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Preface

The protection of sensitive information against unauthorized access or fraudulent changes has been of
prime concern throughout the centuries. Modern communication techniques, using computers connected
through networks, make all data even more vulnerable for these threats. Also, new issues have come up
that were not relevant before, e.g. how to add a (digital) signature to an electronic document in such a way
that the signer can not deny later on that the document was signed by him/her.

Cryptology addresses the above issues. It is at the foundation of al information security. The techniques
employed to this end have become increasingly mathematical of nature. This book serves as an
introduction to modern cryptographic methods. After a brief survey of classical cryptosystems, it
concentrates on three main aress. First of all, stream ciphers and block ciphers are discussed. These
systems have extremely fast implementations, but sender and receiver have to share a secret key. Public
key cryptosystems (the second main area) make it possible to protect data without a prearranged key. Their
security is based on intractable mathematical problems, like the factorization of large numbers. The
remaining chapters cover a variety of topics, such as zero-knowledge proofs, secret sharing schemes and
authentication codes. Two appendices explain all mathematical prerequisites in great detail. One is on
elementary number theory (Euclid's Algorithm, the Chinese Remainder Theorem, quadratic residues,
inversion formulas, and continued fractions). The other appendix gives a thorough introduction to finite
fields and their agebraic structure.

This book differs from its 1988 version in two ways. That a lot of new material has been added is to be
expected in afield that is developing so fast. Apart from arevision of the existing material, there are many
new or greatly expanded sections, an entirely new chapter on elliptic curves and also one on authentication
codes. The second difference is even more significant. The whole manuscript is electronically available as
an interactive Mathematica manuscript. So, there are hyperlinks to other places in the text, but more
importantly, it is now possible to work out non-trivial examples. Even a non-expert can easily ater the
parameters in the examples and try out new ones. It is our experience, based on teaching at the California
Ingtitute of Technology and the Eindhoven University of Technology, that most students truly enjoy the
enormous possibilities of a computer algebra notebook. Throughout the book, it has been our intention to
make al Mathematica statements as transparent as possible, sometimes sacrificing elegant or smart
alternatives that are too dependent on this particular computer agebra package.

There are several people that have played a crucia role in the preparation of this manuscript. In
aphabetical order of first name, | would like to thank Fred Simons for showing me the full
potential of Mathematica for educational purposes and for enhancing many the Mathematica
commands, Gavin Horn for the many typo's that he has found as well as his compilation of
solutions, Lilian Porter for her feedback on my use of English, and Wil Kortsmit for his help in
getting the manuscript camera-ready and for solving many of my Mathematica questions. | aso
owe great debt to the following people who helped me with their feedback on various chapters:
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Berry Schoenmakers, Bram van Asch, Eric Verheul, Frans Willems, Mariska Sas, and Martin van
Dijk.

Henk van Tilborg

Dept. of Mathematics and Computing Science

Eindhoven University of Technology

P.O.Box 513

5600 MB Eindhoven

the Netherlands

email: henkvt@win.tue.nl.



1 Introduction

11 Introduction and Terminology

Cryptology, the study of cryptosystems, can be subdivided into two disciplines. Cryptography
concerns itself with the design of cryptosystems, while cryptanalysis studies the bresking of
cryptosystems. These two aspects are closely related; when setting up a cryptosystem the analysis
of its security plays an important role. At this time we will not give a formal definition of a
cryptosystem, as that will come later in this chapter. We assume that the reader has the right
intuitive idea of what a cryptosystem is.

Why would anybody use a cryptosystem? There are several possibilities:

Confidentiality: When transmitting data, one does not want an eavesdropper to understand the
contents of the transmitted messages. The same is true for stored data that should be protected
against unauthorized access, for instance by hackers.

Authentication: This property is the equivalent of a signature. The receiver of a message wants
proof that a message comes from a certain party and not from somebody else (even if the original
party later wants to deny it).

Integrity: This means that the receiver of certain data has evidence that no changes have been
made by athird party.

Throughout the centuries (see [Kahn67]) cryptosystems have been used by the military and by the
diplomatic services. The nowadays widespread use of computer controlled communication
systems in industry or by civil services, often asks for specia protection of the data by means of
cryptographic techniques.

Since the storage, and later recovery, of data can be viewed as transmission of this data in the time
domain, we shall always use the term transmission when discussing a situation when data is stored
and/or transmitted.
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1.2 Shannon's Description of a Conventional Cryptosystem

Chapters 2, 3, and 4 discuss several so-called conventional cryptosystems. The formal definition of
a conventional cryptosystem as well as the mathematical foundation of the underlying theory is
due to C.E. Shannon [Shan49]. In Figure 1.1, the general outline of a conventiona cryptosystem is
depicted.

In the next section we shall elaborate on concepts like language and text. This will provide a
cryptanalist with useful models when describing the output of the sender in the scheme.

Eve

Alice P Encryption - Decryption —— Bob

Yy

Key Source

Secure Channel

The conventional cryptosystem

Figure 1.1

Let A be a finite set, which we will call alphabet. With | Alwe denote the cardinality of A.We
shall often use Z, = (0, 1. ..., ¢ — 1} as alphabet, where we work with its elements modulo g (see
the beginning of Subsection A.3.1 and Section B.2. The alphabet Z¢ can be identified with the set
{a, b, ..., z). In most modern applications g will often be 2 or a power of 2.

A concatenation of n letters from A will be caled an n-gram and denoted by
a=(ap, a, ..., a,—1). Specia cases are bi-grams (n = 2) and tri-grams (n = 3). The s of dl n-
grams from A will be denoted by A".

A text is an element from A* =J,.q A" A language is a subset of A*. In the case of
programming languages this subset is precisely defined by means of recursion rules. In the case of
spoken languages these rules are very loose.

Let A and B be two finite alphabets. Any one-to-one mapping E of A* to B is cdled a
cryptographic transformation. In most practical situationstAl will be equal to IBl. Also often the
cryptographic transformation E will map n-grams into n-grams (to avoid data expansion during the
encryption process).
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Let m be the message (a text from A*) that Alicein Figure 1.1 wants to transmit in secrecy to Bob.
Itisusually called theplaintext. Alice will first transform the plaintextinto ¢ = E(m), the so-called
ciphertext. It will be the ciphertext that she will transmit to Bob.

Definition 1.1

A symmetric (or convenfional) cryprosystem € 15 a set of cryptographic transformations
€=[E|keX]

The index set K i1s called the .fcr_'c fPace, and its elements k& kevs.

Since E; is aone-to-one mapping, its inverse must exist. We shall denote it with D,. Of course, the
E stands for encryption (or enciphering) and the D for decryption (or deciphering). One has

Dy (E, (m)) =m, for al plaintexts m € A*and keys k € K.

If Alice wants to send the plaintext m to Bob by means of the cryptographic transformation Ej,
both Alice and Bob must know the particular choice of the key k. They will have agreed on the
value of k by means of a so-caled secure channel. This channel could be a courier, but it could
aso bethat Alice and Bob have, beforehand, agreed on the choice of k.

Bob can decipher ¢ by computing

Dy (€) = Dy (E (m)) = m.
Normally, the same cryptosystem € will be used for a long time and by many people, so it is
reasonable to assume that this set of cryptographic transformations € is aso known to the
cryptanalist. It is the frequent changing of the key that has to provide the security of the data. This

principle was aready clearly stated by the Dutchman Auguste Kerckhoff (see [Kahn67]) in the 19-
th century.

The cryptanalist (Eve) who is connected to the transmission line can be:

» passive (eavesdropping): The cryptanalist tries to find m (or even better k) from ¢ (and whatever
further knowledge he has). By determining k more ciphertexts may be broken.

= active (tampering): The cryptanalist tries to actively manipulate the data that are being
transmitted. For instance, he transmits his own ciphertext, retransmits old ciphertext, substitutes
his own texts for transmitted ciphertexts, etc..

In general, one discerns three levels of cryptanalysis:

= Ciphertext only attack: Only a piece of ciphertext is known to the cryptanalist (and often the
context of the message).

= Known plaintext attack: A piece of ciphertext with corresponding plaintext is known. If a system
is secure against this kind of attack the legitimate receiver does not have to destroy deciphered

messages.
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» Chosen plaintext attack: The cryptanalist can choose any piece of plaintext and generate the
corresponding ciphertext. The public-key cryptosystems that we shall discuss in Chapters 7-12
have to be secure against this kind of attack.

This concludes our general description of the conventional cryptosystem as depicted in Figure 11

13 Statistical Description of a Plaintext Source

In cryptology, especidly when one wants to bresk a particular cryptosystem, a probabilistic
approach to describe alanguage is often aready apowerful tool, as we shall seein Section 2.2.

The person Alice in Figure 1.1 stands for a finite or infinite plaintext source § of text, that was
celled plaintext, from an aphabet A, eg. Z,. It can be described as afinite resp. infinite sequence
of random variables M;, so by sequences

Mo, M\, ..., M,_; for some fixed value of n,
resp.
Moy, M\, M;, ...,

each described by probabilities that events occur. So, for each letter combination (r-gram)
(mg, my, ... ,m._)) over A and each starting point j the probability

Pryain(M; = mo, Mjyy =my, ..., Mjpyy =m,y)

is well defined. In the case that j =0, we shall Smply write Pryjain(mo, my, ..., m,;). Of course,
the probabilities that describe the plaintext source § should satisfy the standard satistica
properties, that we shall mention below but on which we shall not elaborate.

1) Prpla,'n(mo, my, ..., m_)z0 fora“ teX'[S(mo, mi, ..., Mpe_y).
i) Z(mo,ml,m,m,_l)Prplain(m(), my, ..., mpey)=1.
lll) Z(m,.m,+|,...‘ml_l)PrPlai"(mO’ My, ooy Mp_1) = PI‘p]ain(mO, My, ey My_y), foralll>r.

The third property is called Kolmogorov's consistency condition.

Example 1.1

The plaintext source & (Alice in Figure 1.1) generates individual letters (1-grams) from {a, b, ..., z} With
an independent but identical distribution, say p(a), p(b), ..., p(z). 0,

Projain(mo, my, ..., mp-) = p(mg) pimy) -+ p(mp-1),n = 1.

The distribution of the letters of the alphabet in normal English texts is given in Table 1.1 (see
Table 12-1 in[MeyM82]). In thismodel one has that

Pryiain(run) = p(r) p(w) p(n) = 0.0612x0.0271 x0.0709 ~ 1.18 107,
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Note that in this model also Prpyim(nru) = p(n) p(r) p(u), €tc., so, unlike in a regular English texts,
all permutations ofthe three letters r, u, and n are equally likely in &

a 0.0804 h 0.0549 o 0.0760 v 0.0099°
b 0.015¢ i 0.0726 p 0.0200 w 0.0192
¢ 0.0306 j 0.0016 g 0.0011 x 0.0019
d 0.03%9 k 0.0067 r 0.0612 y 0.0173
e 0.1251 1 0.0414 s 0.0654 z 0.0009
£ 0.0230 m 0.0253 t 0.0925

g 0.0196 n 0.0709 u 0.0271

Probability distributions of 1-grams in English.
Table 1.1

Example 1.2

& generates 2-grams over the alphabet {a, b, , ..., z} with an independent but identical distribution, say
pis, ), withs, t €f{a, b, ..., z}. So,forn =1

Propain(mo, my, ..., maz-1) = plmgmy) plmz, m3) -+ p(mz u—3 My u-1)-

The distribution of 2-grams in English texts can befound in the literature (see Table 2.3.4 in
[Konh81]).

Of course, one can continue like this with tables of the distribution of 3-grams or more. A different
and more appealing approach is given in the following example.

ed["a"] = 0.0723; ed["3"]

: =0.0006; ed["8"] = 0.0715;
| ed["b"] = 0.0060; ed["k"] = 0.0064; ed["t"] = 0.0773;
ed["c"] = 0.0282; ed["1"] = 0.0390; ed["u"] = 0.0272;

| ed["d"] = 0.0483; ed["m"] = 0.0230; ed["v"] = 0.0117;

ad["a"] = 0.1566; ed["n"] = 0.0814; ed["w"] = 0.0078;
ed["f"] = 0.0167; ed["o"] = 0.07167 ed["x"] = 0.0030;
ad["g"] = 0.0216; ed["p"] = 0.0160; ed["y"] = 0.0168;
ed["h"] = 0.4020; ed["g™] = 0.0007; ed["="] = 0.0010;

ed["i"] = 0.0787; ed["r"] = 0.0750;

Equilibrium distribution in English.

