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THE MOTION PARADOX



+ PART 1 +

A COMMOTION
OF ABSURDITIES




o1 -

Preaml)le to ’che Para&oxes of Motion

My father was the first person to tell me about para-

doxes of time. He had never heard of Zeno’s paradoxes,
those peculiar arguments on motion that contradict common
sense and that have been misunderstood these last two and a
half millennia, but was a gentleman philosopher with instinc-
tive wisdom about the world and how it turned. My brother
had just received a brand-new Schwinn bicycle with chrome
fenders, a speedometer, and battery-operated horn for his birth-
day. Boy, was that neat. The gentleman philosopher knew just
what I was thinking. To soothe my jealousy, he took me aside
and told me that I was half my brother’s age, but in eight years
I would be three-quarters his age and that from then on there
would hardly be a difference. Of course, I had no idea what he
meant by three-quarters, let alone three-quarters of someone’s
age. When I asked how old would I have to be to catch up com-
pletely, he laughed and said that that would never happen,
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but that the difference would always be getting smaller. Years
later, I thought I understood; but, now, rapidly gaining on my
brother as I pass sixteen-seventeenths of his age, 'm just begin-
ning to. Incidentally, my brother’s bicycle was stolen shortly be-
fore his next birthday.

More than 2,000 years before my father eased my bike envy
with his thought experiment, Zeno had invented similar para-
doxes. Zeno argued with flawless logic that, contrary to what -
everyone experiences every day, nothing moves.

Zeno’s four paradoxes listed in Aristotle’s Physics are:

The Dichotomy—That a moving object will never reach
any given point, because however near it may be, it must
always first accomplish a halfway stage, and then the half-
way stage of what is left and so on, and this series has no end.
Therefore, the object can never reach the end of any given
distance.

The Achilles—That the swiftest racer can never overtake
the slowest, if the slowest is given any start at all; because the
slowest will have passed beyond his starting-point when the
swiftest reaches it, and beyond the point he has then reached
when the swiftest reaches it and so on. . . .

The Flying Arrow—That it is impossible for a thing to
be moving during a period of time, because it is impossible for
it to be moving at an indivisible instant.

The Stadium—That half a given period of time is equal
to the whole of it; because equal motions must occupy equal
times, and yet the time occupied in passing the same number
of equal objects varies according as the objects are moving
or stationary. The fallacy lies in the assumption that a mov-
ing body passes moving and stationary objects with equal ve-
locity.
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The flying-arrow paradox concludes that motion is impossi-
ble. Zeno pictures an arrow in flight and considers it frozen at a
single point in time. He argues that the arrow must be station-
ary at that instant, and that if it is stationary at that instant then
it is stationary at any—and every—instant. Therefore, it does
not move at all. This single paradox may bewilder, but the four
together release a commotion of absurdities, profoundly ques-
tioning our models of reality.

Zeno’s paradoxes raise a fundamental question about the
universe: Are time and space continuous like an unbroken line,
or do they come in discrete units, like a string of beads? It’s a
question that even today’s physicists, who are reputed to be
closer than ever to a theory of everything, are struggling with.

Zeno’s arguments seem absurd. We know the arrow flies
through the air, yet we may have some difficulty in explaining
why or how we know. One may argue that the whole notion of
fixing a point in time is absurd and that it makes no sense to say
that an arrow appears stationary at any point in time. In math-
ematics, time is a variable that can be fixed by simply declaring
it to be some number. We have formulas that tell us where the
arrow is at any time #, so if we let # equal some specific time,
then we should know the exact spot where the arrow is at that
time. Yet this means that our mathematical models of motion,
space, and time are merely intellectual constructions built for
the convenience of easy calculations, not for the greater purpose
of representing the structure of reality.

As we came to understand motion through math with
greater sophistication, we shed light on Zeno’s paradoxes. But

only by solving the ultimate mysteries of time and space can we
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definitively solve the puzzles that Zeno put forth at the very

dawn of science. He was ahead of his time.

HISTORY WAs NoT always generous to Zeno’s inventions. At
times during the past 2,000 years, his paradoxes were consid-
ered nothing more than picky sophisms of logic with little
merit for continued discussion. At other times they were con-
sidered embarrassments to mathematicians’ investigations of
infinity and the continuum; our historians tell us that those
paradoxes contributed to the Greek abandonment of such in-
vestigations.

Almost all of what we know about Zeno’s life is speculation,
composed from fragments and historical sources written almost
a thousand years after his death. We know that he wrote a mag-
nificent book on philosophy that was used as a textbook at
Plato’s Academy, but not even the smallest fragment of it has
survived. The fifth-century philosopher and mathematician
Proclus, our principal source of information about the early his-
tory of Greek geometry, tells us that Zeno wrote a book con-
taining forty paradoxes, but that it was stolen before it could be
published. The four known paradoxes come to us by way of
Aristotle alone. Dozens of major works written by renowned
scholars from Plato to Bertrand Russell have pondered the
paradoxes. This literature contains a plethora of magnificently
arching connections across history.

The absence of Zeno’s writings warrants suspicion over
whether or not the man actually existed beyond merely being a
character in Plato’s Parmenides. Despite that absence, a great

deal of extant material tells of his profound philosophical ideas,
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and one can gather enough from them to assemble a coherent
story. Plato and Diogenes Laertius provide the corners to the
jigsaw puzzle of Zeno’s life, Aristotle and Proclus give the
edges of his philosophy, and then we fill in the rest with suppo-
sition.

After the death of Archimedes in 212 BCE, the topic of mo-
tion was effectively abandoned; it did not resurface for another
1,400 years, when Gerard of Brussels revived the mathematical
works of Euclid and Archimedes and came very close to defin-
ing speed as a ratio of distance to time. A hundred years later,
four Merton College mathematicians sharing ideas on the me-
chanics of motion were able to work out the first formulas link-
ing acceleration to distance for a freely falling object. It has been
claimed that the same math used by the Merton mathemati-
cians solves the Achilles paradox. I'll show that while this may
seem to be the case on the surface, the math in question—basic
algebra—does nothing to address the underlying phenomeno-
logical problem that the paradox drives at.

Three hundred years after the Merton mathematicians,
Galileo began to experiment with physical objects to measure
their movement, initiating a shift toward an empirical ap-
proach to science that is still with us today. It is through Galileo
that the connection between math and the physical world be-
came solidified. Newton, Leibniz, and other mathematicians
took this approach further and invented the mathematical field
we now know as calculus in order to model motion.

Newton had the inspired idea that acceleration, the rate of
change in velocity, was completely determined by two entities
that have no apparent connection to motion—force and mass.

It seemed to many that, at last, motion had been fully explained.
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Math had triumphed in the explanation of the physical world.
It seemed that calculus could explain the dichotomy paradox.
But again, the math is merely a tool. The underlying reality that
the paradox addresses is evaded.

Before the eighteenth century, time was crudely measured.
Galileo used his own pulse as a measure. Today, our atomic
clocks can measure a time interval as small as one-millionth of a
second. (Though we have a word for one-billionth of a second—
nanosecond—we still have no way of accurately measuring it.)
But no matter how finely calibrated our clocks are, they are al-
ways measuring something discrete—an interval, a repeating
signal, a duration between events. This is the heart of the prob-
lem: We measure time as a duration and think of motion as
continuous. The best definition of motion we have is intricately
tangled between the discrete and continuous impressions of
time and space. Despite contributions by Aristotle, Galileo,
Newton, and many others, for over 2,000 years nobody offered
better clues about motion’s deeper nature than Zeno.

The twentieth century brought relativity and quantum
mechanics. Space and time were no longer thought of as sepa-
rate aspects of reality; they were united into a single four-
dimensional continuum. Time dilation, inconstancy of mass,
and special relativity suggest that motion is indeed illusory. Mo-
tion changes mass—or is it the other way around? Quantum
theory suggests that some motion is not continuous. Electrons
cannot just sit anywhere within an atom. They are strictly con-
fined to moving between discrete energy levels around an
atom’s nucleus. Yet we still have a hard time imagining them
discretely jumping around, disrespecting our sense of continu-

ous motion. One can’t help imagining Zeno rejoicing as his
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paradoxes return, no longer cast off as answered by simple cal-
culus arguments.

One thing is sure: Everything in this universe, every atom, -
every molecule, is in some form of motion, whether it be simple
locomotive displacement from one place to another, random
molecular bombardments, or complex, astonishingly fast, un-
avoidable vibrations of energy transfer. And our understanding
of that motion remains fundamentally paradoxical. How we
have pursued the mystery of motion, and all the technological
and scientific advances that pursuit has enabled, is one of the

greatest stories of our civilization.



o D

Zeno’s Visit to Athens

Athena was the gray-eyed goddess of war, fertility, art,
and wisdom. Her birthday was one of those rare days
when women and freed slaves were permitted to appear
leisurely in public places. Imagine being in sight of the majestic
Acropolis near the northwest corner of the great Athens mar-
ket and gathering place. Looking southeast along the Pana-
thenaic Way, the dusty path partly shaded by poplars and wild,
hardy carob trees, you would see preparations for the Great
Panathenaea festival. You would see athletes rubbed with olive
oil competing for prizes in foot races, boxing, long jump, javelin
throwing, and chariot racing; musicians competing with voice,
kithara, and flute; and blind bards reciting Homer’s epics. On
this day in 450 BCE it was four years since the last great festival,
just one year after the signing of a five-year truce between
Athens and the other regional power, the city-state of Sparta.
Northwest, past the marketplace, through the sacred gate of
the city wall and to the right lay the Ceramicus, a public square
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and war cemetery in the potter’s district. Pentelic marble stones
were being stored for the anticipated construction of the The-
seion, a temple to honor Hephaestus, the skilled fire-god of the
anvil with huge bulk, thin legs, “sturdy neck and hairy chest.”
It was quieter there, away from the loud hawking butchers,
bakers, apiarists, olive pressers, wine merchants, and ironmon-
gers lining the crushed limestone avenue leading to the festival
high on the hill. Wild thyme grew through the limestone cracks
near fruit vendors selling pears and figs. As Homer noted in
The Odyssey, there, such fruit “comes at all seasons of the year
and there is never a time when the West Winds’ breath is not
assisting, here the bud, and here the ripening fruit: so that pear
after pear, apple after apple, cluster on cluster of grapes, and fig
upon fig are always coming to perfection.”

According to Plato, Antiphon the Sophist heard the story of
Zeno’s visit to Athens from his friend Pythodorus so many
times that he could repeat it by heart. Parmenides, founder of
the celebrated Eleatic school of philosophy, was sitting on a stone,
a distinguished man in his sixties with bone-white hair. Sitting
next to him was Pythodorus, a younger bearded philosopher
looking particularly alert. Next to him was Aristoteles, a sun-
bronzed man in his thirties, lost in contemplation, and young
Socrates, not yet twenty. A nearby donkey was obstinately com-
plaining about a load of barley on its back.

Zeno of Elea, a “tall and attractive” intellectual revolution-
ary, was reading from his famous book on philosophy. He had
come to Athens from Crotona in southern Italy with his teacher
and lover Parmenides to visit Pythadorus in the Ceramicus just
outside the city wall and to attend the great festival. His lines of

reasoning were terribly confusing; they seemed to rely on lan-
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guage tricks aimed toward the mystifying suggestion that
there is only one single thing in this world—the thing he called
Being—and that all else is mere appearance. He argued that
if a thing can be divided, its divided parts can also be divided
and such divisions can continue indefinitely. From this he con-
cluded that change, and hence motion, is not possible. He fin-
ished reading, but his audience was confused. Even Socrates
was confused. He called out to Zeno.

“Zeno, what do you mean? ‘If things are many, you say
‘they must be both like and unlike. But that is impossible; un-
like things cannot be like, nor like things unlike.” That is what
you say, isn’t it?”

“Yes,” replied Zeno.

The rest of his audience was as bemused as Socrates,
who said, “. .. your exposition . . . seem[s] to be rather over the
heads of outsiders like ourselves.” Zeno was suggesting connec-
tions between the problem of plurality, being, continuity, and
motion.

We have heard it all before. “And God made the firmament,
and divided the waters which were under the firmament from
the waters which were above the firmament: and it was so. And
God called the firmament Heaven.” In the book of Genesis,
from the waters came two distinct things—heaven and earth.
Creation is division to mark opposites—Ilight and darkness, day
and night, summer and winter, land and sea, fish and fowl,
even and odd, good and evil.

What Zeno said makes sense. If two things exist, a third
must exist to separate them, otherwise there would not be two
things, only one. If three things exist, a fourth and fifth must ex-
ist to separate the three. To distinguish between A and B there
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must be a separator C, and to distinguish between A and C
there must be another separator D and so on, thus proving that
there must be either only one thing in this world or an infinite
collection of things. “So,” Socrates continued, “are you giving
just one more proof that two things do not exist? Is that what
you mean, or am I understanding you wrongly?”

“No,” answered Zeno, “you have quite rightly understood
the purpose of the whole treatise.”

Zeno went on to argue that nothing changes because change
would require a becoming and an end to being. “Therefore,”
Parmenides said, “the one which is not, not possessing being in
any sense, neither ceases to be nor comes to be.” He and Zeno
were thinking that something in an act of change must perform
that act in time. So change is equivalent to motion; like the ar-
row that can never leave the bow, change is impossible.

Zeno’s arguments for motion may also be applied to the
ripening of a pear. The neurologist Oliver Sacks once wrote, “I
would come down to the garden in the morning and find the
hollyhocks a little higher, the roses more entwined around their
trellis, but, however patient I was, I could never catch them
moving.” We have all seen a garden of flowers, but have we
ever seen the flowers growing? Like the hollyhocks, we can
never catch a pear ripening, and though it may change in color,
taste, texture, and even shape, it remains a pear. How does the
pear get from unripe to ripe if every instant we look at it, itis in
a fixed state somewhere between two extremes? Zeno’s para-
doxes are not only about locomotion but also more generally

about change in quality and quantity.
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zENO was a citizen of Elea, a poor Greek colony in what is
now southern Italy, when Greek colonies were spreading in all
directions to the banks of the Mediterranean like driftwood.
Elea was “possessed of no other importance than the knowledge
of how to raise virtuous citizens.” Long before Alexander the
Great conquered regions as far west as Marseille and as far east as
India, Greece had established colonies from Carthage in North
Africa to Nazareth in Palestine. In a few active centuries a small
number of Greeks had developed an enormous intellectual cul-
ture connecting politics, the arts, and philosophy. They created a
system of government in which a state’s affairs were not simply
the private interests of the king or governor, but the collective in-
terests of its people, an experiment in democracy. Music, politics,
and art combined to inspire Sophocles, Aeschylus, and Euripides
to write plays of humor, tragedy, and philosophy for crowds as
large as 17,000 in the Athenian outdoor theater. The Greeks dis-
covered the mysteries of number’s nature, which led them to the
beginnings of what we, today, call mathematics.

Pythagoras of Samos, who lived from about 560 to 480 BCE,
was probably the most famous and charismatic mathematician
of the time. We know very little about him, but that he traveled
widely in the Greek world and settled in Crotona on the south-
eastern end of the Italian peninsula. His mathematics had a
mystical aspect that drew a group of devoted students, a sect of
disciples, a brotherhood that lasted for a century after his death.
The Pythagoreans influenced many, including Zeno. In partic-
ular, the notion that lines were made from strings of points like
threads of miniscule beads beguiled him. However, Zeno and
Parmenides refuted that Pythagorean notion, and argued that if

aline were made of a finite number of points, then time, too, must
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be built from a finite number of instants and the days would pass
not in a smooth continuous flow but in discrete increments, each
like a grain of sand falling in an hourglass. This was a time when
growing educated classes were strongly aware of Pythagorean
discoveries and their ramifications for science and geometry.
The Pythagorean brotherhood’s discovery of the connection
between the sizes of the sides of a right triangle blurred number
theory’s bond with geometry and, at the same time, gave one of
the first inconsistencies of a mathematical modeling of the
physical world. The Pythagorean theorem states that the sum
of the squares of the lengths of the sides of a right triangle
equals the square of the length of the hypotenuse. This beauti-
ful little theorem eventually caused enormous philosophical
problems for the Pythagorean brotherhood, which believed
that number represented all things in this world. Legend has it
that the Pythagoreans sacrificed an ox on their discovery of the
famous theorem (though it’s hardly likely that a strictly vege-
tarian cult with a belief in soul transmigration would do so).
Pythagoreans believed that everything in the world could
be represented by finite arrangements of whole numbers. The
number 2 represented opinion, 3 signified harmony, and 4
stood for justice. Odd numbers were male, even numbers fe-
male. So the number 5 symbolized marriage, because it was the
sum of the first even number with the first odd number. The
number 10 was holy because it was the sum of the generators of
special dimension, 1 + 2 + 3 + 4 = 10. The number 1 establishes
a reference point, 2 points determine a unique line, 3 points not
on a line determine a unique plane, and 4 points determine a
tetrahedron in space. All numbers were either whole (1, 2, 3,

etc.) or rational (fractions of whole numbers).
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We are probably missing a lot about Pythagoras, since a cov-
enant bound the Pythagoreans to secrecy over their master’s
teachings and anything else taught or discovered by the broth-
erhood, and moreover, the history of Greek civilization before
Plato’s time is murky. One of their secrets was the construction
of the regular pentagram, the five-pointed star and symbol of
the brotherhood that comes from connecting the corners of a
pentagon. This cosmic figure, as the Greek historian Proclus
later called it, is not easy to construct if the only tools permitted
are a straight edge and compass, or, in other words, straight
lines and circles. An isosceles triangle, with one angle equal to
four-thirds one of the others, must be constructed. Such a trian-
gle would have an angle of 72 degrees, and that is exactly what
is needed to complete the pentagon (because a pentagon has five
sides and the sum of all the angles of construction of the regular
pentagram is 360 degrees).

