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PROLOGUE

THE VIRTUAL UNREALITY MACHINE

1 have a dream.

I am surrounded by—nothing. Not empty space, for there
is no space to be empty. Not blackness, for there is nothing to
be black. Simply an absence, waiting to become a presence. I
think commands: let there be space. But what kind of space? I
have a choice: three-dimensional space, multidimensional
space, even curved space.

I choose.

Another command, and the space is filled with an all-
pervading fluid, which swirls in waves and vortices, here a
placid swell, there a frothing, turbulent maelstrom.

I paint space blue, draw white streamlines in the fluid to
bring out the flow patterns.

I place a small red sphere in the fluid. It hovers, unsup-
ported, ignorant of the chaos around it, until I give the word.
Then it slides off along a streamline. I compress myself to one
hundredth of my size and will myself onto the surface of the
sphere, to get a bird’s-eye view of unfolding events. Every few
seconds, I place a green marker in the flow to record the

sphere’s passing. If I touch a marker, it blossoms like a time-

vii



viii

PROLOGUE

lapse film of a desert cactus when the rains come—and on
every petal there are pictures, numbers, symbols. The sphere
can also be made to blossom, and when it does, those pic-
tures, numbers, and symbols change as it moves.

Dissatisfied with the march of its symbols, I nudge the
sphere onto a different streamline, fine-tuning its position
until I see the unmistakable traces of the singularity I am
seeking. I snap my fingers, and the sphere extrapolates itself
into its own future and reports back what it finds. Promising. . .
Suddenly there is a whole cloud of red spheres, all being car-
ried along by the fluid, like a shoal of fish that quickly
spreads, swirling, putting out tendrils, flattening into sheets.
Then more shoals of spheres join the game—gold, purple,
brown, silver, pink. ... I am in danger of running out of col-
ors. Multicolored sheets intersect in a complex geometric
form. I freeze it, smooth it, paint it in stripes. I banish the
spheres with a gesture. I call up markers, inspect their
unfolded petals, pull some off and attach them to a translu-
cent grid that has materialized like a landscape from thinning
mist.

Yes!

I issue a new command. “Save. Title: A new chaotic phe-
nomenon in the three-body problem. Date: today.”

Space collapses back to nonexistent void. Then, the morn-
ing’s research completed, I disengage from my Virtual Unreal-

ity Machine and head off in search of lunch.

This particular dream is very nearly fact. We already have
Virtual Reality systems that simulate events in “normal”
space. I call my dream Virtual Unreality because it simulates

anything that can be created by the mathematician’s fertile
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imagination. Most of the bits and pieces of the Virtual Unreal-
ity Machine exist already. There is computer-graphics soft-
ware that can “fly” you through any chosen geometrical
object, dynamical-systems software that can track the evolv-
ing state of any chosen equation, symbolic-algebra software
that can take the pain out of the most horrendous calcula-
tions—and get them right. It is only a matter of time before
mathematicians will be able to get inside their own creations.

But, wonderful though such technology may be, we do not
need it to bring my dream to life. The dream is a reality now,
present inside every mathematician’s head. This is what
mathematical creation feels like when you’re doing it. I've
resorted to a little poetic license: the objects that are found in
the mathematician’s world are generally distinguished by
symbolic labels or names rather than colors. But those labels
are as vivid as colors to those who inhabit that world. In fact,
despite its colorful images, my dream is a pale shadow of the
world of imagination that every mathematican inhabits—a
world in which curved space, or space with more than three
dimensions, is not only commonplace but inevitable. You
probably find the images alien and strange, far removed from
the algebraic symbolism that the word “mathematics” con-
jures up. Mathematicians are forced to resort to written sym-
bols and pictures to describe their world—even to each other.
But the symbols are no more that world than musical notation
is music.

Over the centuries, the collective minds of mathematicians
have created their own universe. I don’t know where it is situ-
ated—I don’t think that there is a “where” in any normal
sense of the word—but I assure you that this mathematical

universe seems real enough when you’re in it. And, not
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despite its peculiarities but because of them, the mental uni-
verse of mathematics has provided human beings with many
of their deepest insights into the world around them.

I am going to take you sightseeing in that mathematical
universe. I am going to try to equip you with a mathemati-
cian’s eyes. And by so doing, I shall do my best to change the

way you view your own world.
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CHAPTER |

THE NATURAL ORDER

We live in a universe of patterns.

Every night the stars move in circles across the sky. The
seasons cycle at yearly intervals. No two snowflakes are ever
exactly the same, but they all have sixfold symmetry. Tigers
and zebras are covered in patterns of stripes, leopards and
hyenas are covered in patterns of spots. Intricate trains of
waves march across the oceans; very similar trains of sand
dunes march across the desert. Colored arcs of light adorn the
sky in the form of rainbows, and a bright circular halo some-
times surrounds the moon on winter nights. Spherical drops
of water fall from clouds.

Human mind and culture have developed a formal system
of thought for recognizing, classifying, and exploiting pat-
terns. We call it mathematics. By using mathematics to orga-
nize and systematize our ideas about patterns, we have dis-
covered a great secret: nature’s patterns are not just there to be
admired, they are vital clues to the rules that govern natural
processes. Four hundred years ago, the German astronomer
Johannes Kepler wrote a small book, The Six-Cornered

Snowflake, as a New Year’s gift to his sponsor. In it he argued
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that snowflakes must be made by packing tiny identical units
together. This was long before the theory that matter is made
of atoms had become generally accepted. Kepler performed
no experiments; he just thought very hard about various bits
and pieces of common knowledge. His main evidence was the
sixfold symmetry of snowflakes, which is a natural conse-
quence of regular packing. If you place a large number of
identical coins on a table and try to pack them as closely as
possible, then you get a honeycomb arrangement, in which
every coin—except those at the edges—is surrounded by six
others, arranged in a perfect hexagon.

The regular nightly motion of the stars is also a clue, this
time to the fact that the Earth rotates. Waves and dunes are
clues to the rules that govern the flow of water, sand, and air.
The tiger’s stripes and the hyena’s spots attest to mathemati-
cal regularities in biological growth and form. Rainbows tell
us about the scattering of light, and indirectly confirm that
raindrops are spheres. Lunar haloes are clues to the shape of
ice crystals.

There is much beauty in nature’s clues, and we can all rec-
ognize it without any mathematical training. There is beauty,
too, in the mathematical stories that start from the clues and
deduce the underlying rules and regularities, but it is a differ-
ent kind of beauty, applying to ideas rather than things. Math-
ematics is to nature as Sherlock Holmes is to evidence. When
presented with a cigar butt, the great fictional detective could
deduce the age, profession, and financial state of its owner.
His partner, Dr. Watson, who was not as sensitive to such
matters, could only look on in baffled admiration, until the
master revealed his chain of impeccable logic. When pre-

sented with the evidence of hexagonal snowflakes, mathe-
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maticians can deduce the atomic geometry of ice crystals. If
you are a Watson, it is just as baffling a trick, but I want to
show you what it is like if you are a Sherlock Holmes.

Patterns possess utility as well as beauty. Once we have
learned to recognize a background pattern, exceptions sud-
denly stand out. The desert stands still, but the lion moves.
Against the circling background of stars, a small number of
stars that move quite differently beg to be singled out for spe-
cial attention. The Greeks called them planetes, meaning
“wanderer,” a term retained in our word “planet.” It took a lot
longer to understand the patterns of planetary motion than it
did to work out why stars seem to move in nightly circles.
One difficulty is that we are inside the Solar System, moving
along with it, and things that look simple from outside often
look much more complicated from inside. The planets were
clues to the rules behind gravity and motion.

We are still learning to recognize new kinds of pattern.
Only within the last thirty years has humanity become explic-
itly aware of the two types of pattern now known as fractals
and chaos. Fractals are geometric shapes that repeat their
structure on ever-finer scales, and I will say a little about
them toward the end of this chapter; chaos is a kind of appar-
ent randomness whose origins are entirely deterministic, and
I will say a lot about that in chapter 8. Nature “knew about”
these patterns billions of years ago, for clouds are fractal and
weather is chaotic. It took humanity a while to catch up.

The simplest mathematical objects are numbers, and the
simplest of nature’s patterns are numerical. The phases of the
moon make a complete cycle from new moon to full moon
and back again every twenty-eight days. The year is three

hundred and sixty-five days long—roughly. People have two
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legs, cats have four, insects have six, and spiders have eight.
Starfish have five arms (or ten, eleven, even seventeen,
depending on the species). Clover normally has three leaves:
the superstition that a four-leaf clover is lucky reflects a deep-
seated belief that exceptions to patterns are special. A very
curious pattern indeed occurs in the petals of flowers. In
nearly all flowers, the number of petals is one of the numbers
that occur in the strange sequence 3, 5, 8, 13, 21, 34, 55, 89. For
instance, lilies have three petals, buttercups have five, many
delphiniums have eight, marigolds have thirteen, asters have
twenty-one, and most daisies have thirty-four, fifty-five, or
eighty-nine. You don’t find any other numbers anything like as
often. There is a definite pattern to those numbers, but one that
takes a little digging out: each number is obtained by adding
the previous two numbers together. For example, 3 + 5 = 8,
5 + 8 = 13, and so on. The same numbers can be found in the
spiral patterns of seeds in the head of a sunflower. This par-
ticular pattern was noticed many centuries ago and has been
widely studied ever since, but a really satisfactory explana-
tion was not given until 1993. It is to be found in chapter 9.
Numerology is the easiest—and consequently the most
dangerous—method for finding patterns. It is easy because
anybody can do it, and dangerous for the same reason. The
difficulty lies in distinguishing significant numerical patterns
from accidental ones. Here’s a case in point. Kepler was fasci-
nated with mathematical patterns in nature, and he devoted
much of his life to looking for them in the behavior of the
planets. He devised a simple and tidy theory for the existence
of precisely six planets (in his time only Mercury, Venus,
Earth, Mars, Jupiter, and Saturn were known). He also discov-

ered a very strange pattern relating the orbital period of a
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planet—the time it takes to go once around the Sun—to its
distance from the Sun. Recall that the square of a number is
what you get when you multiply it by itself: for example, the
square of 4 is 4 x 4 = 16. Similarly, the cube is what you get
when you multiply it by itself twice: for example, the cube of
4 is 4 x 4 x 4 = 64. Kepler found that if you take the cube of
the distance of any planet from the Sun and divide it by the
square of its orbital period, you always get the same number.
It was not an especially elegant number, but it was the same
for all six planets.

Which of these numerological observations is the more
significant? The verdict of posterity is that it is the second
one, the complicated and rather arbitrary calculation with
squares and cubes. This numerical pattern was one of the key
steps toward Isaac Newton’s theory of gravity, which has
explained all sorts of puzzles about the motion of stars and
planets. In contrast, Kepler’s neat, tidy theory for the number
of planets has been buried without trace. For a start, it must
be wrong, because we now know of nine planets, not six.
There could be even more, farther out from the Sun, and
small enough and faint enough to be undetectable. But more
important, we no longer expect to find a neat, tidy theory for
the number of planets. We think that the Solar System con-
densed from a cloud of gas surrounding the Sun, and the
number of planets presumably depended on the amount of
matter in the gas cloud, how it was distributed, and how fast
and in what directions it was moving. An equally plausible
gas cloud could have given us eight planets, or eleven; the
number is accidental, depending on the initial conditions of
the gas cloud, rather than universal, reflecting a general law of

nature.
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The big problem with numerological pattern-seeking is
that it generates millions of accidentals for each universal.
Nor is it always obvious which is which. For example, there
are three stars, roughly equally spaced and in a straight line,
in the belt of the constellation Orion. Is that a clue to a signifi-
cant law of nature? Here’s a similar question. Io, Europa, and
Ganymede are three of Jupiter’s larger satellites. They orbit
the planet in, respectively, 1.77, 3.55, and 7.16 days. Each of
these numbers is almost exactly twice the previous one. Is
that a significant pattern? Three stars in a row, in terms of
position; three satellites “in a row” in terms of orbital period.
Which pattern, if either, is an important clue? I'll leave you to
think about that for the moment and return to it in the next
chapter.

In addition to numerical patterns, there are geometric
ones. In fact this book really ought to have been called
Nature’s Numbers and Shapes. I have two excuses. First, the
title sounds better without the “and shapes.” Second, mathe-
matical shapes can always be reduced to numbers—which is
how computers handle graphics. Each tiny dot in the picture
is stored and manipulated as a pair of numbers: how far the
dot is along the screen from right to left, and how far up it is
from the bottom. These two numbers are called the coordi-
nates of the dot. A general shape is a collection of dots, and
can be represented as a list of pairs of numbers. However, it is
often better to think of shapes as shapes, because that makes
use of our powerful and intuitive visual capabilities, whereas
complicated lists of numbers are best reserved for our weaker
and more laborious symbolic abilities.

Until recently, the main shapes that appealed to mathe-

maticians were very simple ones: triangles, squares, pen-
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tagons, hexagons, circles, ellipses, spirals, cubes, spheres,
cones, and so on. All of these shapes can be found in nature,
although some are far more common, or more evident, than
others. The rainbow, for example, is a collection of circles,
one for each color. We don’t normally see the entire circle,
just an arc; but rainbows seen from the air can be complete
circles. You also see circles in the ripples on a pond, in the
the human eye, and on butterflies’ wings.

Talking of ripples, the flow of fluids provides an inex-
haustible supply of nature’s patterns. There are waves of
many different kinds—surging toward a beach in parallel
ranks, spreading in a V-shape behind a moving boat, radiating
outward from an underwater earthquake. Most waves are gre-
garious creatures, but some—such as the tidal bore that
sweeps up a river as the energy of the incoming tide becomes
confined to a tight channel—are solitary. There are swirling
spiral whirlpools and tiny vortices. And there is the appar-
ently structureless, random frothing of turbulent flow, one
of the great enigmas of mathematics and physics. There are
similar patterns in the atmosphere, too, the most dramatic
being the vast spiral of a hurricane as seen by an orbiting
astronaut.

There are also wave patterns on land. The most strikingly
mathematical landscapes on Earth are to be found in the great
ergs, or sand oceans, of the Arabian and Sahara deserts. Even
when the wind blows steadily in a fixed direction, sand
dunes form. The simplest pattern is that of transverse dunes,
which—just like ocean waves—line up in parallel straight
rows at right angles to the prevailing wind direction. Some-
times the rows themselves become wavy, in which case they

are called barchanoid ridges; sometimes they break up into
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innumerable shield-shaped barchan dunes. If the sand is
slightly moist, and there is a little vegetation to bind it
together, then you may find parabolic dunes—shaped like a
U, with the rounded end pointing in the direction of the
wind. These sometimes occur in clusters, and they resemble
the teeth of a rake. If the wind direction is variable, other
forms become possible. For example, clusters of star-shaped
dunes can form, each having several irregular arms radiating
from a central peak. They arrange themselves in a random
pattern of spots.

Nature’s love of stripes and spots extends into the animal
kingdom, with tigers and leopards, zebras and giraffes. The
shapes and patterns of animals and plants are a happy hunt-
ing ground for the mathematically minded. Why, for example,
do so many shells form spirals? Why are starfish equipped
with a symmetric set of arms? Why do many viruses assume
regular geometric shapes, the most striking being that of an
icosahedron—a regular solid formed from twenty equilateral
triangles? Why are so many animals bilaterally symmetric?
Why is that symmetry so often imperfect, disappearing when
you look at the detail, such as the position of the human heart
or the differences between the two hemispheres of the human
brain? Why are most of us right-handed, but not all of us?

In addition to patterns of form, there are patterns of move-
ment. In the human walk, the feet strike the ground in a regu-
lar rhythm: left-right-left-right-left-right. When a four-legged
creature—a horse, say—walks, there is a more complex but
equally rhythmic pattern. This prevalence of pattern in loco-
motion extends to the scuttling of insects, the flight of birds,
the pulsations of jellyfish, and the wavelike movements of

fish, worms, and snakes. The sidewinder, a desert snake,
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moves rather like a single coil of a helical spring, thrusting its
body forward in a series of S-shaped curves, in an attempt to
minimize its contact with the hot sand. And tiny bacteria pro-
pel themselves along using microscopic helical tails, which
rotate rigidly, like a ship’s screw.

Finally, there is another category of natural pattern—one
that has captured human imagination only very recently, but
dramatically. This comprises patterns that we have only just
learned to recognize—patterns that exist where we thought
everything was random and formless. For instance, think
about the shape of a cloud. It is true that meteorologists clas-
sify clouds into several different morphological groups—cir-
rus, stratus, cumulus, and so on—but these are very general
types of form, not recognizable geometric shapes of a conven-
tional mathematical kind. You do not see spherical clouds, or
cubical clouds, or icosahedral clouds. Clouds are wispy,
formless, fuzzy clumps. Yet there is a very distinctive pattern
to clouds, a kind of symmetry, which is closely related to the
physics of cloud formation. Basically, it is this: you can’t tell
what size a cloud is by looking at it. If you look at an ele-
phant, you can tell roughly how big it is: an elephant the size
of a house would collapse under its own weight, and one the
size of a mouse would have legs that are uselessly thick.
Clouds are not like this at all. A large cloud seen from far
away and a small cloud seen close up could equally plausibly
have been the other way around. They will be different in
shape, of course, but not in any manner that systematically
depends on size.

This “scale independence” of the shapes of clouds has
been verified experimentally for cloud patches whose sizes

vary by a factor of a thousand. Cloud patches a kilometer



10

NATURE'S NUMBERS

across look just like cloud patches a thousand kilometers
across. Again, this pattern is a clue. Clouds form when water
undergoes a “phase transition” from vapor to liquid, and
physicists have discovered that the same kind of scale invari-
ance is associated with all phase transitions. Indeed, this sta-
tistical self-similarity, as it is called, extends to many other
natural forms. A Swedish colleague who works on oil-field
geology likes to show a slide of one of his friends standing up
in a boat and leaning nonchalantly against a shelf of rock that
comes up to about his armpit. The photo is entirely convinc-
ing, and it is clear that the boat must have been moored at the
edge of a rocky gully about two meters deep. In fact, the rocky
shelf is the side of a distant fjord, some thousand meters high.
The main problem for the photographer was to get both the
foreground figure and the distant landscape in convincing
focus.

Nobody would try to play that kind of trick with an ele-
phant.

However, you can play it with many of nature’s shapes,
including mountains, river networks, trees, and very possibly
the way that matter is distributed throughout the entire uni-
verse. In the term made famous by the mathematician Benoit
Mandelbrot, they are all fractals. A new science of irregular-
ity—fractal geometry—has sprung up within the last fifteen
years. I'm not going to say much about fractals, but the
dynamic process that causes them, known as chaos, will be
prominently featured.

Thanks to the development of new mathematical theories,
these more elusive of nature’s patterns are beginning to reveal
their secrets. Already we are seeing a practical impact as well

as an intellectual one. Our newfound understanding of
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nature’s secret regularities is being used to steer artificial
satellites to new destinations with far less fuel than anybody
had thought possible, to help avoid wear on the wheels of
locomotives and other rolling stock, to improve the effective-
ness of heart pacemakers, to manage forests and fisheries,
even to make more efficient dishwashers. But most important
of all, it is giving us a deeper vision of the universe in which

we live, and of our own place in it.






CHAPTER 2

WHAT MATHEMATICS IS FOR

We’'ve now established the uncontroversial idea that nature is
full of patterns. But what do we want to do with them? One
thing we can do is sit back and admire them. Communing
with nature does all of us good: it reminds us of what we are.
Painting pictures, sculpting sculptures, and writing poems are
valid and important ways to express our feelings about the
world and about ourselves. The entrepreneur’s instinct is to
exploit the natural world. The engineer’s instinct is to change
it. The scientist’s instinct is to try to understand it—to work
out what’s really going on. The mathematician’s instinct is to
structure that process of understanding by seeking generali-
ties that cut across the obvious subdivisions. There is a little
of all these instincts in all of us, and there is both good and
bad in each instinct.

I want to show you what the mathematical instinct has
done for human understanding, but first I want to touch upon
the role of mathematics in human culture. Before you buy
something, you usually have a fairly clear idea of what you
want to do with it. If it is a freezer, then of course you want it
to preserve food, but your thoughts go well beyond that. How
much food will you need to store? Where will the freezer have

to fit? It is not always a matter of utility; you may be thinking
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of buying a painting. You still ask yourself where you are
going to put it, and whether the aesthetic appeal is worth the
asking price. It is the same with mathematics—and any other
intellectual worldview, be it scientific, political, or religious.
Before you buy something, it is wise to decide what you want
it for.

So what do we want to get out of mathematics?

Each of nature’s patterns is a puzzle, nearly always a deep
one. Mathematics is brilliant at helping us to solve puzzles. It
is a more or less systematic way of digging out the rules and
structures that lie behind some observed pattern or regularity,
and then using those rules and structures to explain what’s
going on. Indeed, mathematics has developed alongside our
understanding of nature, each reinforcing the other. I've men-
tioned Kepler’s analysis of snowflakes, but his most famous
discovery is the shape of planetary orbits. By performing a
mathematical analysis of astronomical observations made by
the contemporary Danish astronomer Tycho Brahe, Kepler
was eventually driven to the conclusion that planets move in
ellipses. The ellipse is an oval curve that was much studied
by the ancient Greek geometers, but the ancient astronomers
had preferred to use circles, or systems of circles, to describe
orbits, so Kepler’'s scheme was a radical one at that time.

People interpret new discoveries in terms of what is
important to them. The message astronomers received when
they heard about Kepler's new idea was that neglected ideas
from Greek geometry could help them solve the puzzle of pre-
dicting planetary motion. It took very little imagination for
them to see that Kepler had made a huge step forward. All
sorts of astronomical phenomena, such as eclipses, meteor

showers, and comets, might yield to the same kind of mathe-
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matics. The message to mathematicians was quite different. It
was that ellipses are really interesting curves. It took very lit-
tle imagination for them to see that a general theory of curves
would be even more interesting. Mathematicians could take
the geometric rules that lead to ellipses and modify them to
see what other kinds of curve resulted.

Similarly, when Isaac Newton made the epic discovery
that the motion of an object is described by a mathematical
relation between the forces that act on the body and the accel-
eration it experiences, mathematicians and physicists learned
quite different lessons. However, before I can tell you what
these lessons were I need to explain about acceleration.
Acceleration is a subtle concept: it is not a fundamental quan-
tity, such as length or mass; it is a rate of change. In fact, it is a
“second order” rate of change—that is, a rate of change of a
rate of change. The velocity of a body—the speed with which
it moves in a given direction—is just a rate of change: it is the
rate at which the body’s distance from some chosen point
changes. If a car moves at a steady speed of sixty miles per
hour, its distance from its starting point changes by sixty
miles every hour. Acceleration is the rate of change of veloc-
ity. If the car’s velocity increases from sixty miles per hour to
sixty-five miles per hour, it has accelerated by a definite
amount. That amount depends not only on the initial and
final speeds, but on how quickly the change takes place. If it
takes an hour for the car to increase its speed by five miles per
hour, the acceleration is very small; if it takes only ten sec-
onds, the acceleration is much greater.

I don’t want to go into the measurement of accelerations.
My point here is more general: that acceleration is a rate of

change of a rate of change. You can work out distances with a
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tape measure, but it is far harder to work out a rate of change
of a rate of change of distance. This is why it took humanity a
long time, and the genius of a Newton, to discover the law of
motion. If the pattern had been an obvious feature of dis-
tances, we would have pinned motion down a lot earlier in
our history.

In order to handle questions about rates of change, New-
ton—and independently the German mathematician Gottfried
Leibniz—invented a new branch of mathematics, the calcu-
lus. It changed the face of the Earth—Tliterally and metaphori-
cally. But, again, the ideas sparked by this discovery were dif-
ferent for different people. The physicists went off looking for
other laws of nature that could explain natural phenomena in
terms of rates of change. They found them by the bucketful—
heat, sound, light, fluid dynamics, elasticity, electricity, mag-
netism. The most esoteric modern theories of fundamental
particles still use the same general kind of mathematics,
though the interpretation—and to some extent the implicit
worldview—is different. Be that as it may, the mathemati-
cians found a totally different set of questions to ask. First of
all, they spent a long time grappling with what “rate of
change” really means. In order to work out the velocity of a
moving object, you must measure where it is, find out where
it moves to a very short interval of time later, and divide the
distance moved by the time elapsed. However, if the body is
accelerating, the result depends on the interval of time you
use. Both the mathematicians and the physicists had the same
intuition about how to deal with this problem: the interval of
time you use should be as small as possible. Everything
would be wonderful if you could just use an interval of zero,

but unfortunately that won’t work, because both the distance
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traveled and the time elapsed will be zero, and a rate of
change of 0/0 is meaningless. The main problem with nonzero
intervals is that whichever one you choose, there is always a
smaller one that you could use instead to get a more accurate
answer. What you would really like is to use the smallest pos-
sible nonzero interval of time—but there is no such thing,
because given any nonzero number, the number half that size
is also nonzero. Everything would work out fine if the interval
could be made infinitely small—“infinitesimal.” Unfortu-
nately, there are difficult logical paradoxes associated with
the idea of an infinitesimal; in particular, if we restrict our-
selves to numbers in the usual sense of the word, there is no
such thing. So for about two hundred years, humanity was in
a very curious position as regards the calculus. The physicists
were using it, with great success, to understand nature and to
predict the way nature behaves; the mathematicians were
worrying about what it really meant and how best to set it up
so that it worked as a sound mathematical theory; and the
philosophers were arguing that it was all nonsense. Every-
thing got resolved eventually, but you can still find strong dif-
ferences in attitude.