Table 1.2
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a b c d - £ g h i 5 k 1 m
a 0.0011 0.01%3 D.0388 0. 469 0.002 0.01 0.0233 0.002 O.048 0.002 0.0103 0.1052 0.0201
b 0.0931 0.0057 0.0QL6 O.QOOB 0.3219 0 o L 0.0608 0.005T7 0 B.1242 90,0049
¢ 0.1202 © 0.01%5 0.0004 0.1707 O ] 0.1277 0.0761 0 0.0324 0.035% 0,0015
4 0.1044 0.002 O0.00Z6 0.0218 O.3778 0.0007 0.0132 O.0007 O0.1803 0.0033 0 0.00LI5 0.0178
& 0.066 0.0036 0.0433 0.1194 0.0438 0.0142 0. 012% 0.0021 0.0158 0.0005 0.0036 0.0456 0.034
E0.0838 0 o o 0.1283 6.05%24 0 L Q9.1608 0 o 0.0259 O.0009
g 0.2074 0 ] o.0018 0.3394 0 0.0177 90,1281 0.0839 D o 0.0203 0.0027
h 0.176% 0.000% D.0014 O.0008 0.5623 0 o 9.0005 0.1167 O o 00016 0.0016
i 9.038 0.0082 ©.0767 0.0459 0.0437 0.012% 0.028 0.0002 0.0016 O 0.00% ©0.0567 0.0297
4 0.1359 0 ] 0 0.1818 0 0 0 0.035 0 i} 0 a
k 0.0335 0.0028 O 0.0028 0.5282 0.0028 0 0.0198 0.1582 O 0.0113 0.0198 O.0024
1 0.1342 0.001% ©.0022 0.0736 0.19148 0.0105 0.0108 0 0.1521 O b.007TS 6.1413 0.4082
m 0.1822 0.0337 0.0026 0 0.2975 D.OOL O Q 0.1345 O ] 0.001 Q.06%4
n0.055 0,0004 0.0621 O,1681 0.1212 0.0102 0.1391 Q.0013 0.0665 0.000% ©.0086 0.0073 0,0104
& Q.0085 0.010L 0.0162 0.0231 0.0037 0.129% O.0082 0.0025 0.00%2 0.00L4 O.007E 0.0416 0.0706
p 0.1359% 0 0. 0006 O 0.17T47 O a 0.0237 D.0423 O o 0.0812 0.0073
qn o L] a 1] o a a o o 1] a a
£ 0.1026 0.0033 O0.0172 0.0282 0.2755 0.0031 0.0178 0.0017 0.1181 O 0.0205 0.0164 0.0303
s 0.0604 00012 O.0284 0.0027 0.179% 0.0024 @ 0.0561 0.1177 O 0.00%1 0.0145 0.0112
t 0.0619 0.0003 O.0036 0.0002 0.1417 0.D00T O,0002 0.3512 0.1405 O 0 0.0101 0.0044
u 0.0344 0.0418 O.0451 0.0243 0.0434 0.0052 0.0382 0.001 ©0.0I58 0 0.00L4 0.1097 0.0329
w 00745 0 L 0.0023 0.6004 0 (1] Q 0.2569 0 0 a 0.0012
w 0.2291 0.000B O 0.0032 0.1942 0 L] 0.1422 0.2104 O o 0.0041 0
x D.DETZ O 0.1119 0 0.126% 0 [ 0.0075 0.131% O o a 0.0878
¥ D.0SE6 0.0034 0.0103 0.0069 O.Z89T7 O i} a 0.08% O 0.0034 0.0172 0.0379
z 0.2278 0 0 Q 0.4557 © a a 0.2152 O 0 0.0127 0

n o P q r [ 1 E ] w W £l ¥ F3
a D.1B7E 0.0008 0.02322 0 .11 0.1001 0.1574 0.0137 ©.0212 0.0057 O.0026 0.0312 0.0033
B D 0.0964 @ Q D.0662 0,022% 0.0049 0.0727 D.00LE O L] 0.1168 0
e 0.0011 0.2283 0 0.0004 O.0426 0.00B7 0.0893 0.0347 O o i 0.0994 0
d 0.0053 90,0733 0 0.0007 0.0324 0.0495 0.0013 0.0601 0.00%% 0.004 0 0.0264 0
& 0.1361 0.004 0.0192 0.0034 0.1927 0.1231 O0.0404 0.0048 00215 0.020% 0.0152 0.0121 0.0004
£ 0.0009 0.2780 0 a 0.1215 0.0D02E O.0496 0.0482 O 0 ] 0.0043 0
@ 0.0451 0.114 @ a 0.1328 0.028E 0.0247 0.0512 O [ ] 0.0053 0
h 0.0038 0.0786 O o 0.015%3 0.0027 0.0333 0.0085 0 0. 0011 0 0.0041 O
L 0.24%6 0.0893 0.01 0.0008 0.0342 0.1194 0,1135 0.0011 ©0.025 O 0.0023 0.0002 0.0073
ia 0.3147 0 o 0.007 0 a 0.33157 © L a a o
k 0.0565 0.0198 Q o 0.00ES 0.1102 0.0028 0.00Z8 O 0 a 0.0113 0
1L 0.0004 0.0778 0.0041 O 0.0034 0.0389 0.0254 0.0269 0.0056 0.0011 @ 0.0819 0
= 0.0042 0.1246 0.0722 0 0.0026 0.0244d 0.0005 0.013T O.0008 O @ 0.01%2 0
m 0.0194 0.0528 0.0004 0.0007 O.0011 O.0751 O0.1641 0.0124 0. 0088 O.0018 0.0002 0.0157 0.0004
o 0.21% 0.0222 0.0292 0 0.158% 0.03%7 0.0396 0.0947 ©,0334 0,0345 90,0012 0.0041 0.0004
p 0.0006 0.1511 0.0%81 O 0,2306 0.018 0,0287 0.D45T O Q a 0.0017 D
qd a a o o a o 1 /] Q a 0 o
r 0.032% 0.1114 0.005% O 0.0212 0.0655 0.0596 0.019%2 0.0142 0.0017 0.0002 0.0306 0
= 0.0021 0.0706 0.0386 0.000% O.0027 0.0836 0.3483 0D.057% O 0.003% 0 0.0081 O
£ 0.0015 0.1329 0.0003 0 0.04979 0.0418 0.0213 0.0L95 O.0005 0.0088 O 0.0203 0.000%
w 9.,1517 0.0019 0.0386 © 0,146 ©0.1221 0,1255 0.002% 0.0014 0 0.001 0.0014 O.0ODS
v 9.053 © 1] 0 0.0023 0 0.0012 ©.0012 0 a 0.00%8 O
w 0.0357 0.1292 0 o 0.0106 0.0366 0.0016 O 0 a a 0.0024 D
% 0 0.0075 0.3507 0 Li] a G.1716 0 a a 0.0373 0 o
¥ 0.0172 0.2207 0.031 © 0.031 0.1517 0.0472 0.0138 @ 0.0183 0 0.0069 O, 0034
z @ 0.0506 O o a a o 0.0127 @ Q Q v} 0.0253

Transition probabilities p(r | 5], row s, column 1, in English.
Table 1.3

Example 1.3

In this model, the plaintext source 6 generates 1-grams by means of a Markov process. This process can
be described by a transition matrix P = (p(t|s)),, which gives the probability that a letter s in the text is
followed by the letter t. Itfollowsfrom the theory of Markov processes that P has 1 as an eigenvalue. Let
B = (pla), p(b), ..., p(z)), be the corresponding eigenvector (it is called the equilibrium distribution of the
process).

Assuming that the process is already in its equilibrium state at the beginning, one has
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Proain(mo. my, ..., my—1) = plmo) p(my | mo) pimy {my) -+ plmp_y | m,—2).

Let p and P be given by Table 1.2 and Table 1.3 from [Konh81] (here they are denoted by "ed"
resp. "TrPr"). Then, one obtains thefollowing, more realistic probabilities of occurrence:

Pryjain(run) = p(r) p(u | 1) p(n | u) = 0.0751x 0.0192 x 0.1517 ~ 2.19 107,
Pron(urn) = p(u) p(r | u) p(n | r) = 0.0272x 0.1460 x 0.0325 ~ 1.29 1074,
Proain(nru) = p(n) p(r | n) p(u| r) = 0.0814x 0.0011 x 0.0192 ~ 1.72 1075,

By means of the Mathematica functions StringTake, ToCharacterCode. and
StringLength. these probabilities can be computed in thefollowing way (first enter the input
Table 1.2 and Table 1.3, by executing all initialization cells)
i sourcetext = "run®;
. ed[StringTake [sourcetext, {1}]] =
| FtringLangth[scurcetaxt]-1
TrPr( [

i=l
ToCharacterCode [
StringTake[scurcetext, {i}]] - 96,
ToCharacterCode[StringTake[sourcetext, {i+1}]] - 96]]

{{0.000218448}}

Better approximations of a language can be made, by considering transition probabilities that
depend on more than one letter in the past.

Note, that in the three examples above, the models are all stationary, which means that
Prolain(M; = my, M1 =my, ..., M, 1 = m,_1) isindependent of the value of j. In the middle of
a regular text one may expect this property to hold, but in other situations this is not the case.
Think for instance of the date at the beginning of a letter.

14 Problems

Problem 1.1

What is the probability that the text "apple’ occurs, when the plaintext source generates independent,
identically distributed 1-grams, as described in Example 1.1.

Answer the same question when the Markov model of Example 1.3 is used?

Problem 1.2

Use the Mathematica function Permutations and the input formula a the end of Section 1.3 to
determine for each of the 24 orderings of the four letters €, h, I, p the probability that it occurs in a
language generated by the Markov model of Example 1.3.
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2 Classical Cryptosystems

2.1 Caesar, Simple Substitution, Vigenere

In this chapter we shall discuss a number of classical cryptosystems. For further reading we refer
the interested reader to ([BekP82], [Denn82], [Kahn67], [Konh81], or [MeyM82]).

211 Caesar Cipher
One of the oldest cryptosystems is due to Julius Caesar. It shifts each letter in the text cyclicly over

k places. So, with k =7 one gets the following encryption of the word cleopatra (note that the
letter zis mapped to a):

cleopatra 2, dmfpgbusb RiN enggqrevic 2L fohrsdwud =5 gpistexve 2 hqjtufywf 2 irkuvgzxg

BN jslvwhayh

By using the Mathematica functions ToCharacterCode and FromCharacterCode, which
convert symbols to their ASCI code and back (letter a has value 97, letter b has value 98, etc.), the

Caesar cipher can be executed by the following function:

CassarCipher[plaintaxt_ , key ] 1=
FromCharacterCoda|[
Mod [ ToCharacterCode[plaintext] - 97 + key, 26] + 97]

An exampleis given below.

plaintext = "typehereyourplaintextinsmallletters";
key = 24;
CassarCipher([plaintext, key] !

rwmcfecpowmepnjyglroveglgkyijjjocrropg

In the terminology of Section 1.2, the Caesar cipher is defined over the alphabet {0, 1, ..., 25} by:

Ex (m) = ((m+k)mod26), 0=<m< 26,

and
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€= {Ec|0=k<26},

where (i mod n) denotes the unique integer j satisfying j =i(modn) and 0 < j <a. In this case,

the key space K'isthe st {0, 1, ...,

25} and D, = Eq—l—k-

An easy way to bresk the system is to try out dl possible keys. This method is called exhaustive
key search. InTable 2.1 onecan find the cryptanalysis of the ciphertext " xyuysuyifvyxi".

X

o g g 8

Yy

SRS

Yy

Q R u ot
o8 X

C T anrw

u

Q8 oo

Y

[SEREE

O thQ o -

£

o0 0

v

Hown oo

Y

c <45 N

Cryptanalysis of the Caesar cipher
Table 2.1

e < 5 X

i

o HhQa 5

To decrypt the ciphertext yhaklwpnw., one can easlly check al keys with the caesar function

defined above.

ciphertext = "yhaklwpnw®;
_!lbl.[cuu:ciph-r[ui;h:tut. -hl'!r] {Iﬂh 1.. :E]] £

{xgz jkvomv,
ratdepigp,
mvoyzkdblk,
hegieufywe,
cleopatra,

2.1.2 Simple Substitution

o TheSysemanditsMain Weakness

wiyvijunlu, vexhitmkt,
gzscdohfo, pyrbengen,
lunxyjcaj, ktmwxibzi,
gpistexve, fohrsdwud,
bkdnozsgz, ajcmnyrpy,

udwghsljs,
oxgabmEdm,
jslvwhayh,
enggreovte,
ziblmxgox,

tevigrkir, sbuefgihg,
nwpzalecl,
irkuvgzxg,
dmfpgbush,
yvhaklwpnw}

With the method of a simple substitution one chooses a fixed permutation = of the alphabet

{a, b, ..., z} and appliesthat to all letters in the plaintext.

Example2.1

In thefollowing example we only give that part of the substitution  that is relevantfor the given plaintext.
We use the Mathematicafunction StringReplace.
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| BtringReplace["plaintext",
! {nun -5 Wkw, ®g® _5 ngm nin _% npe, Wlm _y spe
| L} L S nprr - llv'll' s lan Wyl _ n&u}}

vrkbagzdg

A more formal description of the simple substitution system is as follows: the key space ¥is the
st S, of al permutations of (0, 1, ..., ¢ — 1} and the cryptosystem € is given by

={E: | 1€ 5},
where
E: (m) =75 (m), O<m<gq.
The decryption function Dy is given by D, = E_-1, as follows from
Dy (EBq (m)) =D (rr(m)) =E.1 (n(m)) =x"' (n(m)) =m, Osm<gq.

Unlike Caesar's cipher, this system does not have the drawback of a small key space. Indeed,

| K1 =(]8)]=26!~4.03 107, This system however does demonstrate very well that a large
key space should not fool one into believing that a system is securel On the contrary, by simply
counting the letter frequencies in the ciphertexts and comparing these with the letter frequencies in

Table 1.1, one very quickly finds the images under mof the most frequent letters in the plaintext.

Indeed, the most frequent letter in the ciphertext will very likely be the image under « of the letter
e. The next one is the image of the letter n, etc. After having found the encryptions of the most
frequent letters in the plaintext, it is not difficult to fill in the rest. Of course, the longer the cipher
text, the easier the cryptanaysis becomes. In Chapter 5, we come back to the cryptanalysis of the
system, in particular how long the same key can be used safely.

o Cryptanalysisby The Method of a Probable Word

In the following example we have knowledge of a very long ciphertext. This is not necessary at al
for the cryptanalysis of the ciphertext, but it takes that long to know the full key. Indeed, as long as
two letters are missing in the plaintext, one does not know the full key, but the system is of course
broken much earlier than that.

Apart from the ciphertext, given in Table 2.2, we shal assume in this example that the plaintext
discusses the concept of "bidirectional communication theory". Cryptanalysis will turn out to be

very easy.
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ndize hicle osiol digic 1lmhzg zolyi zehdp zhjeo ndize
hlpvs uczyc dhzhj eondi zehge moylk zhjpm lhylg gidiz
ppsdo lylzr losye nnmhz vydize hicle osceu lrlog 1lgyoz
lneol flhlo dpydg lzhuc zyciu eeone olzhj eondi =zehge
zhjpm 1lhyll dycei clogi dizgi zydpp siclg zolyi zehej
hjpml hylzg 1lkaol gglgv sqzol yilgi odhgj eondi =zehxm
zlguc zycyd hehps vlglo zrlgz jiclp duejy dmgdp ziszg
rlggz gizhf mzgcz hficl ldopz loydm gljoe niclp dilol
zhvze pefsd hqggey =zepef syenn mhzyd izehi cleos gllng
luzgl daapz ydize hggml ieicl jdyii cdipz rzhfv lzhfg
iclzo dyize hggem oylge jzhje ondiz ehucz yczhj pmlhy
eiclo zhdpp aeggz vplgz olyiz ehgic laolg lhiad alogl
gicly dglej vzgzo lyize hdpye nnmhz ydize hicle osdaa
eiclg eyzdp vlcdr zemoe Jjneht lsg.