Imagine the power these people felt upon discovering how
to construct the pentagon, the five-sided figure that leads to an
infinite nest of shrinking replicas of itself and an infinite expan-
sion of growing replicas, along with its powerful numeric and

geometric qualities.
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The ratio of a side to a diagonal of such a pentagon gives rise
to the golden mean, a number that continues to have spiritual
significance among aficionados attempting to discover its hold
over nature. These were also folks who believed that gods in
human form watched over the actions of individuals, fam-
ilies, and states. From the beginning of the sixteenth century,
the golden mean, whose name was not to be coined until the
nineteenth century, has been considered a divine proportion be-
cause of its ubiquitous presence in the natural world and also
because of how it connects simple finite constructions with
infinity.

Numerical patterns also suggested to Pythagoreans that
numbers were the clues to understanding the nature of the
physical world. They saw numbers in music when they discov-
ered that a plucked string produces the same note (one octave
higher) as a string twice its length, and extended music theory
to a harmony of the soul. They saw numbers in nature, observ-
ing the fine structures of flowers. They saw numbers in the con-
struction of their temples, where form followed what they
considered to be the spiritual beauty of divine number relation-
ships. They saw numbers in sculpture and art as their artists
sought to represent the general makeup of shared attributes,
rather than the soul of an individual. They saw numbers in
their plays, built on structured themes of crimes and curses. All
this logic, structure, and clarity, all this love of symmetry, form,
and perfection was applied to reasoning and a belief that the
universe is ordered and explainable.

Math was in its youth. The invention of negative numbers
would have to wait almost another 800 years for Diophantus to

first mention them in his book Arithmetica after he found x = -4
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to be the absurd solution to the equation 4x + 20 = 4. Such ab-
surd solutions would have to wait another 500 years before the
Indian mathematician, Mahavira, actually used them and gave
them a noble place in number theory. Zero had not been discov-
ered, and neither had tomatoes, tobacco, or coffee (wine was the
drink of choice, though goat’s milk was tolerated).

The discovery of the Pythagorean theorem inevitably led to
the discovery of incommensurables. What if you have a square
with sides of length 1? The size of the diagonal would be the
square root of 2. But the square root of 2 cannot be written as a
ratio of two whole numbers. It is not 7/5, nor 10/7, although
they are rough approximations of the square root of 2. No
whole number can be divided by another to give the square root
of 2. For people who worshiped number, this was extremely
unnerving. Anyone discovering relationships such as 17 + 3 = 2%,
22+ 5 =3%,32 + 7 = 4, etc., might conceive mystical notions of
the powers of pattern and credit them to some deity’s impres-
sive wisdom of order. Essentially, one ruler cannot measure
both the side and the diagonal of a square. These early Greeks
had discovered an immeasurable part of space. Zeno surely
knew about this discovery when he posed his paradoxes ques-
tioning the continuity of space and time.

Later, in the early part of the twentieth century, Bertrand
Russell wrote, “The problem first raised by the discovery of in-
commensurables proved, as time went on, to be one of the most
severe and at the same time most far-reaching problems that
have confronted the human intellect in its endeavor to under-

stand the world.”
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PHILOSOPHIZING GREEKS OF the fifth century BCE contin-
ued a 200-year attempt that began with Thales of Miletus to
articulate a more scientific system of knowledge, to reject
any supernatural explanations of nature, and to question the
essence of things. Rational criticism and debate replaced specu-
lative thought and established myth. Thales believed that the
earth rocking on water caused thunder. His attempt to explain
the nature of thunder might be called primitive because it
rested on false hypotheses, but modern because it dodged the
popular belief in the supernatural.

A theory of the atom, albeit crude, was suggested by the
Pythagoreans and developed by Anaxagoras, author of a book
reputed to be a complete account of the natural world (now,
sadly, lost). The argument that complex things must be made of
simpler things was further advanced by Empedocles, a rich
doctor from the island that is present-day Sicily. He saw those
irreducible things as earth, fire, air, and water, but was careful to
point out that each of these elements stood for a wide variety of
substances. Water, for example, was a term applied to liquids
such as molten metals as well as drinkable fluids. Air would
have meant any gas, including those expelled from cattle in the
fields. All this makes almost modern sense if one views the clas-
sification of matter as solid, liquid, gas, and heat.

Heat? Is that matter? Fire seems to be more of an action.
Fire can be used to change the three states of matter or com-
binations of them into the things we see, or to change one state
to another—ice to water, water to steam. Empedocles, in his
wisdom, listed three material things together with a device for
combining, shaping, and altering those material things. With-

out fire, the world of things must rely on accidental collisions
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and linkages to change. With it, the local smithy can learn the
art of Hephaestus to hammer the world into new shapes and

things from the elements. Empedocles says it this way:

Just as painters, when they decorate offerings—

men well taught by skill in their art—

take the many-colored pigments in their hands,

and, harmoniously mixing them, some more some less,

make from them shapes resembling all things,

creating trees and men and women

and beasts and birds and fish that live in the sea

and even gods, long-lived and highest in honor:

so let not deceit persuade your mind that there is any
other source

for the countless mortal things we see.

But know this clearly, having heard the tale from a god.

Again, that begs the question of what we get when we take
a very close look at the elements and see them, even if we have
to rely on imagination, as indivisible things of incredibly small
size. Atomism holds that all things consist of substances so small
they escape our senses. These indivisible azoms are thought to be
of many forms, shapes, and sizes, becoming perceptible only af-
ter massive collections of them entangle, hook, and bind to-
gether through motion and collisions in the void. What they
become depends on their shape, arrangement, and position.
These groupings of atoms can make the imperceptible percep-
tible, but they can also untangle and unhook to make the visible
invisible. There is an astounding resemblance between this
atomic theory and our own twenty-first-century one, where we

believe that all matter is composed of atoms and that we only
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see the matter when enough atoms are compounded to make a
substance visible. We see gold when there are enough gold
atoms to make the collection of gold atoms visible.

Fifth-century BCE atomic science was imaginative opinion,
supported by dialogues against equally creative alternative the-
ories. There were no measurements of atomic weight, nor were
there instruments to examine matter any finer than what could
be seen with the best pair of eyes, but there were consequences
that led to further questioning.

Leucippus, the fifth-century BCE Greek philosopher whose
thinking was very much influenced by Zeno and Parmenides,
was the founder of the first atomic theory of matter, asserting
that atoms consist of imperceptibly minute and indivisible par-
ticles that differ only in shape and position. This wonderful
theory, which was developed later by his pupil Democritus and
led to unexpected results in science, bears directly on the Pythag-
orean trouble with measuring the diagonal of a square. It is likely
that the Pythagoreans thought of a line as a string of atoms, so a
line twice as long would contain twice as many atoms. Given
that, there must be a definite ratio between any two lengths, be-
cause the number of atoms on each line must be finite and
hence the ratio of lengths must be a fraction whose numerator
is the number of atoms contained in one line and whose denom-
inator is the number of atoms contained in the other.

The atomist argument is that there is a difference between
the physical atom and the geometrical point. The atom is indi-
visible and indestructible, whereas the point is an imagined no-
tion with no physical substance. They reasoned that material
substances could be divided as finely as humanly possible, and

from there, imagined a moment when no further division
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would be possible. “Take a wooden stick,” they reasoned. “Cut
itin two parts. And every day cut the longer piece in half. Con-
tinue this cutting day by day, indefinitely. One day it will be
hard to claim that the longer end is still a stick, yet easy to main-
tain that it is still a piece of wood. But how many days will pass
before the wood becomes non-wood?” Even the smallest speck
of sawdust is still wood.

Anaxagoras knew the group of men who gathered in the
Ceramicus in Athens to listen to Zeno, and he was a good friend
of Euripides and Pericles. He wrote a book on physics, his only
book, offering a complete account of the natural world, arguing
that there is a bit of everything in everything. How does a hu-
man hair grow from nothing? The answer, Anaxagoras would
suggest, is that the food digested by the human already contains
hair and everything else within it, imperceptible to our senses.
According to Anaxagoras, wood, even in the form of minute
particles of sawdust, contains a bit of every other substance, in-
cluding human hair, a notion stemming from the philosophy of
Empedocles and Heraclitus of Ephesus declaring that materials
might be changed but not destroyed. These men might have
wondered how oil disappears from an oil lamp burning through
the night, but, had they imagined the answer, they would have
foretold our modern conservation laws, which say that energy
is not lost; it can only be converted into other forms of energy or
matter.

Empedocles had the reasonably correct idea that every -
thing could be derived from four elements, for we should “hear
first the four roots of all things: bright Zeus, life-bringing Hera,
Aidoneus, and Nestis, who waters with her tears the mortal

fountains.” More directly, he says:
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Come and [ will tell you . . .

from which all the things we now see come to be:
earth and the billowy sea and the damp air

and the Titan ether, binding everything in a circle.

If the elementary substances of the universe are only earth, air,
fire, and water, then how is it that other substances appear to be
different from those four? Once again, we are told not to trust
appearances. Should we trust our senses or rely on our ability to
reason? The problem of divisibility is central to the problem of
trusting the senses. Heraclitus, nicknamed “The Riddler,” felt
that everything is subject to change and was the first philosopher
to profess a distinction between mind and sense.

“It’s one thing for the eyes and ears to witness sound and
sight,” he would say, “but what good are they, if the mind can-
not interpret what they hear and see?”

Do we obtain knowledge of nature through reason alone, or
do we acquire it through sense alone?

Parmenides felt that we only perceive change through
reason. For him, one is persuaded by the virtues of experience,
intuition, and compelling forces suggesting that things could
not be otherwise. He was referring to this kind of persuasion in

his poem, The Way of Truth.

The only ways of enquiry that can be thought of:
the one way, that it is and cannot noz-be,
is the path of Persuasion, for it attends upon Truth.

For him, knowledge of nature was based exclusively on reason,
which in his time was a newly defined activity, and not, as the

Pythagorean experimentalists had supposed, based on observa-
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tion. “Engrained habit and experience may tempt the use of the
blind eye, echoing ear and tongue as instruments of knowledge,
but let reason be the test,” he would say. “Beware of the senses.”

Heraclitus, too, was occupied with the question of which of
the two, observation or reason, was the way of truth. For him it
was observation, “Because,” he would say, “everything changes.
So how could reason, which must be fixed, lead to truth about a
world where everything changes from one moment to the
next?” Not a bad argument, but Parmenides would attack it
and ask, “Then how does Earth change to Water or Water to
Vapor? Water is less dense than Earth and Vapor less dense
than Water. To change from one to the other empty space must
be introduced. But empty space is nothingness, which does not
exist. Hence there is no such thing as change. The world is one
spherically solid motionless universe, incapable of change by
the argument that nothingness cannot be something.”

Reason had become a new game, complete with that won-
derful new logical principle, contradiction—after all, a thing
cannot be and not be at the same time, just as nothingness can-
not be the thing that makes vapor from water. It was a game
that would spur intellectual thought over hundreds and now

thousands of years to the heights of scientific knowledge.

ZENO ARGUED THAT movement is impossible because in or-
der for a body to move any distance it must first get to half the
distance, then half the remaining distance, and so on, forever
reaching half of some remaining distance—hence, never reach-

ing the full distance. Aristotle wrote that this paradox suggests
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that movement is “impossible because, however near the mo-
bile is to any given point, it will always have to cover the half,
and then the half of that, and so on without limit before it gets
there.” Zeno wrote all this in a book, which he claimed was
stolen, and which is reported to have contained “forty different
paradoxes following from the assumption of plurality and mo-
tion.” How devastating his loss must have been, writing day af-
ter day on scrolls of papyrus, planning ahead, and anticipating
each new thought before cutting the skin and sewing in new
patches.

There are many variations on this argument, and surely
Zeno had considered them. It means any task can never be fin-
ished, for in order for it to finish, half the task must be done,
and when that is accomplished, half the remaining task must be
finished, and so on ad infinitum. The task is general: anything
from reading this book to winning gold (a hundred amphorae
of olive oil) in a Great Panathenaea chariot race. Mathemati-
cians may simply deny the paradox by claiming that the sum
1/2 + 1/4 + 1/8 + ... isequal to 1, but they cannot answer the
question of how the task is actually completed in reality. Math-
ematics tells us that it happens without explaining why.

At some point after reading his treatise in Athens, Zeno left
the Ceramicus with Parmenides, Pythodorus, Aristoteles, and
Socrates to retreat to the home of Pythodorus. They walked
through a courtyard, through stables, up a few steps to a porch,
then through the women’s quarters and into a long room with
cushioned seats around the walls facing a central hearth over a
stone floor. It is likely they encountered preparations for a sym-

posium that would happen late in the evening after the Pana-
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thenaea festival—oil lamps being filled, as well as large urns for
wine and water.

Here Zeno argued that if one shot an arrow at a target, then
examined it at any fixed instant of time, the arrow would ap-
pear stationary. If it is stationary at any instant, how can it be in
motion? How can it ever even leave the bow, let alone move
through the air and reach its target?

One may argue that the very notion of fixing a point in time
is absurd and that it makes no sense to say “an arrow appears
stationary at any point in time.” But in mathematics, time is a
variable that can be fixed by declaring it to be some number of
units of time from some starting time. Mathematical formulas
tell us where an arrow is at any time ¢, so if we let # equal some
specific time, say two seconds after leaving the bow, we should
know the exact spot where the arrow is when z = 2. But is there
any such thing as exactly two seconds, or even an exact spot?
We know that if we really try to take a picture of the arrow
when z = 2, we must have the shutter open for an entire interval
of time surrounding ¢ = 2. The shutter cannot open and close at
the same instant.

Mathematical representations of physics are models that are
constructed in the mind. The key to understanding Zeno’s ar-
guments is to understand the connection between what it
means, both mathematically and physically, to let the time vari-
able be equal to a constant. The mathematician is the conjuror
here. Stop time to see the arrow stationary? Yes, that would, in-
deed, seem to disturb movement, but what we see is not the real
arrow; it is another arrow moving in the mind.

Continuity suggests an uninterrupted path. We move from

here to there without passing through gaps in space. To us, mo-
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tion seems uninterrupted. Yet, we envision objects moving
through space on a line or curve made from an aggregate of
points representing numbers, perhaps the distance from one
end of the curve. For any number on a number line there is
no such thing as a next number. So, how do we move from one
point to the next, if there is no such thing as a next point?
This is the salient arrow in Zeno’s quiver. If a path is an ag-
gregate of points, then an object’s motion cannot generate a
path.

Tobias Dantzig, the twentieth-century author of several
popular books on mathematics, put it beautifully: “When we
see a ball in flight we perceive the motion as a whole and not as
a succession of infinitesimal jumps. But neither is a mathemati-
cal line the true, or even the fair, representation of a wire. Man
has for so long been trained in using these fictions that he has
come to prefer the substitute to the genuine article.”

And that’s just it. We have been trained in using fictions. We
see a ball in flight and presume that what we see is what actu-
ally happens. But the mind, not the eye, is the seeing organ. Con-
sider the zoetrope, that nineteenth-century parlor-room toy, in
which no more than a dozen still images of a man in various
anatomical positions give the illusion that the man is running.

The films we watch are more advanced illusions of continu-
ity. A one-hour film is composed of 86,400 individual still im-
ages, yet we see the scenes pass by with utter smoothness. The
seventy-two still images on film of a ball in flight for three sec-
onds may look just the same as the real ball in flight. Doubling
the number of still images and doubling the speed of the film
may not give the viewer any more realistic sense of continuity.

There is something biologically magical in that threshold num-
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ber of frames per second (twenty-four) that tricks the mind into
thinking that what we are seeing is continuous. But the mind
seems to be able to process far more than twenty-four frames
per second, integrating information faster than a film can
deliver.

