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P R E FA C E

Something I had never experienced before happened while I was writ-
ing this book.

I’d written several previous books, but I’m not sufficiently well es-
tablished as an author to simply write a book and have a reputable pub-
lisher bring it to market. Like most prospective authors, I have to write
a proposal, which consists of an outline of the book, its potential mar-
ket, and a couple of sample chapters. My agent then shops it to various
publishers, and—with luck—someone offers to publish it.

I’ve always been fascinated by numbers, and it occurred to me that
the discovery of the numbers that are the heart of this book—the Cos-
mic Numbers, if you will—would make for a fascinating book. There
are very few new ideas under the Sun, and this idea had occurred to
other authors as well. Martin Rees had written a book called Just Six
Numbers (a few of which are in this book) describing the six numbers
that he felt lie at the heart of cosmology, but there were other numbers
that I felt also deserved to have their stories told. So I wrote up the out-
line for the book, as well as an introduction and a sample chapter on
Absolute Zero. To my great joy, not only did Basic Books, the leading
publisher of scientific trade books, decide to publish it, but T. J. Kelle-
her, whom I knew to be a terrific editor because I had worked with him
previously on How Math Explains the World, agreed to work on it.

I knew T. J. to be a great editor because, among other reasons, when
we were working on the previous book, he spent a great deal of time
structuring the sequential organization of the chapters. This greatly
added to the flow and readability of the book; his choice was not the
one I proposed but it unquestionably worked out better. I did not think
that organization would be a similar problem with this book, as the
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cosmic numbers it discusses belong to three branches of physical sci-
ence: physics, chemistry, and astronomy. I initially saw the book as
being organized along those lines, and started work on the obvious first
chapter—the gravitational constant.

What made the process of writing this book remarkable was that
each chapter seemed to presage the next, organizing itself by the his-
torical development of science rather than by grouping the chapters by
discipline. After a few chapters, I realized that I was writing an outline
of the history of science as exemplified by the numbers that I had de-
cided to use. It’s not a complete history of science by any means; the
life sciences are nonexistent and the development stops somewhere in
the middle of the twentieth century. Nonetheless, if you give this book
to someone who knows absolutely nothing about science (which un-
fortunately describes a large segment of the American public), by the
time they finish it, they’ll have a very good idea of what has happened
in the major physical sciences. It’s history by the numbers—though not
in the conventional sense of the word.

Several other things worth mentioning happened while I was writing
this book. While doing the background reading that this book required,
I had an opportunity to read the biographies of several of the scientists
whose contributions appear herein. I don’t know which impressed me
more—the quality of the writing or the scholarship displayed in the
thorough researching of the individuals involved. Some of these books
are listed in back, but the ones that absolutely blew me away were The
Master of Light, the exquisitely detailed story of Albert Michelson
(written by his daughter); the short but extraordinary Ludwig Boltz-
mann (written by Englebert Broda), a book that made you wish you
had the opportunity to spend one hour in Boltzmann’s company; and
Chandra (by Kameshwar Wali), a description of the professor who
awes—and to some extent, terrifies—students, but who is universally
admired and loved by his colleagues.

Four people made substantial contributions to enable this book to
be written. Quite simply, T. J. Kelleher edits like no one else I have
ever encountered. Even when some of my favorite passages have been
excised, it is almost invariably with complete justification, and the book
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is nearly always better as a result. I also noticed a disconnect between
T. J.’s style and mine in the first chapter or so that he revised, but after
that, when I read the revised chapter, it almost seemed to me as if I had
written it completely! I have no idea how he does it; I can only write
in my own style—and my guess is that every one of T. J.’s authors
would attest to this ability. It helps to have an editor who not only no-
tices the flaws in your presentations, but when he remedies them, it
seems like you have written the material. Finally, T. J. has a love for
science and mathematics that one rarely finds in anyone other than a
scientist or a mathematician. I’ve only encountered one other such in-
dividual—and that person was my father, coincidentally also a Harvard
man, as T. J. is.

I owe my writing career to my agent, Jodie Rhodes. These are diffi-
cult times for authors, as publishers are often unwilling to take risks,
and it must be extremely difficult for agents to encounter rejection and
still be willing to stand by their authors and fight for their rights in an
environment where sales are difficult to obtain. Well, it may be difficult
for other agents, but Jodie has pitched for me and battled for me under
conditions that can only be described as arduous and disheartening.
While I think I’m a passable writer, it is necessary to find an editor and
publisher who share this opinion, and Jodie has extensive experience
that has enabled her to match me with editors and publishers who ap-
preciate my efforts. Possibly other agents could have achieved this—
but I doubt it, and I have no idea what I will do if she retires.

The third person is one of the most remarkable students I have ever
had the pleasure to teach. Sometime in the 1980s, Dave McKay enrolled
in an upper-division course in mathematical analysis that I was teaching.
I have counted Dave as a friend and colleague ever since, and this book
has benefited enormously from the fact that Dave, a fellow faculty mem-
ber at California State University, Long Beach, has not only become an
extremely adept instructor of mathematics, but an equally proficient in-
structor of physics as well. I’ve always loved physics, but it’s been as
one who worships the object of his passion from afar, as I have never
understood the great ideas of physics with the same clarity that I under-
stand some of the great ideas of mathematics. Dave does—because he
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has been willing to put in twenty-five years of simply studying physics
with an eye toward understanding it the way mathematicians understand
mathematics.

The reader of this book will notice a large number of calculations,
because not only is this book about the cosmic numbers that define the
universe, it is about numbers themselves—the universal language, as
Galileo called mathematics. Most of the calculations in this book re-
quire no more than very basic algebra, geometry, or maybe a little
trigonometry, but often there is a physical theory in the background
that underlies these calculations. The rationale for the physical theory
lies outside the scope of this book, but most introductory physics texts
contain all the equations and formulas I have used.

Last—but not least—is my wife Linda. I’m not overly fond of the
song “You Are the Sunshine of My Life”—the tune isn’t so great and
the lyrics are a little on the mawkish side—but it’s a good description
of Linda. She doesn’t write the books, but she does the stuff that makes
it a lot easier for me to do so. Just as some people complain that math
makes their brains go all fuzzy, contracts have the same effect on me—
I can’t read more than a paragraph or so, and Linda has the tenacity to
go through them with a fine-toothed comb. Of course, that’s an added
bonus thrown in with being the sunshine of my life.

By the time this book is published, I’ll be seventy years old, and
really have only two regrets, both concerning my parents. They never
got to read any of my books, and they never met Linda. I think they
would have enjoyed both experiences.
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C H A P T E R  1

T H E  
G R AV I TAT I O N A L  

C O N S TA N T

I t is impossible for me to fully grasp life in the seventeenth century,
during which Isaac Newton spent the greater part of his life. It was

a world of alchemy rather than chemistry, a world without many of the
simple things that make life bearable (at least for me): no toilet paper
or toothpaste, telephones or televisions. But it was a world of books
and newspapers, of letters and journals (the seventeenth-century ver-
sion of blogs), and as a result we know almost as much about Isaac
Newton as we would if he had walked around with a GPS tracking de-
vice affixed to his ankle—assuming the device had been attached
around the year 1664.

Newton, however, was born in 1642, which leaves a pretty large gap
in any biography of the man. From what we do know, it seems clear
that, unlike the cases of such prodigies as Mozart or the mathematician
Carl Friedrich Gauss, he did not do anything in his youth to presage
his future greatness. What we do know is that his mother wanted him
to become a farmer. Fortunately for us, Newton displayed a complete
lack of interest in farming, but it took the joint effort of the headmaster
of his school (who seems to have been the only individual to have rec-
ognized Newton’s potential) and Newton’s uncle to persuade his
mother to send Isaac to Trinity College in Cambridge. He entered his
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“safety school” in 1661. It was one of the most successful plan Bs in
history.

His early years at college are also not well documented, either by
himself or his contemporaries. His journal has records of presumed
highlights (“At the Taverne twice”) and lowlights (“Lost at cards
twice”), but there isn’t a hint of the genius that was to emerge. Things
began to take off in 1664, when, as he noted in his “Waste Book” of
jottings, he began a serious study of mathematics. Prior to that, New-
ton’s knowledge of mathematics seems to have been at the level of a
contemporary high school sophomore; the evidence is that he was com-
fortable with arithmetic but his knowledge of algebra, geometry, and
trigonometry might not have been enough to produce an impressive
score on the SAT. Newton brought himself up to speed by either pur-
chasing or borrowing the texts that were state-of-the-art for mathemat-
ics at the time. From Oughtred’s Clavis Mathematicae1 (“The Key to
Mathematics”), he learned the power and flexibility of algebra—which
would lead to his discovery of the general binomial theorem. From
Wallis’s Opera Mathematica2 (“Mathematical Works”) he gained his
initial insights into what would later become his signature mathemati-
cal accomplishment—the development of the infinitesimal calculus.
Newton relied on a Latin translation by Schooten of Descartes’s
Géométrie3 to rectify his geometrical deficiencies.

He would receive his bachelor’s degree in 1665, the year of the last
great outbreak of the bubonic plague in England. Plague spreads under
crowded, unsanitary conditions—and this was sufficiently well recog-
nized that the court of King Charles II departed London for Oxford-
shire, and Cambridge University closed. Isaac Newton chose to return
to his childhood home in Woolsthorpe—and spent the next eighteen
months “minding Mathematicks & Philosophy.”4 In so doing, he re-
made the world.

The Development of the Theory of Gravitation

As fundamental as Newton’s contributions to mathematics were, it is
nonetheless for his contributions to science that he is most remembered,
for it is by advances in science that much of the progress in the human
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condition is made. He made formidable contributions to optics, but of
course it is for his work on mechanics and gravitation, and secondarily
the scientific method of theory and experimentation, that he is held in
such esteem.

The first enunciation of a scientific theory is almost invariably not
the simplest. Innovators such as Newton are not generally concerned
with presenting material so that it can be understood by the widest pos-
sible audience; they are more interested in having it become accepted
by their peers, and then building upon it. Such is the case with New-
ton’s Philosophiæ Naturalis Principia Mathematica5 (“Mathematical
Principles of Natural Philosophy,” generally referred to as the Prin-
cipia); I have opened it on occasion and have resolved to read it when
I retire (adding to my list of still-unkept resolutions). The style of New-
ton’s Principia resembles a standard geometry text—axioms, theorems,
lemmas, proofs—and many of the conclusions are, in fact, geometrical.
This is not surprising, because one of the key achievements of the
work, which in part is a description of Newton’s theory of gravitation,
was its ability to explain Kepler’s three laws of motion, all of which
are geometrical. Kepler’s first law states that planets have elliptical or-
bits around the Sun, with the Sun at one focus of the ellipse. The second
law states that an imaginary line drawn from the center of the Sun to
the center of the planet will sweep out equal areas in equal intervals of
time. And the third law states that the ratio of the squares of the periods
of any two planets is equal to the ratio of the cubes of their average
distances from the Sun.

These laws were not just the insights of a brilliant geometer working
from a few premises; they were also empirical—the result of a lifetime
of data-gathering and model-fitting, building on the data painstakingly
amassed by Tycho Brahe, an eccentric Danish nobleman with an interest
in astronomy. Brahe had been impressed by Kepler’s early work, and
invited Kepler to visit him near Prague, where Brahe was constructing
a new observatory. Kepler would become Brahe’s intellectual heir.

At the time, the Copernican revolution was gaining steam, and Kepler
attempted to fit Brahe’s excellent data to Copernicus’s model of the solar
system, which held that the planets move in uniform circles around the
Sun. Indeed, Kepler’s initial model of the orbits of the planets had an
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extra wrinkle, as he thought they corresponded to geometrical proper-
ties of the five regular Platonic solids—tetrahedron, cube, octahedron,
dodecahedron, and icosahedron, with four, six, eight, twelve, and
twenty faces respectively.

At any rate, Kepler tried to fit the data he had to circles. Fortunately,
Brahe had just obtained highly accurate observations of the planet
Mars—and the orbit of Mars deviates substantially from a circle. Had
Brahe just finished observations of Venus, whose orbit is almost per-
fectly circular, it is not clear when—or even if—Kepler would have
been able to arrive at his first law.

Kepler’s achievement in discovering the first law is a testament to
his real intellectual rigor, and the second and third laws to his substan-
tial mathematical ability. Finding the area of the elliptical sectors
needed for the second law is a task considerably beyond basic Euclid-
ean geometry, and recognizing the power relationship inherent in the
third law also requires considerable mathematical savoir faire. Never-
theless, Kepler spent years formulating and checking the second and
third laws. Through all of this, Kepler was beset by numerous personal
and political problems—he lost both his wives and his favorite son to
illnesses, and his refusal to convert to Catholicism limited his potential
for employment. On top of this, Kepler had to provide the legal defense
when his mother was accused of witchcraft, a charge that in those days
could result in death by torture. The charges were based solely on
rumor, however—not surprising, because to the best of my knowledge,
there haven’t been a lot of authenticated cases of witchcraft, either then
or now, and Kepler was able to obtain her acquittal.

Kepler’s accomplishments more than justified his epitaph: 
“I measured the skies, now the shadows I measure,
Sky-bound was the mind, earthbound the body now rests.”6

A Question of Velocity

A straightforward, nonquantitative conclusion from Kepler’s first and
second laws is that planets move at different speeds at different loca-
tions in their orbit. An ellipse is a stretched-out circle, with a profile
like a blimp’s, and has two axes of symmetry, long and short. If the el-
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lipse in question is a planetary orbit, the Sun will be found on the long
axis close to the ellipse. Now, imagine that a planet travels a small dis-
tance from just above the long axis near the Sun to just below the long
axis near the Sun. We can approximate the area it sweeps by using the
area of an isosceles triangle (although the planet’s path is curved, over
small distances it’s reasonable to treat it as a straight line perpendicular
to the long axis). The height of the triangle is the distance of the Sun
to the ellipse along the long axis, less than half the length of the long
axis because we positioned the Sun on the long axis near the ellipse. It
is clear that if the planet is traveling at the same speed at all times, it
will traverse the same distance along its path when it is close to the
Sun or at the symmetrical location on its orbit far away from the Sun.
Suppose that the planet always travels at the same velocity. If the planet
travels the same small distance from just above the long axis far away
from the Sun to just below the long axis far away from the Sun, the
area that it sweeps out according to Kepler’s second law can again be
approximated by a triangle with a base having the same length as the
base of the triangle near the Sun. This time, however, the height of the
triangle—the distance from the Sun along the long axis to the ellipse,
is more than half the length of the long axis, and so the two triangles
have different areas. If Kepler’s first and second laws are to hold, the
planet cannot be traveling at the same velocity when it is near the Sun
as when it is far away from the Sun.

Newton’s work on calculus would be invaluable for explaining how
that happens. One of the great insights afforded by calculus is the
means to define constantly changing quantities—such as the speed of
a planet, or a car—at any given moment. So, for example, imagine I
drove one afternoon from Los Angeles to San Diego, a distance of 120
miles, in three hours. Simple arithmetic tells me my average velocity
during the trip was 40 miles per hour, but it can’t tell me how fast I
was traveling when I went through the open stretch just before Inter-
state 405 turns into Interstate 5, or how slowly I was traveling in the
traffic jam near Mission Viejo. To determine how fast my car was trav-
eling at 2 p.m., we need to look at the collection of average speeds of
my car over successively shorter time intervals at that time. The aver-
age velocity of the car computed over a time interval of one second is
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a more accurate approximation to the actual speed of the car at the start
of the interval than is the average velocity of the car computed over a
time interval of one minute—because there is a lot more time for the
car to change its velocity in a one-minute span than in a one-second
span. If we were to measure that average velocity over even shorter
intervals—say an interval of .001 second—it is extremely close to the
exact speed of the car at the start of that interval, assuming, of course,
I haven’t rear-ended a truck during that .001 second.

Newton’s Principia recognizes not only this, but states a method for
computing the instantaneous velocity at any time by means of what
calculus students learn as the difference quotient method, which in-
volves taking limits of averages. He also presages the difficulty many
calculus students have with this.

“I chose rather to reduce the demonstrations of the following propo-
sitions to the first and last sums and ratios of nascent and evanescent
quantities, that is, to the limits of those sums and ratios; and so to prem-
ise, as short as I could, the demonstrations of those limits. For hereby
the same thing is performed as by the method of indivisibles; and now
those principles being demonstrated, we may use them with greater
safety. Therefore if hereafter I should happen to consider quantities as
made up of particles, or should use little curved lines for right ones, I
would not be understood to mean indivisibles, but evanescent divisible
quantities; not the sums and ratios of determinate parts, but always the
limits of sums and ratios; and that the force of such demonstrations al-
ways depends on the method laid down in the foregoing Lemmas.”7

I have a pretty good knowledge of calculus, but wading through New-
ton’s explanation in the preceding paragraph is not easy for me, and I
would think it would be almost impossible for a twenty-first-century
student to learn very much from his book, whether calculus or his
theory of gravitation.

Big G and Little g
At the core of Newton’s work on gravitation, there are actually two
constants: the universal constant G that is described in the Principia,
and the local acceleration g at the surface of Earth due to the force of
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gravity. Little g, as it is often called, is relatively easy to measure, at
least if we are willing to settle for an approximation valid to two or
three decimal places—all we have to do is find a vacuum (so as to elim-
inate air resistance), drop stuff, and measure how far it falls and how
long it takes to fall. It was Galileo who originally realized that the dis-
tance that stuff falls is proportional to the square of how long it has
been falling, and it was one of the many consequences of Newton’s
law of gravitation—and a simple problem in first-semester calculus—
to show that the distance d that an object falls in time t is d = 1⁄2 gt2.
Little g was determined fairly easily to be approximately 32 feet per
second per second. It’s easier to think of this as “32 feet per second”—
pause—“per second”; every second that an object falls under Earth’s
gravitational influence increases its velocity by 32 feet per second.
Things fall much more slowly on the Moon, as the astronauts demon-
strated—even Wile E. Coyote has time on the Moon to get out from
under the falling anvil. Little g, therefore, is a local constant.

Big G, on the other hand, is universal, but there is a relation between
G and g, as you might expect. One of Newton’s achievements was to
show that the gravitational force of a sphere acts as if all the mass were
concentrated at the center. Therefore, the gravitational force on an ob-
ject of mass m exerted by Earth (whose mass we will denote by M and
whose radius by R) is given in two ways: by F = GmM / R2 by the law
of gravitation, and by F = mg by Newton’s second law of motion.
Equating these two expressions, we see that the term m cancels on both
sides of the equation, and that g = GM / R2. The value of R was known
(approximately) to the ancient Greeks—but in order to determine G to
any accuracy, it is necessary to know the value of M, and no inroads
were made on this problem until well after Newton died.

In fact, there was no real interest in determining G for almost two
centuries, because nothing of what the scientists of the day wanted to
learn required the knowledge of the value of G. Much of what was done
in astronomy—and indeed, what is still being done—involved using
ratios. That’s not so surprising, for the equality of ratios enables many
a practical computation, and had done so long before the Principia.
Ratios show up early in arithmetic. (If two eggs are needed for a batch
of cookies that will feed three children, how many eggs will be needed
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for enough cookies to feed twelve children?) They show up again in
geometry, when we use the equality of the ratios of corresponding
sides of similar triangles to measure the height of an unclimbable tree—
or a distant mountain. Both of these uses of ratios—arithmetical and
geometric—are of immense practical importance in the physical sci-
ences, as well as in everyday life. Without the proper number of eggs,
you’re not going to be happy with the way the cookies crumble.

Newton could derive Kepler’s third law—the ratio of the squares of
the periods of any two planets is equal to the ratio of the cubes of their
average distances from the Sun—from his law of gravitation. As-
tronomers could then use these ratios, combined with distance from
Earth to the Sun (which had been calculated by Giovanni Cassini more
than a decade prior to the publication of the Principia)8 and the periods
of the planets to compute the average distance of a planet to the Sun.
There simply wasn’t a need to know the gravitational constant—and
so nobody bothered to compute it until an experiment that took place
at the end of the eighteenth century enabled its value to be known.

The Cavendish Experiment

Most of the great scientists leave more than just the record of their
theories or their experiments, they leave memories such as participation
at conferences and professional or personal exchanges with other sci-
entists. But just like our everyday world, the world of science has its
loners—and among them was Henry Cavendish, one of the great ex-
perimental scientists of the eighteenth century.

We know that Cavendish was born in France in 1731 to Lord Charles
Cavendish and Lady Anne Grey, and benefited from a huge inheritance.
He dropped out of Cambridge after three years without obtaining a de-
gree, but this did not prove to be any sort of impediment to his scientific
career. His personal life had its own share of impediments, however,
as social occasions and personal relationships seemed to be very diffi-
cult for him. He was painfully shy around women, even going so far
as to communicate with the female household servants via written notes
and building special staircases and entrances for them in his houses so
that he would not have to run into them. Social engagements with
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Cavendish apparently weren’t worthy of a journal entry, either in his
or anyone else’s. The only record of his public appearances seems to
be when he would attend a scientific conference.

The noted physician and author Oliver Sacks has suggested that
Cavendish had Asperger’s syndrome, which resembles autism in that
those afflicted by it have difficulty interacting with others and display
repetitive behavior. But repetitive behavior, or at least the willingness
to repeat the same thing over and over again, is just what you need if
you’re going to be an experimental scientist, and Cavendish made no-
table contributions to both chemistry and the study of electricity.
Among these was his analysis of the components of air. He discovered
that air was approximately 20 percent “flammable air” (oxygen), and
80 percent nitrogen—although he also noted that approximately 1 per-
cent of air consisted of gases other than these two; it would be a century
before the existence of argon as an element and its presence in the at-
mosphere was confirmed. He also did pioneering work in the study of
“inflammable air” (hydrogen), and is responsible for discovering that
hydrogen and oxygen are the chemical components of water; he came
extremely close to the correct H2O formula.9

His contributions to the study of electricity were also noteworthy—
he was the first to study dielectric materials (those which do not con-
duct electricity) as part of a study of electricity, and he was the first to
distinguish between electrical charge and voltage. He was also the first
to study the conduction of electricity in water, prompted by the reports
that some fish were able to produce electric shocks—he actually mod-
eled a fish from leather and wood soaked in salt water, gave it imitation
electricity-producing organs, and demonstrated that a fish could indeed
produce an electric shock. Although Cavendish did very little in the
way of publication, he did record his notes, and it is a measure of the
esteem in which he was held by the British scientific community that
no less a scientist than James Clerk Maxwell took it upon himself to
go over Cavendish’s notes and publish them to make sure that
Cavendish posthumously received the credit that he deserved.

The experiment for which Cavendish is best known—and which is
referred to nowadays as “the Cavendish experiment”—was the one that
first determined the density of Earth. This was Cavendish’s purpose,
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but his experiment has often been called “weighing Earth,” for once
Earth’s average density has been determined, its weight can be deter-
mined with good accuracy simply by multiplying that density by
Earth’s volume. In fact, so well known was this experiment that for
years thereafter his neighbors would describe the building where it was
conducted as the place where Earth was weighed. Considering that his
public appearances bordered on the nonexistent, it can safely be said
that Cavendish was truly a scientist whose reputation preceded him.

The experiment, employing what is known as a torsion balance, was
a masterpiece of ingenuity. Two large heavy balls are fixed in place,
and two small balls are placed at opposite ends of a very thin wire, re-
sembling a small dumbbell. This is suspended at the midpoint of the
wire. The gravitational attraction between the heavy balls and the
smaller balls causes the smaller balls to rotate very slightly (the amount
of rotation would be a lot larger if magnets were used to produce the
deflection rather than gravity, an indication of how much stronger mag-
netism is than gravity). The amount of rotation can be measured, and
can be used to compute the average density of Earth—or its mass. So
accurate was Cavendish’s apparatus that his estimate was not improved
for a century.

Hidden in Cavendish’s data was a way to compute the gravitational
constant—but since nobody really cared about the gravitational con-
stant at the time, nobody bothered to compute it. Today’s physicists
would take Cavendish’s data and compute the gravitational constant in
a relatively straightforward fashion.

Let M be the mass of one of the larger balls, and let L be the length
of the thin dumbbell-shaped wire. Let θ be the angle through which the
wire rotates, and let r be the distance between the centers of the small
and large balls after the wire has rotated. Finally, let T be the natural
oscillation period of the balance (akin to the period of a pendulum).
The following formula for the gravitational constant G is obtained by
equating two forces on the smaller ball: the gravitational force from
the larger ball and the restoring force from the rotating wire (the grav-
itational force pulls the small ball toward the larger one; the restoring
force is the same type of force that a stretched spring exhibits as it tries
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to return to its unstretched position). Modern physicists would obtain
the following:

G = 2π2Lr2θ / MT 2

Cavendish actually used the same quantities to compute the average
density of Earth, which he obtained by using Newton’s second law of
motion, equating the net force mg on the small ball with the gravitational
force GmME / rE

2, where ME and rE are, respectively, the mass and the
radius of Earth. We could do this as well. Denoting the average density
of Earth by ρ, since its volume is 4π rE

3 / 3, we obtain ρ = 3g / (4πGrE).
Cavendish actually computed the density as 5.448 grams per cubic
centimeter—but in communicating this result he made an uncharac-
teristic error of leaving out a 4 and reported it as 5.48 grams per cubic
centimeter.

We tend to think of anything prior to the era in which we were born
as relatively primitive, and the end of the eighteenth century—when
the cause of disease was unknown and horseback the fastest mode of
transportation available—verges on the Paleolithic. Nonetheless,
Cavendish’s experiment was incredibly accurate, and thanks to the
fantastic collection of resources currently available on the Internet,
you can actually read Cavendish’s own words on this experiment.10

He may not have had today’s resources, but he took a tremendous
amount of care in planning and executing the experiment. He also was
intellectually honest—he begins his communication for the Philosoph-
ical Transactions of the Royal Society of London with “MANY years
ago, the late Rev. John Michell, of this society, contrived a method of
determining the density of the Earth, by rendering sensible the attrac-
tion of small quantities of matter; but, as he was engaged in other pur-
suits, he did not complete the apparatus till a short time before his death,
and did not live to make any experiments with it. After his death, the
apparatus came to the Rev. Francis John Hyde Wollaston, Jacksonian
Professor at Cambridge, who, not having conveniences for making ex-
periments with it, in the manner he could wish, was so good as to give
it to me.”11 Michell is also known as the individual who first postulated
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the existence of a black hole. It seems to me that history is really short-
changing Michell here; it was his idea and his equipment, and this might
be a good time to start calling this the Michell-Cavendish experiment.

And what better time to start doing this than now?
Modern science recognizes the importance of determining the values

of the basic constants. The Committee on Data for Science and Tech-
nology (CODATA) periodically collects the most recent values for the
basic constants. The latest updating of G that I could find is in the 2006
CODATA12 report, and the section on the gravitational constant begins,
“The HUST (Huazhong University of Science and Technology)
group . . . determines G by the time-of-swing method using a high-Q
torsion pendulum with two horizontal, 6.25 kg stainless steel cylindri-
cal source masses labeled A and B positioned on either side of the test
mass . . . ”!13 More than two centuries after Michell and Cavendish,
with all the advances in technology that have come since then, the
method they suggested is still cutting-edge. Six of the eight measure-
ments involved in determining the gravitational constant involve tor-
sion balances.

Why We Need to Know G As Accurately As Possible

It’s not just one of those nerdy things of interest only to the Henry
Cavendishes of the world.

The gravitational constant is basic to the universe; its existence has
been known perhaps longer than any other fundamental constant, and
yet its value is known only to five significant digits—less accurately
than any of the constants discussed in this book. This is due in large
measure to the extreme weakness of the gravitational force when com-
pared with the other forces (the electromagnetic force, the strong force,
and the weak force). There are potential advances in measurement on
the horizon. The 2006 CODATA section on the gravitational constant
mentions that experiments are under way to determine the gravitational
constant using atom interferometry, which analyzes wave patterns.
However, there may be another approach that uses existing data—a lot
of it.
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If an object is circling Earth in a spherical orbit of radius r, it can be
shown that the orbital period T, the time for it to go once around Earth,
is given by T = 2πr3/2 / (GM)1/2, where M is the mass of Earth. If one
considers r, G, and M as unknowns, given sufficient objects in circular
orbits, I would think that it would be possible to measure T and r to a
high degree of accuracy for each of them, and given any collection of
two different objects, there would be two equations for G and M. These
could be solved for all possible pairs of objects in circular orbits, and
the results for G and M could then be subjected to statistical analysis.
Even if the orbits are not circular, there is an equation for the orbital
period in terms of the orbital parameters—and there is a lot of debris
currently orbiting Earth.

Maybe we can’t measure accurately enough, maybe our computers
are not yet sufficiently powerful to perform this analysis, and maybe
there is a reason to rule this out on the basis of a theorem in statistics,
but even that would be worth knowing. NASA maintains a huge data-
base of all the debris that’s in orbit, and if I were a data miner, I’d sure
consider unpacking my data pick and my data shovel to go looking for
data gold in them thar hills.

But why should we care? One reason is that this could pose a prob-
lem for future spaceflights, especially journeys to the stars if we are
ever capable of making them. I’d hate to run out of fuel before getting
to Alpha Centauri just because we didn’t know G to enough decimal
places. However, a more pressing reason for seeking a more accurate
value of G is that it would enable us to determine more accurately the
future positions of comets and asteroids that might pose a threat to
Earth. Forewarned might enable us to be forearmed.
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C H A P T E R  2

T H E  
S P E E D  O F  

L I G H T

My interest in math and science makes me look for math and sci-
ence in unexpected places—in particular, in the lyrics to some

of my favorite songs. When Jim Morrison of the Doors wrote, “The crys-
tal ship is being filled, a thousand girls, a thousand thrills, a million ways
to spend your time,”1 my first reaction (other than the pleasure of listen-
ing to the song) was to wonder how familiar Morrison might have been
with basic combinatorics, which is essentially the science of counting.
Because he was right: if you participate in each one of a thousand thrills
with each one of a thousand girls, in addition to being completely ex-
hausted, you will indeed have found a million ways to spend your time.

Some years later, Bob Seger wrote (in “Night Moves”2), “I woke
last night to the sound of thunder. How far off? I sat and wondered.” I
knew he was from Detroit, but didn’t he either join the Boy Scouts or
pay attention in science class? You don’t have to sit and wonder how
far off the thunder is, you simply have to count one-thousand-one, one-
thousand-two . . . from the moment you see the lightning flash until you
hear the sound of thunder. To be fair to Seger, as copyeditor Sarah Van
Bonn points out, he might not have seen the lightning flash if he really
had awoken to the sound of thunder. Nonetheless, counting in this
fashion comes pretty close to one count per second, and the speed of
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sound is approximately one mile every five seconds, so if you get to
one-thousand-five when you hear the thunder, you know that the light-
ning hit about a mile away. (In the Boy Scouts, we also learned what
to do if the lightning flash and the thunderclap are very close together—
drop to the ground and curl yourself up in a ball. Perhaps you worry
about these things more if you live in the suburbs than if you live in
the central city.)

Galileo knew something like this as well. I’m not sure when people
first became aware that sound travels at a speed that could be fairly
easily measured, but by the seventeenth century, thanks to the prolif-
eration of cannons, the lag between the sight and sound of an explosion
was well known. In his Dialogue Concerning Two New Sciences,3

Galileo proposed using a simple analogue of this phenomenon to mea-
sure the speed of light. Two men would stand facing each other, each
holding a light. They would both cover the light with their hands; then
the first would uncover his light, and when the second saw this light
he would uncover his. Galileo recognized that this would be impractical
at short distances, but that with the aid of the recently invented tele-
scope, this could be done over substantial distances. Unfortunately for
Galileo, who actually tried to perform this experiment, the distances
involved were totally inadequate to enable this method to work. Light
moves so rapidly that it traversed the longest distance over which
Galileo conducted the experiment in less than a ten-thousandth of a
second—a duration that could not be measured in Galileo’s era. As a
result, Galileo concluded that the speed of light was either infinite or
extremely rapid.

Nevertheless, Galileo’s idea was sound—find a distance over which
light takes some measurable period of time to travel, record the time,
measure the distance, and use the fact that when something travels at
a constant velocity, the velocity at which it travels is equal to the dis-
tance traveled divided by the time it takes to do so. Despite being un-
able to perform this computation himself, Galileo made one of the most
important observations in the history of science, which not only revo-
lutionized man’s view of the universe, but made possible the first de-
termination of the speed of light.
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The Moons of Jupiter

The invention of the telescope is generally credited to the Dutch lens
maker Hans Lippershey, who applied for a patent on the device and
made it generally available in 1608. The most common use was by mer-
chants, who would scan the distant ocean to see whether they could
spot incoming vessels. On January 7, 1610, Galileo trained a telescope
toward Jupiter, and observed “three fixed stars, totally invisible by their
smallness,”4 close to Jupiter and collinear with it. Later observations
showed these objects were moving in a way that would not have been
possible had they indeed been stars. On January 10, he noticed that one
of the “stars” had disappeared, which he correctly attributed to its hav-
ing moved to a position where Jupiter blocked its light. Within a few
days he had concluded that the “stars” were actually orbiting Jupiter.

This revolutionary discovery was to shake the world, because if there
were celestial objects orbiting a body other than the Earth, our planet
could not be the center of the universe as the dominant theology of the
time required. This discovery, famously, put Galileo into direct oppo-
sition with the Catholic Church. Perhaps it is a measure of progress
that heretical scientific theories have met with less severe consequences
as time has passed—Giordano Bruno was burned at the stake in 1600
for espousing a cosmology in which the Sun was just one of countless
stars, whereas Galileo was merely confined to house arrest in 1633,
and John Thomas Scopes would only have to pay a $100 fine in 1925
for teaching evolution in a Tennessee classroom.

Galileo’s discovery of the moons of Jupiter also provided Ole
Rømer, a Danish astronomer, with a way to estimate the speed of light.
The Italian Giovanni Cassini had made observations of the eclipses of
the Jovian moons, and had noticed that the interval between the eclipses
changed, shortening as the distance between Earth and Jupiter de-
creased, and lengthening as that distance increased. Cassini reached
the conclusion that this was due to the fact that light took longer to
reach Earth from a greater distance, and actually announced this in
1676 to a meeting of the French Academy of Sciences.5 He concluded
that it took light between 10 and 11 minutes to traverse the distance
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from the Earth to the Sun. By that time, this distance was reasonably
well established, and using 101⁄2 minutes for the time it took light to
travel this distance results in a value for the speed of light of
93,000,000 miles / (60 × 101⁄2) seconds, or about 147,000 miles per
second (which is about 80 percent of the actual value we know today).
This appeared to have been a throwaway result for Cassini, who turned
his attention to other matters. Rømer made a series of observations of
the eclipses of the moon Io lasting eight years, and published his ob-
servations. Just as Cavendish would have data more than a century later
to determine the gravitational constant but didn’t bother to do so,
Rømer had the data for determining the speed of light, but he also
didn’t bother to calculate it. Like Cavendish, neither Cassini nor Rømer
actually computed the value of that fundamental constant, but I guess
the theory is that if you do enough of the spadework, you deserve the
credit, and Rømer is generally credited with the first determination of
the speed of light.

Rømer’s estimate was somewhat improved by James Bradley, an En-
glish astronomer, some fifty years later. Bradley was relying on the
same astronomical measurements available to Rømer, but a conceptual
breakthrough enabled him to do a better job of it. Bradley, while out
sailing one day, was watching the pennant flutter on the mast. Regard-
less of how he steered the boat, the pennant maintained a constant di-
rection because the wind did. It occurred to Bradley that light acted the
same way as the wind, while the Earth, like the boat, moved. This gave
Bradley a better estimate of how long it took light to travel from the
Sun to Earth, and consequently a better value for the speed of light—
specifically he thought it would take light 8.2 minutes to reach our
planet from the Sun, which is about 1.2 percent faster than it actually
does. It would take more than a century for the technology to improve
to a point where it was possible to bring the technique for measuring
the speed of light back down to Earth.

It’s All Done with Mirrors

In the middle of the nineteenth century, two French physicists, using
similar approaches to the problem, came up with methods for measur-
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ing the speed of light that would provide the impetus for a deep revo-
lution in physics. The first technique was devised by Armand-
Hippolyte-Louis Fizeau, and was based on an idea of an earlier French
physicist, Dominique François Arago, whose eyesight was so bad he
could not carry out his experiment. Fizeau positioned two mirrors op-
posite one another separated by a distance of 8,633 meters—about 51/3

miles. He placed a rapidly rotating toothed wheel between the two mir-
rors and shone a light beam between the teeth of the wheel. He then
adjusted the speed of rotation so that the returning light beam hit the
gap between the next two teeth of the wheel. Since technology had ad-
vanced to the point that the speed of rotation could be kept constant,
which wasn’t possible without machines to control this, the time could
be calculated merely by knowing the rotation rate of the wheel and the
number of teeth in the wheel. Fizeau’s measurement was about 5 per-
cent too high, but it was nonetheless a considerable improvement over
Rømer’s estimates. Although Bradley’s estimate was better, the tech-
nological innovation of this experiment would pave the way for even
more accurate determinations of the speed of light. In both science and
mathematics (as I tell my students), sometimes the method of compu-
tation is more important than the results of the computation.

Also tackling this problem was Fizeau’s friend Jean Bernard Léon
Foucault, who used a similar approach to Fizeau. This was not surpris-
ing, since the two had been good friends since their college days, and
had actually considered a joint project for measuring the speed of light,
but after an argument, they separated and decided to pursue the prob-
lem independently. Foucault’s technique also involved two mirrors set
up some distance from each other, but instead of passing light through
a cogwheel, he reflected it off a rotating mirror, powered by a steam
engine he had constructed himself. This was directed toward the second
mirror, and would then reflect off it and hit the initial mirror, which
had by now rotated slightly. Fizeau had used the rotation of the toothed
wheel to clock the time for light to make the round trip; Foucault com-
puted this time by measuring the angle by which the returning light
beam was deflected.

This apparatus was devised in part prior to the argument that broke
up the Fizeau-Foucault partnership, and Foucault also used the rotating
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mirror technique to show that light traveled more slowly through water
than it did through air. Just as Cavendish acknowledged the role that
Michell had played in devising the torsion balance, Foucault acknowl-
edged Fizeau. Well, almost. Here are Foucault’s words:

“I did not invent the spinning mirror, nor the achromatic lens, nor the
network, nor the micrometer, but I have had the good fortune to be able
to put these instruments, devised by other scientists, together in such a
way that I have solved a problem which was posed twelve years ago.”6

It seems as if the argument with Fizeau still rankled, and although
Foucault was intellectually honest enough to own up to the develop-
ments leading up to his experiments, he felt that, because he included
other devices along with Fizeau’s spinning mirror, he needn’t acknowl-
edge Fizeau personally.

Foucault’s experimental apparatus improved upon Fizeau’s, but un-
fortunately Foucault could not keep the beams of light focused with
sufficient accuracy unless the mirrors were fairly close together. This
resulted in a small angular displacement of the returning beam. As a
result, the relative error of this measurement was rather large—and the
first American to win a Nobel Prize did so by adopting Foucault’s basic
configuration, but devising a way to improve both the absolute and rel-
ative errors involved in the measurements.

Albert Michelson—The Man Who Measured Light

Painters throughout the ages have used light in striking and imaginative
ways: Tintoretto, de la Tour, O’Keefe (who moved to New Mexico to
be able to work its unique light into her paintings), Kinkade (the current
self-proclaimed “Painter of Light”). But no one has a greater claim to
the use of light as a medium than Albert Michelson, the first American
to win a Nobel Prize—which was awarded, as a nominating letter from
Professor William Pickering of Harvard stated, “in view of your great
work in determining the Velocity of Light and your varied applications
of the interference of light.”7

Michelson’s path to the Nobel Prize, and to his study of light, was
somewhat circuitous. He was born in the small Polish town of Strzelno.
Michelson’s family emigrated to the United States, reaching Virginia
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City, Nevada, by way of New York and California. Michelson, even as
a youth, was a star, and he won a nomination to the U.S. Naval Acad-
emy in Annapolis, Maryland.

Whether he would win an appointment was another story. It was a
different era. Michelson traveled to Washington for the final interview,
where he presented himself to the interviewer—none other than
Ulysses S. Grant, then president of the United States. Grant listened
intently as Michelson stated his case, but ended by regretfully inform-
ing Michelson that only ten at-large positions were available, and they
had all been filled. Grant advised an obviously disappointed Michelson
to go to Annapolis and wait to see if one of the ten at-large candidates
might prove unable to accept their own appointment. Michelson waited
three days, to no avail. Discouraged and almost broke, he boarded a
train to return to Nevada—and as he did, he heard a man call his name.
It was a messenger from the White House. Grant had been so impressed
by Michelson that, at the eleventh hour, he had decided to create an
eleventh at-large appointment for him.

It was quite a break, but Michelson’s career at the Naval Academy
was still checkered. He ranked at or near the top of his class in theo-
retical subjects such as optics and thermodynamics, but near the bottom
in seamanship—which one would suspect would be an essential attrib-
ute for a career naval officer. Happily, after serving as a midshipman,
he avoided the sea, becoming an instructor in physics and chemistry at
the Naval Academy.

It was a senior faculty member at the academy, William Sampson,
who was to make Michelson preoccupied with light. Michelson was
scheduled to teach an advanced course in physics, and Sampson sug-
gested he begin the course with a new pedagogical technique: the lec-
ture demonstration. Sampson thought that Foucault’s revolving mirror
determination of the speed of light would make an excellent demon-
stration, and this idea resonated with Michelson, who had already en-
countered this experiment; indeed, it had been the subject of a question
on his final physics exam.

During the demonstration, Michelson recognized that Foucault’s ex-
periment had a flaw (one that had also been pointed out by the French
physicist Alfred Cornu).8 The separation distance between Foucault’s
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mirrors was so small that the returning beam was displaced by less than
a millimeter, so errors in measurement would have a disproportionately
large effect on the computed velocity. Michelson realized that length-
ening the distance between the mirrors would significantly improve the
precision of the measurement, as would replacing one of Foucault’s
mirrors with a flat-plane mirror. Michelson was so taken up with the
beauty of the experiment and the possibility of effecting a significant
improvement in the final result that he chipped in ten dollars to pur-
chase the mirror. Michelson conducted the experiment ten times, took
the average of the result, and concluded that the speed of light was
186,508 miles per second.

Further improvements were not long in coming. Several years earlier
Michelson had married Margaret Heminway, daughter of a wealthy
New York lawyer. Her father was persuaded to donate $2,000 to the
Naval Academy for equipment that enabled Michelson to refine his
measurements, and several years later, he arrived at the figure 186,355
± 31 miles per second.

Michelson’s preoccupation with light would last a lifetime. Ad-
vances in technology, including an interferometer that he invented for
the purpose of improving the measurements of very small distances,
enabled him not only to continually improve his results, but also led to
an experiment that would have a profound effect on the development
of physics.

The Michelson-Morley Experiment

According to the prevailing theory of Michelson’s era, the Universe
was permeated with an invisible weightless substance with the poetic
appellation of “luminiferous ether”; disturbances of this substance re-
sulted in waves of light. The waves were real—they had been conclu-
sively demonstrated by the British scientist Thomas Young in his
double-slit experiment.9 In short, it was believed that the ether was to
light as air was to sound—you had to have the former for the latter to
be able to propagate. This hypothesis led to a critical prediction: If the
luminiferous ether existed, the movement of the Earth in its orbit
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around the Sun should result in different velocities for light beams trav-
eling in different directions, much as a swimmer can travel fastest if
he swims with the current (this example was used by Michelson in ex-
plaining the idea to his children). It was to measure this difference in
speed that Michelson and Edward Morley, a professor at what is now
Case Western Reserve University in Cleveland, constructed an exquis-
itely beautiful and conceptually simple experiment.

The Michelson-Morley experiment consisted of splitting a beam of
light in two perpendicular directions to two different mirrors located
at the same distance from the point at which the beams diverged. The
light waves would come back—and, assuming the ether was real, at
different velocities—and the waves would interfere with each other.
Michelson’s device, known as an interferometer, could be used to de-
termine the difference in speeds between the two returning waves,
which would enable them to compute the speed with which the Earth
was traveling through space. So sensitive was the interferometer that
someone stamping their foot 100 feet away would register, rendering
whatever results they obtained invalid. The interferometer and the
beam splitter were placed on a slab of marble that floated in a pool of
mercury—one can envision Indiana Jones tiptoeing up to this in a dark
cave to snatch a priceless relic. This arrangement helped shield the
equipment from disturbance, and had the added advantage that the slab
could be rotated on the mercury pool to produce results at many dif-
ferent orientations. According to Eddington, the device could measure
a difference of one ten-thousandth of a billionth of a second in the re-
turn times of the light beams—a time during which light travels a little
more than one one-thousandth of an inch.