The story of calculus brings out two of the main things that
mathematics is for: providing tools that let scientists calculate
what nature is doing, and providing new questions for mathe-
maticians to sort out to their own satisfaction. These are the
external and internal aspects of mathematics, often referred to
as applied and pure mathematics (I dislike both adjectives,
and I dislike the implied separation even more). It might
appear in this case that the physicists set the agenda: if the
methods of calculus seem to be working, what does it matter

why they work? You will hear the same sentiments expressed
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today by people who pride themselves on being pragmatists. I
have no difficulty with the proposition that in many respects
they are right. Engineers designing a bridge are entitled to use
standard mathematical methods even if they don’t know the
detailed and often esoteric reasoning that justifies these meth-
ods. But I, for one, would feel uncomfortable driving across
that bridge if I was aware that nobody knew what justified
those methods. So, on a cultural level, it pays to have some
people who worry about pragmatic methods and try to find
out what really makes them tick. And that’s one of the jobs
that mathematicians do. They enjoy it, and the rest of human-
ity benefits from various kinds of spin-off, as we’ll see.

In the short term, it made very little difference whether
mathematicians were satisfied about the logical soundness of
the calculus. But in the long run the new ideas that mathe-
maticians got by worrying about these internal difficulties
turned out to be very useful indeed to the outside world. In
Newton’s time, it was impossible to predict just what those
uses would be, but I think you could have predicted, even
then, that uses would arise. One of the strangest features of
the relationship between mathematics and the “real world,”
but also one of the strongest, is that good mathematics, what-
ever its source, eventually turns out to be useful. There are all
sorts of theories why this should be so, ranging from the
structure of the human mind to the idea that the universe is
somehow built from little bits of mathematics. My feeling is
that the answer is probably quite simple: mathematics is the
science of patterns, and nature exploits just about every pat-
tern that there is. I admit that I find it much harder to offer a
convincing reason for nature to behave in this manner. Maybe

the question is back to front: maybe the point is that creatures
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able to ask that kind of question can evolve only in a universe
with that kind of structure.”

Whatever the reasons, mathematics definitely is a useful
way to think about nature. What do we want it to tell us about
the patterns we observe? There are many answers. We want to
understand how they happen; to understand why they hap-
pen, which is different; to organize the underlying patterns
and regularities in the most satisfying way; to predict how
nature will behave; to control nature for our own ends; and to
make practical use of what we have learned about our world.
Mathematics helps us to do all these things, and often it is
indispensable.

For example, consider the spiral form of a snail shell. How
the snail makes its shell is largely a matter of chemistry and
genetics. Without going into fine points, the snail’s genes
include recipes for making particular chemicals and instruc-
tions for where they should go. Here mathematics lets us do
the molecular bookkeeping that makes sense of the different
chemical reactions that go on; it describes the atomic struc-
ture of the molecules used in shells, it describes the strength
and rigidity of shell material as compared to the weakness
and pliability of the snail’s body, and so on. Indeed, without
mathematics we would never have convinced ourselves that
matter really is made from atoms, or have worked out how the
atoms are arranged. The discovery of genes—and later of the
molecular structure of DNA, the genetic material—relied
heavily on the existence of mathematical clues. The monk

Gregor Mendel noticed tidy numerical relationships in how

"This explanation, and others, are discussed in The Collapse of Chaos, by
Jack Cohen and Ian Stewart (New York: Viking, 1994).
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the proportions of plants with different characters, such as
seed color, changed when the plants were crossbred. This led
to the basic idea of genetics—that within every organism is
some cryptic combination of factors that determines many
features of its body plan, and that these factors are somehow
shuffled and recombined when passing from parents to off-
spring. Many different pieces of mathematics were involved
in the discovery that DNA has the celebrated double-helical
structure. They were as simple as Chargaff’s rules: the obser-
vation by the Austrian-born biochemist Erwin Chargaff that
the four bases of the DNA molecule occur in related propor-
tions; and they are as subtle as the laws of diffraction, which
were used to deduce molecular structure from X-ray pictures
of DNA crystals.

The question of why snails have spiral shells has a very
different character. It can be asked in several contexts—in the
short-term context of biological development, say, or the long-
term context of evolution. The main mathematical feature of
the developmental story is the general shape of the spiral.
Basically, the developmental story is about the geometry of a
creature that behaves in much the same way all the time, but
keeps getting bigger. Imagine a tiny animal, with a tiny proto-
shell attached to it. Then the animal starts to grow. It can
grow most easily in the direction along which the open rim of
the shell points, because the shell gets in its way if it tries to
grow in any other direction. But, having grown a bit, it needs
to extend its shell as well, for self-protection. So, of course,
the shell grows an extra ring of material around its rim. As
this process continues, the animal is getting bigger, so the size
of the rim grows. The simplest result is a conical shell, such

as you find on a limpet. But if the whole system starts with a
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bit of a twist, as is quite likely, then the growing edge of the
shell rotates slowly as well as expanding, and it rotates in an
off-centered manner. The result is a cone that twists in an
ever-expanding spiral. We can use mathematics to relate the
resulting geometry to all the different variables—such as
growth rate and eccentricity of growth—that are involved.

If, instead, we seek an evolutionary explanation, then we
might focus more on the strength of the shell, which conveys
an evolutionary advantage, and try to calculate whether a long
thin cone is stronger or weaker than a tightly coiled spiral. Or
we might be more ambitious and develop mathematical models
of the evolutionary process itself, with its combination of ran-
dom genetic change—that is, mutations—and natural selection.

A remarkable example of this kind of thinking is a com-
puter simulation of the evolution of the eye by Daniel Nilsson
and Susanne Pelger, published in 1994. Recall that conven-
tional evolutionary theory sees changes in animal form as
being the result of random mutations followed by subsequent
selection of those individuals most able to survive and repro-
duce their kind. When Charles Darwin announced this the-
ory, one of the first objections raised was that complex struc-
tures (like an eye) have to evolve fully formed or else they
won’t work properly (half an eye is no use at all), but the
chance that random mutation will produce a coherent set of
complex changes is negligible. Evolutionary theorists quickly
responded that while half an eye may not be much use, a half-
developed eye might well be. One with a retina but no lens,
say, will still collect light and thereby detect movement; and
any way to improve the detection of predators offers an evolu-
tionary advantage to any creature that possesses it. What we

have here is a verbal objection to the theory countered by a
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verbal argument. But the recent computer analysis goes much
further.

It starts with a mathematical model of a flat region of cells,
and permits various types of “mutation.” Some cells may
become more sensitive to light, for example, and the shape of
the region of cells may bend. The mathematical model is set
up as a computer program that makes tiny random changes of
this kind, calculates how good the resulting structure is at
detecting light and resolving the patterns that it “sees,” and
selects any changes that improve these abilities. During a sim-
ulation that corresponds to a period of about four hundred
thousand years—the blink of an eye, in evolutionary terms—
the region of cells folds itself up into a deep, spherical cavity
with a tiny irislike opening and, most dramatically, a lens.
Moreover, like the lenses in our own eyes, it is a lens whose
refractive index—the amount by which it bends light—varies
from place to place. In fact, the pattern of variation of refrac-
tive index that is produced in the computer simulation is very
like our own. So here mathematics shows that eyes definitely
can evolve gradually and naturally, offering increased sur-
vival value at every stage. More than that: Nilsson and Pel-
ger’s work demonstrates that given certain key biological fac-
ulties (such as cellular receptivity to light, and cellular
mobility), structures remarkably similar to eyes will form—all
in line with Darwin’s principle of natural selection. The
mathematical model provides a lot of extra detail that the ver-
bal Darwinian argument can only guess at, and gives us far
greater confidence that the line of argument is correct.

I said that another function of mathematics is to organize
the underlying patterns and regularities in the most satisfying
way. To illustrate this aspect, let me return to the question

raised in the first chapter. Which—if either—is significant:



START 176 steps 538 steps

808 steps 1033 steps 1225 steps

1533 steps 1829 steps

FIGURE I.
Computer model of the evolution of an eye. Each step in the computa-
tion corresponds to about two hundred years of biological evolution.
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the three-in-a-row pattern of stars in Orion’s belt, or the three-
in-a-row pattern to the periods of revolution of Jupiter’s satel-
lites? Orion first. Ancient human civilizations organized the
stars in the sky in terms of pictures of animals and mythic
heroes. In these terms, the alignment of the three stars in
Orion appears significant, for otherwise the hero would have
no belt from which to hang his sword. However, if we use
three-dimensional geometry as an organizing principle and
place the three stars in their correct positions in the heavens,
then we find that they are at very different distances from the
Earth. Their equispaced alignment is an accident, depending
on the position from which they are being viewed. Indeed, the
very word “constellation” is a misnomer for an arbitrary acci-
dent of viewpoint.

The numerical relation between the periods of revolution
of Io, Europa, and Ganymede could also be an accident of
viewpoint. How can we be sure that “period of revolution”
has any significant meaning for nature? However, that numer-
ical relation fits into a dynamical framework in a very signifi-
cant manner indeed. It is an example of a resonance, which is
a relationship between periodically moving bodies in which
their cycles are locked together, so that they take up the same
relative positions at regular intervals. This common cycle
time is called the period of the system. The individual bodies
may have different—but related—periods. We can work out
what this relationship is. When a resonance occurs, all of the
participating bodies must return to a standard reference posi-
tion after a whole number of cycles—but that number can be
different for each. So there is some common period for the
system, and therefore each individual body has a period that
is some whole-number divisor of the common period. In this

case, the common period is that of Ganymede, 7.16 days. The
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period of Europa is very close to half that of Ganymede, and
that of Io is close to one-quarter. Io revolves four times around
Jupiter while Europa revolves twice and Ganymede once,
after which they are all back in exactly the same relative posi-
tions as before. This is called a 4:2:1 resonance.

The dynamics of the Solar System is full of resonances.
The Moon’s rotational period is (subject to small wobbles
caused by perturbations from other bodies) the same as its
period of revolution around the Earth—a 1:1 resonance of its
orbital and its rotational period. Therefore, we always see the
same face of the Moon from the Earth, never its “far side.”
Mercury rotates once every 58.65 days and revolves around
the Sun every 87.97 days. Now, 2 x 87.97 = 175.94, and 3 x
58.65 = 175.95, so Mercury’s rotational and orbital periods are
in a 2:3 resonance. (In fact, for a long time they were thought
to be in 1:1 resonance, both being roughly 88 days, because of
the difficulty of observing a planet as close to the Sun as Mer-
cury is. This gave rise to the belief that one side of Mercury is
incredibly hot and the other incredibly cold, which turns out
not to be true. A resonance, however, there is—and a more
interesting one than mere equality.)

In between Mars and Jupiter is the asteroid belt, a broad
zone containing thousands of tiny bodies. They are not uni-
formly distributed. At certain distances from the Sun we find
asteroid “beltlets”; at other distances we find hardly any. The
explanation—in both cases—is resonance with Jupiter. The
Hilda group of asteroids, one of the beltlets, is in 2:3 reso-
nance with Jupiter. That is, it is at just the right distance so
that all of the Hilda asteroids circle the Sun three times for
every two revolutions of Jupiter. The most noticeable gaps are
at 2:1, 3:1, 4:1, 5:2, and 7:2 resonances. You may be worried

that resonances are being used to explain both clumps and
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gaps. The reason is that each resonance has its own idiosyn-
cratic dynamics; some cause clustering, others do the oppo-
site. It all depends on the precise numbers.

Another function of mathematics is prediction. By under-
standing the motion of heavenly bodies, astronomers could
predict lunar and solar eclipses and the return of comets.
They knew where to point their telescopes to find asteroids
that had passed behind the Sun, out of observationgl contact.
Because the tides are controlled mainly by the position of the
Sun and Moon relative to the Earth, they could predict tides
many years ahead. (The chief complicating factor in making
such predictions is not astronomy: it is the shape of the conti-
nents and the profile of the ocean depths, which can delay or
advance a high tide. However, these stay pretty much the
same from one century to the next, so that once their effects
have been understood it is a routine task to compensate for
them.) In contrast, it is much harder to predict the weather.
We know just as much about the mathematics of weather as
we do about the mathematics of tides, but weather has an
inherent unpredictability. Despite this, meteorologists can
make effective short-term predictions of weather patterns—
say, three or four days in advance. The unpredictability of the
weather, however, has nothing at all to do with randomness—
a topic we will take up in chapter 8, when we discuss the con-
cept of chaos.

The role of mathematics goes beyond mere prediction.
Once you understand how a system works, you don’t have to
remain a passive observer. You can attempt to control the sys-
tem, to make it do what you want. It pays not to be too ambi-
tious: weather control, for example, is in its infancy—we can’t
make rain with any great success, even when there are rain-

clouds about. Examples of control systems range from the
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thermostat on a boiler, which keeps it at a fixed temperature,
to the medieval practice of coppicing woodland. Without a
sophisticated mathematical control system, the space shuttle
would fly like the brick it is, for no human pilot can respond
quickly enough to correct its inherent instabilities. The use of
electronic pacemakers to help people with heart disease is
another example of control.

These examples bring us to the most down-to-earth aspect
of mathematics: its practical applications—how mathematics
earns its keep. Our world rests on mathematical foundations,
and mathematics is unavoidably embedded in our global cul-
ture. The only reason we don’t always realize just how
strongly our lives are affected by mathematics is that, for sen-
sible reasons, it is kept as far as possible behind the scenes.
When you go to the travel agent and book a vacation, you
don’t need to understand the intricate mathematical and
physical theories that make it possible to design computers
and telephone lines, the optimization routines that schedule
as many flights as possible around any particular airport, or
the signal-processing methods used to provide accurate radar
images for the pilots. When you watch a television program,
you don’t need to understand the three-dimensional geometry
used to produce special effects on the screen, the coding
methods used to transmit TV signals by satellite, the mathe-
matical methods used to solve the equations for the orbital
motion of the satellite, the thousands of different applications
of mathematics during every step of the manufacture of every
component of the spacecraft that launched the satellite into
position. When a farmer plants a new strain of potatoes, he
does not need to know the statistical theories of genetics that
identified which genes made that particular type of plant

resistant to disease.
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But somebody had to understand all these things in the
past, otherwise airliners, television, spacecraft, and disease-
resistant potatoes wouldn’t have been invented. And some-
body has to understand all these things now, too, otherwise
they won’t continue to function. And somebody has to be
inventing new mathematics in the future, able to solve prob-
lems that either have not arisen before or have hitherto
proved intractable, otherwise our society will fall apart when
change requires solutions to new problems or new solutions
to old problems. If mathematics, including everything that
rests on it, were somehow suddenly to be withdrawn from our
world, human society would collapse in an instant. And if
mathematics were to be frozen, so that it never went a single
step farther, our civilization would start to go backward.

We should not expect new mathematics to give an immedi-
ate dollars-and-cents payoff. The transfer of a mathematical
idea into something that can be made in a factory or used in a
home generally takes time. Lots of time: a century is not
unusual. In chapter 5, we will see how seventeenth-century
interest in the vibrations of a violin string led, three hundred
years later, to the discovery of radio waves and the invention of
radio, radar, and television. It might have been done quicker,
but not that much quicker. If you think—as many people in our
increasingly managerial culture do—that the process of scien-
tific discovery can be speeded up by focusing on the applica-
tion as a goal and ignoring “curiosity-driven” research, then
you are wrong. In fact that very phrase, “curiosity-driven
research,” was introduced fairly recently by unimaginative
bureaucrats as a deliberate put-down. Their desire for tidy pro-
jects offering guaranteed short-term profit is much too simple-
minded, because goal-oriented research can deliver only pre-

dictable results. You have to be able to see the goal in order to
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aim at it. But anything you can see, your competitors can see,
too. The pursuance of safe research will impoverish us all. The
really important breakthroughs are always unpredictable. It is
their very unpredictability that makes them important: they
change our world in ways we didn’t see coming.

Moreover, goal-oriented research often runs up against a
brick wall, and not only in mathematics. For example, it took
approximately eighty years of intense engineering effort to
develop the photocopying machine after the basic principle of
xerography had been discovered by scientists. The first fax
machine was invented over a century ago, but it didn’t work
fast enough or reliably enough. The principle of holography
(three-dimensional pictures, see your credit card) was discov-
ered over a century ago, but nobody then knew how to pro-
duce the necessary beam of coherent light—light with all its
waves in step. This kind of delay is not at all unusual in
industry, let alone in more intellectual areas of research, and
the impasse is usually broken only when an unexpected new
idea arrives on the scene.

There is nothing wrong with goal-oriented research as a
way of achieving specific feasible goals. But the dreamers and
the mavericks must be allowed some free rein, too. Our world
is not static: new problems constantly arise, and old answers
often stop working. Like Lewis Carroll’s Red Queen, we must

run very fast in order to stand still.
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CHAPTER 3

WHAT MATHEMATICS IS ABOUT

When we hear the word “mathematics,” the first thing that
springs to mind is numbers. Numbers are the heart of mathe-
matics, an all-pervading influence, the raw materials out of
which a great deal of mathematics is forged. But numbers on
their own form only a tiny part of mathematics. I said earlier
that we live in an intensely mathematical world, but that
whenever possible the mathematics is sensibly tucked under
the rug to make our world “user-friendly.” However, some
mathematical ideas are so basic to our world that they cannot
stay hidden, and numbers are an especially prominent exam-
ple. Without the ability to count eggs and subtract change, for
instance, we could not even buy food. And so we teach arith-
metic. To everybody. Like reading and writing, its absence is
a major handicap. And that creates the overwhelming impres-
sion that mathematics is mostly a matter of numbers—which
isn’t really true. The numerical tricks we learn in arithmetic
are only the tip of an iceberg. We can run our everyday lives
without much more, but our culture cannot run our society by
using such limited ingredients. Numbers are just one type of

object that mathematicians think about. In this chapter, I will
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try to show you some of the others and explain why they, too,
are important.

Inevitably my starting point has to be numbers. A large
part of the early prehistory of mathematics can be summed up
as the discovery, by various civilizations, of a wider and
wider range of things that deserved to be called numbers. The
simplest are the numbers we use for counting. In fact, count-
ing began long before there were symbols like 1, 2, 3, because
it is possible to count without using numbers at all—say, by
counting on your fingers. You can work out that “I have two
hands and a thumb of camels” by folding down fingers as
your eye glances over the camels. You don’t actually have to
have the concept of the number “eleven” to keep track of
whether anybody is stealing your camels. You just have to
notice that next time you seem to have only two hands of
camels—so a thumb of camels is missing.

You can also record the count as scratches on pieces of
wood or bone. Or you can make tokens to use as counters—
clay disks with pictures of sheep on them for counting sheep,
or disks with pictures of camels on them for counting camels.
As the animals parade past you, you drop tokens into a bag—
one token for each animal. The use of symbols for numbers
probably developed about five thousand years ago, when such
counters were wrapped in a clay envelope. It was a nuisance
to break open the clay covering every time the accountants
wanted to check the contents, and to make another one when
they had finished. So people put special marks on the outside
of the envelope summarizing what was inside. Then they real-
ized that they didn’t actually need any counters inside at all:
they could just make the same marks on clay tablets.

It’s amazing how long it can take to see the obvious. But of

course it’s only obvious now.
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The next invention beyond counting numbers was frac-
tions—the kind of number we now symbolize as 2/3 (two
thirds) or 22/7 (twenty-two sevenths—or, equivalently, three
and one-seventh). You can’t count with fractions—although
two-thirds of a camel might be edible, it’s not countable—but
you can do much more interesting things instead. In particu-
lar, if three brothers inherit two camels between them, you
can think of each as owning two-thirds of a camel—a conve-
nient legal fiction, one with which we are so comfortable that
we forget how curious it is if taken literally.

Much later, between 400 and 1200 AD, the concept of zero
was invented and accepted as denoting a number. If you think
that the late acceptance of zero as a number is strange, bear in
mind that for a long time “one” was not considered a number
because it was thought that a number of things ought to be
several of them. Many history books say that the key idea here
was the invention of a symbol for “nothing.” That may have
been the key to making arithmetic practical; but for mathe-
matics the important idea was the concept of a new kind of
number, one that represented the concrete idea “nothing.”
Mathematics uses symbols, but it no more is those symbols
than music is musical notation or language is strings of letters
from an alphabet. Carl Friedrich Gauss, thought by many to be
the greatest mathematician ever to have lived, once said (in
Latin) that what matters in mathematics is “not notations, but
notions.” The pun “non notationes, sed notiones” worked in
Latin, too.

The next extension of the number concept was the inven-
tion of negative numbers. Again, it makes little sense to think
of minus two camels in a literal sense; but if you owe some-
body two camels, the number you own is effectively dimin-

ished by two. So a negative number can be thought of as rep-
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resenting a debt. There are many different ways to interpret
these more esoteric kinds of number; for instance, a negative
temperature (in degrees Celsius) is one that is colder than
freezing, and an object with negative velocity is one that is
moving backward. So the same abstract mathematical object
may represent more than one aspect of nature.

Fractions are all you need for most commercial transac-
tions, but they’re not enough for mathematics. For example,
as the ancient Greeks discovered to their chagrin, the square
root of two is not exactly representable as a fraction. That is, if
you multiply any fraction by itself, you won’t get two exactly.
You can get very close—for example, the square of 17/12 is
289/144, and if only it were 288/144 you would get two. But
it isn’t, and you don’t—and whatever fraction you try, you
never will. The square root of two, usually denoted V2, is
therefore said to be “irrational.” The simplest way to enlarge
the number system to include the irrationals is to use the so-
called real numbers—a breathtakingly inappropriate name,
inasmuch as they are represented by decimals that go on for-
ever, like 3.14159..., where the dots indicate an infinite
number of digits. How can things be real if you can’t even
write them down fully? But the name stuck, probably because
real numbers formalize many of our natural visual intuitions
about lengths and distances.

The real numbers are one of the most audacious idealiza-
tions made by the human mind, but they were used happily
for centuries before anybody worried about the logic behind
them. Paradoxically, people worried a great deal about the
next enlargement of the number system, even though it was
entirely harmless. That was the introduction of square roots

for negative numbers, and it led to the “imaginary” and “com-
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plex” numbers. A professional mathematican should never
leave home without them, but fortunately nothing in this
book will require a knowledge of complex numbers, so I'm
going to tuck them under the mathematical carpet and hope
you don’t notice. However, I should point out that it is easy to
interpret an infinite decimal as a sequence of ever-finer
approximations to some measurement—say, of a length or a
weight—whereas a comfortable interpretation of the square
root of minus one is more elusive.

In current terminology, the whole numbers 0, 1, 2, 3, ...
are known as the natural numbers. If negative whole numbers
are included, we have the integers. Positive and negative frac-
tions are called rational numbers. Real numbers are more gen-
eral; complex numbers more general still. So here we have
five number systems, each more inclusive than the previous:
natural numbers, integers, rationals, real numbers, and com-
plex numbers. In this book, the important number systems
will be the integers and the reals. We’ll need to talk about
rational numbers every so often; and as I've just said, we can
ignore the complex numbers altogether. But I hope you under-
stand by now that the word “number” does not have any
immutable god-given meaning. More than once the scope of
that word was extended, a process that in principle might
occur again at any time.

However, mathematics is not just about numbers. We've
already had a passing encounter with a different kind of
object of mathematical thought, an operation; examples are
addition, subtraction, multiplication, and division. In general,
an operation is something you apply to two (sometimes more)
mathematical objects to get a third object. I also alluded to a

third type of mathematical object when I mentioned square
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roots. If you start with a number and form its square root, you
get another number. The term for such an “object” is function.
You can think of a function as a mathematical rule that starts
with a mathematical object—usually a number—and associ-
ates to it another object in a specific manner. Functions are
often defined using algebraic formulas, which are just short-
hand ways to explain what the rule is, but they can be defined
by any convenient method. Another term with the same
meaning as “function” is transformation: the rule trans-
forms the first object into the second. This term tends to be
used when the rules are geometric, and in chapter 6 we will
use transformations to capture the mathematical essence of
symmetry.

Operations and functions are very similar concepts.
Indeed, on a suitable level of generality there is not much to
distinguish them. Both of them are processes rather than
things. And now is a good moment to open up Pandora’s box
and explain one of the most powerful general weapons in the
mathematician’s armory, which we might call the “thingifica-
tion of processes.” (There is a dictionary term, reification, but
it sounds pretentious.) Mathematical “things” have no exis-
tence in the real world: they are abstractions. But mathemati-
cal processes are also abstractions, so processes are no less
“things” than the “things” to which they are applied. The
thingification of processes is commonplace. In fact, I can
make out a very good case that the number “two” is not actu-
ally a thing but a process—the process you carry out when
you associate two camels or two sheep with the symbols “1,
2” chanted in turn. A number is a process that has long ago
been thingified so thoroughly that everybody thinks of it as a

thing. It is just as feasible—though less familiar to most of
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us—to think of an operation or a function as a thing. For
example, we might talk of “square root” as if it were a thing—
and I mean here not the square root of any particular number,
but the function itself. In this image, the square-root function
is a kind of sausage machine: you stuff a number in at one end
and its square root pops out at the other.

In chapter 6, we will treat motions of the plane or space as
if they are things. I'm warning you now because you may find
it disturbing when it happens. However, mathematicians
aren’t the only people who play the thingification game. The
legal profession talks of “theft” as if it were a thing; it even
knows what kind of thing it is—a crime. In phrases such as
“two major evils in Western society are drugs and theft” we
find one genuine thing and one thingified thing, both treated
as if they were on exactly the same level. For theft is a
process, one whereby my property is transferred without my
agreement to somebody else, but drugs have a real physical
existence.