Perhaps there is a good motive for Zeno’s motion argu-
ments. Perhaps physical motion simply cannot be represented
by mathematical space and time under arbitrarily small inter-
vals beyond measurable experience. The great nineteenth-
century mathematicians David Hilbert and Paul Bernays put

forward a disturbing answer:

Actually there is also a much more radical solution of the
paradox. This consists in the consideration that we are by
no means obliged to believe that the mathematical space-
time representation of motion is physically significant for
arbitrarily small space and time intervals; but rather have -
every basis to suppose that that mathematical model ex-
trapolates the facts of a certain realm of experience, namely
the motions within the orders of magnitude hitherto ac-
cessible to our observation. . . .

Zeno was known as “the two-tongued Zeno” because he often
argued both sides of his own arguments, which usually in-
volved either the infinite or the infinitesimal. Two of his para-
doxes assume that space and time consist of a finite number of
points and instants, while two others make the opposite as-
sumption. There are only three ways out of these paradoxes:
either we agree that (1) space and time consists of points and in-

stants, and there are an infinite number of points within any
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interval; (2) that there are no points and instants in space; or
(3) we deny the real existence of space and time altogether.

He was asking such questions more than two millennia be-
fore any thoughts of quantum mechanics and relativity, already
posing questions contrasting our experiences of motion and our
sense of continuity with logical explanations of what we assume
to be reality. We seem to be comfortable with motion at the
macroscopic level by intuiting what we expect to happen through
experience, but with no sensory experience at the microscopic
level we run into trouble and counterintuitive wonders.

Anyone who believes the atomist argument that all matter
consists of atoms and that the atom is indivisible and indestruc-
tible must also believe that a moving object must pass from one
spot to the next as time passes from one instant to the next. Of
course, Zeno was assuming that time moves from past to future
through a sequence of successive instants. He was also assum-
ing something far more acceptable: If the object is always mov-
ing forward, it cannot be in the same place at two distinct
instants of time. We know that Zeno’s followers were confused
by the meaning of his paradox, but more than twenty-four cen-
turies have passed for intelligent people to have made some
sense of it. Even Aristotle seemed to have been confused when
he mentioned it in his Physics. We now have a clearer under-
standing of what Zeno could have meant.

Consider three adjacent points labeled 4, B, and C. By this |
mean that B is immediately to the right of A and that C is im-
mediately to the right of B. In one indivisible instant, an object
cannot travel from point A to point C. If it could, there would

be no instant when it could be at point B. Of course, this is ab-
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surd, because that would mean all motion must take place at
the same speed. The only way out of this is to reject the thought
that points or instants are consecutive, i.e., arranged in a hierar-
chy from left to right and vice versa. This leads to equally puz-
zling thoughts about how a moving body gets from one point to
another. If an object moved from A to C, there must have been
a moment when it was at a point B between 4 and C. And there
must have been a moment when it was at a point between A
and B. This can go on indefinitely.

The stadium paradox asks us to imagine three lines, each ei-
ther above or below another. Mark the points. The top line has
points labeled 4,, A4,, 4, etc.; the middle line has points labeled
B, B,, B,, etc.; and the bottom line has points labeled C |, C,, C,,
etc. The letter indicates the position of the line and the number
indicates the position of the point on the line. Now imagine that
the lines line up so that the numbers are each above or below

each other.
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Next, imagine that the top line is stationary, the middle line
is moving to the left at a constant speed s, and the lower line is

moving to the right at the same speed s.
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Suppose that the line is made up of discrete points. You may
have noticed that before these lines moved, 4,, B,, and C, lined
up as a column of points, but on the very first instant of move-
ment, the points B, and C| line up under A4,. It seems that B,
skipped over C, to line up with C,. In other words, there was
never an instant when A,, B; and C, lined up as a column.
What happened? The answer strikes at Zeno’s point. We made
one fallacious assumption: that the line is made up of discrete
points. We could view Zeno’s stadium argument as an indirect
proof that the line is not made of discrete points.

Though nature is fantasized as continuous—both by our
brains, such as when we are watching a film, and by reason,
as argued in Zeno’s stadium paradox—she does make jumps.
The piece of wood that is divided often enough seems to stay
wood for many divisions, but at some point, there will be a spe-
cific division when the wood dust suddenly becomes something
other than wood. This is the first of several jumps as we con-
tinue to split our pieces of matter down to the atom. Eventually,
we are left with splitting operations that can take place only in

the mind.
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The Worlcl Through
Aristotle’s Eyes

In 343 BCE, Aristotle would take long walks from

palace at Pella to a little gate by the Axius River in Macedo-
nia. He was born in Stagira, a large town near the three fingers
of Macedonia jutting into the Aegean, where wild fig trees
struggled to grow in rocky soil. Those trees rarely bore fruit,
though occasionally someone could find and pluck a lonely fig
hidden in their foliage. Aristotle loved to walk, and would of-
ten stroll the dusty sandstone road alongside the city wall from
the palace to the gate. He was nicknamed “The Peripatetic.”
Though he was wrong about many details, his gift to the world
of knowledge—a contribution that guided the West for more
than a thousand years—was an explanation of almost every-
thing.

By the end of his life he had written 337 books on topics
ranging from love to medicine. Yet his attire revealed a man
calling attention to himself; his clothes were conspicuously fan-

ciful, as were his carefully trimmed hair and the rings on his
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fingers. His face was clean-shaven; his body garlanded with or-
naments and jewels. He tutored Alexander the Great in botany,
zoology, and physics. Alexander was only thirteen, and not yet
emperor of Macedonia, Greece, North Africa, Persia, and the
Punjab of India.

Aristotle had a broad concept of nature, one that was very
different from the concept we have today. For him, the study of
nature was the study of “all things that move or change, or that
come and go either in some sense of passing from ‘here’ to
‘there,” or in the more extended sense of passing from ‘this’ to
‘that,” which latter phrase is equivalent to ‘becoming something
that it was not'—a solid becoming a liquid or a hot thing be-
coming cold.”

The field of change is broad enough to include things that
fall, rise, sink, or expand, and even souls that might transmi-
grate. A stone rolls down a hillside, cold becomes hot, a bubble
is born in boiling water, a block of Pentelic marble becomes the
bust of Hermes, a mind is persuaded by a convincing argument,
or—to paraphrase Aristotle—an uncultivated man becomes
cultivated. These all involve motion in its broadest sense.

Aristotle’s theses imply that the cultivation of intelligence
leads to the joys of life. He believed that daily experience and
sensations demand the development of an understanding of
material nature—hopeful and inspiring stuff, after the bleak
Platonic opinion that all knowledge falls short of unattainable
ideals. It may be difficult to imagine a time when all science was
simply thinking about nature, without tests or experiments, a
time when the man on the street could hypothesize about the
universe by feeling that something is true and making a good

argument for its case, a time when there were no laboratories or
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statistical samplings to measure probabilities. In the fourth cen-
tury BCE, reasoning was all that was needed to make a scien-
tific case. Aristotle built his cases from first principles—that is,
from indisputable statements—claiming that reasoning is not
possible without first principles, definitions, and hypotheses. If
he should want to talk of change, he would start by hypothesiz-
ing that “wherever anything changes, it always changes either
from one thing to another, or from one magnitude to another,
or from one quality to another, or from one place to another;
but there is nothing that embraces all these kinds of change in
common, and is itself neither substantive nor quantitive nor
qualitive nor pertaining to any of the other categories. . ..”
Motion for him meant more than just locomotion—the
movement of an object from one place to another. It meant
movement in quality (black to white), or in form (the ripening
pear), or quantity (growth in size), or displacement (locomo-
tion). Nature to him was the cause of all things that move,
change, or pass from #his to that. “Nature is the principle of
movement and change,” he wrote. “And since we are interested
in Nature, we must understand what ‘movement’ is. First, we
should understand that movement is ‘continuous’ and that con-

39

tinuity implies the concept of the ‘illimitable.”” It was an amaz-

ing revelation.

IN HIs BooK On Movement, Aristotle claimed that in order to
have movement at all, we must first have continuity, and in or-
der to have continuity we must have division without limit. He

was not thinking of division of physical objects such as a stick,
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which can be divided only up to the point of its atomic indivis-
ibles, but of the space and time in which the stick sits.

Anyone reading On Movement might ask why something
that moves must move through divisible time and space, and
the answer is reminiscent of Zeno’s: Anything that changes
must change in time and space, and hence time must be divisi-
ble, for nothing that cannot be divided in time can be made to
move in space. Aristotle argued a thing that is undergoing
change cannot change from Aere to there or from this to that all
at once, for if it did there would have to be an instant when the
whole thing became #hzs from thar. He was trying to connect
time to change by making the argument that time is continuous
and, therefore, change must be, too.

Aristotle argued for the connection between mathematical
continuity and real-world continuity by observing that a travel-
ing object cannot skip positions—it must move from one posi-
tion to the next. But he was not an atomist. For him, the
continuity of space did not imply the infinite division of the ob-
ject traveling through space. This seems contradictory, and is
reminiscent of Zeno’s arguments. How can an object move
from one position to the next without space coming in discrete
units?

Aristotle wrote, “Movement cannot occur except in relation
to place, void and time.” He also wrote, “These four things—
place, void, movement and time—are universal conditions
common to all natural phenomena.”

Movement can only happen by direct touch between a mov-
ing agent and the moving thing—the stone carver’s chisel whit-

tles the stone, the potter’s hands shape the clay, and the weaver
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rapidly pushes the weft and shuttle back and forth across a
warp through a perfectly synchronized opening and closing
heald. For the case of the moving stick, the front pulls the rear
or the rear pushes the front.

Aristotle said, “Taking the initiator of movement to mean
not that for the sake of which the movement takes place but
that which sets it going, we may say that the initiator must be in
direct touch with the thing it immediately moves; and by this I
mean that there can be nothing between them. This is true of -
every mover and the moved it directly acts upon.”

Hearing involves air particles hitting the eardrum. Seeing
involves light waves stimulating the retina. Aristotle could not
have known about rods and cones on the retina, and yet, they
are in accord with his concept of nature. What about emotions—
fear, anger, love? Aristotle attributed those to blood flow. He
claimed anger to be “the seething of the blood, or heat in the re-
gion of the heart.” For him, mind was in the heart, and the eyes
were windows to the soul. And all things could be explained by
one thing touching and moving another.

Direct contact between the mover and the moved applies to
all kinds of motion—locomotion from one place to another,
whether the moved is being moved by itself or not; qualitative
motion, as in a ripening pear; or quantitative motion, as in the
growth or shrinkage of a herd of goats. But anything that
moves must move from somewhere to someplace else, or from
one state of being to another in some span of time.

But just as motion needs time, time needs motion. In his
Physics, Aristotle wrote, “So, just as there would be no time if
there were no distinction between this ‘now’ and that ‘now,” but

it was always the same ‘now’; in the same way there appears to
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be no time between two ‘nows’ when we fail to distinguish be-
tween them.” Time and motion are therefore different but in-
separable. He asks us to try to imagine time without movement
or movement without time. It’s impossible. “Even if it were
dark and we were conscious of no bodily sensations, but some-
thing were ‘going on’ in our minds, we should, from that very
experience, recognize the passage of time.” For Aristotle, mo-
tion is a gateway into understanding the very fabric of the uni-

verse.

TIME Is THE measure of motion—and vice versa. Today we
measure time in terms of physical locomotion. Time is simply a
recording that separates physical “befores” and “afters.” Every
moderately precise clock—from Galileo’s swinging pendulum
to our modern atomic clocks (which oscillate at billions of cycles
per second)—measures time by some form of stop-and-go
mechanism.

Aristotle presents us with a brainteaser. If all motion were to
cease in the universe for an interval of time, what could we pos-
sibly mean by that interval? If motion is not taking place, then
the time span of the interval is not either; the interval collapses
as though there never was one. In other words, every time in-
terval must represent the motion of something in the universe.

There is also a hint of relativity in Aristotle’s conception of
time. We may ask, What would happen if only one thing in the
universe were in motion? We would have to answer that the in-
terval would exist and have some particular measurement,
based on the motion of the single moving object. But what

would happen to the measure of time when a second object be-
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gins to move? Aristotle’s answer is that if one object covers less
distance in the same time interval than another, then it must be
moving “slower” and that time is still the conceptual measure;
that is, “we do not speak of time itself as ‘swift or slow,” but as
consisting of ‘many or few’ of the units in which it is counted, or
as ‘long and short” when we regard the continuum . . . for ab-
stract numbers are in no case swift or slow, though the counting
of them may be.” In effect, he is measuring speeds qualitatively
and following a Greek tradition of explaining phenomena
through the use of proportions and analogies. Yet we do speak
of “swift or slow” as relative terms when we consider distance
covered as “great or small” in the time interval considered.

Aristotle believed that if time is continuous, then so is space.
Yet time is divided by this curious thing we know as “now”;
and, by the same reasoning, so is space. The position of any ob-
ject in motion is marked and divided by its “now” place in
space. But that does not exclude the concept of a smallest unit of
time or space. Aristotle surely understood that an interval could
be infinitely divided, but his conception of infinity grants that
we can always imagine a “beyond”—a potential for continuing
indefinitely; that our minds have the power to continue to di-
vide a line or an interval of time as often as we like. But those
divisions refer only to rational numbers, the only measurements
Aristotle would have known about.

Aristotle uses this potential infinity to argue that Zeno’s di-
chotomy paradox—the argument that a moving object must re-
peatedly pass a succession of halfway points before getting to its
end position—is based on the false belief that it is impossible for

a thing to take up an infinite number of positions in a finite
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amount of time. In effect, a moving object would have to
“count” infinitely many numbers before the end of its journey.

Modern mathematics has models that make it possible to
perform an infinite number of tasks in a finite amount of time
by playing the dichotomy paradox in reverse. David Hilbert’s
famous infinite hotel trick is a good example: Somewhere in
math wonderland there is a hotel with an infinity of rooms
numbered 1, 2, 3, and so on. The hotel is always full, but there is
always room for one more guest. The manager moves the occu-
pants of room 1 to room 2, the occupants of room 2 to room 3,
and so forth. This frees up room 1 for the new arrival. This may
seem impossible to accomplish in a finite amount of time, given
that the occupants must move in real space and real time. But if
the occupant in the first room takes 1/2 hour to move, the oc-
cupant in room 2 takes 1/4 hour, and the occupant in the n-th
room takes 1/2” hour, then the infinity of moves will be finished
in just one hour.

However, Aristotle claims that Zeno had made false as-
sumptions in asserting that it is impossible for a thing to take up
an infinite number of positions in a finite amount of time. He
points out that time and space are equally divisible without limit
and therefore there should be not be any surprise that a person
can pass through an infinite number of positions in an infinite
collection of instants. But there is more to his refutation of
Zeno’s dichotomy paradox. He claims that when the path of
motion is bisected, the motion is interrupted; the bisected point
is considered twice—once at the end of the first segment and
again at the beginning of next segment.

Modern topology—the branch of mathematics concerned
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with special properties that are independent of distance
measurement—would be disturbed about this, for it would as-
sume that the point of division lies in one segment or the other,
but not in both. So here is Aristotle’s argument. If time is con-
tinuous and the points of time are represented as points of
space, then the point’s position must be represented by both the
past and future. He argues that Zeno is presuming that if a
white object were changing to not-white in a period of time di-
vided into two intervals—A, during which it is white, and B,
during which it is non-white—then there must be some instant
C when it is both white and non-white; in other words, we are
left with the devilishly perplexing contradiction that C belongs
to both 4 and B.

Aristotle argues that the contradiction is based on something
he doesn’t believe is true: the Pythagorean notion that time is
a string of atomic moments, one following directly from its
neighbor with nothing in between. This awareness of the na-
ture of number density is significant—it was not fully appreci-
ated by mathematicians before the seventeenth century and the
invention of calculus, which depends on the density of irra-
tional numbers in the set of real numbers.

Aristotle argues that if something is moving at one instant it
must have already been moving, though perhaps slower or
faster. If space and time are both continuous, without “next”
points or atomic moments, and if time is merely an intangible
numerical scale in our consciousness representing motion, then
time is a continuous measure of change in position. It follows
that there is no change in position in any instant of time, but it
does not follow that no change is taking place.

His definition of “being at rest” means that from one instant
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to another entirely different instant, the body in question and
all its parts occupy the same place. Moreover, he asserts that
time is indefinitely divisible. Therefore, when Zeno claims that
his flying arrow “does not move” at an indivisible instant, Aris-
totle agrees that it and all its parts occupy the same place at that
instant, but that does not mean it is at rest, for, in order to be at
rest, it and all its parts must occupy the same place for a period
of time. In other words, whatever is in motion changes position
as time continuously moves on; it does not matter what is hap-
pening in a single instant.