The result they obtained astounded the physics community—no mat-
ter how often they repeated the experiment, the waves returned at ex-
actly the same time. The conclusion was difficult to accept—the speed
of light was the same in any direction. It was rather like learning that
a swimmer’s rate is the same no matter whether he swims with the cur-
rent or against it.

There were several possible conclusions. The most commonly cited
one is that the failure to detect a difference in the speed of light no
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matter which way the beams were aligned showed that the luminiferous
ether could not exist; if it did, there would have been an alignment of
the beams resulting in a detectable variation of the speed of the return-
ing beams. However, the Irish physicist George FitzGerald came up
with a surprising explanation of the “null result” of the Michelson-
Morley experiment. He hit upon the seemingly bizarre hypothesis that
when an object moved through space, its length shrunk in the direction
that it moved by just enough to ensure that the paths of both beams of
light returned at the same instant. This phenomenon, the FitzGerald
contraction, was amusingly described in the following limerick.

There once was a fencer named Fisk,
Whose fencing was startlingly brisk,
So fast was his action,
The FitzGerald contraction,
Reduced his épée to a disk.

The Dutch physicist Hendrik Lorentz was able to quantify this phe-
nomenon algebraically in equations known as the Lorentz transforma-
tions. In his special theory of relativity, Albert Einstein was able to
derive the Lorentz transformations under the twin assumptions that the
speed of light was constant in all reference frames that moved at a con-
stant speed (another possible conclusion of the Michelson-Morley ex-
periment) and the relativity assumption that the laws of physics are the
same in all such reference frames.

Although Michelson’s work centered around light, there were dark
episodes in his personal life that provide a counterpoint. Michelson
lived in an era in which professors, especially well-known ones, were
minor celebrities—a phenomenon that continued into the early part of
the twentieth century. Michelson hired an attractive but relatively
simple-minded maid who allowed herself to be used in a plot to extort
money from Michelson by charging him with attempted seduction (you
don’t see this on police blotters much anymore), assault, and battery.
A scandal ensued, but Michelson was exonerated. There was worse,
however. Michelson, like many geniuses in diverse areas of human en-
deavor, was a workaholic, which led to a nervous breakdown and even-
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tually to the dissolution of his marriage. Although he later remarried,
his divorce embittered him, and he never spoke to or of his first wife
and children after that experience. His students admired his brilliance
but feared his intractability, a feeling shared by his colleagues. He en-
joyed painting and composed music, yet neither of these activities pro-
duced much softening in the severe exterior he presented the world.
His research assistant of many years summed him up by writing, “Even
those cosmic human forces of love, hate, jealousy, envy, and ambition
seemed to move him little. He possessed an astonishing indifference
to people in general. . . .”10 Nonetheless, he was passionate in his pur-
suit of the nature and attributes of light. His daughter mentioned that
when someone asked him why he had spent his entire life in the study
of light, his face lit up as he replied, “Because it’s so much fun.”11

Faster Than a Speeding Photon

Part of what makes light so much fun is not just that it is a deep con-
stant of the universe—there’s also the fact that it is an upper limit on
action in the universe. Nothing can travel faster than light—not even
information—and nothing with any mass can even go as fast as light.

Well, let me complicate that claim a bit. Picture a lighthouse located
on some rocks some distance out to sea from a beach. The beach has a
sea wall behind it, and as the light in the lighthouse turns, the light shines
upon the wall. The light on the wall appears to move: fairly slowly as
the beam is pointed perpendicular to the wall, more rapidly as the beam
rotates toward a direction parallel to the wall. Here’s the fun part—
despite everything I wrote in the previous paragraph, we can show fairly
easily that under the right conditions, the speed with which the light
beam moves down the wall can exceed the speed of light itself!

Making this a geometry problem will show us how. If you’re not fa-
miliar with it (or even if you are), bear in mind the Pythagorean Theo-
rem, which states that for any right triangle with sides a and b and
hypotenuse c, the sum of the squares of the sides a and b equals the
square of c (so a2 + b2 = c2). Now, let’s assume the lighthouse is located
at L, which is a distance R from the wall. The point Y will represent
the point on the wall that is at distance R from the lighthouse. At some
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future time, the beam of light will have moved to a point X on the wall,
which we will assume is at distance d from Y. The points X, Y, and L
form a right triangle whose legs are of length R and d.

Assume that at time t = 0 the lighthouse emits a light beam directly at
Y; because time = distance / speed, the light beam will hit Y at t = R / c
(where c, as is common practice, denotes the speed of light). Also assume
that it takes q seconds for the lighthouse to rotate one quarter of a revo-
lution. It will take less than q seconds for the lighthouse to rotate to a
position where the beam that it emits will hit X, and when it rotates to
that position, the beam will travel the hypotenuse LX of the triangle, a
distance of . It will take / c seconds for the beam to
travel from the lighthouse to X. Consequently, the beam will hit X before
t = q + / c seconds, and so the beam will have moved the dis-
tance d from Y to X in less than s = q + / c – R / c seconds. In
order for the beam to cover this distance in less time than it would take
light to cover the same distance, we must have d / s > c. Multiplying
both sides of this inequality by s, we see that we would need

d > (q + / c – R / c) c = qc + – R.

A little addition and subtraction gives the following form for the needed
inequality as

R – qc > – d

Now comes another algebraic ploy; we multiply both sides by
+ d; we’ve basically multiplied an expression of the form

a – b by a + b to yield a2 – b2. In our case, the needed inequality now
becomes:

(R – qc) ( + d) > (R2 + d2) – d2 = R2.

To make this happen, we first make sure that the lighthouse is rotating
so rapidly that the expression on the left-hand side is positive (this can
be done by choosing a rotation rate for which q < R / c). Once this is

R d2 2+ R d2 2+

R d2 2+

R d2 2+

R d2 2+

R d2 2+

R d2 2+R d2 2+

R d2 2+
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done, if we can choose d such that (R – qc) (2d) > R2 we’ll have suc-
ceeded in our quest, because is always greater than d (the hy-
potenuse of a right triangle is always longer than each of the legs), and
so + d > 2d. Therefore, as long as we first choose a rotation
rate such that q < R / c and then choose a value for d for which 

d > R2 / (2(R – qc))

we’ll have constructed a situation in which the beam of light moves
along the wall faster than the speed of light itself!

Let’s get an idea of the speeds and dimensions involved by looking
at a real example. An automobile shaft typically can rotate at a speed
of 6,000 rpm if the pedal is pushed to the metal, this would be a speed
of 100 revolutions per second, and so a quarter of a revolution would
take 1/400 of a second. That’s the value for q. Since the speed of light
is about 186,000 miles per second, qc = 186,000 / 400 = 465 miles. We
need R > qc, so let’s take R to be 500 miles (okay, so the lighthouse is
a long way from the beach). We then need d > 5002 / 2 (500 – 465), or
greater than roughly 3,570 miles (okay, so it’s a long beach—even
longer than those near my home institution of Cal State Long Beach).

If you’re interested in refining this calculation so the numbers appear
to be more down-to-earth, there are at least two ways to go about it,
both of which rely on the fact that the above computation results in an
average velocity faster than the speed of light over the entire length of
XY. We know from experience that the beam of light appears to move
faster the closer it comes to completing the quarter revolution that will
make the beam parallel to the shore, so one could either compute the
average velocity over an interval ZX, where the point Z is very close
to X (this doesn’t require trigonometry, but trig makes it easier), or
compute the instantaneous velocity of the moving point at X (this re-
quires calculus).

Don’t think that this violates the principle that nothing can move
faster than light. The moving point of light is neither a thing nor an
electromagnetic wave—it’s the intersection of a light beam with a wall,
which is essentially a mathematical construct. If instead of using a light

R d2 2+

R d2 2+
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beam, we had a rotary paint-sprayer, what would be moving down the
wall is the end of the line of paint that started at X; no individual paint
particle would be moving at that speed. For those who prefer to keep
light in the picture, simply having the wall consist of a detector that
permanently records the impacts of photons would produce a line sim-
ilar to the line of paint. Finally, the quantity c represents the speed of
light in the calculation; it appears on both the left and right sides of
the inequality d / (q + / c – R / c) > c. On the left side of the
inequality it represents the speed at which the light beam travels from
the lighthouse to points on shore, but on the right side of the inequality
it represents the speed of light along the beach: the velocity we are
trying to exceed. If instead of c on the left-hand side of the inequality
we were to use p, the speed of paint, we would obtain the inequality
d / (q + / p – R / p) > c. This inequality can be satisfied for
much lower values of p than c; but to do so we need to position the
lighthouse much further from the beach and we need to elongate the
beach considerably. Pretty neat—nothing can go faster than the speed
of light, but if you look for the correct nothing, well, there it is!

R d2 2+

R d2 2+
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C H A P T E R  3

T H E  
I D E A L  G A S  
C O N S TA N T

Science today consists of observation, experimentation, and theo-
rizing, but it hasn’t always. In ancient Greece, for example, there

was little or no means for experimentation, and so the scientists of the
time, who called themselves philosophers, were confined to observa-
tion and theorizing in order to answer the question of how the universe
and the things in it came to be. One of the earliest was Thales of Mile-
tus who made the first successful prediction of an eclipse of the Sun
and also may have produced the first proof in geometry when he
showed that vertical angles were equal. Thales theorized that all things
came from and depended upon water. A century or so worth of elabo-
rated speculation culminated with Empedocles’s declaration that all
things were in fact produced by mixing and separating the four ele-
ments of earth, air, fire, and water; the mixing and separating taking
place under the influence of two forces, which Empedocles described
as “love” and “strife.”

It seems primitive from the standpoint of the twenty-first century,
but they didn’t do so badly! There are four phases of matter—solid
(corresponding to earth), liquid (water), gas (air), and plasma (fire). I
wouldn’t want to stretch this too far, but the electromagnetic force on
which chemistry depends could be viewed as “love” (opposite electric
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charges or magnetic poles attract) and “strife” (like electric charges or
magnetic poles repel). Throw in the atomic theory originally elucidated
by Leucippus and Democritus more than four centuries before Christ,
and you don’t have too bad a job of describing the universe and the
things in it. The progress of science has thrown out a lot of the bad
guesses and kept the good ones, which were pretty good, considering
that they didn’t have much to work with. 

Two millennia later, in seventeenth-century Europe, the philoso-
phers’ heirs—then known as natural philosophers—hadn’t abandoned
observation and theorizing, but they had developed some means for
experimentation, and were going at it hammer and tongs, which happen
to be two of the implements needed for constructing the means for ex-
perimentation. It was time to get down and dirty with nature.

Most scientists, I think, would agree with this definition of experi-
ment: the act of conducting a controlled test or investigation. When this
sort of thing began is open to some dispute. Galileo had used experi-
ments to conclude that the distance an object fell under the influence
of gravity was proportional to the square of the time the object was
falling, and had done so by rolling balls down inclined planes, in the
early seventeenth century. A few decades later, Anton von Leeuwen-
hoek was putting practically everything under the microscope—not
metaphorically but actually. But it was Robert Boyle, a contemporary
of von Leeuwenhoek’s, who developed the methodology we think of
as the quintessence of experimentation: varying one parameter and see-
ing how other parameters change in response. He kept a journal in
which he recorded the apparatus used, the procedures involved, and
the measurements observed, thereby laying the foundation for experi-
mental science.

A physical law is often codified in a mathematical relationship (usu-
ally an equation, occasionally an inequality) that describes how the
changes of the various parameters involved are related. In order to ob-
tain such a law, it is necessary to have changes to observe. Of the four
phases of matter, gases are the easiest in which to observe and measure
such changes; liquids and solids don’t change that much (at least, given
the sensitivity of seventeenth-century measuring equipment), and
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plasma as a form of matter was unknown in that era. So perhaps it was
a foregone conclusion that the first laws to be derived concerning mat-
ter would involve gases. At any rate, that’s where Boyle began.

He was not alone in the study. In 1643, the Italian physicist Evan-
gelista Torricelli had discovered that a column of air sufficed to support
a column of mercury that we would describe as 760 millimeters high,
and that the atmospheric pressure could change. This inspired the Ger-
man scientist Otto von Guericke, who was also the mayor of the town
of Magdeburg, to create the first vacuum pump. To demonstrate the
power of atmospheric pressure, he devised what are now known as the
Magdeburg hemispheres: two copper hemispheres approximately 20
inches in diameter that incorporated seals so the hemispheres could be
evacuated by means of the pump. When this was done, a team of horses
was unable to pull the hemispheres apart; the hemispheres fell apart by
themselves when air was allowed to reenter the hemispheres.

It’s easy to compute how much force would have been needed to
separate the hemispheres. A column of air whose cross section is 1
square inch weighs approximately 14.7 pounds, and the surface area
of a sphere of radius R is 4πR2. The total force required to separate the
two hemispheres, given a radius of 10 inches, is therefore 4 × 3.14 ×
102 × 14.7 = 18,463 pounds. This, in turn, is equal to the force of the
atmosphere upon the joined hemispheres.

You may be a little skeptical about the above calculation, yet there
is a simple experiment you can perform that should convince you that
the total force is the atmospheric pressure times the surface area. Fill
a glass with water, and find a plastic lid (paper won’t do, because it
gets soggy) that barely covers the glass. Make sure the lid is completely
dry, and cover the glass, then turn it upside down. The atmospheric
pressure is greater than the weight of the water, and the lid stays on!
Do try this at home!

When news of the von Guericke demonstration reached Boyle, he
resolved to build a simpler vacuum pump. Von Guericke’s pump had
required two men to operate it; Boyle’s improved version could be eas-
ily operated by just one individual. Boyle’s investigations into the na-
ture of air were first published in “The Spring and Weight of the Air.”1
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In the first edition, published in 1660, Boyle showed that sound could
not be transmitted in a vacuum by trying to ring a bell in an increas-
ingly rarefied chamber, and that air was necessary for both life and the
maintenance of a candle flame. It was the second edition, published in
1662, that contained the relationship between pressure and volume that
every introductory physics or chemistry student learns as Boyle’s law.
Boyle’s law states that as long as the temperature is kept constant, pres-
sure and volume vary inversely with each other—there is a constant k
such that PV = k, where P is the pressure in the gas and V its volume.

Boyle was fortunate to have Robert Hooke as his lab assistant.
Hooke was the first of many lab assistants who would go on to do sig-
nificant scientific work on their own. Working in Boyle’s laboratory
enabled Hooke to pick up on Boyle’s methodology, which he employed
in establishing Hooke’s law (the restoring force on a spring is propor-
tional to the length that the spring is stretched beyond its natural
length). Possibly he was influenced to undertake these investigations
because of Boyle’s belief in the springiness of the air. Hooke is also
responsible for one of the most important observations in the history
of science. In 1665, while examining thin slices of cork under the mi-
croscope, he discovered that they were made of cells (the term “cell”
comes from Hooke’s comparison between the compartments visible in
the cork slice and the small rooms—cells—occupied by monks in a
monastery).2

There is some disagreement among historians as to the role Hooke
played in the discovery of Boyle’s law. Hooke appears to have con-
ducted some of the experiments, and one historian3 suggests that
Hooke, who (unlike Boyle) was an accomplished mathematician, may
have developed the mathematics of Boyle’s law. At any rate, Boyle and
Hooke had considerable respect for each other, and Boyle was not a
person to stand in Hooke’s path. When the newly founded Royal Soci-
ety needed a curator for its experiments, Hooke was well known to all
its members, and was unanimously awarded the position.

Regardless of how the credit for Boyle’s law is apportioned, Boyle
was unquestionably one of the leading scientists of his day. His influ-
ence extends beyond the physics of Boyle’s law, the discoveries he
made in his investigations of air, and his considerable contributions to
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chemistry. It was Boyle who first established the basic approach that
characterizes empirical science, and one of the individuals to adopt his
approach was Isaac Newton.

John Dalton

Even though the physical state of a gas can be described by only three
parameters—pressure, volume, and temperature—it took more than a
century after Boyle’s law was discovered for a relationship between
temperature and volume to be determined. There’s a very simple reason
for this—during the seventeenth century, there was no method to mea-
sure temperature. Once such a method was devised, several prominent
scientists tackled the relationship between these quantities.

One was John Dalton, one of the most important figures in the his-
tory of science. Dalton is generally credited with the development of
the atomic theory—that the primary constituents of matter are atoms,
and that chemical compounds are formed by the combining of atoms
of one element with atoms of another element. Dalton also investigated
the relationship between the temperature and the volume of a gas, and
reached the conclusion that if the pressure was kept constant, the gas
expanded at a constant proportion of its volume at the preceding tem-
perature.4 Generally a meticulous experimenter, Dalton was somewhat
sloppy in this particular effort—and as a result reached the wrong con-
clusion. Although Dalton was correct that the expansion of a gas was
a constant proportion of volume, his conclusion that this constant pro-
portion was of the preceding volume was erroneous.

To understand Dalton’s conclusion, let’s assume that Dalton’s pro-
portionality constant was 1 percent per degree centigrade—for every
degree centigrade that a gas was heated at constant pressure, it would
expand 1 percent of the preceding volume. Suppose that at 0 degrees
centigrade, the gas occupied a volume of 10,000 cubic centimeters.
Using 1 percent per degree centigrade as the coefficient of expansion,
if the gas were heated to 1 degree centigrade at constant pressure, it
would expand 1 percent to 10,100 cubic centimeters. If the gas were
heated another degree at the same pressure, to 2 degrees centigrade, it
would expand 1 percent of the preceding volume of 10,100—to a new
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volume of 10,201 cubic centimeters. If gas were money, Dalton’s con-
clusion was that thermal expansion acted the same way as compound
interest does—that extra 1 cubic centimeter, the difference between 1
percent of 10,100 and 1 percent of 10,000, is the “interest on the inter-
est” that is the hallmark of compound interest.

However, there’s a problem here that I haven’t seen specifically men-
tioned in the literature. I’m not enough of a history wonk to really do a
thorough job of researching this, so it’s certainly possible that some-
one—maybe even Dalton—recognized the difficulty. Compound inter-
est depends on the number of compounding periods in a given year.
There is a formula that is learned by most intermediate algebra students
and—I hope—all business majors. This formula is A = P(1 + r / N)Nt,
where P is the amount deposited, r is the annual interest rate expressed
as a decimal, N is the number of compounding periods per year, and A
is the amount in the account after t years.

If $10,000 is invested at 1 percent compounded annually, the amount
in the account at the end of one year is 1.01 × $10,000 = $10,100. How-
ever, if the 1 percent is compounded semiannually, the 1 percent is split
between the two half-year compounding periods. Using semiannual
compounding, the amount in the account at the end of six months is
1.005 × $10,000 = $10,050, and the amount in the account at the end
of one year is 1.005 × $10,050 = $10,100.25; we could also have used
the formula given previously with P = 1,000, r = .01, N = 2, and t = 1.
If we accept Dalton’s conclusion that the amount of gas increases in
proportion to the volume at the preceding temperature, we run into a
problem stemming from the two different ways of doing the computa-
tion. Is the volume of the gas at 1 degree centigrade computed as a per-
centage of the gas at 0 degrees centigrade (analogous to annual
compounding), or do we do it in two stages, by first computing the vol-
ume of the gas at 0.5 degrees centigrade as a percentage of the volume
of the gas at 0 degrees centigrade, and then computing the volume of
the gas at 1 degree centigrade as a percentage of the volume of the gas
at 0.5 degrees centigrade (analogous to semi-annual compounding)?

Even worse, it’s possible to compound quarterly, monthly, or daily—
and the balance at the end of the year is different for each of these meth-
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ods of compounding. There’s a way out—but again, I’ve seen no ref-
erence to this in my admittedly meager historical searches. If one goes
through the process of compounding through ever shorter periods:
every month, every day, every hour, every second, every nanosec-
ond . . . the amount in the account at the end of the year gets larger, but
it increases to a limiting value. It increases exponentially according to
what is referred to as the PERT formula. If a principal P is deposited
in a bank for t years at a decimal rate r compounded continuously (the
result of increasing the frequency of the compounding periods beyond
nanoseconds, picoseconds, what have you), the amount A in the ac-
count is given by A = Pert, where e is the base of the natural logarithms.
The corresponding PERT formula (an acronym deriving from the right-
hand side of the previous equation) for gases would yield a final vol-
ume of A for a given initial volume of P, a temperature increase of t,
and a yet-to-be-determined constant of nature r that only experimenta-
tion and measurement will reveal.

The final amount in a bank account subject to continuous compound-
ing depends only on the amount deposited, the interest rate, and the
length of time that the money is in the account. The final amount in a
bank account subject to periodic compounding depends on all these
factors, but also on how frequently we compound. The analogy for gas
expansion would be that if gas expanded at constant pressure according
to a PERT formula, the volume of gas present at the end of the expan-
sion would depend only on the initial volume, an expansion rate (com-
parable to the interest rate) that is a constant of nature, and the initial
and final temperatures. If gas expanded at constant pressure according
to some sort of periodic rate, the final volume would depend upon all
these factors and the procedure by which the gas was heated to its final
temperature—whether the temperature was raised continuously, or 1
degree at a time, or something else. This difficulty would be the logical
result of a Dalton law of expansion. Although this difficulty would be
avoided if the law of expansion adhered to a PERT formula, such an
adherence was not what experiments showed.

The PERT formula that one sees in continuously compounded inter-
est is a specific example of what is known as exponential growth and
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decay—and this does occur quite commonly in nature. Exponential
growth (or decay) occurs when the rate of growth (or decay) is propor-
tional to the population. I started teaching back in the 1960s when Star
Trek—the version with Kirk and Spock—was exceptionally popular
with college students. One of the most amusing episodes was called
“The Trouble with Tribbles”; tribbles were attractive furry creatures
that reproduced extremely rapidly, and soon the Enterprise was overrun
with tribbles. As Bones McCoy, the ship’s doctor said, they reproduced
so quickly that tribbles were probably born pregnant. If you have twice
as many tribbles to start with, you have twice as many baby tribbles—
the rate of growth of the population is proportional to the population.
I used tribbles to illustrate exponential growth problems; I even brought
a couple of dormant tribbles to class. (Actually they were powder puffs
purchased from a nearby drugstore, but Star Trek was produced in an
era with nothing like computer-generated special effects, and the trib-
bles on the show looked remarkably like powder puffs.) Radioactive
decay operates similarly; if you have twice as much of a radioactive
substance to start with, twice as much radioactive material will turn to
lead. You may think that the phrase “knowledge increases exponen-
tially” is a figure of speech, but it’s actually a literal description of what
happens if the rate of acquisition of knowledge is proportional to the
amount of knowledge in existence.

There was an indication, though, that Dalton’s conclusion was in
error. Just as more interest accrues to an account subject to compound
interest after the interest from early compounding periods is added to
the account, Dalton’s conclusion would result in gases undergoing
more expansion at higher temperatures than at lower ones. Experimen-
tation did not seem to bear this out, and the problem was eventually
resolved by two French pioneers in the budding eighteenth-century
aerospace industry.

The French Balloonists

The correct formulation of the law governing gas expansion while the
pressure remained constant was reached by two Frenchmen: Jacques
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Alexandre César Charles and Joseph Louis Gay-Lussac. Both were sci-
entists, but each was also interested in the expansion of gases because
of their interest in a cutting-edge technology of the late eighteenth cen-
tury: hot-air ballooning. Heat made gases expand, and too much ex-
pansion of the gas in a hot-air balloon could result in the balloon
rupturing, with the obvious catastrophic results. Knowing how much
heated air would expand would obviously help avoid such occurrences.
Gay-Lussac was interested not just in ballooning for its own sake, but
in investigating the nature of the atmosphere at higher elevations. In
1804 he and a fellow scientist reached an altitude of about 23,0005 feet
in order to obtain temperature and moisture measurements at different
elevations—possibly a world altitude record for that era. Although
there was no Guinness Book of Records at the time to validate it as
such, it does not appear to have been surpassed for almost fifty years.

What both Charles and Gay-Lussac discovered was that nature did
not compound thermal expansion; it instead charged simple interest as
a gas was heated at a constant pressure. Their conclusion can be seen
in contrast to Dalton’s. The principal in both cases is the volume of gas
at 0 degrees centigrade. If the proportionality constant was 1 percent
per degree centigrade, both theories predicted the expansion of the gas
to 10,100 cubic centimeters as the gas was heated from 0 degrees centi-
grade to 1 degree centigrade. However Charles and Gay-Lussac stated
that when the gas was heated from 1 degree centigrade to 2 degrees
centigrade, the gas would expand by an additional 1 percent of volume
at 0 degrees centigrade—from 10,100 cubic centimeters to 10,200
cubic centimeters.

Well, not quite: I have used 1 percent per degree centigrade as an
example because it makes for easier calculation, but the number de-
duced by Gay-Lussac was that gas expanded by 1/266.67 of its volume
at 0 degrees centigrade per degree centigrade of heating. Gay-Lussac’s
coefficient of expansion was very close to the currently accepted coef-
ficient of 1/273.15; which is a tribute to his ability as an experimenter.

This result is sometimes known as Gay-Lussac’s law, but more com-
monly as Charles’s law—and it is known as Charles’s law thanks to
the efforts of Gay-Lussac! Charles obtained his results fifteen years
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prior to Gay-Lussac, but Gay-Lussac did a more precise job of docu-
menting his results, and did what scientists and mathematicians gener-
ally do (but Charles didn’t); he published his results.6 He also credited
Charles with having done the experiments. In consequence, the result
on the thermal expansion of a gas at constant pressure is known in some
quarters as the law of Charles and Gay-Lussac.

Putting It All Together

At the beginning of the nineteenth century, scientists had two laws con-
cerning the behavior of ideal gases. Boyle’s law stated that if the tem-
perature were kept constant, the relation between pressure and volume
was given by PV = k (for some constant value of k). Charles’s law, or
Gay-Lussac’s law, expressed a similar type of relationship between the
absolute temperature and volume of a gas that was being kept at con-
stant pressure—this relationship was given by V = Tk′, where k′ was
also a constant—but a different constant from the constant k that ap-
peared in Charles’s law.

It wasn’t until the middle 1830s that the physicist Émile Clapeyron
fused these two laws into what we now know as the ideal gas law,
which I find surprising, because the relationship between the two seems
fairly straightforward. When we consider Boyle’s law, the constant k
that appears on the right-hand side of the equation will be different for
different absolute temperatures T, so we can express it as a function of
T, which we write as f (T). Boyle’s law is now rewritten as PV = f   (T).

If we apply the same reasoning to Charles’s law, the constant k′ that
appears on the right-hand side of the equation will be different for dif-
ferent pressures P, so we can express it as a function of P, which we
write as g(P). Charles’s law now becomes V = g(P)T.

It’s time for a (very) little algebra: f   (T) = PV = Pg(P)T. If we divide
both sides of the equation f   (T) = Pg(P)T by T, we obtain the relation
f (T) / T = Pg(P) for all values of T and P. However, the expression on
the left, f   (T) / T, depends only on the value of T, whereas the expression
on the right, Pg(P), depends only on the value of P. Imagine now that
we heat the gas up but keep its pressure constant, say P = P0. If the ex-
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pression f   (T) / T changes, then P0 g(P0) would have different values, which
is clearly impossible. Consequently, f   (T) / T must have a constant value,
which we will abbreviate by the letter a. Since f   (T) / T = a, f   (T) = aT,
and therefore Boyle’s law becomes PV = f   (T) = aT.7

A little thought shows that the constant on the right really isn’t a
constant; it depends on how much gas we had at the start of the exper-
iment. Suppose that we were to build a large container and partition it
into two equal parts with a removable divider. Conduct the same ex-
periment on each side of the divider—the pressure P, the temperature
T, and the volume V will be the same on each side. Remove the divider,
and the pressure P and temperature T do not change—but the volume
V doubles. So PV = aT and P(2V) = 2PV = 2aT, which shows that the
constant on the right side of the equation doubles as the volume dou-
bles. Similarly, if we had a container divided into three equal parts, we
would see that the constant on the right side of the equation triples as
the volume triples. The constant on the right-hand side therefore de-
pends on how much gas we start with. This is incorporated in the final
form of the ideal gas law, which is written PV = nRT. The constant n
denotes the amount of gas present, which is usually measured in moles
(this quantity will be described in the chapter on Avogadro’s number,
for those who either haven’t seen it or have forgotten their high school
chemistry), and R is the ideal gas constant.

Statistical Mechanics and the Ideal Gas Law

Physics, like the other sciences, seeks not only truths but explanations.
Although the ideal gas law is derived from Boyle’s and Charles’s laws,
both of these laws are empirical, the result of experimenting, observing,
and measuring. The goal, as with Newton’s investigations of Kepler’s
laws, was not just to have an empirical description of nature, but a the-
oretical framework that explained it—to enable us to accurately predict
what we would observe empirically from purely theoretical underpin-
nings. The latter half of the nineteenth century witnessed such a great
leap forward in the understanding of the behavior of gases with the ad-
vent of statistical mechanics.
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Statistical mechanics is the application of probability theory (a
branch of mathematics that includes statistics) to thermodynamics; it
considers an ideal gas to be a collection of a very large number of par-
ticles (the atoms or molecules of the gas) with positions and velocities
that are given as probability distributions. It isn’t always possible to
know where a specific gas molecule is, but one can assume that at any
given moment, its position in a glass jar is random—it’s just as likely
to be near the top as near the bottom. It is possible to derive the ideal
gas law from the assumptions of statistical mechanics using some fairly
high-powered tools from both mathematics (the divergence theorem,
one of the crown jewels from multivariable calculus) and physics
(Newton’s laws of mechanics, Hamilton’s equations, and the equipar-
tition theorem8). This puts the ideal gas law on the same firm theoretical
foundation (if such a foundation can be described as firm) as Kepler’s
first law.

From a practical standpoint, more complete scientific theories are
advantageous for a number of reasons, not the least being that they sug-
gest new technology. They also allow scientists to deduce how things
will behave without having to perform the experiments, except to con-
firm the predictions. From an epistemological standpoint (this is the
first time in nearly seven decades that I’ve used the word and I probably
never will again), a more complete scientific theory pushes back the
veil of ignorance—but may never completely remove it. Showing that
Kepler’s first law is a mathematical consequence of Newton’s theory
of gravitation replaces the question “Why do planets travel in ellipses
with the Sun at a focus?” with the question “Why does the gravitational
force act on a straight line between two bodies at a strength propor-
tional to the product of their masses and inversely proportional to the
square of the distance between them?” Einstein hoped to remove this
veil of ignorance by producing a unified field theory. Modern physicists
hope to accomplish this with a TOE—a theory of everything.

I’m skeptical. One of the advantages of writing a book such as this
is that you get to interject your own opinions. I believe that for an in-
finitesimal instant after the big bang all the four forces were unified—
and that’s the last time there was a simple underlying explanation for
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anything. Many phenomena fall into explainable patterns—but I do not
necessarily believe that these explainable patterns form patterns of their
own, regressing to one simple pattern that explains everything. I concur
with Richard Feynman in believing it would be incredibly lovely if
such were the case, but I think the universe in its totality is like Feyn-
man’s onion, with layers that are continually peeled back to reveal
deeper truths. Maybe physics has some unity, but that’s only because
physics deals with phenomena that are the essence of simplicity when
compared to complex chemistry, cellular biology, or the human brain.
Bring in any level of complexity, and hardly anything is predictable—
or simple.

This won’t dissuade physicists—or others, for that matter—from
looking for such an explanation; they do so for the same reason that
Albert Michelson spent so much time and effort measuring the speed
of light—because it’s so much fun.
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C H A P T E R  4

A B S O LU T E  
Z E R O

When I was growing up, Sunday afternoons were often devoted
to what nowadays might be called intellectual enrichment. My

suburban parents took advantage of the abundance of museums that
could be found in New York, and after a short train trip on the New
York, New Haven, and Hartford we would have lunch at Schrafft’s and
head for a museum. I suffered through trips to the Metropolitan Mu-
seum (except for the suits of armor, because it was amazing how short
knights of the fifteenth century were), but I would put up with them
because I knew that next time my parents would take me to the Amer-
ican Museum of Natural History or, if I was really lucky, the Hayden
Planetarium. Even today—despite the wonders of the Internet—it’s
hard to believe that web surfing could produce the same sense of won-
der in a child as a trip to the planetarium.

Every moment at the Hayden Planetarium was to be savored. It
would end with the Zeiss planetarium projector show, which was better
than anything I ever saw at the movies, but another treat was walking
through the section of the Planetarium devoted to the solar system. You
could find out how much you weighed on Mars or what the temperature
was on Pluto (for me, Pluto will always be a planet). The big question
for me was—how do they know?
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I knew we hadn’t been to Pluto, or even to Mars—and how can you
measure the temperature of a place you haven’t been? And even if you
could go to Mars or Pluto, how could you ever go to the surface of the
Sun, where the temperature was said to be 6,000 degrees? The blue
giant stars were even hotter, with surface temperatures of 50,000 de-
grees. But these were dwarfed by the temperature of the solar corona,
about 1,000,000 degrees, and the core of the sun had temperatures of
25,000,000 degrees. How did they know? What did a thermometer that
registered 25,000,000 degrees look like?

There was an even odder thing I wondered about: 25,000,000 de-
grees was a long way from the temperatures in suburban New York,
but 400 degrees below zero, roughly the surface temperature of Pluto
(once a planet, always a planet), didn’t seem so far. Why did tempera-
tures get incredibly hot, but didn’t seem to get much colder than 400
degrees below zero?

The Nature of Cold

The question of whether there is an ultimate limit to cold seems to have
first put in an appearance in the seventeenth century. The seventeenth
century featured two similar theories on the cause of heat and cold. The
phlogiston theory of heat viewed flammability in terms of possession
of a substance called phlogiston; when a material was burned, the air
absorbed the phlogiston and the burnt substance became “dephlogisti-
cated.” Cold was likewise transferred from one substance to another;
the frigorific theory (which sounds like a 1930s trade name for a re-
frigerator) held that there was an ultimate cold body called the primum
frigidum.1 This body was the ultimate dispenser of cold; all other bodies
acquired their coldness from it.

The talented British physicist Robert Boyle was one of the first to
investigate the nature of cold through scientific experimentation. It was
probably not a coincidence that this occurred during the Little Ice Age,
when Europe was undergoing a multi-century cold snap that reached a
minimum during the period of Boyle’s investigations. Boyle weighed
a barrel of water, left it out in the snow, and then weighed it the next
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day when the water had frozen. Ice occupies a larger volume than the
water needed to create it (as can be seen from the ice cubes floating in
a glass of water), and even though the expanding ice had broken the
barrel, the ice weighed the same as the water. If water was absorbing
something from the primum frigidum, what it absorbed clearly didn’t
weigh anything (at least to the limit of seventeenth-century weighing
devices). Boyle reached the conclusion that substances became hot and
cold because of some internal characteristic of the substances. How-
ever, further developments in thermodynamics had to wait upon the
development of thermometry and the adoption of a calibration scale.

The Development of Thermometry and the 

Experiments of Guillaume Amontons

Hero of Alexandria, the inventor of the steam engine (although not one
that could be commercialized, or the Industrial Revolution might have
occurred almost two millennia earlier), was aware that air expanded
when heated, and created a primitive thermometer by immersing the
open end of a tube of air in a container of water. As the air expanded
or contracted, the air-water boundary moved. The problem was that
this apparatus was also sensitive to changes in air pressure. A way to
circumvent this was found in the middle of the seventeenth century,
when Fernando II de’ Medici, the Grand Duke of Tuscany, used a
sealed tube of alcohol instead of air; shielded from atmospheric pres-
sure, the volume of the alcohol depended only on the ambient temper-
ature. The inclusion of a graduated scale next to the tube made the
thermometer truly useful, and when alcohol gave way to mercury as
the indicator of choice for scientists, the modern thermometer’s devel-
opment was pretty much complete. Mercury enabled more compact
thermometers to be constructed. It was with such an air-mercury ther-
mometer that Guillaume Amontons first suggested the possibility of a
numerical value for the lowest possible temperature.

Amontons was a French scientist who was deaf from childhood, which
probably prevented him from attending a university. He studied mathe-
matics and science on his own, made improvements in the thermometer,
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barometer, and hygrometer, and turned from the study of friction to an
investigation of the relationship in a gas between temperature and pres-
sure. He immersed a container of air joined to a column of mercury in
water. Amontons noted that the temperature corresponding to the melt-
ing point of ice was 51 on his scale, and the temperature corresponding
to the boiling point of water was 73. Amontons argued that when the
pressure (and corresponding volume) of the air was zero, no further
cooling could take place, although he did not “do the math” required
to determine the temperature of absolute zero.

We, however, can do the math that Amontons did not. One unit on
Amontons’s scale is equal to 82⁄11 Fahrenheit degrees. Given his data,
a reduction of 51 units, or 417 Fahrenheit degrees, from the freezing
point of water would be required to reduce the pressure to zero; this
corresponds to an estimate of –385ºF for absolute zero. This isn’t so
bad (the actual value is about –459.67ºF), especially considering that
Antoine Lavoisier, Pierre-Simon Laplace, and John Dalton, three bril-
liant scientists, would conclude in the latter portion of the eighteenth
century that absolute zero lay between –1,500ºF and –3,000ºF.2 The ac-
tual value, as well as the name, of absolute zero would eventually come
from Lord Kelvin, who developed a scale starting at absolute zero that
placed the freezing point of water at 273.15 degrees—precisely where
the modern system of measurements, which records temperatures in
kelvins, puts it today.

Despite the theoretical success, no one was considering an assault
on absolute zero; at this time it would have seemed as distant as the
Moon or the stars. This was undoubtedly due to the fact that there was
no way to create cold. Creating heat was easy—find something flam-
mable and burn it. But only nature could create cold, until an experi-
ment conducted by a scientist who was better known for practically
everything else he did.

Michael Faraday and the Liquefaction of Gases

Michael Faraday was a young man working for a bookbinder when he
heard a series of lectures given to the public by the eminent chemist
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Sir Humphrey Davy. Faraday took a shot, and wrote Davy to ask if he
needed an assistant. Davy was impressed, and hired Faraday. Thus
began the career of one of the greatest experimenters in the history of
science.

Faraday is undoubtedly best known for his experiments involving
electricity, but he also made significant contributions to chemistry. One
day he had produced liquid chlorine from chlorine hydrate. The chlo-
rine was in a sealed tube, and Faraday decided to examine it more
closely. He broke the tube—and the tube exploded into shards of glass,
which flew around the laboratory. The chlorine was instantly trans-
formed from a liquid into a gas. Faraday, ever the adroit observer, noted
that if vaporization of a liquid resulted in an explosion, possibly the
reverse—applying pressure to a gas—would produce liquefaction. In-
terestingly enough, although Faraday was interested in pure science
rather than commercial applications of scientific discoveries, he did
note that someday commercial applications might be found for this par-
ticular phenomenon.3 That, of course, happened—and the refrigerator
in your kitchen is a primary example. A liquid circulates throughout a
system of coils in your refrigerator. It evaporates in a chamber inside
the refrigerator, which causes heat to flow into the evaporating liquid
from the surrounding environment, cooling it. The gas is then pressur-
ized outside the refrigerator by an electric pump; this liquefies it and
releases the heat that the liquid absorbed in the refrigerator. The cycle
continues until an equilibrium temperature is reached. Simple enough,
but the discovery revolutionized the world.

Chemists display the information about where various substances
liquefy and solidify through a phase diagram. One axis represents the
pressure P, the other axis represents the temperature T, and the P-T
plane divides into regions, each of which represents a phase of the sub-
stance.4 The phase diagram for many gases, such as carbon dioxide and
the gases used in your refrigerator, indicate that sufficient pressure can
cause them to liquefy at room temperature. However, certain gases,
which became known as permanent gases, proved intractable to lique-
faction through pressure alone. This was explained by the Dutch physi-
cist Johannes van der Waals, who realized that intramolecular forces
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could act to make liquefaction through pressure alone extremely diffi-
cult; the temperature would have to be lowered substantially in order
for pressure to produce liquefaction.

Reaching those lower temperatures required what became known as
the cascade approach to liquefaction, and it was to produce a break-
through in the search for the lowest temperatures. The cascade ap-
proach involved liquefying one gas and using that gas to lower the
temperature of another gas, then pressurizing the second gas in order
to liquefy it. The first of the permanent gases to fall to this technique
was oxygen, and then nitrogen. Finally, the brilliant Scottish physicist
James Dewar successfully assaulted what he had called “Mount Hy-
drogen,” achieving the liquefaction of that gas at about –420ºF.5

Although it took Dewar more than a decade to accomplish his goal,
he was not to receive the accolades from the scientific community to
which he believed he was entitled. Unfortunately for Dewar, while he
was reaching the summit of Mount Hydrogen, Sir William Ramsay had
managed something even more amazing—he isolated helium, a gas that
had been presumed to exist only on the Sun. Imagine how Sir Edmund
Hillary would have felt if, after reaching the peak of Mount Everest,
he had seen another, higher mountaintop beckoning tantalizingly in the
distance, and then learned that someone else had already climbed it.

The man who was to beat Dewar in the race to liquefy helium, at a
bare 2 degrees above absolute zero, was the Dutch physicist Heike
Kamerlingh Onnes. Onnes and the British physicist Sir Ernest Ruther-
ford, though working in different countries on different problems, si-
multaneously developed what is now known as “big science.”
Generations of scientists had worked either as lone wolves or in small
groups, but Onnes and Rutherford created laboratories staffed by a
team of scientists and technicians. The race, as Damon Runyon would
put it, is not necessarily to the swift nor the battle to the strong, but
that’s the way to bet.6 Kamerlingh Onnes employed a variation of the
cascade technique, using oxygen to liquefy nitrogen, nitrogen to liquefy
hydrogen, and hydrogen to liquefy helium—the same approach that
Dewar was using, but with greater resources. Success was achieved in
June 1908.
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This achievement was to have unexpected and exciting conse-
quences. In cataloging the properties of liquid helium, Kamerlingh
Onnes decided to measure its electrical resistance. Every other sub-
stance previously investigated had some electrical resistance, but, at
a sufficiently low temperature, liquid helium had none; an electrical
current induced in liquid helium will flow forever. This made it the
first-known superconductor. (The search for high-temperature super-
conductors today is one of the major quests of contemporary physics;
a material that is superconducting and easy to shape at room tempera-
ture would have substantial economic benefits.) Equally astounding
was that liquid helium has no viscosity—the property of self-adhesion
that makes honey and molasses so difficult to pour. Liquid helium
placed in an open container appears to defy gravity; it rises of its own
accord and overflows the container.7

One of the hallmarks of the progress of science and technology is
how stuff that once was rare becomes widely available; what was the
subject of an epic quest a century ago is now an item of basic com-
merce. The price of a liter of liquid helium is about the same as a latte
and biscotti at your local Starbucks. Keeping it, however, is another
matter—you’ll probably have to store it in a special Dewar flask, and
these go for thousands of dollars. It somehow seems fitting that both
Dewar and Kamerlingh Onnes are remembered for their achievements
in pursuing the ultimate in cold, even if they are remembered in differ-
ent ways.

Bose-Einstein Condensates 

and the Realm of the Ultimate Cold

I was born about a decade before room air conditioners came into wide-
spread use. Summer nights in the suburbs of New York were liable to
be hot and sticky, so we took advantage of a simple way of getting cool
enough to sleep. You simply spread a thin film of water on your body
just before going to sleep; the water molecules would evaporate and in
so doing would remove heat from your body, cooling it off. The same
phenomenon explains why a hot liquid left in an open cup cools; the
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molecules have an average heat but the hottest ones evaporate, leaving
behind molecules of a lower average temperature.

An ingenious application of evaporative cooling to liquid helium en-
abled scientists of the mid–twentieth century to reach temperatures
within one-thousandth of one degree of absolute zero. Scientists, how-
ever, wanted to go much farther than that—they were seeking a new
state of matter, the existence of which had been predicted by Albert
Einstein,8 but which could only be found at temperatures within a hair’s
breadth of absolute zero.