Ciphertext obtained with a simple substitution
Table 2.2

Assuming that the word "communication" will occur in the plaintext, we look for strings of 13
consecutive letters, in which letter 1 = letter 8, letter 2 = letter 12, letter 3 = |etter 4, |etter 6 = |etter
13 and letter 7 = letter 11.

Indeed, we find the string "yennmhzydizeh" three times in the ciphertext. This gives the following
information about .

comumniat
L A A IR
yenmhzd.i

Assuming that the word "direction” does aso occur in the plaintext, we need to look for strings of
the form "*z**yizeh" in the ciphertext, because of the information that we aready have on =. It
turns out that "qzolyizeh" appears four times, giving:

dr e
Ll
g o !

If we substitute al this information in the ciphertext one easily obtains & completely. For instance,
the text begins like

in* ormationt* eor* treat* t* eunid...,
which obviously comes from

information theory treats the unid(irectional)
This givesthe n-image of the letters f, h,y and s...,
Continuing like this, one readily obtains 7 completely.
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a b cde f gh i j k1l mnopdgers¢tuvwixyz:z

N N A A A R N A R AN

d vy gl j f c¢c zw t pnheaxog imyzr uk s b
Example 2.2

Mathematica makes is quite easy tofind a substring with a certain pattern. For instance, to test where in a
text one canfind a substring of length 6 with letters 1 and 4 equal and also letters 2 and 5 (as in the Latin
word "quoque"'), one can use the Mathematica functions If. StringTake, StringLength, Do
Print and thefollowing:

ciphartext = "xyuysuyifvyxin;
Do
If [BtringTake[ciphertext, {i+ 1}] == StringTake[ciphertext,
{i+4}] ABStringTake[ciphertext, {i+2]}] ==
StringTake|[ciphertext,; {i+5}];
Print[i+1, " ", BtringTake[ciphertext, {i+1, 1+6}]]].
{i, 0, Btringlength[ciphertext] - 6}]

3  uysuyi

This example was taken from Table 2.1.

2.1.3 Vigeneére Cryptosystem

The Vigenere cryptosystem (named after the Frenchman B. de Vigenére who in 1586 wrote his
Traicté des Chiffres, describing a more difficult version of this system) consists of r Caesar ciphers
applied periodicaly. In the example below, the key is aword of length » = 7. The i-th letter in the
key defines the particular Caesar cipher that is used for the encryption of the letters
i,i+r, i+2r,...intheplaintext.

Example 2.3

We identify {0, 1, ..., 25} with {a, b, ..., z}. The so-called Vigenere Table (see Table 2.3) is a very helpful
tool when encrypting or decrypting. With the key "michael" one gets the following encipherment:

plaintext a ¢ ¥r v p £t 0 s ¥y s t em o f t e n i s a c
key m i ¢ h ae lmichaelmdichaelmnm
ciphertext m kK t £ p x z e g u a e g z r b guiwl o
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i k1 mnopdgqgryrs¢tuvwixyz
k' lmnopdgrs¢tuvw2iXxyza

i
3

a bcdef gh
b cde f ghi

0
1
2
3
4
5
6
7
8
9

a b

tuvwxyzaboec
£t uv wXxXy z aboccd

k' 1 mnopdgers¢tuvw?zixy z
k 1lmnopgrers¢tuvwzxy=2zabocdde

3
k 1lmnopgdgrs

i
b

c de f gh
d e £f ghi
e f g h i j

k 1 mnop gr s

b

f g h 1

k1l mnopgrstuvwzxy=zzabocdef

b
j k 1mnopgrcrs

g h i
h

i
j

tuvwxyzabocde f=£fgyg

i

t uwv wxyozabocdefgh

j k 1mnopagrs

k 1lmnopdgrs=tuvwzxyz zabocde£fghi

3

10 k 1 mn opgr s £t uvwiXxy zabuoecdefghli

k

3

11 1 mn op g ¥ s t uvwzixyzaboecdefghi

k

3

t u v wxyozabocdefghi

12 mn o pgr s
13 n o p gr s

k 1 m
k1 mn

vV w Xy 2 abocdefghij

£t u

3
j k 1 m n o

16 g r s tuvwxy zabocdefghidiikl1mnoop

a bcdef gh i

15 p gr s tuvwxy zabocdefghi

14 o pgrs tuvw2IXxy z

k 1 mnop g
k 1 mnopdgr
k 1lmnopgr s

3

17 r s t uv w=xyY 2 abocecdef ghi
18 s t uvwxyzabocde £fghi

j

z a bcde f ghij

19 £t u v wxy

k1l mnopgrs t

3

20 u v wxyz abocdef ghi

tou

k 1 mnopggr s
k 1 mnopgr s tuv

3

i
bl

21 v w x ¥y z abcdef gh
22 w Xx y z abcdef gh
23 x y z a b ec d e £ gh i

i
3

k1l mnopgrs tuv w

£t u v w x

24 vy z a b ec de f ghdijk1lmnowpagr s

25

k 1lmnopdgers ¢ tuvwixy

3

z a bcde f ghi

The Vigenére Table.

Table 2.3

Because of the redundancy in the English language one reduces the effective size of the key space
tremendously by choosing an existing word as the key. Taking the name of a relative, as we have

done above, reduces the security of the encryption more or less to zero.

In Mathematica, addition of two letters as defined by the Vigenére Table can be realized in a

similar wav. as our earlier implementation of the Caesar cipher:

I=

AddTwoLettaras[a_, b _]

FromCharacterCode[Mod[ (ToCharacterCode[a] - 97) +

(ToCharacterCode[b] - 97), 26] + 97]

By means of the Mathematica functions stringTake and stringLength, and thefunction

AddTwoLetters, defined above, encryption with the Vigenére cryptosystem can be realized as

follows:
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plaintext = "typehersyourplaintaxtinsmalllatters";
key = "kayword";
ciphartaxt = "";
Do [ciphartext = ciphartaxt <>
AddTwoLettars [StringTake [plaintext, {i}].

StringTake|[
key, {Mod[i-1, Stringlength[key]] +1}]1],
{i, 1, stringLength[plaintext]}];
ciphertext

docnavvuocmgfgolmlpsowsrgiocovirpsiv

A more formal description of the Vigenére cryptosystem is as follows

€ = {Eug.kyomkpq) | (Koo kiu ooy keo1) € K =253
and
Etkghy... kMo, my, ma, . Y = (o, €1, €2y vnnnnn )
with
¢i = ((m; + k(i mod ) Mod 26). 2.1

Instead of using r Caesar ciphers periodically in the Vigenére cryptosystem, one can of course aso
use r smple substitutions. Such a system is an example of a so-called polyalphabetic substitution.
For centuries, no one had an effective way of bresking this system, mainly because one did not
have a technique of determining the key length r. Once one knows r, one can find the r smple
substitutions by grouping together the letters i, i+r, i+2r,...,for each i, 0 =i <r,and bresk
each of these r smple substitutions individually. In 1863, the Prussian army officer, FW. Kasiski,
solved the problem of finding the key length r by stetistical means. In the next section, we shall
discuss this method.
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2.2 The Incidence of Coincidences, Kasiski's Method

2.2.1 The Incidence of Coincidences

Consider a ciphertext ¢ = co, ¢, ..., c,-1Which is the result of a Vigenére encryption of an English
plaintext m = mq, my, ..., m,_junder the key k = ko, ki, ..., k,—i(see ds0 (2.1)). As explained at
the end of the previous section, the key to breaking the Vigenére system is to determine the key
length r.

In our analysis we are going to assume the very simple model of a plaintext source outputting
independent, individual letters, each with probability distribution given by Table 1.1 (see Example
1.1). We further assume that the letters k; in the key are chosen with independent and uniform
distribution from {a, b, ..., z} (50, with probability 1/26).

Let ¢{f},and ¢y, the substrings of ¢ consisting of the i left most resp. right most symbols of ¢, so:

() (i)
Cleft = €05 C1y -+y Ci-1 and cright = Cp—is Cn—i+ls +vvs Cp—1-

Let us now count the number of agreements between ¢{;and ¢y, i.e. the number of coordinates |

where (c{k); = (cﬁ’gm)j. We shal show in Lemma 2.1 that the expected value of this number

divided by the string length i will be 0.06875 or 1/26 ~ 0.03846, depending on whether the
(unknown) key length r divides n — i or does not divide n —i.

Let us show by example how this difference in expected values can be used to determine the
unknown key length r.

Example 24
In this example we consider the ciphertext

" glrtnhkl ttbrxbxwnnhshjwkej msmrwnxgmvehui mnfxbzewi xomhxghhcl geipegimg
gwemwyej gbxbmlywi mbkhhjwikej msmrwnxgmpl ceiwkej mehtpsl mmixowmyl xbxfl xeebr ahjwikejm
smrwnxgm'*.

By means of the Mathematica functions stringTake, StringLength, Characters, ax
Table. We can easily compute the number of agreements between [y, and ¢, in any range of
values of i:
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[

5 ciphertext =

| "ubsyvkmhvyrrtsbberdsndwrtshumbufrmxgabnvmircewerucamly:
zbrviwivwmlyzwapspyogsslechbgcubsvyczgrowrmhvexgooyv:
cydspomtgfpygkgbcmerucadlcaflrsugirbhcegesfcehuogmds:
torcdoymegqwaglgovggsmdabbigztbbgy fwbxwmgfpowgztyeil:
carkgfahuovgfogswrugnvpwivrompgggsslatgrmqubsvyczgrs:,
wejdeowggroihgdspdibf fnxwgztbbgyfwbxus";

L = StringLength[ciphertext]; |

Table[ N[ Count [ Characters[ StringTake[ ciphertext, 1]] - !
Characters[ StringTake[ ciphertext, -i]], 0] /i, I

1}, (i, L-20, L-1}]

{0.03, 0.04, D.0B, 0.02, 0.05, 0.04, 0.04, 0.03, 0.06, 0.07,
0.06, 0.04, 0.02, 0.05, 0.08, 0.04, 0.05, D0.02, 0.01, 0.05)

The (relative) higher values in this listing at places —6 and —18 indicate that the key length r is 6.
Indeed, the key that has been used to generate this example is the word "monkey”, which has 6
etters.

This can be checked with thefollowing analogue of the Vigenére encryption of Example 2.3.

SubTwoLatters[a_, b_] :=

FromCharacterCode|

- Mod[ (ToCharacterCode[a] - 97) - (ToCharacterCoda[b] - 97},
28] + 97]
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ciphertext = |
rubsyvimhvyrrtebbordendwrtshombuf rmxgabnvmircewarucamly I

zhrvifwivwmlyzwapspyogsslechbgoubsvyczgrowrmhvoxgooyv:
cydspomtgfpygkgbcmerucadlcaflrsugjrbhecegesfcehuogmds:
torcdoymeqgwaglgovggemdabhbigzthbgyfwhomgfpowgztyaily
ﬁirh!ﬂmfwmwmlhtmmn
wcjdeowggroihgdspdibf fnxwgztbbgyfwhbius® §

key = "monkey™;

plaintext = "";

Do[plaintext = plaintext <>

SubTwoLetters[StringTake[ciphertext, {i}],

StringTake|
key, {Mod[i -1, StringLength|key]] +1}]]1.
{i, 1, stringLength[ciphertext]}]
plaintext

informationtheorytreatstheunidirecticnalikformationchannelbywhichaninf

crmationscurceinfluencesstatisticallyareceivercommunpeationtheoryho.
weverdescribesthemoregeneral caseinwhichtwoormoreinformationsourcesi:
nflusncesachotherstatisticallythedirectionofthisinfluenceisexpresse
dbyderectedtransinformationgu

Lemma 2.1

Let ¢ be a ciphertext which is the result of a Vigenére encryption of a plaintext m of
length n with key k of length r.

Suppose that m is generated by the plaintext source of Example 1.1. So, all the letters in
m are generated independently of each other, all with the frequency distribution p{em)
given by Table 1.1. Suppose further that the letters k; in the key are chosen with
independent and uniform distribution from {a, b, ..., z} (so, with probability 1/26).

Then, foreach | si< j=n,

5 plm)” = 0.06875, if rdivides j - i,

Prici=¢j] = { 1726 = 0.03846, if rdoes not divide f—i.

If j—i is divisible by r, then ¢; = ¢; if and only if m; = m;. This follows directly from formula
(2.1), since (j mod r) equals (i mod r). So,

Pric; =c;) =Ptlm; =m;| = 2, Prlmi =m; =m] =

3w Prim; = m]Prlm; = m] = 3., ptn)? ~ 0.06875.
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If j—iisnot divisible by r, then by (2.1) ¢; = ¢; if and only if m; + Kimoary = 1 + K(jmearn- SiNCE
(jmodr) # (imod r), it followsthat k(;moed - takes on the value m; + k¢med  — m; Withprobability
1/26. We conclude that

Pric; = ¢;] = 1/26 ~ 0.03846.

It may be clear that with increasing length of the ciphertext, it is easier to determine the key length
from the relative number of agreements between c{Zyand ¢,

2.2.2 Kasiski's Method

Kasiski based his cryptanalysis of the Vigenére cryptosystem on the fact that when a certain
combination of letters (a frequent plaintext fragment) is encrypted more than once with the same
segment of the key (because they occur at a multiple of the key length r), one will see arepetition
of the corresponding ciphertext at those places.

We quote an example from [Baue97]:

Example25
Consider the following plaintext and ciphertext pair (where the key "comet" has been used):

plaintext t h e r e i 8 a n o t h e r £f amouwsop i
key c ome t ¢c ome t c ome ¢t c ome ¢t c o
ciphertext v v q v x k gmr h v v gvyocaay 1lrw

In the ciphertext one canfind the substring "waqv" (of length 4) repeated twice, namely starting at
positions 1 and 11. This indicates that r divides 10. The substring "mrh" (of length 3) also occurs
twice: at positions 8 and 23. So, it seems likely that r also divides 15. Combining these results, we
concludethatr = 5, which isindeed the case.