However, Zeno anticipated his refuters and cleverly de-
signed his four paradoxes to trap them between assumptions of
divisibility and indivisibility of time and space. The first two
(the dichotomy and Achilles) assume that space and time are
infinitely divisible while the second two (the arrow and the
stadium) make the opposite assumption.

To refute the Achilles paradox, Aristotle reduces it to the
dichotomy by correctly noting that it too is a kind of division of
space, not by halves (as the dichotomy supposes), but by a ratio
of the speeds of the racers. He also correctly notes that Zeno
dupes us into focusing on the moments before Achilles over-
takes the tortoise by designing the argument as a catching-up
question. Yes, Achilles does not overtake the tortoise while the
tortoise is ahead, but we tend to forget that the race continues to
the finish line, which may or may not be beyond the point
where Achilles overtakes the tortoise.

The fourth paradox seems to be the real trap. In effect, a
corollary is that all speeds are equal, for if time and space are
made from indivisible atomic instants and points respectively,

then a body is forced to pass one atom of space in one atom of
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time. If that were not the case, then the body would have to pass
one atom of space in more (or less) than one atom of time,
which would make the atom of time divisible. But Aristotle
seems to have misunderstood the point. His brief criticism sim-
ply attacks the hypothesis when he says, “The fallacy lies in his
assuming that a moving object takes an equal time in passing
another object equal in dimensions to itself, whether that other
object is stationary or in motion; which assumption is false.”
All these arguments seemed to center on the possibility of
motion and whether or not time and space were continuous.
Cause was a different question. And Aristotle argued that all
motion is caused by an external agent, but avoids the question
of how that agent continues to do its thing when not in contact
with the thing being moved. “If a thing is in motion it is, of ne-
cessity, being kept in motion by something.” What is that some-
thing? His answer is that it is either something within the
moving object that keeps it moving, or some other moving
agent in contact with it. In his view, motion must be started by
something that is already moving and that motion continues
only by contact with something that continues to push or pull.
The image here is an infinite succession of agents ecach being
pushed or pulled by its neighbor. The idea that a body in mo-
tion will continue in motion unless acted upon would have in-
verted his understanding of cause. He had no concept of inertia
the way we do to explain why a stone continues to travel after it
leaves the hand that throws it. That concept was still a millen-

nium away.
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Speed Becomes a Quantity

If in 1265 we turned to Thomas Aquinas, the Italian Do

minican friar, theologian, philosopher, and most influential
sage of medieval times, and asked “What causes movement?” his
answer would have been a simple one, perhaps as curt as,
“God.” We would find Aquinas somewhere in the Kingdom of
the Two Sicilies (present day Naples), perhaps sitting on gently
sloping hills above ripening grapes in vineyards extending to
the limits of vision, contemplating heaven.

“Reason and faith,” he might say, “are not contradictory.
They are both gifts from God and may be reconciled to discover
and prove His existence.”

A dozen years later, Aquinas’s answer to our hypothetical
question was actually made official by a papal decree designed
to suppress all contradictions to church teaching. It announced
that Aristotle and the Arabs were infidels and declared God
as the maker of motion. But by then the church was too late.

The Crusades were ending, bringing back to Europe intellectual
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treasures from highly developed civilizations from Persia to
Libya.

For a thousand years, from about when the Visigoths ripped
through Constantinople, overran Greece and sacked Rome,
Europe’s intellectual growth had been anesthetized by Chris-
tian faith and Church dogma. In 392, a year after the Emperor
Theodosius I issued an edict declaring paganism “a crime of
high treason against the state, which can be expiated only by the
death of the guilty,” Christian marauders torched the library of
the pagan Temple of Serapis (the Serapeum), which contained
more than 300,000 scrolls, and murdered several of the Mu-
seum’s scholars on the streets of Alexandria, including Hypatia,
a woman mathematician. By the seventh century, hundreds of
monasteries and hostels lined the roads and ports from Canter-
bury to Jerusalem, providing a highway of taverns and lodgings
relaying information and tourist guidance. Tourism swelled as
hostel owners profited. “Then people long to go on pilgrim-
ages / and palmers long to seck the stranger strands / of far-off
saints, hallowed in sundry lands / and especially, from every
shire’s end./In England, down to Canterbury they end / to seek
the holy blissful martyr, quick / to give his help to them when
they were sick.” Some pilgrims left their homes to permanently
wander from one holy place to another, but, distinguished by
their wide, flat-crowned hats, they soon fell prey to bandits and
thugs.

As the unified world under the Roman Empire broke apart,
the Islamic world rose. Muslims conquered the south of the
Mediterranean from Syria and Mesopotamia to Spain, expand-
ing well beyond the limits of Roman civilization, spreading into

Asia and Africa. Arabs brought inventions back from China
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and India, advanced astronomy, introduced the Hindu notion
of zero, invented algebra, developed the chemistry of metal-
lurgy, and invented the mizzenmast to speed their ships. Jeru-
salem became a prized conquest. In 632 Muhammad died and,
as it is said, ascended to heaven from the rock at the Temple
Mount (also the site of King Solomon’s Temple).

On November 27, 1095, Pope Urban II addressed a large
crowd in a wheat field in Clermont, France. “Jerusalem is the
navel of the world,” he called out. “A land which is more fruit-
ful than any other, a land which is like another paradise of
delights. This is the land which the Redeemer of mankind illu-
minated by his coming, adorned by his life, consecrated by his
passion, redeemed by his death and sealed by his burial.” And
with a passionate plea, he incited the crowd to take up arms
against all heathens. “This royal city, situated in the middle of
the world,” he continued, “is now held captive by his enemies
and is made a servant, by those who know not God, for the cer-
emonies of the heathen. It looks and hopes for freedom; it begs
unceasingly that you will come to its aid. It looks for help from
you, especially, because God has bestowed glory in arms upon
you more than on any other nation. Undertake this journey,
therefore, for the remission of your sins, with the assurance of
‘glory which cannot fade’ in the kingdom of heaven.” When the
Crusades were over, spoils were brought back to churches and
monasteries all over Europe. Among the treasures were silks,
perfumes, spices, and books. The books were written in Arabic—
translations and transcriptions of Greek and Egyptian scrolls
stolen from Arabian libraries.

The teachings of Aristotle were no longer confined to

Greece, Egypt, and the Mediterranean. Aristotle’s eight books
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on physics came from lecture notes compiled over many years
of meditating and talking about motion and change. He was
known for his work in logic, but his works on physics and mo-
tion were emerging just when universities began to open all
over Europe.

Aristotle’s works were banned at the University of Paris.
Only theologians were permitted access, though many others -
could read Aristotle in private. Heresy was a serious crime, and
any unauthorized person found reading Aristotle would be
considered a heretic and imprisoned for life. A copy of a procla-
mation written by the provincial synod of Sens and signed by
the Bishop of Paris in 1210 still exists:

Let the body of master Amaury be removed from the
cemetery and cast into unconsecrated ground, and the
same be excommunicated by all the churches of the en-
tire privince. Bernard, William of Arria the goldsmith,
Stephen priest of Old Corbiel, Stephen priest of Cella,
John priest of Occines, master William of Poitiers, Dudo
the priest, Dominicus de Triangulo, Odo and Elinans
clerks of St. Cloud—these are to be degraded and left to
the secular arm. Urricus priest of Lauriac and Peter of St.
Cloud, now a monk of St. Denis, Duarinus priest of Cor-
biel, and Stephen the clerk are to be degraded and impris-
oned for life.

Neither the books of Aristotle on natural philosophy
nor their commentaries are to be read at Paris in public or
secret, and this we forbid under penalty of excommunica-
tion.

When the University of Paris was shut down in 1229 be-

cause of a dispute between the university and the local authori-
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ties, the newly established University of Toulouse found its
chance to lure Paris students and masters. Its representatives
distributed fliers that read: “Those who wish to scrutinize the
bosom of nature to the inmost can hear the books of Aristotle
which were forbidden at Paris.” Papal decree suppressing all
contradictions to church teaching was too late.

Thomas Aquinas was in residence at the papal court in
Orvieto near Rome in 1262. Pope Urban IV was greatly inter-
ested in philosophy and surrounded himself with a number of
talented scholars and philosophers. There, Aquinas met Wil-
liam of Moerbeke, who had translated several works of Aris-
totle from Greek to Latin along with his own commentaries.
This gathering of great intellectual talent inspired works to
make Aristotle more available to European scholarship. This
was when Aquinas set to work writing his commentaries on
Aristotle. Though Aristotle was a pagan, Aquinas’s commen-
taries turned an otherwise obscure Physics into a clear and bril-
liant explanation of what Aristotle had in mind. Later, in the
twentieth century, the Aquinas scholar Vernon Bourke would
go so far as to say, “It is a clear presentation of the sort of cos-
mology from which men like Copernicus, Galileo, Kepler, and
even Newton took their start in founding modern astronomy

and physics.”

BY THE TIME the fifteen-year-old king, Edward I1I, took the
throne of England in 1328, universities had been chartered and
well established in Oxford, Cambridge, Paris, Toulouse, Padua,
and Naples. All degrees and teachers had to be approved by one

of the popes, a control inherited from the time when the uni-
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versity was a guild of teachers and students of the cathedral
schools.

By then Aristotle’s works were permitted and fashionable.
Aquinas’s commentaries and interpretations had made them
acceptable to the church. The Physics was the wisest thing avail-
able and—though it had no references or glories to a Christian
God—it did not seem to interfere with church teachings. So,
fourteenth-century physics was mostly Aristotelian, describing
motion as conditioned by time, comparing “velocities” as one
being quicker than another. But the measure of velocity—as a
quantity of something involving space and time—did not come
about until the thirteenth century.

The third-century BCE mathematician Autolycus tried to
define uniform velocity of an object by casting off all its unes-
sential matter and considering the object as a point moving equal
distances in equal times. This is a purely geometric definition,
idealized by points and lines.

“The velocity of a point,” he said, “is uniform when that
point traverses equal linear distances in equal periods of time.”
This means that for uniform velocity the ratios of the distances
traveled by the moving object equals the ratio of the times it
takes to travel those distances. We, in the twenty-first century,
would think that speed is determined by the ratio of distance
to time. But this would have been a problem for a medieval
physicist who took too much direction from Greek authors such
as Autolycus, who thought ratios had to be between like units,
distance-to-distance and time-to-time.

Gerard of Brussels came a step closer to defining velocity as
a ratio of two unlike quantities such as distance and time. We

know next to nothing about Gerard, except that he wrote the
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first Latin treatise on kinematics, that branch of the study of the
dynamics of motion that deals with aspects of position, velocity,
and acceleration without regard to mass or force. We know that
he was instrumental in reviving the mathematical works of Eu-
clid and Archimedes. We have a fragment of his book Liber de
motu (Book on Motion), but we don’t even know in which cen-
tury the book was written. The best guess is that it was written
between 1187 and 1260.

Gerard said, “The proportion of the movements (i.c.,
speeds) of point is that of the lines described in the same time.”
This short sentence is responsible for impressive breakthroughs
in kinematics that would occur a century later. Until Gerard
made this statement, everyone assumed that uniform speeds
were proportional relationships between spaces and times. In
other words, motion was talked about as proportions relating
distances to each other or times to each other, but never as a
comparison between space and time. Gerard could compare ve-
locities by comparing distances traversed in equal times. This
may seem terribly odd to us, who know velocity only as a ratio
of space to time. Here, for the first time, someone is treating ve-
locities as magnitudes, sparking a shift toward the modern view
of instantaneous velocity, a raw ingredient that would incubate
and germinate for another 400 years in wait for calculus—a
subject that thoroughly altered the study of motion by using in-
finity to model how things change with time. Gerard’s insight-

ful idea was a start, but another step had to be taken.

IN THE BEGINNING of the fourteenth century, the causes of

motion were still not well understood. Omne quod movetur ab
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alio movetur (Whatever is moved is moved by another) was still
an acceptable aphorism.

Sometime between 1328 and 1350, at the newly established
Merton College, Oxford, a new idea was emerging. Like most
medieval cities, Oxford was a walled town in 1328. If you
walked southeast on the cobblestone street just inside the wall -
toward Saint John’s Lane you would come to the Church of
Saint John the Baptist, a few stone manor houses, and a three-
story building built from Cotswold stone, a yellow limestone
that was beginning to turn the color of honey. Its steep-pitched,
dormerless stone roof provided the building with a third floor
of dormitory space and a library at the east end where another
building adjoined it at right angles. The first floor had one large
room with windows facing south onto a small lawn without
plants or trees. This lawn would later become a quadrangle in
the 1370s after two more buildings were built, a model not only
for other Oxford colleges but also for colleges and universities
throughout the Western world.

In these buildings something unusual happened sometime
between the years 1328 and 1350. Four mathematicians from
Merton worked together to bring forth the first breakthrough
on measuring acceleration.

Thomas Bradwardine, William Heytesbury, Richard Swines-
head, and John Dumbleton worked on an idea that changed the
world. Bradwardine, known as “doctor profundus,” was clearly
the senior of the group. He had just completed his Tractatus de
Proportionibus Velocitatum, a book about kinematic problems
that was a strong but unanticipated influence on what was

about to happen at Merton. He lectured on the causes of mo-
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tion, though he didn’t exactly know those causes before leaving
Merton for the royal court at Flanders, after which he became
chancellor of St. Paul’s Cathedral and later the Archbishop of
Canterbury. He held that last position for just one year before
he died of the plague.

With gunpowder and firearms appearing in Europe, it -
wasn’t too long before the first cannon was cast to threaten the
era of armored knights in fortified castles. The first cannon was
probably fired at just about the time that the four Merton Col-
lege mathematicians were sharing their ideas on the mechanics
of motion. They did not fire cannonballs, but rather arrows at
the ends of bolts.

For the first time in history, the causes and effects of motion
were beginning to be distinguished and understood. This was
the moment when the ideas of instantaneous velocity and uni-
formly accelerated motion were emerging to set the stage for
what was to become (300 years later) one of the motivating ap-
plications of calculus. It was also the moment of a serendipitous
discovery linking acceleration to distance for a freely falling
object.

Gerard of Brussels gave the jumping-off point for the Merton
treatises. Now Heytesbury was delivering one of his lectures on
motion. He talked about what has become known as the accelera-
tion theorem, a theorem that applies to freely falling objects, which
are assumed to accelerate uniformly. Under that assumption, in
each and every increment of time, the object acquires an equal in-
crement of velocity. In other words, the object moves twice as fast
at the end of the second second than in the first, three times as fast

after the third second than in the first second, and so on.
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Uniform acceleration means that speed is increasing at a
constant rate; so Heytesbury argued that if the object starts
falling from rest, at the end of any time interval the distance
traveled must be the product of the average speed and elapsed
time. If, at the end of 2 seconds, the object’s speed is, say, 64 feet
per second, then it would have traveled (32 feet per second) X
(2 seconds) = 64 feet. At the end of the first second, it would
have traveled (16 feet per second) X (1 second) = 16 feet. He
noted that in this one example, the object falls three times as far
in the second second than in the first. Extending this example,
he found that at the end of 4 seconds, the object’s speed 1s 128
feet per second, and in that time, it would have traveled 64 X
4 = 256 feet.

Heytesbury noticed that at the end of two seconds, the object
would travel four times the distance that it would in one sec-
ond. In four seconds, the object would travel four times the dis-
tance that it would in two. He thought that it could be a rule;
perhaps the object always travels four times as far when the
time interval is doubled.

If his hypothesis was correct, then he had hit on something
truly magnificent, for the distance traveled by the end of 27 sec-
onds may be computed by realizing that the object must be
moving at twice the average speed for twice the time. And
therefore, the object always falls four times as far when the time
interval doubles. The only way this could happen is if the dis-
tance traveled is proportional to the square of the time of travel.
The respective distances traveled in 1,2, 3,4, . .. seconds are the
squares 1,4, 9,16, .. .. In each second, the distances increase as

the series of odd numbers 1, 3,5,7, ....



Speed Becomes a Quantity + 55

This says that the final velocity of the object is twice the ra-
tio of distance to time of fall. And what if the object does not
start from rest, but has an initial velocity ¢, downward? Then
the distance traveled is the average of its initial and final veloc-
ity multiplied by the time of travel. This formula is remarkable
for three reasons: (1) For the first time in history, an actual
number for velocity can be determined from knowing the dis-
tance and time, (2) the ratio of distance to time means a ratio of
different units, and (3) the formula is accurate, even from to-
day’s viewpoint. We know thatv - ¢ = g#, where g is the acceler-
ation due to gravity, ¢, is the initial velocity, and » is the final

velocity. So, when we substitute gz for v - ¢, in the formula,

0
we get the same formula that every calculus student of today
knows: s = v, + 1/2g7°,

This algebraic model of motion offered a superficial escape
from the difficulties of Zeno’s paradoxes. In general, if Achilles’s
speed is A miles per hour, the tortoise’s speed is B miles per hour
and the tortoise is given a head start of H miles, then in z hours
Achilles will cover a distance of A¢ miles and the tortoise will
cover Bt + H miles. To find the time it will take Achilles to catch
up with the tortoise, one had only to solve the equation Az =
Bt + H to gett = H/(A - B). Note how much can be read from this
formula: (1) A must be larger than B, for otherwise time would
be negative. (2) If A = B, the denominator is zero and the model
is invalid. This little model presupposed that Achilles would
eventually catch up with the tortoise, permitting the algebraist
to equate the distance traveled by Achilles with that of the tor-
toise. (3) The model assumes there is some way of determining

the speed of each racer. And (4), it assumes (just as Gerard did)
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that speed equals the ratio of distance over time (so that the dis-
tance covered by a known speed and known time could be de-
termined).