The impetus for this arose in what, at the time, was an unlikely place:
India. A century ago, India was off the beaten track as far as science
was concerned. Nevertheless, shortly before World War I, an obscure
Indian mathematician, Srinivasa Ramanujan, wrote a letter describing
some interesting results he’d found to the Oxford mathematician G. H.
Hardy. Hardy described that letter as the one truly romantic moment
in his life. Hardy knew some of Ramanujan’s results, suspected some
of the others, and found some so surprising that, as he wrote, “They
must be true, because if they were not true, no one would have the
imagination to invent them.”9 Fittingly, the letter made Ramanujan an
international mathematical star. A decade later, the Indian physicist
Satyendra Bose wrote Albert Einstein a letter about the statistical me-
chanics of photons. Possibly remembering what had happened when
Hardy received the letter from Ramanujan, Einstein read Bose’s letter,
and was so impressed that he translated Bose’s results into German and
submitted it on Bose’s behalf to the prestigious Zeitschrift für Physik10

(“Journal of Physics”). Einstein extended Bose’s work to certain other
particles, which resulted in the prediction of a state of matter that had
not yet been shown to exist. This state of matter, called a Bose-Einstein
condensate, could only occur at temperatures inconceivably close to
absolute zero. A Bose-Einstein condensate consists of a collection of
bosons (particles with integer spin, which can either be elementary,
such as the particles that carry forces, or composite, such as the nucleus
of a carbon-12 atom), all of which occupy the lowest possible quantum
energy state. In such a state, these particles lose their individual iden-
tities; they are not just “all for one and one for all,” but all are one and
one is all.
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Bose and Einstein had shown that it would require temperatures
much colder than that achieved by evaporative cooling of liquid helium
for a Bose-Einstein condensate to exist.

In order to achieve this, a new piece of technology was needed—
the laser. As an atom cools down, its kinetic energy decreases. Since
kinetic energy depends upon an atom’s mass and velocity, this requires
that its velocity has decreased as well. Absolute zero represents the
temperature of an atom that does not move at all, which quantum me-
chanics has shown to be impossible. Nonetheless, the technique of laser
cooling allows atoms to be slowed down to a speed that is nearly in-
distinguishable from zero. The idea is reasonably straightforward; if
an atom is moving in one direction and collides with a photon moving
in the other direction, the atom will absorb some of the energy from
the photon. Just as hitting a tackler slows down a runner in football,
hitting the photon will slow down the atom—as long as the photon has
a frequency that “resonates,” or is in synch with, the natural frequency
of the photons that are characteristically emitted by the atom.

The race to produce a Bose-Einstein condensate paralleled the race
to liquefy helium nearly a century earlier. The competition the second
time was much more of a friendly one, with the competing teams meet-
ing at conferences, exchanging notes, results, and ideas. One group was
headed by Eric Cornell and Carl Wieman at the University of Colorado
at Boulder, the other by Wolfgang Ketterle at MIT. Cornell and Wieman
got there first, achieving a Bose-Einstein condensate in a cluster of ap-
proximately two thousand rubidium atoms cooled to less than a mil-
lionth of a degree above absolute zero. This was soon followed by a
similar success by Ketterle with a much larger collection of atoms, and
all three were awarded the Nobel Prize for Physics in 2001.11

I recall that, on my visit to the Hayden Planetarium, the docent men-
tioned that even though the temperature of the solar plasma was over
a million degrees, you’d never feel it. I found this astounding—after
all, I knew that if I were to spill some boiling water on myself, I would
certainly feel it. However, the solar plasma is so incredibly thin that
the heat content of the plasma is almost nonexistent. Similarly, you
should absolutely never pick up a piece of dry ice (frozen carbon diox-
ide, about -110ºF), but a simple calculation should convince you that
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you could pick up a Bose-Einstein condensate without any damage.
The original Bose-Einstein condensate contained only 2,000 rubidium
atoms. A grain of salt, on the other hand, contains approximately 1018

atoms, in a cube of 1 million atoms on a side. A cube of 2,000 atoms
would have approximately 13 on a side. Admittedly, a rubidium atom
is somewhat larger than a sodium or a chlorine atom (the atoms that
make up salt), but it’s probably safe to say that if the Bose-Einstein
condensate of 2,000 rubidium atoms formed a cube, each side is less
than 1⁄10,000 of the length of one side of a grain of salt. Even at almost
absolute zero, it seems pretty certain that you could pick it up safely—
assuming you could even find it.

A Final Twist: Negative Temperature

The Fahrenheit and Celsius scales used for temperature measurement
throughout the world offer negative temperatures because a tempera-
ture of zero is merely a reference point. It’s a cold day, but nothing ex-
ceptional, if the temperature drops below zero degrees Celsius, and it’s
a very cold day if the temperature drops below zero degrees Fahrenheit,
but anyone who lives in either the Midwest or Canada is used to this.
However, absolute zero connotes an absence of movement, which is
prohibited by quantum mechanics. If absolute zero corresponds to no
movement, one would think that temperatures below absolute zero
would correspond to quantities not of this universe. Maybe tachyons,
hypothetical objects with imaginary mass that never travel slower than
the speed of light, could have negative kelvin temperatures, but what
could possibly be meant by less movement than no movement?

The problem here is that we are defining temperature in terms of
motion, which is the approach of classical physics. Statistical mechan-
ics offers a broader definition of temperature, however, which can make
negative temperatures possible. A precise explanation requires an un-
derstanding of both calculus and entropy, but it is possible to get an
idea of how negative temperatures can occur without dealing too much
with either, although we’ll see a more detailed discussion of entropy
when we discuss thermodynamics in Chapter 7.
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Here’s a familiar example that illustrates the idea of entropy. I re-
cently attended a formal dinner party, in which there were two distinct
periods: the predinner cocktails and the dinner itself. During the cock-
tail period, people were moving around freely, but once the dinner
began, everyone went to their assigned seats. An informal definition of
entropy is the number of different ways of arranging the individual
components corresponding to a higher-level description of the system.
There are only two higher-level states of the party: the cocktail period
and the sit-down dinner. The individual components of the system are
the guests. The cocktail period had higher entropy than the sit-down
dinner, because there were many more arrangements of the individual
parts (the guests) during the cocktail party than during the sit-down
dinner. Statistical mechanics uses the term “macrostate” for the higher-
level description of the system, and “microstate” for the lower-level
one. A microstate corresponding to the cocktail period macrostate would
read something like, “Fred was at the bar drinking a martini and talking
to Anita, who had just ordered a Bloody Mary from the bartender.”

Now consider a glass of water with an ice cube floating in it. Two
adjacent ice molecules are constrained to be near each other and mov-
ing in roughly the same direction. When the ice cube melts, however,
those two molecules are free to drift anywhere inside the glass and
move unrelated to each other. The water and ice cube state has fewer
arrangements of the individual molecules constituting it than does the
glass of water because there is no “adjacent molecule” restriction on
the water molecules as there is on the ice molecules.

It is possible for entropy to decrease, but in the ordinary world, we
have to pump energy into the system to make that happen. Left to their
own devices the guests at the party will mill around drinking cocktails;
the hostess has to make an announcement that it’s time to sit down for
dinner—or lead by example by taking her seat. We can get a glass of
water to morph into a glass of water with an ice cube floating in it, but
we have to supply the energy to enable refrigeration. The fact that we
can do this enables a more mathematically precise definition of tem-
perature to be given—rather than it being a function of the kinetic en-
ergy of the particles, it is the rate at which entropy changes as more
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energy is added to the system (T = dS / dE for those who are familiar
with calculus).

Of course, for most systems with which we are familiar, adding en-
ergy will increase entropy. A system near absolute zero has all its mol-
ecules moving extremely slowly, which implies few microstates and
therefore low entropy. Add heat to the system and the molecules move
more quickly and are not constrained to be so close to one another, so
the entropy increases. This positive change in the amount of entropy
as energy is added to the system gives a positive value to the quantity
dS / dE, and hence we always observe temperature as positive. That’s
because there are theoretically limitless microstates available to the
system; heat it enough and we can imagine the molecules flying all
over the place at incredible speeds. However, there are systems that
have only a limited range of available microstates—and for those sys-
tems something happens that has no parallel in our everyday world.
There comes a point when adding extra energy results in a decrease in
entropy; that corresponds to a negative temperature because a decrease
in entropy as energy is added to the system gives a negative value to
the quantity dS / dE.

Quantum theory made it possible to envision such systems, and it’s
not hard to see how negative temperature (a decrease in entropy as en-
ergy is increased) can occur. Suppose we have four atoms confined in
a very thin wire, perhaps confined by magnetic trapping, so that when
energy is added, all the energy goes to changing the spin of the atom
rather than its position or velocity. We’ll assume this is not a Bose-Ein-
stein condensate, so atoms 1, 2, 3, and 4 have separate identities. Each
atom only has two states: the spin down (low energy) state, or the spin
up (high energy) state. Imagine the system is initially in its lowest en-
ergy configuration with all four atoms having spin down; this is the
only microstate associated with this energy configuration. If one quan-
tum of energy is added, there are four possible microstates associated
with this; any one of the four atoms could be spin up with all the others
spin down. The number of microstates has increased, so the addition
of energy has resulted in an increase in entropy; this corresponds to
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positive temperature. Add another quantum of energy and there are six
possible corresponding microstates, depending on which two atoms
have spin up (1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, or 3 and 4).
Again an increase in energy has resulted in an increase in entropy.
However, add one more quantum of energy, and there are only four pos-
sible microstates, corresponding to which one of the four atoms has spin
down while all the others have spin up. Here an increase in energy has
resulted in a decrease in entropy, and so the temperature is negative—
below “absolute zero.”

Stranger Than We Can Imagine?

That’s not the only bizarre situation that comes about with negative
temperature. Bizarre though it may seem, a system at negative temper-
ature is hotter than the same system at positive temperature; heat will
flow from the system at negative temperature to the system at positive
temperature! Heat always flows from hotter to colder systems—but this
is not measured by temperature. In fact, the temperature scale from
numbingly (and beyond) cold to blisteringly (and beyond) hot increases
from just above 0°K to positive K to positive infinity K (although of
course it can’t get there), and then jumps to negative infinity K (like-
wise), negative K, to just below 0°K. Slightly below absolute zero is
considerably hotter than hell.

The brilliant astrophysicist Sir Arthur Eddington once said that the
universe is not only stranger than we imagine, it is stranger than we can
imagine.12 Maybe not—if we can come up with the mathematics to de-
scribe it. An argument might be made that negative temperatures are an
artifact of the mathematical expression we use to define temperature,
but that definition was motivated by defining temperature as a quantity
that had the same value for any two systems in thermal equilibrium.

Negative temperatures don’t seem to occur naturally anywhere in
the universe, but we can look at the thermodynamical equations de-
scribing temperature, couple them with our knowledge of quantum me-
chanics, and predict phenomena that may be beyond even the universe’s
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power to imagine. Negative temperature systems have been produced
in the laboratory and have been studied for almost half a century—but
as yet nothing has been produced that has shown up in your local stores.
Just wait—a hundred years ago a few drops of liquid helium was the
subject of nearly two decades of intense effort; now you can find it on
Google Shopping for $5.00 per liter.13
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C H A P T E R  5

AVO G A D R O ’ S  
N U M B E R

Physics may lay claim to being the most fundamental of the sci-
ences, but chemistry is the science that has the most influence

on our lives—and more importantly, on the quality of our life. This is
a book about basic science, but I’d like to pause for a moment to con-
sider the economy. Given how much time we spend participating in the
economy—in the production, distribution, and consumption of “goods
and services,” if you will—you might think that economics is the most
important science around. It describes our jobs, after all, and taxes, and
most everything that takes up way too much of our time. But you can’t
have economics without goods and services, and where do these goods
and services come from? Moreover, services are clearly a second fiddle
in that duo, given that, without goods, there wouldn’t be a whole lot in
the way of services. After all, you never hear anyone say, “He really
delivers the services.” And when it comes to delivering the goods, you
simply can’t beat chemistry. I’ve seen estimates that 10 billion different
items are available for consumption in London alone,1 and a substantial
fraction of recently developed goods rely heavily on our knowledge of
chemistry for their existence. Fundamental to that knowledge is our tar-
get in this chapter: Avogadro’s number, which tells us the number of
particles that exist in a certain amount of stuff. Without it, chemistry
would probably still be the hit-or-miss operation it was when alchemists
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mixed potions in the hope that something interesting would occur, and
the multitude of goods that make modern life so enjoyable would never
have appeared.

Better Things for Better Living

I was born shortly after the 1939 World’s Fair, which took place during
the spring and summer just before the invasion of Poland that marked
the beginning of World War II. In retrospect, we can look with some
wistfulness at the fair and its promise: that we were seeing the “World
of Tomorrow,” the way the world could be. This is not to say that every-
thing at the fair turned out to be nothing but daydreams, however. One
section of the fair was the Production and Distribution Zone, and one
of the chief exhibitors there was the Du Pont Company, one of the
world’s foremost chemical companies. Featured were two of Du Pont’s
synthetic creations, neoprene and nylon, the two spearheads in what
would eventually become the plastic takeover of the world. These had
been synthesized by a team headed by Wallace Carothers,2 a chemist
who had been enticed to move from Harvard to Du Pont because of the
extensive research facilities available in industry.

Carothers’s—and Du Pont’s—impact has been tremendous. I work
sitting at my desk, constructed of some sort of plastic, typing on a key-
board that is primarily plastic, and visualizing the words I type on a
monitor that is also mostly plastic. I took an inventory of the items on
my desktop: there are at least twenty separate items whose components
are largely plastic. My shoes are mostly plastic, as are the rims of my
eyeglasses. Suffice to say that the whole room is practically a shrine to
the benefits of synthetic organic chemistry, which makes it an ironic
tragedy that Wallace Carothers was born too early to benefit from a
later triumph of chemical synthesis. Carothers suffered from severe
mood disorders, and committed suicide two decades before the wide-
spread introduction of the antidepressants that have helped so many af-
flicted with this condition.

The first great step on the road to creating the World of Tomorrow—
and yesterday’s world of tomorrow is now the world of today—was

58 COSMIC NUMBERS

         



taken by John Dalton, whom we have encountered before. In the chap-
ter on ideal gases, we looked at one of Dalton’s failures—his belief
that gases expanded in proportion to their previous volume. Many great
scientists have a notable failure on their record—Linus Pauling pro-
posed a triple-helix structure for DNA, missing it by that much—but
it is their successes that characterize their careers, and Dalton’s expo-
sition of the atomic theory is one of the great landmarks of science.
Without the atomic theory, chemistry would be basically a hit-or-miss
collection of cookbook recipes. Without the atomic theory, there is sim-
ply no way to deliver the goods in the abundance that we now enjoy.

The basic principle of Dalton’s atomic theory was, first and fore-
most, that all matter is composed of extremely small particles, called
atoms. This makes chemistry the study of how the atoms of substances
combine and separate to create different substances. According to Dal-
ton’s theory, each element has its own characteristic atom and each
compound its own characteristic molecule (Dalton called them “ulti-
mate particles”), and all examples of any particular particle are identi-
cal. Finally, when elements combine to form compounds, the molecules
of the compounds consist of small whole numbers of atoms of the con-
stituent elements. Although modern science has unearthed and created
exceptions to these basic premises, they are honored much more in the
observance than in the breach. Indeed, as Richard Feynman put it in
an introductory lecture at Caltech in 1961, “If, in some cataclysm, all
of scientific knowledge were to be destroyed, and only one sentence
passed on to the next generation of creatures, what statement would
contain the most information in the fewest words? I believe it is the
atomic hypothesis . . . that all things are made of atoms—little particles
that move around in perpetual motion. . . . ”3

But it was a long and rocky road from Dalton and the atomic theory
to nylon, Prozac, and the transformation of the 1939 World Fair’s
World of Tomorrow into the world of today. The atomic theory was the
first critical step, but simply knowing the nature of the bricks doesn’t
guarantee you can build a building. A great deal needed to be accom-
plished before the Du Pont Company could embody its slogan “Better
Things for Better Living—Through Chemistry.”
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The Structure of Chemical Compounds

Bricks, when put together, make buildings—and atoms, when put to-
gether, make chemical compounds. Just as the knowledge of how many
bricks are needed and where they should be placed is necessary to con-
struct a building, it is necessary to know what atoms are needed and
where they should be placed to create chemical compounds. Admit-
tedly, in the early portion of the nineteenth century, scientists were not
aware of the role that the arrangement of the atoms within a molecule
played; simply determining the number of atoms in a compound was a
difficult task.

Dalton’s original theory allowed for the construction of different
compounds using the same elements. For instance, Dalton knew of two
distinct oxides of carbon, what we nowadays refer to as carbon monox-
ide and carbon dioxide. He was able to ascertain that a carbon monox-
ide molecule consisted of one atom of carbon and one of oxygen,
whereas a carbon dioxide molecule required two atoms of oxygen to
accompany the one atom of carbon. This enabled him to deduce the
relative weights of the carbon and oxygen atoms with some accuracy.
This accuracy, however, was somewhat impaired by Dalton’s incom-
plete knowledge of the chemical composition of that most vital and
ubiquitous substance—water.

Dalton had developed a systematic approach to the description of
chemical compounds. In Dalton’s scheme, a binary compound was one
in which a single atom of one element was paired with a single atom
of another element; a ternary compound was one in which a single atom
of one element was combined with two atoms of another element; a
quaternary compound, a single atom of one element combined with
three atoms of another element. This scheme worked well to describe
the binary compound carbon monoxide and the ternary compound car-
bon dioxide. However, in Dalton’s era only one compound of hydrogen
and oxygen was known—water—and so Dalton assumed it consisted
of a single atom of oxygen and a single atom of hydrogen. Dalton knew
that the weight of the water formed from equal volumes of oxygen and
hydrogen was nine times the weight of the hydrogen component, and

60 COSMIC NUMBERS

         



because he assumed that the same number of hydrogen and oxygen
atoms were present in water, he deduced using simple algebra that the
weight of an oxygen atom was approximately eight times the weight
of a hydrogen atom.

Amedeo Avogadro and Stanislao Cannizzaro

The resolution of the problem of relative atomic weights was to come
from the efforts of two Italian scientists. Ironically, Avogadro is not
universally regarded as a chemist, given the pivotal role that Avogadro
played in the development of modern chemistry. True, Avogadro was
a professor of mathematics and physics throughout most of his career,
but his fame rests on a single paper he published in 1811, with the ex-
hausting title “On the Determination of Proportion in Which Bodies
Combine According to the Number and the Respective Disposition of
the Molecules by Which Their Integral Particles Are Made.” Publicity
was harder to get in the early nineteenth century than it is today—no
Internet on which to blog, no search engine to game—and so this paper
with its leaden title sank from sight. Too bad, because Avogadro had
developed a rationale that could have hastened the development of
chemistry by allowing chemists to correctly compute the relative
atomic weights of the elements.

That rationale is contained in Avogadro’s hypothesis, which is very
simple to state: at the same temperature and pressure, equal volumes
of gas contain the same number of molecules—not the same number
of atoms. The distinction between atoms and molecules was not com-
pletely clear to Dalton and the other scientists of that era. Dalton rec-
ognized that the molecule was the basic indivisible unit for chemical
compounds, but he did not realize that for some elements, such as hy-
drogen, nitrogen, and oxygen, the atoms of the same element would
form bonds with each other, giving us diatomic molecules of hydrogen,
nitrogen, and oxygen, for example. (Indeed, more generally, he thought
of atoms as indivisible particles, something not definitively disproven
until Otto Hahn and Fritz Strassmann initiated the fission of uranium
into barium in 1938.) We have seen how his erroneous structure for the
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water molecule resulted in an inaccurate determination for the atomic
weight of oxygen. This problem was corrected by Avogadro’s hypoth-
esis and the methodology it suggested.

The critical experiment involves combining two liters (or any fixed
volume) of hydrogen with one liter of oxygen; so long as both those
volumes are at equal temperatures and pressures, what results is two
liters of water vapor at the same temperature and pressure. Avogadro’s
hypothesis is that equal volumes of gas contain the same number of
molecules; consequently, there are the same number of water molecules
at the end as there were hydrogen molecules at the beginning, and there
are twice as many water molecules as there were oxygen molecules.
Therefore, a single molecule of water contains twice as many hydrogen
atoms as it does oxygen atoms, which means that the simplest form for
a water molecule is the well-known H2O. This enables one to compute
the correct atomic weight for oxygen, which is not eight times that of
hydrogen, as Dalton surmised, but nearly sixteen times. Indeed, Avo-
gadro actually made this computation, getting a weight of fifteen.

There is another, subtler deduction that can be made from Avo-
gadro’s law. If the volumes of hydrogen and oxygen were collections
of single atoms rather than diatomic molecules, the chemical reaction
described above would produce the same number of water molecules
as there were oxygen atoms—that is, there would be one liter of water
vapor, not two. The way out of this dilemma was to assume that each
molecule of hydrogen consisted of two atoms of hydrogen and each
molecule of oxygen consisted of two atoms of oxygen. Then two mol-
ecules of hydrogen would consist of four atoms of hydrogen, one mol-
ecule of oxygen would consist of two atoms of oxygen, and the resulting
reaction would produce two molecules of water. Each water molecule
would consist of two hydrogen and one oxygen atoms, and the two
water molecules would consist of four hydrogen and two oxygen
atoms, a correct job of atomic bookkeeping.

Avogadro was fully aware of the consequences of his hypothesis. As
he states in his seminal article, “Setting out from this hypothesis, it is
apparent that we have the means of determining very easily the relative
masses of the molecules of substances obtainable in the gaseous state,
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and the relative number of these molecules in compounds; for the ratios
of the masses of the molecules are then the same as those of the densi-
ties of the different gases at equal temperature and pressure, and the
relative number of molecules in a compound is given at once by the
ratio of the volumes of the gases that form it.4

The history of science is replete with advances that went unrecog-
nized when they were published, and Avogadro’s contribution remained
in the background for almost half a century. The classic four-volume
recapitulation History of Chemistry, published between 1843 and 1847
by the German chemist and historian Hermann Kopp, contains no ref-
erence to it. Indeed, when Avogadro died in 1856, his obituary notice
in the journal Nuovo Cimento did not mention it! It took the efforts of
a fellow Italian, Stanislao Cannizzaro, to bring attention to the numer-
ous problems that Avogadro’s hypothesis resolved.

Perhaps Avogadro’s hypothesis was ahead of its time, and chemists
of the era were not yet sufficiently comfortable analyzing chemistry in
terms of atoms and molecules to recognize its power. Perhaps it was
just that he was not considered a chemist by his peers. Cannizzaro, on
the other hand, was a chemist of some stature. He had discovered an
unusual type of reaction, now known as a Cannizarro reaction,5 so per-
haps his colleagues were just more prepared to listen to him. (The re-
action is beyond the scope of this book, but it involves—for those
readers familiar with chemistry—both reducing and oxidizing one
chemical species to get two different chemical species.) Regardless, I
do wonder how chemistry could have advanced to a point where an
analysis of such a complicated reaction was possible without taking
advantage of the clarity and power of Avogadro’s hypothesis.

Two years after Avogadro’s obituary in Nuovo Cimento omitted men-
tion of the hypothesis, Cannizzaro published an article in that journal
in which he restated the hypothesis and discussed how it resolved many
of the perplexing problems that chemists were encountering. This time,
the chemical world was ready to appreciate it. As the great German
chemist Julius Lothar Meyer later wrote, “Avogadro’s hypothesis had
a great influence particularly upon the development of chemical
theories. . . . From Avogadro’s laws dates the beginning of a general
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theory of chemistry, a theory that explains the atomic constitution and
the major part of the properties of compound bodies.”6

Dmitri Mendeleyev and the Periodic Table of the Elements

By the time Cannizzaro made Avogadro famous, the world’s chemists
had discovered sixty-three elements. Even though they now had a tool
for determining the atomic constituents of compounds, they still lacked
general rules for describing what various atoms, and the compounds
they could form, were like. For example, when sodium, a lightweight,
explosive metal, chemically combined with chlorine, a poisonous yel-
low-green gas, the result was common table salt, sodium chloride, a
compound that is neither metallic, gassy, poisonous, or explosive.
Until the rules could be discovered, the potential of chemistry would
be limited.

Into this state of disarray came Dmitri Mendeleyev, a Russian
chemist, who decided to try to organize the known elements into a pat-
tern. To do so, he first arranged these elements in increasing order of
atomic weight, the same physical property that had attracted the atten-
tion of John Dalton when he devised the atomic theory. He then im-
posed another level of order by grouping the elements according to
secondary properties such as metallicity and chemical reactivity—the
ease with which elements combined with other elements.

The result of Mendeleyev’s deliberations was the first periodic table
of the elements, a tabular arrangement of the elements in both rows
and columns. The atomic weights increased from left to right in each
row, and from top to bottom in each column, and, in essence, each col-
umn was characterized by a specific chemical property—alkaline met-
als in one, chemically nonreactive gases in another.

When Mendeleyev began his work, not all the elements were known.
As a result, there were occasional gaps in the periodic table: places
where Mendeleyev would have expected an element with a particular
atomic weight and chemical properties to be, but no such element was
known to exist. With supreme confidence, Mendeleyev predicted the
future discovery of three such elements, giving their approximate
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atomic weights and chemical properties even before their existence
could be substantiated. His most famous prediction involved an ele-
ment that Mendeleyev called eka-silicon. Located between silicon and
tin in one of his columns, Mendeleyev predicted that it would be a
metal with properties resembling those of silicon and tin. Further, he
made several quantifiable predictions: its density would be 5.5 times
greater than that of water, its oxide would be 4.7 times denser than
water, it would be gray, and more. When eka-silicon (later called ger-
manium) was discovered some twenty years later, Mendeleyev’s pre-
dictions were right on the money.

In addition to being one of the great organizing principles of science,
the periodic table has tremendous practical importance. If a compound
is useful but has some undesirable properties due to one of its constit-
uent atoms, it may be possible to find a better compound for the same
purpose by substituting a chemically similar atom in the place of the
problematic one. For those who must regulate their sodium intake, an
acceptable alternative is so-called light table salt, in which potassium
chloride replaces sodium chloride. The taste is similar, but its effect on
our blood pressure is not.

Scientists often develop their theories in surprising fashion. It was
necessary for Mendeleyev to engage in countless restructurings of his
periodic table, as he had no idea at the start how many rows and
columns would be required. To write down the results of each trial
would tax anyone’s patience. So Mendeleyev constructed a deck of
cards in which each card contained the name and properties of a spe-
cific element. Playing solitaire with this deck of cards made it easier
and more entertaining to try the different possibilities for the periodic
table. (Appropriately enough, the nineteenth-century name for a ver-
sion of solitaire was Patience.)

Avogadro’s Number

Taken together, Avogadro’s hypothesis, Dalton’s atomic theory, and
Mendeleyev’s periodic table form much of the bedrock of chemical
science, but not all of it. Avogadro provided one other important piece
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of that foundation when he deduced Avogadro’s number—these days,
perhaps better known as the Avogadro constant, which describes the
number of particles in one mole of a substance. A mole is defined as
the number of particles in 12 grams of carbon.

Avogadro’s initial formulation predicted that two equal volumes of
two different gases would contain equal numbers of particles. The
masses of those gases, however, are not the same, and Avogadro’s num-
ber enables us to numerically connect those two measurements, mass
and volume. The mass of a liter of carbon gas would be twelve times
that of a liter of (monatomic) hydrogen gas, and 25 percent less than
that of (monatomic) oxygen. The most recent determination of the
number of particles in Avogadro’s number is 6.02214179 × 1023.7

The obvious question is, how do we know this? I suppose the most
direct approach would be to take one mole of a gas and simply count
the number of molecules. Of course, this is impossible—at least for the
present—so another method has to be found. Amazingly enough, it
turns out that there are a lot of ways to do this, but modern technology
has made the problem relatively straightforward. One takes a material
whose crystalline structure is cubical (silicon is the current choice), so
that the atoms in the crystal are the same distance apart whether one
goes from an atom to the next atom by going “north,” “east,” or “up”
(or equivalently “south,” “west,” or “down”). Modern lasers can mea-
sure the distance between atoms with considerable accuracy, and the
number of atoms in a mole can then be calculated in a fairly straight-
forward fashion. It’s basically the same way one would calculate the
number of trees in an orchard, provided that they were planted in rows
and columns and one knew the distance between adjoining trees in the
same row or the same column.

However, lasers have only been around for fifty years or so. The first
time I saw one was during the classic bit of repartee in the movie
Goldfinger, when Auric Goldfinger trains a laser on a metal block to
which James Bond is chained. The laser burns ever closer to Bond, who
asks Goldfinger, “Do you expect me to talk?” 

“No, Mr. Bond,” Goldfinger replies, “I expect you to die.” Not sur-
prisingly, Bond didn’t die, and perhaps more surprisingly, scientists
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were able to do a pretty reasonable job of calculating Avogadro’s num-
ber long before the advent of lasers.

John Strutt (Lord Rayleigh) performed a simple but ingenious exper-
iment which gave an idea of the magnitude of Avogadro’s number. He
put one milligram of oil on a water surface and let it spread out. When
it did, it covered a surface whose area was measured to be 0.9 square
meters, or 9,000 square centimeters. The density of the oil was 0.9
grams per cubic centimeter, and the atomic weight of the oil was 282.5.
Since the oil spreads out until it can no longer do so, the resulting oil
slick is one molecule thick, and the volume of the oil slick is the height
h of a single molecule multiplied by the area of the oil slick. The volume
of the oil slick is the same as the volume of the original milligram of
oil. Density is mass divided by volume, so 0.9 = 0.001 grams / volume,
and we see that the volume of the oil slick is 0.001 / 0.9 ≈ .00111 cubic
centimeters.

Since the volume of the oil slick is 1.111 × 10-3 cubic centimeters,
and we can think of it as a cylinder whose base is 9,000 square centime-
ters and whose height is h, we see that 9,000 × h = 1.111 × 10-3. So h =
1.111 × 10-3 / 9,000 = 1.234 × 10-7 centimeters. Assuming that the space
a single molecule occupies is a cube of side h (even though the molecule
may not be shaped like a cube, that’s the space it occupies, much like a
cubical box is required to pack a basketball), we can estimate the number
of molecules in the milligram of oil. The volume of that milligram was
1.111 × 10-3 cubic centimeters, and so the number of molecules in a mil-
ligram is approximately 1.111 × 10-3 / h3. The number of grams in a mole
of oil is the same as its atomic weight, 282.5, so the number of milligrams
in a mole of oil is 282.5 × 1,000 = 282,500. Consequently, the number
of molecules in a mole of oil—which would be Avogadro’s number—
is 282,500 × 1.111 × 10-3 / (1.234 × 10-7 )3 = 1.67 × 1023. While this is
off by a factor of four from the current best estimate, it’s still in the
ballpark, which is what we would hope for from such a rough calcula-
tion with many estimates.

There is an underlying aesthetic in certain formulas, a classic exam-
ple being Euler’s Formula: eiπ + 1 = 0. You’d have to have a complete
absence of aesthetic sense not to appreciate this formula—and of
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course I’m not worried about your lack of an aesthetic sense, as you
are reading this book. This exquisitely beautiful formula unites the base
of the natural logarithms, the ratio of the circumference of a circle to
its diameter, the fundamental imaginary number, and the additive and
multiplicative identities all in one glorious expression. It’s like going
to a rock concert and finding that the show consists of Elvis, Bruce
Springsteen, the Rolling Stones, the Beach Boys, and Abba—maybe
not your five greatest rock acts, but mine, and you can alter this list to
suit your tastes. Avogadro’s number has a similar power to Euler’s fa-
mous formula, and we will see it again throughout this book.

How Large Is 6 × 1023?

We don’t encounter numbers this large in everyday life. The current
national debt is almost $14 trillion,8 which is 1.4 × 1016 dollars. If there
were approximately 43 million countries, each with that amount of na-
tional debt, it would total about 6 × 1023 trillion dollars, but it’s impos-
sible to imagine that many countries with the productivity of the United
States without getting into the realm of interstellar civilizations. It’s
also impossible to imagine the process by which such a far-flung in-
terstellar civilization could have evolved while simultaneously running
up such a massive amount of debt.

One of the analogies I read when I was young that was used to illus-
trate the size of Avogadro’s number was to take an ordinary cup of cof-
fee and throw it into the ocean. Mix the oceans of the world thoroughly,
and then fill the original coffee cup with ocean water. The cupful of
ocean water will contain a few molecules of the original coffee, be-
cause the ratio of the volume of the cup to the volume of the oceans is
on the order of Avogadro’s number.

Here’s a more modern way to look at it. I have a fairly new, but
fairly cheap, computer—I recently ran a timing cycle on it and it can
go through a loop a million times in roughly two seconds (I just timed
it). I first started programming computers in the late 1950s—when
computers were bulky, slow, and expensive. Only companies could
afford to purchase them, so the fact that all this computer power sits
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on my desk, and cost well under $1,000 (including peripherals) is sim-
ply astonishing. A slightly faster machine—or my machine with pro-
gramming dedicated to computation—would run at about a million
loops per second, so let’s assume that we have a machine that counts
molecules at the rate of a million a second, and we give it the task of
counting the number of molecules in a mole of an ideal gas. The uni-
verse is approximately 14 billion years old, and 14 billion years is
1.4 × 1010 × 365 × 24 × 60 × 60 = 4.4 × 1017 seconds, so assuming
we started counting at the time of the big bang, it has counted ap-
proximately 4.4 × 1023 molecules. So it still has about another five
billion years to run before it finishes.
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C H A P T E R  6

E L E C T R I C I T Y  
A N D  T H E  

P R O P O RT I O N A L I T Y  
C O N S TA N T

My first close encounter with electricity could easily have been
my last.

At any rate, that’s the way my mother told it, and since she’s no
longer here to confirm or deny, I’m willing to accept it as recounted to
me. When I was about three years old or so, my mother noticed that I
was diligently trying to insert a hairpin into an electric light socket. At
any rate, she sprang into action—action consisting of telling me at max-
imum volume to stop doing that and frightening me sufficiently with
regard to the potential dangers from electricity that to this day I never
undertake any sort of complicated rearrangement of electrical connec-
tions without first donning rubber sneakers and work gloves. Everyone
I know thinks this is utterly ridiculous, but if there is a fifth force in
addition to gravitation, electromagnetism, and the strong and weak nu-
clear forces, it has to be maternal imprinting. I’m not sure how it com-
pares with the strong nuclear force, which is pound-for-pound the
strongest of the four forces, but in my case it’s certainly stronger than
electromagnetism—and in this chapter we’ll see just how strong elec-
tromagnetism is.
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Electricity and Magnetism—

The Early Years

Well, the early years as far as mankind’s involvement with these forces
is concerned—the early years of E & M date back to the big bang, or
shortly thereafter. Both electricity and magnetism were known long be-
fore the birth of Christ. The Greeks knew that amber, which is fos-
silized pine resin, had the unusual property that, when rubbed, it could
attract small pieces of wool and lint—and then suddenly expel them.
Indeed, the very word electricity comes from elektron, the Greek word
for amber. Lodestones—naturally magnetized pieces of magnetite, an
iron ore—have been known even longer. When a lodestone is used to
stroke a small piece of iron, the iron acquires the magnetic properties
of the lodestone. In particular, iron needles that have been so magnet-
ized will naturally align themselves in a north-south direction if al-
lowed to do so. It was this property of magnetism that allowed the
construction of an extremely significant invention—the magnetic com-
pass.

The first magnetic compasses were probably invented by the Chinese
more than two thousand years ago, and they were certainly being used
in Europe for navigation by the twelfth century. For centuries, magnetic
compasses were relatively simple affairs, consisting of a magnetized
needle mounted on a sharp pin, the base of which was stuck through a
card on which were marked the major compass points (N, E, S, and W)
and some subdivisions (NW, SSW, etc.). The needle could swing freely,
but since it always aligned itself in a north-south direction, the compass
point N on the card could be placed under the needle, and directions
determined with a fair degree of accuracy.

It would be a long time before any widespread use of electricity
would be made. The key difference was that electric phenomena were
transient, whereas magnetic phenomena were permanent, or nearly so.
Not only did the longer duration time of magnetic phenomena enable
them to find uses, it also enabled them to be studied more easily. The
first person to investigate them seriously was William Gilbert.
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William Gilbert

The term Renaissance man is used nowadays quite cavalierly to convey
abilities in two relatively disparate areas. Many of the great thinkers
of the fourteenth through seventeenth centuries were indeed Renais-
sance men; the archetype is probably Leonardo da Vinci. William
Gilbert was another. He may not be nearly as well known as da Vinci,
but his contributions to the advancement of science were even more
significant.

Gilbert was born in the sixteenth century, an epic period in science.
Vesalius had just published a groundbreaking book on anatomy, and
the Copernican view of the universe was creating an intellectual
firestorm. Unfortunately for some of its adherents, such as Giordano
Bruno, a physical conflagration occurred as well—Bruno was burned
at the stake for his heretical views. Ideas were more freely explored in
England, where Gilbert had become the Royal Physician and was an
early exponent of the Copernican theory.

In addition to practicing medicine, Gilbert was extremely interested
in magnetic and electrical phenomena, and published the first great
work on this subject, On the Magnet and Magnetic Bodies, and on the
Great Magnet the Earth. In it, Gilbert correctly argued that the Earth
was a giant magnet, which explained the fact that magnetized needles
always aligned themselves in a north-south direction. Gilbert also de-
scribed the electric force, which he termed vis electrica, and actually
devised the first electric instrument, which used a pivoting needle—
borrowed from the compass—to measure the relative abilities of vari-
ous substances to be attracted by the electric force. As Gilbert wrote,
“The electric effluvia differ much from air, and as air is the earth’s ef-
fluvium, so electric bodies have their own distinctive effluvia; and each
peculiar effluvium has its own individual power of leading to union,
its own movement to its origin, to its fount, and to the body emitting
the effluvium.”1

Gilbert also noticed some important differences between the behav-
ior of magnetism and the behavior of electricity. He noted that electrical
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attraction disappeared with heat, whereas magnetic attraction did not,
and so concluded that the two forces were different. This is not actu-
ally true—an object’s magnetic properties can be destroyed by ex-
tremely high heat, for one thing, and more importantly, as was to be
discovered, the two phenomena are actually manifestations of the
same force—but Gilbert’s study was an important step toward creating
a civilization that could harness electrical power. Unfortunately, it
would be more than two centuries after Gilbert’s death before the next
step was taken.

Charge Accounts

To study electricity required that scientists be able to produce it more
reliably and in greater quantities than Gilbert could—and to be able to
store it. The latter difficulty had already been surmounted—although
not by humans—as certain types of eels and fish are capable of deliv-
ering a nasty electrical shock. The first reliable and human-made source
of a significant amount of electricity was invented in the seventeenth
century by Otto von Guericke. Von Guericke also deserves to be called
a Renaissance man; after studying mathematics, law, and engineering,
he was forced to flee his home town of Magdeburg during the Thirty
Years’ War. On his return, he helped to rebuild the city, and was later
elected its mayor—and then performed two notable scientific experi-
ments. He invented a device, the Magdeburg hemispheres, to demon-
strate the existence and power of the vacuum, and also devised the first
large-scale electrostatic generator. This consisted of a large ball of sul-
fur with a rod as a central axis, which was surrounded by a belt. The
sulfur ball could be turned with a crank and rubbed with dry hands,
generating an electric charge on the sulfur ball, which could then be
taken elsewhere and studied.

Despite von Guericke’s work, it was only during the eighteenth cen-
tury that the pace of electrical experimentation and development began
to quicken. The first of the significant inventions was the Leyden jar, a
device for storing electricity. Leyden jars could store significant
amounts of electricity, enough to kill small animals. Leyden jars could
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be connected together—nowadays, we would say “in series”—in order
to increase the amount of charge that could be conveyed when the elec-
tricity was released. The Leyden jar could also be used, as Franklin so
famously demonstrated, to show that lightning itself was a form of elec-
tricity. Obviously, the power of lightning was well known, and once it
was known conclusively that it was a form of electricity, a way was
devised to tap lightning as a source of electricity to charge as many as
fifty Leyden jars simultaneously.

The other great development was a different way to obtain electric-
ity—easier than rubbing something with something else, and far less
dangerous than trying to catch lightning in a bottle (a metaphor for us,
an actual endeavor for Benjamin Franklin and others). Scientific ad-
vances are sometimes the result of serendipities, and one such occur-
rence took place when a scalpel that was in contact with a static
electricity generator in the laboratory of Luigi Galvani accidentally
touched the leg muscles of a frog that lay nearby. The muscles
twitched, and Galvani began an extensive investigation of what he
called animal electricity, which he believed was a candidate for the
elusive “life force” that both philosophers and scientists had been
hunting. Serendipity struck again when he bound the frogs’ legs with
copper wire and attached them to an iron balustrade around his terrace.
The frogs’ legs twitched—as they had before when touching the elec-
trified scalpel—but this time there was no obvious source of electric-
ity. Galvani then found that the twitching did not take place if the
wires were made of the same metal as the balustrade, and thus discov-
ered that electricity could be produced by bringing different materials
together to generate it.

This development was brought to fruition by one of the great names
in the history of electricity: Alessandro Volta. Volta began to system-
atically explore the idea that electricity could be produced through the
physical contact of different metals. A careful experimenter, Volta
tested many metals, producing an ordered list such that each metal
would generate a positive charge when paired with a metal above it on
the list. He had also noticed that, when he put two different metals in
his mouth, his tongue tingled from the passage of the electric current,

Electricity and the Proportionality Constant 75

         



and so it occurred to him that moistening materials with brine might
encourage the flow of electricity from metal to metal. He then stacked
an array of differing metals separated by moistened cardboard to am-
plify the small electrical current produced by each metal pair. The result
was the Voltaic pile, and it was not so different from the batteries you
can buy today in your neighborhood store.

Now, finally, science had a source of electricity that was both reliable
and continuous. The problem with Leyden jars was that, like a basket-
ball team that loses in the first round of the NCAA tournament, they
were “one and done”; they discharged their complete stock of electrical
charge all at once. While this could be used for various parlor tricks
and also to ignite explosives (a function that electricity is still fulfill-
ing), it greatly limited the potential applications for electrical power.
So, even while the charge available from the initial Voltaic pile was
minute in comparison with the amount of electricity that could be
stored in a Leyden jar, it was the opening salvo in the arms race to pro-
duce and use electricity.

Volta wrote a letter to Sir Joseph Banks of the Royal Society, in
which he outlined the development of the Voltaic pile, and his conclu-
sions with regard to it. This letter was read to the Royal Society on
June 26, 1800—a date that serves to mark the formal beginning of the
development of usable electric power. However, the source of the elec-
tric power from the Voltaic pile was not understood by Volta, and would
not be fully appreciated for decades. Batteries work as the result of the
release of electrons through chemical action, and are an example of
both the law of conservation of energy and the laws of thermodynam-
ics. The law of conservation of energy—which would later be amended
to incorporate the equivalence between mass and energy in the iconic
formula E = mc2 discovered by Einstein—states that energy can neither
be created nor destroyed. Consequently, the energy that emerged from
the Voltaic pile in the form of electricity had to come from somewhere.
The laws of thermodynamics explained that energy could be trans-
formed from one form to another, but in so doing a certain amount of
energy was inevitably lost. Like a currency broker that will exchange
your dollars for euros but charge you a fee for doing so, the universe—
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as described by the second law of thermodynamics—charges a fee
(measured in lost energy) for transforming chemical energy into elec-
trical energy.

Charles-Augustin de Coulomb

At the same time as the experimenters were looking for new ways to
store and generate electricity, others were trying to explain and under-
stand it. Fortunately, there was already a gold standard in existence for
physical theories—Newton’s universal law of gravitation. Newton had
declared that the gravitational force between two bodies was directly
proportional to their masses and inversely proportional to the square
of the distance between them. This formula could have been the result
of two basic hypotheses. The first would have been that if one of the
masses doubles, the gravitational force between the two masses doubles
as well. The second would have been that whatever gravity is, since it
emanates from a point, it does so by spreading out over the surface of
a sphere. The surface area of a sphere is proportional to the square of
the radius, so if the distance between two masses doubles, the surface
area, which surrounds the stuff that causes gravity, increases by a factor
of four, diluting the stuff by that factor of four.

