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Summary

We introduce some early considerations of physaral mathematical impossibility as
preludes to Godel's incompleteness theorems. Wsidensome informal aspects of
these theorems and their underlying assumptiongdéasuiiss some the responses to these
theorems by those seeking to draw conclusions fitwem about the completability of
theories of physics. We argue that there is nogade expect Godel incompleteness to
handicap the search for a description of the laidature, but we do expect it to limit
what we can predict about the outcomes of thoses)amd examples are given. We
discuss the 'Gddel universe', a solution of Einsgeequations describing a rotating
universe where time travel is possible, which wasdvered by Gddel in 1949, and the
role it played in exposing the full spectrum of gdslities that a global understanding of
space-time would reveal. Finally, we show how rdcsndies of supertasks have shown
how global space-time structure determines thendte capability of computational
devices within them.



1: Some HistoricalBackground

Physical Impossibilities

There is a long history of scientific and pbglophical consideration of physical
impossibilities. The Aristotelian worldview outlawed the possibjlthat physical
infinities or local physical vacua could be createdbbservedl During the Middle Ages,
physicists devised ingenious thought experimentsytto imagine how Nature could be
‘tricked’ into allowing an instantaneous vacuumftom, and then arguing about how this
possibility was stopped from occurring by naturabgesses or, if that failed, by the
invocation of a Cosmic Censor, to prevent its appaa€. Chemistry had its own
ongoing alchemical debate about the possibilityngpossibility of making gold from
baser metals, and engineering maintained an englattachment to the quest for a
perpetual motion machines that only fully abatedewlthe consequences of laws of
thermodynamics were systematically understood duttie nineteenth century. Subtle
examples, like Maxwell's sorting demon, still remad until they were eventually fully
exorgised by the application of the modern thermumaiyic theory of computation in
19671

Mathematical Impossibilities

Mathematicians also occasionally considetiee question of impossibility in the
context of a several fundamental problems of aritin) geometry, and algebra.
Supposedly, in about 550BC, the Pythagoreansdimsbuntered the ‘irrationality’ of
numbers like/2 which cannot be expressed as the ratio of twegets (‘irrational’
originally meaning simply 'not a ratio’, rather thbeyond reason, as might be suggested
today)’. Legend has it that this discovery was such a daérthat the discoverer,
Hippasos, was drowned by the members of the Pytiesgobrotherhood for his trouble.
This gives us the first glimpse of operations angstions which have no answers given a
particular set of rules. In the first quarter o&thid" century, the problem of finding an
explicit form for the solution of a general quintdgebraic equation in terms of its
coefficients was proved to have no solution invalyiordinary arithmetic operations and
radicals by the young Norwegian mathematician, ieAbel®. Unlike the case of
quadratic, cubic, or quartic equations, the genguathtic cannot be solved by any exact
formula. Just a few years later, in 1837, rigorgusofs were given that an angle of 60
degrees could not be trisected just by use of @glt edge and pair of compasses. These
examples revealed for the first time, to those Wdwked at them in the right way, some
hints as to the limitations of particular axiomasigstems.

In the light of the ongoing impact of Gddel's wodk speculations about the
limitations of the human mind, it is interestingreflect briefly on the sociological and
psychological effects of some of these early resulhe existence of irrational numbers
was of the deepest concern to the Pythagoreansehenyas far as we can judge, there
were no deep philosophical questions about thetéitiins of mathematical reasoning
raised by the demonstration that the quintic caudd be solved. Yet, there was a change.
Previously, there were many things thought impdesibat could not be so proven
despite many efforts to do so. But now there weraegfs that something could not be
done.



Axiomatics

The development of understanding of what constamnstiand proofs could be carried
out by limited means, such as ruler and compasstroation, or using only arithmetic
operations and radicals, showed that axioms mattéree power and scope of a system
of axioms determined what its allowed rules of m@@isag could encompass.

Until the 19" century, the archetypal axiomatic system was tfduclidean
geometry. But it important to appreciate that thystem was not then viewed, as it is
today, as just one among many axiomatic possiegitEuclidean geometry was how the
world really was. It was part of the absolute trahout the Universe. This gave it a
special status and its constructions and elucidatergely unchanged for more than 2000
years, provided a style that was aped by many woflghilosophy and theology. The
widespread belief in its absolute truth providediportant cornerstone for the beliefs of
theologians and philosophers that human reasordagralsp something of the ultimate
nature of things. If challenged that this was begydine power of our minds to penetrate,
they could always point to Euclidean geometry a®acrete example of how and where
this type of insight into the ultimate nature ofrigs had already been possible. As a
result, the discoveries, by Bolyai, Lobachevskigu@s, and Riemann, that other
geometries existed, but in which Euclid’s parapelstulate was not included, had a major
impact outside of mathematic&The existence of other logically consistent getnes
meant that Euclid’s geometry was rtbhetruth: it was simply a model for some parts of
the truth. As a result, new forms of relativism apg up, nourished by the demonstration
that even Euclid’s ancient foundational system wasely one of many possible
geometries — and indeed one of these alternativaesanfar more appropriate model for
describing the geometry of the Earth’s surface tRanlid’s. Curious books appeared
about non-Euclidean models of government and ecacgriNon-Euclidean’ became a
byword for new and relative truth, the very latéstellectual fashiof Later, new logics
would be created as well, by changing the axiomthefclassical logical system that
Aristotle had defined.

