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Foreword to the German Edition

The idea of symmetry can be viewed in very different ways: The narrowest
interpretation is limited to two-sided symmetry, as applied, more or less
exactly, to the external form of the human body. The broadest interpretation
understands by symmetry the property of anything that is in some way regular
and shows repetitions. Thus the cycle of seasons is symmetrical, since it
repeats itself periodically; but so, too, is a four-stroke engine, the decimal
expansion of %, a carpet pattern, an ornament or even a song or a poem. In
this sense we meet symmetry practically everywhere, especially in science
and art. Moreover, modern engineering production methods lead to highly
similar and in this sense mutually symmetric products.

The object of this book is to present selected examples of symmetry in
an understandable way. We do not aim for systematic completeness, but the
readers are given references to literature that will lead them further. For me it
is most important to “sharpen the eye” for the proper perception of symmetry
in the world around us. It will also be shown how symmetry can be used as
a methodological working tool.

On the theme of symmetry there is an extensive literature, often concen-
trating on a particular aspect. A classic, from any point of view, is the book
by Hermann Weyl [52]. In [20] physical and chemical aspects of symmetry
are predominantly treated; [45] links this up with philosophical reflections.
Aspects of symmetry in 2- and 3-dimensional geometry and in engineering
are described in [40]. Symmetry also plays a central role in various areas
of art, particularly ornamental art (compare [2], [7], [14]). One should
especially mention in this context the graphics of Maurits Cornelis Escher
(compare [13], [32]). Finally, symmetry has repeatedly been the theme of
exhibitions and conferences (compare [36], [S1]).
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viii Foreword to the German Edition

This book is directed towards students, schoolgirls and schoolboys, as well
asto their teachers and interested laymen. The text is modular in construction,
so that the individual chapters may be read independently of each other.
Questions are distributed throughout the text; these relate in part to further
aspects of the subject. The answers to these questions are gathered together
at the end of each chapter.

Many of the ideas worked out in this book go back to suggestions by my
students, to whom I am most grateful. For some examples I must thank my
colleague Peter Gallin. I owe particular thanks to my colleague Reto Schuppli
for a critical review of the text. I thank Mr. Jirgen Weiss of B. G. Teubner,
Leipzig publishers, for his generous supervision of this work.

Frauenfeld, December 1997 Hans Walser



Foreword to the English Edition

We have been faithful to the original German text, except that we have not
attempted the impossible task of translating German poetry or poetry in
Swiss dialect into appropriate English—we have simply omitted it. This
reasonable, if somewhat unambitious, course has the author’s full approval,
but it has, of course, led to a rather thin Chapter 6.

In one respect our fidelity to the original has unfortunate consequences
for the reader. We have retained the original references to German language
sources, even where an English language version of the reference exists—
for example, the reference to the classic text by Hermann Weyl in the
author’s foreword. It has only rarely been possible to find English language
alternatives to the original references, since the author has always chosen his
references to make, or to reinforce, very specific points. Where an appropriate
English language reference has been found it has been inserted but the
German reference has not been omitted. This accounts for the innovations
in the enumeration of the references.

We must emphasize that this monograph is not a comprehensive text cov-
ering an area of geometry. It was written to attract the reader to geometrical
ideas, especially those related to the concept of symmetry.

It is a pleasure to acknowledge the invaluable, and highly efficient,
assistance of my colleague Jean Pedersen in making this translation available
to the English-speaking—and non-German-speaking—world; and to express
my appreciation to my colleague Jerry Alexanderson for his careful perusal of
the translation. Finally, I am happy to acknowledge the invaluable assistance



X Foreword to the English Edition

of my colleagues Rudolf Fritsch and Branko Griinbaum in greatly improving
an early version of the translation.

Binghamton, June 2000 Peter Hilton

Author’s Note to English Addition

It is a pleasure to express my appreciation of the careful work done by my
colleagues Peter Hilton and Jean Pedersen in making available an English
version of my text.

I would also like to take this opportunity to thank Jerry Alexanderson for
his editorial work, and Elaine Pedreira Sullivan and Beverly Ruedi for their
careful attention to detail in the production of this translation.

Hans Walser
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CHAPTER 1
Little Mirror, Little Mirror

1.1 EVER FURTHER INWARDS

1.1.1 The Mirror in a Mirror in a Mirror

If we hold a round pocket-mirror close to our eye and stare into the bathroom
mirror, we see, by parallel placement of the two mirrors, a sequence of ever
smaller circles as mirror images of the pocket-mirror (Figure 1). How are
the radii of these circles related to each other? (It’s worthwhile actually
conducting the experiment and estimating the diameters of the circles.) Let

FIGURE 1
The mirror in a mirror
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FIGURE 2

The first image of the pocket mirror

us study the situation with the help of a diagram. The segment AB on the
straight line g represents the pocket mirror, looked at from above, and the
straight line h represents the parallel bathroom mirror. Suppose the observing
eye is at the point A. Then we obtain our first mirror image of the pocket
mirror according to Figure 2.

We mirror the endpoint B of the pocket mirror in the line - and join the
point so obtained to the eye A. The intersection B’ with the line & marks the
place where the point B will be seen in the bathroom mirror. The diameter
AT’ of the first image of the pocket-mirror is thus half the length of the real
diameter AB of the pocket-mirror.

Question 1.1 How high must a wall-mirror be, so that one can see oneself
in it from the top of one’s head to the soles of one’s feet?

The second (next smaller) image of the pocket mirror arises by reflecting
the line of sight one additional time, backwards and forwards (Figure 3).

The image-diameter A” B” is now just a quarter of the true diameter AB.
At this point I conjectured that, at the next stage, an eighth of the original
diameter would appear. This conjecture, however, is wrong; Figure 4 shows
that the third image of the pocket mirror has a diameter which is one sixth
of the true diameter.

Each successive image requires an additional reflection in the bathroom
mirror and in the pocket mirror itself; the diameter of the n'" image is the
%th part of the true diameter of the pocket mirror. If, instead of the true
pocket mirror diameter, we take one half of the diameter of the first image
as unit, we obtain for the image-diameters the sequence

?

1,

U] =

1
?47

w| =

b

N =

This sequence is called the harmonic sequence.
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FIGURE 3
The second image of the pocket mirror

A ,”l B/” h /

[+

FIGURE 4
The third image of the pocket mirror
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FIGURE 5
Avenue of poplars

1.1.2 An Avenue of Poplars

Such a harmonic sequence also appears in the theory of perspectives. Figure 5
shows, as an example of this, an avenue of poplars where, in fact, the poplars
have the same height and are equally spaced, and the observer is next to a
tree.

The poplars have, from front to back, apparent heights shortened by the
perspective, in the ratios

. 1 . 1 . 1 . 1

. § . § . Z . 3 A

This can be seen in Figure 6, where the view from the side is given. The eye
of the observer is at the point A; the perspectively shortened height B’C”
of the second tree is then one half of the height BC of the first tree. For the
third tree we obtain a perspectively shortened height of one third, etc.

1

FIGURE 6
View from the side
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FIGURE 7
The monitor in the monitor in the monitor

1.1.3 The Monitor in the Monitor

There is, however another “picture in the picture” situation, in which it is
not the harmonic sequence but a geometric sequence which turns up as the
sequence of length-ratios: If we place a video camera in front of a monitor
and show the image on the monitor, we obtain the situation in Figure 7.

We see—at least in theory—infinitely many monitors in the monitor. In
practice, in carrying out this experiment, there soon occur problems with the
intensity of the light, so that only a few monitors, boxed inside each other,
can be recognized.

If now the length of the second monitor isreduced by a factor f,0 < f < 1,
with respect to the first, the next monitor undergoes a shortening factor of
f2. The lengths of the monitors, boxed one inside the other, are thus related
as in the geometric sequence

Lofeof?efPoften.

A self-similarity occurs here: a partial picture, which consists of an
arbitrarily chosen image and all subsequent images, is similar, in the sense
of a central contraction, to the entire picture, the contraction factor (ratio of
magnification) is a power of f, and the center of contraction is the point of
accumulation “at infinity”.
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FIGURE 8
Four monitors

If we project back several monitors with a video camera, for example four
monitors, as in Figure 8, there occurs a situation, where there is not just one,
unique self-similarity center, but infinitely many.

In this situation we speak of a fractal [34]. In Figure 9 one of the monitors
is defective, and this has pervasive consequences, in that the dark monitor
reappears in infinitely many places in the other three monitors.

Figure 10 shows the situation in schematic form for the original monitors
and the first generation of images.

Figure 11 finally shows also all the subsequent generations, thus the
complete fractal.

FIGURE 9
A monitor is defective
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FIGURE 10 FIGURE 11
Schema The Fractal

Question 1.2 How big is the black part of Figure 11?
Question 1.3 How long is the diagonal from left top to right bottom?

A black-white color inversion produces from Figure 11 an affinely dis-
torted Sierpinski Triangle [34] (Figure 12).

1.2 SEEN FROM THE SIDE

In our discussion thus far, we were ourselves “in the picture”—we were
drawn into the optical events. Now we will try to stay outside the line of
sight, that is, to a certain extent to look at two mirrors from the side.

At the start of our considerations we have two parallel mirrors g and h. If
some shape, for example the ship in position 0 of Figure 13, is reflected in g,

N

N
N

FIGURE 12
The Sierpinski Triangle
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FIGURE 13
Reflections in g and h

we obtain a mirror-image ship (position 1). This ship has a “false”, that is, a
mirror-image spatial orientation. For example, the red side-lantern appears,
on this mirror-image ship, on the starboard side instead of the port side, and
the propeller, normally a right-handed screw, would now be a left-handed
Screw.

Question 1.4 Does the ship now appear to be going backwards?

Through a further reflection, this time in h, we obtain the ship in position
2. Here the red side-lantern is again on the right (starboard) side. The direct
passage from position 0 to position 2 is a translation. The ship could simply
have traveled forward twice the distance from g to h. The doubled distance
vector from g to h is then called the translation vector. 1f we reflect now
in g, then in h, then a second time in g and a second time in h, we obtain
position 4 (Figure 14), which corresponds to a translation by twice the given
translation vector.

If we imagine this translation carried out infinitely often, there appears a
translation-symmetric figure (Figure 15).

A translation-symmetric figure thus has no end and, since we may think of
the translation as carried out backwards infinitely often, also no beginning.
In practice it is thus always only a section of a translation-symmetric figure
which can be represented.

10 1L L

g h

FIGURE 14
Multiple reflection in parallel planes
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FIGURE 15

Translation symmetry

Answers to Questions

Answer 1.1 The mirror must be at least half as high as the person in question.
Moreover, the mirror must be hung at the correct height: the lower edge must
be at half the height of the eyes of the person being mirrored (Figure 16).
Also one cannot then see the soles of the feet.

Answer 1.2 For the surface area of the black squares we have:
2 3 4
1 1 1 1
= s Z 27 ( =
s=3+3(3) +o(3) +u(3) +
3 (3) 4 (3)
4 4 4

1
4

—
[ S

FIGURE 16
Wall-mirror
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FIGURE 17
The boundary of steps

Thus everything appears to have become black. In the fractal of Figure 11
the design has been faked, namely drawn so that not all the generations, but
only the first eight, are represented.