I’m displaying a good deal of hubris here in postulating how Newton
might have thought, but it’s a reasonably sensible approach, and if it
occurred to me it could certainly have occurred to others. At any rate,
electricity and magnetism could be subject to the same two hypotheses:
double the stuff (electric or magnetic charge) of one of the objects and
the force doubles, double the distance between them and the force de-
creases by a factor of four.

The man who successfully carried out the necessary experiments to
demonstrate these laws for both electricity and magnetism was Charles-
Augustin de Coulomb, an eighteenth-century French physicist.
Coulomb’s primary investigative tool was one we have seen before:
the torsion balance devised by John Michell and used by Henry
Cavendish to weigh the Earth. Coulomb’s task was considerably easier
than Cavendish’s, however, because electromagnetic force is vastly
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stronger than the gravitational force. It’s so much stronger, in fact, that
the relevant deflections of the torsion balance from very small amounts
of electric or magnetic charge can easily be measured in a laboratory,
even a high-school one.

Coulomb wrote numerous memoirs on his investigations of the
strength of the electric and magnetic forces. Here is an example from
his First Memoir,2 in which he introduced a like charge on two pith
balls and measured their separation. I’ve greatly simplified the relevant
data.

Notice that the initial separation halves (or nearly so) in each subse-
quent row, and the deflection quadruples, just as an inverse square law
would predict. Writing nearly a century later, James Clerk Maxwell
(who would become the ultimate arbiter of all things electromagnetic)
said of Coulomb that “it is impossible to overestimate the delicacy and
ingenuity of his apparatus, the accuracy of his observations, and the
sound scientific method of his researches.”3

In fact, there is a strong connection between the work of Michell
and Cavendish, and the investigations of Coulomb. Coulomb’s initial
interest was in torsion, and in all probability the torsion balance that
was built by Michell and used by Cavendish had been designed by
Coulomb. Cavendish credits Coulomb in the Philosophical Transac-
tions in 1798. “Many years ago, the Rev. John Michell . . . contrived a
method of determining the density of the Earth . . . but, as he was en-
gaged in other pursuits, he did not complete the apparatus till a short
time before his death. . . . Mr. Coulomb has, in a variety of cases, used
a contrivance of this kind for trying small attractions. . . . ”4

DETERMINATION OF THE FORCE LAW 
FOR REPULSIVE (LIKE) CHARGES

INITIAL SEPARATION

OF PITH BALLS DEFLECTION

36.0 36.0

18.0 144.0

8.5 575.5
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Why Are Electricity and Gravity So Different?

The force laws for gravity and electricity look virtually the same when
expressed mathematically. Newton’s law of gravitation is F = GmM / r2,
where m and M are the two masses, r the distance between them, and
G the gravitational constant. Coulomb’s Law is F = kqQ / r2, where q
and Q are the two charges, r the distance between them, and k a con-
stant of proportionality whose exact meaning and value we will see in
a few pages. There are some important differences between the phe-
nomena these two formulas describe. The masses m and M can have
only positive values, and gravitational force is always attractive; every
mass attracts every other mass. The charges q and Q, on the other hand,
can take both positive and negative values, and the electric force is
sometimes attractive (when q and Q have the opposite sign) and some-
times repulsive (when q and Q have the same sign).

An upshot of these two facts is that every one of us is a gravitational
attractor, because we all have positive mass, but every one of us is elec-
trically neutral, neither attracting nor repelling electrified objects (ex-
cept on a cold day when we have walked across a rug and acquired a
static electrical charge)—because the average electric charge of the
particles in our body is zero. However, the theories of gravitation and
electricity predict different behaviors for objects that have net gravita-
tional charges (aka masses, and that’s everything in the universe) and
net electrical charges. Gravitational charges attract each other, and as
Newton showed, any object has a center of gravity and the gravitational
force emanating from that object can be regarded as emanating from
its center of gravity. Additionally, masses attract each other, which ex-
plains why the molten iron core of the Earth is at the core of the Earth
rather than making life impossible by covering the entire planet with a
liquid iron ocean.

However, Coulomb showed that because like electrical charges repel
each other, any net electrical charge that an object possesses will do its
best to get as far away from the other electrical charges on the object
as possible. Consequently, net electrical charges distribute themselves
on the surface of an object. Although Coulomb had noticed this during
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his experiments, he proved it in a theorem in his Fourth Memoir.5 For
those who don’t believe that mathematical theorems have practical con-
sequences, here’s some potentially lifesaving advice that is a conse-
quence of Coulomb’s theorem: if you happen to be caught on the road
during a lightning storm, stay in your car! Even if your car is struck
by lightning, thus acquiring a net electric charge, the charge will dis-
tribute itself on the outside of your car, and as long as you stay inside
and don’t touch anything electrically conductive that is connected to
the outside of your car, you’ll be fine. This was dramatically demon-
strated by Nikola Tesla, who sat inside a “lightning cage” calmly read-
ing while huge bolts of man-made electricity flashed all around him.

Hans Oersted, Michael Faraday, 

and Electromagnetic Induction

Any history of electricity, even so brief a one as contained in this chap-
ter, would be incomplete without mentioning the two key experiments
that probably did more to change the standard of living of the average
human being than any other event in human history. The first of these
two experiments was performed by the Danish physicist Hans Oersted,
who in 1820 had shown that turning an electric current on and off near
a compass would cause the compass needle to move. The compass nee-
dle normally only moved in response to the presence of a magnet; con-
sequently, turning the electric current on and off generated a magnetic
field. Of course, the word field had not yet been devised to describe
how magnetism or electricity worked; the idea of a field was due to
Michael Faraday, who performed what in retrospect was the next ob-
vious experiment.

Eleven years later, Faraday turned Oersted’s experiment inside out,
reasoning that if an electric current could affect a magnet, possibly a
magnet could be made to affect an electric current. He succeeded per-
haps beyond his wildest dreams, demonstrating that if a magnet were
moved through a coil of wire in such a way that the motion of the mag-
net continually changed, an electric current would flow in the wire.
This is known as the principle of electromagnetic induction, and is the
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basis for the generation of electricity. I can’t help but wonder what was
responsible for the lag between Oersted’s work and Faraday’s; perhaps
the fact that changing motion of the magnet—not constant motion—
was required to generate the electric current, and failure to realize this
was responsible for the aforementioned eleven-year gap.

The vast increase in the wealth of our society that has been made
possible by cheap and widely available electric power has occurred be-
cause Faraday’s discovery has enabled us to tap into the power of both
the gravitational force and the Sun. The Sun’s heat evaporates water
from the ocean. It rises, cools, and falls as rain or snow at high alti-
tudes. Gravitational force causes water to run downhill, which we can
harness by placing dynamos inside of dams. Rotating the dynamos in-
duces an electrical current that can be transported efficiently far from
the source by means of cables. When we plug a device using an electric
motor into an outlet, the electric current causes magnets to move, and
it is this motion which enables the appliance to operate. The Sun’s heat
eventually evaporates the water that powered the dynamos, and the
cycle starts again. And, of course, we rely on steam heated by burning
coal, oil, and natural gas, and by nuclear fission, to turn dynamos, and
produce electricity, as well.

Faraday also possessed a keen intuition regarding the electrical and
magnetic forces he was studying. Many great scientific advances are
made possible by new ways of conceptualizing phenomena. Faraday
visualized electricity and magnetism as consisting of lines of force per-
meating space, with stronger forces creating a greater concentration of
lines in a particular region. This method of visualizing electricity and
magnetism led to the idea of a field, a type of mathematical description
that occupies a central position in physics. Beyond that little taste,
though, field theory will remain beyond the scope of this book.

The Relative Strength of Electricity and Gravity

I’ve done a lot of reading in science—after all, I’m a science junkie—
and I have seen several different numbers quoted to describe the rela-
tive strength of the forces of electricity and gravity. Even though so
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distinguished a scientist as Martin Rees, who has received more prizes
and awards than I have received handshakes, votes for 1036 as a mea-
sure of how much stronger the electric force is than the gravitational
force, I’m going to vote for 1039: a number I have seen in more than
one place—and that makes the most sense to me. Let me see if I can
convince you.

The most natural comparisons are the ones in which items are close
to each other in kind. Let’s take a look at the annual dog show of the
Westminster Kennel Club to illustrate the idea. Every year they publish
a list of Best in Breeds, and they also name a top dog—the Best in
Show. While I am comfortable with the selection of the Best Beagle or
the Best Golden Retriever, I really don’t see how one can fairly com-
pare beagles with golden retrievers. “Like to like” comparisons seem
much more reliable.

So what does this have to do with comparing electricity and gravity?
Gravity is always an attractive force, but electricity can be either a re-
pulsive or an attractive force depending upon whether the charges in-
volved are like or unlike. It seems to me that comparing the strength
of gravity with a repulsive electric force is—well—a little repulsive
(sorry about that). After all, I work out at the gym (occasionally), and
I know that the same muscular configurations—the way the muscles
are arranged in the body—have different strengths depending upon
whether they’re pulling or pushing. So a fair comparison would require
an attractive electric force, which can be arranged by using a single
electron (negative electric charge) and a single proton (positive electric
charge).

The k in Coulomb’s Law, F = kqQ / r2, functions much as the big G
we saw in Chapter 1. And, just as extraordinary efforts have been ex-
pended to determine the value of G, so have extraordinary efforts been
expended to determine the value of k. Nevertheless, for the purposes
of the computations that will be made in this chapter, we’ll just say that
k = 9 × 109 newton-meters2 / coulomb2.

It doesn’t matter how far apart we position the charges, because the
factor of r2 shows up in the denominator of both, and will therefore
cancel out when we divide the electric force by the gravitational force.
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For simplicity, we’ll imagine the proton and the electron are one meter
apart.

One coulomb is about 6.24 × 1018 electrons, so each electron carries a
(negative) electric charge of 1 / (6.24 × 1018) = 1.6 × 10-19 coulombs. The
proton has an equal positive charge, and so the electric force between the
two is kqQ / r2 = 9 × 109 × (1.6 × 10-19) × (1.6 × 10-19) / 12 = 2.3 × 10-28

newtons. Small though this may be, the gravitational force between the
proton (with a mass of 1.67 × 10-27 kilograms) and the electron (weigh-
ing in at an even more diminutive 9.11 × 10-31 kilograms) is far less; as
it is equal to GmM / r2 = 6.67 × (10-11 × 1.67 × 10-27) × (9.11 × 10-31) =
1.01 × 10-67 newtons. The ratio of the electric to the gravitational force
between the two is therefore 2.3 × 10-28 / 1.01 × 10-67—about 2.3 × 1039.

Of course, it’s important to bear in mind that comparing different
kinds of particles will give us different ratios. If one decides to compare
the repulsive force, do you use the electron-electron repulsion or the
proton-proton repulsion? The electric repulsive force is the same be-
tween two electrons or two protons, but because a proton weighs about
1,800 times as much as an electron, the gravitational force between two
protons is more than three million times stronger than the gravitational
force between two electrons.

That’s not the only reason for my “like to like” comparison, however—
it’s also that the attraction between positively and negatively charged
particles is hugely important to everyday life. Much of everyday life
is chemical reactions, and chemical reactions are the result of electrons
pirouetting happily from one atomic dance partner to another as the
atoms involved in the chemical reactions change the partners with
whom they are joined. If the ratio of electrical strength to gravitational
strength were somewhat less, all the biochemical processes that we take
for granted would be correspondingly more difficult. Walking, which
represents the temporary defeat of gravitational attraction by biochem-
ical processes—which are powered indirectly through the electric
force—would be more of an effort. That doesn’t mean that we couldn’t
do it, but our musculature would obviously have to be a lot stronger.
The implications for us even developing such musculature are unclear,
because we have no model for how evolution would work under such
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conditions—or if it would even work at all. Similarly, if the ratio of
electrical strength to gravitational strength were somewhat more, that
uncomfortable shock you get on a cold winter day when you touch a
metallic doorknob might be more than just uncomfortable, it might be
life-threatening.

Or it might not; evolution might have produced a mechanism to cope
with this. There’s simply no way for us to tell, because although we
can devise scientific experiments to show how organisms cope with
stronger or weaker electric or magnetic fields, all that coping is done
in an environment in which the electric force is 1039 times as strong as
the gravitational force, and we can’t change that. We can, however, be
thankful that that’s the way it is—because here we are.
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C H A P T E R  7

T H E  
B O LT Z M A N N  
C O N S TA N T

A lthough I can remember many of the events of my childhood con-
nected with different aspects of science, there weren’t many in-

volving heat. I do remember brushing up against an electric iron on an
ironing board, getting a small triangular burn (which my mother treated
with butter, ice not being the cure-all in the 1940s that it would later
become), and learning to be a little more careful when in the general
vicinity of very hot objects. I also remember wondering why a warm
bath was more comfortable than a humid day. I took the thermometer
my parents used to take my temperature and stuck it into a bathtub
filled with warm water, and I was somewhat surprised that my body
temperature could get higher when I was really sick than the temperature
that showed in the bath. My father, a generally knowledgeable man, ex-
plained to me that a hot humid day was uncomfortable because the body
naturally lowers its temperature by perspiring, and it was harder to per-
spire on a humid day. That made sense. And, assuming the temperature
in the water is cooler than about 310 kelvins (roughly your body tem-
perature), you’ll be losing heat to the water as you sit in it, and you do
perspire (from those portions of your body not immersed in the water).
There are questions that may be beyond the ability of science to answer,
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such as why men prefer showers and women prefer baths. But if there’s
one thing we know about, it’s heat.

The Phlogiston and Caloric Theories of Heat

Like light, the nature of heat has been a major preoccupation of science
for a long time. The Greeks, of course, thought of fire as one of the
basic elements, and because fire seemed indistinguishable from heat,
heat, too, was thought to be a substance. This remained a serious point
of view for centuries, and the first post-Newtonian theory to incorporate
this idea was the phlogiston theory, originated by Johann Becher and
further developed by Georg Stahl in the late seventeenth century. It
held that combustible substances contained phlogiston, a colorless,
weightless substance that was liberated on burning, after which the sub-
stance was said to be dephlogisticated. Substances that burned easily
were rich in phlogiston.

It’s easy to critique an erroneous theory in retrospect, but the phlo-
giston theory explained—to some extent—both combustion and rust,
in which iron appeared to be acquiring something. When a substance
burned in an enclosed space, such as a bell jar, the burning soon ceased,
and this was taken as evidence that the air had absorbed the maximum
amount of phlogiston it could take up, like a sponge soaking up only a
certain amount of water. It was also noted that when combustion took
place in an enclosed space, living things could no longer breathe, so
the phlogiston theory also seemed to partially explain respiration, as
air that had absorbed too much phlogiston from a body made it impos-
sible to breathe.

We now know that substances burn because of the presence of oxy-
gen, a fact that was conclusively demonstrated by the experiments of
the French chemist Antoine Lavoisier a century later. The discovery
was the result of a busy century for chemistry. Gases as elements had
been isolated and studied, and measuring equipment enabled gases to
be weighed with accuracy, so Lavoisier was able to show that the
weight loss of the oxygen in the air was exactly the amount of weight
that the burned substances gained—and that combustion could not take
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place if oxygen were not present. Exit the phlogiston theory—and enter
the caloric theory.

Lavoisier’s caloric theory held that a fluid called caloric was actu-
ally the substance of heat, that the universe contained a constant
amount of caloric, and that it always flowed from hotter to colder
bodies. According to Lavoisier, a hot cup of coffee cools to lukewarm
because the excess caloric in the cup of coffee flowed out to heat the
area, and that a gas expanded when heated because the absorption of
caloric made it larger. The theory wasn’t right, but it did a pretty good
job of enabling computations to be made involving the final temper-
atures of mixtures; at any rate, the caloric theory was considerably
superior to the phlogiston theory, and there are elements of it that we
retain today.

A couple of simple mixture problems will indicate the value of the
caloric theory. Let’s suppose that for each degree centigrade a gram of
water is raised, it gains 1 unit of caloric, and for each degree centigrade
that a gram of water is lowered, it loses 1 unit of caloric. If we mix 100
grams of water at 40 degrees centigrade with 50 grams of water at 10
degrees, what will be the temperature T of the mixture? The 100 grams
of water at 40 degrees will lose 100 × (40 – T ) units of caloric, and the
50 grams of water at 10 degrees will gain 50 × (T – 10) units of caloric.
Since the caloric lost by the hot water equals the caloric gained by the
cold water, we have

100 × (40 – T) = 50 × (T – 10)
4,000 – 100T = 50T – 500
4,500 = 150T
30 = T

So the final temperature of the mixture is 30 degrees. Had we used
100 grams of aluminum at 40 degrees rather than 100 grams of water in
the mixture, we would have found by experiment that the temperature
of the mixture was 19 degrees. Obviously aluminum has a different rate
at which it gains or loses caloric, so let’s assume that a gram of alu-
minum gains or loses c units of caloric for each degree centigrade it is
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heated or cooled. The 50 grams of water would gain 50 × (19 – 10) = 450
units of caloric, while the 100 grams of aluminum would lose c × 100
× (40 – 19) = 2,100c units of caloric. Again, the amount of caloric lost
by the aluminum equals the amount of caloric gained by the water, so
2,100c = 450, and c = 450 / 2,100 = 0.214.

Caloric, over time, became calorie, which is the metric unit for en-
ergy, and which, although replaced by the joule in the modern system
of measurements, still reigns supreme on the labels of food items every-
where. One calorie is the amount of heat required to a raise a single
gram of water 1 degree centigrade. The mini-muffin I ate before writing
this section contains 80 “large” calories—a large calorie being equal
to 1,000 “small” calories, so the mini-muffin contains enough energy
to heat a kilogram of water from 10 degrees centigrade (50 degrees
Fahrenheit) to 90 degrees centigrade (194 degrees Fahrenheit). That
number 0.214 that we obtained for aluminum is actually a parameter
called “specific heat”; the specific heat of water is 1.000 and of alu-
minum 0.215 (actually, the final temperature of the aluminum-water
mixture would have been 19.02 degrees, but I rounded things off a little
in order to use simpler numbers in the computation). This represents
the fact that it requires only 0.215 calories to heat 1 gram of aluminum
1 degree centigrade—and also explains why if you boil water in an alu-
minum pot on the stove, you can burn your fingers by touching the alu-
minum long before the water comes to a boil.

Forces, Work, and Energy

Forces change things. One’s first take on forces is that they change po-
sitions of things; the gravitational force of the Earth pulls the apple
down from the tree, and the electric force attracts charges of opposite
sign and pushes away charges of like sign. However, Newton’s law of
inertia looks a little deeper than that: it says a body in motion continues
at a constant velocity unless acted upon by a force. What a force does
is change the momentum of an object. Momentum is the product of
mass times velocity, and because mass doesn’t change, except in those
instances when Einstein’s theory of relativity is relevant, the net effect
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of a force is to change an object’s velocity. A change in velocity is what
we call acceleration.

You need to exert a force to lift a 3 kilogram mass (which, on Earth’s
surface, weighs about 29 newtons)1 2 meters off the ground. Physicists
quantify the amount of effort you have expended in doing this by de-
scribing your accomplishment as 2 × 29 = 58 newton-meters of work.
If a constant force F is exerted through a distance d, the total work W
done is given by W = F × d. Applying calculus enables us to take this
basic formula and generalize it to situations when the force is not con-
stant and the path is not necessarily straight—such as the work done
in carrying a leaking bucket of water up a spiral staircase.

So where does energy enter the picture? In fact, what exactly is en-
ergy? The word energy is derived from the Greek word energeia, mean-
ing “active” or “working.” The first person to quantify energy seems
to have been Gottfried Leibniz, a contemporary of Newton and a com-
petitor for the invention of calculus (they actually seemed to have come
up with a lot of the same ideas at roughly the same time, but Newton
is generally accorded the honor).

It’s not hard to see how energy could have entered the picture. Sup-
pose that an object with mass m is moving with constant acceleration
a for a period of time T during which its velocity changes from an ini-
tial value v to a final value V. The force exerted on the object is ma;
let’s assume that the force moves the object through a distance D so
that the total work performed on the object is maD. Since the acceler-
ation is constant, V = v + aT, so a = (V – v) / T. Since the velocity in-
creases at a constant rate, the distance traveled during the time T can
be computed as the average velocity (V + v) / 2 times T. Therefore,

W = maD
= m × (V – v) / T × ((V + v) / 2)T
= 1⁄2m (V – v) (V + v)
= 1⁄2mV 2 – 1⁄2mv2

Therefore, the work done is given by the difference between 1⁄2mV 2

and 1⁄2mv2; it is as if we’ve exchanged the difference in these quantities
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for the work done, just as if we buy a cup of coffee at Starbucks, we’ve
exchanged the difference between our after-purchase wealth and our
before-purchase wealth for the cup of coffee.

The quantity 1⁄2mv2 is what is known as kinetic energy; it only oc-
curs when an object is moving, because v = 0 if it’s not moving. Be-
cause velocity is relative to a particular reference frame, kinetic energy
is as well. If you are sitting still in a car moving 60 miles per hour,
you have no kinetic energy relative to the moving car but a whole lot
of kinetic energy relative to the road, and so if the car crashes, your
kinetic energy has to go somewhere—and it’s a lot better that it be
transferred to a seatbelt or an airbag than to the dashboard or the wind-
shield of the car.

There’s another kind of energy that isn’t recognized in the calcula-
tion above. Albert Einstein gives a good example of this in his book
The Evolution of Physics.2 Imagine a roller coaster poised motionless
at the highest point of the ride. It has no kinetic energy at all—because
it has no velocity relative to the roller-coaster track—but it has a sub-
stantial amount of potential energy that is available from letting the
Earth’s gravitational field do its work. And, of course, the Earth’s grav-
itational field will do just that, and at the bottom of the track some of
the energy from the Earth’s gravitation field will have been exchanged
for kinetic energy as the roller coaster reaches its highest velocity. Then
up you go, losing kinetic energy from the moving roller coaster as its
velocity decreases, but exchanging it for increased potential energy
from the Earth’s gravitational field as you move further away from the
Earth, the source of that potential energy. The ride continues, exchang-
ing one form of energy for another, back and forth.

But the ride eventually comes to an end. It might initially seem that
it can go on forever—and the few roller-coaster rides that I have been
talked into, usually by girlfriends in front of whom I did not want to ap-
pear to be a chicken, seemed to go on forever. However, there is another
horse in the energy derby beside kinetic energy and potential energy—
friction. The movement of the car on the track heats the track by fric-
tion, and late in the eighteenth century, this insight opened the way for
the modern theory of thermodynamics.
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The First Law of Thermodynamics

The death knell for the “heat is a substance” theory can be found in a
paper by Sir Benjamin Thompson, better known as Count Rumford. (I
have no idea why scientists with titles are better known by their titles
than by their names; I guess it’s a Euro thing.) Rumford, a British loy-
alist from New Hampshire, fled America after the Treaty of Paris for
Munich, where he investigated the manufacture of cannon. At the time,
a cannon was made by drilling a cylindrical hole in a steel cylinder. The
scraps of metal tossed out by the drill were extremely hot—Rumford
actually made detailed measurements of the temperature of these
scraps. It occurred to Rumford that if heat were a substance, as the
caloric theory maintained, it could not be inexhaustibly generated as
seemed possible from the mechanical drilling of cannon. He published
his observations and conjectures in 1798 in his most important scien-
tific paper, An Experimental Enquiry Concerning the Source of the
Heat Which Is Excited by Friction.3 Just in case the reader of An Ex-
perimental Enquiry was still clinging to the notion that heat was a sub-
stance, Rumford delivered the knockout punch. “It is hardly necessary
to add,” he wrote, “that anything which any insulated body, or system
of bodies, can continue to furnish without limitation, cannot possibly
be a material substance; and it appears to me to be extremely difficult,
if not quite impossible, to form any distinct idea of anything, capable
of being excited and communicated, in the manner the Heat was excited
and communicated in these Experiments, except it be Motion.”4

Rumford was right—but he didn’t realize in exactly how many dif-
ferent ways he was right, and what the consequences were. If the sev-
enteenth century was characterized by the birth of mechanics and the
eighteenth century by the development of chemistry, the nineteenth
century can be seen as the century in which energy in many of its forms
came to be understood and utilized.

James Joule was at the forefront of this revolution. Born to a rea-
sonably affluent brewer, he and his brother were tutored by no less a
scientist than John Dalton. Granted, many great scientists and mathe-
maticians have done some tutoring to augment their income, but this
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seems to be roughly on the same level as Alexander the Great hiring
Aristotle to teach him geometry. Dalton suffered a stroke after two
years of this employment, but his emphasis on science and method
made a lasting impression on Joule.

Joule’s greatest contribution was his realization that different forms
of energy were equivalent in the same sense that different forms of
money are equivalent. Dollars and euros are different forms of
money—they look different, but the bottom line is that there is an ex-
change rate between the two that enables us to compare the prices when
they are quoted in one currency or the other. Joule’s observation is very
clearly stated in his classic 1845 paper, “On the Mechanical Equivalent
of Heat,”5 where Joule remarks that “the mechanical power exerted in
turning a magneto-electric machine is converted into the heat evolved
by the passage of the currents of induction through its coils; and, on
the other hand . . . the motive power of the electro-magnetic engine is
obtained at the expense of the heat due to the chemical reactions of the
battery by which it is worked.”6

Joule constructed a very simple apparatus, in which a falling weight
turned a paddle immersed in a container of water. The mechanical en-
ergy derived from the falling weight was converted into heat by stirring
the water, and Joule performed a number of measurements to discover
the rate of exchange. It is difficult to imagine scientific discourse taking
place nowadays between an academic and a brewer, but the twain met
much more freely in nineteenth-century Britain, and one of the atten-
dees at a talk given by Joule in 1847 to the British Association in Ox-
ford was William Thomson, the recently appointed Professor of Natural
Philosophy at the University of Glasgow. Thomson, later to become
Lord Kelvin, was intrigued by Joule’s results. Joule married later that
year, and while he and his bride were honeymooning in Chamonix,
they accidentally ran into Thomson. Her husband, clearly a romantic,
interrupted the honeymoon so he and Thomson could attempt to mea-
sure the temperature difference between the top and bottom of the
1,200-foot waterfall. I could find no record of Amanda’s reaction—but
then, I could find no record of this having any adverse effect on the
marriage, either.
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Sadly, Joule’s wife and daughter died barely five years later. Joule
did further work with Thomson—in fact, he and Thomson discovered
that when a gas is allowed to expand without doing work, its tempera-
ture decreases, and this eventually led to refrigeration. Unfortunately,
his passion for science also resulted in the demise of the family brew-
ery; fortunately, he managed to obtain a British civil-service pension—
not having a family, he was able to live comfortably until his death.
The work for which he is best known is commemorated at the top of
his tombstone. Mechanical work, as has been discussed earlier in this
chapter, can be measured in newton-meters, but nineteenth-century
British physicists preferred using foot-pounds. Joule’s work showed
how the universe converts mechanical work into heat energy, which in
those days was measured in British thermal units (BTU), defined as the
amount of heat needed to raise 1 pound of water 1 Fahrenheit degree
at atmospheric pressure. The number on Joule’s headstone is 772.55,
and it commemorates an experiment he did in 1878, when he showed
that it took 772.55 foot-pounds of work to generate 1 BTU.

Though 772.55 foot-pounds per degree Fahrenheit is sometimes
known as Joule’s constant, it is not a truly fundamental number, in the
sense of this book, as it’s really just another form of water’s specific
heat. All substances have them, and although water is an exceptionally
important molecule on Earth, you can be sure that, should a species
evolve that relies on methane as we do on water, it would be methane’s
specific heat that filled the place of Joule’s constant.

Joule’s constant may not be truly fundamental, but it did lead di-
rectly to the first law of thermodynamics, which states that energy can
be transformed from one form into another—such as mechanical en-
ergy being transformed into heat, or kinetic energy into potential en-
ergy—but can be neither created nor destroyed. If we take another look
at Einstein’s roller coaster and start with the coaster at its highest po-
sition, its total energy is all potential energy. Its first descent to the bot-
tom generates a certain amount of heat through friction against the
track. At the bottom, the total energy of the system is the sum of its ki-
netic energy, the heat energy produced by friction, and the lower po-
tential energy because it is closer to the center of the Earth. When the
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coaster now ascends, it again creates more heat through friction, and
as a result it cannot ascend to its initial height, for to do so would re-
quire the same total energy that the system originally possessed before
the ride started—and some of that energy has been dissipated as heat.

The Second Law of Thermodynamics

The various forms of energy are interchangeable, but it still seems that
the universe prefers heat energy. It is relatively easy to transform me-
chanical energy into heat—in fact, this often happens both unbidden
and unwanted. When mechanical energy is transformed into heat, it is
often energy wasted in the sense that we can’t do anything with it.
Going back to Einstein’s roller coaster, the friction warms the track,
but what good is that? This isn’t to say it’s impossible to do the reverse:
ever since the invention of the first steam engine, we have been trans-
forming heat into mechanical energy. This technique still powers much
of our transportation via the internal combustion engine in automobiles
and the jet engine in airplanes, but it does so inefficiently, in the sense
that much of the heat is wasted. In the internal combustion engine, the
heated gas in a cylinder expands; this expansion moves a piston that is
connected to the driveshaft of the car, and through an ingenious system
of rods and cams, the back-and-forth motion of the piston is trans-
formed into the rotary motion of the wheels. However, at the same time
that the gas is being heated to drive the piston back, the sides of the
cylinder are being heated as well—to no one’s benefit. Too much heat
will warp the cylinder walls, so the cylinder is lubricated to reduce the
friction. Nonetheless, the excess heat is going somewhere other than
the expansion of the gas in the cylinder, and so your car has an intricate
cooling system to prevent the excess heat from doing damage.

The question of how efficient a heat engine can be was first studied
by Sadi Carnot, a French physicist and military engineer. A puzzling
but commonplace observation about heat energy is that heat engines
work by heating something; if everything is at the same temperature,
there is no way to extract the heat. In Joule’s experiment where the
falling weight heats the water, once the water is heated, there’s no way
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to use that heat unless it can flow to something cooler. The universe
transforms kinetic energy to potential energy back and forth with con-
siderable efficiency—as a planet approaches the Sun, the potential en-
ergy it possessed is transformed into kinetic energy as it moves more
rapidly in accordance with Kepler’s laws; as it swings away from the
Sun, that kinetic energy is transformed into potential energy. This trans-
ference is highly efficient, as the planets maintain approximately the
same orbits for millions of years.

On the other hand, when hot water is mixed with ice cubes, the end
result is a glass of lukewarm water—and no one has ever witnessed ice
cubes spontaneously appearing in a glass of lukewarm water at the
same time that the water that isn’t frozen into the ice cubes heats up.
This is a fundamental property of heat. Carnot’s magnum opus, Reflec-
tions on the Motive Power of Fire,7 expresses this succinctly. “The pro-
duction of motive power,” writes Carnot, “is therefore due in steam
engines not to actual consumption of caloric but to its transportation
from a warm body to a cold body.”8 Even though Carnot used the
caloric theory to describe his results and observations, his ideas are in-
dependent of it—whether heat is a substance such as caloric or a form
of energy, motive power can only be produced by the transportation of
heat from a warm body to a cold body.

The laws of thermodynamics initially arose out of observation and
experimentation, unlike the law of conservation of energy in mechan-
ics, which is a mathematical deduction from Newton’s laws of motion.
Carnot’s observation, cited in the previous paragraph, was probably so
well-known that no one really bothered to consider its significance;
things seemed to spontaneously cool down, but it required the motive
power of fire to get things to heat up. The first formal codification of
the second law of thermodynamics is due to the German physicist
Rudolf Clausius, who said that heat cannot flow spontaneously from a
colder substance to a higher one—not exactly the way Carnot phrased
it, but close. It might actually have occurred to Carnot to phrase it this
way—but we’ll never know, as he died of cholera at age thirty-six, and
many of his books and writings were burned with him in an attempt to
prevent the disease from spreading.
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Several equivalent formulations of the second law of thermodynam-
ics followed. The best known one is due to Lord Kelvin, who put it in
terms of processes in which heat is converted to work (which, after all,
is what a heat engine does). His formulation of the second law is that
a heat engine cannot work with perfect efficiency, converting all the
heat into work. A colloquial way to phrase the first law is that you can’t
win; there’s no way to get free energy from the universe. Kelvin’s state-
ment of the second law could be colloquially phrased as you can’t break
even; the universe, like some gigantic Thermal Revenue Service,
charges a heat tax when you try to extract work from heat.

Possibly the most intriguing formulation of the second law comes
from a mathematical function Clausius invented, which he called en-
tropy. I work with some very bright young children, and recently one
asked me what entropy was. This sent me scurrying to look for a good
intuitive definition of entropy, and I found one I really liked—entropy
is a measure of the amount of unusable energy in a system. If we were
to look at the example of the glass with ice cubes and hot water be-
coming a glass with lukewarm water, there is obviously more unusable
energy in the glass of lukewarm water, so its entropy is greater than
the entropy in the glass containing hot water and ice cubes. Clausius
defined the entropy of a system as the sum of the quantities ΔQ / T,
where T is the temperature of an item in the heat-bookkeeping ledger
for the system, and ΔQ is the amount of heat gained or lost by that
item—positive if the item gains the heat, negative if it loses it.

For example, imagine a system with two objects in it, one at 100 de-
grees, the other at 200 degrees. Suppose that we compute its entropy, and
then allow a single heat transaction; the object at 200 degrees gives up 1
calorie to the object at 100 degrees. The entropy has changed by +1⁄100 (as
the object at 100 degrees absorbs the calorie) – 1⁄200 (as the object at 200
degrees loses that calorie). The net change is +1⁄100 – 1⁄200 = 1⁄200 > 0, so the
entropy of the entire system has increased. Because heat always flows
from hotter items to colder ones, this single transaction typifies what
always happens; entropy always increases.

This led to a concept called “the heat death of the universe.” What
happens when all the possible heat transactions have been made, and
everything is at the same temperature? The answer given by thermo-
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dynamics is simple—nothing, and that’s all she wrote. Entropy is as
high as it can possibly go, and there’s no way for it to increase. The
heat death—actually, it’s a really cold death—refers to the fact that no
additional work can take place when entropy has reached its maximum.

One big question remained to be answered—just why does heat flow
from hotter to colder substances?

Ludwig Boltzmann

The answer to the question of why heat flows from hotter to colder sub-
stances came from one of the most appealing scientists I could have
wished to encounter. One of the pleasures of writing a book such as
this is that you get to do some in-depth reading about people as well as
discoveries. In reading about Ludwig Boltzmann, I was struck by how
truly complete an individual he was, not just as a scientist, but as a
human being.

I’m a sucker for anyone with a good sense of humor. Boltzmann’s
was legendary—at least among his circle of friends and acquaintances.
It was a gentle and self-deprecating sense of humor that is only rarely
seen these days. He described a sumptuous dinner of which he partook
by saying, “In the restaurant of the Northwestern station I consumed
roast young pig with sauerkraut and potatoes and drank a few glasses
of beer in great contentment. My memory for numbers, otherwise rea-
sonably reliable, always retains the number of beer glasses rather
poorly.”9 By all accounts, he had a happy marriage, and cherished his
three daughters, for whom he held dances (remember, this was the nine-
teenth century) at which he played piano. He was frequently the life of
the party. A colleague described him in the following fashion, “Because
of his capacity for communication, his ready wit and his clever and
funny ideas, he soon became the center of every gathering of ladies
and gentlemen, and dominated the conversations.”10

It is rare that a top-flight scientist is also a top-flight teacher. I have
been fortunate to know a number of top-flight mathematicians, and al-
though a few were terrific teachers, more than a few were absolutely
terrible. Boltzmann, however, was in the top tier in both categories.
One of his students was Lise Meitner, who was later to play a central
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role in one of the epochal experiments that define the twentieth century:
the discovery of nuclear fission. Meitner attended Boltzmann’s lectures
for four years, from 1902 through 1905, and wrote, “His lectures were
the most beautiful and stimulating that I have ever heard. . . . He was
himself so enthusiastic about all he was teaching that we left every lec-
ture with the feeling that an entirely new and wonderful world was
being opened to us.”11 As a teacher, I cannot imagine being paid a
higher compliment.

Before I started writing this book, I only knew Boltzmann from his
discoveries—and from his demise. Boltzmann suffered from depres-
sion, hard though that may be to imagine from the description already
presented, and while on vacation near Trieste, he hanged himself. I first
learned about Boltzmann, and about his death, around the time I was
taking a poetry course in which I read the poem Richard Cory, by Ed-
ward Arlington Robinson. The fictional Richard Cory was a wealthy
man in a poor town; the poem is a first-person narrative by one of the
poor townsmen. The last verse has stuck with me throughout my life,
perhaps because of the juxtaposition of studying the works of Boltz-
mann and reading about his suicide.

So on we worked, and waited for the light,
And went without the meat, and cursed the bread.
And Richard Cory, one calm summer night,
Went home and put a bullet through his head.12

How incredibly sad that such brilliant individuals as Wallace
Carothers and Ludwig Boltzmann, to say nothing of the myriads of oth-
ers cursed with depression, should have their judgment and emotional
stability so clouded that they see nothing else to do but to take their own
life. And what a loss for those who care about them, and for the rest of
us who could have benefitted from the discoveries they might have made.

Statistical Mechanics

Boltzmann was a great believer in the atomic theory. From the perspec-
tive of the twenty-first century, this sounds a little like being a great
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believer in the heliocentric theory originally espoused by Copernicus;
that’s the way things are—duh. During Boltzmann’s era, however, the
atomic theory—and so Boltzmann himself—was under continual attack
from some very prestigious physicists; always finding himself on the
defensive may have been one of the factors contributing to Boltzmann’s
depression.

If you believed, as Boltzmann did, in the validity of the atomic
theory, and you knew, as Boltzmann did, how large Avogadro’s number
is, you would realize that the description of a liter of an ideal gas as a
collection of roughly 1023 molecules—1023 individual objects—was
completely impossible. Even tracing the course of a single molecule
in this melee would be completely impossible. Boltzmann was one of
the prime contributors to statistical mechanics, an aptly named disci-
pline that applied the mathematics of statistics to the mechanics of how
the gas molecule behaved.

One cannot describe the economic activity of the United States by
trying to describe the economic activity of each individual. There’s just
too much data. However, we can form a distribution for all the impor-
tant economic variables, such as what percentage of people have annual
incomes between $50,000 and $75,000, etc. This is an incomplete de-
scription, but it suffices for many purposes. The same thing can be done
for the molecules in a jar of gas, as for many practical purposes, know-
ing the distributions of the positions and velocities of the molecules,
such as what percentage are moving between 30 and 35 centimeters
per second, will suffice to describe the system. This is the approach of
statistical mechanics, and in the latter portion of the nineteenth century,
this approach recorded many triumphs. One of them was the discovery
of Boltzmann’s constant, which relates the energy of individual parti-
cles to the temperature of a bulk object.

Boltzmann’s Constant

Boltzmann didn’t have to look very hard for his constant, known as k; he
simply divided the ideal gas constant R by Avogadro’s number. Never-
theless, Boltzmann’s constant k appears in several important equations in
the kinetic theory of gases, statistical mechanics, and thermodynamics,
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and enables us to deal mathematically with the fact that although we
can talk about the gross characteristics of a system—such as the tem-
perature of a tank of gas—not all the molecules in it have the same en-
ergy. The molecules in a tank of gas, for example, randomly bump into
one another, and these collisions cause some of them to be moving
more rapidly than the average speed, and some more slowly. However,
the average translational energy possessed by a monatomic molecule
in an ideal gas can be shown to be 3⁄2 kT, where T is the temperature in
degrees kelvin. Since the translational energy of the molecule with
mass m and velocity v is 1⁄2 mv2, assuming that no energy is lost to ro-
tation we have 3⁄2kT = 1⁄2mv2. So the temperature increases as the square
of velocity of the molecule.

Solving the equation for T, we have T = 1⁄3mv2 / k. Absolute zero is
the special case when v = 0, but setting v = c gives us something per-
haps even more interesting—the highest temperature any particular
substance can reach. Let’s consider radon, the heaviest noble gas.
Noble gases are about as close to ideal as the real world can get, they’re
called noble because they rarely interact with the other elements, much
as members of the nobility find it difficult to interact with the hoi polloi.
A mole of radon has a mass of about 222 grams, so a single atom of
radon weighs 222 / (6 × 1023) = 3.7 × 10-25 kilograms. The speed of
light is about 3 × 108 meters per second, so if it were possible to get an
atom of radon to travel very close to the speed of light, its temperature
would be 1⁄3 × (3.7 × 10-25) × (3 × 108)2 / (1.38 × 10-23) kelvins, or about
2.7 × 1014 degrees kelvin, or 4.8 × 1014 degrees Fahrenheit. Toasty.
However, those of us who have lived less-than-exemplary lives can
take some consolation in that hell cannot possibly be as hot as this, as
I have yet to hear any theologian espouse the position that hell consists
of radon atoms rushing around at close to the speed of light.

Returning to the collection of molecules in an ideal gas, Boltzmann
was able to show that the fraction of molecules in an ideal gas with en-
ergy E was proportional to e-E/kT. Different values of T give different
curves, but—to run the risk of oversimplifying a bit—they all look
roughly like the bell-shaped curve. For low values of T, the curves have
a very narrow central peak, as T increases the curve becomes lower
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and fatter. This isn’t so surprising; with higher temperatures the mole-
cules are moving faster, and if you look at a road where the speed limit
is 30 miles per hour, a lot of cars will be moving really close to 30
miles per hour, but when the speed limit is 70 miles per hour the little
old ladies, who are generally not of the ilk described in the song “The
Little Old Lady from Pasadena,”13 can be found hovering in the general
vicinity of 50 miles per hour, with the soccer moms at 60 and the teen-
agers and sports car drivers above the speed limit.

The pièce de resistance for Boltzmann’s constant is the equation to
be found on his tombstone. Boltzmann’s constant is expressed in the
same units as entropy, which you will recall is formally the sum of heat
divided by temperature. In order to understand Boltzmann’s equation,
let’s consider a really small sample of an ideal gas with two molecules,
A and B. Let’s suppose that A is moving at 50 cm/sec and B is moving
at 100 cm/sec. We measure the temperature of the gas and find it has a
certain value, which we denote by T. If the molecule A had been mov-
ing at 100 cm/sec and B at 50 cm/sec and we measured the temperature,
we would have gotten the same result T. The value of T is called a
macrostate of the system, the two arrangements of the speeds of A and
B (50 cm/sec and 100 cm/sec) are called microstates corresponding to
the macrostate T. Obviously, when you have a mole or so of an ideal
gas, there are a lot of microstates corresponding to the same macrostate.
The higher the temperature, the more microstates there are correspon-
ding to the same macrostate. Again, a gas is like cars on the road; there
are a lot more ways you can get 100 cars to travel with an average
speed of 50 miles per hour than you can with an average speed of 10
miles per hour.

This relationship is expressed by the equation S = k ln W, where S is
entropy, k is Boltzmann’s constant, and W is the number of microstates
corresponding to the macrostate that resulted in the entropy S. The mi-
crostate-macrostate picture also finally explains why heat flows from
higher temperatures to lower temperatures. It’s simply a matter of prob-
ability. Any one microstate is just as likely as any other microstate, but
the macrostate described by the glass of warm water has many more
microstates associated with it than the macrostate described by the ice
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cubes and hot water configuration. Interestingly enough, this also opens
the door for the glass of warm water to morph into the glass with ice
cubes and hot water—it’s just so tremendously unlikely that we haven’t
seen it yet, and it doesn’t figure to happen in the entire lifetime of the
universe.