However, the escape of difficulties is superficial because the
algebra avoids any mention of a leading phenomenological con-

cern; that is, sow Achilles overtakes the tortoise.



+ 5.

Galileo Galilei, the Father
of Modern Science

On a Sunday morning in 1583, young Galileo Galilei would

have walked along the cobblestone quay of Santa Maria
della Spina to attend mass at Pisa Cathedral. Other parishioners
would have filled the streets as bells from small churches ac-
companied the loud gongs coming from the leaning tower be-
side the cathedral. Walking along the banks of the Arno,
crossing Brunelleschi’s magnificent Ponte a Mare, Galileo
would have seen the masts of fishing boats slowly swaying
against a backdrop of stone houses, like metronomes to the reg-
ular beat of the rippling river and ringing bells.

He was living in the house of a relative near the Porta
Fiorentina. It was a short walk from there to the cathedral, but
long enough for the talented student to spot synchronization of
sound with scene. Flags atop masts waving and flapping to the
strict rhythm of rocking boat decks. He might have noticed that
the time it took for a mast to complete its swing did not change,

an observation that could have incubated in the subconscious,
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waiting for important connections before hatching a scientific
discovery.

The cathedral was modest—not very tall and architecturally
plain, with a facade mimicking that of its leaning bell tower. In-
side the nave was a large, ornate, bronze chandelier with thirty
candles in three tiers balanced around its periphery. A drip tray
hung by three short chains under each candle. To light the can-
dles the giant fixture would be lowered and raised by a chain
through its center. If this were done just before mass—as it
likely was—the entire fixture would gently oscillate until it
calmed down to faint undulations caused by vibrations of the
church organ. Most worshippers would hardly notice.

But a genius like Galileo, sitting through a dull sermon,
would have wandering thoughts. If a chandelier were swaying,
he would watch it and marvel at its motion. One imagines him
timing the oscillations against the timing of his own pulse and
having revelations about how to measure time. History claims
that Galileo timed the chandelier while sitting through a hum-
drum mass in Pisa Cathedral. If the story were true, he would
have noticed a magnificent phenomenon: Though the chande-
lier would slow down, the duration of each swing would not.
Shorter swings would simply be slower. The time required for
any complete to-and-fro swing of the chandelier would depend
only on length. Surely this is a fictional account of how Galileo
made his first independent discovery about motion, because, by
other accounts, the cathedral chandelier was not installed until
1588, five years after Galileo claimed the discovery.

True or not, the story tells of how such a discovery does sur-
face. Galileo could have come to the same revelation observing

any swinging object. The mathematician Vincenzo Viviani, a
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pupil and friend of Galileo, perpetuated the story, saying,
“Having observed the unerring regularity of the oscillations of
this lamp and of other swinging bodies, the idea occurred to
him that an instrument might be constructed on this principle,
which should mark with accuracy the rate and variation of the
pulse.” Some say that it was that incident at the church that
influenced Galileo to study mathematics; others say it was a
mathematics lecture that he attended by chance.

In late-sixteenth-century Italy, professors were still en-
trenched in Aristotelian doctrine, in the belief that the Greeks
had already expressed all worthwhile knowledge, and in a mis-
trust of new ideas coming from creative minds. A century of
unmatched exploration had just passed, more than doubling
the size of the known world. America was discovered. Vasco da
Gama had sailed around the Cape of Good Hope to reach In-
dia. Magellan had sailed clear around the entire world. The
vast Pacific was discovered. Europeans had stood on the conti-
nent of Antarctica and had not fallen off; stones still fell to
ground even on the other side of the planet; and the world was
suddenly believed to be spherical and more than just Europe,
Asia, Africa, and the Holy Land.

For a thousand years, thinkers had been sitting in their
dimly lit studies, university libraries, and secluded monasteries,
rationalizing and arguing about the shape of the planet, the
makeup of the celestial sphere, or the laws of nature. But it
took the courage of Portuguese, Spanish, and Italian sailors
venturing into the dangers of vast unknown seas to determine
perceptible truth. Nobody would ever again deny that a great
sphere of constellations completely surrounds our small spherical

planet. The discovery of the Americas offered a new perception
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of the world. America was not discussed in the Bible. Ptolemy
never mentioned it, nor did Aristotle in his De Caelo, nor Pliny
in his Natural History. So, when Spanish conquistadors re-
turned to Europe laden with myriad wonders that had never
been seen or written about, some folks at home began to expe-
rience exceptional curiosity, questioning why their handy clas-
sics never said a word about the existence of such exotic lands of
improbable flora and fauna. The conquistadors found delicious
fruits, vegetables, and nuts never seen in the Old World—
tomatoes, corn, avocados, pineapples, cranberries, blueberries,
sunflower seeds, cashews—and cochineal, giving the most in-
tense, concentrated, brilliant red dye the world had ever seen, a
dyestuff so precious that it later set off wars and encouraged
piracy in the Atlantic from the hidden coves of the Caribbean to
the port of C4diz. Hesitant to defy their Bible, they challenged
the wisdom of established classical intellectual teachings and
began to investigate nature by direct observation.

And of course, the moveable type of Johannes Gutenberg’s
printing press in 1436 with replaceable wooden or metal letters
and the invention of plant-fiber paper were responsible for the
publication of more books in the sixteenth century than had
been produced in the 3,500-year period since the first Babylo-
nian author produced the first cuneiform tablet.

Teaching was dictatorial, and rote memorization of Aristotle’s
works played a central part in the curriculum. The seven liberal
arts—grammar, logic, rhetoric, arithmetic, geometry, music,
and astronomy—were required, though how much of each was
a matter under local control. This rote learning numbed the in-
tellect so severely that nobody thought to criticize the classic

works of science, especially the unshakable doctrines of Aris-
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totle. Moreover, except for rote learning of arithmetic and com-
putation, mathematics was completely neglected. “The names
of Euclid and Archimedes were empty sounds to the mass of
students who daily thronged the academic halls of Bologna, the
ancient and the free, of Pisa, and even the learned Padua.”

The Italian humanists, who studied the principal literature
of antiquity for literary content—as opposed to theological
matter—accepted printing with scorn: “Printed books seemed
a cheap substitute for their beloved manuscripts, nor did they
wish any enlargement of the reading public to include persons
without taste. Taste, style, manner, correctitude, aplomb were
set above more substantial attainments.”

But the works of Archimedes, which had been copied into
Greek in the ninth century and translated into Latin in the fif-
teenth, were now being printed and sold throughout Europe.
These works were beginning to inspire a new generation of in-
dependent thinkers to rethink old doctrines of motion and

mathematics.

YOUNG GALILEO was studying the usual courses of philoso-
phy and medicine, but under stiflingly rigid training, rather
than through the kind of education he was used to at home
with his father, who taught him to weigh, examine, and reason
the truth of each assertion before accepting it. He despised uni-
versity training, which professed truth by authority and re-
garded any contradiction to Aristotle as blasphemy.

His teachers found him obstinate and uncooperative. He se-
cretly, and without tutors, read the first six books of Euclid be-

fore convincing his father that he had rare mathematical ability
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and that he should study mathematics rather than the more lu-
crative field of medicine. How fortunate, because from the be-
ginning, he studied mathematics with great passion, thinking
of it as the means to understand nature’s most hidden secrets,
to transform scientific observations into sensible and practical
principles.

Several years later, after being given the title of Professor of
Mathematics, he began to recognize that the study of motion—
the concept of motion itself—was central to the scientific
understanding of all natural phenomena. He read a book of
speculations on mathematics and physics by Giovanni Battista
Benedetti, which described a theory established two centuries
carlier by Jean Buridan at the University of Paris.

Appropriately called “Parisian physics,” the “new” physics
assumed that air was not the cause of motion, as Aristotle had,
but rather that the object itself contained the cause—the object
had “impetus.” Though this new theory begged to answer the
question of what impetus is, the idea excited Galileo and gave
him courage to abandon Aristotle’s ideas on motion. However,
Galileo did not abandon Aristotle’s empirical methods; he
merely combined observational methods with mathematical
reasoning to put physics on a stable mathematical footing.

In 1590, he wrote in his treatise De Motu (On Motion), “The
method that we shall follow in this treatise will be always to
make what is said depend on what was said before, and, if pos-
sible, never to assume as true that which requires proof. My
teachers of mathematics taught me this method.”

He refuted Aristotle’s arguments with a style clearly influ-
enced by his reading of Euclid and Archimedes. He did exactly

what he said he would do—what he would say in one chapter
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would depend on what he had said in the one before. The book
exploits two brilliant, central clues to understanding motion.
The first was to use Archimedes’s lever principle to compare
speeds of heavy objects to light ones in the same medium. The
second was to use hydrostatics to compare movements of mov-
ing objects of equal weight in different media. He presented his
definition of “heaviness” and “lightness,” then alleged that
heavy things naturally move slower than light things and that
natural motion is caused by heaviness or lightness. Later, he
proved that bodies of the same heaviness as the medium neither
move upward nor downward, and that bodies that are lighter
than water could not be completely submerged. He created an
analogy between bodies moving naturally and the weights of a
balance to get at the cause of speed and the slowness of natural
motion, and found that different bodies moving in the same
medium maintain a ratio (of their speeds) different from that
attributed to them by Aristotle. Everything he said was consid-
ered in physical terms, so bodies moving naturally are reduced
to the weights of a balance.

Aristotle claimed that two bodies made from the same ma-
terial would fall at speeds that are proportional to their sizes, so
a large piece of gold would fall faster than a small piece.

“How ridiculous this view is, is clearer than daylight,” wrote
Galileo. He then gave several salient examples to damage Aris-
totle’s view. But his most striking example is a logical observa-
tion. He argued that if two bodies of the same material and
weight were let go in a medium, then Aristotle would be forced
to say that the two bodies together would descend faster than
either one alone.

“What clearer proof do we need of the error of Aristotle’s



64 - Tue Mortion Parapox

opinion? And who, I ask, will not recognize the truth at once, if
he looks at the matter simply and naturally?” Galileo presented
it so simply and naturally that one wonders how it was possible
for Aristotle to have missed Galileo’s argument. Just take the
extreme case where one object is a thousand times heavier than
another. Galileo used such extremes to ridicule Aristotle’s de-
fenders. He wrote, “Surely, these people must do some toiling
and sweating before they can show that the velocity of one is a
thousand times that of the other.” Galileo was on a path to a
point of great consequence; he was about to discover a mar-
velous property of mathematics together with an ingenious
model of physics. He was not only about to discover something
astonishing and in full contradiction to Aristotle’s belief, but he
was to do so in a most inventive way. Aristotle said that speeds
of bodies falling in different media are in proportion to the
rareness of the media. Galileo wrote, “These are Aristotle’s
words, but surely they embrace a false viewpoint.”

First he had to clarify what he or Aristotle meant by the
speed of a freely falling body. Galileo said that a freely falling
body accelerates, causing the speed to change at every moment.
So what could he have meant by the speed of a falling body?
We can only assume that he meant the speed after acceleration
has ceased, that is, when the body has come to its maximum
speed in the medium.

“And to make this perfectly clear,” he continues, “I shall
construct the following proof.”

His proof may be paraphrased as follows: Suppose that the
rareness of water is 4 and that of air is 16. Take a body that does
not sink in water, say wood. Suppose its velocity in air is 8. Its

velocity in water is 0 because it doesn’t sink. Surely there is
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some medium such that its speed is 1. Call that medium X.
Since the body moves faster in air than in water, the rareness of
X must be less than 16. Aristotle would say that the ratio of
rareness of media must equal the ratio of speeds. But that

means that we have the analogy X is to 16 as 1 is to 8, which
X 1
means that 16=8 therefore X = 2, and so the rareness of X

must be 2. But how can our piece of wood float in water and
sink in a medium whose rareness is less than water?

Galileo jibed, “Can anyone fail to see the error in Aristotle’s
opinion?” and went on to tell us what the true ratio is. “Take an
amount of each medium equal to the volume of the body, and
subtract from the weights [of the amounts| of each medium the
weight of the body. The numbers found as remainders will be
to each other as the speeds of the motions.” In other words the
weights must be taken relative to the medium. So, for example,
take aluminum. One cubic centimeter of aluminum weighs
2.6 grams in air, but only 1.6 grams in water. Galileo wanted to
use weights relative to the weights of the media in computing
the ratios of velocities in two different media.

He destroyed Aristotle’s principles of physics, one by one,
and argued proofs for new principles. Once again, he jibed,
“Aristotle, as in practically everything that he wrote about loco-
motion, wrote the opposite of the truth on this question, too.
And surely this is not strange. For who can arrive at true con-
clusions from false assumptions?” Eventually, he came to the
question, “By what agency are projectiles moved?”

[tis a very challenging question, whose answer did not come
until after Isaac Newton announced his law of inertia, which

says that an object will not change its state of motion unless it is
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forced to. The Latin meaning of “inertia” is, in effect, laziness.
And the word is used to imply that inertia causes an object to
lazily continue to do what it is doing. So, in the absence of any
forces, a moving object will maintain its direction and speed.
This answers Galileo’s question; inertia keeps the projectile
moving. This may seem like dodging the question, relegating
the answer to some phenomenological embodiment that the ob-
ject absorbs and maintains until some external event takes it
away. Those of us who have grown up believing in inertia see
no problem with inertia as the answer to Galileo’s question. We
simply say nature, through its laws, acts on the object.

Aristotle’s answer was that a thrown stone sets continuous
parts of air in motion, which move other parts in succession.
When the stone is released, it moves along by those portions of
moving air. Galileo wrote that “Aristotle and his followers,
who could not persuade themselves that a body could be moved
by a force impressed upon it, or recognize what that force was,
tried to take refuge in this view.” He then demolished Aristo-
tle’s view by giving several compelling examples. How does the
arrow, shot from a bow, move so swiftly against a strong wind?
Aristotle’s followers would be forced to say that the wind blows
against itself.

Once again, Galileo remarked, “They are not ashamed to
utter such childishness.” Or take a ship propelled by oars against
the current. How does it move when the oars are taken out of
the water? “Who is so blind as not to see that the water actually
flows with very great force in the direction opposite to that of
the ship?” he asked.

In another argument he asked his followers to consider a

perfectly smooth spherical marble that can rotate on an axis
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through its center. Spin the marble and it will continue to ro-
tate. But the surrounding air is not moving, for there is nothing
to move it.

And for what he considered his most beautiful example he
asked us to think about what passes from a hammer to the bell
of a church tower when the hammer strikes the bell. Both ham-
mer and bell are silent before the strike. But after the strike, the
loud sound comes from the bell and continues for quite a while
after the hammer is pulled away—and gradually diminishes.
“But who of sound mind will say that it is the air that continues
to strike the bell?” he asked. “If it is the air that strikes the bell
and causes the sound in it, why is the bell silent even if the
strongest wind is blowing?” he asked. “Can it be that the strong
south wind, which churns up the whole sea and topples towers
and walls strikes [the bell] more gently than does the hammer,
which hardly moves?” He did not fully answer the question,
but came as close as he could have for his time. He simply said
that projectiles move by a driving force given by the thrower.

The Aristotelian doctrines of motion began to crumble as
more and more scientists and natural philosophers were basing
judgments on real-world experiments rather than purely intel-
lectual reasoning. Inconsistencies popped up with each new ex-
periment. Each new inconsistency was met with a tailoring of
meaning. “Well, Aristotle meant to say...” his supporters
would say, until a blitz of discrepancies forced too many unnat-

ural alterations into a quilt of conflicting patches of truth.

ALTHOUGH GALILEO Is often credited with experimentally

debunking Aristotle’s claim that heavier objects move faster in
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free fall, several other stories suggest that others had performed
similar experiments before Galileo—as legend has it—dropped
two objects of different weights from the Leaning Tower of
Pisa. Some claim that others carried out the test as early as 1544.
Another claims that Galileo’s predecessor at the University of
Padua performed the experiment in 1576. However, the more
likely fact is that it was Simon Stevin who performed the exper-
iment in 1586, not at the Leaning Tower of Pisa, but from an-
other leaning tower a thousand kilometers from Pisa.