Out of these studies emerged a deeper ajgien of the need for axioms to be
consistently defined and clearly stated. The tiad#l realist view of mathematics as a
description of how the world ‘was’ had to be supsdsed by a more sophisticated view
that recognised mathematics to be an unlimitedesysaf patterns which arise from the
infinite number of possible axiomatic systems tbanh be defined. Some of those
patterns appear to be made use of in Nature, bt @@ not. Mathematical systems like
Euclidean geometry had been assumed to be panedlbsolute truth about the world
and uniquely related to reality. But the developiineinon-Euclidean geometries and
non-standard logics meant that mathematical excgerow meant nothing more than
logical self-consistency (ie it must not be possitd prove that 0 = 1). It no longer had
any necessary requirement of physical existence.

Hilbert's programme

The careful study of axiomatic systems revealed évan Euclid’s beautiful
development of plane geometry made use of unstatexns. In 1882, Moritz Pasch
gave a very simple example of an intuitively ‘obusd property of points and lines that
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could not be proved from Euclid’s classical axiom§the points A, B, C, and D lie on a
straight line such that B lies between A and C &hliles between B and D then it is not
possible to prove that B lies between A and D. Tineture of the set up made it appear
inevitable but that is not a substitute for a proof

A B C D

Pasch wanted to distinguish between the logicakeguences of the axioms of geometry
and those properties that we just assumed werdiwvely true. For him, mathematical
argumentation should not depend on any physicafpretation or visualisation of the
guantities involved. He was concerned that axiomsyistems should be complete and
has been described as 'the father of rigor in getoyhley Freudenthaf.

David Hilbert, the greatest mathematiciartiog¢ day, felt the influencef Pasch’s
writings both directly and through their effects Beano's work from 1882 to 1899, and
began a systematic programme in 1899 to place madlties upon a formal axiomatic
footing*2. This was a new emphasis, conveyed by Hilbertsaxk that in mathematics
'‘One must be able to say .. -- instead of pointigight lines and planes -- tables, chairs,
and beer mug¥. He believed that it would be possible to deterenthe axioms
underlying each part of mathematics (and hencéefthole), demonstrate that these
axioms are self-consistent, and then show thateékalting system of statements and
deductions formed from these axioms is both congéetd decidable. More precisely, a
system iconsistentf we cannot prove that a statement S and its tiegalS, are both
true theorems. It isompletdf for every statement S we can form in its langeaeither S
or its negation[S is a true theorem. It idecidablef for every statement S that can be
formed in its language, we can prove whether S$us or false. Thus, if a systemis
decidable it must be complete.

Hilbert's formalistic vision of mathematics waf a tight web of deductions spreading
out with impeccable logical connections from thdidieg axioms. Indeed, mathematics
wasdefinedto be the collection of all those deductions. Hitbset out to complete this
formalisation of mathematics with the help of otbeand believed that it would
ultimately be possible to extend its scope to imgsciences like physitswhich were
built upon applied mathematics. He began with Eilein geometry and succeeded in
placing it on a rigorous axiomatic basis. His pragmme then imagined strengthening the
system by adding additional axioms, showing at estepp that consistency and
decidability remained, until eventually the systead become large enough to
encompass the whole of arithmetic.

Hilbert's programme began confidently andibelieved that it would just be a matter
of time before all of mathematics was corralledhiitits formalistic web. Alas, the
world was soon turned upon its head by the youngtiodel. Godel had completed one
of the early steps in Hilbert's programme as pdrhis doctoral thesis, by proving the
consistency and completeness Sfdrder logic (later Alonzo Church and Alan Turing
would show that it was not decidable). But the nsteps that he took have ensured his
fame as the greatest logician of modern times.ffean extending Hilbert's programme
to achieve its key objective — a proof of the coetgness of arithmetic — Gddel proved
that any system rich enough to contain arithmeticsirbe incomplete and undecidable.



This took almost everyone by surprise, includingde@on Neumann, who was present at
the conference in Kénigsberg (Hilbert's home tovem) 7" September 1930 when Godel
briefly communicated his results, and quickly appaged them -- even extending them,
only to find that Godel had already made the extem#n a separate paper -- and Paul
Finsler (who tried unsuccessfully to convince Gotlelt he had discovered these results
before him), and effectively killed Hilbert’s progmme with one stroke.

Theory Is it Consistent?  Is it Completep Is it Decidable?
Propositional Yes Yes Yes
calculus
Euclidean Yes Yes Yes
geometry
1% order logic Yes Yes No
Arithmetic Yes Yes Yes
(+,-) only
Arithmetic ?? No No
In full (+,-,%,%)

Table 1. Summary of the results established aboeiconsistency, completeness, and
decidability of simple logical systems.

2: Some Mathematical Jujitsu

The Optimists and the Pessimists

Godel 's monumental demonstration, that systefrmathematics have limits, gradually
infiltrated the way in which philosophers and sdists viewed the world and our quest to
understand it. Some commentators claimed thatatshthat all human investigations of the
Universe must be limited. Science is based on nratites; mathematics cannot discover all
truths; therefore science cannot discover all sutbne of Godel's contemporaries, Hermann
Weyl, described Godel's discovery as exerciSitayconstant drain on the enthusiasm and
determination with which | pursued my research wore believed that this underlying
pessimism, so different from the rallying cry whiktilbert had issued to mathematicians in 1900,
was shared 'by other mathematicians who are nafferdnt to what their scientific endeavours
mean in the context of man's whole caring and kmayysuffering and creative existence in the
world'. In more recent times, one writer on theojand science with a traditional Catholic
stance, Stanley Jaki, believes that Godel's thegoezments us from gaining an understanding of
the cosmos as a necessary truth,

‘Clearly then no scientific cosmology, which of mssity must be highly mathematical, can have
its proof of consistency within itself as far as theamatics goes. In the absence of such
consistency, all mathematical models, all theodakslementary particles, including the theory of
quarks and gluons...fall inherently short of bethgt theory which shows in virtue of its a priori



truth that the world can only be what it is and hioig else. This is true even if the theory
happened to account with perfect accuracy for h#pomena of the physical world known at a
particular time.*®