Computer scientists have a useful term for things that can
be built up from numbers by thingifying processes: they call
them data structures. Common examples in computer science
are lists (sets of numbers written in sequence) and arrays
(tables of numbers with several rows and columns). I've
already said that a picture on a computer screen can be repre-
sented as a list of pairs of numbers; that’s a more complicated
but entirely sensible data structure. You can imagine much
more complicated possibilities—arrays that are tables of lists,
not tables of numbers; lists of arrays; arrays of arrays; lists of
lists of arrays of lists. . . . Mathematics builds its basic objects
of thought in a similar manner. Back in the days when the

logical foundations of mathematics were still being sorted
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out, Bertrand Russell and Alfred North Whitehead wrote an
enormous three-volume work, Principia Mathematica, which
began with the simplest possible logical ingredient—the idea
of a set, a collection of things. They then showed how to build
up the rest of mathematics. Their main objective was to ana-
lyze the logical structure of mathematics, but a major part of
their effort went into devising appropriate data structures for
the important objects of mathematical thought.

The image of mathematics raised by this description of its
basic objects is something like a tree, rooted in numbers and
branching into ever more esoteric data structures as you pro-
ceed from trunk to bough, bough to limb, limb to twig. . . . But
this image lacks an essential ingredient. It fails to describe
how mathematical concepts interact. Mathematics is not just
a collection of isolated facts: it is more like a landscape; it has
an inherent geography that its users and creators employ to
navigate through what would otherwise be an impenetrable
jungle. For instance, there is a metaphorical feeling of dis-
tance. Near any particular mathematical fact we find other,
related facts. For example, the fact that the circumference of a
circle is m (pi) times its diameter is very close to the fact that
the circumference of a circle is 2r times its radius. The con-
nection between these two facts is immediate: the diameter is
twice the radius. In contrast, unrelated ideas are more distant
from each other; for example, the fact that there are exactly
six different ways to arrange three objects in order is a long
way away from facts about circles. There is also a metaphori-
cal feeling of prominence. Soaring peaks pierce the sky—
important ideas that can be used widely and seen from far
away, such as Pythagoras’s theorem about right triangles, or

the basic techniques of calculus. At every turn, new vistas
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arise—an unexpected river that must be crossed using step-
ping stones, a vast, tranquil lake, an impassable crevasse. The
user of mathematics walks only the well-trod parts of this
mathematical territory. The creator of mathematics explores
its unknown mysteries, maps them, and builds roads through
them to make them more easily accessible to everybody else.

The ingredient that knits this landscape together is proof.
Proof determines the route from one fact to another. To pro-
fessional mathematicians, no statement is considered valid
unless it is proved beyond any possibility of logical error. But
there are limits to what can be proved, and how it can be
proved. A great deal of work in philosophy and the founda-
tions of mathematics has established that you can’t prove
everything, because you have to start somewhere; and even
when you've decided where to start, some statements may be
neither provable nor disprovable. I don’t want to explore
those issues here; instead, I want to take a pragmatic look at
what proofs are and why they are needed.

Textbooks of mathematical logic say that a proof is a
sequence of statements, each of which either follows from
previous statements in the sequence or from agreed axioms—
unproved but explicitly stated assumptions that in effect
define the area of mathematics being studied. This is about as
informative as describing a novel as a sequence of sentences,
each of which either sets up an agreed context or follows
credibly from previous sentences. Both definitions miss the
essential point: that both a proof and a novel must tell an
interesting story. They do capture a secondary point, that the
story must be convincing, and they also describe the overall
format to be used, but a good story line is the most important

feature of all.
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Very few textbooks say that.

Most of us are irritated by a movie riddled with holes,
however polished its technical production may be. I saw one
recently in which an airport is taken over by guerrillas who
shut down the electronic equipment used by the control
tower and substitute their own. The airport authorities and
the hero then spend half an hour or more of movie time—sev-
eral hours of story time—agonizing about their inability to
communicate with approaching aircraft, which are stacking
up in the sky overhead and running out of fuel. It occurs to no
one that there is a second, fully functioning airport no more
than thirty miles away, nor do they think to telephone the
nearest Air Force base. The story was brilliantly and expen-
sively filmed—and silly.

That didn’t stop a lot of people from enjoying it: their criti-
cal standards must have been lower than mine. But we all
have limits to what we are prepared to accept as credible. If in
an otherwise realistic film a child saved the day by picking up
a house and carrying it away, most of us would lose interest.
Similarly, a mathematical proof is a story about mathematics
that works. It does not have to dot every i and cross every t;
readers are expected to fill in routine steps for themselves—
just as movie characters may suddenly appear in new sur-
roundings without it being necessary to show how they got
there. But the story must not have gaps, and it certainly must
not have an unbelievable plot line. The rules are stringent: in
mathematics, a single flaw is fatal. Moreover, a subtle flaw
can be just as fatal as an obvious one.

Let’s take a look at an example. I have chosen a simple
one, to avoid technical background; in consequence, the proof

tells a simple and not very significant story. I stole it from a
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colleague, who calls it the SHIP/DOCK Theorem. You proba-
bly know the type of puzzle in which you are given one word
(SHIP) and asked to turn it into another word (DOCK]) by
changing one letter at a time and getting a valid word at every
stage. You might like to try to solve this one before reading
on: if you do, you will probably understand the theorem, and
its proof, more easily.

Here’s one solution:

SHIP
SLIP
SLOP
SLOT
SOOT
LOOT
LOOK
LOCK
DOCK

There are plenty of alternatives, and some involve fewer
words. But if you play around with this problem, you will
eventually notice that all solutions have one thing in com-
mon: at least one of the intermediate words must contain two
vowels.

O.K., so prove it.

I'm not willing to accept experimental evidence. I don’t
care if you have a hundred solutions and every single one of
them includes a word with two vowels. You won’t be happy
with such evidence, either, because you will have a sneaky
feeling that you may just have missed some really clever
sequence that doesn’t include such a word. On the other
hand, you will probably also have a distinct feeling that some-

how “it’s obvious.” I agree; but why is it obvious?
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You have now entered a phase of existence in which most
mathematicians spend most of their time: frustration. You
know what you want to prove, you believe it, but you don’t
see a convincing story line for a proof. What this means is that
you are lacking some key idea that will blow the whole prob-
lem wide open. In a moment I'll give you a hint. Think about
it for a few minutes, and you will probably experience a much
more satisfying phase of the mathematician’s existence:
illumination.

Here’s the hint. Every valid word in English must contain
a vowel.

It’s a very simple hint. First, convince yourself that it’s true.
(A dictionary search is acceptable, provided it’s a big dictio-
nary.) Then consider its implications. . . .

O.K., either you got it or you’ve given up. Whichever of
these you did, all professional mathematicians have done the
same on a lot of their problems. Here’s the trick. You have to
concentrate on what happens to the vowels. Vowels are the
peaks in the SHIP/DOCK landscape, the landmarks between
which the paths of proof wind.

In the initial word SHIP there is only one vowel, in the
third position. In the final word DOCK there is also only one
vowel, but in the second position. How does the vowel
change position? There are three possibilities. It may hop
from one location to the other; it may disappear altogether
and reappear later on; or an extra vowel or vowels may be cre-
ated and subsequently eliminated.

The third possibility leads pretty directly to the theorem.
Since only one letter at a time changes, at some stage the
word must change from having one vowel to having two. It

can’t leap from having one vowel to having three, for exam-
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ple. But what about the other possibilities? The hint that I
mentioned earlier tells us that the single vowel in SHIP can-
not disappear altogether. That leaves only the first possibility:
that there is always one vowel, but it hops from position 3 to
position 2. However, that can’t be done by changing only one
letter! You have to move, in one step, from a vowel at position
3 and a consonant at position 2 to a consonant at position 3
and a vowel at position 2. That implies that two letters must
change, which is illegal. Q.E.D., as Euclid used to say.

A mathematician would write the proof out in a much
more formal style, something like the textbook model, but the
important thing is to tell a convincing story. Like any good
story, it has a beginning and an end, and a story line that gets
you from one to the other without any logical holes appear-
ing. Even though this is a very simple example, and it isn’t
standard mathematics at all, it illustrates the essentials: in
particular, the dramatic difference between an argument that
is genuinely convincing and a hand-waving argument that
sounds plausible but doesn’t really gel. I hope it also put you
through some of the emotional experiences of the creative
mathematician: frustration at the intractability of what ought
to be an easy question, elation when light dawned, suspicion
as you checked whether there were any holes in the argu-
ment, aesthetic satisfaction when you decided the idea really
was O.K. and realized how neatly it cut through all the appar-
ent complications. Creative mathematics is just like this—but
with more serious subject matter.

Proofs must be convincing to be accepted by mathemati-
cians. There have been many cases where extensive numeri-
cal evidence suggested a completely wrong answer. One noto-

rious example concerns prime numbers—numbers that have
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no divisors except themselves and 1. The sequence of primes
begins 2, 3, 5, 7, 11, 13, 17, 19 and goes on forever. Apart from
2, all primes are odd; and the odd primes fall into two classes:
those that are one less than a multiple of four (such as 3, 7, 11,
19) and those that are one more than a multiple of four (such
as 5, 13, 17). If you run along the sequence of primes and
count how many of them fall into each class, you will observe
that there always seem to be more primes in the “one less”
class than in the “one more” class. For example, in the list of
the seven pertinent primes above, there are four primes in the
first class but only three in the second. This pattern persists
for numbers up to at least a trillion, and it seems entirely rea-
sonable to conjecture that it is always true.

However, it isn’t.

By indirect methods, number theorists have shown that
when the primes get sufficiently big, the pattern changes and
the “one more than a multiple of four” class goes into the
lead. The first proof of this fact worked only when the num-
bers got bigger than 10°10°10°10°46, where to avoid giving the
printer kittens I've used the ’ sign to indicate forming a
power. This number is utterly gigantic. Written out in full, it
would go 10000. . . 000, with a very large number of 0s. If all
the matter in the universe were turned into paper, and a zero
could be inscribed on every electron, there wouldn’t be
enough of them to hold even a tiny fraction of the necessary
Zeros.

No amount of experimental evidence can account for the
possibility of exceptions so rare that you need numbers that
big to locate them. Unfortunately, even rare exceptions matter
in mathematics. In ordinary life, we seldom worry about

things that might occur on one occasion out of a trillion. Do
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you worry about being hit by a meteorite? The odds are about
one in a trillion. But mathematics piles logical deductions on
top of each other, and if any step is wrong the whole edifice
may tumble. If you have stated as a fact that all numbers
behave in some manner, and there is just one that does not,
then you are wrong, and everything you have built on the
basis of that incorrect fact is thrown into doubt.

Even the very best mathematicians have on occasion
claimed to have proved something that later turned out not to
be so—their proof had a subtle gap, or there was a simple
error in a calculation, or they inadvertently assumed some-
thing that was not as rock-solid as they had imagined. So,
over the centuries, mathematicians have learned to be
extremely critical of proofs. Proofs knit the fabric of mathe-
matics together, and if a single thread is weak, the entire fab-

ric may unravel.
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CHAPTER 4

THE CONSTANTS OF CHANGE

For a good many centuries, human thought about nature has
swung between two opposing points of view. According to
one view, the universe obeys fixed, immutable laws, and
everything exists in a well-defined objective reality. The
opposing view is that there is no such thing as objective real-
ity; that all is flux, all is change. As the Greek philosopher
Heraclitus put it, “You can’t step into the same river twice.”
The rise of science has largely been governed by the first
viewpoint. But there are increasing signs that the prevailing
cultural background is starting to switch to the second—ways
of thinking as diverse as postmodernism, cyberpunk, and
chaos theory all blur the alleged objectiveness of reality and
reopen the ageless debate about rigid laws and flexible
change.

What we really need to do is get out of this futile game
altogether. We need to find a way to step back from these
opposing worldviews—not so much to seek a synthesis as to
see them both as two shadows of some higher order of real-
ity—shadows that are different only because the higher order
is being seen from two different directions. But does such a
higher order exist, and if so, is it accessible? To many—espe-

cially scientists—Isaac Newton represents the triumph of
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rationality over mysticism. The famous economist John May-
nard Keynes, in his essay Newton, the Man, saw things differ-

ently:

In the eighteenth century and since, Newton came to be thought
of as the first and greatest of the modern age of scientists, a ratio-
nalist, one who taught us to think on the lines of cold and
untinctured reason. I do not see him in this light. I do not think
that anyone who has pored over the contents of that box which
he packed up when he finally left Cambridge in 1696 and
which, though partly dispersed, have come down to us, can see
him like that. Newton was not the first of the age of reason. He
was the last of the magicians, the last of the Babylonians and
Sumerians, the last great mind which looked out on the visible
and intellectual world with the same eyes as those who began to
build our intellectual inheritance rather less than 10,000 years
ago. Isaac Newton, a posthumous child born with no father on
Christmas Day, 1642, was the last wonder-child to whom the

Magi could do sincere and appropriate homage.

Keynes was thinking of Newton’s personality, and of his
interests in alchemy and religion as well as in mathematics
and physics. But in Newton’s mathematics we also find the
first significant step toward a worldview that transcends and
unites both rigid law and flexible flux. The universe may
appear to be a storm-tossed ocean of change, but Newton—
and before him Galileo and Kepler, the giants upon whose
shoulders he stood—realized that change obeys rules. Not
only can law and flux coexist, but law generates flux.

Today’s emerging sciences of chaos and complexity sup-
ply the missing converse: flux generates law. But that is

another story, reserved for the final chapter.
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Prior to Newton, mathematics had offered an essentially
static model of nature. There are a few exceptions, the most
obvious being Ptolemy’s theory of planetary motion, which
reproduced the observed changes very accurately using a sys-
tem of circles revolving about centers that themselves were
attached to revolving circles—wheels within wheels within
wheels. But at that time the perceived task of mathematics
was to discover the catalogue of “ideal forms” employed by
nature. The circle was held to be the most perfect shape possi-
ble, on the basis of the democratic observation that every
point on the circumference of a circle lies at the same dis-
tance from its center. Nature, the creation of higher beings, is
by definition perfect, and ideal forms are mathematical per-
fection, so of course the two go together. And perfection was
thought to be unblemished by change.

Kepler challenged that view by finding ellipses in place of
complex systems of circles. Newton threw it out altogether,
replacing forms by the laws that produce them.

Although its ramifications are immense, Newton’s approach
to motion is a simple one. It can be illustrated using the
motion of a projectile, such as a cannonball fired from a gun
at an angle. Galileo discovered experimentally that the path of
such a projectile is a parabola, a curve known to the ancient
Greeks and related to the ellipse. In this case, it forms an
inverted U-shape. The parabolic path can be most easily
understood by decomposing the projectile’s motion into two
independent components: motion in a horizontal direction
and motion in a vertical direction. By thinking about these
two types of motion separately, and putting them back
together only when each has been understood in its own

right, we can see why the path should be a parabola.
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The cannonball’s motion in the horizontal direction, paral-
lel to the ground, is very simple: it takes place at a constant
speed. Its motion in the vertical direction is more interesting.
It starts moving upward quite rapidly, then it slows down,
until for a split second it appears to hang stationary in the air;
then it begins to drop, slowly at first but with rapidly increas-
ing velocity.

Newton’s insight was that although the position of the
cannonball changes in quite a complex way, its velocity
changes in a much simpler way, and its acceleration varies in
a very simple manner indeed. Figure 2 summarizes the rela-
tionship between these three functions, in the following
example.

Suppose for the sake of illustration that the initial upward
velocity is fifty meters per second (50 m/sec). Then the height

of the cannonball above ground, at one-second intervals, is:
0, 45, 80, 105, 120, 125, 120, 105, 80, 45, 0.

You can see from these numbers that the ball goes up, levels
off near the top, and then goes down again. But the general
pattern is not entirely obvious. The difficulty was com-
pounded in Galileo’s time—and, indeed, in Newton’s—
because it was hard to measure these numbers directly. In
actual fact, Galileo rolled a ball up a gentle slope to slow the
whole process down. The biggest problem was to measure
time accurately: the historian Stillman Drake has suggested
that perhaps Galileo hummed tunes to himself and subdi-
vided the basic beat in his head, as a musician does.

The pattern of distances is a puzzle, but the pattern of
velocities is much clearer. The ball starts with an upward

velocity of 50 m/sec. One second later, the velocity has
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Calculus in a nutshell. Three mathematical patterns determined by a
cannonball: height, velocity, and acceleration. The pattern of
heights, which is what we naturally observe, is complicated. Newton
realized that the pattern of velocities is simpler, while the pattern of
accelerations is simpler still. The two basic operations of calculus,
differentiation and integration, let us pass from any of these patterns
to any other. So we can work with the simplest, acceleration, and
deduce the one we really want—height.
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decreased to (roughly) 40 m/sec; a second after that, it is 30
m/sec; then 20 m/sec, 10 m/sec, then 0 m/sec (stationary). A
second after that, the velocity is 10 m/sec downward. Using
negative numbers, we can think of this as an upward velocity
of -10 m/sec. In successive seconds, the pattern continues: -20
m/sec, -30 m/sec, -40 m/sec, -50 m/sec. At this point, the can-
nonball hits the ground. So the sequence of velocities, mea-

sured at one-second intervals, is:
50, 40, 30, 20, 10, 0, -10, -20, -30, -40, -50.

Now there is a pattern that can hardly be missed; but let’s go
one step further by looking at accelerations. The correspond-
ing sequence for the acceleration of the cannonball, again

using negative numbers to indicate downward motion, is
-10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10.

I think you will agree that the pattern here is extremely sim-
ple. The ball undergoes a constant downward acceleration of
10 m/sec?. (The true figure is about 9.81 m/sec?, depending on
whereabouts on the Earth you perform the experiment. But 10
is easier to think about.)

How can we explain this constant that is hiding among the
dynamic variables? When all else is flux, why is the accelera-
tion fixed? One attractive explanation has two elements. The
first is that the Earth must be pulling the ball downward; that
is, there is a gravitational force that acts on the ball. It is rea-
sonable to expect this force to remain the same at different
heights above the ground. Indeed, we feel weight because
gravity pulls our bodies downward, and we still weigh the
same if we stand at the top of a tall building. Of course, this

appeal to everyday observation does not tell us what happens
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if the distance becomes sufficiently large—say the distance
that separates the Moon from the Earth. That’s a different
story, to which we shall return shortly.

The second element of the explanation is the real break-
through. We have a body moving under a constant downward
force, and we observe that it undergoes a constant downward
acceleration. Suppose, for the sake of argument, that the pull
of gravity was a lot stronger: then we would expect the down-
ward acceleration to be a lot stronger, too. Without going to a
heavy planet, such as Jupiter, we can’t test this idea, but it
looks reasonable; and it’s equally reasonable to suppose that
on Jupiter the downward acceleration would again be con-
stant—but a different constant from what it is here. The sim-
plest theory consistent with this mixture of real experiments
and thought experiments is that when a force acts on a body,
the body experiences an acceleration that is proportional to
that force. And this is the essence of Newton’s law of motion.
The only missing ingredients are the assumption that this is
always true, for all bodies and for all forces, whether or not
the forces remain constant; and the identification of the con-
stant of proportionality as being related to the mass of the

body. To be precise, Newton’s law of motion states that
mass X acceleration = force.

That’s it. Its great virtue is that it is valid for any system of
masses and forces, including masses and forces that change
over time. We could not have anticipated this universal
applicability from the argument that led us to the law; but it
turns out to be so.

Newton stated three laws of motion, but the modern

approach views them as three aspects of a single mathemati-
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cal equation. So I will use the phrase “Newton’s law of
motion” to refer to the whole package.

The mountaineer’s natural urge when confronted with a
mountain is to climb it; the mathematician’s natural urge
when confronted with an equation is to solve it. But how?
Given a body’s mass and the forces acting on it, we can easily
solve this equation to get the acceleration. But this is the
answer to the wrong question. Knowing that the acceleration
of a cannonball is always -10 m/sec? doesn’t tell us anything
obvious about the shape of its trajectory. This is where the
branch of mathematics known as calculus comes in; indeed it
is why Newton (and Leibniz) invented it. Calculus provides a
technique, which nowadays is called integration, that allows
us to move from knowledge of acceleration at any instant to
knowledge of velocity at any instant. By repeating the same
trick, we can then obtain knowledge of position at any
instant. And that is the answer to the right question.

As I said earlier, velocity is rate of change of position, and
acceleration is rate of change of velocity. Calculus is a mathe-
matical scheme invented to handle questions about rates of
change. In particular, it provides a technique for finding rates
of change—a technique known as differentiation. Integration
“undoes” the effect of differentiation; and integrating twice
undoes the effect of differentiating twice. Like the twin faces
of the Roman god Janus, these twin techniques of calculus
point in opposite directions. Between them, they tell you that
if you know any one of the functions—position, velocity, or
acceleration—at every instant, then you can work out the
other two.

Newton’s law of motion teaches an important lesson:

namely, that the route from nature’s laws to nature’s behavior
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need not be direct and obvious. Between the behavior we
observe and the laws that produce it is a crevasse, which the
human mind can bridge only by mathematical calculations.
This is not to suggest that nature is mathematics—that (as the
physicist Paul Dirac put it) “God is a mathematician.” Maybe
nature’s patterns and regularities have other origins; but, at
the very least, mathematics is an extremely effective way for
human beings to come to grips with those patterns.

All of the laws of physics that were discovered by pursu-
ing Isaac Newton’s basic insight—that change in nature can be
described by mathematical processes, just as form in nature
can be described by mathematical things—have a similar
character. The laws are formulated as equations that relate not
the physical quantities of primary interest but the rates at
which those quantities change with time, or the rates at which
those rates change with time. For example the “heat equa-
tion,” which determines how heat flows through a conducting
body, is all about the rate of change of the body’s temperature;
and the “wave equation,” which governs the motion of waves
in water, air, or other materials, is about the rate of change of
the rate of change of the height of the wave. The physical laws
for light, sound, electricity, magnetism, the elastic bending of
materials, the flow of fluids, and the course of a chemical
reaction, are all equations for various rates of change.

Because a rate of change is about the difference between
some quantity now and its value an instant into the future,
equations of this kind are called differential equations. The
term “differentiation” has the same origin. Ever since New-
ton, the strategy of mathematical physics has been to describe
the universe in terms of differential equations, and then solve

them.

55



56

NATURE’'S NUMBERS

However, as we have pursued this strategy into more
sophisticated realms, the meaning of the word “solve” has
undergone a series of major changes. Originally it implied
finding a precise mathematical formula that would describe
what a system does at any instant of time. Newton’s discovery
of another important natural pattern, the law of gravitation,
rested upon a solution of this kind. He began with Kepler’s
discovery that planets move in ellipses, together with two
other mathematical regularities that were also noted by
Kepler. Newton asked what kind of force, acting on a planet,
would be needed to produce the pattern that Kepler had
found. In effect, Newton was trying to work backward from
behavior to laws, using a process of induction rather than
deduction. And he discovered a very beautiful result. The
necessary force should always point in the direction of the
Sun; and it should decrease with the distance from the planet
to the Sun. Moreover, this decrease should obey a simple
mathematical law, the inverse-square law. This means that
the force acting on a planet at, say, twice the distance is
reduced to one-quarter, the force acting on a planet at three
times the distance is reduced to one-ninth, and so on. From
this discovery—which was so beautiful that it surely con-
cealed a deep truth about the world—it was a short step to the
realization that it must be the Sun that causes the force in the
first place. The Sun attracts the planet, but the attraction
becomes weaker if the planet is farther away. It was a very
appealing idea, and Newton took a giant intellectual leap: he
assumed that the same kind of attractive force must exist
between any two bodies whatsoever, anywhere in the uni-
verse.

And now, having “induced” the law for the force, Newton

could bring the argument full circle by deducing the geometry
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of planetary motion. He solved the equations given by his
laws of motion and gravity for a system of two mutually
attracting bodies that obeyed his inverse-square law; in those
days, “solved” meant finding a mathematical formula for their
motion. The formula implied that they must move in ellipses
about their common center of mass. As Mars moves around
the Sun in a giant ellipse, the Sun moves in an ellipse so tiny
that its motion goes undetected. Indeed, the Sun is so massive
compared to Mars that the mutual center of mass lies beneath
the Sun’s surface, which explains why Kepler thought that
Mars moved in an ellipse around the stationary Sun.

However, when Newton and his successors tried to build
on this success by solving the equations for a system of three
or more bodies—such as Moon/Earth/Sun, or the entire Solar
System—they ran into technical trouble; and they could get
out of trouble only by changing the meaning of the word
“solve.” They failed to find any formulas that would solve the
equations exactly, so they gave up looking for them. Instead,
they tried to find ways to calculate approximate numbers. For
example, around 1860 the French astronomer Charles-Eugéne
Delaunay filled an entire book with a single approximation to
the motion of the Moon, as influenced by the gravitational
attractions of the Earth and the Sun. It was an extremely accu-
rate approximation—which is why it filled a book—and it
took him twenty years to work it out. When it was subse-
quently checked, in 1970, using a symbolic-algebra computer
program, the calculation took a mere twenty hours: only three
mistakes were found in Delaunay’s work, none serious.

The motion of the Moon/Earth/Sun system is said to be a
three-body problem—for evident reasons. It is so unlike the
nice, tidy two-body problem Newton solved that it might as

well have been invented on another planet in another galaxy,
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or in another universe. The three-body problem asks for a
solution for the equations that describe the motion of three
masses under inverse-square-law gravity. Mathematicians
tried to find such a solution for centuries but met with aston-
ishingly little success beyond approximations, such as De-
launay’s, which worked only for particular cases, like
Moon/Earth/Sun. Even the so-called restricted three-body
problem, in which one body has a mass so small that it can be
considered to exert no force at all upon the other two, proved
utterly intractable. It was the first serious hint that knowing
the laws might not be enough to understand how a system
behaves; that the crevasse between laws and behavior might
not always be bridgeable.