See [Baue97] for afurther analysis of the Vigenére cryptosystem.
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2.3 Vernam, Playfair, Transpositions, Hagelin, Enigma

Inthis section, we shall briefly discuss afew more cryptosystems, without going deep into their
structure.

2.3.1 The One-Time Pad

The one-time pad, also called the Vernam cipher (after the American A.T. & T. employee G.S.
Vernam, who introduced the system in 1917), is a Vigenére cipher with key length equal to the
length of the plaintext. Also, the key must be chosen in a completely random way and can only be
used once. In this way the system is unconditionally secure, asisintuitively clear and will be
proved in Chapter 5. The "hot ling" between Washington and Moscow uses this system. The major
drawback of this system is the length of the key, which makes this system impractical for most
applications.

2.3.2 The Playfair Cipher

The Playfair cipher (1854, named after the Englishman L. Playfair) was used by the British in
World War I. It operates on 2-grams. First of dl, one has to identify the letters i and j. The
remaining 25 letters of the alphabet are put rowwisein a5 x 5 matrix K, as follows. Put the first
letter of akeyword in the top-left position. Continue rowwise from left to right. If aletter occurs
more than once in the keyword, use it only once. The remaining letters of the alphabet are put into
K in their natural order. For instance, the keyword "hieronymus' gives rise to

h e r o

O P
= 0
X T e
N Q0

n

a

g

t vw
The 2-gram (x, y) = (Ki j, Km») With x £ y will be encrypted into

(Kin, Km,3) ifi#mandj +n,

(Ki,j+1. Kina1), ifi=mandj+n,

(Kis1,5 Kme1,5), 1ifi#mandj=n,

where the indices are taken modulo 5. If the symbols x and y in the 2-gram (X, y) are the same, one
first inserts the letter g and enciphersthe text ...xqy... .
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2.3.3 Transposition Ciphers

A completely different way of enciphering is called transposition. This system breaks the text up
into blocks of fixed length, say n, and applies afixed permutation ¢ to the coordinates. For
instance, withn = 5 and o= (1, 4, 5, 2, 3), one gets the following encryption:

crypt ograp hical .. N vtrep rpgoa cliha ..

Often the permutation is of a geometrical nature, as is the case with the so-called column
transposition. The plaintext is written rowwise in amatrix of given size, but will be read out
columnwise in a specific order depending on akeyword. For instance, after having identified
letters g, b, ..., zwith the numbers 1, 2, ..., 26 the keyword "right" will dictate you to read out
column 3 first (being the alphabeticaly first of the 5 lettersin "right"), followed by columns 4, 2, 1
and 5. So, the plaintext

computing science has had very little influence on computing
practice

when encrypted with a5 x 5 matrix and keyword "right" will first be filled in rowwise as depicted
below

4 3 1 2 5 4 3 1 2 5 4 3 1 2 5
c o mp u vy 1 1 t t n g pr a
t i n g s 1 e i n £ c t i1 c e
c i e n c l uenc
e h a s h e on c o
a d v er mp u t i

and then read out (columnwise in the indicated order) to give the ciphertext:
mneav pgnse oiihd ctcea uschr iienu tnnct leuop yllem tfcoi

Since transpositions do not change letter frequencies, but destroy dependencies between
consecutive letters in the plaintext, while Vigenére etc. do the opposite, one often combines such
systems. Such a combined system is caled aproduct cipher. Shannon used the words confusion
and diffusion in this context.

Ciphersystems that encrypt the plaintext symbol for symbol in away that depends on previous
input symbols are often caled stream ciphers (they will discussed in Chapter 3). Cryptosystems
that encrypt blocks of symbols (of a fixed length) simultaneoudly but independent of previous
encryptions, they are caled block ciphers (see Chapter 4).

During World War 11 both sides used so caled rotor machines for their encryption. Several
variations of the machines described in the next two subsections were in use at that time. We shall
give arough idea of each one.
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2.3.4 Hagelin

The Hagelin

Figure 2.1

The Hagelin, invented by the Swede B. Hagelin and used by the U.S. Army, has 6 rotors with 26,
resp. 25, 23, 21, 19 and 17 pins. Each of these pins can be put into an active or passive position by
letting it stick out to the left or right of the rotor. After encryption of a letter (depending on the
setting of these pins and a rotating cylinder), the 6 rotors al turn one position. So, after 26
encryptions the first rotor is back in its origina position. For the sixth rotor thistakes only 17
encryptions.
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The six rotors in the Hagelin machine,
each with its own number of positions.

Figure 2.2
Since the number of pins on the rotors are coprime, the Hagelin can be viewed as a mechanical

Vigenere cryptosystem with period 26 x 25 x23x 21 x 19 x 17 = 101,405,850. We refer the reader
who isinterested in the cryptanalysis of the Hagelin to Section 2.3 in [BekP82].
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235 Enigma

e 5 e s e S L
The Enigma
Figure 2.3
Keyboard
-
Indicator Light
+— Reflector
4
T

Three Rotors

A Schematic Description of the Enigma
Figure 2.4
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The electro-mechanical Enigma, used by Germany and Japan, was invented by A. Scherbiusin
1923. It congists of three rotors and areflector. See Figure 2.4. When punching in aletter, an
electronic current will enter the first rotor at the place corresponding with that letter, but will leave
it somewhere else depending on the internal wiring of that rotor. The second and third rotors do
the same, but have a different wiring. The reflector returns the current a adifferent place and the
current will go through rotors 1, 2 and 3 again but in reverse order. The current will light up a
etter, which gives the encryption of the original letter.

Simultaneously, the first rotor will turn position. After 26 rotations of the first rotor the second
will turn one position. When the second rotor has made a full cycle, the third rotor will rotate over
one position.

The key of the Enigma consists of

i) the choice and order of the rotors,
i) their initia position and
iii) afixed initial permutation of the aphabet.

For an idea about the cryptanalysis of the Enigma the reader is referred to Chapter 5 in [Konh8l].

2.4 Problems

Problem 2.1
The following ciphertext about president Kennedy has been made with a simple substitution. What is the
corresponding
plaintext?
"rgjjg mvkto tzpgt stbgp catjw pgocm gjs"

Problem 22
Decrypt the following ciphertext, which is made with the Playfair cipher and the key "hieronymous’ (as in
Subsection 2.3.2).

"erohh mfimf ienfa bsesn pdwar gbhah ro"

Problem 2.3
Encrypt the following plaintext using the Vigenere system with the key "vigenere".

"who is afraid of Virginia woolf™"

Problem 2.4"

Consider a ciphertext obtained through a Caesar encryption. Write a Mathematica program to find al
substrings of length 5 in the ciphertext that could have been obtained from the word "Brute”.

Test this program on the text "xyuysuyifvyxi" from Table 2.1. (See aso the input in Example 2.2)
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3 Shift Register Sequences

3.1 Pseudo-Random Sequences

During and after World War 11, the introduction of logical circuits made completely eectronic
cryptosystems possible. These turned out to be very practical in the sense of being easy to
implement and very fast. The analysis of their security is not so easy! Working with logica circuits
often leads to the alphabet {0, 1}. There are only two possible permutations (substitutions) of the
st {0, 1}. One action interchanges the two symbols. This can aso be described by adding 1
(modulo 2) to the two elements. The other permutation leaves the two symbols invariant, which is
the same as adding 0 (modulo 2) to these two elements.

Since the Vernam cipher is unconditionally secure but not very practical, it is only natural that
people came up with the following scheme.

Same
Key Key
Y \
Si Si
\ Same
Algorithm - h Algorithm
ciphertext
Ea+ ............ +€:
Ci Ci
—_— R
plaintext mj m;

A binary cryptosystem with pseudo-random {s;};»o-sequence.

Figure 3.1

Of course one would like the sequence {s:};.o to be random, but with a finite state machine and a
deterministic agorithm one can not generate a random sequence. Indeed, one will aways generate
a sequence, which is ultimately periodic. This observation shows that (apart from a beginning
segment) the scheme is a specia case of the Vigenere cryptosystem. On the other hand, one can try
to generate sequences that appear to be random, have long periods and have the right
cryptographic properties. Good reference books for thistheory are [Bek82], [Gol67], and [Ruep86].
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In [Gol67], SW. Golomb formulated three postulates that a binary, periodic sequence {s;};.q
should satisfy to be called pseudo-random. Before we can give these, we have to introduce some
terminology.

Definition 3.1
A sequence [5);.p is called periodic with period p, if p is the smallest positive imteger
for which

Fhip =8 foralli= 0.

A run of length k is a subsequence of {s;};»o consisting of k identical symbols, bordered by
different symbols. If the run starts at moment t, one has in formula:

St-1 F 8 =S4l T oo = Spak-) F Stake

One makes the following distinction:

k

ablock of lengthk:  011...10
k

agap of lengthk: 100...01
The autocorrelation AC(K) of a periodic sequence {s;};.o with period p is defined by:

A(k) — D(k)
——‘———p s

AC(Kk) = 3.1

where A(k) and D(k) denote the number of agreements resp. disagreements over a full period
between {s;};-0 and {s;.x}i=q, Whichis {s;};» shifted over k positionsto the left. So

Ak)= [{0<i<p|si=siml}l
Diy={{0=i<p|si#sull

Note that one can dsowrite AC(k) = (2. Ak) — p)/ p.

Example 3.1
Consider a sequence that isperiodic with period p given by itsfirst p elements.

With the Mathematica functions Count, Length, Mod, RotatelLeft, and Table one easily computes
all values of the autocorrelation function AC(k), 0 sk = p — I.

segment = {1, 1, 0, 1, 0, 0, 0, 0O};

P = Length[segment] ;

Table|
{2 » Count [Mod [ segment - RotateLeft[segment, k], 2], 0] -p) /DB,
{k, 0, p-1}]
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{1, 00, 0, -%, 0, 0, 0}

If k is a multiple of p one has that A(k) = p, D(k) =0, so AC = 1. One speaks of the in-phase
autocorrelation.

If p does not divide k, one spesks of the out-of-phase autocorrelation.The value of AC now lies
between —1 and +1.

Definition 3.2 Golombs Randomness Postulates

G1: The number of zeros and the number of ones are as equal as possible per period,
1.2. bath are p/2 if p is even and they are (p £ 1)/2if pis odd.

G2: Half of the runs in a cycle have length 1, one quarter of the runs have length 2, one
eight of the runs have length 3, and so forth. Moreover half of the runs of a certain
length are gaps, the other half are blocks.

G3: The out-of-phase autocorrelation AC(k) has the same value for all values of k.

G1 dates that zeros and ones occur with roughly the same probability. One can count these
occurrences quite easily with the Mathematica function Count.

segment = {1, 1, 0, 1, 0, O, 0, D}
Count [gegment, 0]
Count [segment, 1] _ |

G2 implies that after 011 the symbol 0 (leading to ablock of length 2) has the same probability as
the symbol 1 (leading to ablock of length =3), etc. So, G2 says that certain n-grams occur with the
right frequencies. These frequencies can be computed by means of the Mathematica functions
Count, Length, Rotateleft, Table, and Take.

segment = {0, 1, 1, 0,1, 0,0, 0, 1,1, 0,0, 0,1,0, 1, 1};
P = Length[segment] ;

ngram = {1, 0, 1}; k = Length [ngram] ;

Count [

Table[Take [RotateLeft [segment, i], k] == ngram, {i, p}]., Trus]

3
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The interpretation of G3 is more difficult. It does say that counting the number of agreements
between a sequence and a shifted version of that sequence does not give any information about the
period of that sequence, unless one shifts over a multiple of the period. A related situation is
described in Lemma 2.1, where such a comparison made it possible to determine the length of the
key used in the Vigenere cipher. In cryptographic applications p will be too large for such an
approach.

Lemima 3.1

Let {s;lzp be a binary sequence with period p, p> 2, which satisfies Golomb's
randomness postulates.

Then p is odd and AC(K) has the value —1 / p when k is not divisible by p.

Proof: Consider a p x p cyclic matrix with toprow sg, sy. ..., s,-1. We shall count in two different
ways the sum of al the agreements minus the disagreements between the top row and al the other
rows. Counting rowwise we get by G3 for each row i, 2 <i < p, the same contribution p.AC(K).
Thisgives atotal value of p(p — 1).AC(k).

We shall now evaluate the above sum, by counting columnwise, the number of agreements minus
the number of disagreements between all lower entries with the top entries.

Case: p even.

By G1, the contribution of each column will be (p/2-1)- p/2 = —1, since each column counts
exactly p/2 -1 agreements of a lower entry with the top entry and exactly p/2 disagreements.
Summing this value over al columns gives —p for the total sum. Equating the two values yields
(p—1)AC(k) = —1. However, Equation (3.1) implies that p.AC(k) is an integer. This is not
possible when ACtk) =—1/(p — 1), unless p = 2.

Caser p odd.

One gets for (p+1)/2 columns the contribution (p—-1)/2—(p - 1)/2, which is O, and for
(p-1)/2 columns the contribution (p—3)/2-(p+1)/2, which is -2. Hence one obtains the
value -(p-1) for the summation. Putting this equal to p(p- I).AC(k) yields the vaue
AC(Kk)=-1/p.

0

The well known x?-test and the spectrd test, [CovM67], yields ways to test the pseudo-
randomness properties of a given sequence. We shal not discuss these methods here. The
interested reader is referred to [Golo67], Chapter 1V, [Knut81], Chapter 3, or Maurer's universal
datistical test [Maur92)].

There are aso properties of a cryptographic nature which the sequence {s;};»o in Figure 3.1 should
satisfy.

C1: The period p of {s;};20 has to be taken very large (about the order of magnitude of 10°°).
C2 The sequence {s;};»o Should be easy to generate.
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C3. Knowledge of part of the plaintext with corresponding ciphertext should not enable a
cryptanaist to generate the whole {s;),»¢-Sequence (known plaintext attack).