It constitutes a fundamental barrier to understagdif the Universe, for:

'It seems that on the strength of Godel's theoreat the ultimate foundations of the bold

symbolic constructions of mathematical physics wéinain embedded forever in that deeper level
of thinking characterized both by the wisdom andtbg haziness of analogies and intuitions. For
the speculative physicist this implies that there lémits to the precision of certainty, that evien

the pure thinking of theoretical physics there isaundary...An integral part of this boundary is
the scientist himself, as a thinker”"

Intriguingly, and just to show the importantiechuman psychology plays in assessing
the significance of limits, other scientists, likeeeman Dyson, acknowledge that Gédel
places limits on our ability to discover the trutbbmathematics and science, but
interpret this as ensuring that science will goforever. Dyson sees the incompleteness
theorem as an insurance policy against the sciemifterprise, which he admires so
much, coming to a self-satisfied end; ¥or

'‘Godel proved that the world of pure mathematicsexhaustible; no finite set of axioms and rules
of inference can ever encompass the whole of matties) given any set of axioms, we can find
meaningful mathematical questions which the axié@ase unanswered. | hope that an analogous
situation exists in the physical world. If my viewf the future is correct, it means that the world o
physics and astronomy is also inexhaustible; natendtow far we go into the future, there will
always be new things happening, new information tanin, new worlds to explore, a constantly
expanding domain of life, consciousness, and merhory

Thus, we see epitomised the optimistic ahd pessimistic responses to Godel. The
‘optimists’, like Dyson, see his result as a gudaaarof the never-ending character of
human investigation. They see scientific reseacphart of an essential part of the human
spirit which, if it were completed, would have asdstrous de-motivating effect upon us —
just as it did upon Weyl. The ‘pessimists’, likekiaLucas®, and Penros@ by contrast,
interpret Godel as establishing that the human neizxaghot know all (maybe not even
most) of the secrets of Nature.

Godel's own view was as unexpected as ederthought that intuition, by which we
can 'see' truths of mathematics and science, wasldhat would one day be valued just
as formally and reverently as logic itself,

'l don't see any reason why we should have les$idence in this kind of perception, i.e., in
mathematical intuition, than in sense perceptiohiol induces us to build up physical theories
and to expect that future sense perceptions wilkagvith them and, moreover, to believe that a

guestion not decidable now has meaning and mayeoaldd in the futureé*

However, it is easy to use Gddel’s theorem in wHat play fast and loose with the
underlying assumptions of his theorem. Many spedotdaapplications can be found
spanning the fields of philosophy, theology, andnpmuting and they have been examined
in a lucid critical fashion by the late Torkel Frzagrf~.



Godel was not minded to draw any strong cosauas for physics from his
incompleteness theorems. He made no connectiotistiagt Uncertainty Principle of
guantum mechanics, which was advertised as angtieatt deduction which limited our
ability to know, and which was discovered by Heiberg just a few years before Godel
made his discovery. In fact, Godel was rather Hedt any consideration of quantum
mechanics at all. Those who worked at the samatinstfor Advanced Study (no one
really workedwith Godel) believed that this was a result of his fregtidiscussions with
Einstein who, in the words of John Wheeler (who wrntdem both) ‘brainwashed Goédel'
into disbelieving quantum mechanics and the UnaetyePrinciple. Greg Chaitin
record$® this account of Wheeler's attempt to draw Godelauthe question of whether
there is a connection between Gddel incompleteaadsHeisenberg’s Uncertainty
Principle,

‘Well, one day | was at the Institute for Advanc8tudy, and | went to Gddel's office, and there
was Godel. It was winter and Godel had an eledtgater and had his legs wrapped in a blanket.
| said 'Professor Gédel, what connection do youlseteveen your incompleteness theorem and
Heisenberg's uncertainty principle?' And Godel gogry and threw me out of his officéf

The claim that mathematics contains unprovatéements -- physics is based on
mathematics -- therefore physics will not be aldeliscover everything that is true, has
been around for a long time. More sophisticatedsianrs of it have been constructed
which exploit the possibility of uncomputable math&tical operations being required to
make predictions about observable quantities. Rtuswantage point, Stephen Wolfram,
has conjectured that

'One may speculate that undecidability is commoalifbut the most trivial physical theories.
Even simply formulated problems in theoretical plegsmay be found to be provably insoluble.’

Indeed, it is known that undecidability is the rubther than the exception amongst the
truths of arithmeti¢®.

Drawing the Line Between Completeness and Incompleness

With these worries in mind, let us look atlé more closely at what Gédel's result
might have to say about physics. The situationdsso clear-cut as some commentators
would often have us believe. It is useful to laydl precise assumptions that underlie
Godel's deduction of incompleteness. Godel's tha@ays that if a formal system is

1. finitely specified
2. large enough to include arithmetic
3. consistent

then it isincomplete
Condition 1 means that there are not an uncongatmfinity of axioms. We could not,
for instance, choose our system to consist oftadltrue statements about arithmetic
because this collection cannot be finitely listedhe required sense.
Condition 2 means that the formal system in@dsall the symbols and axioms used in
arithmetic. The symbols are 0, 'zero', S, 'sucoess$, +, x, and =. Hence, the number



two is the successor of the successor of zerotevrias theerm SS0, and two and plus
two equals four is expressed as SSO + SSO = SSSSO.

