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Come, press me tenderly upon your breast 
But not too hard, for fear the glass might break 
This is the way things are: the World 
Scarcely suffices for the natural. 
But the artificial needs to  be confined. 

GOETHE, Faust, Part II 

PREFACE 

This book is about time. I would like to have named it Time, the 
Forgotten Dimension, although such a title might surprise some readers. 
Is not time incorporated from the start in dynamics, in the study of 
motion? Is not time the very point of concern of the special theory of 
relativity? This is certainly true. However, in the dynamical description, 
be it classical or quantum, time enters only in a quite restricted way, in 
the sense that these equations are invariant with respect to time inversion, 
t -t - t .  Although a specific type of interaction, the so-called superweak 
interaction, seems to violate this time symmetry, the violation plays no 
role in the problems that are the subject of this book. 

As early as 1754, d'Alembert noted that time appears in dynamics as a 
mere "geometrical parameter" (d'Alembert 1754). And Lagrange, more 
than a hundred years before the work of Einstein and Minkowski, went 
So far as to call dynamics a four-dimensional geometry (Lagrange 1796). 
In this view, future and past play the same role. The world lines, the 
trajectories, followed by the atoms or particles that make up our universe 
can be traced toward the future or toward the past. 

This static view of the world is rooted in the origin of Western science 
(Sambursky 1963). The Milesian school, of which Thales was one of the 
most illustrious proponents, introduced the idea of a primordial matter 
closely related to the concept of conservation of matter. For Thales, a 
single substance (such as water) forms the primordial matter; all changes 
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in physical phenomena, such as growth and decay, must therefore be mere 
illusions. 

Physicists and chemists know that a description in which past and 
future play the same role does not apply to all phenomena. Everybody 
observes that two liquids put into the same vessel generally diffuse toward 
some homogeneous mixture. In this experiment, the direction of time is 
essential. We observe progressive homogenization, and the one-sidedness 
of time becomes evident in the fact that we do  not observe spontaneous 
phase separation of the two mixed liquids. But for a long time such 
phenomena were excluded from the fundamental description of physics. 
All time-oriented processes were considered to be the effect of special, 
"improbable" initial conditions. 

At the beginning of this century, this static view was almost unani- 
mously accepted by the scientific community, as will be seen in Chapter 1. 
But we have since been moving away from it. A dynamical view in which 
time plays an essential role prevails in nearly all fields of science. The 
concept of evolution seems to be central to our understanding of the 
physical universe. It emerged with full force in the nineteenth century. It 
is remarkable that it appeared almost simultaneously in physics, biology, 
and sociology, although with quite different specific meanings. In physics 
it was introduced through the second law of thermodynamics, the celebrated 
law of increase of entropy, which is one of the main subjects of this book. 

In the classical view, the second law expressed the increase of molecular 
disorder; as expressed by Boltzmann, thermodynamic equilibrium 
corresponds to the state of maximum "probability." However, in biology 
and sociology, the basic meaning of evolution was just the opposite, 
describing instead transformations to higher levels of complexity. How 
can we relate these various meanings of time-time as motion, as in 
dynamics; time related to irreversibility, as in thermodynamics; time as 
history, as in biology and sociology? It is evident that this is not an easy 
matter. Yet, we are living in a single universe. To reach a coherent view 
of the world of which we are a part, we must find some way to pass from 
one description to another. 

A basic aim of this book is to convey to the reader my conviction 
that we are in a period of scientific revolution-one in which the very 
position and meaning of the scientific approach are undergoing re- 
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appraisal-a period not unlike the birth of the scientific approach in 
ancient Greece or of its renaissance in the time of Galileo. 

Many interesting and fundamental discoveries have broadened our 
scientific horizon. To cite only a few: quarks in elementary particle 
physics; strange objects like pulsars in the sky; the amazing progress of 
molecular biology. These are landmarks of our times, which are especially 
rich in important discoveries. However, when I speak of a scientific 
revolution, I have in mind something different, something perhaps more 
subtle. Since the beginning of Western science, we have believed in the 
"simplicity" of the microscopic-molecules, atoms, elementary particles. 
Irreversibility and evolution appear, then, as illusions related to the 
complexity of collective behavior of intrinsically simple objects. This 
conception-historically one of the driving forces of Western science- 
can hardly be maintained today. The elementary particles that we know 
are complex objects that can be produced and can decay. If there is 
simplicity somewhere in physics and chemistry, it is not in the microscopic 
models. It lies more in idealized macroscopic representations, such as 
those of simple motions like the harmonic oscillator or the two-body 
problem. However, if we use such models to describe the behavior of 
large systems or very small ones, this simplicity is lost. Once we no 
longer believe in the simplicity of the microscopic, we must reappraise 
the role of time. We comc, then, to the main thesis of this book, which 
can be formulated as follows: 

First, irreversible processes are as real as reversible ones; they do  not 
correspond to supplementary approximations that we of necessity 
superpose upon time-reversible laws. 

Second, irreversible processes play a fundamental constructive role in 
the physical world; they are at the bases of important coherent processes 
that appear with particular clarity on the biological level. 

Third, irreversibility is deeply rooted in dynamics. One may say that 
irreversibility starts where the basic concepts of classical or quantum 
mechanics (such as trajectories or  wave functions) cease to be observables. 
Irreversibility corresponds not to some supplementary approximation 
introduced into the laws of dynamics but to an embedding of dynamics 
within a vaster formalism. Thus, as will be shown, there is a microscopic 
formulation that extends beyond the conventional formulations of 
classical and quantum mechanics and explicitly displays the role of 
irreversible processes. 
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This formulation leads to  a unified picture that enables us to relate 
many aspects of our observations of physical systems to biological ones. 
The intention is not to "reduce" physics and biology to a single scheme, 
but to  clearly define the various levels of description and to present 
conditions that permit us to  pass from one level to  another. 

The role of geometrical representations in classical physics is well 
known. Classical physics is based on Euclidean geometry, and modern 
developments in relativity and other fields are closely related to  extensions 
of geometrical concepts. But take the other extreme: the field theory used 
by embryologists to  describe the complex phenomena of morphogenesis. 
It is a striking experience, especially for a nonbiologist, to  attend a 
movie describing the development of, for example, the chicken embryo. 
We see the progressive organization of a biological space in which every 
event proceeds at a moment and in a region that make it possible for 
the process to be coordinated as a whole. This space is functional, not 
geometrical. The standard geometrical space, the Euclidean space, is 
invariant with respect to translations or  rotations. This is not so in the 
biological space. In this space the events are processes localized in space 
and time and not merely trajectories. We are quite close to  the Aristotelian 
view of the cosmos (see Sambursky 1963), which contrasted the world 
of divine and eternal trajectories with the world of sublunar nature, the 
description of which was clearly influenced by biological observations. 

The glory, doubtless, of the heavenly bodies fills us with more delight than 
the contemplation of these lowly things; for the sun and stars are born 
not, neither do they decay, but are eternal and divine. But the heavens are 
high and afar off, and of celestial things the knowledge that our senses 
give is scanty and dim. The living creatures, on the other hand, are at 
our door, and if we so desire it we may gain ample and certain knowledge 
of each and all. We take pleasure in the beauty of a statue, shall not the 
living fill us with delight; and all the more if in the spirit of philosophy we 
search for causes and recognize the evidence of design. Then will nature's 
purpose and her deep-seated laws be everywhere revealed, all tending in 
her multitudinous work to one form or another of the Beautiful. 

Aristotle, quoted in Haraway, 1976. 

Although the application of  Aristotle's biological views to physics has 
had disastrous consequences, the modern theory of bifurcations and 
instabilities allows us to see that the two concepts-the geometrical world 
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and the organized, functional world-are not incompatible. This advance 
will, I think, have a lasting influence. 

Belief in the "simplicity" of the microscopic level now belongs to the 
past. But there is a second reason why I am convinced that we are in 
the middle of a scientific revolution. The classical, often called "Galilean," 
view of science was to  regard the world as an "object," to try to describe 
the physical world as if it were being seen from the outside as an object 
of analysis to which we do  not belong. This attitude has been immensely 
successful in the past. But we have reached the limit of this Galilean view 
(Koyre 1968). To progress further, we must have a better understanding 
of our position, the point of view from which we start our description of 
the physical universe. This does not mean that we must revert to  a 
subjectivistic view of science, but in a sense we must relate knowing to 
characteristic features of life. Jacques Monod has called living systems 
"these strange objects," and they are very strange indeed compared with 
the "nonliving" world (Monod 1970). Thus, one of my objectives is to 
try to  disentangle a few general features of these objects. In molecular 
biology there has been fundamental progress without which this discussion 
would not have been possible. But I wish to emphasize other aspects: 
namely, that living organisms are far-from-equilibrium objects separated 
by instabilities from the world ofequilibrium and that living organisms are 
necessarily "large," macroscopic objects requiring a coherent state of 
matter in order to produce the complex biomolecules that make the 
perpetuation of life possible. 

These general characteristics must be incorporated in the answer to the 
question, What is the meaning of our description of the physical world: 
that is, from what point of view do  we describe it? The answer can only 
be that we start at a macroscopic level, and all the results of our 
measurements, even those of the microscopic world, at some point refer 
back to the macroscopic level. As Bohr emphasized, primitive concepts 
exist; these concepts are not known a priori, but every description must 
be shown to be compatible with their existence (Bohr 1948). This 
introduces an element of self-consistency into our description of the 
physical world. For example, living systems have a sense of the direction 
of time. Experimentation on even the simplest monocellular organisms 
reveals that this is so. This direction of time is one of these "primitive 
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concepts." No science-whether of reversible time behavior, as in 
dynamics, or of irreversible processes-would be possible without it. 
Therefore one of the most interesting aspects of the theory of dissipative 
structures developed in Chapters 4 and 5 is that we can now find the roots 
of this direction of time at the basis of physics and chemistry. In turn, 
this finding justifies in a self-consistent way the sense of time that we 
have attributed to ourselves. The concept of time is much more complex 
than we thought. Time associated with motion was only the first aspect 
that could be incorporated consistently into the framework of theoretical 
structures such as classical or quantum mechanics. 

We can go further. One of the most striking new results to be described 
in this book is the appearance of a "second time," a time deeply rooted in 
fluctuations on the microscopic, dynamical level. This new time is no 
longer a simple parameter, as in classical or quantum mechanics; rather 
it is an operator, like those describing quantities in quantum mechanics. 
Why we need operators to describe the unexpected complexity of the 
microscopic level is one of the most interesting aspects of the development 
to be considered in this book. 

The recent evolution of science may lead to a better integration of the 
scientific outlook in the framework of Western culture. There is no doubt 
that the development of science has, in spite of all its successes, also led 
to some form ofcultural stress (Snow 1964).The existence of"two cultures" 
is due not only to  a lack of mutual curiosity, but also, at least partly, to  
the fact that the scientific approach has had so little to say about problems, 
such as time and change, pertaining to literature and art. Although this 
book does not address problems related to philosophy and human 
sciences, they are examined by my colleague Isabelle Stengers and myself 
in another book, La nouvelle alliance (Gallimard, 1979), soon to be 
translated into English. It is interesting to note that there is a strong 
current both in Europe and in the United States to bring the philosophical 
and the scientific themes closer together. For example, consider the work 
of Serres, Moscovici, Morin, and others in France and the recent, 
provocative article by Robert Brustein, "Drama in the Age of Einstein," 
published in the New York Times on August 7, 1977, in which the role 
of causality in literature is reappraised. 

PREFACE 

It is probably not an exaggeration to say that Western civilization is 
time centered. Is this perhaps related to a basic characteristic of the 
point of view taken in both the Old and the New Testaments? 

It was inevitable that the "timeless" conception of classical physics 
would clash with the metaphysical conceptions of the Western world. It is 
not by accident that the entire history of philosophy from Kant through 
Whitehead was either an attempt to eliminate this difficulty through the 
introduction of another reality (e.g., the noumenal world of Kant) or a 
new mode of description in which time and freedom, rather than 
determinism, would play a fundamental role. Be that as it may, time and 
change are essential in problems of biology -and in sociocultural 
evolution. In fact, a fascinating aspect of cultural and social changes, in 
contrast with biological evolution, is the relatively short time in which 
they take place. Therefore, in a sense, anyone interested in cultural and 
social matters must consider, in one way or another, the problem of time 
and the laws of change; perhaps inversely, anyone interested in the 
problem oftime cannot avoid taking an interest in the cultural and social 
changes of our time as well. 

Classical physics, even extended by quantum mechanics and relativity, 
gave us relatively poor models of time evolution. The deterministic laws 
of physics, which were at one point the only acceptable laws, today 
seem like gross simplifications, nearly a caricature of evolution. Both in 
classical and in quantum mechanics, it seemed that, if the state of a system 
at a given time were "known" with sufficient accuracy, the future (as well 
as the past) could at least be predicted in principle. Of course, this is a 
purely conceptual problem; in fact, we know that we cannot even predict 
whether it will rain in, say, one month from now. Yet, this theoretical 
framework seems to indicate that in some sense the present already 
"contains" the past and the future. We shall see that this is not so. The 
future is not included in the past. Even in physics, as in sociology, only 
various possible "scenarios" can be predicted. But it is for this very reason 
that we are participating in a fascinating adventure in which, in the words 
of Niels Bohr, wc are "both spectators and actors." 

The level at which this book has been written is intermediate. Thus, a 
reader must be familiar with the basic tools of theoretical physics and 
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chemistry. I hope, however, that by adopting this level I can present to a 
large group of readers a simple introduction to a field that seems to me 
to have wide implications. 

The book is organized in the following way. An introductory chapter 
is followed by a short survey of what may be called the physics of 
"being" (classical and quantum mechanics). I emphasize mainly the limits 
ofclassical and quantum mechanics to convey to the reader my conviction 
that, far from being closed, these fields are in a state of rapid development. 
Indeed, it is only when the simplest problems are considered that our 
understanding is satisfactory. Unfortunately, many of the popular 
concepts of the structure of science have as their bases undue extrapola- 
tions from these simple situations. Attention is then turned to the physics 
of "becoming," to thermodynamics in its modern form, to self- 
organization, and the role of fluctuations. Three chapters deal with the 
methods now available for building a bridge from being to becoming; they 
involve kinetic theory and its recent extensions. Only Chapter 8 includes 
more technical considerations. Readers who do not have the necessary 
background may turn directly to Chapter 9, in which the main conclusions 
obtained in Chapter 8 are summarized. Perhaps the most important 
conclusion is that irreversibility starts where classical and quantum 
mechanics end. This does not mean that classical and quantum mechanics 
become wrong; rather they then correspond to idealizations that extend 
beyond the conceptual possibilities of observation. Trajectories or wave 
functions have a physical context only if we can give them an observable 
Tntext, but this is no longer the case when irreversibility bccomes part 
of the physical picture. Thus, the book presents a panorama of problems 
that may serve as an introduction to a deeper understanding of time and 
change. 

All references to the literature are given at the end of the book. Among 
them are key references in which the interested reader may find further 
developments; others are original publications of special interest in the 
context of this book. The selection is admittedly rather arbitrary and 
I apologize to the reader for any omissions. Of special relevance is the 
book by Gregoire Nicolis and myself titled SrlflOryanization in Non- 
equilibrium Systems (Wiley-Interscience, 1977). 

In the preface to the 1959 edition of his Logic of'Scirnt$c Discovery, 
Karl Popper wrote: "There is at least one philosophic problem in which 
all thinking men are interested. It is the problem of cosmology: the 
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problem of understanding the world-including ourselves, and our 
knowledge, as part of the world." The aim of this book is to show that 
recent developments in physics and chemistry have made a contribution 
to the problem so beautifully spelled out by Popper. 

As in all significant scientific developments, there is an element of 
surprise. We expect new insights mainly from the study of elementary 
particles and from the solutions to cosmological problems. The new 
surprising feature is that the concept of irreversibility on the intermediate, 
macroscopic level leads to a revision of the basic tools of physics and 
chemistry such as classical and quantum mechanics. Irreversibility 
introduces unexpected features that, when properly understood, give the 
clue to the transition from being to becoming. 

Since the origin of Western science, the problem of time has been a 
challenge. It was closely associated with the Newtonian revolution and it 
was the inspiration for Boltzmann's work. The challenge is still with us, 
but perhaps we are now closer to a more synthetic point of view, which 
is likely to generate new developments in the future. 

I am deeply indebted to my co-workers in Brussels and in Austin for 
the essential role they have played in helping to formulate and to develop 
the ideas on which this book is based. Although I cannot thank all of 
them individually here, I would like to express my gratitude to  Dr. 
Alkis Grecos, Dr. Robert Herman, and Miss Isabelle Stengers for their 
constructive criticism. I owe special thanks to Dr. Marie Theodosopulu, 
Dr. Jagdish Mehra, and Dr. Gregoire Nicolis for their constant help in 
the preparation of the manuscript. 

Octohrr 1979 Ilya Prigogine 



Chapter 1 
INTRODUCTION: 

TIME IN PHYSICS 

The Dynamical Description 
and Its Limits 

In our era, we have made great advances in our knowledge of the natural 
sciences. The explorable physical world includes a truly fantastic range of 
dimensions. On  the microscopic scalc, as in elementary particle physics, 
we have dimensions of the order of seconds and 10- l 5  centimeters. 
On the macroscopic scale, as in cosmology, time can be of the order of 
10" years (the age of the universe) and distance of the order of loZ8 
centimeters (the distance to  the event horizon; i.e., the furthest distance 
from which physical signals can be received). Perhaps more important 
than the enormous range of dimensions over which we can describe the 
physical world is the recently discovered change in its behavior. 

At the beginning of this century, physics seemed to be on the verge of 
reducing the basic structure of matter to a few stable "elementary par- 
ticles" such as electrons and protons. We are now far from such a simple 
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description. Whatever the future of theoretical physics may be, " elemen- 
tary" particles seem to be of such great complexity that the adage 
concerning "the simplicity of the microscopic" no longer holds. 

The change in our point of view is equally valid in astrophysics. 
Whereas the founders of Western astronomy stressed the regularity and 
eternal character of celestial motions, such a qualification now applies, at 
best. to very few, limited aspects such as planetary motion. Instead of 
finding stability and harmony, wherever we look, we discover evolution- 
ary processes leading to diversification and increasing complexity. This 
shif in our vision )f the physical world leads us to investigate branches 
of nathematics a11 1 theoretical physics that are likely to be of interest in 
the new context. 

For Aristotle, physics was the science of processes, of changes that 
occur in nature (Ross 1955). However, for Galileo and the other founders 
of modern physics, the only change that could be expressed in precise 
mathematical terms was acceleration, the variation in the state of motion. 
This led finally to  the fundamental equation of classical mechanics, which 
relates acceleration to  force, F: 

Henceforth physical time was identified with the time, t ,  that appears in 
the classical equations of motion. We could view the physical world as a 
collection of trajectories, such as Figure 1.1 shows for a "one dimen- 
sional " universe. 

A trajectory represents the position X ( t )  of a test particle as a function 
of time. The important feature is that dynamics makes no distinction 
between the future and the past. Equation 1.1 is invariant with respect to 
the time inversion t + - t :  both motions A, "forward" in time, and B, 
"backward" in time, are possible. However, unless the direction of time is 
introduced, evolutionary processes cannot be described in any nontrivial 
way. It is therefore not astonishing that Alexandre Koyre (1968) referred 
to dynamical motion as" a motion unrelated to time or, more strangely, a 
motion which proceeds in an intemporal time-a notion as paradoxical 
as that of a change without change." 

FIGURE 1.1 
World lines indicating the time evolution of the coordinate X ( t )  
corresponding to different initial conditions: (A) evolution forward 
in time; (B) evolution backward in time. 

Again, of the changes that occur in nature, classical physics retained 
only motion. Consequently, as Henri Bergson (Evolution creatice, 1907, 
see Bergson, 1963) and others emphasized, everything is given in classical 
physics: change is nothing but a denial of becoming and time is only a 
parameter, unaffected by the transformation that it describes. The image 
of a stable world, a world that escapes the process of becoming, has 
remained until now the very ideal of theoretical physics. The dynamics of 
Isaac Newton, completed by his great successors such as Pierre Laplace, 
Joseph Lagrange, and Sir William Hamilton, seemed to form a closed 
universal system, capable of yielding the answer to any question asked. 
Almost by definition, a question to which dynamics had no answer was 
dismissed as a pseudoproblem. Dynamics thus seemed to give man access 
to ultimate reality. In this vision, the rest (including man) appeared only 
as a kind of illusion, devoid of fundamental significance. 

It thus became the principal aim of physics to identify the microscopic 
level to which we could apply dynamics; this microscopic realm could 
then serve as the basis for explaining all observable phenomena. Here 
classical physics met the program of the Greek atomists, as stated by 
Democritus: "Only the atoms and the void." 

Today we know that Newtonian dynamics describes only part of our 
physical experience; it applies to  objects on our own scale whose masses 
are measured in grams or tons and whose velocities are much smaller 
than that of light. We know that thevalidity of classical dynamics is limited 



INTRODUCTION 

by the universal constants, the most important of which are 11, Planck's 
constant, whose value in the cgs system is of the order of 
6 x erg sec. and c, the velocity of light ( - 3 x lot0 cmlsec). As 
the scales of very small objects (atoms, "elementary" particles) or of 
hyperdense objects (such as neutron stars or black holes) are approached, 
new phenomena occur. To deal with such phenomena, Newtonian dyna- 
mics is replaced by quantum mechanics (which takes into account the 
finite value of h )  and by relativistic dynamics (which includes c). 
However, these new forms of dynamics-by themselves quite 
revolutionary-have inherited the idea of Newtonian physics: a static 
universe, a universe of being without becoming. 

Before further discussion of these concepts, we must ask whether physics 
can really be identified with some form of dynamics. This question must 
be qualified. Science is not a closed subject. Examples are the recent 
d~scoveries in the field of elementary particles that show how much our 
theoretical understanding lags behind the available experimental data. 
But, first, a comment on the role of classical and quantum mechanics in 
molecular physics, which is the best understood. Can we describe at least 
qualitatively the main properties of matter in terms of only classical or 
quantum mechanics? Let us consider in succession certain typical proper- 
ties of matter. As regards spectroscopic properties, such as emission or 
absorption of light, there is no doubt that quantum mechanics has been 
immensely successful in predicting the position of the absorption and 
emission lines. But with respect to other properties of matter (e.g., the 
specific heat), we have to go beyond dynamics proper. How does it 
happen that heating a mole of gaseous hydrogen from, say, 0" to 100°C 
always requires the same amount of energy if performed at constant 
volume or constant pressure? Anshering this question requires not only 
knowledge of the structure of the molecules (which can be described by 
classical or quantum mechanics), but also the assumption that, whatever 
their histories, any two samples of hydrogen will reach the same "macro- 
scopic" state after some time. We thus perceive a link with the second 
law of thermodynamics, which is summarized in the next section and 
which plays an essential role throughout this book. 

The role of nondynamical elements becomes even greater when non- 
equilibrium properties, such as viscosity and diffusion, are included. To  
calculate such coefficients, we must introduce some form of kinetic theory 
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or a formalism involving a "master equation " (see Chapter 7). The details 
of the calculation are not important. The main point is that, in addition 
to the tools provided by classical or quantum dynamics, we need sup- 
plementary tools, which will be described briefly before investigating their 
position with respect to dynamics. Here we encounter the main subject 
of this book: the role of time in the description of the physical universe. 

The Second Law of Thermodynamics 

As already mentioned, dynamics describes processes in which the direc- 
tion of time does not matter. Clearly, there are other situations in which 
this direction does indeed play an essential role. If we heat part of a 
macroscopic body and then isolate this body thermally, we observe that 
the temperature gradually becomes uniform. In such processes, then, 
time displays an obvious "one-sidedness." Engineers and physical 
chemists have given such processes extensive study since the end of 
the eighteenth century. The second law of thermodynamics as for- 
mulated by Rudolf Clausius (see Planck, 1930) strikingly summarizes 
their characteristic features. Clausius considered isolated systems, which 
exchange neither energy nor matter with the outside world. The second 
law then implies the existence of a function S, the entropy, which in- 
creases monotonically until it reaches its maximum value at the state of 
thermodynamic equilibrium: 

This formulation can be easily extended to systems that exchange energy 
and matter with the outside world (see Figure 1.2). 

We must distinguish two terms in the entropy change, dS:  the first, d , S ,  
is the transfer of entropy across the boundaries of the system; the second, 
di S, is the entropy produced within the system. According to the second 
law, the entropy production inside the system is positive: 



F I G U R E  1 . 2  
An open system in which di S represents 
entropy production and d ,  S represents 
entropy exchange between system 
and environment. 

It is in this formulation that the basic distinction between reversible and 
irreversible processes becomes essential. Only irreversible processes con- 
tribute to entropy production. Examples of irreversible processes are 
chemical reactions, heat conduction, and diffusion. O n  the other hand, 
reversible processes may correspond to wave propagation in the limit in 
which the absorption of the wave is neglected. The second law of ther- 
modynamics, then, states that irreversible processes lead to a kind of 
one-sidedness of time. The positive time direction is associated with the 
increase of entropy. Let us emphasize how strongly and specifically the 
one-sidedness of time appears in the second law. It postulates the exis- 
tence of a function having quite specific properties such that in an isolated 
system it can only increase in time. Such functions play an important role 
in the modern theory of stability initiated by Aleksander Lyapounov's 
classic work. (References can be found in Nicolis and Prigogine, 1977.) 

There are other instances of the one-sidedness of time. For example, in 
the superweak interaction, the equations of dynamics do not admit the 
invcrsion t + - t. But they are weaker forms of one-sidedness; they can be 
accommodated in the framework of the dynamical description and do not 
correspond to irreversible processes as introduced by the second law. 

Because we shall concentrate on processes that lead to Lyapounov 
functions, this concept must be examined in more detail. Consider a 
system whose evolution is described by some variables X i ,  which may, for 
example, represent concentrations of chemical species. The evolution of 
such a system may be given by rate equations of the form 

F I G U R E  1.3 
The concept of asymptotic stability: if a 
perturbation leads to point P, the system 
w~l l  respond through an evolution leading 
back to the equilibr~um point 0. 

in which Fi is the overall production rate of the component Xi; there is 
one equation for each component (examples are given in Chapters 4 and 
5). Suppose that, for X i  = 0 ,  all the reaction rates vanish. This is then an 
equilibrium point for the system. We may now ask, If we start with nonvan- 
ishing values of the concentrations, Xi, will this system evolve toward the 
equilibrium point X i  = O? In today's terminology, is the state Xi  = 0 an 
attru&or? Lyapounov functions enable us to tackle this problem. We 
consider a function of the concentrations, f ' = % '(X ,, . . . , X,), and we 
suppose that it is positive throughout the region of interest and vanishes 
at X = O.* We then consider how $ ' ( X , ,  . . . , X,) varies as the 
concentrations, Xi, evolve. The time derivative of this function as the 
Concentrations evolve according to the rate equations (1.4) is: 

d f  d f  d X ,  -=C-- 
dt , a x ,  d t  

Lyapounov's theorem asserts that the equilibrium state will be an attrac- 
tor if  d f  ' ldt ,  the time derivative of f ', has the opposite sign of f ' ; that  is, 
if the derivative in our example is negative. The geometrical meaning of 
this condition is evident; see Figure 1.3. For isolated systems, the second 

* In general, a Lyapounov function may also be negative definite. but its first derivative 
must be positive definite (see, e.g.. equation 4.28). 
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law of thermodynamics states that a Lyapounov function exists and 
that, for such systems, thermodynamic equilibrium is an attractor of non- 
equilibrium states. This important point can be illustrated by a simple 
problem in heat conductivity. The time change of temperature T is 
described by the classical Fourier equation: 

in which ti is the heat conductivity (ti > 0). A Lyapounov function for 
this problem can easily be found. We can take, for example, 

It can be verified immediately that, for fixed boundary conditions, 

and the Lyapounov function O(T)decreases indeed to its minimum value 
when thermal equilibrium is reached. Inversely, the uniform temperature 
distribution is an attractor for initial nonuniform distributions. 

Max Planck emphasized, quite rightly, that the second law of ther- 
modynamics distinguishes between various types of states in nature, some 
of which act as attractors for others. Irreversibility is the expression of 
this attraction (Planck 1930). 

Such a description of nature is clearly very different from the dynamical 
description: two different initial temperature distributions reach the 
same uniform distribution in time (see Figure 1.4). The system possesses 
an intrinsic "forgetting" mechanism. How different this is from the dyna- 
mica1 "world line" view, in which the system always follows a given 
trajectory. There is a theorem in dynamics that shows that two trajec- 
tories can never cross; at most they may meet asymptotically (for 
t + + a) at singular points. 

Let us now briefly consider how irreversible processes can be described 
in terms of molecular events. 

F I G U R E  1.4 
Approach to thermal equilibrium. Different initial distributions 
such as TI and T, lead to the same temperature distribution. 

Molecular Description 
o f  lrreversi ble Processes 

Let us first ask what an increase in entropy means in terms of the 
molecules involved. To find an answer, we must explore the microscopic 
meaning of entropy. Ludwig Boltzmann, the first to note that entropy is a 
measure of molecular disorder, concluded that the law of entropy in- 
crease is simply a law of increasing disorganization. Consider, for exam- 



FIGURE 1.5 
Two different distributions of molecules between two compartments: (A)  N = N ,  = 12, 
N 2  = 0; (B)  N1 = N 2  = 6. After a sufficient lapse of time, distribution B represents the 
most probable configuration, the analogue of thermodynamic equilibrium. 

ple, a container partitioned into two equal volumes (see Figure 1.5). The 
number of ways, P, in which N molecules can be divided into two groups, 
N, and N2 , is given by the simple combinatorial formula 

N !  p=- 
N,! N2!  

in which N! = N(N - 1)(N - 2) . . .  3 . 2 .  1. The quantity P is called the 
rzumber of'complerio~~s (see Landau and Lifschitz, 1968). 

Starting from any initial values of N,  and N 2  we may perform a simple 
experiment, a "game" proposed by Paul and Tatiana Ehrenfest to illus- 
trate Boltzmann's ideas (for more details see Eigen and Winkler, 1975). We 
choose a particle at random and agree that, when chosen, it will change its 
compartment. As could be expected, after a sufficiently long time an 
equilibrium is reached in which, except for small fluctuations, there is an 
equal number of molecules in the two compartments (N, - N2 - N/2). 

It can be easily seen that this situation corresponds to the maximum 
value of P and in the course of evolution P increases. Thus Boltzmann 
identified the number of complexions, P, with the entropy through the 
relation 

S = k log P 

in which k is Boltzmann's universal constant: an entropy increase ex- 
presses growing molecular disorder, as indicated by the increasing 
number of complexions. In such an evolution, the initial conditions arc 
"forgotten." Whenever one compartment is at first favored with morc 

FIGURE 1 6 
A one-dimensional random walk 

particles than the other compartment, this lack of symmetry is always 
destroyed in time. 

If P is associated with the "probability " of a state as measured by the 
number of complexions, then the increase of entropy corresponds to the 
evolution toward the "most probable" state. We shall return to this 
interpretation later. It was through the molecular interpretation of 
irreversibility that the concept of probability first cntcred theoretical 
physics. This was a decisive step in the history of modern physics. 

We can push such probability arguments still further to obtain quanti- 
tative formulations that describe how irreversible processes evolve with 
time. Consider, for example, the well-known random walk problem, an  
idealized but nevertheless successful model for Brownian motion. In the 
simplest example, a one-dimensional random walk, a molecule makes a 
one-step transition at regular time intervals (see Figure 1.6). With the 
molecule initially at  the origin, we ask for the probability of finding it at  
point m, after N steps. If the probability that the molecule proceeds 
forward or backward is assumed to  be one-half, we find that 

Thus, to arrive at point m after N steps, some +(N + m) steps must be 
taken to the right and some +(N - m) to the left. Equation 1.11 gives 
the number of such distinct sequences multiplied by the overall probabi- 
lity of an arbitrary sequence of N steps. (For details, see Chandrasekhar, 
1943.) 

Expanding the factorials, we obtain the asymptotic formula correspond- 
Ing to  a Gaussian distribution: 
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Using the notation D = fn12, in which 1 is the distance between two sites 
and n the number of displacements per unit time, this result can be 
written: 

in which x = ml. This is the solution of a one-dimensional diffusion equa- 
tion identical in form to the Fourier equation (equation 1.6, but K is 
replaced by D). Evidently, this is a very simple example; in Chapter 7, 
consideration is given to more sophisticated techniques for deriving irre- 
versible processes from kinetic theory. Here, however, we may ask the 
fundamental questions, What is the position of irreversible processes in 
our description of the physical world? What is the relation of these 
processes to dynamics? 

Time and Dynamics 

In classical and quantum dynamics, the fundamental laws of physics 
are taken to be symmetrical in time. Thermodynamic irreversibility corre- 
sponds to some kind of approximation added to dynamics. An often 
quoted example was given by Josiah Gibbs (1902): if we put a 
drop of black ink into water and stir it, the medium will look gray. This 
process would seem to be irreversible. But if we could follow each 
molecule we would recognize that in the microscopic realm the system 
has remained heterogeneous. Irreversibility would be an illusion caused 
by the observer's imperfect sense organs. It is true that the system has 
remained heterogeneous, but the scale of heterogeneity, initially macro- 
scopic, has become microscopic. The view that irreversibility is an illusion 
has been very influential and many scientists have tried to tie this illusion 
to mathematical procedures, such as coarse graining, that would lead to 
irreversible processes. Others with similar aims have tried to work out the 
conditions of macroscopic observation. None of these attempts has led to 
conclus~ve results. 

It is difficult to believe that the observed irreversible processes, such as 
viscosity. decay of unstable particles, and so forth, are slmply illusions 

caused by lack of knowledge or by incomplete observation. Because we 
know the initial conditions even in simple dynamical motion only approx- 
imately, future states of motion become more difficult to predict as time 
increases. Still, it does not seem meaningful to apply the second law of 
thermodynamics to such systems. Properties like specific heat and 
compressibility, which are closely associated with the second law, are 
meaningful for a gas formed by many interacting particles but are mean- 
ingless when applied to such simple dynamical systems as the planetary 
system. Therefore. irreversibility must have some basic connection with 
the dynamical nature of the system. 

The opposite notion has also been considered: perhaps dynamics is 
incomplete; perhaps it should be expanded to include irreversible 
processes. This attitude is also difficult to maintain, because for simple 
types of dynamical systems the predictions, both of classical and quan- 
tum mechanics, have been remarkably well verified. It is enough to men- 
tion the success of space travel, which requires very accurate computation 
of the dynamical trajectories. 

In recent times it has been repeatedly asked whether quantum 
mechanics is complete in connection with the so-called measurement 
problem (to which we return in Chapter 7). It has even been suggested 
that, to include the irreversibility of the measurement, new terms would 
have to be added to the Schrodinger equation describing the dynamics of 
quantum systems (see Chapter 3). 

We come here to the very formulation of the subject of this book. Using 
the philosophical vocabulary, we can relate the "static" dynamical 
description with bring; then the thermodynamic description, with its em- 
phasis on irreversibility, can be related to becoming. The aim of this book, 
then. is to discuss the relation between the physics of being and the 
physics of becoming. 

Before that relationship can be dealt with, however, the physics of 
being must be described. This is done by mcans of a short outline of 
classical and quantum mechanics. emphasizing their basic concepts and 
their present limitations. Then the physics of becoming is addressed, with 
a short presentation of modern thermodynamics, including the basic 
problem of self-organization. 

We are then ready to examine our central problem: the transition 
between being and becoming. To what extent can we present today a 
logically coherent, though necessarily incomplete. description of the 
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physical world? Have we reached some unity of knowledge or is science 
broken into various parts based on contradictory premises? Such ques- 
tions will lead us to  a deeper understanding of the role of time. The 
problems of unity of science and of time are so intimately connected that 
we cannot treat one without the other. 

Part I 

THE PHYSICS 
OF BEING 



EMERGENCE OF ORDER I N  FLUID FLOWS 

The ordered structures of a storm arise from complex nonlinear lnteractlons 
In flurd systems far from e q u ~ l ~ b r ~ u m  The photograph above IS of 
large-scale edd~es  In Jupiter's atmosphere 

Nonl~near  lnteractlons also lead to  the emergence of palred vortlces at 
the boundary between t w o  layers of f l u ~ d  f lowing at d~fferent velocit~es as 

shown In the computer-drawn grdptis on the facrng page L~nes  of equal 
vorticlty have been plotted 

l n ~ t ~ a l l y  the mlxrng layer I S  turbulent and has only small-scale 
structure By computer smulat lon Ralph Metcalf and James R ~ l e y  show 
h o w  small perturbat~ons of the mlxlng layer evolve Into varlous types of 
large scale vortlces These s ~ m u l a t ~ o n s  closely match exper~mental work 

done on mlxrng layers. Whether f lows dissipate In turbulent chaos or lead 
to large-scale order depends on  the existence and nature of instabrl~ties 
In the system 

The photograph of J u p ~ t e r  is reproduced through the courtesy of the 
National Aeronautics and Space Administration and the computer plots through 
the courtesy of James Riley and Ralph Metcalfe. Further rnformation 
about the computer simulation is given In a paper t ~ t l e d  "Direct Numerical 
Slmulatron of a Perturbed, Turbulent Mix ing Layer,'' A IAA-80-0274  
(presented at the A l A A  18th Aerospace Scences Meeting, Pasadena, 
Callforn~a, January 14-1 6. 1980). w h ~ c h  can be ob ta~ned  from Flow 
Research Company, Kent, Wash~ngton  98031 



Chapter 2 
CLASSICAL DYNAMICS 

Introduction 

Classical dynamics is the oldest part of present-day theoretical physics. It 
might even be said that modern science began when Galileo and Newton 
formulated dynamics. A number of the greatest scientists of Wcstern 
civilization, such as Lagrange, Hamilton and Henri Poincare, have made 
decisive contributions to classical dynamics; moreover, classical dyna- 
mics was the starting point of the scientific revolutions of the twentieth 
century, such as relativity and quantum theory. 

Unfortunately, most college and university textbooks present classical 
dynamics as if it were a closed subject. We shall see that it is not. In fact, it 
1" subject in rapid evolution. In the past twenty years, Andrei Kol- 
mogoroff, Vladimir Arnol'd, and Jiirgen Moser, among others, have 
introduced important new insights, and further developments can be ex- 
pected in the near future (see Moser, 1972). 
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Classical dynamics has been the prototype of the scientific approach. In 
French the term "rational" mechanics is often used, implying that the 
laws of classical mechanics are the very laws of reason. Among the char- 
acteristics attributed to classical dynamics was that of strict determinism. 
In dynamics a fundamental distinction is made between initial conditions, 
which may be given arbitrarily, and the equations of motion, from which 
the system's later (or earlier) dynamic state can be calculated. As will be 
seen, this belief in strict determinism is justified only when the notion of 
a well-defined initial state does not correspond to an excessive idealization. 
Modern dynamics was born with Johannes Kepler's laws of planetary 
motion and with Newton's solution of the "two body" problem. However, 
dynamics becomes enormously more complicated as soon as we take into 
account a third body-a second planet, for instance. If the system is 
sufficiently complex (as in the "three body" problem), knowledge (of 
whatever finite precision) of the system's initial state generally does not 
allow us to predict the behavior of this system over long periods of time. 
This uncertainty persists even when precision in the determination of the 
initial state becomes arbitrarily large. It becomes impossible, even in 
principle, to know whether, for instance, the solar system that we inhabit 
is stable for all future times. Such considerations considerably limit the 
usefulness of the concept of trajectories or world lines. We must, then, 
consider ensembles of world lines compatible with our measurements (see 
Figure 2.1). But once we leave the consideration of single trajectories, we 
leave the model of strict determinism. We can make only statistical 
predictions, forecasting average results. 

It is a curious turn of events. For years, the proponents of classical 
orthodoxy have tried to free quantum mechanics from its statistical 
aspects (see Chapter 3): Albert Einstein's remark is well known: "God 
does not play dice." Now we see that, when long periods of time are 
considered, classical dynamics itself needs statistical methods. More im- 
portant still, even classical dynamics, perhaps the most elaborated of all 
theoretical sciences, is not a "closed" science: we can pose meaningful 
questions to which it yields no answers. 

Because classical dynamics is the oldest of all theoretical sciences, its 
development illustrates. in many ways, dynamics of the evolution of 
science. We can see the birth of paradigms, their growth and decay. 

F I G U R E  2 1 -. . 
Trajectories originating from a finite 
region in phase space corresponding to the 
initial state of the system. 

Examples of such paradigms are the concepts of intugroble and ergodic 
dynamic systems that will be described in the next sections ofthis chapter, 
Of course, no systematic description of the theoretical basis of classical 

could be presented in this chapter; we can only emphasize 
certain relevant features. 