Answer 1.3 It follows from Pythagoras’ Theorem that the length of the
diagonal of a square is v/2 times the length of the side of the square.
But in Figure 11 the diagonal is the boundary of steps of ever finer height
(Figure 17). Each step, however, vertical and horizontal counted together, is
twice as long as a side of the square. Viewed in this way, the “diagonal”, as
boundary of such steps, also has this length.

Answer 1.4 The ship in mirror-image position 1 would, relative to its own
bow, travel forwards, since the engine would also have changed the rotational
direction of the shaft.



CHAPTER 9

Inside and Outside

2.1 REFLECTING IN A CIRCLE

If, on a square grid, a gridline h is chosen as axis of a straight-line reflection,
the reflection of lattice points can be done by “counting squares” (Figure 18).
In this way one half-plane is mapped onto the other half-plane.

Now we try, with a comparable procedure, to map the interior of a circle
on the exterior, and the other way round. This seems at first sight self-
contradictory, since the outside of a circle is much “bigger” than its interior.
However, Figure 19 shows a “square structure”, in which the “squares”
become smaller as one moves inwards. Thus, indeed, can a mapping of
A onto A’ be achieved, square by square.

FIGURE 18
Reflection in a gridline on a square grid

1 Here, and subsequently, the author has “reflection” where many standard English-language
texts would speak of “inversion.”

11
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FIGURE 19
Reflection in a circle

This mapping we call a circle-reflection (or inversion). The highlighted
circle h is called the reference circle; it corresponds to the axis of a
straightline-reflection. In constructing such a “‘circular square” pattern we
have choices, so we must clarify how the radii of the concentric circles for the
scalingt = ---,—-2, —1,0, 1, 2, - - are related to each other (Figure 20).
For that purpose, we imagine the “square pattern” further subdivided, so that
the quadrilaterals are almost squares.

We now study such a “near-square”, lying in a circular sector of angle
a radians at a distance r from the center of the circle (Figure 21). This
near-square has a side of length Ar in the radial direction and a side of length

FIGURE 20
r(t)="7
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i AM- FIGURE 21

Ar Near-squares

ar in the tangential direction. We may reason heuristically as follows. These
two lengths should be equal, so that Ar = ar. In terms of differentials we
obtain dr = ar, so, through separation of variables,

dr
r

:a’

and thus, through integration, In 7 = at+C1, so that, finally, 7(t) = Ce*’.
If we denote the radius of the reference-circle h by 7o, we get, from the
boundary condition 7(0) = 7, the function
r(t) = roe®t.

The radii depend exponentially on t. As t — —o0, 7 — 0; thus the interior
of the circle has room for infinitely many “squares”. For the further in-
vestigation of the mapping of A onto A’ polar coordinates are appropriate
(Figure 22).

The point A and its image A’ have the same polar angle ¢, and their polar
distances belong to equal and opposite t-values: thus

t

r=roe®, 1 =rge .

FIGURE 22
Polar coordinates
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Thus we obtain
rr’ = r(z,.

Remark If we choose a unit circle for the reference circle h, so thatrg = 1,
then the polar distances 7 and 7’ of a point and its image are reciprocals of
each other. In this case the mapping can be described in the complex plane
by w = f(2) = =.

z

2.2 COMPOSITION OF TWO CIRCLE-REFLECTIONS

We now study the case of two circle-reflections (or inversions) whose
reference-circles h and H are concentric, with radii 79 and Rg. Under
reflection in h the point A is mapped to the point A’; by reflection in H
the point A’ is mapped to the point A” (Figure 23). In the passage from A

to A’ we have 7’/ = r3; in going from A’ to A" we have r'r" = R3. For
the passage from A to A” we thus have - —9, so the composition of

two circle-reflections w1th concentrlc reference circles is a central dilatation
with magnification ratio —3 the center of dilatation is the common center
of the two reference- c1rcles

FIGURE 23
The composition of two circle-reflections
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FIGURE 24
Direct construction of the image point

2.3 DIRECT CONSTRUCTION OF THE IMAGE POINT

Figure 24 shows in two steps how, for a given point A in the interior of the
reference-circle h, the image point A’ may be constructed.

To prove the correctness of this construction we consider the right-angled
triangle M A’ B, (Figure 24b) with its right angle at B;. In this triangle 7o
is the length of M By, r is the length of the part M A of the hypotenuse, and
7’ is the length of the hypotenuse. By the similarity of the triangles M AB;
and M B, A’ we have rr’ = r3.

Question 2.1 How may the point A’ be constructed, when its pre-image A
lies outside the reference-circle h?

Question 2.2 Which are the fixed points of a circle-reflection?

2.4 CIRCLE-REFLECTION INVARIANTS

The usual straight-line reflection is a congruence mapping: thus the images
of straight lines, circles, squares, etc. are again straight lines, circles, squares,
etc. The circle-reflection is not a congruence mapping, since the bounded
interior of the reference-circle is mapped onto the unbounded exterior. Nev-
ertheless some configurations are such that their images are of the same kind.

A bishop on a chessboard follows along the diagonals of neighboring (“by
corners”) chessboard squares. A sequence of such diagonals lies naturally
on a straight line. The situation is very different in the case of the square
grid of Figure 19. Here a sequence of square-diagonals gives rise to a curved
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FIGURE 25
“Diagonal curves”

line of spiral shape (Figure 25). Precisely, a sequence of square-diagonals
gives rise to a broken line with vertices at the grid points of the square grid.
But if we subdivide the square grid ever finer and think of it provided with
square-diagonals, there arises a beautifully curved spiral. Reflection of this
spiral in the reference-circle h, which maps A to A’, gives rise to a spiral of
exactly the same kind. The two spirals are thus mirror images with respect to
circle-reflection in h. Moreover, they are obviously also mirror images with
respect to straight line reflection in the radial grid line s. For such a diagonal
spiral the polar angle ¢ increases, for each grid step in the radial direction,
by the same value «; « is the angle of intersection of two neighboring radial
grid lines. If we denote by ¢ the number of grid steps from h towards the
exterior, then the relation ¢ = at holds, so that t = %. Since r(t) = roe*,
the diagonal spiral is represented in polar coordinates by the equation

r(‘-p-) = rge?.
a

The diagonal spiral is thus the graph of an exponential function drawn in
polar coordinates. In general a spiral with the polar representation

r($) = roe™?

is called a logarithmic spiral, since the polar angle ¢ depends logarithmically

on the polar distance r. Figure 26 shows a logarithmic spiral with m = %
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b)

FIGURE 26
A logarithmic spiral with m = 1

With this spiral a unit-square in the radial direction arises from 5 unit-
squares in the tangential direction; the “gradient” is thus m = % In general,
a logarithmic spiral with gradient m is transformed, under a circle-reflection
in areference-circle concentric with the spiral center, into a logarithmic spiral
with a gradient (—m). In a logarithmic spiral the angle to the radial gridlines
is always the same, namely 3 = arc cotm.

A logarithmic spiral thus follows a constant course 3 with respect to
the grid-center. Such curves appear in the real world. For a few insects,
for example, for bees, the lateral placing of the immovable eyes has the
consequence that the insects fly towards an object in view, for example a
flower, with a systematic angular error 3; the flight curve is thus a logarithmic
spiral. Also, in aviation and navigation, constant courses are adopted; the
curves thus arising, the so-called loxodromes, are, in view of the sphericity
of the earth, not logarithmic spirals, but they can be approximated by such
curves near the poles.

Figure 27a shows a loxodrome, in which, for two unit-squares in the
easterly direction, there occurs a unit-square in the northerly direction. It
cuts each meridian at an angle arctan 2 = 63.43°, and so follows a constant
course of 63.43°. Figure 27b shows the same loxodrome as viewed from the
north. In Figure 28 (from [32, p. 318]) we recognize the same loxodrome as
the basis of the design.
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a)

FIGURE 27
Loxodrome with constant course

Question 2.3 How long is a logarithmic spiral from reference-circle to its
innermost point?

Question 2.4 Which curves are given by the polar equations 7(¢) =
ap+b, r(¢)= 27

FIGURE 28
M. C. Escher: Spherical surface with fish, July 1958. ©) 1997 Cordon
Art—Baam—Holland. All rights reserved.
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Question 2.5 How long is the loxodrome of Figure 27 from South Pole to
North Pole?

2.5 IMAGE OF A STRAIGHT LINE

We study the image of a straight line g under a circle-reflection in a reference-
circle h. To this end we choose a Cartesian coordinate system such that A is
given by the equation 22 + y? = r2 and g is given by the equation z = ¢
(Figure 29a).

The line g is then given in polar coordinates by the equation ¢ = 7 cos ¢.
Since rr’ =13, the equation for the image figure, in polar coordinates,
is

r = ﬁ cos¢.
c
The points which satisfy this equatlon lie on the circle having the line-
segment Jomlng M(0,0) and B’(Jl 0) as diameter (see Figure 29a). The
image ¢’ of g is thus a circle through M itself. The center M of h can,
however, be interpreted as the image of the point at infinity on g. The tangent
to ¢’ at M is parallel to g.

Remark The image of a straight line g is, of course, also a circle if G
intersects the reference-circle (Figure 29b). In this case g’ may simply be
described as the circle through M and the two fixed points Fj and F5.

FIGURE 29
Image of a straight line
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FIGURE 30
The angle remains fixed

Question 2.6 Are there exceptional straight lines whose image under a
circle-reflection is not a circle?

We can now show that the angle is preserved under a circle-reflection
in h. The angle of intersection of two curves is defined as the angle of
intersection of their tangents at the point of intersection A (Figure 30).
But this angle is equal to the angle between the image circles of the two
tangents to the curves at M and is thus equal to the angle at the image
point A’.

A mapping under which angles are preserved is called angle-preserving
or conformal. Conformal mappings play an important role in cartography
in the construction of angle-preserving maps.

Circle-reflections are conformal mappings.

In particular, right angles are preserved under conformal mappings. The
image of a Cartesian square lattice is thus itself an orthogonal network,
consisting of orthogonal circles through M (Figure 31).

Question 2.7 How did the gothic quatrefoil window in the center of
Figure 31 arise?
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FIGURE 31
Image of a square lattice

2.6 REPRESENTATION IN CARTESIAN COORDINATES

We consider a Cartesian coordinate system with the center M of the
reference-circle as origin (Figure 32). With the notations A(z,y) and

A'(x',y'), we can write r = /22 + 32, r' = /2% +y'? and %/ = ’7/

FIGURE 32
Representation in Cartesian coordinates
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Since 77’ = rZ, it further follows that

This yields the mapping equations

z Y
xl=r2____’ I:TQ—‘
0 2y YTy Y2
Remark For the inverse mapping we have the symmetric mapping equa-

tions

’ ’
2 z 2 Y
=7 ——— =7 —s.
0 2 +y12’ y 0 772 +y12

2.7 IMAGE OF A CIRCLE

The image of a circle k concentric with the reference-circle h is again a
circle k' concentric with h; for the radii p, p’ of the circles k, k' we have
pp’ = r2. A circle k through the center M of h has as image a straight line.
We study now the image of a circle k£ which is neither concentric with A nor
passes through M (Figure 33). In an appropriate Cartesian coordinate system
such a circle k with center at (u,0) and radius p is given by the equation
(z — u)? + y? = p?. By substituting from the mapping equations for the

6
Nl
~

FIGURE 33
Image of a circle
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inverse mapping, we obtain from this for the image figure k' the equation

x/ 2 y/ 2
2 2 2
(7’0 T2 + y2 - u) + (TO 2 + y/2) =p-

We manipulate this into the form
rg = 2urgz’ + w3 (2 + y?) = p* (2" + y?).