The structure of arithmetic plays a centrdlerin the proof of Gédel's theorem.
Special properties of numbers, like their factotigas and the fact that any number can
be factored in only one way as the product of pidivisors (eg. 130 =35x13), were
used by Godel to establish a crucial correspondéeteeen statements of mathematics
and statements about mathematics. Thereby, lingyaradoxes like that of the 'liar’
could be embedded, like Trojan horses, within tragure of mathematics itself. Only
logical systems which are rich enough to includihainetic allow this incestuous
encoding of statements about themselves to be méten their own language.

Again, it is instructive to see how these t&ements might fail to be met. If we
picked a theory that consisted of references tal(eelations between) only the first ten
numbers (0,1,2,3,4,5,6,7,8,9) with arithmetic madL0, then Condition 2 fails and such
a mini-arithmetic is complete. Arithmetic makeatements about individual numbers, or
terms (like SSO, above). If a system does not hadevidual terms like this but, like
Euclidean geometry, only makes statements aboahéirmuum of points, circles, and
lines, in general, then it cannot satisfy ConditrAccordingly, as Alfred Tarski first
showed, Euclidean geometry is complete. There thing magical about the flat,
Euclidean nature of the geometry either: the nomiiEean geometries on curved
surfaces are also complete. Completeness can lgedamded though. A statement of
geometry involving n symbols can take up to exp[epcomputational steps to have its
truth or falsity determined. For just n = 10, this number amounts to a staigue9.44x
10°°°* for comparison, there have only been abouft’ h@noseconds since the apparent
beginning of the Universe’s expansion history.

Similarly, if we had a logical theory dealingith numbers that only used the concept
of 'greater than', without referring to any specifiumbers, then it would be complete: we
can determine the truth or falsity of any statemambut real numbers involving just the
‘greater than' relationship.

Another example of a system that is smallartarithmetic is arithmetic without the
multiplication, x, operation. This is called Presburgfearithmetic (the full arithmetic is
called Peano arithmetic after the mathematician yutsb expressed it axiomatically, in
1889). At first this sounds strange, in our every@acounters with multiplication it is
nothing more than a shorthand way of doing addi(leg 2+2+2+2+2+2 = 26), but in
the full logical system of arithmetic, in the prese of logical quantifiers like ‘there
exists' or ‘for any', multiplication permits consttions which are not merely equivalent
to a succession of additions.

Presburger arithmetic is complete: all staents about the addition of natural
numbers can be proved or disproved; all truths lrameached from the axioAs
Similarly, if we create another truncated versidradthmetic, which does not have
addition, but retains multiplication, this is alsomplete. It is only when addition and
multiplication are simultaneously present that imgdeteness emerges. Extending the
system further by adding extra operations like exgrttiation to the repertoire of basic
operations makes no difference. Incompletenessirenfmut no intrinsically new form of
it is found. Arithmetic is the watershed in compiigx

The use of Goédel to place limits on whatraathematical theory of physics (or
anything else) can ultimately tell us seems a jestraightforward consequence. But as



one looks more carefully into the question, thirage not quite so simple. Suppose, for
the moment, that all the conditions required fordets theorem to hold are in place.
What would incompleteness look like in practice?e\&fe familiar with the situation of
having a physical theory which makes accurate mtezhs about a wide range of
observed phenomena: we might call it 'the standaodel’. One day, we may be
surprised by an observation about which it has mafho say. It cannot be
accommodated within its framework. Examples are/ted by some so called ‘grand
unified theories’ in particle physics. Some eardiiteons of these theories had the
property that all neutrinos must have zero massvi@ neutrino is observed to have a
non-zero mass (as experiments have now confirntest) tve know that the new situation
cannot be accommodated within our original the&éhat do we do? We have
encountered a certain sort of incompleteness, leutegpond to it by extending or
modifying the theory to include the new possibési Thus, in practice, incompleteness
looks very much like inadequacy in a theory. It idbecome more like Godel
incompleteness if we could find no extension of theory that could predict the new
observed fact.

An interesting example of an analogous ditemis provided by the history of
mathematics. During the sixteenth century, mathé&iaats started to explore what
happened when they added together infinite listswhbers. If the quantities in the list
get larger then the sum will 'diverge’, that is,the number of terms approaches infinity
so does the sum. An example is the sum

1+2+3+4+5+........ = infinity.

However, if the individual terms get smaller andalter sufficiently rapidly° then the
sum of an infinite number of terms can get closed &loser to a finite limiting value
which we shall call the sum of the series; for exden

1+ 1/9 + 1/25 +1/36 + 1/49 +..... ¥¥/8 = 1.2337005..
This left mathematicians to worry about a most gecuype of unending sum,

1-1+1-1+1-1+41-...=72?27?7

If you divide up the series into pairs of termdabks like (1-1) + (1-1) +.... and so on.
Thisisjust 0+ 0 + 0 +... = 0 and the sum is zeBut think of the seriesas 1-{1-1+1-1
+1-..}and itlooks like 1 - {0} = 1. We seem thave proved that 0 = 1.

Mathematicians had a variety of choices wtiaced with ambiguous sums like this.
They could reject infinities in mathematics and bdealy with finite sums of numbers, or,
as Cauchy showed in the early nineteenth centtwg/sum of a series like the last one
must be defined by specifying more closely whatisant by its sum. The limiting value
of the sum must be specified together with the pire used to calculate it. The
contradiction 0 = 1 arises only when one omits peafy the procedure used to work out
the sum. In both cases it is different, and sotthe answers are not the same because
they arise in different axiomatic systems. Thugehee see a simple example of how a
limit is side-stepped by enlarging the concept Whseems to create limitations.
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Divergent series can be dealt with consistentlymsw as the concept of a sum for a
series is suitably extend&d

Another possible way of evading Godel’s theores if the physical world only makes
use of the decidable part of mathematics. We knloat mathematics is an infinite sea of
possible structures. Only some of those structarespatterns appear to find existence
and application in the physical world. It may bathhey are all from the subset of
decidable truths. Things may be even better prettttan that: perhaps only computable
patterns are instantiated in physical reality?

