 – SSR criterion applied to a combination of Power law and a Polynomial

i-j r 2 SSR  DF  
1-1 0.998 6.1E -04 1.120 
1-2 0.998 7.2E -04 1.133 
1-3 0.999 8.2E -04 1.142 
1-4 0.999 9.6E -04 1.151 
1-5 0.999 1.1E -03 1.157 
1-6 0.999 1.9E -03 1.169 
1-7 0.998 3.1E -03 1.183 
2-1 0.999 2.0E -04 1.170 
2-2 0.999 2.1E -04 1.174 
2-3 1.000 2.4E -04 1.179 
2-4 1.000 2.6E -04 1.183 
2-5 0.999 7.3E -04 1.196 
2-6 0.999 1.5E -03 1.211 
3-1 1.000 1.7E -05 1.199 
3-2 1.000 1.9E -05 1.201 
3-3 1.000 1.4E -05 1.202 
3-4 0.999 3.3E -04 1.218 
3-5 0.999 9.0E -04 1.235 
4-1 1.000 1.7E -05 1.196 
4-2 1.000 1.6E -05 1.198 
4-3 0.999 3.2E -04 1.224 
4-4 0.998 8.0E -04 1.249 
5-1 1.000 1.6E -05 1.198 
5-2 0.998 2.8E -04 1.238 
5-3 0.997 6.6E -04 1.273 
6-1 0.997 1.8E -04 1.274 
6-2 0.996 4.0E -04 1.317 
7-1 0.996 2.5E -04 1.368 

        
 

Note: See Figure 7.1.C. In the first column, the first and second numbers (i and j) identify the window number and the number 
of data points n used to estimate the regression (that is, the width of the regression window; n j= + 5, because the minimum 
window width includes 5 points). For instance, i = 1. and j = 2  correspond to the first regression window with a 6-point width, 
while i = 3. and j = 5 correspond to the third regression window with a 9-point width. For each regression window and for each 
width, the coefficient of determination (r2), the sum of the squared residuals (SSR), and the corresponding fractal dimension 
(DF) are estimated. The shaded areas correspond to the window-width combination that satisfied the R2-SSR criterion.
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the fractal dimension DF. Going back to Chapters 3. and 4, this framework can be generalized to any 
fractal length, surface, and volume. Equations (3..1.) and (3..2), with Equations (3..6) and (3..7), can 
then be rewritten as:

 d logL(d)/d log d = 1. − DF

 d logS(d)/d log d = 2 − DF (7.3.)

 d logV(d)/d log d = 3. − DF

or equivalently as:

 d [d logL(d)/d log d]/logd = 0

 d [d logS(d)/d log d]/logd = 0 (7.4)

 d [d logV(d)/d log d]/logd = 0
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Figure 7.4 The R2 − SSR criterion applied to the second order polynomial (A), shown in Figure 7.1.B; and to 
the power law contaminated with additive noise (B), shown in Figure 7.1.D. In the former case, the R2 − SSR 
criterion is never satisfied, the values of log d maximizing the coefficient of determination also maximizes 
the sum of squared residuals, undoubtedly showing the absence of a linear trend in Figure 7.1.B. In the latter, 
the R2 − SSR criterion is fully satisfied (arrow), and confirms the linearity of the log-log plot of M(d) vs. d as 
observed in Figure 7.1.D.
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Scaling behaviors will thus be identified by a plateau in plots of d logL(d)/d logd vs. log d, d log 
S(d)/d log d vs. log d, and d logV(d)/d log d vs. log d, and the fractal dimensions DF estimated as the 
intersection of the plateau with the d log M(d)/d log d axis. To ensure the statistical relevance of this 
procedure, we use a sliding regression window similar to the one described in the R2 − SSR pro-
cedure. The significance of the differences between the slope of each regression and the expected 
zero-slope line is directly tested using standard statistical analysis for each window size; see, for 
example, Zar (1.996). The scaling range will then be defined as the scales that statistically verify 
Equation (7.2). This procedure, hereafter referred to as the “zero-slope” criterion, has been success-
fully applied to the identification of scaling ranges in zooplankton swimming behavior (Seuront et 
al. 2004a, Figure 8).

However, the main disadvantage of this procedure is the intrinsic noise enhancement generated 
by taking the first derivative of any linear or pseudolinear trends (Figure 7.5B,C,D), that are chal-
lenging for standard statistical procedure (see, for example, Hirsch and Smale 1.974). The applica-
tion of this procedure to the test cases investigated here thus confirms the result obtained above 
from the R2 − SSR criterion for the second-order polynomial (no scaling regime—that is, plateau—
detected; Figure 7.5B) and the combination of a power law and a second-order polynomial (scaling 
regime—that is, plateau—detected over a range of scales similar to the one obtained via the 
R2 − SSR criterion; Figure 7.5C). It might nevertheless lead to the spurious conclusion of the absence 
of a scaling behavior in the case of a power law with additive noise (Figure 7.5D). To overcome this 
limitation, we stress that the significance of the zero slope must be tested by simulation to explicitly 
include the potential effect of additive noise (see Section 7.3. for further details). To overcome the 
relative unreliability of the zero-slope procedure, an additional, more objective optimization crite-
rion, referred to as the “compensated slope” procedure, is introduced hereafter.
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Figure 7.5 The zero-slope criterion applied to the four data sets shown in Figure 7.1.. While the plateau 
behavior shown by the power-law behavior is obvious, no plateau (i.e., linear behavior) has been detected in 
the polynomial case (B). A statistically significant plateau has been shown for the combination of the power 
law and a polynomial over a restricted range of scale (C; open symbols). These results confirm the results of 
the R2 − SSR criterion. However, in the case of a power law with additive noise this criterion rather suggests 
the absence of a scaling behavior (D). The dashed and dotted lines represent the expected zero-slope and its 
95% confidence interval, respectively.
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7.1.1.3 Procedure 3: compensated-slope Procedure
To investigate both the existence and the nature of a scaling range, the scaling behavior generically 
illustrated by Equation (2.1.) can be compensated by a scaling factor d c as:

 M(d) ≈ d c × d −DF (7.5)

where d  is the scale and c is the compensation exponent defined as 0 ≤ c ≤ 1., 1. ≤ c ≤ 2, and 2 ≤ c ≤ 3. 
for a fractal curve, surface, and volume, respectively. More generally, varying c from DE − 1. to DE, 
where DE is the Euclidean dimension of the embedding space, should converge to

 M(d) ≈ d c × d −DF ≈ d ce (7.6)

where ce is the compensated exponent that ultimately leads to ce = 0 (that is, M(d) = 1.) when c = 
DF (Figure 7.6 and Figure 7.7). A scaling behavior will then manifest itself as a straight line in a 
log-log plot of [d c × d −DF] vs. d . The range of scale to include in the analysis is subsequently chosen 
using the R2 − SSR procedure, and the significance of the potential differences between the slope of 
each regression and the expected zero-slope line is directly tested using standard statistical analy-
sis for each window size. In that way, we ensure that the plateaus exhibited by the data points in 
Figure 7.5C, Figure 7.5D, Figure 7.7C, and Figure 7.7D are indeed a manifestation of scaling and 
not the result of random nonfractal structure. The value of c  that fully satisfies the two previous 
criteria thus provides an estimate of the fractal dimension DF. Finally, we stress that the extremely 
weak dispersion observed around the expected log[d c=1..2 × d−DF=1..2] ≈ log d ce=0 vs. log d (Figure 7.7C 
and Figure 7.7D) ensures the relevance and the robustness of this compensated-slope optimization 
criterion when compared to the zero-slope procedure (see Figure 7.5C and Figure 7.5D). Because 
these procedures may lead to slightly different results in the estimates of the scaling ranges and the 
related fractal dimensions, it is strongly recommended to include in a scaling range the scales for 
which at least two of the above three criteria are satisfied. It has, for instance, been shown that the 
R2 − SSR and the zero-slope criteria lead to slight differences in the scaling ranges estimated from 
3.D swimming paths of the cladoceran D. pulex; see Seuront et al. (2004a) for further details.
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Figure 7.6 The compensated slope procedure, applied to the combination of a power law and a polynomial 
function for different values of the compensation exponent c. The value taken by the exponent c when the log-
log plot of [d c × d−DF] vs. d exhibits a plateau behavior corresponds to the fractal dimension of the initial data 
set, that is, c = DF.
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7.1.2 scaling, mulTiplE scaling, and mulTiscaling: dEmixing applEs and orangEs

The intrinsic hypothesis of fractal theory is based on the existence of a single power law from 
smallest to largest available scales (see, for example, Mandelbrot 1.983.). We saw that this is indeed 
the case for theoretical fractals such as the Koch snowflake (Figure 2.5), the Sierpinski carpet and 
gasket (Figure 2.8), and the Cantor dust (Figure 3..3.). However, there are powerful constraints on 
structure and function that do not allow organisms, as well as any observables in nature, to main-
tain the same geometric relationships among their components, as size (that is, scale) changes over 
several orders of magnitude. This has been further exemplified and discussed in Section 2.1.. As a 
consequence, the potential scaling ranges of many patterns and processes are intrinsically charac-
terized by lower and upper bounds.

This further questions the key assumption regarding the fractal dimension as a scale-independent 
parameter. Strictly speaking, this means that in a particular environment, if we calculate DF for a 
fractal curve that is several meters long, we should obtain the same value of DF for curves measured 
at a scale of hundreds of meters to kilometers. This converges on one of the central issues faced by 
landscape ecologists: understanding how to meaningfully extrapolate ecological information across 
spatial scales (Gardner et al. 1.989; Turner and Gardner 1.991.). However, this is not as straightfor-
ward as it might appear at first glance. Indeed, if log-transformed data appear to be a piecewise 
linear model, linear regression can be used on separate intervals, overlapping only at endpoints, and 
endpoints can be varied so as to satisfy the above-mentioned optimization criteria. If linear regres-
sion then yields significantly different slopes on adjacent regions, one should reject the hypothesis 
of a single power law and replace it with the multiple scaling hypothesis of separate power laws over 
separate regions (see Figure 2.4).
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Figure 7.7 The compensated slope criterion applied to the four data sets shown in Figure 7.1.. These results 
are fully consistent with the intrinsic nature of the four data sets: a pure plateau for the power law (A), an 
absence of plateau for the polynomial (B), a significant plateau for the combination of the power law and a 
polynomial over a restricted range of scale (C; open symbols), and a statistically significant plateau for the 
noise contaminated power law (D). The dashed and dotted lines represent the expected zero-slope and its 
95% confidence interval, respectively.
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The existence of self-similar hierarchies (that is, changes in fractal dimension when shifting 
between scales) also implies that in place of true self-similarity, we observe only partial self-
similarity over a limited range of scales separated by transition zones, where the environmental 
properties or constraints acting upon organisms are probably changing rapidly (Frontier 1.987; 
Seuront and Lagadeuc 1.997; Seuront et al. 1.999). Because different scales are necessarily related 
to different aspects of structure, fractal methods can be applied in order to detect self-similar hierar-
chies in ecology. Such hierarchical scaling has been observed, for instance, in coral reefs (Bradbury 
et al. 1.984), from patch perimeter measures in deciduous forests (Krummel et al. 1.987), vegetation 
patterns (Morse et al. 1.985), landscapes (Wiens and Milne 1.989; Scheuring 1.991.), phytoplankton 
patches (Seuront et al. 1.996a, 1.999), and from Eulerian and Lagrangian physical forcings in the 
coastal ocean (Seuront et al. 1.996b; Seuront and Schmitt 2004). As a conclusion, the fractal dimen-
sion may have the desirable feature of only being constant over a finite, instead of an infinite, range 
of measurement scales; see, for example, Section 4.2.1..2 and Figure 4.6 for a discussion of the rel-
evance of scaling regimes changing with scales in aquatic sciences.

In addition, upper and lower fractal limits are controlled by the size of the data set and should not 
be confused with scales where the fractal dimension of the pattern changes. This distinction is very 
useful for identifying characteristic scales of variability and for comparing patterns and processes 
that may respond, for instance, to the structure of their environment at different absolute scales. As 
a consequence, comparing fractal dimensions estimated from different ranges of scales is meaning-
less unless we know that both the environmental properties (or constraints) acting upon organisms 
and the organisms’ physiology/biology/ecology are the same over these scales. Changes in the value 
of DF with scale may indicate that a new set of processes is controlling the observed variability. 
Thus, the scale dependence of the fractal dimension over finite ranges of scales may carry more 
information, both in terms of driving processes and sampling limitation, than its scale indepen-
dence over a hypothetical infinite range of scales. This issue is particularly relevant in aquatic 
sciences, where any divergence to a −5/3. power law in Fourier space is used to infer the nature of 
the processes controlling the observed variability (Section 4.2.1..2). Both whitening and reddening 
of the −5/3. power spectrum expected in cases of purely passive scalars advected by turbulent fluid 
motions are then a manifestation of various forms of biological activity; see, for example, Powell 
et al. (1.975), Denman and Platt (1.976), Denman et al. (1.977), Lekan and Wilson (1.978), Abbott et 
al. (1.982), Weber et al. (1.986), Powell and Okubo (1.994), Seuront et al. (1.996a, 1.999), Seuront and 
Lagadeuc (2001.), Lovejoy et al. (2001.), and Currie and Roff (2006).

Alternatively, although the point of slope change may indicate the operational scale of different 
generative processes, it might simply reflect the limited spatial resolution of the data being analyzed 
(Hamilton et al. 1.992; Kenkel and Walker 1.993.; Gautestad and Mysterud 1.993.). In order to distin-
guish these two situations, and thus to ensure the relevance of fractal analysis, one needs to be able 
to examine a given set at a variety of spatial (or temporal) scales. A data set has fractal limits and, 
as stated above, outside these limits methods to measure the fractal dimension will return a trivial 
value. Falconer (1.993.) recommends having at least three orders of magnitude between these limits 
to ensure the relevance of fractal analysis. However, this requirement can be reconsidered consider-
ing the extreme difficulty in gathering such a large number of discrete measurements in ecology, as 
well as the ecologically meaningful results obtained from data sets spanning between one and two 
orders of magnitude (Erlandson and Kostylev 1.995; Seuront and Lagadeuc 1.997, 1.998; Commito 
and Rusignuolo 2000; Waters and Mitchell 2002). Unfortunately, there is no reliable way to test 
scale invariance and measure a fractal dimension of very small data sets.

Finally, multiple scaling should not be confused with multifractality, another possible deviation 
from fractal behavior, sometimes also referred to as multiscaling (Martinez et al. 1.995; Seuront et al. 
1.999) or multifractal scaling (Rigaut 1.991.; Manrubia and Solé 1.996), and extensively described hereaf-
ter (Chapter 8). This confusion is nevertheless quite common in the literature. For instance, Manrubia 
and Solé (1.996) state that “the existence of several successive structures, reflected in the gentle change 
in DF, constitutes evidence for multifractal scaling”; Millán and Orellana (2001.) defined multifractals 
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as a model whose “fractal dimension is a smooth function of scale”; and Stanley and Meakin (1.988) 
considered that “such structures (termed multifractals) are characterized by fractional dimensions that 
vary in scale.” However, the above examples all refer to multiple fractal scaling instead of multifractal 
structures. It will be shown in Chapter 8 that the term fractal strictly refers to the structure of a set S 
(for example, the spatial distribution of marine snails over a 1. m² domain) and does not provide any 
quantitative information related to the distribution of a measure m (for example, the weight of those 
snails) on the set S. In that way, studying only the fractal structure of the set S would be equivalent to 
counting coins without referring to their relative values (Evertsz and Mandelbrot 1.992). Hereafter, the 
term multifractal thus refers to the characterization of a measure m on a set S.

7.2 errors aFFecting Fractal dimension estimates

Although the previous section (Section 7.1.) focused on the details of the most crucial limitation of 
fractal analysis that can lead to the consideration that many of the results presented in the literature 
are marred by a faulty application of linear regression and on the clarification of some terminologi-
cal ambiguities that can arise from both self-similar and self-affine patterns, this section addresses 
some additional problems specifically related to self-similar patterns (Section 7.2.1.) and to both 
self-similar and self-affine patterns (Sections 7.2.2 and 7.2.3.).

7.2.1 gEomETrical consTrainT, shapE Topology, and digiTiZaTion biasEs

The constraints and limitations investigated in this section are all related to resolution and digiti-
zation issues usually disregarded as trivial details. It will nevertheless be briefly shown how the 
length, orientation, and placement of an image with respect to the initial box are all potential causes 
of error that can propagate into significant bias in the fractal dimension estimates.

Consider a box-counting procedure (such as those used in most self-similar methods; see Chapter 
3.) performed on three line segments of length L1., L2, and L3. with respectively the following char-
acteristics (Figure 7.8A):

L•	 1. = Li=0, where Li=0 is the size of the larger box
L•	 2 = kl, where k is an integer and l is the ratio that scales down each box side between two 
steps of the box-counting procedure (l = Li/Li+1)
L•	 3. ≠ kl

It is then straightforward from Equation (2.1.0) that the fractal dimension DF returned by the algo-
rithm will meet the theoretical expectation DF = 1. for segments L1. and L2; see also Section 3..2.2 for 
more details on the box-counting algorithm. However, segment L3. will be characterized by DF < 1., 
because of the “overempty” boxes included in the computation. A box-counting algorithm will thus 
return the value DF = 1. for a line segment only if (1.) the box side and the line have an equal length 
(or the line length is a linear function of the scale ratio between two steps of the box-counting algo-
rithm implementation), and (2) the line is either vertical or horizontal. Note that it is easy to remedy 
this cause of error by simply ensuring that the bounding box side coincides with the width of the 
segment line. The larger box must thus be framed so that the segment line is parallel and touches 
the edges. For more complex cases (for example, the distribution of a river network), the size of the 
largest box must be adjusted to the size of the largest component of a set S so that the shape touches 
as many edges as possible. In addition, the number of overempty boxes could also be significantly 
reduced using a scale ratio l smaller than the value l = 2 commonly used in the literature. It will 
nevertheless be shown hereafter that such a remedial procedure is not sufficient when considering 
more complex objects and their orientation.

From the above paragraph, one easily foresees that analogous effects are bound to happen when 
considering the effect of the orientation of the object relative to the initial box. Indeed, the number 
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of subboxes containing a part of a horizontal line will change if the line is tilted by any angle a 
(Appleby 1.996) because (1.) of basic geometrical considerations, and (2) a digitized tilted line is, in 
most cases, approximated by a staircase with (spurious) double pixels at most steps (Figure 7.8B). 
This effect is implicit to algorithms employed in digitization and is not removable per se. Contrary to 
the previous source of error that leads to a systematic underestimation of the fractal dimension DF, 
different values of the angle a lead to different numbers of occupied boxes, that is, higher (overfull) 
boxes or lower (overempty) boxes than in the horizontal or vertical linear case (see Figure 7.8B), 
and then to both under- and overestimated fractal dimensions. Although this error can easily be 
corrected for simple shapes such as parallel lines (for example, by rotating the image before apply-
ing the box-counting procedure), it is unremovable for more complex shapes such as zooplankton 
trajectories (see, for example, Seuront et al., 2004a), (Figure 3..1.4). It is nevertheless possible to 
minimize this error using systematic replicates of grid orientation in the box-counting algorithm; 
see Section 3..2.2.3. for further details.

Finally, the resolution of the scanner used to digitize images can also be a source of bias itself. 
Contrary to computer-generated images, digitized images contain noise, do not necessarily fit to the 
resolution chosen in the box-counting algorithm, and are not all one-pixel-thick lines. This can have 

A

B

Figure 7.8 Source of bias in fractal dimension estimates. (A) Bounding box containing lines of correct 
width (dark gray) and a line segment that causes overempty boxes (light gray), and (B) digitized horizontal, 
straight, and tilted lines of same length, but characterized by different numbers of pixels.
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major consequences on the results of a box-counting procedure. Consider a line (one-dimensional) 
digitized with a poor resolution scanner and studied with a one-pixel-resolution box-counting algo-
rithm. The digitized line might then be artificially more than one pixel thick and will thus return 
a trivial fractal dimension DF = 2. Such a bias must then be avoided by (1.) changing the resolution 
of the box-counting algorithm so that it fits the artificial one-dimensional resolution reached by 
the scanner, or (2) converting the digitized image into a vectorial image and then turning back the 
image into exactly one-pixel-thick lines and curves.

7.2.2 isoTropy

Strictly speaking, the fractal dimension of a section of a fractal surface is independent of the choice 
of the section. In other words, fractals are isotropic in space. Spatial isotropy can be checked by 
computing the fractal dimensions associated with sections through spatial pattern: For spatially 
anisotropic patterns, the fractal exponent is independent of the direction of the section. As an illus-
tration, we considered the two-dimensional microscale distribution of microphytobenthos biomass 
in an estuarine tidal flat (Bay of Somme, France) over a one-meter-square sampling unit. The patch-
intensity fractal dimensions (see Section 5.2) estimated for different kinds of transects (horizontal, 
vertical, and oblique) (Figure 7.9A,B) cannot be statistically regarded as being different (p > 0.01.) 
(Figure 7.9C). The studied distribution is thus isotropic over the 1. m² domain.

While spatial anisotropy has been regarded as “a deviation from fractal behavior” (Hastings 
and Sugihara 1.993.), it could instead be regarded as an intrinsic property of a given pattern. This 
question has been specifically addressed in the three-dimensional framework of the analysis of 
zooplankton swimming behavior (Seuront et al. 2004a). The swimming behavior of the cladoceran 
Daphnia pulex (characterized in terms of divider and box dimensions; see Sections 3..2.1..3. and 
3..2.2.4) has thus been shown to be significantly different in the vertical and the horizontal planes, 
revealing a spatial differential behavior related to biological and ecological processes such as food 
search or predator avoidance strategies.

7.2.3 sTaTionariTy

This section will encompass two distinct, but complementary, aspects of the concept of stationarity 
that must be carefully studied to ensure the relevance of fractal analysis. The distinction between 
them is not necessarily straightforward and might unfortunately lead to spurious results. The first 
one, which strictly refers to the basic statistical concept of stationarity used in time-series analyses, 
will be referred to as statistical stationarity hereafter and is a fundamental prerequisite to any 
fractal analysis. The second one, referred to as fractal stationarity, has seldom been investigated 
and is a fundamental property of fractal patterns and processes. It can provide extremely valuable 
information to ensure the relevance and increase the ecological meaning of fractal analysis.

7.2.3.1 statistical stationarity
Fractal analysis requires the assumption of at least reduced stationarity; that is, the mean and the 
variance of a time series depend only on its length and not on the absolute time (Legendre and 
Legendre 2003.). Indeed, many time series and transects show pronounced linear or cyclic trends. 
Such trends are highly detrimental to the estimates of fractal dimensions and must be removed prior 
to performing a fractal analysis.

For instance, the presence of a linear trend (in the framework of a transect studies of macroal-
gae distribution) can be tested calculating Kendall’s coefficient of rank correlation t, between the 
series and the x axis values in order to detect the presence of a linear trend. Kendall’s coefficient of 
correlation was used in preference to Spearman’s coefficient of correlation r, although advised in 
Kendall (1.976), because Spearman’s r gives greater weight to pairs of ranks that are further apart, 
while Kendall’s t weights each disagreement in rank equally (Seuront and Lagadeuc 1.997).
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Many natural phenomena also exhibit periodic trends, such as the annual cycle of temperature and 
rainfall data, the daily cycle of sea-surface temperature, or the tidal cycle of chlorophyll and salinity 
data. These cycles must first be appropriately identified and then removed using techniques such as 
sinusoidal or polynomial regressions, moving averages, principal component filtering, or spline curve 
fitting procedures that can be found in most statistical textbooks (for example, Hamilton 1.994; Chatfield 
1.996, 2003.; Legendre and Legendre 2003.), as well as in most actual data-analysis software.