Despite intensive effort, more than three centuries after
Newton we still do not have a complete answer to the three-
body problem. However, we finally know why the problem
has been so hard to crack. The two-body problem is “inte-
grable”—the laws of conservation of energy and momentum
restrict solutions so much that they are forced to take a simple
mathematical form. In 1994, Zhihong Xia, of the Georgia Insti-
tute of Technology, proved what mathematicians had long
suspected: that a system of three bodies is not integrable.
Indeed, he did far more, by showing that such a system can
exhibit a strange phenomenon known as Arnold diffusion,
first discovered by Vladimir Arnold, of Moscow State Univer-
sity, in 1964. Arnold diffusion produces an extremely slow,
“random” drift in the relative orbital positions. This drift is
not truly random: it is an example of the type of behavior now
known as chaos—which can be described as apparently ran-
dom behavior with purely deterministic causes.

Notice that this approach again changes the meaning of

“solve.” First that word meant “find a formula.” Then its
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meaning changed to “find approximate numbers.” Finally, it
has in effect become “tell me what the solutions look like.” In
place of quantitative answers, we seek qualitative ones. In a
sense, what is happening looks like a retreat: if it is too hard
to find a formula, then try an approximation; if approxima-
tions aren’t available, try a qualitative description. But it is
wrong to see this development as a retreat, for what this
change of meaning has taught us is that for questions like the
three-body problem, no formulas can exist. We can prove that
there are qualitative aspects to the solution that a formula
cannot capture. The search for a formula in such questions
was a hunt for a mare’s nest.

Why did people want a formula in the first place? Because
in the early days of dynamics, that was the only way to work
out what kind of motion would occur. Later, the same infor-
mation could be deduced from approximations. Nowadays, it
can be obtained from theories that deal directly and precisely
with the main qualitative aspects of the motion. As we will
see in the next few chapters, this move toward an explicitly
qualitative theory is not a retreat but a major advance. For the
first time, we are starting to understand nature’s patterns in

their own terms.
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CHAPTER §

FROM VIOLINS TO VIDEOS

It has become conventional, as I have noted, to separate math-
ematics into two distinct subdisciplines labeled pure mathe-
matics and applied mathematics. This is a separation that
would have baffled the great mathematicians of classical
times. Carl Friedrich Gauss, for example, was happiest in the
ivory tower of number theory, where he delighted in abstract
numerical patterns simply because they were beautiful and
challenging. He called number theory “the queen of mathe-
matics,” and the poetic idea that queens are delicate beauties
who do not sully their hands with anything useful was not far
from his mind. However, he also calculated the orbit of Ceres,
the first asteroid to be discovered. Soon after its discovery,
Ceres passed behind the Sun, as seen from Earth, and could
no longer be observed. Unless its orbit could be calculated
accurately, astronomers would not be able to find it when it
again became visible, months later. But the number of obser-
vations of the asteroid was so small that the standard methods
for calculating orbits could not provide the required level of
accuracy. So Gauss made several major innovations, some of
which remain in use to this day. It was a virtuoso perfor-

mance, and it made his public reputation. Nor was that his
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only practical application of his subject: among other things,
he was also responsible for major developments in surveying,
telegraphy, and the understanding of magnetism.

In Gauss’s time, it was possible for one person to have a
fairly good grasp of the whole of mathematics. But because all
of the classical branches of science have grown so vast that no
single mind can likely encompass even one of them, we now
live in an age of specialists. The organizational aspects of
mathematics function more tidily if people specialize either
in the theoretical areas of the subject or its practical ones.
Because most people feel happier working in one or the other
of these two styles, individual preferences tend to reinforce
this distinction. Unfortunately, it is then very tempting for the
outside world to assume that the only useful part of mathe-
matics is applied mathematics; after all, that is what the name
seems to imply. This assumption is correct when it comes to
established mathematical techniques: anything really useful
inevitably ends up being considered “applied,” no matter
what its origins may have been. But it gives a very distorted
view of the origins of new mathematics of practical impor-
tance. Good ideas are rare, but they come at least as often
from imaginative dreams about the internal structure of math-
ematics as they do from attempts to solve a specific, practical
problem. This chapter deals with a case history of just such a
development, whose most powerful application is televi-
sion—an invention that arguably has changed our world more
than any other. It is a story in which the pure and applied
aspects of mathematics combine to yield something far more
powerful and compelling than either could have produced
alone. And it begins at the start of the sixteenth century, with

the problem of the vibrating violin string. Although this may
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sound like a practical question, it was studied mainly as an
exercise in the solution of differential equations; the work was
not aimed at improving the quality of musical instruments.

Imagine an idealized violin string, stretched in a straight
line between two fixed supports. If you pluck the string,
pulling it away from the straight-line position and then letting
go, what happens? As you pull it sideways, its elastic tension
increases, which produces a force that pulls the string back
toward its original position. When you let go, it begins to
accelerate under the action of this force, obeying Newton'’s
law of motion. However, when it returns to its initial position
it is moving rapidly, because it has been accelerating the
whole time—so it overshoots the straight line and keeps mov-
ing. Now the tension pulls in the opposite direction, slowing
it down until it comes to a halt. Then the whole story starts
over. If there is no friction, the string will vibrate from side to
side forever.

That’s a plausible verbal description; one of the tasks for a
mathematical theory is to see whether this scenario really
holds good, and if so, to work out the details, such as the
shape that the string describes at any instant. It’s a complex
problem, because the same string can vibrate in many different
ways, depending upon how it is plucked. The ancient Greeks
knew this, because their experiments showed that a vibrating
string can produce many different musical tones. Later genera-
tions realized that the pitch of the tone is determined by the
frequency of vibration—the rate at which the string moves to
and fro—so the Greek discovery tells us that the same string
can vibrate at many different frequencies. Each frequency cor-
responds to a different configuration of the moving string, and

the same string can take up many different shapes.
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Strings vibrate much too fast for the naked eye to see any
one instantaneous shape, but the Greeks found important evi-
dence for the idea that a string can vibrate at many different
frequencies. They showed that the pitch depends on the posi-
tions of the nodes—places along the length of the string
which remain stationary. You can test this on a violin, banjo,
or guitar. When the string is vibrating in its “fundamental”
frequency—that is, with the lowest possible pitch—only the
end points are at rest. If you place a finger against the center
of the string, creating a node, and then pluck the string, it pro-
duces a note one octave higher. If you place your finger one-
third of the way along the string, you actually create two
nodes (the other being two-thirds of the way along, and this
produces a yet higher note. The more nodes, the higher the
frequency. In general, the number of nodes is an integer, and
the nodes are equally spaced.

The corresponding vibrations are standing waves, meaning
waves that move up and down but do not travel along the
string. The size of the up-and-down movement is known as
the amplitude of the wave, and this determines the tone’s
loudness. The waves are sinusoidal—shaped like a sine
curve, a repetive wavy line of rather elegant shape that arises
in trigonometry.

In 1714, the English mathematician Brook Taylor pub-
lished the fundamental vibrational frequency of a violin
string in terms of its length, tension, and density. In 1746, the
Frenchman Jean Le Rond d’Alembert showed that many
vibrations of a violin string are not sinusoidal standing waves.
In fact, he proved that the instantaneous shape of the wave
can be anything you like. In 1748, in response to d’Alembert’s

work, the prolific Swiss mathematician Leonhard Euler
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worked out the “wave equation” for a string. In the spirit of
Isaac Newton, this is a differential equation that governs the
rate of change of the shape of the string. In fact it is a “partial
differential equation,” meaning that it involves not only rates
of change relative to time but also rates of change relative to
space—the direction along the string. It expresses in mathe-
matical language the idea that the acceleration of each tiny
segment of the string is proportional to the tensile forces act-
ing upon that segment; so it is a consequence of Newton’s law
of motion.

Not only did Euler formulate the wave equation: he solved
it. His solution can be described in words. First, deform the
string into any shape you care to choose—a parabola, say, or a
triangle, or a wiggly and irregular curve of your own devising.
Then imagine that shape propagating along the string toward
the right. Call this a rightward-traveling wave. Then turn the
chosen shape upside down, and imagine it propagating the
other way, to create a leftward-traveling wave. Finally, super-
pose these two waveforms. This process leads to all possible
solutions of the wave equation in which the ends of the string
remain fixed.

Almost immediately, Euler got into an argument with
Daniel Bernoulli, whose family originally hailed from
Antwerp but had moved to Germany and then Switzerland to
escape religious persecution. Bernoulli also solved the wave
equation, but by a totally different method. According to
Bernoulli, the most general solution can be represented as a
superposition of infinitely many sinusoidal standing waves.
This apparent disagreement began a century-long controversy,
eventually resolved by declaring both Euler and Bernoulli

right. The reason that they are both right is that every periodi-
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cally varying shape can be represented as a superposition of an
infinite number of sine curves. Euler thought that his approach
led to a greater variety of shapes, because he didn’t recognize
their periodicity. However, the mathematical analysis works
with an infinitely long curve. Because the only part of the
curve that matters is the part between the two endpoints, it
can be repeated periodically along a very long string without
any essential change. So Euler’s worries were unfounded.

The upshot of all this work, then, is that the sinusoidal
waves are the basic vibrational components. The totality of
vibrations that can occur is given by forming all possible
sums of finitely or infinitely many sinusoidal waves of all
possible amplitudes. As Daniel Bernoulli had maintained all
along, “all new curves given by d’Alembert and Euler are only
combinations of the Taylor vibrations.”

With the resolution of this controversy, the vibrations of a
violin string ceased to be a mystery, and the mathematicians
went hunting for bigger game. A violin string is a curve—a
one-dimensional object—but objects with more dimensions
can also vibrate. The most obvious musical instrument that
employs a two-dimensional vibration is the drum, for a drum-
skin is a surface, not a straight line. So mathematicians turned
their attention to drums, starting with Euler in 1759. Again he
derived a wave equation, this one describing how the displace-
ment of the drumskin in the vertical direction varies over time.
Its physical interpretation is that the acceleration of a small
piece of the drumskin is proportional to the average tension
exerted on it by all nearby parts of the drumskin: symbolically,
it looks much like the one-dimensional wave equation; but
now there are spatial (second-order) rates of change in two

independent directions, as well as the temporal rate of change.
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Violin strings have fixed ends. This “boundary condition”
has an important effect: it determines which solutions to the
wave equation are physically meaningful for a violin string. In
this whole subject, boundaries are absolutely crucial. Drums
differ from violin strings not only in their dimensionality but
in having a much more interesting boundary: the boundary of
a drum is a closed curve, or circle. However, like the bound-
ary of a string, the boundary of the drum is fixed: the rest of
the drumskin can move, but its rim is firmly strapped down.
This boundary condition restricts the possible motions of the
drumskin. The isolated endpoints of a violin string are not as
interesting and varied a boundary condition as a closed curve
is; the true role of the boundary becomes apparent only in two
or more dimensions.

As their understanding of the wave equation grew, the
mathematicians of the eighteenth century learned to solve the
wave equation for the motion of drums of various shapes. But
now the wave equation began to move out of the musical
domain to establish itself as an absolutely central feature of
mathematical physics. It is probably the single most impor-
tant mathematical formula ever devised—Einstein’s famous
relation between mass and energy notwithstanding. What
happened was a dramatic instance of how mathematics can
lay bare the hidden unity of nature. The same equation began
to show up everywhere. It showed up in fluid dynamics,
where it described the formation and motion of water waves.
It showed up in the theory of sound, where it described the
transmission of sound waves—vibrations of the air, in which
its molecules become alternately compressed and separated.
And then it showed up in the theories of electricity and mag-

netism, and changed human culture forever.
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Electricity and magnetism have a long, complicated his-
tory, far more complex than that of the wave equation, involv-
ing accidental discoveries and key experiments as well as
mathematical and physical theories. Their story begins with
William Gilbert, physician to Elizabeth I, who described the
Earth as a huge magnet and observed that electrically charged
bodies can attract or repel each other. It continues with such
people as Benjamin Franklin, who in 1752 proved that light-
ning is a form of electricity by flying a kite in a thunderstorm;
Luigi Galvani, who noticed that electrical sparks caused a
dead frog’s leg muscles to contract; and Alessandro Volta,
who invented the first battery. Throughout much of this early
development, electricity and magnetism were seen as two
quite distinct natural phenomena. The person who set their
unification in train was the English physicist and chemist
Michael Faraday. Faraday was employed at the Royal Institu-
tion in London, and one of his jobs was to devise a weekly
experiment to entertain its scientifically-minded members.
This constant need for new ideas turned Faraday into one of
the greatest experimental physicists of all time. He was espe-
cially fascinated by electricity and magnetism, because he
knew that an electric current could create a magnetic force.
He spent ten years trying to prove that, conversely, a magnet
could produce an electric current, and in 1831 he succeeded.
He had shown that magnetism and electricity were two differ-
ent aspects of the same thing—electromagnetism. It is said
that King William IV asked Faraday what use his scientific
parlor tricks were, and received the reply “I do not know,
Your Majesty, but I do know that one day you will tax them.”
In fact, practical uses soon followed, notably the electric

motor (electricity creates magnetism creates motion) and the
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electrical generator (motion creates magnetism creates elec-
tricity). But Faraday also advanced the theory of electromag-
netism. Not being a mathematician, he cast his ideas in physi-
cal imagery, of which the most important was the idea of a
line of force. If you place a magnet under a sheet of paper and
sprinkle iron filings on top, they will line up along well-
defined curves. Faraday’s interpretation of these curves was
that the magnetic force did not act “at a distance” without any
intervening medium; instead, it propagated through space
along curved lines. The same went for electrical force.

Faraday was no mathematician, but his intellectual suc-
cessor James Clerk Maxwell was. Maxwell expressed Fara-
day’s ideas about lines of force in terms of mathematical equa-
tions for magnetic and electric fields—that is, distributions of
magnetic and electrical charge throughout space. By 1864, he
had refined his theory down to a system of four differential
equations that related changes in the magnetic field to
changes in the electric field. The equations are elegant, and
reveal a curious symmetry between electricity and magnet-
ism, each affecting the other in a similar manner.

It is here, in the elegant symbolism of Maxwell’s equa-
tions, that humanity made the giant leap from violins to
videos: a series of simple algebraic manipulations extracted
the wave equation from Maxwell’s equations—which implied
the existence of electromagnetic waves. Moreover, the wave
equation implied that these electromagnetic waves traveled
with the speed of light. One immediate deduction was that
light itself is an electromagnetic wave—after all, the most
obvious thing that travels at the speed of light is light. But just
as the violin string can vibrate at many frequencies, so—

according to the wave equation—can the electromagnetic
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field. For waves that are visible to the human eye, it turns out
that frequency corresponds to color. Strings with different fre-
quencies produce different sounds; visible electromagnetic
waves with different frequencies produce different colors.
When the frequency is outside the visible range, the waves are
not light waves but something else.

What? When Maxwell proposed his equations, nobody
knew. In any case, all this was pure surmise, based on the
assumption that Maxwell’s equations really do apply to the
physical world. His equations needed to be tested before these
waves could be accepted as real. Maxwell’s ideas found some
favor in Britain, but they were almost totally ignored abroad
until 1886, when the German physicist Heinrich Hertz gener-
ated electromagnetic waves—at the frequency that we now
call radio—and detected them experimentally. The final
episode of the saga was supplied by Guglielmo Marconi, who
successfully carried out the first wireless telegraphy in 1895
and transmitted and received the first transatlantic radio sig-
nals in 1901.

The rest, as they say, is history. With it came radar, televi-
sion, and videotape.

Of course, this is just a sketch of a lengthy and intricate
interaction between mathematics, physics, engineering, and
finance. No single person can claim credit for the invention of
radio, neither can any single subject. It is conceivable that,
had the mathematicians not already known a lot about the
wave equation, Maxwell or his successors would have
worked out what it implied anyway. But ideas have to attain a
critical mass before they explode, and no innovator has the
time or the imagination to create the tools to make the tools to

make the tools that . . . even if they are intellectual tools. The
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plain fact is that there is a clear historical thread beginning
with violins and ending with videos. Maybe on another
planet things would have happened differently; but that’s
how they happened on ours.

And maybe on another planet things would not have hap-
pened differently—well, not very differently. Maxwell’s wave
equation is extremely complicated: it describes variations in
both the electrical and magnetic fields simultaneously, in
three-dimensional space. The violin-string equation is far
simpler, with variation in just one quantity—position—along
a one-dimensional line. Now, mathematical discovery gener-
ally proceeds from the simple to the complex. In the absence
of experience with simple systems such as vibrating strings, a
“goal-oriented” attack on the problem of wireless telegraphy
(sending messages without wires, which is where that slightly
old-fashioned name comes from) would have stood no more
chance of success than an attack on antigravity or faster-than-
light drives would do today. Nobody would know where to
start.

Of course, violins are accidents of human culture—indeed,
of European culture. But vibrations of a linear object are uni-
versal—they arise all over the place in one guise or another.
Among the arachnid aliens of Betelgeuse II, it might perhaps
have been the vibrations of a thread in a spiderweb, created
by a struggling insect, that led to the discovery of electromag-
netic waves. But it takes some clear train of thought to devise
the particular sequence of experiments that led Heinrich
Hertz to his epic discovery, and that train of thought has to
start with something simple. And it is mathematics that
reveals the simplicities of nature, and permits us to generalize

from simple examples to the complexities of the real world. It

n
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took many people from many different areas of human activ-
ity to turn a mathematical insight into a useful product. But
the next time you go jogging wearing a Walkman, or switch on
your TV, or watch a videotape, pause for a few seconds to
remember that without mathematicians none of these marvels

would ever have been invented.



CHAPTER 6

BROKEN SYMMETRY

Something in the human mind is attracted to symmetry. Sym-
metry appeals to our visual sense, and thereby plays a role in
our sense of beauty. However, perfect symmetry is repetitive
and predictable, and our minds also like surprises, so we
often consider imperfect symmetry to be more beautiful than
exact mathematical symmetry. Nature, too, seems to be
attracted to symmetry, for many of the most striking patterns
in the natural world are symmetric. And nature also seems to
be dissatisfied with too much symmetry, for nearly all the
symmetric patterns in nature are less symmetric than the
causes that give rise to them.

This may seem a strange thing to say; you may recall that
the great physicist Pierre Curie, who with his wife, Marie, dis-
covered radioactivity, stated the general principle that “effects
are as symmetric as their causes.” However, the world is full
of effects that are not as symmetric as their causes, and the
reason for this is a phenomenon known as “spontaneous sym-
metry breaking.”

Symmetry is a mathematical concept as well as an aes-
thetic one, and it allows us to classify different types of regu-

lar pattern and distinguish between them. Symmetry breaking
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is a more dynamic idea, describing changes in pattern. Before
we can understand where nature’s patterns come from and
how they can change, we must find a language in which to
describe what they are.

What is symmetry?

Let’s work our way to the general from the particular. One
of the most familiar symmetric forms is the one inside which
you spend your life. The human body is “bilaterally symmet-
ric,” meaning that its left half is (near enough) the same as its
right half. As noted, the bilateral symmetry of the human form
is only approximate: the heart is not central, nor are the two
sides of the face identical. But the overall form is very close to
one that has perfect symmetry, and in order to describe the
mathematics of symmetry we can imagine an idealized
human figure whose left side is exactly the same as its right
side. But exactly the same? Not entirely. The two sides of the
figure occupy different regions of space; moreover, the left
side is a reversal of the right—its mirror image.

As soon as we use words like “image,” we are already
thinking of how one shape corresponds to the other—of how
you might move one shape to bring it into coincidence with
the other. Bilateral symmetry means that if you reflect the left
half in a mirror, then you obtain the right half. Reflection is a
mathematical concept, but it is not a shape, a number, or a
formula. It is a transformation—that is, a rule for moving
things around.

There are many possible transformations, but most are not
symmetries. To relate the halves correctly, the mirror must be
placed on the symmetry axis, which divides the figure into its
two related halves. Reflection then leaves the human form

invariant—that is, unchanged in appearance. So we have
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found a precise mathematical characterization of bilateral
symmetry—a shape is bilaterally symmetric if it is invariant by
reflection. More generally, a symmetry of an object or system
is any transformation that leaves it invariant. This description
is a wonderful example of what I earlier called the “thingifica-
tion of processes™ the process “move like this” becomes a
thing—a symmetry. This simple but elegant characterization
opens the door to an immense area of mathematics.

There are many different kinds of symmetry. The most
important ones are reflections, rotations, and translations—or,
less formally, flips, turns, and slides. If you take an object in
the plane, pick it up, and flip it over onto its back, you get the
same effect as if you had reflected it in a suitable mirror. To
find where the mirror should go, choose some point on the
original object and look at where that point ends up when the
object is flipped. The mirror must go halfway between the
point and its image, at right angles to the line that joins them
(see figure 3). Reflections can also be carried out in three-
dimensional space, but now the mirror is of a more familiar
kind—namely, a flat surface.

To rotate an object in the plane, you choose a point, called
the center, and turn the object about that center, as a wheel
turns about its hub. The number of degrees through which you
turn the object determines the “size” of the rotation. For exam-
ple, imagine a flower with four identical equally spaced petals.
If you rotate the flower 90°, it looks exactly the same, so the
transformation “rotate through a right angle” is a symmetry of
the flower. Rotations can occur in three-dimensional space
too, but now you have to choose a line, the axis, and spin
objects on that axis as the Earth spins on its axis. Again, you

can rotate objects through different angles about the same axis.
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OBJECT

MIRROR IMAGE

FIGURE 3.

Where is the mirror? Given an object and a mirror image of that
object, choose any point of the object and the corresponding point of
the image. Join them by a line. The mirror must be at right angles to
the midpoint of that line.

Translations are transformations that slide objects along
without rotating them. Think of a tiled bathroom wall. It you
take a tile and slide it horizontally just the right distance, it
will fit on top of a neighboring tile. That distance is the width
of a tile. If you slide it two widths of a tile, or three, or any
whole number, it also fits the pattern. The same is true if you
slide it in a vertical direction, or even if you use a combina-
tion of horizontal and vertical slides. In fact, you can do more
than just sliding one tile—you can slide the entire pattern of
tiles. Again, the pattern fits neatly on top of its original posi-
tion only when you use a combination of horizontal and verti-
cal slides through distances that are whole number multiples
of the width of a tile.
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Reflections capture symmetries in which the left half of a
pattern is the same as the right half, like the human body.
Rotations capture symmetries in which the same units repeat
around circles, like the petals of a flower. Translations cap-
ture symmetries in which units are repeated, like a regular
array of tiles; the bees’ honeycomb, with its hexagonal “tiles,”
is an excellent naturally occurring example.

Where do the symmetries of natural patterns come from?
Think of a still pond, so flat that it can be thought of as a
mathematical plane, and large enough that it might as well
be a plane for all that the edges matter. Toss a pebble into
the pond. You see patterns, ripples, circular waves seem-
ingly moving outward away from the point of impact of the
pebble. We’ve all seen this, and nobody is greatly surprised.
After all, we saw the cause: it was the pebble. If you don’t
throw pebbles in, or anything else that might disturb the sur-
face, then you won’t get waves. All you’ll get is a still, flat,
planar pond.

Ripples on a pond are examples of broken symmetry. An
ideal mathematical plane has a huge amount of symmetry:
every part of it is identical to every other part. You can trans-
late the plane through any distance in any direction, rotate it
through any angle about any center, reflect it in any mirror
line, and it still looks exactly the same. The pattern of circular
ripples, in contrast, has less symmetry. It is symmetric only
with respect to rotations about the point of impact of the peb-
ble, and reflections in mirror lines that run through that point.
No translations, no other rotations, no other reflections. The
pebble breaks the symmetry of the plane, in the sense that
after the pebble has disturbed the pond, many of its symme-

tries are lost. But not all, and that’s why we see a pattern.
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However, none of this is surprising, because of the pebble.
In fact, since the impact of the pebble creates a special point,
different from all the others, the symmetries of the ripples are
exactly what you would expect. They are precisely the sym-
metries that do not move that special point. So the symmetry
of the pond is not spontaneously broken when the ripples
appear, because you can detect the stone that causes the trans-
lational symmetries to be lost.

You would be more surprised—a lot more surprised—if a
perfectly flat pond suddenly developed a series of concentric
circular ripples without there being any obvious cause. You
would imagine that perhaps a fish beneath the surface had
disturbed it, or that something had fallen in and you had not
seen it because it was moving too fast. So strong is the
ingrained assumption that patterns must have evident causes
that when in 1958 the Russian chemist B. P. Belousov discov-
ered a chemical reaction that spontaneously formed patterns,
apparently out of nothing, his colleagues refused to believe
him. They assumed that he had made a mistake. They didn’t
bother checking his work: he was so obviously wrong that
checking his work would be a waste of time.

Which was a pity, because he was right.

The particular pattern that Belousov discovered existed
not in space but in time: his reaction oscillated through a
periodic sequence of chemical changes. By 1963, another
Russian chemist, A. M. Zhabotinskii, had modified Be-
lousov’s reaction so that it formed patterns in space as well.
In their honor, any similar chemical reaction is given the
generic name “Belousov-Zhabotinskii [or B-Z] reaction.” The
chemicals used nowadays are different and simpler, thanks to

some refinements made by the British reproductive biologist



BROKEN SYMMETRY

Jack Cohen and the American mathematical biologist Arthur
Winfree, and the experiment is now so simple that it can be
done by anyone with access to the necessary chemicals. These
are slightly esoteric, but there are only four of them.”

In the absence of the appropriate apparatus, I'll tell you
what happens if you do the experiment. The chemicals are all
liquids: you mix them together in the right order and pour
them into a flat dish. The mixture turns blue, then red: let it
stand for a while. For ten or sometimes even twenty minutes,
nothing happens; it’s just like gazing at a featureless flat
pond—except that it is the color of the liquid that is feature-
less, a uniform red. This uniformity is not surprising; after all,
you blended the liquids. Then you notice a few tiny blue
spots appearing—and that is a surprise. They spread, forming
circular blue disks. Inside each disk, a red spot appears, turn-
ing the disk into a blue ring with a red center. Both the blue
ring and the red disk grow, and when the red disk gets big
enough, a blue spot appears inside it. The process continues,
forming an ever-growing series of “target patterns”—concen-
tric rings of red and blue. These target patterns have exactly
the same symmetries as the rings of ripples on a pond; but
this time you can’t see any pebble. It is a strange and mysteri-
ous process in which pattern—order—appears to arise of its
own accord from the disordered, randomly mixed liquid. No
wonder the chemists didn’t believe Belousov.