It is also possible that the conditions reeual to prove Godel incompleteness do not
apply to physical theories. Condition 1 requires #xioms of the theory to be listable. It
might be that the laws of physics are not listaipi¢his predictable sense. This would be
a radical departure from the situation that we khaxists, where the number of
fundamental laws is believed to be not just lisegtdut finite (and very small). But it is
always possible that we are just scratching théesrof a bottomless tower of laws,
only the top of which has significant effects upouar experience. However, if there were
an unlistable infinity of physical laws then we widiface a more formidable problem
than that of incompleteness.

An equally interesting issue is that of finitess. It may be that the universe of
physical possibilities is finite, although astronicaily large®. However, no matter how
large the number of primitive quantities to whidtetlaws refer, so long as they are finite,
the resulting system of inter-relationships will b@mplete. We should stress that
although we habitually assume that there is a ecnntim of points of space and time this
is just an assumption that is very convenient for tise of simple mathematics. There is
no deep reason to believe that space and timeargruious, rather than discrete, at their
most fundamental microscopic level; in fact, thare some theories of quantum gravity
that assume that they are not. Quantum theorymagduced discreteness and finiteness
in a number of places where once we believed in@tinuum of possibilities. Curiously,
if we give up this continuity, so that there is nwcessarily another point in between any
two sufficiently close points you care to choospaSe-time structure becomes infinitely
more complicated because continuous functions eagtelfined by their values on the
rationals. Many more things can happen. This qoestif finiteness might also be bound
up with the question of whether the universe isténn volume and whether the number
of elementary particles (or whatever the most eletary entities might be) of Nature are
finite or infinite in number. Thus, there might lyrexist a finite number of terms to
which the ultimate logical theory of the physicabuid applies. Hence, it would be
complete.

A further possibility with regard to the apphtion of Gddel to the laws of physics is
that Condition 2 of the incompleteness theorem rhigit be met. How could this be?
Although we seem to make wide use of arithmetia anuch larger mathematical
structures, when we carry out scientific investigas of the laws of Nature, this does not
mean that the inner logic of the physical Universeeds to employ such a large structure.
It is undoubtedly convenient for us to use largetinegnatical structures together with
concepts like infinity but this may be an anthropanmphism. The deep structure of the
Universe may be rooted in a much simpler logic thiaat of full arithmetic, and hence be
complete. All this would require would be for thaderlying structure to contain either
addition or multiplication but not both. Recall thall the sums that you have ever done
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have used multiplication simply as a shorthanddddition. They would be possible in
Presburger arithmetic as well. Alternatively, aigasructure of reality that made use of
simple relationships of a geometrical variety, drieh derived from 'greater than' or 'less
than' relationships, or subtle combinations of trelhtould also remain complete The
fact that Einstein's theory of general relativigptaces many physical notions like force
and weight bygeometricaldistortions in the fabric of space-time may wetlltd some

clue about what is possible here.

There is a surprisingly rich range of pogities for a basic representation of
mathematical physics in terms of systems which rhighdecidable or undecidable.
Tarski showed that, unlike Peano’s arithmetic ofliéidn and multiplication of natural
numbers, the first-order theory of real numbersematidition and multiplication is
decidable. This is rather surprising and may giges hope that theories of physics
based on the reals or complex numbers will evaddegidability in general. Tarski also
went on to show that many mathematical systems usptlysics, like lattice theory,
projective geometry, and Abelian group theory aeeidable, while others, notably non-
Abelian group theory are n#t Little consideration seems to be have given ® th
consequences of these results to the developmarnitiofate theories of physics.

There is another important aspect of theiaiton to be keep in view. Even if a
logical system is complete, it always contains wyable 'truths'. These are the axioms
which are chosen to define the system. And afteltare chosen, all the logical system
can do is deduce conclusions from them. In simplgdal systems, like Peano arithmetic,
the axioms seem reasonably obvious because wiatertg backwards -- formalising
something that we have been doing intuitively footisands of years. When we look at a
subject like physics, there are parallels and ddfeces. The axioms, or laws, of physics
are the prime target of physics research. Theybgreo means intuitively obvious,
because they govern regimes that can lie far oatsicour experience. The outcomes of
those laws are unpredictable in certain circumstariiecause they involve symmetry
breakings. Trying to deduce the laws from the outes is not something that we can
ever do uniquely and completely by means of a cotepprogramme.

Thus, we detect a completely different empkasithe study of formal systems and in
physical science. In mathematics and logic, wetdtgidefining a system of axioms and
laws of deduction. Then, we might try to show thia¢ system is complete or incomplete,
and deduce as many theorems as we can from thensxilm science, we are not at liberty
to pick any logical system of laws that we choogée are trying to find the system of
laws and axioms (assuming there is one -- or mbamtone perhaps) that will give rise to
the outcomes that we see. As we stressed eatlisralways possible to find a system of
laws which will give rise to any set of observedtoomes. But it is the very set of
unprovable statements that the logicians and théhemaaticians ignore -- the axioms and
laws of deduction -- that the scientist is mosteirgsted in discovering rather than simply
assuming. The only hope of proceeding as the lagisido, would be if for some reason
there is only one possible set of axioms or lawglbysics. So far, this does not seem
likely®>; even if it were we would not be able to prove.
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3: Laws versus Outcomes

Symmetry Breaking

The structure of modern physics presents with apartant dichotomy. It is
important to appreciate this division in order toderstand the significance of Godel
incompleteness for physics. The fundamental lawSatiure governing the weak, strong,
electromagnetic, and gravitational forces, ardadll gauge theories derived from the
maintenance of particular mathematical symmetresthese forces become unified, the
number of symmetries involved will be reduced unttimately (perhaps) there is only
one over-arching symmetry dictating the form thedeof Nature — a so-called ‘Theory of
Everything’, of which M theory is the current canldite. Thus the laws of Nature are in a
real sense ‘simple’ and highly symmetrical. Thamkte symmetry which unites them
must possess a number of properties in order toraosodate all the low-energy
manifestations of the separate forces, the statdook like elementary ‘particles’ with
all their properties, and it must be big enoughttoem all to fit in.