3.2 Linear Feedback Shift Registers

3.2.1 (Linear) Feedback Shift Registers

Feedback shift registers are very fast implementations to generate binary sequences. Their genera
form is depicted in Figure 3.2.

f(SOISII"'/Sn—2/sn—1> ]

So S1 < =Sn-2 Sn-1[—
Output

General Form of a Feedback Shift Register
Figure 3.2
A feedback shift register (FSR) of length n contains n memory cells, which together form the
(beginning) state (s, s1, ---, 5,—1) Of the shift register. The function f is a mapping of {0, 1}* in
{0, 1} and is called the feedback function of the register. Since f can be represented as a Boolean
function, it can easily be made with elementary logical functions.

After the first time unit, the shift register will output s and go to state (sy, s3, ..., s4), Where s, =
f(s0, 815 ey Spot).

Continuing in this way, the shift register will generate an infinite sequence {s;}¢.

Example 3.2

Consider the case that » = 3 and that f is given by f(ss, 51, 52) = 50 5; +55. Sarting with an initial state
(so, 51, $2), One can quite easily determine the successive states with the Mathematica functions Mod, Do,
and Print asfollows:
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Clear[£];

f[x , ¥ ,2 ] :=Mod[xasy+z, 2]}

{s0, 81, 82} = {0, 1, 1};

Do[ (=0, s1, =1} = {81, 82, £[80, 81, 82]};
Print[{s0, 81, 82}], {i, 1, 6}]

(1 1;:1)
{1, 1, 0}
{1, 0, 1}
{0, 1, 1}
{1, 1, 1}

{1, 1, 0}

In this section, we shal study the specia case that f is alinear function, say:
f(S(), Sy vens S,,_l) =cpSot+cCi S+ ... +Cp-1 Sn-1»
where dl the ¢;'s are binary and all the additions are taken modulo 2.

The genera picture of a linear feedback shift register, which we shall shorten to LFSR, is depicted
in the figure below.

Co Ci1 N Cn-2 Cn-1

<~ So [*| S1 [~ Sn-2* " Sn-1"

Output

General linear feedback shift register (LFSR)
Figure 3.3

The output sequence {s;};»o Of such a LFSR can be described by the starting state (sg, si, ---» Sp-1)
and the linear recurrence relation:

Sean = 200 CiSesiy k20, (3.2)
or, equivalently

o€ Skei = 0, k=0. (3.3)
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where ¢, = 1 by definition. Let s denote the state at time i, i.e. s = (s, 8414 ..., Sizn—1). Then,
similarly to (3.2) one has the following recurrence relation for the successive states of the LFSR:

sen) = gt o s g > ), 34

The coefficients ¢; in (3.2) and Figure 3.3 are caled the feedback coefficients of the LFSR. If
¢; = 0 then the corresponding switch in Figure 3.3 is open, while if ¢; = 1 this switch is closed. We
shall aways assume that ¢ = 1, because otherwise the output sequence {s;};.o isjust a delayed
version of a sequence, generated by a LFSR with its ¢p equal to L

As a consequence, any state of the LFSR not only has a unique successor state, as is natural, but
aso has a unique predecessor. Indeed, for any & =0 the value of s; is uniquely determined by
Sk+1s +-+» Sken DY means of (3.2). Later on (in Thm. 3.22) we shal prove this property in a more
generd situation.

Example 3.3
Withn =4, ¢g =c¢; =1, ¢; =c3 =0, we get thefollowing LFSR:

N

<_‘SO"—S]_'<—_S3"——S4'—

Output

Example of LFSR with n = 4.
Figure 3.4

With starting state (1,0,0,0) one gets the subsequent list of successive states:

e -
| {80, 81, 82, 83} = {1, 0, 0, 0)

Do[{s0, 81, a2, 83} = {81, 82, 83, Mod[s0 + 81, 2]};

Print[i, * w, (=0, s1, =2, 83}], {41, 15}]
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5 {0, 0,1, 1}
6 {0, 1,1, 0}
7 {1, 1,0, 1}
8 {1, 0,1, 0}
9 {0, 1,0, 1}
10 {1, 0, 1, 1}
11 {0, 1,1, 1)
12 (1,1, 1, 1}
13 (1,1, 1, 0}
14 {1, 1, 0, 0}
15 {1, 0, 0, 0}

Note that the state at ¢ = 15 is identical to the state at + =0, so the output sequence {s;};»¢ has
period 15.

One can easily determine the output sequence of a LFSR with the Mathematica Functions Table
Mod, and Do asfollows:

Clear([s]; {s[0], s[1], s[2], s[3]]} = {1, 0, 0, 0},
8[j_] s= Mod[s[]j-4] +s[]-3], 2]
I Table[s[j§], {i. 0., 15}]

Since there are precisely 2" — 1 different states in a LFSR of length n and the all-zero state always
goes over into itself, one can conclude that the period of {s;};.¢ Will never exceed 2" - 1.

3.22 PN-Sequences

Definition 3.3
A PN-sequence or pseudo-noise sequence is an output sequence of an n-stage LFSR
with period 2" - 1.

If an n-stage LFSR does not run cyclicaly through al 2" — 1 non-zero states, it certainly does not
generate a PN-seguence. As a consequence we have the following theorem.
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Lemma 3.2

An n-stage LFSR that generates a PN-sequence {5}i.g runs cyclically through all 2" — |
RON-ZEro stales.

Any non-zero output sequence of this LESR is a shift of {5;}.p.

We want to classify all LFSR's which generate PN-sequences. To this end, we associate with an
LFSR with feedback coefficients co, i, ..., c,~1 itS characteristic polynomial f(x), which is
defined as follows:

f=co+ecrx+...+cp X+ 3" = Thoo X, (35
where ¢, = 1 by definitionand ¢y = 1 by assumption.
Deefinition 3.4
Let f = 30 qcix. Then

THE) = sihian | §57)iap satisfies (3.2) ).

Inwords, £}(f) is the st of dl output sequences of the LFSR with characteristic polynomial f(x).

Lemma 3.3
Let f be the characteristic polynomial of an r-stage LFSR. Then £}(f) is a binary vector
space of dimension n.

Proof: Since (3.2) is a linear recurrence relation, Q(f) obviously is a linear vectorspace. Also,
exch {s;i}i»o in W) is uniquely determined by its first nentries so, s1. ..., 5,1 (thebeginning
state), so the dimension of Q(f) is at most n. On the other hand, the n different sequences starting
with

0 <i=n-1,aeclearly independent. So, the dimension of £}(f) is a least n.
D
Let f be a polynomial of degree n, say f(x) = Xlqc X with ¢, #0. Then, the reciprocal
polynomial of f(x) is defined by
FE) = fA ) =cox i Xk L+ Cpey x ey = g Cni X (36)
With a sequence {s;};»o We associate the power series (also caled generating function)
S(x) = 3208 x'. (37

Instead of writing {s;};.o €QX(f), we shall also use the notation S(x) eQu(f). We know that §x) is
uniquely determined by the beginning state (s, s1. ..., s,-1) and the characteristic polynomial
f(x). In the following theorem and corollary, we shal now make this dependency more explicit.
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Theorem 3.4
Let [5i)izp €04 ), with f given by (3.5). Further, let 5{x) be the generating function of
{5i}izn- Then, $(x) £~(x) is a polynomial of degree less than .

Proof:#
Sex) fo(o OO0 eX) (Ee st X)(Shgeny x) = 0 st i)l =
;;(I) (Zi:o Cn-i Sj—l)x" +Z;’-"=” (3o Cnmi Sj—z)xj -
T8 (Sheant 8700 4550 (Shaersgan ¥
b (Tg Camt S o) X
£
Remark:

Note that the proof above implies that S(x) = f"f—;;))with u(x) = 22 (Slog et sjop) /. This
polynomial is of degree <n and has coefficients depending on the initial state and the

characteristic polynomial.
Note aso that themapping S(x) — S(x) f*(x) is one-to-one since f*(x) # 0.

Example34

Consider the LFSR with n=5, f(x) = I +x° +x°and take as beginning state (1,1,0,1,0). Then u(x) can be
computed with the Mathematica function polynomialMod asfollows:

P I

| {e[0]. e[1], e[2], e[3], e[4], e[5]} = {1, O, 1, O, O, 1};

| {s[0], s[1], s[2], ®[3], ®[4]} = {2, 1, O, 1, O};

| 4 3
| u= Polynmiulllnd[ZthS- 1] s[d-1] ', 2]

=0 1=0

lex+x?

To check Theorem 3.4 up to someterm x*, we use (3.2) to computethe s;'s up to L (here we use the
Mathematica functions Mod, Print, and PolynomialMod):
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{c[0], c[1], e[2], c[3], c[4], c[5]} = {1, O, 1, 0, O, 1};
{l['ﬂ]; '-[1]; -‘[:]: ‘[!]r -[-'].} = {1: 1' {l, 1‘ 'I.'l}}

5
fetar = Zc[! -1] x';
i=0

L=60;
a[i ] :=8[i] =Mod[a[i-5]) +8[1i-3], 2]

L
8= Es[i] x'; print[8];
A=l

PolynomialMod([8 « fstar, {x*, 2}]

PRSE. S (. JUUNE L NN TR T T T BN DORNT - DT D e
R T S S o i I L Y e Sl T S L oL
1+x+x

Note that the output is indeed the same as above.

Corollary 3.5

() = ‘ I“—T:_-I I degrec{ufx)) -:.nl-.

Remark: Writing S(x) = u(x)/ f*(x) means the same as S(x) f*(x) = u(x).

Proof: From Theorem 34 and the remark below it we know that each member of Q(f) can be
written as u(x)/ f*(x) with degree(u(x)) < rn and we know that this u(x) is unique. This proves the
c-inclusion.

On the other hand, (f) hascardinality 2" by Lemma 3.3 and there are aso exactly 2* binary
polynomials u(x) of degree < n.

It is now easy to prove the following lemma.

Lemma 3.6
Let f and g be two (characteristic) polynomials and let (5o € 02 Nand (1] € Og).
Let lem[f, g] denote the least common multiple of f and g. Then

[5; + tikizg € {lcmf, g]).
Proof: Write A=1Icm|f, glandh=a.f and 4 = b.g. Let SX) and T(x) be the generating functions
of {si}i20, r€SP. {ti}ix0-

Corollary 35 implies  that  S(x) =u(x)/fx) and T(x) = v(x)/g*(x), Wwhere
degree(u(x)) <degree(f(x)) and degree(v(x)) <degree(g(x)). Since
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R v w.x} — o™ (&) 1(X) b () vx) — a*(x) u(x)+h*(x) v(x)
SCo+ T(x) Y * 2 (x) a*(x) [} * b*(x) g*x) I*(x) ?

and both a*(xu(x) as well as b*(X)v(x) have degree less than degree(h(x)), it follows that
S(x) + T{x) eQUh).

a

3.23 Which Characteristic Polynomials give PN-Sequences?

The period of a polynomia / with f(0)#0, is the smallest positive m such that f(x) divides
X" -1, i.e. the smalest positive m such that " =1 (mod (f (x)). It is well defined, since the
sequence of successive powers of X, reduced modulo f(x), has to be periodic. Indeed, if
¥ =x/(modf(x))and 0 <i< jthen aso x-! = x/~! (modf(x)), because gecd(x, f(x)) =1. (The
term x has a multiplicative inverse by Corollary B.14, so we can indeed divide by x.) We can
repeat this process until we get 1 = x/~ (mod f(X)).

Example3.5

Let f) =1+x*+x°. Its period can be computed with the Mathematica functions while and

PolynomialMod in the way described above. So, starting with x (trying = = 1), we compute the

successive powers of x by multiplying the previous power by x (this amounts to a cyclic shift), and then

reducing the answer modulo f(x), until we arrive at the outcome 1.
£ =1 +:"+xji m=1lyu=2xy
While[u=!=1, u = PolynomialMod[x+u, {£, 2}] s m=m+1]
m

It follows from Theorem B.35 that a binary, irreducible polynomial of degree r ofivides x¥'-! — 1,
%0 it dso follows that the period m of such a polynomial will divide2» — 1.

(This observation can be used to determine the period of a polynomial more efficiently, however
we shall not discuss that technique at this moment. See the end of Example 8.2)

Lemma 3.7
Let {si}iz0 & {2 F), where f is a polynomial of degree n and period m. Then {5}, has a
period dividing m.

Proof: Write x™ — 1 = f(x) g(x). Taking the reciprocal on both sides gives x™ - | = f*(x) g*(x). By
Corollary 3.5, there exists a polynomial u(x) of degree < » suchthat

N oulxy ) gi ) w(x)grx) - 2m
S(x)y = e S Fwed S e T u(x) g () (1 +x"+x"" +..)
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Since dagree(u(¥)  g* (X)) < degree (f* (X) g* (X)) =degree (™~ 1) =m, we see that §x) must have
period m or a divisor of it.

Lemma 1.8
Let {silip & ), where f is an imeducible polynomial of degree n and period m. Then
{5i);=p also will have penod m.

Proof: Let {s;};»o have period p. By Lemma 37, p divides m. Let S (x)=514' s; x'". Itfollowsthat

S(x) = SP) (1 +x0 +.27 +..) = S2W

while on the other hand, S(x) = u(x)/ f*(x) by Corollary 35. Equating these two
expressions yields

S x) f1(x) = u(x) (£ — 1)
and thus

(SP (X)) fx) = u*(x) (xP = 1).

Since f(X) is irreducible of degree n and degree(u(x)) < n, it follows that f(x) divides (x” - 1). So,
m, the period of f(x), must divide p. We conclude that p = m.

Example3.6

Consider the irreducible polynomial f(x) =1 +x +x% +x° +x* which has period 5 since
(¢ —1) = (x - I) f(x). Output sequences in £2(f) also have period 5, by the above lemma, as can easily be
checked.