Time series and transects will then eventually be detrended by fitting linear or nonlinear models 
to the original data and using the residuals from the trend in further analysis, which can be measured 
as the difference between actual values and the trend, or as the ratio of actual values to the trends.

7.2.3.2 Fractal stationarity
One crucial characteristic of fractal patterns and processes is that their increments are stationary (that 
is, independent) in time or in space. Practically, this means that any subset of a fractal set has the 
same fractal dimensions as the original set. For time series, stationarity is easily tested by comput-
ing the fractal dimensions for different subsets of the original time series: The fractal dimension of a 
temporally stationary pattern or process is independent of the time period selected. Stationarity can 
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Figure 7.9 Spatial isotropy of fractal dimension estimates. From a two-dimensional pattern of microphy-
tobenthos biomass (recorded in the Bay of Somme, April 25, 2002; Seuront and Spilmont, unpublished data) 
one-dimensional fractal dimensions have been estimated for horizontal and vertical sections (A) and different 
diagonal sections (B) of the initial pattern. The resulting patch-intensity dimensions (see Section 5.2) cannot 
be regarded as significantly different from the two-dimensional estimate (C; p > 0.05), showing the isotropic 
character of the initial distribution. The dashed and dotted lines represent the two-dimensional patch-intensity 
dimension and its 95% confidence interval, respectively. (See color insert following page 80.)
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be tested similarly in spatial patterns by computing the fractal dimensions of spatially distinct subsets: 
The fractal dimension of a spatially stationary pattern or process is independent of the area selected.

As an illustration, we have considered time series of temperature, salinity, and in vivo fluores-
cence (a proxy of phytoplankton biomass) recorded using a Sea-Bird 25 Sealogger CTD probe and 
a Sea Tech fluorometer at a frequency of 2 Hz during a period of neap tide (September 23., 1.997) in 
the offshore waters of the eastern English Channel (Figure 4.8). The resulting time series includes 
28,777 data points. The fractal dimensions, obtained via spectral analysis (see Section 4.2.1.), are 
DFFFT = 1..67, DFFTS = 1..80, and DFFTF = 1..67 for temperature, salinity, and fluorescence time series, 
respectively. Each of the three initial time series has subsequently been divided into 24 sections of 
1.1.99 data points. The results of this local analysis are shown on Figure 7.1.0 and demonstrate that 
the fractal dimensions of the temperature and salinity subsections do not exhibit any significant 
difference in their distribution (p > 0.01.). The fluorescence fractal dimensions, however, strongly 
fluctuate from one subseries to the other, revealing the fractal nonstationarity of the original time 
series. This behavior, showing the nonpassive character of phytoplankton biomass (see also Seuront 
and Schmitt 2005b), can be related to the combination of the gradual and periodic changes in phy-
toplankton species composition and the periodic changes in turbulence intensities related to tidal 
advective and hydrodynamic processes, respectively (Seuront 1.999, 2005b).

Thus, strictly speaking, the original temperature and salinity time series are fractal, while 
the fluorescence time series cannot be regarded as being fractal. Fractal nonstationarity could be 
regarded as a deviation from fractal behavior, especially in the field of dynamical systems. There 
are no a priori known reasons why an isolated nonlinearly oscillating pendulum would present 
fractal nonstationarity. In contrast, in ecology, such a property should instead be regarded as a main 
source of information regarding the underlying dynamics that rule the observed variability. Thus, a 
global analysis would have led to the spurious conclusions that the fractal dimensions of tempera-
ture and in vivo fluorescence cannot be significantly regarded as being different. However, the local 
analysis led us to consider that (1.) phytoplankton biomass cannot be regarded as always being a 
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Figure 7.10 Fractal stationarity and nonstationarity shown from the Fourier fractal dimension of subsec-
tions of temperature (squares), salinity (diamonds), and in vivo fluorescence (open circles and crosses) time 
series. Temperature and salinity fractal dimensions cannot be regarded as different from one subsection to the 
other one, nor from the original time series. On the opposite, the strong fluctuations of the local fractal dimen-
sions of fluorescence subsections indicate the nonstationary character of phytoplankton biomass variability. 
The open circles and the crosses indicate fluorescence fractal dimensions that are and are not significantly dif-
ferent from the temperature fractal dimension. The dashed and dotted lines represent the Fourier dimensions 
of the initial time series of temperature and salinity and their 95% confidence intervals, respectively.
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purely passive scalar (see Figure 7.1.0), and (2) the local phytoplankton biomass fractal structure is 
driven by differential biological and physical processes. In ecology, fractal stationarity should then 
not be regarded as a condition to ensure the relevance of fractal analysis but as a diagnostic criterion 
to identify potential differential properties, in space or in time, of the system under interest.

7.3 deFining the conFidence limits oF Fractal  
dimension estimates

The methods for estimating fractal dimensions have disadvantages that have previously been recog-
nized and discussed. Now the question is to know how relevant a fractal dimension estimate is, in 
terms of statistical significance. Indeed, a rapid survey of the fractal studies conducted in ecology 
in general, and aquatic ecology in particular, would prove easily that a fractal estimate is always 
produced, but most of the time with no indication of its reliability or likely error. We briefly show 
here that once all the potential biases in the fractal dimension estimate have been identified and 
corrected, the confidence limits for fractal dimension (as well as their zero-slope behavior after an 
appropriate derivation; see Section 7.1..1.) can be readily obtained with simulation methods.

We will not discuss in this section the different simulation methods available in the literature, 
as excellent and exhaustive reviews are available to interested readers (see, for example, Peitgen 
and Saupe 1.988; Voss 1.988; Peitgen et al. 1.992). Instead, we will briefly illustrate (on the basis of 
simulations based on random midpoint displacements, successive random additions and the fast 
Fourier transform filtering algorithms; see Peitgen et al. 1.992) how any fractal dimension estimate 
can be given a confidence interval. Generally speaking, assuming a given hypothesis, if the small-
est and greatest values for the fractal dimension DF obtained in 950 of 1.,000 (or, even better, 990 
of 1.,000) replicate simulations are respectively DFmin and DFmax, then DF is bounded between DFmin 
and DFmax with probability 0.95 (or 0.99) under that hypothesis. Note that if a fractal dimension DF 
has been empirically obtained from a self-affine trace of n data points, it is recommended basing 
the simulation procedure on 1.,000 replicates of same length and fractal dimension. This estimate 
is chosen instead of choosing to estimate out of 1.00 realizations because the tail of the distribu-
tion is sampled more adequately in the former way. As an illustration, we have considered the 
fractal dimensions estimated from the 28,777 data-point time series of temperature, salinity, and 
fluorescence investigated in Section 7.2.3..2, that is, DFT = 1..67, DFS = 1..80, and DFF = 1..67, respec-
tively. The resulting confidence intervals for temperature, salinity, and fluorescence time series are  
DFFTT ∈ [1..63. − 1..71.], DFFTS ∈ [1..77 − 1..83.], and DFFTF ∈ [1..63. − 1..71.] at the 95% significance level and  
DFFTT ∈ [1..64 − 1..69], DFFTS ∈ [1..78 − 1..82], and DFFTF ∈ [1..64 − 1..69] at the 99% significance level. 
The reliability of fractal simulations has sometimes been put into question, especially for very high 
and very low fractal dimensions (Tate 1.998). However, it can be seen from Figure 7.1.1. than the 
mean difference between the theoretical and simulated fractal dimensions (expressed as a percent-
age of the theoretical dimension) never exceeds 5% whatever the fractal dimension for simulation 
lengths of 1.03., 1.04, and 1.05. Such minute differences cannot be reasonably regarded as being signifi-
cant or a serious source of bias.

The simulation route to ascribe confidence limits to fractal dimension estimates is specifically 
illustrated here in the self-affine framework. However, similar simulations techniques can be used 
to simulate fractal landscapes and surfaces (for example, Peitgen and Saupe 1.988). An approach 
similar to the one described above can readily be applied to define the confidence limits of the self-
similar fractal dimension estimates.

7.4 PerForming a correct analysis

With the problems and limitations raised in the above sections (Sections 7.1. to 7.3.) in mind, practi-
cal and step-by-step ways to conduct both self-similar and self-affine fractal analyses are described 
hereafter. The crucial step of properly identifying the range of scales over which the data actually 
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exhibit a scaling behavior (see Section 7.1.) will not be discussed here to avoid restatement of previ-
ous arguments, but nevertheless remains one of the most important conditions to fulfill for a fractal 
analysis to be successful and meaningful.

7.4.1 sElF-similar casE

First, one needs a high-quality map. Second, we shall not proceed manually but use computer 
software. Although some of the methods described in Chapter 3. are quite easy to code in basic 
computer languages, others are not straightforward and may require a higher level of programming 
skills. Some of the most basic techniques (for example, divider and box-counting methods) can eas-
ily be found as freeware packages on the World Wide Web. Third, the map has to be digitized, if 
possible with a high-resolution scanner (that is, 1.200 DPI or more), and then a proper vectorization 
algorithm has to be applied to the map to ensure one-pixel thickness of the curve. For surfaces, it 
is then necessary to check isotropy and stationarity over the studied domain. In the case of discon-
nected objects (for example, a set of islands), the bounding box must be chosen so as to limit the 
number of empty pixels around the set, and subsequently rotated at an angle a (a ∈ [0 − 45°]), first 
to minimize the effects of overempty and overfull boxes related to angle bias, and second to define 
confidence limits to the resulting fractal dimension estimates. Ultimately, all unconnected parts of 
the set could also be analyzed separately; the fractal dimension of the whole set will then be consid-
ered as the mean of the fractal dimensions characterizing the unconnected parts.

7.4.2 sElF-aFFinE casE

It is relatively easy to conduct a successful self-affine fractal analysis. Several diagnostic calcula-
tions nevertheless need to be systematically performed in an effort to avoid spurious features in 
the results caused by the analyses. First, one needs to look for the presence of any linear, periodic, 
or aperiodic trends in the data, and eventually remove them. In the absence of any trends, before 
performing the calculations, the data can advantageously be normalized (nondimensionalized) by 
dividing all values by the average of the total series; see also Section 6.1..3..3..2, Equation (6.1.7). 
This procedure can avoid some “density-dependent” artifacts that can virtually bias the results 
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of comparing fractal dimensions estimated for parameters characterized by different units. As a 
refinement, it is also advised to systematically perform the analyses on the original data sets with 
and without uncorrelated additive white noise, in order to estimate the potential effects of environ-
mental noise on the fractal dimension estimates. After a global analysis, a local analysis of subsec-
tions of the initial data sets can be tried to check the fractal stationarity of the series and to identify 
potential differential levels of organization that may correspond to different biological or physical 
forcing/driving processes.
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8 From Fractals to Multifractals

Since the seminal work of Mandelbrot (1.977, 1.983.), many patterns and processes have proven to 
be efficiently described by fractals in many fields of the natural sciences. They include coastline 
and mountain topography (Phillips 1.985; Burrough 1.981.; Mandelbrot 1.977, 1.983.), percolation 
theory (Abdusalam 2000), soil structure (Anderson and McBratney 1.995; Anderson et al. 1.996), 
water transport in soil (Pachepsky and Timlin 1.998), river networks (Claps and Olivetto 1.994), 
cosmology (Luo and Schramm 1.992; Argyris et al. 2001.), hydrothermal emission (Barat et al. 
1.999), seismicity (Khattri 1.995), human vision (Billock et al. 2001.), rainfall dynamics (Lovejoy 
and Mandelbrot 1.985; Breslin and Belward 1.999), heart rate variability (Mäkikallio et al. 2001.), the 
sequence structure of DNA (Provata and Almirantis 2000), diffusion-limited aggregation processes 
(Meakin 1.983.), exchange rates fluctuations (Richards 2000), electrochemical deposition (Fleury 
1.997), smoke properties (Snegirev et al. 2001.), cloud shapes (Lovejoy 1.982), sea-surface geometry 
(Glazman 1.991.), and breaking waves (Longuet-Higgins 1.994).

In aquatic ecology, the concept of fractals has been successfully applied to the structure of coral 
reefs (Bradbury et al. 1.984), the structure of marine snow (Li et al. 1.998), structural complexity in 
mussel beds (Snover and Commito 1.998; Commito and Rusignuolo 2000; Kostylev and Erlandson 
2001.), the spatial distribution of intertidal benthic communities (Azovsky et al. 2000), the behavior 
of marine (Erlandson and Kostylev 1.995; Seuront et al. 2004b) and freshwater (Seuront et al. 2004a; 
Uttieri et al. 2007) invertebrates, the behavior of marine vertebrates (Dowling et al. 2000; Mouillot 
and Viale 2001.), species diversity (Frontier 1.987), and zooplankton (Tsuda 1.995) and phytoplank-
ton (Seuront and Lagadeuc 1.997, 1.998; Waters and Mitchell 2002) patchiness.

However, many patterns and processes are now widely acknowledged as being highly intermit-
tent (that is, characterized by a few hotspots dispersed over a wide range of low-density areas) as the 
distribution of microscale fluctuations of turbulent kinetic energy dissipation rate (Figure 8.1.A) or 
the distance traveled by the calanoid copepod Temora longicornis (Figure 8.1.B). In particular, there 
are clear differences arising from the comparison of these intermittent patterns (Figure 8.2A,B) with 
standard fractal processes such as Brownian motions (Figure 8.2C), which raises the question of the 
reality of describing such processes in terms of fractals and scaling behavior.

The variety of multifractal formalisms, described in Sections 8.3. and 8.4, is directly derived 
from the theory of complex systems and fully developed turbulence. As a direct (and unfortunate) 
consequence, they are far from comprehensible (and then usable), at least for ecologists without 
a reasonable mathematical and statistical background. In this context, the next section (Section 
8.1.) provides a qualitative introduction to the concepts of multifractality and intermittency as well 
as a nonexhaustive list of applications of multifractality in a range of scientific fields, and intro-
duces a very simple and intuitive algorithm that might become usable as a standard procedure by 
ecologists.

8.1 a random walK toward multiFractality

8.1.1 a qualiTaTivE approach To mulTiFracTaliTy

What are multifractals? It is not easy to give a succinct definition of multifractals. In addition, it is 
the author’s belief (as discussed in Section 7.1..2) that different authors use different names for this 
phenomenon, which can lead to terminology ambiguities. Following Feder (1.988), one may distin-
guish a measure (of probability, or of some physical quantity such as mass, energy, or a number of 
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individuals) from its geometric support, which might or might not have a fractal geometry. Then, 
if a measure has different fractal dimensions on different parts of the support, the measure is a 
multifractal.

To make this point clearer, consider a modern city viewed directly from above from a plane. 
From this point of view, one may consider this city as black and white objects: in black are 
buildings and in white are streets and parks (Figure 8.3.A). The only information one can get is 
the distribution of the built and the unbuilt areas. This is the so-called geometric support of the 
city. Now, if one changes the angle of vision by taking a position still in the air but not directly 
above the city, the view is from the side (Figure 8.3.B). The black and white city is now a set of 
buildings of different heights. This is the so-called measure we are interested in. It could also 
have been the color, the width, or the age of the buildings. It is now possible to estimate the 
distribution of a wide range of building heights. Each height will (eventually) be characterized 
by a fractal dimension, thus the concept of multifractal.

8.1.2 mulTiFracTaliTy so Far

The concept of multifractality can implicitly be found in the formulation of self-organized criti-
cality (Section 6.3.) and the related cumulative frequency distributions (Chapter 5). It is neverthe-
less specifically the study of intermittency in the framework of dynamical systems (Grassberger 
1.983.; Grassberger and Procaccia 1.983.; Henstchel and Procaccia 1.983.; Halsey et al. 1.986) and 
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Figure 8.1 Intermittency, shown from a high resolution (1.00 Hz) time series of turbulent kinetic energy dis-
sipation rates (A) and distance traveled by the calanoid copepod Temora longicornis every 0.08 second (B).
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fully developed turbulence (Schertzer and Lovejoy 1.983.; Parisi and Frisch 1.985) that led to the 
introduction of multifractality. Recent multifractal studies include characterization of river flows 
and networks (De Bartolo et al. 2006; Koscielny-Bunde et al. 2006; Livina et al. 2007), asteroid 
belts (Campo Bagatin et al. 2002), seismicity and volcanic activity (Telesca et al. 2002; Dellino 
and Liotino 2002), ocean circulation (Chu 2004; Isern-Fontanet et al. 2007), diffusion limited 
reactions (Chaudhari et al. 2002), pore and particle distributions in soil (Martín and Montero 
2002; Bird et al. 2006; Chun et al. 2008), Internet traffic (Masugi and Takuma 2007), rainfall 
(Labat et al. 2002; Lovejoy and Schertzer 2006), exchange currency markets (Alvarez-Ramirez 
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Figure 8.2 Differences between the intermittent distance traveled by the marine copepod T. longicornis (A) 
and the freshwater cladoceran Daphnia pulex (B), and the nonintermittent character of the distance traveled 
by a random walker (C).
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2002), stock markets (Turiel and Pérez-Vicente 2003.), Dow Jones fluctuations (Andreadis and 
Sertelis 2002), stock exchange prices (Ausloos and Ivanova 2002), surface properties (Stach et al. 
2001.; Moktadir et al. 2008), DNA sequences (Tiňo 2002) and vascular branching (Zamir 2001.; 
Grasman et al. 2003.).

Applications of multifractals to ecology still remain extremely anecdotic, limited to forest ecol-
ogy (Scheuring and Riedi 1.994; Solé and Manrubia 1.995a, 1.995b, 1.996; Manrubia and Solé 1.996; 
Drake and Weishampel 2000, 2001.), population dynamics (Ozik et al. 2005), the characterization 
of species-area relationship, species diversity, and species abundance distribution (Ricotta 2000; 
Ricotta et al. 2002; Borda-de-Água et al. 2002; Iudin and Gelashvily 2003.; Laurie and Perrier 2007), 
and the characterization of nutrient, phyto- and zooplankton patchiness (Pascual et al. 1.995; Seuront  
et al. 1.996a, 1.996b, 1.999, 2002; Lovejoy et al. 2001.).
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Figure 8.3 The concept of multifractality, illustrated considering a modern city viewed directly from above 
from a plane (A) and still in the air, but from the side (B). In the former case, one may consider this city as a 
set of black and white objects: in black are buildings and in white are streets and parks. The distribution of 
the built (or inbuilt) area can be characterized by a single fractal dimension. In the latter, the black and white 
city is now a set of buildings of different heights. Associating one fractal dimension to the distribution of each 
building height leads us to consider an a priori infinite number of fractal dimensions, referred to as being 
multifractal.
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8.1.3 From FracTaliTy To mulTiFracTaliTy: inTErmiTTEncy

8.1.3.1 a bit of history
The concept of intermittency finds its origin in the early measurements of turbulent velocity fluctua-
tions of Batchelor and Townsend (1.949), who recognized that “as the wavenumber is increased the 
fluctuations seem to tend to an approximate on–off, or intermittent, variation.” Two decades later, 
Stewart (1.969) was more specific and identified that “the non-Gaussian, intermittent character of the 
small scale structure becomes more marked as the Reynolds number increases.” He also acknowl-
edged that while intermittency “seems to be fundamental to the nature of the turbulence cascade… 
we do not have a fully satisfactory theoretical explanation” (Stewart 1.969). This limitation still 
stands today. Until very recently (Baumert et al. 2005), intermittency has seldom been referred to, 
or defined precisely, even in monographs devoted to turbulent processes (Tennekes and Lumley 
1.972; Pond and Pickard 1.983.; Summerhayes and Thorpe 1.996; Bohr 1.998; Kantha and Clayson 
2000; Pope 2000). Surprisingly, in a 74-page chapter devoted to intermittency, Frisch (1.996) only 
states that a process is intermittent when it “displays activity during only a fraction of the time, 
which decreases with the scale under consideration.” Intermittency has similarly been described as 
“the active turbulent regions do not fill the whole volume, but only a subvolume in a very irregular 
way” (Jiménez 1.997) and “active regions occupy tiny fractions of the space available” (Seuront  
et al. 1.999).

8.1.3.2 intermittency in ecology and aquatic sciences
Intermittency, as a word and as a concept, does not seem to have ever been used, or even intro-
duced, as such in terrestrial and landscape ecology in spite of the plethora of published papers 
on space-time heterogeneity and related scaling properties. Similarly, intermittency has sel-
dom been described in aquatic sciences. In physical oceanography, intermittency has mainly 
been discussed in terms of its consequences on sampling, data processing, and statistics (Baker 
and Gibson 1.987; Gibson 1.991.; Yamazaki 1.990; Bohle-Carbonel 1.992). The situation is simi-
lar in biological oceanography where turbulent intermittency and its potential effects are often 
not discussed. Defining patchiness, variability, and heterogeneity (see Section 8.1..4 for termi-
nological details) has now been a issue for more than a century (Haeckel 1.891.; Hardy 1.93.6; 
Cassie 1.959, 1.963.; Cushing 1.962). Uneven plankton distributions have subsequently been widely 
described; see, for example, Mitchell and Furhman (1.989), Bjørnsen and Nielsen (1.991.), Seuront 
and Lagadeuc (1.997, 1.998), Waters and Mitchell (2002), and Waters et al. (2003.). However, inter-
mittency has seldom been quantified, despite increasing evidence of the intermittent nature of 
plankton distributions (Pascual et al. 1.995; Seuront et al. 1.996a, 1.999; Seuront 2005b; Seuront 
and Lagadeuc 2001.; Lovejoy et al. 2001.). Instead, turbulent intermittency has recurrently been 
considered as irrelevant to marine life. For instance, intermittent events have been described as 
“very intense from the point of view of plankton, but calculations show that their probability is 
small” (Estrada and Berdalet 1.997). Similarly, intermittent bursts “must certainly be spectacular 
events from the point of view of plankton, comparable to the passing of a tornado at our scale, 
and probably with similar consequences on the individual involved” but “they are sufficiently 
rare that they can be neglected in most calculations” (Jiménez 1.997). The issue of the relevance 
of rare events to biological and ecological fluxes will be thoroughly investigated in Section 8.6. 
Intermittency has been widely observed; however, it has still escaped the confines of a narrow, 
precise definition.

8.1.3.3 defining intermittency
The definition of intermittency greatly varies from author to author and from field to field, leading to 
a largely scattered and nonunified framework. For instance, in rainfall and river flow studies, inter-
mittency refers to the episodic nature of the underlying process, often considered an “on–off” basis, 
especially in arid environments (Chesson et al. 2004). A similar use of the term intermittency can 
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also be found in energy resources (Asmus 2003.; Anderson and Leach 2004). In the field of dynami-
cal systems, intermittency has been related to several types of transitions to chaos and classified as 
types I, II, and III intermittency when the system under consideration is in proximity to the saddle 
node, Hopf, and reverse period doubling bifurcation (Pomeau and Manneville 1.980). By analogy to 
the bifurcation diagrams detailed in Section 6.1..1. (Figure 6.3. and Figure 6.4), in these three types 
of intermittency, the temporal evolution of a system can be divided into ranges of the time in which 
the behavior of the system is almost periodic (that is, laminar phases) and exhibits chaotic bursts. 
Chaos-chaos intermittency is due to crisis phenomena occurring in the system (Ott 1.993., 2002) 
and the on-off intermittency is due to a symmetry breaking bifurcation (Pikovsky 1.984; Platt et al. 
1.993.). Practically, the identification of the type of the intermittency observed may yield important 
information about a system by defining the bifurcations possible for its dynamics (see, for example, 
Z
.
ebrowski and Baranowski 2004; Alvarez-Llamoza et al. 2008).