There is no reason why Gddel incompletengssuld hamper the search for this all-
encompassing symmetry governing taeisof Nature. This search is, at root, a search
for a pattern, perhaps a group symmetry or someratiathematical prescription. It need
not be complicated and it probably has a particolathematical property that makes it
specially (or even uniquely) fitted for this purpmos

In reality, we never ‘see’ laws of Naturthey inhabit a Platonic realm. Rather, we
witness theioutcomesThis is an important distinction, because thécomes are quite
different to the laws that govern them. They argrametrical and complicated and need
possess none of the symmetries displayed by the.|l@Wis is fortunate because, were it
not so, we could not exist. If the outcomes of thers of Nature possessed all the
symmetries of the laws then nothing could happeictvidid not respect them. There
could be no structures located at particular tiraed places, no directional asymmetries,
and nothing happening at any one moment. All wasgdunchanging and empty.

This dichotomy between laws and outcomew/f®at | would call ‘the secret of the
universe’. It is what enables a Universe to be goeel by a very small number (perhaps
just one) of simple and symmetrical laws, yet giae to an unlimited number of highly
complex, asymmetrical states — of which we are vagety*®.

Thus, whereas there is no reason to waipput Godel incompleteness frustrating
the search for the mathematical descriptions ofléines of Nature, we might well expect
Godel incompleteness to arise in our attempts scdbe some of the complicated
sequences of events that arise as outcomes t@awedf Nature.

Undecidable Outcomes

Specific examples have been given of physpralblems in which the outcomes of
their underlying laws are undecidable. As one migkpect from what has just been said,
they do not involve an inability to determine somieg fundamental about the nature of
the laws of physics, or even the most elementaryiglas of matter. Rather, they involve
an inability to perform some specific mathematicalculation, which inhibits our ability
to determine the course of events in a well-defipégsical problem. However, although
the problem may be mathematically well definedsttioes not mean that it is possible to
create the precise conditions required for the wiatheility to exist.
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An interesting series of examples of thistdoave been created by the Brazilian
mathematicians, Francisco Doria and N. da CBsResponding to a challenge problem
posed by the Russian mathematician Vladimir Arntihey investigated whether it was
possible to have a general mathematical criteritwictv would decide whether or not any
equilibrium was stable. A stable equilibrium isituation like a ball sitting in the bottom
of a basin — displace it slightly and it returnsthee bottom; an unstable equilibrium is like
a needle balanced vertically — displace it slighthd it moves away from the verti¢al
When the equilibrium is of a simple nature this blem is very elementary; first-year
science students learn about it. But, when theldgium exists in the face of more
complicated couplings between the different compginfluences, the problem soon
becomes more complicated than the situation stubljestience students So long as
there are only a few competing influences the diigtnf the equilibrium can still be
decided by inspecting the equations that goverrsthtion. Arnold’s challenge was to
discover an algorithm which tells us if this camvalys be done, no matter how many
competing influences there are, and no matter hompmex their inter-relationships. By
‘discover’ he meant find a formula into which yoar feed the equations which govern
the equilibrium along with your definition of stdlty, and out of which will pop the
answer ‘stable’ or unstable’.

Da Costa and Doria discovered that there castao such algorithm. There exist
equilibria characterised by special solutions othesatical equations whose stability is
undecidable. In order for this undecidability tovieaan impact on problems of real
interest in mathematical physics the equilibriaé@&w involve the interplay of very large
numbers of different forces. While such equilibcannot be ruled out, they have not
arisen yet in real physical problems. Da Costa Badia went on to identify similar
problems where the answer to a simple questioe, ‘iNll the orbit of a particle become
chaotic’, is Godel undecidable. They can be viewsghysically grounded examples of
the theorems of Rié8and Richardsotf which show, in a precise sense, that only trivial
properties of computer programs are algorithmicdlgidable. Others have also tried to
identify formally undecidable problems. Geroch dthaktle have discussed problems in
quantum gravity that predict the values of potelhfiabservable quantities as a sum of
terms whose listing is known to be a Turing uncorngtle operatioff. Pour-El and
Richard4® showed that very simple differential equationsjethare widely used in
physics, like the wave equation, can have uncomgatautcomes when the initial data is
not very smooth. This lack of smoothness gives tis&hat mathematicians call an ‘ill-
posed’ problem. It is this feature that gives rieg¢he uncomputability. However, Traub
and WozniakowsK{" have shown that every ill-posed problem is welspd on the
average under rather general conditions. Wolffagives examples of intractability an
undecidability arising in condensed matter physind even believes that undecidability
is typical in physical theories.