But that’s not the end of the B-Z reaction’s party tricks. If
you tilt the dish slightly and then put it back where it was, or

dip a hot wire into it, you can break the rings and turn them

"The precise recipe is given in the Notes to The Collapse of Chaos, by Jack
Cohen and Ian Stewart.
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into rotating red and blue spirals. If Belousov had claimed
that, you would have seen steam coming out of his col-
leagues’ ears.

This kind of behavior is not just a chemical conjuring
trick. The regular beating of your heart relies on exactly the
same patterns, but in that case they are patterns in waves of
electrical activity. Your heart is not just a lump of undifferen-
tiated muscle tissue, and it doesn’t automatically contract all
at once. Instead, it is composed of millions of tiny muscle
fibers, each one of them a single cell. The fibers contract in
response to electrical and chemical signals, and they pass
those signals on to their neighbors. The problem is to make
sure that they all contract roughly in synchrony, so that the
heart beats as a whole. To achieve the necessary degree of
synchronization, your brain sends electrical signals to your
heart. These signals trigger electrical changes in some of the
muscle fibers, which then affect the muscle fibers next to
them—so that ripples of activity spread, just like the ripples
on a pond or the blue disks in the B-Z reaction. As long as the
waves form complete rings, the heart’s muscle fibers contract
in synchrony and the heart beats normally. But if the waves
become spirals—as they can do in diseased hearts—the result
is an incoherent set of local contractions, and the heart fibril-
lates. If fibrillation goes unchecked for more than a few min-
utes, it results in death. So every single one of us has a vested
interest in circular and spiral wave patterns.

However in the heart, as in the pond, we can see a specific
cause for the wave patterns: the signals from the brain. In the
B-Z reaction, we cannot: the symmetry breaks sponta-
neously—*“of its own accord”—without any external stimu-

lus. The term “spontaneous” does not imply that there is no
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cause, however: it indicates that the cause can be as tiny and
as insignificant as you please. Mathematically, the crucial
point is that the uniform distribution of chemicals—the fea-
tureless red liquid—is unstable. If the chemicals cease to be
equally mixed, then the delicate balance that keeps the solu-
tion red is upset, and the resulting chemical changes trigger
the formation of a blue spot. From that moment on, the whole
process becomes much more comprehensible, because now
the blue spot acts like a chemical “pebble,” creating sequen-
tial ripples of chemical activity. But—at least, as far as the
mathematics goes—the imperfection in the symmetry of the
liquid which triggers the blue spot can be vanishingly small,
provided it is not zero. In a real liquid, there are always tiny
bits of dust, or bubbles—or even just molecules undergoing
the vibrations we call “heat”—to disturb the perfect symme-
try. That’s all it takes. An infinitesimal cause produces a
large-scale effect, and that effect is a symmetric pattern.
Nature’s symmetries can be found on every scale, from the
structure of subatomic particles to that of the entire universe.
Many chemical molecules are symmetric. The methane mole-
cule is a tetrahedron—a triangular-sided pyramid—with one
carbon atom at its center and four hydrogen atoms at its corners.
Benzene has the sixfold symmetry of a regular hexagon. The
fashionable molecule buckminsterfullerene is a truncated icosa-
hedral cage of sixty carbon atoms. (An icosahedron is a regular
solid with twenty triangular faces; “truncated” means that the
corners are cut off.) Its symmetry lends it a remarkable stability,
which has opened up new possibilities for organic chemistry.
On a slightly larger scale than molecules, we find symme-
tries in cellular structure; at the heart of cellular replication

lies a tiny piece of mechanical engineering. Deep within each
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living cell, there is a rather shapeless structure known as the
centrosome, which sprouts long thin microtubules, basic
components of the cell’s internal “skeleton,” like a diminu-
tive sea urchin. Centrosomes were first discovered in 1887
and play an important role in organizing cell division. How-
ever, in one respect the structure of the centrosome is aston-
ishingly symmetric. Inside it are two structures, known as
centrioles, positioned at right angles to each other. Each cen-
triole is cylindrical, made from twenty-seven microtubules
fused together along their lengths in threes, and arranged with
perfect ninefold symmetry. The microtubules themselves also
have an astonishingly regular symmetric form. They are hol-
low tubes, made from a perfect regular checkerboard pattern
of units that contain two distinct proteins, alpha- and beta-
tubulin. One day, perhaps, we will understand why nature
chose these symmetric forms. But it is amazing to see sym-
metric structures at the core of a living cell.

Viruses are often symmetric, too, the commonest shapes
being helices and icosahedrons. The helix is the form of the
influenza virus, for instance. Nature prefers the icosahedron
above all other viral forms: examples include herpes, chicken-
pox, human wart, canine infectious hepatitis, turnip yellow
mosaic, adenovirus, and many others. The adenovirus is
another striking example of the artistry of molecular engineer-
ing. It is made from 252 virtually identical subunits, with 21
of them, fitted together like billiard balls before the break,
making up each triangular face. (Subunits along the edges lie
on more than one face and corner units lie on three, which is
why 20 x 21 is not equal to 252.)

Nature exhibits symmetries on larger scales, too. A devel-

oping frog embryo begins life as a spherical cell, then loses
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symmetry step by step as it divides, until it has become a
blastula, thousands of tiny cells whose overall form is again
spherical. Then the blastula begins to engulf part of itself, in
the process known as gastrulation. During the early stages of
this collapse, the embryo has rotational symmetry about an
axis, whose position is often determined by the initial distri-
bution of yolk in the egg, or sometimes by the point of sperm
entry. Later this symmetry is broken, and only a single mirror
symmetry is retained, leading to the bilateral symmetry of the
adult.

Volcanoes are conical, stars are spherical, galaxies are spi-
ral or elliptical. According to some cosmologists, the universe
itself resembles nothing so much as a gigantic expanding ball.
Any understanding of nature must include an understanding
of these prevalent patterns. It must explain why they are so
common, and why many different aspects of nature show the
same patterns. Raindrops and stars are spheres, whirlpools
and galaxies are spirals, honeycombs and the Devil’s Cause-
way are arrays of hexagons. There has to be a general princi-
ple underlying such patterns; it is not enough just to study
each example in isolation and explain it in terms of its own
internal mechanisms.

Symmetry breaking is just such a principle.

But in order for symmetry to break, it has to be present to
start with. At first this would seem to replace one problem of
pattern formation with another: before we can explain the cir-
cular rings on the pond, in other words, we have to explain
the pond. But there is a crucial difference between the rings
and the pond. The symmetry of the pond is so extensive—
every point on its surface being equivalent to every other—

that we do not recognize it as being a pattern. Instead, we see
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it as bland uniformity. It is very easy to explain bland unifor-
mity: it is what happens to systems when there is no reason
for their component parts to differ from each other. It is, so to
speak, nature’s default option. If something is symmetric, its
component features are replaceable or interchangeable. One
corner of a square looks pretty much the same as any other, so
we can interchange the corners without altering the square’s
appearance. One atom of hydrogen in methane looks pretty
much like any other, so we can interchange those atoms. One
region of stars in a galaxy looks pretty much like any other, so
we can interchange parts of two different spiral arms without
making an important difference.

In short, nature is symmetric because we live in a mass-
produced universe—analogous to the surface of a pond. Every
electron is exactly the same as every other electron, every pro-
ton is exactly the same as every other proton, every region of
empty space is exactly the same as every other region of
empty space, every instant of time is exactly the same as
every other instant of time. And not only are the structure of
space, time, and matter the same everywhere: so are the laws
that govern them. Albert Einstein made such “invariance
principles” the cornerstone of his approach to physics; he
based his thinking on the idea that no particular point in
spacetime is special. Among other things, this led him to the
principle of relativity, one of the greatest physical discoveries
ever made.

This is all very well, but it produces a deep paradox. If the
laws of physics are the same at all places and at all times, why
is there any “interesting” structure in the universe at all?
Should it not be homogeneous and changeless? If every place

in the universe were interchangeable with every other place,
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then all places would be indistinguishable; and the same
would hold for all times. But they are not. The problem is, if
anything, made worse by the cosmological theory that the
universe began as a single point, which exploded from noth-
ingness billions of years ago in the big bang. At the instant of
the universe’s formation, all places and all times were not
only indistinguishable but identical. So why are they differ-
ent now?

The answer is the failure of Curie’s Principle, noted at the
start of this chapter. Unless that principle is hedged around
with some very subtle caveats about arbitrarily tiny causes, it
offers a misleading intuition about how a symmetric system
should behave. Its prediction that adult frogs should be bilat-
erally symmetric (because embryonic frogs are bilaterally
symmetric, and according to Curie’s Principle the symmetry
cannot change) appears at first sight to be a great success; but
the same argument applied at the spherical blastula stage pre-
dicts with equal force that an adult frog should be a sphere.

A much better principle is the exact opposite, the princi-
ple of spontaneous symmetry breaking. Symmetric causes
often produce less symmetric effects. The evolving universe
can break the initial symmetries of the big bang. The spherical
blastula can develop into the bilateral frog. The 252 perfectly
interchangeable units of adenovirus can arrange themselves
into an icosahedron—an arrangement in which some units
will occupy special places, such as corners. A set of twenty-
seven perfectly ordinary microtubules can get together to cre-
ate a centriole.

Fine, but why patterns? Why not a structureless mess, in
which all symmetries are broken? One of the strongest threads

that runs through every study ever made of symmetry break-
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ing is that the mathematics does not work this way. Symme-
tries break reluctantly. There is so much symmetry lying
around in our mass-produced universe that there is seldom a
good reason to break all of it. So rather a lot survives. Even
those symmetries that do get broken are still present, in a
sense, but now as potential rather than actual form. For exam-
ple, when the 252 units of the adenovirus began to link up,
any one of them could have ended up in a particular corner.
In that sense, they are interchangeable. But only one of them
actually does end up there, and in that sense the symmetry is
broken: they are no longer fully interchangeable. But some of
the symmetry remains, and we see an icosahedron.

In this view, the symmetries we observe in nature are bro-
ken traces of the grand, universal symmetries of our mass-
produced universe. Potentially the universe could exist in any
of a huge symmetric system of possible states, but actually it
must select one of them. In so doing, it must trade some of its
actual symmetry for unobservable, potential symmetry. But
some of the actual symmetry may remain, and when it does
we observe a pattern. Most of nature’s symmetric patterns
arise out of some version of this general mechanism.

In a negative sort of way, this rehabilitates Curie’s Princi-
ple: if we permit tiny asymmetric disturbances, which can
trigger an instability of the fully symmetric state, then our
mathematical system is no longer perfectly symmetric. But
the important point is that the tinest departure from symme-
try in the cause can lead to a total loss of symmetry in the
resulting effect—and there are always tiny departures. That
makes Curie’s principle useless for the prediction of symme-
tries. It is much more informative to model a real system after

one with perfect symmetry, but to remember that such a
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model has many possible states, only one of which will be
realized in practice. Small disturbances cause the real system
to select states from the range available to the idealized per-
fect system. Today this approach to the behavior of symmetric
systems provides one of the main sources of understanding of
the general principles of pattern formation.

In particular, the mathematics of symmetry breaking uni-
fies what at first sight appear to be very disparate phenomena.
For example, think about the patterns in sand dunes men-
tioned in chapter 1. The desert can be modeled as a flat plane
of sandy particles, the wind can be modeled as a fluid flowing
across the plane. By thinking about the symmetries of such a
system, and how they can break, many of the observed pat-
terns of dunes can be deduced. For example, suppose the
wind blows steadily in a fixed direction, so that the whole
system is invariant under translations parallel to the wind.
One way to break these translational symmetries is to create a
periodic pattern of parallel stripes, at right angles to the wind
direction. But this is the pattern that geologists call transverse
dunes. If the pattern also becomes periodic in the direction
along the stripes, then more symmetry breaks, and the wavy
barchanoid ridges appear. And so on.

However, the mathematical principles of symmetry-break-
ing do not just work for sand dunes. They work for any sys-
tem with the same symmetries—anything that flows across a
planar surface creating patterns. You can apply the same basic
model to a muddy river flowing across a coastal plain and
depositing sediment, or the waters of a shallow sea in ebb and
flow across the seabed—phenomena important in geology,
because millions of years later the patterns that result have

been frozen into the rock that the sandy seabed and the
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muddy delta became. The list of patterns is identical to that
for dunes.

Or the fluid might be a liquid crystal, as found in digital-
watch displays, which consist of a lot of long thin molecules
that arrange themselves in patterns under the influence of a
magnetic or electric field. Again, you find the same patterns.
Or there might not be a fluid at all: maybe what moves is a
chemical, diffusing through tissue and laying down genetic
instructions for patterns on the skin of a developing animal.
Now the analogue of transverse dunes is the stripes of a tiger
or a zebra, and that of barchanoid ridges is the spots on a
leopard or a hyena.

The same abstract mathematics; different physical and bio-
logical realizations. Mathematics is the ultimate in technology
transfer—but with mental technology, ways of thinking, being
transferred, rather than machines. This universality of sym-
metry breaking explains why living systems and nonliving
ones have many patterns in common. Life itself is a process of
symmetry creation—of replication; the universe of biology is
just as mass-produced as the universe of physics, and the
organic world therefore exhibits many of the patterns found
in the inorganic world. The most obvious symmetries of liv-
ing organisms are those of form—icosahedral viruses, the spi-
ral shell of Nautilus, the helical horns of gazelles, the remark-
able rotational symmetries of starfish and jellyfish and
flowers. But symmetries in the living world go beyond form
into behavior—and not just the symmetric rhythms of loco-
motion I mentioned earlier. The territories of fish in Lake
Huron are arranged just like the cells in a honeycomb—and
for the same reasons. The territories, like the bee grubs, can-

not all be in the same place—which is what perfect symmetry
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would imply. Instead, they pack themselves as tightly as they
can without one being different from another, and the behav-
ioral constraint by itself produces a hexagonally symmetric
tiling. And that resembles yet another striking instance of
mathematical technology transfer, for the same symmetry
breaking mechanism arranges the atoms of a crystal into a reg-
ular lattice—a physical process that ultimately supports
Kepler’s theory of the snowflake.

One of the more puzzling types of symmetry in nature is
mirror symmetry, symmetry with respect to a reflection. Mir-
ror symmetries of three-dimensional objects cannot be real-
ized by turning the objects in space—a left shoe cannot be
turned into a right shoe by rotating it. However, the laws of
physics are very nearly mirror-symmetric, the exceptions
being certain interactions of subatomic particles. As a result,
any molecule that is not mirror-symmetric potentially exists
in two different forms—left- and right-handed, so to speak.
On Earth, life has selected a particular molecular handedness:
for example, for amino acids. Where does this particular
handedness of terrestrial life come from? It could have been
just an accident—primeval chance propagated by the mass-
production techniques of replication. If so, we might imagine
that on some distant planet, creatures exist whose molecules
are mirror images of ours. On the other hand, there may be a
deep reason for life everywhere to choose the same direction.
Physicists currently recognize four fundamental forces in
nature: gravity, electromagnetism, and the strong and weak
nuclear interactions. It is known that the weak force violates
mirror symmetry—that is, it behaves differently in left- or
right-handed versions of the same physical problem. As the
Austrian-born physicist Wolfgang Pauli put it, “The Lord is a
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weak left-hander.” One remarkable consequence of this viola-
tion of mirror symmetry is the fact that the energy levels of
molecules and that of their mirror images are not exactly
equal. The effect is extremely small: the difference in energy
levels between one particular amino acid and its mirror image
is roughly one part in 10?7. This may seem very tiny—but we
saw that symmetry breaking requires only a very tiny distur-
bance. In general, lower-energy forms of molecules should be
favored in nature. For this amino acid, it can be calculated
that with 98% probability the lower energy form will become
dominant within a period of about a hundred thousand years.
And indeed, the version of this amino acid which is found in
living organisms is the lower-energy one.

In chapter 5, I mentioned the curious symmetry of
Maxwell’s equations relating electricity and magnetism.
Roughly speaking, if you interchange all the symbols for the
electric field with those for the magnetic field, you re-create
the same equations. This symmetry lies behind Maxwell’s
unification of electrical and magnetic forces into a single elec-
tromagnetic force. There is an analogous symmetry—though
an imperfect one—in the equations for the four basic forces of
nature, suggesting an even grander unification: that all four
forces are different aspects of the same thing. Physicists have
already achieved a unification of the weak and electromag-
netic forces. According to current theories, all four fundamen-
tal forces should become unified—that is, symmetrically
related—at the very high energy levels prevailing in the early
universe. This symmetry of the early universe is broken in our
own universe. In short, there is an ideal mathematical uni-
verse in which all of the fundamental forces are related in a

perfectly symmetric manner—but we don’t live in it.
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That means that our universe could have been different; it
could have been any of the other universes that, potentially,
could arise by breaking symmetry in a different way. That’s
quite a thought. But there is an even more intriguing thought:
the same basic method of pattern formation, the same mecha-
nism of symmetry breaking in a mass-produced universe, gov-

erns the cosmos, the atom, and us.
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CHAPTER 7

THE RHYTHM OF LIFE

Nature is nothing if not rhythmic, and its rhythms are many
and varied. Our hearts and lungs follow rhythmic cycles
whose timing is adapted to our body’s needs. Many of
nature’s rhythms are like the heartbeat: they take care of
themselves, running “in the background.” Others are like
breathing: there is a simple “default” pattern that operates as
long as nothing unusual is happening, but there is also a more
sophisticated control mechanism that can kick in when nec-
essary and adapt those rhythms to immediate needs. Control-
lable rhythms of this kind are particularly common—and par-
ticularly interesting—in locomotion. In legged animals, the
default patterns of motion that occur when conscious control
is not operating are called gaits.

Until the development of high-speed photography, it was
virtually impossible to find out exactly how an animal’s legs
moved as it ran or galloped: the motion is too fast for the
human eye to discern. Legend has it that the photographic
technique grew out of a bet on a horse. In the 1870s, the rail-
road tycoon Leland Stanford bet twenty-five thousand dollars

that at some times a trotting horse has all four feet completely
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off the ground. To settle the issue, a photographer, who was
born Edward Muggeridge but changed his name to Eadweard
Muybridge, photographed the different phases of the gait of
the horse, by placing a line of cameras with tripwires for the
horse to trot past. Stanford, it is said, won his bet. Whatever
the truth of the story, we do know that Muybridge went on to
pioneer the scientific study of gaits. He also adapted a
mechanical device known as the zoetrope to display them as

”

“moving pictures,” a road that in short order led to Holly-
wood. So Muybridge founded both a science and an art.

Most of this chapter is about gait analysis, a branch of
mathematical biology that grew up around the questions
“How do animals move?” and “Why do they move like that?”
To introduce a little more variety, the rest is about rhythmic
patterns that occur in entire animal populations, one dramatic
example being the synchronized flashing of some species of
fireflies, which is seen in some regions of the Far East, includ-
ing Thailand. Although biological interactions that take place
in individual animals are very different from those that take
place in populations of animals, there is an underlying mathe-
matical unity, and one of the messages of this chapter is that
the same general mathematical concepts can apply on many
different levels and to many different things. Nature respects
this unity, and makes good use of it.

The organizing principle behind many such biological
cycles is the mathematical concept of an oscillator—a unit
whose natural dynamic causes it to repeat the same cycle of
behavior over and over again. Biology hooks together huge
“circuits” of oscillators, which interact with each other to cre-
ate complex patterns of behavior. Such “coupled oscillator

networks” are the unifying theme of this chapter.
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Why do systems oscillate at all? The answer is that this is
the simplest thing you can do if you don’t want, or are not
allowed, to remain still. Why does a caged tiger pace up and
down? Its motion results from a combination of two con-
straints. First, it feels restless and does not wish to sit still.
Second, it is confined within the cage and cannot simply dis-
appear over the nearest hill. The simplest thing you can do
when you have to move but can’t escape altogether is to oscil-
late. Of course, there is nothing that forces the oscillation to
repeat a regular rhythm; the tiger is free to follow an irregular
path around the cage. But the simplest option—and therefore
the one most likely to arise both in mathematics and in
nature—is to find some series of motions that works, and
repeat it over and over again. And that is what we mean by a
periodic oscillation. In chapter 5, I described the vibration of
a violin string. That, too, moves in a periodic oscillation, and
it does so for the same reasons as the tiger. It can’t remain still
because it has been plucked, and it can’t get away altogether
because its ends are pinned down and its total energy cannot
increase.

Many oscillations arise out of steady states. As conditions
change, a system that has a steady state may lose it and begin
to wobble periodically. In 1942, the German mathematician
Eberhard Hopf found a general mathematical condition that
guarantees such behavior: in his honor, this scenario is
known as Hopf bifurcation. The idea is to approximate the
dynamics of the original system in a particularly simple way,
and to see whether a periodic wobble arises in this simplified
system. Hopf proved that if the simplified system wobbles,
then so does the original system. The great advantage of this

method is that the mathematical calculations are carried out
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only for the simplified system, where they are relatively
straightforward, whereas the result of those calculations tells
us how the original system behaves. It is difficult to tackle the
original system directly, and Hopf’s approach sidesteps the
difficulties in a very effective manner.

The word “bifurcation” is used because of a particular
mental image of what is happening, in which the periodic
oscillations “grow out from” the original steady state like a
ripple on a pond growing out from its center. The physical
interpretation of this mental picture is that the oscillations are
very small to start with, and steadily become larger. The
speed with which they grow is unimportant here.

For example, the sounds made by a clarinet depend on
Hopf bifurcation. As the clarinetist blows air into the instru-
ment, the reed—which was stationary—starts to vibrate. If the
air flows gently, the vibration is small and produces a soft
note. If the musician blows harder, the vibration grows and
the note becomes louder. The important thing is that the
musician does not have to blow in an oscillatory way (that is,
in a rapid series of short puffs) to make the reed oscillate.
This is typical of Hopf bifurcation: if the simplified system
passes Hopf’s mathematical test, then the real system will
begin to oscillate of its own accord. In this case, the simpli-
fied system can be interpreted as a fictitious mathematical
clarinet with a rather simple reed, although such an interpre-
tation is not actually needed to carry out the calculations.

Hopf bifurcation can be seen as a special type of symmetry
breaking. Unlike the examples of symmetry breaking
described in the previous chapter, the symmetries that break
relate not to space but to time. Time is a single variable, so

mathematically it corresponds to a line—the time axis. There
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are only two types of line symmetry: translations and reflec-
tions. What does it mean for a system to be symmetric under
time translation? It means that if you observe the motion of
the system and then wait for some fixed interval and observe
the motion of the system again, you will see exactly the same
behavior. That is a description of periodic oscillations: if you
wait for an interval equal to the period, you see exactly the
same thing. So periodic oscillations have time-translation
symmetry.

What about reflectional symmetries of time? Those corre-
spond to reversing the direction in which time flows, a more
subtle and philosophically difficult concept. Time reversal is
peripheral to this chapter, but it is an extremely interesting
question, which deserves to be discussed somewhere, so why
not here? The law of motion is symmetric under time reversal.
If you make a film of any “legal” physical motion (one that
obeys the laws), and run the movie backward, what you see is
also a legal motion. However, the legal motions common in
our world often look bizarre when run backward. Raindrops
falling from the sky to create puddles are an everyday sight;
puddles that spit raindrops skyward and vanish are not. The
source of the difference lies in the initial conditions. Most ini-
tial conditions break time-reversal symmetry. For example,
suppose we decide to start with raindrops falling downward.
This is not a time-symmetric state: its time reversal would
have raindrops falling upward. Even though the laws are
time-reversible, the motion they produce need not be, because
once the time-reversal symmetry has been broken by the
choice of initial conditions, it remains broken.

Back to the oscillators. I've now explained that periodic

oscillations possess time-translation symmetry, but I haven’t yet
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told you what symmetry is broken to create that pattern. The
answer is “all time translations.” A state that is invariant under
these symmetries must look exactly the same at all instants of
time—not just intervals of one period. That is, it must be a
steady state. So when a system whose state is steady begins to
oscillate periodically, its time-translational symmetries decrease
from all translations to only translations by a fixed interval.

This all sounds rather theoretical. However, the realization
that Hopf bifurcation is really a case of temporal symmetry
breaking has led to an extensive theory of Hopf bifurcation in
systems that have other symmetries as well—especially spa-
tial ones. The mathematical machinery does not depend on
particular interpretations and can easily work with several
different kinds of symmetry at once. One of the success sto-
ries of this approach is a general classification of the patterns
that typically set in when a symmetric network of oscillators
undergoes a Hopf bifurcation, and one of the areas to which it
has recently been applied is animal locomotion.

Two biologically distinct but mathematically similar types
of oscillator are involved in locomotion. The most obvious
oscillators are the animal’s limbs, which can be thought of as
mechanical systems—Ilinked assemblies of bones, pivoting at
the joints, pulled this way and that by contracting muscles.
The main oscillators that concern us here, however, are to be
found in the creature’s nervous system, the neural circuitry
that generates the rhythmic electrical signals that in turn stim-
ulate and control the limbs’ activity. Biologists call such a cir-
cuit a CPG, which stands for “central pattern generator.” Cor-
respondingly, a student of mine took to referring to a limb by
the acronym LEG, allegedly for “locomotive excitation genera-

tor.” Animals have two, four, six, eight, or more LEGs, but we
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know very little directly about the CPGs that control them, for
reasons I shall shortly explain. A lot of what we do know has
been arrived at by working backward—or forward, if you
like—from mathematical models.