{80, 81, 82, 83} = {1, 1; 0, 0}
Do[{s0, 8l, 82, 83} = {81, 82, 83, Mod[80 + 81 + 82 + 83, 2]};
Prj.nt-[i,' N -' {‘0; '-1: -2: --31'11' '[’-F 5}]

2 {0, 0, 0, 1}
3 {00, 3,4)
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A roundabout way to find an irreducible polynomial of degree n is to factor x*'-! - 1 by means of
the Mathematica function Factor :

(Lax) (1+x?+28%) (1 +2%) (Lenaen®+37 +%5)
(lex++x +2°) (L+x+X +2* +55) (1 +2° + 22 428 4 35

In Mathematica one can find an irreducible polynomial overdF,, p
prime, with the function IrreduciblePolynomial for which the package
Algebra 'FiniteFields' needs to be loaded first.

| << Algebra'FiniteFields' AR

p-l; ﬂiﬂ'hllj i Va-';“—

mm:m1mu1[x, s Al Tl

1+x® it

Lemma 3.9

Let {5}z be a PN-sequence, generated by a LFSR with charactenistic polynomial f.
Then f is irreducible.

Proof: Write f =f, f, with f; irreducible, say of degree n; > 0.

By Corollary 35, the sequence 1/fy(x) € Q(f), S0 the period of 1/ f;(x)divides 2™ -1 by
Lemma 3.7 and Theorem B.35.

On the other hand, 1/ f; (x) = f5(x)/ f*(x) € ), 0 by Lemma 3.2 1/ f*(x) is acyclic shift of
{si}i»o and thus its period is 2" — 1. This is only possible if n =ny, i.e. if f(x) is equal to the
irreducible factor f; (x).

Example 3.7

Consider f(x) =(J +x+x*)(I +x+x°) =1 +x* +x. It is easy to check that 7 +x +x* divides x* - 1 and
that 7 +x +x° divides x” — 1. Since 3 and 7 are relatively prime, it follows that f(x) divides x*’ — 1. We
conclude that each output sequence has a period dividing 21.

This can be checked for different beginning states asfollows.
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Print[i, "

{80, s1, 82, 83, s4} = {1, 0, 0, 0, O}
D&[{iﬂ; -1: .zr .-3.- .‘]‘ = {-11 .2- -3'-' “: “[Iﬂ * -li 3]}1‘

", {80, s1, 82, 83, 84}], (i, 21}]

{1, 0,0, 0,0}

9

10

11

12

13

14

15

16

17

18

19

20

21

=

o

1,

0,

0,

1,

0,

o

’

{
{
{
{
{
{
{
{
{
{
{
{

1,

=

o

}
}

o

o

[y

o

o

o

}
}
}
}
}
}

0

The reader may want to try the beginning state (1, 1, 1, 0, 0) and see what the period of the output
sequence is. This output sequence could also have been generated with the LFSR with
characteristic polynomial I +x +x° and beginning state (1, 1, 1) (see also Example 3.11).

We are now able to prove the main result of this subsection. We remind the reader of the definition
of a primitive polynomia (of degree n), which is an irreducible polynomia with the property that x
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is aprimitive element in GF(2)[x] / (f(x)). This trandates directly into the equivalent property that
f(x) has (full) perlod 2" 1.

nmmmﬁammmﬂwﬂfﬂham—
sequence if snd oaly if £(x) is & primitive polynomial.

Proof: Let f(x) have degreen.

= Let {s;};»0 € Q(f) be a PN-sequence. It follows from Lemma 3.9 that f(x) must be irreducible.

Lemma 38 in turn implies that f(x) must have period 2" -1, which makes it a primitive
polynomial.

< If f(x) is primitive, it certainly is irreducible. By Lemma 3.8, {s;};», has the same period as
f(x) has, whichis 2" — 1. It follows that {s;};.q iS a PN-sequence.

D

Mathematica finds a primitive polynomial of degree m over F, in the variable x by means of the
FieldIrreducible function

lax?+x°

Let us check that this polynomial indeed defines a PN sequence.

£1550, 0,0, 0}

1 {o, o, o, 0, 1}
2 {o, o, o, 1, o}
3 {o, o, 1, o, 1}
4 {o, 1, o, 1, 0}
5 {1, o, 1, o, 1}

6 {o, 1, o, 1, 1}

7 {1, o, 1, 1, 1}



Shift Register Sequences 43

10

1
{

11 {1, o, 1, 1, 0

12 {

13 {

14 (1, 0, 0, 0, 1

15

16

17

e
=
=
=
—

18

=
=
=
=
-

19

L
=
=
L
o

20
21

22

24
25
26
27
28
29
30

{
{
{
{
{
{
{
{
23 {o, 0, 1, 1, 0
{
{
{
{
{
{
{
{

31

To find al primitive polynomials of degree n one can factor the cyclotomic polynomial Q®"-D(x)
(see Definition B.19). With the Mathematica functions Factor and Cyclotomic this goes as
follows.

(Lex+ad) (lexsac +at +x5) (12" +25)
(1 +3¢ + 3% & 27 4 x5 f1+x=+x_3+xr"+x"} (1+%+x% +25 & x5)
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The next corollary now follows directly from Theorem 3.10 and Theorem B.40.

Corollary 3.11
There are (2" — 1)/ n different n-stage LFSR's generating PN-sequences.
Here ¢ stands for Enler's totient function (Definition A.6).

The more or less exponential growth of ¢(2” — 1)/#n as function of n, makes it for moderate values
of n aready impossible for a cryptanalist to guess the right primitive polynomial or to check them
al exhaustively.

With the Mathematica function EulerPhi one can easily verify this.

n=100;
EulerPhi[2*n-1]/n

57076768340000000000000000000

3.24 An Alternative Description of Q(f) for Irreducible f

We shdl now solve recurrence relation (3.2) for the case that the corresponding characteristic
polynomia f = X7, c;x is irreducible. This includes, of course, the case that f is primitive, for
which we know that the corresponding LFSR outputs PN-sequences.
We follow the standard mathematical method for solving linear recurrence relations.
Substituting s; = A.a’, for all j = 0, in sp.n = 207 ¢ ses: |€ads to the equation

Aok = ¥l o Ak

Here A and o are elements from an extension field of GF(2) that will be determined in a moment.
Dividing the above relation by A.*, one arivesat o” = Sl c; ', ie.

fl@=o.

We shdl study the case that f is irreducible in more detal. The Gaois Fidd GF(2")=
GF(2)[x]/(f(x)) (see Theorem B.16) contains a zero of f as an element. Calling this zero a, we
note that

GF(2") = {Y'}aie’ | a; € GRQ2), 0<i<n)},

with the normal coefficient-wise addition and with the regular product rule (see (B.3) and (B.4)),
but always reducing powers of o.with an exponent = n by means of the relation o* = 3% ¢; 2" to
an expression of degree < » (as shown in the Example B.5, where the letter x is used instead of the
symbol «.).
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Example3.8
Consider f(x) =/ +x +x* and let abea zeroof f(x), so a* = 1+ a.

Adding the dlements I + @ +@° and @ +a? in GF(Q)[X]/(f(X)) gives 7 +a? +a°. Multiplication gives
@+ +ao* +a° Whichis(e +1) f(e) +( +a +a° +2°), 0 theresultis I + o +a? +a°.

This could also have been computed with the Mathematica function PolynomialMod, asfollows:

f=1+a+a';

PolynomialMod[(1+a+a?) + (a+a?), {£, 2}]
PolynomialMod[ (1 +a +a’) » (a+a?), (£, 2}] ‘

3 2 ;!
1 +8 +8a

1+a+ad+a’

Lemma 3.12
Let f be a binary, irreducible polynomial of degree n and let @ be a zero of f in GF(2™)
Further, let L be a non-trivial, linear mapping from GF(2"%) to GF(2), Then

) = [{LA.a" mp | A € GF2")).

Proof: We need to check several things.

i) The sequence {s j}j20={L(A.af)}_,zu clearly is a binary sequence, because L maps GF(2") to
GF(2).

ii) The sequence {s ,-}_’.20={L(A.af)) =0 Satisfies (3.2). To see this, we check the equivalent condition
(3.3). By the linearity of L and the relation f(a) = Xy c; @' = 0, itfollowsthat

S € Skvi = Speo ¢ LAY = LAK Ty i 0') = L(0) = 0.

iii) Each of the 2* choices of A e GF(2") leads to a different binary solution of (3.3), as we shall
now show. By Lemma 3.3, these must constitute all the elementsin Q(f).

Suppose that the sequences {L(A.a’)};o and {L(B.a')};5o ae identical. It follows from
L(A.a))=L(B.a’), j=0, and the linearity of L that in particular L((A ~B).a’) =0 for 0= j<n.
However, the elements 1, a, ..., a""'form a basis of GF(2"), because f is irreducible. It follows
from the linearity of L that L({(A — B).w) = 0 for each field element w in GF(2"). Since L was anon-
trivial mapping, we can concludethat A = B.

O
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A convenient non-trivial linear mapping L from GF(2") to GF(2)to consider is the Trace function
Tr, introduced in Problem B.16.

An dternative, is the projection of an element Y7l a; o to its constant term ag.

Example 39

Take the irreducible polynomial f(x) = x* +x + I of degree 4 (it even is primitive) and let @a zero of f(x),
S0 f(a@) = 0. The Tracefunction is given by Tr(x) = x +x% +x* + x5,

Any dementA € GF(2*) ={ Y] pa; @' | a; € GF(2), 0 < i = 3} defines a unique binary sequence {s1};20
defined by s; = Tr{A.27). Below, we have taken A = I + @ + @?.

The output sequence, corresponding with any value of A, can be evaluated with the Mathematica functions
PolynomialMod and Table, asfollows:

n=4;f=1+a+a'ya=1+a+a%;

-1
Trix_] := Zx]l;

i=0
8[j_] := PolynomialMod[Tr[A+a'], (£, 2}]1;
Table[s[j], {3, 0, 2°-2}]

3.25 Cryptographic Properties of PN Sequences

We shall now investigate to which extent PN-sequences meet Golomb's randomness postul ates Gl -
G3. After that, we check the cryptographic requirements C1-C3. As always, we let n denote the
length of the LFSR.

Ad G1: By Lemma 3.2 each non-zero state occurs exactly once per period. The leftmost bit of
each state will be the next output hit. So, the number of ones per period is 27-! and the number of
zeros per periodis 2! ~ 1, asthe dl-zero state does not occur.

k

———

Ad G2: There are 2*~*+2 gtates whose leftmost & + 2 coordinates are of the form 011...10, resp.
k

100...01. Thus, gaps and blocks of the length k, k <n -2, occur exactly 2"~%+2 times per
period.

n—-1

The state 0 11 ...1 occurs exactly once. Its successor is the al-one state, which in turn is followed
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n—1
—

by state 11...1 0. Therefore, there is no block of length n— 1 and one block of length n.
Similarly, there is one gap of length » —~ 1and no gap of length n.

Ad G3: With {s;};29 € Qf) A0 {sik}izg € Q(f) by Lemma 3.2. The linearity of Q(f) implies that
a0 {s; + sivi im0 € ) The number of agreements per period between {s;};»q and {s;4};»o €QUalS
the number of zeros in one period of {s; + sisx}iap Which is 27! =1 by Lemma 3.2 and Gl.
Similarly, the number of disagreements is 2"!. Thus, the out-of-phase autocorrelation AC(K) is
-1/2"-1)foralll =k <2"-1.

We conclude that PN-sequences meet Golomb's randomness postulates in a most satisfactory way.
Let us now check C1-C3.

Ad C1: Since the period of a PN-sequence generated by an n-stage LFSR is2" — 1, one can easily
get sufficient large periods. For instance, with n = 166 the period is aready about 10°°.

Ad C2: LFSR's are extremely simple to implement.

Ad C3: PN-sequences are very unsafe! Indeed, knowledge of 2n consecutive bits, say
Sk Sk+1s -+ » Sk+2n-1, ENADIES the cryptanalist to determine the feedback coefficients ¢y, ¢y, - .., ¢n1
uniquely and thus the whole {s;};.¢-sequence. This follows from the matrix equation:

Sk Skal et wm Skin-1 Co [ Sken
Sk+1 Sk+2 e Sk+n C1 Sk+n-1
= . (39)
Sk+n-1 Sksn e+« Sk+2n-2 Cn-1 v Sk+2n-1

The above system has a unique solution as we shall now show. If n consecutive states of the LFSR
exist that are linearly dependent, i.e. if n consecutive states span a < (rn — 1) dimensiona subspace,
then this remains s0 because of (3.4). This, however, contradicts the linear independence of stete
(0,0, ...,0,1) and its n— 1successor states. We conclude that any n consecutive states (and in

particular the n rows in the matrix above) are linearly independent. Therefore, the unknown
feedback coefficients co, ¢; ..., cs—1 Can easily be determined.

Example 3.10

Assume that we know the following substring of length 10: 1,1,0,1,1,1,0,1,0,1. Assuming thatz = 3, we can
solve (3.9) by means of the Mathematicafunction LinearSolve asfollows:

& B Do P B 1

« DL R W . | 0
e 001 11 0 lsyb=]1])

b Bl e e B [ 0

110

LinearSclve[m, b, Modulus -> 2]

=]
[
e SRR aa B8 A
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{{1}. {0}, {1}. {0}, {0})

The feedback coefficients are: cp =1, ¢; =0, ¢z =1, c3 =0, ¢4 =0. One can check this quite
easily with the Mathematica Functions Table, Mod, and Do as follows:

ne=5)
{ﬂ [u] r ﬂilli ulzli n[3]r c[4]}={1, 0, 1, 0, O};
{-{ajl -E1]- '[2]- '[3]; '["]} ={1r 1; ﬂ'.- 1; 1}'

n=1
Do[s[k] -M[Zn[i] ss[k-n+i], 2], {x, n, 2°}]; !
=0 |

| Table[a[k], {k, 0, 2" -2}]

R W s B Tl P G ey BT s R e
1y 0 0, 1,0, 11,9 0,1, 1; 1:;1:;1:0,8Q, 0}

Of course, one does not know in general what the length n is of the LFSR in use. We shall address
that problem in a more general setting in Subsection 3.3.1.

If only a string of 2n — 1 consecutive bits of a PN-sequence is known, the feedback coefficients
are not necessarily unique, as follows from the example n = 4 and the subsequence 1101011. This
remains true even if we had used the additional information that ¢; = 1. Below we have added
NullSpace to show the dependency in the linear relations.