The study of Einstein’s’ general theory i#lativity also produces an undecidable
problem if the mathematical quantities involved areestricte®®. When one finds an
exact solution of Einstein’s equations it is alwayecessary to discover whether it is just
another, known solution that is written in a diféat form. Usually, one can investigate
this by hand, but for complicated solutions compsitean help. For this purpose we
require computers programmed to carry out algehraaipulations. They can check
various quantities to discover if a given solutigrequivalent to one already sitting in its
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memory bank of known solutions. In practical casesountered so far, this checking
procedure comes up with a definite result aftenab number of steps. But, in general,
the comparison is an undecidable process equivédesmiother famous undecidable
problem of pure mathematics, ‘the word problemgobup theory, first posed by Max
Dehrf” in 1911 and shown to be undecidable in 1855

The tentative conclusions we should draarirthis discussion is that, just because
physics makes use of mathematics, it is by no meagsired that Godel places any limit
upon the overall scope of physics to understandates of Naturé®. The mathematics
that Nature makes use of may be smaller, and sinipbn is needed for undecidability to
rear its head.

4: Godel and Space-time Structure

Space-time in a Spin

Although Kurt Godel is famous amongst logicians Ifiis incompleteness theorems,
he is also famous amongst cosmologists, but fanitedifferent reason. In 1949,
inspired by his many conversations with Einsteiatthe nature of time and Mach’s
principle, Godel found a new and completely unsetpd type of solution to Einstein’s
equations of general relativity Godel’s solution was a universe that rotates pernits
time travel to occur into the past.

This was the first time that the possibility bine travel (into the past) had emerged in
the context of a theory of physics. The idea ofi¢i travel first appeared in H.G. Wells’
famous 1895 storyThe Time Machingbut it was widely suspected that backwardane
travel into the past would in some way be in cocifivith the laws of Nature. Godel’s
universe showed that was not necessarily so: itccatise as a consequence of a theory
obeying all the conservation laws of physics. Titrevel into the future is a relatively
uncontroversial matter and is just another way e$ctibing the observed effects of time
dilation in special relativity.

Godel’s universe is not the one that virelin. For one thing, Gddel’s universe is
not expanding; for another, there is no evidened thur Universe is rotating — and if it is,
then its rate of spin must be at least tines slower than its expansion rate because of
the isotropy of the microwave background radiatfohonetheless, Godel’s universe was
a key discovery in the study of space-time and gedion. If time travel was possible,
perhaps it could arise in other universes whichwaable descriptions of our own?

But the influence of Godel's solution dne development of the subject was more
indirect. It revealed for the first time the sulitteof the global structure of space-time,
particularly when rotation is present. Previoushge cosmological models that were
studied tended to be spatially homogeneous wittpgrnopologies and high degrees of
global symmetry that ruled out or disguised globlicture. Later, in 1965, Roger
Penrose would apply powerful new methods of diffeia topology to this problem and
prove the first singularity theorems in cosmolo@ye possibility of closed time-like
curves in space-time that Godel had revealed méetispecific vetos had to be included
in some of these theorems to exclude their presastberwise past incompleteness of
geodesics could be avoided by periodically reapipgan the future. It was Goédel's
universe that first showed how unusual space-tioesd be whilst still remaining
physically and factually consistent. Prior to iiscbvery, physicists and philosophers of
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science regarded time travel to the past as thessary harbinger of factual
contradictions. But Godel's solution shows tharéhexist self-consistent histories which
are periodic in space and tiftfelt continues to be studied as a key example of an
intrinsically general-relativistic effect and itslf stability properties have been elucidated
only recently®. Some of its unusual properties are explainedindccompanying article
by Wolfgang Rindler.

In recent years, Godel’s study of spaa®ee structure and his work on the
incompleteness of logical systems have been putigdther in a fascinating way. It has
been shown that there is a link between the glaraicture of a space-time and the sorts
of computations that can be completed within thdimis unexpected link arises from a
strange old problem with a new name: is it posstbléo an infinite number of things in a
finite amount of time? And the new name for sucteearkable old activity is a
‘supertask’.

Supertasks

The ancients, beginning with Zeno, were challenggdhe paradoxes of infinities
on many front¥. But what about philosophers today? What sortmitylems do they
worry about? There are live issues on the interfaesveen science and philosophy that
are concerned with whether it is possible to bafd"infinity machine" that can perform
an infinite number of tasks in a finite time. Of wxse, this simple question needs some
clarification: what exactly is meant by "possiblétasks”, "number", "infinite", "finite"
and, by no means least, by "time". Classical physippears to impose few physical
limits on the functioning of infinity machines bease there is no limit to the speed at
which signals can travel or switches can move. Nevg laws allow an infinity machine.
This can be seen by exploiting a discovery abouivddamian dynamics made in 1971 by
the US mathematician Jeff X4 First take four particles of equal mass and agethem
in two binary pairs orbiting with equal but oppadig-directed spins in two separate
parallel planes, so the overall angular momentuzei®. Now, introduce a fifth much
lighter particle that oscillates back and forthradpa perpendicular line joining the mass
centres of the two binary pairs. Xia showed thattsa system of five particles will
expand to infinite size in &nite time!

How does this happen? The little oscillating pdginuns back and forth between
the binary pairs, each time creating an unstabletmg of three bodies. The lighter
particle then gets kicked back and the binary pagoils outwards to conserve
momentum. The lighter particle then travels acrmsthe other binary and the same
ménage a troiss repeated there. This continues without endeberating the binary pairs
apart so strongly that they become infinitely segpad while the lighter particle
undergoes an infinite number of oscillations in timete time before the system achieves
infinite size.