This is again the equation of a circle; it can be brought into the form

ur? \? rp \°
’ 0 2 __ 0
(m_u2~p2) i "(uhp?)

The image &’ of the circle k is thus a circle with center (v, 0) and radius o/,
where

2 2
o Ury ;. ToP

T p u?— p2

2,2
Remark We have uu’ = H # r3; this means that the center of one
circle is not mapped onto the center of the other.

Under a straightline reflection, a circle which cuts the axis of reflection
orthogonally is fixed (Figure 34a).

The same is true with a circle-reflection; a circle k£ which cuts the
reference-circle h orthogonally is a fixed circle (Figure 34b). In this situation
we have, from Pythagoras’ Theorem, u? — p? = rZ. Hence

,__urg f__Top

u? — p? ’

u?—p2
Remark Thus, with circle-reflections, circles and straight lines are trans-
formed, according to the situation, into circles and/or straight lines. It is

FIGURE 34
Fixed circles
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FIGURE 35
The Mobius band

therefore meaningful to subsume both ideas under one all-embracing idea.
The concept of Mébius circle brings together circles and straight lines; a
MGobius circle is one or the other. Under a circle-reflection the image of a
MGobius circle is always a Mobius circle. The name Mdbius circle reminds
us of A. F. Mébius.

August Ferdinand Mébius (born 17/11/1790 in Schulpforta, died
26/9/1868 in Leipzig) was, after studies at Leipzig University and study
leave in Géttingen and Halle, called in 1816 on the recommendation of
Gauss to Leipzig. In 1820 he became Director of the Observatory, and in
1844 full professor for astronomy and mechanics. He contributed decisively
to the education of Gymnasium (academic high school) teachers in the
kingdom of Saxony and was heavily involved in the new orientation of
geometry in the first half of the 19th century. He is also the discoverer of
the Mébius band (Figure 35). A Mdbius band is easily constructed from a
strip of paper, into which one introduces a single twist before sticking the
ends together. The Mdbius band has some interesting topological properties.
It is a “one-sided surface”, that is, it has no “inside” and “outside”. If we
start anywhere on the apparent outside to color the band we find ourselves,
as we continue the work, suddenly on the apparent inside. The ants of
Figure 36 (from [32, p. 324]) pass without problem from the apparent
outside to the apparent inside, without having to climb over the edge of the
strip.

Question 2.8 What happens if we try to cut a Mdbius band in two along the
center line?
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FIGURE 36

M. C. Escher: Mébius strips II (Red
Forest Ants), 1963. (©) 1997 Cordon
Art-Baarn—Holland. All rights
reserved.

The concept of circle-reflection can be extended to sphere-reflection in
3-dimensional space. Then the inside of the sphere is mapped onto the outside
and conversely.

Question 2.9 How does a mathematician catch a lion?

2.8 SQUARE-REFLECTION

The idea of reflecting from the inside to the outside and vice versa can be
carried over to other closed figures. For the inspiration of this idea I must
thank Georg Schierscher. In Figure 37 a reflection in a square of side length
2 is represented. The “reflection in a square” is defined as follows: the point
A’ lies on the same ray emanating from the center M of the square as the
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FIGURE 37
Reflection in a square

original point A. The point R, with now a variable polar distance, which
we still denote by 7y, is the intersection of the ray with the square. For the
polar distances r and 7’ of A and A’, respectively, we have the relationship
rr’ =13

Question 2.10 Express the mapping equations of this reflection in a square
in Cartesian coordinates. How does the image of the square grid parallel to
the axes look? What is the image of the square grid turned through 45°?

2.9 OTHER REFLECTIONS

Question 2.11 What problem presents itself if one reflects in a parabola p
of the parabolic network of Figure 38 by “counting the unit squares™?
Further “near-reflections” are considered in [4].

FIGURE 38
Reflection in a parabola?
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a) b)

FIGURE 39
The point A lies outside h

Answers to Questions

Answer 2.1 The construction proceeds in the reverse sequence according
to Figure 39.

Answer 2.2 Precisely the points of the reference-circle h are the fixed
points.

Answer 2.3 A path-length ds on a logarithmic spiral has, in view of the
constant course, a radial variation given by dr = ds cos 8. Thus the length
of the logarithmic spiral from the reference-circle & with radius r¢ to its
innermost point is given by so = Z25.

Answer 2.4 A linear function 7(¢) = a¢ + b in polar coordinates yields an
archimedean spiral (Figure 40a). For an archimedean spiral the radial differ-
ence between two revolutions is always the same, namely, 7(¢+27) —r(¢) =
2a7. Such spirals arise from the rolling up of material of constant thickness
(rolls of carpet, rolls of film, rolls of toilet paper). The mirror-image of
an archimedean spiral in a circle-reflection is no longer an archimedean
spiral.

The function r(¢) = ¢ yields a hyperbolic spiral, which, in view of its
appearance, is also known as a bishop’s staff or crosier (Figure 40b). We
see such a hyperbolic spiral when we look at a screw in the direction of its
axis, for example, by looking at the central shaft of a winding staircase.
Answer 2.5 According to the Theorem of Pythagoras, the arc length
for a unit length in the northerly direction is v/5 times this unit length
(Figure 41). The entire loxodrome length is thus v/5 times the meridian
length. For the loxodrome with constant course 3 the length, from Pole
to Pole, is —l—B times the meridian length. Thus it is also clear that, in

cos
general, the loxodrome does not constitute the shortest path on the spherical
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a) b)

FIGURE 40
Archimedean and hyperbolic spirals

FIGURE 41
Arc length of the loxodrome

FIGURE 42
Image of a straight line through the
center
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surface. The shortest path is given by arcs of great circles. Nevertheless
on sea journeys the loxodrome is preferred on practical grounds (constant
course) when the difference in length is not too great.

Answer 2.6 A straight line g through the center M is a fixed line, though
not a line of fixed points. It has only the two diametrical fixed points F}
and F5. As to the other points, the inner and outer points are exchanged; the
point M is mapped to the point at infinity, and conversely (Figure 42). The
image straight line g’ can be viewed as a circle of infinite radius.

Answer 2.7 Figure 31 is the image of a bounded Cartesian square network;
the region runs in both dimensions from —12 to +12. The gothic quatrefoil
window is the image of the boundary square with x = +12 and y = +12
under reflection in a circle.

Answer 2.8 The Mobius band cannot literally be cut in two along its center
line. If attempted, there results a single band, twice as long and with a double
twist. Try it!

Answer 2.9 He (or she) sits in the center of an empty lion cage and comes
out through a reflection in a sphere. Then he (or she) is outside and the lion is
inside. Indeed, all lions are then in the cage. Moreover, the mathematician,
and the rest of humanity, no longer have their hearts in the right place.
(Translator’s note: the lion cage is assumed spherical.)

Answer 2.10 For the mapping equations we need a separation of cases. If
ly| < |z| we have

and if |y| > |z| we have

/ T / Yy
== Yy ==.
y? y?

Figure 43a shows the image of the gridline y = const. Instead of the circles of

a) b)

FIGURE 43
Image of the square network parallel to the axes
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FIGURE 44
Image of the square network turned through 45°

Figure 31 we obtain curves which are put together from quadratic parabolae
and line segments. Figure 43b shows the image of the entire square grid
parallel to the axes. Figure 44 shows the image of the square grid turned
through 45°.

Answer 2.11 The mirror image is not uniquely defined; there is an “upper”
and a “lower” solution (Figure 45).

FIGURE 45
The mirror image is not uniquely defined.



CHAPTER 3
Symmetric Procedure

In this section symmetry is employed, in exemplary fashion, as a method.
It is shown that reasoning, construction and calculation are often simplified
if the approach, as in building a tunnel, is made “from both ends inwards”.
The subject matter treated in this section includes central points, in the sense
of centers of gravity (or centroid) of triangles and quadrilaterals.

3.1 CENTER OF GRAVITY IN THE TRIANGLE

The center of gravity S of a triangle is the common intersection point of
the 3 medians (Figure 46). This center of gravity is both “vertex center
of gravity” (Figure 46a) and “surface (or area) center of gravity” (Figure
46b) of the triangle. “Vertex center of gravity” means that S is the center of
gravity of 3 equal point-masses at the 3 vertices (Figure 46a). If we denote

FIGURE 46
The center of gravity of a triangle

31
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the position vector of the vertex A; by @; and the position vector of the center
of gravity S with §, then this means that

2
Z(al - 5) = 67
=0

from which the formula
1
§= g(—'o +d; + ds)
follows.
“Surface center of gravity” means that S is the center of gravity of a
homogeneous triangular plate (Figure 46b). For computing purposes this

reads
// (& — §)dzdy =0,

triangle

which leads us to the same formula for 3.

Question 3.1 What is the “edge center of gravity” of a triangle?

Question 3.2 Each median bisects the triangular surface. Do the other
straight lines through the center of gravity bisect the triangular surface?

3.2 CENTERS OF GRAVITY IN THE QUADRILATERAL

In the quadrilateral the vertex center of gravity and the surface center of
gravity no longer coincide (see [26], [43]). For the construction of the
vertex center of gravity, we may think of the vertices as divided into two
“dumbbells”, whose centers of gravity are the midpoints of the linking
segments. The vertex center of gravity can thus be constructed as the
midpoint of the segment M; M3 (Figure 47), or equally well as the midpoint
of the segment My M, (Figure 48).

For the position vector € of the vertex center of gravity F we have, by
analogy with the center of gravity of a triangle:

I
e:Z(a0+a1+a2+a3).

To determine the surface center of gravity F' of the quadrilateral, we divide
it by a diagonal into two triangles and construct for each triangle its center
of gravity (Figure 49a).
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b)

FIGURE 47
Vertex center of gravity in the quadrilateral

FIGURE 48
Symmetric procedure

FIGURE 49
Subdivision into triangles

33
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FIGURE 50
Surface center of gravity of a quadrilateral

The surface center of gravity F must now lie on the segment SyS; and
must divide the segment in the ratio inverse to the corresponding area ratios.
This calculation of the ratio can however be avoided if we carry our the ana-
logous “symmetric” construction with a second diagonal of the quadrilateral
(Figure 49b). The surface center of gravity is then the intersection of the
segments SyS, and S; S5 (Figure 50a).