As I noted above, Boltzmann’s constant is the quotient of two other
fundamental constants—both of which we have already encountered.
This might seem cheap, somehow, but it is not the only big idea in sci-
ence for which what looks like a simple reshuffling of previously
known ingredients is actually profound enough that it gets named for
the individual who performed the reshuffle. I first encountered this
when I saw that the French mathematician and scientist d’Alembert
had taken the equation F = ma from Newton’s second law, subtracted
ma from both sides to obtain F – ma = 0, and this had been renamed
d’Alembert’s principle of least virtual work. I was simultaneously ap-
palled and intrigued—possibly here was a potential route to scientific
immortality. Just divide the gravitational constant G by the speed of
light c, and there it was—Stein’s constant. Visions of this being in-
scribed on my tombstone were quickly squelched when I realized it
wasn’t enough to perform the reshuffling, one actually had to show the
reshuffling accomplished something significant. So, for my tombstone,
I’ve decided to go with “This was the last item on the list.”
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C H A P T E R  8

T H E  
P L A N C K  

C O N S TA N T

I t might not be surprising to learn, given what we know about what
Max Planck would eventually accomplish, that Planck entered uni-

versity at the age of sixteen. I rarely see sixteen-year-olds in my classes,
but when I do, I can generally count on them to be star performers—
or even have a decent shot at greatness. Certainly Planck was a good
student: in his last three years at the Maximiliansgymnasium in Mu-
nich, he ranked eighth in a class of twenty-three, third in a class of
twenty-one, fourth in a class of nineteen.1 He wasn’t, however, a star.
Yet he was a beloved student, “deservedly, the favorite of his teachers
and classmates.”2 I can’t speak to what made him a favorite with his
classmates, but based on my own experience, I can hazard a good guess
as to what made him a favorite with his teachers. Sure, every teacher
would love to have a truly brilliant student, but it is even more gratify-
ing to have a good student who gives the proverbial 110 percent. The
question that remains is how he, a good-not-great student, managed to
turn physics on its head—especially considering what happened next.

Planck was interested in physics, so he sought out the advice of
Philipp von Jolly of the University of Munich, which he was to enter.
Jolly, primarily an experimental physicist, was not particularly san-
guine about the future of physics as an intellectual discipline. He told
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Planck that “in this field, almost everything is already discovered, and
all that remains is to fill a few unimportant holes.”3 (I can’t ever imag-
ine telling this to a student or prospective student, possibly because
mathematics deals not only with so many different subjects but also
because infinity is a very important part of mathematics, although there
have been periods—such as the present—when the problem was a lack
of jobs and an excess of applicants. Fortunately, I arrived on the scene
when the opposite was true.) Planck replied to Jolly that he didn’t wish
to discover new things, only to understand what was already known in
the field.

Neither Jolly nor Planck could have been more wrong. It’s more than
a century later, and not only have the holes to which Jolly referred not
been filled up, vast yawning caverns of ignorance remain to be explored
and there are undoubtedly more undiscovered holes still remaining than
in the annual global production of Swiss cheese. Although Planck may
not have wished to discover new things, he indeed did so—and the new
things that he discovered constitute the greatest revolution in physics
since Newton first set pen to paper.

Planck made quick work of college—he embarked on his doctoral
dissertation at the relatively tender age of twenty and finished it in four
months—but his work still didn’t impress his elders. His dissertation,
on the second law of thermodynamics, made hardly any impact on the
upper levels of the German physics establishment. Gustav Kirchhoff,
the giant who had discovered spectroscopy and had made major con-
tributions to the theory of electrical circuits, considered it to be wrong.
Two other giants, Hermann von Helmholtz (who crystallized the idea
of the conservation of energy) and Rudolf Clausius (who introduced
the idea of entropy), didn’t even bother to read it. Planck spent five
years without an academic appointment, until his father, who had a
good deal of clout at the University of Kiel, helped Planck get hired
there in 1885 as the equivalent of an associate professor. Shortly there-
after, he won second prize in a competition given by the Philosophical
Faculty of the University of Gottingen on the nature of energy. No first
prize was awarded; the obvious implication is that Planck’s essay was
judged to be superior to the other entries but unexceptional. Planck,
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however, caught yet another break—even though Gottingen was unim-
pressed, Berlin was, and offered him a position, again as an associate
professor—same rank, but a more prestigious university. And, ironi-
cally, the position he took over had been relinquished by the same Gus-
tav Kirchhoff who felt that Planck’s doctoral thesis was in error.

Vindication was to come several years later. Planck’s thesis had by
now become a recognized work of importance, and he had to loan it
out so often that it was almost ready to fall apart (this was not an era
in which one could simply copy and paste), and by 1892 Planck
achieved the rank of full professor at Berlin. It was about this time that
Planck became interested in the problem that was to vault him into the
ranks of the immortals.

Heat and Light

If you own an electric stove, you’ve undoubtedly noticed that when
you turn on one of the heating elements, the colors gradually change
from a dull red to a bright orange. At least that’s what happens on my
stove; if yours is capable of generating a lot more heat than mine, you’ll
notice that the color will gradually change to a yellowish white, then a
bluish white. Of course, if that happened, you’d have to have a pretty
special stove. If the metal becomes yellowish white, it’s in the range
of 1,600 kelvin (2,400 degrees Fahrenheit). A standard heating element,
made of iron, would be melting, and so would the top of the stove; and
of course the manufacturers have taken safeguards to make sure this
doesn’t happen. Bad things can happen when the heating element on a
stove runs for too long (I generally check several times to see that the
stove has been turned off when I leave the apartment, one of the symp-
toms of advancing age), but not because the heating element has
melted.

We know today how color and temperature relate, but the investiga-
tion of it was difficult. Kirchhoff, who was one of the first to take it
on, was able to demonstrate something of fundamental importance: the
color does not depend upon the material being heated or upon its con-
figuration. Whether you have an iron spiral, as the heating elements on
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my stove are configured, or a tungsten wire filament, as Thomas Edison
was to use in his first successful electric light, the color sequence de-
pends only on the temperature.

Color is characterized by the wavelength of the electromagnetic
wave an object is emanating; the longest visible waves are a dull red,
but still longer waves are infrared, below red. We don’t think of our-
selves as radiant objects, but we are—our body temperature is generally
in the range of 310 kelvin, and most of the heat energy that our bodies
radiate is in the infrared, which is why we can be detected in a dark
room by an infrared sensor. However, not all the energy that is radiated
by a hot object is radiated at a specific color. The color that we see from
a hot object is the wavelength where the preponderance of the radiant
energy is concentrated, but in reality every object from liquid helium
to the hottest star radiates its energy at different wavelengths.

Physicists approached the relationship between temperature and
light by considering an object known as a blackbody in thermal equi-
librium, meaning its temperature is stable. A blackbody is something
that perfectly absorbs and emits electromagnetic radiation. The classic
example of a blackbody is a cavity radiator: it’s a hollow sphere with
a very small opening; there is so little space for the radiation to emerge
from the sphere that very little of it does—it bounces around inside,
heating all portions of the interior equally. A major quest of nineteenth-
century physics was to determine—theoretically if possible, empiri-
cally if necessary—the curves that represented the distribution of
radiation that emerged at different wavelengths from a blackbody. For
each temperature, physicists predicted, there should be a different
curve.

These curves were of more than theoretical interest. Electric lights
were clearly the wave of the future, and electric lights produced radi-
ation via heating. Knowledge of these curves would allow engineers
to design lights that produced light while wasting as little heat as pos-
sible. In fact, the Siemens family had donated money to found an in-
stitute in Berlin to integrate theoretical science with the practical needs
of industry.4 Wilhelm Wien, one of the institute’s scientists, was able
to make significant inroads into this problem.
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To understand Wien’s results, it is necessary to understand some
basic terminology involving waves. I’ve always enjoyed living near
large bodies of water, and I live in Southern California near the Pacific
Ocean. There’s something pleasurable about standing near the edge of
the ocean—or, if the water is not too cold, actually going in—and
watching the waves roll up and onto the beach. The waves can be char-
acterized by how high they are—their amplitude—and how many crash
onto the beach in a given time period—their frequency. Wave fre-
quency is denoted by the Greek letter ν (pronounced “nu”), and the
color of light is determined by its frequency in cycles per second, also
known as hertz.

There is an incredibly large range to the frequency of electromag-
netic waves. Radio and television waves have relatively low values, in
the tens or hundreds of millions of cycles per second. At the upper end
of the range are the powerful gamma rays usually produced by massive
explosions; these rays have frequencies in excess of 1018 cycles per sec-
ond. The portion of the electromagnetic spectrum that we can see is only
a small fraction of the entire spectrum; the frequency of red light is on
the order of 4 × 1014 cycles per second, and the frequency of blue light
about 7.5 × 1014 cycles per second. Infrared light has a slightly lower
frequency than that of red light; ultraviolet light has a slightly higher
frequency than blue light.5

Wien performed his experiments in the blue portion of the spectrum.
He discovered that if T were the temperature in degrees kelvin and ν
the frequency of the light, the expression I(ν,T ) for the intensity of the
light being radiated at frequency ν by a blackbody heated to T degrees
could be approximated by I(ν,T) = Aν3e-Bν/T, where A and B were positive
constants whose values Wien could determine empirically. That was
good enough for his industry sponsors; they would be satisfied simply
by having numerical values that they could use, but theorists would
never be satisfied until they knew why the values of A and B were what
they were. So, for example, if a theorist were to see the number 186,000
(or thereabouts) in an expression, he would undoubtedly wonder why
the speed of light was appearing in that expression, and would try to
develop a theoretical derivation to explain it. Wien’s formula was
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known as Wien’s radiation law or Wien’s approximation—it worked,
but it didn’t really advance the theory of radiation all that much.

The Rayleigh-Jeans Law and the Ultraviolet Catastrophe

At the same time Wien was working, across the North Sea, two men,
Lord Rayleigh and James Jeans (later to be Sir James Jeans), were try-
ing to predict the same intensity curves that Wien was determining
empirically.

Their starting point was the concept of equipartition of energy: the
idea that for a system in thermal equilibrium, such as a blackbody, the
total energy available in the system is divided equally between all avail-
able forms of energy. A gas molecule, for example, may possess both
translational energy from the speed at which it is moving, and rotational
energy from the way it rotates. This idea had proved quite fruitful in
statistical mechanics,6 resulting in the Maxwell-Boltzmann velocity
distribution for noble gases, and so it was certainly a reasonable as-
sumption for Rayleigh and Jeans to make in their analysis of radiation.
The result of their theoretical analysis was an expression for I(ν,T) that
differed substantially from Wien’s empirical description. The Rayleigh-
Jeans Law, as it became known, stated that I(ν,T) = 2(k / c2) ν2T, the
constant k being Boltzmann’s constant, and c the speed of light. This
formula had a significant advantage over the Wien approximation in
two respects. First, its constants were known physical constants, rather
than empirically determined ones. Second, it fit the measured intensity
curves for red light better than the Wien approximation.

It also had one major disadvantage: it was obviously wrong. The
numbers k and c were fixed, and so if the temperature T of the black-
body were fixed as well, the intensity I(ν,T) increased as the square of
the frequency ν. This meant that, as the frequency became larger and
larger, the intensity of the light at that frequency would increase with-
out limit. This obviously didn’t happen; all the actual intensity curves
peaked at a certain frequency and then fell off at higher frequencies; a
red-hot iron bar is red and not scorchingly blue and violet at the same
time. The physicist Paul Ehrenfest gave this result an attractive name:
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the ultraviolet catastrophe. (If I were enough of a rock musician to start
a garage band, I would definitely call it the Ultraviolet Catastrophe.)
The ultraviolet catastrophe referred to the fact that as the frequency of
light increased toward the ultraviolet, the Rayleigh-Jeans expression
not only failed to match the observed intensities but predicted obvi-
ously ridiculous ones as well.

This was the situation at the turn of the century. The stage was set
for Max Planck to revolutionize physics.

Enter the Quantum

Ever since Kirchhoff had demonstrated that it didn’t matter what sub-
stance the blackbody was made of, or what its shape was, theorists had
been free to use any model they wanted. Planck chose to model the
system as a collection of simple harmonic oscillators; a metallic spring
is a good example of a simple harmonic oscillator. Molecules vibrate
somewhat like springs, so it’s not really all that far-fetched an assump-
tion. Planck also started along the same lines that Rayleigh and Jeans
did; he assumed that the energy emitted by the oscillators could come
in any measurable quantity. He, too, ran into the ultraviolet catastrophe
using this approach.

Then, one day, he made a different assumption—one that he told his
son he felt was as revolutionary an idea as had ever occurred to Newton
or Maxwell.7 Instead of assuming that the oscillators could radiate en-
ergy at any level, he assumed that there was a number h so that if an
oscillator was emitting energy at a frequency ν, that energy had to be
an integer multiple of hν—hν, 2hν, 3hν, and so on.

This assumption had an immediate consequence—it eliminated the
catastrophe by putting an upper limit on the frequency of light any
given blackbody could emit. Because the total energy of a blackbody
has to be finite—let’s call the amount E—the intensity of radiation must
have an upper bound. If all the energy in the blackbody were put into
a single oscillator (unlikely though that may be) radiating at a fre-
quency ν, the largest possible value for ν would occur if the energy E
= hν. If this were the case, ν = E / h would be the highest frequency
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that occurred; if that one oscillator was radiating energy at a multiple
of hν, such as 2hν, the frequency would max out at E / 2h; and if there
were other oscillators radiating, that would decrease the value of E
available to any given oscillator. That meant that the ultraviolet catas-
trophe could not occur, because one could not obtain arbitrarily high
frequencies to create the catastrophe. Planck’s assumption was the defi-
nition of ad hoc, but it did enable him to derive the following formula
for intensity: I(ν,T) = (2hν3 / c2) / (ehν/kT – 1). The formula had at least
three attractive features. First, it doesn’t run into the problem of having
the intensities get arbitrarily large; Planck’s equation multiplies a power
function (the variable hν raised to the third power) by the inverse of
an exponential function (the number e raised to the power of the vari-
able hν / kT). Exponential functions get larger faster than power func-
tions do, which means that Planck’s function has a maximum intensity
at any temperature T. Consider, for instance, the function f  (x) = x3 / 2x,
which is very similar to Planck’s intensity functions. If we start plotting
the values of f  (x) for x = 1, 2, 3, . . . , we get 1⁄2, 2, 33⁄8, 4, 329⁄32, and
then the values of f start decreasing quickly toward zero.

Second, if hν is much larger than kT, ehν/kT is so large that subtracting
1 from it (as the denominator in Planck’s formula tells us to do) hardly
changes its value at all, so for these frequencies, I(ν,T) = (2hν3 / c2) / ehν/kT.
Planck immediately recognized that this had the same form as Wien’s
approximation I(ν,T) = Aν3e-Bν/T (because 1 / x and x-1 mean the same
thing). Moreover, the constants A and B in Wien’s approximation,
which Wien had obtained empirically, were now revealed to be con-
stants with physical significance. The number A was 2hν3 / c2, and the
number B was h / k.

In order to appreciate the third attractive feature of Planck’s formula,
we need to use a result from calculus that has its antecedents in Zeno’s
Paradox. Zeno’s Paradox is a conundrum that asks how an arrow can
reach its target if it first travels half the distance to the target, then half
of the remaining distance, then half of the remaining distance . . . and
so on. It would seem that the arrow can never reach its target, as it al-
ways travels half of the remaining distance. However, if we think of
the distance to the target as 1, the distance that the arrow travels in
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each of the stages of Zeno’s Paradox is 1⁄2 in the first stage, 1⁄4 in the
second, 1⁄8 in the third, etc. The sum of the distances of all these stages
is 1⁄2 + 1⁄4 + 1⁄8 +. . . .

A resolution of Zeno’s Paradox can be extended by looking at the more
general problem of finding the sum of the geometric series r + r2 + r3 + . . .,
where r is a number between 0 and 1.

If the sum of these numbers is denoted by S, then S = r + r2 + r3 +. . . .
Multiplying both sides of this formula by r yields rS = r2 + r3 + r4 +. . . .
When we subtract the infinite sum for rS from the infinite sum for S,
since all the individual terms that appear in the infinite sum for rS also
appear in the infinite sum for S, the only uncanceled term in S is the
first term r. So S – rS = r. The left side can be factored, which yields
(1 – r)S = r. Consequently, S = r / (1 – r). In the case of Zeno’s Paradox,
r = 1⁄2, and we breathe a sigh of relief as we see that S = 1⁄2 / (1 – 1⁄2) = 1;
the arrow really does reach its target.

In the eighteenth century, the techniques of calculus, notably those
derived by the English mathematician Brook Taylor,8 were used to ob-
tain infinite sum descriptions (aka infinite series representations) of
many functions. The sum above was seen as an infinite series repre-
sentation of f (r) = r / (1 – r). One of the most basic functions for which
such a representation is available is the exponential function f  (r) = er,
which has the representation

er = 1 + r / 1 + r2 / (1 × 2) + r3 / (1 × 2 × 3) + r4 / (1 × 2 × 3 × 4) + . . . 

In particular, for very small values of r, the first two terms of this
series, 1+ r, constitute an extremely accurate approximation to er.
Planck, of course, was well aware of this, and in cases where hν is
much smaller than kT, the denominator of his intensity function, [1 /
(ehν/kT – 1)], could be closely approximated by (1 + hν / kT) – 1 = hν /
kT. Substituting this into his expression for I(ν,T), Planck obtained
I(ν,T) ≈ (2hν3 / c2) × kT / νh = (2k / c2)ν2T—the Rayleigh-Jeans Law!

Talk about pulling rabbits out of a hat! With the assumption that
the oscillators only radiated energy in integer multiples of hν, Planck
had derived a formula that circumvented the ultraviolet catastrophe
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and reduced to both the Rayleigh-Jeans Law and Wien’s approxima-
tion in the regions where both were known to be correct—to say noth-
ing of unearthing the meaning of the mysterious constants in Wien’s
approximation.

Even more rabbits were soon forthcoming—after all, what do you
expect from rabbits? (My parents could have answered this question:
when they sailed for Bermuda in 1935 on their honeymoon, one of their
more mischievous friends had arranged for a pair of male and female
rabbits to be placed in their stateroom as a wedding gift; they off-loaded
about ten rabbits when they reached Bermuda.) Recall that Kirchhoff
had shown that it didn’t matter how you achieved thermal equilibrium;
substances and shape were irrelevant. Planck had used electromagnetic
oscillators to produce the radiation, and so when Boltzmann’s constant
popped out of his derivation of the radiation law, it demonstrated a pos-
sible connection between electromagnetism and the not-yet-com-
pletely-accepted atomic theory.

Planck’s comment to his son, that he had come up with an idea that
was potentially as important as those of Newton or Einstein, was indeed
prescient. The Nobel Prize Committee put Planck on the short list for
the prize in 1907 and 1908. In fact, he almost received it in 1908—not
for the quantum hypothesis that lay at the heart of his derivation, but
rather that his calculations helped confirm the atomic theory.9 However,
he was not to receive that prize until 1918—but by then the Prize was
awarded for “the services he rendered to the advancement of Physics
by his discovery of energy quanta.”10

Indeed, it took some time for the physics community to appreciate
that the concept of the energy quantum was truly the pièce de résistance
of Planck’s theory. For a number of years, the energy quantum was
seen merely as a mathematical trick that simultaneously avoided the
ultraviolet catastrophe and reduced to Wien’s approximation and the
Rayleigh-Jeans Law under the appropriate conditions. Mathematics is
the language of physics, but sometimes the connection between math-
ematical symbols and the real world is not apparent. Ideally, one would
like to have the mathematical theories that produce practical formulas
that accord with the real world to have been derived from assumptions
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and observations about the way the real world is, rather than from a
hypothetical surmise with no apparent connection to the real world.

What Is This Thing Called h?

The units in which a constant is expressed can often be determined
from an equation in which that constant appears. If we look at New-
ton’s formula for the gravitational force, F = GmM / r2, for example,
we can see that the value of G must be expressed as the product of mass
units times the cube of distance units divided by the square of time
units. This is because force—to use the metric system—is measured in
kilograms × (meters / seconds2) and the expression mM / r2 is measured
in kilograms2 / meters2. In order to have the same units appearing with
the same exponents on both sides of the equation, the units for G must
be kilograms × meters3 / seconds2.

The same logic applies to h—the equation E = hν requires its units
to be of the form energy-units × time-units, and the calculated value
of h, using the units popular at the time, was 6.62 × 10-27 erg-seconds.
An erg is a unit of energy; one of my physics professors used to de-
scribe it as approximately the amount of energy an ant needs to stamp
one of its feet. I don’t know how accurate this is, but it gives you the
idea that an erg is a very small amount of energy, so 6.625 × 10-27 ergs
is an inconceivably small amount of energy. An erg-second is the result
of expending one erg of energy for one second. Ants probably don’t
stamp their feet, and if they do it’s for a duration considerably shorter
than one second, so—with apologies to my physics professor—since
most of us have seen an ant labor continuously to push a grain of sugar
or some similar substance, let’s suppose that an erg-second is the energy
expenditure of an ant pushing a grain of sugar for one second. As we
have seen, visible light is radiated at a frequency on the order of 5 × 1014

cycles per second, so the lowest energy level of radiation for visible light
is on the order of hν = 6.55 × 10-27 × 5 × 1014 = 3.28 × 10-12 ergs. Conse-
quently, you need about 300 billion such transitions to generate the
same amount of energy as an ant uses in stamping one of its feet. The
time required to emit a single photon varies, but it’s on the order of a
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tenth of a nanosecond, 10-13 of a second. That means that you’d need
about 3 × 1024 such transitions to equal the amount of effort expended
by an ant pushing a grain of sugar for one second.

Energy quanta are extremely small in the real world. Red light oscil-
lates at a frequency of about 4 × 1014 cycles per second, so hν = 6.62 ×
10-27 × 4 × 1014 ≈ 2.65 × 10-12. Therefore the minimum change in energy
in red light is about one four-hundred-billionth of an erg. Had it been
considerably larger, it would have shown up in the real world. For in-
stance, most of us have seen dimmer switches on lamps; as you turn a
knob the light level gradually diminishes from maximum brightness
until the light is finally out. If Planck’s constant were a lot larger, we
wouldn’t be able to have such dimmer switches—lights wouldn’t ap-
pear to dim gradually but instead would dim by noticeable jumps—
they might simply have a few different brightness levels, such as the
ones we see in the 50–100–150 watt bulbs, whose brightness is con-
trolled by a switch but can only assume one of those three levels. A
much larger Planck’s constant would result in lights such as the 50–
100–150 watt bulb described above being an inherent property of
lights; gradual dimmer switches would be impossible. Of course,
Planck’s constant shows that, to the sufficiently sensitive “eye” (in this
case, an electronic rather than a biological one), in the real world there
are no dimmer switches; light intensity dims by jumps, but those jumps
are so small—about one four-hundred-billionth of an erg—that our
eyes perceive them as gradually dimming. In fact, our inability to per-
ceive subtle discontinuity is responsible for many of the most important
devices of our technological world; TV and computer screens present
slightly different pictures hundreds or even thousands of times a sec-
ond, producing the illusion of continuous motion.

The Triumph of the Quantum Theory

As we have observed, it took a significant amount of time before the
importance of the quantum hypothesis was fully appreciated. In fact,
it is rather surprising that Newton’s theory of gravitation—which
spread in the seventeenth century, with no form of communication
other than person-to-person, mail, or books and journals—was much
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more rapidly assimilated into the body of science than Planck’s theory,
when we already had the means for communication at close to the
speed of light.

It wasn’t until Einstein’s “miracle year” of 1905 that physicists
began to realize that Planck’s quantum hypothesis was much more than
a mathematical trick that happened to work. During that year, Einstein
published three remarkable papers, the first of which dealt with the
problem of the photoelectric effect. The photoelectric effect had first
been observed by Heinrich Hertz, the discoverer of radio waves, but
was more accurately analyzed by Philipp Lenard in 1902. Lenard dis-
covered that shining light onto certain metals resulted in the production
of an electric current. Lenard compared the energy of the electrons in
the current from two different light sources, a zinc arc and a carbon
arc. Although the light from both sources was a mixture of light at var-
ious frequencies, the dominant frequency from the carbon arc was
higher than the dominant frequency from the zinc arc—and the average
kinetic energy produced by the light from the carbon arc was higher
than the average kinetic energy of the light from the zinc arc.

One might also think that if one were to increase the power of the
light, the energy of the electrons produced would increase, too. Lenard,
however, showed that this intuitive conclusion was not the case, and
the average energy of the electrons depended upon the frequency of
the light used to produce them. For this startling result, Lenard was
awarded the Nobel Prize in 1905, the same year that Einstein used
Planck’s quantum hypothesis to explain it. A certain amount of energy
was needed to free an electron from the metal atoms. If the frequency
of the incident light was such that hν (the energy of the light) was less
than the energy needed to liberate an electron, there would be no cur-
rent. The idea here is somewhat akin to a needed threshold such as
melting temperature. A swimming pool full of water boiling at 373
kelvin has enough heat to melt iron. However, if you immerse a piece
of iron in the pool, nothing happens. That’s because the heat in the
water isn’t available at a sufficiently high temperature. Einstein won
the Nobel Prize for realizing that the photoelectric effect, with the aid
of Planck’s quantum hypothesis, could be explained by a similar thresh-
old effect. In case anyone hadn’t paid attention to the mathematics in
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the paper, Einstein spelled it out. “Monochromatic radiation,” he wrote,
“ . . . behaves in thermodynamic respect as if it consists of mutually
independent energy quanta of magnitude hν.”11

Other confirmations followed. In 1913 the Danish physicist Niels
Bohr proposed a new model of the atom. The energy of an atom nor-
mally had a certain value, which Bohr described as the atom’s ground
state. The atom could absorb photons of certain energies; doing so
would boost the energy of the atom—but again, only by specified
amounts. This would boost the atom into an excited state. In one of
these excited states, the atom could emit photons only having partic-
ular energies— which corresponded to specific frequencies via Planck’s
E = hν formula. Specific frequencies meant specific colors; and Bohr’s
model of the atom explained the colors in the spectra of the various
atoms. Just as Wien had developed an empirical formula for radiation
intensity that Planck’s formula explained, Bohr’s model of the atom
explained an empirical formula for the lines in the hydrogen atom’s
spectrum that the physicist Johann Balmer had developed.

Einstein was later to write, “This discovery was to become the basis
of all twentieth-century physics and has almost entirely conditioned its
development ever since.”12 He wrote those words in a chapter titled “In
Memoriam Max Planck,” decades after the 1920s and 1930s, which
had seen Planck’s quantum hypothesis totally transform our view of
the universe, including the dual particle-wave nature of light and elec-
trons; the impossibility of determining the position and momentum of
a particle to an arbitrarily high degree; and the entanglement of the
quantum states of particles, by which measuring one affected the state
of the other.

These properties were so bizarre that almost a century later, expla-
nations of what they say about the universe have yet to be offered that
are completely satisfactory to the entire physics community. There have
been almost as many books written about these phenomena as there are
season-by-season analyses of the TV series Lost. I urge you to read one
or two—or more—of them (the books, not the season-by-season analy-
ses). As the British astronomer Sir Arthur Eddington wrote, “Not only
is the universe stranger than we imagine, it is stranger than we can
imagine.”13 It is even stranger than Lost.

116 COSMIC NUMBERS

         



C H A P T E R  9

T H E  
S C H WA R Z S C H I L D  

R A D I U S

I f I had but world enough and time—or if there is such a thing as
reincarnation—I would like to be an astronomer. Of all the sciences,

it has the most appeal for me—possibly because I can understand with
relative ease even technical articles on the subject. Of all the natural
sciences, astronomy has always impressed me as the one that is closest
to mathematics in the way the trade is practiced. Until recently, one
could not really perform experiments in either mathematics or astron-
omy the way that one can in physics, chemistry, or biology. The com-
puter has changed that, of course, making simulations an integral part
of the advance of astronomy, and the exploration of space has brought
the planets and the Sun “up close and personal” in a way that could
never have been anticipated a century ago. Nevertheless, many of the
great advances in astronomy were made long before space exploration
and the modern computer, and they stand as a testament to the incred-
ible reach of the human intellect. One of the finest examples is the
Schwarzschild radius, which describes the black hole left after the
death of a star. To fully understand it, however, we first need to talk
about a star’s life.

With the exception of the Sun, the stars are almost inconceivably far
away. And ours—at 93 million miles away—isn’t particularly close.
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Even if the Sun, which has a radius of about 440,000 miles, were ac-
tually the size of a grapefruit with a radius of about three inches, the
Sun would still be 53 feet from Earth (which, to match the scale, would
have been shrunk to the size of a small BB). At actual scale, it takes
light 8 minutes to travel from the Sun to the Earth, but 4.3 years to
travel from Alpha Centauri, the next-closest star. Using our model,
Alpha Centauri would be about 2,800 miles from the Sun; if the grape-
fruit were located at home plate in Dodger Stadium in Los Angeles,
the Earth would almost be on the pitcher’s mound and Alpha Centauri
would be somewhere in New Brunswick, Canada.

As a result, astronomers prior to the year 1950 had only two tools
with which to construct theories of stellar behavior. The first was an
analysis of the electromagnetic radiation emanating from the stars, and
the second was using the theories of gravitation, thermodynamics, elec-
tromagnetism, and nucleosynthesis to make predictions about how a
big ball of gas ought to behave.

There is something truly awe-inspiring in our ability to understand
so much about things that are so far away.

Carl Sagan and Stellar Taxonomy

There is a poignant passage in Carl Sagan’s Cosmos, in which he de-
scribes how, as a small boy, he visited a local library and asked for a
book about the stars.1 The librarian found a book on movie stars of the
era and gave it to Sagan, that being, of course, not what Sagan was
looking for.

I read this passage when the book was published, in 1980, and it
seemed a little sad, that the word star would be more quickly associated
with celebrity than astronomy. But maybe it’s something we can work
with. I didn’t get married until 2000, and when I did, it was to a woman
who had a much greater interest in celebrities than I did; when we
would board an airline I would take a recent copy of Science or Scien-
tific American, whereas Linda steeled herself for the flight with a copy
of People. I idly picked up a copy and thumbed through it one day,
when it suddenly struck me—as it undoubtedly has struck others—that
there are a lot more parallels between the two meanings of star than I
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had originally suspected (even though I fervently hope that star will
always first refer to an astronomical object).

First of all, exactly what is a celebrity? The definition I find most
reasonable is someone who is widely recognized. Of course, the term
“widely” is somewhat vague, but I would think that a person who is
known considerably beyond the circle of individuals he or she has per-
sonally encountered would qualify. If you are somewhat cynical, you
might observe that the more celebrity people have, the more likely they
are to feel that their personal opinions are of great importance: thus the
first similarity between a star and a celebrity is that the former is a huge
mass of overheated gas, and the latter has a tendency to become one.

Stars and celebrities share two more important attributes. Luminos-
ity can describe one of them. For a star, luminosity is the rate at which
it radiates energy, either visibly (to us) or entirely. Apparent luminosity
measures the visible energy, and bolometric luminosity (named for the
instrument devised to measure this quantity) is the total. Although it is
not so precisely defined in dealing with celebrities, a celebrity’s lumi-
nosity can be described as how recognizable that celebrity is.

We can also describe a star’s color, which we know to be an indica-
tion of its temperature. The analogy for the celebrity would not be the
physical color imparted by skin pigment but a measure of temperature
accorded by how much attention is paid to a celebrity by the news
media. There is a rationale for using temperature to describe this, as it
is increasing media coverage that puts the heat on celebrities, as Tiger
Woods or Mel Gibson could attest. We now have two different mea-
suring scales for both types of stars: temperature and luminosity. We
can now draw two diagrams—one for stars and one for celebrities—
using these two scales as horizontal and vertical axes, and locate each
star or celebrity on the corresponding diagram by plotting a point with
the appropriate temperature and luminosity coordinates.

The Temperature-Luminosity Diagram

We can make a graph of temperature and luminosity, in which news
media recognition forms the horizontal scale and public recognition
the vertical scale. On this graph, public recognition will increase as we
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move upward, but news media recognition will decrease as we move
from left to right. Points—each indicating a specific celebrity—on this
diagram are not randomly scattered with no apparent pattern. For
starters, there is a significant positive correlation between public and
news media recognition of the celebrity: generally, the more the news
media recognizes a celebrity, the more the public will as well, and vice
versa. A large number of celebrities will therefore be positioned on a
band that stretches from the upper left of the diagram—high public and
news media recognition—to the lower right—low public and news
media recognition (sadly, where most of the people described in this
book are located, excepting outliers such as Albert Einstein). But the
correlation is not strict: there are large groups of celebrities with high
news media recognition and little public recognition. Many polls have
revealed that although the vice president probably gets covered by the
news media every day, a depressingly large segment of the population
does not know his name and of those who recognize the name Joe
Biden, very few would recognize him on the street (I’m one of them).
There are also groups of celebrities who are readily recognized by large
segments of the public but receive little news media coverage; many
entertainers fall into this category.

This diagram can also be used for plotting the career arc of a celeb-
rity. For a particular celebrity, we could place one point on the diagram
corresponding to the celebrity’s position for each year of the celebrity’s
life. We could then connect the dots in chronological order; the result-
ing path would describe how the celebrity’s recognition has changed
with time. Some celebrities, such as Marilyn Monroe, initially appear
on the bottom right of the diagram, only to catapult to fame and high
recognition by both the public and the news media, and remain there,
even long after death.

We can do the same for actual stars. The original temperature-lumi-
nosity diagram was constructed in the second decade of the twentieth
century by two astronomers, Ejnar Hertzsprung and Henry Norris Rus-
sell. This diagram had temperature decreasing on the horizontal scale—
corresponding to the same shifts in color that had been studied by
Boltzmann at the end of the nineteenth century—and luminosity in-
creasing on the vertical scale.
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I must admit when I first saw the Hertzsprung-Russell diagram,2 I
wondered why temperature decreased as one went from left to right.
Both Denmark and the United States, the countries of which
Hertzsprung and Russell were citizens, have languages that are read
left to right, and it is traditional for scales to increase from left to right
on graphs. However, the relation kT = hν tells us that temperature T in-
creases with increasing frequency ν of light—but the frequency of light
is inversely proportional to the wavelength λ of the light, which is de-
fined as the distance between two successive crests of the wave. If the
frequency of light doubles, so that twice as many complete cycles ap-
pear in a fixed period of time, the distance between successive crests
must halve. Both frequency and wavelength are natural ways to de-
scribe light, and my guess is that Hertzsprung and Russell originally
used wavelength as a horizontal axis. Then, as the diagram emerged,
they found a reason to switch from wavelength to frequency as the hor-
izontal axis.

Each star corresponded to a point on the diagram, and once graphed,
patterns emerged that were to initiate studies into the life cycle of stars.

The first pattern was the emergence of a large band from the top left
of the diagram to the bottom right—similar to the pattern described
earlier in the celebrity temperature-luminosity diagram. This band is
called the main sequence, and the majority of stars reside on it. How-
ever, there are two correlations involving the main sequence that do
not exist for the corresponding band in the temperature-luminosity
diagram for celebrities. As one moves down the main sequence, from
the upper left to the lower right, the stars not only become redder and
less luminous, but also less massive and longer-lived. A star on the
upper left of the main sequence can be sixty times as massive as the
Sun, but will also live only 10 million years or so. In contrast, a star
on the lower right of the main sequence may weigh less than one-
tenth the mass of the Sun, but could survive for more than 100 billion
years.

There are several groups of stars that do not appear on the main se-
quence. We have encountered one of these groups before: the white
dwarves cluster in the middle of a band that would be parallel to the
main sequence but some distance below it. Roughly the same distance
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above the main sequence as the white dwarf band is below it, and also
roughly parallel to the main sequence, are the giants and supergiants,
the group of stars that we will focus on in this chapter.

One can also trace the life of a particular star as a curve on the
Hertzsprung-Russell diagram, similar to the career arcs on the temper-
ature-luminosity diagram for celebrities. There is, however, an impor-
tant difference between these two. Of course, we cannot actually follow
a star through its life cycle to plot such a curve; even the shortest-lived
stars last far longer than human history. However, the life cycles of
stars are completely determined by their temperature and luminosity
at any moment in time—if we find two stars with the same temperature
and luminosity, their lives will follow the same paths. This character-
istic is very different for celebrity arcs—celebrities who have the same
temperature and luminosity coordinates may follow very different ca-
reer paths: one may go on to greater glory, one may crash and burn,
and a third may simply sputter out.

The fact that the life of a star is completely determined by two co-
ordinates has a familiar parallel in an earthly phenomenon—the path
of a projectile. If we place an old-fashioned cannon (little more than
an iron tube that is closed at one end) on the ground and fire cannon-
balls with the same weight but use differing amounts of gunpowder,
the amount of gunpowder completely determines the path of the can-
nonball, and no two paths corresponding to different amounts of gun-
powder will intersect. If we are able to accurately determine the
position of a cannonball at just a single moment, whether in the air or
when it hits the ground, we know exactly how much powder was used,
where the cannonball was, and where it will be at all moments in time
(of course, we’re always referring to cannonballs fired from the same
cannon). The similarity between the life cycles of stars and the paths
of cannonballs is a result of the fact that both sets of curves—the life-
cycle curve of a star on the Hertzsprung-Russell diagram and the
curve of a cannonball in space—are solutions to differential equa-
tions, a class of equations that arises through calculus by looking at
the rates at which various parameters are changing. It is a character-
istic of many differential equations, including the ones governing pro-

         



jectile motions (originally discovered by Newton) and the energy bal-
ance in stars, that the solutions form a collection of nonintersecting
curves.

It is the mass of the star that determines its luminosity and temper-
ature. A ball of hydrogen must be massive enough (about seventy times
the mass of the planet Jupiter) that gravitational contraction can elevate
temperatures to the point where hydrogen fusion commences. The dy-
namic mechanism of a star is fairly simple. The star contracts from the
force of gravity, which creates high pressures at the center of the star,
which result in high temperatures—just as the ideal gas formula pre-
dicts. Energy flows from the hot interior to the cooler surface, where it
is radiated away. Actually, this process does not depend on thermo -
nuclear fusion; the same thing would happen if the Sun were made of
coal, as Kelvin hypothesized when he showed that chemical combus-
tion could not sustain the Sun for long. (We are actually fortunate that
the Sun is not made of coal, because if it were, the pressure at the core
would be vastly greater, producing much greater temperatures at the
interior—and we would fry in an instant.)

The upper limit on the possible size of a star was initially determined
by Arthur Eddington, who calculated that if a star is about 120 solar
masses, the outward radiation pressure would overwhelm the inward
force of gravity.3 Either the star would blow itself apart or expel enough
mass to get down below that limit. (Although this calculation is cer-
tainly correct in principle, in 2010, a paper was published in which the
star R136a1 was determined to have a mass more than 250 times that
of the Sun.4 If this mass is confirmed, Eddington’s calculations will
have to be revised.)

We can be sure of one thing, however. The supergiants—the truly
massive stars—are destined for extraordinary fates, and they are the
ones that, as Sagan said, make us star-stuff. These are the most intrigu-
ing stars—they burn unbelievably hot and have extremely short lives,
at least for stars. This, too, parallels the nature of celebrity—big celeb-
rities of my era have been mostly forgotten, but the ones that burned
white-hot and died young—Elvis and Marilyn Monroe—are still
widely recognized and have their own cult following.
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The Great Technetium Mysteries

One of the most interesting bits of star-stuff is something that, unless
you are a chemistry geek, you’ve probably never heard of, even though
you may have come into contact with it, as it is in fairly widespread
use as a radioactive tracer. This bit of star-stuff is technetium, element
number 43. Technetium fills one of the three gaps in the initial version
of the periodic table as propounded by Mendeleyev. One of the hall-
marks of a great theory is its ability to make surprising predictions.
The periodic table certainly meets this requirement, as Mendeleyev
correctly predicted some of the physical and chemical properties of el-
ement number 43, which he initially called eka-manganese, because it
lay directly below manganese in the periodic table. What he could not
have predicted was the fact that it was radioactive, as radioactivity was
unknown at that time.

In fact, there are no nonradioactive isotopes of technetium, and it is
incredibly rare on Earth. It is the first element to have been produced
by artificial means: hence the name “technetium” from the Greek word
for “artificial.” Its existence was discovered, by Emilio Segré, in
molybdenum foil from a discarded radioactive cyclotron. It was soon
discovered that the great majority of technetium’s isotopes are ex-
tremely short-lived, but there are a couple with half-lives (the time it
takes for half a quantity to radioactively decay) of several million years.

How we could know such a thing puzzled me as a child. It’s not as
though, I reasoned, anyone could possibly have been around long
enough to measure it! The answer lies in calculus.

Imagine you have two buckets of technetium, one containing twice
as much as the other. If you leave them alone for some time and then
measure the amount of technetium in each, you will find that the first
bucket still contains twice much as the second, even though the amount
in both containers has decreased. The rate of change is proportional to
the amount present.

The functions that solve the differential equation in which the rate
of change of a substance is proportional to the amount of substance
have the form f  (t) = N × 2t/h, where t is the amount of time that has

         



elapsed since the initial measurement was made. N is simply the
amount of substance that is present at the time of the initial measure-
ment (corresponding to t = 0); h is positive for things that increase with
time, such as colonies of bacteria, and negative for things that decay
with time, such as radioactive substances. The absolute value of h is
the half-life of the substance.

Suppose we initially use a Geiger counter on a radioactive substance
and discover that the click rate is 1,000 clicks per minute. We measure
the same substance precisely 100 hours later, and discover that the click
rate is 999 clicks per minute. Because click rate is proportional to the
amount of radioactive substance present, we can simply assume that our
unit of mass is such that a single unit of mass would emit one click per
minute. Therefore our initial quantity of mass N = 1,000 and f  (100) = 999.
But then 999 = f  (100) = N × 2100/h = 1,000 × 2100/h. So 0.999 = 2100/h, and
we can solve for h by using logarithms. It doesn’t matter whether we
use common (base-10) logarithms or natural (base-e) logarithms, but
since common logarithms are more widely known, I’ll use them. So,
by a well-known property of logarithms

log 0.999 = log (2100/h) = (100 / h) log 2

Multiplying both sides by h and subsequently dividing both sides by
log 0.999 shows that

h = 100 log 2 / log 0.999 = –69,280.1 (in hours)

Since h is negative, its absolute value is the half-life of our sub-
stance, approximately 7.91 years. We could even determine what the
substance is by looking at a table of half-lives; there are probably only
one or two substances with a half-life of precisely 7.91 years.

Indeed, technetium’s very short half-lives prove that most of the el-
ements we see were made in stars. The longest-lived isotope of tech-
netium has a half-life of about 4 million years, and it is formed from
the radioactive decay of much heavier elements such as uranium. Every
4 million years, half of it disappears, so after a billion years a quantity
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of technetium has been cut in half 250 times. Since (1⁄2)250 is on the
order of 10-76, and since there are roughly 1080 atoms in the universe,
of which very few are technetium, the fact that technetium can be found
in the atmospheres of stars that are considerably older than a billion
years is evidence that technetium is being minted in the stellar core.
This constitutes prima facie evidence that our understanding of the pro-
cesses that go on in the stellar core is correct. Since the contention that
we are all star-stuff depends critically on our understanding of these
processes, it’s nice to get confirmation of our theories.

The Worst Experimentalist in History

In high school, I thought that was a good description of Nancy, my lab
partner in chemistry. A big plus about Nancy was the fact that she had
access to cigarettes in an era in which it was deemed cool to smoke, so
we reached an agreement: I’d write up the experiments, and she’d slip
me cigarettes (wild behavior in high school was considerably milder
in the 1950s than it is now). The downside was a real risk of injury. I
still remember one day when Nancy added 30 milliliters of concen-
trated sulfuric acid to sodium bromate rather than the 3 milliliters of
dilute sulfuric acid. The result was that an ominous orange cloud of
bromine started to materialize, from which, fortunately, our teacher
saved us.

It turns out, however, that Nancy was a considerably better experi-
menter than Wolfgang Pauli, whose mere presence in laboratories was
thought to be able to adversely affect any experiment in progress. But
Pauli was a brilliant theoretical physicist, and enunciated a concept—
the Pauli Exclusion Principle—which explained the mechanism that
enabled the formation of the white dwarves.

The Pauli Exclusion Principle is a fundamental concept in quantum
mechanics. It states that no two members of a class of particles called
fermions, which includes electrons and quarks (and the common com-
posites of them, such as neutrons and protons), can have the same quan-
tum state. A quantum state is an aggregation of quantum properties, one
of which is energy level. A consequence of this is that electrons that are
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close together must have different energy levels. Electrons typically oc-
cupy low-energy levels, but if there are a lot of them packed really close
together, some of the electrons must occupy high-energy states. These
electrons create a type of pressure known as electron degeneracy pres-
sure (which we will encounter again in Chapter 11). Unlike the pressure
in the Ideal Gas Law, this pressure is a quantum-mechanical effect, and
is not sensitive to temperature. This leads to interesting effects inside
a star—the degeneracy pressure, in concert with radiative pressure from
fusion, prevents gravitational collapse. Fusion, however, eventually
stops. In some stars, which are known as white dwarves, what remains
is usually carbon and oxygen, which glow because they are hot, and
which are supported against gravity by electron degeneracy pressure.
Larger stars, however, can undergo further fusion, but even they must
stop at iron, as the fusion of iron absorbs energy rather than producing
it, as does fusion of elements lighter than iron. In the absence of fu-
sion’s radiative pressure, gravity—if the star is large enough—over-
whelms electron degeneracy pressure. In approximately one-tenth of a
second the gravitational collapse occurs at about 25 percent of the speed
of light. The electrons are squashed into the protons, with the result that
the entire star consists of neutrons. Several solar masses are now
squished into a sphere that is perhaps ten miles in diameter. The result-
ing shock wave rebound tears the outer layers of the star apart, and a
supernova appears in the sky. In this instant, the star releases a hundred
times as much energy as the Sun will generate in its entire lifetime. Most
of this energy is released as neutrinos.