Hamiltonian Equations of Motion 
and Ensemble Theory 

I" mechanics it is convenient to describe tllc state o f a  system of 
Point Particles by the coordinates y,. . . .  qs a d  momenta pr,  ..., p s .  0 1  

importance is the energy of the system when expressed jn terms 



of these variables. It generally takes the form 

H = Eki,,(pl, . . ,  pS) + v,t(q~. . . .  4s) 

in which the first part depends only on the momenta and is the kinetic 
energy, and the second part depends on the coordinates and is the poten- 
tial energy (for details, see Goldstein, 1950). The energy expressed in these 
variables is the Hamiltonian, which plays a central role in classical dyna- 
mics In this discussion, only conservative " systems " in which H does not 
depend explicitly on time are considered. A simple example would be a 
one-dimensional harmonic oscillator for which the Hamiltonian is 

in which rn is the mass and k is the spring constant related to the 
frequency I (or angular velocity w )  of the oscillator by 

In many-body systems, the potential energy is often the sum of two- 
body interactions, as in gravitational or electrostatic systems. 

The central point for us is that, once the Hamiltonian H is known, the 
motion of the system is determined. Indeed, the laws of classical dynamics 
may be expressed in terms of Hamilton's equations: 

A great achievement of classical dynamics is that its laws can be expressed 
in terms of a single quantity, the Hamiltonian. 

Imagine a space of 2s dimensions whose points are determined by the 
coordinates q , ,  . . . . p s .  This space is called the phase space To each 
mechanical state there corresponds a point P, of this space. The position 
of the initial point P at time t o ,  together with the Hamiltonian. 
completely determines the evolution of the system. 

CLASSICAL DYNAMICS 

Let us consider an arbitrary function of q,, . . . , p , .  Employing Hamil- 
ton's equations (2.4), its change with time will be given by: 

in which [ j ;  HI is called the Poisson bracket off with H.  The condition for 
the invariance off  is, therefore, 

Clearly, 

[H,H]= ( ~ _ H o H E z ~ ~ ~  
i =  api aqi dqi dp, 

This relation expresses simply the conservation of energy. 
To make the connection between dynamics and thermodynamics, it is 

very useful to introduce, as did Gibbs and Einstein, the idea of a represen- 
tative ensemble (see Tolman, 1938). Gibbs has defined it as follows: "We 
may imagine a great number of systems of the same nature, but differing 
in the configurations and velocities which they have at a given instant, 
and differing not merely infinitesimally, but it may be so as to embrace 
every conceivable combination of configurations and velocities . . . ." 

The basic idea, therefore, is that instead of considering a single dynamic 
system, we consider a collection of systems, all corresponding to the same 
Hamiltonian. The choice of this collection, or ensemble, depends on the 
conditions imposed on the systems (we may for example consider isolated 
systems or systems in contact with a thermostat) and on our knowledge 
of the initial conditions. If the initial conditions are well defined, the 
ensemble will be sharply concentrated in some region of phase space; if 
they are poorly defined, the ensemble will be distributed over a wide 
region in phase space. 

For Gibbs and Einstein. the ensemble point of view was merely a 
convenient computational tool for calculating average values when exact 



F I G U R E  2.2 
Gibbs ensemble. Systems, whose state is described by the 
various points. have the same Hamiltonian and are subject to the 
same constraints, but differ in their initial conditions. 

initial conditions were not prescribed. As will be secll in this chapter. as 
well as in Chapter 7, the importance of the ensemble point of view goes 
much further than originally conceived by Gibbs and Einstein. 

A Gibbsian ensemble of systems can be represented by a "cloud" of 
points in the phase space (see Figure 2.2). In the limit in which each 
region contains a large number of points, the "cloud" can be described u 

as a continuous fluid with a density of 

p ( q 1 ,  ..., q s ,  PI?  .... P,? t )  

in phase space. Because the number of points in the ensemble is arbitrary, 
p will be normalized; that is, 

Therefore 

represents the probubiiity of finding at time t a rcpresentativc point in the 
volume element d q , ,  . .  ., r ip ,  of phase space. 

The change of density in every volume element of phase space is due to 
the difference of the Rows across its boundaries. The remarkable feature is 
that the flow in phase space is 'Lincompressible." In other words, the 
divergence of the How vanishes. Indeed, using Hamilton's equations (2.4). 

F I G U R E  2.3 
Preservation of volume in phase space. 

we have 

As a result, the volume in phase space is preserved in time (see Figure 2.3). 
Using equation 2.1 1, we obtain a simple equation of motion for the 

phase-space density p. As is shown in all textbooks (Tolman 1938), this is 
the well-known Liouville equation. which can be written in the form 

~n which (as it is in equation 2.5) the bracket is the Poisson bracket of H 
with p. As it is often convenient to use an operator formnlarion, we simply 
multiply equation 2.1 I by i = f l  and write 

ln which L is now the linear operator: 
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The concept of an operator is discussed in greater detail in the next 
section. To simplify the notations, we have considered a single degree of 
freedom. The multiplication by i is introduced to make L a Hermitian 
operator like the operators of quantum mechanics studied in Chapter 3. 
The formal definition of Hermitian operators can be found in any text- 
book. The definition of an operator in quantum mechanical systems is 
given in Chapter 3, in the section on operators and complementarity. 
The basic difference between them lies in the space in which they act: in 
classical dynamics L acts in the phase space, whereas in quantum 
mechanics the operators act in the coordinate space or in the momentum 
space. The Liouville operator has been used extensively in recent work in 
statistical mechanics (see Prigogine, 1962). 

Our interest in ensemble theory is obvious. Even if we do not know the 
exact initial conditions, we may consider the Gibbs density and calculate 
the average value of any mechanical property A(p, q) such as 

using the ensemble average. 
Note also that it is easy to give the formal solution of the Liouville 

equation 2.12 as 

This expression can be verified by straightforward differentiation. A word 
of caution is necessary here. The Gibbs ensemble approach introduces the 
probability concept through the density function p in phase space. This 
allows the study of both pure cases, for which the initial conditions are 
prescribed, and i x t r e  corresponding to various posfible initial 
conditions. In any case, the time evolution of the density function 
has a strictly deterministic dynamical character. There is no simple 
cor~tzection with probabilistic (or "stochastic") processes, such as Brown- 
ian motion, which is described in Chapter 1. Concepts such as transition 
probabilities do  not appear here. One striking difference is in the role of 
time. Solution 2.12' is valid for all values of t positive and negative, 
whereas solution 1.13 refers only to t positive. (In mathematical terms, 
solution 2.12' corresponds to a group and 413 to a semigroup.) 

I '  

Operators 

Operators are generally introduced in connection with quantum 
mechanics. The quantum mechanical aspects are discussed in Chapter 3, 
but for now it is sufficient merely to emphasize that operaton also 
appear in classical dynamics when the ensemble point of view is adopted. 
Indeed, the concept of the Liouville operator has already been introduced 
in equation 2.13. 

In general, an operator has eigenfunctions and eigenvalues When an 
operator acts on one of its eigenfunctions, the result is the eigenfunction 
multiplied by its associated eigenvalue. Consider, for example, the 
operator A corresponding to second-order differentiation: 

If it acts on an arbitrary function (say x2), the operator changes that 
function into another one. However, certain functions are left unchanged: 
for example. consider the "eigenvalue problem" 

having the solutions 

u = sin kx 

and 

1" which k is a real number. These are the eigenfunctions and the 
eigenvalues, respectively, associated with the operator. 

The eigenvalues may be either discrete or continuous. To understand 
this difference, let us reconsider the eigenvalue problem (2.16). So far, 
boundary conditions have not been introduced, but we now impose the 
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condition that the eigenfunction be zero at the boundaries of the domain 
corresponding to x = 0 and .Y = L. These are the boundary conditions 
that arise naturally in quantum mrchanics. Their physical interpretation is 
that the particle is trapped inside this domain. It is easy to satisfy these - - -  

boundary conditions. Indeed the conditions 

sin k x  = 0 for .u = 0, L 

lead to 

in which n is an integer, and 

We see, therefore, that the spacing between two permitted states depends 
on the size of the domain. Because the spacing is inversely proportional to 
L2, we obtain, in the limit of large systems, what is called a continuous 
spectrum rather than the discrete spectrum obtained for finite systems. 

Often one has to consider a slightly more involved limit in which both 
the volume. V, of the system and the number of particles, N, are infinite, 
although their ratio remains constant: 

N 
N -t oo, V -t oo, - V = constant 

This is the tbermody~~umic limit, which plays an important role in the 
study of thermodynamic behavior in many-body systems. 

The distinction between discrete and continuous spectrums is very 
important for the description of the time evolution of p,  the density in 
phase space. If L has a discrete spectrum, the Liouville equation (2.11') 
leads to a periodic motion. However, the nature of the motion changes 
drastically if L has a continuous spectrum. 

We shall come back to this in the section on decay of unstable particles 
in Chapter 3. However, it should be noted here that even afinite classical 
system may have a continuous spectrum in contrast with what happens 
in quantum mechanics. 

Equilibrium Ensembles 

As mentioned in Chapter 1, the approach to thermodynamic equilibrium 
is the evolution toward a final state that acts as an attractor for the initial 
conditions. It is not difficult to guess what this means in terms of the 
Gibbs distribution function in phase space. Let us consider an ensemble 
of which all the members have the same energy E. The Gibbs density p is 
zero except possibly on the energy surface defined by the relation 

Initially, we could consider an arbitrary distribution over this energy 
surface. This distribution then evolves in time according to the Liouville 
equation. The simplest view of what thermodynamic equilibrium means 
is to assume that at thermodynamic equilibrium the distribution p would 
become constant on the energy surface. This was the basic idea that 
Gibbs had, and he called the corresponding distribution the microcanoni- 
cal ensemble (Gibbs 1902). Gibbs was able to show that this assumption 
leads to the laws of equilibrium thermodynamics (see also Chapter 4). 
Besides the microcanonical ensemble, he introduced other ensembles, 
such as the canonical ensemble corresponding to systems in contact with 
a large energy reservoir at uniform temperature T. This ensemble also 
leads to the laws of equilibrium thermodynamics and allows a remarkably 
simple molecular interpretation of such thermodynamic properties as 
equilibrium entropy. However. such matters will not be dealt with here; 
instead attention will be focused on the basic question: What kind of 
conditions have to be imposed on the dynamics of a system to ensure that 
the distribution function will approach the microcanonical or the canoni- 
cal ensemble? 

Integrable Systems 

For most of the nineteenth century the idea of integrabk systems dom- 
inated the development of classical dynamics (see Goldstein, 1950). The 



F I G U R E  2.4 
Transformation from Cartesian coordinates 
(p and q )  to action and angle variables (J and a, 
respectively) for the harmonic oscillator. 

idea is easily illustrated by a harmonic oscillator. Instead of the canonical 
variables q and p, new variables, J and n, are introduced and defined by 

p = ( 2 ~ ~ ~ ) " ~  cos a 

This transformation is quite similar to the transformation from Cartesian 
to polar coordinates; n is called the angle variable, and J ,  which is the 
corresponding momentum, the action variable (see Figure 2.4). With 
these variables, equation 2.2 takes the simple form 

We have performed a canonical transformation in which one form of the 
Hamiltonian (2,2) has been changed into another (2.25). What has been 
gained? In the new form, the energy is no longer divided into kinetic and 
potential energy. Equation 2.25 gives the total energy directly. We can 
immediately see the usefulness of such transformations for more com- 
plicated problems. As loog as we have a potential energy, we cannot 
really attribute an energy to each of the bodies making up the system. 
because part of the energy is '' between" the various bodies. The canonical 

FIGURE 2 5 
Elimination of potential energy (represented in part A by 
wavy lines) for integrable systems. 

transformation gives us a new representation enabling us to speak about 
well-defined bodies or particles because the potential energy has been 
eliminated. We then obtain a Hamiltonian of the form 

H = H(J1,  . . . , J,) 

which depends only on the action variables. Systems for which we can 
transform equation 2.1 into 2.14 and 2.23 into 2.26 through an appro- 
priate change of variables are by definition the integrable systems of 
dynamics. For these systems we may therefore "transform away" the 
pot en tial energy, as represen led schematically in Figure 2.5. 

Does the physical world such as the one represented by elementary 
particles and their interactions correspond to an integrable system? This 
basic question is discussed in Chapter 3. 

Another striking feature of the transformation into action and angle 
variables is that in equation 2.25 the frequency, ru, of the harmonic oscil- 
lator is displayed explicitly in the Hamiltonian (it does not have to be 
derived through the integration of the equations of motion) Similarly, for 
the general case. wc have s frequencies, w , ,  . . ,  w,, each of which is 
related to the Hamiltonian by 
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Coordinates that are by definition the angle variables, a , ,  . . . , cr, corre- 
spond to the action variables J i  Physical quantities are periodic func- 
tions of these angle variables. 

The form of the Hamiltonian in action variables (equation 2.26) leads 
to important consequences. The canonical equations are now (see equa- 
tions 2.4 and 2.27) 

Therefore each action variable is a constant of motion and the angle 
variables are linear functions of time. 

Throughout the nineteenth century, mathematicians and physicists 
working on problems in classical dynamics looked for integrable systems. 
because once the transformation into the Hamiltonian form (equation 
2.26) has been found, the integration problem (the solution of the equa- 
tions of motion) becomes trivial. Thus, the scientific community was 
shocked when Heinrich Bruns first proved (as did Poincare in more 
general cases) that the most interesting problems of classical dynamin 
starting from the three-body problem ( eg ,  including the sun, the earth. 
and the moon) do not lead to integrable systems (Poincare 1889). In other 
words. we cannot find a canonical transformation that leads to the Ham- 
iltonian form given in equation 2.26; therefore, we cannot find invariants 
such as the action variables Ji by a canonical transformation. This was in 
a sense the point at which the development of classical dynamics ended. 

Poincark's basic theorem is discussed later in this chapter in the section 
titled Dynamical Systems neither Integrable nor Ergodic. For now, it 
should be noted that, in consideration of the relation of dynamics and 
thermodynamics, Poincark's theorem is most fortunate. In general, if phy- 
sical systems belonged to the class of integrable systems, they could not 
forgct their initial conditions; if the action variables, J , ,  . . ,  J , ,  had 
prescribed values initially, they would keep them forever, and the distrib- 
ution function could never become uniform over the microcanonical sur- 
face corresponding to a given value E of the energy. Clearly, the final state 
would drastically depend on the preparation of the system, and concepts 
such as approach to equilibrium would lose their meaning. 

CLASSICAL D Y N A M I C S  

Ergodic Systems 

Because of the difficulties in using integrable systems to incorporate the 
approach to equilibrium, James Clerk Maxwell and Ludwig Boltzmann 
turned their attention to another type of dynamical system. They in- 
troduced what is generally known today as the ergodic hypothesis. In the 
words of Maxwell, "The only assumption which is necessary for a direct 
proof of the problem of thermodynamic equilibrium is that the system, if 
left to itself in the actual state of motion. will sooner or later pass through 
every phase which is consistent with the equation of energy." Mathemati- 
cians have pointed out that a trajectory cannot fill " a  surface" and that 
the statement must be altered to indicate that the system will eventually 
come arbitrarily close to every point of the energy surface, in accord with 
the quasi-ergodic hypothesis (see Farquhar, 1964). 

It is interesting to note that we are dealing with a prototype of dynami- 
cal systcms, which is just the opposite of the point of view taken in the 
study of integrable systems. In this prototype, essentially only a single 
trajectory "covers" the energy surface. Ergodic systems have only one 
invariant instead of the s invariants, J , ,  J ,  . . . . , J ,  , of integrable systems. 
lf we keep in mind that we are generally interested in many-body systems 
for which s is of the order of Avogadro's number, x 6 x lo2', the differ- 
ence is indeed strikino 

--a' 
There is no doubt of the existence of ergodic dynamical systems, even of 

a very simple type. An example of ergodic time evolution is the motion on 
a two-dimensional unit square corresponding to the equations 

dr, dq 
- = a  and - = I  
dt d t  

These equations are easily solved to give, with periodic boundary 
conditions, 

~ ( t )  = Po + at 
(mod 1) 

4( t )  = q o  + t 
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~h~ phase trajectory given by equation 2.31. For ci irrational. 
the trajectory is dense on the unit Square. 

The phase trajectory is therefore 

The basic characteristics of the trajectory depend on the value of a, for 
which two cases have to  be distinguished. If ct is a rational number. say 
a = m/n, the trajectory will be periodic and will repeat itself after a period, 
T = n. The system is then riot ergodic. On the other hand, if a is irrational, 
then the trajectory will satisfy the condition of the quasi-ergodic hypoth- 
esis i t  will come arbitrarily near each point of the unit square. It will 
"fill" the surface of the square (Figure 2.6). 

For later reference it is important to  note that, in spite of the ergodicity 
of the motion, each small region of the phase fluid moves without defor- 
mation, because a small rectangle Ap Aq preserves not only its size but 
also its form (dAp/dt = dAq/dt = 0 as the consequence of equations 2.29). 
This is in contrast with other types of motion (see Chapter 7 and 
Appendix A) in which phase-fluid movement leads to violent disturbances. 

In the equations of motion (2.29). a and 1 are two characteristic 
frequencies (wl  and 01,); one of them relates to p and the other to  q. We 

may write 

Both are constants, as is the frequency of a harmonic oscillator (see 
equation 2.25). 

When more than one frequency is included in a problem of dynamics, a 
basic question is the so-called linear independence of the frequencies. If cr 
is rational, we may find numbers m, and m, , both of which do not vanish, 
such that 

The frequencies are then linearly dependent.  On the other hand, if a is 
irrational, equality 2.24 cannot be satisfied with nonvanishing numbers 
rn, and m, . The frequencies are then linearly independent.  

About 1930, the work of George Birkhoff, John von Neumann, Heinz 
Hopf, and others gave definite mathematical form to the ergodic problem 
in classical mechanics. (For references see Farquhar, 1964, and Balescu, 
1975.) We have seen that the flow in phase space preserves volume (or 
"measure"). This still leaves many possibilities open. In an ergodic 
system, the phase fluid sweeps the whole available phase space on the 
microcanonical surface, but as we have seen it may do  so without altering 
its shape. But much more complicated types of flow are possible: not only 
does the phase fluid sweep the entire phase volume, but the initial shape 
of the element becomes greatly distorted. The initial volume sends out 
amoebalike arms in all directions in such a way that the distribution, 
becomes uniform over a long period of time, regardless of its initial 
configuration. Such systems, called mixing systems, were first investigated 
hy Hopf. There is no hope of drawing a simple figure that could corre- 
spond to this flow, because two neighboring points, no matter how close 
together, may diverge. Even if we start with a simply shaped distribution, 
1" time we obtain a "monster," as Benoit Mandelbrot has rightly called 
objects of this complexity (Mandelbrot 1977). Perhaps a biological ana- 

can clarify the degree of this complexity: for example, the volume of 
a lung and the hierarchy of vesicles that it contains. 

There are flows with even stronger properties than those of mixing, 
Which have been investigated notably by Kolmogoroff and Ya. Sinai 
(see Balescu, 1975). Of particular interest are the K-jlows. whose proper- 
ties are nearer to those of stochastic systems. In fact, when we go from 
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Various types of flow in phase space: 
(A) nonergodic; (B) ergodic but not mixing; (C) mixing. 

MODEL OF THE LUNG 

From Fracrals Form. Chance and D~mens~on by Beno~t B Mandelbrot 
(W H Freeman and Company) Copyr~ght 2 1977 by Beno~t B Mandebrot 
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ergodic flows to mixing flows and then to K-flows, the motion in phase 
space becomes more and more unpredictable. We are further and fur- 
ther away from the idea of determinism, which was considered the char- 
acteristic feature of classical dynamics for such a long time. (An example 
using the baker transformation is treated in Appendix A.) 

With regard to the spectral properties of L, the distinction between 
these different types of flows is very simple. For example, an ergodic 
system means that the only solution of 

and therefore corresponds to a constant on the microcanonical surface. 
By referring to equation 2.13, we can see that equation 2.34 is indeed a 

solution of equation 2.33, but the characteristic feature of ergodic systems 
is that it is the only one. Similarly (see, e.g., Lebowitz, 1972), mixing 
implies the stronger property that L has no discrete eigenvalues other 
than zero. Finally K-flows imply that, in addition to mixing, the multipli- 
city of solutions (i.e., the number of solutions for a given eigenvalue) is 
constant. 

An unexpected result of ergodic theory is that "unpredictability" or 
"randomness " of motion is related to such simple properties of the Liou- 
ville operator L. In a series of remarkable papers, Sinai (see, e.g., Balescu, 
1975) was able to prove that a system of more than two hard spheres in a 
box was a K-flow (and therefore also mixing and ergodic). Unfortunately, 
it is not known if this remains true for other (Icss singular) laws of 
interaction. Nevertheless, most physicists shared the opinion that this was 
only a formal difficulty and that the mechanical basis of the approach to 
equilibrium observed in physical systems had indeed to be found in the 
theory of ergodic systems. 

The view that dynamical systems would be, in general, ergodic was first 
challenged in a paper by Kolmogoroff (1954). He pointed out that, for 
large classes of interacting dynamical systems, one could construct perio- 
dic orbits confined to  a subspace (invariant tori) of the ergodic surface. 
Other investigations also contributed to weakening our belief in the 
universality of ergodic systems. For example, an important piece of work 



THE PHYSICS OF BEING 

was the one realized by Enrico Fermi, John Pasta, and Stanislaw Ulam 
(see Balescu, 1975), who made a numerical investigation of the behavior 
of a coupled chain of anharmonic oscillators. They expected that this 
system would reach thermal equilibrium rapidly. Instead, they found 
periodic oscillations in the energy of the various normal modes. The work 
of Kolmogoroff was extended by Arnol'd and Moser and has led to the 
so-called KAM theory. Perhaps the most interesting aspect of this new 
theory is that, independently of ergodicity, dynamical systems may lead to 
random motion that is somewhat similar to the type of motion occurring 
in mixing systems or K-flows. Let us consider this important point in 
more detail. 

-- 

Dynamical Systems neither Integrable nor Ergodic 

To have a clear idea of the behavior of dynamical systems, it is most 
useful to turn to numerical computations. Work in this direction was 
pioneered by Michel Henon and Carl Heiles in 1964 (see References) and 
has since been further developed by many others, such as John Ford and 
his co-workers (see Balescu, 1975). Generally, the systems used in such 
computations have two degrees of freedom and the calculations are made 
for a given value of the energy. Thus, three independent variables remain 
(because imposing the total energy gives one condition involving the two 
momenta, p,, p,, and the two coordinates, q ,, q,). A computer program 
is then worked out to solve the equations of motion and to plot the 
intersection points of the trajectory with the q 2 ,  p2-plane. To simplify 
matters further, one plots only half of these intersections-namely, those 
at which the trajectory goes "up  "; that is, p, > 0 (see Figure 2.8). 

The dynamical behavior of the system can be clearly read in these plots, 
which had already been used by Poincare. If the motion is periodic, the 
intersection is simply a point. If the trajectory is conditionally periodic- 
that is, if it is restricted to a torus-the successive intersections follow a 
closed curve in the q,, p,-plane. If the trajectory is "random," in the 
sense that it wanders erratically through the phase space, the intersection 
point also wanders erratically through the plane. These three possibilities 
are represented in Figure 2.9. 

F I G U R E  2.8 
A three-dimensional trajectory for the Henon-Heiles system. 

FIGURE 2.9 
Various types of trajectories: (A) periodic; (8) conditionally periodic; f )  random, 
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An interesting observation made by Ford and others is that a dynami- 
cal system may. depending on circumstances. change from being con- 
ditionally periodic to being "random." To analyze this finding, let us 
start with the Hamiltonian that is formed by the sum of an unperturbed 
Hamiltonian, H , ,  depending only on canonical momenta and a per- 
turbation depending both on canonical momenta and on canonical 
coordinates: 

If the perturbation were absent, J ,  and J 2  would be the action variables 
corresponding to the problem, and we would have two "unperturbed" 
frequencies related to the Hamiltonian H ,  and given (as in equation 2.27) 

by 

An essential difference between this example and that of the harmollic 
oscillator is that, in general, H, will not be linear in the J's and these two 
frequencies will be action dependent. 

Let us now examine the effect of the perturbation V in the Hamiltonian 
(equation 2.35). Because this is in general a periodic function in the angle 
variables, a,, a , ,  we may write it in the general form of a Fourier series. 
Typically, we may consider a perturbation of the form 

The interesting point is that the solution of the equation of motion 
through perturbation theory always includes terms of order: 

which corrcspond to ratios of the potential energy divided by sums of the 
frequencies for the unperturbed system. This leads to "dangerous" be- 
havior when the Fourier coefficient, Vn,,, , does not vanish in the presence 

FIGURE 2 10 
Whittaker's theory (see text for details). 

of resonance for which 

n , o l  + n2cu2 = 0 (2.39) 

Expression 2.38 is undefined and anomalous behavior has to be expected. 
As shown by the numerical experiments, the occurrence of resonances 

causes periodic or quasi-periodic behavior to become random behavior 
(see Figure 2.9). Resonances destroy the simplicity of dynamical motion. 
They correspond to the transfer of large amounts of energy or momentum 
from one degree of freedom to the other. In numerical calculations only a 
finite number-for example, two resonances-are generally considered. 
But it is important to investigate what would happen if  the number of 
resonances were infinite; that is, if there were resonances in every region 
of the J , ,  J2-plane, no matter how small. This is the case corresponding 
to Poincare's theorem on the nonexistence of integrable systems men- 
tioned earlier. The resonances lead to such an irregular motion tha t  
invariants of motion other than the Hamiltonian are no longer analytic 
functions of the action variables. We shall refer to it as the "Poincare 
catastrophe." which will play an important role in the later chapters of 
this book. It is remarkable how prevalent Poincare's catastrophe is. It 
appears in most problems of dynamics starting from the celebrated three- 
body problem. 

A good illustration of the physical meaning of Poincare's fundamental 
theorem has been provided by Edmund Whittaker's theory of "adelphic 
integrals" (1937). Consider a trajectory that starts at some point A in the 
action space J , ,  J ,  of Figure 2.10 and the frequencies, w , ,  u ~ , ,  at this 
point. Whittaker was able to solve the problem of motion formally for a 
large class of Hamiltonians in terms of series expansion, but the type of 
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F I G U R E  2 11 
Trajectory in phase space as the intersection of two invariant surfaces. 

series expansion differs crucially according to whether or not the frequen- 
cies are rationally independent (or commensurate). Because w,, o, are 
generally continuous functions of the action variables, they will be ra- 
tionally dependent every time their ratio is a rational number of the form 
m/n and will be rationally independent if  the ratio is not a rational 
number Therefore, the type of motion is different for two points A and B 
even if they are very near one another, because each rational number is 
embedded in irrationals and vice versa. This is the basic content of the 
concept of weak stability already mentioned. It is clear that Poincare's 
catastrophe may lead to "random" motion. For integrable systems, a 
trajectory may be viewed as the '' intersection " of invariants of motion. For 
example, in the case of two degrees of freedom a trajectory would corre- 
spond to the intersection of the two surfaces, J , = 6 ,  and J = 6,. in 
which 6,. 6, are given constants (see equation 2.26). But whenever we 
have the Poincare catastrophe the invariants of motion become nonana- 
lytical, ''pathological'' functions, as does their intersection (Figure 2.1 1). 

It should be noted that the situation is more complex for nonintegrable 
systems in which the Poincare catastrophe arises than it is for ergodic 
(or mixing) systems. In the first case we know that, as a result of the 
Kolmogoroff, Moser, and Amol'd theory, in general both periodic mo- 
tions confined to some pan of the available p h a s  space and random 
motions "covering" the whole phase space exist. Both types of motion 
may have a positive measure. On the contrary, the confined motions of 
ergodic (or mixing) systems have a measure zero. The consequences of this - 
situation are analyzed in the next section. 

Weak Stability 

As we have seen, there are at least two types of situations in which 
dynamical motion introduces random elements. The first corresponds to 
mixing flow (or flows satisfying stronger conditions, such as K-flows), and 
the second to what is referred to as the Poincare catastrophe, in which 
resonances prevent the "continuation" of the unperturbed invariants of 
motion when an interaction is initiated. The two situations are quite 
different: in the first case, the dynamical systems are characterized by a 
Liouville operator with well-defined spectral properties (such as a contin- 
uous spectrum); in the second, it is the decomposition of H (see equation 
2.35) into the two parts H ,  and V that is essential. in  both cases, however, 
the character of the motion is such that two trajectories, regardless of how 
close together their starting points are, may diverge greatly in time. This 
corresponds to what often has been called instability of motion and is of 
obvious importance for the long-term behavior of dynamical systems. To 
contrast this behavior with the one found in simple systems, let us con- 
sider a simple pendulum for which the Hamiltonian is 

H = -  P' - mgl COS Q 
2m12 

in which the first term is the kineticenergy and the second the potential 
energy in the gravitational field. The coordinate q is replaced by 6, the 
angle of deflection. 

Such a pendulum can move in two ways: it can either oscillate around 
Its equilibrium position or rotate around its point of suspension. Rotation 
1s possible only when the energy of the pendulum is large enough. The 
region in which one or the other motion is possible can be represented 
1" phase space, as shown in Figure 2.12. The important point for us is 
that the neighboring points in phase space corresponding to vibration or 
rotation belong to the same region. Therefore, even with limited informa- 
tion about the initial state of the system, we can decide if the system will 
rotate or vibrate. 
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Phase space for the rotator. Shaded region corresponds to vibration; 
outside region corresponds to rotation. 

This property is lost for systems in which stability is weak. In such 
systems, one type of motion may occur in every neighborhood of another 
type of motion (see Figure 2.13). There is then no point in increasing the 
precision of our observation. The microstructure of the phase space has 
become extremely complex. This is the reason why statistical arguments 
enter into every long-term prediction. 

In such situations, statistical ensembles must be considered. We 
cannot reduce the " mixture " to a " pure" case corresponding to a single 
trajectory (which would be represented by a 6-function in phase space). Is 
this difficulty practical or tl~eoretical in nature? I would support the 
view that this result has important theoretical and conceptual 
significance because it forces us to transgress the limits of a purely dyna- 
mica1 description. A similar problem-Is the limitation of the propaga- 
tion of signals by the velocity of light a practical or theoretical 
question?-is answered by the theory of relativity, which shows that our 
concepts of space and time have to be changed because of this limitation. 

There is always the temptation to try to describe the physical world as 
if we were not part of it. We could then conceive of velocities of propaga- 
tion of arbitrary, even infinite, speed and the determination of initial 
conditions with infinite precision. But seeing the world from the outside is 
not the object of physics. Rather, it is to describe the physical world as it 
appears to us, who belong to it, through our measurements. In the line of 
thought inaugurated by the theory of relativity and followed by quantum 
mechanics, it is a basic objective of theoretical physics to make explicit 
the general limitations introduced by the measurement processes. 

But weak stability is only one step toward the incorporation of time 
and irreversibility into the fornlal structure of dynamics. As will be seen, 
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In systems haring weak stability, 
one type of motion. +#, may be found 
in the neighborhood of another, +. 

the introduction of entropy or. in general, a Lyapounov function greatly 
alters this whole formal sttucture (see Chapters 3 and 7). This is a most 
unexpected development. We were prepared to see new theoretical struc- 
tures arise as a result ofdiscoveries in the field of elementary particles or as 
a result of new insights into the evolution of the universe, but that the 
concept of thermodynamic irreversibility, which has been with us for 
one hundred fifty years, should force us to invent new theoretical structures 
is most surprising. 

Emphasis should also be placed on the creative role that the problem of 
irreversibility has played in the history of classical dynamics, and even 
more so in quantum dynamics (see Chapter 3). The challenge of ther- 
modynamics, which led to ergodic theory and to the ensemble theory, has 
been the starting point of quite remarkable developments. This produc- 
tive dialogue between the physics of being and the physics of becoming is 
still going on today, as will be seen in Chapters 7 and 8. 



Chapter 3 
QUANTUM MECHANICS 

Introduction 

As demonstrated in Chapter 2, it is only recently that we have begun to 
grasp the complexity of dynamical description, even in the framework of 
classical dynamics. Still, classical dynamics attempted to represent some 
intrinsic reality independent of the mode of description. It was quantum 
mechanics that shook the Galilean foundations of physics. It destroyed 
the belief that physical description is realistic in a naive sense, that the 
language of physics represents the properties of a system independent of 
the conditions of experimentation and measurement. 

Quantum mechanics has a very interesting history (Jammer 1966; 
Mehra 1976, 1979). It started with Planck's attempt to reconcile dynamics 
with the second law of thermodynamics. Boltzmann had considered this 
problem for interacting particles (which will be discussed in Chapter 7), 
whereas Planck thought it would be easier to study the interaction of 
matter with radiation. He failed in this purpose, but in his attempt he 
discovered the well-known universal constant h, which bears his name. 
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For a time, quantum theory remained associated with thermodynamia 
in the theory of black-body radiation and the theory of specific heat. 
When Arthur Haas presented what may be considered a precursor of 
Niels Bohr's theory of electronic orbits in 1908 in Vienna as a part of his 
dissertation, it was refused on the ground that quantum theory had noth- 
ing to do with dynamics. 

The situation changed drastically when the extraordinary success of the 
Bohr-Sommerfeld model of the atom made clear the necessity of building 
a new dynamics in which Planck's constant could be consistently incor- 
porated. This was accomplished by Louis de Broglie, Werner Heisenberg, 
Max Born, Paul Dirac, and many others. 

Because the scope of this book precludes a detailed account of quan- 
tum mechanics, the following discussion will focus on the notions neces- 
sary for our inquiry: the role of time and irreversibility in physics. 

The "classical" quantum theory as formulated in the mid-1920s was 
inspired by the Hamiltonian theory summarized in Chapter 2 Like this 
Hamiltonian theory, the quantum theory was immensely successful for 
such simple systems as the rotator, the harmonic oscillator, or the 
hydrogen atom. However, as in classical dynamics, problems arise when 
more complicated systems are considered. 

Can quantum mechanics consistently incorporate the concept of 
elementary particles? Can it describe decay processes? These are the 
problems to be emphasized here. They are addressed again in Part I11 of 
this book in discussing the bridge from being to becoming. 

Quantum mechanics is a microscopic theory in the sense that it was 
introduced with the primary purpose of describing the behavior of atoms 
and molecules. Thus, it is surprising that it has led to the questioning of 
the relation between the microworld that we seek to observe and the 
macroworld to which we ourselves and our measuring devices belong. It 
can be said that quantum mechanics makes explicit the conflict (which, 
before its advent, had been implicit) between the dynamical description 
and the process of measurement (see d7Espagnat, 1976; Jammer. 1974). In 
classical physics, rigid rods and clocks are often used as models of ideal 
measurement. They were the main tools used by Einstein in his thought 
experiments, but there is a supplementary element in measurement, which 
was emphasized by Bohr. Every measurement is intrinsically irreversible: 
recording and amplification in measurement are coupled to irreversible 
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events, such as the absorption or emission of light. (See Rosenfeld, 1965, 
and George, Prigogine, and Rosenfeld, 1973.) 

How can dynamics, which treats time as a parameter that has no 
preferential direction. lead to the element of irreversibility inseparable 
from measurement? This problem currently attracts a great deal of atten- 
tion. It is perhaps one of the hottest problems of our time, one in which 
science and philosophy merge: Can wc understand the microscopic world 
in "isolation"? In fact, we know matter, especially its microscopic 
properties, only by means of measuring devices, which themselves are 
macroscopic objects consisting of a large number of atoms or molecules. 
In a way these devices extend our sense organs. The apparatus can be said 
to be the mediator between the world that we explore and ourselves. 

We shall see that the state of a quantum system is determined by the / 
wave function. This wave function satisfies a dynamical equation that is 
reversible in time, as do the equations of classical dynamics. Therefore, 
this equation cannot by itself describe the irreversibility of measurement. . 

The novel aspect of quantum mechanics is that we need both reversibil- 
ity and irreversibility. In a sense, this was already true in classical phys- 
ics, in which both types of equations were used: for example, Hamilton's 
equations of dynamics, which are reversible in time, and Fourier's equa- 
tion for the temperature evolution, which describes an irreversible 
process. There, however, the problem could be brushed aside by qualify- 
ing the heat equation as a phenomenological equation devoid of any 
fundamental significance. But how do we brush aside the problem of 
measurement, which is our very link with the physical world? 

Operators and Complementarity 

The observation that sharp absorption or emission lines exist has been 
most important in the formulation of quantum mechanics. The only pos- 
sible interpretation seems to be that a system like an atom or a molecule 
has discrete energy levels. To reconcile this with the classical ideas, a very 
important step had to be made. The Hamiltonian. as introduced in Chap- 
ter 2, can take a continuous set of values according to the values of its 
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arguments, the coordinates and momenta. Therefore, it seemed necessary 
to replace the Hamiltonian, H, viewed as a continuous function, with a 
~ C W  object, the Hamiltonian regarded as an operator, and denoted by 

HOn . (For an introduction to quantum mechanics, see Landau and 
~ifschitz, 1960.) 

The concept of operators in connection with classical mechanics was 
briefly discussed in Chapter 2. However, the situation is quite different in 
quantum mechanics. In considering trajectories in classical mechanics, we 
need only the Hamiltonian as a function of coordinates and momenta 
(see equation 2.4). However, even in the simplest quantum case, such as 
the interpretation of the properties of the hydrogen atom, we need the 
Hamiltonian operator, because we want to interpret the energy levels as 
the eiaencalues associated with this operator (see . equation . 2.16). There- 

fore we must set up and solve the eigenvalue problem 
" 

The numbers El,  E ,  , . . . , En are the energy levels of the system. Of course. 
we must have rules by which to change from classical variables to quan- 
tum operators. One such rule is 

which is to say, without going into detail: "Keep the coordinates as they 
are and replace momenta by derivatives with respect to coordinates."* 

In a sense, the transition from functions to operators was forced upon 
us by spectroscopic experiments that revealed the existence of energy 
levels. It was a natural step to take, and yet we can only admire people 
like Max Born, Pascual Jordan, Werner Heisenberg, Erwin SchrMinger 
and Paul Dirac who dared to make this jump. The introduction of opera- 
tors radically changes our description of nature. Thus, it is quite appro- 
priate to speak of the " quantum revolution." 

To  give an example of these new features, the operators that we have to 
introduce generally do not commute. This has the following con- 
sequences: an eigenfunction of an operator is considered to describe the 

* When there is no possibility of confusion, the subscript "op"  will be omitted and H will 
be used instead of H,,  . 

state of the system in which the physical quantity represented by this 
operator has a well-defined value (the eigenvalue). Therefore, noncom- 
mutativity means, in physical terms, that there can be no state in which. 
for example, the coordinate q and the momentum p have well-defined 
values simultaneously. This is the content of the well-known Heisenberg 
uncertainty relations. 

This consequence of quantum mechanics is quite unexpected, as it 
forces us to give up the naive realism of classical physics. We can measure 
the momentum and the coordinate of a particle. We cannot say that it has 
well-defined values of coordinate and momenta simultaneously. This con- 
clusion was reached fifty years ago by Heisenberg and Born, among 
others. It seems as revolutionary today as it did then. In fact, discussions 
about the meaning of the uncertainty relations have never ceased. Can we 
not through the introduction of some supplementary " hidden " variables 
restore physical sanity? Until now this has proved to be difficult, if not 
impossible, and most physicists have given up such attempts. Although 
the history of this fascinating subject cannot be related here, it is treated 
quite well in specialized monographs (see Jammer, 1974). 

Niels Bohr formulated the principle of complementarity based on the 
existence of physical quantities represented by noncommuting operators 
(see Bohr, 1928). 1 hope that he and my late friend Leon Rosenfeld would 
not have disapproved of the way in which I would like to define this 
complementarity: the world is richer than it is possible to express in any 
single language. Music is not exhausted by its successive stylizations from 
Bach to Schoenberg. Similarly, we cannot condense into a single descrip- 
tion the various aspects of our experience. We must call upon numerous 
descriptions, irreducible one to the other, but connected to each other by 
precise rules of translation (technically called transformations). 

Scientific work consists of elective exploration rather than a discovery 
of a given reality; it consists of choosing the problem that must be posed. 
But rather than anticipate some of the conclusions that are presented in 
Chapter 9, let us resume the discussion of quantum mechanics. 