1 1500 0
lu:[:l. 0 1 ﬂ}:h=[1]j
0 1.0 .1 1

HullSpace([m, Modulus -»> 2]
LinearSolve[m, b, Modulus -> 2]

({0, 2.0, 1}}
f{1), {11, {0}, {0}}

We have the solutions (1, 1, 0, 0) + 2(0, 1, 0, ) with 2 e {0, 1}.

Since sequences generated by LFSR's fail to meet requirement C3, the next step will be to study
nonlinear shift registers. However, since S0 much is known about PN-sequences, it is quite natural
that one tries to combine LFSR's in a non-linear way in order to get pseudo-random sequences
with the right cryptographic properties.
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3.3 Non-Linear Algorithms

3.3.1 Minimal Characteristic Polynomial

As aready mentioned at the beginning of Section 3.1, any deterministic algorithm in afinite state
machine will generate a sequence {s:}i=g, Which is ultimately periodic, say with period p. This
means that, except for a beginning part, {s:);=¢ Will be generated in atrivial way by the LFSR with
characteristic polynomial 1+ x”. Therefore, the sequence {s;};»o Which was possibly made in anon-
linear way, can aso be made by a LFSR (except for a finite beginning part). If this beginning part
is non empty, not every state has a unique predecessor and the output sequence certainly will not
have maximal period. We shall address this problem in Theorem 3.22. Here, we shall assume that
the output sequence is periodic right from the start. The discussion above justifies the following
definition.

Definition 3.5
The linear complexity (or linear equivalence) of a periodic sequence [s;}.g is the length
of the smallest LFSR that can generate {5 };.q.

The following two lemmas are needed to prove explicit statements about the linear complexity of
periodic sequences.

Lemma 3,13
Let b and f be the characteristic polynomials of an m-stage, resp. n-stage LFSE. Then,
MM CLNf) === kK| f.

Proof:

= Since 1/h* € Qh) c Q(f), it follows from Corollary 3.5 that a polynomial u(x) of degree < n
exists, such that one has 1/A*(x) = u(x)/ f*(x). We concludethat f*(x) = h*(x) u(x) and thus that
f(x) = h(x) u*(x), which meansthat | f.

< Writing f(x) = a(x) h(x) with degree(a(x)) = n — m, one has by the same Corallary 3.5 that

a*(x) v(x)

ax) () | degree(v(x)) < m}

U ={ h‘—{(% | degree(v(x)) <m} ={

= {L;’:’(—;—()*i | degree(a*(x) v(x)) < n } c Q).
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Example 3.11

The sequence {s;};»o = 7100101110... is the output sequence of the LFSR with h(x) =1 +x +x* and
beginning state (1, 0, 0), as can be checked by

n=3j
{a[0], =[1], B[2]} = {1, O, 0}
{e[0], 2[1], e[2]}) = {1, 1, O}

n-1
po[s(k] =mod[) c[i] xs[k-n+1i], 2], (k. n, 2°}];

i=0 |
Table[s[k], {k, 0, 27}]

{18051 300051, 1 0]

However, since h(x) (1 +x +x%) =1 +x* +x°, the same output sequence can also be obtained from
the LFSR with characteristic polynomial f(x) =1 +x* +x° (see also Example 3.7). As beginning
state one now has to take thefirstfive terms of {s;};»o-

n=25;

{-[“]f '[1]r .-[2]: '[3]1 ‘["]] = '[1- ar Df 1; ﬂ'};

{e[0],; e[1], c[2])s c[3]: c[4]} ={1; O, O, O, 1};
m=1

Do [s [k] .und{zu[i] +s[k-n+i], 2], {k, n, 2°}];
i=0

Table[s[k]. {k, 0, 2°}]

{1,0,9,1,0%,1,1,1,0,0,1,0,1,1, 1,
g e e PR Rekes R R e PR B e B Begee BEC R | Pl B

Let {si};0 € (f) for some f and suppose that one is looking for a polynomia h of smallest
degree such that {s;},~¢ € Q(h). Then, Lemma 3.13 suggests to check the divisors of f. That this is
sufficient will be proved later. The next lemma says when one does not need to check the divisors

of f.

Lemma 3.14
Let {5);p € LM f) and S(x) = w(x)/[ f*(x). Then,

Fnir, ey sikizg & LA)] = godiu(x), f(x)=* 1.

Proof: Let d(x) divide ged(u(x), f*(x)) with degree(d(x)) > 1.

Then, $(x) = ;‘f;’) = ;“8{7;33) , 50 {si)is0 € Q(f /d™). It follows that there exists a proper divisor h
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of f, namely f/ d* with {s;};n € Q(h).

The proof in the reverse direction goes exactly the same.

Theorem 3.15

Let {5ilzg be a binary, periodic sequence, say with period p. Let the first p terms of
{5:}eg b given by SPN ) =sp+ 5, 2+ ... + Fp-i x=l.

Then there exists a unique pelynomial mix) with the following two properties:

il {5ibizny & L¥{pm),

ii} Yo [{5i)izo € DA} = m | A] .

The reciprocal m*(x) of mi{x) is given by

1—xF

m'(x) = mgcd{.ﬁ"ﬂ[.ﬂ.]—.t?] 2

The polynomial mix) is called the minimal characteristic polynomial of [5}p.

Example 3.12
Let {s;};20 have period 15 and let S'¥(x) = 1 +x% +x7 +x8 +x'0 + x'2 + x'% + x'*. Then
ged(xP — 1, SN = +x) (I +x+x) ([ +x+x2 + +xN) (1 +x +x%).

So, m*(x) = (x> =1}/ ged(x? =1, SYN(x)) =1 +x° +x* and thus m(x) =1 +x +x*. Indeed, this
S(X) is the output sequence of the LFSR in Figure 3.4.

The above calculations can be executed with the Mathematica functions PolynomialGCD,
PolynomialOuotient, and PolynomialMod.

P=15;

S=lw+x'+x” +x% 4% 4307 4 213 4 x4

g = PolynomialGCD[8, x® - 1, Modulus -> 2] ;

MESTAR = PolynomialMod [PolynomialQuotient [ -1, g, x], 2]

1+ x? ¢t

Proof of Theorem 3.15:

Let {s;)in0 € QUm). If {5:};.0 € Q(k) for some divisor h of m, replace m by h and continue with this
procedure until it can be assumed that {s;};.o ¢ (k) for any divisor of m.

We shall show that such an misunique and of the form given in Theorem 3.15.

Since the peiod of {s;}i.p IS p, Corollary 35 implies that for some u(x) with
degree (u(x)) <degree(m(x)),

S _ o) P 2D _ __ux)
v =SSP ) +xP +xP+ .. )=85x) = PR
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By our assumption on m and by Lemma 3.14, gcd(m*(x), u(x)) = 1, so

gcd(m*(-r), ——m*(';)j::)u) )= 1.
It follows that

ged(m™ () (1 = x7), m*(x) SP(x)) = 1 - xP.

m*(x).ged(l = xP, §P(x)) = 1 — xP.

Hence

1-x

* _
mix) = T s

]

Corollary 3.16
The linear complexity of a binary, periodic sequence {5}y with period p and initial
segment S (x) = T2 5 & is equal to

p — degree(gedi{x® — 1, SP(x))).

3.3.2 The Berlekamp-Massey Algorithm

Corallary 3.16 may be of help to the designer of a non-linear system to determine how safe his
system is against the kind of attack described in the discussion "Ad C3" in Subsection 3.2.5.

A cryptanalist, on the other hand, who knows a segment of the output sequence, say
50, §1, ---» Sk—1, Cantry the following strategy:

i) findthe smallest LFSR that generates so, s1, ..., Sk-1,

ii) determine the next output bit of this LFSR and hope that it correctly "predicts’ the next bit s, of
the sequence.

Definition 3.6

Li(15:}i=0) 1s the length of the shortest LFSR that penerates s, 5y, ..., Se-1.

When it is clear from the context which {s;},.5 is involved we shall simply write L. The
ik

polynomial '(x) will denote the characteristic polynomial of any L;-stage LFSR that
generates the sequence sg, 5, ..., S4-1.

Clearly Li({si}ing) =k for any sequence ({s;}io. SiNCe any k-state LFSR will generate
50, S1s +-.» Sk-1, SMply by taking <o, 51, ..., s¢-1 & Starting state.



Shift Register Sequences 53

Lemma 3.17
=1

Let {#;};=p be an output sequence starting with EI() ,..0 1. Then,

Lititizn) = k.

Proof: Any LFSR of length n, n < k, that is filled with the first n symbols of {;},., (which are all
zero) will output the all-zero sequence, so #—; will not be 1.

Lemma 3.18
Let {5 }izn and {1;) 20 be two output sequences, Then, forall k = 0

Li(R% + tikizo) = Lad{5:hn) + Lalln)izn).

Proof: This is a direct consequence of Lemma 3.6. Indeed, let the LFSR's with characteristic
polynomial £®(x) and g¥)(x) generatethe first k terms of {s;};.0. resp. {f;};=0. Then by Lemma 3.6,
the first k terms of {s; +1}.0 Will be generated by the LFSR with characteristic polynomial
lem[f®(x), g®(x)]. This lom has degree at most the sum of the degrees of f®(x) and g®(x).

It follows from Definition 3.6 that L., = L for any sequence {s;};»o- More can be said.

Lemma 3.19
Let {5;}izn be an output sequence. Suppose that the LFSR. with characteristic polynomial
FE(x) does not output 5 correctly. Then

Lpsr = max {lg, k+1-0;]).

Proof: We aready know that L., = L.
k

Let {#};.0 be a sequence starting with 00...01 as beginning sequence. Since the LFSR with
characteristic polynomial f*)(x) does generate s, s1, ..., s_1, but not s, sy, ..., s it followsthat
this LFSR will generate (s;+1)%, Since L, =L;, we can conclude that
L1 (lsi + 1i)in0) = Li(lsi + fi}iz0) = La(isitiz0)( = L.

The statement now follows with Lemma 3.17 and Lemma 3.18 from

k+ 1= Liy1(ftikizo) = L1 Usitizg) + L1 (s + 2i}in0) = Lisr + Ly

0

The following theorem shows that in fact equality holds in the above lemma. The proof follows
from the Berlekamp-Massey algorithm, that constructs f®(x) recursively, cf. [Mass69]. This



54 FUNDAMENTALS OF CRYPTOLOGY

algorithm is well known in algebraic coding theory for the decoding of BCH codes and Reed-
Solomon codes (see [Berl68], Chapter 7).

Theorem 3.20
Let {5};-n be an output sequence. Suppose that the LESE with charactenistic polynomial
F*'{x) does not output 5 correctly. Then

Lyoy =max [Lg, k+ 1 =L

Proof: In view of Lemma 319, it suffices to find a polynomia f{(x) of degree equa to
max {Ly, k + 1 — L;} that does output the first k+ 1 terms of {s;};.o correctly. This is exactly what
the Berlekamp-Massey algorithm does in a very efficient way.

We shall prove the theorem by induction.

Getting the induction argument started.

DefineLy = 0 and f©(x) = 1.
k

The sequence 00 ...0 of length k can be generated by the (degenerate) LFSR with characteristic
polynomial f*)(x) =1 of degree L; = 0.
k

The sequence 00 ...0 1 of length % + 1 can be generated by any (k + 1)>stage LFSR, but not by a
shorter LFSR, aswe already saw in Lemma 3.17. In this case,

Lisvizk+1=k+1 -1 =max{le. k+1- L}
This proves the first induction step.

Theinduction step: k —k + 1.

By putting k£ +# = j, c,~=f,-("’, and n=1L, in (3.2), the induction hypothesis for k can be
formulated as.

S s =55, Lisjsk-1. (39)
If (3.9) aso holds for j = &, then L, = Ly, f%*D(x) = f%¥(x) and there remains nothing to prove.
If (3.9) does not hold, then
do Y spreimsiv L =k (310)
Let m be the unique integer smaller than k defined by

|) Lm <Lk,
||) Loy = L,

s0 mis the index of the last increase of L.

Because we have already proved the start of the induction argument, this number is well defined. It
follows from the induction hypothesis and the above definition of m that:
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sj, Hl,sjsm-1,

P SjLm+i = { Sm+ 1, Jj=m. G1b
Noticethat Ly = L,y =max{L,, m+1—-L,}=m+1-L,,.
Define L = max {L;, k + 1 - L;}. Weclaim that
fn = b () 4 bkt 1=L) plm) ()
(3.12)

- _xl‘_l'k f(k)(x) + xl,—k+m—1,,,, f(m)(x)
will be asuitable choicefor f**D(x).

Clearly, the first term in (3.12) has degree (L-Ly)+ Ly =L and the second term has degree
(L-k+m-L,)+L, <L. S0, f(x) has the right degree. But aso, by (3.9), (3.10), (3.11),

S fiSiev

G2 ¢y % . Lk+m (m)
= Li=l-ly fi—(l.—l‘k) Sj-L+i Zi=L—(L—k+m—L,,,) fi—(L-k-wu—L,,,) Sj-L+i

Substi Ly~ o(k) L1 plm) .
=" Tido JiUsjnwi ¥R B S jLyyktmeitS jokam

{ si+0=s;, L=<j=k-1,
Tl 4+ D+l=g5,  j=k

This proves that the LFSR with characteristic polynomial f(x) indeed can generate so, si. ..., St.
[}

Theorem 3.20 only proves that the degree Ly of f®(x) is unique. In generd, the polynomia f®(x)
itself will not be unique.

The agorithm, described in the proof above, can be executed and summarized as follows:
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Algorithm 3.21 Berlekamp-Massev
input a binary sequence {50, an index u
initialization f=1,L=0,j=0
parameters used
foes Lne: stand for the characteristic polynomial and length of the LFSR
as desired by the present iteration;
Jar, L 2 stand for the polynomial and length just before the last change
in length;
diff  : the difference between the present iteration number and
the iteration mumber after the last change in length.
while (s; =0) A(j<u) do j= j+1
if j = u+ 1 then STOP
put  fa=1ly=0
£ =%, L= degree(f)
k=j+1;diff =0
while & < u do
begin
if Ef';u] fi Sg—p+i ® 5 then
begin
Ly =max L, k+1-L}
Joo = X0l 4 it gy
if L, # Lthen
begin
Ja=Fily=L;
Lo [ diff =
end
else
begin
diff = daf f + 1;
end
.r =.fn¢
end
clse
begin
diff = diff + 1;
end
k=k+1;
end
output [ the characteristic function of the shortest LFSR that can output
{505 815 +- 00 Sk
Example3.13

Consider the sequence
{si$%=10,0,00,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, 1, 1, 1, 1, 0.