Delft was a small walled town in the southwest Nether-
lands. Sometime between 1325 and 1350, a clock tower was
constructed alongside a small thirteenth-century parish church.
The tower was built on fill, and like the tower in Pisa, after
construction was completed, began to lean considerably to the
northwest. Perhaps the lean intensified after a magnificent
nine-ton bell was installed just fifteen years before Stevin
climbed the tower to perform his experiment. The bell’s sound
caused enough acute vibrations to severely damage the tower,
so it was rung only on special occasions.

One can only imagine the technical challenge of lifting a
nine-ton bronze bell to the top of the tower and securing it to
the oak bell cage. Stevin might have been around to witness the
lifting and would have thought it a marvel, crediting the basic
idea of mechanical advantage to his hero Archimedes. He may
have been inspired to work on the science of mechanics and
statics, and to make important improvements on Archimedes’s
work. He spent the year 1586 working on a theorem about the
triangle of forces, not knowing that the theorem would revolu-
tionize the way scientists look at forces and reform the science

of statics.
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His theorem may have come from a popular puzzle of the
time. The puzzle came from a thought experiment involving a
perpetual-motion machine that was discussed among students
at Leiden University when Stevin was a student there. He
discussed the puzzle with his good friend the young prince
Maurice of Orange, son of William of Orange, the licutenant
governor of the Netherlands who was assassinated while lead-
ing a revolt against the Spanish.

Students often met at a popular basement tavern near the
university to discuss what they considered intellectual thought
experiments. Water, dripping from cracks in its massive stone
walls, kept the tavern cool and damp. Candles and torch sconces
provided moderate light in the windowless room. An intoxicat-
ing smell of fermenting spirits seeped from a whiskey and
brandy distillery next door. Beer was cheap. Stevin, Maurice,
and other friends would often sit together at a long sticky oak
table coated with layers of sugars dried from decades of beer
spills to drink and pose challenging riddles. Some were easily
solved, but the one they returned to day after day—the “hang-

ing chain mystery”—was truly daunting.

A pearl necklace hangs loosely over a right-triangular wedge
of height 3 meters, base 4 meters, and slope 5 meters. The entire
system is (absurdly) assumed to be almost frictionless. If the neck-

lace has uniform density of d pounds per meter throughout,
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then the weight of that part that rests on the slope is 54 and the
weight of that part that hangs straight down is 3d. In this situa-
tion, the weight of necklace over the sloping section of the
wedge is much greater than the weight hanging straight down.
Maurice claimed that the necklace should roll down the slope
by virtue of the larger weight on the slope. He argued that the
loop under the wedge is fully symmetric and therefore could
not contribute movement one way or another. However, if the
necklace should start to roll down the slope, it should perpetu-
ally continue to do so because its movement does not change the
condition of which side has more weight.

Stevin’s study of this bizarre situation eventually led him to
the idea that the surface of the wedge itself affects the size of the
gravity force. His answer was that the slope of the wedge di-
minishes the downward force of gravity, conveniently splitting
that force in two—one in the direction of the slope, the other
perpendicular to the slope. The second force is totally annihi-
lated by another force perpendicular to the slope, the one ex-
erted by the sloping floor of the wedge. In effect, the only true
force that could produce motion would be the force along the
slope. That force is only 3/5 of the weight of that portion of the
necklace resting on the slope, which is (3/5)5d. But (3/5)5d = 3d,
which is precisely the downward force exerted by the vertical
3 meters of necklace. The forces are equal, the necklace is in
static equilibrium, and it will not move, even in the absence of
friction.

By decomposing the forces in this interesting system, Stevin
introduced the principle of virtual force, the principle that
guided the science of mechanics through four centuries to the

present day. It was an early application of frictionless Platonic
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ideal geometric thought to the real world of mechanics, a first
step in the journey to a complete understanding of the mechan-
ics of motion.

What Stevin did was to idealize the real world of mechanics.
He broke with the traditional existential imagery in discussions
of weight, force, and motion to bring in the help of the concep-
tual world of mathematics with its idealized Platonic interpre-
tations of the essentials through perfect points, lines, space, and
the geometrification of forces, which until then were consid-
ered quantities. James Newman addressed this geometrifica-
tion in his commentary on Galileo.

“The ghosts of Plato and Pythagoras,” he said, “returned tri-
umphantly to point the way. Modern mechanics describes quite
well how real bodies behave in the real world; its principles
and laws are derived, however, from a nonexistent concep-
tual world of pure, clean, empty, boundless Euclidean space, in
which perfect geometric bodies execute perfect geometrical

figures.”

EVERYONE SHOULD READ at least a small part of Galileo’s
Dialogues Concerning Two New Sciences to get a formidable im-
pression of the author’s brilliance. According to Galileo him-
self, they contain the most important results of all his studies.
The book is written in play form with three characters, Salviat,
Sagredo, and Simplicio, in conversation over a period of four
days. Day three is about the motion of falling objects. Through
a magnificently organized set of axioms, Galileo—in the voice
of Salviati—manages to elegantly prove a remarkable fact.

Take two frictionless inclined planes of the same height but dif-
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ferent slopes. Roll the same object down each of the planes.
When it reaches the bottom, its speed will be the same for each
plane. In other words, the speed at the bottom of an inclined
plane depends only on the vertical distance of the starting
height and is independent of the slope. This is a significant
proposition that must have astonished everyone thinking about
motion.

Another observation hinted that conservation of energy
comes from an experiment anyone can do. Take a string, say six
feet long, and tie a small weight—say, one pound—to one end.
Tie the other end to a nail in the wall at some height—say, eight
feet—from the floor. Pull the weight to one side keeping the
string taut so it rises to four feet from the floor. Ignoring fric-
tion, the pendulum will swing back and forth with the weight
always rising to the same height. Now place another nail at any
height between two feet and four feet from the floor and on the
vertical line below the first nail. Again, pull the weight to one
side keeping the string taught so it rises to a height four feet
from the floor. When the weight swings past the lower nail, the
string will hit the nail to prevent the full swing of the pendu-
lum, but the weight will still rise to the same height of four feet,
as though the nail were not there.

He investigated naturally accelerated motion simply and
easily, for, he thought, “no one believes that swimming or flying
can be accomplished in a manner simpler or easier than that in-
stinctively employed by fishes and birds.” So when a stone falls
from rest, it must fall in a manner that is exceedingly simple. “If
now we examine the matter carefully,” he observed, “we find
no addition or increment more simple than that which repeats

itself always in the same manner.”
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What an extraordinary observation. He learned not only the
truth about freely falling objects, but also a modern method of
inquiry, the use of analogy in discovery. He already knew that
an object traveling with uniform speed would pass equal dis-
tances in equal time intervals. From that knowledge and a
Pythagorean belief in the powers of pattern and order in nature’s
universe, it is easy to argue—though extraordinarily insightful—
that an object undergoing free fall, which is supposedly uniformly
accelerated motion, would gain equal increments of speed in
equal time intervals. In other words, if the speed of the freely
falling object at the end of the first second was, say, 32 feet per
second, then the speed at the end of each of the succeeding sec-
onds would increase in increments of 32 feet per second—from
32 it would increase to 64, then 96, etc.

Salviati argues that, starting from rest, a freely falling body
acquires equal increments of speed in equal intervals of time.
But this is simply part of the definition of uniform acceleration,
the kind of acceleration a freely falling body undergoes.

What follows is a marvelous argument from Sagredo, very
suggestive of a Zeno-like paradox. Sagredo argues that there is
some strange contradiction in thinking that starting from rest a
body gains speed in proportion to time. Measure time back-
ward in intervals between pulses. Suppose that at the end of the
fourth beat the body has a speed of two units. Then at the end
of the second beat it would have been traveling one unit. Since
time is divisible without limit, it follows that the earlier speeds
are less than the later. Continue backward in time intervals ap-
proaching the instant when the body first started, and we find
that the body must have been moving so slowly that it could

never have started.
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“We must infer that,” he says, “as the instant of starting is
more and more nearly approached, the body moves so slowly
that, if it kept on moving at this rate, it would not traverse a
mile in an hour, or a day, or in a year or in a thousand years;
indeed, it would not traverse a span in an even greater time;
a phenomenon which baffles the imagination, while our senses
show us that a heavy falling body suddenly acquires great speed.”
But Salviati tells us that he, too, had been puzzled by the no-
tion that speed was proportional to time. He tells us that he in-
vestigated the hypothesis by performing an experiment. He
placed a heavy ball on material that flexed under the weight
and marked the amount of flex. Next, he raised the ball to a cer-
tain height and dropped it onto the flexible material and again
measured the flex. He repeated the experiment, each time rais-
ing the ball higher, and noted that the amount of flex increased
as the height increased. From this he concluded that the veloc-
ity of the ball must have been increasing with height.

In another experiment, he took a piece of wood, cut into the
wood an extremely straight groove, smoothed the groove and
lined it with parchment. The board was placed in an inclined
position. A very smooth and polished round bronze ball was
rolled down the inclined plane. The time of descent was re -
corded. This was repeated many times for accuracy by taking
averages “in order to measure the time with an accuracy such
that the deviation between two observations never exceeded
one-tenth of a pulse-beat. When he rolled the ball from a quar-
ter of the height, he found that the time of descent was one-half
that of rolling it down the full length of the groove. He repeated
the experiment one hundred times and always found that the

distances traversed were to each other as the squares of the
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times. Again, he repeated the experiments with the board at
various angles of incline and found the same rule: the distances
traversed were to each other as the squares of the times.”

Galileo knew that an object moving along a frictionless
horizontal plane would continue to move indefinitely with a
uniform motion. In day four he introduced the following re-
markable theorem: “The spaces described by a body falling
from rest with a uniformly accelerated motion are to each other
as the squares of the time intervals employed in traversing these
distances.”

In other words, if the falling body moves x feet in the first
second, it will move a total of 4x feet by the end of the next sec-
ond, 9x feet by the end of the third second, and 7% feet by the
end of the n-th second. There is another way of looking at this:
The distances traversed in each second will be in the same ratio
as the series of odd numbers 1, 3,5, 7, ..., which means that if
the falling body travels x feet in the first interval, then it will
travel 3x feet in the second, 5x feet in the third, etc. Pythagoras
would have been thrilled with this discovery. It plainly confirms
that numbers are clues to understanding the nature of the phys-
ical world, and that the universe is ordered and explainable.

The explanation: When a body falls from rest with uniform
acceleration it moves 7 times as fast in the #-#h second as in the
first second—twice as fast after two seconds as in the first sec-
ond, three times as fast after three seconds as in the first second,
etc. Also, the body will fall four times as far in twice the time.
Notice, he was not saying how far it will fall, just that if it falls
x feet in £ seconds it will fall 4x feet in 27 seconds. Another way
of saying this is that it will fall three times as far in the second

second than the first.
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This is precisely what William Heytesbury and the Merton
College mathematicians were saying 250 years earlier. Surely,
Galileo must have been aware of the acceleration theorem ar-
gued by the Merton mathematicians, which was proven by
Nicole Oresme in the mid-fourteenth century. Yet he does not
mention this in his writing. Galileo’s contribution is his bril-
liance in experimentation. Timing instruments were too crude
to detect and measure speeds of free fall to the second. Those
timings could be off by as much as fifty percent.

The inclined plane could be made shallow enough to record
speeds, times, and distances. So he could take a plane that slows
balls down to speeds at which the ball travels two feet in the
first second. Assuming that the acceleration is uniform, that
would mean that after two seconds the ball would be traveling
at eight feet per second; after three seconds it would be travel-
ing at twelve feet per second, etc.

Now, here’s the critical move. The speed is increasing, but it
is increasing at a constant rate; so if the ball started rolling from
rest, at the end of any time interval its speed must be the aver-
age speed over the interval multiplied by the time elapsed.
Galileo would have observed that the distance traveled by the
end of two seconds would be (4 feet per second) X (2 seconds) =
8 feet.

At this point, Galileo must have seen a magnificent law: The
ball will always roll four times as far when the time interval is
doubled. This is reasonable, when one considers that uniform
acceleration means a constant increase in speed. This is what
actually happens. Since the speed is constantly increasing, the
average speed over two seconds must be double that of the first

second. So Galileo considered the time interval z. He knew that
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the average speed at the end of the time interval 22 must be dou-
ble the speed at the end of interval 2. Hence the distance trav-
eled by the end of 2¢ seconds may be computed by realizing that
the ball must be moving at twice the average speed for twice the
time. Hence, the ball rolls four times as far when the time inter-
val doubles. This same reasoning shows that the respective dis-
tances traveled in 1, 2, 3, 4,. .. seconds are the squares 1, 4, 9,
16,. ...
The Pythagoreans had mystically identified numbers with
nature, hitting on some very important relationships, 2,100
years before Galileo experimented with falling objects. But
Galileo was discovering that these mathematical patterns were
snugly identified with nature and that they could, in turn,
be generalized and used to subordinate nature by predicting
what will happen. Thus—just as the Pythagoreans noticed that
squares behave in a snug relationship to each other when on the
sides of a right triangle—Galileo and his contemporaries could
see that squares might arise from experiments with falling ob-
jects and conclude that, perhaps, areas and the geometry of

space might have something to do with motion.
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Dance of ’che Plane’cs

Theworld,and especially the church,had accepted the great

astronomer Claudius Ptolemy’s earth-centered model of the
universe since the second century. Ptolemy’s theory was sup-
ported by centuries of astronomical observations and the simple
geometry of circles. It confirmed the biblical passages of Joshua
and was consistent with Genesis, so the church was happy to
back that model with strong support. But as new observations
and increasing knowledge mounted, more and more compli-
cated adjustments and amendments became necessary to keep
the theory in line with raw data.

As new heavenly phenomena were spotted, more intricate
explanations were added. At first a few new cycles were needed
to fit new observations of planetary motion, observations from
earth (which was thought to be stationary but was actually
moving) that gave the impression that at times the planets take
little circular paths before continuing on their orbits. Then,

when Mars was discovered to periodically display retrograde
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motion, epi-epicycles were added. This retrograde motion
should have been considered peculiar in a perfect universe of
circular motion, especially if the earth is at the center, because
then the planets and sun should always be moving in one direc-
tion. But retrograde motion was clearly observed. Mars would
slow down, come to a halt, reverse direction, come to another
halt, and reverse direction once again before continuing. After
1,300 years of added complexities, a small group of astronomers

felt it was time to rethink the theory.

NICOLAUS COPERNICUS was bornon February 19, 1473, in
Torun, Poland, a picturesque medieval walled town on the Vis-
tula River. He died in 1543, the year his epic work De Revolu-
tionibus Orbium Coelestium (On the Revolutions of the Heavenly
Orbs) was published. In the century before, an epic work such as
De Revolutionibus would have hardly been seen by anyone more
than a hundred miles from Krakow, but printing contributed
to the first phase—perhaps the dusty dirt roads—of an early in-
formation highway. Though few astronomers were capable of
reading Copernicus’s thirteen-volume book, it was now accessi-
ble to experts, and its most radical point was clear: The sun is
the center of the solar system, and the earth is just one planet
like any of the others that revolve in space around the sun. It
was not a new concept, but Copernicus gave it new life through
purely mathematical support. At its early stages, his theory was
taken as an interesting fiction. Like all fiction, it was not taken
seriously and therefore not considered blasphemous. Besides,
what could the church do? By the time he was taken seriously,

he was dead.
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Copernicus’s model was simple. Put the sun at the center
of the universe, let the earth and planets orbit in circles around
the sun, and let mathematics take over. Fewer assumptions
were required to explain the movements, and the entire theory
was mathematically simpler than Ptolemy’s. But it would take
more than a few assumptions and mathematical simplicity to
convince those who grew up believing that the earth was im-
mobile.

Tycho Brahe did not fully believe Copernicus’s model; he
sensed that something did not fit observable facts. As a seventeen-
year-old at the University of Leipzig, he observed a meeting
of Saturn and Jupiter, which according to both Ptolemy and
Copernicus should have occurred on a different date. The Ptole-
maic model gave a much wilder prediction than the Coperni-
can, but it shook Brahe’s confidence in both. He developed his
own theory of a sun and moon orbiting a stationary earth and
the other planets revolving around the sun.

Brahe proudly groomed his handlebar mustache to extend
well beyond his cheeks and entirely cover his mouth. But it did
not detract from the prosthetic copper nose bridge that replaced
his real nose bridge, which was mulilated in a duel when he was
a young student at the university in Rostock on the Baltic Sea.
Tycho was only twenty on a December night in 1566 when he
met up with Manderup Parsbjerg, a fellow Dane of Rostock, at
a dance. Tycho and Parsbjerg began to drink heavily and argue
over a young lady, when, with predictable sixteenth-century high
regard for honor, the argument led the two into dark woods be-
hind the university for a duel that cost Tycho his nose.