Remark On the basis of Figure 50a we conjecture that the quadrilateral
S0S152S3 with vertices the 4 triangle centers of gravity is similar to the
original quadrilateral AgA; A2 A3 (Figure 50b). Notice that, in both Figure
50a and Figure 50b, the diagonals have been omitted for clarity.

This conjecture is indeed valid. From 5y = $(d; + @ + d3) it follows
that
i, 3. 1., . . "
200+ 480 = Z(ao +a; +dz+ds) =¢€
This means that the vertex center of gravity E lies on the segment AoSy
and divides it in the ratio 3:1. The same holds for the remaining seg-
ments A;S;. Thus the central dilatation with center E and stretch fac-
tor —% maps the starting quadrilateral AgA; A2 A3 onto the quadrilateral
S0.51.52:53. The surface center of gravity F' is the intersection of the diagonals
of the quadrilateral SyS;.52.53 and thus the image, under this dilatation, of
the intersection D of the diagonals of the quadrilateral AgA; A2As. Thus
we have: In an arbitrary quadrilateral AgA; Az A the intersection of the
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FIGURE 51
Collinearity

diagonals D, the vertex center of gravity E and the surface center of gravity
F are collinear, and E divides DF in the ratio 3: 1 (Figure 51).

Question 3.3 What about the edge center of gravity of a quadrilateral?

Answers to the Questions

Answer 3.1 We are looking for the center of gravity of a triangular model
that consists of edges of homogeneous cross-section, for example, made of
equally thick wire. To determine this edge center of gravity, we look first
for the center of gravity of the two edges ap = A1 A and a; = A4,
(Figure 52a).

Each of these edges a; has its midpoint M; as center of gravity, so the
center of gravity G2 of the two edges lies on the segment My M; and, in
fact, G, divides this segment in inverse proportion to the masses, and thus

FIGURE 52
Center of gravity of two edges
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FIGURE 53
Edge center of gravity of a triangle

the lengths, of the sides in question. Thus G, is the intersection of MyM,
and the bisector of the angle MM, M;, since the segments MM, and
M, M, have the same length-ratios as a; and ag, and the angle bisector in
the triangle My M, M divides the opposite side in this ratio. Since My is the
center of gravity of the third edge, the sought-for edge center of gravity must
lie on the segment G2 M,. We could now work with the mass-distribution
whereby we put the union of the masses of ¢y and a; at G2 and the mass as
at M,. But it is simpler to reason by symmetry. The looked-for edge center
of gravity K lies not only on the segment G5 M, but also on the similarly
constructed segments Go My and G M, and is therefore the common point
of intersection of these 3 segments. The edge center of gravity K is thus
the intersection of the bisectors of the angles or the incenter of the triangle
MoyMs; M, whose vertices are the midpoints of the edges (Figure 53). The
point K is sometimes called the Spieker center of the triangle [24a].

Answer 3.2 No. The simplest counterexample is a line through the center of
gravity parallel to a side (Figure 54). From the given grid it is plain that the
trapezoidal region contains 5 grid units, while the triangular region contains
only 4.

Answer 3.3 To determine the edge center of gravity K of the quadrilateral
AoA; Az As, we first seek the center of gravity K of the two edges of the
quadrilateral incident with Aq (Figure 55a). By analogy with the procedure
in the case of the edge center of gravity of the triangle, we locate the point K
at the intersection of the diagonal My M3 of the parallelogram Ay My Py M3

FIGURE 54
No area-bisection
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FIGURE 55
Center of gravity of two edges

with the bisector of the angle at Fy. In the same way we construct the center
of gravity K> of the two other edges of the quadrilateral.

Remark We determine thereby that the point P; coincides with P, as may
also be proved as follows: We denote by py the position vector of the point
P(). Then

FIGURE 56
Edge center of gravity of a quadrilateral
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and P, is just as well the midpoint of the line-segment A; A3 and coin-
cides with Fy. In the same way, P, and P; coincide, and the six points
My My My M3 Py P, appear as the vertices of an affine projection of a regular
octahedron (Figure 55b). This is a generalization of the fact that the 4
midpoints MoM; M, Ms; form a parallelogram.

The edge center of gravity we seek must lie on the line-segment Ko Ko
and also, by symmetry, on the line-segment K K3; it is therefore the point
of intersection of these two segments (Figure 56). The edge center of gravity
K does not lie on the line passing through the vertex center of gravity E and
the surface center of gravity F'.



CHAPTER 4
Parquet Floors, Lattices
and Pythagoras

4.1 PARQUET FLOORS?

Figure 57 shows the 3 simplest patterns which consist of regular polygons.
The patterns of squares or equilateral triangles can be displayed in
chessboard fashion with two colors; with the hexagonal pattern three colors
are necessary if no two neighboring hexagons are to have the same color.
These parquets contain very many symmetries, provided in studying their
symmetries the parquets are regarded as “infinitely large.” On a chessboard,
then, all axes of symmetry of an individual square are also axes of symmetry
of the entire pattern. If the black-and-white coloring is ignored then the
lines containing edges of each individual square are axes of symmetry of the

a) b) )

FIGURE 57
Parquet floors with regular parquets

2 These are referred to in many specialized texts as “tilings” (see, e.g., [18]).
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whole pattern as well. Further, the centers of the squares are centers of
4-fold symmetry of the parquet, that is, the parquet can be turned through
any multiple of 90° about such a point—i.e., a multiple of a quarter of a
full rotation—without anything changing in the appearance of the pattern. If
attention is paid to the black-and-white coloring, the vertices of the square
are centers of 2-fold symmetry, but if the coloring is ignored, they are centers
of 4-fold symmetry. Finally, if the color is ignored, then the midpoints of the
sides of a square are centers of 2-fold symmetry.

The most important symmetry—above all in reference to the technical
applications and manufacture of parquets—is, however, translation symme-
try. The chessboard can be slid two square-lengths (or a multiple of this),
taking account of the coloring, either horizontally or vertically, without its
appearance changing.

The edges of the parquets of Figure 58 form a lattice with lattice lines; if
we confine attention to the vertices we speak of lattice points (Figure 58).
The lattice points of a square lattice are exactly the points that can be given
integer coordinates in a Cartesian coordinate system.

Question 4.1 Are there also parquets with other regular polygons?

Figure 59 shows a variation of the chessboard pattern; the tiles of the
parquet arise from a deformation of a square, wherein the alteration of one
side of the square is compensated for on the opposite side (Figure 59b).
This parquet, however, contains far fewer symmetries than the chessboard
pattern; only the translation symmetries survive, the reflection and rotation
symmetries disappear.

Such patterns can easily be drawn with graphic software, which recognizes
a “grid-catcher”. It is enough to draw a single tile of the parquet in such a
way that the vertices of the fundamental square fit into the grid. This tile can

a) b) )

FIGURE 58
Lattice lines and lattice points
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a) b)

FIGURE 59
Variation of the chessboard pattern

then be copied arbitrarily often and the copies can accordingly be fitted into
the grid.

With square pieces, and with equilateral triangles, parquets with displaced
tiles can also be laid down (Figure 60); with square parquets we then
need three different colors. Such displacement leads to a loss of possible
symmetries. With a parquet of regular hexagons a displacement is not
possible.

Parquets with designs on the interior of individual parquet tiles have
been used by the well-known Dutch graphic artist Maurits Cornelis Escher
(1898-1972) in several variations (cf. [12], [13], [32] and [41]).

Figure 61 shows parquets with general triangles and quadrilaterals as
parquet tiles. The triangular parquet is here simply an affine distortion
of the parquet with equilateral triangles (Figure 57b); the quadrilateral
parquet, on the other hand, cannot be regarded as an affine distortion of

b)

FIGURE 60
Parquets with “displacement”
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a) b)

FIGURE 61
General triangles and quadrilaterals

the chessboard pattern. An affine distortion of the chessboard pattern must
consist of parallelograms.

Question 4.2 There are many different possibilities for laying out a parquet
without displacement, using rhombi with an acute angle of 60°. Describe
two of these.

Question 4.3 Can a parquet with a general hexagon be laid out?

Interesting parquets can be obtained when tiles of different parquet shapes
are combined. Figure 62 shows an example with equilateral triangles and
squares.

Question4.4 Are there further combinations of equilateral triangles, squares,
and regular hexagons?

Occasionally, with apparently irregular parquets, there turn up new
unexpected regularities and symmetries. In Figure 63 there is a general
triangle combined with three equilateral triangles of different sizes. We may

FIGURE 62
A combination of equilateral triangles and
squares
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FIGURE 63
Various triangles

determine that the midpoints of the equilateral triangles, for their part, lie on
a regular triangular lattice. See [38a, 38b, 38c] for more on this topic.

Question 4.5 Why is this so?
Question 4.6 What could the combination of a general parallelogram with
squares produce?

Specific literature on parquets—in particular on questions of their enu-
meration and classification and on the group-theoretical interpretation of the
different possibilities for parquets—may be found in [5], [6], [14], [18] and
[31]. In [7] the aesthetic aspect is emphasized.

4.2 PARQUETS AND PYTHAGORAS

In Figure 64, 3 different parquets are recognizable. These 3 parquets “fill”
the two cathetus-squares® C BA; A, and AC B, B, as well as the hypotenuse-
square BAC,C5 of the right-angled triangle ABC. The word “fill” is
here to be understood as meaning that an arbitrary deficiency in one side
of a cathetus-square is balanced by an equal surfeit in the opposite side
of the square. The parquet and the corresponding square thus have equal
area. The parquet in the cathetus-square AC B, B, consists of 48 congruent
tiles, the parquet in the cathetus-square C' BA; A, is made up of 24 squares

3 A cathetus is one of the shorter sides of a right-angled triangle. Most English texts use the
word “leg.”
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FIGURE 64
Forming parquets

and 48 right-angled isosceles triangles. The parquet in the hypotenuse-
square BAC;C5 contains precisely the tiles of the two cathetus-squares
in the appropriate size, shape and number. Thus we have found a “proof by
parquets” of Pythagoras’ Theorem.

Is this proof by parquets valid only for the right-angled triangle of
Figure 64 with the short sides in the ratio a:b = 2: 3, or is it valid for any
right-angled triangle? And are there also other choices of parquets yielding
a proof of Pythagoras’ Theorem?

The two cathetus-parquets are related to each other. This can be seen as
follows: In the parquet for cathetus a (Figure 65a) we mark all vertices

C © 0 0 0 0o 0o ©°

© 0o 00 0 0 o0

© 0o 0 c 0 0 o0
© 0 0 0 0 0 O
© 0 o o o o ©

© 0 0 0 0 0 0

°o°o°o°o°o°o°o
A2 © 0 0 0 0 0 o
a) b) c)
FIGURE 65

Connection between the two parquets
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(Figure 65b) and then draw, for neighboring vertices, the right-bisector
(Figure 65c). There arises thereby a parquet similar to the second cathetus-
parquet; but it has a different size and is turned through a right angle.

Remark The parquet of Figure 65c is called the Dirichlet parquet of the
point-set of Figure 65b. (cf [6, p. 354 ff].

Question 4.7 How should the children be assigned to schools in a city with
several schools, so that each child has a shortest possible route to school?