Cosmic Gall

Matter is virtually transparent to neutrinos—as the poet John Updike
immortalized in the poem “Cosmic Gall”:

Neutrinos, they are very small.
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
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To them, through which they simply pass,
Like dustmaids through a drafty hall
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,
And scorning barriers of class,
Infiltrate you and me! Like tall
And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal
And pierce the lover and his lass
From underneath the bed—you call
It wonderful; I call it crass.

Updike would call it a lot more than crass if the Sun were to explode
in a supernova (don’t worry, it’s not massive enough). Even though a
single neutrino can pass through a lead barrier a light-year thick without
interacting with one of its atoms, the neutrinos generated by a supernova
of our Sun would be so energetic and so numerous that the radiation
could kill a human being as far away from the Sun as Jupiter is.

Incidentally, there is a small technical error in Updike’s poem—neu-
trinos actually have mass, although not a whole lot. Updike passed
away in 2009, and it’s a pity he didn’t choose to write more poems
about neutrinos, as there are a number of enchanting mysteries sur-
rounding them that I think would delight a poet. There are three differ-
ent types of neutrinos, and apparently they can change their type in
mid-flight.5 Gender change among the neutrinos! Someone should have
brought this to Updike’s attention.

What happens next (to the supernova, not Updike) depends upon the
mass of the original star. If the remnant neutron core is less than about
2.5 solar masses, it continues to exist as a neutron star. A cubic cen-
timeter of the material in the center of a neutron star weighs an as-
tounding 1015 pounds. The gravitational force at the surface of the star
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is more than 100 billion times the strength of the gravitational force on
Earth, but if what remains of the star weighs less than about 2.5 solar
masses, neutron degeneracy pressure will counterbalance even this
crushing force, and the neutron star will continue to exist. If what re-
mains of the star weighs more than 2.5 solar masses, though, even neu-
tron degeneracy pressure cannot counterbalance the gravitational force,
and the star disappears from the universe in the form of a black hole.

A black hole is aptly named, for it is a region of space in which the
gravitational force is so intense that not even light can escape. Although
black holes first entered public consciousness around 1967, when the
physicist John Archibald Wheeler coined the term, the concept of a
black hole goes back more than two centuries—to John Michell, the
man who lent Henry Cavendish the torsion balance with which
Cavendish determined the density and weight of the Earth. In fact,
Michell wrote to Cavendish, “If the semi-diameter of a sphere of the
same density as the Sun were to exceed that of the Sun in the proportion
of 500 to 1, a body falling from an infinite height towards it would have
acquired at its surface greater velocity than that of light, and conse-
quently supposing light to be attracted by the same force in proportion
to its vis inertiae, with other bodies, all light emitted from such a body
would be made to return towards it by its own proper gravity.”6 This is
pretty sensational stuff, as Michell not only predicted photons (that
stuff about light being attracted by the same force), but even worked
out to some extent the mathematics of a black hole.

Michell’s work, however, did not attract much attention, and it took
a German soldier stationed on the Russian front during World War I to
regenerate interest in the black hole phenomenon.

Karl Schwarzschild

I was fortunate enough to have been too young for either of the two
World Wars or the Korean conflict, and even though I was of draft age
during the early days of Vietnam, the U.S. government decided that it
was more in the national interest for me to study mathematics than to
serve in the military. I duly reported for the physical (which I passed)
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and the Army Alpha intelligence test. When the examiner found out
that I was a graduate student at Berkeley, he said that he expected me
to set records—at least for that particular induction center. He was
probably disappointed. The first two parts of the test were vocabulary
and arithmetic; as might be expected I nailed them. The third part was
spatial relations; you were shown an oddly shaped diagram with dotted
lines and were expected to identify in a multiple-choice format what
the diagram would look like if it were folded along the dotted lines.
This isn’t one of my strong suits, as my spatial perception is not very
good. The third part was a breeze, however, compared with the fourth,
in which you were shown a tool and asked to identify what it was used
for. Since none of the tools was a hammer or a saw, I’m not sure I got
any of them right. At any rate, I spent most of the Vietnam War teaching
and studying math, and am extremely grateful I did not have to see ac-
tive service, as I am sure I would have been able to think of nothing
but how long it would be until I could go home.

Karl Schwarzschild was made of much sterner stuff than I am. Ein-
stein published his General Theory of Relativity in 1915, and while
Schwarzschild was on the Russian front, he not only managed to obtain
a copy to study, but did significant research as well. The theory is ex-
pressed as a system of differential equations (which I think of as the
language of the universe, because they occur so frequently throughout
the sciences), and Schwarzschild was the first to obtain specific solu-
tions to those equations, which he communicated to Einstein. Einstein
thought so much of the work that he presented them personally to the
Prussian Academy of Sciences, which then published them.

Sadly, Schwarzschild died in 1916 of an autoimmune disease con-
tracted while serving on the Russian front. World War I was notable in
that it may have been the last war in which the combatants acknowl-
edged the humanity of those on the other side. The death of Paul
Ehrlich, the father of chemotherapy, was acknowledged by the entire
world as the passing of an individual who had contributed inestimably
to the betterment of the human condition. Of Schwarzschild’s passing,
Eddington said, “The war exacts its heavy toll of human life, and sci-
ence is not spared. On our side we have not forgotten the loss of physi-
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cist Moseley, at the threshold of a great career; now, from the enemy,
comes news of the death of Schwarzschild in the prime of his powers.
His end is a sad story of long suffering from a terrible illness contracted
in the field, borne with great courage and patience. The world loses an
astronomer of exceptional genius.”7

Schwarzschild originally phrased his results in the framework of the
General Theory of Relativity, but it is also possible to obtain the basic
idea using simple Newtonian physics, as Michell must have done. To
do so, imagine that a mass M is concentrated in a nonrotating sphere
of radius R. If we fire a projectile of mass m up from the surface of the
sphere with velocity v, it will fail to escape the gravitational pull of the
sphere if the kinetic energy of its motion, 1⁄2mv2, is insufficient to coun-
teract the gravitational potential energy GMm / R exerted by the sphere
on the projectile. The fastest that a projectile could travel would be c,
the speed of light. So, if GMm / R > 1⁄2mc2, even light cannot escape
from the sphere. Notice that we can divide both sides of this inequality
by m; if after doing this we solve for R, we see that R < 2GM / c2. So
if the mass M lies inside a sphere of radius 2GM / c2, no light (and no
information) can escape from the sphere. The quantity 2GM / c2 is
called the Schwarzschild radius, and the surface of the sphere centered
at the center of the mass M and whose radius is the Schwarzschild ra-
dius is called the event horizon. As far as we can tell, no events take
place inside the event horizon, but because no information gets out to
us from inside the event horizon, there may be the remote possibility
that there is one hell of a party going on.

Unlike all the other constants we have examined in this book, it is
not a constant in the strict sense of the word, as its value depends upon
the mass M. The Schwarzschild radius of the Earth (or, more precisely,
of a mass equal to that of the Earth) is about one centimeter, and the
Schwarzschild radius of the Sun is about 3 kilometers.

Black holes are conventionally portrayed as ominous black spheres
that we imagine are incredibly dense, far denser even than a neutron
star. Although a black hole that has shrunk to a point has infinite den-
sity, if this even makes sense, the density of massive black holes is sur-
prisingly low. A galaxy may contain on the order of 1042 kilograms; if
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so its Schwarzschild radius is about 1015 meters. The volume of such a
sphere is about 4 × 1045 cubic meters, so the density of the black hole
would be about 1⁄4000 kilograms per cubic meter, or about 1⁄4 of a gram
per cubic meter. At sea level air weighs about 1,200 grams per cubic
meter, so the atmosphere is about 5,000 times as dense as a galaxy-
sized black hole.

Black holes have been theoretical constructs for some time, but the
evidence for their actual existence has been accumulating for forty
years, and the star Cygnus X-1 seems to have all the characteristics
needed for a black hole.8

One Hell of a Party

I mentioned earlier that the Schwarzschild radius is not a constant in
the strict sense of the word, as different masses have different Schwarz-
schild radii. However, there is one Schwarzschild radius that strikes
me as being an absolute constant, and that is the Schwarzschild radius
of the universe.

There are currently reasonably good estimates for the total mass of
the universe (scientists are confident that it is known to a factor of about
five), and if we compute the Schwarzschild radius for it, we arrive at a
number between ten and one hundred billion light-years. The universe
is estimated to have a radius of about thirteen or fourteen billion light-
years, so it is still inside its event horizon—and yes, there is one hell
of a party going on. But the universe is still expanding, and at some
time in the future, it is possible that the universe will expand beyond
its Schwarzschild radius. Or will it? I’ve queried several physicists
about this question, and haven’t obtained a satisfactory answer. Maybe
the universe hits its Schwarzschild radius and bounces inward, mirror-
ing in reverse the shock wave rebounding off the stellar core in a su-
pernova. Or something else. I won’t be around to see it, but maybe I’ll
live long enough that I get to find out what will happen.
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C H A P T E R  1 0

T H E  E F F I C I E N C Y  
O F  H Y D R O G E N  

F U S I O N

My first year in graduate school, a country singer named Skeeter
Davis took the song “The End of the World” to number two on

the charts by asking one plaintive question: “Why does the Sun go on
shining?”1 The song shows it’s tough to beat a broken heart for seeming
bigger than the biggest questions. But it also shows that you can’t trust
country singers—or country music songwriters—to ask the great ques-
tions. The great question is not why the Sun goes on shining—it’s how.
I imagine people have been asking it since the beginning, but it wasn’t
until the nineteenth century that physics had derived the computational
tools needed to attack the question. The answers that nineteenth-cen-
tury physicists obtained would eventually lead to the number .007,
which is in some respects the most important number in this book. As
we shall see, had this number been a little lower or a little higher, this
book—and “The End of the World,” and all other songs and books—
would never have been written.

Solar Power

Lord Kelvin was probably the first person to attack the problem of
how the Sun goes on shining from a scientific standpoint. He started by
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calculating the power that the Sun generates. Measuring the sunlight inci-
dent at the top of the atmosphere, we find that every square meter receives
1.3 kilowatts. (It must be done there, rather than at the surface, because
the atmosphere—thankfully—absorbs some of that power before it hits the
Earth, otherwise they’d probably be wearing swimsuits in the Arctic.) The
Sun is obviously radiating energy equally in all directions, and so we
now calculate the amount of energy that hits the surface of a sphere
whose radius is equal to the distance of the Earth from the Sun. That radial
distance is 1.5 × 1011 meters, and since the surface area of a sphere with
radius R is 4πR2, we see that a spherical shell whose radius is 1.5 × 1011

meters receives 4π (1.5 × 1011)2 × 1.3 = 3.7 × 1023 kilowatts of energy
from the Sun. Power is the rate at which energy is produced; producing
a kilowatt of energy for a second constitutes a kilojoule of power. If the
Sun produced energy by burning a chemical fuel such as octane, it would
generate on the order of 300 kilojoules per mole of fuel. The Sun weighs
about 2 × 1030 kilograms, and octane, which has the chemical formula
C8H18, has a molecular weight of 114. So a mole of octane weighs 114
grams, or 0.114 kilograms, and the Sun, if it were made of octane, would
contain about 2 × 1030 / 0.114 = 1.75 × 1031 moles. Burning the entire
Sun would generate about 1.75 × 1031 × 300 = 5.3 × 1033 kilojoules,
which would run the Sun for about 5.3 × 1033 / (3.7 × 1023) = 1.4 × 1010

seconds. That’s about 500 years. Even assuming the Sun were com-
busting hydrogen chemically, the Sun would burn for about 50,000
years, using these figures. Even before the twentieth century, there was
evidence that the Earth had been in existence for hundreds of millions
of years, so however the Sun was shining, it wasn’t doing so by ordi-
nary combustion.

After working this out (although Kelvin used coal as the fuel rather
than octane or hydrogen), Kelvin looked around for another source of
energy. He found it in the energy derived from the potential energy of
the Sun’s mass being converted to kinetic energy as it fell in to the cen-
ter of the Sun. This would have heated the Sun for tens of millions of
years—but that still wasn’t good enough.

So how does the Sun go on shining? Much of the groundwork was
laid during one of the most exciting periods in the history of physics,
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the decade between 1895 and 1905, with three revolutionary discoveries
that would open the world within the atom. The final pieces of the puz-
zle would not fall into place until just before the start of World War II.

The Green Twig Fracture

Like most children, I didn’t pay a whole lot of attention to my health.
Other than an asthmatic episode at age three that required an injection
of adrenaline, which I do not remember at all, I managed to escape
most childhood medical problems. I still have my appendix and tonsils,
and after I got over the mumps, my parents took me to Atlantic City,
so I regarded the experience in toto as showing a profit. True, there was
the annual trip to the doctor’s office, which featured the 1940s vintage
blood test—an infernal device that poked a hole in your finger by what
seemed like a harpoon; even though only a few drops were smeared on
glass slides for examination, it was far more uncomfortable than having
a few syringes of blood drained from the vein in your arm. So I re-
mained relatively unscathed until my parents got an invitation to bring
the family to visit some friends who owned horses.

I clearly had done an inadequate job of communicating to my parents
that I absolutely loathed the horseback riding lessons they had supplied
as part of my childhood. Horses were a lot bigger than I was, and were
very capricious. Nonetheless, I was a dutiful child, and so when my
parents suggested that I go for a ride, I mounted one of the horses. A
short while later, I must have inadvertently nudged it from second gear
into third or fourth gear, for the horse suddenly picked up speed and I
slid off the rear end of the horse. I put out my left arm to break my fall,
experienced some pain at impact, but was well enough to get back on
the horse and complete the ride.

My left arm swelled up somewhat overnight and was also a little sen-
sitive, so my parents took me to a local hospital to have it examined.
The doctor took an X-ray, showed it to us, and told us that I had a “green
twig” fracture. You could see it perfectly on the X-ray; a bone in my
arm looked like what happens when you try to break a green twig—it
doesn’t snap cleanly but breaks partially, with the two segments joined
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by portions of the twig that have frayed and partially separated but are
still connected.

This took place in early June, and my arm was in a cast for a
month—in the warm and humid Illinois summer. I experienced very
little pain while it healed, but that month seemed to last forever. As
Ogden Nash (maybe not the most celebrated poet of the twentieth cen-
tury, but easily the most entertaining) so aptly put it, “One bliss for
which there is no match, is when you itch to up and scratch.”2

Maybe science was more impressive in the mid-twentieth century
than it is today, because the difference between the things that science
brought into one’s life and ordinary day-to-day living were much more
marked than they are today. The X-ray of my arm stood out in sharp
contrast to most of the ordinary paraphernalia of everyday life, such as
books and bicycles. A few years ago, my mother-in-law needed an MRI
of her shoulder. It was far more sophisticated than the ghostly X-ray
of my green twig fracture, but everyone took that sophistication in
stride. Ho-hum, there’s a lot flashier stuff available at the click of a
mouse on the Internet.

Other children of my generation probably had a similar experience,
became fascinated by how the green twig fracture actually healed, and
went into medicine. I had absolutely no interest in how my arm was
healing. I just wanted it to heal as soon as possible so I could get that
damned cast off and experience the bliss for which there is no match.
However, I was fascinated by the X-ray: how was it possible to obtain
a picture, even though a shadowy one, of something that was invisible
to the naked eye?

Science advances on at least two fronts. One consists of coming up
with new explanations for well-known phenomena, such as when New-
ton explained the motion of the planets and Planck accounted for the
intensity curves. The other front is the discovery of new phenomena.
Philipp von Jolly, the man who told Planck all that remained in physics
was to fill in a few missing details, was in retrospect doubly wrong.
Not only did filling in missing details, such as Planck was to do, open
up entire new vistas for exploration, but there were new phenomena to
be discovered that would require explanations that nineteenth-century
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physics was completely unable to provide. One of these phenomena
made it possible for the doctor to diagnose my green twig fracture some
sixty years later.

Some scientific discoveries are the result of good fortune—Alexander
Fleming’s discovery of the effectiveness of penicillin mold in fighting
bacterial infection is a good example3—but as Branch Rickey, a former
general manager of the Dodgers said, luck is the residue of design.4

By the end of the nineteenth century, scientists had not yet discerned
the nature of electricity. They had a very good idea of how electricity
behaved in metals and a reasonable idea of how electricity behaved in
liquids—but the behavior of electricity in gases was poorly understood,
and hence was the subject of considerable investigation.

Wilhelm Roentgen

If there had been a betting pool in the early 1890s on who would win
the first Nobel Prize, Wilhelm Roentgen would have been the darkest
of horses. He was expelled from the late nineteenth-century German
equivalent of a high school for refusing to snitch on a fellow student
who had drawn a picture denigrating a teacher. The German school sys-
tem played hardball in those days—not only was Roentgen kicked out
of the school he attended, but he was unable to continue his education
in any German or Dutch school. I guess the German authorities weren’t
enamored of the philosophy of letting the punishment fit the crime.
However, Roentgen executed an end run around this by enrolling in a
Swiss university. There must have been a statute of limitations on fail-
ing to turn stool pigeon, as Roentgen eventually made his way back to
German academia, where he spent the bulk of his career in the minor
leagues of German universities—first Hohenheim, then Giessen, and
finally Würzburg—doing absolutely nothing of note. Until November
of 1895.

Scientific discoveries are often the result of improvements in tech-
nology—without the microscope, Anton von Leeuwenhoek would have
remained a minor clothier in Holland rather than the discoverer of the
world of the microbes. During the nineteenth century, better and better
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equipment had evolved, both to produce electricity, and to study gases
under low pressure. One such development was the Crookes tube,5 a
glass container that would subject enclosed gases to high-voltage dis-
charges of electricity. The electricity would be produced at the cathode,
and sometimes fluorescence, the emission of light, could be observed
at either the anode or from the walls of the glass tube. Producing fluo-
rescence was a somewhat hit-or-miss process, depending upon a large
number of variables, including the type of gas, the geometry of the
Crookes tube, and the voltage of the electrical discharge.

Roentgen was fifty, well past what Newton described as the prime
age for invention, when he had the good fortune to have a sheet of
paper painted with barium platinocyanate, a substance known to fluo-
resce under ultraviolet light, lying near a Crookes tube. He applied volt-
age to the Crookes tube—and the barium platinocyanate fluoresced!
Roentgen spent the next seven weeks in complete secrecy investigating
this new phenomenon. One of the things that Roentgen observed was
that the rays registered on photographic film. Two weeks into his in-
vestigations, he took the first X-ray photograph of his wife Anna
Bertha’s hand. On seeing the skeleton of her hand, she exclaimed, “I
have seen my death!”6

Seven weeks later, as 1895 was coming to a close, Roentgen pub-
lished a paper titled “On a New Kind of Rays.”7 Roentgen named the
rays that were producing the fluorescence X-rays—X being the math-
ematical symbol for something unknown. On the second page of the
paper was a description of the X-ray photograph of his wife’s hand: “If
the hand be held before the fluorescent screen, the shadow shows the
bones darkly, with only faint outlines of the surrounding tissue.”8 As
might be expected, this discovery, with its huge promise for revolu-
tionizing medicine, brought forth new opportunities for Roentgen. He
accepted a professorship at Munich in 1900—moving up to the major
leagues—and in 1901 was awarded the first Nobel Prize for Physics.
He donated the prize money to his university, and refused to take out
patents on his discovery, even though they would have made him ex-
tremely wealthy, as he wanted mankind as a whole to benefit from his
discovery.
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Although Roentgen published three papers on X-rays between 1895
and 1897, by the time that he won the Nobel Prize, the nature of X-
rays remained unknown. Roentgen was not to contribute further to the
problem; his 1897 paper was his last, and he did not take an active part
in scientific investigation while in Munich. It would fall to Max von
Laue to discover the nature of X-rays, and to many others to speculate
why Roentgen had stopped producing. Von Laue, who had a chance
encounter with Roentgen in the third-class compartment of a train, had
his own thoughts on the matter.

Often one has asked for reasons why this man, after his epoch-

making achievements of 1895–96, had so retracted. Many motives

were suggested, some little flattering for Roentgen. I consider

them all false. In my opinion, the impression of his discovery had

so overpowered him that he, who made it when he was fifty, never

recovered. For—and only few think of it—a great feat is a burden

for him who achieved it. . . . It needed much to compile three pa-

pers, which, like Roentgen’s from 1895 to 1897 exhausted the sub-

ject so much, that for a decade hardly anything new could be said

about it.9

I have my own thoughts on the matter. I’m a baseball fan, and there’s
an obvious person in its history with whom to compare Roentgen—
Don Larsen, a pitcher whose career record was an undistinguished 81–
91 with a 3.78 ERA, yet who pitched the only perfect game ever in a
World Series. Perhaps Roentgen was the same, a journeyman “player”
who nevertheless achieved absolute greatness, for one brief period of
his life.

What Laue discovered in 1912 was that X-rays were another form
of electromagnetic radiation, of a substantially higher frequency than
visible—or even ultraviolet—light. Visible radiation, as we have noted,
has a frequency on the order of 5 × 1014 cycles per second. X-rays,
however, have a frequency on the order of 1018 cycles per second. By
Planck’s E = hν formula, we can see that X-rays have more than a thou-
sand times the energy of visible light. This enables X-rays to pass

The Efficiency of Hydrogen Fusion 139

         



through flesh, but be absorbed by bone, producing the X-ray photo-
graphs of Anna Bertha’s hand—and my green twig fracture. It also ex-
plains why we try to limit the amount of X-ray radiation to which an
individual is exposed; there is an increased risk of cancer from too
much radiation because the high energy of the X-rays can damage cells.

The Discovery of Radioactivity

At almost the same time that Roentgen was using photographic plates
to show the effects of X-rays, the French physicist Henri Becquerel
was also using photographic plates to investigate the ability of materi-
als to produce phosphorescence when exposed to sunlight. Phospho-
rescence differs from fluorescence in that fluorescence refers to the
immediate reemission of light at a different wavelength from the elec-
tromagnetic radiation that induced it, whereas a phosphorescent mate-
rial does not immediately reemit light. Becquerel had at his disposal a
wide variety of substances; one of these was potassium uranyl sulfate,
a uranium salt. Becquerel discovered that this material phosphoresced
when exposed to sunlight—but so did several other materials. How-
ever, one day something genuinely startling occurred. Becquerel de-
veloped photographic plates that had been placed near the uranium salt
but had been left in a dark drawer because there had been little sunlight
the preceding days. Becquerel had expected only feeble traces of phos-
phorescence, but instead the outline of the crystal of uranium salt
showed up sharply on the photographic plates, without being exposed
to sunlight. It takes energy to produce phosphorescence. Clearly, the
uranium salt itself was emanating the energy—but by what process it
was producing the energy was totally unknown.

An intensive study of this process was undertaken by the husband-
and-wife team of Pierre and Marie Curie, who, along with Becquerel,
would jointly win the Nobel Prize for Physics in 1903 for their discov-
eries. Pierre Curie died on a busy Paris street on a rainy day, when he
slipped on the pavement and was run over by a horse-drawn vehicle.
Marie Curie continued the work and discovered radium, a material that
produced energy much more vigorously than uranium. For this discov-
ery, she was awarded the Nobel Prize in Chemistry in 1911. (She is one
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of only four scientists who have been awarded two Nobel Prizes, and
she is the only one who has received Nobel Prizes in two distinct phys-
ical sciences. John Bardeen received two Nobel Prizes for Physics, Fred-
erick Sanger received two for Chemistry, and Linus Pauling received
both the Nobel Prize for Chemistry and the Nobel Peace Prize.10)

Marie Curie named the phenomenon that Becquerel had discovered
radioactivity. She named it, studied it—and probably died from its ef-
fects, as the illnesses that plagued her shortly after her receipt of the
1911 Nobel Prize and to which she eventually succumbed are now
known either to be caused or exacerbated by prolonged exposure to
radioactivity.

The Discovery of the Electron

Roentgen had been experimenting with Crookes tubes because these
items had been used to study other types of rays (recall that Roentgen’s
paper on X-rays was titled “On a New Kind of Rays”). The fact that
these rays were produced in near-vacuum conditions, when the atoms
themselves were separated by distances much more vast than the sep-
aration distance in liquids and solids, prompted the speculation that in-
dividual atoms might have structure that was difficult to observe when
the atoms were close together.

In 1838, Michael Faraday had discovered that when electricity was
sent through a tube containing air at very low density, a glowing arc ap-
peared from just in front of the cathode all the way down to the anode.
There was a very short dark space in front of the cathode—ever the care-
ful experimenter, Faraday noticed this—which came to be known as the
Faraday dark spot. As better and better vacuums were created, the dark
spot lengthened, and with the advent of Crookes tubes, the glow com-
pletely disappeared, and luminescence was seen at the opposite end of
the tube. This was taken as indirect evidence that something carrying
an electric charge was traveling through the Crookes tube.11

In 1897, the English physicist J. J. Thomson produced the first con-
vincing evidence that there was a particle considerably smaller than a
hydrogen atom that was able to carry an electric charge. His experiment
was designed to measure the charge-to-mass ratio of such a particle, if
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it existed. Faraday had conducted experiments involving electrolysis—
passing a direct current through a chemical compound in order to split
it into its constituent elements—and had found that the charge-to-mass
ratio of electrified hydrogen (what we now call a hydrogen ion) was
about 9.65 × 107 coulombs per kilogram. Thomson’s experiment was
ingenious and involved little more than algebraic manipulations of
known laws, so we can retrace his experiment both descriptively and
algebraically.

Thomson’s experiment consisted of two steps. In the first step, the
particle that we now know as an electron was fired from a cathode in a
Crookes tube. It was subjected to two opposing forces: a vertical elec-
tric force created between an upper positively charged plate and a lower
negatively charged plate, and a horizontal magnetic force, which was
known by Oersted’s experiment to induce a vertical electric force. The
electric force tended to deflect the electron vertically, but when the
electric and magnetic forces had the same magnitude but opposite di-
rections, there was no net deflection. Assuming the particle carried a
charge e (not to be confused with the base of the natural logarithms)
and the electric field strength was E, the electric force on the particle
was eE. The particle traveled horizontally with a constant velocity v;
from Maxwell’s equations it was known that if the magnetic field
strength was H, the magnetic force on the particle was evH. When the
two forces balanced so that the particle continued to travel in a straight
line, eE = evH. This equation could be solved for v, yielding v = E / H
as the constant horizontal velocity of the particle.

The magnetic force was created by electromagnets, which were now
switched off. This didn’t affect the horizontal velocity of the electron,
but since there was now no force to counterbalance the electric force,
the electron was subjected to the constant force eE. (The gravitational
force, of course, was also acting on the particle to pull it down, but the
magnitude of this force was so small in comparison with the electric
force that we can ignore it here.) By Newton’s second law, the force
eE = ma, where m was the mass of the particle and a its acceleration.
The particle traveled a distance L horizontally and d vertically before
striking the positively charged plate. Since the horizontal velocity was
v = E / H, the time T that it took to travel the horizontal distance L was
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given by L = vT, so T = L / v = LH / E. The movement of the particle
in the vertical direction under the constant acceleration a was analo-
gous to the movement of a falling object under gravitational accelera-
tion; the well-known formula for the distance s that an object falls in
time t is given by s = 1⁄2gt2, where g is the acceleration of gravity at the
surface of the Earth, which we saw in Chapter 1. In this case, the dis-
tance d that the electron moved vertically was given by d = 1⁄2 aT 2, be-
cause it moved vertically a distance d in the same time that it moved
horizontally a distance L.

It’s now merely a matter of algebra to find the charge-to-mass ratio of
the electron. From the equation eE = ma, we see that the charge-to-mass
ratio is e / m = a / E. From d = 1⁄2 aT 2 we see that a = 2d / T2 = 2dE2 / L2H 2,
and so finally e / m = 2dE / L2H 2, where all the quantities on the right
could be measured quite accurately. On doing the computations, Thom-
son found that the charge-to-mass ratio was 1,000 times greater than
the charge-to-mass ratio of the hydrogen ion. It also didn’t matter what
gas he used to create these particles; the results were the same.

There were several possible conclusions, which Thomson outlined
in his write-up of the experiment. He worked with the mass-to-charge
ratio m / e rather than the charge-to-mass ratio e / m we derived above,
but of course the mass-to-charge ratio is the reciprocal of the charge-
to-mass ratio. Thomson wrote, “The smallness of m / e may be due to
the smallness of m or the largeness of e, or to a combination of these
two.” However, the fact that cathode rays could move unimpeded
through dense collections of atoms persuaded Thomson that the parti-
cles were smaller in size than ordinary atoms. Two years later, Thom-
son demonstrated the same charge-to-mass ratio for particles freed
when metals were irradiated by ultraviolet light. The irradiated metals
acquired a positive charge because the ultraviolet light imparted suffi-
cient energy to free electrons; this was the photoelectric effect that Ein-
stein explained during his “miracle year.”12

E = mc2

Einstein’s famous equation of energy and mass is probably the iconic in-
tellectual achievement of mankind. I’ve never actually seen any survey
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on its Q score (a measure of recognition), but my guess is that almost
every high school graduate has at least seen E = mc2 and realizes that
it has something to do with energy, Einstein, or both. This has become
recognized as the supreme achievement of Einstein’s “miracle year”
and, together with the discovery of subatomic particles, pointed the
way for the explanation of how the Sun keeps on shining.

The equation says simply that if an object with mass m is converted
completely to energy, the energy E that is obtained is the product of
that mass times the square of the speed of light. In order to appreciate
the immense amount of energy stored up in even a small amount of
mass, a little calculation is in order.

The joule, the basic unit of energy in the modern form of the metric
system, can be defined as the energy required to accelerate a 1 kilogram
mass to a speed of 1 meter per second, over a distance of 1 meter, and
in 1 second—that is, 1 joule = 1 kg × m2 / s2. It takes more than 4,000
joules to heat a kilogram of water by 1 kelvin (or degree Celsius), so a
joule is, by itself, not very much energy. The amount of energy released
by the first atomic bomb is on the order of 80 terajoules, or 8 × 1013

joules. Amazingly, as Einstein’s energy-mass equation demonstrates, a
single dollar bill, under the right circumstances, could be an equally
dangerous weapon. The speed of light is 300,000 kilometers per second,
so c = 3 × 108 meters per second, and a dollar bill has a mass of about
1 gram, or .001 kilograms. Therefore, if a dollar bill were completely
converted to energy, it would yield a total of .001 × (3 × 108)2 = 9 × 1013

joules, a little more than the energy released by the detonation of the
first atomic bomb.

More than a decade after the publication of E = mc2 in what was to
become known as the special theory of relativity, Einstein published
the general theory of relativity, which extended his special theory to
encompass Newton’s theory of gravitation. A key difference between
Newton’s and Einstein’s theories was the bending of light near a heavy
object such as the Sun; the 1919 total eclipse provided the opportunity
for scientists to determine whether Einstein’s general theory was en -
titled to supplant Newton’s. The expedition that performed the mea-
surements confirming the general theory was led by the renowned
British astrophysicist Sir Arthur Eddington.13
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In the following year, Eddington gave an address to the British As-
sociation for the Advancement of Science. His subject was how the Sun,
and other stars, keep on shining. Eddington observed that “a star is
drawing on some vast reserve of energy by means unknown to us. This
reservoir can scarcely be other than the subatomic energy which, it is
known, exists abundantly in all matter; we sometimes dream that man
will one day learn how to release it and use it for his service.”14 He con-
cluded his lecture with the prescient declaration that “if, indeed, the sub-
atomic energy is being freely used to maintain their great furnaces, it
seems to bring a little nearer to fulfillment our dream of controlling this
latent power for the well-being of the human race—or for its suicide.”15

How the Sun Keeps on Shining

Although Thomson had provided strong evidence for the existence
of negatively charged particles within the atom, atoms by themselves
are electrically neutral. Consequently, there must have been positively
charged particles lurking within the atom to neutralize the negatively
charged electrons. Although it was originally thought that the posi-
tively and negatively charged particles were distributed uniformly
throughout the atom, much as raisins and blueberries are uniformly
distributed throughout a blueberry-raisin muffin, experiments by
Ernest Rutherford showed that these positively charged particles,
called protons, were tightly clustered together in what is now called
the nucleus of the atom.

In the same year that Eddington delivered his speech on the sub-
atomic energy that was needed to power the Sun, Rutherford conjec-
tured that it might be possible for an electron and a proton to combine
to form a particle that was electrically neutral. Twelve years later, the
neutron, a particle with no electrical charge, was discovered. This par-
ticle helped to explain the structure of the helium atom, which was
known to have an atomic number of 2 but an atomic weight of 4; its
nucleus had to contain two protons, in order to have an atomic number
of 2, and two neutrons, to bring its atomic weight up to 4.

At the time that Eddington gave this speech, it was known that the
two primary constituents of the Sun were hydrogen, which accounted
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for 71 percent of the mass of the Sun, and helium, which accounted for
27 percent of its mass. Eddington had conjectured that a possible source
of the subatomic energy he had discussed might be obtained by slam-
ming together hydrogen nuclei.

There were a number of theoretical obstacles to be overcome. The
atomic weight of four hydrogen atoms was 4—the same atomic weight
as an atom of helium—but the four hydrogen atoms contained four pro-
tons and the helium atom contained two protons and two neutrons.
There needed to be a way of getting the four protons to morph into two
protons and two neutrons. Additionally, the probability of the simulta-
neous collision of four atoms seemed unlikely—much as the simulta-
neous collision of four automobiles is unlikely. But although four-car
collisions almost never occur, four-car pileups occur with some fre-
quency, as two cars collide and other cars cannot avoid the obstacle
and smash into the existing pile.

Another problem was the electric repulsion of the protons, whose
strength we know from a previous chapter to be greater than the grav-
itational force between them by many orders of magnitude. However,
it was possible that under high heat (which is equivalent to large ve-
locity), the protons would have enough energy to overcome the elec-
trical repulsion between them. The problem was that the temperature
of the Sun seemed to be insufficient to make this happen.

The solution was found in an exquisite synthesis of ideas from quan-
tum mechanics and statistical mechanics, combined with a flood of new
experimental data. Although the average temperature of the Sun was not
high enough to allow two protons to collide, statistical mechanics pro-
vided a distribution for the temperatures of the molecules that showed
that an infinitesimal fraction had temperatures sufficiently high enough
to undergo a peculiar procedure known as quantum tunneling. This pro-
cess enabled the protons to slam together and shed one of the electrical
charges as one of the protons was transformed into a neutron. Analogous
to the four-car pileup discussed previously, there is a sequence of nu-
clear reactions, known as the proton-proton chain, that produces the nu-
cleus of a helium atom from the nuclei of four hydrogen atoms.16

In so doing, a small fraction of the mass of the hydrogen atoms is
converted into energy. The atomic weight of hydrogen is about
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1.00794, and the atomic weight of helium is 4.0026. The weight of an
electron is about .00055, so the atomic weight of the nucleus of a hy-
drogen atom is 1.00794 – .00055 = 1.00739, and the atomic weight of
the nucleus of a helium atom is 4.0026 – 2 × .00055 = 4.0015. The mass
lost when four hydrogen nuclei become one helium nucleus is therefore
4 × 1.00739 – 4.0015 = .02806, and the weight loss fraction per nuclei
is .02806 / (4 × 1.00739) = approximately .007.

The proton-proton chain is not the only means by which fusion is
produced, although it accounts for most of the thermonuclear fusion
that takes place in the Sun. There is an alternate procedure known as
the CNO cycle, in which the elements carbon, nitrogen, and oxygen
are both produced and act as midwives to produce helium from hydro-
gen. This process occurs at higher temperatures than the proton-proton
chain, and so occurs more rarely in the Sun, but becomes more impor-
tant in hotter stars.17

Thunderball

I sometimes speculate that Ian Fleming, the creator of James Bond, had
somehow learned of the efficiency of hydrogen fusion. He did, after
all, attend Eton College, the premiere private school in England—al-
though it seems unlikely this topic would arise at the prep school level.
Nonetheless, James Bond wasn’t known as “7,” he was known as
“007”. Maybe he went with it, not because of anything to do with the
efficiency of hydrogen fusion, but because it was just right.

Well, physically speaking, .007 had to be just right, too—it’s a real
Goldilocks number, and perhaps the most idiosyncratic one we’ve
looked at in this book. The other numbers are universal constants. As
far as we know, the gravitational constant G is the same here as it is in
galaxies ten billion light-years distant. Avogadro’s number is the num-
ber of molecules in a mole of any substance—although the idea of a
mole is defined such that Avogadro’s number cannot vary from sub-
stance to substance. But it probably wouldn’t matter much if those
numbers were a bit different. But .007, on the other hand, can’t change
without things becoming very different. Thermonuclear fusion affects
other transformations in addition to creating helium from hydrogen,
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although the efficiency of these is considerably less than the efficiency
of creating helium from hydrogen. This is a very good thing—for us.
If the efficiency of these transformations were too high, the lives of
stars would be much shorter, and there probably wouldn’t be time for
life to evolve.

The steps in thermonuclear fusion are exquisitely sensitive to the
number .007. The first step in the proton-proton chain, when two pro-
tons slam into each other, produces deuterium, an isotope of hydrogen
whose nucleus contains one proton and one neutron, because one of
the protons “sheds” its electrical charge and morphs into a neutron. If
the efficiency were as low as .006, the neutron and proton would not
bond to each other, deuterium would not form, and the universe would
consist of nothing but hydrogen. There would still be stars, but instead
of being engines of creation for other elements, they would simply be
large and sterile balls of hydrogen that—as in Kelvin’s second attempt
at determining how the Sun keeps on shining—heat as they contract
under gravitation, glow, and eventually cool and die.

If, on the other hand, the efficiency of hydrogen fusion were as high
as .008, it would be far too easy for protons to bond together. All the
hydrogen in the universe would rapidly form helium and heavier ele-
ments, and without hydrogen, there would be no water. We could spec-
ulate on other forms of life having the possibility of emerging in such
a universe, but they would be vastly different from anything we
know—and they certainly wouldn’t be us.
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C H A P T E R  1 1

T H E  
C H A N D R A S E K H A R  

L I M I T

In 1835, the philosopher Auguste Comte attempted to go where no
philosopher had gone before. Hitherto philosophers had tried to de-

fine the limits of human knowledge, but had generally done so by look-
ing at moral, ethical, and religious questions they felt would never be
resolved. Comte compiled a list of questions he felt science would
never be able to answer. One of those questions was to determine the
composition of the stars. Comte’s belief—that this was a question sci-
ence would never answer—was not an unreasonable one. After all, in
1838 Friedrich Bessel would show that the distance to the star 61 Cygni
was six light-years, a distance almost 400,000 times as long as the dis-
tance from the Earth to the Sun, and far larger than anyone had previ-
ously suspected. Finding out anything about so distant an object would
appear to be immensely challenging.

Philosophers and scientists generally don’t read the same books and
journals, fortunately, and so Comte’s prediction undoubtedly went un-
heeded by Robert Bunsen.1 A German chemist, Bunsen had been ab-
sorbed in studying organic arsenic-containing compounds at the time
of Comte’s list. Understanding such compounds would prove to be a
milestone in the history of science, but not for some seventy-five years,
when Paul Ehrlich used them to develop a cure for syphilis. In Bunsen’s
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time, such compounds were merely very dangerous: Bunsen lost an
eye and almost died twice from arsenic poisoning. Upon recovering,
he decided that discretion was the better part of valor and abandoned
organic chemistry for a safer endeavor, a study of the role of heat in
chemical reactions. Among other great successes, this would lead to
the development of the Bunsen burner, a device known to every student
who has ever set foot in a chemistry lab.

One of Bunsen’s early students was Gustav Kirchhoff; together they
collaborated on investigations of chemical reactions that absorb or emit
light. The two combined Thomas Young’s idea of passing light through
a slit with Newton’s idea of passing light through a prism. Thus was
born the spectroscope, one of the most important tools in science. The
Bunsen burner was used to heat material to incandescence, and the light
the incandescent material emitted was passed through a spectroscope
to throw a pattern of colored lines on a screen. It was soon discovered
that this pattern of colored lines was a chemical fingerprint, and that
each element had its own characteristic pattern, or spectrum.

The spectroscope turned out to be an extraordinary tool. Using the
spectroscope to analyze the light of the sun, Kirchhoff discovered a
spectral line characteristic of the element sodium. Since there was no
sodium in the Earth’s atmosphere, and certainly none in the vacuum
between the Sun and the Earth, the conclusion was inescapable: sodium
existed in the Sun. The same technique would later be used on the light
from stars, enabling their chemical composition to be determined, not
even thirty years after Comte’s gloomy prediction. The fame Kirch-
hoff’s work brought him was met with skepticism in at least some quar-
ters, however. Kirchhoff’s banker, a pragmatic sort, asked Kirchhoff,
“Of what use is gold in the sun if I cannot bring it down to Earth?”
Shortly after this remark was uttered, Kirchhoff received a prize from
Great Britain for his work, awarded in golden sovereigns. Kirchhoff,
handing them to his banker, seized the opportunity to remark: “Here is
gold from the sun.”2

Comte died two years before the development of the spectroscope.
Comte was wrong about the composition of the stars, but he was correct
in principle: there are some aspects of the universe that science will
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never be able to determine. Some systems, such as global weather, are
so sensitive to small changes that we simply cannot predict the weather
with great accuracy more than a few days in advance. The problem
with statements like Comte’s is that the main effect of labeling some-
thing as impossible to know is only to make it less likely that anyone
will try. Better, like Albert Einstein, to assume that if we have a ques-
tion, we can find an answer, and so begin asking questions.”3 If I had
to guess, the vast majority of children ask most, if not all, of the fol-
lowing three simple questions. The first is “Where did I come from?”
a question generally asked far too early for most parents by most chil-
dren. (My parents, like most parents, fumbled the ball—mine didn’t
really supply a satisfactory answer until I was about ten or eleven, and
then passed the buck by handing me an extremely boring book on the
human reproductive system. Possibly they figured that if I got suffi-
ciently bored with the subject, I wouldn’t trouble them again. They
were right—like many of my contemporaries, I learned the real story
in dribs and drabs from a variety of sources.) The second and third
questions are variations on the theme of the first question, which is the
problem of origins. Children are so into their own world that the first
question concerns their own individual origin. As their spheres of
awareness expand, the other two questions follow naturally, the second
question being “Where did the world come from?” and the third,
“Where did it all come from?” Einstein was right: these simple ques-
tions are indeed profound, and have motivated many of the most im-
portant advances in scientific understanding.

Of course, a motivation is only as good as the tools in its service, and
for answering big questions in science, Bunsen and Kirchhoff’s spec-
troscope is hard to beat. If I had to build a top-ten list of scientific tools,
I’d be hard-pressed not to put it at the top, although the microscope,
with its great impact on human health, has much to recommend it. Top-
ten lists have a lot going for them, too: I might not have any interest in
architecture (I don’t), but if I happen to come across a list on the web
of the top-ten most important (or largest, or most beautiful) architectural
structures, I’ll probably click on it. In fact, there is one top-ten list that
is of immense importance in answering my second and third questions
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above, and that is the list of the ten most common elements in the solar
system. We have such a list thanks to the spectroscope, which these days
enables us not just to determine what’s in the Sun, or the solar system,
or the universe, but how much of it there is, too. 