The phenomenon of intermittency has widely been mixed up with its statistical consequences, 
and thus generally poorly defined even in specialized monographs. The literature, hence, recur-
rently refers to intermittency through statements such as “the kurtosis is a useful measure of inter-
mittency for signals having a bursty aspect” (Frisch 1.996), “the signals tended to become bursty 
when the order of differentiation is increased” (Frisch 1.996), “most of the time the gradients would 
still be of the order of magnitude of their standard deviation, but occasionally we should expect 
stronger bursts, more often than in the Gaussian case” (Jiménez 1.997), “the discrepancies between 
the Kolmogorov predictions and the experimental values of the high-order moments” (Pope 2000), 
and “we occasionally should expect stronger bursts than expected in a non-intermittent, homoge-
neous turbulence, which accentuate the skewness of a given probability distribution, causing it to 
deviate from Gaussianity” (Seuront et al. 2001.).

The production of turbulence is not a continuous process but usually has an intermittent 
character and the turbulence appears as bursts (Svendsen 1.997). This intermittency has been 
acknowledged as “a common phenomenon in many complex systems, and a natural consequence 
of cascades” (Jiménez 2000). Intermittency has also been related to the coherent nature of turbu-
lence and the presence of strong vortices, with diameters on the order of 1.0 times the Kolmogorov 
length scale lk, lk = (n3./e)1./4 where n is the kinematic viscosity (m2 s−1.) and e the turbulent kinetic 
energy dissipation rate (m2 s−3.) (Siggia 1.981.; Jiménez et al. 1.993.; Jiménez and Wray 1.994). The 
term intermittency has alternatively been coined to describe “the phenomena connected with 
the local variability of the dissipation” (Jiménez 1.998) as well as “instantaneous gradients of 
scalars such as temperature, salinity or nutrients, greatest at scales similar to the Kolmogorov 
microscale” (Gargett 1.997).

Pope (2000), and more recently Jiménez (2006) in the Encyclopedia of Mathematical Physics, 
distinguished external from internal intermittencies. External intermittency refers to the coex-
istence of turbulent and laminar regions in inhomogeneous turbulent flows, such as in bound-
ary layers or in free-shear layers. The interface between laminar irrotational flow and turbulent 
vortical fluid is typically sharp and corrugated (Jiménez 2006). As a consequence, an observer 
sitting near the edge of the layer is immersed in turbulent fluid only part of the time and hence 
experiences an intermittently turbulent flow. In this context, an intermittent flow is characterized 
by a fluid motion that is “sometimes laminar and sometimes turbulent” (Pope 2000). For the engi-
neering community in fluid mechanics, intermittency is also viewed as a transition between lami-
nar and turbulent flows. Specifically, Wilcox (1.998) considers that “approaching the freestream 
from within the boundary layer, the flow is not always turbulent. Rather, it is sometimes laminar 
and sometimes turbulent, that is, it is intermittent.” Internal intermittency (Pope 2000; Jiménez 
2006) is specifically related to the increasingly non-Gaussian properties of velocity fluctuations 
as spatial separation increases. This property is responsible for the long tails of the probability 
distributions of the velocity derivatives.

A more intuitive definition that can directly be applied in ecology stated that “this form of vari-
ability reflects heterogeneous distributions with a few dense patches and a wide range of low density 
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patches” (Seuront et al. 2001.). Most of the previously published work referred to intermittency in 
the framework of turbulent flows, including wave turbulence (Biven et al. 2001.; Newell et al. 2001.; 
Bouruet-Aubertot et al. 2004), plasma turbulence (Sorriso-Valvo et al. 2001.; Hidalgo et al. 2006), 
and solar wind turbulence (Bruno et al. 2001.; Chapman et al. 2005). However, a general consensus 
can be reached considering that a given pattern or process is intermittent in space or in time if (1.) it 
is characterized by sharp local fluctuations, (2) it is responsible for a skewed probability distribution, 
and (3.) it has a long-term memory signature, perceptible from the power-law form of its autocor-
relation function.

8.1.4 variabiliTy, inhomogEnEiTy, and hETErogEnEiTy: TErminological considEraTions

In ecology, the term variability refers to changes in the values of a given quantitative or qualita-
tive descriptor; it is distinct from heterogeneity, which refers to a composition of different entities 
or kinds of elements (Kolasa and Rollo 1.991.; Merriam-Webster’s Collegiate Dictionary 2008). 
This distinction is, however, not as clear as may appear at first glance, with meanings essentially 
dependent on the choice of approach (Naeem and Colwell 1.991.; Shashack and Brand 1.991.). Even 
papers devoted to the synthesis of these concepts (Kolasa and Rollo 1.991.; Naeem and Colwell 1.991.; 
Shashack and Brand 1.991.) may be misleading in that spatial and temporal heterogeneity are used 
to describe spatial or temporal variability, respectively, irrespective of the basic previous defini-
tions. Definitions themselves appear to be highly variable even within a collective synthetic work 
on the subject (Levin et al. 1.993.). Spatial heterogeneity was then defined as an equivalent of spatial 
autocorrelation (van Hes 1.993.), despite the stress for a clear distinction between these two concepts 
(Davis 1.993.). Fractal geometry and the resulting scaling properties have also been suggested as a 
way to characterize space-time heterogeneity in ecology (Milne 1.991.). In aquatic sciences, both 
physical and biological patterns and processes have been referred to in terms of “temporal intermit-
tency” and “spatial heterogeneity”’ (Platt et al. 1.989).

Terminological ambiguities are potentially detrimental to scientific progress (Popper 2002) and 
are not limited to ecological sciences (Box 8.1.). The term inhomogeneity, seldom used in the lit-
erature, but as a synonym of variability, nonhomogeneity, or nonuniformity (Coplen and Krouse 
1.998; Blundell and Rawlings 1.999; Jiménez 2006), is suggested hereafter as a way to describe the 
variability of a descriptor structured in space or in time in terms of scaling, and discussed as a 
way to reach a terminological consensus. A descriptor exhibiting nonscaling properties cannot be 
distinguished from observational “white” noise (Figure 8.4A) and as such is characterized by its 
variability. In contrast, a scaling descriptor exhibiting scaling properties will be in homogeneous in 
space or in time (Figure 8.4B). Now, considering that an ecological entity is a pattern bounded in 
space or in time (Cousins 1.988), an inhomogeneous descriptor can then be regarded as a structural 
ecological entity. As a consequence, heterogeneity will not be applied to the variability of a given 
descriptor in space or in time as widely done (see, for example, Kolasa and Pickett 1.991.) but instead 
to patterns or processes exhibiting different levels of structures (that is, inhomogeneity) over space 
or time and hence corresponding to different driving processes.

Box 8.1 tERMInoLoGICAL AMBIGuItIES In SCIEnCE

Terminological ambiguities are not specific to ecological sciences but seem to be the rule in 
science in general. To assess this issue, all papers reporting the term variability, homogene-
ity, heterogeneity, inhomogeneity, and intermittency that appeared in the journals Nature 
and Science, and under the ScienceDirect banner of Elsevier from 1.998 to 2008, were 
scrutinized.
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This is exemplified using some of the results obtained in the previous sections. For instance, the 
distributions of temperature and salinity investigated in the inshore waters of the eastern English 
Channel (Section 4.2.1..3..2, Figure 4.9A,B,D,E) are homogeneous as they exhibit a scaling behav-
ior (or a lack of scaling behavior) over the whole range of investigated scales (Figure 4.9A,B and 
Figure 8.4A,B). In contrast, the distribution of in vivo fluorescence is heterogeneous as it exhibits 
two distinct scaling ranges (Figure 4.9C and Figure 8.4C,D). The isotropy of the fractal dimensions 
derived from the two-dimensional pattern of microphytobenthos biomass shown in Figure 7.9A,B 
(Section 7.2.2) leads us to consider this pattern as homogeneous (Figure 8.4E). A pattern leading to 
fractal anisotropy would be, in turn, qualified as being heterogeneous (Figure 8.4F). Finally, the frac-
tal stationarity and nonstationarity exhibited respectively by temperature and salinity time series and 
by fluorescence time series (Figure 7.1.0; Section 7.2.3..2) lead us to consider the temporal pattern of 
temperature and salinity as temporally homogeneous (Figure 8.4E), while fluorescence is temporally 
heterogeneous (Figure 8.4F). These previous examples clearly indicate that a descriptor inhomoge-
neous (or not) in space or in time can be either homogeneous or heterogeneous in space or in time.

From the 63.,23.3. papers resulting from this survey (Table 8.B1..1.), it appears that variability 
and homogeneity are consistently used to described the fluctuations and the absence of fluctua-
tions in the distribution of any parameter; see, for example, Porter and Semenov (1.999) and 
Schindell et al. (1.999). In contrast, the terms heterogeneity and inhomogeneity are vaguely 
defined, while the seldom-used term intermittency has a more constant meaning (see Section 
8.1..3..3.). The term heterogeneity is, however, mostly used to describe the fluctuations, that is, the 
variability (Kolasa and Rollo 1.991.; Merriam-Webster’s Collegiate Dictionary 2008), of a given 
process, as “velocity heterogeneity” or “temperature heterogeneity” in the Earth’s core (Sumita 
and Olson 1.999; Vidale and Earle 2000), as widely done by many biologists and ecologists 
(Mitchell and Furhman 1.989; Rainey and Travisano 1.998). Heterogeneity seldom fits the basic 
definition of different entities or kinds of elements (Kolasa and Rollo 1.991.; Merriam-Webster’s 
Collegiate Dictionary 2008), and when it is the case, the corresponding papers are most of 
the time related to ecological sciences (Guegan et al. 1.998). In particular, this demonstrates 
that such terminological ambiguities are far from being an ecological specificity, and that eco-
logical sciences are finally not so badly off. On the other hand, the very violent and a priori 
unpredictable fluctuations perceptible in turbulent velocity and scalar fields, financial markets 
fluctuations, or medical sciences are systematically described in terms of intermittency, thus 
describing a specific kind of variability, and opposed to homogeneity (Shraiman and Siggia 
2000; Helmlinger et al. 2000). Finally, the concept related to inhomogeneity refers without dis-
tinction to the variability of a given descriptor, for example, “the isotopic inhomogeneity of this 
material: the variability in its sulfur-3.4/sulphur-3.2 isotope ratio” (Coplen and Krouse 1.998), its 
heterogeneity (Bonn et al. 1.998) sensu Kolasa and Rollo (1.991.), its nonhomogeneity (Wu et al. 
1.999), or its intermittency (Jiménez 2006).

Nature Science ScienceDirect

Variability
Homogeneity
Heterogeneity
Inhomogeneity
Intermittency

AbstractTitle
402

25
218

3
1

Title
57

2
17

0
0

Abstract
232

11
70
10

3

Title
6,799

445
2,620

321
135

Abstract
29,070

7,194
13,188

1,967
443

—
—
—
—
—

table 8.b1.1
bibliographic survey of all Papers reporting the terms Variability, 
Heterogeneity, Inhomogeneity, and Intermittency in their title or  
abstract from 1998 to 2008
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The previous propositions suggest some terminological specifications in comparison with basic 
systemic approaches. For instance, hierarchical approaches, initially developed in the framework of 
landscape analysis, have been devoted to describe “how heterogeneity changes with scale” (Allen 
and Starr 1.982). On the other hand, following our approach, a system considered as being hierarchi-
cal must be viewed as a heterogeneous system presenting different scales of inhomogeneity. In that 
way, the main point of hierarchical theory should be instead regarded as the way to describe how 
inhomogeneity changes with scales. Moreover, the concepts developed in the present chapter could 
also be regarded as a way to complement hierarchical approaches in the sense that they allow us to 
describe how the structure of a given descriptor, hierarchical (Figure 8.4C,D) or not (Figure 8.4E,F), 
evolves in time or in space. These concepts could subsequently provide an efficient framework to 
reconcile space- and time-oriented approaches. Indeed, a descriptor exhibiting different inhomo-
geneous structure will be regarded as being heterogeneous, the inhomogeneity fluctuating either in 
space or in time, which is still actually not widely done (Kolasa and Rollo 1.991.; Naeem and Colwell 
1.991.; Shachak and Brand 1.991.; Levin et al. 1.993.).

8.1.5 inTuiTivE mulTiFracTals For EcologisTs

Before reviewing and illustrating the traditional multifractal methods in Section 8.2, a method that 
is believed to be much more intuitive to nonmathematically oriented readers will be introduced. 
Consider the spatial distribution of microphytobenthos biomass at spatial scales ranging from 

B

A

Log E(x)

Log E(x)

Log E(x) Log E(x)

Log E(x) Log E(x)

Log x

C E

Y3
Y2
Y1

D F
Y3

Y2

Y1

Log x

Log x Log x

Log x Log x

Figure 8.4 Schematic illustration of the concepts related to homogeneity, heterogeneity, and inhomogene-
ity, based on the results of a spectral analysis, where E(x) is the spectral density related to a frequency or a 
wave number x following that the descriptor is considered in time of in space. A homogeneous descriptor can 
either exhibit (A) nonscaling properties (noninhomogeneous descriptor) or (B) scaling properties (inhomoge-
neous descriptor) in time or in space. More specifically, an inhomogeneous descriptor can be heterogeneous in 
time or in space when it exhibits different scaling regimes, shown in (C, D). A descriptor exhibiting the same 
scaling properties (that is, inhomogeneous) over the range of available scales can be homogeneous in time or 
in space if its inhomogeneous properties depend on the sampling time or location (E). Similarly, an inhomo-
geneous descriptor can be heterogeneous in space or in time if its inhomogeneous properties evolve with space 
or time (F). Yi  represents data sets sampled at different times or locations.
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6.67 cm to 1. m (Figure 8.5). Here, a top view of the distribution does not appear as a black and white 
“cityscape” but instead as a two-dimensional mosaic (Figure 8.5A). This is because the chlorophyll 
concentration is a spatial continuous function rather than a binary one. A three-dimensional view 
of the chlorophyll distribution (Figure 8.5B) nevertheless shows similar features with the city 
side view (cf. Figure 8.4B). Now the question is: How do we describe simultaneously the different  
chlorophyll concentrations and their related scaling properties? The algorithm proposed hereafter 
can be regarded as a generalization of the box-counting methods (see Section 3..2.2).

First, one needs to rethink the initial distribution S in terms of n distinct subsets Sc such as:

 
S Sc

c C

C

=
=
∑

min

max

 
(8.1.)
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Figure 8.5 Concept of multifractality, illustrated considering a two-dimensional pattern of microphytoben-
thos biomass (A) and the related three-dimensional view of the different biomass values (B). Note the similar-
ity with Figure 8.3.. The understanding of such a pattern could be limited to “traditional” fractal analysis such 
as the patch-intensity dimension (Section 5.2) or surface dimensions (Section 3..2.9), or focus on the distribu-
tion of each different biomass (see Figure 8.6).
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where Cmin and Cmax are the minimum and maximum chlorophyll concentrations of the distribution, 
and Sc is given as:

 S C cc ⊂ ≥( )  (8.2)

where C is the actual chlorophyll concentration and c a given chlorophyll threshold. This procedure 
results in the creation of a set of “black and white” patterns where the white areas correspond to 
areas where C ≥ c (Figure 8.6A).
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Figure 8.6 Multifractals for ecologists. Using different thresholds, the two-dimensional distribution 
shown in Figure 8.5 can be divided in a series of black and white patterns: in black are the areas where the 
biomass exceeds a given threshold, and in white are the “empty” areas (A). Each concentration threshold 
can then be related to one fractal dimension, the ultimate result being a multifractal function (B) that can 
be thought as a characteristic structural property of the pattern. (Modified from Seuront and Spilmont, 
2002.)

2782.indb   259 9/11/09   12:15:12 PM



260 Fractals and Multifractals in Ecology and Aquatic Science

Second, standard algorithms aimed at counting the number of boxes of length d occupied by at 
least a part of a given set S (see Section 3..2.2) are modified as:

 N C c DMFc
δ δ( )≥ ∝ −

 (8.3.)

where Nd (C ≥ c) corresponds to the number of boxes of length d containing a chlorophyll concentra-
tion greater than a threshold concentration c, and DMFc

 the multifractal function associated to the 
threshold concentration c. For each threshold concentration c, the slope of the log-log plot of 
Nd (C ≥ c) vs. d is an estimate of DMFc

; each threshold concentration c is thus characterized by its own 
fractal dimension. Although the increment for threshold c can be arbitrarily selected, it is strongly 
recommended that we choose it close to the smallest observed chlorophyll concentration difference 
in order (1.) to capture the maximum, if not all, of the structure present in set S, and (2) for DMFc

 to 
converge to a continuous function. The resulting multifractal function is shown on Figure 8.6B.

The multifractal character of the microphytobenthos biomass distribution shown in Figure 8.5 
is ensured by the nonlinear behavior of function DMFc

 (Figure 8.6B). The application of Equation 
(8.3.) to a fractal set S (for example, Brownian or fractional Brownian motions) would have led 
to a linear decreasing function (not shown). The shape of the function DMFc

—and in particular 
the potential differences in shapes that can be obtained from microphytobenthos distribution, for 
example, at different seasons or from sandy and muddy flats sampling—can then be used as an 
ecological structural index. The main advantage of such an approach when compared to the fractal 
framework is that the overall complexity present in a given data set can be fully quantified. This is 
particularly relevant in the framework of behavioral biology and ecology. Indeed, prey distribution 
is very important for predators because food availability changes depending on the fractal dimen-
sion. Low fractal dimensions indicate a smooth and predictable distribution of particles gathered in 
small numbers of patches, while high fractal dimensions indicate rough, fragmented, space-filling 
and less predictable distributions. Therefore, when a predator can remotely detect its surroundings, 
prey distributions with low dimension should be more efficient. In contrast, when a predator has 
no remote detection ability, prey distributions with high dimension should be preferable, because 
available food quantity or encounter rates become proportional to the searched volume as fractal 
dimension increases. As a consequence, because the high-density patches are expected to be the 
most valuable in terms of energy budget, the specific knowledge of their fractal dimension can be a 
crucial way to improve our understanding of predator–prey interactions in ecology.

8.2 methods For multiFractals

8.2.1 gEnEraliZEd corrElaTion dimEnsion FuncTion D(q) and ThE mass ExponEnTs t(q)

8.2.1.1 theory
Consider a DE-dimensional space (the support of the measure m, for instance, the height of buildings in 
a city; see Section 8.1..1. and Figure 8.3.), which is divided into DE-dimensional boxes of size d, then:

 
fi

i

N

( ) ( )δ µ δ= ∑
 

(8.4)

denotes the integrated measures on the ith cube of edge d (in an ecological example, the probability 
of finding an organism in this volume). One can then define the qth-order moment of the probability 
distribution (or “partition function”) Mq (d) (Halsey et al. 1.986):

 
M fq i

q

i
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( ) ( )
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δ δ
δ

=
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∑
1  

(8.5)
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where N(d) in the number of boxes of size d. The information dimension (Equation 3..3.4) and the 
correlation dimension (Equation 3..41.) can then be written as:

 
I

q
Mq q( ) log ( )δ δ=

−
1

1  
(8.6)

and

 
D q

Iq( ) lim
( )

log( / )
=

→δ

δ
δ0 1  

(8.7)

where Iq(d) and D(q) are the generalized information dimension (or Reyni information of qth order; 
Rényi 1.970) and the generalized correlation dimension (Grassberger 1.983.; Hentschel and Procaccia 
1.983.), respectively. Note that the generalized correlation dimension D(q) is conceptually similar to 
the multifractal function DMFc

 introduced in Section 8.1..5.
From Equation (8.5) through Equation (8.7), one readily finds the previously defined box dimen-

sion (see Section 3..2.2, Equation 3..1.5), the information dimension (see Section 3..2.5, Equation 
3..3.4), and the correlation dimension (see Section 3..2.6, Equation 3..41.) for integer q as special cases. 
The box dimension, the information dimension, and the correlation dimension are then respectively 
given as:

 
D D q Db q

= =
→

lim ( ) ( )
0

0
 

(8.8)
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(8.9)

and

 D D q Dcor q
= =

→
lim ( ) ( )

2
2  (8.1.0)

The generalized dimension function D(q) is defined for all real values of q and is estimated as the 
slope of the log-log plot of Iq(d) vs. d. For monofractal sets, the function D(q) is a linear function 
of q; in other words, no additional information is gained by examining higher moments, that is, 
more extreme values of the measure m. Alternatively, for multifractal sets, D(q) is a nonlinear function 
of q. Note that there are lower and upper limiting dimensions, D−∞ and D+∞, which are related to the 
regions of the set where the measure m is sparser and denser, respectively. For positive values of q, 
D(q) reflects the scaling of the large fluctuations and strong singularities. In contrast, for negative 
values of q, D(q) reflects the scaling of the small fluctuations and weak singularities (Vicsek 1.993.; 
Takayasu 1.997).

Remember that for a given value of d, the mass m(d) (see Equation 3..26) is expressed as the 
first moment (that is, the mean) of the probability distribution, Equation (8.5) can be equivalently 
written as:

 Mq(d) ∝ d−t(q) (8.1.1.)
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where t(q) is a mass exponent function. For monofractal sets, t(q) is linear, t(q) = qH − 1., where H 
is the Hurst exponent. In contrast, multifractal sets display a nonlinear function t(q). Note that t(q) 
is related to the spectral exponent b as:

 β τ= +2 2( )  (8.1.2)

Moreover, for multifractal sets, Equations (8.6), (8.7), and (8.1.1.) lead to:

 τ ( ) ( ) ( )q q D q= −1  (8.1.3.)

Note that for q = 0, D(q) = t(q) = D(0) and t(1.) = 0. Combining Equations (8.1.2) and (8.1.3.) finally 
leads to:

 b = 2 + D(2) (8.1.4)

where D(q) is the generalized correlation dimension (see Equation 8.7), and b is the spectral exponent.

8.2.1.2 application: salinity stress in the cladoceran Daphniopsis Australis
The cladoceran Daphniopsis australis (Sergeev and Williams 1.985) is endemic to saline lakes and 
swamps of the southeast of Australia and is adapted to salinities ranging from 4 to 3.0 PSU (Sergeev 
and Williams 1.985). Despite the potential keystone role of this species in the structure and function 
of South Australian inland water ecosystems, there have been few ecological studies on this genus 
and none on this particular species. In particular, nothing is known on the effect of extreme salini-
ties (that is, up to 1.60 PSU) (Schapira et al. 2009) occurring in summer in relation to evaporation on 
their biology and ecology. Here the swimming behavior of D. australis is investigated at a known 
optimal salinity (22 PSU) and in the case where S = 50 Practical Salinity Unit (PSU).

Individuals of D. australis were continuously cultured at Flinders University (South Australia) 
in 20-liter containers and fed on the phytoplankton Isochrysis Tahitian under constant conditions 
of temperature (22°C) and salinity (22 PSU) on a 1.2-hour light–dark cycle. Behavioral experiments 
were conducted on individual males following Seuront (2006), and their successive displacements 
analyzed using the generalized dimension function D(q) (Equation 8.7) and the mass exponent func-
tion t(q) (Equation 8.1.1.). The functions D(q) and t(q) clearly exhibit a multifractal signature under 
optimal salinity conditions (S = 22 PSU) (Figure 8.7A,B). In contrast, for S = 50 PSU, both functions 
indicate that the successive displacements of male D. australis have weaker multifractal properties 
(Figure 8.7C,D). This is consistent with and generalizes previous results showing a decrease in the 
complexity of behavioral sequences under stressful conditions for a range of organisms (Section 
4.2.2.2) (Alados et al. 1.996; María et al. 2004; Alados and Huffman 2000; Seuront and Leterme 
2007). A shift between multifractal and fractal properties—or, more generally, a change in mul-
tifractal properties in animal behavior—is then suggested as a potential diagnostic tool to assess 
animal stress levels and health. This specific issue is explored further in Section 8.2.2.