Question 4.8 If we draw the Dirichlet parquet of the second cathetus-
parquet, we do not come back to the first cathetus-parquet. Are there parquets
which are equivalent to the Dirichlet-parquet of their Dirichlet-parquet? Are
there parquets which are equivalent to their Dirichlet-parquets?

4.3 CONSTRUCTION OF A PROOF-DIAGRAM

We will see that, for an arbitrary right-angled triangle, there are infinitely
many “parquet-proofs”. We begin with a parquet with convex parquet pieces
with straight-line boundaries, which have the following property: In each
parquet piece a “principal point” may be picked out, such that the segment
joining the principal points of neighboring pieces is orthogonal to their
common boundary; conversely, just one such linking segment runs over
each such stretch of the common boundary. Figure 66 shows an example.

Remark Such a parquet can contain irregularities. The parquet need not
be a Dirichlet-parquet; moreover, the second parquet defined by the prin-
cipal points (the so-called dual parquet) need not be a Dirichlet-parquet
either. Conversely, however, every Dirichlet-parquet fulfills the condition

(. Y. Y

A A

F

FIGURE 66
Example
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FIGURE 67
Construction of the stretch-rotation

formulated above, the principal points being precisely the points on which
the construction of the Dirichlet-parquet is based.

This parquet, with its principal points, we use as a cathetus-parquet for
the cathetus b of the right-angled triangle. To find the appropriate transition
to the hypotenuse-parquet, we need a stretch-rotation with angle of rotation
—a and stretch-factor § = ﬁ Figure 67 shows how the properly shifted
cathetus-square of the cathetus b is carried over into the square on the
hypotenuse. Analytically, this stretch-rotation is described by the mapping
equations a

T=x+ -~
+by

J=——z+
=—==z 2
=gty

We now map the principal point Py of the parquet—but without the parquet
tile piece to which it belongs—with this stretch-rotation to the point Py,.
The parquet tiles themselves we move by translations in such a way that
their principal points come to lie on the corresponding points Py. Figure 68
shows on the left a section from the cathetus-parquet with five tiles and, on
the right, the situation after the process described above has been carried
out. Between the tiles there is now a gap which is similar to the tile of the
parquet defined by the principal points.

Question 4.9 How do we get from the “gap” to the similar pentagon

POP1P2P3P4?

We can fill these holes with suitable parquet tiles which, tile by tile, are
similar to the parquets defined by the principal points. Thus we obtain the
second cathetus-parquet.
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FIGURE 68
Movement of the parquet pieces

Question 4.10 What does the parquet with squares look like?

In the example of Figure 69a the cathetus-parquet of the cathetus b is
built from octagons and squares. Figure 69b shows a cathetus-parquet with
a “disturbance”, which, however, with our procedure, is absorbed without
disturbance of the other cathetus-parquet.

With a parquet tiling with non-convex tiles it is not possible to determine
principal points. Nevertheless it is possible in a few cases to build a proof-
figure for Pythagoras’ Theorem. Figure 70 shows an example. But, in general,
the non-convex tiles will overlap each other in the attempt to accommodate
them in the hypotenuse-square.

sooll
)
)

I

ae
Ra

FIGURE 69
Various parquet pieces
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FIGURE 70
Non-convex parquet pieces

4.4 OTHER CATHETUS-FIGURES

In our considerations thus far we have tacitly assumed that the cathetus-
squares can, without difficulty, be “filled” by the parquet. This is not always
possible; for example, a square cannot be parqueted with equilateral triangles
so that everything works with respect to the area-measure and length-
measure. The reason is that in an equilateral triangle the height is not in
a rational ratio to the length of a side. An analogous problem arises with
a parquet of regular hexagons. The problem can, however, be solved if we
work with other cathetus- and hypotenuse-figures. Pythagoras’ Theorem
is valid not only for squares—though it is most simply formulated with
squares—but for any triple of figures, mutually similar, whose length-ratios
are the same as the ratios a : b: ¢ of the sides of the right-angled triangle.
The three figures have then the area-ratios a:b%:c?, that is, the area-sum of
the cathetus-figures is the area of the hypotenuse-figure. In the 3-kings*figure

4 The reader might prefer the word “crown” to “kingdom.”
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FIGURE 71
3-kings figure

of Figure 71, the united kingdom on the hypotenuse is equal in area to the
sum of the cathetus-kingdoms.

Question 4.11 Figure 72 shows a right-angled triangle with equilateral
triangles erected on the hypotenuse and each cathetus. In this situation, how
can the hypotenuse-triangle be subdivided in such a way as to illustrate the
equality of its area with that of the union of the two cathetus-triangles? How
can Pythagoras’ Theorem be demonstrated by parqueting?

Figures 73 and 74 use regular hexagons on the sides of the triangle. Thus
are parquetings from the “family of triangles™ possible.

Another approach to “Pythagorean parquets” is to be found in [16,
p. 254 ff].

4.5 COVERING OF LATTICE POINTS

Let us place two transparencies, consisting of congruent square lattices with
inscribed lattice points, arbitrarily one on top of the other (Figure 75); there
arises thereby in the domain of overlap a new pattern which for its part seems
to exhibit certain symmetries. This effect we will designate as a Moiré-effect;

FIGURE 72
Equilateral triangles
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FIGURE 75
Overlapping square lattices

such an effect arises in general as an optical effect from the superimposition
of two congruent patterns, for example, by looking through two perforated
metal sheets. One can generate the effect oneself by laying two transparencies
with the same pattern one on top of the other—but then the two grids must
be exactly alike—or by overlapping two copies of a virtual transparency in
some graphic software.

Question4.12 Whatarises from a parallel superimposition of two congruent
square lattices?

We study now the Moiré-effect in the superimposition of a square lattice
and its mirror image. If we choose as axis of reflection an axis of symmetry
of the square lattice, then obviously no effect is visible. A square lattice,
regarded as infinitely large, contains three types of axis of symmetry
(Figure 76): a) Sides of the lattice squares, b) diagonals of the lattice squares
and c) center-lines of the lattice squares.

In what follows we denote the set of lattice points of the square lattice
by G. In lattice geometry the notion of primitive segment is often used: A
primitive segment AB in a square lattice G has 2 lattice points A and B as
endpoints, but otherwise contains no lattice points. Each side or diagonal
of a square lattice is primitive. All other primitive segments in the square
lattice G have a support triangle with coprime cathetus-lengths v and v
(Figure 77).
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FIGURE 76

The three types of axis of symmetry

By means of a primitive segment with a support triangle a new square
lattice J with J C G can be defined (Figure 78).

In a square lattice G let AB be a primitive segment with support-triangle
cathetus u and v (Figure 77) and s the straight line AB. Further, let G':=
0s(G) be the image of G under reflection in s, and H := G N G’ the set of
points common to G and G’; H is thus the subset of G symmetrical with
respect to the axis of symmetry s.

Then the following theorem holds [49].

H is a square lattice with edge-length e, where

e=+vVu2+v?2 if u#Zvmod?2,

1 .
e= 7 u2+v?2 if uw=wvmod2.
In the case u # v mod 2, the axis of reflection s is a lattice-line in H; in
the case © = v mod 2, s is a diagonal in H.
The theorem thus distinguishes two cases according to the parity of the
difference u — v, that is, according to whether the difference is odd or even.

[ ) [ ) [ ] [ ] [ )
DI

FIGURE 77
Primitive segments in a square lattice



Parquet Floors, Lattices and Pythagoras 53

FIGURE 78
The primitive segment defines a new square lattice.

Figure 79 shows the example ©v = 3, v = 2 with u # v mod 2, and
e = V/13. The axis of reflection s is a lattice-line in H.

Figure 80 shows the example u = 3, v = 1 with 4 = v mod 2 and
e= % = /5. The axis of reflection s is a diagonal in H.

° ° L] o (O o ° ° ° L[] L]

FIGURE 79
The example u =3 and v = 2
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FIGURE 80
The example u = 3andv =1

In the example of Figure 79 ( u # v mod 2), H is the square lattice
determined by the primitive segment AB; in the example in Figure 80
(u = v mod 2) the midpoints of the squares also belong to H.

4.6 PYTHAGOREAN TRIANGLES

Pythagorean triangles, that is, right-angled triangles with integer side-
lengths, and the associated number triples (a,b,c € N, a? 4+ b? = c?) are
mostly considered in their number-theoretical aspects, wherein, in particular,
questions of divisibility play a role. [15] gives a broad introduction to this
order of ideas, from an instructional point of view, and contains an ample
bibliography.

Pythagorean triangles have also, however, a visual aspect, if square lattices
and their superimpositions are used. As an example, let us draw, in a square
lattice G, the well-known Pythagorean triangle with cathetus-lengths 3 and
4 and hypotenuse-length 5, and let us subdivide the hypotenuse-square into
its 25 unit squares (Figure 81a).

It is clear that the lattice G’ in the hypotenuse-square has, in addition
to the vertices of the square, further lattice points in common with the
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FIGURE 81
Square lattice in the hypotenuse-square

cathetus-lattice G. These common lattice points form a new square lattice, the
covering lattice H with edge-length /5. We can interpret the square lattices
G and G’ as the sets of their lattice points and denote by H := GNG’ the set
of points they have in common. Investigations of examples of other primitive
Pythagorean triangles, that is, Pythagorean triangles with ged(a, b.¢) = 1,
lead to the following conjectures:

a) The cathetus-lattice G and the hypotenuse-lattice G’ have as common
lattice points a covering square lattice H of edge-length \/c.

b) The centers of the inscribed circle and the escribed circles are lattice
points of the covering lattice H (Figure 81b). From this it follows that
the radii are whole numbers [3].

The proof of these conjectures is to be found in [49].

4.7 PARAMETRIZING THE PRIMITIVE TRIANGLES

The primitive Pythagorean triangles may be generated as follows: For
u,v € N, with u > v, u,v coprime, and u # v mod 2, the quantities
a=u?-v% b=2uv, c=u?+v?arethesidesofaprimitive Pythagorean
triangle. Conversely, to each primitive Pythagorean triangle with sides a, b, ¢

there are unique integers u, v satisfying the above conditions [38].
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FIGURE 82
The support triangle with cathetus « and v

These parameters u and v have a direct geometric significance. In the
example u =2 and v = 1, we obtain a =3, b=4 and ¢ = 5. The parameters
u and v are, in fact, the cathetus of the support triangle which determines
the covering lattice H (Figure 82). The lattice line of H defined by this
support triangle is an angle-bisector of the original right-angled triangle; the
hypotenuse-lattice G’ arises by reflecting the cathetus-lattice in this angle-
bisector. If now a right-angled triangle with cathetus-lengths u+/c. v\/c is
drawn in the covering-lattice H, this becomes the support triangle of the
hypotenuse ¢ of the primitive Pythagorean triangle.

These properties of the covering lattice, here discussed by example, are
valid in general for primitive Pythagorean triangles.

Question 4.13 Figure 83 shows a square lattice and its image under a 45°
turn. Have the two lattices any point in common apart from the pivot?
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FIGURE 83

Square lattices turned through 45°

Question 4.14 Through what angle 3 can a square lattice be turned so that
it and its image have points in common apart from the pivot?