ELEMENT % OF ATOMS 

Hydrogen 92.295

Helium 7.548

Oxygen 0.082

Carbon 0.048

Nitrogen 0.009

Neon 0.008

Magnesium 0.003

Silicon 0.003

Iron 0.002

Sulfur 0.002

What the list makes clear is how unlikely our home planet is. In fact,
any concentrated assemblage of stuff is extremely unlikely; after all,
the universe itself is incredibly empty, with an average density of only
one atom for every five cubic meters of space. Of course, gravity and
electromagnetism help that stuff stick together, but what makes Earth
seem even unlikelier is that it’s not just an assemblage of hydrogen and
helium with a bit of other stuff thrown in. Instead, where the universe
has hardly any heavy elements in it, our planet has quite a lot, with
oxygen, aluminum, silicon, sodium, potassium, calcium, and iron all
being at least as common on Earth as hydrogen is.

One can see just how different the distributions of different types of
matter are on our planet and in the universe at large. The human body
is about 65 percent oxygen and 19 percent carbon by weight. I weigh
140 pounds, so my body contains about 91 pounds of oxygen and 26
pounds of carbon (more or less). A mole of oxygen weighs 16 grams,
and since there are 454 grams in a pound, my body contains 2,582
moles of oxygen, or 1.56 × 1027 atoms of oxygen. If the matter in the
universe were distributed evenly, there would be only one oxygen atom
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per 6,250 cubic meters of space, which means you would need 9.75 ×
1030 cubic meters to supply the oxygen in my body. That’s a cube 2.14
× 1010 meters— 13 million miles—on a side, more than fifty-seven times
the distance of the Earth to the Moon.

Okay, so the universe went to a lot of trouble to concentrate enough
carbon and oxygen on Earth to make this book possible: supplying car-
bon and oxygen to make author, readers, and paper available. Un-
earthing the story of how this happened started with the invention of
the spectroscope, and took almost a century to reach the conclusion so
memorably phrased by Carl Sagan, “We are made of star-stuff.”4 Be-
hind that conclusion lies something known as the Chandrasekhar limit.

Balancing Act

Chemical reactions involve the breaking and re-forming of chemical
bonds; the elements involved rearrange themselves into new chemical
compounds. Keeping track of this is done by means of a bookkeeping
system called “balancing equations.”

A simple example of a chemical reaction is one that takes place when
sodium hydroxide, commonly known as lye, is mixed with sulfuric
acid. (Stand clear if you do it; the reaction is quite violent.) Sodium
hydroxide has the chemical formula NaOH; sulfuric acid has the for-
mula H2SO4 (when I learned chemistry, we learned the rhyme “Willie
studied chemistry, he studies it no more, for what he thought was H-
two-O, was H-two-S-O-four”). This reaction is written

2NaOH + H2SO4 → Na2SO4 + 2H2O

This is chemical shorthand for two molecules of sodium hydroxide
reacting with one molecule of sulfuric acid, yielding one molecule of
sodium sulfate (Na2SO4) and two molecules of water. The arrow tells
us which way the reaction proceeds (the stuff that reacts is on the tail
side of the arrow, the stuff that you end up with is on the pointed side
of the arrow). The reaction is balanced because the totals are the same
on each side of the arrow for all the elements involved. There is one
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atom of sulfur on each side of the equation, two atoms of sodium, four
atoms of hydrogen, and six atoms of oxygen.

However, this description is incomplete. Just as in the real world,
some aspects of transactions are “off the books,” in this case, a key
player, energy, has not been mentioned. Some reactions are endother-
mic; they require energy in order to generate the reaction. One example
of this that we have encountered so far in this book is the electrolysis
of compounds into constituent atoms. For example, in order to separate
water into its component elements (hydrogen and oxygen), it is neces-
sary to supply energy in the form of electricity. The electrolysis of
water would be written

2H2O + energy → 2H2 + O2

To do a really thorough job of bookkeeping, we should specify the
quantity of energy involved, but we won’t go into that level of detail here.

Other reactions are exothermic; the reaction produces energy. A ter-
rific example of this occurs inside your automobile engine when ethane
(C2H6) is combined with oxygen at a high enough temperature to ignite
the ethane. The reaction produces water and carbon dioxide—and I’m
sure you’re familiar with the role carbon dioxide may play in producing
global warming. When we include energy, the reaction is written

2C2H6 + 7O2 → 4CO2 + 6H2O + energy

The essence of all of this is that chemical reactions conserve the
number of atoms of each element. This is the reason that the alchemists’
search for the philosopher’s stone, whose touch would transmute base
metals to gold, was doomed to failure—alchemists had only chemical
reactions at hand. In order to produce nuclear reactions, which can
change the kinds of atoms present, you need either much more impres-
sive technology than alchemists had or a lot of heat. The former only
became available in the twentieth century, and the latter can only be
found in the heart of a star.
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Nucleosynthesis

The answer to a child’s first deep question—“Where do I come
from?”—usually begins with some hemming and hawing about what
went on nine months before the child’s birth, but without the element
carbon the whole issue would be moot. Carbon, like most elements
other than hydrogen and helium (which were created shortly after the
big bang), is the result of nucleosynthesis, a process of element creation
that occurs most frequently in stars. The particular reaction that pro-
duces carbon is known as the triple-alpha process, and is analogous to
not just a nearly simultaneous three-car pileup, but one of identical
cars—say, three blue 2006 Toyota Corollas. In balancing nuclear reac-
tions, one does not balance the books element by element, as is done
in chemical reactions, but by atomic number (which is the number of
protons in the nucleus) and the total number of protons and neutrons
in the nucleus. The element helium-4, which has a nucleus of two pro-
tons and two neutrons, is denoted by . The triple-alpha process con-
sists of an endothermic reaction, in which two helium atoms fuse to
create a beryllium atom, followed by an exothermic one in which the
beryllium atom fuses with a helium atom to create a carbon atom. The
two equations are

In addition to the carbon atom, the second reaction also produces a
positron (the second term on the right) and an electron (the last term).
The two reactions also show a net production of approximately 1.16 ×
10-12 joules. That’s not much—and the triple-alpha process is consid-
erably less likely than a three-car pileup of Toyota Corollas (even
though these weren’t the models affected by the problem with the stuck
accelerator, which certainly would increase the probability of such a
collision). Making it even more difficult is the fact that it requires tem-
peratures in excess of 100 million degrees kelvin to get the ball rolling,
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and these temperatures are available only at the center of really big
stars. Nonetheless, there have been enough such stars in the past that
carbon is the fourth most abundant element in the universe.

Both the remarkably high concentration of oxygen and carbon, and
the general likelihood of unusual three-car nuclear pileups, raises an-
other simple, but very big, question. It’s one of the great recurrent ques-
tions in science and philosophy, and not one liable to occur to children:
namely why the universe seems so precisely arranged as to enable the
evolution of Homo sapiens. Indeed, we’ve already seen another exam-
ple of such a delicate arrangement—the efficiency of hydrogen fusion.
Prior to 1952, the triple-alpha process was not known to exist or even
to be possible, but the astrophysicist Fred Hoyle was able to argue com-
pellingly—through a sort of intellectual reverse-engineering—that not
only must it be possible, but that it must exist. We exist, he argued, and
to exist as we do, we rely on ample carbon. Therefore, any process of
nucleosynthesis must include a means to create it, and that requires the
triple-alpha process, no matter how unlikely it seems that it would ac-
tually happen. QED.

But there is more to the story. Just as the efficiency of hydrogen fu-
sion is nicely arranged to enable the development of Homo sapiens (or
at least life on Earth), so is the carbon atom. The chemical properties
of the carbon atom enable the biochemistry of our kind of life, and the
nuclear properties of the carbon atom enable carbon to exist in enough
abundance that life can get started. Those nuclear properties not only
enable the carbon-producing triple-alpha process to take place, but they
also prevent a “quadruple-alpha” process, in which carbon fuses with
helium to produce oxygen, from occurring with enough frequency to
burn up the carbon. Yes, we need oxygen, but we need carbon first—
life forms evolved on Earth long before oxygen was present in the at-
mosphere in significant amounts. If the reaction that produces oxygen
from carbon were more common, there would be more oxygen to
breathe, but nothing around to breathe it.

The discovery of the list of reactions that constitute the nucleosyn-
thesis story is one of the great achievements of twentieth-century sci-
ence, although it doesn’t usually get the publicity. What has evaded us

         



so far is the ability to reproduce nucleosynthesis here on Earth. Even
the fusion of hydrogen to helium, the simplest of the nucleosynthesis
reactions, requires a tremendous amount of energy. We have been able
to duplicate it explosively in the detonation of a hydrogen bomb, but
only if we first set off an atomic bomb to produce the necessary temper-
atures and pressures. It’s hardly the sort of thing that calls out for indus-
trial applications. We have achieved fusion under controlled conditions
in laboratories, but have not yet managed to do so in a cost-effective
fashion. If we can accomplish that, we will have a clean source of en-
ergy that will probably supply humanity’s energy needs for millennia.
But the fusion reactions needed to create the vast complex of heavier
elements are far beyond our abilities to produce—they require such in-
credible temperatures and pressures that the only place they can be
manufactured is in truly massive stars.

Why Does the Sun Go On Shining?

On further thought, it seems maybe the country-western songs can ask
really deep questions—if we cut them a little slack. We answered the
question of how the Sun shines when we discussed the process of nu-
clear fusion, but why does it go on shining? Why does it keep shin-
ing— and shining—and shining? Part of the answer lies in the
efficiency of hydrogen fusion; there’s an awful lot of hydrogen in the
Sun, and it doesn’t fuse very efficiently, so it will take a long while to
use it up. However, the fact that there’s an awful lot of hydrogen in the
Sun means that the gravitational force exerted by the hydrogen is very
strong, and since gravitational force is attractive, it is acting to pull all
the hydrogen to the center of the Sun. Why doesn’t the Sun collapse?

We know that as gas gets hotter, it expands; and it is the balance be-
tween the outward thermal pressure from hydrogen fusion and the in-
ward compression from gravitation that keeps the Sun in equilibrium—
over periods of years, decades, centuries, and millennia, even over mil-
lions of years. But not over more than a few eons (an eon is a billion
years). Gravitational compression is relentless, and in order for a star
to keep shining, it must find a way to keep exerting outward pressure to
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balance that compression. So, when a star fuses its hydrogen to helium,
is that all she wrote?

As we have seen, there are other fusion processes available; other-
wise carbon would never be produced. However, it’s a lot more difficult
to fuse helium than it is to fuse hydrogen. In order to fuse hydrogen,
one needs to bring hydrogen atoms sufficiently close together to over-
come the Coulomb barrier, the repulsion generated when the electron
in one hydrogen atom is brought near the electron in another hydrogen
atom. We saw in a previous chapter that the force of the electric repul-
sion between two electrons was more than 1039 times stronger than the
force of the gravitational attraction between them. To overcome this
repulsion requires extremely high temperatures; the actual process by
which electrons overcome the Coulomb barrier is not through the
simple application of slamming them together at really high speed, but
through a more subtle quantum mechanical process known as quantum
tunneling. Quantum tunneling takes place because electrons are not
really fast-moving dots as they are conventionally pictured. In fact, a
good argument could be made that nobody really knows exactly what
an electron is; the best description we have of them for computational
purposes is as a mathematical construct known as a probability wave.
Electrons do not really have a definite position in space like everything
in the macroscopic world. Whatever electrons are, we can say where
they are most likely to be, but the fact is that they can be anywhere—
and the higher the temperature, the more likely they are to be some-
where else—like on the other side of the Coulomb barrier.

Heavier atoms have more electrons, and so the electrical repulsion
between heavier atoms is greater than the electrical repulsion between
hydrogen atoms. This means that even higher temperatures are required
to make the atoms move with enough speed for their electrons to be able
to tunnel through the Coulomb barrier. The only way to get those tem-
peratures is with greater compression from the gravitational force—but
this will tend to happen because every time two hydrogen atoms fuse
to a helium atom, the total number of atoms decreases by one. When all
the hydrogen has fused to helium, only a very small fraction of the mass
has been converted to energy—the iconic .007 that represents the effi-
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ciency of hydrogen fusion—but there are only half as many atoms.
Gravitational compression acts to confine these atoms to a smaller
space—which heats the atoms. If the star were large enough to begin
with, there would be enough helium to enable gravitational compression
to elevate temperatures to the point where helium fusion can begin.

And the story repeats. After all the helium has fused, there is almost
as much mass as there was at the start of helium fusion, but a lot fewer
atoms. Gravitational compression forces these to occupy an even smaller
volume, heating the star still further, and under the right conditions,
enabling fusion of even heavier atoms.

However, the rapidity of this process does not scale linearly. Helium
fusion to carbon proceeds much more rapidly than hydrogen fusion to
helium. This explains why it took so long for life to evolve, because it
takes a long time for hydrogen to fuse to helium in order to set the stage
for the fusion of helium to the carbon that will enable the creation of
life. It also explains why life has the opportunity to evolve: because
once there is a planet with lots of carbon circling a star like the Sun,
the efficiency of hydrogen fusion to helium enables that star to be stable
for eons.

In fact, the life cycle of a really heavy star, one with a mass of twenty
times that of the Sun, is like a play with shorter and shorter acts of ever-
increasing dramatic tension. In such a star, it takes roughly a billion
years for the hydrogen to fuse to helium, but only about a million years
for the helium to fuse to carbon and oxygen. It takes perhaps 100,000
years for the carbon to fuse to neon and magnesium. The oxygen burns
to silicon and sulfur in twenty years, and the silicon and sulfur burn to
iron in a week! The different rates at which these processes take place
leave the star looking like a multilayered Tootsie Pop: a heavy iron
core overlaid by a spherical shell of silicon and sulfur. As we proceed
toward the surface of the star, we encounter a succession of cooler
spherical shells: neon and magnesium, then carbon and oxygen, then
helium, and then, at the outside, hydrogen.

What happens next turned out to be a fascinating story, deciphered
by a fascinating individual—Subrahmanyan Chandrasekhar, more fa-
miliarly known to his friends and colleagues as Chandra.

         



Chandra

Some professors, like Isaac Newton, frankly suck, and find themselves
continually lecturing to empty or near-empty rooms. Some professors,
like Ludwig Boltzmann, are inspiring and beloved by their students.
Some professors inspire a mystique; they appear brilliant but un -
approachable. I had such a professor, Shizuo Kakutani, who taught the
mathematical analysis course at Yale, and I wouldn’t be surprised if
practically everyone who has ever attended college can recall such a
professor, no matter whether they studied mathematics, history, or lit-
erature. Chandrasekhar was evidently such a teacher, as no less a stu-
dent than Carl Sagan would later recall.

Chandra was giving a colloquium. Three walls of the lecture room

had blackboards on them, all spotlessly clean when Chandra began

his lecture. During the course of his lecture, he filled all the black-

boards with equations, neatly written in his fine hand, the impor-

tant ones boxed and numbered as though they had been written in

a paper for publication. As his lecture came to an end, Chandra

leaned against a table, facing the audience. When the chairman in-

vited questions, someone in the audience said, “Professor Chan-

drasekhar, I believe, on blackboard . . . let’s see . . . 8, line 11, I

believe you’ve made an error in sign.” Chandra was absolutely

impassive, without comment, and did not even turn around to look

at the equation in question. After a few moments of embarrassing

silence, the chairman said, “Professor Chandrasekhar, do you have

an answer to this question?” Chandra responded, “It was not a

question, it was a statement, and it is mistaken,” without turning

around.5

Such a story might give the impression of a cold, aloof scholar who
did not care about his students. Those individuals, too, exist in practi-
cally every department, especially in top-rank institutions—but Chan-
drasekhar was not one of them. For much of his career, Chandrasekhar
lived in Williams Bay, Wisconsin—near the Yerkes Observatory—and
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traveled to Chicago to teach his class, which at one point was just two
students. This was in the era before the interstates, and was a journey
of approximately 100 miles, but the drive does seem to have been worth
it: when the Nobel Prize for Physics was awarded in 1957,6 it went to
Chen Ning Yang and Tsung-Dao Lee—the two students in that class.

Chandrasekhar, too, would win the Nobel Prize, but not until 1983.7

It was a long time to wait—the work he won it for began when he was
in his teens! By the 1920s, astrophysicists had been able to work out
that a dim white star known as Sirius B, a companion star to the famous
Dog Star Sirius, has an astoundingly high density, more than a million
times the density of the Sun. This puzzled astronomers of the time be-
cause it was simply impossible for atoms to be squeezed to that density
and retain their identity as atoms. Such densities can only be achieved
if the atoms are squished so much that the electrons are no longer
bound to the nucleus, so that what had been a star made of atoms be-
comes a star made of positively charged ions surrounded by a densely
packed sea of electrons. As we saw in an earlier chapter, when the elec-
trons are so close to one another, quantum mechanics dictates that they
exert a special type of force known as electron degeneracy pressure.
The Pauli exclusionary principle describes how no two particles can
have precisely the same quantum state; in this case, that means that
some of the electrons in the sea are forced into very high energy states,
and so have extremely high velocities. This energy supports the star
against the crushing force of gravity. A typical white dwarf has a mass
that is roughly the mass of the Sun, but that mass is squeezed into a
volume the size of the Earth.

The discovery that electron degeneracy pressure could enable a
white dwarf to have hitherto unheard-of densities was made by Ralph
Fowler in 1926.8 It occurred to Chandrasekhar, a student of almost in-
conceivable brilliance, who was reading research-level papers before
he was eighteen years old, that Fowler’s paper had not taken into ac-
count the relativistic effects that would occur when the electrons were
moving at extremely high velocities. What Chandrasekhar discovered
when he applied his relativistic approach to Fowler’s work was no mere
correction: it was breathtakingly unexpected. Chandrasekhar had found
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a firm upper limit for the mass of a white dwarf, or any body of electron
degenerate matter.

Chandrasekhar, by then Fowler’s doctoral student, described his find-
ings in a paper titled “The Maximum Mass of Ideal White Dwarfs.”9

The maximum mass depends on several of the universal constants that
have already been discussed in this book: the gravitational constant,
the speed of light, and Planck’s constant, as well as on the number of
nucleons (protons and neutrons) per electron in the star. The accepted
modern value of the Chandrasekhar limit is approximately 1.4 times
the mass of the Sun.10

This result was obtained while he was traveling on a steamship from
India to England—and before he was twenty years old!11 It brought
Chandrasekhar into conflict with Sir Arthur Eddington, one of the pre-
eminent astrophysicists of his era. The argument was to have a pro-
found effect on Chandrasekhar’s career. At the time, one of the great
problems of astrophysics was to determine the life cycle of stars. Ed-
dington, who had devoted a large portion of his career to the problem,
believed that the white dwarf stage was the eventual fate of every star,
no matter how large. The conflict came to a head at a meeting of the
Royal Astronomical Society in January 1935. Both Chandrasekhar and
Eddington had submitted papers, but Eddington also was invited to say
a few words. They were devastating:

Fowler used the ordinary formulae [to solve the problem]; Chan-

drasekhar, using the relativistic formula which has been accepted

for the last five years, shows that a star of mass greater than a cer-

tain limit M remains a perfect gas and can never cool down. The

star has to go on radiating and radiating, and contracting and con-

tracting until, I suppose, it gets to a few kilometers radius, when

gravity becomes strong enough to hold in the radiation, and the

star can at last find peace.

Dr. Chandrasekhar had got this result before, but he has rubbed

it in, in his last paper; and when discussing it with him, I felt

driven to the conclusion that this was almost a reduction ad absur-

dum of the relativistic degeneracy formula. Various accidents may
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intervene to save a star, but I want more protection than that. I

think there should be a law of Nature to prevent a star from be-

having in this absurd way!

If one takes the mathematical derivation of the relativistic de-

generacy formula as given in astronomical papers, no fault is to

be found [here Eddington tosses Chandrasekhar a bone]. One has

to look deeper into its physical foundations, and these are not

above suspicion. The formula is based on a combination of rela-

tivity mechanics and nonrelativity quantum theory, and I do not

regard the offspring of such a union as born in lawful wedlock. I

feel satisfied that the current formula is based on a partial relativity

theory, and that if the theory is made complete the relativity cor-

rections are compensated, so that we come back to the “ordinary”

formula.12

While Eddington did not challenge the accuracy of Chandrasekhar’s
derivations, he implied that Chandrasekhar had made a fundamental
error in the underlying physics in order to reach such an apparently ab-
surd conclusion. Chandrasekhar returned from the meeting utterly de-
pressed. After all, Eddington was an established giant in the field, but
Chandrasekhar did not give up. He began to communicate with many
of the eminent physicists of the day in an attempt to determine whether
he or Eddington had analyzed the situation correctly from a physical
standpoint. The weight of opinion was squarely on Chandrasekhar’s
side. As the eminent physicist Rudolf Peierls recalled, “I did not know
any physicist to whom it was not obvious that Chandrasekhar was right
in using relativistic Fermi-Dirac statistics, and who was not shocked
by Eddington’s denial of the obvious, particularly coming from the au-
thor [Eddington] of a well-known text on relativity. It was therefore
not a question of studying the problem, but of countering Eddington.”13

For Chandrasekhar, countering Eddington did not mean war.
Throughout the battle, he and Eddington had maintained warm personal
relations—this was not the stuff of soap opera. In recalling this period,
Chandrasekhar remarked, “It never destroyed my respect for him. . . .
It never gave me a feeling that I was not on speaking terms with
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him. . . . During the spring of that year (right after the meeting of the
Royal Astronomical Society), we went on a bicycle trip together and
Eddington took me to the Wimbledon tennis championship match.”14

In fact, that friendliness put Chandrasekhar in something of a bind. He
could have gone for the kill—the support of the world’s top physicists
was all the vindication of his work he needed. Instead, he left Edding-
ton alone, and set aside his research on white dwarves to work on other
problems, and to avoid embarrassing his friend. When Eddington died
in 1944, Chandrasekhar paid Eddington the following tribute:

I believe that anyone who has known Eddington will agree that he

was a man of the highest integrity and character. I do not believe,

for example, that he ever thought harshly of anyone. That was why

it was so easy to disagree with him on scientific matters. You can

always be certain he would never misjudge you or think ill of you

on that account.15

Chandrasekhar didn’t abandon the work forever. When pulsars were
discovered in the 1960s, Chandrasekhar returned to the study of stellar
structures in an effort to explain their workings, continuing the work
he had begun nearly three decades before. In 1983, Chandrasekhar was
one of two physicists to share the Nobel Prize for Physics; even though
his career had included monumental contributions to a wide variety of
topics in astrophysics, the Prize was essentially awarded for the work
he had done while on a steamer in the summer of 1930. Chandrasekhar
himself disarmingly summarized his life by saying, “I left India and
went to England in 1930. I returned to India in 1936 and married a girl
who had been waiting for six years, came to Chicago, and lived happily
thereafter.”16

Mozart was writing symphonies when he was five. Olympic gold
medals have been won by twelve-year-olds, and Alexander the Great
conquered the world by the time he was twenty. All of these are amaz-
ing accomplishments, yet I am more awed by the ability of a student
with only two years of college behind him to assimilate the most bril-
liant theories of his day, and use them to decipher the secrets of the
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stars. The physicist Res Jost said it best: “There is a secret society
whose activities transcend all limits in space and time, and Dr. Chan-
drasekhar is one of its members. It is the ideal community of geniuses
who weave and compose the fabric of our culture.”17

The upshot to all of this is what happens when a star has a mass
greater than the Chandrasekhar limit. Rather than becoming a white
dwarf, it explodes in a supernova, casting all those heavy elements—
everything up to iron—out into the Universe. In fact, the explosion is
so energetic that even more fusion takes place, creating those elements
beyond iron that fusion pathways in a star cannot. A little radioactive
decay later on down the road gives us the lighter ones to round out the
periodic table.

Every airplane has a take-off speed: the speed necessary for it to
safely become airborne. The Chandrasekhar limit is not just a number
that tolls the death knell for a massive star, it is the take-off speed for
the formation of planets—and life.
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T H E  
H U B B L E  

C O N S TA N T

In 1758, Charles Messier, a French astronomer, trained his telescope
on the heavens, hoping to be the first to record the return of the great

comet of 1682, which had been predicted by the English astronomer
Edmond Halley. It was not to be, as Messier wasn’t the first to spot the
comet—that honor was claimed by a French peasant who happened to
be looking in the right place at the right time. Messier, however, was
enthralled by the comet when he finally saw it, and resolved to make
comet-hunting his life’s work. Messier did, indeed, discover lots of
comets, although that’s not what secured him his place in the history
of astronomy. Messier is famous not for the catalogue of what he was
looking for, but for the catalogue of things that got in his way.

A distant comet appeared as a fuzzy object in the telescopes of
Messier’s era, as one would appear in a low-powered telescope of
today. Comets are not the only fuzzy objects visible through a tele-
scope, however, as Messier discovered. The chief difference between
comets and the other fuzzy objects was that comets moved and the
other fuzzy objects didn’t. Messier began recording the locations of
the other fuzzy objects so that he would not make the mistake of con-
fusing them for comets. Messier’s list of OFOs eventually grew to more
than a hundred entries.
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There was considerable speculation as to the nature of the OFOs.
The brilliant French mathematician and physicist Pierre-Simon
Laplace thought that they were distant clouds of gas; in fact, the word
nebula, Latin for “cloud,” was used to describe them. The philosopher
Immanuel Kant propounded a competing theory, suggesting that neb-
ulae might be vast congregations of stars so distant that the telescope
was unable to resolve individual stars. Kant referred to these as “island
universes.”

The OFOs caught the attention of the English astronomers (and
brother and sister) William and Caroline Herschel, who were at the cut-
ting-edge of late eighteenth-century telescopy. Using data gathered
from a giant telescope he had built, they published the Catalogue of
One Thousand New Nebulae and Clusters of Stars.1 This pair was the
first to actually determine that one of Kant’s “island universes” was in-
deed a vast congregation of stars, that collection being the Milky Way
galaxy, the island universe in which our solar system is located. William
Herschel actually mapped the Milky Way, and positioned the solar sys-
tem in it near the center. Nevertheless, Herschel’s telescope could not
settle the question of what the nebulae were. The answer was to come
as a result of the discovery of spectra by Bunsen and Kirchhoff.

In 1863, the British astronomer Sir William Huggins equipped his
eight-inch telescope with a spectroscope and studied the spectra of stars
other than the Sun. These, too, exhibited the same spectra as elements
known on Earth. The following year, Huggins decided to look at the
spectrum of a circular nebula in the constellation Draco. He was as-
tonished to see that the spectrum consisted of a single bright line, which
he recognized as corresponding to the spectrum of the element hydro-
gen. Nebulae were indeed, as Laplace had conjectured, distant clouds
of gas! Shortly thereafter, Huggins observed the spectrum of the con-
stellation Andromeda. That spectrum revealed the myriad lines seen
when looking at a star. Nebulae were indeed, as Kant had hypothesized,
gravitationally bound collections of stars!

Once astronomers knew what nebulae were, the next question was
obvious: Where were they? Did they belong to the Milky Way galaxy,
providing additional evidence that the Milky Way galaxy was the whole
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universe, or did they lie outside it? The answer was to have major ram-
ifications for some of the biggest questions that had ever been asked.

The Period-Luminosity Relationship

The first measurement of the distances to the stars was done by using
the idea of parallax. You can get an idea of how this works by looking
at the minute hand of a distant clock at noon. If you look at the clock
from left of the clock, the minute hand will appear to be between the
12 and the 1. Now move to the right of the clock, the minute hand will
appear to be between the 11 and the 12. If you measure the distance
you have moved to your right (the baseline distance) and the angles
from which you are observing the clock, you can use trigonometry to
compute the distance to the clock.

The problem with this method is that its utility is limited. Even using
telescopes mounted on satellites orbiting our planet, which is now
being done, the baseline distance is limited to the maximum separation
of two points in the Earth’s orbit (the distance between where the Earth
is relative to the Sun on January 1 and where it is on July 1). At some
stage the distance to a star is so great that the angles become too small
to be measured; practically speaking, the parallax method only works
for stars within a few hundred light-years of Earth. The fact that there
were stars for which this method did not work implied that some of the
stars were thousands of light-years away—and maybe even farther than
that.

The first giant leap beyond the limits of parallax was taken by Hen-
rietta Swan Leavitt, who had graduated from Radcliffe College in 1892.
Nowadays, graduates of Radcliffe College, such as the most recent
member of the Supreme Court, Elena Kagan, can look forward to many
enticing employment opportunities, but there were very few openings
for women in 1892. As a result, Leavitt took a job as a computer at the
Harvard College Observatory, at a time when computer meant a person
who computes. For the princely sum of $10.50 per week, she would
measure the brightness of stars as they appeared in photographic
plates.2
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Although most stars maintain the same intrinsic brightness for mil-
lions—or even billions—of years, the so-called variable stars fluctuate
significantly in brightness over brief periods. This was known as far
back as 1638, when the astronomer Jean Holward3 observed that the
star Mira fluctuated in brightness in a cycle lasting eleven months. Al-
though some stars fluctuate in brightness because their light is period-
ically dimmed by another celestial object passing between it and Earth,
the Cepheid variables (first observed in the constellation Cepheus) pul-
sate due to a gas dynamics mechanism first elucidated by Sir Arthur
Eddington.4 The variable stars, especially the Cepheid variables, at-
tracted Leavitt’s attention. She noticed that the brighter the star, the
longer its period, and in 1908 published a note to this effect in the An-
nals of the Astronomical Observatory of Harvard College.5

This note did not set the astronomical world afire, but Leavitt was
not discouraged. She continued working with these stars, and in 1912
published what is now known as the period-luminosity relationship.
Based on a study of 1,777 stars, she concluded, “A straight line can be
readily drawn among each of the two series of points corresponding to
maxima and minima, thus showing that there is a simple relation be-
tween the brightness of the variable and their periods.”6

This epochal discovery, like Leavitt’s earlier note, went largely un-
noticed. Leavitt continued to work at the Harvard Observatory, and was
promoted to the head of the photographic section by Harlow Shapley
in 1921, only for her life to be cut short by cancer later that year. Solon
Bailey, a colleague at the observatory, gave the following tribute to
Leavitt at her funeral. “She had the happy faculty of appreciating all
that was worthy and lovable in others, and was possessed of a nature
so full of sunshine that, to her, all of life became beautiful and full of
meaning.”7 It would not be for a little while longer before Leavitt’s
contributions to astronomy were given their due.

The period-luminosity relationship Leavitt had discovered enabled
astronomers to gauge the distance to the Cepheid variables, providing
a way to measure distances substantially in excess of the limitation im-
posed by the parallax method. The idea is easily illustrated using auto-
mobile headlights. Most automobile headlights are manufactured with
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a uniform brightness. Because we know how bright the lights are when
a car is fairly close, we can tell how far away the car is by comparing
how dim the light appears to its known brightness when the car is close
by. Of course, we don’t use simply this as an indicator as to when we
can cross a street in front of an oncoming car; even at night in an area
with no stoplights, there are other cues such as sound to guide us.
Nonetheless, the principle is valid.

In the language of astronomy, the uniform brightness of manufactured
automobile headlights provides a standard candle relative to which we
can calibrate the brightness of other lights. The period-luminosity rela-
tionship discovered by Leavitt showed that the Cepheid variables could
serve as standard candles as long as the brightness of one Cepheid vari-
able could be determined (analogous to measuring the brightness of a
single automobile headlight). It would not be necessary to perform the
difficult task of measuring the brightness of any other, because its
period (the timescale over which it went through a cycle of dimming
and brightening) was easy to determine and its brightness could then
be computed according to the period-luminosity relation.

Luminosity fades in a predictable way as the distance to the object
decreases, so if it were possible to use parallax to measure the distance
to a single Cepheid variable, then one would know the relationship be-
tween distance and luminosity for that star. Given any other Cepheid
variable, one could use the period-luminosity relationship to deduce
its luminosity; from its luminosity one could deduce its distance.
Within a year of Leavitt’s publication of the period-luminosity rela-
tionship, Ejnar Herztsprung—though probably not motivated by Leav-
itt’s discovery but pursuing a research program of his own—had
determined the distance to several Cepheid variables in the Milky Way.8

You have to give Shapley credit: he recognized the value of this tech-
nique, and made extensive use of the period-luminosity relationship to
determine the size and shape of the Milky Way. However, you also have
to debit Shapley for what I consider to be behavior more appropriate
to a politician than to a scientist. In 1926, the Swedish mathematician
Gosta Mittag-Leffler would contact Shapley about the possibility of
nominating Leavitt for the Nobel Prize.9 Mittag-Leffler was unaware

The Hubble Constant 171

         



that Leavitt had died, and so, because the Nobel Prize was (and is)
awarded only to living scientists, she was ineligible. Shapley’s next
move was shameful: not to mourn hard work recognized too late, but
instead to attempt to persuade Mittag-Leffler that the credit belonged
not to Leavitt for the discovery of the period-luminosity relation, but
to Shapley himself because of Shapley’s use of the relation in deter-
mining the size of the Milky Way.

The Realm of the Nebulae

Still unsettled, though, was the location of the nebulae. There had been
a serious attempt to settle it in 1920, when, in a classic debate at a meet-
ing of the National Academy of Sciences, Shapley squared off against
the astronomer Heber Curtis on the scale of the universe. The great
contests pit not just opponents, but opposing styles, and Shapley was
a rough-hewn plain-spoken type, whereas Curtis was an urbane patri-
cian. Shapley took the side that held that the Milky Way galaxy con-
stituted the entire universe, whereas Curtis held to the position that
some of the nebulae lay outside the Milky Way. I wish that this debate
had occurred during an era in which video recordings could have been
made, because it must have been fascinating. Less so was the under-
card, a presentation on the hookworm that history remembers only for
having been dreary and long enough to bore Albert Einstein. So unim-
pressed was he that he remarked to another audience member, “I have
just got a new theory of eternity.”10 The Great Debate, as it was later
to be called, ended in a draw, because neither Shapley nor Curtis could
prove their position. Shapley was faced with the difficult task of prov-
ing a negative, that no nebula lay outside the Milky Way, and Curtis,
whose position would have been the easier to prove, simply lacked the
data.

The final word on the subject would belong to the hero of this chapter,
Edwin Hubble, a larger-than-life figure and one of the giants of twenti-
eth-century astronomy. Tall, handsome, an accomplished athlete, a
Rhodes Scholar, and a major in the U.S. Army during the First World
War, Hubble joined the staff of the Mount Wilson Observatory in Cali-
fornia in 1919. Later, Hubble married Grace Burke, an elegant woman
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and the daughter of a successful banker. There are several billion human
beings, and probabilistic considerations dictate that some of them will
have it all. Edwin Hubble was unquestionably such an individual.

Hubble is best known for two key achievements, the first of which
was to resolve the Great Debate. During 1922 and 1923, Hubble dis-
covered several Cepheid variables in what was then called the Androm-
eda nebula. Using Hertzsprung’s calibration and the period-luminosity
law, it was apparent that the distance to these stars was vastly greater
than the size of the Milky Way, and so Andromeda had to be a collec-
tion of stars that lay well outside of the Milky Way. As a result, the An-
dromeda nebula is now known as the Andromeda galaxy, and the work
of Hubble and those that followed showed that the universe is com-
posed of billions of similar galaxies. Hubble also made the discovery
with more grace than Shapley could have; Hubble had a deep appreci-
ation of the importance of the period-luminosity relationship and Leav-
itt’s role in discovering it, and felt that Leavitt should have won the
Nobel Prize for it.

The Cepheid variable yardstick, like the parallax yardstick, has lim-
itations, however, and Hubble and his colleagues would draw on an-
other important discovery of nineteenth-century physics to show just
how large the universe actually is.

The Doppler Effect

That discovery is the Doppler effect, which you may know from a po-
liceman’s radar gun or the weather report. The Doppler effect was first
described by the Austrian physicist Christian Doppler,11 who noticed
that the tone of a train’s whistle shifted as it went by. The effect was
originally confirmed by one of the more picturesque experiments in the
history of physics. Accurate measurement of the frequency of sound
waves by instruments such as oscilloscopes did not exist in the 1840s;
the most accurate instruments available at the time were the ears of
trained musicians. To confirm the Doppler effect, musicians were in-
stalled on a train and told to play the same note. Other musicians,
preferably possessing perfect pitch, were located on the side of the
tracks and asked to determine the pitch of the sound they heard as the
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train passed by. Sure enough, the perceived note was higher than what
the musicians were told to play as they approached, and lower as they
went away.

The math involved is just simple algebra. Imagine you’re standing
in a railroad crossing with a train approaching at 25 meters per second,
or about 55 miles per hour. To warn you, the engineer blows the whis-
tle, which happens to be tuned to a middle C, which has a frequency
of 260 hertz, or sound waves per second. Now, the important number
here is the ratio of the speed of sound, which is 340 meters per second
at sea level, and the frequency; that number for a middle C is 1.31 me-
ters, and is the note’s wavelength. Because the train is moving, how-
ever, you don’t hear a middle C; the note you do hear is equal to the
net speed of the sound divided by the wavelength of the note. So when
the train approaches, you hear (340 meters per second + 25 meters per
second) / 1.31 meters, or 279 hertz; when it is moving away, you hear
(340 meters per second – 25 meters per second) / 1.31 meters, or 240
hertz. To be musical about it, you hear a D-flat coming and a B going
away. We can relate the observed (Fo) and emitted (Fe) frequencies
and the velocities of the train (V) and sound (v) like this, V being neg-
ative as the train approaches you:

Fo / Fe = 1 – V / v

The Doppler effect, as described above, works well as long as we
are dealing with things like train whistles that travel at velocities vastly
less than that of light. However, if you’re dealing with a source of elec-
tromagnetic waves (which move at the speed of light), and the source
of the waves itself is also moving at a reasonably large fraction of the
speed of light, Einstein’s special theory of relativity shows that there
is a correction that must be made.

Time Out: The Special Theory of Relativity

One of the first (of many) indications that I wasn’t cut out to be a
physicist was that I had a great deal of difficulty understanding time
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dilation and length contraction, key features of the special theory of
relativity. I’ve been a physics wannabe all my life, but I have never
understood the great ideas of physics with the same clarity that I un-
derstand some of the great ideas of mathematics. Most of us have felt
that we understand something incompletely at one time or another;
comprehension flickers on and off as we think we’ve got it, and then
we don’t. Einstein’s theory of special relativity has occupied such a po-
sition for me for the five decades since I was first exposed to it. I’ve
read many of the great popularizations of it, as well as fully mathemat-
ical treatments in a variety of texts, and I never quite got it—until David
McKay came up with the explanation I am about to present. It’s the sim-
plest and most straightforward of any of the explanations with which I
am familiar.

If you have done a reasonable amount of train travel, you’ve prob-
ably experienced the following situation. There’s a train on an adjacent
track, and through the window you can see the other people on the
train. All of a sudden, there is motion; you see the other train moving.
However, unless there is something obvious to make you realize which
of you is moving—such as a sudden jerk in your train or the motion
(or lack thereof) of obviously fixed entities such as railroad ties or
trees—you don’t know whether you’re moving or they’re moving.

Relativity deals with two “frames of reference”—the two trains—that
are moving at a constant velocity with respect to one another. Which one
is really moving? Both! The key to the mathematics of special relativity
is that if a person in either train measures the same distance in meters or
the same amount of time in seconds, they will both come up with the
same number. In order to understand the rationale for this, imagine that
while the other train was next to yours, you had two meter sticks, and
handed one to an individual in the adjacent train. If you measure the
same distance in the outside world, you with your meter stick and he
with his, you will get the same number because the question of who has
the real meter stick (or—who is moving and who isn’t) is moot; there
is no way to tell because each sees the other moving.

So that’s what you do: you open a window and hand a meter stick,
a clock, and a flashlight to a person in the train just as that person (who
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also conveniently has an open window) is opposite you. It’s a special
flashlight; when you turn it on, it emits a single photon. The trains
move away from each other at a constant velocity, which you measure
as v meters per second; the person in the other train computes the ve-
locity at which you are moving away from him as v meters per second
as well. That’s the basic assumption of relativity—neither of you has
the “correct” meter stick and the “correct” clock while the other has
the “incorrect” ones, and so each person must obtain the same numer-
ical measurement, otherwise one measuring system is somehow “cor-
rect” and the other one isn’t.

Now suppose that, at the moment the person in the train passes you,
he aims the flashlight at the ceiling and turns on the flashlight; shortly
thereafter the single photon hits the ceiling in his train. You construct
a right triangle with three vertices. Vertex A is where you are at the mo-
ment the other person turned on the flashlight. Vertex C is the point on
the ceiling of the train at the moment the single photon hits it; since the
train has moved some distance down the track from the moment the
flashlight was switched on, C is at the same level as the ceiling but fur-
ther down the track. Let B be the point on the track directly below C;
AC is the hypotenuse of a right triangle. We’ve known since Pythagoras
that AC2 = AB2 + BC2.

Distance equals rate × time, and c, the velocity of light, has the same
numerical value (like the velocity of the train) whether you measure it
or the person in the train measures it. How much time has elapsed be-
tween the moment the light is turned on and the moment the photon hits
C? You measure distance, but compute time from the equation distance
= rate × time. You denote this amount of time by T, and so AC = cT,
since AC is the distance the photon has traveled; it started at A and
ended up at C. Since the train is traveling at a constant velocity v, it
started at A and ended at B, so AB = vT.

The person in the train denotes by t the amount of time that has
elapsed between the moment the light is turned on and the moment
the beam hits C. The photon travels from the floor of the train to its
ceiling, the distance BC; the person in the train computes that distance
as ct. So would you, because the line segment BC is perpendicular to
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the line segment AB, and both your meter sticks are unaffected by mo-
tion in the AB direction. We substitute these values—from your frame
of reference— into the Pythagorean Theorem.

AC2 = AB2 + BC2

(cT)2 = (vT)2 + (ct)2

And so

This is the famous “time dilation” effect; the number of seconds that
have elapsed on the clock of the person in the train is less than the number
of seconds that have elapsed on your clock. Notice that we didn’t even
need the clocks; we obtained the times from the distance = rate × time
formula.

If we denote the distance AB as measured by you as L and the same
distance as measured by the man in the train as l, we see that L = vT and
l = vt, because both parties see the velocity of the train as having the
same numerical value v. So v = L / T = l / t, and therefore l = (t / T )L.
Substituting the previously obtained value for t / T yields

This is the equally famous FitzGerald contraction: the distance mea-
sured by the person in the train is less than the distance you measure.

The Special Theory of Relativity and the Doppler Effect

The special theory of relativity impacts the Doppler effect, because
when things are moving close to the speed of light, the Lorentz factor
(the square root quantity in the above equation) becomes significant;
for small velocities it has a value that is basically indistinguishable
from 1. The equation for the ratio of observed and emitted frequencies
becomes this:

l L
c
v1 2

2

= –

t T
c
v1 2

2

= –
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If V = .9c (that is, the source is moving at 90 percent of the speed of
light) and Fe equals 6.5 × 1014 hertz (that is, the emitted light is blue),
then the observed light will have a frequency of either 1.49 × 1014 hertz
(infrared) or 2.83 × 1015 hertz (far ultraviolet), depending on whether
the light source is moving away from or toward the observer. Thus,
when a light source moves away from us, its color is said to be red-
shifted; when a light source moves toward us, its color is said to be
blueshifted.

Doppler didn’t predict many of the modern-day uses of the Doppler
effect—not even using it to determine the speed of a pitcher’s fastball—
but he absolutely hit it out of the park when he said the following:

It is almost to be accepted with certainty that this will in the not

too distant future offer astronomers a welcome means to determine

the movements and distances of such stars which, because of their

unmeasurable distances from us and the consequent smallness of

the parallactic angles, until this moment hardly presented the hope

of such measurements and determinations.12

It is this use of the Doppler effect that has enabled us to answer the
third of the deep questions that children frequently ask—where did it
all come from?

The Expanding Universe

Using Cepheid variables as standard candles showed that there were
many galaxies lying outside of the Milky Way. However, larger tele-
scopes were being constructed, and the larger they were, the more ob-
jects they could see. Many nebulae were either devoid of Cepheids or
may have had Cepheids that were undetectable, and so another method
of determining distances needed to be found. The Doppler effect, with
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its relation of change in frequency to velocity, proved to be just the
ticket (an appropriate choice of words, considering its use in document-
ing violations of speed laws).

When an object moves in a straight line, an observer can describe its
velocity in terms of two numbers. Imagine that a car is moving at 60
miles an hour in the northeast direction along a line inclined at 60 de-
grees east of due north. In one hour the car will have moved 60 miles
along the hypotenuse of a right triangle whose north-south side is 30
miles long and whose east-west side is ≈ 52 miles. Physicists de-
scribe this process as the resolution of velocity into perpendicular com-
ponents. When an object moves in space, the Doppler effect enables us
to determine the velocity component along a line from the object to the
observer; this velocity component is called the radial velocity.