- 

Quantization Rules 

Eigenfunctions play very much the same role as basic vectors in vector 
algebra. As is known from elementary mathematics. an arbitrary vector, 
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FIGURE 3.1 
Decomposition of (A) a vector, 1, into its components and (B) a wave 
function, Y ,  into eigenfunctions u, ,  u , ,  . . ., u,. 

say I, can be decomposed into its components along the set of basic 
vectors (see Figure 3.1). Similarly, we may represent an arbitrary state Y 
of a quantum mechanical system as a superposition of suitable 
eigenfunctions : 

For reasons that will become apparent in the next section, Y is also called 
the wave function. It is especially convenient to take an orthonormal set 
of eigenfunctions (the corresponding basic vectors would have length one 
and be orthogonal to each other): 

I =  l i f i = j  
(uil uj) = hij\ = if i + j 

The notation (ui 1 uj) indicates the scalar product 

in which ul is the complex conjugate to ui. By multiplying equation 3.3 
by u; and using the orthonormality conditions given in equation 3.4, we 
see immediately that 

The main difference between the elementary vector space (see Figure 
3.1A) and the space used in quantum mechanics (see Figure 3.1B) is in the 
number of dimensions that are finite in the first case and infinite in the 
second. In the second case, one speaks of Hilbert space, and the functions 
u,, or Y ,  are elements (or vectors) of this space. Each element may appear 
in two ways at the left or at the right inside the scalar product (equation 
3.5). For this reason, Dirac (1958) introduced an elegant notation. The 
element u, may be written either as a bra vector 

or as a ket vector 

The scalar product is then the product of a bra with a ket: 

This notation allows us to express in a compact way important properties 
of the Hilbert space. Suppose that the expansion in equation 3.3 is valid 
for all elements. Using the bra-ket notation and equation 3.6, we may then 
write for an arbitrary element 

Because this relation must be true for an arbitrary I@), we obtain the 
completeness relation 

which we shall use repeatedly. From this short excursion into the formal- 
ism, let us return to physics. 

The expansion coefficients c,, , which appear in equation 3.3, have an 
important physical meaning. If we measure the physical quantity (say, the 
energy) of which the u, are the eigenvectors, the probability of finding the 
eigenvalue corresponding to u, (say, E n )  is (c, 1'. The function Y. which 
gives the quantum state, is therefore called a probability amplitude (its 
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square gives the probability proper). This remarkable physical interpreta- 
tion of Y is due to Born (see Jammer, 1966). 

It has already been noted that in quantum mechanics physical quanti- 
ties are represented by operators. However, these operators cannot be 
arbitrary. The specific class of operators of interest may be defined by 
associating each operator A with its adjoint At: 

A fundamental role is played in quantum mechanics by self-adjoint (or 
Hermitian) operators: 

Their importance stems from the fact that eigenvalues of self-adjoint or 
Hermitian operators are real. Moreover, a Hermitian operator leads to 
an orthonormal set of eigenfunctions satisfying condition 3.1. It  is often 
stated that " observables " are represented in quantum mechanics by Hermi- 
tian operators. Are all observables Herrnitian operators? This is a com- 
plicated question, which is dealt with in Chapter 8. 

In addition to Hermitian operators we need a second class of operators 
that are associated with changes in coordinates. It is known from elemen- 
tary geometry that coordinate changes do not alter the value of a scalar 
product. Therefore let us consider operator A such that it leaves the scalar 
product (equation 3.5) invariant. This implies 

( A u  1 Av) = ( u  I U) 

and, as a consequence, using equation 3.8, 

By definition, operators satisfying equation 3.1 1 are called unitary opera- 
tors. The inverse of the operator A is A- ' ,  such that 

, & - I  = A- 'A  = 1 (3.1 1') 

We therefore see that a unitary operator is characterized by the property 

that its inverse is equal to its adjoint: 

A - '  = 

As in elementary geometry, a similitude transformation must often be 
performed on operators. A similitude S leads from A to A through the 
relation 

An interesting property is that such similitudes leave invariant all alge- 
braic properties; for example, if 

C =  AB, then c= AB 
because, using equation 3.1 l ' ,  

The similitude (in equation 3.13) may be considered a mere change in 
coordinates if S is a unitary operator. We are now ready to formulate the 
problem of quantization as one of finding a suitable coordinate system 
in which the Hamiltonian takes a simple, diagonal form. This is the 
Born-Heisenberg-Jordan quantization rule (see Dirac, 1958). 

We start with the Hamiltonian containing, as in equation 2.1, a kinetic 
(or unperturbed) contribution, H,,  plus a potential energy (or perturba- 
tion), V. We may then look for a similitude 

1" terms of a unitary operator S, which transforms the initial Hamiltonian 
into a diagonal one. This is equivalent to the solution of the eigenvalue 
problem in equation 3.1. Indeed, we may represent H as a matrix, and 
equation 3.1 shows that, in the representation using its eigenfunctions, H 
is represented by a diagonal matrix: 
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The analogy with the transformation problem of classical mechanics con- 
sidered in Chapter 2 in the section on integrable systems is striking. 

The Born-Heisenberg-Jordan quantization rules will be returned to in 
Chapter 8 in a discussion of how the systems that display irreversible 
processes can be quantized. For now, let it suffice to note that, as in 
classical transformation theory, two possible descriptions of a physical 
system have been applied to integrable systems. Indeed, diagonalization 
of the Hamiltonian is quite similar to the classical transformation of the 
Hamiltonian to action variables (equation 2.26). 

This point can be simply illustrated by a harmonic solid, which corre- 
sponds to interacting neighboring atoms or molecules whose relative 
displacement is so small that it can be described in terms of a potential 
energy that is quadratic in the displacement, such as that in the harmonic 
oscillator (equation 2.2). We may describe this system in two ways. The 
first corresponds to the interaction between neighboring particles in the 
solid, in which case we have to consider both the kinetic and the potential 
energy (refer to Figure 2.5A). The second way requires, as in the section 
on integrable systems in Chapter 2, a canonical transformation to elim- 
inate the potential energy. We may then consider the solid to be a super- 
position of independent oscillators and calculate the energy levels of each 
oscillator (refer to Figure 2.5B). Again, we have a choice of descriptions: 
one in which entities are not well defined (because part of the energy of 
the solid is "between" the particles) and the other in which they are 
independent, the "normal modes" of the solid. We return once again to 
the question, Does our physical world belong to one of these two highly 
idealized descriptions, or is a third one necessary? This question will be 
further dealt with later in this chapter in the section on ensemble theory 
in quantum mechanics. 

Time Change in Quantum Mechanics 

In the preceding section, the concept of the state of a quantum system as 
described by some state vector Y was introduced. We now need an equa- 
tion that will describe its time variation. This equation must play the 
same role in quantum mechanics as do Hamilton's equations (2.4) in 
classical mechanics. The analogy mat guided SchrMinger in formulating 
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this new equation was with classical optics-the eigenvalues correspond- 
ing to the characteristic frequencies associated with wave phenomena. 
Schrodinger's equation is a wave equation involving the basic dynainical 
quantity, the Hamiltonian. Its explicit form is 

in which i is the symbol and h is Planck's constant divided by 2n (we 
shall often take h equal to one, to avoid excessive notation). Note that this 
equation is not derived in quantum mechanics, but assumed. It can be 
validated only by comparison with experiment. 

The Schrodinger equation is a partial differential equation (in that 
derivatives with respect to coordinates appear in H,,  (see the next 
section) in contrast with Hamilton's equations (2.4). But they do have an 
element in common: both Hamilton's equations and Schrodinger's equa- 
tion are of first order in time. Once Y is known at some arbitrary time to 
(together with suitable boundary conditions such as Y + 0 at infinite 
distances), we may calculate Y for arbitrary times both in the future or in 
the past. In this sense we recover the deterministic view of classical 
mechanics, but it now applies to the wave function and not to the trajec- 
tory, as in classical mechanics. 

The discussion in Chapter 2 on the Liouville equation can be applied 
directly here. It is true that Y represents a probability amplitude (as p in 
equation 2.12 represents a probability), but its time evolution has a 
strictly dynamical character. As in the Liouville equation, there is no 
simple condition here with a probabilistic process such as Brownian 
motion. 

The time cvolution is determined by the Hamiltonian. Therefore, in 
quantum mechanics, the Hamiltonian (more precisely the Hamiltonian 
operator) plays a dual role. On the one hand. it determines the energy 
levels through equation 3.1. On the other, it determines the time evolu- 
tion of the system. 

It is also important to notice that the Schrodinger equation is linear. If 
at a given moment t we have 
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then at another arbitrary time t', earlier or later than r, we also have 

Y(tf) = a,Yl(t1) + a2Y2(t ')  (3.19) 

We have seen that Y determines the probability of the outcome of experi- 
ments and may be appropriately called a probability amplitude. It is also 
called the wave function, because equation 3.17 has a strong formal simi- 
larity with the wave equations of classical physics. 

It is easy to give the formal solution of the Schrodinger equation (3.17): 

This may be verified by taking its derivative. 
This form is quite similar to equation 2.12', except that the Liouville 

operator L is replaced by the Hamiltonian H. Note that e-'"' (or ~ 6 ' ~ ' )  is 
a unitary operator, in agreement with equation 3.12: 

(e- iHt)t = eiHt = (e- i H t ) - l  

This results from the fact that H is Hermitian. Therefore. in both classical 
and quantum mechanics, the time evolution is given in terms of a unitary 
transformation. Time evolution corresponds merely to a change of 
coordinates ! 

If we use the expansion (in equation 3.3) of Y in terms of the eigenfunc- 
tions of the Hamiltonian, we obtain from equation 3.20 the explicit 
relation 

According to our rule, the probability of finding the system in the state u, 
will be given by 

1 e -  i E k f ~ k  1' = (ck 1' (3.22) 

The important point is that this probability is time independent. In the 
representation in which the energy is diagonal, nothing really " happens." 
The wave function simply "rotates" in the Hilbert space, and the prob- 
abilities are constant in time. 

Quantum mechanics may be applied to systems formed by many par- 
ticles. Here the concept of indistinguishability plays a very important 
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role. Consider, for example, a collection of N electrons. Y will now 
depend on all the N electrons. A permutation of, say, electrons 1 and 2 
should not change the physical situation. Therefore, we have to require 
(remember that Y is a probability amplitude and that probabilities are 
given by ( Y 1 2 )  

1 Y(l> 2) l 2  = 1 Y(2, 1) l 2  
We may satisfy this condition in two ways. Either 

Y(1, 2) = +Y(2, 1) 

These two ways correspond to the two basic quantum statistics: the Bose 
statistics, when the wave function does not change under the permutation 
of the two particles, and the Fermi statistics, when it does. The type of 
statistics seems to be quite a fundamental property of matter, because all 
known elementary particles obey one or the other. Protons, electrons, 
and so forth, are fermions; photons and some unstable particles, like 
mesons, are bosons. One of the great achievements of quantum mechanics 
is the discovery of this distinction between fermions and bosons, which 
shows up at all levels of the structure of matter. The behavior of metals, for 
example, could not be understood without Fermi statistics, as applied to 
electrons, and the behavior of liquid helium is a beautiful illustration of 
Bose statistics. The problem of Bose or Fermi statistics in connection 
with the decay of quantum states is discussed in the next section. 

Ensemble Theory 
in Quantum Mechanics 

Using the formalism of quantum mechanics, we can calculate the average 
value ( A )  of some dynamic quantity, A, whose eigenvalues are a,, a,, . . . . 
By definition, an average value is the sum of all values, a ,, a,, . . . , that the 
variable can take, each being multiplied by the corresponding probabil- 
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ity. We therefore obtain, using equation 3.6, 

Using the definition of the eigenfunctions u,, 

This can also be written as 

( A )  = ( Y ( A Y )  

The important point is that the average value ( A )  is quadratic in the 
probability amplitude. This is in contrast with equation 2.14, which is 

I 
linear in the Gibbs distribution function p. Note also that, in a sense, even 4 

a system characterized by a well-defined wave function Y already corre- 
sponds to an ensemble. 

Indeed if we expand Y ,  for example in terms of the eigenfunctions of the 
Hamiltonian (see equation 3.3), and measure the energy, we may find the 
eigenvalues El, E ,  , . . . , each with the probability / c 1'. I c, 1 2 ,  . . . . This 
seems to be an unavoidable consequence of Born's statistical interpreta- 
tion of quantum mechanics. As a result, quantum mechanics can only 
make predictions about " repeated " experiments. In this sense, the situa- 
tion is similar to that of a classical ensemble of dynamical systems 
described by a Gibbs ensemble. 

Yet, in quantum mechanics there is also a clearcut difference between 
pure cases and mixtures (see the section titled Hamiltonian Equations of 
Motion and Ensemble Theory in Chapter 2). To formulate this difference, 
it is useful to introduce the quantum analogue of the Gibbs distribution 
function p .  To do so, we must first introduce a set of complete orthonor- 
ma1 functions n such that, as in equations 3.4 and 3.7, 

We then expand Y in terms of the functions n and use equation 3.6. We 
obtain 

( A )  = ( Y I A Y )  = ( Y l n ) ( n l A y )  
n 
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In classical mechanics, the averaging operation includes the integration 
over phase space (see equation 2.14). Wenow introduce the trace operation, 
which plays a similar role in quantum mechanics, 

and the density operator p, defined by 

Again, this definition uses Dirac's " bracket " notation (see equation 3.7). 
Operators act on elements of the Hilbert space. For example p acting on 
I O )  will be given according to definition 3.30 by 

The reason for introducing definition 3.30 is that we may now obtain for 
the average ( A )  as given by equation 3.28 the compact expression 

( A )  = tr(AY)(Y) 

which exactly corresponds to the classical form (2.14), the integration 
over phase space being replaced by the trace operator. 

Alternatively expression 3.31 can be written as 

in which we have used the notation 

( n  I A 1 n') _= ( n  1 An') 

If the observable A is diagonal (i.e., A I n )  = an 1 n ) ) ,  expression 3.31' re- 
duces simply to 
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Therefore the diagonal elements of p may be viewed as the probabilities of 
finding the value an of the observable. Note that trace of p is unity, as we 
have (see equations 3.27 and 3.30) 

This is the quantum mechanical analogue of equation 2.9. 
As in classical mechanics, the interest of the ensemble approach is that 

we can consider more general situations, for example, corresponding to a 
weighted superposition of various wave functions. Then equation 3.30 
becomes 

with 

in which p, represents the weights corresponding to the various wave 
functions Y,, which make up the ensemble. 

The form of the density operator p permits us to make a clearcut 
distinction between pure cases corresponding to a simple wave function 
and mixtures. In the first case, p is represented by equation 3.30; in the 
second, by equation 3.32. This leads to a simple formal distinction. For 
pure cases, 

and p is then an idempotent operator. This is not so for mixtures. 
The distinction between pure cases and mixtures is necessary to formu- 

late the measurement problem, as will be seen in a later section titled The 
Measurement Problem. 

Schrodinger and Heisenberg Representations 

Once we know the time variation (equation 3.20) of the wave function 
through the solution of the Schrodinger equation, we immediately obtain 

(from equation 3.30) the time variation of the density p: 

p(t) = e it"p(0)ei'H 

By taking the derivative, this leads to 

This equation is valid both for pure cases and for mixtures. We obtain 
exactly the same type of formula that we derived in classical mechanics 
(formula 2.1 1). The only difference is that instead of the Poisson bracket 
we now have the commutator of H with p. 

To emphasize the similarity between these two situations, we shall 
write the evolution equation (3.35) and its formal solution again in the 
form 

8~ i- = Lp, 
at 

including the Liouville operator, which now has a new meaning. This will 
permit us to treat both classical and quantum systems by the same 
methods in Chapter 7. 

Let us have another look at the average value of a mechanical quantity 
and its time variation. We have, using equations 3.31 and 3.34, 

because the definition of the trace operator (equation 3.29) implies that 
(see expression 3.31') 

Although operators generally do not commute (see the section on opera- 
tors and complementarity earlier in this chapter), they do so when 
implied in the trace operation. We have also written p instead of p(t = 0). 
We may therefore obtain the average value (A(t)) in two equivalent 
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ways. In the first, the density changes in time and A remains constant, 
whereas, in the second. we consider that the density remains constant but . - -- 
the mechanical quantity A changes according to equat~on 3.3 / :  

This second description is called the Heisenberg representation. It differs 
from the Schrodinger representation in that, instead of the mechanical 
quantities like A being considered time-independent, the wave function Y 
or p is time-independent. By taking the derivative with respect to time, 
equation 3.39 leads to (see equations 3.35 and 3.36) 

a A 
i - =  A H -  H A  

at 

Note that it is of the same form as the Liouville equation (3.36), except 
that L is replaced by - L. This will be used in Chapter 7. 

A similar distinction exists in classical dynamics. Equation 2.5 corre- 
sponds to the Heisenberg equation and equation 2.1 1 to  the SchrMinger 
equation. These two equations differ by the sign of the Poisson bracket 
operator L as defined in equation 2.13. 

Equilibrium Ensembles 

The concept of equilibrium ensembles that was introduced for classical 
systems in Chapter 2 may be easily extended to quantum systems. Yet, 
there are interesting differences between classical and quantum dynami- 
cal systems. For example, quantum ergodic systems can be shown to 
imply that the systems are not degenerate (to each eigenvalue of the 
energy corresponds a single eigenfunction) This result, which was estab- 
lished by von Neumann (see Farquhar, 1964), very much limits the inter- 
est of the ergodic approach because most quantum systems of interest are 
degenerate. For example. a given energy may be partitioned in many 
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ways between possible excitations in a many-particle system. For this 
reason, a number of physicists starting with von Neumann himself have 
tried to define macro-observables that would give an approximate descrip- 
tion of dynamics and include the approach to equilibrium. Once again, 
we encounter the idea that approach to equilibrium and more generally 
the concept of irreversibility correspond to an approximation of dynamics. 
It will be seen in Chapter 7 that we can consider this problem quite 
differently: irreversibility corresponds indeed to an extension of dynam- 
ics, possible when supplementary conditions (such as weak stability in 
classical dynamics) are satisfied. 

The Measurement Problem 

Many conceptual problems refer to the very formulation of quantum 
mechanics. For example: Is the departure from classical causality really 
unavoidable? Can we not introduce supplementary "hidden" variables so 
as to  make the formalism of quantum mechanics more similar to that of 
classical mechanics? These questions are beautifully reviewed in a mono- 
graph by Bernard d7Espagnat (1976). In spite of the effort expended in 
attempting to  solve such problems, no marked success has been achieved 
until now. Our attitude will be different: we accept the quantum mechani- 
cal formalism but we ask how far we can extend it without marked 
modifications. 

This question arises when the measurement problem mentioned early 
in this chapter is considered. Suppose that we start with a wave function 
Y and the corresponding density p as given by equation 3.30: 

By measuring a dynamical quantity, say the energy. of which the un are 
the eigenfunctions. we obtain various eigenvalues E ,, E ,  , . . . , with prob- 
abilities 1 cn 1'. But once we have obtained a given eigenvalue, say Ei, we 
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know that the system is necessarily in the state u i .  At the end of the 
measurement we have a mixture: 

with probabilities 1 c 1  1 2 ,  I c z  1 ' ,  . . . . 1 ck I Z ,  . . . . In accordance with equa- 
tion 3.32, the corresponding density p is now 

which is quite different from equation 3.41. 
The transformation from equation 3.41 to equation 3.42, often called 

the reduction of the wave packet, does not belong to the type of unitary 
transformations (equation 3.20) described by the solution of the Schro- 
dinger equation. Von Neumann (1955) has expressed this difference in a 
most elegant way by showing that we may define an "entropy" that 
increases when we go from a pure state to a mixture. In this way the 
problem of irreversibility now appears at the very heart of physics. 

But how is this problem possible? We have seen that Schrodinger's 
equation is linear (see equation 3.18). A pure state should therefore 
remain a pure state. If indeed the "fundamental level" of description is 
the Schrodinger equation, there is no easy way out. Many suggestions are 
given in d'Espagnat's book (1976), none quite convincing. 

The solution proposed by von Neumann himself (1955) and advocated 
by others, including Eugene Wigner, is that we have to leave the field of 
physics and invoke the active role of the observer. This is in line with the 
general philosophy already mentioned that irreversibility is not in nature, 
but in us. In the present case, it is the perceiving subject engaged in an act 
of observation who decides that a transition between a pure state and a 
mixture occurs. It is easy to criticize this point of view, but again how do 
we introduce irreversibility into a " reversible" world? 

F I G U R E  3.2 
.4 symmetric potential. 

Others go even further; they claim that there is no reduction of the 
wave packet at the price that our universe is continuously splitting into a 
stupendous number of branches as the result of measurementlike interac- 
tions! Although such extreme views will not be discussed here, it should 
be noted that the very existence of such concepts is proof that physicists 
are not positivists. They are not satisfied with giving rules that simply 
"work "! 

We shall return to this problem in Chapter 8. Let us only note here that 
the distinction between pure states and mixtures, which is formally very 
clear in quantum mechanics, can in fact lie beyond any finite accuracy of 
measurement. For example, consider a symmetric potential with two 
minima such as that represented in Figure 3.2. 

Suppose that 1 u , )  corresponds to a wave function centered in region 
"a," and I u , )  to one centered in region "b." The distinction between 
pure states and mixtures differs by terms involving the product l u l ) ( u 2  1 .  
However, this product can be extremely small whcn the potential barrier 
takes macroscopic dimensions. In other words, wave functions may 
become " unobservables," somewhat like the trajectories in problems in- 
volving weak stability considered in Chapter 2. This remark will play an 
important role in the theory of quantum irreversible processes presented 
in Chapters 7 through 9. 

Decay of Unstable Particles 

Before discussing the decay of unstable particles, a distinction between 
"small" and "large" systems should be made clear. The transition from 
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a discrete to a continuous spectrum was treated in Chapter 2 in the 
section on operators. A general theorem in quantum mechanics states 
that quantum mechanical systems confined to a finite volume have a 
discrete spectrum. To obtain a continuous spectrum, we must therefore 
go to the limit of an infinite system. This is in contrast with classical 
systems in which, as noted in Chapter 2, the Liouville operator may 
already have a continuous spectrum for finite systems. The difference 
comes from the fact that the classical Liouville operator acts on the phase 
space, which involves velocities (or momenta) that are always continuous 
variables, whereas the Hamiltonian operator acts on the coordinate space 
(or on the momentum space but not on both; see equations 3.1 and 3.2). 

A discrete spectrum for H means periodic motion. This is no longer so 
when the spectrum becomes continuous. Let us therefore see how the 
transition to a continuous spectrum changes the time evolution. Instead 
of the sum in equation 3.21, an integral must now be considered. Using 
the eigenvalue of the energy as the independent variable, we may write 
this integral in the form 

An important point is that this integral has to be taken from a finite value 
(in this case, a finite value equal to zero) to infinity. Indeed, if the Hamil- 
tonian could take arbitrarily large negative values, the system would be 
unstable; therefore some lower limit must exist. 

Instead of the periodic variation represented by equation 3.21, we now 
obtain a Fourier integral, which may represent a much larger type of 
variation in time. In principle, this is welcome. We may, for examplc, 
apply this formula to the decay of an unstable particle or to the deactiva- 
tion of an excited atomic level. Then, by introducing appropriate initial 
conditions, we would like to find an exponential decay for the probability 

in which z is the lifetime. This is nearly, but not exactly, so. In fact, 
exponential formula 3.44 can never be exact. As a consequence of a 
celebrated theorem, the Paley-Wiener theorem (1934), a Fourier integral 
of the form 3.43, in which the integration is taken from a finite value to 

infinity, always decays more slowly than an exponential in the limit of 
long times. In addition, equation 3.43 leads to short time deviations from 
the exponential law. 

It is true that numerous theoretical investigations have shown that the 
deviations from the exponential are too small to be measured at present. 
It is important that experimental and theoretical investigations be con- 
tinued. The fact that deviations from the exponential law of decay exist 
leads to serious questions about the meaning of indistinguishability. Sup- 
pose that we prepared a beam of unstable particles, say mesons, and let it 
decay and that later we prepared another group of mesons. Strictly speak- 
ing, these two groups of mesons, prepared at two different times, would 
have different decay laws, and we could distinguish between the two 
groups just as we can distinguish between old and young women. This 
seems somewhat strange. If we have to choose, I believe we should keep 
indistinguishability as a basic principle. 

Of course, if we restricted the concept of elementary particles to stable 
particles-as, for example, Wigner has suggested on many occasions- 
then this question would not arise. But it seems difficult to restrict the 
existing schemes for elementary particles to stable ones. It seems fair to 
say that the scientific community feels more and more that some generaliz- 
ation of quantum mechanics is necessary to incorporate unstable par- 
ticles. In fact, the difficulty is even greater. We would like to associate 
elementary particles with well-defined properties in spite of their interac- 
tions. To take a concrete case, consider the interaction of matter with 
light, of electrons with photons. Suppose that we could diagonalize the 
corresponding Hamiltonian. We would obtain some "units" similar to 
the normal modes of a solid, which by definition no longer interact. 
Certainly these units cannot be the physical clectrons or photons that we 
see around us. These objects interact and it is precisely because of this 
interaction that we can study them. But how to incorporate interacting 
but well-defined objects into a Hamiltonian description? As mentioned 
before, in the representation in which the Hamiltonian is diagonal the 
objects are well defined. but there are no interactions; in the other rep- 
resentations the objects are not well defined. 

- 
One feels that a way out must be a closer look at what we really have to 

eliminate and what to keep by a suitable transformation. As will be seen 
in Chapter 8, this problem is closely related to the basic distinction be- 
tween reversible and irreversible processes. 
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Is Quantum Mechanics Complete? 

In light of the discussions presented, I believe that the answer to this 
question can be safely formulated as "no." Quantum mechanics was 
directly inspired by the situation in atomic spectroscopy. The frequency 
of"  rotation" of an electron around the nucleus is of the order of 10-l6 
second, the typical lifetime second. Therefore, an excited electron 
rotates 10,000,000 times before it falls down to the ground state. As 
it was well understood by Bohr and Heisenberg, it was this fortunate 
circumstance that made quantum mechanics so successful. But today we 
can no longer be satisfied with approximations that treat the nonperiodic 
part of the time evolution as a small, insignificant perturbation effect. 
Here again, as in the problem of measurement, we are confronted with the 
concept of irreversibility. With his remarkable physical insight, Einstein 
noticed (1917) that quantization in the form used at that time (i.e., in the 
Bohr-Sommerfeld theory) was valid only for quasi-periodic motions 
(described in classical mechanics by integrable systems]. Certainly fun- 
damental progress has been realized since. Yet the problem remains. 

We are faced with the very meaning of idealizations in physics. Should 
we consider quantum mechanics of systems in a jn i te  volume (and there- 
fore with a discrete energy spectrum) to be the basic form of quantum 
mechanics? Then problems such as decay, lifetimes, and so forth must be 
considered to be related to supplementary " approximations " involving 
the limit to infinite systems to obtain a continuous spectrum. Or, on the 
contrary, should we argue that nobody has ever seen an atom that would 
not decay when brought into an excited level? The physical "reality" 
then corresponds to systems with continuous spectra, whereas standard 
quantum mechanics appears only as a useful idealization, as a simplified 
limiting case. This is much more in line with the view that elementary 
particles are expressions of basic fields (such as photons with respect to the 
electromagnetic field) and fields are in essence not local because they 
extend over macroscopic regions of space and time. 

Finally, it is interesting to note that quantum mechanics has in- 
troduced statistical features into the basic description of physics. This is 
most clearly expressed in terms of the Heisenberg uncertainty relations. It 

Q U A N T U M  M E C H A N I C S  

is important to note that no similar uncertainty relation exists for time 
and energy (i.e., the Hamiltonian operator). As the result of SchrMinger's 
equation, which relates the time change to H o p ,  such an uncertainty 
relation could be understood as a complementarity between time and 
change, between being and becoming. But time is just a number (not an 
operator) in quantum mechanics, as it is in classical mechanics. 

We shall see that there are circumstances-implying the limit to con- 
tinuous spectrum-in which such a supplementary uncertainty relation 
may be established between the Liouville operator and time even in 
classical mechanics. When this is so, time acquires a new supplementary 
meaning-it becomes associated with an operator. Before we take up this 
fascinating problem again, let us consider the "complementary" part of 
physics; that is, the physics of becoming. 



Part I I 

THE PHYSICS 
O F  BECOMING 



EMERGENCE OF WAVE STRUCTURES IN FIELDS OF AMOEBAE 
OF THE CELLULAR SLIME MOLD Dictyostelium discoideum. 

When mature slime-mold amoebae have exhausted their food resources 
and become starved, they secrete cyclic AMP, an attractant that induces 
their aggregation. The attractant is secreted in brlef pulses, initially by only 
a few amoebae that then become the centers to which other amoebae 
are attracted. The frequency of these pulses is one every five mlnutes at 
first, increasing to one every two minutes as aggregation proceeds The 
nine frames shown here were taken at ten-minute intervals. The initial 
signals, which decay wtthin a few seconds of the~r creation, are passed 
on to  amoebae nearby, and they in turn pass them on to amoebae 
further away, and so forth. The pulses are relayed outward from each 
center at about one millimeter every three mlnutes. Besldes relaylng the 
pulses, the amoebae respond to these signals by movlng a short distance 
toward a signalling center each time a pulse reaches them. This 
d~scontinuotjs movement has been visualized in these photographs by the 
use of a f~ne ly  adjusted dark-fleld optical system that reveals the moving 
amoebae (which are elongated) as br~ght  bands and the stationary 
amoebae ( w h ~ c h  are rounded up) as dark bands Waves can be either 
concentric, whth a period controlled by pace-maker amoebae, or spiral. 
with pertod~city governed by the refractory ~nterval-that is, the length of 
tlme following a response during whlch the amoebae will not respond 
to further stimulation. The larger circles shown are approximately ten 
millimeters In diameter. [Unpubl~shed photographs by P. C. Newell. 
F .  M. Ross, and F C Caddtck Further details of the signallhng system 
can be found in "Aggregation and Cel! Surface Receptors in Cellular Slime 
Molds" by P. C. Newell. In Microbial Interactions, Receptors and 
Recognition, Series 6, J .  L. Reiss~g, ed. (Chapman & Hall, 1977). 
pp. 1-57.] 



Chapter 4 
THERMODYNAMICS 

Entropy and Boltzmann's Order Principle 

Chapters 2 and 3 of this book dealt with the physics of time correspond- 
ing to reversible phenomena, because both the Hamilton and the Schro- 
dinger equations are invariant with respect t o  the substitution t -+ - t. 
Such situations correspond to what I have called the ~ h y s i c s  of being. We 
now turn to the physics of becoming and, specifically, to irreversible pro- 
cesses as described by the second law of thermodynamics. In this chapter 
and in the two that follow, the point of view is strictly phenomenological. 
What the relation with dynamics may be will not be investigated; however, 
methods will be outlined that successfully describe unidirectional time 
phenomena over a wide range, from simple irreversible processes such as 
heat conduction to  complicated processes involving self-organization. 

Since its formulation, the second law of thermodynamics has em- 
phasized the unique role of irreversible processes. The title of William 
Thomson's (Lord Kelvin's) paper, in which he presented the general for- 
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mulation of the second law for the first time, was: "On the Universal 
Tendency in Nature to the Dissipation of Mechanical Energy " (Thomson 
1952). Clausius also used a cosmological language: "The entropy of the 
universe tends to a maximum" (Clausius 1865). However, it must be 
recognized that the formulation of the second law seems to us today to be 
more a program than a well-defined statement. because no recipe was 
formulated by either Thomson or Clausius to express the entropy change 
in terms of observable quantities. This lack of clarity in its formulation 
was probably one of the reasons why the application of thermodynamics 
became rapidly restricted to equilibrium, the end state of thermodynamic / 

evolution. For example, the classic work of Gibbs, which was so 
influential in the history of thermodynamics, carefully avoids every incur- 
sion into the field of nonequilibrium processes (Gibbs 1975). Another 
reason may well have been that irreversible processes are nuisances in 
many problems: for example, they are obstacles to obtaining the maxi- 
mum yield in thermal engines. Therefore the aim of engineers construct- 
ing thermal engines has been to minimize losses due to irreversible 
processes. 

It is only recently that a complete change in perspective has arisen, and 
we begin to understand the constructive role played by irreversible 
processes in the physical world. Of course, the situation corresponding to 
equilibrium remains the simplest one. It is in this case that the entropy 
depends on the minimum number of variables. Let us briefly examine 
some classical arguments. 

Consider a system that exchanges energy, but not matter, with the 
outside world. Such a system is called a closed system in contrast with an 
open system, which exchanges matter as well as energy with the outside 
world. Suppose that this closed system is in equilibrium. The entropy 
production then vanishes. On the other hand, the change of the macro- 
scopic entropy is then defined by the heat received from the outside 
world. By definition, 

in which T is a positive quantity called the absolute temperature. 
Let us combine this relation with the first law of thermodynamics, as 
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is valid for such a simple system (for details, see Prigogine 1967): 

in which E is the energy, p the pressure, and V the volume. This formula 
expresses that the energy exchanged by the system with the outside world 
during a small time interval dt is due to the heat received by the system 
plus the mechanical work performed at its boundaries. Combining equa- 
tion 4.1 with equation 4.2, we obtain the total differential of the entropy in 
the variables E and V :  

Gibbs has generalized this formula to include variations in composition. 
Let us call n,,  n, ,  n,, . . . , the number of moles of the various components. 
We may then write 

The quantities p, arc by definition the chemical potentials introduced 
by Gibbs, and equation 4.3' is called the Gibbs formula for entropy. The 
chemical potentials are themselves functions of the thermodynamic var- 
iables, such as temperature, pressure, concentration, and so forth. They 
take an especially simple form for so-called ideal systems,* in which they 
depend in a logarithmic way on the mole fractions N, = n 7 / ( x  n,): 

in which R is the gas constant (equal to the product of Boltzmann's 
constant k and Avogadro's number) and i : , (p ,  T) is some function of 
pressure and temperature. 

* Examples of ideal systems are dilute solutions and perfect gases. 
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Instead of entropy, other thermodynamic potentials are often intro- 
duced, such as Helmholtz free energy, defined by 

It is then easy to show that the law of increase of entropy, valid for 
isolated systems, is replaced by the law of decrease of free energy for 
systems that are maintained at a given temperature. 

The structure of equation 4.5 reflects a competition between the energy 
E  and the entropy S. At low temperatures the second term is negligible 
and the minimum value of F imposes structures corresponding to mini- 
mum energy and generally to low entropy. At increasing temperatures, 
however, the system shifts to structures of higher and higher entropy. 

Experience confirms these considerations because at low temperatures 
we find the solid state characterized by an ordered structure of low 
entropy, whereas at higher temperatures we find the gaseous state of high 
entropy. The formation of certain types of ordered structures in physics is 
a consequence of the laws of thermodynamics applied to closed systems 
at thermal equilibrium. 

In Chapter 1, the simple interpretation of entropy in terms of complex- 
ions, given by Boltzmann, was described. Let us apply this formula to a 
system whose energy levels are given by E  ,, E , ,  E , .  By looking for the 
occupation numbers, which make the number of complexions (equation 
1.9) a maximum for given values of the total energy and number of 
particles, we obtain Boltzmann's basic formula for the probability, Pi, of 
the occupation of a given energy level, E , :  

in which k is, as in equation 1.10, Boltzmann's constant, T the tempera- 
ture, and E ,  the energy of the chosen level. Suppose that we consider a 
simplified system with only three energy levels. Then Boltrmann's for- 
mula (equation 4.6) tells us the probability of finding a molecule in each 
of the three states at equilibrium. At very low temperatures, T + 0, the 
only significant probability is that corresponding to the lowest energy 
level, and we come to the scheme shown in Figure 4.1 in which virtually 
all the molecules are in the lowest energy state, El ,  because 

E,  1 E2 
FIGURE 4.1 
Low-temperature distribution: only the lowest energy 
level is appreciably populated. 

El - 
At high temperatures, however, the three probabilities become roughly 

equal: 
e - E i R T ,  e - E z I k T ,  e -Es IkT  - - (4.8) 

and therefore the three states are approximately equally populated (see 
Figure 4.2). 

FIGURE 4.2 
E2 

High-temperature distribution: excited states as well 
as the ground state are populated. 

Boltzmann's probability distribution (equation 4.6) gives us the basic 
principle that governs the structure of equilibrium states. It may appro- 
priately be called Boltzmann's order principle. It is of paramount impor- 
tance as it is capable of describing an enormous variety of structures 
including, for example, some as complex and delicately beautiful as snow 
crystals (Figure 4.3). 

Boltzmann's order principle explains the existence of equilibrium struc- 
tures. However, the question can be asked, Are they the only type of 
structures that we see around us? Even in classical physics we have many 
phenomena where nonequilibrium may lead to order. When we apply a 
thermal gradient to a mixture of two different gases, we observe an incre- 
ment of one of the components at the hot wall. whereas the other concen- 
trates at the cold wall. This phenomenon, already observed in the 
nineteenth century, is called thermal diffusion. In the steady state, the 
entropy is generally lower than it would be in a uniform texture. This 
shows that nonequilibrium may be a source of order. This observa- 
tion initiated the point of view originated by the Brussels school. (See 
Prigogine and Glansdorff, 1971, for a historical survey.) 



F I G U R E  4.3 
Typical snow crystals. (Courtesy of National Oceanic 
and Atmospheric Administration, photographs 

F I G U R E  4.4 
Mosaic model of multienzyme reaction. Substrate S, is changed by 
successive modifications to the product P by the action 
of "captive" enzymes. 

The role of irreversible processes becomes much more marked when we 
turn to biological or social phenomena. Even in the simplest cells, the 
metabolic function includes several thousand coupled chemical reactions 
and, as a consequence, requires a delicate mechanism for their coordina- 
tion and regulation. In other words, we need an extremely sophisticated 
functional organization. Furthermore, the metabolic reactions require 
specific catalysts, the enzymes, which are large molecules possessing a 
spatial organization, and the organism must be capable of synthesizing 
these substances. A catalyst is a substance that accelerates a certain 
chemical reaction but is not itself used up in the reaction. Each enzyme, 
or catalyst, performs one specific task; if we look at the manner in which 
the cell performs a complex sequence of operations, we find that it is 
organized along exactly the same lines as a modern assembly line (see 
Figure 4.4). (See Welch, 1977.) 

The overall chemical modification is broken down into successive 
elementary steps, each of which is catalyzed by a specific enzyme. The 
initial compound is labeled S, in the diagram; at each membrane, an 
L G  imprisoned" . enzyme performs a given operation on the substance and 
then sends it on to the next stage. Such an organization is quite clearly 
not the result of an evolution toward molecular disorder! Bioiogical 
order is both architectural and functional; furthermore, at the cellular 
and supercellular levels, it manifests itself by a series of structures and 
coupled functions of growing complexity and hierarchical character. This 
is contrary to the concept of evolution as described in the thermodyna- 
mics of isolated systems, which leads simply to the state of maximum 
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number of complexions and, therefore, to "disorder." Do we then have to 
conclude, as did Roger Caillois (1976), that "Clausius and Darwin cannot 
both be right," or should we introduce, with Herbert Spencer (1870), 
some new principle of nature, such as the "instability of the homogen- 
eous " or " a  differentiating force, creator of organization." 

Thc unexpected new feature is that nonequilibrium may, as will be seen 
in this chapter, lead to a new type of structure, the dissipative structures, 
which are essential in the understanding of coherence and organization in 
the nonequilibrium world in which we live. 

Linear Nonequilibrium Thermodynamics 

To make the transformation from equilibrium to nonequilibrium, we 
must calculate entropy production explicitly. We can no longer be 
satisfied with the simple inequality, because we want to relate entropy 
production to well-defined physical processes. A simple evaluation of 
entropy production becomes possible if we assume that entropy outside 
equilibrium depends on the same variables, E, 1/; n,, as it does in equilib- 
rium. (For nonuniform systems we would have to assume that the 
entropy density depends on the energy density and local concentrations.) 
As an example, let us calculate the entropy produced by chemical reac- 
tions in closed systems. Consider a reaction such as 

The change due to the reaction in the number of moles of component X 
in time dt is equal to  that of Y and opposite that of A or B: 

In general, chemists introduce an integer v, (positive or negative), called 
the stoichiometric coefficient of component y ,  into the chemical reaction; 
4 is then, by definition, the degree of advancement of the chemical reac- 
tion. We may then write 

dn, = v, d t  

The rate of the reaction is 
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Taking into account this expression as well as the Gibbs formula (4.3'), 
we immediately obtain, 

in which A is the afJinity of the chemical reactions (first introduced by 
Theophile De Donder, 1936), which is related to the chemical potentials, 

Pjuj, by 

The firs\ term in equation 4.13 corresponds to an entropy flow (see equa- 
tion 4.1), whereas the second term corresponds to the entropy 
production: 

Using definition 4.12, we find that the entropy production per unit time 
takes the remarkable form 

It is a bilinear form in the rate v of the irreversible process (here the 
chemical reaction) and the corresponding force (here A/T). This type of 
calculation can be generalized: starting with the Gibbs formula (4.30, one 
obtains 

in which J j  represents the rates of the various irreversible processes 
taking place (chemical reactions, heat flow, diffusion, etc.) and X j  the 
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corresponding generalized forces (affinities, gradients of temperature and 
of chemical potentials, etc.). This is the basic formula of the macroscopic 
thermodynamics of irreversible processes. 

It should be emphasized that supplementary assumptions have been 
used to derive the explicit expression (4.17) for the entropy production. 
The validity of the Gibbs formula (4.3') can only be established in some 
neighborhood of equilibrium. This neighborhood defines the region of 
" local " equilibrium. 