8.2.2 mulTiFracTal spEcTrum f(a)

8.2.2.1 theory
The number α µ δ

δi
i= log ( )

log , also referred as to the Hölder exponent, is the singularity strength of the 
ith box. This exponent may be interpreted as a crowding index of a measure of the concentration 
(accumulation) of m: the greater ai is, the smaller the concentration of the measure, and vice versa. 
For every box size d, the numbers of cells Na(d) in which the Hölder exponent ai has a value within 
the range [a, a + da] behave like:

 Na(d) ∝ d−f(a) (8.1.5)
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Thus, f(a) corresponds to the fractal dimension of the subset in which ai equals a; that is, f(a) char-
acterizes the abundance of cells with Hölder exponent a and is called the singularity spectrum of 
the distribution. The singularity spectrum f(a) and the mass exponent function t(q) are connected 
via a Legendre transform as (Evertsz and Mandelbrot 1.992):

 
α τ

( )
( )

q
d q

dq
=

 
(8.1.6)

and

 f q q q q( ( )) ( ) ( )α α τ= −  (8.1.7)

Considering the relationship between the mass exponent function t(q) and the generalized dimen-
sion function D(q) (cf. Equation 8.1.3.), the singularity spectrum f(a) contains exactly the same infor-
mation as t(q) and D(q).
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Figure 8.7 Generalized dimension function D(q) and the mass exponent function t(q) estimated from the 
successive displacements of male Daphniopsis australis under contrasted conditions of salinity; that is, (A, B)  
S = 22 PSU, and (C, D) S = 50 PSU. The multifractality of D. australis swimming behavior—that is, the non-
linearity of D(q) and t(q)—is stronger under low salinity conditions. Note that for q = 0, D(q) = t(q) = D(0), 
D(0) being the fractal dimension of the support of the measure, and q = 1., t(q) = 0. The dashed lines (B, D) are 
the functions t(q) expected in case of monofractality.
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Because the calculation of f(a (q)) from Equations (8.1.6) and (8.1.7) can be highly problematic, 
Chhabra and Jensen (1.989) developed a much simpler method for the calculation of f(a (q)) and a (q) 
for multifractal structures as:
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(8.1.9)
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Figure 8.8 Schematic illustration of the multifractal spectrum f(a(q)) vs. a(q) for a fractal set and a simple 
multifractal pattern (A), and for healthy and unhealthy heartbeat fluctuations (B). The narrow range of a(q) 
values for heart failure is indicative of monofractality. (Redrawn from Ivanov et al., 1.999.)
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where the quantity µ δ µ δ µ δδ
i i

q
i
N

i
qq( , ) ( ) / ( )( )= ∑ =1 . The parameter q provides a scanning tool to scru-

tinize the denser and rarer regions of the measure m. For q > 1., regions where m has a high degree 
of concentration are amplified, while for q < −1. regions with a small degree of concentration are 
magnified. Finally, for q = 1., the measure itself is replicated; see Evertsz and Mandelbrot (1.992) and 
Chhabra and Jensen (1.989) for further details. The function f(a (q)) thus gives the entropy dimension of 
the distorted measure m(q, d) and characterizes the original measure m by analyzing the variation under 
successive distortions driven by the parameter q. The singularity spectrum f(a (q)) takes its maximum 
value for q = 0 and typically has a parabolic shape around this point (Figure 8.8). The number f(a (0)) =  
a (0) = D(0) is the box dimension of the measure m, and the number f(a (1.)) = a (1.) = D(1.) is the infor-
mation dimension. As an illustration, Figure 8.8A shows a comparison of the shapes of the singularity 
spectrum f(a (q)) obtained from monofractal and multifractal sets, the Cantor set and a multiplicative 
binomial process, respectively. Figure 8.8B illustrates how differences in the shape of the spectrum  
f(a (q)) can be indicative of heart failure and then proposes an additional diagnostic tool.

8.2.2.2 application: temperature stress in the calanoid copepod Temora Longicornis
The swimming behavior of the calanoid copepod Temora longicornis (Figure 4.1.8A, Section 
4.2.3..2.1.) has been investigated under different conditions of temperatures representative of the 
most extreme range of temperature that the species may encounter in its natural environment, that 
is, from 4° to 28°C. T. longicornis were collected from the inshore waters of the eastern English 
Channel using a WP2 net (200-μm mesh size) at a temperature of 1.6°C and a salinity of 3.2.5 PSU. 
Specimens were diluted in buckets with surface waters, transported to the laboratory, and accli-
matized for 24 hours in 5-liter beakers filled with natural seawater. Prior to the experiments, adult 
females (1..1. ± 0.1. mm, x̄ ± SD) were sorted by pipette under a dissecting microscope and left in 
the behavioral container (a 2-liter, 20 × 20 × 5 cm Plexiglass container) filled with 0.45 μm filtered 
natural seawater to acclimatize for 1.0 minutes at the experimental temperature (Seuront 2006). The 
temperature treatments were randomized, and the resulting sequence of temperature treatments was 
1.6, 8, 20, 4, 28, and 24°C. Groups of 5 individual females were considered for each temperature 
treatment and their activity videotaped for 20 minutes.

The function f(a (q)) obtained for the successive displacements of T. longicornis generally exhibits 
the single-humped shape, typical of multifractal patterns (Figure 8.9). For extreme (low and high) 
temperatures, f(a (q)) are narrower, suggesting monofractality (Figure 8.9). As previously stressed 
(Section 8.2.1..2), this shift between multifractality and monofractality may reflect perturbation of the 
physiological control mechanisms of motion behavior.

8.2.3 codimEnsion FuncTion c(g )  and scaling momEnT FuncTion K(q)

Consider an intermittent quantity—for example, the turbulent kinetic energy dissipation rate el (see 
Figure 2.2 and Figure 8.1.A)—where the subscript l refers to the scale ratio l = L/l where L and l are 
the largest external scale and the resolution of the measurements, respectively. When l >> 1., inter-
mittency can be characterized by the statistical distribution of singularities (that is, intensities) g:

 el ∝ l g (8.20)

and by the related probability density distribution (Schertzer and Lovejoy 1.987):

 Pr(el ≥ l g) ∝ l−c(g) (8.21.)

where c(g) is a codimension function characterizing the singularities distribution. c(g) can be expressed 
as a generalization of Equation (2.1.2) following:

 c(g ) = DT − D(g) (8.22)
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where D(g) characterizes the hierarchy of fractal dimensions associated with the different intermit-
tency levels. The codimension function c(g) diverges for high thresholds. This divergence is related 
to the divergence of moments. The absolute slope of the algebraic tail of the probability density 
distribution is directly related to the moment of divergence, qD, as:

 Pr(el ≥ e th) ∝ e th
−qD (8.23.)

where eth is a given threshold. Note the similarity between Equations (8.23.) and (5.4). This implies 
that the typical signature of self-organized criticality (that is, Equation 5.4) may also be indicative 
of multifractality.

Under fairly general conditions, the properties of the probability distribution of a random vari-
able are equivalently specified by its statistical moments. The latter corresponds to the introduction 
of the scaling moment function K(q), which describes the multiscaling of the statistical moments of 
order q of the field el:

 〈(el)q〉 ∝ l K(q) (8.24)

where “〈.〉” indicates statistical averaging.
The relation existing between the two scaling functions c(g) and K(q) reduces to the Legendre 

transform (Parisi and Frisch 1.985) for large-scale ratios (that is, l >> 1.):

 K q q c c q K qq( ) max ( ( )) ( ) max ( ( ))= − ⇔ = −γ γ γ γ γ  (8.25)

Equation (8.25) implies that there is a one-to-one correspondence between singularities and orders 
of moments: to any order q is associated the singularity gq that maximizes qg − c(g) and is the solu-
tion of c′(gq) = qg. Similarly to any singularity g  is associated the order of moment qg  that maximizes 
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Figure 8.9 Multifractal spectrum f(a(q)) vs. a(q) for the successive displacements female Temora longi-
cornis for different temperatures: 4°C (black diamonds), 8°C (open squares), 1.6°C (open dots), 20°C (gray 
dots), 24°C (open diamonds), and 28°C (black dots). Note that the multifractal signature (the nonlinearity of 
the function f(a(q)) over a range of a(q) values) is weakened for extreme temperatures.
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qg − K(q) and is the solution of K′(qg) = gq⋅c(g) and K(q) exhibit several general properties of mul-
tifractals as convexity and nonlinearity. In particular, for conservative multifractal processes (that 
is, 〈eg〉 = 〈e1.〉, ∀l), since K(1.) = 0 corresponds via the Legendre transform to the fact that the cor-
responding mean singularity of the process, C1. = K′(1.) is a fixed point of c(g), the latter is therefore 
tangential to the first bisectrix line (c(g) = g) in g1. = c(g1.) = C1., hence c′(C1.) = 1. (see Seuront et al. 
1.999, Figures 8, 9). The determination of the probability distribution would require the determina-
tion of moments at all scales. With the assumption of scaling, it reduces to the determination of 
a hierarchy of exponents that remain nevertheless a priori infinite, and therefore indeterminable, 
especially for the highest orders, which correspond to the most extreme variability. However, in 
the framework of universal multifractals (Schertzer and Lovejoy 1.987), the calculation complexity 
induced by the hierarchy previously described is included in two fundamental parameters, C1. and 
a, which describe the multiscaling behavior of the functions K(q):
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and c(g):
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(8.27)

with 1 1 1α α+ =′ .
C1. is the mean singularity of the process and also the codimension of the mean singularity; 

it therefore measures the mean fractality of the process. It satisfies 0 ≤ C1. ≤ DE, where DE is the 
Euclidean dimension of the observation space (for example, DE = 1. for time series and transects); 
C1. = 0 for a homogeneous process, and C1. = d for a process so heterogeneous that the fractal dimen-
sion of the set contributing to the mean is zero. It then characterizes a mean inhomogeneity and can 
be regarded as the measure of the sparseness of a given field: the higher the C1., the fewer the field 
values corresponding to any given singularity. The index a, called the Lévy index, is the degree of 
multifractality bounded between a = 0 and a = 2, which correspond respectively to the monofractal 
model and to the lognormal model (see Section 8.3.). It defines how fast the fractality is increasing 
with higher and higher singularities: As a decreases, the high values of the field do not dominate 
as much as for larger values of a; there, the functions are larger deviations from the mean. As an 
illustration, the functions K(q) estimated for the original time series of temperature, salinity, and in 
vivo fluorescence time series studied in Section 6.1..3..3. are shown in Figure 8.1.0. Finally note that 
the functions K(q) relate to the generalized correlation function D(q) (Section 8.2.1.) as:

 D q D K qE( ) ( )= −  (8.28)

where DE is still the Euclidean dimension of the observation space.
Finally, even if the functions c(g) and K(q) were originally introduced in the framework of fully 

developed turbulence, and as such illustrated above using the turbulent energy dissipation rate el as 
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an example, they can be applied to any intermittent field fl. Also note that the field fl relates to the 
fluctuations of a given quantity Q as:

 ΔQl ∝ φλ
a Hl  (8.29)

where ΔQl = |Q(x + l) − Q(x)| is the gradient of the quantity Q at scale l and H is the Hurst exponent 
defined through structure function analysis; see Section 8.2.4. A direct consequence of Equation 
(8.29) is that it is possible to obtain the field fl directly from a scalar quantity Q through a fractional 
differentiation of order H; see, for example, Schertzer et al. (1.998) for further details. This is easy 
to perform through a multiplication by kH in Fourier space, and strictly equivalent to power-law 
filtering.

8.2.4 sTrucTurE FuncTion ExponEnTs z(q)

8.2.4.1 theory
This analysis technique is devoted to the direct study of the multifractal properties of the fluctuations 
of any scalar field S, and is based on the qth-order structure functions:

 〈 〉 = 〈 + − 〉∆S S t S tτ τ| ( ) ( ) |  (8.3.0)

where for a given time lag t the fluctuations of the scalar S are averaged over all the available values 
(“〈.〉” indicates statistical averaging). For scaling processes, one way to statistically characterize 
intermittency is based on the study of the scale-invariant structure exponent z(q) defined by the 
following:

 
〈 〉 = 〈 〉







( ) ( )
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∆ ∆S S
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q
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q

q
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(8.3.1.)
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Figure 8.10 Functions K(q) estimated for the 1.72,800 data-point time series of temperature (black curve), 
salinity (open diamonds), and in vivo fluorescence (gray curve) studied in Section 6.1..3..3..

2782.indb   268 9/11/09   12:15:44 PM



From Fractals to Multifractals 269

where T is the largest period (external scale) of the scaling regime. The scaling exponent z(q) is 
estimated by the slope of the linear trends of 〈(ΔSt)q〉 vs. t in a log-log plot. The first moment z(1.), char-
acterizing the scaling of the average absolute fluctuations, corresponds to the scaling Hurst expo-
nent H = z(1.), characterizing the degree of nonconservation of a given field. The second moment is 
linked to the power spectrum exponent b as:

 b = 1. + z(2) (8.3.2)

For simple (monofractal) processes, the scaling exponent of the structure function z(q) is linear; 
that is, z(q) = qH. In particular, z(q) = q/2 for Brownian motion, and z(q) = q/3. for nonintermittent 
turbulence. For multifractal processes, this exponent is nonlinear and concave, and relates to the 
function b = 1. + z(2) as:

 ζ ( ) ( )q qH K q= −  (8.3.3.)

K(q) is then an intermittent correction, hence expresses the deviation of the function z(q) from lin-
earity due to intermittency. The different forms taken by the functions z(q) and K(q) are detailed in 
Section 8.3..

The potential effect of varying turbulent forcings on the local structure of physical and bio-
logical parameters investigated in Section 6.1..3..3. has been specified through the analysis of the 24 
time series of temperature, salinity, and in vivo fluorescence with structure functions. The resulting 
functions z(q) estimated for temperature, salinity, and fluorescence are clearly nonlinear, showing 
the multifractal nature of their distributions (Figure 8.1.1. and Figure 8.1.2). More specifically, the 
function z(q) estimated for the temperature and salinity time series remained the same across vari-
able turbulence and tidal conditions (Figures 8.1.1. and 8.1.2). In contrast, for a given turbulence level, 

q
5.04.54.03.53.02.52.01.51.00.50.0
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Figure 8.11 Scaling function z(q) estimated for in vivo fluorescence during the second half of flood tide 
(FT: gray) and ebb tide (ET: black), compared to the statistically undistinguishable empirical exponents esti-
mated for temperature and salinity (open diamonds) and the theoretical homogeneous linear case z(q) = qH 
(dashed line). It is clear from the nonlinearity of z(q) that phytoplankton distributions are far from being 
homogeneously distributed, and in both tidal conditions patchiness increases with decreasing values of the 
turbulent energy dissipation rates. The energy dissipation rates considered here from bottom to top are: 5.07 
× 1.0−7, 1..1.1. × 1.0−6, 5.1.7 × 1.0−6, 1..43. × 1.0−5, 5.1.3. × 1.0−5, and 3..52 × 1.0−4 m2 s−3. during ebb tide, and 2.60 × 1.0−7, 1..07 
× 1.0−6, 5.1.6 × 1.0−6, 1..24 × 1.0−5, 6.3.2 × 1.0−5, 1..05 × 1.0−4, and 2.98 × 1.0−4 m2 s−3. during flood tide. (Modified from 
Seuront, 2005b.)
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phytoplankton biomass was always more patchy during the second half of ebb tide than during 
the second half of flood tide (Figure 8.1.1.), suggesting more patchiness in inshore than in offshore 
waters. The difference between the function z(q) estimated during flood tide (Figure 8.1.2A) and 
ebb tide (Figure 8.1.2B) indicates that for the same range of turbulence intensities phytoplankton 
patchiness decreased during the flood tide (Figure 8.1.2A) and increased during the ebb tide 
(Figure 8.1.2B). In addition, phytoplankton patchiness was higher at the beginning of the ebb 
tide than at the beginning of the flood tide (Figure 8.1.2). This is indicative of mixing between 
inshore and offshore water masses during the transition between flood and ebb tides. Flood and ebb 
tide phytoplankton populations can nevertheless exhibit very similar levels of patchiness (for exam-
ple, for the highest and lowest turbulence conditions considered for flood and ebb tides, respectively, 
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Figure 8.12 The scaling function z(q) estimated for in vivo fluorescence during the first and second half of 
flood tide (A) and ebb tide (B) over the same range of turbulence intensities. During the first and second half 
of flood tide, dissipation rates range respectively from 1..54 × 1.0−7 to 2.55 × 1.0−4 m2 s−3. (from top to bottom: 
black) and from 2.60 × 1.0−7 to 2.98 × 1.0−4 m2 s−3. (from top to bottom: gray). During the first and second half 
of ebb tide, dissipation rates range from 1..91. × 1.0−7 to 3..06 × 1.0−4 m2 s−3. (from top to bottom: black) and the 
second half of ebb tide for dissipation rates ranging from 5.07 × 1.0−7 to 3..52 × 1.0−4 m2 s−3. (from top to bottom: 
gray). The statistically undistinguishable empirical exponents estimated for temperature and salinity (open 
diamonds) and the theoretical homogeneous linear case z(q) = qH (dashed line) are shown for comparison. 
The vertical arrows indicate the shift in phytoplankton patchiness between the first and second half of flood 
and ebb tide. (Modified from Seuront, 2005b.)
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in Figure 8.1.1.). Finally, phytoplankton distributions were more and less patchy than would be a 
purely passive scalar in ebb and flood tide conditions, respectively. The gradients observed in the 
phytoplankton concentrations were thus higher and lower than temperature and salinity gradients in 
ebb and flood tide conditions, respectively, whatever the intensity of turbulence. As a consequence, 
inshore and offshore phytoplankton populations must be respectively considered as more and less 
homogeneously distributed than purely passive scalars. This is indicative of the predominant influ-
ence of the biological properties of phytoplankton cells on turbulence processes.

8.2.4.2  eulerian and lagrangian multiscaling relations  
for turbulent Velocity and Passive scalars

8.2.4.2.1 Eulerian Multiscaling Relations for Turbulent Velocity and Passive Scalars
In Section 4.2.1..3., Eulerian and Lagrangian fluctuations of turbulent velocity and passive sca-
lars were described under the homogeneity assumption (Kolmogorov 1.941.; Obukhov 1.941., 1.949; 
Corrsin 1.951.). However, the flux of energy e (Figure 2.2) and the flux of scalar variance c exhibit 
sharp intermittent fluctuations at all scales (Figure 8.1.3.). More specifically, Batchelor and Towsend 
(1.949) showed that instantaneous dissipation rates intermittently reached very high values and that 
this intermittency was more important when the scale ratio, hence the Reynolds number, was large. 
The original assumption of homogeneity then becomes untenable, and turbulent fields had to be 
thought of as intermittent and scale-dependent processes. This led to the refined similarity hypoth-
esis (Kolmogorov 1.962, Obukhov 1.962), stating that velocity fluctuations are influenced by the 
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Figure 8.13 Time series of the variance fluxes cl estimated from time series of (A) temperature (×1.0−6 °C2 s−1.) 
and (B) in vivo fluorescence (fluorescence2 s−1.) recorded in the inshore waters of the eastern English Channel 
with a Sea-Bird Sealogger CTD and a Sea Tech fluorometer, respectively. (Modified from Seuront, 2008.)
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local value of the dissipation averaged over a distance l, e l. The “refined similarity hypothesis” 
(Kolmogorov 1.962, Obukhov 1.962) then leads to the introduction of the subscript l in Equations 
(4.1.9) and (4.20) that now read:

 ε l
lV

l
≈

( )∆ 3

 (8.3.4)

and

 χl
l lS V

l
≈

( ) ( )∆ ∆2

 (8.3.5)

A lognormal distribution was originally introduced for e l (Kolmogorov 1.962, Obukhov 1.962), 
leading to describe all the statistics of a turbulent field with only two parameters, the mean and 
the variance. However, since the use and the relevance of second-order statistics can be restric-
tive and characterizes intermittent fluctuations very poorly, the velocity structure functions were 
introduced in order to study the statistical properties of turbulence (Monin and Yaglom 1.975) (see 
Section 8.2.4.1.). Figure 8.1.4 illustrates the structure function analysis of turbulent velocity fluctua-
tions (Figure 8.1.4A) and oceanic in vivo fluorescence fluctuations (Figure 8.1.4D). Figure 8.4B,E 
show the scaling of the structure functions for various orders of moments: In a log-log plot, the 
straight lines provide estimates of zV(q) and zS(q). The functions zV(q) and zS(q) are clearly non-
linear and convex (Figure 8.1.4C,F), and strongly diverge from the theoretical shapes zV(q) = q/3. 
(Figure 8.1.4C) and zS(q) = qH (Figure 8.1.4F).

Note that the structure functions of turbulent velocity and passive scalar fluctuations are directly 
related to the probability density function (PDF) of the local dissipation rate e l and variance flux cl. 
A proper model for the PDF of e l and cl is then sufficient to describe the whole statistics of turbulent 
velocity. The prediction of the original lognormal proposal is in reasonable agreement with empiri-
cal data for statistical moments q of sufficiently low order (that is, q ≤ 1.0). For large order (q > 1.0), 
the discrepancies are attributed to the deficiencies in the lognormal assumption, which has been 
severely criticized (Mandelbrot 1.974, 1.976; Yamazaki 1.990; Frisch 1.996). Another consequence 
of intermittency is the introduction of an intermittent correction to the Kolmogorov spectral slope, 
the intermittency exponent m, which is intrinsically linked to the distribution chosen for e l and cl  
(Seuront et al. 2005). This issue will be thoroughly investigated in Section 8.3..2 in relation to the 
different models used to fit the empirical function z(q).

In cascade models of turbulence, the intermittent fluxes e l and cl result from a multiplicative 
process in which the variability builds up from large to small scales. This leads to multifractal fields 
with (Seuront and Schmitt 2005a):

 〈 〉 ≈ ≈ −( ) ( ) ( )ε λ ε ε
l

q K q K ql  (8.3.6)

 〈 〉 ≈ ≈ −( ) ( ) ( )χ λ χ χ
l

q K q K ql  (8.3.7)

 〈 〉 ≈ ≈−| | ( ) ( )∆V ll
q q qV Vλ ζ ζ  (8.3.8)

 〈 〉 ≈ ≈−|( ) | , ,( ) ( )∆ ∆S V ll l
q q qV S V S2 3 3λ ζ ζ  (8.3.9)
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Figure 8.14 Time series of grid-generated turbulent velocity recorded by hot-wire velocimetry at 1.00 Hz in 
a circular flume (A) and in vivo fluorescence (D) recorded in the coastal waters of the eastern English Channel. 
The corresponding structure function analyses are shown in (B) and (E) for different values of q (q = 1., 2, 
and 3. from bottom to top). The related structure functions exponents z(q) are clearly nonlinear and convex, 
illustrating the intermittent nature of velocity and fluorescence fluctuations, shown in (C, F). The dashed lines 
are the theoretical, nonintermittent exponents for turbulent velocity z(q) = q/3. (C) and fluorescence z(q) = qH (F). 
(Modified from Seuront, 2008.)
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where the angle brackets “〈.〉” indicate ensemble averaging, λ the scale ratio between the largest external 
scale L and the actual scale l (that is, λ = L/l), Ke(q) and Kc(q) the scaling moment functions for the fluxes 
e l and cl, and zV(q) and zV,S(q) the scaling moment functions of the velocity structure function and the 
joint structure function scaling exponent of the product (ΔSl)2ΔVl. From Equations (8.3.4) and (8.3.5), the 
functions Ke(q) and Kc(q) can be defined as:

 K q q qVε ζ( ) ( )= − 3  (8.40)

 K q q qV Sχ ζ( ) ( ),= − 3  (8.41.)