At the relatively young age of twenty-six, Tycho began
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constructing an observatory at the Herrevad Abbey, near Copen-
hagen. The telescope had not yet been invented, so his obser -
vations were made with the naked eye. On the evening of
November 11, 1572, after emerging from his alchemy labora-
tory, Tycho spotted a brilliant white object directly overhead, a
bright new star in the constellation Cassiopeia, one that had not
been seen before. Even with the instruments available to him he
could see that it did not shift position with respect to the back-
ground. For the remainder of the year, the star could be seen to
change from white to red, and then to gray. He concluded that
it was very far away, much farther than the moon, whose shift
of position with the background could be measured. But more
interesting to him was the newness of the star. If the celestial
world was perfect and unchanging, as Aristotle had professed,
then how could a new star appear?

Was it a star? He built a compass device to accurately mea-
sure the star’s latitude and longitude to detect any movement.
Any perceptible motion would indicate that it would be only as
far away as the moon and not a star. If it were not a star, that
would not refute Aristotle’s notion of a perfect unchanging
heaven, because things as close as the moon would by nature be
imperfect, corrupt and changing. But if the object that Tycho
saw was a star, it would challenge the purity of heavenly still-
ness. There was not the slightest movement, so it must have
been a star.

We now know that Tycho was observing a supernova—
either the birth or death of a star, but in either case a grand explo-
sion. New stars had been noticed long before Tycho’s discovery.

When Hipparchus sighted one back in the second century BCE,
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he compiled the first star map against which future stars could
be logged. In 1054 an astonishing new star in the constellation
Taurus was brighter than Venus. It could even be seen in day-
light.

Tycho’s new star, after suddenly appearing northwest of the
constellation Cassiopeia and brighter than the brightest planet,
soon disappeared, never to be seen again. There had been many
star changes in the past, but none aroused much curiosity about
the immutability of heaven. The remarkable observation com-
ing from Denmark’s greatest astronomer could have been
enough to loosen centuries of entrenched belief in Aristotle’s
strict doctrine of an unchanging heaven, but it didn’t.

Five years after Tycho discovered his supernova, another
rare event took place. He observed a bright star with a red tail.
After observing its motion and computing that its position was
far beyond the moon—more than four times the distance of the
moon—he could conclude that the red-tailed object was indeed
a bona fide comet, corrupting Aristotle’s perfect heaven.

For the next twenty years, night after night—even in the
dead of winter, when he tried to keep warm under his heavy
woolen hooded robes—he spent his time systematically build-
ing and improving his accurate instruments, inventing new
ones, and cataloging the positions of all known astronomical
objects with astonishing accuracy.

By the turn of the seventeenth century, when he was ap-
pointed Imperial Mathematician to the Holy Roman Emperor,
Rudolph II, Tycho had moved many of his instruments to
Prague, the capital of the Holy Roman Empire. He intended
that this work should prove the truth of his cosmological
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model, in which the earth (with the moon in orbit around it)
was at rest in the center of the universe and the sun went
around the earth (with all other planets being in orbit about the
sun and thus carried around with it).

It now appears astounding that the Copernican picture of
the universe was at that time still a philosophical one. Coperni-
cus’s arguments, suggested by geometrical simplicity, had been
dismissed as an abstract diagram that bore no relation to reality.
But in 1610, almost seventy years after Copernicus blasphe-
mously suggested that the earth was not the center of the world,
Galileo used one of the first astronomical instruments to ob-
serve the motion of the planets.

Galileo gave the first serious but informal proof of the
Copernican theory, for which he was imprisoned by the Inqui-

sition. One now reads with amazement:

There was published some years since in Rome a salutifer-
ous edict, which for obviation the dangerous scandals of
the present age, imposed a seasonable silence upon the
Pythagorean opinion of the mobility of the earth. There
want not such as unadvisedly affirm that that decree was
not the production of a sober scrutiny but of an ill-
informed passion: and one may hear some mutter that
consultors altogether ignorant of astronomical observa-
tions ought not to clip the wings of speculative wits with
rash prohibition.

In early seventeenth-century Bohemia, complex religious and
constitutional tensions were brewing. All that was needed to

trigger the war that would spread throughout Europe and last
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for thirty years was a gang of Protestants to throw two Catholic
governors from a Prague castle window. Until then, Prague
was the great center of European science and alchemy, an at-
traction for many eminent scientists.

There, on the castern side of the Vltava, Johannes Kepler,
now the Imperial Mathematician, worked on his models of the
solar system. After years of gruesome calculations, based on Ty-
cho Brahe’s recordings and observations, Kepler would formu-
late three laws that govern planetary motion. It is astounding
that Kepler’s three laws could be deduced purely from observa-
tions of the sky. He did not know why it should happen, but he
must have known that his work implied a harmony between
the world of observable facts and that of purely rational mathe-
matics. He had exposed a miracle; an overwhelming amount of
facts fit into a few brief verifiable statements revealing glorious
relationships between space and time.

Ideas of perfect symmetry come into the human mind more
naturally than those of asymmetry. It was no wonder that Aris-
totle, just as the Pythagoreans before him, imagined circular
motion to be the only perfect nonlinear motion. So when he
thought of heavenly bodies, he could only imagine them mov-
ing in circles. Once an idea like that enters the human mind, it
embeds itself so deeply it becomes difficult to uproot in order to
make room for others. In Kepler’s youth, most people believed
that the planets were carried around in circles by angels. The
angels were not the problem, the circles were. At the same time,
from a young age, he strongly believed in Copernicus’s theory
that the earth revolved around the sun and persisted in ques-

tioning the connection between the orbital distances of the
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planets and the times they took to orbit the sun. He knew that
the farther the planet, the slower it appeared to move.

He had an appealing, yet groundless, idea. Start with a cir-
cle, inscribe an equilateral triangle and rotate the triangle in the
circle. These rotating triangles will envelope a smaller circle of
radius of half the size of the original circle. “Perhaps,” he sug-
gested, “these circles correspond to the orbits of planets.” What
happens if squares are inscribed? The radius of the smaller circle
is I/A2 smaller. He then tried hexagons and other polygons, but
in the end, he had to give up the idea.

Of course, such an idea is fanciful. Why should planets behave
like polygons in circles? Such a question must have entered his
thought at fleeting moments, but his first concern was Aow plan-
ets move rather than why they do. Any answer would have been
strongly influenced by the Galilean notion that the world follows
mathematical order. Many such ideas were based on searches for
pattern or regularity. One of Kepler’s better ideas was to use the
symmetries of the five regular Platonic solids—those solid fig-
ures built from surfaces whose faces are all identical.

These could be traced back to the Pythagoreans who may
have abstracted the idea from crystals of pyrite, a sulfur mineral
natural to the hills of Sicily. In Plato’s Timaeus, these Py-
thagorean solids are used to represent fire, air, earth, and water,
with the dodecahedron reserved as the image of the entire uni-
verse. The great mathematician of Plato’s academy, Theactetus,
constructed the dodecahedron; Euclid had proven that there
are only five such regular solids. Perhaps the five solids could
nest in each other in such a way that they define spheres with

the property that their radii correspond to the radii of the six
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planetary orbits. That would have been wonderful, for it would
have also explained why there were only six planets.

In 1595 Kepler was about to abandon his idea of inscribing
polygons in circles when he dreamt up a new idea—an idea so
splendid that he feared he had unlocked a divine secret. He hes-
itated to publish it. But he wrote about modeling the universe
by alternately circumscribing spheres and Platonic solids. He
represented Mercury’s orbit as a spherical shell (whose thick-
ness represented the difference between the planet’s minimum
and maximum distance to the sun) and enveloped it with an oc-
tahedron. This octahedron, in turn, was enveloped in another
sphere. This new sphere represented the orbit of Venus. Con-
tinuing, he enclosed the sphere of Venus in an icosahedron.
This he enclosed in the sphere of Earth; then a dodecahedron
with a sphere to represent the orbit of Mars; a tetrahedron with
a sphere to represent Jupiter; and finally a cube with its sphere

to represent the orbit of Saturn.
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It was a glorious idea. He was very proud, enthusiastic, and
hopeful. He claimed, “The intense pleasure I have received
from this discovery can never be told in words. I regretted no
more the time wasted; I tired of no labour; I shunned no toil of
reckoning, days and nights spent in calculations, until I could
see whether my hypothesis would agree with the orbits of
Copernicus, or whether my joy was to vanish into air.”

The real question was how closely would the orbital dis-
tances agree with Tycho Brahe’s observed data? They turned
out not to agree very well, so the model dissolved into a purely
fictitious image of the universe. He must have played with dif-
ferent orderings of solids to find this best possible spacing. If it
had worked, it would have fallen into the medieval Aristotelian
trap of suggesting symmetry as a prime cause of movement.
What would it have said about Uranus after it was discovered
in 17817 Of this, Hermann Weyl said in his famous book Sym-
metry, “We still share his belief in a mathematical harmony of
the universe. It has withstood the test of ever widening experi-
ence. But we no longer seek this harmony in static forms like
the regular solids, but in dynamic laws.”

Kepler was assuming that planets orbit in circles with the
sun off center. The circular orbits presented a distinct problem.
Just as in the old Ptolemaic system, the orbits would appear to
once in a while do a little dance—a retrograde, back-and-forth
path. This retrograde motion was not eliminated by the new
Copernican idea, and predictions of where a planet should be
were not good enough. Kepler tried to fit Tycho’s data to all
sorts of circular orbits, adjusting his models with circles within
circles and epicycles along epicycles, groping for some appear-

ance of a theory or law. Frustrated in his attempts, he often
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wondered if Tycho’s data was wrong, but quickly banished
such thoughts. He knew that the planets move in nonuniform
motion faster near the off-centered sun, and slower away from
the sun. “What if,” he thought, “the area bound by the circular
orbit is divided into equal areas meeting at the sun?” It was a
lark of a thought; but hold on. Perhaps the speed of Mars varies
in such a way that the planet moves across areas in equal
times. . . .

It was a wild thought, one that must have come from con-
centrated study of the data. For a short time, this seemed to be
right, but there were other problems. His rejoicing was pre-
mature.

“While thus triumphing over Mars,” he wrote, “and prepar-
ing for him, as for one already vanquished, tabular prisons and
equated eccentric fetters, it is buzzed here and there that the
victory is vain, and that the war is raging anew as violently as
before. For the enemy left at home a despised captive has burst
all the chains of the equations, and broken forth from the pris-
ons of the tables.”

It is remarkable that, until that moment, nobody had con-
sidered other curves. Surely, ellipses and other conic sections
had been thoroughly studied by Apollonius in the third century
BCE. But Apollonius and his conic sections were not well
known in Kepler’s time. Besides, they would have been consid-
ered too impure for celestial orbits. The circle was the most per-
fect of all curves, and if the heavens were to be turned by God
or the angels they must be made from circles.

The title, Imperial Mathematician, didn’t mean much, for
Rudolph II, Tycho’s patron, did not extend the same funding
favors to Kepler as he had to Tycho. So Kepler spent his time
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brilliantly pursuing secrets of the universe, often working
through the night without food or drink until daylight, when
he would drift to sleep on a dusty sofa in the observatory. Dur-
ing those long nights studying Tycho’s notes and data, laboring
over massive calculations, he uncovered two clues to the mys-
teries of the heavens. We can imagine him half-asleep just at the
break of dawn on one fine day quietly mumbling, “It looks as
though the orbit of any planet is an ellipse.” Then, with increas-
ing adrenalin-kicking excitement, saying more loudly, “Yes!
The orbit of any planet is an ellipse with the sun at one focus!”

He tried all sorts of oval orbits before thinking of the ellipse.
The ellipse—how simple! In hindsight, we may think it simple,
but the ellipse has a complexity that the circle does not. A circle
has only one center. An ellipse has two foci. It is a conic section,
a curve that results when a cone is sliced.

We can imagine the thoughts that followed. If the sun is ata
focus of an elliptical orbit, then the earth and other planets must
be eccentrically moving in imperfect orbits. Why should the
sun favor one focus over the other? The motion is not uniform.
The planets speed up and slow down. With the sun at one focus
it is entirely possible that the eccentricity in geometry is linked
to an eccentricity of motion. If the orbit is not circular, the dis-
tance from the sun to any one planet is not constant. So perhaps
the planet speeds up near the sun and slows down as it moves
farther from the sun. Incubating such thoughts, Kepler, again
tired from another night’s calculations, suddenly had another
idea: areas. Using his hypothesis that the sun is at one focal point
of an ellipse and Mars is in elliptical orbit around the sun, he
drew two lines, one from the sun to Mars, another from the sun

to where Mars was thirty days earlier. He found that the area



90 - Tue Mortion Parapox

proportion of the ellipse swept out by Mars in those thirty days
to the full ellipse was slightly larger than 12 to 1. He examined
the data again for the proportion of area swept out by Mars in
sixty days and found it to be a bit larger than 6 to 1; in ninety
days it was approximately 4 to 1; in 120 days, approximately 3 to
1; in 150 days, about 2.5 to 1; in 180 days, 2 to 1. In other words,
in any thirty-day interval, the planet would sweep out an area
approximately one-twelfth of the full area of the ellipse, no
matter where the planet was. Excitedly, he formed the hypoth-
esis that became his second law of planetary motion: The line

Jjoining a planet to the sun sweeps out equal areas in equal times.

How does one stumble on the idea of governing the speed by
the areas swept? Itis such a remarkable thought, that one won-
ders ifitis a stroke of genius or an accident of groping. The idea
was revolutionary, for it marked a new sense of what governs
motion. It was natural to think that the position of an object in
motion would follow some geometric curve. But since the thir-
teenth century, when the Merton College mathematicians
thought of the acceleration theorem, speed had been thought of
as being controlled by the immediate events and properties of
the object’s locality. The moment Kepler made a connection be-

tween speed and swept-out area, speed was seen as being con-
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trolled by far more global causes. The divine secret of the move-
ment of the planets was out of the box.

Kepler must have been extremely happy with his two laws,
but they were not enough to convince die-hard skeptics of a he-
liocentric universe. It would take another ten years for him to
uncover the clinching law. He considered the mean distance
of Mars from the sun. It is 1.53 times that of the earth’s mean
distance. Its year is 1.88 earth years. Now 1.53? is very close to
1.88%, a difference of less than five-hundredths. What about Ve-
nus? Jupiter? In each case, the square of the period of a planet is
proportional to the cube of its mean distance from the sun. This is
Kepler’s third law. It completes the group of laws that will later
become necessary for the clincher—the cause. But that cause

will have to wait more than another half-century for Newton.

THE SEVENTEENTH CENTURY was different than the six-
teenth. Through experiment and observation entwined with
mathematics, physics would discover not only earthly phenom-
ena but also universal marvels, and would grow beyond what
anyone could have foreseen in the previous century. The seven-
teenth century belonged to Galileo, Newton, and many other
clever experimenters and inventors who were supported by
printing and the deliberate sharing of knowledge throughout
Europe. Scientists no longer had to work alone, contemplating
the ancient works of Aristotle or the liturgical dogma of the
church. They had cafés, clubs, and meetings of scientific soci-
eties, the seventeenth-century equivalents of our Internet blogs

and chat rooms. Of course, there were people who worked
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alone, not communicating their great ideas to others—monks
who never left their monasteries, counts who hardly left their
castles in Bohemia. Leonardo da Vinci secretly studied the human
body by dissecting dead bodies. He also studied the movements
of the earth about the sun. On paper, he designed airplanes,
submarines, and parachutes. But he did not publish those ideas,
and his brilliant sketches and ideas remained unknown until
the twentieth century, when his notebooks were discovered.
Francis Bacon and René Descartes were in the vanguard of
this new era of natural philosophy. They questioned the old
methods of acquiring knowledge, they believed that there -
could be no reliable way of knowing nature with certainty. Me-
dieval methods were foolhardy, they would say. We cannot find
truth about nature by postulating something and deducing fur-
ther truth. Truth about nature can come by rational thought
only after lengthy investigation of nature itself and experimen-
tation. Bacon gave a recipe for investigating nature in his The
New Organon, which told us that to know the truth in science
we must proceed from the particular to the general. By this he
meant that we must start by observing many instances of a sin-
gle phenomenon to isolate the core of the truth. To know that
the tides are caused by the moon’s gravitational pull, one must
observe the tide at many times—Ilow, high, and in between. Of
course, in Bacon’s time there were mathematical models of the
tides and good reasons to believe that gravitational attraction to
the moon was responsible. But truth is only as good as its math-
ematical model; observations and measurements are needed to
convince the skeptic that the model is tightly reflecting reality.
Descartes was a mathematician who thought of nature as a

dichotomy—mind, spirit, and consciousness on the one hand,
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and the objective substance of everything outside the mind on
the other. He wrote that it is possible to understand “the forces
and action of fire, water, air, the stars and heavens, and all other
bodies that surround us as distinctly as we understand the me-
chanical arts of our craftsmen. ...” And that “we can use these
forces in the same way for all purposes for which they are ap-
propriate, and so make ourselves the masters and possessors of

»
nature.
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ZENO IN THE
SANDS OF TIME
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A Step Back for Time

There are things we see and things we don’t. We don’t see

the growth of a plant from second to second. If we see a plant
cell divide, we wonder how one nucleus became two. If we see
a nucleus become two, we look for the moment when an indi-
vidual chromosome became a double chromosome. Still, in the
mitosis of time, we look for the moment when the nucleic acids
and proteins make their first move in the replication process.
No matter how finely we divide time, we always find some dis-
continuity in the plant’s development. It always comes down to
the one becoming zwo. It all comes down to the end of the first
paragraph of Genesis, when God divides “light from dark-
ness,” and those ancient questions first posed by Zeno and Par-
menides. Continuity is a tool—and only a tool—to help us
around the Aow in Zeno’s arrow paradox. But Zeno has other
queries in his quiver. To an atom sitting in one of his arrows, its
neighbors seem a universe away. As the arrow rigidly moves,

that atom will never catch up with its neighbor, which, presum-



98 + Tue Mortion Parapox

ably, has moved an equal distance. To the human observer, the
time it takes one atom to move to the position its neighbor once
had is immeasurably short. Yet, from the atom’s point of view,
it has moved an enormous distance. Even the most sensitive in-
strument may never observe such a minute shift in position.
And if it could, then what could be said about half that shift, a
quarter, an eighth, etc.? What clock could measure such shifts?