At thermodynamic equilibrium, 

for all irreversible processes simultaneously. It is therefore quite natural 
to assume, at least for conditions near equilibrium, linear homogeneous 
relations between the flow and the forces. Such a scheme automatically 
includes such empirical laws as Fourier's law, which says that the flow of 
heat is proportional to the gradient of temperature, and Fick's law for 
diffusion, which states that the flow of diffusion is proportional to the 
gradient of concentration. In this way, we obtain the linear thermodyna- 
mics of irreversible processes characterized by the relations 

Linear thermodynamics of irreversible processes is dominated by two 
important results. The first is expressed by the Onsager reciprocity rela- 
tions (1931), which state that 

When the flow J i ,  corresponding to the irreversible process i ,  is 
influenced by the force X j  of the irreversible process j, then the flow J j  is 
also influenced by the force X i  through the same coefficient Li j .  

The importance of the Onsager relations resides in their generality. 
They have been submitted to many experimental tests. Their validity 
showed, for the first time, that nonequilibrium thermodynamics leads, as 
does equilibrium thermodynamics, to general results independent of any 
specijic molecular model. The discovery of the reciprocity relations can 
be considered to have been a turning point in the history of 
thermodynamics. 

THERMODYNAMICS 

Heat conductivity in crystals affords a simple application of Onsager's 
theorem. According to the reciprocity relations, the heat conductivity 
tensor would be symmetrical whatever the symmetry of the crystal. This 
remarkable property had in fact already been established experimentally 
by Woldemaz Voigt in the nineteenth century and corresponds to a 
special case of the Onsager relations. 

The proof of Onsager's relations is given in textbooks (see Prigogine 
1967). The important point for us is that they correspond to a general 
property independent of any molecular model. This is the feature that 
makes them a thermodynamic result. 

Another example to which Onsager's theorem applies is a system 
composed of two vessels connected by means of a capillary or a 
membrane. A temperature difference is maintained between the two ves- 
sels. This system has two forces, say X k  and X , ,  corresponding to the 
difference in temperature and chemical potential between the two vessels, 
and two corresponding flows, Jk and J , .  It reaches a state in which the 
transport of matter vanishes, whereas the transport of energy between 
the two phases at different temperatures continues; that is, a steady non- 
equilibrium state. No confusion should arise between such states and 
equilibrium states characterized by a zero entropy production. 

According to equation 4.17, entropy production is given by 

with the linear phenomenological laws (see equation 4.19) 

For the stationary state, the flow of matter vanishes: 

Coefficients L 1  L I Z ,  L , , ,  L , ,  are all measurable quantities, and we 
may therefore verify that, indeed, 
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This example can be used to illustrate the second important property of 
linear nonequilibrium systems: the theorem of minimum entropy produc- 
tion (Prigogine, 1945; see also Glansdorff and Prigogine, 1971). It is easy 
to see that equation 4.23, together with equation 4.24, is equivalent to the 
condition that entropy production (equation 4.21) is minimum for a g i ~  
constant Xk . Equations 4.21, 4.22, and 4.24 give 

Therefore the vanishing of the mass flow (equation 4.23) is equivalent to 
the extremum condition 

L(c) = 
ax, dt  

The theorem of minimum entropy production expresses a kind of 
" inertial " property of nonequilibrium systems. When given boundary 
conditions prevent the system from reaching thermodynamic equilibrium 
(i.e., zero entropy production) the system settles down in the state of 
" least dissipation." 

It was clear when this theorem was formulated that it was strictly valid 
only in the neighborhood of equilibrium, and for many years great efforts 
were made to extend this theorem to systems farther from equilibrium. It  
came as a great surprise when it was shown that in systems far from 
equilibrium the thermodynamic behavior could be quite different-in 
fact, even directly opposite that predicted by the theorem of minimum 
entropy production. 

It is remarkable that this unexpected behavior had already been ob- 
served in ordinary situations studied in classical hydrodynamics. The 
example first analyzed from this point of view is called the Benard instabi- 
lity. (For a detailed discussion of this and other hydrodynamic instabili- 
ties, see Chandrasekhar, 1961 .) 

Consider a horizontal layer of fluid between two infinite parallel planes 
in a constant gravitational field, and let us maintain the lower boundary 
at temperature TI and the higher boundary at temperature T2 with 
TI > T,. For a sufficiently large value of the "adverse" gradient 
(TI - T2)/(T, + T,), the state of rest becomes unstable and convection 

F I G U R E  4.5 
Spatial pattern of convection cells, viewed from above in a 
liquid heated from below. 

starts. Entropy production is then increased because the convection is a 
new mechanism for heat transport (see Figure 4.5). Moreover, the mo- 
tions of the currents that appear after convection has been established are 
more highly organized than are the microscopic motions in the state of 
rest. In fact, large numbers of molecules must move in a coherent fashion 
over observable distances for a sufficiently long time for there to be a 
recognizable pattern of flow. 

Thus, we have a good example of the fact that nonequilibrium can be a 
source of order. As will be seen later in this chapter in the section titled 
Application to Chemical Reactions, this is true not only for hydrodyna- 
mic systems, but also for chemical systems if well-defined conditions 
imposed upon the kinetic laws are satisfied. 

It is interesting to note that Boltzmann's order principle would assign 
almost zero probability to the occurrence of Benard convection. When- 
ever new coherent states occur far from equilibrium, the application of 
probability theory, as implied in the counting of number of complexions, 
breaks down. For Benard convection, we may imagine that there are 
always small convection currents appearing as fluctuations from the aver- 
age state, but below a certain critical value of the temperature gradient, 
these fluctuations are damped and disappear. However, above this critical 
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value, certain fluctuations are amplified and give rise to a macroscopir: 
current. A new molecular order appears that basically correspond. a 

giant fluctuation stabilized by the exchange of energy with the +de 

world. This is the order characterized by the occurrence of what are 
referred to as "dissipative structures." 

Before further discussion of thc possibility of dissipative structures, a 
brief review of some aspects of thermodynamic stability theory will yield 
interesting information about the conditions for their occurrence. 

Thermodynamic Stability Theory 

The states corresponding tc thermodynamic equilibrium or the steady 
states corresponding to a minimum of entropy production in linear non- 
equilibrium thermodynamics are automatically stable. The concept of 
Lyapounov functions was introduced in Chapter 1. Entropy production 
in the range of linear nonequilibrium thermodynamics is just such a 
function: if a system is perturbed, entropy production will increase, but 
the system reacts by returning to the state at which its entropy production 
is lowest. For a discussion of far-from-equilibrium systems, it is useful to 
introduce still another Lyapounov function. As we know, equilibrium 
states in isolated systems are stable when corresponding to the maximum 
production of entropy. If we perturb a system that is near an equilibrium 
value S, ,  we obtain 

However, because the function S  is maximum at S,,  the first-order term 
vanishes, and therefore the stability is determined by the sign of the 
second-order term S2S. 

Elementary thermodynamics permits us to calculate this important 
expression explicitly. First consider the perturbation of a single, indepen- 
dent variable, the energy E in equation 4.3'. We then have 

and 
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in which we have used the fact that the specific heat is defined as 

and is a positive quantity. More generally, if we perturb all the variables 
in equation 4.3', we obtain a quadratic form. The result is given below 
(the calculations may be found, e.g., in Glansdorff and Prigogine, 1971): 

Here p is the density. v = l i p  is the specific volume (the index N j  means 
that composition is maintained constant in the variation of N j ) ,  X is the 
isothermal compressibility, N ,  is the mole fraction of component j, and 
pjj .  is the derivative 

The basic stability conditions of classical thermodynamics are 

C, > 0 (thermal stability) 

X > 0 (mechanical stability) 

1 p j j  6 N j  SN,. > 0 (stability with respect to diffusion) (4.34) 
j j  ' 

Each of these conditions has a simple physical meaning. For example, if 
condition 4.32 were violated, a small fluctuation in temperature would be 
amplified through the Fourier equation instead of being damped. 

When these conditions are satisfied, d2S is a negative definite quantity. 
Moreover, it can be shown that the time derivative of d2S is related to the 
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entropy production, P, through 

in which P is defined as 

As a result of inequalities 4.30 and 4.35, d2S is a Lyapounov function, 
and its existence ensures the damping of all fluctuations. That is the 
reason why a macroscopic description for large systems that are near 
equilibrium is sufficient. Fluctuations play only a subordinate role: they 
appear as a negligible correction to the laws for large systems. 

Can this stability be extrapolated for systems farther from equilibrium? 
Does h2S play the role of a Lyapounov function when we consider larger 
deviations from equilibrium but still within the framework of macro- 
scopic description? To answer these questions, calculate the perturbation 
d2S for a system in a noneqzrilibrium state. Inequality 4.30 remains valid, in 
the range of macroscopic description. However, the time derivative of d2S 
is no longer related to the total entropy production, as in inequality 4.35, 
but to the entropy production arising from perturbation. In other words, 
we now have, as has been shown by Glansdorff and myself (1971), 

The right-hand side is what may be called the excess entropy production. 
It should be re-emphasized that 6Jp and 6Xp are deviations from the 
values Jp and X, at the stationary state, the stability of which we are 
testing through a perturbation. Contrary to what happens for systems at 
equilibrium or near equilibrium, the right-hand side of equation 4.37, 
corresponding to the excess entropy production, does generally not have 
a well-defined sign. If for all t larger than some fixed time t o ,  in which t o  
may be the starting time of the perturbation, we have 

FIGURE 4.6 
Various steady-state solutions corresponding to reaction 4.39: 
0 corresponds to thermodynamic equilibrium; "th" is the "thermodynamic 
branch." 

then h2S is a Lyapounov function and stability is ensured. Note that, in 
the linear range, the excess entropy production would have the same sign 
as the entropy production itself and we would obtain the same result as 
would be obtained with the theorem of minimum entropy production. 
However, the situation changes in the far-from-equilibrium range. There 
the form of chemical kinetics plays an essential role. 

Examples of the effect of chemical kinetics are presented in the next 
section. For certain types of chemical kinetics the system may become 
unstable. This shows that there is an essential difference between the laws 
for systems at equilibrium and those for systems that are far from equilib- 
rium. The laws of equilibrium are universal. However, far from equilib- 
rium the behavior may become very specijic. This is a welcome 
circumstance, because it permits us to introduce a distinction in the behav- 
ior of physical systems that would be incomprehensible in an equilib- 
rium world. 

Suppose that we consider a chemical reaction of the type 

in which {A) is a set of initial products, {X) a set of intermediate ones, and 
{F} a set of final products. Chemical reaction equations are generally 
nonlinear. As a result, we shall obtain many solutions for the intermediate 
concentration (see Figure 4.6). Among these solutions, one corresponds to 
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thermodynamic equilibrium and can be continued into the nonequilib- 
rium range; it will be referred to as the thermodynamic branch. The 
important new feature is that this thermodynamic branch may become 
unstable at some critical distance from equilibrium. 

Application to Chemical Reactions 

Let us apply the preceding formalism to chemical reactions. Condition 
4.38 for the existence of a Lyapounov function then becomes 

in which 6vp represents the perturbation of the chemical reaction rates 
and SAP, the perturbation of the chemical affinities as defined in equation 
4.14. Consider the chemical reaction 

Because we are mainly interested in far-from-equilibrium situations, we 
neglect the reverse reactions and write 

for the reaction rate.* According to equations 4.4 and 4.14, the affinity for 
an ideal system is a logarithmic function of the concentration. Therefore, 

X Y  
A = log -- 

CD 

A fluctuation in the concentration X  about some steady-state value gives 
rise to excess entropy production: 

Such a fluctuation could therefore not violate stability condition 4.40. 

* For the sake of simplicity, we will assume that all kinetic and equilibrium constants, as 
well as RT, are equal to 1 ; also we will use X for the concentration of X, C , ,  and so forth. 

THERMODYNAMICS 

Let us now consider the autocatalytic reaction (instead of reaction 
4.41): 

The reaction rate is still assumed to be given by equation 4.42, but the 
affinity is now 

X Y  Y  
A = log - = log - 

X2 X 

We now have the "dangerous" contribution to excess entropy production 

The negative sign does not mean that the perturbed steady state will 
necessarily become unstable, but it may become so (the positive sign is a 
sufficient but not necessary condition for stability). It is, however, a gen- 
eral result that instability of the thermodynamic branch necessarily in- 
volves autocatalytic reactions. 

One is immediately reminded of the fact that most biological reactions 
depend on feedback mechanisms. In Chapter 5, it will be seen, for exam- 
ple, that the energy-rich molecule adenosine triphosphate (A'TP), neces- 
sary for the metabolism of living systems, is produced through a 
succession of reactions in the glycolytic cycle that involve ATP at the 
start. To produce ATP we need ATP. Another example is cell production: 
it takes a cell to produce a cell. 

Thus, it becomes very tempting to relate the structure, which is so 
conspicuous in biological systems, to a breakdown of the stability of the 
thermodynamic branch. Structure and function become closely related. 

To grasp this important point in a clear way let us consider some 
simple schemes of catalytic reactions. For example: 
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The values of the initial products A and final products E are maintained 
constant in time so that only two independent variables, X and Y, are left. 
To simplify, we neglect the reverse reactions. This is a scheme of auto- 
catalytic reactions; the increase in the concentration of X depends on the 
concentration of X. The same is true for Y. 

This model has been widely used in ecological modelling, with X 
representing, for example, an herbivore that uses A, and Y representing 
carnivore that propagates at the expense of the herbivore. This model is 
associated in the literature with the names of Lotka and Volterra (see 
May, 1974). 

Let us write the corresponding kinetic laws: 

They admit a single nonvanishing steady-state solution: 

To study the stability of this steady state, which corresponds in this case 
to the thermodynamic, we shall use a normal mode analysis. We write 

X ( t ) = X o  +xeU'; Y(t)= Yo+ ye"' 

with 

and introduce equation 4.52 into kinetic equations 4.49 and 4.50, neglect- 
ing higher-order terms in x and y. We then obtain the dispersion equation 
for o (which expresses the fact that the determinant for the homogeneous 
linear equations vanishes). Because we have two components, X and Y, 
the dispersion equations are of the second order. Their explicit form is 

FIGURE 4.7 
Periodic solutions of the Lotka-Volterra model obtained for different values 
of the initial conditions. 

Obviously, stability is related to the sign of the real parts of the roots of 
the dispersion equations. If for each solution, con, of the dispersion 
equation 

the initial state would be stable. In the Lotka-Volterra case, the real part 
vanishes, and we obtain 

This means that we have so-called marginal stability. The system rotates 
around the steady state (equation 4.51). The frequency of rotation (equa- 
tion 4.56) corresponds to the limit of small perturbations. The frequency 
of oscillations is amplitude dependent and there are an infinite number of 
periodic orbits around the steady state (see Figure 4.7). 
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Let us consider another example, which has been used extensively 
recently because it has remarkable properties that allow one to model a 
wide range of macroscopic behaviors. It is called Brusselutor, and 

it corresponds to the scheme of reaction (for details, see Nicolis and 
Prigogine, 1977) 

The initial and final products (A, B, C, D, and E) remain constant, 
whereas the two intermediate components (X and Y) may have concen- 
trations that change in time. Putting the kinetic constants equal to one, 
we obtain the system of equations 

which admits the steady state 

Applying the normal mode analysis, as for the Lotka-Volterra example, 
we obtain the equation 

which should be compared with equation 4.54. 
One finds immediately that the real part of one of the roots becomes 

positive whenever 

F I G U R E  4.8 
Limit cycle behavior of the Brusselator. The same periodic trajectory is 
obtained for different initial conditions. The letter S represents unstable steady state. 

Therefore, this scheme, contrary to what happens with the Lotka- 
Volterra equation, presents a real instability. Numerical calculations as 
well as analytical work performed for values of B, larger than the critical 
value, lead to the behavior indicated in Figure 4.8. We have now a limit 
cycle; that is, any initial point in the space X Y  approaches the same 
periodic trajectory in time. It is important to note the very unexpected 
character of this result. The oscillation frequency now becomes a 
well-defined function of the physicochemical state of the system, whereas, 
in the Lotka-Volterra case, the frequency is essentially arbitrary (because 
it is amplitude dependent). 

Today many examples of oscillating systems are known, especially in 
biological systems, and the important feature is that their oscillation 
frequency is well defined once the state of the system is given. This shows 
that these systems are beyond the stability of the thermodynamic branch. 
Chemical oscillations of this type are supercritical phenomena. The 
molecular mechanism leads to quite fascinating and difficult questions to 
which we shall return in Chapter 6. 
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Limit cycle is not the only possible type of supercritical behavior. 
Suppose that we consider the exchange of matter between two boxes 
(referred to as Box 1 and Box 2). Instead of obtaining equations 4.58 and 
4.59, we obtain 

dX 
= A + X ; Y ,  - BX, - X,  + D x ( X ,  - X,),  

dt 

%= BX,  - X:Y,  + D , ( Y ,  - Y , )  
dt 

The first two equations refer to Box 1, the last two to Box 2. Numerical 
calculations show that, under suitable conditions beyond the critical 
value, the thermodynamic state corresponding to identical concentra- 
tions of X and Y given by (see equations 4.60) 

becomes unstable. An example of this behavior. as recorded by computer, 
is given in Figure 4.9. 

We have here a symmetry-breaking dissipative structure. If a steady 
state X ,  > X ,  is possible, the symmetrical one corresponding to X ,  > X I  
is also possible. Nothing in the macroscopic equations indicates which 
state will result. 

It is important to note that small fluctuations can no longer reverse the 
configurations. Once established, the symmetry-broken systems are 
stable. The mathematical theory of these remarkable phenomena is dis- 
cussed in Chapter 5. In concluding this chapter, emphasis is placed on 
three aspects that are always linked in dissipative structures: the function, 
as expressed by the chemical equations; the space-time structure, which 
results from the instabilities; and the fluctuations, which trigger the in- 

Time (arbitrary units) 

FIGURE 4 9 
A perturbation of Y in Box 2 (Y,)  about the homogeneous state incrcascs 
the rate of production of X in that box (x,), owing to the autocatalytic 
step. This effect grows until a new state is reached corresponding to 
spatial symmetry breaking. 

stabilities. The interplay between these three aspects 

Function +GI==? Structure 

leads to the most unexpected phenomena, including order through,puctua- 
tions, which will be analyzed in the next two chapters. 



Chapter 5 
SELF-ORGANIZATION 

Stability, Bifurcation, 
and Catastrophes 

As indicated in the preceding chapter, thermodynamic description takes 
various forms according to the distance from equilibrium. Of particular 
importance for us is the fact that, far from equilibrium, chemical systems 
that include catalytic mechanisms may lead to dissipative structures. As 
will be shown, these structures are very sensitive to global features such as 
the size and form of the system, the boundary conditions imposed on its 
surface, and so forth. All these features influence in a decisive way the type 
of instabilities that lead to dissipative structures. In some cases, the 
influence of external conditions may be even stronger; for example, 
macroscopic fluctuations may lead to new types of instabilities. 

Far from equilibrium, therefore, an unexpected relation exists between 
chemical kinetics and the space-time structure of reacting systems. It is 
true that the interactions, which determine the values of the relevant 
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kinetic constants and transport coefficients, result from short-range inter- 
actions (such as valency forces, hydrogen bonds, and Van der Waals 
forces). However, the solutions of the corresponding equations depend, in 
addition, on global characteristics. This dependence (which on the ther- 
modynamic branch, near equilibrium, is rather trivial) becomes decisive 
in chemical systems working under far-from-equilibrium conditions. For 
example, the occurrence of dissipative structures generally requires that 
the system's size exceed some critical value-a complex function of the 
parameters describing the reaction-diffusion processes. Therefore we may 
say that chemical instabilities involve long-range order through which the 
system acts as a whole. 

This global behavior greatly modifies the very meaning of space and 
time. Much of geometry and physics is based on a simple concept of space 
and time, generally associated with Euclid and Galileo. In this view, time 
is homogeneous. Time translations may have no effect on physical events. 
Similarly, space is homogeneous and isotropic; again translations and 
rotations cannot alter the description of the physical world. It is quite 
remarkable that this simple conception of space and time may be broken 
by the occurrence of dissipative structures. Once a dissipative structure is 
formed, the homogeneity of time, as well as space, may be destroyed. We 
come much nearer to Aristotle's "biological" view of space-time, which 
was described briefly in the preface. 

The mathematical formulation of these problems requires the study of 
partial differential equations if diffusion is taken into account. The evolu- 
tion of component Xi is then given by equations of the form 

ax, a2xi 
--- = v(X,, X,, . . .) + Di-- 
at dr2 

in which the first contribution comes from the chemical reactions and 
generally has a simple polynomial form (as in Chapter 4 in the section on 
application to chemical reactions), whereas the second term expresses 
diffusion along the coordinate r. For simplicity of notation we use a single 
coordinate r, although, in general, diffusion occurs in three-dimensional 
geometrical space. These equations must be supplemented by boundary 
conditions (generally either the concentrations or the flows are given on 
the boundaries). 

FIGURE 5.1 
Bifurcation diagram for equation 5.2. Solid line and dots denote stable 
and unstable branches respectively. 

The variety of phenomena that may be described by this sort of 
reaction-diffusion equation is quite amazing, which is why it is interesting 
to consider the "basic solution" to be the one corresponding to the 
thermodynamic branch. Other solutions may then be obtained by succes- 
sive instabilities, which take place when the distance from equilibrium is 
increased. Such types of instabilities may be studied by means of bijiurca- 
tion theory (see Nicolis and Prigogine, 1977). In principle, a bifurcation is 
simply the appearance of a new solution of the equations for some critical 
value. Suppose, for example, that we have a chemical reaction corre- 
sponding to the rate equation (see McNeil and Walls, 1974) 

Clearly, for R < 0, the only time-independent solution is X = 0. At the 
point R = 0, we have a bifurcation of a new solution, X = R (see Figure 
5.1), and it may be verified by the linear stability method explained in 
Chapter 4, in the section on application to chemical reactions, that the 
solution X = 0 then becomes unstable, whereas the solution X = R be- 
comes stable. Generally, we have successive bifurcations where we in- 
crease the value of some characteristic parameter p (like B in the 
Brusselator scheme). Figure 5.2 shows a single solution for the value p, ,  
but multiple solutions for the value p2 . 



FIGURE 5.2 
Successive bifurcations: A and A' represent primary bifurcation points from 
the thermodynamic branch; B and B' represent secondary bifurcation points. 

It is interesting that, in a sense, the bifurcation introduces history into 
physics and chemistry, an element that formerly seemed to be reserved for 
sciences dealing with biological, social, and cultural phenomena. Suppose 
that observation shows us that the system whose bifurcation is shown in 
Figure 5.2 is in state C because of an increase of the value of p. Interpreta- 
tion of state C implies a knowledge of the history of the system, which had 
to go through bifurcation points A and B. 

Every description of a system that has bifurcations will imply both 
deterministic and probablistic elements. As will be seen in greater detail 
in Chapter 6, the system obeys deterministic laws, such as the laws of 
chemical kinetics, between two bifurcation points, but in the neighbor- 
hood of the bifurcation points fluctuations play an essential role and 
determine the "branch" that the system will follow. The mathematical 
theory of bifurcation is generally very complex. It often implies rathe1 
tedious expansions, but there are some cases in which exact solutions are 
available. A very simple situation of this type is provided by Rene Thom's 
(1975) theory of catastrophes, which can be applied when diffusion is 
neglected in equation 5.1 and when such equations derive from a poten- 
tial. It means that they then take the form 

d X ,  - av -- -- 
dt ax, 

FIGURE 5.3 
Trajectories for equations 5.4. 

in which V is a kind of "potential function." This is a rather exceptional 
case. However, when satisfied, a general classification of the solutions of 
equation 5.3 may be undertaken by looking for the points at which there 
are changes in the stability properties of the steady states. These are the 
points that Thom called "ensemble de catastrophes." 

Another type of system admitting an exact theory of bifurcation is 
described later in this chapter in the section titled A Solvable Model for 
Bifurcation. 

Finally, a general concept, which plays an important role in the theory 
of self-organization, is that of structural stability. It can be illustrated by a 
simplified form of the Lotka-Volterra equations corresponding to the 
prey-predator competition: 

In the (x, y) phase space, an infinite set of closed trajectories surrounds 
the origin (see Figure 5.3). Compare the solutions of equations 5.4 with 
those arising from the following equations: 

In the latter case, even for the smallest value of the parameter a (a < O),  
the point x = 0, y = 0 is asymptotically stable, being the end point 



FIGURE 5.4 
Trajectories for equations 5.5. 

toward which all trajectories in phase space converge, as indicated in 
Figure 5.4. By definition, equations 5.4 are termed "structurally 
unstable " with respect to " fluctuations " that slightly alter the mechan- 
ism of interaction between x and y and introduce terms, however small, of 
the type shown in equations 5.5. 

This example may seem somewhat artificial, but consider a chemical 
scheme describing some polymerization process in which polymers are 
constructed from molecules A and B, which are pumped into the system. 
Suppose that the polymer has the following molecular configuration: 

ABABAB 

Suppose that the reactions producing this polymer are autocatalytic. If an 
error occurs and a modified polymer appears such as 

ABAABBABA . . 

then it may multiply in the system as a result of the modified autocatalytic 
mechanism. Manfred Eigen presented interesting models that include 
such features and showed in idealized cases that the system would evolve 
toward an optimum stability with respect to the occurrence of errors in 
the replication of polymers (see Eigen and Winkler, 1975). His model has 
as its basis the idea of "cross catalysis." Nucleotides produce proteins, 
which in turn produce nucleotides: 

Nucleotides 
n 

Proteins 
LJ' 

This results in a cyclic network of reactions called a hypercycle. When 
such networks compete with one another, they display the ability to 
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evolve through mutation and replication into greater complexity. In 
recent work, Manfred Eigen and Peter Schuster (1978) presented a model 
for a "realistic hypercycle" related to the molecular organization of a 
primitive replication and translation apparatus. 

The concept of structural stability seems to express in the most com- 
pact way the idea of innovation, the appearance of a new mechanism and a 
new species, which were initially absent in the system. Simple examples 
are given later in this chapter in the section on ecology. 

Bifurcations: The Brusselator 

The Brusselator model was introduced in Chapter 4. It is of interest 
because it presents a variety of solutions (limit cycles, nonuniform steady 
states, chemical waves) that are precisely of the type observed in ordinary 
systems that are at sufficient distance from equilibrium. When diffusion is 
included, the reaction-diffusion equation for the Brusselator takes the 
form (see equations 4.58 and 4.59 and, for details, see Nicolis and Prigo- 
gine, 1977) 

Suppose that we impose the value of the concentrations at the boundary. 
We look then for solutions of the form (see equation 4.60) 

nnr 
X = A + X,(t) sin -, 

L 

B nnr 
Y = - + Y,(t) sin - 

A L 

in which n is an integer and X ,  and Yo are still time dependent. These 
solutions satisfy the boundary conditions X = A and Y = B / A  for r = 0 



Space (arbitrary units) 

FIGURE 5.5 
Steady-state dissipative structure: solid line indicates results obtained by 
calculation; dashed line indicates those obtained by computer simulation 
with parameters D, = 1.6 x lo-' ; D, = 8 x lo-' ; A = 2; B = 4.17. 

and r = L. We may then apply the linear stability analysis and obtain a 
dispersion equation that relates o to the space dependence given by the 
integer n in equations 5.7. 

The results are as follows. The instability may arise in different ways. 
The two dispersion equations may have two roots that are complex 
conjugate, and at some point the real part of these roots vanishes. This is 
the situation that leads to a limit cycle, which was studied in Chapter 4. 
In the literature, this is often called the Hopf bijurcation (Hopf 1942). A 
second possibility is that we have two real roots, one of which becomes 
positive at some critical point. That is the situation leading to spatially 
nonuniform steady states. We may call it the Turing bifurcation, because 
Alan Turing (1952) was the first to note the possibility of such a bifurcation 
in chemical kinetics in his classic paper on morphogenesis. 

The variety of phenomena is even larger because the limit cycle may 
also be space dependent and lead to chemical waves. Figure 5.5 shows a 
chemical nonuniform steady state corresponding to a Turing bifurcation, 
whereas Figure 5.6 shows, the simulation of a chemical wave. The realiza- 

FIGURE 5.6 
A chemical wave simulated on computer with parameters 
D, = 8 x D, = 4 x A = 2; B = 5.45. 



FIGURE 5.7 
Cylindrically symmetric steady-state dissipative structure in two dimensions 
obtained by computer simulation with parameters D, = 1.6 x 
D, = 5 x A = 2; B = 4.6; circle radius R = 0.2. 

tion of one or the other of these coherent phenomena depends on the 
value of the diffusion coefficients D or, better, on the ratio DIP.  When this 
parameter becomes zero, we obtain a limit cycle, the "chemical clock," 
whereas inhomogeneous steady states can appear only when DIP is 
sufficiently large. 

Localized structures can also result from this scheme of reactions when 
the fact that the initial substances A and B (see equation 4.57) must 
diffuse through the system is taken into account. 

The wealth of dissipative structures increases greatly when two- or 
three-dimensional systems are considered. For example, we may then 
have the appearance of polarity in a hitherto uniform system. Figures 5.7 
and 5.8 show the first bifurcation in a two-dimensional circular system 
differing in the values of the diffusion constants. In Figure 5.7, the concen- 
tration remains radially isotropic, whereas, in Figure 5.8, the appearance 
of a privileged access can be observed. This is of interest for the applica- 
tion to morphology in which one of the first stages corresponds to the 
appearance of a gradient in a system that was initially in a spherically 
symmetric state. 

Successive bifurcations may also be of interest, for example, as il- 

FIGURE 5.8 
Polar steady-state dissipative structure in two dimensions obtained by 
computer simulation with parameters D, = 3.25 x D, = 1.62 x lo-'; 
A = 2; B = 4.6; R = 0.1. 

lustrated in Figure 5.9. Before B, we have the thermodynamical branch, 
whereas at B ,  a limit cycle behavior begins. The thermodynamical branch 
remains unstable but bifurcates into two new solutions at point B , ;  these 
solutions are also unstable but become stable at points BT,, B:, . These 
two new solutions correspond to chemical waves. 

One type of wave admits a plane of a symmetry (Figure 5.10), whereas 
the other corresponds to rotating waves (see Figure 5.11). It is quite 

FIGURE 5.9 
successive bifurcations leading to various types of wave behavior 



FIGURE 5.10 
Equal concentration curves for X in trimolecular model in 
R = 0.5861 subject to  zero-flux boundary conditions. Solid 
refer, respectively, to concentrations larger or  smaller than 
(unstable) steady state: X, = 2, A = 2, D,  = 8 x D,  
B = 5.4. The concentration patterns shown in Parts A and 
different stages of periodic solution. 

circle of radius 
and dashed lines 
values on 
= 4 x 
B are at  

B 

F I G U R E  5.1 1 
Rotating solution for trimolecular model arising under the same conditions 
as those for Figure 5.10 but for an even larger supercritical value of 
bifurcation parameter, B = 5.8. 
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remarkable that this type of situation has indeed been observed exper- 
imentally in chemical reactions (see the section titled Coherent Structures 
in Chemistry and Biology later in this chapter). 

A Solvable Model for Bifurcation 

The occurrence of nonuniform, stable solutions after a bifurcation is such 
an unexpected phenomenon that it is worthwhile examining their forma- 
tion in an exactly solvable model (see Lefever, Herschkowitz-Kaufman, 
and Turner, 1977). Consider a chemical system described by the scheme 
of reaction 

We may, for example, consider 

which is the simplified form of .the Brusselator in which the reaction 
A -+ X in equation 4.57 has been suppressed. Such a description appears 
in the theory of dissipative structures for reactions involving enzymes 
fixed on membranes where the presence of component X is ensured by 
diffusion and not through the "source" A. 

Let us also use fixed boundary conditions: 

The specific simplifying feature of this scheme is the existence of a "con- 
served quantity," as can be seen by adding the two equations in reaction 
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5.8. After eliminating one of the variables and integrating, we obtain the 
equation valid at the steady state 

in which K is the integration constant and 

O(w) is a polynomial in w whose exact form is of no interest here. Note 
only that @(w) = 0 for w = 0. It is very interesting to compare this for- 
mula to the Hamiltonian as expressed in equation 2.1 or 2.2, which is 
written here as 

It can be seen that, to change the Hamiltonian (equation 5.13) into equa- 
tion 5.1 l ,  we must replace the coordinate q by the concentration and time 
by the coordinate r. Note also that w = 0 is at the boundary of the system. 

Consider the systems represented in Figures 5.12 and 5.13. In the situa- 
tion shown in Figure 5.12 in which @(w) has a maximum for w = 0, only 
the thermodynamical branch can be stable. Suppose that we start at 
w = 0 and go to the right. @(w) becomes negative, which means according 
to equation 5.11 that the gradient ( d ~ l d r ) ~  will increase steadily as dis- 
tance from the boundary increases. We shall therefore be able to satisfy the 
second boundary condition. 

The situation changes completely when we consider the case in which 
@(w) has a minimum for w = 0. Then by going to the right, we come to 
the point of intersection with the horizontal K. At this point, w,, the 
gradient (dwldr) will vanish, and we can then reach the second boundary 
by going back to the origin w = 0. In this way we obtain a bifurcating 
solution with a single extremum. 

Certainly other, more complicated solutions can be built in the same 
way. This provides us, I believe, with the simplest, effective construction 
of a bifurcating solution in a reaction-diffusion system. It is interesting 



F I G U R E  5.1 2 
Situation corresponding to no bifurcation 

F I G U R E  5.13 
Situation corresponding to bifurcation. 
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that the time periodicity of the classical pendulum problem leads to the 
space periodicity of bifurcating solutions. 

A further fascinating analogy between time-periodic and time- 
independent but spatially nonuniform solutions of nonlinear systems can 
be drawn by choosing as the bifurcation parameter a characteristic 
length, L, of the reaction space. As it turns out, if L is small enough, only 
the spatially homogeneous state will exist and be stable for natural bound- 
ary conditions. Above a critical value, LC,, however, a stable monotonic 
gradient of the kind shown in Figure 5.8 can emerge and subsist until a 
second critical value LA, is reached, whereupon this pattern disappears 
(Babloyantz and Hiernaux 1975). The existence of thisjnite length LC, for 
spatial self-organization is to be compared with the emergence of a$finite 
frequency accompanying the bifurcation of a time-periodic solution like a 
limit cycle (see the soluble model just discussed). 

If L increases further, at a certain LC, (LC, > LC, but possibly < L:,), a 
second pattern will be available that will give a nonmonotonic concentra- 
tion profile. Further growth will reveal more complex concentration pat- 
terns. Their relative stability will depend on the occurrence of secondary 
and higher bifurcations. 

The fact that growth and morphology are linked in this picture is 
reminiscent of some aspects of morphogenesis in early embryonic 
development. For example, the "imaginal discs" in the early stages of 
larval development of the fruitfly Drosophila both grow and subdivide 
into compartments separated by rather sharp boundaries. This problem 
was recently analyzed by Stuart Kauffman and co-workers (1978) in the 
context of repeated bifurcations at successively higher lengths, as dis- 
cussed above. 

The existence of a second bifurcation parameter L, in addition to the 
kinetic bifurcation parameter p (see Figure 5.2) or B (see Figure 5.9) that 
is present in most systems, enables some systematic, if preliminary, 
classification of spatially nonuniform dissipative structures. In diagrams 
such as Figure 5.14, in which the structure of bifurcation is given in terms 
of a single parameter, only primary bifurcating branches are represented. 
In the vicinity of the bifurcation points their behavior is known. In parti- 
cular, the first branch is stable (if supercritical, i.e., if it arises for p > p, ,)  
whereas the others are unstable. Higher bifurcating branches are not 
shown because they typically arise at a finite distance from the bifurcation 
points. 



F I G U R E  5.14 
Successive primary bifurcations from the thermodynamic branch: solid line 
denotes stable branch; dashed line denotes unstable branch. 

The situation changes if bifurcation is followed in the space of both p 
and L. For certain combinations of p and L, degenerate bifurcation at a 
double eigenvalue of the linearized operator may occur, in which case 
bifurcating branches coalesce. Conversely, if p and L change slightly from 
this state of degeneracy, the bifurcation branches split and may give rise 
to secondary and higher bifurcations (Erneux and Hiernaux, in press; 
Golubitsky and Schaeffer 1979). The point is that all these possibilities can 
be classified completely, as long as one remains near the degenerate bi- 
furcation. The situation begins to look like catastrophe theory, even 
though one is not dealing in general with systems deriving from a potential. 

Coherent Structures in Chemistry 
and Biology 

In 1958 Belousov reported an oscillating chemical reaction correspond- 
ing to the oxidation of citric acid by potassium bromate catalyzed by the 
ceric-cerous ion couple. Zhabotinskii pursued this study (see Noyes and 
Field, 1974, and Nicolis and Prigogine, 1977). Usually the Belousov- 
Zhabotinskii reaction involves a reaction mixture at about 25"C, consist- 
ing of potassium bromate, malonic or bromomalonic acid, and ceric 
sulfate or an equivalent compound dissolved in citric acid. This reaction 
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has been studied by many investigators both experimentally and theor- 
etically. In experimental studies, it plays the same role as does the Brus- 
selator in theoretical studies. According ;o the circumstances, a wide 
range of phenomena has been observed; for example, oscillations for a 
period of the order of a minute in homogeneous mixtures and wavelike 
activity. Elucidation of the mechanism of this reaction is largely at- 
tributed to Richard Noyes and co-workers (Noyes and Field 1974). Let 

be the concentrations of the three key substances. Moreover, we set 

P, Q = waste-product concentration 

The Noyes mechanism can then be expressed by the following steps: 

This is often called the Oregonator. The important point is the existence of 
a cross-catalytic mechanism by which Y produces X, X produces Z, and 
Z in turn produces Y,  just as in the Brusselator. 

Many other oscillating reactions of the same type have been in- 
vestigated. An early example is the catalytic decomposition of hydrogen 
peroxide by the iodic acid and iodine oxidation couple (see Bray, 1921, 
and Sharma and Noyes, 1976). More recently, Thomas Briggs and 
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Warren Rauscher (1973) reported oscillations in a reaction that included 
hydrogen peroxide, malonic acid, potassium iodate, manganous sulfate, 
and perchloric acid, which may be viewed as a "mixture" of Belousov- 
Zhabotinskii and Bray reagents. This reaction was s;udied systematically 
by Adolf Pacault and co-workers under open-systems conditions 
(Pacault, de Kepper, and Hanusse 1975). Finally, Endre Koros (1978) 
reports a whole family of simple aromatic compounds (phenol, aniline, 
and their derivatives), which in reacting with acid bromate are capable of 
generating oscillations without the catalytic action of metal ions like 
cerium or manganese ions. These metal ions are known to play an impor- 
tant role in the Belousov-Zhabotinskii reaction. Although oscillating 
reactions are rather exceptional in the field of inorganic chemistry, they 
are observed at all levels of biological organization-from the molecular 
to the supercellular. 

Among the most significant biological oscillations are those related to 
enzyme activity in metabolism, which have a period of the order of a 
minute, and thosc related to epigenesis, which have a period of the order 
of an hour. The best understood example of metabolic oscillation is that 
which occurs in the glycolytic cycle, which is a phenomenon of the 
greatest importance for the energetics of living cells (Goldbeter and 
Caplan 1976). It consists in the degradation of one molecule of glucose 
and the overall production of two molecules of ATP by means of a linear 
sequence of enzyme-catalyzed reactions. It is the cooperative effects in- 
volved in the enzyme activity that lead to the catalytic effects responsible 
for the oscillations. It is quite remarkable that oscillations in the concen- 
trations of all metabolytes of the chain are observed for certain rates of 
glycolytic substrate injection. Even more remarkable is the fact that all 
glycolytic intermediates oscillate with the same period but with different 
phases. The enzymes in the reaction play somewhat the same role as a 
nicol prism in optical experiments. They lead to a phase shift in the 
chemical oscillation. The oscillatory aspect of chemical reaction is 
especially spectacular in the glycolytic cycle because one can follow ex- 
perimentally the influence of various factors on the period and the phase 
of the oscillation. 

Oscillatory reactions of the epigenetic type are also well known. They 
occur as a consequence of regulatory processes at the cellular level. 
Proteins are generally stable molecules, whereas catalysis is a very fast 
process. Thus, it is not unusual for the protein level in a cell to be too 
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high, in which case other bodily substances act to suppress the synthesis of 
macromolecules. Such feedback gives rise to oscillations and has been 
studied in detail in, for example, the regulation of the lactose operon in 
the bacterium Escherichia coli. Other examples of oscillation-producing 
feedback mechanisms can be found in the aggregation process in slime 
molds, in reactions involving membrane-bound enzymes, and so forth. 
The interested reader should consult the relevant literature (for refer- 
ences, see Nicolis and Prigogine, 1977). 

It seems that most biological mechanisms of action show that life in- 
volves far-from-equilibrium conditions beyond the stability of the thresh- 
old of the thermodynamic branch. It is therefore very tempting to 
suggest that the origin of life may be related to successive instabilities 
somewhat analogous to the successive bifurcations that have led to a state 
of matter of increasing coherence. 