Unfortunately (or perhaps fortunately), this belwaviis not possible when
relativity is taken into account. No informationrche transmitted faster than the speed of
light and gravitational forces cannot become adrity strong in Einstein's theory of
motion and gravitation; nor can masses get arbiyratose to each other and recoil -
there is a limit to how close separation can géeravhich an "event horizon" surface
encloses the particles to form a black Rl&heir fate is then sealed — no such infinity
machine could send information to the outside world
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But this does not mean that all relativistic infinimachines are forbiddéh
Indeed, the Einsteinian relativity of time thatagequirement of all observers, no matter
what their motion, opens up some interesting newsgallities for completing infinite
tasks in finite time. Could it be that one movingserver could see an infinite number of
computations occurring even though only a finitermer had occurred according to
someone else? Misréand Barrow and TipléP have shown that there are examples of
entire universes in which an infinite number of dlstions occur on approach to
singularities in space-time but it is necessarytfa entire universe to hit the singularity;
in effect, the whole universe is the infinity maabi It still remains to ask whether a local
infinity machine could exist and send us signalsassult of completing an infinite
number of operations in a finite amount of our time

The famous motivating example of this sort of temradaelativity is the so-called
‘twin paradox'. Two identical twins are given diféat future careers. Tweedlehome stays
at home while Tweedleaway goes away on a spachktfaga speed approaching that of
light. When they are eventually reunited, relaviredicts that Tweedleaway will find
Tweedlehome to be much older. The twins have exgpeed different careers in space
and time because of the acceleration and deceber#itat Tweedleaway underwent on
his round trip.

So can we ever send a computer on a journey s@exithat it could accomplish
an infinite number of operations by the time itugats to its stay-at-home owner? Itamar
Pitowsky first argued that if Tweedleaway could accelerate his spacestfficiently
strongly, then he could record a finite amountlod Liniverse's history on his own clock
while his twin records an infinite amount of time dis clock. Does this, he wondered,
permit the existence of a "Platonist computer” edhat could carry out an infinite
number of operations along some trajectory throsgace and time and print out answers
that we could see back home. Alas, there is a bl for the receiver to stay in contact
with the computer, he also has to accelerate drealft to maintain the flow of
information. Eventually the gravitational forcesdoene stupendous and he is torn apart.

Not withstanding these problems a check-list ofgedies has been compiled for
universes that can allow an infinite number of sl be completed in finite time, or
"supertasks" as they have become known. TheseadleddVialament-Hogarth (MH)
universes after David Malament, a University of €go philosopher, and Mark
Hogartlf?, a former Cambridge University research studetipyin 1992, investigated
the conditions under which they were theoreticalbssible. Supertasksopen the
fascinating prospect of finding or creating conalits under which an infinite number of
things can be seen to be accomplished in a fimitet This has all sorts of consequences
for computer science and mathematics because itdvemnove the distinction between
computable and uncomputable operations. It is shmgtof a surprise that MH universes
(see Figure 1) are self-consistent mathematicasibdgies but, unfortunately, have
properties that suggest they are not realistic paypossibilities unless we embrace
some disturbing notions, such as the prospectiafjhhappening without causes, and
travel backwards through time.

The most serious by-product of being allowed toltbain infinity machine is
rather more alarming though. Observers who stré&y lIoad parts of these universes will
find that being able to perform an infinite numbErcomputations in a finite time also
means that any amount of radiation, no matter howal§ gets compressed to zero
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wavelength and amplified to infinite frequency agrkergy along the infinite
computational trail. Thus any attempt to transrhi butput from an infinite number of
computations will zap the receiver and destroy h8u.far, these dire problems seem to
rule out the practicality of engineering a relastic infinity machine in such a way that
we could safely receive and store the informatiBat the universes in which infinite
tasks are possible in finite time includes a typespace that plays a key role in the
structure of the very superstring theories thakied so appealingly finite.

If you could see the output from an inftgimachine that completes supertasks then
you have the possibility of deciding undecidableldems by direct search through the
infinite catalogue of possibilities: Turing’s unc@utable operations seem to become
completeable in a finite amount of our wristwatamé. Is this really possible?
Remarkably, Hogarth show&tn some space-times it was possible to decide Gode
undecidable questions by direct search by sendicgnaputer along a certain space-time
path,y, so that it could print out and send you the ansteehe question. Now, create a
hierarchy of n space-time structures of ascendmlexities such that thé'rin the
sequence allows a supertask to be completed wlanltheck the truth of any
arithmetical assertion made in th8 mut not the (n+1¥ quantifier arithmetic in Kleene’s
logical hierarchy, by which logicians calibrate tbemplexity of possible logical
expressions. There is a neat one-to-one correspmedaetween the list of space-times
and the complexity of the logical statements theyt can decide. Subsequently, Etesi and
Nemetf° showed that some relations on natural numbers lwaie neither universal nor
co-universal, can be decided in Kerr space-timesctW&recently generalised these
results to show that the computational capabilitgpace-times could be raised beyond
that of arithmetic to hyper-arithmetics, and showeat there is upper bound on the
computational ability in any space-time which isigiversal constant defined by the
space-time.

Thus, in conclusion, we find that Godeldeas are still provoking new research
programmes and unsuspected properties of the wofligyical and physical reality. His
incompleteness theorems should not be a drain orothusiasm to seek out and codify
the laws of Nature: there is no reason for thertintot that search for the fundamental
symmetries of Nature in any significant way. Buy, @ontrast, in situations of sufficient
complexity, we do expect to find that Gddel incomianess places limits on our ability to
use those laws to predict the future, carry outcsiiecomputations, or build algorithms:
incompleteness besets the outcomes of very sinags bf Nature. Finally, if we study
universes, then Godel’s impact will always be fedtwe try to reconcile the simple local
geometry of space and time with the extraordinasggbilities that its exotic global
structure allows. Space-time structure defines wlaatbe proved in a universe.
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Figure 1: The space-time of an MH space-time with time megpertically and space
(compressed to one dimension) horizontally. Welacated at P and our causal past,
I"(P) consists of all the events that can influenseltithere is a path in our past,such

that there is an infinite amount of its own timegséng on approach to the space-time
point where it intersects our past line cone, tdgeof [(P).
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