4.8 IN A REGULAR TRIANGULAR LATTICE

We study now triangles with integer side-lengths, and with two sides along
lattice lines in a regular triangular lattice G. These two sides, which we
denote by a and b by analogy with the cathetus of a right-angled triangle,
enclose at the vertex C an angle of 60° or 120°. For the side ¢ we obtain
from the cosine rule, for v = 60°: ¢ = a% + b®> — ab, and for v = 120°":
¢ = a® + b% 4 ab. An example of the second case is @ = 3, b = 5, and
¢ = 7 (Figure 84a).

From such a triangle, with v =120°, a triangle with v = 60° can be
constructed by adjoining an equilateral triangle, in two different ways
(Figure 84b). We restrict ourselves in what follows to integer triangles
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FIGURE 84
Integer triangles in the triangular lattice

with v = 120° and ged(a, b,¢) =1. Following [11, p. 405] and [19], these
primitive 120°-triangles can be parametrized as follows: With u,v € N,
u > v, u,v coprime, u # v mod 3, we set a = u? — v?, b = 2uv + v?,
c=u?+v?+uv.Foru = 2and v = 1 we get the example a = 3,b = 5and
¢ = 7. In analogy with the primitive Pythagorean triangles, we can reflect
the lattice G by the angle bisector w,, in the side ¢. This reflected lattice
is called G'. It may be shown that H := G N G’ is an equilateral-triangle
lattice (Figure 85).

FIGURE 85
In the triangular lattice
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a) b) c)

FIGURE 86
Regular pentagons

Answers to Questions

Answer 4.1 In order that a parquet piece fits at a vertex, it is necessary that
the interior angle be a factor of 360°. This is the case only with equilateral
triangles, squares and regular hexagons. With a regular pentagon, for exam-
ple, with the interior angle of 108°, there remains a gap of 36° (Figure 86a).
This gap can be eliminated by bending up the adjacent pentagons; we thereby
leave the plane and obtain a cup in space (Figure 86b). If we put a second
cup on as a roof, we obtain a pentagonal dodecahedron (Figure 86c¢). The
pentagonal dodecahedrom consists of 12 regular pentagons; 3 pentagons
come together at each vertex.

Answer 4.2 Figure 87 shows two possibilities. The parquet of Figure 87a is
an affinely skewed version of the chessboard parquet; the parquet pieces all

% B

a) b)

FIGURE 87
Parqueting with 60°-rhombi
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FIGURE 88
Hexagons

have the same direction, and a “displacement”, that is, a shift of part of the
parquet by an arbitrary multiple of the edge length, is always possible. In the
parquet of Figure 87b we have tiles in 3 different directions; no displacement
is possible. This parquet creates an illusion: [t takes effort to see the parquet
as “flat” and not as a collection of cubes.

Answer 4.3 No parquet can be made with an arbitrary hexagon, because
the angles coming together at a vertex do not add up to a full rotation
(Figure 88a). On the other hand, a parquet can be laid out with point-
symmetric hexagons—on a point-symmetric hexagon opposite sides are
parallel (Figure 88b).

Answer 4.4 Equilateral triangles and regular hexagons can be combined
(Figure 89a) as can equilateral triangles, squares and regular hexagons
(Figure 89b). On the other hand, it is not possible to combine only squares

@®

FIGURE 89
Parquets with regular polygons
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b) c)

FIGURE 90
Further possibilities

and regular hexagons. But there are other possible combinations, if we also
admit regular octagons and dodecagons (Figure 90). There are, in fact, many
other (non-regular) possibilities.

Answer 4.5 The highlighted “propeller” of Figure 91a has a 3-fold rota-
tional symmetry, that is, under a one-third turn—i.e., a rotation through
120°—it returns to its original position. Thus the four centers of the triangles
belonging to the propeller form angles of 120°. We reason similarly for all
other propeller points and conclude that the centers of the triangles form
equilateral triangles (compare [20, p. 24 fT]).

If we only keep in view one of the general triangles and its three adjacent
equilateral triangles (Figure 91b), then the centers of the equilateral triangles
form a new equilateral triangle. This situation is described as Napoleon’s
Theorem; it is said that it was discovered by Napoleon. Of course, this
theorem can be proved directly, without recourse to parquets (compare
[10, p. 68 ff]).

b)

FIGURE 91
a) The propeller b) Napoleon’s Theorem
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FIGURE 992
Parallelograms and squares

Answer 4.6 We obtain a parquet in which the centers of the squares them-
selves lie on a square lattice (Figure 92). The proof proceeds analogously to
that of Napoleon’s Theorem. The case with the parallelogram and the squares
is a special case of the Theorem of Napoleon-Barlotti: If regular n-gons
are erected exterior to the sides of an affinely-regular n-gon, then their
centers again form a regular n-gon. This generalization cannot be proved by
the use of parquets. Literature on Napoleon’s Theorem and the more general
Theorem of Napoleon-Barlotti may be found in [1], [8], [10], [25], [27], [42].
Answer 4.7 In theory, the Dirichlet parquet associated with the set of
schoolhouses, regarded as a point-set, solves the problem. In practice, the
likely traffic-effects must be taken into consideration.

Answer 4.8 With the regular hexagonal parquet, the associated Dirichlet
parquet consists of equilateral triangles; its Dirichlet parquet is once more
the regular hexagonal parquet (Figure 93). There are, of course, other
examples.

Figure 94 shows three examples of parquets which are congruent to their
Dirichlet parquets. In each, the Dirichlet parquet is orthogonal to the original
parquet. These examples are derived from each other by turning the thickly
drawn segmental crosses.

If such a parquet is put together using only one type of tile, this must be
a quadrilateral with a circumcircle, that is, a so-called cyclic-quadrilateral.
This follows from the fact that the right bisectors of the sides meet in a point.
Figure 95 shows an example.

Answer 4.9 We need a twist-and-stretch transformation with an angle of

: c . _1
rotation 3 and stretch-factor & = -
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The regular hexagonal parquet
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FIGURE 94
Congruence to the Dirichlet parquet

FIGURE 95
Parquet of cyclic-quadrilaterals
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FIGURE 96
Parquet with squares

Answer 4.10 Figure 96 shows a parqueting with 16 squares. Such figures
can also occur as a pattern of weaves (compare [17, p. 291 ff.]).

Answer 4.11 Figure 97a shows an example of the cathetus theorem. The
triangle on the hypotenuse must be subdivided by a line running to the foot
of the altitude of the right-angled triangle. Figure 97b illustrates Pythagoras’
Theorem with parquets. In the second cathetus-triangle there occurs a regular
hexagonal parqueting, which has a too large total surface area. To solve the
problem correctly, the cathetus-triangles should be replaced by cathetus-
hexagons (compare Figure 73).

FIGURE 97
Equilateral triangles
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FIGURE 98
Parallel coverings

Answer 4.12 There results a grid with two different parallelograms
(Figure 98).

Answer 4.13 The two grids have just the origin of rotation O in common.
This can be seen indirectly: We assume there is a further common point P;
this point P has, in the first grid, integer coordinates (p, g) relative to O, and
in the second grid, at a 45° angle to the first, the integer coordinates (7, s)
(Figure 99). Hence

1
r= —7=9
\/_ i,

1

s = —q.

f i
From the first equation we get /2 = ”Tﬂ; since /2 is irrational whereas
1%‘1 is rational, we have a contradiction.
Answer 4.14 For a further point P with integer coordinates (p, ¢) and (r, s)
relative to the two points, it follows (Figure 100) that

r =pcosf + gsinf

s = —psinf + qcosf.

0 45° FIGURE 99

p Two common points O and P
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FIGURE 100
The general case

_Trq—sp
s
Thus we obtain the necessary condition that cos 3 and sin 3 are both rational.
With a turn through 30° (Figure 101) there can therefore be no common
point beyond the origin of rotation since cos 30° is irrational.
The condition that cos 8 and sin 3 are both rational is however also
a b

sufficient: In this case we can write them in the form cos 8 = ¢, sin3 = ,

with ¢ the least common denominator. But then a, b, ¢ are the sides of a

ng

.
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FIGURE 101
Square point-grids at an angle of 30°



Parquet Floors, Lattices and Pythagoras 67

o 'c.ooooooo

o ©
o ° 05 % °

© %0 040 0 0%0

° o.'.'.:...o'..$..

FIGURE 102
The angle of rotation 5 = arctan% ~~ 53.13°

primitive Pythagorean triangle with the angle 3. The two point-grids thus
have the two endpoints of the hypotenuse of this primitive Pythagorean
triangle in common. Figure 102 shows the case of the angle

4
8= arctang =~ 53.13°,

so that cos 3 = £ andsin 8 = 2.
The covering grid is identical with the covering grid of Figure 82.






CHAPTER 5
The Problem of the Center

5.1 WHERE IS THE CENTER OF THE WORLD?

In many pictures, figures and situations we speak quite naturally, and
somewhat imprecisely, of a “center”. This can be a point or a moment of
time, or more rarely, a line or a plane. Figure 103 shows a few examples.

The question about the center also has an aesthetic aspect: What is the
center (or center of gravity) of a picture, a piece of sculpture or a building
(compare [2])?

&
.

b)

€)
FIGURE 103
The center

69
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Question 5.1 Is there a regular figure without a center?
Question 5.2 Are there also cases of several centers?

Question 5.3 How can the vertices of a square be optimally linked (to form
a network of minimal length)?

A center can also be seen dynamically as the collision-point of two
opposing motions. Let us give an example: In Figure 104 a closed curve
arises from the repeated construction, by refraction, of circular arcs. (Such
closures are described in [29], [47] and [48]).

Proof of the closure property can be carried out as follows. We denote by
ap, a1, as the 3 sides of the triangle AgAj Az, and by rg the radius of the
initial arc. For the radii of the subsequent circular arcs we then have:

T = a1 —To,

T =Qa2 — 11 = a2 — a1+ o,

T3 =ag — T2 = ag — a2 + ay — To,
7’4=0,1-—'I‘3=—0,0+(12+7'0,
Ts = Qa2 — T4 = Qg — 7o,

Te =Qag —Ts = T79.

From rg = ¢ the closure property follows. If now in Figure 104 we
increase the initial radius g, then the radius 5 is increased by the same
amount, and the two points By and Bj retreat towards each other. Thus we
have opposing movements of the two points. For the special initial radius
To = L+"21‘—“2 the two points By and Bj coincide, and we obtain a center
line consisting of only 3 circular arcs (Figure 105a).

A AI B,
A, A,
B, A2B|
A B, B,

B, B
BOA,‘,BI ¢

FIGURE 104
A figure that closes
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a) b)

FIGURE 105
A center line

The vertices of this center line are precisely the points of contact of the
incircle with the triangle (Figure 105b).

Question 5.4 What happens if we start at By with a line parallel to the side
ApA; of the triangle and then continue as in Figure 106?