Because the fluxes are conserved by the equation of motion over the inertial subrange, they are 
assumed to be scale-independent:

 〈 〉 ≈ 〈 〉ε εl 1
 (8.42)

 〈 〉 ≈ 〈 〉χ χl 1
 (8.43.)

Equations (8.3.6) and (8.3.7) subsequently lead to:

 Kε ( )1 0=  (8.44)

 Kχ ( )1 0=  (8.45)

Such multifractal fields are called “conservative multifractals,” and the conservation of the fluxes e l 
and cl (Equations 8.44 and 8.45) lead to:

 ζV ( )3 1=  (8.46)

 ζV S, ( )3 1=  (8.47)

Equations (8.46) and (8.47) correspond to the exact formulations for the small-scale dissipation 
fields. The scaling moment functions Ke(q), Kc(q), zV(q), and zV,S(q) characterize all the fluctuations 
of the fluxes of energy and scalar variance, and the fluctuations of the velocity shear and scalar 
gradient. In other words, as under fairly general conditions, the probability distribution of a random 
variable is equivalently specified by its statistical moments, the scaling moment functions K(q) and 
z(q) describe the scale dependence of the statistical moments of order q.

Equation (8.3.6) through Equation (8.3.9) characterize all the fluctuations of the energy flux e l 
(Equation 8.3.4) and scalar variance flux cl (Equation 8.3.5) through the scaling moment functions 
K(q) and z(q). The fluctuations of a passive scalar are defined by the scaling moment function 
zS(q) as:

 〈 〉 ≈ −| | ( )∆Sl
q qSλ ζ  (8.48)

However, because the passive scalar flux j l is a nonconservative mixed flux of energy e l and scalar 
variance cl as:

 ϕ ε χl l l= −1 2 3 2/ /  (8.49)
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which are intrinsically correlated, the scaling moment function zS(q) is related to the structure func-
tion of velocity fluctuations and scalar gradients as:

 ζ ζ ζS V S Vq q q( ) ( / ) ( / ),= −3 2 2  (8.50)

where zV(q) = q/3. + Ke(q/6) − Kc(q/2); see Seuront and Schmitt (2005a). Equations (8.3.5) and (8.49) 
also lead to expressing the squared passive scalar fluctuations, 〈ΔSl

2〉 = 〈(Sx+l = Sx)2〉, as:

 〈 〉 ≈∆S ll l
2 2 3 2 3ϕ / /  (8.51.)

With the introduction of discrete and continuous cascade models, a wide variety of distributions 
(including improvement of the initial lognormal proposal) has been proposed for e l and j l. A 
brief review of the distributions found in the literature, and a test of their performance at fitting 
oceanic temperature fluctuations (that is, a proxy for phytoplankton biomass), are proposed in 
Section 8.3..3..

8.2.4.2.2 Lagrangian Multiscaling Relations for Turbulent Velocity and Passive Scalars
In an intermittent framework, the Lagrangian scaling relations given by Equations (4.25) and (4.26) 
are rewritten as:

 εt
lV

t
≈

∆ 2

 (8.52)

and

 χt
lS

t
≈

∆ 2

 (8.53.)

where ∆V V t Vt = + − | ( ) ( )|τ τ  and ∆S S t St = + − | ( ) ( )|τ τ  are the velocity shear and passive scalar 
gradients for an element of fluid at the scale t. The scalar variance flux in Equation (8.53.) does not 
depend any more on a cross-product of velocity and passive scalar fluxes as in the Eulerian frame-
work; see Equation (8.3.5). The related scaling relations then come as:

 〈 〉 ≈ ≈ −( ) ( ) ( )ε ε ε
t

q K q K qtΛ  (8.54)

 〈 〉 ≈ ≈ −( ) ( ) ( )χ χ χ
t

q K q K qtΛ  (8.55)

 〈 〉 ≈ ≈−| | ( ) ( )∆ ΛV tt
q q qV Vζ ζ  (8.56)

 〈 〉 ≈ ≈−| | ( ) ( )∆ ΛS tt
q q qS Sζ ζ  (8.57)
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where Λ = T/t is the scale ration between the fixed outer time scale T and the actual time scale t, 
and the Lagrangian scaling moment functions for the velocity and passive scalar fluxes Ke(q) and 
Kc(q) are given by:

 K q q qVε ζ( ) ( )= − 2  (8.58)

 K q q qSχ ζ( ) ( )= − 2  (8.59)

The fluxes are still assumed to be conservative, that is, Ke(1.) = 0 and Kc(1.) = 0, which implies zV(2) = 1. and 
zS(2) = 1. (Seuront et al. 1.996b). As Equation (8.3.2) is still valid in the Lagrangian framework, there 
is no intermittency correction for the second moment, corresponding exactly to a power spectrum 
E( f ) ≈ f −2. The difference in spectral slope can then be used to identify Lagrangian and Eulerian 
regimes in oceanic data, as illustrated in Section 4.2.1..3..3. (Figure 4.1.0).

The Lagrangian velocity structure function scaling exponents zV(q) and the Lagrangian passive 
scalar structure function scaling exponents zS(q) are estimated from Equations (8.56) and (8.57), 
and are respectively given by:

 
ζ εV q

q
K

q
( ) = −





2 2  

(8.60)

 
ζ χS q

q
K

q
( ) = −





2 2  

(8.61.)

where Ke(q) and Kc(q) are estimated from the intermittent field e t and ct. The structure function 
exponent z(q) estimated from the Lagrangian regime of the time series of temperature and salinity 
shown in Figure 4.1.0 exhibit a nonlinear signature indicative of multifractality (Figure 8.1.5).

8.3 cascade models For intermittency

8.3.1 hisTorical background

The first description of the turbulence cascade came with the intuitive scheme of Richardson (1.922), 
who recognized that “big whirls have little whirls that feed on their velocity, and little whirls have 
lesser whirls and so on to viscosity” in the molecular sense. This was later formalized by the self-
similarity hypothesis (Kolmogorov 1.941.), which states that velocity fluctuations between two points 
separated by a distance l depend only on the average dissipation rate e. The squared velocity fluctuation, 
〈 〉 = 〈 − 〉+∆V V Vl x l x

2 2  [ ] , thus writes as:

 〈 〉 ∝∆V ll
2 2 3 2 3ε / /  (8.62)

where x and x + l are two points separated by a distance l. In Fourier space, Equation (8.62) is strictly 
equivalent to Equation (4.23.) for turbulent velocity fluctuations and Equation (8.51.) to Equation (4.24) 
for passive scalar fluctuations. The generalized structure functions for moments of order q > 0 of the 
absolute velocity increments are defined as:

 〈 〉 ∝| | / /∆V ll
q q qε 3 3  (8.63.)

2782.indb   276 9/11/09   12:16:27 PM



From Fractals to Multifractals 277

Equation (8.63.) leads to the K41. linear law (that is, nonintermittent, homogeneous turbulence):

 zV(q) = q/3. (8.64)

where zV(q) is the scaling exponent of the velocity structure functions:

 〈 〉 ∝| | ( )∆V ll
q qVζ  (8.65)

For any passive scalar advected by turbulent flows, Equation (8.51.) rewrites as:

 〈 〉 ∝| | ( )∆S ll
q qSζ  (8.66)

where zS(q) is the scaling moment function of scalar gradients; see Equation (8.50). Furthermore, 
Equation (8.62) and Equation (8.63.) lead to a general relationship between the spectral exponent b 
and the second-order moment structure function exponent z(2):

 b i = 1. + zi(2) (8.67)

where b i = bV for velocity fluctuations (see Equation 2.5) and b i = b S for passive scalar fluctuations 
(see Equation 4.23.), and zi(2) = zV(2) for velocity fluctuations (see Equation 8.65) and zi(2) = zS(2) 
for passive scalar fluctuations; see Equation (8.66).

Kolmogorov (1.962) and Obukhov (1.962) took intermittency into account considering that the 
structure function of velocity fluctuations is a function of a locally averaged dissipation rate for a 

q
6

2.5

3.0

2.0

ζ(
q) 1.5

1.0

0.5

0.00 54321

Figure 8.15 Empirical values of the Lagrangian structure function exponents z(q) for temperature (black 
continuous line) and salinity (open dots) time series recorded in the eastern English Channel from a drifting 
boat 24.9 m long. The dotted black line is the theoretical exponents z(q) = q/2 expected in case of noninter-
mittent Lagrangian turbulence. The thick continuous line is the empirical Eulerian z(q) for temperature and 
salinity estimated over Eulerian scales, and the thick dashed gray line the theoretical case z(q) = qH expected 
in case of nonintermittent Eulerian turbulence, respectively.
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sphere of radius l, e l. They hypothesized that e l was lognormally distributed with the variance s l
2 

of log e l given by:

 s l
2 = A + m log (L/l) (8.68)

where A is a constant associated with the macrostructure of the flow, m a universal constant, and L 
the largest external scale. This hypothesis has been introduced without firm theoretical foundations; 
Kolmogorov (1.962) did not provide any justification for this hypothesis, just stating that “it is natural 
to suppose that.” Obukhov (1.962) was more specific, indicating that the distribution of any positive 
quantity should be approximated by a lognormal distribution with the appropriate values for the first 
and second moments. For velocity fluctuations, Equation (8.63.) can be rewritten as:

 〈 〉 ∝| | / /∆V ll
q

l
q qε 3 3  (8.69)

Equation (8.69) is also known as the refined similarity hypothesis (RSH). This leads to the nonlinear 
form for the structure function exponent zV(q) characterizing intermittency.

8.3.2 cascadE modEls For TurbulEncE

Since the first attempt to provide a quantitative description of the Richardson cascade was made 
by Yaglom (1.966) and Gurvich and Yaglom (1.967), a range of discrete and continuous cascade 
models have been introduced to describe intermittent fluxes (see Seuront et al. [2005] for an 
exhaustive review).

A first family of models is composed of discrete models, for which the scale ratio between a 
structure and the daughter structure is a discrete integer. Due to their discrete nature, these models 
are not realistic but have been introduced for their simplicity and ability to reproduce experimental 
intermittency. These models include the lognormal model, the mono-fractal β-model, the α-model, 
the p-model, the random β-model, and the B-model. Detailed reviews of these models may be found 
in Paladin and Vulpiani (1.987), Meneveau and Sreenivasan (1.991.), Frisch (1.996), and Seuront et al. 
(2005). In addition, the limitations of these models and their limited ability to fit experimental data, 
especially for the higher orders of moment q, are detailed in Frisch (1.996).

The continuous log-infinitely divisible (log-ID) stochastic models represent a more realistic fam-
ily of cascade models. Specifically, infinite divisibility specifies that any random variable belonging 
to this law may be written as a sum of an arbitrarily large number of independent random variables, 
each having the same law (independent identically distributed) (see, for example, Feller, 1.971.). 
This property intrinsically limits the number of probability laws; the most known ID laws are the 
Gaussian, Lévy stable, Poisson, and Gamma. The corresponding log-ID continuous cascade models 
for velocity fluctuations and passive scalar fluctuations are briefly reviewed and their ability to fit 
the fluctuations of oceanic in vivo fluorescence (that is, a proxy of phytoplankton biomass) critically 
assessed.

8.3.2.1 lognormal model
The lognormal model (Kolmogorov 1.962; Obukhov 1.962) corresponds to a quadratic form for zV(q) 
and zS(q). For velocity fluctuations, Equation (8.46) and the condition zV(0) = 0 lead to expressing 
zV(q) as:

 
ζ µ

V q
q q q

( ) = −






−










3 2 3 3

2

 
(8.70)
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where the intermittency parameter m = Ke(2), and K qε
µ( ) = 2 [(q/3.)2 − (q/3.)]. Similarly, for passive 

scalar fluctuations, the function zS(q) writes as:

 ζ µ
S q qH q q( ) ( )= − −

2
2

 (8.71.)

where the parameter H is the degree of nonconservation of the average field; that is, H = zS(1.), m = 

Kj(2), and K qϕ
µ( ) = 2 (q2 − q).

8.3.2.2 the log-lévy model
Because the Gaussian law belongs to the Lévy-stable family of random distributions, that is, stable 
and attractive processes under addition (Feller 1.971.), the lognormal cascade model has been gener-
alized to log-stable cascades (Schertzer and Lovejoy 1.987; Kida 1.991.). In this context, the structure 
function scaling exponents z(q) have a precise theoretical shape defined as (Seuront et al. 1.996a):

 z(q) = Aq + Bqa (8.72)

where A and B are empirical constants, and a is the Lévy exponent for stable variables (Feller 
1.971.). Equation (8.72) defines a family of distributions defined according to the value of a , 0 < 
a ≤ 2. When a = 2, Equation (8.72) recovers the lognormal model, and the β-model when a → 0 
(Seuront et al. 2005). For 1. ≤ a < 2, the scaling is superdiffusive (Shlesinger et al. 1.996), while the 
value a = 1. indicates that the scaling becomes quadratic in time and corresponds to the lower limit 
of superdiffusive processes, that is, Lévy flight (Shlesinger et al. 1.996). In contrast, values a ≤ 0 do 
not correspond to probability distributions that can be normalized. When a ≤ 2, the variance of the 
process diverges, and when a ≤ 1. the mean is not defined. For turbulent velocity, the normalization 
condition zV(3.) = 0 leads to the reformulation of Equation (8.70) as:

 
ζ

α
ε

ε

αε

V q
q C q q

( ) = −
−







−










3 1 3 3

1

 
(8.73.)

where K q C q q
ε α

αε

ε
ε( ) (( ) )= −−

1
1 3 3

, and the parameter C1.e(C1.e = m/2) is an intermittency parameter char-
acterizing the fractal dimension of the mean. It satisfies 0 ≤ C1.e ≤ 1. (the larger C1.e, the more inter-
mittent the process): C1.e = 0 for a homogeneous process and C1.e = 0 for a process so heterogeneous 
that the fractal dimension of the set contributing to the mean is zero (Seuront et al. 1.999). For pas-
sive scalar fluctuations, the lack of a known condition of normalization leads to:

 
ζ

α
ϕ

ϕ

αϕ
S q qH

C
q q( ) ( )= −

−
−1

1  
(8.74)

where K q q q
C

ϕ α
αϕ

ϕ
ϕ( ) ( )= −−

1

1 . We can estimate C1.j and a j from Equation (8.74). If Equation (8.74) 
is differentiated and evaluated at q = 0, simple algebra shows that:

 
q q

C q
ζ ζ

α
ϕ

α

ϕ

' ( ) ( )0
1

1− =
−  

(8.75)

a j is given by the slope of [qz′(0) − z(q)] vs. q in a log-log plot, and C1.j can be estimated from the 
intercept.
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8.3.2.3 log-Poisson model
The log-Poisson model (Dubrulle 1.994, 2006; She and Waymire 1.994; Castaing and Dubrulle 1.995) 
describes the functions zV(q) and zS(q) as:

 
ζ γ γV

qq
q

c
q

( ) ( ) /= − − − +




3

1
3

1 3  (8.76)

and

 ζ γ γS
qq qH c q( ) ( )= − − − +( )1 1  (8.77)

where K q c q q
ε γ γ( ) (( ) )/= − − +1 13

3  and Kf(q) = c((1. − g )q − 1. + g q). g is linked to a maximum inter-
mittency (that is, the most extreme event reachable from a finite sampling), and c is an analogue of 
C1. and characterizes the heterogeneity of this maximum intermittency. To estimate the parameters 
g and c, one needs to note that:

 
ζ γ ζ γ γS Sq

c
q

c
H' '( ) ( ) ( )+ = −







+ −1 1
 

(8.78)

The slope and the intercept of a z′(q + 1.) vs. z′(q) plot give respectively (1. − g /c) and γ γ
c

H( )− ; then 
considering the parameter H (that is, H = z(1.)), the estimation of g  and c is straightforward.

8.3.3 assEssmEnT oF cascadE modEls For passivE scalars in a TurbulEnT Flow

The strength of the lognormal (LN), log-Lévy (LL), and log-Poisson (LP) models to describe the 
intermittent properties of passive scalars passively advected by fully developed turbulence was 
assessed against the functions zS(q) estimated from a time series of temperature* sampled simulta-
neously with the in vivo fluorescence time series shown in Figure 8.1.4D. Figure 8.1.6 shows the func-
tion zS(q), for moment up to order 8 (with a 0.1. increment), together with the theoretical fits given by 
Equations (8.71.), (8.74), and (8.77), for the lognormal, log-Lévy, and log-Poisson models, with the 
values proposed in Table 8.1.. The lognormal model fits the empirical data for statistical moments 
q < 2.5. This shows that the lognormal model is only compatible with the data up to relatively low 
order of moments. In contrast, the empirical curves for both the log-Lévy and log-Poisson models 
are indistinguishable for moments up to order 3. to 5 (Figure 8.1.6). The scaling exponents zS(q) were 
linear after a critical moment qc because of sampling limitations; see Seuront et al. (1.999, 2005) 
and Seuront (2008) for further details on multifractal phase transitions. Briefly, phase transitions 
relate to the occurrence of a maximum intermittency g max. For first-order phase transitions, g max is 
the maximum value taken by a given scalar associated with the occurrence of very rare and violent 
intermittencies. In contrast, for a second-order phase transition, g max corresponds to the maximum 
intermittency effectively detected from a finite sample size. In both cases, for q ≥ qc, the function 
zS(q) has the following linear asymptotic behavior:

 ζ γS q q( ) = −1 max
 (8.79)

*  The reader is referred to (Seuront et al. 2005) for an evaluation of continuous cascade models to characterize the inter-
mittency of turbulent velocity fluctuations in the atmosphere and the ocean.
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Figure 8.16 The structure function exponents z(q) estimated from 500 realizations (A), 1.00 realizations  
(B) and 1. realization (C) of segments of 1.28 points using a temperature time series of 65,53.6 data points. The 
critical order of moment qs (above which z(q) becomes linear due to sampling limitations) decreases with 
decreasing independent realizations. The log-Lévy (black) and log-Poisson (gray) models fit the nonlinear 
part of the function z(q) very well (that is, for q ≤ qs), but the log-Lévy exhibits a universal shape whatever 
the number of samples taken into account. In contrast, the log-Poisson model is intrinsically dependent on the 
number of samples used in the analysis.
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In the case of sampling limitations, the critical exponent qs is given by:

 qs = (Δs/C1.)1./a (8.80)

Δs is the sampling dimension defined as:

 Δs = 1. + logNs/log l (8.81.)

where Ns is the number of independent realizations and l is the ratio between the largest and the 
smallest scales of the inertial subrange. From Equations (8.79) and (8.80), it comes that qs increases 
with the number of independent realizations. First- and second-order multifractal phase transitions 
then respectively occur when qc < qs and qc ≥ qs. In this context, it is important to mention a fun-
damental advantage of the log-Lévy model over the log-Poisson model. The log-Poisson model, as 
recently discussed (Seuront et al. 2005), is implicitly limited by the upper bound on the intermitten-
cies it can detect, even in case of infinite sample size; for the log-Lévy model, there is no theoretical 
upper bound for the intermittencies. This is illustrated in Figure 8.1.6 and Table 8.1.. The log-Lévy 
models capture the nonlinearity of the empirical exponents zS(q) independently of the number of 
samples used to estimate zS(q), the value of the critical order of moment qs (Figure 8.1.6), and the 
related parameters H, C1.j and a j (Table 8.1.). In contrast, the log-Poisson fit and the values of the 
parameters g and c are strongly linked to the number of samples used in the analyses (Figure 8.1.6 
and Table 8.1.).

These results have strong implications in terms of both appropriately sampling the marine envi-
ronment and understanding the nature of the related biophysical patterns. The previous results dem-
onstrate that the log-Lévy models are much more robust than the log-Poisson models to reliably 
quantify the intermittency properties of marine scalars because of their ability to capture their statis-
tical properties even with a limited number of observations. This is critical for the implementation of 
sampling strategies and the subsequent reliable assessment of intermittent patterns and processes.

8.4 multiFractals: misconcePtions and ambiguities

8.4.1 spikEs, inTErmiTTEncy, and powEr spEcTral analysis

The limitations of power spectral analysis and the fact that the spectral slope is not necessarily a 
strong test of any model of physical-biological interactions without a preliminary careful exami-
nation of the raw data have recently been emphasized by Franks (2005). For instance, different 

table 8.1 
temperature and salinity time series

Note: Parameters of the log-Lévy (H, C1., and a) and log-Poisson (g and c) models obtained for 
500 (N1.), 1.00 (N2), and 1. (N3.) independent realizations of segments of 1.28 points using a tem-
perature time series of 65,53.6 data points. The log-Poisson parameters are strongly dependent to 
the number of independent realizations considered in the structure function analysis. In contrast, 
the log-Lévy model returns universal values for H, C1., and a.

H
C1
α
γ
c

N1

0.41
0.04
1.80
0.25
0.79

N2

0.42
0.04
1.82
0.20
0.56

N3

0.42
0.04
1.80
0.18
0.46

N1

0.43
0.06
1.80
0.28
0.82

N2

0.43
0.06
1.80
0.23
0.63

N3

0.42
0.06
1.80
0.20
0.52

SalinityTemperature
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phase relationships of the various sines and cosines making up the Fourier decomposition of the data 
may indeed lead qualitatively very distinct signals to return a k−5/3. spectral slope (see Franks 2005, 
Figure 1.3.). It is, however, acknowledged that a careful examination of the raw data to identify specific 
features (for example, first- and second-order stationarity) that might be driving the spectral slope is an 
absolute prerequisite to spectral analysis (Bloomfield 2000), and ultimately to any type of time series 
analysis; see, for example, Chatfield (2003.), Kantz and Schreiber (2004), and Wei (2005).

Franks (2005) found that the power spectra of images of phytoplankton fluorescence gathered 
with an imaging fluorometer were “white” (b = 0) over nearly two decades. He subsequently 
claimed that “the few, large, intensely fluorescent cells” that occur over a background of low 
fluorescence—and might somehow be related to the fluorescence intermittent hot spots clearly 
visible in Figure 8.1.4d—“cause the spectrum to be flat, or white.” To support this statement and 
his empirical findings, under the assumption that fluorescence hotspots behave as delta functions, 
he created 400 data series of 256 points with 20 randomly placed delta functions, calculated their 
spectra, averaged them, and plotted the average spectrum, which was flat. Similarly, he showed that 
randomly adding 3.0 delta functions of increasing amplitudes to a synthetic data set 256 points long 
created from 3.0 sine waves whose amplitude was determined by a k−5/2 spectral slope lowers the 
slope of the spectrum from k−5/2 with no spikes to k−2/3. when the spikes were 5× the amplitude of the 
largest sine wave. As stated by Franks (2005), it is agreed that “spikes in plankton could arise from 
any number of causes that have nothing to do with mixing in 3.D isotropic turbulence.” However, 
to consider that fluorescence hotspots—whether they are created by large cells, aggregates, pieces 
of seaweed, or zooplankton guts—behave as randomly distributed delta functions is a very strong 
assumption. This implies that the distribution of these hotspots follows a Markovian process, thus 
returning a “white,” memoryless power spectrum, which contradicts (1.) many empirical works that 
have found spectral slopes significantly different from zero for nutrients, phyto- and zooplankton 
distributions (Tsuda et al. 1.993.; Seuront et al. 1.996a, 1.999, 2002; Mountain and Taylor 1.996; Wiebe 
et al. 1.996; Lovejoy et al. 2001.; Pershing et al. 2001.); and (2) more specific investigations specifi-
cally dealing with the scaling properties of intermittent behaviors in nutrient, phytoplankton, and 
zooplankton (Seuront et al. 1.996a, 1.996b, 1.999, 2002; Seuront and Lagadeuc 2001.; Lovejoy et al. 
2001.; Seuront 2005b). In addition, from a purely methodological point of view, the power spectrum 
resulting from randomly placed delta functions will intrinsically return a “white” behavior because 
the Fourier transform of a delta function is a constant, that is, a white spectrum. In contrast, there is 
no assumption related to the use of structure functions, which would pick up the stochastic proper-
ties of any intermittent field whatever they are, that is, flat or steep spectra.