Some animals possess only one gait—only one rhythmic
default pattern for moving their limbs. The elephant, for
example, can only walk. When it wants to move faster, it
ambles—but an amble is just a fast walk, and the patterns of
leg movement are the same. Other animals possess many dif-
ferent gaits; take the horse, for example. At low speeds, horses
walk; at higher speeds, they trot; and at top speed they gallop.
Some insert yet another type of motion, a canter, between a
trot and a gallop. The differences are fundamental: a trot isn’t
just a fast walk but a different kind of movement altogether.

In 1965, the American zoologist Milton Hildebrand
noticed that most gaits possess a degree of symmetry. That is,
when an animal bounds, say, both front legs move together
and both back legs move together; the bounding gait preserves
the animal’s bilateral symmetry. Other symmetries are more
subtle: for example, the left half of a camel may follow the
same sequence of movements as the right, but half a period
out of phase—that is, after a time delay equal to half the
period. So the pace gait has its own characteristic symmetry:
“reflect left and right, and shift the phase by half a period.”
You use exactly this type of symmetry breaking to move your-
self around: despite your bilateral symmetry, you don’t move
both legs simultaneously! There’s an obvious advantage to
bipeds in not doing so: if they move both legs slowly at the
same time they fall over.

The seven most common quadrupedal gaits are the trot,

pace, bound, walk, rotary gallop, transverse gallop, and can-
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ter. In the trot, the legs are in effect linked in diagonal pairs.
First the front left and back right hit the ground together, then
the front right and back left. In the bound, the front legs hit
the ground together, then the back legs. The pace links the
movements fore and aft: the two left legs hit the ground, then
the two right. The walk involves a more complex but equally
rhythmic pattern: front left, back right, front right, back left,
then repeat. In the rotary gallop, the front legs hit the ground
almost together, but with the right (say) very slightly later
than the left; then the back legs hit the ground almost
together, but this time with the left very slightly later than the
right. The transverse gallop is similar, but the sequence is
reversed for the rear legs. The canter is even more curious:
first front left, then back right, then the other two legs simul-
taneously. There is also a rarer gait, the pronk, in which all
four legs move simultaneously.

The pronk is uncommon, outside of cartoons, but is some-
times seen in young deer. The pace is observed in camels, the
bound in dogs; cheetahs use the rotary gallop to travel at top
speed. Horses are among the more versatile quadrupeds,
using the walk, trot, transverse gallop, and canter, depending
on circumstances.

The ability to switch gaits comes from the dynamics of
CPGs. The basic idea behind CPG models is that the rhythms
and the phase relations of animal gaits are determined by the
natural oscillation patterns of relatively simple neural cir-
cuits. What might such a circuit look like? Trying to locate a
specific piece of neural circuitry in an animal’s body is like
searching for a particular grain of sand in a desert: to map out
the nervous system of all but the simplest of animals is well

beyond the capabilities even of today’s science. So we have
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to sneak up on the problem of CPG design in a less direct
manner.

One approach is to work out the simplest type of circuit
that might produce all the distinct but related symmetry pat-
terns of gaits. At first, this looks like a tall order, and we
might be forgiven if we tried to concoct some elaborate struc-
ture with switches that effected the change from one gait to
another, like a car gearbox. But the theory of Hopf bifurcation
tells us that there is a simpler and more natural way. It turns
out that the symmetry patterns observed in gaits are strongly
reminiscent of those found in symmetric networks of oscilla-
tors. Such networks naturally possess an entire repertoire of
symmetry-breaking oscillations, and can switch between
them in a natural manner. You don’t need a complicated gear-
box.

For example, a network representing the CPG of a biped
requires only two identical oscillators, one for each leg. The
mathematics shows that if two identical oscillators are cou-
pled—connected so that the state of each affects that of the
other—then there are precisely two typical oscillation pat-
terns. One is the in-phase pattern, in which both oscillators
behave identically. The other is the out-of-phase pattern, in
which both oscillators behave identically except for a half-
period phase difference. Suppose that this signal from the
CPG is used to drive the muscles that control a biped’s legs,
by assigning one leg to each oscillator. The resulting gaits
inherit the same two patterns. For the in-phase oscillation of
the network, both legs move together: the animal performs a
two-legged hopping motion, like a kangaroo. In contrast, the
out-of-phase motion of the CPG produces a gait resembling

the human walk. These two gaits are the ones most commonly
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observed in bipeds. (Bipeds can, of course, do other things;
for example, they can hop along on one leg—but in that case
they effectively turn themselves into one-legged animals.)

What about quadrupeds? The simplest model is now a sys-
tem of four coupled oscillators—one for each leg. Now the
mathematics predicts a greater variety of patterns, and nearly
all of them correspond to observed gaits. The most symmetric
gait, the pronk, corresponds to all four oscillators being syn-
chronized—that is, to unbroken symmetry. The next most
symmetric gaits—the bound, the pace, and the trot—corre-
spond to grouping the oscillators as two out-of-phase pairs:
front/back, left/right, or diagonally. The walk is a circulating
figure-eight pattern and, again, occurs naturally in the mathe-
matics. The two kinds of gallop are more subtle. ‘The rotary
gallop is a mixture of pace and bound, and the transverse gal-
lop is a mixture of bound and trot. The canter is even more
subtle and not as well understood.

The theory extends readily to six-legged creatures such as
insects. For example, the typical gait of a cockroach—and,
indeed, of most insects—is the tripod, in which the middle
leg on one side moves in phase with the front and back legs
on the other side, and then the other three legs move together,
half a period out of phase with the first set. This is one of the
natural patterns for six oscillators connected in a ring.

The symmetry-breaking theory also explains how animals
can change gait without having a gearbox: a single network of
oscillators can adopt different patterns under different condi-
tions. The possible transitions between gaits are also orga-
nized by symmetry. The faster the animal moves, the less
symmetry its gait has: more speed breaks more symmetry. But

an explanation of why they change gait requires more detailed
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information on physiology. In 1981, D. F. Hoyt and R. C. Tay-
lor discovered that when horses are permitted to select their
own speeds, depending on terrain, they choose whichever
gait minimizes their oxygen consumption.

I've gone into quite a lot of detail about the mathematics of
gaits because it is an unusual application of modern mathe-
matical techniques in an area that at first sight seems totally
unrelated. To end this chapter, I want to show you another
application of the same general ideas, except that in this case
it is biologically important that symmetry not be broken.

One of the most spectacular displays in the whole of
nature occurs in Southeast Asia, where huge swarms of fire-
flies flash in synchrony. In his 1935 article “ Synchronous
Flashing of Fireflies” in the journal Science, the American
biologist Hugh Smith provides a compelling description of

the phenomenon:

Imagine a tree thirty-five to forty feet high, apparently with a
firefly on every leaf, and all the fireflies flashing in perfect uni-
son at the rate of about three times in two seconds, the tree being
in complete darkness between flashes. Imagine a tenth of a mile
of river front with an unbroken line of mangrove trees with fire-
flies on every leaf flashing in synchronism, the insects on the
trees at the ends of the line acting in perfect unison with those
between. Then, if one’s imagination is sufficiently vivid, he may

form some conception of this amazing spectacle.

Why do the flashes synchronize? In 1990, Renato Mirollo
and Steven Strogatz showed that synchrony is the rule for
mathematical models in which every firefly interacts with
every other. Again, the idea is to model the insects as a popu-

lation of oscillators coupled together—this time by visual sig-
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nals. The chemical cycle used by each firefly to create a flash
of light is represented as an oscillator. The population of fire-
flies is represented by a network of such oscillators with fully
symmetric coupling—that is, each oscillator affects all of the
others in exactly the same manner. The most unusual feature
of this model, which was introduced by the American biolo-
gist Charles Peskin in 1975, is that the oscillators are pulse-
coupled. That is, an oscillator affects its neighbors only at the
instant when it creates a flash of light.

The mathematical difficulty is to disentangle all these
interactions, so that their combined effect stands out clearly.
Mirollo and Strogatz proved that no matter what the initial
conditions are, eventually all the oscillators become synchro-
nized. The proof is based on the idea of absorption, which
happens when two oscillators with different phases “lock
together” and thereafter stay in phase with each other. Because
the coupling is fully symmetric, once a group of oscillators has
locked together, it cannot unlock. A geometric and analytic
proof shows that a sequence of these absorptions must occur,
which eventually locks all the oscillators together.

The big message in both locomotion and synchronization
is that nature’s rhythms are often linked to symmetry, and
that the patterns that occur can be classified mathematically
by invoking the general principles of symmetry breaking. The
principles of symmetry breaking do not answer every ques-
tion about the natural world, but they do provide a unifying
framework, and often suggest interesting new questions. In
particular, they both pose and answer the question, Why
these patterns but not others?

The lesser message is that mathematics can illuminate

many aspects of nature that we do not normally think of as
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being mathematical. This is a message that goes back to the
Scottish zoologist D’Arcy Thompson, whose classic but mav-
erick book On Growth and Form set out, in 1917, an enor-
mous variety of more or less plausible evidence for the role of
mathematics in the generation of biological form and behav-
ior. In an age when most biologists seem to think that the only
interesting thing about an animal is its DNA sequence, it is a

message that needs to be repeated, loudly and often.
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CHAPTER 8

DO DICE PLAY GOD?

The intellectual legacy of Isaac Newton was a vision of the
clockwork universe, set in motion at the instant of creation
but thereafter running in prescribed grooves, like a well-oiled
machine. It was an image of a totally deterministic world—
one leaving no room for the operation of chance, one whose
future was completely determined by its present. As the great
mathematical astronomer Pierre-Simon de Laplace eloquently
put it in 1812 in his Analytic Theory of Probabilities:

An intellect which at any given moment knew all the forces that
animate Nature and the mutual positions of the beings that com-
prise it, if this intellect were vast enough to submit its data to
analysis, could condense into a single formula the movement of
the greatest bodies of the universe and that of the lightest atom:
for such an intellect nothing could be uncertain, and the future

just like the past would be present before its eyes.

This same vision of a world whose future is totally pre-
dictable lies behind one of the most memorable incidents in
Douglas Adams’s 1979 science-fiction novel The Hitchhiker’s
Guide to the Galaxy, in which the philosophers Majikthise and
Vroomfondel instruct the supercomputer “Deep Thought” to

calculate the answer to the Great Question of Life, the Uni-
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verse, and Everything. Aficionados will recall that after five
million years the computer answered, “Forty-two,” at which
point the philosophers realized that while the answer was
clear and precise, the question had not been. Similarly, the
fault in Laplace’s vision lies not in his answer—that the uni-
verse is in principle predictable, which is an accurate state-
ment of a particular mathematical feature of Newton’s law of
motion—but in his interpretation of that fact, which is a seri-
ous misunderstanding based on asking the wrong question.
By asking a more appropriate question, mathematicians and
physicists have now come to understand that determinism
and predictability are not synonymous.

In our daily lives, we encounter innumerable cases where
Laplacian determinism seems to be a highly inappropriate
model. We walk safely down steps a thousand times, until
one day we turn our ankle and break it. We go to a tennis
match, and it is rained off by an unexpected thunderstorm.
We place a bet on the favorite in a horse race, and it falls at
the last fence when it is six lengths ahead of the field. It’s not
so much a universe in which—as Albert Einstein memorably
refused to believe—God plays dice: it seems more a universe
in which dice play God.

Is our world deterministic, as Laplace claimed, or is it gov-
erned by chance, as it so often seems to be? And if Laplace is
really right, why does so much of our experience indicate that
he is wrong? One of the most exciting new areas of mathemat-
ics, nonlinear dynamics—popularly known as chaos theory—
claims to have many of the answers. Whether or not it does, it
is certainly creating a revolution in the way we think about
order and disorder, law and chance, predictability and

randomness.
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According to modern physics, nature is ruled by chance
on its smallest scales of space and time. For instance, whether
a radioactive atom—of uranium, say—does or does not decay
at any given instant is purely a matter of chance. There is no
physical difference whatsoever between a uranium atom that
is about to decay and one that is not about to decay. None.
Absolutely none.

There are at least two contexts in which to discuss these
issues: quantum mechanics and classical mechanics. Most of
this chapter is about classical mechanics, but for a moment let
us consider the quantum-mechanical context. It was this view
of quantum indeterminacy that prompted Einstein’s famous
statement (in a letter to his colleague Max Born) that “you
believe in a God who plays dice, and I in complete law and
order.” To my mind, there is something distinctly fishy about
the orthodox physical view of quantum indeterminacy, and I
appear not to be alone, because, increasingly, many physicists
are beginning to wonder whether Einstein was right all along
and something is missing from conventional quantum
mechanics—perhaps “hidden variables,” whose values tell an
atom when to decay. (I hasten to add that this is not the con-
ventional view.) One of the best known of them, the Princeton
physicist David Bohm, devised a modification of quantum
mechanics that is fully deterministic but entirely consistent
with all the puzzling phenomena that have been used to sup-
port the conventional view of quantum indeterminacy.
Bohm’s ideas have problems of their own, in particular a kind
of “action at a distance” that is no less disturbing than quan-
tum indeterminacy.

However, even if quantum mechanics is correct about

indeterminacy on the smallest scales, on macroscopic scales
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of space and time the universe obeys deterministic laws. This
results from an effect called decoherence, which causes suffi-
ciently large quantum systems to lose nearly all of their inde-
terminacy and behave much more like Newtonian systems. In
effect, this reinstates classical mechanics for most human-
scale purposes. Horses, the weather, and Einstein’s celebrated
dice are not unpredictable because of quantum mechanics.
On the contrary, they are unpredictable within a Newtonian
model, too. This is perhaps not so surprising when it come to
horses—living creatures have their own hidden variables,
such as what kind of hay they had for breakfast. But it was
definitely a surprise to those meteorologists who had been
developing massive computer simulations of weather in the
hope of predicting it for months ahead. And it is really rather
startling when it comes to dice, even though humanity per-
versely uses dice as one of its favorite symbols for chance.
Dice are just cubes, and a tumbling cube should be no less
predictable than an orbiting planet: after all, both objects obey
the same laws of mechanical motion. They’re different
shapes, but equally regular and mathematical ones.

To see how unpredictability can be reconciled with deter-
minism, think about a much less ambitious system than the
entire universe—namely, drops of water dripping from a tap.*
This is a deterministic system: in principle, the flow of water
into the apparatus is steady and uniform, and what happens
to it when it emerges is totally prescribed by the laws of fluid
motion. Yet a simple but effective experiment demonstrates
that this evidently deterministic system can be made to

behave unpredictably; and this leads us to some mathematical

*In the United States: a faucet.
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“lateral thinking,” which explains why such a paradox is
possible.

If you turn on a tap very gently and wait a few seconds for
the flow to settle down, you can usually produce a regular
series of drops of water, falling at equally spaced times in a
regular rhythm. It would be hard to find anything more pre-
dictable than this. But if you slowly turn the tap to increase
the flow, you can set it so that the sequence of drops falls in a
very irregular manner, one that sounds random. It may take a
little experimentation to succeed, and it helps if the tap turns
smoothly. Don’t turn it so far that the water falls in an unbro-
ken stream; what you want is a medium-fast trickle. If you get
it set just right, you can listen for many minutes without any
obvious pattern becoming apparent.

In 1978, a bunch of iconoclastic young graduate students
at the University of California at Santa Cruz formed the
Dynamical Systems Collective. When they began thinking
about this water-drop system, they realized that it’s not as
random as it appears to be. They recorded the dripping noises
with a microphone and analyzed the sequence of intervals
between each drop and the next. What they found was short-
term predictability. If I tell you the timing of three successive
drops, then you can predict when the next drop will fall. For
example, if the last three intervals between drops have been
0.63 seconds, 1.17 seconds, and 0.44 seconds, then you can be
sure that the next drop will fall after a further 0.82 seconds.
(These numbers are for illustrative purposes only.) In fact, if
you know the timing of the first three drops exactly, then you
can predict the entire future of the system.

So why is Laplace wrong? The point is that we can never

measure the initial state of a system exactly. The most precise
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measurements yet made in any physical system are correct to
about ten or twelve decimal places. But Laplace’s statement is
correct only if we can make measurements to infinite preci-
sion, infinitely many decimal places—and of course there’s
no way to do that. People knew about this problem of mea-
surement error in Laplace’s day, but they generally assumed
that provided you made the initial measurements to, say, ten
decimal places, then all subsequent prediction would also be
accurate to ten decimal places. The error would not disap-
pear, but neither would it grow.

Unfortunately, it does grow, and this prevents us from
stringing together a series of short-term predictions to get one
that is valid in the long term. For example, suppose I know
the timing of the first three water drops to an accuracy of ten
decimal places. Then I can predict the timing of the next drop
to nine decimal places, the drop after that to eight decimal
places, and so on. At each step, the error grows by a factor of
about ten, so I lose confidence in one further decimal place.
Therefore, ten steps into the future, I really have no idea at all
what the timing of the next drop will be. (Again, the precise
figures will probably be different: it may take half a dozen
drops to lose one decimal place in accuracy, but even then it
takes only sixty drops until the same problem arises.)

This amplification of error is the logical crack through
which Laplace’s perfect determinism disappears. Nothing
short of total perfection of measurement will do. If we could
measure the timing to a hundred decimal places, our predic-
tions would fail a mere hundred drops into the future (or six
hundred, using the more optimistic estimate). This phenome-
non is called “sensitivity to initial conditions,” or more infor-
mally “the butterfly effect.” (When a butterfly in Tokyo flaps
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its wings, the result may be a hurricane in Florida a month
later.) It is intimately associated with a high degree of irregu-
larity of behavior. Anything truly regular is by definition
fairly predictable. But sensitivity to initial conditions renders
behavior unpredictable—hence irregular. For this reason, a
system that displays sensitivity to initial conditions is said to
be chaotic. Chaotic behavior obeys deterministic laws, but it
is so irregular that to the untrained eye it looks pretty much
random. Chaos is not just complicated, patternless behavior;
it is far more subtle. Chaos is apparently complicated, appar-
ently patternless behavior that actually has a simple, deter-
ministic explanation.

The discovery of chaos was made by many people, too
numerous to list here. It came about because of the conjunc-
tion of three separate developments. One was a change of sci-
entific focus, away from simple patterns such as repetitive
cycles, toward more complex kinds of behavior. The second
was the computer, which made it possible to find approxi-
mate solutions to dynamical equations easily and rapidly.
The third was a new mathematical viewpoint on dynamics—a
geometric rather than a numerical viewpoint. The first pro-
vided motivation, the second provided technique, and the
third provided understanding.

The geometrization of dynamics began about a hundred
years ago, when the French mathematician Henri Poincaré—a
maverick if ever there was one, but one so brilliant that his
views became orthodoxies almost overnight—invented the
concept of a phase space. This is an imaginary mathematical
space that represents all possible motions of a given dynami-
cal system. To pick a nonmechanical example, consider the

population dynamics of a predator-prey ecological system.
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The predators are pigs and the prey are those exotically pun-
gent fungi, truffles. The variables upon which we focus atten-
tion are the sizes of the two populations—the number of pigs
(relative to some reference value such as one million) and the
number of truffles (ditto). This choice effectively makes the
variables continuous—that is, they take real-number values
with decimal places, not just whole-number values. For
example, if the reference number of pigs is one million, then a
population of 17,439 pigs corresponds to the value 0.017439.
Now, the natural growth of truffles depends on how many
truffles there are and the rate at which pigs eat them: the
growth of the pig population ciepends on how many pigs
there are and how many truffles they eat. So the rate of
change of each variable depends on both variables, an obser-
vation that can be turned into a system of differential equa-
tions for the population dynamics. I won’t write them down,
because it’s not the equations that matter here: it’s what you
do with them.

These equations determine—in principle—how any initial
population values will change over time. For example, if we
start with 17,439 pigs and 788,444 truffles, then you plug in
the initial values 0.017439 for the pig variable and 0.788444
for the truffle variable, and the equations implicitly tell you
how those numbers will change. The difficulty is to make the
implicit become explicit: to solve the equations. But in what
sense? The natural reflex of a classical mathematician would
be to look for a formula telling us exactly what the pig popu-
lation and the truffle population will be at any instant. Unfor-
tunately, such “explicit solutions” are so rare that it is
scarcely worth the effort of looking for them unless the equa-

tions have a very special and limited form. An alternative is
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to find approximate solutions on a computer; but that tells us
only what will happen for those particular initial values, and
most often we want to know what will happen for a lot of dif-
ferent initial values.

Poincaré’s idea is to draw a picture that shows what hap-
pens for all initial values. The state of the system—the sizes of
the two populations at some instant of time—can be repre-
sented as a point in the plane, using the old trick of coordi-
nates. For example, we might represent the pig population by
the horizontal coordinate and the truffle population by the
vertical one. The initial state described above corresponds to
the point with horizontal coordinate 0.017439 and vertical
coordinate 0.788444. Now let time flow. The two coordinates
change from one instant to the next, according to the rule
expressed by the differential equation, so the corresponding
point moves. A moving point traces out a curve; and that
curve is a visual representation of the future behavior of the
entire system. In fact, by looking at the curve, you can “see”
important features of the dynamics without worrying about
the actual numerical values of the coordinates.

For example, if the curve closes up into a loop, then the
two populations are following a periodic cycle, repeating the
same values over and over again—just as a car on a racetrack
keeps going past the same spectator every lap. If the curve
homes in toward some particular point and stops, then the
populations settle down to a steady state, in which neither
changes—Ilike a car that runs out of fuel. By a fortunate coin-
cidence, cycles and steady states are of considerable ecologi-
cal significance—in particular, they set both upper and lower
limits to populations sizes. So the features that the eye detects

most easily are precisely the ones that really matter. More-
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over, a lot of irrelevant detail can be ignored: for example, we
can see that there is a closed loop without having to work out
its precise shape (which represents the combined “wave-
forms” of the two population cycles).

What happens if we try a different pair of initial values?
We get a second curve. Each pair of initial values defines a
new curve; and we can capture all possible behaviors of the
system, for all initial values, by drawing a complete set of
such curves. This set of curves resembles the flow lines of an
imaginary mathematical fluid, swirling around in the plane.
We call the plane the phase space of the system, and the set of
swirling curves is the system’s phase portrait. Instead of the
symbol-based idea of a differential equation with various ini-
tial conditions, we have a geometric, visual scheme of points
flowing through pig/truffle space. This differs from an ordi-
nary plane only in that many of its points are potential rather
than actual: their coordinates correspond to numbers of pigs
and truffles that could occur under appropriate initial condi-
tions, but may not occur in a particular case. So as well as the
mental shift from symbols to geometry, there is a philosophi-
cal shift from the actual to the potential.

The same kind of geometric picture can be imagined for
any dynamical system. There is a phase space, whose coordi-
nates are the values of all the variables; and there is a phase
portrait, a system of swirling curves that represents all possi-
ble behaviors starting from all possible initial conditions, and
that are prescribed by the differential equations. This idea
constitutes a major advance, because instead of worrying
about the precise numerical details of solutions to the equa-
tions, we can focus upon the broad sweep of the phase por-

trait, and bring humanity’s greatest asset, its amazing image-
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processing abilities, to bear. The image of a phase space as a
way of organizing the total range of potential behaviors, from
among which nature selects the behavior actually observed,
has become very widespread in science.

The upshot of Poincaré’s great innovation is that dynamics
can be visualized in terms of geometric shapes called attrac-
tors. If you start a dynamical system from some initial point
and watch what it does in the long run, you often find that it
ends up wandering around on some well-defined shape in
phase space. For example, the curve may spiral in toward a
closed loop and then go around and around the loop forever.
Moreover, different choices of initial conditions may lead to
the same final shape. If so, that shape is known as an attrac-
tor. The long-term dynamics of a system is governed by its
attractors, and the shape of the attractor determines what type
of dynamics occurs.

For example, a system that settles down to a steady state
has an attractor that is just a point. A system that settles down
to repeating the same behavior periodically has an attractor
that is a closed loop. That is, closed loop attractors corre-
spond to oscillators. Recall the description of a vibrating vio-
lin string from chapter 5; the string undergoes a sequence of
motions that eventually puts it back where it started, ready to
repeat the sequence over and over forever. I'm not suggesting
that the violin string moves in a physical loop. But my
description of it is a closed loop in a metaphorical sense: the
motion takes a round trip through the dynamic landscape of
phase space.

Chaos has its own rather weird geometry: it is associated
with curious fractal shapes called strange attractors. The butter-

fly effect implies that the detailed motion on a strange attractor
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can’t be determined in advance. But this doesn’t alter the fact
that it is an attractor. Think of releasing a Ping-Pong ball into a
stormy sea. Whether you drop it from the air or release it from
underwater, it moves toward the surface. Once on the surface, it
follows a very complicated path in the surging waves, but how-
ever complex that path is, the ball stays on—or at least very
near—the surface. In this image, the surface of the sea is an
attractor. So, chaos notwithstanding, no matter what the starting
point may be, the system will end up very close to its attractor.

Chaos is well established as a mathematical phenomenon,
but how can we detect it in the real world? We must perform
experiments—and there is a problem. The traditional role of
experiments in science is to test theoretical predictions, but if
the butterfly effect is in operation—as it is for any chaotic sys-
tem—how can we hope to test a prediction? Isn’t chaos inher-
ently untestable, and therefore unscientific?