5.2 MEAN VALUES

5.2.1 Half is Eaten

An ice on a stick (Figure 107) is half-eaten at the %b mark, where a is
the lower limit and b is the upper limit of the ice, always assuming that the
ice is eaten exclusively from the top down. The mean-mark is calculated as
the average or arithmetic mean “—;‘—b of the two boundaries a and b of the
ice. But there are many examples where the center cannot be identified with
the arithmetic mean.

Question 5.5 When is a cylindrical ice, which is licked away all round in
regular fashion, half consumed?

Question 5.6 When is a spherical candy half gone?
Question 5.7 When is a toilet roll half used up?

B
) < )
299
Bo BI BO BI Ld Ld .
A, A,
FIGURE 106

How does it continue?
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A

i

a+b
é ? FIGURE 107

Ice on a stick

5.2.2 Average Speed

There are cases in which, in the same context, different methods of finding the
mean must be employed according to the precise question put. A well-known
example of this is the question about the average speed of a car, which first
travels with a speed v; = 60 ';1—':‘ and then with a higher speed of v, = 80 ';1—':‘

If the car travels for the same length of time t at each of the two speeds v;
and vq, we obtain the average speed

vit + vt v + v
2t 2

The average speed is thus the arithmetic mean of the two individual speeds.
As the question was put, it is quite possible that one or both of the speeds is
negative; the associated stretch of the course would then have been traversed
backwards.

If, on the other hand, the car had traveled over the same distance s at the
speeds v; and vo, we would have obtained for the travel times of the two

segments t; = -, ity = v% so that the average speed is

v =

2s 2s 2 201 V9

t1+t2_%+i_l+l_v1+v2.

v2 v v

5:

This is the so-called harmonic mean. In this way of putting the precise
question, we could not allow v; or vy to be negative, because then the
corresponding time-interval would have been negative. The harmonic mean
can also be written in the form

1 1(1 1)
===z|—+—1;
v 2\v1 U

the reciprocal of the harmonic mean is thus the arithmetic mean of the
reciprocals of the original quantities. In our numerical example we obtain for
the arithmetic mean v = 70 ’fl—';‘ and, for the harmonic mean, v ~ 68.57 ]L_T
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FIGURE 108
Defective angle-measure

Question 5.8 Is the harmonic mean always smaller than the arithmetic
mean?

5.2.3 Correcting Systematic Errors

With every measurement an error arises. Especially to be feared are sys-
tematic errors, which, for example, may be due to a technical defect in the
measuring apparatus or a consistently erroneous use of the apparatus.

A rather old-fashioned angle-measure (Figure 108a), which, with the help
of a plumb-line, can measure the angle of inclination to the horizontal, can
serve as an example. If the dial of the apparatus is somewhat skew (Figure
108b), a systematic error arises.

This systematic error o can however very easily be eliminated. To
determine an angle of inclination ¢, we make two measurements, turning the
measuring apparatus through 180° between the measurements (Figure 109).

a) b)

FIGURE 109
Error elimination
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FIGURE 110
A balance scale

With the first measurement we get a reading of o; = a — ¢ and, with the
second measurement s = « + 0. The actual value « is the arithmetic mean
of the two readings.

In the next example it is a matter of measuring a weight G with a scale
balance (compare [23]). To that end we place the object of weight G in the
left-hand pan and put weights in the right-hand pan until the balance is in
equilibrium (Figure 110). The sum G; of the weights is the outcome of the
first measurement.

A systematic error can arise if the lengths ¢;, and ¢ of the left and right
lever arms of the balance are not equal. To eliminate this systematic error,
we exchange the roles of the two pans. We place the object to be weighed in
the right pan and balance it with weights in the left pan (Figure 111). In this
way we obtain a second measurement G for the weight.

How do we arrive at the true weight G from the two measurements
G and G2? From the law of the lever we get, from the first weighing:
G = ¢RrG:. Thus G = %Gl. From the second weighing we obtain,

A
]

FIGURE 111
The second weighing
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similarly, {1, G2 = (G, s0 G = ﬁ—;Gg. From this we obtain
L TN ¥ RN
g
and, finally, G = /G1G>. G is the so-called geometric mean of G, and
Ga. '

Remark In the example of the angle-measure, the systematic error +o is
an additive error. An additive error can be eliminated by taking an arithmetic
mean, because it is canceled by taking a sum. In the example of the scale
balance, the systematic error is given by the facror (%’Li)il. This error is
eliminated by taking the product in the geometric mean.

G2

Question 5.9 Would one obtain for G a value that is too large or too small
if, instead of taking the geometric mean, one erroneously took the arithmetic
mean?

The simplest example for the arithmetic and geometric means is provided
by the “symmetrization” of a rectangle, that is, the replacement of a rectangle
with sides of length a and b by a square of side s. Given the condition
that the perimeter should be held constant, one obtains for s the arithmetic
mean s = “T*‘b. This is not surprising since the perimeter is an additive
function of the lengths of the sides. But, given the condition that the
enclosed area should remain constant, one obtains for s the geometric
mean s = Vab, since the area is a multiplicative function of the lengths of
the sides.

Question 5.10 What do we obtain when we symmetrize a rectangular
parallelepiped with edges of length a, b, ¢?

5.2.4 Minimal Supply Channels

Along a street stand 5 houses (Figure 112); on the same street a central
office Z is to be built, which will provide direct cable service to each house
individually. What is the optimal position for the office?

A A A A A

FIGURE 1192
Where should the central office be built?
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FIGURE 113
A trial

We find the solution immediately if we draw in, experimentally, the
required cables to the individual houses from an arbitrarily chosen position
for Z (Figure 113).

If we now move the point Z in Figure 113 to the left, 3 cables are shortened
and 2 are lengthened, by the same amount—the total cable-length is thus
shortened. This holds right until we bring Z into coincidence with the
“middle” house—even if this house is not geometrically at the midpoint
of the entire street.

Question 5.11 Where would we build the central office when we have to
service 6 (more generally an even number of ) houses?

The middle which occurs here is called the median. The determination of
the median presupposes that we can arrange the elements in a sequence. In
our example this was the ordering of the houses along the street. Numbers
may be ordered according to size. We find the median as follows. First we
order the elements and strike out the first and last elements in the sequence.
From the remaining elements we again strike out the first and last elements,
and so on. The element surviving at the end, assuming there were originally
an odd number of elements, is the median. Thus, for example, the numbers
6,3,61,5,12,13, 5 yield the process

3<5=5<6<12<13<65
5=5<6<12<13
5<6<12
6,
and so have the median 6, which is far removed from the arithmetic mean

15.

Answers to the Questions

Answer 5.1 The band-design of Figure 114, thought of as infinitely long, is
translation-symmetric, but contains no “middle”.
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o

FIGURE 114
A translation-symmetric band-design

Answer 5.2 If we think of the chessboard pattern of Figure 103e as extended
indefinitely, every vertex of a square and every midpoint of a black or white
square can serve as a midpoint. In the same way, every point on a straight
line, and every point in a plane, can be interpreted as a midpoint. The same
may be said to be true also for arbitrary points on a circle or a sphere. Thus
if some country on this earth sees itself as being at the “center” of the earth,
that is not a geometrical or geographical statement, but a political statement.
Figure 115 shows a band-design which, in addition to translation-symmetry,
contains point-symmetries and thus infinitely many “midpoints”.

Answer 5.3 The obvious idea of connecting the 4 vertices of the unit square
with the midpoint of the square (Figure 116a) does not provide the best
solution. For this linkage the total length is 24/2 ~ 2.828. If instead we
choose two branch points on a mean parallel such that the three paths from
each such point are at 120" angles to each other (Figure 116b), then the
line segments to a vertex have length ?, while the distance between the
branch points has length 3_3‘/5; thus the entire network of paths has length
1 + /3 ~ 2.732. In fact, this is optimal—but, of course, is not unique:
rotation by 90° yields a different network.

FIGURE 115
Band-design with point-symmetries

a) b)

FIGURE 116
Two networks of paths in the square
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FIGURE 117
A figure which closes

Answer 5.4 A closed figure arises in accordance with Figure 117. The proof
of the closure property consists of transferring the proportionality relations
of the points B; with respect to the appropriate sides of the triangle by means
of the proportionality theorems. Here, too, there is a mean line: its vertices
are the midpoints of the sides of the triangle (Figure 118).

Answer 5.5 From the formula 7r2h for the volume of a cylinder it follows
that a cylinder of the same height & but only half the volume requires a radius
%r ~0.707r. The ice is therefore half eaten when there is roughly 70%
of the diameter remaining. Here the thickness of the stick has been ignored.

Answer 5.6 From the formula %wr3 for the volume of a sphere it follows
that a sphere of half the volume will have a radius of 31—2r = 0.794r. Thus
half the volume is gone when around 80% of the diameter remains.
Answer 5.7 Let r be the inner radius of the roll, R the outer radius of the
complete roll and x the outer radius of the roll when half used. The width of
the toilet-paper will play no part in our reasoning, so we can restrict ourselves
to a calculation of cross-sections. From

1
nz? —7r? = 5(7rR2 —7r?)

FIGURE 118
Mean line
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/ A ;(’“)=1§x

T2 x(x)=—2x
41 x+1
—+—+ ] —t—t—+Pp x
4 3 -1 11 2 3 4
1-2
1.3
FIGURE 119

The graphs of the two functions

we conclude that the “toilet-roll mean” is given by

. R2 + 72
=1/ "

Answer 5.8 Inthe case v; = v the arithmetic and harmonic means are equal.
If v1 # vo, we will choose the measurement units so that v; has measure 1.
The two means now depend only on the measure x of v5. Since the question
postulates a harmonic mean we must have vo > 0, so x > 0. For the
arithmetic mean T we have the linear relation Z(z) = 1%, and for the
harmonic mean 7 the relation z(z) = i% Figure 119 shows the graphs of
the two functions. For x > 0 we thus have T > T with equality precisely
when z = 1.

Answer 5.9 The arithmetic mean of two distinct numbers p and g is bigger
than the geometric mean of these numbers. To see this we interpret p and ¢
as segments of the hypotenuse of a right-angled triangle (Figure 120). The
arithmetic mean pTJ”’ is half the length of the hypotenuse, thus the radius of
the circle of Thales. By a well-known altitude theorem the height A = ,/pq
is the geometric mean of p and q. For p # g the height A is smaller than the
radius of the circle of Thales. Notice that in Figure 120b, AD = q, DB = p.

The harmonic mean of p and gq is Z%. Since % % = pg = h?,
it follows from the cathetus theorem for the right-angled triangle CM D
(Figure 120b), that the harmonic mean is the hypotenuse segment CE. This
is smaller than the cathetus h; but that means that the harmonic mean is
smaller than the geometric mean.
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a)

FIGURE 120
Hypotenuse sections

We could also argue in this way. If A, G, H are the arithmetic, geometric
and harmonic means, then G < A and AH = G?. Thus H = %G’ <G.

Answer 5.10 We change the rectangular parallelepiped into a cube of edge-
length s. Under the condition that the total sum of the edge-lengths remains
the same, we obtain for s the generalized arithmetic mean s = w If
the surface area is to remain the same, we obtain s = “”‘”’# This is
a mixture of arithmetic and geometric means. Finally, if the volume is to
remain unchanged, we require the generalized geometric mean s = Vabc.