Ecology 

Let us turn to some aspects of stability theory applicable to structural 
stability (see Prigogine, Herman, and Allen, 1977.) To take a simple 
example, the growth of a population X in a given medium is often ex- 
pressed by 

in which K is related to the rate of birth, d is related to mortality, and N is 
a measure of the milieu's capacity to support the population. The solution 
to equation 5.17 can be expressed with the help of the logistic curve 
presented in Figure 5.15. This evolution is entirely deterministic. The 
population ceases to grow when the milieu is saturated. However, it may 
happen, following events over which the model has no control, that a new 
species (characterized by other ecological parameters K ,  N, and d) 
appears, initially in a small quantity, in the same milieu. This ecological 
jluctuation raises the question of structural stability: the new species may 
either disappear or supplant the original one. It is easy to show, using 
linear stability analysis, that the new species will supplant the original 



FIGURE 5.1 5 
Logistic curve. See equation 5.17. 

one only if 

The occupation of the ecological niche by the species assumes the form 
indicated in Figure 5.16. 

This model describes in a quantitatively exact manner the significance 
of "the survival of the fittest" in the framework of a problem posed in 
terms of the exploitation of a given ecological niche. 

A variety of such models may be introduced by taking into account 
various possible strategies used by a population for its survival. For 
example, we may distinguish between species using a wide variety of 
foods (so-called generalists) and those using a narrow spectrum (so-called 
specialists). We may also take into account the fact that some populations 
immobilize a part of their society for "unproductive" functions, such as 
"soldiers." This is closely related to the social polymorphism of insects. 

One could also make use of the concepts of structural stability and 
order through fluctuation in more complex problems, and, at the cost of 
some drastic simplifications, even in the study of human evolution. As an 
example, let us consider the problem of urban evolution from this point of 
view (see Allen, 1977). In terms of the logistic equation (5.17), an urban 
region is characterized by the increase of its capacity N because of the 

FIGURE 5.16 
Occupation of an ecological niche by the successive species. 

addition of economic functions. Let S f  be the economic function k at 
point i (say, the "city" is i). We must then replace equation 5.17 with an 
equation of the type 

in which Rk is a coefficient of proportionality. However, S f  itself increases 
with the population X i  in a complicated manner: it plays an autocatalytic 
role, but the efficiency of this autocatalysis depends on the need at point i 
for the product k as related to the increase of the population and the 
competition from rival production units, located at other points. 

In this model, the appearance of an economic function is comparable 
to a fluctuation. The appearance of this economic function will destroy 
the initial uniformity of the population distribution by creating employ- 
ment opportunities that concentrate the population at a point. The new 
employment opportunities will drain the demand from neighboring 
points; intervening in an already urbanized area, they may be destroyed 
by the competition from similar but better developed or better situated 
economic functions; they may also develop in coexistence, or at the cost 
of the destruction of one or the other of these functions. 
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Figure 5.17 illustrates a possible " history " of the urbanization of an 
initially uniform region, in which four economic functions seek to develop 
at each point in a network of fifty localities; the various attempts follow 
each other in a stochastic temporal sequence. The final result depends in a 
complex manner on the interplay of deterministic economic laws and the 
probabilistic succession of fluctuations. Although the details of any parti- 
cular simulation depend on the exact "history" of the region, certain 
average properties of the structure engendered are roughly conserved. 
For example, the number and average separation of large centers is ap- 
proximately the same for systems having the same values of the par- 
ameters even though they undergo different histories. Such a model 
permits an estimation of the long-term consequences of decisions 
concerning, for example, transportation, investments, and so forth, as the 
effects are passed along the various interaction loops of the system, and 
successive adjustments of the different agents occur. In general, we see 
that such a model offers a new basis for the understanding of" structure" 
resulting from the actions (choices) of the many agents of a system, 
having in part at least mutually dependent criteria of action (utility 
functions). 

--- 

Concluding Remarks 

The examples studied in the last section are quite removed from the 
simple systems of classical and quantum mechanics. However, it should 
be noted that there are no limits to structural stability. Every system may 

FIGURE 5.17 
A possible "history" of the urbanization of an initially uniform region, in 
which four economic functions seek to  develop at  each point in a network of 
fifty localities; the various attempts follow each other in a stochastic 
temporal sequence. 
A. The distribution of population at  time t = 4, on  a lattice of 50 points. At 
t = 0, each has a population of 67. 
B. At t = 12, the basic urban structure of the region is emerging, with five 
fast-growing centers. 
C. By time t = 20, the structure has solidified, and the largest center exhibits the 
"urban sprawl" of residential suburbs. 
D. At t = 34, growth of the urban centers is slow and the "above average growth" 
is taking place in the interurban zones, resulting in counterurbanization. 
E. Evolution of the populations of points a ,  b, and C, indicated in part D, 
throughout the simulation. 
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present instabilities when suitable perturbations are introduced. There- 
fore, there can be no end to history. Ramon Margalef has, in a beautiful 
presentation, described what he calls the " baroque of the natural world " 
(Margalef 1976). He means that ecosystems contain many more species 
than would be " necessary" if biological efficiency alone were an organiz- 
ing principle. This "over creativity" of nature emerges naturally from the 
type of description being suggested here, in which "mutations" and "in- 
novations" occur stochastically and are integrated into the system by the 
deterministic relations prevailing at the moment. Thus, we have in this 
perspective the constant generation of" new types" and " new ideas " that 
may be incorporated into the structure of the system, causing its contin- 
ual evolution. 

Jade pommel from China's Han period. Its diameter 
is 4 cm. Private collection. Photograph by 
R. Kayaert, Brussels. 



Chapter 6 
NONEOUILIBRIUM 
FLUCTUATIONS 

The Breakdown of the Law 
of Large Numbers 

One reason why quantum mechanics has attracted such a great interest is 
certainly the introduction of a probabilistic element into the description 
of the microworld. As was seen in Chapter 3, in quantum mechanics 
physical quantities are represented by operators that do not necessarily 
commute. This leads to the well-known Heisenberg uncertainty relations. 
Many people have seen in these relations a proof that on the microscopic 
level, to which quantum mechanics applies, determinism is violated-a 
statement that needs clarification. 

As emphasized in Chapter 3, in the section on time change in quantum 
mechanics, the basic equation of quantum mechanics, the Schrodinger 
equation, is as deterministic as the classical equations of motion. There is 
no uncertainty relation involving time and energy, in the sense in which 
Heisenberg's uncertainty relations are valid. Once the wave function is 
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known at the initial time, we can, according to quantum mechanics, 
calculate its value at all times both in the past and in the future. Yet it 
is true that quantum mechanics introduces a basic probabilistic element 
in the description of the microworld. However, the macroscopic, ther- 
modynamic description deals generally with averages, and the probabi- 
listic elements introduced by quantum mechanics play no role. It 
is therefore of special interest to note that independent of the uncertainty 
relations there are macroscopic systems in which fluctuations and proba- 
bilistic description play an essential role. This can be expected in the 
neighborhood of bifurcations where the system has to "choose" one of 
the possible branches that appear at the bifurcation point. This statistical 
element will be analyzed in detail in this chapter in order to show that 
near bifurcations the law of large numbers essentially breaks down. (For 
an introduction to probability theory, see Feller, 1957.) 

In general, fluctuations play a minor role in macroscopic physics, 
appearing only as small corrections that may be neglected if the system is 
sufficiently large. However, near bifurcations they play a critical role 
because there the fluctuation drives the average. This is the very meaning 
of the concept of order through fluctuations, which was introduced in 
Chapter 4. 

It is interesting to note that this leads to unexpected aspects of chemical 
kinetics. Chemical kinetics is a field that is now about a hundred years 
old. It has always been formulated in terms of the type of rate equations, 
which were studied in Chapters 4 and 5. Their physical interpretation is 
quite simple. Thermal motion causes particles to collide. Most such colli- 
sions are elastic: that is, they change the translational kinetic energy (as 
well as the rotational and vibrational energy if polyatomic molecules are 
considered), without affecting the electronic structure. However, a frac- 
tion of these collisions are reactive and give rise to new chemical species. 

On the basis of this physical picture, one may expect that the total 
number of collisions between two species of molecules, say X and Y, will 
be proportional to their concentrations, as will be the number of inelastic 
collisions. This idea has dominated the development of chemical kinetics 
since its formulation. However, how can such chaotic behavior, like that 
depicted by collisions occurring at random, ever give rise to coherent 
structure? Naturally some new feature must be taken into consideration; 
that is, the fact that, near instabilities, the distribution of reactive particles 
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is no longer random. Until recently this feature was not included in 
chemical kinetics; however, further progress in its development is ex- 
pected to take place in the next few years. 

Before addressing the breakdown of the law of large numbers, let us 
briefly examine what is meant by this law. Consider, for example, a prob- 
ability distribution of great importance in many fields of science and 
technology, the Poisson distribution. Suppose that we have a variable X 
that may take integral values, X = 1, 2, 3, . . . . According to the Poisson 
distribution, the probability of X is given by 

This law is found to be valid in a variety of situations, such as the 
distribution of telephone calls, waiting time in restaurants, or the fluctua- 
tion of particles in a medium of given concentration. In equation 6.1, (X) 
represents the average value of X. 

An important feature of the Poisson distribution is that (X) is the only 
parameter included in the distribution. The probability distribution is 
entirely determined by its mean. This is not so for the Gaussian distribu- 
tion (equation 6.2), which contains in addition to the average, (X), the 
dispersion a, 

From the probability distribution function, one can easily obtain the 
"variance," which gives the dispersion about the mean: 

The characteristic feature of the Poisson distribution is that the disper- 
sion is equal to the average itself: 

(6x2)  = (X) 

Let us consider a situation in which X is an extensive quantity propor- 
tional to the number of particles N (in a given volume) or to the volume 
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V itself. We then obtain for the relative fluctuations the well-known 
square root law: 

The order of magnitude of the relative fluctuation is inversely propor- 
tional to the square root of the average. Therefore, for extensive variables 
of order N we obtain relative deviations of order N-'I2.  This is the 
characteristic feature of the law of large numbers. As a result we may 
disregard fluctuations in large systems and use a macroscopic description. 

For other probability distributions, the mean square deviation is no 
longer equal to  the average, as in equation 6.4. But whenever the law of 
large numbers applies, the order of magnitude of the mean square devia- 
tion is still the same, and we have 

c S X 2 )  - finite for v - m v 

We may also introduce a variable x into equation 6.2, which is "inten- 
sive"; that is, it does not increase with the size of the system (such as 
pressure, concentration, or temperature). The Gaussian distribution for 
such an intensive variable becomes, taking into account equation 6.6, 

This shows that the most probable deviation of an intensive variable from 
its mean will be of the order of 1 / - ' 1 2  and will therefore become small 
when the system is large. Inversely, large fluctuations of intensive var- 
iables can occur only in small systems. 

These remarks will be illustrated by examples to be considered later. 
We shall see how, near a bifurcation point, nature always finds some 
clever way to avoid the consequences of the law of large numbers through 
an appropriate nucleation process. 

NONEQUlLlBRlUM FLUCTUATIONS 

Chemical Games 

To include fluctuations, we have to leave the macroscopic level. However, 
to turn to classical or quantum mechanics is practically out of the 
question. Every chemical reaction would then become an involved many- 
body problem. Therefore, it is useful to consider an intermediate level of 
somewhat the same type as that considered in Chapter 1 in the discussion 
of the random walk problem. 

The basic idea is that of the existence of well-defined transition proba- 
bilities per unit time. Consider again the probability W ( k ,  t )  of finding the 
Brownian particle at a place k ,  at time t. Let us introduce the transition 
probability o,, ,which gives us the probability (per unit time) for a transi- 
tion between the two "states," k and t .  We may then express the time 
change of W(k, t )  in terms of a competition between gain terms, related to 
the transition P -+ k, and loss terms, related to the transition k -+ P. We 
can then obtain the basic equation 

In the Brownian motion problem, k would correspond to thc position on 
the lattice and o,, would not be zero only if k differs from f by one unit. 
But equation 6.8 is much more general. It is in fact the basic equation for 
Markov processes, which play a prominent role in modern theory of 
probability (see Barucha-Reid, 1960). 

A characteristic feature of Markov processes is that the transition 
probabilities of, involve only the states k and /. The transition probabil- 
ity from k -r / does not depend on which states were involved before the 
occupation of state k .  In this sense the system has no memory. Markov 
processes have been used to describe many physical situations and can 
also be used to model chemical reactions. For example, let us consider a 
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simple chain of unimolecular reactions: 

The macroscopic kinetic equations are of the type introduced in Chapters 
4 and 5 (we write here the kinetic constants): 

We suppose, as before, that the concentrations of A and E are given. The 
steady state corresponding to equation 6.10 is 

In this standard macroscopic description, fluctuations are neglected. To 
study their effect, we introduce a probability distribution W(A, X, E, t) 
and apply the general expression 6.8. The result is 

- k , z A W ( A ,  X ,  E,  t) 

+ similar terms including k ,  ,, k 2 , ,  k32 

The first term represents a gain. It corresponds to a transition from a state 
in which the number of particles A  was A  + 1 and the number of particles 
X  was X - 1 to the state A, X by the decomposition of particle A occur- 
ring at the rate k , ,  . The second term represents, on the other hand, a loss. 
The state corresponded initially to the population A, X, E, but particle A 
has decomposed and we obtain the new state A - 1, X + 1. All other 
terms have a similar meaning. 
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This equation can be solved both for equilibrium and for nonequili- 
brium states. The result is a Poisson distribution with the macroscopic 
expression 6.11 as the mean for X .  

This is quite satisfactory and seems so natural that for some time we 
believed that this result could be extended to all chemical reactions 
whatever their mechanism. But then a new, unexpected element entered. 
If we consider more general chemical reactions, the corresponding transi- 
tion probabilities become nonlinear. For example, using the same argu- 
ment as before, the transition probability corresponding to A  + X 4 2X 
is proportional to ( A  + 1) . (X - I), the product of the number of par- ' 
tlcles of A and X before the inelastic collision. So the corresponding 
Markov equations also become nonlinear. It can be said that a distinct 
characteristic of chemical games is their nonlinearity as contrasted with 
the linear behavior of random walks, for which the transition probabili- 
ties are constant. To our surprise this new feature leads to deviations from 
the Poisson distribution. This unexpected result was proved by Gregoire 
Nicolis and myself (1971; see also Nicolis and Prigogine, 1977) and has 
aroused much interest. These deviations are very important from the 
point of view of the valldity of macroscopic kinetic theory. We shall see 
that macroscopic chemical equations are valid only when deviations from 
the Poisson distribution may be neglected. 

As an example, suppose that we have the chemical reaction 2X -t E 
with rate constant k .  From the Markov equation 6.8, we may derive the 
time change of the average concentration of X. Not unexpectedly this 
leads to 

Indeed, we have to choose two molecules in succession from the X 
molecules present. Note that 

in which we have used the identity ( 6 x 2 )  = ( X Z )  - ( X ) , .  The second 
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term would vanish for a Poisson distribution, according to equation 6.4, 
which would mean that the behavior is governed by the macroscopic 
chemical equation. 

This result is quite general. We see that deviations from the Poisson 
distribution play an essential role in the transition from microscopic to 
macroscopic level. Normally we may neglect them. For example, in ex- 
pression 6.13, the first term must have the same order of magnitude as 
(X); that is, it must be proportional to the volume. The second is then 
independent of the volume. Therefore, in the limit of large volumes, it 
may be neglected. But, if the deviation from the Poisson behavior be- 
comes proportional not to the volume itself as predicted by the law of 
large numbers, but to a higher power of the volume, then the whole 
macroscopic chemical description breaks down. 

It is interesting to observe that in a sense chemical kinetics is very much 
a mean jield theory, as are many other theories of classical physics and 
chemistry, such as the theory of equation of state (Van der Waal's theory), 
the theory of magnetism (Weiss field), and so forth. We also know from 
classical physics that such mean-field theories led to consistent results 
except near phase transitions. The theory initiated by Leo Kadanoff, Jack 
Swift, and Kenneth Wilson, among others, has as its basis the clever idea 
of studying long-range fluctuations that appear near critical points of 
phase transitions (see Stanley, 1971). The scale of the fluctuations be- 
comes so large that molecular details no longer matter. The situation is 
rather similar here. 

We would hope to find conditions ensuring the existence of nonequili- 
brium phase transitions for macroscopic systems by imposing length scale 
invariance on the master equation and taking the thermodynamic limit 
(is., the limit as both the number of particles and the volume tend to 
infinity, but density remains finite). From these conditions we should also 
be able to evaluate explicitly the way that the variance of fluctuations 
behaves near the transition. For nonequilibrium systems, this program 
has so far been carried out only for a simple model of master equation, 
namely, the Fokker-Planck equation (Dewel, Walgraef, and Borckmans 
1977). Further work is in progress. 

Let us now consider in detail a simple example in which the law of 
large numbers is violated. 

Nonequilibrium Phase Transitions 

Friedrich Schlogl has studied the following chemical sequence (see 
Schlogl, 1971, 1972; Nicolis and Prigogine, 1978): 

Following our usual prescriptions, we can easily obtain the macroscopic 
kinetic equation 

Suitable scaling and the introduction of the notations 

reduces equation 6.16 to 

dx 
- = - x 3  - 6x + (6' - 6) 
dt (6.18) 

The steady state is then given by the third-order algebraic equation 

x 3  + 6x = 6' - 6 (6.19) 



3 solutions 

FIGURE 6.1 
Behavior of the solutions of equation 6.19 in terms of the parameters 6 and 6'; 
C represents the line of coexistence of multiple steady states. 

It is interesting that this third-order equation is isomorphic with the one 
familiar from equilibrium phase transitions described by the Van der 
Waals theory. When we follow the evolution of the system along the line 
6  = 6' (see Figure 6.1), we see that equation 6.19 has only one root, x = 0, 
for 6 positive, whereas there are three roots, x = 0, x+ = i-, for 6 
negative (remember that x, being a concentration, must be real). This 
model is sufficiently simple to obtain the exact mean square deviation 
(see Nicolis and Turner, 1977a and b). As 6 approaches zero, we obtain 

Both these quantities tend to infinity as 6 approaches zero, indicating a 
breakdown of the law of large numbers in the sense defined by equation 
6.6. This breakdown becomes especially evident at the points at which the 
system can jump from the root x + to the root x - ,just as in an ordinary 
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phase transition when a liquid phase becomes a vapor phase. At this 
point the variance is of the order of V 2 .  That is, 

-- ( 6 X 2 )  finite as v -+ m v2 

In other words, near nonequilibrium phase transitions there is no longer 
a consistent macroscopic description. Fluctuations are as important as 
average values. 

One can show that in the multiple steady state region, the probability 
function P(x) itself undergoes an extreme change in the limit V  -r m. For 
any finite V, P(x) is a double-humped distribution with peaks centered on 
the macroscopic stable states x+ and x- . For V  -+ oo, each of the two 
humps collapses to a delta function (Nicolis and Turner, 1977a and b). 
Therefore a stationary probability is obtained of the form 

in which x is the intensive variable related to X ,  x = X / V .  The weights 
C +  and C- sum to unity, and are otherwise determined explicitly from 
the master equation. Both 6(x - x,) and 6 ( x  - x-)  satisfy the master 
equation independently for V  -+ oo. Their " mixture " (equation 6.22), on 
the other hand, gives the thermodynamic limit of the steady-state proba- 
bility distribution evaluated first for finite system size. The analogy with 
equilibrium phase transitions of the Ising model type is striking: if x +  
and x- were the values of total magnetization, then equation 6.22 would 
describe an Ising magnet at the zero (equilibrium) magnetization state. 
On the other hand, the "pure states," 6(x - x + )  and 6(x - x-), would 
describe two magnetized states sustained for arbitrarily long times if 
appropriate boundary conditions are applied on the surface of the system. 

The conclusion is not so astonishing as it at first seems. The very 
concept of macroscopic values, in a sense, loses its meaning. Macroscopic 
values are generally identified with the "most probable" values, which, if 
fluctuations may be neglected, become identical with average values. 
Here, however, we have near phase transition two most "probable" 
values, neither of which corresponds to the average value, and fluctua- 
tions between these two "macroscopic" values become very important. 
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in the text. These values of the 
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the formation of a spatial dissipative 

Critical Fluctuations 
i n  Nonequilibrium Systems 

In equilibrium phase transitions, fluctuations near the critical point not 
\ only have a large amplitude, but also extend over large distances. Hervk 

Lemarchand and Gregoire Nicolis (1976) investigated the same problem 
for nonequilibrium phase transitions. To make the calculations possible, 
they considered a sequence of boxes. In each box the Brusselator type of 
reaction (reaction 4.57) takes place. In addition, there is diffusion between 
adjacent boxes. They calculated the correlation between the occupation 
numbers of X in two different boxes. One would expect that chemical 
inelastic collisions together with diffusion would lead to a chaotic 
behavior. But that is not so. Figures 6.2 and 6.3 show the correlation 
function for systems below the critical state and near it. It can be clearly 
seen that, near the critical point, chemical correlations are long range. 
The system acts as a whole in spite of the short-range character of the 

chemical interactions. Chaos gives rise to order 

FIGURE 6 .3  
Critical behavior of the spatial 
correlation function for the sar 
Parameter values as those in 
Figure 6.2, but B = 4. 

- -. 

What is the role of the number of particles in this process? That is an 
essential question to be addressed next, using the example of chemical 
oscillations. 

Oscillations and Time Symmetry Breaking 

The preceding considerations can also be applied to the problem of oscil- 
lating chemical reactions. From the molecular point of view, the existence 
of oscillations is very unexpected. 
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One might first think that it would be easier to obtain a coherent 
oscillating process with a few particles, say 50, than with as many as, say, 
Avogadro's number, loz3, which are generally involved in macroscopic 
experiments. But computer experiments show that it is just the opposite. 
It is only in the limit of number of particles N -+ cc that we tend to "long 
range " temporal order. 

To understand this result at least qualitatively, let us consider the 
analogy with phase transitions. If we cool down a paramagnetic sub- 
stance to a temperature called the Curie point, the system undergoes a 
behavioral change and becomes ferromagnetic. Above the Curie point, all 
directions play the same role; below it, there is a privileged direction 
corresponding to the direction of magnetization. 

Nothing in the macroscopic equation determines which direction the 
magnetization will take. In principle, all directions are equally likely. If 
the ferromagnet contained a jnite number of particles, this privileged 
direction would not be maintained in time. It would rotate. However, in 
an infinite system, no fluctuation whatsoever can shift the direction of the 
ferromagnet. The long-range order is established once and for all. 

The situation is very similar in oscillating chemical reactions. It can be 
shown that, when the system switches to a limit cycle, the stationary 
probability distribution also undergoes a structural change: it switches 
from a single-humped form to a craterlike surface centered on the limit 
cycle. As in equation 6.22, the crater gets sharper as V increases and, in 
the limit V + cc, it becomes singular. In addition to this, however, a 
family of time-dependent solutions of the master equation appears. For 
any finite V, these solutions lead to damped oscillations so that the only 
long-time solution remains the steady-state one. Intuitively, this means 
that the phase of the motion on the limit cycle, which plays the same role 
as the direction of magnetization, is determined by the initial conditions. 
If the system is finite, fluctuations will progressively take over and destroy 
phase coherence. 

O n  the other hand, computer simulations suggest that as V increases 
the timedependent modes are less and less damped. We can therefore 
expect to obtain, in the limit V + oo, a whole family of time-dependent 
solutions of the master equation rotating along the limit cycle (Nicolis 
and Malek-Mansour 1978). Again, in our intuitive picture, this would 
mean that in an infinite system phase coherence can be maintained for 
arbitrarily long times, just as a privileged initial magnetization can be 
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sustained in a ferromagnet. In this sense, therefore, the appearance of a 
periodic reaction is a time symmetry breaking process, exactly as ferromag- 
netism is a space symmetry breaking one. 

The same observations could be made for time-independent but space- 
dependent dissipative structures. In other words, it is only if the chemical 
equations are exactly valid (i.e., in the limit of large numbers when the law 
of large numbers applies) that we may have coherent nonequilibrium 
structures. 

An additional element to the far-from-equilibrium condition employed 
in Chapter 4 is the size of the system. If life is indeed associated with 
coherent structures-and everything supports this view-it must be a 
macroscopic phenomenon based on the interaction of a large number of 
degrees of freedom. It is true that some molecules, such as nucleic acids, 
play a dominant role, but they can only be generated in a coherent 
medium involving a large number of degrees of freedom. 

Limits to Complexity 

The methods outlined in this chapter may be applied to many situations. 
One of the interesting features of this approach is that it shows that the 
laws of fluctuation depend markedly on the scale. The situation becomes 1 
quite similar to that in the classical theory of the nucleation of a liquid 
drop in a supersaturated vapor. A droplet smaller than a critical size 
(called the size of an "embryo") is unstable, whereas if it is larger than 
this size it grows and changes the vapor into a liquid (see Figure 6.4). 

Such a nucleation effect also appears in the formation of an arbitrary 
dissipative structure (see Nicolis and Prigogine, 1977). We may write a 
master equation of the type 

 PA" -- 
at 

- chemical effects inside AV 

+ diffusion with the outside world (6.23) 

which takes into account both the effect of the chemical reaction inside a 
volume A V  and the migration of the particles through exchange with the 
outside world. The form of this equation is very simple. When the average 



FIGURE 6.4 
Nucleation of a liquid droplet in supersaturated vapor: (A) a droplet smaller 
than the critical size; (B) a droplet larger than the critical size. 

( X Z )  in volume A V  is calculated, one obtains from equation 6.2 the sum 
of two terms represented schematically as 

d ( X z ) ~ v  = chemical effects inside A V  
dt 

The first term is the effect of the chemistry inside the volume AV. The 
second is due to the exchange with the outside world. Coefficient 9 
increases when the surface-to-volume ratio becomes large. The interesting 
point is that the second term contains the exact difference between the 
mean square fluctuation and the average. For sufficiently small systems, 
this will be the dominant contribution, and the distribution will become 
Poissonian in accordance with equation 6.4. In other words, the outside 
world always acts as a mean field that tends to damp the fluctuations 
through the interactions taking place on the boundaries of the fluctuating 
region. This is a very general result. For small-scale fluctuations, boun- 
dary effects will dominate and fluctuations will regress. However, for 
large-scale fluctuations, boundary effects become negligible. Between 
these limiting cases lies the actual size of nucleation. 

This result is of interest for a very general question long discussed by 
ecologists: the problem of the limits to complexity (May 1974). Let us for a 
moment return to the linear stability analysis that was developed in 
Chapter 4. This leads to some dispersion equation. The degree of this 
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equation is equal to the number of interacting species. Therefore, in a 
complex medium, such as a tropical forest or a modern civilization, the 
degree of such an equation would be very high indeed. Consequently, the 
chances of having at least one positive root leading to instability increase. 
How then is it possible that complex systems exist at all? I believe that 
the theory summarized here gives the beginning of an answer. 
The coefficient in equation 6.24 measures the degree of coupling between 
the system and its surroundings. We may expect that in systems that are 
very complex, in the sense that there are many interacting species or 
components, this coefficient will be large, as will be the size of the fluctua- 
tion, which could start the instability. Therefore we reach the conclusion 
that a sufficiently complex system is generally in a metastable state. The 
value of the threshold depends both on the system's parameters and on 
the external conditions. The limits to complexity is not a one-sided prob- 
lem. It is interesting to note that, in recent numerical simulations of 
nucleation, this role of communication (e.g., through diffusion in nuclea- 
tion) has been implemented. 

Effect of Environmental Noise 

So far we have been concerned with the dynamics of internaljuctuations. 
We have seen that these fluctuations, which are generated spontaneously 
by the system itself, tend to be small except when the system is near a 
bifurcation or in the coexistence region of simultaneously stable states. 

On the other hand, the parameters of a macroscopic system-including 
most of the bifurcation parameters-are externally controlled quantities 
and are therefore also subject to fluctuations. In many cases, the system's 
environment fluctuates violently. It can be expected, therefore, that such 
fluctuations, which are perceived by the system as an "external noise," 
could deeply affect its behavior. This point was established recently both 
theoretically (Horsthemke and Malek-Mansour 1976; Arnold, Horst- 
hemke, and Lefever 1978; Nicolis and Benrubi 1976) and experimentally 
(Kawakubo, Kabashima, and Tsuchiya 1978). It seems that environmen- 
tal fluctuations can both ajfect bifurcation and-more spectacularly- 
generate new nonequilibrium transitions not predicted by the 
phenomenological laws of evolution. 
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The traditional approach to environmental fluctuations originated 
with Paul Langevin's analysis of the Brownian motion problem. In this 
view, the rate function [say v(x)] describing the macroscopic evolution of 
an observable quantity (say x)  gives only part of the instantaneous rate of 
change of x. Because of fluctuations of the surroundings, the system also 
experiences a random force F(x, t) .  Thus, considering x to be a fluctuat- 
ing quantity, we write 

If, as in Brownian motion, F reflects the effect of intermolecular interac- 
tions, its successive values must be uncorrelated both in time and in 
space. Because of this, the variance of fluctuations obtained agrees with 
the central limit theorem. On the other hand, in a nonequilibrium envir- 
onment, fluctuations can modify the macroscopic behavior of the system 
dramatically. It seems that, for this behavior to occur, the external noise 
must act multiplicatively rather than additatively; that is, it is coupled 
with a function of the state variable of x, which vanishes if x itself 
vanishes. 

To illustrate this point, consider a modified Schlogl model (see equa- 
tion 6.15): 

We set all rate constants equal to one and 

The phenomenological equation is 

At y = 2, both a stable steady-state solution and an unstable one emerge, 
as shown in Figure 6.5. In addition, x = 0 is always a solution that is 

FIGURE 6.5 
Stationary solutions x, of equation 6.28 versus y :  solid curve indicates 
stable solution; dashed curve, unstable. 

stable under infinitesimal perturbations. 
We now consider y to be a random variable. The simplest assumption 

is that it corresponds to a Gaussian white noise, just as in Brownian 
motion problems. We set 

Instead of writing equation 6.28, we now write a stochastic differential 
equation (Arnold 1973), which is a suitable generalization of the Langevin 
equation (equation 6.25), free of some ambiguities inherent in the usual 
formulation of the latter. This equation couples the noise with the second 
power, x2, of the state variable. It can be connected to a master equation 
of the Fokker-Planck type, from which the stationary probability distri- 
bution can be computed. The result is that in this distribution the transi- 
tion point y = 2 of the phenomenological description disappears: the 
process certainly reaches zero and subsequently remains there. 

In the experimental work on the effects of noise mentioned near the 
beginning of this section (Kawakubo, Kabashima, and Tsuchiya 1978) 
the arrangement is very similar to that expressed in equation 6.28, except 
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that noise is coupled with a linear term and equation 6.28 includes a 
constant input term. As it turns out, for small values of the variance oZ the 
system (a parametric oscillator circuit) exhibits limit-cycle behavior. 
However, if the variance exceeds a threshold, the oscillatory behavior 
disappears and the system falls to  a steady-state regime. 

Concluding Remarks 

We have now outlined the main elements ofthe physics of becoming. Many 
unexpected results have been reported, extending the range of thermo- 
dynamics. Classical thermodynamics was associated, as mentioned, with 
the forgetting of initial conditions and the destruction of structures. We 
have seen, however, that there is another macroscopic region in which, 
within the framework of thermodynamics, structures may spontaneously 
appear. 

The role of determinism in macroscopic physics must be reappraised. 
Near instabilities, there are large fluctuations that lead to a breakdown of 
the usual laws of probability theory. A ncw view of chemical kinetics has 
emerged. As a consequence of these developments, classical chemical 
kinetics appears as a mrunje ld  theory, but to describe the appearance of 
coherent structures, to  describe the formation of order from chaos, we 
must introduce a new, more refined description of the temporal se- 

. quences that lead to the time evolution of the system. However, the sta- 
bilization of dissipative structures requires a large number of degrees of  
freedom. This is the reason that a deterministic description prevails be- 
tween successive bifurcations. 

Both the physics of being and the physics of becoming have taken new 
dimensions in the past several years. Can the two points of view be unified 
in some way? After all. we are living in a single world whose aspects, 
however diverse they seem at first, must have some relation. This is the 
subject of Part IV. 

Part 1 1 1  

THE BRIDGE 
FROM BEING TO BECOMIN 



I mm 

Flow Lines in Roll Cells. 

THE GROWTH OF ROLL CELLS 

Roll cells develop at the interface between isoamylol and water in  the 
presence of the surfactant sodium hexadecyl sulfate. a common detergent. 
The ~nstab~l i ty ,  called a Margangoni instability, is caused b y  variations in  
the surface tension depend~ng on  the concentration of the surfactant This 
instability and the coupl ing between d i f fus~on and convection lead to  
formation of the roll cells shown on the facing page. The width of the roll 
cells increases roughly as the square root of elapsed time, w h ~ c h  is to  be 
expected for a process governed by  diffusion. 

The figures on the facing page are schlieren photographs taken at the 
times indicated The final photograph. taken 600 seconds after the 
experiment began, shows both the large secondary roll cells and the small 
primary roll cells (see the diagram below the schlierin photographs) In  all 
these pictures and i n  the diagram, the upper phase, phase I, was a 
1 -percent so lu t~on  of hexadecyl sulfate in  isoamylol and the lower phase. 
phase II, was pure water initially. The composit ion is changed by  active 
transport during the experiment. 

The photograph above shows the f low lines made visible by adding 
small particles of aluminum t o  the I~quids.  This photograph was taken 
1 5  seconds after the start of the experiment w ~ t h  an exposure time of 
o n e - f ~ f t h  of a second 

Photographs by H. Linde. P. Shwartz. and H W ~ l k e .  Reproduced w i th  
permission 

Seconds 

600 

Schlieren Photographs of Roll Cells. The cells grow larger as the concentration 
gradient IS decreased by active transport across the capillary split 

Primary ro l l  cell Phase I 

Surface 

Primary r o l l  cell 

Secondary ro l l  cell 

Phase I 

Surface 

Phase I1 

Secondary ro l l  cell 



Chapter 7 
KINETIC THEORY 

Introduction 

The relation between the two basic fields of theoretical physics- 
dynamics and thermodynamics-is probably the most challenging prob- 
lem to be treated in this book. It has been a subject of discussion since the 
formulation of thermodynamics one hundred fifty years ago, and thous- 
ands of papers have been written about it. The relation touches upon the 
meaning of time and is, therefore, of crucial importance. We cannot 
expect an easy solution to the problem because, if that were possible, it 
would have been solved long ago. I shall give qualitative arguments to 
justify my conviction that we have now found a way of avoiding what 
seemed for so long to have been insurmountable obstacles. However, 
because no "proofs" are given here, the interested reader should consult 
a monograph in preparation on this subject (Prigogine, forthcoming).* 

* More details may also be found in the appendixes to this book 
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We shall start with kinetic theory, and especially with Boltzmann's H 
theorem, which must be considered a milestone on the road to under- 
standing the microscopic meaning of entropy (for a presentation of 
classical kinetic theory, see Chapman and Cowling, 1970). 

Why was Boltzmann so fascinated with the second law? What at- 
tracted him to such an extent that he devoted virtually his entire career to 
understanding and interpreting it? In Populiire Schriften (1905), he wrote: 
"If one would ask me which name we should give to this century, I would 
answer without hesitation that this is the century of Darwin." Boltzmann 
was deeply attracted by the idea of evolution, and his ambition was to 
become the "Darwin " of the evolution of matter. 

Boltzmann's approach had astounding successes. It has left a deep 
imprint on the history of physics. The discovery of the quantum by 
Planck was an outcome of Boltzmann's approach. I fully share the enthu- 
siasm with which Schrodinger wrote in 1929 that " His [Boltzmann's] line 
of thought may be called my first love in science. No other has ever thus 
enraptured me or will ever do  so again." Yet, it must be recognized that 
there are serious difficulties with Boltzmann's approach. It proved very 
difficult to apply his approach except to gases at low concentration. 
Although modern kinetic theory has been quite successful in discussing 
some aspects of transport theory involving viscosity, heat conductivity, 
and so forth, it sheds no light on the microscopic meaning of entropy in 
dense systems. Even for gases at low concentration, as we shall see, Boltz- 
mann's definition of entropy applies only for certain initial conditions. 

It is because of such difficulties that Gibbs and Einstein worked out a 
much more general approach in terms of ensemble theory, which was 
described in Chapters 2 and 3. Their approach was, however, essentially 
limited to systems in equilibrium. The complete title of Gibbs's classic 
memoir is Elementary Principles of Statistical Mechanics: Development 
with Special Reference to the Rational Foundations of Thermodynamics 
(Gibbs 1902). This work on (equilibrium) thermodynamics is far 
from Boltzrnann's ambition to derive a mechanical theory of the evolu- 
tion of matter. Because of the lack of success in attempts to apply en- 
semble theory to nonequilibrium situations (see the sections on Gibbs's 
entropy and the Poincare-Misra theorem later in this chapter), the idea 
that supplementary approximations must be introduced to deal with 
nonequilibrium became prevalent. Gibbs's well-known example of the 
mixture of ink with water was mentioned in Chapter 1. However, this idea 
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of supplementary "coarse graining" has not been successful (though it 
appealed to many physicists) because it proved in the end to be as difficult 
to provide a precise prescription for coarse graining as it is to solve the 
problem of the microscopic meaning of irreversibility itself. 

Today we understand the nature of these difficulties a little better and 
as a result we may follow a path designed to avoid them. First, it should 
be emphasized that Boltzmann's approach goes beyond dynamics; it uses 
a remarkable mixture of dynamical and probabilistic concepts. In fact 
Boltzmann's kinetic equation is the forerunner of the Markov chains that 
were used to model chemical equations in Chapter 6. 

In his L e ~ o n s  de thermodynamique, Poincare discussed in detail the 
relation of the second law with classical dynamics. Yet he did not even 
quote Boltzmann! Moreover, his conclusion is categorical: thermodyna- 
mics and dynamics are incompatible. He based his conclusion on a short 
paper he had published earlier (1889) in which he proved that, in the 
framework of Hamiltonian dynamics, there can be no function of coordi- 
nates and momenta that would have the properties of a Lyapounov 
function (see the section titled The Poincare-Misra Theorem later in 
this chapter and that titled The Second Law of Thermodynamics in 
Chapter 1). 

As Misra has shown recently, this conclusion remains valid even in the 
framework of ensemble theory. The importance of the Poincare-Misra 
theorem is that it leaves us only two alternatives. We can conclude with 
Poincare that there is no dynamical interpretation of the second law. 
Then, irreversibility comes from supplementary phenomenological or 
subjectivistic assumptions, from "mistakes." But how then can we 
account for the wealth of important results and concepts that derive from 
the second law?* In a sense living beings, we ourselves, are then 
" mistakes." 

Fortunately, there is a second alternative. Poincare tried to associate 
entropy with a function of correlations and momenta, but this attempt 
also failed. Can we not retain the idea of introducing a microscopic 
entropy such that macroscopic entropy is an appropriate average of the 
microscopic entropy, thus realizing Poincart's program in a different 

* Refer to the discussions in Chapters 4 and 5 that stress the importance of dissipative 
structures for biological problems. How can we account for these results if the second law 
is an approximation? 
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way? Quantum mechanics has accustomed us to associate operators with 
physical quantities. Moreover, we have seen that in the ensemble 
approach (see the section dealing with ensemble theory in Chapter 2) the 
time evolution is described by the Liouville operator.* It therefore be- 
comes very tempting to try to realize Poincark's program in terms of an 
operator associated with the microscopic entropy (or Lyapounov 
functions). 

At first this seems a strange idea-or at least a purely formal device. An 
attempt will be made here to show that this is not so, that the idea of 
introducing a microscopic entropy operator is on the contrary a very 
simple and natural one. It should be remembered that the idea of an 
energy operator (the Hamiltonian operator H o p  referred to in Chapter 3) 
means that we cannot associate a well-defined value of energy with an 
arbitrary wave function unless it happens to be an eigenfunction of H o p .  
Similarly the idea of an entropy operator would mean that the relation 
between distribution function p and entropy would be more subtle than 
formerly considered. Again, in general we could not associate a well- 
defined value of entropy with the distribution function (or a function of p) 
unless it happens to be an eigenfunction of this operator. 

As will be seen, this more-refined relation between density p and 
entropy is in line with the idea of randomness on the microscopic level as 
introduced in classical mechanics by the concept of weak stability (see 
Chapter 2). We can expect therefore that the construction of this operator 
will be possible only if the basic concepts of classical (or quantum) 
mechanics, such as trajectories or wave functions, correspond to 
unobservable idealizations. Whenever it is possible to introduce such a 
microscopic entropy operator, classical dynamics becomes an algebra of 
noncommuting operators (somewhat like quantum mechanics). It is cer- 
tainly a great surprise that such a fundamental change in the structure of 
dynamics can be forced on us by the concept of irreversibility. Basically 
the same conclusions apply to quantum mechanics, of which the con- 
sequent fundamental change in structure will be described briefly in 
Chapter 8 and in Appendix C .  