The answer is a resounding no, because the word “predic-
tion” has two meanings. One is “foretelling the future,” and the
butterfly effect prevents this when chaos is present. But the
other is “describing in advance what the outcome of an experi-
ment will be.” Think about tossing a coin a hundred times. In
order to predict—in the fortune-teller’s sense—what happens,
you must list in advance the result of each of the tosses. But
you can make scientific predictions, such as “roughly half the
coins will show heads,” without foretelling the future in
detail—even when, as here, the system is random. Nobody sug-
gests that statistics is unscientific because it deals with unpre-
dictable events, and therefore chaos should be treated in the
same manner. You can make all sorts of predictions about a
chaotic system; in fact, you can make enough predictions to

distinguish deterministic chaos from true randomness. One
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thing that you can often predict is the shape of the attractor,
which is not altered by the butterfly effect. All the butterfly
effect does is to make the system follow different paths on the
same attractor. In consequence, the general shape of the attrac-
tor can often be inferred from experimental observations.

The discovery of chaos has revealed a fundamental misun-
derstanding in our views of the relation between rules and the
behavior they produce—between cause and effect. We used to
think that deterministic causes must produce regular effects,
but now we see that they can produce highly irregular effects
that can easily be mistaken for randomness. We used to think
that simple causes must produce simple effects (implying that
complex effects must have complex causes), but now we
know that simple causes can produce complex effects. We
realize that knowing the rules is not the same as being able to
predict future behavior.

How does this discrepancy between cause and effect arise?
Why do the same rules sometimes produce obvious patterns
and sometimes produce chaos? The answer is to be found in
every kitchen, in the employment of that simple mechanical
device, an eggbeater. The motion of the two beaters is simple
and predictable, just as Laplace would have expected: each
beater rotates steadily. The motion of the sugar and the egg
white in the bowl, however, is far more complex. The two
ingredients get mixed up—that’s what eggbeaters are for. But
the two rotary beaters don’t get mixed up—you don’t have to
disentangle them from each other when you’ve finished. Why
is the motion of the incipient meringue so different from that
of the beaters? Mixing is a far more complicated, dynamic
process than we tend to think. Imagine trying to predict

where a particular grain of sugar will end up! As the mixture
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passes between the pair of beaters, it is pulled apart, to left
and right, and two sugar grains that start very close together
soon get a long way apart and follow independent paths. This
is, in fact, the butterfly effect in action—tiny changes in initial
conditions have big effects. So mixing is a chaotic process.

Conversely, every chaotic process involves a kind of math-
ematical mixing in Poincaré’s imaginary phase space. This is
why tides are predictable but weather is not. Both involve the
same kind of mathematics, but the dynamics of tides does not
get phase space mixed up, whereas that of the weather does.

It’s not what you do, it’s the way that you do it.

Chaos is overturning our comfortable assumptions about
how the world works. It tells us that the universe is far
stranger than we think. It casts doubt on many traditional
methods of science: merely knowing the laws of nature is no
longer enough. On the other hand, it tells us that some things
that we thought were just random may actually be conse-
quences of simple laws. Nature’s chaos is bound by rules. In
the past, science tended to ignore events or phenomena that
seemed random, on the grounds that since they had no obvi-
ous patterns they could not be governed by simple laws. Not
so. There are simple laws right under our noses—laws govern-
ing disease epidemics, or heart attacks, or plagues of locusts.
If we learn those laws, we may be able to prevent the disasters
that follow in their wake.

Already chaos has shown us new laws, even new types of
laws. Chaos contains its own brand of new universal patterns.
One of the first to be discovered occurs in the dripping tap.
Remember that a tap can drip rhythmically or chaotically,
depending on the speed of the flow. Actually, both the regu-
larly dripping tap and the “random” one are following slightly
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different variants of the same mathematical prescription. But as
the rate at which water passes through the tap increases, the
type of dynamics changes. The attractor in phase space that
represents the dynamics keeps changing—and it changes in a
predictable but highly complex manner.

Start with a regularly dripping tap: a repetitive drip-drip-
drip-drip rhythm, each drop just like the previous one. Then
turn the tap slightly, so that the drips come slightly faster.
Now the rhythm goes drip-DRIP-drip-DRIP, and repeats every
two drops. Not only the size of the drop, which governs how
loud the drip sounds, but also the timing changes slightly
from one drop to the next.

If you allow the water to flow slightly faster still, you get a
four-drop rhythm: drip-DRIP-drip-DRIP. A little faster still,
and you produce an eight-drop rhythm: drip-DRIP-drip-DRIP-
drip-DRIP-drip-DRIP. The length of the repetitive sequence
of drops keeps on doubling. In a mathematical model, this
process continues indefinitely, with rhythmic groups of 16,
32, 64 drops, and so on. But it takes tinier and tinier changes
to the flow rate to produce each successive doubling of the
period; and there is a flow rate by which the size of the group
has doubled infinitely often. At this point, no sequence of
drops repeats exactly the same pattern. This is chaos.

We can express what is happening in Poincaré’s geometric
language. The attractor for the tap begins as a closed loop,
representing a periodic cycle. Think of the loop as an elastic
band wrapped around your finger. As the flow rate increases,
this loop splits into two nearby loops, like an elastic band
wound twice around your finger. This band is twice as long as
the original, which is why the period is twice as long. Then in

exactly the same way, this already-doubled loop doubles

121



122

NATURE’S NUMBERS

again, all the way along its length, to create the period-four
cycle, and so on. After infinitely many doublings, your finger
is decorated with elastic spaghetti, a chaotic attractor.

This scenario for the creation of chaos is called a period-
doubling cascade. In 1975, the physicist Mitchell Feigenbaum
discovered that a particular number, which can be measured
in experiments, is associated with every period-doubling cas-
cade. The number is roughly 4.669, and it ranks alongside n
(pi) as one of those curious numbers that seem to have extra-
ordinary significance in both mathematics and its relation to
the natural world. Feigenbaum’s number has a symbol, too:
the Greek letter d (delta). The number = tells us how the cir-
cumference of a circle relates to its diameter. Analogously,
Feigenbaum’s number & tells us how the period of the drips
relates to the rate of flow of the water. To be precise, the extra
amount by which you need to turn on the tap decreases by a
factor of 4.669 at each doubling of the period.

The number = is a quantitative signature for anything
involving circles. In the same way, the Feigenbaum number &
is a quantitative signature for any period-doubling cascade,
no matter how it is produced or how it is realized experimen-
tally. That very same number shows up in experiments on lig-
uid helium, water, electronic circuits, pendulums, magnets,
and vibrating train wheels. It is a new universal pattern in
nature, one that we can see only through the eyes of chaos; a
quantitative pattern, a number, emerges from a qualitative
phenomenon. One of nature’s numbers, indeed. The Feigen-
baum number has opened the door to a new mathematical
world, one we have only just begun to explore.

The precise pattern found by Feigenbaum, and other pat-

terns like it, is a matter of fine detail. The basic point is that
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even when the consequences of natural laws seem to be pat-
ternless, the laws are still there and so are the patterns. Chaos
is not random: it is apparently random behavior resulting
from precise rules. Chaos is a cryptic form of order.

Science has traditionally valued order, but we are begin-
ning to appreciate the fact that chaos can offer science distinct
advantages. Chaos makes it much easier to respond quickly to
an outside stimulus. Think of tennis players waiting to
receive a serve. Do they stand still? Do they move regularly
from side to side? Of course not. They dance erratically from
one foot to the other. In part, they are trying to confuse their
opponents, but they are also getting ready to respond to any
serve sent their way. In order to be able to move quickly in
any particular direction, they make rapid movements in many
different directions. A chaotic system can react to outside
events much more quickly, and with much less effort, than a
nonchaotic one. This is important for engineering control
problems. For example, we now know that some kinds of tur-
bulence result from chaos—that’s what makes turbulence look
random. It may prove possible to make the airflow past an air-
craft’s skin much less turbulent, and hence less resistant to
motion, by setting up control mechanisms that respond
extremely rapidly to cancel out any small regions of incipient
turbulence. Living creatures, too, must behave chaotically in
order to respond rapidly to a changing environment.

This idea has been turned into an extremely useful practi-
cal technique by a group of mathematicians and physicists,
among them William Ditto, Alan Garfinkel, and Jim Yorke:
they call it chaotic control. Basically, the idea is to make the
butterfly effect work for you. The fact that small changes in

initial conditions create large changes in subsequent behavior
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can be an advantage; all you have to do is ensure that you get
the large changes you want. Our understanding of how
chaotic dynamics works makes it possible to devise control
strategies that do precisely this. The method has had several
successes. Space satellites use a fuel called hydrazine to make
course corrections. One of the earliest successes of chaotic
control was to divert a dead satellite from its orbit and send it
out for an encounter with an asteroid, using only the tiny
amount of hydrazine left on board. NASA arranged for the
satellite to swing around the Moon five times, nudging it
slightly each time with a tiny shot of hydrazine. Several such
encounters were achieved, in an operation that successfully
exploited the occurrence of chaos in the three-body problem
(here, Earth/Moon/satellite) and the associated butterfly
effect.

The same mathematical idea has been used to control a
magnetic ribbon in a turbulent fluid—a prototype for control-
ling turbulent flow past a submarine or an aircraft. Chaotic
control has been used to make erratically beating hearts return
to a regular rhythm, presaging invention of the intelligent
pacemaker. Very recently, it has been used both to set up and
to prevent rhythmic waves of electrical activity in brain tissue,
opening up the possibility of preventing epileptic attacks.

Chaos is a growth industry. Every week sees new discover-
ies about the underlying mathematics of chaos, new applica-
tions of chaos to our understanding of the natural world, or
new technological uses of chaos—including the chaotic dish-
washer, a Japanese invention that uses two rotating arms,
spinning chaotically, to get dishes cleaner using less energy;
and a British machine that uses chaos-theoretic data analysis

to improve quality control in spring manufacture.
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Much, however, remains to be done. Perhaps the ultimate
unsolved problem of chaos is the strange world of the quan-
tum, where Lady Luck rules. Radioactive atoms decay “at ran-
dom”; their only regularities are statistical. A large quantity of
radioactive atoms has a well-defined half-life—a period of
time during which half the atoms will decay. But we can’t
predict which half. Albert Einstein’s protest, mentioned ear-
lier, was aimed at just this question. Is there really no differ-
ence at all between a radioactive atom that is not going to
decay, and one that’s just about to? Then how does the atom
know what to do?

Might the apparent randomness of quantum mechanics be
fraudulent? Is it really deterministic chaos? Think of an atom
as some kind of vibrating droplet of cosmic fluid. Radioactive
atoms vibrate very energetically, and every so often a smaller
drop can split off—decay. The vibrations are so rapid that we
can’t measure them in detail: we can only measure averaged
quantities, such as energy levels. Now, classical mechanics
tells us that a drop of real fluid can vibrate chaotically. When
it does so, its motion is deterministic but unpredictable. Occa-
sionally, “at random,” the vibrations conspire to split off a
tiny droplet. The butterfly effect makes it impossible to say in
advance just when the drop will split; but that event has pre-
cise statistical features, including a well defined half-life.

Could the apparently random decay of radioactive atoms
be something similar, but on a microcosmic scale? After all,
why are there any statistical regularities at all? Are they traces
of an underlying determinism? Where else can statistical reg-
ularities come from? Unfortunately, nobody has yet made this
seductive idea work—though it’s similar in spirit to the fash-

ionable theory of superstrings, in which a subatomic particle
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is a kind of hyped-up vibrating multidimensional loop. The
main similar feature here is that both the vibrating loop and
the vibrating drop introduce new “internal variables” into the
physical picture. A significant difference is the way these two
approaches handle quantum indeterminacy. Superstring the-
ory, like conventional quantum mechanics, sees this indeter-
minacy as being genuinely random. In a system like the drop,
however, the apparent indeterminacy is actually generated by
a deterministic, but chaotic, dynamic. The trick—if only we
knew how to do it—would be to invent some kind of structure
that retains the successful features of superstring theory,
while making some of the internal variables behave chaoti-
cally. It would be an appealing way to render the Deity’s dice

deterministic, and keep the shade of Einstein happy.



CHAPTER 9

DROPS, DYNAMICS, AND DAISIES

Chaos teaches us that systems obeying simple rules can
behave in surprisingly complicated ways. There are important
lessons here for everybody—managers who imagine that
tightly controlled companies will automatically run
smoothly, politicians who think that legislating against a
problem will automatically eliminate it, and scientists who
imagine that once they have modeled a system their work is
complete. But the world cannot be totally chaotic, otherwise
we would not be able to survive in it. In fact, one of the rea-
sons that chaos was not discovered sooner is that in many
ways our world is simple. That simplicity tends to disappear
when we look below the surface, but on the surface it is still
there. Our use of language to describe our world rests upon
the existence of underlying simplicities. For example, the
statement “foxes chase rabbits” makes sense only because it
captures a general pattern of animal interaction. Foxes do
chase rabbits, in the sense that if a hungry fox sees a rabbit
then it is likely to run after it.

However, if you start to look at the details, they rapidly
become so complicated that the simplicity is lost. For exam-

ple, in order to perform this simple act, the fox must recog-
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nize the rabbit as a rabbit. Then it must put its legs into gear
to run after it. In order to comprehend these actions, we must
understand vision, pattern recognition in the brain, and loco-
motion. In chapter 7, we investigated the third item, locomo-
tion, and there we found the intricacies of physiology and
neurology—bones, muscles, nerves, and brains. The action of
muscles in turn depends on cell biology and chemistry; chem-
istry depends on quantum mechanics; and quantum mechan-
ics may, in turn, depend on the much-sought Theory of Every-
thing, in which all of the laws of physics come together in a
single unified whole. If instead of locomotion we pursue the
path opened by vision or pattern recognition, we again see the
same kind of ever-branching complexity.

The task looks hopeless—except that the simplicities we
start from exist, so either nature uses this enormously com-
plex network of cause and effect or it sets things up so that
most of the complexity doesn’t matter. Until recently, the nat-
ural paths of investigation in science led deeper and deeper
into the tree of complexity—what Jack Cohen and I have
called the “reductionist nightmare.”” We have learned a lot
about nature by going that route—especially regarding how to
manipulate it to our own ends. But we have lost sight of the
big simplicities because we no longer see them as being sim-
ple at all. Recently, a radically different approach has been
advocated, under the name complexity theory. Its central
theme is that large-scale simplicities emerge from the com-
plex interactions of large numbers of components.

In this final chapter, I want to show you three examples of

simplicity emerging from complexity. They are not taken

“In The Collapse of Chaos.
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from the writings of the complexity theorists; instead I have
chosen them from the mainstream of modern applied mathe-
matics, the theory of dynamical systems. There are two rea-
sons why I have done this. One is that I want to show that the
central philosophy of complexity theory is popping up all
over science, independently of any explicit movement to pro-
mote it. There is a quiet revolution simmering, and you can
tell because the bubbles are starting to break the surface. The
other is that each piece of work solves a long-standing puzzle
about mathematical patterns in the natural world—and in so
doing opens our eyes to features of nature that we would not
otherwise have appreciated. The three topics are the shape of
water drops, the dynamic behavior of animal populations,
and the strange patterns in plant-petal numerology, whose
solution I promised in the opening chapter.

To begin, let us return to the question of water dripping
slowly from a tap. Such a simple, everyday phenomenon—yet
it has already taught us about chaos. Now it will teach us
something about complexity. This time we do not focus on
the timing of successive drops. Instead, we look at what shape
the drop takes up as it detaches from the end of the tap.

Well, it’s obvious, isn’t it? It must be the classic “teardrop”
shape, rather like a tadpole; round at the head and curving
away to a sharp tail. After all, that’s why we call such a shape
a teardrop.

But it’s not obvious. In fact, it’s not true.

When I was first told of this problem, my main surprise
was that the answer had not been found long ago. Literally
miles of library shelves are filled with scientific studies of
fluid flow; surely somebody took the trouble to look at the

shape of a drop of water? Yet the early literature contains only

129



130

NATURE'S NUMBERS

one correct drawing, made over a century ago by the physicist
Lord Rayleigh, and is so tiny that hardly anybody noticed it.
In 1990, the mathematician Howell Peregrine and colleagues
at Bristol University photographed the process and discov-
ered that it is far more complicated—but also far more inter-
esting—than anybody would ever imagine.

The formation of the detached drop begins with a bulging
droplet hanging from a surface, the end of the tap. It develops
a waist, which narrows, and the lower part of the droplet
appears to be heading toward the classic teardrop shape. But
instead of pinching off to form a short, sharp tail, the waist

lengthens into a long thin cylindrical thread with an almost

FIGURE 4.
The shapes taken by a falling drop of water as it becomes detached.

:
:
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spherical drop hanging from its end. Then the thread starts to
narrow, right at the point where it meets the sphere, until it
develops a sharp point. At this stage, the general shape is like
a knitting needle that is just touching an orange. Then the
orange falls away from the needle, pulsating slightly as it
falls. But that’s only half the story. Now the sharp end of the
needle begins to round off, and tiny waves travel back up the
needle toward its root, making it look like a string of pearls
that become tinier and tinier. Finally, the hanging thread of
water narrows to a sharp point at the top end, and it, too,
detaches. As it falls, its top end rounds off and a complicated
series of waves travels along it.

I hope you find this as astonishing as I do. I had never
imagined that falling drops of water could be so busy.

These observations make it clear why nobody had previ-
ously studied the problem in any great mathematical detail.
It’s too hard. When the drop detaches, there is a singularity in
the problem—a place where the mathematics becomes very
nasty. The singularity is the tip of the “needle.” But why is
there a singularity at all? Why does the drop detach in such a
complex manner? In 1994, J. Eggers and T. F. Dupont showed
that the scenario is a consequence of the equations of fluid
motion. They simulated those equations on a computer and
reproduced Peregrine’s scenario.

It was a brilliant piece of work. But in some respects it
does not provide a complete answer to my question. It is reas-
suring to learn that the equations of fluid flow do predict the
correct scenario, but that in itself doesn’t help me understand
why that scenario happens. There is a big difference between
calculating nature’s numbers and getting your brain around
the answer—as Majikthise and Vroomfondel discovered when

the answer was “Forty-two.”
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Further insight into the mechanism of detaching drops has
come about through the work of X. D. Shi, Michael Brenner,
and Sidney Nagel, of the University of Chicago. The main
character in the story was already present in Peregrine’s work:
it is a particular kind of solution to the equations of fluid flow
called a “similarity solution.” Such a solution has a certain
kind of symmetry that makes it mathematically tractable: it
repeats its structure on a smaller scale after a short interval of
time. Shi’s group took this idea further, asking how the shape
of the detaching drop depends on the fluid’s viscosity. They
performed experiments using mixtures of water and glycerol
to get different viscosities. They also carried out computer
simulations and developed the theoretical approach via simi-
larity solutions. What they discovered is that for more viscous
fluids, a second narrowing of the thread occurs before the sin-
gularity forms and the drop detaches. You get something more
like an orange suspended by a length of string from the tip of
a knitting needle. At higher viscosities still, there is a third
narrowing—an orange suspended by a length of cotton from a
length of string from the tip of a knitting needle. And as the
viscosity goes up, so the number of successive narrowings
increases without limit—at least, if we ignore the limit
imposed by the atomic structure of matter.

Amazing!

The second example is about population dynamics. The
use of that phrase reflects a long tradition of mathematical
modeling in which the changes in populations of interacting
creatures are represented by differential equations. My
pig/truffle system was an example. However, there is a lack of
biological realism in such models—and not just as regards my
choice of creatures. In the real world, the mechanism that

governs population sizes is not a “law of population,” akin to
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Newton’s law of motion. There are all kinds of other effects:
for example, random ones (can the pig dig out the truffle or is
there a rock in the way?) or types of variability not included
in the equations (some pigs habitually produce more piglets
than others).

In 1994, Jacquie McGlade, David Rand, and Howard Wil-
son, of Warwick University, carried out a fascinating study
that bears on the relation between more biologically realistic
models and the traditional equations. It follows a strategy
common in complexity theory: set up a computer simulation
in which large numbers of “agents” interact according to
biologically plausible (though much simplified) rules, and
try to extract large-scale patterns from the results of that
simulation. In this case, the simulation was carried out by
means of a “cellular automaton,” which you can think of as
a kind of mathematical computer game. McGlade, Rand, and
Wilson, lacking my bias in favor of pigs, considered the
more traditional foxes and rabbits. The computer screen is
divided into a grid of squares, and each square is assigned a
color—say, red for a fox, gray for a rabbit, green for grass,
black for bare rock. Then a system of rules is set up to model
the main biological influences at work. Examples of such

rules might be:

e If a rabbit is next to grass, it moves to the position of
the grass and eats it.

e If a fox is next to a rabbit, it moves to the position of
the rabbit and eats it.

e At each stage of the game, a rabbit breeds new rabbits
with some chosen probability.

¢ A fox that has not eaten for a certain number of moves

will die.
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McGlade’s group played a more complicated game than this,
but you get the idea. Each move in the game takes the current
configuration of rabbits, foxes, grass, and rock, and applies
the rules to generate the next configuration—tossing com-
puter “dice” when random choices are required. The process
continues for several thousand moves, an “artifical ecology”
that plays out the game of life on a computer screen. This arti-
ficial ecology resembles a dynamical system, in that it repeat-
edly applies the same bunch of rules; but it also includes ran-
dom effects, which places the model in a different
mathematical category altogether: that of stochastic cellular
automata—computer games with chance.

Precisely because the ecology is an artificial one, you can
perform experiments that are impossible, or too expensive, to
perform in a real ecology. You can, for example, watch how
the rabbit population in a given region changes over time, and
get the exact numbers. This is where McGlade’s group made a
dramatic and surprising discovery. They realized that if you
look at too tiny a region, what you see is largely random. For
example, what happens on a single square looks extremely
complicated. On the other hand, if you look at too large a
region, all you see is the statistics of the population, averaged
out. On intermediate scales, though, you may see something
less dull. So they developed a technique for finding the size
of region that would provide the largest amount of interesting
information. They then observed a region of that size and
recorded the changing rabbit population. Using methods
developed in chaos theory, they asked whether that series of
numbers was deterministic or random, and if deterministic,
what its attractor looked like. This may seem a strange thing
to do, inasmuch as we know that the rules for the simulation

build in a great deal of randomness, but they did it anyway.
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What they found was startling. Some 94 percent of the
dynamics of the rabbit population on this intermediate scale
can be accounted for by deterministic motion on a chaotic
attractor in a four-dimensional phase space. In short, a differ-
ential equation with only four variables captures the impor-
tant features of the dynamics of the rabbit population with
only a 6-percent error—despite the far greater complexities of
the computer-game model. This discovery implies that mod-
els with small numbers of variables may be more “realistic”
than many biologists have hitherto assumed. Its deeper impli-
cation is that simple large-scale features can and do emerge
from the fine structure of complex ecological games.

My third and final example of a mathematical regularity of
nature that emerges from complexity rather than having been
“built in with the rules” is the number of petals of flowers. I
mentioned in chapter 1 that the majority of plants have a
number of petals taken from the series 3, 5, 8, 13, 21, 34, 55,
89. The view of conventional biologists is that the flower’s
genes specify all such information, and that’s really all there
is to it. However, just because living organisms have compli-
cated DNA sequences that determine which proteins they are
made of, and so on, it doesn’t follow that genes determine
everything. And even if they do, they may do so only indi-
rectly. For example, genes tell plants how to make chloro-
phyll, but they don’t tell the plants what color the chlorophyll
has to be. If it’s chlorophyll, it’s green—there’s no choice. So
some features of the morphology of living creatures are
genetic in origin and some are a consequence of physics,
chemistry, and the dynamics of growth. One way to tell the
difference is that genetic influences have enormous flexibil-
ity, but physics, chemistry, and dynamics produce mathemat-

ical regularities.
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The numbers that arise in plants—not just for petals but
for all sorts of other features—display mathematical regulari-
ties. They form the beginning of the so-called Fibonacci
series, in which each number is the sum of the two that pre-
cede it. Petals aren’t the only places you find Fibonacci num-
bers, either. If you look at a giant sunflower, you find a
remarkable pattern of florets—tiny flowers that eventually
become seeds—in its head. The florets are arranged in two
intersecting families of spirals, one winding clockwise, the
other counterclockwise. In some species the number of clock-
wise spirals is thirty-four, and the number of counterclock-
wise spirals is fifty-five. Both are Fibonacci numbers, occur-
ring consecutively in the series. The precise numbers depend
on the species of sunflower, but you often get 34 and 55, or 55
and 89, or even 89 and 144, the next Fibonacci number still.
Pineapples have eight rows of scales—the diamond-shaped
markings—sloping to the left, and thirteen sloping to the
right.

Leonardo Fibonacci, in about 1200, invented his series in
a problem about the growth of a population of rabbits. It
wasn’t as realistic a model of rabbit-population dynamics as
the “game of life” model I've just discussed, but it was a very
interesting piece of mathematics nevertheless, because it was
the first model of its kind and because mathematicians find
Fibonacci numbers fascinating and beautiful in their own
right. The key question for this chapter is this: If genetics can
choose to give a flower any number of petals it likes, or a pine
cone any number of scales that it likes, why do we observe
such a preponderance of Fibonacci numbers?

The answer, presumably, has to be that the numbers arise

through some mechanism that is more mathematical than
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arbitrary genetic instructions. The most likely candidate is
some kind of dynamic constraint on plant development,
which naturally leads to Fibonacci numbers. Of course,
appearances may be deceptive, it could be all in the genes.
But if so, I'd like to know how the Fibonacci numbers got
turned into DNA codes, and why it was those numbers.
Maybe evolution started with the mathematical patterns that
occurred naturally, and fine-tuned them by natural selection.
I suspect a lot of that has happened—tigers’ stripes, butter-
flies’ wings. That would explain why geneticists are con-
vinced the patterns are genetic and mathematicians keep
insisting they are mathematical.

The arrangement of leaves, petals, and the like in plants
has a huge and distinguished literature. But early approaches
are purely descriptive—they don’t explain how the numbers
relate to plant growth, they just sort out the geometry of the
arrangements. The most dramatic insight yet comes from
some very recent work of the French mathematical physicists
Stéphane Douady and Yves Couder. They devised a theory of
the dynamics of plant growth and used computer models and
laboratory experiments to show that it accounts for the
Fibonacci pattern.