Zeno must have understood that time is entwined with the
problem of continuous movement, and that space was messily
mixed up with not only time, but with observation—which
involves the whole question of position relative to a stationary
object. How can one measure position, speed, or change in di-
rection without referring to something stationary, a point of
reference?

We get some sense of continuity from our direct experience
with time and space, yet our modern conception of continuity
transcends any familiarity with the real world. Ancient Greek
mathematics had no concept of a continuous algebraic variable
and no definition of an arithmetical continuum, the kind we
now think of when we think of the real-number line. It took
2,500 years of work to get from the intuitive feeling for continu-
ity of Zeno’s era to the precise logical definitions of the late
nineteenth century given by the mathematicians Augustin
Louis Cauchy, Karl Weierstrass, and Richard Dedekind; in the
end, we are left with abstractions projected far from the sensual
world into subtle notions of the infinite, the infinitesimal, and
fields of infinite convergent series. Continuity—once an exclu-
sively visual impression of reality—has been amended to in-

clude a conception framed by the consistency of logical thought.



A Step Back for Time - 99

Though irrational numbers were treated geometrically in
Euclid’s Elements, they were not accepted as numbers before
Newton’s lifetime, when they became the model for applica-
tions of continuous motion and kinematics. Before the mid-
nineteenth century it was known that there are holes in the
rational-number line, though it would have been a huge sur-
prise to find out just how frequently those holes appeared along
the real-number line, yet the rational numbers furnished the
physicist and engineer with rational approximations to any de-
gree of accuracy so they could make predictions in the real
world.

The set of real numbers (those numbers that can be ex-
pressed as a—possibly infinite—decimal expansion) may be
represented on the number line by the set of points extending
infinitely in two directions from zero. The numbers themselves
may be thought of as representing distances from zero accord-
ing to some scale—negative numbers to the left of zero, positive
to the right. Such a line can only be imagined, but an illustra-
tion may help. Let’s examine a short interval within the infinite
number line, say, just the real numbers from 0 to 1. Draw a line
interval whose length is one unit. Measuring from left to right,
the first point on the left edge of the interval represents the
number 0; a point at distance d units (less than 1 unit) from
the left edge represents the number d. In the illustration on the
next page, the point we are calling 1/4 is one quarter of a unit
from 0; the point we are calling /4 measures /4 units from 0.
A point P is called a rational point on the interval if P is a point
whose distance from the left end is a rational number of units.

Irrational points are defined in a similar way.
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The set of rational numbers is a relatively small subset of
real numbers—those real numbers that can be expressed as
fractions (or equivalently, those whose decimal expansion is fi-
nite or that eventually form strings of a repeating pattern).

For the dichotomy and Achilles paradoxes both space and
time are examined only at rational distances from the starting
position. The dichotomy case questions what happens at dis-
tances 1/2” units; in the Achilles case, if the speeds of the racers
are rational numbers, and if the tortoise’s head start is a rational
number, then each point under consideration in Zeno’s argu-
ment is a rational distance from the starting line.

One big question behind Zeno’s motion paradoxes is this: If
the Zeno arrow is moving through a point represented spatially
by a real number of the number line, then how does it get to the
“next” point along its trajectory when there is no next point on
the number line? A notion of next point is meaningless in the
geometry of the real- (or even the rational-) number line. For
example, take #; its decimal representation is 3.141592654. . ..
The trail of digits indicated by the ellipsis of dots is infinite.
So what is the next number after #? Or, take the rational num-
ber 1/ 2 which, in decimal notation, is 0.5. What is the next ra-

tional number? It cannot be 0.51, nor 0.501, nor 0.5001, nor any
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number starting with a decimal expansion of 0.5 and ending
with some long string of 0’s with a 1 at the end, for such a num-
ber would be further from 0.5 than one gotten by slipping in an-
other 0 before the final 1. So if the tip of the arrow has traveled,
say, 1/2 its anticipated distance, where does it go next?

Late in the summer of 1872, Georg Cantor, the Extraordinary
Professor of Mathematics of Halle, Germany, had a shocking
revelation that there are far “more” irrational points on the num-
ber line than rational points. If rational numbers were the only
numbers represented, then the number line would have holes
EVERYWHERE! Between any two rational points there would
be not just one hole but also an infinity of holes, so the number
line would be far from being a dependably continuous line.

What is said for space may be said for time. What is time?
Something happens and something follows. One event follows
another in a sequence that must be comprehended somehow.
The arrow moves from one place to another. Before, it was
there; now 1t’s here; later it will be there; and far in the fuzure it
will reach its destination. These are the raw materials of time.

Primitive humans did not have a concept of “five minutes,”
though they must have had the notion of time passing as the sun
continuously passed from rising to setting. Precision would
only come as a result of experience and need. Fish bite more fre-
quently in the morning; caribou graze in open plains by day;

and not much can be done at night.

And God said, Let there be light: and there was light.
And God saw the light and it was good: and God di-
vided the light from darkness. And God called the light



102 + Tae MotioNn Parapox

Day and the darkness he called Night. And there was

evening and there was morning, one day.

According to the Bible, we were simply given a division of one
day, which repeats. From it, we have created a convenient
scheme for recordkeeping. We invented the afternoon. Eventu-
ally, by the time of the ancient Babylonian and Egyptian civi-
lizations, when human affairs became so complex that time
required more precision, the day was broken into twenty-four-
hours. It was a clock of heaven. The nighttime hours were di-
vided by twelve groups of stars that appeared in the sky; the
daylight hours were divided into twelve, to match.

For years, the sundial and the water clock—a tank filled
with water leaking at a nearly constant rate, with indicators
mechanically controlled by floating bobs connected to levers
marking time—governed our days without hints of an hour or
minute. The technical difficulty of using the sun to break down
time into shorter intervals was linked to the complex vernal
shifts between the seasons.

Both the ancient Egyptians and the Romans had water
clocks. By the fourth century BCE, they had the idea to divide
the day into two parts, our a.M. and p.M. (ante and post merid-
zem). Later, the day was divided into quarters—early morning
and forenoon, afternoon and evening.

By the first century CE, Romans were getting more sophis-
ticated. Daylight hours were treated differently than nighttime
hours. At the height of winter, when the sun shone for a bit less
than nine hours (by our meaning of Aour), the Romans would
still break the daylight hours into twelve forty-five-minute seg-

ments (by our meaning of minute). In the summer, this would
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be reversed. Their water clocks should have been reset each
day, but even the best clocks could not be calibrated so finely. So
once a month, an official timekeeper would reset all the clocks
of Rome.

Later, Christian monks and Muslim clerics needed a scheme
to call others to prayers. Monks in European monasteries de-
vised mechanical contraptions (alarm clocks) driven by weights
that struck bells to awaken a bell ringer who would ring the
larger bells atop towers. The mechanical clocks were set to mark-
ings prescribed by church canonical hours—sunrise matins, noon
none (the ninth hour counting from sunrise), evening compline,
and nighttime vespers—not to equal divisions of day or night.
Our English word clock is derived from the German glocke,
which means bell.

Slicing the time of day into minutes and seconds came later,
when punctuality in commerce became critical for organized
appointments, shipping, and local travel. Such thin slicing re-
quired more accuracy than the sundial or water clock could
give. It required a mechanical device that could count equally
spaced moments without the help of intermittent sunlight or
continuously flowing materials such as water, sand, or burn-
ing oil.

Some of the greatest inventions supporting human progress
never get the credit they deserve. We talk of the wheel, the bow
and arrow, the lever, the hammer, the steam engine, the screw,
the fitted sheet, etc. These deserve high praise. But, aside from
the screw, these inventions are accidents of observation. How
many rolling logs or pomegranates does it take to notice the
idea behind the wheel? How many whipping branches does it

take to notice a way to utilize the elasticity of bending wood?



104 + Tae MotioNn Parapox

How many observations of logs resting on stones does it take
for children to discover the seesaw or adults to sense the power
of alever? Many of these devices were discovered, not invented.
They were models of principles that nature left lying around in
plain sight; almost anyone could have picked one up. Civiliza-
tion would not have advanced much beyond the Paleolithic age
without some of these inventions, but there is one invention
whose acclaim is long overdue. Horologists know it as the es-
capement.

The earliest clocks used water, sand, or oil, but their need for
perpetual maintenance limited their continuity and accuracy.
The problem with time is that it is both continuous and regu-
lar. What in the world—other than time—has those features?
Even the human pulse, which Galileo is reputed to have used as
a measure of regularity, often changes after short intervals. At
first thought, it may seem easy to keep a gear moving at a
steady, continuous rate. Think further and it will become clear
that this may be one of the world’s most difficult problems. For
the past 900 years, most mechanical clocks have used oscillatory
motion, with the same general principles guiding inventions of
horology.

In principle, there are several different basic oscillatory
generators. Take the case of a stationary vertical spring with a
weight attached. Extend the spring by pulling down on the
weight and the spring will oscillate up and down, losing energy
to air resistance and heat through the molecular forces of ex-
pansion and contraction. When the spring is stretched or com-
pressed it exerts a restoring force proportional to the length of

extension or compression—Hooke’s Law. Pull a hanging pen-
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dulum bob to one side and it will swing past the vertical and
back to its initial height before returning to repeat the cycle. It
too will lose energy to air resistance and friction at its pivot point.
Its amplitude will gradually diminish, but as Galileo noticed, the
period of oscillation will not depend on that amplitude.

The pendulum can do two things: it can count (in oscilla-
tions) and it can—with a bit of help—maintain its swing. But
these are two different functions. To do both we need the es-
capement.

It’s possible that the Chinese invented the earliest escape-
ment in the eleventh century. Its inventor, Su Sung, built an
enormous Rube Goldberg contraption several stories high that
used a turning water wheel of buckets that scooped and spilled
water to tilt levers that alternately caught and released sprock-
ets attached to the wheel. Though it may be a stretch to suggest
that this Chinese clock fully used the principle of the escape-
ment, it did use a scoop and tilt mechanism to regulate time.

As carly as 1286 Saint Paul’s Cathedral in London had a
clock with a clock steward named Bartholomew whose pay in-
cluded a loaf of bread and some beer. About fifty years later,
Walter Lorgoner made an improvement by giving the clock a
turning angel, for which he was paid six pounds sterling, even
though he had to bear the cost of “iron, brass and all manner of
things for carrying out the said work.” If a weight is attached to
a rope wrapped around a cylinder attached to a gear mechanism
that turns a clock dial, the weight will simply fall and pull the
rope, which turns the cylinder, which turns the clock dial. The
clock dial will quickly spin until either the weight reaches the

ground or the rope fully unwinds from the cylinder. The turn-
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ing dial will not have measured time, but rather have measured
the time it takes for the weight to fall or the rope to unwind.

The problem is how to keep time moving in a regular fash-
ion. The solution is the escapement. The first mechanical one
aside from Su Sung’s interesting contraption was the verge es-
capement. It remained in its primitive twelfth-century form for
400 years. It works like this: First, there is an escape wheel
called the crown because it looks very much like a royal crown
with triangular teeth curved in the direction of rotation. (See
figure on p. 107.) The axle of the wheel is horizontal. Two
weights counterbalance the crossbar ( folior). The crown is be-
ing driven by the motor force, which is likely a weight hanging
from a rope coiled around the axle. The foliot and verge are
manually set in rotating motion causing one pallet, say the top
one, to make contact with the highest tooth of the crown. The
foliot and verge continue to rotate until the top pallet clears the
top tooth of the crown and the lower pallet (at a right angle to
the upper pallet) comes in contact with the lowest tooth of the
crown, forcing the verge and foliot to stop. The impulse result-
ing from the quick stop gives enough of a shove to the pallet to
restore any energy lost from its last rotation, causing it to rotate
in the opposite direction. A complete rotation back and forth
creates a unit of time, which ordinarily would be translated to
some indicator that that unit of time has passed.

One problem with this marvelous contraption was that a
verge clock requires a large rotation. Its clever unknown inven-
tor probably saw it, too. The pallets need sufficient clearance to
rotate in and out of the crown’s teeth; in many cases the re-

quired rotation is more than twenty degrees of arc. The prob-
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lem is that a verge rotates in a circular arc and such an arc does
not follow the simplified formulas for period (the time it takes
for the pendulum to make a complete swing). Any error grows
with amplitude. A verge rotating in an arc of twenty degrees
would lose more than a quarter-hour a day, thereby requiring
adjustments. Moreover, periods of pendulum swings depend
on pendulum length, which depends not only on latitude, but
on climate. The idea was good, but the escapement needed to be
improved to measure time usefully.

The best of many ingenious improvements was the anchor
escapement, pictured on the following page. If the amplitude of
the rotation could be reduced to two degrees, then only 6.6 sec-
onds would be lost in twenty-four hours. The anchor escape-

ment did not require very much of a rotation.
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This small gadget, which can sometimes fit inside a seam-
stress’s thimble, is responsible for a fair share of modern civi-
lization. One of its functions is simple: to regulate and continue
circular motion in mechanical clocks by alternately checking
and releasing the teeth of a rotating gear, one tooth at a time.
But it has a secondary function—to transfer some energy back
to the pendulum or hairspring. Take the case of a spring: A
small flywheel is forced by a wound spring to turn as the spring
relaxes. The flywheel builds momentum to overshoot the re-
laxed state of the spring, and thereby rewind the spring and re-
turn to repeat the cycle. In this way the flywheel alternates
between clockwise and counterclockwise rotation. Each change
in direction alternately lifts each side of the escapement to re-
lease its grip on a turning gear, one tooth at a time. The ticktock
sound of the mechanism is the escapement alternately catching
and releasing a gear tooth.

Nobody knows for sure who invented the anchor escape-
ment, either. Was it William Clement the London clockmaker,
who in 1671 built at a cost of £40 a long pendulum anchor es-
capement clock for King’s College, Cambridge, or Robert Hooke,
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the accomplished physicist who presented an anchor escape-
ment clock to the Royal Society in 1666 after the Great Fire of
London? Whoever it was must have understood that though
time may seem—or even be—continuous, only discrete blips
can measure it.

Later improvements—such as introducing a coiled spring,
rather than a hanging weight, as the driving force—enabled
clockmakers to miniaturize their works. But the basic idea re-
mained: the transmission of energy from a source, such as a
falling weight or an unwinding spring, to some oscillating mo-
tion that tracks the flow of time. In some timepieces a counter
moves backward one position to move forward two. Yet in -
every case, in every clock, from Su Sung’s Chinese water clock
impulsively counting by oscillating buckets of water, to modern
atomic clocks using the natural frequency of cesium-133—
which oscillates at more than nine billion cycles per second—a
discrete counting process measures time. Even the simplest
modern watches rely on quartz crystals vibrating at more than
a hundred thousand times per second.

The way time is measured is at odds with how we think
about the nature of time. We think of time as moving smoothly
in one direction, not two; why do we need a mechanism that re-
verses and repeats? In every case, we measure time by some
form of stop-and-go mechanism. Zeno’s arguments remind us
that time might not be as continuous as it seems. Is there an el-
emental unit of time that cannot be split? Could time, 