* We have already seen that the use of operators becomes natural whenever we give Up 
the idea of trajectory (see also Appendixes A and B). Certainly the idea of operators is not 
restricted to quantum mechanics. 
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In short, the usual formulation of classical (or quantum) mechanics has 
become "embedded " in a larger theoretical structure, which also allows 
the description of irreversible processes. It is very gratifying that irrever- 
sibility does not correspond to some approximation added to the laws of 
dynamics but to an enlargement of their theoretical structure. 

In this framework, there is a new type of complementarity between 
the dynamical description and entropy. It can be expected that this 
complementarity exists only if the dynamical system is sufficiently 
"complex." Nobody would expect a thermodynamic type of behavior 
for a simple harmonic oscillator. 

In this chapter, Boltzmann's approach is discussed and the Poincare- 
Misra theorem presented. The construction of a new form of classical or 
quantum dynamics that explicitly displays irreversible processes will be 
presented in Chapter 8. 

Boltzmann's Kinetic Theory 

A few years before the publication in 1872 of Boltzmann's fundamental 
paper, "Further Studies on Thermal Equilibrium between Gas 
Molecules," Maxwell had already studied the evolution of the velocity 
distribution function, f (r, v, t), which gives the number of particles having 
at time t the position rand the velocity v (Maxwell 1867). (In terms of the 
general distribution function p, as defined in equation 2.8, f is obtained by 
integrating over all coordinates and momenta except those of a single 
molecule.) Maxwell gave convincing arguments that, for long times in 
low-concentration gases, this velocity distribution should tend to the 
Gaussian form, 

in which m is the mass of the molecules and T the (absolute) temperature 
(see equation 4.1). This is the well-known Maxwell velocity distribution. 
Boltzmann's aim was to discover a molecular mechanism that would 
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ensure the validity of Maxwell's velocity distribution for long times. His 
starting point was to deal with large systems including many particles. He 
considered it natural that, like social and biological situations, such 
systems would call attention not to individual particles, but to the evolu- 
tion of groups of particles, and concepts of probability could be used quite 
freely. He decomposed the time variations of the velocity distribution into 
two terms, one due to the motion of the particle, the other due to binary 
collisions : 

There is no difficulty in making the flow term explicit. We must simply 
introduce the Hamiltonian for free particles, H = p2/2m, and apply equa- 
tion 2.11. We then obtain 

in which v = p/m is the velocity. However, the evaluation of the collision 
term does present a problem. Boltzmann used a plausibility argument 
very similar to the type of arguments introduced in the theory of Markov 
chains, which were described in Chapter 5. Historically, however, Boltz- 
mann's theory preceded the theory of Markov chains. 

As was done in equation 6.8, Boltzmann decomposed the time change 
due to collision into a gain term, in which one particle with velocity v 
appears at point r (that means in some element of volume around point 
r), and loss terms, in which such a molecule disappears because of colli- 
sions. Therefore we have the scheme 

v', U; + v, v1 gain 

v, v -' of, v; loss 

The frequency of these collisions is proportional to the number of 
molecules that have velocities v', v', (or v ,  0,); that is, f (0') f (u',) [or 
f (0) f (v,)]. After a few elementary calculations, this gives the contribution 
for the collision term (see Chapman and Cowling, 1970): 
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The integration is performed both on the geometrical factors that deter- 
mine the collision cross section a and over the velocity v1 of one of the 
molecules in the collision. Adding equations 7.3 and 7.5, we obtain 
Boltzmann's celebrated integro-differential equation for the velocity 
distribution: 

After this equation has been obtained, we can introduce Boltzmann's 
H-quantity : 

H = I dvf log f 

and prove that 

aH f lf' 
-= - / ~ d m d v l o l o g -  '(f'f; - f f , ) < ~  
at ff, 

as a result of the simple inequality 

a 
log - . (a - b) 3 0 

b 

We therefore obtain a Lyapounov function. However, the basic difference 
between this Lyapounov function and that considered in Chapter 1 in the 
section on the second law of thermodynamics is that it is now expressed 
in terms of the velocity distribution and not in terms of macroscopic 
quantities such as temperature. 

The Lyapounov function reaches its minimum when the condition 

logf + log f, = log f '  + log f; (7.10) 

is satisfied. This condition has a simple meaning in terms of the collisional 
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invariants, which are the number of particles, the three Cartesian 
momenta of the particles, and the kinetic energy. These five quantities are 
conserved in a collision. Therefore log f must be a linear expression of 
these given quantities, and disregarding the momenta, which are only 
important if there is motion as a whole, we immediately arrive at the 
Maxwell distribution (formula 7.1), in which, indeed, log f is a linear 
function of the kinetic energy mv2/2. 

Boltzmann's kinetic equation is a very complicated one because it 
contains the product of the unknown distribution functions under the 
integral. For systems near equilibrium, we may write 

in which f ( O )  is the Maxwell distribution and 4 is considered a small 
quantity. We then obtain a linear equation for 4, which has proved to be 
extremely useful in transport theory. An even cruder approximation of 
Boltzmann's equation is to replace the whole collision term by a linear 
relaxation term, and to write 

in which T is an average relaxation time that gives an order of magnitude 
of the time interval necessary to reach the Maxwell distribution. 

Boltzmann's equation has given rise to many other kinetic equations 
that are valid under rather similar conditions (collisions between excita- 
tions in solids, plasmas, etc.). More recently, extensions to dense systems 
have been suggested. However, these generalized equations for dense 
media do  not admit a Lyapounov function and the connection with the 
second law is lost. 

The procedure for using Boltzmann's approach can be summarized as 
follows : 

Dynamics 
1 

Kinetic equation (" Markov process") 
1 

Entropy (through H) 

H 

I First collision 

2n collisions 

' 1 Equilibrium 

FIGURE 7.1 
Time 

Evolution of H with time. (After Bellemans and Orban, 1967.) 

In recent years there have been many numerical calculations to verify 
Boltzmann's predictions. The H-quantity has been calculated on com- 
puters, for example, for two-dimensional hard spheres (hard disks), start- 
ing with disks on lattice sites with isotropic velocity distribution 
(Bellemans and Orban 1967). The results, which are given in Figure 7.1, 
confirm Boltzmann's prediction. 

Boltzmann's theory has also been used to calculate transport proper- 
ties (viscosity and thermal conductivity). This is the great achievement of 
methods devised by Sydney Chapman and David Enskog for the solution 
of Boltzmann's equation. In this case, too, agreement has been quite 
satisfactory (see Chapman and Cowling, 1970, and Hirschfelder, Curtiss, 
and Bird, 1954). 

Why does Boltzmann's method work? The first aspect to consider is 
the assumption of molecular chaos. As was discussed in Chapter 5 in the 
section on classical chemical kinetics, Boltzmann calculated the average 
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number of collisions, neglecting fluctuations. But this is not the only 
important element. If we compare Boltzmann's equation with the Liou- 
ville equation (2.12), we see that in Boltzmann's equation the symmetry of 
the Liouville equation is broken. If we change L -+ - L and t + - t in the 
Liouville equation, this equation remains invariant. We can change 
L + - L by changing the momentum (or the velocity) p + - p .  This is a 
consequence of equation 2.13. By looking at Boltzmann's kinetic equa- 
tion, or the simple version given in equation 7.12, we see that the flow 
term changes sign when v is replaced by - v ,  but the collision term 
remains invariant. This term is even with respect to velocity inversion. 
This is also true for the original Boltzmann equation. 

Therefore the symmetry of the collision term violates the " L - t " sym- 
metry of the Liouville equation. A characteristic feature of Boltzmann's 
equation is that it possesses a new t y p e  of symmetry,  one that does not 
appear in the Liouville equation, neither in classical nor in quantum 
mechanics. In brief, the time evolution contains both odd and even terms 
in L. 

This is very important. Only the collision term (which is even in L)  
contributes to the evolution of the Lyapounov function H. We may say 

, that Boltzmann's equation transposes the basic thermodynamic distinc- 
tion between reversible and irreversible processes into the microscopic 
(or more accurately kinetic) description. The flow term corresponds to a 

, reversible process and the collision term to an irreversible process. Thus, 
there is a close correspondence between the thermodynamic description 
and Boltzmann's description, but unfortunately this correspondence is 
not "deduced" from dynamics; it is postulated from the start (i.e., equa- 
tion 7.2). 

A surprising feature of Boltzmann's theorem is its universal character. 
The interaction between the molecules may be quite varied: we may 
consider hard spheres, repulsive central forces decreasing according to 
some power law, or both repulsive and attractive forces. Yet, indepen- 
dently of the microscopic interactions, the H quantity has a universal 
form. We shall return to the interpretation of this remarkable feature in 
the next chapter. Let us turn now to some of the difficulties related to 
Boltzmann's treatment of kinetic theory. 

Correlations and the Entropy 
of Rejuvenation 

It has already been mentioned that, in spite of their successes, Boltz- 
mann's ideas have met with both practical and theoretical difficulties. For 
example, it seemed impossible to extend the construction of the H- 
quantity to other systems, such as dense gases or liquids. It is easy to see 
that the practical and the theoretical difficulties are related. Let us first 
concentrate on the theoretical difficulties. From the start, Boltzmann's 
ideas met with strong objections. Poincare went so far as to write that he 
could not recommend the study of Boltzmann's paper because the 
premises in Boltzmann's considerations clashed with his conclusions 
(Poincare 1893). (PoincarC's point of view will be returned to later in this 
chapter.) 

Other objections were formulated in the form of paradoxes. One was 
Ernst Zermelo's recurrence paradox, which is based on the celebrated 
Poincare theorem that states that, "for almost all initial states, an arbi- 
trary function of phase space will infinitely often assume its initial value, 
within arbitrary error, provided the system remains in a finite part of the 
phase space. As a result it seems that irreversibility is incompatible with 
the validity of this theorem." (For references to the paradoxes, see Chan- 
drasekhar, 1943.) 

As has been pointed out recently, notably by Joel Lebowitz (see Rice, 
Freed, and Light, 1972), Zermelo's objection is not justified, because 
Boltzmann's theory deals with the distribution function f, whereas 
PoincarC's theorem refers to single trajectories. 

We could then ask, Why introduce a distribution function formalism at 
all? At least for classical dynamics, we already know the answer (see 
Chapter 2). Whenever we have weak stability as in mixing systems or in 
dynamical systems exhibiting the Poincare catastrophe, we cannot per- 
form the transition from a statistical distribution function to a well- 
defined trajectory. (For quantum mechanics, see Appendix C. )  

This is a very important point: for any dynamical system we never 
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know the exact initial conditions and therefore the trajectory. Yet the 
transition from the distribution function in phase space to the trajectory 
corresponds to a well-defined process of successive approximations. 
However, for systems exhibiting "weak stability," there is no process of 
successive approximations, and the concept of a trajectory corresponds to 
an idealization beyond that which can be obtained from experiments, 
regardless of their accuracy. 

Another serious objection is based on Joseph Loschmidt's reversibility 
paradox: because the laws of mechanics are symmetrical with respect to 
the inversion t + - t, to each process there corresponds a time-reversed 
process. This also seems to be in contradiction with the existence of 
irreversible processes. 

Is Loschmidt's paradox at all justified? It is easy to test it by means of 
a computer experiment. Andre Bellemans and John Orban (1967) have 
calculated Boltzmann's H-quantity for two-dimensional hard spheres 
(hard disks). They start with disks on lattice sites with an isotropic velo- 
city distribution. The results are shown in Figure 7.2.  

We see that, indeed, the entropy (that is, minus H) first decreases after 
the velocity inversion. The system deviates from equilibrium over a 
period ranging from fifty to sixty collisions (which would correspond in a 
low-concentration gas to about seconds). 

The situation is similar for spin-echo experiments and plasma-echo 
experiments. Over limited periods, anti-Boltzmannian behavior in this 
sense can be observed. All this shows that Boltzmann's equation is not 
always applicable. Paul and Tatiana Ehrenfest made the remark that 
Boltzmann's equation cannot be correct both before and after inversion of 
velocities (see Ehrenfest and Ehrenfest, 191 1). 

Boltzmann's view was that, in some sense, physical situations for which 
the kinetic equation (equation 7.6) is valid would be overwhelmingly 
more frequent. It is difficult to  accept this view, because today we can 
realize both computer and laboratory experiments in which his kinetic 
equation is not  valid, at least over limited periods. 

What inference can be drawn from the fact that there are situations for 
which the kinetic equation is valid and others for which it is not? Does 
this fact express a limitation of Boltzmann's statistical interpretation of 
entropy or a failure of the second law for some class of initial conditions? 

The physical situation is quite clear: velocity inversion creates correla- 

I'ime 

FIGURE 7.2 
Evolution of H with time for a system of 100 disks when velocities are inverted after 
50 collisions (open cucles), 100 collisions (solid circles). (After Bellemans and Orban, 1967.) 

tions between particles that may be of macroscopic range.* Particles that 
collide at time t ,  must collide again at time 2 t o  - t ,. These anomalous 
correlations can be expected to disappear during the period from t o  to 
2 t o ,  after which the system returns to a "normal" behavior. 

In brief, entropy production can be understood in the interval 0 to to to 
be associated with the "Maxwellianization" of the velocity distribution, 
whereas in the period to to 2 t o  it should be associated with the decay of 
anomalous correlations. 

Thus the failure of Boltzmann's approach to cope with such situations 
can be easily understood. We need a statistical expression of entropy that 
depends expl ic i t ly  on correlations. Let us briefly consider how the H- 
quantity would evolve if we were able to construct a Lyapounov function 
that also contained the correlations (see Prigogine et al., 1973). 

* These "anomalous" correlations also have the property that they exist prior to colli- 
sions, whereas the normal correlations are produced by the collisions. 
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For example, consider the positive quantity 

Q =  [ p 2 d p d q > 0  

in which we integrate over the phase space. In quantum mechanics, the 
equivalent quantity would be in agreement with equations 3.29 and 3.31': 

R = tr ptp = C ( n l p l n ' ) t ( n ' ) p l n )  
nn' 

= C (diagonal terms)' + C (off-diagonal terms)2 (7.14) 

with (see equation 3.31") 

We may associate the diagonal terms (n 1 p 1 n )  with probabilities (i.e., 
equation 3.31") and the off-diagonal ones with correlations. 

A Lyapounov function of the form 7.13 or 7.14 would indeed incorpor- 
ate correlations and would go beyond Boltzrnann's approach, which 
deals only with probabilities. We may add that the existence of a Lya- 
pounov function of type 7.14 would be eminently reasonable, because the 
minimum of R, taking into account equation 7.15, would be reached 
when all diagonal elements of p  are equal (and their sum equal to one) 
and all off-diagonal elements vanish. This is the situation described by 
equal probabilities and random phases. We would then have a situation 
quite similar to the microcanonical ensemble, considered in Chapter 2, in 
which all states have the same probability on the energy surface. 

What would happen if we carried out the velocity-inversion experi- 
ment using expression 7.14. The result that we could expect is represented 
in Figure 7.3. (For a detailed discussion, see Prigogine et al., 1973.) Sup- 
pose that we start with only diagonal elements in the density matrix 
(which corresponds to the initial condition of no correlations). We then 
proceed until time t o .  In this time interval, we have an evolution quite 
similar to that described by Boltzmann's equation (see Figure 7.2) and R 

FIGURE 7.3 
Time behavior of R in the velocity-inversion experiment. 
The velocities are inverted at time t o .  

decreases as a result of collisions. At to we obtain a velocity inversion. 
This corresponds to introducing off-diagonal elements into the density 
matrix, because such elements correspond to correlations. Therefore, at 
this point 0 will increase (see expression 7.14); from t o  to 2 to ,  it will again 
decrease as the anomalous correlations die out. At time 2to the system is 
in the same state as it was at time t o .  In other words, we have restored the 
initial state at the expense of "entropy production," which is now positive 
during all the time evolution of the system. There is no longer any period 
of the system corresponding to "antithermodynamic behavior." The in- 
crease at time to is not in contradiction with this statement. At this time 
the system is not closed-the velocity inversion corresponds to a flow in 
entropy (or of "information"), which leads to an increase. We can con- 
trast this behavior with that of the Boltzmann H-quantity in which the 
"thermodynamic" evolution from 0 to t o  is followed by an antithermo- 
dynamic one from to to 2t ,  (see Figure 7.2). 

In summary, we may say that we have realized a cycle of rejuvenation, 
but, as in real life, rejuvenation exacts a price. Here, this price is the 
overall entropy production in the period from 0 to  2 t 0 .  Can we really 
construct a function, such as R, that takes into account correlations? 
That is the basic question. 
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Gibbs Entropy 

As just pointed out, we would like to construct a Lyapounov function 
such as expression 7.13 or 7.14. Let us see if this can be done using the 
Liouville equation. The calculation is especially simple for classical 
systems, because we can then obtain (using equation 2.13) 

which can be easily verified by partial integration. This result is indepen- 
dent of the special functional (expression 7.13). We could also have 
considered 

or any other "convex" functional of p. The attempt to avoid the 
difficulties in Boltzrnann's scheme by considering the complete distribu- 
tion function p instead of the velocity distribution f fails. That is the 
reason why Gibbs proceeded, as mentioned in Chapter 1, to a "subjecti- 
vistic view of irreversibility" as an illusion due to the imperfection of 
the sensory organs of the observer. (For a recent interpretation of this 
view see Uhlenbeck in Mehra, 1973.) However, from the point of view 
adopted in this book, the negative result expressed in equation 7.16 can 
hardly be a surprise: ensemble theory differs from dynamics in the fact 
that "ignorance" of initial conditions is incorporated in the distribution 
function p. But this cannot be the sole reason why irreversibility, as 
expressed by a Lyapounov function, can be constructed. Certainly sup- 
plementary conditions, such as weak stability, are necessary. 

In addition it should not be expected that the Liouville equation (2.12) 
will lead to a universal Lyapounov function, be it expression 7.13 or 7.16'. 

KINETIC THEORY 

Let us consider, instead of the Liouville equation, a system of 
ordinary linear equations: 

Here, too, we may ask whether a Lyapounov function associated with this 
system of equations exists. This question is discussed in all textbooks 
dealing with the Lyapounov method for the study of the stability of the 
solution of differential equations (Minorski 1962). Generally, one con- 
siders a quadratic form such as 

If R is indeed a Lyapounov function, the elements of the term B will in 
general depend on the coefficients A of the differential equations. 

Similarly, we have to expect that, if there is a Lyapounov function 
associated with dynamics (i.e., with the Liouville equation), it should be a 
functional of the dynamical processes involved (included in the operator 
L). A universal form can emerge only at a later stage, through a suitable 
change of coordinates. Before considering these questions, let us intro- 
duce the Poincare-Misra theorem. 

The Poincark-Misra Theorem 

As mentioned early in this chapter, Poincare reached the conclusion that 
dynamics and thermodynamics cannot be reconciled. In a sense, this is a 
direct consequence of his recurrence theorem: "a function of phase space 
will infinitely often assume its initial value." It therefore cannot behave in 
a monotonically increasing way as required by the second law. But, by 
taking a suitable average with distribution functions, this may not be so. 
Baidyanath Misra (1978) has shown that Poincark's conclusions are not 
altered. 

The Poincare-Misra theorem will be presented in a way that directly 
relates to expression 7.13. Note that we may also write that expression in 
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the form 

in which we have used equation 2.12' and the fact that L is a Hermitian 
operator (see equation 2.13). We recover the fact that R is time indepen- 
dent. We now look for a more general form such as 

with 

To make expression 7.18 a Lyapounov function, we suppose that the time 
derivative D of M is negative (or zero) 

Using equations 2.5 and 2.13, we may write 

It is now an easy matter to show that requirement 7.20 cannot be satisfied 
unless D = 0 everywhere, but then R is not a Lyapounov function if M is 
a function of coordinates and momenta. Let us consider the time deriva- 
tive of R: 

We now consider the case corresponding to an equilibrium ensemble 
(see the section titled Operators in Chapter 2): 

p(0) = microcanonical ensemble = constant 

which we normalize to one. Then by definition 

and, because equilibrium has been reached, we require that 

All this is valid when M (and D) are operators or ordinary functions of 
coordinates and momenta. However, if the latter case is so, we can go one 
step further and replace p(0) in equation 7.25 by its value, which is a 
constant and which we take equal to one. Then equation 7.25 reduces to 

But because of expression 7.20 this implies that D = 0 everywhere on the 
microcanonical surface and R cannot be a Lyapounov functional. This 
proof can be extended to general convex functionals. We therefore return 
to Poincare's conclusion: the microscopic entropy (or Lyapounov func- 
tional) cannot be an ordinary function of the phase variables. If it exists at 
all, it can only be an operator. Then equation 7.25 can indeed be satisfied 
by requiring only that Dp(O), for p(0) = constant, is an eigenfunction of D 
corresponding to a vanishing eigenvalue. But then the introduction of 
irreversibility requires a generalization of the conceptual framework of 
dynamics ! 

A New Complementarity 

What we have shown is not only that the functional of the form 7.13 
cannot be used to define a Lyapounov functional-this is a direct con- 
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sequence of the Liouville equation-but that more general functionals 
such as those of the form 7.18 are also ruled out if the q~anti ty M 
corresponding to the "microscopic entropy" is a function of coordinates 
and momenta. 

It should be emphasized that an appeal to special, "improbable" initial 
conditions would not help. We assume the validity of the second law as 
expressed by a Lyapounov function. We may introduce a weaker state- 
ment by giving up the monotonous increase of entropy. But then we are 
lost, for the distinction between reversible and irreversible processes 
would have to be replaced by some new one, which at present we cannot 
even formulate in a consistent way. Therefore, it seems that we are back 
to the difficulties mentioned in Chapter 1. Must we regard irreversibility 

I 

as an approximation or as a property that we, the observers, introduce 
into a reversible world? Fortunately, this is not an unavoidable con- 
sequence of the Poincare-Misra theorem. As already explained, since the 
advent of quantum mechanics, we have become accustomed to introduc- 
ing into physics a new type of object, operators (see Chapters 2 and 3). 
Therefore it is tempting to consider the Lyapounov functional of the form 
7.17, but with M defined as a microscopic "entropy operator" that does 
not commute with the Liouville operator L. The commutator 

- ~ ( L M  - ML) = D 6 0 

then defines the "microscopic entropy production." But this leads to a 
new form of complementarity. 

The concept of complementarity was introduced in Chapter 3. We have 
seen that in quantum mechanics position and momenta are represented 
by noncommuting operators (Heisenberg's uncertainty relations). This 
may be viewed as an example of Bohr's complementarity principle: there 
are observables in quantum mechanics whose numerical value cannot be 
determined simultaneously. Thus, we also have a new form of 

I complementarity-one between the dynamical and the thermodynamic 
descriptions. The possibility of such a complementarity was explicitly 
mentioned by Bohr and is confirmed by the approach taken here. Either 
we consider eigenfunctions of the Liouville operator to determine the 
dynamical evolution of the system or we consider eigenfunctions of M, 

FIGURE 7.4 
Three possible transitions of a dynamical system: (A) transition between an initial 
phase-space region X at time to  and either of two regions Y and Z at a latter time, T ;  
(B) a single type of transition from X to  Y;  (C) distribution of phase fluid initially 
concentrated in region X on long filament Y. 

but there are no common eigenfunctions of the two noncommuting oper- 
ators L and M. 

What does M regarded as an operator mean? First of all, it means that 
there are supplementary properties not included in the dynamical descrip- 
tiotl. Even if we know the eigenfunctions and the eigenvalues of L, we 
cannot assign a well-defined value to M. Such supplementary properties 
can come only from some type of randomness in the motion. 

We have already seen in Chapter 2 that there is a hierarchy of dynami- 
cal systems with stronger and stronger stochastic properties. We have 
seen that in ergodic systems the motion may be quite smooth (see the 
section titled Ergodic Systems in Chapter 2), but this is not so when 
stronger conditions are introduced. Consider a dynamical system that is 
initially (at time to) in region X of phase space. Suppose that at time 
to + z it is found either in region Y or in region Z (see Figure 7.4A). In 
other words, if we know that at t o  the system is in region X, we can only 
calculate the probability that it will be in either Y or Z at time to  + T. This 
does not prove that there is some "basic randomness " associated with 
the motion. To investigate this point, we decrease the size of region X, in 
which case one of two things may happen: either for some sufficiently 
small size of the initial region all parts will later be in the "same" region, 
say Y (see Figure 7.4B), or the situation shown in Figure 7.4A persists 
whatever the size of region X. The second case corresponds precisely to 
the "weak stability" condition: each region, whatever its size, contains 
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different types of trajectories and the transition to a single trajectory 
becomes ambiguous. 

Our example is somewhat oversimplified: Our requirements are 
satisfied if each phase element is sufficiently "distorted " with the passage 
of time. For example, in Figure 7.4C, the phase fluid initially concentrated 
in region X is distributed after some time on a long filament Y. Again the 
concept of a trajectory becomes ambiguous if this distortion remains, 
regardless of the size of region X. 

It is in such situations that we may expect a microscopic entropy 
operator to exist. As will be seen in Chapter 8, this expectation is verified: 
the operator M can indeed be constructed for systems that present either 
mixing (or a stronger condition) or a Poincare catastrophe. 

In spite of the basic difference in our arguments, the conception of 
irreversibility arrived at here is, in its essence, quite similar to that put 
forward by Boltzmann. Irreversibility is the manifestation on a macrosco- 
pic scale of " randomness" on a microscopic scale. 

For examples such as the one just discussed (i.e., that illustrated in 
Figure 7.4), we may go even further and associate to the system a new 
type of time-an operator time T closely related to M. Because this T is 
an operator, it has as eigenvalues the possible ages a system may have (see 
also Appendix A). A given initial distribution p can generally be 
decomposed into members having different ages and evolving differently. 

This is probably the most intriguing conclusion to be drawn in this 
book: although in physics time was always a mere label associated with 
trajectories or wave packets, here time emerges with a completely new 
meaning associated with evolution. We shall return to this idea in Chap- 
ters 8 and 9. 

It should be emphasized that, although for Boltzrnann irreversibility 
was a consequence of molecular chaos "superimposed " on the equations 
of dynamics, we pursue a purely dynamical approach. Both randomness 
and irreversibility are consequences of the structure of the equations of 
motion. For example, in classical mechanics we have 

Dynamical characteristics .-> Randomness 

(mixing, Poincare catastrophe) \ Irreversibility 
(M operator) 

KINETIC THEORY 

Contrary to what Boltzmann attempted to show there is no "deduc- 
tion" of irreversibility from randomness-they are only cousins! 

Chapter 8 will deal first with the consequences of the existence of both 
the operator M and a Lyapounov function. The construction of the latter 
will then be discussed briefly, followed by a few examples. 



Chapter 8 

THE MICROSCOPIC THEORY OF 
IRREVERSIBLE PROCESSES 

Irreversibility and the Extension 
of the Formalism of Classical 
and Quantum Mechanics 

We have seen in Chapter 7 that the "minimum assumption" necessary 
for introducing irreversibility into classical mechanics is to enlarge the 
concept of classical observables: instead of functions of coordinates and 
momenta, an operator M has been introduced. This means that classical 
dynamics no longer consists of the study of orbits; rather it becomes the 
study of the time evolution of distribution functions. 

The situation is somewhat similar in quantum mechanics. There is no 
way of introducing an operator such as M in the framework ofthe rever- 
sible evolution of wave functions as described by the Schrodinger equa- 
tion (3.17) (see Appendix C ) .  

Therefore we must, as in classical mechanics, turn to ensemble theory 
(see Chapter 3) and use the quantum version of the Liouville theorem 

Note: This chapter is the most technical one of this book. For the convenience of the 
reader, a nontechnical summary is presented in Chapter 9. 
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(3.36). Moreover, in quantum mechanics we must make a distinction 
between operators, which act on wave functions, and "superoperators " 
which act on operators (or matrices). For example, the Liouville operator 
L acts on the density matrix p (see equations 3.35 and 3.36) and is there- 
fore a superoperator. 

The entropy operator M in quantum mechanics is also a superoperator 
because it acts on the density matrix p.  But it differs in a fundamental way 
from the Liouville operator L because of the difference between pure 
states and mixtures introduced in Chapter 3 (see equations 3.30 and 3.32). 
Described in detail in Appendix C, L is a " factorizable" superoperator, 
which means that, when acting on p corresponding to a pure state (i.e., to 
a well-defined wave function), it leaves the system in a pure state that is a 
well-defined wave function. This is in agreement with the Schrodinger 
equation (3.17), according to which a wave function evolves into another 
wave function in time. O n  the other hand, M is not factorizable; it does 
not preserve the difference between pure states and mixtures. In other 
words, the distinction between pure states and mixtures is lost in systems 
in which irreversible processes described by a Lyapounov function arise. 
This does not mean that Schradinger's equation becomes wrong-nor do 
Hamilton's equations in classical mechanics-but the distinction between 
pure states and mixtures (or between wave functions and density 
matrixes) is no longer observable. 

Whenever M can be introduced, we may proceed as in classical 
mechanics. As usual, the integration over phase space is replaced by the 
trace operator (see equation 3.32), and expression 7.18 then becomes 

with 

Again, it is not always possible to find an operator M such that the 
two preceding inequalities are satisfied. If the Hamiltonian has a discrete 
spectrum, the motion of the wave function (or of p) is periodic. Therefore 
a necessary condition is the existence of a continuous spectrum. 

It is beyond the scope of this book to describe in detail the microscopic 
theory of irreversible processes. The objective here is simply to assist the 
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reader in grasping the physical meaning of the concepts involved. First, 
we shall establish the connection between the existence of a Lyapounov 
function such as expression 8.1 and Boltzmann's approach, and then 
consider some applications in qualitative terms. We have also seen in 
Chapter 3 that conventional quantum mechanics has led to unsolved 
problems being widely discussed today. These problems can be seen from 
a new perspective once irreversibility is consistently incorporated in the 
dynamical description. 

A New Transformation Theory 

Suppose that we were able to construct an operator M for classical or 
quantum mechanics, such that expression 7.18 or 8.1 represents a Lya- 
pounov function. We would still be far from Boltzmann's ideas, because 
these Lyapounov functions involve the operator M, which depends on the 
"dynamics " of the system. In contrast, Boltzmann's H function (equation 
7.7) is universal. The remarkable point is that we can use M to generate ' 
new, non-Hamiltonian descriptions of dynamics. In the framework of 
these new descriptions, we may recover the idea of a "universal" H 
quantity. Indeed, for a closer approach to Boltmann's ideas, let us repre- 
sent the entropy operator M as the product of an operator T and its 
Hermitian conjugate Tt .  This is always possible because M is positive. 
(T is the "square root" of M.) We therefore write 

In keeping with the notation used in earlier publications (see, e.g., Prigo- 
gine et al., 1978) we write, instead of T,  

Inserting definitions 8.2 and 8.3 into expression 8.1, we get, using the 
definition of Hermiticity (see definitions 3.11 and 3.34), 
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with the new transformation density jj defined by 

This is a very interesting result, because expression 8.4 is ofthe same type 
as the one that we were trying to derive from expression 7.14 to describe 
the velocity-inversion experiment. But we see that this form of the Lya- 
pounov function can exist only in a new representation obtained from the 
preceding one by transformation 8.5. Any explicit reference to the opera- 
tor M in expression 8.1 has disappeared through the transformation. The 
definition of a Lyapounov function is not unique. When expression 8.4 is 
a Lyapounov function, all convex functionals of p such as 

R = tr p log j 

are also Lyapounov functions (see Appendix A, in which F is shown to 
satisfy a Markov process). 

We are dealing with an expression that, like Boltzmann's H-quantity 
(expression 7.7), depends only on the statistical description of the system. 
Once we know the state of the system as given by 3, we may evaluate 0. 
The particular state F ,  which leads to a minimum of R, acts as an attrac- 
tor for the other states. There is therefore a close relation between the 
existence of the operator M and the transformation theory involving the 
operator A (see definition 8.5). 

Let us now reconsider the formal properties of the transformation from 
expression 8.1 to expression 8.4 (for details, see Prigogine, forthcoming). 
First we write the equations of motion in the new representation. Taking 
into account definition 8.5, we obtain 

with 

The new equation of motion is related to the original one by a similitude 
(see equation 3.13). But we expect that a transformation that permits the 
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inclusion of "irreversibility" must be more than a mere change of coor- 
dinates expressed by a unitary transformation. To clarify this point, we 
will use the solution of the equations of motion (equation 3.36). We can 
replace the expressions in 8.1 by the more explicit inequalities 

We then use expression 8.5 to make the transformation to the new 
representation and obtain for the entropy production (expression 8.9) 

This implies that the difference between @ and its Hermitian adjoint Ot 
does not vanish: 

Therefore we note the important conclusion that the new operator of 
motion that appears in the transformed Liouville equation (8.6) can no 
longer be Hermitian as was the Liouvillc operator L. This shows that we 
must leave the usual class of unitary transformations (expression 3.11) 
and proceed to an extension of the symmetry of quantum mechanical 
operators. Fortunately, it is easy to  determine the class of transformations 
that we must consider now. Average values can be calculated in both the 
old and the new representations. The result should be the same. In other 
words, we require that 

( A )  = tr A l p  = tr Zitj 

In this sense, the two representations of quantum mechanics should 
indeed be equivalent (if they were not, at least one of them would make 
incorrect predictions). No experimental information available at present 
points in this direction. 
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Moreover, our interest lies in transformations that depend explicitly on 
the Liouvillc opcrator. This is indeed the physical motivation of the 
theory. We have seen in Chapter 7 that the Boltzmann-type equations 
have a broken L - t symmetry. We want to realize this new symmetry 
through our transformation. This can be done only by considering the 
L-dependent transformation A(L). The density y and observables have 
the same equations of motion, except that L is replaced by - L  (see 
equations 3.36 and 3.40). We therefore require that, for an observable A,  

Therefore, 

and by identification with the original form of the trace we obtain 

which in this development replaces the condition usually imposed on 
transformations in quantum mechanics, namely that the operators be 
unitary. If A is independent of L, then it is simply a unitary transforma- 
tion, but this case is of no interest here. 

It is not astonishing that we find a nonunitary transformation law. 
Unitary transformations are very much like changes in coordinates, 
which do not affect the physics of the problem. Whatever the coordinate 
system, the physics of the system remains unaltered. But now we are 
dealing with a quite different problem. We want to go from one type of 
description, the dynamical one, to another, the "thermodynamic" one. 
This is why we need the drastic type of change in representation expressed 
by the new transformation law (equation 8.15). 

This transformation is called the star-unitary transformation; and a 
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new notation must be introduced:* 

We shall call this operator the "star-Hermitian " operator associated with 
A ("star" always mean the inversion L -+ - L  followed by Hermitian 
conjugation). Then equation 8.15 shows that, for star-unitary transforma- 
tions, the inverse of the transformation is equal to its star-Hermitian 
conjugate. As already explained, equation 8.12 can always be satisfied by 
unitary transformations (they are recovered if we consider A independent 
of L). The remarkable feature is that, in addition, there is a well-defined 
class of nonunitary transformations, which satisfies the equivalence con- 
dition and leads to a new form of the equations of motion. Let us now 
reconsider equation 8.7. 

The new dynamical operator @ is obtained through a similitude from 
L, but this similitude is in terms of a star-unitary (not a unitary !) opera- 
tor. Using the facts that L is Hermitian and that equations 8.15 and 8.16 
hold, we obtain 

The operator of motion is star-Hermitian. This is most welcome! Indeed, 
to be star-Hermitian, an operator may be either Hermitian and even 
under Linversion (i.e., it does not change sign when L is replaced by - L )  
or anti-Hermitian and odd (odd means that it changes sign when L is 
replaced by - L). Therefore, a star-Hermitian operator can generally be 
written as 

* 1 nere is an interesting analogy with quantum statistics that may be distinguished by + 1 
or - 1 in the distribution functions. Here also the condition of equivalence (equation 8.12) 
leads to two classes of transformations: At(L)  = A 1 ( k L ) .  The choice of + leads to 
conventional unitary transformations. whereas - leads to  representations displaying 
irreversible processes. 



THE BRIDGE FROM BEING TO BECOMING 

The superscripts "e" and " o w  refer to the even and the odd part of the 
new time evolution operator @. The condition of dissipativity (expression 
8.11), which expresses the existence of a Lyapounov function R, now 
becomes 

It  is the even part that gives the "entropy production." 
Thus we have obtained a new form of microscopic equation (as was the 

Liouville equation in classical or quantum mechanics), but our new form 
explicitly displays a part that can be associated with a Lyapounov func- 

I tion. In other words, the equation 

\ contains a reversible part and an irreversible part. The macroscopic 
thermodynamic distinction between reversible and irreversible processes 

I has now been incorporated into the microscopic description. 
What is so satisfactory here is that the symmetry obtained in equation 

8.21 is exactly the Boltzmann symmetry. As we have seen in the 
Boltzmann-type of equation, the collision part is even in Land the flow 
part, odd. 

The physical meaning is also similar. The even term contains all the 
processes that contribute to the increase of the Lyapounov function and 
drive the system to equilibrium. This includes scattering, production and 
decay of particles, damping, and so forth. 

The step made through nonunitary transformation is quite crucial. We 
go from the dynamical description in terms of trajectories or wave 
packets to a description in terms of processes. It is amazing how the 
various elements of this approach conspire to achieve a picture that 
unifies dynamics and thermodynamics. Once we have postulated he 
existence of the Lyapounov function (expression 8.1), the existence c ' a 
representation of dynamics with the characteristic broken "L - t 
symmetry " follows immediately. 

The chain is as follows: 
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Microscopic entropy operator (M) 

+ nonunitary transformation A 

+ star-Hermitian evolution operator @ 

(with broken symmetry) 

In simple cases (such as dilute systems or weakly interacting systems), 
the new equations of motion have a simple probabilistic interpretation in 
terms of Markov chains-again in line with Boltmann's intuition (see 
Prigogine et al., 1973, and Appendix A). But in our discussion (see Chap- 
ter 7) dynamics comes Jirst-the physical interpretation including its 
probabilistic aspect can only be a consequence of the transformation 
theory. 

A posteriori, it is difficult to imagine how the conflict between "being 
and becoming" could have been resolved in a different way. In the nine- 
teenth century, there was a profusion of controversy between "energeti- 
cists" and "atomists," the former claiming that the second law destroys 
the mechanical conception of the universe, the latter that the second law 
could be reconciled with dynamics at the price of some "additional 
assumptions" such as probabilistic arguments. What this means 2xactly 
can now be seen more clearly. The "price" is not small because it involves 
a far-reaching modification of the structure of dynamics. 

Construction of the Entropy Operator 
and the Transformation Theory: 
The Baker Transformation 

So far we have considered only the formal properties of M and its relation 
to transformation theory. Let us now look briefly into the construction of 
M and the transformation operator A. This in itself is a vast subject and 
can be dealt with here only in general terms to indicate the methods that 
must be used (see also Appendixes A and C). 

First, we shall consider classical dynamics. Then, as repeatedly men- 
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tioned, we must consider two different situations that lead to the type of 
"weak stability" in which we can expect a Lyapounov function to exist 
(see Chapter 2). 

For ergodic systems, Misra (1978) has shown that mixing is a necessary 
condition and K-flow a sufficient condition for the existence of the micro- 
scopic entropy operator M. As noted in Chapter 2, this classification of 
dynamical systems is based on the spectral properties of the Liouville 
operator. Mixing implies that L has no discrete eigenvalues other than 
zero, and K-flow implies that all eigenvalues of L have the same multi- 
plicity. Note that ergodicity alone is not sufficient; the Liouville operator 
L must have no discrete eigenvalues other than zero, which corresponds 
to equilibrium (see Chapter 2), so that there are no periodic motions. 
Misra has shown that in the case of a K-flow a conjugate Hermitian 
operator T can be associated with L such that their commutator is 
constant: 

-i[L, TI = -i(LT - TL) = 1 

in which 1 is the unit operator. A plausibility argument follows (for the 
proof, see Misra, 1978, and, for an example of the construction, see 
Appendix A). For a K-flow, we may go to a representation in which the 
operator L is represented by a number, say A. We then find an operator T, 
which in the same representation will be given by the derivative i(d/dA). 

That our approach introduces a new complementarity between dynam- 
ics and thermodynamics is especially apparent here because the relation 
given by equation 8.22 is formally similar to that between momentum and 
coordinate in quantum theory, as equation 3.2 leads to 

The Liouville operator L corresponds formally to a time derivative (see 
equation 2.12). Therefore, the conjugate operator T corresponds to a 
"time" in the sense that the representation 

satisfies the commutation relation (equation 8.22). In other words, we can 
add to dynamics an operator, T, representing a fluctuating time in accord 

FIGURE 8.1 
Baker transformation. First, the unit square (A) is flattened into a 
4 x 2 unit rectangle (B). Then it is reassembled to form a new square 
( C )  in which the shaded and unshaded areas are split into four 
separate regions rather than the two shown in part A. 

with the general comments made in Chapter 7. A simple example is 
supplied by the baker transformation, so-called because it evokes the 
image of kneading dough. (This transformation, or mapping, is described 
in greater detail in Appendix A.) Consider the unit square shown in 
Figure 8.1A. The coordinates x, y are defined by modulus one: that is, all 
points that do  not lie in the unit square are moved into it by adding 
integers to or subtracting them from their coordinates. For example, 
(x, y) = (1.4, 2.3) is brought into the unit square as (0.4,0.3). 