The role of intermittent fluctuations on power spectral slopes is clarified hereafter on both theoret-
ical and empirical grounds. From Equations (8.67) and (8.73.), Equation (4.23.) can be rewritten as:

 E k kV

C
( )

/ ( /( ))(( / ) / )≈ − − − −



5 3 1 2 3 2 31ε ε

αεα  (8.82)

This leads to a slope steeper than 5/3. because zv(2) < 0 (see Equation 8.73.). Using C1.e = 0.1.5 and 
a e = 1..50 for atmospheric turbulence and C1.e = 0.1.6 and a e = 1..55 for oceanic turbulence (Seuront 
et al. 2005) in Equation (8.82) leads to bV(k) = 1..70. Similarly, from Equation (8.67) and (8.74), 
Equation (4.24) is rewritten as:

 E k ks
H C( ) [ ( /( ))(( ) )]≈ − + − − −1 2 1 2 21ϕ ϕ

αϕα  (8.83.)

Using C1.j = 0.04 and a j = 1..70 for in vivo fluorescence advected by fully developed turbulence in 
the coastal waters of the eastern English Channel in Equation (8.83.) leads to bS(k) = 1..77. Both 
intermittent turbulent velocity fluctuations and intermittent in vivo fluorescence fluctuations 
lead to a spectral slope steeper than the theoretical bS(k) = 5/3. expected under nonintermittent 
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turbulent conditions. It is stressed here that Equation (8.83.) does not involve any assumption on 
phytoplankton concentration being considered as a passive conservative tracer or a biologically 
active tracer. Equation (8.83.) is instead general and would lead to a steepening of any power 
spectrum due to intermittency correction, whether it follows a k−5/3. power law or not.

It is finally stressed that the divergences observed between Franks’s conclusions (Franks 2005) 
and those presented here might also stem from the differences in the approaches used. First, the 
observational platforms used by Franks and coworkers (Franks 2005; Franks and Jaffe 2008) return 
horizontal 3.2 × 3.2 cm 2D fluorescence distributions sampled vertically every 6 to 24 cm, signifi-
cantly different from the fluorescence data analyzed here that correspond to a time series recorded 
from a fixed depth at a rate of 2 Hz. Second, Franks’s data were collected in stratified waters 250 
to 450 m deep 1.0 km offshore of San Diego (California) where chlorophyll a concentrations were 
typically bounded between 0.1. and 0.6 μg l−1. (Franks and Jaffe 2008, Figure 2). In contrast, the data 
analyzed here were collected in the tidally mixed shallow coastal waters of the eastern English 
Channel where chlorophyll a concentrations ranged from 6 to 3.0 μg l−1.. It is then likely that the dif-
ferent spectral shapes returned by the analysis of those two data sets might also be related to their 
intrinsic differences. Unambiguously demixing apples and oranges in an intermittent context would 
then require further work through a thorough investigation of data sets collected following the dif-
ferent methods described above simultaneously in a range of marine environments.

8.4.2 FrEquEncy disTribuTions and mulTiFracTaliTy

As stressed above (Section 8.1..2) and as implicitly seen from the sets of equations defining 
most of the multifractal functions described in Section 8.2—that is, Equations (8.3.), (8.21.), and 
(8.23.)—multifractal sets and signals will return a power-law behavior in cumulative frequency dis-
tributions (Chapter 5). However, a cumulative frequency distribution exhibiting a power-law behavior 
does not mean that the process being analyzed is multifractal. This is illustrated through the cumu-
lative probability distribution function, P(X ≥ x) ∝ x−f, and the probability distribution function, 
P(X = x) ∝ x−m, used to characterize intermittent distribution, when 1. < m ≤ 3. (see Section 5.1. and 
Equations 5.1. and 5.2). As discussed in Section 4.2.1.0.2 and Section 8.2.4, both nonintermittently 
and intermittently distributed quantities can be described by the qth-order structure functions. The 
function z(q) is linear for monofractal processes, that is, z(q) = qH, where H is the Hurst exponent as 
defined in Chapter 4. In the case of multifractality, z(q) is nonlinear, concave, and takes the general 
form z(q) = Aq + Bqa (see Section 8.3..2.2 and Equation 8.72). For a Lévy distribution, the structure 
function exponent z(q) is defined as a bilinear model (Chechkin and Gonchar 2000; Nakao 2000):

 z(q) = q/m (8.84)

for q < m (that is, q < f + 1.), and

 z(q) = 1. (8.85)

for q ≥ m (that is, q ≥ f + 1.). In the special case of a Lévy flight, m = 2 (Shlesinger et al. 1.996), 
leads to z(q) = q/2 for q < 2, and z(q) = 1. for q ≥ 2. The cumulative probability distribution func-
tion estimated from a time series of the successive displacements of the calanoid copepod Temora 
longicornis (Figure 8.2A) clearly exhibits a power-law behavior with f = 2.74 (Figure 8.1.7A); that 
is, m = 1..74. The empirical function z(q) obtained from T. longicornis successive displacements is 
subsequently compared with the functions z(q) theoretically expected for a Brownian motion and a 
Lévy distribution characterized by m = 1..74 (Figure 8.1.7B). The nonlinearity of the empirical func-
tion clearly contrasts from the bilinear behavior related to Equations (8.84) and (8.85), showing that 
a power-law signature in frequency distributions does not imply multifractality. In contrast, multi-
fractality is consistently related to a power-law signature in frequency distributions.
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8.5 Joint multiFractals

8.5.1 JoinT mulTiFracTal mEasurEs

Joint multifractals have been introduced by Meneveau et al. (1.990) to assess the degree of correla-
tion between two simultaneously recorded multifractal fields such as the intermittent fluxes e l and 
cl discussed above. To my knowledge, this approach has only subsequently been applied once to the 
joint analysis of crop yield and terrain slope (Kravchenko et al. 2000).
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Figure 8.17 (A) The cumulative probability distribution function estimated from a time series of the succes-
sive displacements of the calanoid copepod Temora longicornis shown in Figure 8.2A. A power-law behavior 
with f = 1..74 (dashed line) is clearly visible for displacements ranging from 1. to 3.0 mm. (B) The struc-
ture function exponents  expected for a Brownian motion z(q) = q/2 (dashed line), a Lévy flight, z(q) = q/2 for  
q < 2 and z(q) = 1. for q ≥ 2 (open squares), and the empirical z(q) estimated from a time series of the successive 
displacements of the copepod Temora longicornis shown in Figure 8.2A.
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Consider two multifractal measures m1. and m2. The partition function Mq(d ) (Equation 8.5) can 
be rewritten as a joint partition function Mq1.q2

(d ) as:

 
M f fq q

q q

i

N

i i1 2
1 2

1 2

1

( ) [ ( )] [ ( )]
( )

δ δ δ
δ

=
=

∑   
(8.86)

where N(d ) is the number of boxes of size d, f
i i

N
1 1( ) ( )δ µ δ= ∑  and f

i i
N

2 2( ) ( )δ µ δ= ∑ ; see Equation 
(8.4). Note that when q1. = 0 or q2 = 0, Equation (8.86) reduces to Equation (8.5). As discussed for the 
single partition function, low values of q1. and q2 characterize the low values of the first and second 
measures, while at high q1. and q2 the joint partition function depends mostly on high values of 
m1. and m2. From Equation (8.1.1.), the mass exponent of order (q1., q2), t(q1., q2) comes from:

 Mq q
q q

1 2
1 2( ) ( , )δ δ τ∝ −   (8.87)

From Section 8.2.2.1., the Hölder exponents a1. and a2 of multifractal measures m1. and m2 come as:

 α µ δ
δ1

1=
log ( )

log   
(8.88)

and

 α µ δ
δ2

2=
log ( )

log   
(8.89)

where d is the box size. From Equation (8.1.5), it comes that the number of cells Na1.a2
(d ) with a 

singularity strength (that is, Hölder exponent) within the ranges [a1., a1. + da1.] and [a2, a2 + da2] 
respectively for the first and second measure scales with d as:

 N f
α α

α αδ δ
1 2

1 2( ) ( , )∝ −   (8.90)

where f(a1., a2) is the joint singularity spectrum describing the abundance of cells with common 
a1. and a2 values. The joint singularity spectrum f(a1., a2) and the joint mass exponent function t(q1., q2) 
are connected via a double Legendre transform as:
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(8.92)

 f(a1., a2) = q1.a1. + q2a2 − t (q1.,q2) (8.93.)
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As discussed in Section 8.2.2.1., the maximum value of the joint multifractal spectrum f(a1., a2) is 
reached when q1. = 0 and q2 = 0, in which case f(a1., a2) equals the box-counting dimension of the 
geometrical support of the measures m1. and m2.

Meneveau et al. (1.990) first illustrated the applicability of joint multifractals to joint lognormal 
and binomial distributions, and simultaneous experimental distributions of turbulent shear and tem-
perature gradients. A decade later, joint multifractals were used to assess the links between crop 
yield and topography, and allowed to differentiate yield distributions corresponding to field loca-
tions with high slopes and to make inferences about slope distributions that affect grain the most 
(Kravchenko et al. 2000). A more general procedure based on joint moments is proposed hereafter 
to study the joint properties of two multifractal measures.

8.5.2 ThE gEnEraliZEd corrElaTion FuncTions

8.5.2.1 definition
The joint correlation functions using structure functions introduced by Seuront and Schmitt (2005a, 
2005b) are a continuation and development of the early study by Meneveau et al. (1.990). Their 
approach provides estimates of the fractal dimension of mixed singularities, instead of the scale-
invariant moment functions suggested hereafter. Another major difference between their joint mul-
tifractal formalism and the one provided here is that they did not normalize joint moments, as seen 
below, to provide joint correlations. As such, the joint correlation function introduced hereafter 
can be thought of as a more intuitive approach and as a high-order generalization of the standard 
correlation between two variables X and Y. Note that joint moments for scaling structure functions 
have also been proposed in the field of econophysics, to study correlations for multiple assets, in 
order to characterize their return distributions; see, for example, Muzy et al. (2001.). However, the 
final objective of such a study is portfolio optimization, which is different from our analysis of the 
generalized correlation between two multifractal fields.

Instead of random variables X and Y, consider two stochastic processes (ΔXt) and (ΔYt) charac-
terized by their pth- and qth-order structure functions as 〈|(ΔXt|p〉 ≈ t zX(p) and 〈|(ΔYt|q〉 ≈ t zY(q). The 
correlation between the two processes (ΔXt) and (ΔYt) then becomes a function of the scale and of 
the statistical orders of moment p and q, expressed by the generalized correlation functions (GCF 
hereafter) c(p, q) as (Seuront and Schmitt 2005a):

 
c p q

X Y

X Y

p q

p q
( , )

[|( )| |( )| ]

|( )| |( )|
=

〈 ∆ ∆ 〉
〈 ∆ 〉 〈 ∆ 〉

τ τ

τ τ

µµτ −r p q( , )

  (8.94)

where for more generality we take p ≠ q and r(p, q) ≥ 0 (Seuront and Schmitt 2005a). The gener-
alized correlation exponents (GCE hereafter) r(p, q) are estimated as the slopes of the power-law 
trends of c(p, q) vs. t in a log-log plot, and expressed as

 r p q p q S p qX Y( , ) ( ) ( ) ( , )= + −ζ ζ   (8.95)

where zX(q) and zY(q) characterize the multiscaling properties of the single fluctuations 〈|(ΔXt)|p〉 and 
〈|(ΔYt|q〉, and S(p, q) characterizes the multiscaling properties of the joint fluctuations 〈|(ΔXt)|p |(ΔYt)|q〉. 
Both c(p, q) and r(p, q) are generalizations of the standard correlation function. In the special case 
p = q = 1., Equation (8.94) indeed recovers the standard expression of the correlation coefficient 
between (ΔXt) and (ΔYt). GCF and GCE hence express the correlation between |(ΔXt)|q and |(ΔYt)|q, 
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together with their scale and moment dependence. Note that at a given scale t, if the fluctuations 
of the stochastic processes (ΔXt) and (ΔYt) are independent, r(p, q) = 0 for any combination of p and q. 
Increasing values of r(p, q) would thus characterize increasing dependence between |(ΔXt)|p and 
|(ΔYt)|q. Note that while independence implies uncorrelation, uncorrelation does not imply indepen-
dence. Uncorrelation corresponds to the relation r(1., 1.) = 0 and implies independence only in spe-
cial cases such as for Gaussian processes. In the general case, this is no longer true: Independence 
between the stochastic processes means that r(p, q) = 0 whatever the values of p and q. Figure 8.1.8A 
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Figure 8.18 (A) The generalized correlation functions c(p, q) vs. the time scale t in log-log plots, for the 
grid-generated turbulent velocity time series and the in vivo fluorescence time series shown in Figure 8.1.4A,D, 
respectively. The function c(p, q) shown here has been estimated for a constant value of the statistical order 
of moment q of velocity fluctuations (q = 2), and various values of the statistical order of moment p of in vivo 
fluorescence (that is, p = 1., 2, and 3., from bottom to top). The slopes of the linear regression estimated over the 
scaling ranges (dashed lines) provide estimates of the generalized correlation exponents r(p, q) (B). (Modified 
from Seuront and Schmitt, 2005a.)
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shows the GCF, c(p, q), plotted in log-log plots vs. t, for the grid-generated turbulent velocity 
time series and the in vivo fluorescence time series, respectively (shown in Figure 8.1.4A,D). As 
these time series have been independently sampled, they represent an archetypical example of two 
independent multifractal processes. The very low values taken by the functions c(p, q) indicate the 
absence of any correlation between the turbulent velocity and fluorescence fluctuations, |(ΔVt)|p 
and |(ΔFt)|q. This is confirmed and specified by the related values of the function r(p, q), which 
remain statistically undistinguishable from zero, whatever the combinations of p and q values 
(Figure 8.1.8B); see Box 8.2.

The main advantages of this technique are that (1.) it makes no assumptions about the spectrum 
or the probability distribution of either data set, (2) it takes into account the multiscale intrinsic 
properties of intermittent processes, and (3.) it allows testing for the phenomenology responsible 
for the high intensity (rare and unexpected) fluctuations observed in intermittent distributions, 
considering their potential association with both high- and low-intensity fluctuations character-
ized by high and low orders of moment. The generalized correlation functions and exponents 
thus provide a general framework, as they express the correlation between the fields (ΔXt) and 

Box 8.2 GEnERALIZED CoRRELAtIon FunCtIonS AnD 
ExPonEntS In SPECIAL CASES

The function c(p, q) and the related scaling exponent r(p, q) can be used as an analysis tool 
to study the couplings between two multifractal fields x (x = ΔXl) and y (y = ΔYl). To provide 
some basis for discussion and interpretation of experimental results, some limit cases are 
considered.

If x and y are independent r(p, q) = 0. On the other hand, in case of perfect proportionality 
x = Ky, where K is a constant, or for random proportionality x = ky, where k is a random vari-
able independent on y, it is readily seen that

 r p q p q p qY Y Y( , )  ( )  ( )  ( )= + − +ζ ζ ζ  (8.B2.1.)

In particular, one may note that r(p, q) > 0 due to the convexity of the scaling functions z(p). 
This relation can be directly tested to verify the proportionality hypothesis. Furthermore, the 
shape of the surface obtained is symmetric in the p-q plane. In this specific case, the function 
r(p, q) has the desirable advantage to reduce considerably the number of data points—that is, 
r(p, q) values—needed to understand the relationship between the fields x and y.

Another very simple situation occurs when x = Kyb with b > 0 and K constant, or when x = 
kyb with k random and independent of y, then

 r Y( , ) ( ) ( ) ( )p q bp q bp qY Y= + − +ζ ζ ζ  (8.B2.2)

r(p, q) in Equation (8.B2.2) is still positive but no longer symmetric in the p-q plane but in the 
bp-q plane. The value of b may be first estimated as the positive value such that

 r p r bp( , 0) (0, )=  (8.B2.3.)

Using the values of b, this can be tested by verifying that r(p/b, q) is indeed symmetric in the 
p-q plane. More generally speaking, the more r(p, q) is positive, the more the x = ΔXl and 
x = ΔYl are dependent random variables.
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(ΔYt), together with their scale dependence and their moment dependence. This indicates if high-
intensity fluctuations of one field are highly correlated to low intensities of the other (or, in other 
words, the gradients of two fields are proportional or inversely proportional) and the scales over 
which these correlations occur.

8.5.2.2 applications
The potential effect of varying turbulent forcing on the local structure of physical and biological 
parameters has been investigated using structure function analysis in Section 8.2.4.1. on the basis 
of 24 time series of temperature, salinity, and in vivo fluorescence (Figures 8.1.1. and 8.1.2). Those 
results demonstrated that temperature and salinity fluctuations remained similar under different 
turbulent and tidal forcings, while in vivo fluorescence (that is, phytoplankton biomass) clearly 
exhibited more intermittent fluctuations during ebb tide than flood tide and under conditions of low 
turbulence. However, this does not provide any information on the nature of biophysical couplings 
and their relation to turbulence and tide. This issue is investigated here using the generalized cor-
relation functions and exponents introduced in Section 8.5.2.1..

The nature of the dependence between temperature and phytoplankton distributions has 
been assessed through the generalized correlation functions, c(p, q) and the related generalized 
correlation exponents, r(p, q), between temperature and fluorescence time series, for each of 
the 24 time series mentioned above. Figure 8.1.9 shows the GCF, c(p, q), plotted in log-log plots 
versus the time scale t, for simultaneously recorded temperature and fluorescence time series 
for ebb tides (Figure 8.1.9A) and flood tides (Figure 8.1.9B), as well as for temperature and fluo-
rescence time series taken at different moments of the tidal cycle, and a fortiori independent 
(Figure 8.20A). Both the power-law behavior of the functions c(p, q) over the whole range of 
available scales, and the positive values taken by the GCE, r(p, q), indicate a form of depen-
dence between temperature and fluorescence fluctuations. In addition, the values of the func-
tions c(p, q) are smaller during flood tide (Figure 8.1.9A) than during ebb tide (Figure 8.1.9B), 
suggesting a differential correlation between temperature and phytoplankton biomass fluctua-
tions controlled by tidal processes. On the other hand, the weak values taken by the functions 
c(p, q) estimated between independent temperature and fluorescence time series (Figure 8.20A) 
indicate a low correlation between temperature and phytoplankton biomass fluctuations, 〈(ΔTt)p〉 
and 〈(ΔFt)q〉. This is confirmed by the related values of the functions r(p, q), which remain close 
to zero, whatever the combinations of p and q values (Figure 8.20B).

These observations were refined comparing the functions r(p, q) obtained between temperature 
and fluorescence time series in different tidal and turbulent conditions. Figure 8.21. shows the func-
tions r(p, q) obtained for all combinations of p and q values (between 0.5 and 5) with 0.1. increments 
for three levels of turbulence (1.0−4, 1.0−5, and 1.0−6 m2⋅s−3.) during ebb and flood tides, respectively. In 
both case, the correlation between temperature and fluorescence fluctuations increases with increas-
ing hydrodynamic conditions (Figure 8.21.A,B,D,E) and is weaker, even nil, in low turbulent con-
ditions (Figure 8.21.C,F). On the other hand, the decorrelation observed between temperature and 
phytoplankton fluctuations during both ebb and flood tides under weak turbulent conditions sug-
gests an increase in the biological contributions to the control of phytoplankton biomass distribution 
and confirms previous observations (cf. Figure 8.1.2). Phytoplankton fluctuations then appear inde-
pendent from the temperature fluctuations under the lowest turbulence levels investigated here, that 
is, 5 × 1.0−7 m2⋅s-3. (Figure 8.21.C,F). This confirms the differential physical control suggested under 
strong turbulent conditions from the analysis of the shape of the function zF(q), and its comparison 
with the function zt(q) (see Figure 8.1.2).

More specifically, the overall shape of the functions r(p, q) indicates that large phytoplankton 
fluctuations are associated, under strong enough turbulent conditions, to strong temperature gradi-
ents, and vice versa. This tendency seems to reflect, over a slightly wider range of scales, findings 
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of Desiderio et al. (1.993.), who observed the occurrence of 0.1. to 0.2-meter-thick fluorescent lay-
ers just above local temperature gradients. As this suggests a proportionality relationship between 
temperature and phytoplankton fluctuations, Equation (8.B2.2) has been verified testing the validity 
of Equation (8.B2.3.) over a wide range of b values (Box 8.2). Using b values ranging between 0.05 
and 5 (with 0.05 increments), we then showed that Equation (8.B2.3.) is verified for four of the six tur-
bulence levels investigated during ebb tides, i.e., e = 1.0−4 m2⋅s–3. with b = 0.90, e = 5 × 10−5 m2⋅s–3. with 
b = 0.85, e = 10−5 m2⋅s–3. with b = 0.80, and e = 5 × 10−6 m2⋅s–3. with b = 0.78, and two of the six turbu-
lence levels investigated during flood tides, that is, e = 1.0−4 m2⋅s–3. with b = 0.96 and e = 5 × 10−5 m2⋅s–3. 
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Figure 8.19 The generalized correlation function c(p, q) vs. the time scale  in log-log plots, for temperature 
and fluorescence time series simultaneously recorded during ebb tide (A) and flood tide (B). The function  
shown here have been estimated for a constant value of the statistical order of moment q of temperature fluc-
tuations (q = 2), and various values of the statistical order of moment p of in vivo fluorescence (that is, p = 1., 
2, and 3., from bottom to top). The slopes of the linear regression estimated over the scaling ranges (dashed 
lines) provide estimates of the generalized correlation exponents r(p, q). (Modified from Seuront and Schmitt, 
2005b.)
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with b = 0.91.. Figure 8.22 shows the relation r(p, 0) vs. r(0, bp) corresponding to the functions 
r(p, q) shown in Figure 8.21.A,B with b = 0.90 and b = 0.80, respectively. The correlation shown 
between temperature and phytoplankton fluctuations under high turbulent conditions is then 
related to a power-law dependence relationship of the form ΔFt  ∝ (ΔTt)b.
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Figure 8.20 The generalized correlation function c(p, q) vs. the time scale t in log-log plots, for tempera-
ture and fluorescence time series simultaneously recorded at different moments of the tidal cycle, and a priori 
independent (A). The function c(p, q) shown here have been estimated for a constant value of the statistical 
order of moment q of temperature fluctuations (q = 2), and various values of the statistical order of moment p of  
in vivo fluorescence (that is, p = 1., 2, and 3., from bottom to top). The slopes of the linear regression estimated 
over the scaling ranges (dashed lines) provide estimates of the generalized correlation exponents r(p, q) shown 
in (B). (Modified from Seuront and Schmitt, 2005b.)
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8.6 intermittency and multiFractals:  
biological and ecological imPlications

Intermittency can have implications in a wide range of biological and ecological processes in 
terrestrial and aquatic ecosystems. Based on the marine background of the author, this section 
explores a few areas of marine sciences that could be significantly affected by intermittency. 
Specifically regarding probabilistic arguments derived from the multifractal framework described 
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Figure 8.21 The generalized correlation exponents r(p, q), shown as a function of both p and q, which char-
acterize temperature and in vivo fluorescence fluctuations, respectively. The functions r(p, q) correspond to 
three different levels of turbulence: e = 1.0−4 m2⋅s−3. (A,D), e = 1.0−5 m2⋅s−3. (B,E), and e = 1.0−6 m2⋅s−3. (E,F) inves-
tigated during ebb tide (left panel) and flood tide (right panel). (Modified from Seuront and Schmitt, 2005b.)
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in Section 8.2, this section demonstrates that taking into account turbulence intermittency can lead 
to substantial changes in the probability of the occurrence of rare events, and our subsequent under-
standing of their impact on marine life and salient processes in the ocean such as predator–prey  
(or male–female) encounter rates, nutrient fluxes around phytoplankton cells, physical coagulation 
of phytoplankton cells, and in the subsequent phytoplankton aggregate volume. It is stressed, how-
ever, that the probabilistic nature of the approach used hereafter does not hamper the generality of 
this section, as a similar approach can be equivalently implemented to assess the effect of intermit-
tent fluctuations on terrestrial processes.