Combining the Doppler effect with the spectroscope enabled as-
tronomers to see how characteristic patterns of spectral lines in stars
(or galaxies) changed; this change in the frequencies of the lines en-
abled the radial velocities of the stars (or galaxies) to be determined.
William Huggins, the British astronomer who had solved the question
of the composition of the nebulae, first did this for the star Sirius in
1872. He found a slight redshift in the lines associated with the element
hydrogen, and careful measurement enabled him to conclude that Sirius
was moving away from us with a radial velocity on the order of 47
kilometers per second.13

Over the next few decades, measurements were made on the radial
velocities of a large number of stars; some were found to be approach-
ing us, whereas others were receding. This did not surprise as-
tronomers; after all, if you find yourself on a downtown street in the
middle of the afternoon, some people will be walking toward you and
others will be walking away from you. Unless some event has occurred,
such as the sudden appearance of a major celebrity, to cause the ma-
jority of people to walk in a particular direction, people are just as
likely to be walking away from you as toward you. Some will walk
more slowly, others more rapidly.

Astronomers also tried to determine the radial velocity of nebulae.
The spectral lines of many nebulae were so close together that they

60 3
2

The Hubble Constant 179

         



basically formed a continuous band, making it difficult to determine
individual spectral lines. Without the ability to distinguish individual
lines, the characteristic pattern of lines associated with particular ele-
ments could not be resolved, and so early determination of radial ve-
locities was limited to stars. Typically, these velocities were in the
range of about 10 kilometers per second.

By the twentieth century, technology had improved enough that the
individual lines in the spectra of nebulae could be distinguished. This
made it possible for Vesto Slipher, a young American astronomer, to
determine the radial velocity of the Andromeda nebula. Even though
this was prior to Hubble’s use of Cepheids to determine the distance
of the Andromeda nebula, Slipher’s work resulted in an amazing re-
sult—the Andromeda nebula was approaching the Earth with a radial
velocity of an astounding 300 kilometers per second; one-tenth of one
percent of the speed of light. Slipher continued to work on the problem
of determining the radial velocity of nebulae, and at the 1914 meeting
of the American Astronomical Society he presented the radial velocities
of a number of nebulae, which earned him what is now referred to as a
standing O. Curiously, the vast majority of the radial velocities were re-
cessional; the nebulae were apparently fleeing away from the Milky
Way. Were these nebulae actually fleeing away from the Milky Way, or
was there something out in deep space attracting them? No one had any
idea.

One of the attendees at Slipher’s 1914 presentation was Edwin Hub-
ble. Hubble was able to use Leavitt’s period-luminosity relation to de-
termine the distance to a number of galaxies housing Cepheid variables,
and could use Slipher’s data, as well as his own, to determine the radial
velocities of those galaxies. Here is the data that Hubble had available
for his original analysis. A megaparsec is a unit of distance for mea-
suring great distances, such as those between galaxies, and equals
roughly 3.2 million light-years.

Hubble noticed, as you might also, that as the distance from Earth
increased, so did the recession velocities. Plotting this data on a rec-
tangular coordinate system, he noticed that the data seemed to fall ap-
proximately on a straight line. There is a standard technique from
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statistics used to determine what is called the regression line; it is the
straight line that most closely fits a set of data points. In the above ex-
ample, if the distance is given by x and the recession velocity by y, then
the best-fitting line has the equation y = –41 + 454x.

Statistics also has a way of measuring how well data fit a straight
line, called the correlation coefficient. If a data set perfectly fits a
straight line with positive slope, the correlation coefficient is 1. If it
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DISTANCE FROM EARTH RECESSION VELOCITY

IN MEGAPARSECS KM/SEC

0.032 170

0.034 290

0.214 –130

0.263 –70

0.275 –185

0.275 –220

0.45 200

0.5 290

0.5 270

0.63 200

0.8 300

0.9 –30

0.9 650

0.9 150

0.9 500

1 920

1.1 450

1.1 500

1.4 500

1.7 960

2 500

2 850

2 800

2 1090

         



perfectly fits a straight line with negative slope, the correlation coeffi-
cient is –1. If the data is essentially random, the correlation coefficient
is 0. For the above data set, the correlation coefficient is 0.78; a pretty
good fit to a straight line with positive slope.

However, Hubble also noticed that all the negative recession veloc-
ities were associated with galaxies that were relatively nearby. We now
know the reason for that; galaxies cluster together in large gravitation-
ally bound aggregations, and the nearby galaxies belong to a cluster
known as the Local Group. The gravitational attraction accounts for
the negative recessional velocities.

Hubble continued to augment his data set. As he began to obtain data
for even more distant galaxies, he became convinced that there was a
simple relationship between the recession velocity and the distance of
the galaxy. This relationship, now known as Hubble’s law, is expressed
as V = H0D, where D is the distance to the galaxy in megaparsecs and
V the recession velocity in kilometers per second. H0 is the Hubble con-
stant; although in the above equation it is given in (kilometers per sec-
ond) per megaparsec, we could express D in terms of kilometers rather
than megaparsecs and think of H0 as being measured in units of 1 / sec-
onds (or per second, or s-1). The best estimate we currently have of H0

comes from measurements made in 2010 with the Hubble Space Tele-
scope, appropriately named after you-know-who. H0 is approximately
71 (kilometers per second) per megaparsec, or 2.3 × 10-18 s-1.

What could explain this amazing discovery? What model of the uni-
verse would account for the fact that the more distant the galaxy, the
faster it is receding from Earth? Moreover, according to Einstein’s gen-
eral theory of relativity, there is no special place in the universe. Since
the time of Copernicus, we have known that Earth is not the center of
the universe, so not only must the galaxies be receding from Earth ac-
cording to Hubble’s law, they must be receding from one another.

Einstein’s equations in the general theory of relativity suggested a
possible solution—that the universe itself is expanding, and the galaxies
are being carried along on the tide of expanding space. The more space
there is between galaxies, the more expansion takes place, and galaxies
that are further apart move away from each other more rapidly.
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Hubble’s law also enables us to obtain an answer to the question:
how large is the visible universe? We use the term “visible universe”
because if there is something out there with a recession velocity greater
than that of the speed of light, we’ll never know about it. Unless, of
course, there’s a way for it to emit information that travels faster than
light—and if that’s the case, there are going to be one hell of a lot of
physical theories in need of change. We can certainly answer the ques-
tion of how far away a galaxy would have to be in order to be receding
from us at the speed of light. V would be 300,000 kilometers per second,
and substituting 71 for H0, we see that D would be 300,000 / 71 = about
4,225 megaparsecs, or 13.8 billion light-years.

The Size of the Visible Universe

In Chapter 9, we constructed a scale model of the universe using a re-
cently purchased (and now eaten) grapefruit to represent the Sun. On
that scale, 1 light-year is about 660 miles. The Milky Way galaxy looks
somewhat like the pattern of water sprayed out by a rotating lawn sprin-
kler; it has a core at the center and several arms curving out from the
core. The Solar System is located toward the end of one of those arms,
and the Milky Way galaxy itself is about 100,000 light-years in diam-
eter. Using our model, the distance from the Solar System diametrically
across the Milky Way galaxy would be on the order of 60 million miles
or so. If the Sun, the planet Mercury, and the Earth lie on a straight line
with Mercury between the Sun and the Earth, the distance between the
Earth and Mercury is approximately 60 million miles.

The Milky Way galaxy is part of a gravitationally bound collection
of galaxies known as the Local Group. The Local Group is approxi-
mately 10 million light-years in diameter, and its center of mass is
somewhere between the Milky Way galaxy and the huge Andromeda
galaxy (formerly known as M31, or Messier 31, the 31st OFO on
Messier’s list), which is about 2,500,000 light-years from the Milky
Way galaxy. We could therefore estimate the distance to the edge of
the Local Group from the Milky Way galaxy as about 4,000,000 light-
years. In our model, that would be a distance of 2,600,000,000 miles.
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If the Sun, the Earth, and the planet Neptune were lined up with the
Sun between the Earth and Neptune, and if Neptune were at its closest
to the Sun, the distance between the Earth and Neptune would be just
about right to represent the distance to the edge of the Local Group
from the Milky Way.

The Local Group is itself part of a gravitationally bound collection
of galaxy clusters known as the Virgo Supercluster. The Virgo Super-
cluster contains more than one hundred galaxy clusters, and the Local
Group is about 60 million light-years from the furthest member of the
Virgo Supercluster. Our model would therefore position the furthest
galaxy cluster in the Virgo Supercluster as about 40,000,000,000 miles
from Earth. It would take light about 21⁄2 days to travel that distance.

The Virgo Supercluster is one of millions of superclusters throughout
the visible universe. Our largest telescopes enable us to see close to 14
billion light-years out, which is close to the time of the big bang. Using
our model, this would be about 11⁄2 light-years from Earth. In the early
1990s, the domain of the Solar System was extended to include the
Oort Cloud, a huge mass of icy bodies approximately 1 light-year from
Earth. These are still gravitationally bound to the Sun, but our model
goes 50 percent further than the Oort Cloud—approximately one-third
of the distance to the nearest star.

The 14 billion light-year mark represents the “end” of the visible
universe. Beyond this point, if Hubble’s law continues to hold, the re-
cession velocities exceed the speed of light, and so there is no way for
information to get from whatever lies beyond this limit. There may be
one hell of a party going on, but we’ll never receive an invitation. 

It is the universe itself that is expanding, carrying the distant galaxies
like an ocean wave carries flotsam, and so it is no contradiction to have
recession velocities greater than the speed of light. Recession velocities
are not actual velocities, because the redshift of the galaxies comes not
only from the Doppler effect, but also because space itself is expanding,
and it is expanding faster further away from us. At any rate, I’m just
hoping to live long enough to see the day that scientists determine
whether there is anything beyond the limit imposed by Hubble’s law,
or whether what we can see is really all there is.
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C H A P T E R  1 3

O M E G A

I t’s fitting that the final chapter of this book should deal with the con-
stant that describes the ultimate fate of the universe. It’s fitting be-

cause not only is omega the last letter of the Greek alphabet, but it’s
the constant whose value, once known, will tell us whether we live in
a universe that is destined to expand forever or to collapse—and pos-
sibly be reborn. Of course, as a mathematician, I’m a huge fan of sym-
metry, so there’s some pleasure having this book, which began with a
chapter on gravitation, end with one as well.

Most people these days—and probably in any era that wasn’t com-
pletely wretched—are present-day-centric, believing even if the current
era is not yet the best of all possible worlds, it’s superior to the other
eras that have come before it. I certainly am. I like having the Internet,
cable TV, Chinese takeout, painless dentistry, and air travel, although
I long for the days when you could just show up and get on the plane.
I’m also astounded by how much we know, and how much we have
learned about the universe in the short span of time since my birth. Our
knowledge is so vast, and our tools for finding and using it are so pow-
erful, that it can be difficult to imagine how anyone could get anything
done, or right, without them.

Einstein’s General Theory of Relativity

One of the prevailing impressions of Einstein’s theory of general rela-
tivity is that it is so incredibly difficult that at one time, only a dozen
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people understood it. In fact, when Eddington was asked what he
thought of the statement that only three people understood the theory,
Eddington is reputed to have wondered who the third person was.1

George Ellery Hale, the director of the Mount Wilson Observatory,
helped advance this view when he said, “The complications of the
theory of relativity are altogether too much for my comprehension.”2

That was then, but this is now, and Steven Weinberg, winner of the
Nobel Prize for Physics and author of The First Three Minutes, dis-
agrees. He writes, “It never was true that only a dozen people could
understand Einstein’s papers on general relativity, but if it had been
true, it would have been a failure of Einstein’s, not a mark of his bril-
liance.”3 General relativity is now a standard subject in the physics cur-
riculum, which naturally suggests that even though it is difficult to
master, most of the physicists of Einstein’s day were capable of mas-
tering it too.

Nevertheless, the Einstein field equations (EFE), which are the math-
ematical heart of the general theory of relativity, do present a real
mouthful to the uninitiated. Take, for example, Mathworld’s succinct
description of them: a system of sixteen coupled, nonlinear, hyperbolic-
elliptic partial differential equations.4 Okay, that’s a mouthful and a
half—but it is a digestible mouthful and a half to an upper-division un-
dergraduate in any one of several majors. Some of the terms are easy
to understand, others require calculus—but even without knowing cal-
culus it is possible to get a feel for what the EFE are.

First of all, they are equations, but they are not like ordinary equa-
tions most people are familiar with, such as 2x + 5 = 7, the solution to
which is a number. They are equations describing the rates at which
certain parameters change at different places and different times—
that’s the “partial differential equations” part—and their solutions are
functions, rather than numbers. The “hyperbolic-elliptic” part simply
describes a particular type of partial differential equation, much as
“quadratic” describes a certain type of single-variable equation.

“Coupled” merely means the variables often appear together in the
same equation. For example, in the two equations on the next page, the
variables x and y are not coupled.
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2x + 5 = 7
3y – 1 = 8

However, in the following equations, the variables x and y are coupled.

2x + y = 5
7x – 2y = 1

Anyone familiar with high-school algebra knows that the two un-
coupled equations above can be solved separately, but that to solve the
coupled set requires working on them together, using an algebraic tech-
nique such as elimination. Coupled equations are almost always more
difficult to solve than ones that aren’t.

Finally, a linear equation is one such as 2x + 5 = 7 or 2x + y = 5, in
which all the variables appear by themselves; they aren’t raised to any
powers, nor are functions such as logarithms applied to any of the vari-
ables. A nonlinear equation such as x3 + 5x = 18 is always more difficult
to solve than a linear one.

Upper-division undergraduates back in Einstein’s day would have
had no trouble decoding the idea of coupled, nonlinear, hyperbolic-
elliptic partial differential equations. What made Einstein’s work so
significant was the generality of the phenomena that it described, and
the depth of understanding necessary to derive the equations.

However, I don’t think you need to understand any of this to appre-
ciate the elegant simplicity of the “language” in which Einstein phrased
his results. The EFE can be written simply as

The single G on the right side of the equation and the c are the grav-
itational constant and the speed of light. The other symbols are tensors,
which are simply condensed ways of writing a lot of information; the
μ and ν have values from 0 to 3, where 0 represents the time coordinate
ct (there’s a technical reason that time t is multiplied by the speed of
light) and 1 through 3 represent the three space coordinates. All four
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coordinates together describe a unique location in space-time, a specific
place (done with coordinates 1 through 3) and a specific time (done
with coordinate 0). There are actually sixteen separate equations, cor-
responding to the sixteen different ways 00, 01, . . . , 23, 33 of choosing
one value for μ from 0 to 3 and one value for ν from 0 to 3. However,
there’s some redundancy in these equations, and they can be reduced
to just six.

The Possible Universes

Almost all math instructors have had the following experience with
students encountering story problems—the student tells the instructor
that he has no difficulty solving the equations, his problem comes in
setting them up. The Einstein field equations are a totally different sit-
uation; the “story problem” of the universe is set up within the equa-
tions, the problem is to determine how that story unfolds by solving
the equations. Several people tackled this problem when the general
theory of relativity was published, and there were some missed tackles
in the process.

The first person to take a shot at solving the equations was Einstein
himself, as could be expected since he was the first person to know
what the equations actually were. The general theory was published in
1916, before Hubble had even demonstrated that galaxies outside the
Milky Way existed, to say nothing of the fact that they were receding.
The prevailing viewpoint was that the universe as a whole was static
and unchanging. Consequently, Einstein wanted to find a solution that
was static and unchanging. He found a solution, but it wasn’t a static
and unchanging solution; the universe it described either expanded or
collapsed.

What to do? Einstein was sure his equations were correct, as they
gave the right results when applied to the solar system, but something
must have gone wrong on a larger scale. So Einstein inserted a “fudge
factor” into the EFE in order to obtain a solution that would give a
static and unchanging universe. This fudge factor morphed the EFE
from the beautifully simple
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to the not quite as simple, but still elegant

The extra term consists of the cosmological constant Λ multiplied
by a tensor that facilitates the computation of the length and angles be-
tween tangent vectors; it enables one to compute distances and visual-
ize how the space the tensor describes is shaped. The effect of the
cosmological constant is that it counteracts the disturbing (to Einstein)
tendency of the universe in Einstein’s original solution to either expand
or collapse. Theory in physics (or anywhere else) is pragmatic; you try
to construct a theory that fits the facts, and the universe as Einstein
knew it in 1916 was static and unchanging.

Einstein’s solution is not the only solution to the equations. Another
was quickly discovered by the Dutch astronomer Willem de Sitter.5 Un-
fortunately, like Einstein’s original solution, de Sitter’s seemed to suffer
from some nonphysical characteristics.

For starters, de Sitter’s universe, by assumption, contained no mass
whatsoever. This isn’t as great a defect as it may appear, because, as
we have seen throughout this book, the actual universe that we inhabit
contains just a measly atom per five cubic meters of space. Our local
neighborhood might seem cluttered with mass, but if we consider a
sphere, a little more than a light-year in radius, centered on our home
planet, that sphere would have an average density of just one atom per
cubic millimeter—pretty close to a vacuum, and we’re talking about a
region chock-full of matter, relatively speaking. De Sitter’s assumption
of an empty universe might have struck his rivals as nonphysical, but
in the end it is a pretty good description of the way things are. Never-
theless, it wasn’t especially welcome. The second apparent problem was
that, in de Sitter’s universe, clocks at great distances from Earth ran
slower than those on Earth. This had the effect of redshifting light from
the distant galaxies. The de Sitter solution was described before Hub-
ble’s law was propounded, and both de Sitter and Eddington worried
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that the redshifted light would be erroneously interpreted as recession
velocities. Not surprisingly, Einstein was not thrilled by the deficiencies
of the de Sitter solution, saying that it didn’t make sense to him (re-
member that Einstein did not know at the time that there were galaxies
other than the Milky Way). De Sitter pointed to the evidence that
Slipher was uncovering with regard to recession velocities of stars, and
emphasized that these supported his model. (To this I raise my own ob-
jection: how can recession velocities of material objects support de Sit-
ter’s solution, when there are no material objects in the de Sitter
universe? I can’t imagine anyone doing something like this at a math
conference. My guess is that stuff like this makes cosmology confer-
ences a lot more entertaining than math conferences.)

The Greatest Debate

Astronomy has had more than its share of great pitched battles, starting
with Copernicus versus the Catholic Church on the nature of the solar
system. If the face-off between Harlow Shapley and Heber Curtis as
to the question of whether the Milky Way constituted the entire uni-
verse was known as the Great Debate, then the argument as to the ori-
gin of the universe that took place during the middle of the twentieth
century should certainly be accorded the title of the Greatest Debate.

There are really only two possibilities for the origin of the universe.
Either it had to start sometime (the idea of the big bang), or it’s always
been there (continuous creation). However, one of the major character-
istics of science is that theories must be constructed to fit the facts, and
Edwin Hubble had conclusively shown that the majority of galaxies
were receding from Earth, and were doing so in accordance with Hub-
ble’s V = H0D law. In fairness to Hubble, he wrote the law as V = KD;
the K was later changed to H0 to honor his role in discovering it. In
fact, it is generally considered to be bad taste in mathematics and sci-
ence to name anything for yourself; the scientific community will do
this if it deems your discovery sufficiently important. We speak of Ein-
stein’s theory of general relativity, but Einstein was not so brash as to
call it that. The only case that I know of where a mathematician or sci-
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entist tried to jump the gun on such attribution was with Leonhard
Euler, who spent a great deal of time developing ideas related to e, the
base of the natural logarithms. Some historians feel that the letter e was
so chosen because it is the first letter of Euler’s last name.

So let’s take a close look at the two contenders for the Theory That
Explains the Origin of the Universe.

The Big Bang

In the early 1920s, there were three solutions to the EFE on the table.
The first, Einstein’s original solution without the cosmological constant,
either expanded or collapsed. The second was Einstein’s solution when
an appropriately chosen cosmological constant was inserted, a static
universe intended to fit the presumably known facts. The third was the
de Sitter solution, which suffered from containing no matter and having
redshifts produced by the slowing of time at a great distance from Earth.

The middle ground was a solution found by Georges Lemaître, a re-
markable individual with a truly eclectic background. In addition to
being an extremely talented physicist, Lemaître was also an artillery
officer during the First World War who was decorated for bravery—
and who later became an ordained Roman Catholic priest. As I’ve men-
tioned, systems of partial differential equations are remarkably difficult
to solve, so it is not surprising that Einstein and de Sitter had not ex-
hausted all the possible solutions of the EFE. Lemaître managed to find
a solution of the EFE (with a cosmological constant included) that did
more than simply describe an expanding universe—it supplied a math-
ematical derivation of Hubble’s law. He published this paper, with the
lengthy title of (translated from the French) “A Homogeneous Universe
of Constant Mass and Growing Radius Accounting for the Radial Ve-
locity of Extragalactic Nebulae.”6 This paper also provided the first
computed value of the Hubble constant, derived from observed mea-
surements. However, in physics as elsewhere, it’s hard to get noticed
when you’re far from the center of the action, and this paper was pub-
lished in an obscure Belgian journal, mostly because at the time
Lemaître was an obscure Belgian professor of astronomy.
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Amazingly, Aleksandr Friedmann, a Russian mathematician who
had also served in the First World War, had independently developed
the same approach, and had done so five years earlier than Lemaître.
However, a lot of physics got done during the 1920s, and even though
Friedmann published his paper in the prestigious German journal
Zeitschrift fur Physik, he made what in retrospect turned out to be a
poor public relations move; he titled his paper simply “On the Possi-
bility of a World with Constant Negative Curvature of Space.”7 Fried-
mann’s solution actually allowed for all three possible types of
universes, with positive, negative, and zero curvature (as on the surface
of a sphere, a saddle, and a sheet of paper, respectively). Maybe Ein-
stein didn’t see Friedmann’s paper, or maybe the title persuaded him
that this was not a paper worthy of his time. At any rate, Einstein didn’t
read it. It seems obvious in retrospect that he should have titled the
paper “A Solution to Einstein’s Field Equations.” That would probably
have got Einstein’s attention!

Friedmann never did get Einstein’s attention—he died of typhoid
contracted on a visit to the Crimea in 1925—but Lemaître eventually
did, in 1927. This was before the bulk of Hubble’s work had been ac-
cepted, and Einstein, still holding to his vision of a static universe, was
not immediately impressed. He said that while Lemaître’s mathematics
was correct, his physics was abominable.8 However discouraging Ein-
stein’s reaction must have been, Lemaître continued to develop his
theory. Hubble’s data obviously provided a tremendous boost for his
ideas, and Lemaître gained a strong ally in Eddington, who brought
Lemaître’s theory front and center by publishing a long commentary
on it in 1930 in the Monthly Notices of the Royal Astronomical Society.
Here at last was acceptance—Eddington described Lemaître’s theory
as a “brilliant solution” to the problem of the physical description of
the universe—and it led to an invitation for Lemaître to present his
theory in London: the big stage at last! It was on this occasion that
Lemaître presented the idea of the universe expanding from an initial
point, which he called the “primeval atom.” Einstein, too, was ulti-
mately won over by Lemaître’s theory, and when, on a subsequent trip
to California, Lemaître presented his work, Einstein stood up, ap-
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plauded, and is reputed to have said, “This is the most beautiful and
satisfactory explanation of creation to which I have ever listened.”9

The Catholic Church loved it as well. How could it not? Not only
was the author a priest, but as physicists explored the consequences of
Lemaître’s theory, they realized that if one wound back the clock far
enough, the receding galaxies of today must at one time have emanated
from an infinitesimally small volume, and that the universe began when
this matter and energy was released. For a short period of time, the
temperature of the universe was so high that it was impossible for
atoms to form; the universe itself was pure energy. The Vatican was
eager to attribute this to God, as in Genesis 1:3: “And God said, Let
there be light, and there was light.”10 It was all part of the Vatican’s
long evolution from burning Giordano Bruno at the stake in 1600 to
sponsoring conferences on astrobiology in the twenty-first century.

Do you find the idea of cramming the entire known universe into a
volume substantially smaller than a pinpoint difficult to believe? I do,
too. The Schwarzschild radius of the Sun is about 3 kilometers, and a
typical galaxy contains billions, sometimes even trillions, of solar
masses. The universe contains billions, possibly trillions, of galaxies.
The big bang theory requires all that matter to be stuffed into a volume
inconceivably smaller than a hydrogen atom, which itself is almost
inconceivably small. As a mathematician, I can consider infinite-
dimensional spaces with aplomb, because I know that they are merely
mathematical constructs. But stuffing the entire universe inside this
incredibly small volume? I guess I’m capable of Orwellian double-
think on this issue: I can accept it because it is currently the best
theory, according to experts, of how it all began. If I had read a math-
ematical development of this theory—which I shamefacedly confess
I haven’t—I’m sure I’d accept it even more readily. But as someone
who has to sit on his suitcase in order to be able to close it before tak-
ing a trip, I find it impossible to believe from a strictly human stand-
point. How can you get all that stuff in such a small place? It’s not the
big bang and what happened thereafter that bothers me, I just simply
cannot conceive of that amount of mass in that infinitesimally tiny vol-
ume. Maybe someone will come up with a theory in which the contents
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of the current universe are stuffed inside a volume the size of the solar
system—still hard to believe, but a lot more believable (at least for
me), and the big bang starts the ball rolling from there.

I guess the distinguished astronomer Fred Hoyle, the man who ac-
tually coined the phrase “the Big Bang,” had difficulty with this idea
too—because he was even willing to sacrifice one of physics’ most
cherished principles in order to propound a theory that he felt was more
credible.

Continuous Creation

Maybe Hoyle, and Thomas Gold, and Herman Biondi, did as poor a
job of packing for a trip as I do, because they were bothered by certain
aspects of the big bang theory. If you are going to come up with a com-
petitive theory, however, you absolutely have to accept anything that
has been confirmed empirically—and that meant that Hubble’s red-
shifts needed to be explained. One school of thought, originally pro-
pounded by Fritz Zwicky, was that the redshifts really did not represent
recessional velocities. Zwicky thought that one possible explanation
might be “tired light”; light somehow lost energy on its journey from
the galaxies to Earth, possibly as a result of its interaction with matter.11

Another alternative theory was developed by A. E. Milne, who sug-
gested that the universe was filled with galaxies with randomly distrib-
uted velocities (and moving in randomly distributed directions); the
speed merchants among these galaxies would more likely be at con-
siderable distance from us.12

Both these alternatives fell by the wayside, and Hoyle, Gold, and
Bondi had to come up with a theory that allowed for Hubble’s law and
the expansion of the universe. In order to create a universe that looked
the same at all times, thus eliminating the need for a big bang, they had
to make sure that the universe was continually repopulated with stars
and galaxies to replace those that had receded to the point where we
no longer could observe them. That meant the principle of conservation
of matter had to be scrapped, and that new matter had to be created.
However, as the theory developed, the rate at which new matter needed

194 COSMIC NUMBERS

         



to be created was unbelievably small, because the universe is so in-
credibly empty. Continuous creation was pretty close to nonexistent
creation, as all that was required was the appearance of one new atom
of hydrogen every billion years in each cubic meter of space.13

How could you ever verify—or disprove—such a theory? Obviously,
we can’t sit around observing a totally empty cubic meter for a billion
years waiting to see that glorious instant when an atom of hydrogen
appears. Additionally, there was the problem that not only did this
method require the creation of hydrogen, it was also necessary to create
a sprinkling of deuterium, helium, and lithium—because nucleosyn-
thesis in stars could not produce these elements in the quantities in
which they were observed. The theory was attractive, because it pos-
tulated a Universe beloved of symmetry fans, one that was isotropic
and homogeneous in mass, space, and time—which is to say, it looks
the same, no matter what direction you are looking or where you are.
The theory was ugly, because it not only required one to dispense with
the bedrock conservation principles that had never been observed to
be violated, it required creation not only in the right quantities but in
the right proportions.

And the Winner Is . . . 

Not a big surprise—you already know that the winner was the big bang
theory. It emerged victorious for several reasons. First, the big bang
theory predicted a fundamentally universal temperature for the universe
as a leftover cooling from the big bang itself; this was discovered in
the early 1960s. Second, the big bang theory correctly predicted the
abundances of various types of matter from fundamental assumptions
that continuous creation required from ad hoc ones. Finally, the con-
tinuous creation theory required that the universe look the same at all
times, and by the late 1960s, the discovery of quasars and pulsars at
great distances was evidence that the universe was not the same at all
times. Steven Weinberg effectively buried the continuous creation
theory in a speech in 1972, but did so with a flattering eulogy. “Alone
among all cosmologies,” said Weinberg, “the steady state model makes
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such definite predictions that it can be disproved even with the limited
observational evidence at our disposal.”14

Friedmann’s Solution, the Critical Density, and Omega

Friedmann’s solution to the EFE may have escaped Einstein’s attention
when it was published, but it is at the core of the discussion of the uni-
verse’s destiny. Deriving the solution from the EFE is far beyond the
scope of this book—and I’m not altogether sure that the training that I
have in mathematics would enable me to follow it—but the important
thing is the result. If we assume that Friedmann’s solution has been ob-
tained—in which the universe could have positive, negative, or zero
curvature—there really isn’t a whole lot of work to find the value for
the critical density that determines the ultimate fate of the universe. In
fact, the math after that is so easy that some first-year algebra teacher
could use it as an exam problem.

Friedmann started with the EFE as Einstein wrote it, including the
cosmological constant.

The fact that μ and ν take the values 0, 1, 2, and 3 may be likened to
a table of equations with 4 rows and 4 columns. Freedman worked with
the equation in Einstein’s table of equations that had both μ and ν equal
to 0. After what I suspect was a lot of work, he simplified this equation
to read

H, G, and c are old friends: the Hubble constant, gravitational con-
stant, and the speed of light, respectively. Λ is the cosmological con-
stant, ρ is the average density throughout the Universe, a is a function
of time called the scale factor, but can mercifully be taken to be equal
to 1 today. Friedmann further simplified matters by assuming that k = 0
(which it turns out is what it seems to be, empirically), and that Λ = 0
as well. The above equation reduces to
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This can be easily solved for ρ, obtaining the value of ρ = 3H 2 / 8πG
for the critical density; if we plug in the latest values for H and G, we
get a critical density of about 5 atoms of hydrogen per cubic meter. This
is just stunningly small—anyone’s gut would say that the gravity created
would be so small as to be basically nonexistent—but nevertheless it’s
big enough. This density is the critical density—the density of a universe
that is flat and doesn’t expand—and is usually abbreviated ρc.

Omega is simply the fraction whose numerator is the actual density
and whose denominator is the critical density: Ω = ρ / ρc. So, for Fried-
mann, the value of Ω would tell us whether the universe will collapse,
which occurs if Ω > 1, or expand. The trick is finding the density of
matter in the universe.

Dark Matter, Radiation, and the Cosmological Constant

We’re probably in a good position to determine exactly how much vis-
ible matter there is in the universe. Our telescopes are extremely good,
we can pick up galaxies almost thirteen billion light-years away, and
we can extrapolate densities to get a pretty good idea of the total
amount of visible matter. As we noted earlier, there’s only about one
atom of hydrogen in every 5 cubic meters, only about 4 percent of the
mass needed to reach critical density.

However, the bulk of the universe appears to be made up of dark
matter. Ever since the 1970s, evidence has been steadily accumulating
that every galaxy is surrounded by a halo of dark matter.15 This evi-
dence is in the form of the velocities of the distant stars in the galaxy
around the center of mass of the galaxy; these velocities don’t match
up with what they should be if the only mass in the galaxy is what we
see. What we see isn’t what we get, gravitationally speaking. There’s
more mass in the galaxies than can be accounted for by visible matter.

The nature of the dark matter is the subject of considerable specula-
tion. These theories range from the mundane (stuff that’s familiar but
isn’t radiating, like really dark rocks), to the far out (supersymmetric
particle theories that posit an entire new class of matter that no one has
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yet seen). However, that’s for the physicists to worry about, the cos-
mologists (and those of us who breathlessly await the determination of
the eventual fate of the universe) are just interested in how much of it
there is. Is there enough of it to push Ω beyond 1, compelling the uni-
verse to collapse, or not?

The best estimate at the moment is that there isn’t enough matter,
light, dark, or anything else, to do the job. However, the matter density
of the universe isn’t all that matters—energy matters too. There’s a lot
of radiation in the universe; radiation is energy—and Einstein’s special
theory of relativity gives us the relation between matter and energy as
E = mc2, or m = E / c2. So energy, too, enters the omega bookkeeping.

Finally, the cosmological constant is not actually zero—according
to the latest measurements it is .7—which also acts to increase the den-
sity of matter and energy in the universe. The result of this is that the
ratio Ω is somewhere between .98 and 1.1. The key number 1 lies
within that range, and there’s a fascinating argument that the universe
is so fine-tuned that Ω is exactly equal to 1.

A Compelling Argument That Ω = 1

I first came across the argument that Ω needed to be exactly 1 in Martin
Rees’s fascinating book Just Six Numbers, published in 2000. At that
time, given the rates at which the Universe was known to be expanding,
it had been shown that if, just one second after the big bang, Ω differed
from 1 by as much as 10-15, then Ω would differ significantly from 1
now. Think of how astonishing that is; Ω must have been somewhere
between .999999999999999 and 1.000000000000001 one second after
the big bang in order for it to be in the range it is now. Just six years
later, in Frank Levin’s Calibrating the Cosmos, he quotes the simply
mind-blowing improvement that Ω must have been between 1 – 10-52

and 1 + 10-52 in order for Ω to be where it is now; I’m not going to fur-
ther alienate my copy editor by writing down a decimal point with 52
nines following it for the lower limit.16

This is fine-tuning on a grand scale; how can one not conclude that
Ω = 1? However, our theories are simply incapable of measurements
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discerning this—but our theories might be capable of describing a
mechanism that would conclude that Ω must be equal to 1. So far, no
luck—but that’s not so surprising. At present, we have only been able
to conclude that the ratio of the magnitudes of the positive charge on a
proton to the negative charge on an electron lies between 1 – 10-21 and
1 + 10-21.17 Achieving a level of accuracy such as that is an astonishing
bit of technical wizardry, and it would certainly surprise every physicist
on the planet if that ratio were not equal to 1—but no one has come up
with a theory that explains why this ratio should be exactly equal to 1.
The best we can do so far is to conclude that almost certainly, it just is.
Both Newton’s law of universal gravitation and Coulomb’s Law, the
basic inverse-square laws on which much of physics rests, are fine-
tuned; why should the exponent be 2 and not some number really close
to 2 but not exactly equal to it? Of course, these laws appear to be tied
in with the Euclidean geometry that underlies our universe, but mathe-
maticians have devised a lot of non-Euclidean geometries—why should
our universe have selected this precise one?

Is Omega the Whole Story?

Every so often, science discovers something that causes me to say, “Are
you kidding?” This happened in 1998, when cosmologists announced
that, based on a study of twenty-one Type-IA supernovas,18 the very
fabric of space was expanding. When I read this, I blinked. Twenty-
one lousy supernovas and they were ready to totally revamp cosmol-
ogy? In statistics, sample sizes of less than thirty are considered
unreliable. What was going on?

This conclusion, which seemed like a giant leap to me, was based on
an updated version of Henrietta Swan Leavitt’s discovery of the period-
luminosity relationship for Cepheid variables, which enabled Cepheid
variables to be used as standard candles. The 1998 study used Type IA
supernovas as their standard candles. In theory, Type IA supernovas
explode in the same fashion, so their intrinsic brightness is known.
Based on a study of twenty-one supernovas that appeared dimmer than
they should have, cosmologists concluded that this was evidence for a
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positive cosmological constant and a hitherto-unsuspected dark energy
(dark because we had no idea what it was) that was accelerating the
expansion of space.

That expansion, if it indeed exists, is a game-changer. If some un-
known energy is pushing the galaxies apart, as cosmologists currently
think, it could overwhelm the gravitational force and so force the uni-
verse to expand even if the value of omega were such that gravity on
its own would compel the universe to contract. Such an accelerating
expansion of space goes by the catchy name of the “big rip,” and catchy
titles sell theories as well as books.

While this is currently the hottest theory going, it’s not being written
into the textbooks with the same level of confidence as the theory of
relativity. This particular applecart could be upset; for one thing, Type
IA supernovas might not turn out to be as reliable as standard candles
as is currently thought. I keep thinking of Leavitt basing her conclu-
sions on the study of 1,777 Cepheid variables; I bet if we could ask her
what she thought, she’d be a lot more cautious, if only for statistical
reasons.

It’s unfortunate that Las Vegas is not especially interested in posting
lines on the validity of scientific theories, because I could have made
money betting against three headline-making developments of the past.
I admit that I have no documented evidence to back my next assertion,
but I didn’t believe that water molecules had a memory,19 that cold fu-
sion could be achieved on a tabletop,20 or that there was a fifth force
operating exclusively at middle distances.21 I’d like to see the line on
the big rip, because even though it is the current fair-haired boy of cos-
mological theories, it just somehow feels wrong to me. But there is a
theory that feels right.

My Favorite Universe

I’ve spent my life doing mathematics but reading about the sciences,
and I know that I’ll never be able to really appreciate some of the sci-
entific theories I’ve read. I don’t think you can truly appreciate a pro-
found theory unless you really understand it, and I simply don’t have
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either the background or the intellectual tenacity needed to comprehend
some of the current theories of cosmology. Richard Feynman once re-
marked that if there was a deep theory that explained everything, that
would be terrific, but if reality was like an onion and you simply peeled
off one layer to expose a deeper layer, that would be terrific, too.

But not, in my opinion, as terrific. What I would like to see is a
theory that reconciled the dynamic aspects of the big bang theory with
the eternal nature of continuous creation, and fortunately there is a
theory out there that does it.22 It views our universe as a fragment of a
multiverse, which is akin to a perpetually boiling pot of soup; contin-
ually forming new bubbles (each of which is a universe started by a
big bang). The bubbles eventually grow and burst, but the pot of soup
is eternal.

I watched a lot more television when I was younger. Two of my fa-
vorite shows were M.A.S.H. and Magnum P.I. Both of these shows had
highly publicized final episodes—in fact, I think the final episode of
M.A.S.H. is the most-watched TV show in history23—and to this date,
I’ve never seen either of these. Ridiculous though it sounds, I felt I
could watch unseen episodes and reruns of these shows as long as I
hadn’t seen the final episode—for that final episode would bring the
curtain down and the characters would cease to exist.

I also read a lot of mystery stories, but when Curtain,24 the Hercule
Poirot mystery that Agatha Christie made sure was published post -
humously, finally did come out, I never read it for the same reason. I
mentioned this to my wife, and for my last birthday she gave me a copy
of Curtain. It’s sitting on my desk, and the next time I hop a plane, I’m
going to start reading it. And maybe I’ll watch the final episodes of
M.A.S.H. and Magnum P.I. if they show up on the tube.

Some things simply have to come to an end. M.A.S.H. This book.
Its author. Life. I can accept all of those—but not the end of the uni-
verse, because if the universe does not end, all the good things might
continue. Or come again.
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C O D ATA N O T E

The four-year cycles that involve the years 2002, 2006, 2010, etc. fea-
ture some highly publicized events. The Winter Olympics. The World
Cup. Off-year elections. Garnering considerably less attention, but cer-
tainly of more long-lasting significance than sporting events—and per-
haps even than off-year elections—is the quadrennial report of the
Committee on Data for Science and Technology, known as CODATA.1

If the efforts of this group are ever made into a musical, it might be
a good idea to see if the owners of the Rodgers & Hammerstein copy-
rights would allow the lyrics and tune for the opening number to Annie
Get Your Gun2 to be adapted for the purpose. Every time I read CO-
DATA, the refrain “There’s no data like CODATA, like no data I know”
echoes through my head. For there really is no data like CODATA; it’s
the data on which the entire science community relies for its theories
and experiments, and is the object of a continuing—and hopefully
never-ending—search for improvements to the values of the fundamen-
tal (and not quite as fundamental) constants of the physical sciences.

The full 2010 report has not been published as of this writing; the
most recent one that I have seen is the 2006 paper, a 105-page PDF
available for downloading through the good offices of arXiv.org.3 The
x in arXiv is the Greek letter chi, so arXiv is pronounced the same as
the word archive, and it is a huge resource of publications and prepub-
lications for the scientific community. Alternatively, if you only want
to look at a few of the constants, you can see them courtesy of the Na-
tional Institute of Science and Technology.4

Obviously, you won’t want to read the full CODATA set, but one
notation may cause you a little confusion. The CODATA value for G
is given as 6.67428(67) × 10-11; for the purposes of this discussion, we
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needn’t worry about what the units are. The two digits in parentheses
go by the name combined standard uncertainty; it’s basically an ac-
knowledgment that when you take a lot of measurements, there’s going
to be a certain amount of scatter. 6.67428 × 10-11 is an average of these
measurements, and the 67 that’s in parenthesis is a statistically adjusted
standard deviation whose value is 0.00067 × 10-11.

Almost a century ago, before the discovery of X-rays opened the
door to the subatomic world, some physicists believed that the job of
physics was done, and all that remained to do was to tack on another
digit or so to the physical constants. Looking at the CODATA report,
it is clear that the business of tacking on more digits is a flourishing
industry. I can think of at least three reasons this is worth doing, and I
am sure there are more.

First, the practical aspect. Maybe you’ve never heard of 99942
Apophis; it’s a rather hefty asteroid that at one time was judged to have
almost the same probability of hitting the Earth as a gambler does of
rolling snake eyes; this is crapping out, big-time. That probability is
now well below one in a million, thanks to more observations—and bet-
ter knowledge of the value of G. A more accurate knowledge of G will
allow us to better assess the threat of an asteroid or comet hitting Earth.

Second, basic science is often the result of discovering that existing
theories are wrong. A theory may be right to a number of decimal
places, but a discrepancy might show up in the next decimal place. Bet-
ter scientific theories mean better technology; better technology means
a better life.

Third, the search for improvements in measurement often requires the
creation of better technology to do the job, and if you read the previous
paragraph, you know where I stand with regard to better technology.

Every so often, I’ll see a story in the paper (which I still read assid-
uously every morning) that some computer somewhere has computed
pi to a record number of decimal places, or that a new largest prime
has been found. Largest, of course, in the sense that this is the largest
prime we’ve found—it’s been known since Euclid that there is no
largest prime. I think these stories appear because setting records has
a certain appeal. However, I can’t ever recall seeing a story that scien-
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tists have just been able to determine the Planck constant—or any
other—to yet another decimal place. I’m willing to grant that these
events are probably not newsworthy, but for the three reasons I men-
tioned above—and for the others that I’m sure exist, improvements in
measurement can result in measurable improvements in our lives.
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“Most people use numbers like 1, 2, 3 . . . to count. But the numbers that really count are the ones 

described in this book! they tell us why we see the universe we do and not see something else. After 

reading this very enlightening, informative, and entertaining book, you’ll see why some numbers are just  

a bit more equal than others.” —JoHn L. CASti,  Research Scholar  at  the international

 inst i tute for  Applied Systems Analysis ,  Vienna,  and author  of 

  Mood Matters ,  Paradigms Lost ,  Five  Golden Rules ,  and The Cambridge  Quinte t

“it would seem trivially obvious to say all numbers are not equal. Some numbers are especially important, 

however, not because of mathematics but because of physics. this book discusses the history and ‘use’ of 

thirteen such numbers, which if only slightly different would make the world we live in a vastly different 

place—or simply not even possible. After reading James Stein’s Cosmic Numbers you’ll understand why 

existence itself is ‘in the numbers.’ ” —PAUL J.  nAHin, author  of  Number  Crunching 

“We memorized them in our high school science classes.  now Jim Stein teaches us to appreciate nature’s 

constants by giving us the stories and the personalities behind their discovery. it’s an enjoyable and thought-

provoking read.” —LeonARD WAPneR, el  Camino College

“A vivid exploration of today’s science, from the forces that keep our planet in orbit to the origin of the atoms 

that form our bodies. Clear and concise, easy to read, and enormously informative, Cosmic Numbers relates the 

stories behind some of the most important numbers in science—where they came from, what they tell us, and 

how they changed the way we view our world.”  —iAn SteWARt, author of The Mathematics  of  Life
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