The transformation is performed at regular time intervals (this is a 
discrete transformation): 

mod l , i f O < x < +  

(x ,y)+[2x-  l , f ( y +  I)] mod l , i f + < x <  1 

The mapping has a simple geometrical meaning. If at time to  the phase 
point is at x, y, then at time to + 7 it is at the point obtained by flattening 
the square to a 112 x 2 rectangle and then cutting and reassembling to 
form a new square, as shown in Figure 8.1B, C. 

Although this is not a Hamiltonian, dynamical transformation, it can 
be used to illustrate many aspects of Hamiltonian flows because it is 
measure-preserving. The baker transformation leads precisely to the situ- 
ation described in Chapter 7 in the section on a new complementarity. 
Each finite region is split by the transformation into separate regions. 

The operator Tin  this case has a simple meaning-all of its eigenvalues 
are integers from - oo to + m. The corresponding eigenfunctions corre- 
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spond to space distributions that are generated from some standard dis- 
tribution in a given number of steps. For example, the eigenfunction 
corresponding to 20, means that 20 applications of the baker transforma- 
tion are necessary to generate it from the distribution corresponding to 
the eigenvalue 0. A distribution (more precisely the excess with respect to 
the uniform equilibrium distribution) may have a well-defined age. It is 
then by definition an eigenfunction of T. In general, a distribution has no 
well-defined age but may be expanded in a series of functions having a 
well-defined age. We may then speak of the average age, of the "fluctua- 
tion" of age. The analogy with quantum mechanics is striking. More 
details can be found in Appendix A. 

Once T is known, we can take for M an operator that is a decreasing 
function of T. We then obtain a Lyapounov function (or an H quantity) 
that takes its minimum value at microcanonical equilibrium. The mean- 
ing of the microcanonical distribution is very simple: whatever the preci- 
sion of one observation (assuming only that it is Jinite), successive 
applications of the baker transformation lead to a distribution that is 
uniform (the inhomogeneity lies below the scale of observation). It is 
quite remarkable that in such a simple case we may indeed introduce a 
Lyapounov functional that varies monotonically until the uniform dis- 
tribution defined in this sense is reached. No thermodynamic limit to a 
large system is needed. 

Moreover, we may, starting from M, introduce a nonunitary transfor- 
mation A to obtain a universal Lyapounov function. We write, in agree- 
ment with definition 8.5, 

with 

We can now see what the L-dependence of A(L) means. The transforma- 
tion A depends on T, which itself is related to L through the commutation 
rule (equation 8.22). The L inversion also means the inversion of T: 

A(- L) = A(- T). (8.27) 

We have seen that A is a star-unitary operator satisfying equation 8.15. 
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Because T and M(T) are Hermitian, this condition reduces to 

A-'(L) = A(- L) 

By inverting L, we obtain the inverse transformation. Such transforma- 
tions are well known in physics. For example, the Lorentz transformation 
in special relativity belongs to this class (when we invert the relative 
velocity between two observers, we obtain the inverse transformation). 

That 9 has all the properties of a distribution function (notably it is 
positive) is verified in Appendix A.* The important point is that to obtain 
a universal Lyapounov functional, we need to perform a change of 
variables-a rescaling involving the dynamical properties of the system. 

Let us now turn to the second case in which we expect to find weak 
stability; that is, the Poincare catastrophe. 

Entropy Operator and the Poincare Catastrophe 

The construction of M and A is in this case a more arduous task. Inter- 
estingly, this is the case that was considered first by the Brussels group 
(see Prigogine et a]., 1973). A survey has been given recently by Alkis 
Grecos and myself (Prigogine and Grecos 1977). The added difficulty 
comes from the fact that we need not only the Hamiltonian H (or the 
Liouville operator L), but the decomposition of H into the "non- 
perturbed" H o  and the "perturbation" V (see equation 2.35). This 
decomposition is most elegantly performed by introducing orthogonal 
Hermitian projection operators P and Q such that 

In terms of these operators, 

* Moreover, as shown in Appendix A (at least for the class of dynamical systems studied 
there), we may choose A in such a way that 6 satisfies a Markov chain equation. This shows 
that a statistical scheme may be similar to a dynamical scheme. In other words, the transi- 
tion from a deterministic to  a probabilistic description involves no  loss of information. 
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We can now decompose L, or its resolvent (L - z)-' using these opera- 
tors. By definition, 

Simple manipulations lead to the identity 

with 

Y(z) = -PLQ 
1 

- QLP 
QLQ - z 

in which Y(z) is the so-called collision operator. It plays a central role in 
this approach. 

The behavior of Y(z) for z + 0 is of special interest because it deter- 
mines the asymptotic behavior of the distribution function [i.e., the limit 
p(t) for t -+ oo]. More precisely, it can be shown that traditional kinetic 
equations such as the Boltzmann equation (or its quantum form, the 
Pauli equation) can be deduced from the so-called master equation for 
the N-particle velocity distribution p , ,  written in the form 

in which Y(0) is the limit of Y(z) for z -0. The existence of kinetic 
equations is therefore closely related to the nonvanishing of the limit Y(0) 
of the z-dependent collision operator Y(z). 

The remarkable feature is that Y(0) also appears in the theory of the 
dynamical invariants in connection with PoincarC's theorem. Suppose 
that the projection operator P projects on the space of the invariants 
corresponding to the unperturbed motion due to H,. When we introduce 
the perturbation V, we hope to  " continue" this invariant into a new one, 
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say 4, which satisfies condition 2.33 (L$ = 0) and which we now expect 
to have both a P and a Q part: 

However, using the definition of Y(z), it may be shown that this is pos- 
sible only if the condition 

is satisfied (see, e.g., Prigogine and Grecos, 1977). If Y(0) vanishes, equa- 
tion 8.35 can evidently always be satisfied and the invariants of H, can be 
extended into invariants of H. On the other hand, when we have what was 
called in Chapter 2 the "Poincare catastrophe," the invariants of H ,  
cannot be extended into invariants of H  (except H itself, or functions of 
H) and this implies that Y(0) is different from zero. 

The fact that Y(0) appears both in kinetic equations of the Boltzmann 
type (equation 8.34) and in the theory of the extension of invariants 
(equation 8.35) is most important. It shows that Boltzmann's kinetic 
equations originate not in ergodic properties (or stronger properties such 
as mixing or K-flows) but in the Poincare catastrophe. This could have 
been expected. Ergodic theory deals with the Liouville operator only as a 
whole. No decomposition into a part corresponding to free motion (due 
to the unperturbed Hamiltonian H,) and to collisions (due to the inter- 
action V) ever appears. 

There are however limiting situations such as that for hard spheres in 
which the potential V is singular (it is either zero or infinite!). Such cases 
would require that we start with ergodic theory to  derive kinetic equa- 
tions. In spite of much effort, this whole problem is still in a quite pre- 
liminary state. 

It is also interesting that the condition 

can be satisfied in very simple systems. Consider, for example, the 
Hamiltonian 

H = oJ + AV sin a 
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in which o is an unperturbed frequency and J the action variable for the 
unperturbed motion (A = 0). We calculate Y(0) (see Appendix B) and 
observe that it vanishes for each finite value of A. However, if we take the 
limit A -+ oo (or o -+ 0) first, then Y(0) does not vanish. This is not 
surprising: if w = 0, it is ol that becomes a new "action" variable (or 
constant of motion).and lies in the space orthogonal to  the projection 
operator P. More details are given in Appendix B. 

The nonvanishing of Y(0) is, however, only a necessary but not a 
sufficient condition for the construction of operators M or A. We need 
stronger conditions that are related to the behavior of the dispcrsion 
equation 

This equation must admit complex roots. A special method called 
"subdynamics," has been developed to deal with this problem (see, e.g., 
Prigogine and Grecos, 1977). A brief example is given in the next section. 

In conclusion, it should be emphasized that the construction of the 
Lyapounov operator M of the nonunitary transformation A does not 
presuppose a single mechanism on the level of the dynamical equation. 
Various mechanisms may be involved, the important element being that 
they lead to a complexity on the microscopic level such that the basic 
concepts involved in the trajectory or the wave function must be 
superseded by a statistical ensemble. 

Microscopic Interpretation of the Second Law 
of Thermodynamics: Collective Modes 

A Lyapounov function that satisfies expressions 8.1 cannot yet be 
identified with the thermodynamic entropy function. It still corresponds 
to a purely dynamical concept that may even be applicable to classes of 
"small" dynamical systems. Also neither M nor R is uniquely defined. 
To identify R with macroscopic entropy, supplementary assumptions 
must be introduced. More precisely, among all irreversible processes only 
some having a simple macroscopic meaning must be retained. It is indeed 
a remarkable fact that, among the processes that drive a system to equili- 
brium, some have remarkable universality and correspond to macro- 

Excess density 

I 

FIGURE 8.2 
Excess density as a function of distance. 

scopic time scales. These are the so-called hydrodynamic modes, which 
correspond to the evolution of conserved quantities such as number of 
particles, momentum, and energy (Forster 1975). This point can be il- 
lustrated by means of a system whose density is nonuniform. The excess 
density is represented in Figure 8.2. 

Because a particle cannot disappear (there are no chemical reactions), 
uniformity will be reached through a slow process of diffusion. The simple 
Brownian motion model presented in Chapter 1 indicates that the aver- 
age of the square of the displacement is proportional to time: 

We expect that the inhomogeneity will disappear when the distance 
travelled by the particles is of the order of thc wavelength of the perturba- 
tion (8.37). As a result, the order of magnitude of the time necessary to 
destroy the density fluctuation will be 

Therefore, this time becomes large when the wavelength increases. This 
type of process is like those retained in classical hydrodynamics. They are 
collectitle processes, because they involve a large number of particles 
(whenever the wavelength is macroscopic). These collective processes in- 
clude both reversible and irreversible processes such as wave propagation 
and damping. Therefore equations such as equation 8.2 1 are quite appro- 
priate because they separate these two parts. 
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To construct the entropy operator and the transformation function, we 
must introduce, as in the preceding section, the collision operator Y(z), 

but we must retain only the long time modes in the dispersion equations. 
This has been done recently by Mary Theodosopulu and Alkis Grecos 
(1978), who have shown that the Lyapounov function (expression 8.1) 
then becomes precisely the macroscopic entropy, the Lyapounov function 
given in equation 4.30 (see Theodosopulu, Grecos, and Prigogine, 1978). 
Moreover, the moments of the equation of motion (8.21) are the micro- 
scopic analogs of the macroscopic hydrodynamic equations. 

1 This is most satisfactory. A bridge between microscopic and macro- 
scopic physics has been achieved. The microscopic Lyapounov function 
introduced into the dynamical description acquires in this case a direct 
macroscopic meaning. The only assumptions necessary are short-range 
forces and small deviations from equilibrium to obtain the -linearized 
equations of hydrodynamics. 

Similar results have long been known for dilute gases, starting from the 
Boltzmann equation. The interesting point is that, in agreement with the 
expected generality of the second law, nonequilibrium thermodynamics, 
at least in the linear range, can now be derived from a statistical theory 
independently of any assumption concerning the density of the system. 

Important problems still remain unsolved. We do not yet know if the 
second law applies to gravitational interactions. Is the second law valid 
only for a given (or "slowly" varying) gravitational state? Can we include 
gravitation? We are at the frontier of our knowledge, but it is hoped that, 
as we begin to  understand irreversibility in a more precise way, as a 
symmetry-breaking mechanism, we will soon be able to make some 
progress. 

We now turn to a basic problem in which the formalism that has been 
introduced is likely to have interesting applications. As already men- 
tioned, every measurement process includes an element of irreversibility. 
The measurement must increase the entropy. Thus, it can be seen that the 
dynamics of the apparatus must be such as to admit the operator M. But 
we have seen that this requires the concept of weak stability and that in 
this case the trajectory in the dynamical sense is no longer an observable 
because we cannot extrapolate it from our limited knowledge of phase 
space. 

The complementarity between dynamics and thermodynamics appears 
here in an especially striking way: either a Lyapounov function exists, in 
which case the system is not a "pure" dynamical one described by well- 
defined trajectories but only by statistical distribution functions; or no 
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Lyapounov function exists, and the system is described by trajectories. 
Nevertheless, as indicated in Appendix C, the main conclusion remains 

true: quantum systems for which the microscopic entropy operator M 
may be defined are such that the distinction between pure states and 
mixtures is lost. 

Particles and Dissipation : 
A Non- Hamiltonian Microworld 

As mentioned earlier, the interest of equation 8.21 is its direct connection 
with the second law through inequality 8.20. This connection has 
relevance to a basic question that remains unanswered in spite of all the 
work that has been done on it. How is the concept of an elementary 
particle related to that of interaction? 

Taking the example of interacting electrons and photons mentioned in 
Chapter 3, we generally start by using a Hamiltonian involving the 
"bare" particles (electrons and photons) and an interaction. These 
"bare" particles cannot be the "physical" ones. Because of the electro- 
magnetic interaction between electrons and photons, an electron is 
always surrounded by a cloud of photons. The bare electron (without 
photons) is only a formal concept. We then perform a "renormalization 
process" in which part of the interaction is used to change the physical 
characteristics of the particle such as its mass or its charge. But at what 
point d o  we stop this process? Even after the system has been renor- 
malized, we are faced with the " Hamiltonian dilemma ": either no well- 
defined particles (because the energy is partly " between" the electrons 
and the photons) or noninteracting particles (in the representation in 
which the total Hamiltonian is diagonal). 

Is there a way out? The important point is that we now have a third 
description in terms of processes (see Figures 2.5 and 8.3). The electrons 
and photons are involved in physical processes such as scattering, photon 
emission, and absorption. These processes drive the total system (elec- 
trons plus photons) to equilibrium. Moreover, these processes are "real "; 
they are part of the evolution of the physical universe. They shall certainly 
not be transformed away by any change of representation. Therefore, 
whatever the description may be, it should be obtained through a star- 
unitary transformation leading to dissipativity condition 8.20. 



FIGURE 8.3 
Three descriptions of a system: (A and B) the two Hamiltonian views; 
(C) description in terms of processes. 

But this cannot be enough; there are families of star-unitary 
transformations-all of which satisfy condition 8.20. Which one to 
choose is a problem quite similar to that of the Born-Heisenberg-Jordan 
quantization rules mentioned in Chapter 3. The latter can be solved by 
considering all unitary transformations and choosing the one that leads to 
a diagonal form of the Hamiltonian operator. Here, too, we need a quan- 
tum rule, but a new one for choosing between the star-unitary transform- 
ations. How such a rule may be formulated will be described next; as 
could be expected, it will be in terms of superoperators. 

Remember that the Liouville operator corresponds to a commutator 
(see equation 3.35). 

But we may also introduce an "anticommutator," 

f p  = j[Hp + pH] 

The two quantities L and H are ~uperoperators (remember that usual 
operators act on wave functions, whereas L and .H act on operators). 
The average value of the energy can be written in terms of the new 
quantity X as (see equation 3.38) 

(H) = tr H p  = i t r (Hp + pH) = tr .W'p 

We now apply our transformation A to both L and K. In addition to 
obtaining equation 8.7, we obtain 
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We now look for a A such that condition 8.20 is satisfied and that in 
addition equation 8.41 can be written as 

When this is so, the Ei may be regarded as the energy levels associated 
with the system. We then have a most satisfactory description of the 
system: it evolves in accord with the second law (inequality 8.20) and yet 
the particles can be characterized by well-defined energies. 

The method that we have used can be summarized as follows. In con- 
ventional quantum mechanics, both the energy levels (see equation 3.16) 
and the time evolution (equation 3.17) are determined by the same quan- 
tity, the Hamiltonian operator H,, . This is a kind of remarkable "degen- 
eracy" characteristic of quantum mechanics. However, after the 
A-transition, the superoperator formalism allows us to obtain two differ- 
ent operators: @ for the time evolution (see expression 8.2), and .% for the 
determination of the energy levels. In this way, this degeneracy is lifted for 
systems for which a star-unitary transformation A leading to a Lya- 
pounov representation can be defined. 

The method is quite new (Prigogine and George 1978; George et al. 
1978). It has been applied successfully to a very simple model (the "Frie- 
drichs' model"), but its generality has yet to be investigated. The reasons 
for mentioning it here are that it avoids the technical difficulties men- 
tioned in Chapter 3, and we obtain strictly exponential decay (the lifetime 

e 
is a matrix element of @). But in addition it is the whole concept of 
"elementary particles" that is at stake! 

The classical order was: particles first, the second law later-being 
before becoming! It is possible that this is no longer so when we come to 
the level of elementary particles and that here we mustjrst  introduce the 

I 
second law before being able to define the entities. Does this mean becom- 
ing before being? Certainly this would be a radical departure from the 
classical way of thought. But, after all, an elementary particle, contrary to 
its name, is not an object that is "given "; we must construct it, and in this 
construction it is not unlikely that becoming, the participation of the 
particles in the evolution of the physical world, may play an essential role. 
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Chapter 

THE LAWS CHANGE 

Einstein's Dilemma 

I am writing this chapter in 1979, Einstein's centennial year. Nobody has 
made greater contributions to the statistical theory of matter and more 
specifically to the theory of fluctuations than Einstein. Through the inver- 
sion of Boltzmann's formula (1.10). Einstein derived the probability of a 
macroscopic state in terms of the entropy associated with it. This step has 
proved to be decisive for the whole macroscopic theory of fluctuations (of 
special interest near critical points). Einstein's relation is a basic element 
in the proof of the Onsager reciprocity relations (equation 4.20). 

Einstein's description of brownian motion, as summarized in Chapter 
1. was one of the first examples of "random processes." Its interest is far 
from being exhausted even today. The modeling of chemical reactions by 
Markov chains, described in Chapter 6, is an extension of the same line of 
thought. 
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Finally, it was Einstein who first recognized the general meaning of 
Planck's constant h as leading to the wave-particle duality. Einstein was 
concerned with electromagnetic radiation. But about twenty years later, 
de Broglie extended Einstein's relations to matter. The work of Heisen- 
berg, Schrodinger, and others put these ideas into a mathematical frame- 
work. But, if matter is both wave and particles, the idea of trajectory of 
classical determinism is lost. As a result, only statistical predictions can be 
made by quantum theory (see Chapter 3 and Appendix D). To the end of 
his life Einstein remained opposed to the idea that such statistical con- 
siderations correspond to objective features of nature. In his well-known 
letter to Max Born (see Einstein, 1969), he wrote: 

You believe in the God who plays dice, and I in complete law and order in a 
world which objectively exists, and which I, in a wildly speculative way, am 
trying to capture. I firmly believe, but I hope that someone will discover a 
more realistic way, or rather a more tangible basis than it has been my lot 
to do. Even the great initial success of the quantum theory does not make 
me believe in the fundamental dice game, although I am well aware that 
your younger colleagues interpret this as a consequence of senility. 

Why did Einstein take such a strong view concerning time and random- 
ness? Why did he prefer intellectual isolation to any compromise in these 
matters? 

Among the most moving documentation of Einstein's life is the collec- 
tion of letters that he exchanged with his old friend Michele Besso (Ein- 
stein 1972). Einstein was usually very reticent about himself, but Besso 
was a very special case. They knew each other at an early age in Zurich 
when Einstein was seventeen and Besso twenty-three. Besso took care of 
Einstein's first wife and their children in Zurich when Einstein was work- 
ing in Berlin. Although the affection between Besso and Einstein 
remained deep, their interests diverged with the years. Besso became 
more and more involved in literature and philosophy-in the very mean- 
ing of human existence. He knew that, to obtain a response from Einstein, 
he had to include problems of a scientific nature, but his interest was 
more and more elsewhere. Their friendship lasted their whole lives, Besso 
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having died only a few months earlier than Einstein in 1955. It is mainly 
the last part of the correspondence between 1940 and 1955 that is of 
interest to us here. 

There Besso returned again and again to the problem of time. What is 
irreversibility? How does it relate to the basic laws of physics? And 
patiently Einstein answered again and again, irreversibility is an illusion, 
a subjective impression, coming from exceptional initial conditions. Besso 
remained dissatisfied. His last scientific paper was a contribution to the 
Archives des Sciences published in Geneva. At the age of eighty, he pre- 
sented an attempt to reconcile general relativity and irreversibility of 
time. Einstein was not happy with this attempt: "You are on a gliding 
ground," he wrote. "There is no irreversibility in thc basic laws of physics. 
You have to accept the idea that subjective time with its emphasis on the 
now has no objective meaning." When Besso passed away, Einstein wrote 
a moving letter to his widow and son: "Michele has preceded me a little 
in leaving this strange world. This is not important. For us who are 
convinced physicists, the distinction between past, present, and future is 
only an illusion, however persistent." 

Einstein believed in the god of Spinoza, a god identified with nature, a 
god of supreme rationality. In this conception there is no place for free 
creation, for contingency, for human freedom. Any contingency, any 
randomness that seems to exist is only apparent. If we think that our 
actions are free, this is only because we are ignorant of their true causes. 

Where do we stand today? I believe that the main progress that has 
been accomplished is that we begin to see that probability is not neces- 
sarily associated with ignorance, that the distance between deterministic 
and probabilistic descriptions is less great than most contemporaries of 
Einstein and Einstein himself were believing. Poincare (Poincare 1914) 
had already pointed out that, when we throw dice and use probabilities to 
predict the outcome, we do not mean that the concept of trajectories 
doesn't apply. Rather, the type of system is such that in each interval of 
initial conditions, as small as we want, the same number of trajectories go 
to each side of the dice. This is a simple version of the problem of dynamic 
instability that has been discussed repeatedly (see Chapters 2,3,7, and 8). 
Before returning to it once again, let us take an overview of the laws of 
change that have been described. 
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Time and Change 

In Chapter 1, I presented the methods developed through the decades to 
describe change. Basically, we may distinguish three classes: macroscopic 
methods dealing with the evolution of averages such as Fourier's law, 
chemical kinetics, and so forth; stochastic methods such as Markov 
chains; and classical or quantum mechanics. 

Some very unexpected features have emerged in recent years. First, the 
unexpected wealth of the macroscopic description, especially for nonlin- 
ear, far-from-equilibrium situations. This is well illustrated by the 
reaction-diffusion equations considered in Chapter 5. Even simple 
examples may lead to successive bifurcations and various time-space 
structures. This drastically limits the unifying power of macroscopic 
description and shows that it cannot by itself provide us with a consistent 
description of time evolution. Indeed, all the various branches repre- 
sented in Figure 5.2 satisfy the appropriate boundary conditions (in con- 
trast with classical problems in potential theory in which for given 
boundary conditions there exists a unique solution). In addition, macro- 
scopic equations do not yield information about what happens at 
the bifurcation points. What will the fraction of systems be, following a 
given history of bifurcations? 

We must therefore turn to stochastic theory such as Markov chains. 
But here also new features appear. Of special interest is the close relation 
between fluctuations and bifurcations (see Chapter 6) which leads to deep 
alterations in the classical results of probability theory. The law of large 
numbers is no longer valid near bifurcations and the unicity of the solu- 
tion of linear master equations for the probability distribution is lost (see 
the section on nonequilibrium phase transitions in Chapter 6) .  

Yet the relation between stochastic and macroscopic methods is clear. 
It is precisely when the average quantities do not satisfy closed equations, 
which happens near bifurcation points, that we must use the full appar- 
atus of statistical theory. The relation between macroscopic or stochastic 
methods and dynamical ones, however, remains a challenging problem. 
This question has been considered in the past from many points of view. 
For example, in his beautiful book The Nature of the Physical World 
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(1958, p. 75), Arthur Eddington introduced a distinction between "pri- 
mary laws," controlling the behavior of single particles, and secondary 
laws, such as the principle of the increase of entropy, which would be 
applicable only to collections of atoms or molecules. 

Eddington fully recognized the importance of entropy. He wrote 
(p. 103): "From the point of view of philosophy of science the conception 
associated with entropy must, I think, be ranked as the great contribution 
of the nineteenth century to scientific thought. It marked a reaction from 
the view that everything to which science need pay attention is discovered 
by a microscopic dissection of objects." 

How can " primary " laws coexist with " secondary " ones ? " One would 
not be surprised," Eddington wrote (p. 98), "if in the reconstruction of 
the scheme of physics, which the quantum theory is now pressing on us, 
secondary laws become the basis and primary laws are discarded." 

Certainly quantum theory plays a role because it forces us to give up 
the idea of classical trajectories. But from the point of view of the relation 
with the second law, the concept of instability, which has been repeatedly 
discussed, seems to be of fundamental importance. The structure of the 
equations of motion with "randomness" on the microscopic level then 
emerges as irreversibility on the macroscopic level. In this sense, the 
meaning of irreversibility was already anticipated by Poincare (1921), 
who wrote: 

In conclusion, using ordinary language, the law of conservation of energy 
(or the principle of Clausius) can have only one significance, which is that 
there is a property common to all the possibilities; but on the deterministic 
hypothesis there is only a single possibility, and the law has no longer any 
meaning. On the indeterministic hypothesis, on the other hand, it would 
have a meaning, even if it were taken in an absolute sense; it would appear 
as a limitation imposed upon freedom. But these words remind me that I 
am digressing and am on the point of leaving the domains of mathematics 
and physics. 

PoincarC's confidence in a basic deterministic description was too 
firmly established to consider seriously a statistical description of nature. 
The situation is quite different for us. Many years after the foregoing 
passage was written, our confidence in the deterministic description of 
nature has been shaken both at the microscopic level and at the macro- 
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scopic one. We no longer recoil in horror from such bold conclusions! 
Moreover, we see that in a sense our point of view reconciles the 

conclusions of Boltzmann and Poincare. Boltzmann, the daring revolu- 
tionary physicist, whose thought was based on an extraordinary physical 
intuition, guessed the type of equation that could describe evolution of 
matter on the microscopic level and still display irreversible processes. 
Poincare, with his deep mathematical insight, could not be satisfied with 
only intuitive arguments, but he clearly saw the only direction in which a 
solution could be found. It is my belief that the methods summarized in 
this book (see Chapters 7 and 8 and the Appendixes) constitute the link 
between Boltzmann's great intuitive work and Poincart's requirement of 
mathematization. 

This mathematization leads us to a new concept of time and irreversi- 
bility to which we now turn. 

Time and Entropy as Operators 

Much of Chapter 7 dealt with some of the most significant attempts made 
in the past to define entropy on the microscopic level, with emphasis on 
Boltzmann's fundamental contribution to this subject, culminating in his 
discovery of the H-function (equation 7.7). However, independently of 
other remarks, Boltzmann's H-theorem could, in line with observations 
presented by Poincare, not be considered to be "derived" from dynamics. 
Boltzmann's kinetic equation, on which the derivation of the H-theorem 
is based, does not share the symmetry of classical dynamics (see the 
section titled Boltzmann's Kinetic Theory in Chapter 7 and that titled A 
New Transformation Theory in Chapter 8). In spite of its historical 
importance, it can at most be considered a phenomenological model. 

Ensemble theory does not lead us further even when extended by asso- 
ciating entropy with a microscopic phase function (in classical 
mechanics) or a Hermitian operator (in quantum mechanics). These 
negative conclusions are described in the sections titled Gibbs Entropy 
and the Poincare-Misra Theorem in Chapter 7. 

This left us with very few possibilities, short of accepting the view that 
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irreversibility results from mistakes or from supplementary approxima- 
tions added to classical or quantum mechanics. 

However another, radically different approach has now emerged: the 
idea of associating macroscopic entropy (or Lyapounov function) with a 
microscopic entropy operator called M.* 

This is a momentous step: we were accustomed to considering, in 
classical mechanics, observables to be functions of correlations and 
momenta. Yet the introduction of the Liouville operator L in both classi- 
cal and quantum ensemble theory (see Chapters 2 and 3) has prepared us 
for this new step, which is of a quite different nature. Indeed, ensemble 
theory was considered to be an " approximation," whereas the " basic " 
theory was in terms of trajectories or wave functions. With the introduc- 
tion of operator M, the situation becomes quite different. It is the descrip- 
tion in terms of bundles of trajectories, or distribution functions, that 
becomes basic; no further reduction to individual trajectories or wave 
functions can be performed. 

The physical meaning of entropy and time as operators is discussed in 
Chapters 7 and 8, as well as in Appendixes A and C .  (See especially the 
introduction and the section titled An Extended Complementarity Prin- 
ciple in Chapter 7 and the sections titled Irreversibility and the Forma- 
lism of Classical and Quantum Mechanics, The Construction of the 
Entropy Operator and the Transformation Theory, and Particles and 
Dissipation-A Non-Hamiltonian Microworld in Chapter 8. Because 
operators were first introduced in physics through quantum mechanics, 
there remains in the minds of most scientists a close relation between 
quantization involving Planck's constant h and the appearance of opera- 
tors. The association of operators with physical quantities has, however, a 
broader meaning quite independent of quantization. It means basically 
that for some reason the classical description in terms of trajectories has 
to be given up either because of instability and randomness on the micro- 
scopic level (see Appendix A) or because of quantum "correlations " (see 
Appendix D). 

* From a historical point of view, it is interesting that the nonunitary transformation A, 
which leads from the usual Liouville equation to the kinetic equations (see the section titled 
A New Transformation Theory in Chapter 8), was found first. It has only recently been 
realized that this means that a supplementary operator M exists in the original (Hamil- 
tonian) representation and therefore in this sense the usual dynamical description was not 
complete. 
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For classical mechanics we may present the situation in the following 
way. The usual description (Figure 9.1A) is in terms of trajzctories or 
orbits generated by Hamilton's equations (2.4). The other description 
(Fig. 9.1B) is in terms of distribution functions (2.8), their motion being 
determined by the Liouville operator. 

These two descriptions can be different only if we cannot at each 
moment go from one description to the other. The physical reasons for 
this are discussed in the section on weak stability in Chapter 2. Experi- 
ments performed with an arbitrary but finite accuracy lead us only to the 
identification of some jinite region of phase space where the system may 
be located. The question is then whether we can perform, at least in 
principle, a transition-limiting process, as indicated schematically in 
Figure 9.2, from this region to a point P, to a 6-function corresponding to 
a well-defined orbit. 

This transition-limiting process is related to the question of weak stabil- 
ity discussed in Chapter 2. It becomes impossible to perform when we 
have a variety of trajectories in each region of phase space-however 
small. Then the microscopic description becomes so "complex" that we 
cannot go beyond it in terms of distribution functions. At present, 
we know of two types of dynamical systems for which this is so-systems 
with sufficiently strong mixing properties and systems presenting the 
Poincare catastrophe (see Chapters 2 and 7 and Appendixes A and B). In 
fact, almost "all" dynamical systems with the exception of a few 
"school" examples belong to these categories. We shall return to this 
question in the next section. 

One might think that such "natural limits" of classical or quantum 
physics would lead to  a decrease of their predictive power. In my opinion, 
the reverse is true. We can now make statements about the evolution of 
distribution functions that go beyond what can be said about individual 
trajectories. New concepts appear. 

FIGURE 9.2 

Among these new concepts some of the most interesting are the micro- 
scopic entropy operator M and the time operator T .  Here we are dealing 
with a second time, an internal time quite different from the time that in 
classical or quantum mechanics simply labels trajectories or wave func- 
tions. We have seen that this operator time satisfies a new uncertainty 
relation with the Liouville opcrator L (see equation 8.22 and Appendixes 
A and C). We may define averages ( T ) .  (T') through the bilinear forms 

( T )  = tr ptTp, <T2)  = tr p tT2p 

Interestingly enough, the " ordinary " time-the label of dynamics-then 
becomes an average over the new operator time. This is in fact a con- 
sequence of the uncertainty relation (8.22), which implies that 

d d  
( T )  = - tr[(e-'L'p)tTe-i'2tp] 

dt  d t  

= tr ptp = constant 

With an appropriate normalization we may take this constant equal to 
one. We see therefore that 

dt = d ( T )  (9.3) 

In other words, macroscopic time is simply the average over the new 
operator time. In this perspective, the usual time concept is recovered 
only when T  becomes a trivial operator such that (in classical mechanics) 

Then "age " is independent of the form of the distribution in phase space. 
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On the contrary, the new concept implies that age depends on the distrib- 
ution itself and is therefore no longer an external paramcter, a simple 
label as in the conventional formulation (see Appendix A). 

We see how deeply the new approach modifies our traditional view of 
time, which emerges now as a kind of average over " individual times" of 
the ensemble. 

Levels of Description 

For a long time, the absolute predictability of classical mechanics, or the 
physics of being, was considered to be an essential element of the scientific 
picture of the physical world. It is quite remarkable that over the three 
centuries of modetn science (it seems indeed legitimate to consider 1685, 
the year Newton presented his Principia to the Royal Society, as the birth 
date of modern science) the scientific picture has shifted toward a new, 
more subtle conception in which both deterministic features and stoch- 
astic features play an essential role. 

Let us consider only the statistical formulation of the second law of 
thermodynamics by Boltzmann, in which the concept of probability 
played an essential role for the first time. We then have quantum 
mechanics, which preserves determinism but in the framework of a theory 
that deals with wave functions having a probabilistic content. In this way, 
probabilities appeared for the first time in the basic, microscopic 
description. 

This evolution is still continuing. We find essential stochastic elements 
not only in the theory of bifurcations on the macroscopic level (see Chap- 
ter 5), but also in the microscopic description as provided even by classi- 
cal mechanics (see Chapters 7 and 8). As we have seen, these new elements 
lead finally to new concepts for time and entropy, the consequences of 
which must yet be explored. 

It is remarkable that classical dynamics, statistical mechanics, and 
quantum theory can be discussed starting from the ensemble point of 
view introduced by Einstein and Gibbs. When the transition from an 
ensemble to a single trajectory can no longer be performed, we obtain 
different theoretical structures. Classical dynamics has been discussed 

herein from this point of view, especially the transition to statistical 
mechanics as a result of weak stability. It has also been mentioned that 
the existence of the universal constant h introduces correlations in phase 
space and prevents the transition from ensembles to single trajectories 
(further details are given in Appendixes C and D). The results are 
depicted in the following scheme. 

Classical dynamics ( t o  - t) 
I 

(trajectories) 
I I h (coherence) 

Instability I I 
J 

Quantum theory (probability amplitudes) 
( t c t  - t )  

1 1  Instability 

Statistical theory-irreversibility (t + - t) 

J 

Stochastic theory (Markov chains) 
I 

I 
Macroscopic physics (limited by bifurcations) 

We begin to be able to coordinate the various levels of description 
repeatedly discussed in this book. However, a few words of caution are 
necessary. For example, we may transform the deterministic description 
(in terms of a Liouville equation) into a Markov chain (see Appendix A) 
for a class of strongly unstable systems to which the baker transformation 
belongs. Is this so in more general situations involving a weaker form of 
instability such as the mixing property considered in Chapter 2? Another 
example is the quantum mechanics theory (see Appendix C). Quantum 
mechanical instability theory is still in its infancy. 

Supplementary classifications and new points of view are likely to 
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emerge in the future. Yet our present scheme is not empty and brings 
some unifying features into the structure of theoretical physics. 

A few comments seem appropriate here on the dynamical complexity 
associated with instability. In classical dynamics, some simple situations 
that are time reversible (t ++ - t) can at least be conceived of. Whenever 
chemical processes (and a fortiori whenever biological processes) are 
considered this becomes impossible because chemical reactions are 
always associated-nearly by definition-with irreversible processes. 
Moreover, measurements-which extend our sensory perceptions- 
necessarily involve some element of irreversibility. Therefore, the two 
formulations of the laws of nature (one for which t ++ - t and the other for 
which t tf, - t) are equally fundamental. We need both. It is true that we 
may consider the world of trajectories (or of wave functions) to be the 
fundamental one. From this perspective, new formulations are obtained 
when supplementary assumptions are introduced. But we can also con- 
sider irreversibility to be a basic element of our description of the physical 
world. From this perspective, the world of trajectories and wave functions 
corresponds on the contrary to idealizations of great importance, but 
they lack essential elements and cannot be studied in isolation. 

We have arrived at a kind of self-consistent picture which will be 
described in a little more detail. 

Past and Future 

Once we can add a Lyapounov function to the dynamics, future and past 
can be distinguished, exactly as in macroscopic thermodynamics in which 
the future is associated with a larger entropy. But again some caution is 
necessary. We may construct a Lyapounov function that increases mono- 
tonously with the "flow" of time or another one that decreases. In more 
technical terms, the transition from the situation represented in Figure 
9.1A, which corresponds to a dynamical group, to the one represented in 
Figure 9.1B, which corresponds to a semigroup, can be performed in two 
ways: in one description equilibrium is reached in the " future," and in the 
other in the "past." In other words, the time symmetry of dynamics can 

THE LAWS OF CHANGE 

be broken in two ways; however, how to distinguish between them is a 
difficult question. As emphasized in the preceding section, life even in its 
simplest form presupposes a distinction between past and future. Mono- 
cellular organisms such as amoebas move from media poor in nutrients 
to media rich in nutrients. Even such organisms anticipate the future 
through signals received from their environment. 

When we study time-reversible laws of dynamics, we make a distinction 
between past and future-between, say, predicting the position of the 
moon or calculating what its position was in the past. The distinction 
between past and future is a kind of primitive concept that in a sense 
precedes scientific activity. We may, however, include this primitive con- 
cept in a self-consistent scheme, as shown in the following diagram: 

Observer A 

(distinction between 
future and past) 

I 
Dynamics 

I 

I 
Irreversibility 

Broken time 
C-- 

Dissipative 
symmetry structures 

We start with the observer, a living organism who makes the distinction 
between the future and the past, and we end with dissipative structures, 
which contain, as we have seen, a "historical dimension." Therefore, we 
can now recognize ourselves as a kind of evolved form of dissipative 
structure and justify in an "objective" way the distinction between the , 

future and the past that was introduced at the start. 
Again there is in this view no level of description that we can consider 1 

to be the fundamental one. The description of coherent structures is not , 
less "fundamental" than is the behavior of the simple dynamical systems. 

Note that the transition from one level to the other involves 
"symmetry-breaking"; the existence of irreversible processes on the 
microscopic level as described through kinetic equations violates the 
symmetry of canonical equations (see Chapter 8), and dissipative struc- 
tures may in turn break the symmetries of space-time. 
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The very possibility of such a self-consistent scheme implies the exist- 
ence of nonequilibrium processes and therefore a picture of a physical 
universe that for some cosmological reasons provides the necessary type 
of environment. Although the distinction between reversible and irre- 
versible processes is a problem of dynamics and does not involve cosmo- 
logical arguments, the possibility of life, the activity of the observer, 
cannot be dissociated from the cosmological environment in which we 
happen to be. However, the questions, What is irreversibility on the 
cosmic scale? Can we introduce an entropy operator in the framework of 
a dynamical description in which gravitation plays an essential role? are 
formidable ones. I prefer to confess my ignorance. 

An Open World 

The basis of the vision of classical physics was the conviction that the 
future is determined by the present, and therefore a careful study of the 
present permits the unveiling of the future. At no time, however, was this 
more than a theoretical possibility. Yet in some sense this unlimited 
predictability was an essential element of the scientific picture of 
the physical world. We may perhaps even call it the founding myth of 
classical science. 

The situation is greatly changed today. It is remarkable that this 
change results basically from our better understanding of the limitations 
of measurement processes because of the necessity to take into account 
the role of the observer. This is a recurrent theme in most of the basic 
ideas that originated with the development of physics in the twentieth 
century. 

It was already present in Einstein's analysis of space-time (1905) in 
which the limitation of the speed of propagation of signals to velocities 
smaller than the velocity of light in a vacuum plays such an essential role. 
It is certainly not logically inconsistent to suppose that signals may be 
transmitted with infinite speed, but this Galilean space-time concept 
seems to conflict with a whole host of experimental information that has 
been gathered through the years. The incorporation of the limitation of 
our way of acting on nature has been an essential element of progress. 
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The role of the observer in quantum mechanics has been a recurrent 
theme in the scientific literature in the past fifty years. Whatever the 
future developments are, this role is essential. The naive realism of classical 
physics, which assumed that properties of matter were "there" indepen- 
dently of the experimental device, had to be revised. 

Again, the developments described in this book point in a similar 
direction. Theoretical reversibility arises from the use of idealizations in 
classical or quantum mechanics that go beyond the possibilities of mea- 
surement performed with any finite precision. The irreversibility that we 
observe is a feature of theories that take proper account of the nature and 
limitation of observation. 