8.6.1 inTErmiTTEncy, local dissipaTion raTEs, and ZooplankTon swimming abiliTiEs

Making use of the lognormal theory, Yamazaki et al. (2002) investigated the probability den-
sity function of locally averaged dissipation rate over a subdomain l within a parent domain L. 
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Figure 8.22 Plots of the generalized correlation exponents r(p, 0) vs. r(0, bp) for two levels of turbulence during 
ebb tide, e = 1.0−4 m2⋅s−3. with b = 0.90 (A) and e = 1.0−5 m2⋅s−3. with b = 0.80 (B). The slopes of the regression lines 
(continuous line) cannot be distinguished from the one of the relation bp = q (dashed line). This shows the valid-
ity of Equation (8.B2.2), and the symmetry of the functions r(p, q) in the bp-q plane. (Modified from Seuront 
and Schmitt, 2005b.)
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Considering that the minimum averaging scale l (that is, the smallest scale reachable by turbulent 
fluctuations) is 1.0 times the Kolmogorov length scale lk (lk = (n3./e)1./4, where n is the kinematic 
viscosity), they focused on two typical conditions in the upper ocean: turbulence in the surface 
mixed layer and a turbulent patch in a seasonal thermocline. In both cases, the turbulence is 
characterized by the average dissipation rate e (1.0−5 and 1.0−8 m2⋅s−3., respectively), and the subse-
quent Kolmogorov length scale lk (5.62 × 1.0−4 and 3..1.6 × 1.0−3. m, respectively), the largest scale L 
(1.0 and 1. m, respectively) and the smallest scale l (l = 1.0lk) reachable by turbulent fluctuations 
(5.62 × 1.0−3. and 3..1.6 × 1.0−2 m, respectively). Assuming lognormality for the local dissipation 
rate el, they estimated the probability for a local value el to exceed the average value e, that is,  
Pr(el ≥ e), as 0.248 and 0.3.28 for the mixed layer and the seasonal thermocline cases, respectively. 
In the multifractal framework, this probability is given by (see Equation 8.21.):

 Pr( ) ( )ε λ λλ
γ γ≥ = −c  (8.96)

g is a given singularity (that is, an intermittency level), l is the scale ratio (that is, l = L/l), and c(g) 
is the codimension function defined as (see Equation 8.27):
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 (8.97)

where C1. and a are the parameters characterizing the log-Lévy distribution and a ′ is given by 
1./a + 1./a′ = 1. (Section 8.2.3.). Using values of C1. and a used in the previous section (C1. = 0.1.6 and 
a = 1..55) and of l estimated from above, the probability Pr(el ≥ e) became Pr(el ≥ e) = 0.63.4 and 
Pr(el ≥ e) = 0.765 for the mixed layer and the seasonal thermocline case, respectively (Seuront 2008).

Using root-mean-square turbulent velocity values estimated from dissipation rates observed in 
the seasonal thermocline and in a fjord, Yamazaki and Squires (1.996) showed that nominal swim-
ming speeds of several zooplankton species taken from a literature survey are larger than turbulent 
velocity fluctuations. They subsequently claimed than organism motion can be independent of the 
local turbulent flow field. Similar results have been recently obtained on the basis of behavioral 
observations of the calanoid copepod Temora longicornis (Seuront et al. 2004d). It is shown that 
root-mean-square turbulent velocity overcomes the swimming velocity of T. longicornis only for 
very high values of the dissipation rates e, that is, e ≥ 1.0−5 m2⋅s−3.. However, these statements are 
based on investigations of mean values of the dissipation rate e, instead of the local values el. Using 
the multifractal framework, it is shown that these results can be quantitatively refined considering 
the probabilistic nature of el.

Under the isotropy assumption, the velocity difference èu between two points separated by a 
distance l can be estimated following the isotropic relation:

 
ε ν ν δ
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2 2

. .
∂
∂

u
z

u
l  (8.98)

where n is the kinematic viscosity, ca. 1.0−6 m2⋅s−1.. From values of l defined above, and values of 
el ranging between 1.e and 1.00e, it can be seen that velocity differences èu are of the same order 
of magnitude that zooplankton swimming ability (regarded as bounded between 0.001. and 0.01.0 
m⋅s−1. for most mesozooplankton species) for el values up to 2e and 70e in the mixed layer and the 
seasonal thermocline, respectively (Figure 8.23.). The probability described by Equation (8.96) is 
now rewritten as:

 Pr( ) Pr( )∂u vzoo< = ≥ε ελ 2  (8.99)
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in the surface mixed layer, and

 Pr( ) Pr( )∂u vzoo< = ≥ε ελ 70  (8.1.00)

in a turbulent patch in the seasonal thermocline. This leads to Pr(èu < vzoo) = 0.57 for the mixed 
surface case, and Pr(èu < vzoo) → 1..00 for the seasonal thermocline case. Thus, the surface mixed 
layer contains 57% of water volume whose shear can be overcome by mesozooplankton swimming. 
However, mesozooplankton swimming ability overcomes turbulent shear in almost 1.00% of the 
turbulent patches in the seasonal thermocline.

These simple arguments provide the first quantitative description of mesozooplankton swim-
ming ability against turbulence, taking into account the probabilistic nature of intermittent turbu-
lence. These results also confirm that organism motion can be independent of the local flow field in 
most areas of the world’s oceans.

8.6.2 inTErmiTTEncy, local dissipaTion raTEs, and biological FluxEs in ThE ocEan

The influence on turbulence intermittency on plankton processes will be considered through three 
major processes controlled by turbulent processes, and at the core of marine system functioning: 
nutrient fluxes around nonmotile phytoplankton cells, physical coagulation of phytoplankton cells, 
and predator–prey encounter rates.

In order to take into account the distribution of the local dissipation rate el in calculations, 
Equation (8.24) has been rewritten as (Seuront et al. 2001.):

 〈 〉 =ε ε λλ
q q K q( )  (8.1.01.)

Equation (8.1.01.) is used to evaluate the average of any polynomial function f(el) of the intermittent 
field e l as:
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Figure 8.23 Estimates of the velocity difference du between two points separated by a distance l in the 
surface mixed layer (black dots) and in a turbulent patch in the seasonal thermocline (open circles) for values 
of the local dissipation rate el ranging between e and 1.00e. The values of the scale l and of the average dis-
sipation rate e are 5.63. × 1.0−3. and 3..1.6 × 1.0−2 m, and 1.0−5 and 1.0−8 m2 s−3. for the mixed layer and the seasonal 
thermocline cases, respectively. The average swimming speed of most mesozooplankton species, bounded 
between 0.001. and 0.01.0 m s−1., is shown by the shaded area. (Modified from Seuront, 2008.)
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where aq are constants, and q the polynomial order of the function f(el). The average of the function 
f(el) in Equation (8.1.02) leads to:

 
f aq

q K q

q

N

( ) ( ) ( )ε ε λλ λ=
=

∑
0  

(8.1.03.)

8.6.2.1 intermittency, turbulence, and nutrient Fluxes toward Phytoplankton cells
Following Karp-Boss et al. (1.996), the increased rate of nutrient flux due to turbulence around nonmo-
tile phytoplankton cells of radius r(m) can be directly estimated using the Sherwood number, S, as:
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for r < lB, and
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for r > lB. D is the diffusivity (D = 1.0−9 m2⋅s−1.), e0 the mean turbulent energy dissipation rate (m2⋅s−3.), 
n the kinematic viscosity (n = 1.0−6 m2⋅s−1.), and lb the Batchelor microscale, the scale of the small-
est variations in the ambient nutrient field. One may note here that the Batchelor microscale lB is 
smaller than the Kolmogorov microscale lK (that is, the scale of the smallest turbulent eddies) fol-
lowing lK = lB (D/n)1./2.

Now the turbulent kinetic energy dissipation rate e is expressed as an intermittent variable e l 
characterized by the scaling moment function Ke(q) (Section 8.2.4.2) and by its mean e0 = 〈el〉. 
Consider the average Sherwood numbers S

–
1. and S

–
2 associated with the intermittent (multifractal) 

variable el and defined as S
–

1. = 〈S1. (el)〉 and S
–

2 = 〈S2 (el)〉, when r < lB and r > lB, respectively. Using 
Equation (8.1.01.), Equations (8.1.04) and (8.1.05) can be rewritten as:

 S k K
1 1 0

1 4 1 41 0 29= + . / ( / )ε λ ε  (8.1.06)

for r < lB, and

 S k K
2 2 0

1 6 1 60 55= . / ( / )ε λ ε  (8.1.07)

for r > lB, where k1. and k2 are constants. Because l >> 1., K(1./4) < 0 and K(1./6) < 0, therefore lKe (1./4) 
and lKe (1./6) act as dampening factors in Equations (8.1.06) and (8.1.07), yielding (S

–
1./S1.) < 1. and (S

–
2/S2) < 1.. 

This shows that using a mean value of the turbulent kinetic energy dissipation rate e0 instead of the 
intermittent distribution el leads to overestimating the turbulence contribution to the rates of nutri-
ent fluxes around phytoplankton cells, whatever their size may be.

In order to quantify this difference, one needs to estimate the intermittent dampening factors 
(S
–

1./S1.) and (S
–

2/S2) due to lKe (1./4) and lKe (1./6) in Equation (8.1.06) and Equation (8.1.07) using realistic 
values of l, Ke(1./4) and Ke(1./6). The inertial subrange scale ratio l is increasing with increas-
ing intensities of turbulence and can be reasonably regarded as ranging between 1.02 and 1.05 (see, 
for example, Gregg [1.990]). The scale-invariant moment exponents Ke(1./4) and Ke(1./6) have been 
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estimated from high-resolution shear vertical profiles recorded in tidally mixed coastal waters fol-
lowing Seuront et al. (1.999) as K (1./4) = −0.053. ± 0.005 and K (1./6) = −0.042 ± 0.004 (Seuront and 
Yamazaki, unpublished data). The resulting dampening factors (S

–
1./S1.) and (S

–
2/S2) range between 

1..06 and 1..1.9, and between 1..21. and 1..62, when r < lB and r > lB, respectively. This leads to a con-
sideration of a decrease in the rate of nutrient fluxes around phytoplankton cells due to microscale 
turbulence intermittency ranging between 6.26% and 1.9.07% for phytoplankton cells smaller than 
the Batchelor microscale lB, and between 21..22% and 61..78% for phytoplankton cells larger than the 
Batchelor microscale lB. The inertial subrange scale ratio l increases with increasing intensities of 
turbulence. The decrease in the rate of nutrient fluxes around phytoplankton cells of any size is thus 
higher when the intensity of turbulence is high.

8.6.2.2 intermittency, turbulence, and Physical coagulation of Phytoplankton cells
Theoretical analyses of particle coagulation processes predict that aggregate formation depends 
on the probability of particle collision and on the efficiency with which two particles that collide 
and stick together afterwards (McCave 1.990; Kiørboe 1.997). The former is a function of particle 
concentration, size, and the mechanism by which particles are brought into contact—for example, 
Brownian motion, shear, or the differential settlement of particles (see Figure 3..28). The latter, 
which is not studied here, depends mainly on the physicochemical properties of the particle surface 
and may vary with the particle type.

Consider a monospecific phytoplankton cells suspension characterized by a cell radius r (m) and 
cell concentration C (cells⋅m−3.). Because all particles are of the same size and density and settle with 
the same velocity, and because encounters due to Brownian motion are insignificant for particles > 
1. µm (McCave 1.990), the only mechanism that may increase the relative velocity between phyto-
plankton cells and thus to bring them to collide is due to turbulent shear and can be expressed as 
(Kiørboe 1.997):

 E r C1
3 2

0
1 210 4= . ( / ) /ε ν  (8.1.08)

where E1. is the encounter rate due to turbulence (encounter⋅s−1.), e0 the mean turbulent energy dis-
sipation rate (m2⋅s−3.), and n the kinematic viscosity (n = 1.0−6 m2⋅s−1.). As previously done in Section 
8.6.2.1., the turbulent kinetic energy dissipation rate is an intermittent variable e l characterized by 
the scaling moment function Ke(q) defined above, and by its mean e0 = 〈el〉. Here, E1. and E

–
1. are 

regarded as estimates of average encounter rates, that is, E
–

1. = E(e0) and  E
–

1. = 〈E(el)〉 when the turbu-
lent energy dissipation rates are regarded as homogeneous and intermittent variables, respectively. 
In this case, Equation (8.1.08) is rewritten as:

 E r C K
1 10 4 3 2 1 2

0
1 2 1 2= −. / / ( / )ν ε λ ε  (8.1.09)

This finally yields:

 E E K
1 1

1 2= λ ε ( / )  (8.1.1.0)

and as defined above, l >> 1. and Ke(1./2) < 0, lK(1./2) thus acts as a restraining factor, therefore E
–

1. < E1.. 
Using the values of l proposed in Section 8.6.2.1. (that is, l ∈[1.02, 1.05]) and Ke(1./2) = −0.063. ± 
0.005 (Seuront and Yamazaki, unpublished data), factor lKe (1./2) ranges between 0.48 and 0.75. 
Now, the intermittent nature of microscale turbulence leads to a decrease of its contribution to 
the physical coagulation of phytoplankton cells by 25% to 48%. This decrease is higher when 
the turbulence levels are high; that is, the inertial subrange scale ratio is large.
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Considering the role played by large-particle aggregates in the vertical flux of organic matter in 
the ocean (Jackson and Bird 1.998), the effects of this decrease in encounters due to intermittency on 
the growth in particle size is considered hereafter. The average solid volume of aggregates increases 
according to (Kiørboe et al. 1.990):

 V V et
t= 0

7 8 0
1 2α φ ε ν π[ . ( / ) / ]/  (8.1.1.1.)

where V0 and Vt are the average volume of aggregates at time 0 and t, a is the stickiness coefficient 
(that is, a ∈[0, 1.]), and f is the volume-concentration of cells [f = (4/3.)pr3.C0]. Introducing the pre-
cise statistical distributions of turbulent dissipation rate el in Equation (8.1.1.1.) instead of its average 
value e0 leads to a decrease in the aggregate average volumes ranging between 22% and 41.% in low 
and high hydrodynamic conditions, respectively.

8.6.2.3 intermittency, turbulence, and encounter rates in the Plankton
Following the seminal theory of Rothschild and Osborn (1.988), Kiørboe and Saiz (1.995) dem-
onstrated that the encounter rate E (encounters s−1.) between plankton predators and preys can be 
expressed as the sum of the encounter rate due to organism behavior and the encounter rate due 
to microscale turbulence. The former is a function of particle concentration, swimming speed of 
predator and prey, and perceptive distance of the predator. The latter, which I explore in more detail 
here, is expressed as:

 E C R w2
2= π  (8.1.1.2)

where E2 is the encounter rate due to microscale turbulence, C is the number of preys per unit 
volume (preys⋅m−3.), R is the perceptive distance of the predator (m), and w (m s−1.) is the root-
mean-square turbulent velocity enhancing the relative motion between predator and prey. The 
rms turbulent velocity w is directly related to the intensity of turbulence, characterized by a 
mean value of the turbulent kinetic energy dissipation rate e0 (m2 s−3.) following (Rothschild 
and Osborn 1.988):

 w d= 1 9 0
1 3. ( ) /ε  (8.1.1.3.)

where d is the separation distance between predator and prey when an encounter takes place, that 
is, d = R, for example, (Visser and MacKenzie 1.998). Finally, inserting the expression for the rms 
turbulent velocity w (Equation 8.1.1.3.) into Equation (8.1.1.2) yields: 

 E C R2
7 3

0
1 31 9= . / /π ε  (8.1.1.4)

Taking an intermittent variable el characterized by the scaling moment function Ke(q) defined 
above, and by its mean, 〈el〉 = e0. Here, E2 and E

–
2 are the estimates of average encounter rates due 

to turbulence; that is, E2 = E(e0) and E
–

2 = 〈E(e0)〉 when the turbulent energy dissipation rates are 
regarded as homogeneous and intermittent (multifractal) variables, respectively. Equation (8.1.1.4) 
can be rewritten as:

 E C R K
2

7 3
0
1 3 1 31 9= . / / ( / )π ε λ ε  (8.1.1.5)

Now E
–

2 = E2lKe(1./3.), and as defined above, l >> 1. and Ke(1./3.) < 0, and lKe(1./3.) acts as a restraining 
factor; therefore E

–
2 < E2. Considering values of the inertial subrange scale ratio l bounded between 
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1.02 and 1.05, and K(1./3.) = −0.060 ± 0.003. (Seuront and Yamazaki, unpublished data), the factor 
lKe(1./3.) ranges between 0.50 and 0.76. Taking into account the intermittent structure of turbulent 
kinetic energy dissipation rate el instead of an average value, e0 then decreases the contribution of 
microscale turbulence to the predator–prey encounter rate of 25% to 50% for e0 values ranging from 
1.0−1.0 to 1.0−2 m2 s−3..
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9 Conclusion

As suggested by the titles of several seminal earlier works, such as The Fractal Geometry of Nature 
(Mandelbrot 1.983.) and Fractals Everywhere (Barnsley 1.993.), one could expect to find fractal and 
multifractal properties everywhere. However, evidence for scaling in Nature is not as ubiquitous 
as many writers would have us believe. Recent studies (Malcai et al. 1.997; Avnir et al. 1.998) show 
that most reports of fractal scaling accepted for publication in the Physical Reviews and Physical 
Review Letters from 1.990 to 1.996 span only one-half to two decades, especially for self-similar 
fractals and with remarkably few exceptions. In particular, on the basis of their extensive literature 
survey and additional experiments, these authors raised the possibility that the cutoffs are due to 
intrinsic properties of the measured systems rather than the specific experimental/sampling condi-
tions and apparatus. This is the reason why it is stressed here that one must (1.) ensure the reality and 
the quality of the scaling using appropriate, statistically sound procedures (see Chapter 7), (2) avoid 
extrapolating structural information without reliable a priori information that the data continue to 
scale beyond the actual measurement spatial or temporal scales, and (3.) consider the absence of 
scaling as a valuable source of information.

One of the major issues ecologists have to deal with is not only to state the observed fractal 
dimension for the distribution of moving organisms, or multifractal spectrum for the distribution of 
a given species, but also to explain, or try to explain, from a phenomenological point of view where 
these structures come from. Some hypotheses could be proposed to explain the origin of fractality 
or multifractality, and probably raise more questions than provide answers.

Because many environmental parameters display statistical self-similarity over a certain range 
of scales, the observed biotic patterns could reflect the distribution of some abiotic factors present-
ing a template upon which organisms or ecological systems operate. This can be true in certain 
conditions for phytoplankton biomass (see arrows in Figures 8.1.1. and 8.1.2) when the multifractal 
behaviors of temperature and phytoplankton biomass cannot be distinguished, but it is definitely not 
the rule. In particular, while the multifractal distribution of temperature remains the same what-
ever the intensity of turbulence, the distribution of phytoplankton is more and more intermittent 
(that is, nonlinear) when the turbulence intensity decreases (Figures 8.1.1. and 8.1.2). Phytoplankton 
cells then cannot be regarded as purely passive scalars. They are more intermittently distributed in 
weak turbulent conditions (that is, characterized by a few dense patches over a wide range of low-
density patches), suggesting the prevalence of biological activity such as aggregation processes. 
Alternatively, they are more homogeneously distributed in high turbulent conditions, suggesting a 
physical disruption of phytoplankton patches by turbulence or a smoothing of their distribution by 
an increased grazing pressure via the turbulence-induced increase in predator-prey encounters. It 
is nevertheless likely that the differences in turbulence intensity also affect key processes such as 
nutrient availability, light history, and infection, which in turn might likely affect the distribution 
of phytoplankton cells.

A full understanding of the origin of phytoplankton patchiness is still far from being achieved 
(Vilar et al. 2003.). It is nevertheless stressed here that the knowledge of the multifractal distribu-
tions of simultaneously recorded relevant parameters such as temperature, salinity, light, turbulent 
shear, nutrient concentration, bacteria, and phytoplankton and zooplankton biomass could be the 
first step to infer their phenomenological links. We know that fractal patterns are often generated 
by processes operating in transition zones such as the marine intertidal flat (Bradbury et al. 1.984; 
Pennycuick and Kline 1.986) and that superposition of several environmental gradients acting on 
different scales could result in rather complex spatial pattern of biota (Azovsky et al. 1.998). In that 
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way, a multifractal distribution can intrinsically be regarded as a pattern characterized by mul-
tiple gradients and transition zones (see, for example, Figure 3..20A, Figure 5.23., Figure 5.26, and 
Figure 5.28). The multifractal nature of turbulent flow and purely passive scalars (temperature and 
salinity) could thus be the starting point of a cascade process leading to the observed multifractal 
distributions of nutrients (Seuront et al. 2002), phytoplankton (Seuront et al. 1.996a, 1.996b, 1.999; 
Lovejoy et al. 2001.; Seuront 2005b) and zooplankton biomass (Pascual et al. 1.995; Seuront and 
Lagadeuc 2001.).

Alternatively, the properties of habitats are not just a function of the landscape and seascape 
patterns but also the ability of the organisms to perceive and use this pattern. It is then likely 
that different organisms would have different ranges of fractality and multifractality, as differ-
ent organisms should have different scales of perception of their environment, exhibiting pat-
terns of different types upon one and the same template. From the discussion in Section 8.1..5, 
it is likely that the multifractal distribution of microphytobenthos biomass would not be used 
in the same way by different predators, such as the deposit-feeding amphipod Corophium sp. 
or the snail Littorina sp. As suggested by Seuront and Spilmont (2002) for microphytobenthos 
biomass, the observed spatial (multifractal) pattern could be the result of the dynamic balance 
between endogenous (growth, migration, and death) and exogenous (tides, hydrodynamism, 
sediment quality, interspecific and intraspecific competition for nutrient, grazing) processes. 
Theoretical studies have also suggested that internal properties of individuals and populations 
interact to produce space-time structure, even in homogeneous environments (Deutschman et al. 
1.993.; Bascompte and Solé 1.995). This is also consistent with the empirical results presented in 
Sections 3..2.3..2 and 3..2.4.2 showing the similarity of the fractal dimensions of the spatial pat-
terns of Corophium arenarium and their microphytobenthic preys. Potentially, environmental 
complexity interacts with biotic processes and influences spatial patterns (Roughgarden 1.974; 
Pascual and Caswell 1.997).