Answer 5.11 At the end of the striking-out process there remain, in the
middle, two houses left over. The central office may be built anywhere on
the stretch between these two houses.



CHAPTER 6
Symmetry in Word, Script
and Number

[Translator’s note: Much of the material of this short chapter, in the original
German version, depends on a deep appreciation of the German language.
With the author’s approval, this material has been omitted.]

6.1 PALINDROMES

By a palindrome we understand a meaningful sequence of letters or words
which, when read backwards, produces the same or perhaps a different
meaning. The term palindrome is derived from the Greek palindromos,
“running backwards”. Examples are the proper names (compare [44]):

ANNA
OTTO

ANNA SUSANNA

The proper name “OTTO” has also a typographical axial symmetry with a
vertical axis of symmetry in the middle of the word.
The palindromic sentence

ABLE WAS 1 ERE I SAW ELBA

has been—ironically—attributed to Napoleon. In token of the increasing
scarcity of open-handed generosity, perhaps some day soon the slogan

SEX AT NOON TAXES
81
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will appear. A palindrome which has enjoyed some popularity in the United
States is
A MAN, A PLAN, A CANAL—PANAMA.

The translator invented, in 1945, the pleasing palindrome

DOC, NOTE, I DISSENT. A FAST NEVER PREVENTS A FATNESS.
I DIET ON COD.

Try making up your own. If you don’t succeed you’ll find many on the web
at http://www.cosy.sbg.ac.at/~leo/palindrom/

6.2 PALINDROMIC NUMBERS

Palindromic numbers have a symmetric ordering of their digits, for example,
77, 252, 3443. It then transpires that every palindromic number with an
even number of digits is divisible by 11 (compare [21, p. 37]).

Question 6.1 How could this be proved?

Question 6.2 Is there a corresponding theorem for palindromic numbers
in base p?

If we add to an arbitrary natural number its mirror-number, that is, the
number we obtain by reversing the digits, and if we repeat this process
indefinitely, we obtain, as a general rule, a palindromic number. For example,
with the starting number 1944 we obtain

Step 1: 1944 4 4491 = 6435
Step 2: 6435 + 5346 = 11781
Step 3: 11781 + 18711 = 30492
Step 4: 30492 + 29403 = 59895

The question, whether each starting number leads in a finite number
of steps to a palindromic number, remains open. There are numbers, for
example the number 196, of which it is conjectured that they never lead to a
palindromic number [28], [30].

6.3 RHYMING SCHEMES

Figure 121 shows different rhyming schemes in two consecutive four-line
verses from Ivanhoe, by Sir Walter Scott (Penguin Books):
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THE BARE FOOTED FRIAR
I give thee, good fellow, a twelvemonth or twain, :I
To search Europe through, from Byzantium to Spain;

But ne’er shall you find, should you search till you tire, semmmmmmmemn
So happy a man as the Barefooted Friar, =~~~ <coooooooo-l2

KNIGHT AND WAMBA
There came three merry men from south, west, and north
Ever more sing the roundelay, @~ == eeee---- q---
To win the widow of Wycombe forth, _
And where was the widow might say them nay? = ---ccnona--d ]

FIGURE 121
Two different rhyming schemes.

Question 6.3 How many different rhyming schemes are there for four-line
verses?

We study now n-line verses with k different line-endings. Let S(n, k)
be the number of associated rhyming schemes. For one-line verses there is
only one scheme, so S(1,1) = 1. For S(n + 1, k) we obtain a recursion
formula by separating the possibilities for the (n + 1)st line into two
cases:

1. The last line, that is, the (n + 1)st line, has its own unique ending. Then
there remain for the previous n lines (k — 1) endings available, so that
there are S(n, k — 1) possibilities.

2. The (n + 1)st line has one of the k already used endings. In this case
there are then kS(n, k) possibilities.

Putting these together, we obtain:
S(n+1,k) =S(n, k- 1)+ kS(n, k).

This recursion formula is, except for the factor k, just like that for binomial
coefficients in Pascal’s Triangle. (It is implicit that S(n,0) = 0 and
S(n,k) = 0if n < k.] With the starting value S(1,1) = 1 one obtains
from the recursion-formula the triangle of so-called Stirling numbers of
the second kind. (With the Stirling numbers one begins counting at 1, in
contrast with the binomial coefficients.) In Figure 122 the recursion formula
is indicated by the system of arrows. Stirling numbers of the first and second
kind play an important role in combinatorics ([9], [24], [46]).
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et
FaWEN
PN
PN ANFANFEN

FIGURE 122
Stirling numbers of the second kind

For the total number of rhyming schemes for an n-line verse, one must
add up all the Stirling numbers of the second kind in the nth row. This leads
to the Bell numbers B(n) = >, _, S(n, k).

Answers to Questions

Answer 6.1 For the number 11 we have, in the decimal system, the follow-
ing divisibility rule: A number is divisible by 11 if and only if the alternating
sum of its digits is divisible by 11. This is obviously the case for palindromic
numbers with an even number of digits, since, for them, the alternating sum
of the digits is zero.

Answer 6.2 A palindromic number in base p, with an even number of digits,
is divisible by (p + 1). So, for example, in base 2, the numbers 11(= 3),
1001(= 9), 1111(= 15), 100001(= 33), 101101(= 45), 110011(= 51),
111111(= 63), - - - are divisible by 3. In fact, for numbers written in base p,
the divisibility rule corresponding to the rule-of-eleven above asserts that a
number is divisible by (p + 1) if and only if the alternating sum of its digits
is divisible by (p + 1). This can be seen as follows: from

a® - bp" = (a_ b)(an—l +an—2b+an—3b2 4. +bn—1)

it follows that (a — b) is a factor of @™ — b™, that is, (a — b)|(a™ — b™). With
a = p, b = —1, this becomes

@+ " - (="
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FIGURE 123
Rhyming schemes with two times two rhymes

and so p"=(—1)"mod (p + 1). For a number 2 with digits zx, k €
{0,1,2,...,s} inbase p, thatis, 2= Y ;_, 2,p*, we thus have

z= zs:zk(——l)kmod (p+1).
k=0

This shows that z is divisible by (p + 1) exactly when 3" _, z(—1)* is
divisible by (p + 1).

Answer 6.3 If we assume that the 4 lines must be divided into 2 pairs of
rhyming lines, there are just 3 schemes, as in Figure 123. If arbitrary rhymes
are allowed, there are the 15 schemes of Figure 124. We have, trivially,
one case with just one rhyme, that is, with 4 identical line-endings; then
7 cases with two line-endings; 6 cases with three line-endings; and finally
the case without rhymes, that is, with four different line-endings (compare
[46, p. 162]).

=

i}

£| - - -1 —— o~ zo

i f—— —

- == ] =3 ozidosrg

FIGURE 124
Rhyming schemes for 4-line verses.
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Index

2-fold symmetry, 40
3-fold-symmetry, 61
4-fold symmetry, 40

Additive error, 75

Angle preserving, 20
Angle-measure, 73
Archimedean spiral, 27
Arithmetic mean, 71, 75, 79
Avenue of Poplars, 4
Average, 71

Average speed, 72

Balance, 74

Band-design, 77
Bell numbers, 84
Bishop’s staff, 27

Cartesian coordinates, 21
Cathetus, 43
Cathetus-figures, 48
Cathetus-square, 43
Center, 69

Center line, 70

Center of gravity, 31, 34, 36, 69
Central point, 31
Chessboard, 15, 42

Circle of Mobius, 24
Circle, fixed, 23
Circle-reflection, 12, 14, 23
Closure property, 70

Collinear, 35

Combinatorics, 83
Conformal, 20

Coordinates, Cartesian, 21
Coordinates, polar, 11
Coprime, 51

Cosine rule, 57

Covering of lattice points, 49
Crosier, 27
Cyclic-quadrilateral, 62

Dilatation, 14

Dirichlet parquet, 45, 62
Disturbance, 47
Dodecahedron, pentagonal, 59
Dodecagon, 61

Dual parquet, 45

Edge center of gravity, 32, 35
Error, additive, 75

Error, systematic, 73

Escher, Maurits Cornelis, 41
Even, 52

Fixed circle, 23
Fixed line, 29
Fixed point, 29
Fractal, 6

Geometric mean, 75, 79
Geometric sequence, 5
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Gothic quatrefoil window, 20 Network, 70, 77
Great circle, 29 Numbers of Bell, 84
Grid, 65 Numbers of Stirling, 83
Grid-catcher, 40 Numbers, palindromic, 82
Harmonic mean, 72, 79 Octagon, 47, 61
Harmonic sequence, 2, 4 Octahedron, 38
Hexagon, general, 42 0dd, 52
Hexagon, regular, 42, 48, 60 One-sided surface, 24
Hyperbolic spiral, 27 Outside, 11, 24
Hypotenuse-square, 43 Overlap, 49
Illusion, 60 Palindrome, 81
Image of a circle, 22 Palindromic numbers, 82
Incenter, 36 Parallelogram, 38, 64
Incircle, 70 Parquet, 39, 43, 64
Inside, 11, 24 Parquet, dual, 45
Integer triangles, 58 Parquet-proof, 45
Inverse mapping, 23 Pascal’s Triangle, 83
Inversion, 12, 14 Path-length, 27

Pentagonal dodecahedron, 59
Lattice, 40 Perspective, 4
Lattice lines, 40 Point at infinity, 19
Lattice points, 40, 49 Point-symmetry, 77
Lattice, triangular, 56 Polar coordinates, 11
Lion, 25 Primitive Pythagorean triangles, 55,
Logarithmic spiral, 16 67
Loxodrome, 17,27 Primitive segment, 51

Proof by parquets, 44
Mapping equations, 22, 46 Propeller, 61
Mean, 71 Pythagoras, 43
Mean, arithmetic, 71, 75, 79 Pythagoras’ theorem, 44, 48, 64
Mean, geometric, 75, 79 Pythagorean triangle, 54, 67
Mean, harmonic, 72, 79
Median, 76 Quadrilateral, 32, 34
Middle, 76
Midpoint, 77 Reference circle, 12, 21, 27
Minimal supply channel, 75 Reflection in a square, 25, 29
Mirror, 1 Regular hexagon, 48, 60
Mobius band, 24, 29 Regular octahedron, 38
Mobius circle, 24 Rhyming lines, 85
Mobius, August Ferdinand, 24 Rhyming schemes, 82
Moiré-effect, 49, 51 Rule-of-eleven, 84
Monitor, 5

Schierscher, Georg, 25
Napoleon, 81 Self-similarity, 5
Napoleon’s Theorem, 61 Sequence, geometric, 5
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Sequence, harmonic, 4
Sierpinski Triangle, 7
Speed average, 72
Sphere-reflection, 25
Spiral, 16

Spiral, Archimedean, 27
Spiral, hyperbolic, 27
Spiral, logarithmic, 16, 18
Square lattice, 40

Square pattern, 12

Square structure, 11
Stirling numbers, 83
Straight lines, 23

Support triangle, 51, 56
Surface, one-sided, 24
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