At the origin of thermodynamics we find "negative " statements expres- 
sing the impossibility of certain transformations. In many textbooks, the 
second law of thermodynamics is expressed as the postulate that it is 
impossible to transform heat into work using a single thermostat. This 
negative statement belongs to the macroscopic world-in a sense we have 
followed its meaning to the microscopic level when it becomes, as we have 
seen, a statement about the observability of the basic conceptual entities 
of classical or quantum mechanics. As in relativity, a negative statement 
is not the end of the story: it leads in turn to new theoretical structures. 

Have we lost essential elements of classical science in this recent evolu- 
tion? The increased limitation of deterministic laws means that we go 
from a universe that is closed, in which all is given, to a new one that is 
open to fluctuations, to innovations. 

For most of the founders of classical science-even for Einstein- 
science was an attempt to go beyond the world of appearances, to reach a 
timeless world of supreme rationality-the world of Spinoza. But perhaps 
there is a more subtle form of reality that involves both laws and games, 
time and eternity. Our century is a century of explorations: new forms of 
art, of music, of literature, and new forms of science. Now, nearly at the 
end of this century, we still cannot predict where this new chapter of 
human history will lead, but what is certain at this point is that it has 
generated a new dialogue between nature and man. 
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Appendix A 
TIME AND ENTROPY OPERATORS 
FOR THE BAKER TRANSFORMATION 

The following discussion is an attempt to explain how the time operator 
T (see equation 8.22) and a microscopic entropy operator M may be 
associated with the baker transformation introduced in Chapter 8. 

The results given here summarize a recent paper by Misra, Prigogine, 
and Courbagel in which all proofs, as well as various generalizations of 
the results to other systems, can be found. Other aspects related to  the 
baker transformation that are not treated here can be found in important 
papers by Lebowitz, Ornstein, and others.2, 3. 4. '- 

Phase space 0 will be the unit square in the plane. As shown in 
Figure 8.11, the baker transformation, B, sends point w = (p, q )  of 0 
into Bo, with 

Transformation B describes a discrete process that takes place at regular 
time intervals and tends to progressively fragment an arbitrary given 



FIGURE A . l  
Application of the baker transformation to the half square. 

surface element. As an example, let us apply transformation B to the 
half square 0 < q < f. The result is shown in Figure A.1. 

When the baker transformation is repeated many times, the initial 
half square is broken into smaller and smaller rectangles as shown in 
Figure A.2. 

FIGURE A.2 
Effect of successive baker transformations on the half square. 

After some time, the fragmentation becomes so fine that whatever the 
precision of observation (supposed only to be finite) the distribution will 
appear uniform. At this stage the system has reached its equilibrium 
(microcanonical) distribution. 

The baker transformation admits a remarkable representation as a 
" Bernouilli shift." To understand this relation, we write the coordinates p 
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and q in a binary expansion: 

This notation means that 

and similarily for q. Here the u:s take the values 0 or 1. 
A point o in Q is therefore represented by the double sequence {ui} 

with i = 0, f 1, f 2 . . . . Using specific examples, one can easily verify that 
to Bw there corresponds the sequence jug, in which u: = ui+ ,. We see 
clearly that the bake: transformation induces a shift in the sequence. It is 
mainly for this reason that one speaks of a "Bernouilli ~h i f t . "~  

Consider a simple orthonormal basis for all square integrable functions 
on the "phase space." Let X be the function defined on (0, 1) by 

For each integer n, a function X,(w) is defined on 0 by 

The value of X,(w) in each point of Q therefore depends solely on the nth 
digit in the binary expansion of the coordinates p, q. 

In addition, we define for each finite set of integers (n,, n,, . . ., n,) = n 
the product function X,(w): 

We also use the notation 
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in which Xg(w) corresponds to the microcanonical ensemble. One can 
verify that this set of functions indeed forms an orthonormal basis. This 
means, as currently used in quantum mechanics (see the section on quan- 
tization rules in Chapter 3), that 

in which 6,. ,. is equal to 1 when n = n' (i.e., n, = n;, . . . and nN = n;) and 
is otherwise equal to  0. For example, using equation A.3 it is easy to check 
that (see also Figures A.3 and A.6) 

Also the functions X,(o) together with Xg form a complete set: every 
(square integrable) function on R can be expanded in terms of a suitable 
combination of these functions. 

In the following, we shall use the scalar product of two square integ- 
rable functions f l ,  fi defined by 

The baker transformation can also be expressed in terms of an operator 
U acting on functions $(o) (as explained in textbooks, see Arnold and 
Avez,' U is a unitary operator): 

As a result we have, using equation A.3, 

Or  more generally 
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in which n + 1 is the set of integers (n, + 1, n2 + 1, .  . . , nN + 1). The baker 
transformation therefore leads to a simple shift in the basis functions. We 
now introduce the characteristic function 4, of a domain A in Q. This is 
the function that takes the value 1 on A and vanishes elsewhere in R. We 
can express such characteristic functions in terms of the basis X, already 
introduced. 

As an example, let us consider X,(o).  By definition X,(w) = X(u,) is a 
function taking the value - 1 when u, = 0 (i.e., for 0 d p < $) and + 1 
when u, = 1 (i.e., for 4 ,< p < 1). Therefore Xl(w) takes the value - 1 on 
the left half of the square, At, and + 1 on the right half, A:. It is now easy 
to write the characteristic functions of the "atoms" of this partition 
(A:, A : )  of the square. The expressions of the characteristic functions are 
reproduced in Figure A.3. Similar expressions are valid for characteristic 
functions corresponding to fixed partitions. 

We shall now examine the evolution of an arbitrary domain in Q and 
link this evolution to the idea o f "  weak stability" discussed repeatedly in 
this book (see the section on weak stability in Chapter 2). We may obtain 
the characteristic function of the transformed domain B- 'A from equa- 
tion A.5, using in succession the definitions 

We therefore have 

For example, the domain A: is transformed after n applications of B-' 
into B-"A: = A:+, (refer to Figure A.3 for the shapes of these domains 
and their characteristic functions in terms of the basis Xi). 

For the general case, we may consider an arbitrary small "atom" of R 
of width Ap = (t)" and height Aq = (i)". The set of these 2" x 2" "atoms" 
forms a partition P,, , of R. We may write the characteristic functions of 
such "atoms," A,, , , in terms of Xi as follows: 



I 1 A:,? A;,; 1 A", A:=A:Y 

---+--- OA; n A: = $ A ;  ' $A0 I etc, 

FIGURE A.3 
Examples showing the shapes of the surfaces A; and their intersections A!!,'. in which the 
surface A! is the set of points w such that ui = j and A:;'.' : is the set of points w such 
that ui = j ,  11, .  = j', . . . . Moreover, we have given the values of Xi(w),  i = 0, 1, 2. on 
these surfaces and their characteristic functions 4,,,, and so forth. 
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Such atoms can be chosen as small as we want by increasing n and m. The 
interesting point is that after (m + 1) applications of B-' ,  A,, , is split into 
two atoms and this stems from equation A.9: 

The two "atoms" so obtained are symmetric and separated by 2"'" 
subdivisions as shown in Figure A.4. The same result can be obtained by 
successive applications of B instead of B- '. 

We see therefore that, even if at the initial time the system is found in 
some arbitrary small region of the phase space, it will evolve in time to 
distinct domains separated in phase space and we can only estimate the 
probabilities of finding the system in these various domains. In other 

FIGURE A.4 
Splitting of A,, , by two applications of B - ' .  
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words, each region (howetler small) contains different types of "trajec- 
tories " leading to the various domains. This is the very definition of weak 
stability. 

After these preliminary considerations, let us now introduce the basic 
operator T corresponding to "age" or to an "internal7' time. By 
definition, it satisfies (for continuous transformations) the " uncertainty 
relation " (see equation 8.22) 

The unitary transformation U associated with the discrete baker trans- 
formation may be written formally as 

in which .r corresponds to the time interval between two transformations 
(we may take z = 1). The uncertainty relation for L induces the relation 

[T, U] = U 

(A. 11) 

In the case of the baker transformation, it is easy to construct the explicit 
expression of T (for more details, see Misra, Prigogine, and Courbagel). 
We have seen that U when applied to the basis functions (X,} shifts 
Xn into Xn+ ,. 

It is therefore not surprising that the X, are the eigenvectors of the 
conjugate operator T. Moreover, for each Xn the corresponding eigen- 
value is the maximum of the ni (recall that n is a finite set of integers 
n . . . n ) .  For example the eigenvalue corresponding to X, is n, that 
corresponding to X, X l  X, is 2, and so forth. As a result, T has the 
spectral form 

(A. 12) 

Here En is a projection on the subspace in the orthocomplement of the 
microcanonical ensemble, generated by the functions X,: X i X n  (i < n), 
Xi X j  X, (i, j < n), and so forth. We may verify that 

TIME AND ENTROPY OPERATORS 

and this directly implies relation A.ll. The eigenvalues of T (the numeri- 
cal values of the operator age) are all integers from - co till + co. This has 
a simple physical meaning. If we consider, for example, an eigenfunction 
corresponding to age 2, such as X , ,  the application of U transforms it 
into X, ,  which is an eigenfunction corresponding to age 3, and so forth. 

Not all distributions have a well-defined age: for example, a superposi- 
tion of X I  and X, has no well-defined age. But we can always introduce 
an "average age" for a distribution p, or more precisely for the excess 
p = p - 1 of p with respect to the equilibrium distribution p = 1. (Note 
that X,,  being negative in a part of Q, is not a distribution function, 
whereas 1 + X,, being nonnegative everywhere, is a distribution func- 
tion.) In conformity with the quantum mechanical definitions, the "aver- 
age age" of p (or p) will be given by 

(A. 14) 

We see, for example, that the "age " of pA = 1 f X, is well defined: 

= (X,, TX,) = n 

More generally, we may write p in the form 

in which n(n) is the set of integers having the maximum n. So from 
equation A.14 we get 
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in which the pn are positive coefficients: 

The coefficient pn represents the probability of finding the system at 
age n. Indeed, we may speak of probability because we have: 

(A. 19) 

The similarity with the rules of quantum mechanics is striking. 
However, there is a simple explanation for this: the uncertainty relation 
(equation A.ll) between the time evolution and the age T. We may also 
define the fluctuation in age and other characteristics of the stable 
distribution of ages. 

The microscopic entropy operator M follows directly. It is the sum of 
two terms. One is closely related to the eigenfunctions of T. The corre- 
sponding eigenprojectors are En and its eigenvalues form a decreasing 
sequence 2; of real numbers tending to zero for n -* co and to 1 for 
n +  -m. 

In addition, M contains the projection operator on the microcanonical 
ensemble : 

We may therefore write M in the form 

There is a whole set of entropy operators according to the choice of the 
sequence {A;). Let us verify that definition A.21 indeed leads to the correct 
behavior of the Lyapounov function Q(p) defined as 

F I G U R E  A.5 
The behavior of Q(Unp)  for a normalized state p. 

Indeed, using equations A.13 and A.22, we have 

The basic property is the monotonous time variation of R (it is a matter 
of definition to require that it increases or decreases monotonously with 
time). Each step decreases the value of the Lyapounov variable (Figure 
A.5). The monotonous variation of Q is the consequence of the existence 
of the time operator, T, which itself results from the "weak stability" of 
the dynamic transformation. No approach to probabilistic considerations 
is necessary. 

Several important results and properties follow. First, the nonunitary 
transformation A introduced in the text can be explicitly constructed. It 
corresponds to the square root of M and has the spectral form 
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to zero with increasing n, for we have 

A. The distribution 
@ = A p =  1-h ,X,  

B. The distribution 
p=  1-X, 

FIGURE A.6 
The " delocalization " of p = 1 - X ,. 

This transformation induces a contraction semigroup corresponding to 
the generator 0 = AUA-'. Indeed, we now have a monotonously 
decreasing norm (see equation A.23): 

in which = Ap. It can be shown that this transformation takes a state 
into a state (it preserves the positivity and the normality). Another impor- 
tant property of this transformation is that it delocalizes the distribution. 
This means that, if p has a nonvanishing value only in a region A, then Ap 
has a nonvanishing density almost everywhere. In the A-picture, the 
approach to equilibrium corresponds to the cancellation of the local 
excess with respect to the equilibrium in each region. We can see this 
property in the simple example of the distribution p = 1 - XI (Figure 
A.6). This distribution has a value of 2 on the left half of the square and 
vanishes on the right, whereas Ap = 1 - I IX1  is positive everywhere 
because I, is strictly positive and less than one. We check that 

with 

Other concepts could also be introduced. such as "measures" associated 
with partitions of the square, but such details will not be dealt with here. 

This simple example shows how geometry, dynamics, and irreversi- 
bility can be linked in the framework of an extension of classical dyna- 
mics involving supplementary observables such as T o r  M represented by 
suitable operators. 

We also see how the requirement of a universal Lyapounov function 
can be satisfied using nonunitary transformations (the "square root" of 
hf), which themselves depend on the dynamics of the system. The analogy 
with the basic ideas of general relativity (the use of geometrical concepts 
to express the laws of dynamics in a simple way) is striking. 
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Appendix B 

RESONANCES AND 
KINETIC DESCRIPTION 

As noted in Chapter 8 (see the sections titled Construction of the 
Entropy Operator and the Transformation Theory and Entropy Oper- 
ator and the Poincare Catastrophe), the microscopic operator M can exist 
in two cases: one corresponds to systems with strong mixing properties 
(an example is given in Appendix A); the other corresponds to the 
" Poincare catastrophe." In the second case, an important role is played 
by the collision operator, Y(z), defined in 8.33. In this appendix, a case 
will be presented in which the collision operator can be calculated ex- 
plicitly. Although the example to be considered is somewhat schematic, it 
shows the meaning of resonances, so important in Poincark's approach 
(see Chapter 3), and their relation to the limit of Y as z +  0, which 
corresponds to long-time behavior and which is the basic quantity 
appearing in kinetic theory. To see this more clearly, the section on the 
entropy operator and the Poincare catastrophe in Chapter 8 must be 
developed further. 

The decomposition of the resolvent of L can be written in terms 
of the resolvent of QLQ: 

(L - z)-' = [P + %(z)][Y(z) - z]-l[P + 9(z)] + Y(z) 

in which 

%(z) = - (QLQ - z)- 'QLP 

T(z) = PLP + Y(z) 

with Y the collision operator, defined in 8.33. The creation operator, V(z), 
"creates" correlations (vectors in the Q-subspace) out of the vacuum 
(vectors in the P-subspace). Similarly, 9 and 9 are the destruction and 
propagation operators.' Laplace inversion of equation B.l gives the solu- 
tion of the Liouville equation in the time variable: 

in which (Ja (p(t)) is the density-in-phase and B is a line parallel to the 
real z axis, directed from right to left, and situated above all singularities 
of the integrand. The P projection of equation B.6 obeys the exact non- 
Markovian master equation, obtained by Resibois and myself some years 
ago:'. 

in which G and F are the inverse Laplace transforms of Y and 2. As can 
be seen in equation B.7, the evolution of P 1 p(t)) depends on the values of 
P 1 p(t)) at all earlier times as well as on the initial correlations. However. 
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in the long-time limit t + a:, equation B.7 can, under suitable conditions, 
be replaced by the following Markovian kinetic equation, obtained by 
Rtsibois and myself: 

which is equation 8.34 corrected by the operator 0. 
The nature of Y(iO+ ) and of V(i0 +) places restrictions on the proper- 

ties of the dynamical invariants, as was seen in equation 8.35. Further, by 
pointing out that 

1 '  
lim - / dr exp(- irL) = E = lim Z(Z - L) -  
t - m  t ' O  z + i O +  

in which E is the projector onto the null space of L (the subspace of the 
dynamical invariant), Stey showed how the invariants, the infinite-time 
averages, and the value of the limit of Y as z -+ iO+ are related.3.4 He 
showed that, when [z - Y(z)]-' possesses a simple pole as singularity at 
z = 0, and 

1 a '  

Ply )  = lim - ( drPe-'">Pl f )  
t - m  t .O 

(B. 10) 

then to P 1 g) there corresponds only one P ( f )  if and only if q ( z )  -+ 0 as 
z 4 iO+. Figure B.l is a schematic representation of the relation between 
the initial value of the above time-average, PI f ), and its final value 
Pig), as a function of Y(iO+). Equivalent to this result is Y(iO+) = 0 if 
and only if zero is the only P-subspace vector orthogonal to each 
invariant .3 

Consider the example studied by Stey3 that was mentioned earlier. The 
system has one degree of freedom and the state (J,  a )  in action-angle 
variables evolves according to Hamilton's equations: 

and the Hamiltonian is taken as 

(B. 11) 

F I G U R E  B. l  
The nonzeroness of T ' ( i O + )  and the relation between the initial states, PI f ) ,  
and the P projection of the corresponding infinite-time averages, P I g ) .  

From the solution of equation B.ll, we see that two types of flow are 
possible. First, when w # 0, each bounded region of phase fluid in the (J, a )  
plane undergoes a periodic deformation while performing an oscillatory 
motion in a band parallel to the a axis (see Figure B.2). The second kind 
of motion appears in the limit w -+ 0, in which each region flows parallel 
to the J axis and stretches itself out continuously along the line of flow, 
becoming infinitely long as t -+ a: (see Figure B.3). In the limit o +,0, the 
distance between points in the (J, cr) plane diverges at t when t + cc. 

To analyse this system from the point of view of the Liouville equation 
(2.12), we first look at the matrix elements of the Liouville operator (2.13). 
By definition of L, we have 



FIGURE 8.2 
Oscillatory flow in phase space (cu i 0). 

FIGURE 8.3 
Nonoscillatory unbounded flow in phase space (o = 0). 

and 

By straightforward diagonalization of L, we obtain (see Stey3) the matrix 
elements of the resolvent of L; for w # 0, 

I 2v 
= 6 J ,  - J2 - (sin a, - sin cc2) 

w 1 
1 + m  e i n ' ( z ~ - " z )  

2x ,=- ,  C (nw-z)  

RESONANCES AND KINETIC DESCRIPTION 

The delta function in equation B.15 expresses the restriction of transitions 
to those on the energy surface. Laplace inversion of equation B.15 gives: 

The series of delta functions in equation B.16 describes the motion of the 
angle variable in phase space. 

To study the distribution of J values over a statistical ensemble, we 
introduce the P, Q decomposition of equations 8.29 and B.l and define P 
through its matrix elements: 

(B. 17) 

( J l a ,  lP(p( t ) )  thus comprises the density-in-action variables. An explicit 
evaluation of the collision operator in this case has been given:3 P L P  = 0 
here, Y = Y ,  and 

in which 

(B. 18) 

(B. 19) 

in which fl = 2 V / o  and f ,.(x) is the Bessel function of the first kind. 
Looking at the small z behavior of the collision operator eigenvalues, we 
obtain 
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as z + iO + and o + 0 ,  provided that PK is not equal to the zero of f o ( x ) .  
The Fourier transform G ( K )  of the infinite-time average of a state 
( Ja  I P 1 p ( t ) )  whose initial value has Fourier transform f ( K )  is, from equa- 
tions 8.32, B.18, and B.19, given by 

which is equation B.10 in this case. It can be seen by explicit calculation of 
the resolvent of QLQ that the conditions associated with the results of 
equation B.10 are satisfied here. Indeed, equation B.21 shows im- 
mediately that there is one-to-one correspondence between G ( K )  and f ( K )  

if and only if y O ( / ? ~ )  # 0 ,  which is so if and only if Y ( i O + )  = 0 ,  as ex- 
plicitly seen above. The solution of equation B.7 can be obtained by 
inverse Laplace transformation, once q ( z ) ,  [z - Y ( z ) ] - ' ,  and the resolvent 
of QLQ are computed. It can be written in the form 

2 v  . 
[sin a ,  - sin(a2 - o t ) ] ,  a2 - o t  

in which ( J l a l  l P ( p ( 0 ) )  = h(J1,  a l )  and h is 2.n-periodic in a,. Thus, we 
see that, when o # 0 and Y ( i 0  +) = 0, the above solution is T-periodic in 
time, in which T = 2n/w, the PoincarC recurrence time. On the other 
hand, in the limit w + 0, the Poincare recurrence time is pushed to infinity 
and equation B.19 shows that 

- i 1 2 V ~ 1 ~  
lim Y K ( z )  = - 7 im ( z )  > 0 
0-0 

( ( 2 1 / ~  1 - z2)'I2 - iz ' 

and so 

lim lim Y , ( z )  = -2il V K  1 
z- iO+ w-0 

Furthermore, when w + 0, equation B.21 becomes simply 

Thus, the one-to-one correspondence between f ( K )  and g(rc) mentioned 
earlier no longer holds: for all suitable initial states the infinite time 
average is the same-zero. This is of course in complete agreement with 
the nonzero value of the asymptotic collision operator of equation B.24. 
Moreover, in the o + 0 limit equation B.22 tends to 

1 2n 
( J ,  a ,  I P 1 p ( t ) )  = - -  da, h(J l  - 2tV cos(a2), a,) (B.26) 271 .o 

Upper bounds on the rate of relaxation, which is now possible, have been 
obtained by application of the Holder inequality. For all q > 2 and 
w = 0 ,  

in which C is a constant. This result suggests that we recall that an 
important point concerning the flow of a region of phase fluid in this 
model is that each region must return to its initial shape after a period, 
2nlo.  When w = 0 ,  each region, no matter how small, of nonzero area 
becomes injinitely extended parallel to the J axis as t -+ oo. Thus, we see 
that when Y( iO+)  # 0 here, the idea of a deterministic trajectory in phase 
space can be useful operationally in the long-time limit only when the 
initial state of the system is known exactly. In this connection, the 
description by kinetic equation therefore becomes of special interest. 
The analogy with mixing systems should also be stressed. A comparison 
of the solution of the kinetic equation (B.8) with the exact long-time decay 
of the right-hand member of equation B.26 has been made. Taking 

and limiting ourselves to the simplest approximation, R = 1 for R in 
equation B.8, we have equation 8.34, which, using the value given in 
equation B.24, gives3 
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From equation B.26, we have the following result: 

We see that equations B.29 and B.30 are in good agreement for t + cu 
and that the initial distribution, although infinitely peaked as a function 
of J, leads to  a uniform distribution of action as t -+ co. This does not 
occur when the initial cc distribution is infinitely peaked about a certain 
value: that is, when a trajectory is considered. 
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ENTROPY, MEASUREMENT, 
AND THE SUPERPOSITION PRINCIPLE 
IN QUANTUM MECHANICS 

Pure States and Mixtures 

As noted in Chapter 3, a fundamental distinction is made in quantum 
mechanics between pure states (wave functions) and mixtures represented 
by density matrices. Pure states occupy a privileged position in quantum 
mechanics, somewhat analogous to orbits in classical mechanics. As in- 
dicated by the Schrodinger equation (see equations 3.17 and 3.18), pure 
states are transformed into other pure states during the time evolution. 
Moreover, observables are defined as Hermitian operators mapping vec- 
tors of the Hilbert space into itself. These operators also preserve pure 
states. The basic laws of quantum mechanics can thus be formulated 
without ever invoking the density-matrix description of states corre- 
sponding to mixtures. The use of that description is considered to be only 
a matter of practical convenience or approximation. The situation is 
similar to that considered in classical dynamics in which the basic ele- 
ment corresponding to the pure state is the orbit or the trajectory of a 
dynamical system (see, in particular, Chapters 2 and 7). 
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In Chapter 3, the question was asked: Is quantum mechanics 
complete? We have seen that one of the reasons for asking this question 
in spite of the striking successes of quantum mechanics in the past fifty 
years is the difficulty of incorporating the measurement process (see the 
section titled The Measurement Problem in Chapter 3). We have seen 
that the measurement process transforms a pure state into a mixture and 
therefore cannot be described by the Schrodinger equation, which trans- 
forms a pure state into another pure state. 

In spite of much discussion (see the beautiful account by d'Espagnatl), 
this problem is far from being solved. According to d'Espagnat (p. 161), 
"The problem [of measurement] is considered as non-existent or trivial 
by an impressive body of theoretical physicists and as presenting almost 
insurmountable difficulties by a somewhat lesser but steadily growing 
number of their colleagues." 

I do not wish to take a position that is too strong in this controversy, 
, because, for the present purpose, the measurement process is simply an 

illustration of the problem of irreversibility in quantum mechanics. 
Whatever the position one takes, the fundamental distinction between 

pure states and mixtures and the privileged position of the pure states in 
the theory must be given up. Thus, the problem is to provide a fundamen- 
tal justification for this loss of distinction. It is a remarkable fact that the 
introduction of the entropy operator M  (see the section on irreversibility 
and the formalism of classical and quantum mechanics in Chapter 8) as a 
fundamental object of the theory entails just this loss of distinction be- 
tween pure states and mixtures. 

The object of this appendix is to sketch a proof of this statement. For 
more details, the reader is referred to a soon-to-be published paper by 
Misra, Courbage, and myself2 on which the present appendix is based. 

Entropy Operator and 
Generator of Motion 

Why must we go beyond the standard formulation of quantum mechanics 
in which the Hamiltonian operator is the generator of motion according 

ENTROPY, MEASUREMENT, AND THE SUPERPOSITION PRINCIPLE 

to  the Schriidinger equation (3.17)? Suppose that we have (see equation 
7.27, for convenience the sign of D  has been changed) 

We can then view D as the microscopic entropy production operator. It 
seems natural to suppose that the measurements of M  and D  are mutually 
compatible. As is well known, this implies 

[ M ,  D] = 0 

Equation C.2 can be considered a "sufficient condition" for all that 
follows. It could be weakened, but it is not necessary to go into greater 
detail here. 

The basic reason that conditions C.l and C.2 cannot be satisfied by an 
operator M is that the Hamiltonian operator H plays a dual role in 
quantum mechanics (see the section on particles and dissipation in Chap- 
ter 8). In addition to generating the time evolution, it represents the 
energy of the system. Hence it must be bounded from below. 

To see the incompatibility of the positivity of the Hamiltonian H with 
conditions C.l and C.2, consider the identity 

d 
- (e-;Mi$, He-iMi+) = - . 

dt  L ( ~ - ' ~ ' I ) ,  [ H ,  M ] e - i M i I ) )  

= - (I), DI))  

The last equality follows from the fact that M and D commute so that 
e i M t ~ e -  i M r  = D. Integration of both sides of equation C.4 from 0 to t now 
yields 

( e P i M i I ) ,  - ( I ) ,  H I ) )  = - t ( ~ ) ,  D I ) )  
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because 

for all t. But this is clearly impossible except in the trivial case in which 
D = 0. 

There is an interesting connection between the nonexistence of the 
entropy operator M  and the impossibility (noted by Pauli3) of defining an 
operator of time T in the usual formulation of quantum mechanics. Such 
an operator of time would be canonically conjugate with the generator H 
of the time evolution group-or (see also the section titled Is Quantum 
Mechanics Complete? in Chapter 3 and that titled The Construction of 
the Entropy Operator and the Transformation Theory, in Chapter 8) 

However, if a self-adjoint operator T satisfying equation C.6 exists, an 
entropy operator M satisfying equations C.l and C.2 can be obtained by 
simply taking M to be a monotonic function of T: 

The impossibility of defining the entropy operator M ,  the nonexistence 
of a t e e  operator in quantum mechanics, and the problem of interpret- 
ing and justifying the time-energy uncertainty relation are thus linked 
together. Their common origin is the fact that in the usual formulation of 
quantum mechanics the generator H of the time-translation group is 
identical with the energy operator of the system. To be able to define the 
entropy operator M, it is thus necessary to overcome this degeneracy. The 
simplest way of achieving this is to go to the so-called Liouvillian formu- 
lation of (quantum) dynamics (see the section titled Shrodinger and 
Heisenberg Representations in Chapter 3). The basic object in this forrnu- 
lation is the group describing the time evolution of the density operators. 
As noted in Chapter 3, the generator of the time-translation group is now 
the Liouvillian operator L defined by the equation (see equations 3.35 
and 3.36) 

ENTROPY. MEASUREMENT. A N D  THE SUPERPOSITION PRINCIPLE 

Let us therefore investigate the existence of M in conjunction with the 
time evolution as generated by the Liouville operator. 

The Entropy Superoperator 

An important advantage of using the Liouvillian formulation of quantum 
dynamics is that the generator L of the time-translation group is no 
longer physically constrained to be bounded from below. In fact, if the 
spectrum of H extends from 0 to + m, the spectrum of L is the entire real 
line. The possibility of defining M as a "superoperator" (see the section 
titled Irreversibility and the Formalism of Classical and Quantum 
Mechanics in Chapter 8) that satisfies the relations 

and 

[ M ,  D] = 0 

is thus not excluded by the argument given earlier. 
As in classical mechanics, supplementary conditions (see the section on 

ergodic systems in Chapter 2) must be imposed; M  cannot exist in both of 
the following cases: 

1. H has a purely discrete spectrum. 
2. H has a continuous but bounded spectrum. 

In physical terms, this means that the entropy superoperator cannot exist 
for a finitely extended system consisting of only a finite number of part- 
icles. This clearly shows that the question is much more involved than 
that for classical mechanics-as in Appendix A, M has been constructed 
for a classical finite system involving only a single degree of freedom. 

A fundamentally important property of the entropy superoperator M  is 
that it is necessarily nonfactorizable. This means that M p  is not of the 
form 



APPENDIX C ENTROPY, MEASUREMENT. AND THE SUPERPOSITION PRINCIPLE 

in which A, and A, are usually self-adjoint operators. A first remark is 
that, if M were factorizable, it could be written in the simpler form 

M p  = A p A  

using general properties such as preservation of Hermiticity (see note 
2). Such a factorizable operator would preserve pure states. It would in 
fact simply transform 1 t j )  into A  I $) (see equation 3.30). 

The nonfactorizability of M is therefore a very important property. In 
fact, if M p  is given by equation C.lO, it is not difficult (see note 2) to verify 
that the commutation relations (C.8) for M lead to the following relation 
for A :  

in which c is a real number. The three cases that arise (corresponding to 
c = 0, c > 0 and c < 0) can be ruled out separately as follows: 

1. c = 0. The preceding argument now shows that [H, A] = Dl  = 0. 
This together with equation C.10 then leads to the relation 

which means that M is an invariant of motion. 

2. c > 0. In this case, 

This case can be studied by means of a formal analogy with the second 
section of this appendix; the positive operator D, plays the role of H; A 
the role of M; and cA2 of D. We may therefore directly conclude that 
A 2  = 0 and hence M as given by equation C.lO. 

The preceding considerations thus lead us to  the following conclusions. 
I 

For infinite quanta1 systems, there exists the possibility of enlarging the I 

rium entropy. The operator M can be defined, however, only as a non- 
factorizable superoperator. The inclusion of an entropy operator (neces- 
sarily nonfactorizable) among the observables thus requires that the pure 
states lose their privileged position in theory and that the pure and 
mixed states be treated on an equal basis. Physically, this means 
that, for systems having entropy as an observable, the distinction between , 
pure and mixed states must cease to be operationally meaningful and ' 

there would be limitations on the possibility of realizing coherent super- ' 
position of quantum states (see the section titled The Measurement Prob- 
lem in Chapter 3). 

Evidently, this conclusion, which has been reached as a logical con- 
sequence of our theory of entropy operator, should be further elucidated 
by an analysis of the physical reason for the loss of the distinction be- 
tween pure and mixed states. 

The situation for classical systems has been discussed repeatedly (see 
Chapters 3, 7, 8, and 9). We have seen that there are at present two 
mechanisms known to lead to instability of motion, which in turn pro- 
hibits the "observation" of well-defined trajectories. It can be expected 
that the physical reason for the loss of the distinction between pure 
and mixed states of quantal systems with an entropy operator is some 
suitable quantum analogue of the instability discussed earlier. 

Again, as in classical mechanics, there may be more than one mechan- 
ism involved. One may be the existence of analogues of classical systems 
with strong mixing properties; the other existence of the Poincare catas- 
trophe for quantum systems (see the section on the entropy operator and 
the Poincare catastrophe in Chapter 8). One simple example for classical 
systems in which the asymptotic collision operator Y(z) for z + 0 does not 
vanish was discussed in Appendix B. Similar situations exist in the 
quantum case and play an essential role in the derivation of kinetic 
equations (see equation 8.34). A rigorous mathematical formulation of 
the quantum instability mechanism is work for the future. Nevertheless, 
it is satisfying that the second prmciple of thermodynamics when inter- 
preted as a dynamical principle in terms of the existence of the operator 
M requires us to give up the distinction between pure and mixed states 
in precisely the situation in which this distinction is expected to be 
physically unobservable. 

algebra of observables to include an operator M representing nonequilib- I 
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COHERENCE AND RANDOMNESS 
IN QUANTUM THEORY 

Operators and Superoperators 

In Chapter 9, emphasis was on the important role of instability in the 
foundations of statistical physics. Appendix A demonstrated the possibil- 
ity of obtaining stochastic (Markov) processes, starting with determin- 
istic dynamics, through an appropriate nonunitary "change of 
representation" that does not entail any loss of information. It is possible 
to define this change of representation, provided the dynamics of the 
system has a suitable high degree of instability. This proves that a proba- 
bilistic theory can still be "complete" and "objective." 

The viewpoint adopted in Appendix A is that, when a (classical) dyna- 
mica1 system is sufficiently unstable, we can no longer speak of trajec- 
tories and we are forced to deal with a basically different approach: the 
evolution of distribution functions (or bundles of trajectories) in phase I 
space. The transition from distribution functions to a single point in 
phase space cannot be performed under such conditions (see the section 
on time and change in Chapter 9). 
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In quantum theory, coordinates and momenta retain their meaning, 
and measurements can delimitate in the appropriate phase space a region 
in which the system is located. 

The question may then be asked: Are there other circumstances, such 
as those related to the formulation of quantum theory, in which the 
transition from phase-space distribution functions to individual trajec- 
tories is also impossible? 

Usually another attitude is adopted: the transition to a single trajec- 
tory is performed before the question of the relation between classical and 
quantum mechanics is raised. However, the concepts of a classical trajec- 
tory and of a quantum wave function are so different that it is difficult to 
compare them in a meaningful way. 

The type of problem met with here is quite different from that en- 
countered in classical theory. There we deal with unstable, "disordered" 
systems-in fact, so disordered that it becomes possible to define Lya- 
pounov functions closely related to entropy. In contrast, the transition 
from classical to quantum mechanics does not affect the basic reversibil- 
ity of classical dynamics (see Chapter 3). Moreover, as mentioned in 
Chapter 3 in the section on the decay of unstable particles, all finite 
systems of quantum mechanics have a discrete energy spectrum and 
therefore a purely periodic motion. Quantum theory leads in this sense to 
a more "coherent" behavior of motion than does classical theory. This 
can be considered a strong physical argument against any attempt to 
understand quantum theory in terms of" hidden " variables or in terms of 
traditional stochastic models. On the contrary, this increased coherence 
seems to indicate that quantum theory should correspond to an "over- 
determined " classical theory. Alternatively, it seems that quantum effects 

J lead to correlations between neighboring classical trajectories in phase 
, space. This is what the old Bohr-Sommerfeld image of phase cells of area 

h expresses in an intuitive way. 
To express this idea in a new, precise way,' we must reintroduce a basic 

distinction between operators and superoperators.' This distinction was 
already discussed in Chapter 8 in the section titled Irreversibility and the 
Formalism of Classical and Quantum Mechanics. It has also been men- 
tioned (equation 3.35 and Appendix C)  that the Liouville operator is a 
factorizable superoperator. By definition, a factorizable superoperator F 
may be written as A ,  x A ,  (see equation C.9) with the meaning 
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Using this notation, we have for the Liouville superoperator 

1 
L =  ( H x I - I x H )  

h 

The factorizability of quantum superoperators is a fundamental property, 
without classical analogue. For example the classical Liouville operator 
LC, is also a superoperator because it acts on the distribution function 
(which is a function of the two sets of variables q and p and therefore the 
analogue of a continuous matrix). However, LC, is expressed in terms of a 
Poisson bracket (see equation 2.13) and is not factorizable. 

Establishing a simple correspondence between classical and quantum 
superoperators will afford a source of insight into the structure of quan- 
tum mechanics. 

Classical Commutation Rules 

In a classical system with a single degree of freedom, four basic super- 
operators (two of which are multiplication superoperators) may be 
introduced : 

To emphasize that we consider them to be superoperators acting on 
distribution functions, we use uppercase letters. The multiplication by i is 
to obtain Hermitian superoperators. 

Obviously these four quantities satisfy two independent noncom- 
mutation rules: one for P and i(d/aP), the other for Q and - i(d/dQ) (see 
the section on operators and complementarity in Chapter 3). In contrast, 
classical trajectory theory is entirely built in terms of functions of Q and P 
and does not admit any noncommutation relation. 

Quantum theory therefore occupies an intermediate position because it 
leads to a single noncommutation relation between the quantum mechan- 
ical operators q,, , pop. In this sense quantum mechanics is "more deter- 
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ministic" than classical ensemble theory and less so than classical 
trajectory theory. 

What is the meaning of the classical noncommutation rules? This 
question is studied in detail in a recent paper by C1. George and myself.' 
As could be expected from the a~~a logy  with quantum mechanics, the 
following correspondence is obtained: 

Superoperators Eigendistribution 

Q Well-defined value of Q 

Well-defined value of P 

Uniform distribution in Q 

a 
i - Uniform distribution in P 
ap 

The classical noncommutation rules therefore have a simple meaning: for 
example, a distribution function cannot simultaneously correspond to a 
well-defined value of Q and be independent of Q. The classical uncertainty 
relations therefore express a "logical" inconsistency. However, nothing 
prevents us from having, as an example, a distribution function that 
corresponds to well-defined values of both Q and P and thus to a classical 
trajectory. 

Quantum Commutation Rules' 

Let us now introduce quantum mechanisms for four factorizable super- 
operators expressed in terms of the operators gap, pa, that satisfy the 
Heisenberg uncertainty relation: 

These four superoperators are: 

There is a remarkable isomorphism between the classical superoperators 
(D.3) and the quantum superoperators (D.5). The commutation rules are 
identical and we may write the correspondence 

This correspondence permits us to attribute "similar " physical meaning 
to these sets of quantities. But that means that, using linear combinations 
and definition D.l, we have the correspondence 

This result seems most interesting. The Hilbert space operators p o p ,  qop 
cannot be expressed in terms of the quantities P, Q defined on a trajec- 
tory. They also involve superoperators acting on distribution functions. 
We now see clearly why the pure state of classical mechanics cannot be 
realized any longer in the Hilbert space: the coupling of the classical 
superoperators through the universal constant h prevents the realization 
of eigenensembles corresponding to well-defined values of both Q and P. 

If we were to try to go from a continuous distribution function to a 
single point (a &function), the derivatives in expression D.7 would tend 
to infinity and we would obtain states of infinite energy. This precisely 
expresses the idea of correlations in phase space induced by h. 
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We see that the ensemble point of view, which has often been ad- 
vocated in the past,3 clarifies the position of quantum mechanics with 
respect to classical theory. It is not the appearance of noncommuting 
operators that is characteristic of quantum theory. This feature can 
always be incorporated in classical ensemble theory. The new and unique 
feature is the reduction of the four basic superoperators (expression D.5) 
in terms of the two combinations given in expression D.7. This is possible 
only through the existence of a universal constant having the physical 
dimensions of an action (momentum x coordinate). As a result, the con- 
cepts of momentum and coordinate in the Hilbert space are no longer 
independent and quantum theory seems an overdetermined classical 
theory in which the motion of neighboring points cannot be prescribed 
independently. Although there will never be a " classical" theory of quan- 
tum mechanics, a close analogy to the physical situation would be the 
classical motion of a string in which the motion of neighboring points can 
also no longer be prescribed independently-if we did so, this would lead 
to violent distortions of the string and to states of arbitrary high energy. 

Concluding Remarks 

As mentioned earlier in this appendix, we may also introduce noncom- 
muting operators and a classical complementarity principle into the 
framework of classical ensemble theory. However, this principle has a 
trivial meaning: we cannot make contradictory statements about the 
distribution function p. The new feature in quantum mechanics is that the 
type of ensembles that can be constructed is limited by h. In addition, we 
can no longer take the limit to single trajectories and therefore the com- 
plementarity principle acquires a fundamental status in quantum 
mechanics. 

It should be emphasized that at no point have we appealed to  perturba- 
tions due to the observer or to other subjectivistic elements in this 
approach to quantum theory. 

As in statistical mechanics, the transition from ensembles to trajec- 
tories is prevented by a change in the structure of the phase space. In 
statistical mechanics, it is the instability of motion that plays the critical 
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role (see Chapter 9 and Appendixes A and C). Here the structure of the 
dynamic operators describing quantum ensembles leads to a theory that 
is both complete and probabilistic. 

In conclusion, the difficult questions that were at the core of the 
celebrated Einstein-Bohr debate on the foundations of quantum theory 
(see The Philosophy of Quurrtum Mechanics3) begin to take new shapes: 
it is indeed possible to consider probabilistic theories that are complete 
and objective. Far from being the expression of ignorance, the probabil- 
istic element may be the expression of new, fundamental features in the 
structure of the dynamic theory. 
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