Finally, it may seem natural that any developing system tends to increase its internal structure as 
long as its size permits (see Section 2.1.), with any increase in size adding new structural elements. 
Similar concepts of fractal-like ecosystem organization have been proposed (O’Neill et al. 1.986; 
Kolasa 1.989; Holling 1.992). However, why and how biological communities realize this type of 
organization is still a puzzle, and remains a matter for further investigation.
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misconceptions about, 225
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methodological considerations, 59
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quantifying, 209–21.3.
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misconceptions, 225
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case study, 1.1.9–1.23.
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Distribution, singularity spectrum, 263
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case study, 3.2–3.5

methodological considerations, 3.5–46
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DLA; See Diffusion-limited aggregation

e

Ecology
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limited applications of fractals in, 8
models, natural shapes of, 1.1.
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Ecosystem(s)
complexity, 1.76
intrinsic property of, 5
organization, 3.02
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F

FALS; See Forward-angle light scatter
Fast Fourier transform (FFT), 107
fBm; See Fractional Brownian motion
Feigenbaum bifurcation constant, 205
Feigenbaum universal numbers, 205
FFT; See Fast Fourier transform
fGn; See Fractional Gaussian noise
Flows, self-similar nature of, 1
Forward-angle light scatter (FALS), 178
Fourier space, 111, 240
Fractal codimension, 21, 22–23
Fractal dimension(s), 1, 18–24

animal behavior, 3.9
fractal landscape, 1.01.
mass, archaeology and architecture, 61.
movement pathways analyzed using, 3.6–3.7
two- versus three-dimensional, 52

Fractal geometry, 11
Fractal/multifractal black box, 9
Fractal object(s)

dimension of, 1.8
power-law scaling, 3.9

Fractal-related concepts (clarifications), 201–230
attractors, 205–224

case study, 21.3.–224
chaos, attractors, and fractals, 224
diagnostic methods for deterministic chaos, 

209–21.3.
Packard-Takens method, 206–208
quantifying attractors, 209–21.3.
visualizing attractors, 206–208

bifurcation diagrams, 202, 203.
Butterfly effect, 201.
case study, 21.3.–224

correlation integrals, 223.–224
data analysis, 21.3.–21.4
discussion, 222–224
ecological framework, 21.3.
experimental procedures, 21.3.–21.4
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largest Lyapunov exponents, 222–223.
phase-space portraits, 222
results, 21.5–222

compensated slope procedure, 23.7
correlation integral algorithm, 21.0
deterministic chaos, 201.–226

attractors, 205–224
chaos in ecological sciences, 224–225
chaos theory, 201.–204
definition of chaos, 225–226
diagnostic methods for, 21.0–21.3.
Feigenbaum universal numbers, 205
misconceptions about chaos, 225

dissipative structures, 226
edge of chaos, 223.
Euclidean distance operator, 21.1.
Feigenbaum bifurcation constant, 205
high-order stochasticity, signature of, 226
lag time, 21.1.
least-squares regression analysis, variables, 23.3.
logistic equation, 202
low-order deterministic chaos, 226
ordered processes, 225
R2 − SSR criterion, 23.3.
self-organized criticality, 226–23.0

critical biomass, 229
critical state, 227
definition of, 226–229
ecology and aquatic sciences, 229–23.0
fluctuation sizes, 228
subcritical state, 227

time delay method, 206
turbulent energy cascade, 201.
zero-slope criterion, 23.7

Fractal signature of, random walks, 46
Fractal stationarity, 244–246
Fractional Brownian motion (fBm), 99, 131, 143, 163
Fractional Gaussian noise (fGn), 106
Fragmentation dimension, 154
Frequency distribution dimensions, 147–199

cumulative distribution functions, 1.47–1.51.
case study, 1.47–1.51.
ecological interpretation, 1.50–1.51.
experimental procedures and data analysis, 

1.48–1.49
results, 1.49–1.50
study organism, 1.47–1.48
theory, 1.47

entropy increase over time, 1.57
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Korcak dimension, 1.53.–1.54
Korcak exponent of patchiness, 1.53.
Lévy flight, 1.51.
mass-size dimension, 1.54
Michaelis-Menten function, 1.69, 1.70
microscale sampling, 1.78
noise roll-off, 1.70
Pareto laws, 1.87
patch-intensity dimension, 1.51.–1.53.
Principle of Least Effort, 1.55
probability density functions, 1.47–1.51.

case study, 1.47–1.51.

ecological interpretation, 1.50–1.51.
experimental procedures and data analysis, 

1.48–1.49
results, 1.49–1.50
study organism, 1.47–1.48
theory, 1.47

rank-frequency dimension, 1.55–1.99
beyond Zipf’s law and entropy, 1.89
case study, 1.77–1.88
distance between Zipf’s laws, 1.88–1.89
from Zipf law to generalized Zipf law, 1.58–1.60
generalized rank-frequency diagram for ecologists, 

1.60–1.61.
n-gram entropy and n-gram redundancy, 1.93.–1.99
n-tuple Zipf’s law, 1.89–1.93.
practical applications of rank-frequency diagrams 

for ecologists, 1.61.–1.77
Zipf’s law as diagnostic tool to assess ecosystem 

complexity, 1.61.–1.77
Zipf’s law, human communication, and principle of 

least effort, 1.55
Zipf’s law, information, and entropy, 1.56–1.58

rank truncation, 1.57
scaling exponents, 1.86
searcher-target model, 1.50
Shannon entropy, 1.56
thermodynamic entropy, 1.56
word frequency, 1.58
zero-order entropy, 1.94
Zipf exponent, 1.86
Zipf’s law

basis of, 1.55
competing power laws, 1.68
contaminated power laws, 1.65
deterministic processes, 1.65
diagnose ecosystem complexity, 1.76
monotonic, 1.65
periodic trends, 1.65
power laws contaminated by external (white)  

noise, 1.65
power laws contaminated by internal (process) 

noise, 1.68
pure power laws, 1.65
random processes, 1.61.
two-dimensional patterns, 1.77

g

Gaussian noise, 103
Generalized correlation exponents (GCE), 286
Generalized correlation functions, 287–292

applications, 290–292
definition, 287–290
special cases, 289

Geometries and dimensions, 11–24
absolute sparseness, 22
allometry

biological scaling relationships, 1.4
equations, 1.4
example of, 1.5

biological scaling relationships, 1.4
dimensions, 1.6–24

definition, 1.6
embedding dimension, 1.7–1.8
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Euclidean dimension, 1.6
fractal codimension, 22–23.
fractal dimension, 1.8–24
sampling dimension, 23.–24
topological dimension, 1.6–1.7

ecological models, natural shapes of, 1.1.
entity, topological property of, 1.7
fractal codimension, 21., 22
fractal geometry, 1.1.
from Euclidean to fractal geometry, 1.1.–1.6
global dimension, 1.7
Hausdorff dimension, 1.9, 20
isometric biological scaling relationships, 1.4
Koch snowflake, 21.
living organisms, 1.5
local dimension, 1.7
log-log graph, 1.3., 1.4
mathematical monsters, 1.7
measure of sparseness, 21.
Peano monster curve, 1.8
relative sparseness, 22
sampling dimension, 21., 23.
scale dependent pattern, 1.3.
scale invariance, 1.1., 1.3.
scaling exponent, 1.3.

Geometry of Nature, 4, 7
Geostatistical dimension, 95–96
Global dimension, 17, 99
Global fractal dimensions, 97
Growth patterns, fractal nature of, 87–91

microbial and fungal growth, 88–90
plant–root systems, 90–91.

h

Hausdorff dimension, 19, 20
Hénon attractor, 207
Hierarchical scaling, 240
High-order stochasticity, signature of, 226
Hölder exponent, 263, 286
Human architecture, Euclidean geometry of, 7
Hurst dimension (self-affine fractals), 128–131

example, 1.3.1.
theory, 1.28–1.3.1.

Hurst exponent, 129, 130, 131

i

Independence of replicates assumption, 4
Information dimension (self-similar fractals), 66–68

comparison to other fractal dimensions, 67–68
theory, 66–67

Intermittency (multifractals), 253–255
biological and ecological implications, 293.–3.00

local dissipation rates and biological fluxes in 
ocean, 296–3.00

local dissipation rates and zooplankton swimming 
abilities, 294–296

cascade models for, 276–282
assessment for passive scalars in turbulent flow, 

280–282
cascade models for turbulence, 278–280
historical background, 276–278
log-Lévy model, 279

lognormal model, 278–279
log-Poisson model, 280

definition, 253.–255
ecology and aquatic sciences, 253.
history, 253.
turbulent, 253.

Intermittent Hurst exponent, 144
Isometric biological scaling relationships, 14

J

Joint multifractals, 285–292
double Legendre transform, 286
generalized correlation functions, 287–292

applications, 290–292
definition, 287–290
special cases, 289

Hölder exponents, 286
measures, 285–287

Jonckheere test, 55

K

Kendall’s coefficient of rank correlation, 243
Koch snowflake, 21, 25
Korcak dimension, 153–154
Korcak exponent of patchiness, 153
Kruskal-Wallis test, 1.1.6

l

Lag time, 211
Lagrangian sampling procedure, 113
Landscape

ecology, scale, 5
habitat properties and, 3.02
organism-defined, 8
seascape dimension, 72

Least-squares regression analysis, variables, 233
Legendre transform, 263
Lévy flight, 151
Lévy index, 267
Local dimension, 17
Local fractal dimensions, 97
Log-log graph, 13, 14, 41
Lorentz attractor, 206
Low-order deterministic chaos, 226
Lyapunov exponents, 210, 222

m

Marine environments, multiscale variability of, 4
Marine species diversity, coastline complexity and, 31
Mass dimension (self-similar fractals), 60–66

case study, 61.–65
comparison to other fractal dimensions, 65–66
theory, 60

Mass-size dimension, 154
Mathematical monsters, 17
Metric dimension, 68
Michaelis-Menten function, mixing interacting species, 

169, 170
Mosaic tile size, 30
Movement ecology
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fractal analysis in, 3.6, 43.
frequency distribution dimensions, 1.47
hypotheses, 3.01.

Multifractals, from fractals to, 249–300
cascade models for intermittency, 276–282

assessment for passive scalars in turbulent flow, 
280–282

cascade models for turbulence, 278–280
historical background, 276–278
log-Lévy model, 279
log-Poisson model, 280
lognormal model, 278–279

codimension function and scaling moment function, 
265–268

conservative multifractals, 274
discrete models, 278
generalized correlation dimension function and mass 

exponents, 260–262
application, 262
theory, 260–262

geometric support of city, 250
Hölder exponent, 263.
intermittency, 253.–255

definition, 253.–255
ecology and aquatic sciences, 253.
history, 253.
turbulent, 253.

intermittency, biological and ecological implications, 
293.–3.00

local dissipation rates and biological fluxes in 
ocean, 296–3.00

local dissipation rates and zooplankton swimming 
abilities, 294–296

joint multifractals, 285–292
generalized correlation functions, 287–292
measures, 285–287

Legendre transform, 263.
Lévy index, 267
methods, 260–276
misconceptions and ambiguities, 282–284

frequency distributions and multifractality, 284
spikes, intermittency, and power spectral analysis, 

282–284
multifractal spectrum, 262–265

application, 265
theory, 262–265

multiscaling behavior of functions, 267
passive scalar, fluctuations of, 274
portfolio optimization, 287
probability distribution, determination of, 267
random walk toward multifractality, 249–260

heterogeneity, 255–257
inhomogeneity, 255–257
intermittency, 253.–255
intuitive multifractals for ecologists, 257–260
multifractality so far, 250–252
qualitative approach to multifractality, 249–250
variability, 255–257

refined similarity hypothesis, 278
Reyni information, 261.
scaling moment functions, 274
self-organized criticality, 266
singularity spectrum of distribution, 263.
structure function exponents, 268–276

Eulerian and Lagrangian multiscaling relations for 
turbulent velocity and passive scalars, 271.–276

theory, 268–271.
two-dimensional mosaic, 258

Multiscaling, 240

n

Naphthalene contamination, 1.96
Natural landscapes, 6
Nature

evidence for scaling in, 3.01.
geometry of, 4, 7

Nearest-neighbor algorithm, 21.1.–21.3.
n-gram redundancy, 1.93.–1.99
Niche restriction, 3.1.
Noise, 1.02

internal, 21.3.
roll-off, 1.70
scaling 1./f, 1.03.
white, 1.03.

Nonlinear forecasting, 21.1.–21.3.
n-tuple Zipf’s law, 1.89–1.93.

o

Ordered processes, 225
Organism-defined landscape, 8

P

Packard-Takens (PT) method, 206–208
chaotic attractors, 206–208
Hénon attractor, 207
Lorentz attractor, 206
periodic attractors, 206
random attractors, 206
Rössler attractor, 208

PAHs; See Polycyclic aromatic hydrocarbons
Parabolic windowing, 107
Pareto laws, 187
Partial self-similarity, 240
Patch-intensity dimension, 151–153
PDF; See Probability density function
Peano monster curve, 18
Periodic attractors, 206
Plant-root systems, fractal nature of, 90
Polycyclic aromatic hydrocarbons (PAHs), 195
Population dynamics, self-similarity, 8
Portfolio optimization, 287
Power laws 

competing, 1.68
contaminated by external (white) noise, 1.65
contaminated by internal (process) noise, 1.68
contaminated, 1.65
pure, 1.65
self-similar fractals, 25–28

Power spectrum analysis (PSA), 106–117, 141
1./3. law in physical space, 1.1.1.
case study, 1.09–1.1.7
embedding space, 1.07
Eulerian sampling, 1.1.2, 1.1.6
fractional Brownian motions, 1.07
Hurst exponents, 1.1.2
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Lagrangian scales, 1.1.7
scalar variance flux, 1.1.1.
spectral analysis in aquatic sciences, 1.08–1.09
theory, 1.06–1.08
transition types, 1.09
zero padding procedure, 1.07

Principle of Least Effort, 155
Probabilistic dimension, 68
Probability density function (PDF), 147–151, 272

case study, 1.47–1.51.
ecological interpretation, 1.50–1.51.
experimental procedures and data analysis, 1.48–1.49
results, 1.49–1.50
study organism, 1.47–1.48

theory, 1.47
PSA; See Power spectrum analysis
PT method; See Packard-Takens method

r

RALS; See Right-angle light scatter
Ramification dimension (self-similar fractals), 87–91

fractal nature of growth patterns, 87–91.
theory, 87

Random attractors, 206
Random point pattern, 64
Random walk, correlated, 44
Rank-frequency dimension, 155–199

beyond Zipf’s law and entropy, 1.89
n-gram entropy and n-gram redundancy, 1.93.–1.99
n-tuple Zipf’s law, 1.89–1.93.

from Zipf law to generalized Zipf law, 1.58–1.60
generalized rank-frequency diagram for ecologists, 

1.60–1.61.
practical applications of rank-frequency diagrams for 

ecologists, 1.61.–1.77
case study, 1.77–1.88
distance between Zipf’s laws, 1.88–1.89
Zipf’s law as diagnostic tool to assess ecosystem 

complexity, 1.61.–1.77
Zipf’s law, human communication, and principle of 

least effort, 1.55
Zipf’s law, information, and entropy, 1.56–1.58

Rank-frequency distributions (RFDs), 159
Rank truncation, 157
Refined similarity hypothesis (RSH), 278
Regionalized variables (RV) theory, 133
Rescaled range analysis (self-affine fractals), 128–131

example, 1.3.1.
theory, 1.28–1.3.1.

Reyni information, 261
RFDs; See Rank-frequency distributions
Right-angle light scatter (RALS), 178
Rössler attractor, 208
Roughness-length analyses, 124
RSH; See Refined similarity hypothesis
RV theory; See Regionalized variables theory

s

Sampling dimension, 21, 23–24
Scale

invariance, 1.1., 1.3.
landscape ecology, 5

Scaled windowed variance (SWV), 124–127
case study, 1.25–1.27
theory, 1.24–1.25

Scaling; See also Dimension estimates
1./f noise, 1.03.
exponent, 1.3., 1.86
moment functions (multifractals), 274
range, 28

Science Citation Index, 1
Searcher-target model, 150
Seascape(s)

dimension, 72
habitat properties and, 3.02
natural, 6

Self-affine fractals, 99–145
autocorrelation analysis, 1.3.1.
average wavelet component, 1.3.9
Brownian processes, 1.3.1.
detrended fluctuation analysis, 1.42
Fast Fourier transform, 1.07
Fourier space, 1.1.1.
fractional Brownian motion, 99, 1.3.1.
Gaussian noise, 1.03.
global dimension, 99
Hurst exponent, 1.29, 1.3.0, 1.3.1.
intermittent Hurst exponent, 1.44
Lagrangian sampling procedure, 1.1.3.
local dimension, 99
methods, 1.06–1.45

assessment, 1.40–1.45
autocorrelation analysis, 1.3.1.–1.3.3.
detrended fluctuation analysis, 1.1.7–1.23.
dispersion analysis, 1.28
power spectrum analysis, 1.06–1.1.7
rescaled range analysis and Hurst dimension, 

1.28–1.3.1.
scaled windowed variance analysis,  

1.24–1.27
semivariogram analysis, 1.3.3.–1.3.9
signal summation conversion method, 1.28
wavelet analysis, 1.3.9–1.40

noise, 1.02
parabolic windowing, 1.07
power spectrum analysis, 1.06–1.1.7, 1.41.

1./3. law in physical space, 1.1.1.
case study, 1.09–1.1.7
embedding space, 1.07
Eulerian sampling, 1.1.2, 1.1.6
fractional Brownian motions, 1.07
Hurst exponents, 1.1.2
Lagrangian scales, 1.1.7
scalar variance flux, 1.1.1.
spectral analysis in aquatic sciences,  

1.08–1.09
theory, 1.06–1.08
transition types, 1.09
zero padding procedure, 1.07

roughness-length analyses, 1.24
scaling 1./f noise, 1.03.
self-affinity, definition of, 1.00
spectral exponent, 1.03.
steps toward self-affinity, 99–1.06

1./f noise, self-affinity, and fractal dimensions, 
1.02–1.03.
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definitions, 99
dimension of self-affine fractals, 1.00–1.01.
fractal analysis, 1.03.–1.06
fractional Brownian motion, 1.03.–1.06
fractional Gaussian noise, 1.03.–1.06

turbulent flows, scalar fluctuations in, 1.09
wavelet transform of signal, 1.3.9
white noise, 1.03.
zero padding procedure, 1.07

Self-organized criticality, 226–230
critical biomass, 229
critical state, 227
definition of, 226–229
ecology and aquatic sciences, 229–23.0
fluctuation sizes, 228
subcritical state, 227

Self-similar fractals, 25–97
aggregate size distribution of fragmented soil 

material, 87
apparent fractality, 45
biomass-efficient mycelial network, 90
boundary fractal dimension, 3.0
Cantor dust, 25, 27
coastline complexity

marine species diversity, 3.1.
species extinction, 3.2

compass dimension, 3.6
correlated random walk, 44, 46
correlation integral, 68
counting-cubes, 52
descriptor values, 92
divider dimensions and length of coastlines,  

3.0
fractal dimensions, movement pathways analyzed 

using, 3.6–3.7
fractal line dimension, 27
fractal nature of plant-root systems, 90
fractal surface dimension, 27
fractal volume dimension, 27
global fractal dimensions, 97
Jonckheere test, 55
Koch snowflake, 25
landscape/seascape dimension, 72
local fractal dimensions, 97
log-log plots, 41.
methods, 28–56

area-perimeter dimensions, 69–87
box dimension, 46–56
cluster dimension, 56–59
correlation dimension, 68–69
divider dimension, 29–46
information dimension, 66–68
mass dimension, 60–66
ramification dimension, 87–91.
surface dimensions, 92–97

metric dimension, 68
mosaic tile size, 3.0
niche restriction, 3.1.
partial self-similarity, 28
power laws, 25–28
probabilistic dimension, 68
random point pattern, 64
scaling range, 28
self-affinity, 25

self-similarity, power laws, and fractal dimension, 
25–28

semivariogram, 96
statistical self-similarity, 28
strategies described for clonal plants, 90
transition scales, 42
true self-similarity, 28

Self-similarity, biotic patterns, 301
Semivariogram (SV), 96, 133
Semivariogram analysis (self-affine fractals), 133–139

case study, 1.3.4–1.3.9
theory, 1.3.3.–1.3.4

Shannon entropy, 156
Signal

summation conversion (SSC), 1.28
wavelet transform of, 1.3.9

Sparseness
absolute, 22
relative, 22

Spearman’s coefficient of correlation, 243
Species extinction, coastline complexity and, 32
Spectral exponent, 103
SSC; See Signal summation conversion
Statistical self-similarity, 28
Statistical stationarity, 243–244
Strange attractor, 206
Subcritical state, 227
Surface dimensions (self-similar fractals), 92–97

contour dimension, 94–95
elevation dimension, 96–97
geostatistical dimension, 95–96
transect dimension, 93.–94

SV; See Semivariogram
SWV; See Scaled windowed variance

t

Thermodynamic entropy, 156
Topological dimension, 16–17
Transect dimension, 93–94
Transition scales (self-similar fractals), 42
Turbulence

in art, 2
energy cascade, 201.
flows, scalar fluctuations in, 1.09
original reference, 1.
qualitative description, 3.

V

Variables, least-squares regression analysis, 23.3.
Visualizing attractors, 206–208
von Karman vortex, 3, 5

w

Wavelet analysis (self-affine fractals), 139–140
White noise, 103
Word frequency, 1.58

z

Zero-order entropy, 194
Zero padding procedure, 107
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Zero slope
criterion, 23.7
procedure, 23.4–23.7

Zipf exponent, 186
Zipf’s law

basis of, 1.55
competing power laws, 1.68
contaminated power laws, 1.65
deterministic processes, 1.65
diagnose ecosystem complexity, 1.76
as diagnostic tool to assess ecosystem complexity, 

1.61.–1.77
distance between, 1.88–1.89

generalized, 1.58–1.60
human communication, and principle of least effort, 1.55
information, and entropy, 1.56–1.58
monotonic, 1.65
n-gram entropy and n-gram redundancy, 1.93.–1.99
n-tuple Zipf’s law, 1.89–1.93.
periodic trends, 1.65
power laws

contaminated by external (white) noise, 1.65
contaminated by internal (process) noise, 1.68
pure, 1.65

random processes, 1.61.
two-dimensional patterns, 1.77
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Figure 1.7 South Australian landscapes, with (A) and without (B) anthropogenic influences. Both pictures 
were taken from an altitude of 20 km.
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Figure 2.3 Nested structure perceptible in the geometry of clouds. At increasing resolution, the local and 
global structures remain very similar.

A B

C D

A B

C D

Figure 1.9 Contrast existing between the geometry of a man-made surface, a brick wall (A) and (B) the 
bark patterns of the white fig (Ficus virens), (C) the English oak (Quercus robur), and (D) the cotton palm 
(Washingtonia filifera).
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Figure 3.11 Salt-marsh environments where H. haswellianus burrow morphology was investigated in (A) 
Goolwa, (B) Torrens Island, (C) Middle Beach, and (D) Port Noarlunga. (Courtesy of G. Katrak, Flinders 
University, Australia.)

A BA B

Figure 4.14 The Australian nectar-feeding passerines (A) New Holland honeyeater (Phylidonyris novae-
hollandiae) and (B) red wattlebird (Anthochaera carunculata).

Figure 3.27 Classical view of the pristine waters of the ocean interior (A) compared to a more realistic view 
illustrating the occurrence of marine snow particles (B).
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Figure 7.9 Spatial isotropy of fractal dimension estimates. From a two-dimensional pattern of microphy-
tobenthos biomass (recorded in the Bay of Somme, April 25, 2002; Seuront and Spilmont, unpublished data) 
one-dimensional fractal dimensions have been estimated for horizontal and vertical sections (A) and different 
diagonal sections (B) of the initial pattern. The resulting patch-intensity dimensions (see Section 5.2) cannot 
be regarded as significantly different from the two-dimensional estimate (C; p > 0.05 ), showing the isotropic 
character of the initial distribution. The dashed and dotted lines represent the two-dimensional patch-intensity 
dimension and its 95% confidence interval, respectively.
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