The basic idea is an old one. If you look at the tip of the
shoot of a growing plant, you can detect the bits and pieces
from which all the main features of the plant—leaves, petals,
sepals, florets, or whatever—develop. At the center of the tip
is a circular region of tissue with no special features, called
the apex. Around the apex, one by one, tiny lumps form,
called primordia. Each primordium migrates away from the
apex—or, more accurately, the apex grows away from the

lump—and eventually the lump develops into a leaf, petal, or
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the like. Moreover, the general arrangement of those features
is laid down right at the start, as the primordia form. So basi-
cally all you have to do is explain why you see spiral shapes
and Fibonacci numbers in the primordia.

The first step is to realize that the spirals most apparent to
the eye are not fundamental. The most important spiral is
formed by considering the primordia in their order of appear-
ance. Primordia that appear earlier migrate farther, so you can
deduce the order of appearance from the distance away from
the apex. What you find is that successive primordia are
spaced rather sparsely along a tightly wound spiral, called the
generative spiral. The human eye picks out the Fibonacci spi-
rals because they are formed from primordia that appear near
each other in space; but it is the sequence in time that really
matters.

The essential quantitative feature is the angle between suc-
cessive primordia. Imagine drawing lines from the centers of
successive primordia to the center of the apex and measuring
the angle between them. Successive angles are pretty much
equal; their common value is called the divergence angle. In
other words, the primordia are equally spaced—in an angular
sense—along the generative spiral. Moreover, the divergence
angle is usually very close to 137.5°, a fact first emphasized in
1837 by the crystallographer Auguste Bravais and his brother
Louis. To see why that number is significant, take two consec-
utive numbers in the Fibonacci series: for example, 34 and 55.
Now form the corresponding fraction 34/55 and multiply by
360°, to get 222.5°. Since this is more than 180°, we should
measure it in the opposite direction round the circle—or,
equivalently, subtract it from 360°. The result is 137.5°, the

value observed by the Bravais brothers.
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The ratio of consecutive Fibonacci numbers gets closer
and closer to the number 0.618034. For instance, 34/55 =
0.6182 which is already quite close. The limiting value is
exactly (V5-1)/2, the so-called golden number, often denoted
by the Greek letter phi (¢). Nature has left a clue for mathe-
matical detectives: the angle between successive primordia is
the “golden angle” of 360(1-9)° = 137.5°. In 1907, G. Van Iter-
son followed up this clue and worked out what happens
when you plot successive points on a tightly wound spiral
separated by angles of 137.5°. Because of the way neighboring
points align, the human eye picks out two families of inter-
penetrating spirals—one winding clockwise and the other
counterclockwise. And because of the relation between
Fibonacci numbers and the golden number, the numbers of
spirals in the two families are consecutive Fibonacci num-
bers. Which Fibonacci numbers depends on the tightness of
the spiral. How does that explain the numbers of petals? Basi-
cally, you get one petal at the outer edge of each spiral in just
one of the families.

At any rate, it all boils down to explaining why successive
primordia are separated by the golden angle: then everything
else follows.

Douady and Couder found a dynamic explanation for the
golden angle. They built their ideas upon an important insight
of H. Vogel, dating from 1979. His theory is again a descrip-
tive one—it concentrates on the geometry of the arrangement
rather than on the dynamics that caused it. He performed
numerical experiments which strongly suggested that if suc-
cessive primordia are placed along the generative spiral using
the golden angle, they will pack together most efficiently. For

instance, suppose that, instead of the golden angle, you try a
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FIGURE §.

Successive dots arranged at angles of 137.5° to each other along a
tightly wound spiral (not shown) naturally fall into two families of
loosely wound spirals that are immediately apparent to the eye. Here
there are 8 spirals in one direction and 13 in the other—consecutive
Fibonacci numbers.

divergence angle of 90°, which divides 360° exactly. Then
successive primordia are arranged along four radial lines
forming a cross. In fact, if you use a divergence angle that is a
rational multiple of 360°, you always get a system of radial
lines. So there are gaps between the lines and the primordia
don’t pack efficiently. Conclusion: to fill the space efficiently,
you need a divergence angle that is an irrational multiple of
360°—a multiple by a number that is not an exact fraction.

But which irrational number? Numbers are either irrational or
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not, but—like equality in George Orwell’s Animal Farm—
some are more irrational than others. Number theorists have
long known that the most irrational number is the golden
number. It is “badly approximable” by rational numbers, and
if you quantify how badly, it’s the worst of them all. Which,
turning the argument on its head, means that a golden diver-
gence angle should pack the primordia most closely. Vogel’s
computer experiments confirm this expectation but do not
prove it with full logical rigor.

The most remarkable thing Douady and Couder did was to
obtain the golden angle as a consequence of simple dynamics
rather than to postulate it directly on grounds of efficient
packing. They assumed that successive elements of some
kind—representing primordia—form at equally spaced inter-
vals of time somewhere on the rim of a small circle, represent-
ing the apex; and that these elements then migrate radially at
some specified initial velocity. In addition, they assume that
the elements repel each other—like equal electric charges, or
magnets with the same polarity. This ensures that the radial
motion keeps going and that each new element appears as far
as possible from its immediate predecessors. It’s a good bet
that such a system will satisfy Vogel’s criterion of efficient
packing, so you would expect the golden angle to show up of
its own accord. And it does.

Douady and Couder performed an experiment—not with
plants, but using a circular dish full of silicone oil placed in a
vertical magnetic field. They let tiny drops of magnetic fluid
fall at regular intervals of time into the center of the dish. The
drops were polarized by the magnetic field and repelled each
other. They were given a boost in the radial direction by mak-

ing the magnetic field stronger at the edge of the dish than it
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was in the middle. The patterns that appeared depended on
how big the intervals between drops were; but a very preva-
lent pattern was one in which successive drops lay on a spiral
with divergence angle very close to the golden angle, giving a
sunflower-seed pattern of interlaced spirals. Douady and
Couder also carried out computer calculations, with similar
results. By both methods, they found that the divergence
angle depends on the interval between drops according to a
complicated branching pattern of wiggly curves. Each section
of a curve between successive wiggles corresponds to a partic-
ular pair of numbers of spirals. The main branch is very close
to a divergence angle of 137.5°, and along it you find all possi-
ble pairs of consecutive Fibonacci numbers, one after the
other in numerical sequence. The gaps between branches rep-
resent “bifurcations,” where the dynamics undergoes signifi-
cant changes.

Of course, nobody is suggesting that botany is quite as per-
fectly mathematical as this model. In particular, in many
plants the rate of appearance of primordia can speed up or
slow down. In fact, changes in morphology—whether a given
primordium becomes a leaf or a petal, say—often accompany
such variations. So maybe what the genes do is affect the tim-
ing of the appearance of the primordia. But plants don’t need
their genes to tell them how to space their primordia: that’s
done by the dynamics. It’s a partnership of physics and genet-
ics, and you need both to understand what’s happening.

Three examples, from very different parts of science. Each,
in its own way, an eye-opener. Each a case study in the ori-
gins of nature’s numbers—the deep mathematical regularities
that can be detected in natural forms. And there is a common

thread, an even deeper message, buried within them. Not that
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nature is complicated. No, nature is, in its own subtle way,
simple. However, those simplicities do not present them-
selves to us directly. Instead, nature leaves clues for the math-
ematical detectives to puzzle over. It’s a fascinating game,
even to a spectator. And it’s an absolutely irresistible one if

you are a mathematical Sherlock Holmes.
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EPILOGVUE

MORPHOMATICS

1 have another dream.

My first dream, the Virtual Unreality Machine, is just a
piece of technology. It would help us visualize mathematical
abstractions, encourage us to develop new intuition about
them, and let us ignore the tedious bookkeeping parts of
mathematical inquiry. Mostly, it would make it easier for
mathematicians to explore their mental landscape. But
because they sometimes create new bits of that landscape as
they wander around it, the Virtual Unreality Machine would
play a creative role, too. In fact, it—or something like it—will
soon exist.

I call my second dream “morphomatics.” It is not a matter
of technology; it is a way of thinking. Its creative importance
would be immense. But I have no idea whether it will ever
come into being, or even whether it is possible.

I hope it is, because we need it.

The three examples in the previous chapter—liquid drops,
foxes and rabbits, and petals—are very different in detail, but
they illustrate the same philosophical point about how the
universe works. It does not go directly from simple laws, like

the laws of motion, to simple patterns, like the elliptical
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orbits of the planets. Instead, it passes through an enormous
tree of ramifying complexity, which somehow collapses out
again into relatively simple patterns on appropriate scales.
The simple statement “a drop falls off the tap” is accom-
plished by way of an amazingly complex and surprising
sequence of transitions. We do not yet know why those transi-
tions derive from the laws of fluid flow, although we have
computer evidence that they do. The effect is simple, the
cause is not. The foxes, rabbits, and grass play a mathematical
computer game with complicated and probabilistic rules. Yet
important features of their artificial ecology can be repre-
sented to 94-percent accuracy by a dynamical system with
four variables. And the number of petals on a plant is a conse-
quence of a complex dynamic interaction between all the pri-
mordia, which just happens to lead, via the golden angle, to
Fibonacci numbers. The Fibonacci numbers are clues for the
mathematical Sherlock Holmeses to follow up—they are not
the master criminal behind those clues. In this case, the math-
ematical Moriarty is dynamics, not Fibonacci—nature’s mech-
anisms, not nature’s numbers.

There is a common message in these three mathematical
tales: nature’s patterns are “emergent phenomena.” They
emerge from an ocean of complexity like Botticelli’'s Venus
from her half shell—unheralded, transcending their origins.
They are not direct consequences of the deep simplicities of
natural laws; those laws operate on the wrong level for that.
They are without doubt indirect consequences of the deep sim-
plicities of nature, but the route from cause to effect becomes so
complicated that no one can follow every step of it.

If we really want to come to grips with the emergence of

pattern, we need a new approach to science, one that can
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stand alongside the traditional emphasis on the underlying
laws and equations. Computer simulations are a part of it, but
we need more. It is not satisfying to be told that some pattern
occurs because the computer says so. We want to know why.
And that means we must develop a new kind of mathematics,
one that deals with patterns as patterns and not just as acci-
dental consequences of fine-scale interactions.

I don’t want us to replace current scientific thinking,
which has brought us a long, long way. I want us to develop
something that complements it. One of the most striking fea-
tures of recent mathematics has been its emphasis on general
principles and abstract structures—on the qualitative rather
than the quantitative. The great physicist Ernest Rutherford
once remarked that “qualitative is just poor quantitative,” but
that attitude no longer makes much sense. To turn Ruther-
ford’s dictum on its head, quantitative is just poor qualitative.
Number is just one of an enormous variety of mathematical
qualities that can help us understand and describe nature. We
will never understand the growth of a tree or the dunes in the
desert if we try to reduce all of nature’s freedom to restrictive
numerical schemes.

The time is ripe for the development of a new kind of
mathematics, one that possesses the kind of intellectual rigor
that was the real point of Rutherford’s criticism of sloppy
qualitative reasoning, but has far more conceptual flexibility.
We need an effective mathematical theory of form, which is
why I call my dream “morphomatics.” Unfortunately, many
branches of science are currently headed in the opposite
direction. For example, DNA programming is often held to be
the sole answer to form and pattern in organisms. However,

current theories of biological development do not adequately
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explain why the organic and inorganic worlds share so many
mathematical patterns. Perhaps DNA encodes dynamic rules
for development rather than just encoding the final developed
form. If so, our current theories ignore crucial parts of the
developmental process.

The idea that mathematics is deeply implicated in natural
form goes back to D’Arcy Thompson; indeed, it goes back to
the ancient Greeks, maybe even to the Babylonians. Only very
recently, however, have we started to develop the right kind
of mathematics. Our previous mathematical schemes were
themselves too inflexible, geared to the constraints of pencil
and paper. For example, D’Arcy Thompson noticed similari-
ties between the shapes of various organisms and the flow
patterns of fluids, but fluid dynamics as currently understood
uses equations that are far too simple to model organisms.

If you watch a single-celled creature under a microscope,
the most amazing thing you see is the apparent sense of pur-
pose in the way it flows. It really does look as if it knows
where it is going. Actually, it is responding in a very specific
way to its environment and its own internal state. Biologists
are beginning to unravel the mechanisms of cellular motion,
and these mechanisms are a lot more complex than classical
fluid dynamics. One of the most important features of a cell is
the so-called cytoskeleton, a tangled network of tubes that
resembles a bale of straw and provides the cell interior with a
rigid scaffolding. The cytoskeleton is amazingly flexible and
dynamic. It can disappear altogether, under the influence of
certain chemicals, or it can be made to grow wherever support
is required. The cell moves about by tearing down its
cytoskeleton and putting it up somewhere else.

The main component of the cytoskeleton is tubulin, which

I mentioned earlier in connection with symmetries. As I said
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there, this remarkable molecule is a long tube composed of
two units, alpha- and beta-tubulin, arranged like the black
and white squares of a checkerboard. The tubulin molecule
can grow by adding new units, or it can shrink by splitting
backward from the tip, like a banana skin. It shrinks much
faster than it grows, but both tendencies can be stimulated by
suitable chemicals. The cell changes its structure by going
fishing with tubulin rods in a biochemical sea. The rods
themselves respond to the chemicals, which cause them to
extend, collapse, or wave around. When the cell divides, it
pulls itself apart on a tubulin web of its own creation.
Conventional fluid dynamics this is not. But it is undeni-
ably some kind of dynamics. The cell’s DNA may contain the
instructions for making tubulin, but it doesn’t contain the
instructions for how tubulin should behave when it encoun-
ters a particular kind of chemical. That behavior is governed
by the laws of chemistry—you can no more change it by writ-
ing new instructions in the DNA than you can write DNA
instructions that cause an elephant to fly by flapping its ears.
What is the fluid-dynamics analogue for tubulin networks in a
chemical sea? Nobody yet knows, but this is clearly a ques-
tion for mathematics as well as for biology. The problem is
not totally unprecedented: the dynamics of liquid crystals, a
theory of the patterns formed by long molecules, is similarly
puzzling. Cytoskeleton dynamics, however, is vastly more
complicated, because the molecules can change their size or
fall apart completely. A good dynamical theory of the
cytoskeleton would be a major component of morphomatics,
if only we had the foggiest idea how to understand the
cytoskeleton mathematically. It seems unlikely that differen-
tial equations will be the right tool for such a task, so we need

to invent whole new areas of mathematics, too.
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A tall order. But that is how mathematics grew in the first
place. When Newton wanted to understand planetary motion,
there was no calculus, so he created it. Chaos theory didn’t
exist until mathematicians and scientists got interested in that
kind of question. Morphomatics doesn’t exist today; but I
believe that some of its bits and pieces do—dynamical sys-
tems, chaos, symmetry breaking, fractals, cellular automata, to
name but a few.

It’s time we started putting the bits together. Because only
then will we truly begin to understand nature’s numbers—
along with nature’s shapes, structures, behaviors, interac-
tions, processes, developments, metamorphoses, evolutions,
revolutions. . . .

We may never get there. But it will be fun trying.
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analysis of snowflakes, 2,
14, 89; and planetary
motion, 14, 56, 57

Keynes, John Maynard, 48

Lake Huron, 88
Laplace, Pierre-Simon de,
107, 108, 111-12, 119

INDEX

Lateral thinking, 111

Leibniz, Gottfried, 16

Leopards, 8

Light, 16, 55, 69-70, 104; and
the eye, evolution of, 21,
22, 23; and holography,
29

Liquid crystals, 88, 89, 149

Liquid helium, 122

Liquids. See Fluid dynamics

Locomotion, 8-9, 128. See
also Gait analysis

Locusts, 120

Logic, and proof, 39-40, 43

Loops, 117, 126

McGlade, Jacquie, 133-34

Magic, vs. rationality, 48

Magnetism, 16, 55, 62, 90,
122; and complexity the-
ory, 141-42; in liquid-
crystal displays, 88; and
vibrations, 67-71

Majikthise (fictional charac-
ter) 131

Mandelbrot, Benoit, 10

Marconi, Guglielmo, 70

Mars, 4, 25-26, 57

Mass: and acceleration, in
Newton’s law of motion,
53-54; and energy, Ein-
stein’s theory of, 67

Material, elastic bending of,
55

Mathematics: applied, 17, 61;
and formulas, 59, 114-15;
and functions, 36-37, 54,
62; pure, 17, 61

Maxwell, James Clerk, 69-71,
90

Measurement, 35, 112—-13
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Mendel, Gregor, 19

Mercury, 4, 25

Meteorites, 45

Meteorology, 26, 110

Meteor showers, 14

Methane, 81

Microscopes, 148

Microtubles, 82, 85

Mirollo, Renato, 103—4

Mirror symmetry, 74, 75-77,
83, 89-90

Molecular structure, 19-20,
81, 88, 90

Momentum, laws of, 58

Moon, 3-4, 25-26, 53,
56-58

Morphology, 142

Morphomatics, 145, 147, 149,
150

Moscow State University, 58

Motion, 15-16, 145-146; and
acceleration, 15-17,
50-54; Newton’s law of,
53-55, 63, 65, 108, 133;
qualitative aspects of, 59;
and time reversal, 97

Movies, 40

Multiplication, 4-5, 35-36

Mutations, 21, 22

Muybridge, Eadweard, 94

Mysticism, 48

Nagel, Sidney, 132

NASA (National Aeronautics
and Space Administra-
tion), 124

Natural selection, 21, 22

Nautilus, 88

Newton, Isaac, 18, 47-49,
110, 149; law of motion,

15-16, 53-55, 63, 65, 108,
133; and patterns of
velocity, 50-52; theory of
gravity, 4, 53, 56—57; and
the vision of a clockwork
universe, 107

Newton, the Man (Keynes),
48

Nilsson, Daniel, 21, 22

Nonlinear dynamics. See
Chaos theory

Nothing, ideal of, 33

Numbers: complex, 34-35;
Fibonacci, 136, 138, 139,
142, 146; as the heart of
mathematics, 31-37;
imaginary, 34-35; irra-
tional/rational, 34,
140-41; positive/negative,
33-35, 52; prime, 43—44;
real, 34-35, 114; sets of,
37; as the simplest of
mathematical objects,
3—4; whole/natural, 35,
114

Numerology, 4-6, 128

Obijectivity, 47

On Growth and Form
(Thompson), 105

Operations, 35-37

Orion, 6

Orion’s belt, 24

Orwell, George, 141

Oscillators, 94-105

Oxygen consumption, 103

Parabolas, 49, 65
Pauli, Wolfgang, 89-90
Pelger, Susanne, 21-22



Pendulums, 122

Pentagons, 6-7

Peregrine, Howell, 130, 131,
132

Period-doubling cascade, 122

Periodicity, 66, 115

Peskin, Charles, 104

Petals. See Flowers

Phase portraits, 116

Phase space, 116, 120-21

Phi (¢), 139

Photocopying machines, 29

Photography, high-speed,
93-94

Pi (m), 38, 122

Pigs, 11416, 133

Pineapples, 136

Ping-Pong balls, 118

Pitch, 64

Plagues, 120

Planetary motion, 1-6, 14,
146, 150; and the inverse-
square law, 56, 58; and
Newton’s law of gravita-
tion, 56—-57; Ptolemy’s
theory of, 49; and random
drift, 58-59; and reso-
nances, 24—-26; and rota-
tions, 75; and the three-
body problem, 57-58, 59,
124; and the two-body
problem, 58

Plants, 128. See also Farm-
ing; Flowers

Poetry, 13

Poincaré, Henri, 113-15, 117,
120-22

Politics, 14

Pond, tossing pebble into,
77—-84, 96

INDEX

Population dynamics,
114-16, 132-36

Postmodernism, 47

Potato farming, 27, 28

Pragmatism, 18, 28, 39

Predator-prey ecological sys-
tems, 113-16

Prediction, 26-29, 107-8,
110-12, 118-19. See also
Chance

Primordia, 137-38, 141

Princeton University, 109

Principia Mathematica (Rus-
sell and Whitehead), 38

Prominence, metaphorical
feeling of, 38

Proof, 39-45

Proportionality, constant of,
53-54

Proteins, 82, 135

Ptolemy, 49

Puddles, 97

Puzzles, solving, 14

Pyramids, 81

Pythagoras, 38

Quadrupeds, 102

Qualitative description, 59,
122, 147

Quantum mechanics,
109-10, 126, 128

Rabbits, 127-28, 133-36,
145, 146

Radar, 28, 70

Radio, 28, 70

Radioactivity, 73, 109, 125

Rainbows, 2, 7

Raindrops, 83, 97

Rand, David, 133
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Rationality, 48

Rayleigh, Lord, 130

Realism, biological, 132,
135

“Reductionist nightmare,”
128

Reflections, 74-77, 97

Reification, 36—37. See also
“Thingification”

Relativity, principle of, 85

Religion, 14

Replication, 88

Resonances, 24-26

Retina, 21

Rhyﬂnns,93—105,111,124

Ripples, 7, 77-84, 96

Rotation, 75-77, 83, 88—89

Royal Institute, 68

Russell, Bertrand, 38

Russia, 78-79

Rutherford, Ernest, 147

Sahara desert, 7—-8. See also
Desert; Sand dunes

Sand dunes, 7-8, 87-88

Satellites, 11, 27, 124

Saturn, 4

Scale independence, 9-10

Science (journal), 103

Seabeds, 87—-88

Sheep, 32, 36

Shells, 8, 19-21, 88

Sherlock Holmes (fictional
character), 2—3, 143, 146

Shi, X. D., 132

SHIP/DOCK Theorem, 41,
42-43

Sidewinder, 8-9

Similarity solution, 132

Single-celled organisms, 148

Six-Cornered Snowflake, The
(Kepler), 1-2

Smith, Hugh, 103

Snail shells, 19-21

Snakes, 8-9

Snowflakes, 2-3, 14, 89

Solar System, 3-5, 25, 56—58.
See also Planetary motion

Sound, 16, 55, 67, 70, 96. See
also Vibration

Space: structure of, 85; three-
dimensional, 71

Spacecraft, 27-28

Speed, constant of, 50

Spiderwebs, 71

Spirals, 7-8, 19-21, 83-85,
88; and the golden angle,
139—42; and primordia,
138

Spots, 1,2, 8

Square roots, 34, 35-37

Stanford, Leland, 93-94

Starfish, 4, 8, 88

Stars: as spheres, 83; as
viewed by ancient civi-
lizations, 24

Statistical self-similarity, 10

Steady state systems, 95—96,
98

Storytelling, and mathemati-
cal proofs, 39-43

Striped patterns, 1, 2, 8, 88,
137

Strogatz, Steven, 103—4

Submarines, 124

Subtraction, 35-36

Sumerians, 48

Sun, 4-5, 26, 5658, 61. See
also Planetary motion;
Solar System



Sunflowers, 136

Superstrings, 125-26

Surveying, 62

Switzerland, 64, 65

Symmetry, 1, 8-9, 72-91;
axis, 74, 75—76; bilateral,
74-75, 83, 99; breaking,
spontaneous, 73-74,
85-87, 96, 98, 1014, 150;
and gait analysis, 99,
101-2; mirror, 74,
75-77, 83, 89—90; time-
translation, 96—98; trans-
formations, 36, 76

Synchronization, 80, 94,
103-5

Tables, of numbers, 37

Tadpoles, 129

Target patterns, 79—80

Taylor, Brook, 64, 66

Taylor, R. C., 103

Technology transfer, 88, 89

Telegraphy, 62, 70, 71

Telescopes, 26

Television, 27-28, 62, 70, 72

Temperature, 27, 34, 55

Tennis, 123

Tetrahedrons, 81

Thailand, 94

Theft, 37

“Thingification,” 36-37, 75

Thompson, D’Arcy, 105, 148

Tides, 7, 26, 120

Tigers, 1, 2, 8, 88, 95, 137

Tiles, 76, 77

Time: axis, 96—97; reversal,
97; structure of, 85

Transformations, 36, 74

Translations, 76, 77, 97—98
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Triangles, 6—7, 38
Trigonometry, 64
Truffles, 114-16, 133
Tubulin, 82, 148—49
Turbulence, 123, 124

Uniformity, 84

Universe, theories of, 83,
85-86, 90-91

University of California at
Santa Cruz, 111

University of Chicago, 132

Uranium atoms, 109

Van Iterson, G., 139

Velocity, 15-16, 50-52, 54,
141. See also Acceleration

Venus, 4

Vibration, 28, 61, 62-72, 117;
and change, 122, 125,
126; and heat, 81; and
Hopf bifurcation, 96

Videotape, 70-72

Violins, vibration of, 28, 61,
62-72. See also Vibration

Virtual Unreality Machine,
vii—x, 145

Viruses, 82, 86, 88

Vision, 21-22, 128

Vogel, H., 139-41

Volcanos, 83

Volta, Alessandro, 68

Vowels, 42-43

Vroomfondel (fictional char-
acter), 131

Warwick University, 133

Water, dripping, 110-13,
120-22, 129-32, 146. See
also Fluid dynamics
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Wave(s), 7, 77, 124; ampli- Winfree, Arthur, 79
tude of, 64; equations, 55, Worms, 8
65—67, 71; patterns, and
heart beats, 80-81; right-  Xerography, 29
ward-traveling, 65; and Xia, Zhihong, 58

vibrations, 64, 67, 70 X rays, 20
Weather patterns, 26, 110,

120 Year, length of, 3
Weight, 35, 52-53 Yorke, Jim, 123

Whirlpools, 83

Whitehead, Alfred North, 38  Zebras, 8, 88

William IV (king), 68 Zero, concept of, 33
Wilson, Howard, 133 Zhabotinskii, A. M., 78-79
Wind, 87 Zoetrope, 94