The Mathematica version of the Berlekamp-Massey algorithm that we give below makes use of the
functions Do, CoefficientList, Mod, Max, PolynomialMod, Length, and Print .Note
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that we have combined the two while statements in the algorithm above into a single Do statement.
All intermediatefunctions are also printed.

R0, 0,0 0 0; 1, T et el 19, 1, j

i,1,1,0,0,0,0,0,0,0,0,0,12,1,1,1, 0}; |

| Lol'=0; fol=1; |

diff = 07 Clear[x]; |
£=1y L=0; g=cCoafficientList[£, {x}]s

L
Do[xf[Mod[ gfi] s -1 -L+i], 2] == s[§], diff - Aiff+1,

i=1
Lne = Max[] -L, L];
fne = PolynomialMod [x™®-L £ , yloe-Lol-diff-1 gy 37,
If[lne#L, fol=fj Lol=L; L=Lne; Aiff =0, diff = diff +1];
f=fne; g=~CoefficientList[f, (x}] ]:
Print["j=*, j, ", L=", L, ", £=", £], {], Length[s]}]

j=5, L=0, f=1

j=6, L=6, f=1+x°

=7, L=6, f=1+x"+x°
j=8, L=6, f=14+x" + x°
j=9, L=6, f=1+x° +x°
j=10, L=6, f=1 +%x +%
=11, L=6, f=1 + x° +x°
j=12, L=6, f=x>+x°
j=13, L=6, f=x"+x°
j=14, L=6, f=x"+x°
§=15, L=6, f=x>+x°
j=16, L=6, f=x°+x°
j=17, L=6, f=x"+x°

=18, L=12, f=1+ x" +x%
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$=19, L=12, f=1+x' +x*?

=20, L=12, £=1+x%+x'?

§=21, L=12, f£=1+x%+x??

§=22, L=12, £=1+x’ +x*?

=23, L=12, f=1+x%+x'?

j=24, L=12, f=1+x° +x*?

§=25, L=13, f=x+x° +x?

§=26, L=13, f=1+x+x*? +x?t?

§=27, L=14, f=1+x+x%+x°+x? 4134+ x4
=28, L=14, f=x?+x° +x*

=29, L=14, f=x°+x>+x"

j=30, L=16, Folox+x? e + x4 x4 16

§=31, L=16, f=1+x+x%+x +x'? +x1? + x*6

333 A Few Observations about Non-Linear Algorithms

The problem with non-linear feedback shift registers, in genera, is the difficulty of their analysis.
One has to answer questions like: how many different cycles of output sequences are there, what is
their length, what is their linear complexity, etc. The following theorem will make it clear that it is
possible to say at least a little bit about general non-linear feedback shift registers.

Clearly, the output sequence of a non-linear FSR does not have maxima period if there are two
different states with the same successor state. A state with more than one predecessor is caled a
branch point.

Theorem 3.22
An n-stage feedback shift register with (non-linear) feedback fuction f(sp, 55, ..., Sa=1)
has no branch points if and only if a Boolean function gix; , 73, ..., Ss-1) exists such that

Slsn, 51, -y Say) =50+ 5051, 520 oo Fm-t):

Proof: Since f isaBoolean function, one can write
S0, Sty ooy Sp=1) = 80851, 82, .00y Spm1) + S0 NS, 52, ey Sy1)

= If &(s1, s2, ..., s,-1) =0 for some (s, s, ..., s,-1), then both states (0, sq, 52, ..., s,—1) and
(1, 51, 82, ..., sp—1) Will have the same successor state. Thus a branch point would exist,
contradicting our assumption. We concludethat » = 1.
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«= The state (0, sy, 52, ..., 5,—1) has SUCCESSOr (1, $2, ..., Sn-1, $p) With s, = g(s1, 52, ..., Sp=1),
while state (1, sy, 52, ..., $a—1) haS SUCCESSOr (sy, 53, ..., Sp—1, Sy + 1). Therefore, there are no
branch points.

O

There are many ways to use LFSR's in a non-linear way. Below we depict two proposals that are
extensively discussed in [Ruep86]. Others ideas can be found in [MeOoV97], Chapter 6.

LFSR 1

LFSR 2

-~ £ .

output *
LFSR k-1

—«—{ LFSR k

Combining several PN's with one non-linear function f.

Figure 3.5
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C0:1 ol] : .....

output
<« NonLinear Function £

One LFSR with a non-linear output.
Figure 3.6

34 Problems

Problem 3.1

Let {s:};20 be binary, periodic sequence of period 17, starting with the sequence 01101000110001011. To
which extent does {s;};»¢ Ssatisfy Golomb's Randomness Postul ates?

(Note for the interested reader. The sequence above has its ones at the positions corresponding to the
quadratic residues modulo 17 (see aso input line above Theorem A.21). The parameters that arise when
checking G3 can be predicted by Theorem A.22 and Corollary A.24)

Problem 3.2
Expressthepolynomia ged(x™ - 1, x" — 1)in terms of x and ged(m, n). (See dso Problem A.3))

Problem 3.3

Let {u;}i.0 and {v;}i» be the output sequences of binary LFSR's of length m resp. n, wherem, n =22.Assume
that {u}¢ and (vi}o ae both PN sequences and that ged(m, n)=l. Hence, &0
gcd(2™ - 1, 2% — 1) = 1(see Problem A.3). Let the sequence {w;};.o be defined by w; = wvi, i = 0, and let p
be the period of {w;};»0.

a Prove that p isadivisor of (2™ - 1)(2" - 1).

b) How many zeros and how many ones appear in a subsequence of length (2™ — 1) (2" — 1) in the
sequence {wikio?

C) Prove that (2™ — 1) (2" - 1)/ p must divide the two numbers determined in ii).

d) Provethat p = 2" - 1) (2" - 1).

€) How many gaps of length 1 doesthe {w;};»o-Sequence have per period whenm, n = 4?

Problem 34
Let {s;};»0 be the binary sequence defined by

gL ifi=2-1len,
T, otherwise.
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S0, the {s:};»9 Starts like 11010001000000010. Let L, be the linear complexity of sq, s1, ..., $i_1.
Prove that

Ly=2"1z1.

Problem 35"
Let abinary sequence {s;};-o have period 15 and start with 010110000101010.
What is the minimal characteristic polynomial of {s;};»o and what is the linear complexity of this sequence?

Problem 3.6

Condider the binary, periodic sequence {s;},o determined by the period 2'2-1 and the values
so=sp_,=1ands;=0forOfor0<i<2?-1,i+0,2°-1.

What is the minimal characteristic polynomial of {s;};»0? What is the linear complexity of this sequence?

Problem 3.7

Consider the binary polynomials f(x) =1+x+x%and g(x) =1+ x?+x". The corresponding LFSR's are
denoted by LFSR(f) resp. LFSR(g). Let {s:};i20 and {z;};»0 denote the output sequences of LFSR(f) resp.
LFSR(g).

The sequence {u;};» isdefined by w; =s;+1#;, i = 0.

The 2° different initial states (so, 51, 52, f0» 11, t2, 13, £s) generate different periodic sequences {;)i»o-

What are the cycle lengths (=periods) of these periodic sequences? Give an initial state of each cycle.

Problem 3.8
Consider the binary shift register depicted in the figure below.

&—— » 6 . ....... _‘ y 1
Cn-1 Cn-2 C2 C1 co=1
(i) J (1) (1) (1)
s Sp- s s e
Output P2 1 Ee

Let s@ = (s, s@,, ..., s, s) be the state of the shift register a timei, i = 0.
a Give the nxn matrix T satisfying sV = Ts¥for all i = 0.
b) Prove that the characteristic equation of T over R is given by

PUEWIRD Lol WY Lo ST e

C) From matrix theory we may conclude that over
T =y TV b cuy T2+ .+ T+, (3.13)
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where | isthe nxn identity matrix.
Since al elementsin (3.13) are integer, equation (3.13) aso holds modulo 2.
Derive arecurrence relation between g9, si*n=1)_ | 56+ and 59
d) Which LFSR of length n gives the same output sequence as the above shift register?
What does the initial state have to be in this LFSR to generate the same output sequence?

Problem 3.9
Let @ € GF(2*) be a zero of f(x) = x* + x + 1. So, by Theorem B.30,
fO=@-a)(x-aD)(x-0,
FrE@=t-aHE-ed)x-a% =1 -ex)(1 -?x) (1 -a* ).
Prove that () (f) consists of all sequences
TR(aa +ata? +at.at) X, a € GF(2%),
(Hint: use Corollary 35 and use the partial fraction expansion over GF (2%).)

Note that the expression above can be written as 3, Tr(a.of) ¥, where Tr stands for the Trace function, as
introduced in Problem B.16.



4 Block Ciphers

4.1 Some General Principles

4.1.1 Some Block Cipher Modes

o Codebook Mode

Block ciphers are conventional cryptosystems that typically handle a fixed number of symbols at a
time (under a given key) and do this encryption/decryption independent of past input blocks (see
Figure 4.1), For the encryption process, the data (plaintext) enters the block cipher from the left
and leaves it on the right as ciphertext. For the decryption, it is exactly the other way around.

In the next section we shal describe a few widely used block ciphers. At this moment, the
particular layout of such a cipher is not so important. One should view it as an electronic device
that can convert n-tuples of hits to other n-tuples a very high speeds (under akey) in such a way
that the reverse process is only feasible if one knows the key.

Assuming that the plaintext is along binary file, one breaks it up in segments M;, i = 0, each n bits
long. The result of the encryption of M; is denoted by C; and we write

C; =BCGi(M)), iz 0,
where k is the key. The decryption process will be denoted by BC*, so we have M; = BCy (C)).

Since an n-tuple of symbols from an aphabet A can be viewed as one symbol from A", the
difference between an n-tuple from one aphabet or a single symbol from another alphabet is
theoretically of little importance but may be of great practical value.

Therefore, the key property of a block cipher is the lack of memory in the encryption device.

It is clear that as long as the key remains the same, the same plaintext will be encrypted to the
same ciphertext. For this reason, encryption in the mode shown in Figure 41 s called codebook
mode. It is as if one uses a codebook or dictionary for the encryption. It may be clear that
encrypting the same message twice under the same key is cryptographically insecure, hence, block
ciphers are normally not used in codebook mode.
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key
Y k bits

plaintext Block ciphertext

_ Cipher _
n bits n bits

Block Cipher in Codebook Mode
Figure 4.1

o Cipher Block Chaining

There are several standard methods to circumvent the problems mentioned above. One technique
is caled cipher block chaining. We assume again that one is encrypting a long file. Each
ciphertext, say C; at time i, is not only transmitted to the receiver, but it is also added coordinate-

wise to the next block of plaintext M, ;.

To this end, the encryption algorithm has to make use of some kind of memory device, commonly
caled a buffer. See Figure 4.2 below. Of course, the buffer has to be initidlized before the
encryption process can be started.

Note that by introducing memory to this system it technically has become a stream cipher.

key
Cia=
M;, Block BC(M;.1,Cy)
Cipher
Buffer C;

Cipher block chaining - Encryption
Figure 4.2

The decryption process reverses the above process. The buffer has to be initialized with the same
initial value as was used to start the encryption. It can be part of the secret key or ajust a fixed
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constant.

The notation BC* in Figure 4.3 stands for the inverse of the block cipher used for encryption.

key
BCF (Ci+l )
Civ1 =M;.18C;
BC*™
Mi+1
Buffer C;

Cipher block chaining - Decryption
D Figure 4.3

Remark:

Note, that when C; = Cj, for some i < j, in Figure 4.2, one has that M; & Ci_; =M;®C;_y.i.e.

Cio1®Cj) = M;®M;. This means that the modulo sum of the two previous ciphertexts is equal

to the sum of the ciphertexts M; and M;. In many situations this means that some information
about the plaintext lesks away. For instance, as we can deduce from Example 5.2 , the modulo 26
addition of two English texts (with a Vigenére Table (Table 2.3) will till have sufficient structure

to enable a unique reversd of the addition process.

The above observation is reason to go to longer block Iengths than the ones most commonly in use
today (being 64 bits).

0 Cipher Feedback Mode

Another way to make sure that a block cipher under the same key encrypts the same plaintext at
different moments into different ciphertexts is caled the cipher feedback mode.

This method is depicted in Figure 4.4 below, but in a more generd setting. In many practical
situations, for instance in many internet protocols, one wants to transmit only afew bits a atime,
sy r hits, wherer is less than the block length of the block cipher.

Instead of padding the r bits with n —r zeros in order to get an n-tuple that can serve as input for a
block cipher, one adds the r-tuple coordinatewise modulo 2 to the r leftmost output bits of the
block cipher. The input of the block cipher is given by the contents of a shift register (without
feedback) that at each clock pulse shifts r positions to the left to accommodate the r bits of the
previous ciphertext.
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«— r-bits shift

Shift Register —

Yn bits

key
—_— Block Cipher

Yn bits r bits

Output
My ir bits
he

»
o

r bits C; Cs

Cipher Feedback Mode
Figure 4.4

4.1.2 An Identity Verification Protocol

In this subsection, we want to give an idea how a block cipher can be used in an identity
verification protocol. Such a protocol is a discussion between two parties in which one of them
wants to convince the other that he is authentic. An application is, for instance, a smart card of a
person, say Alice, who wants to withdraw money from her account through a card reader of a bank.

While issuing the card to Alice, the bank stores two numbers on it:
- the identity number Id4 of Alice,
- the secret key k4 of Alice.

The key k4 can not be accessed from the outside world; it does not even have to be known to
Alice. The identity number can be accessed by any card reader (it may even be printed or written
on the outside). They are related by

ks = BCuk(Idy), 4.1

where BC stands for a block cipher and MK for the bank's master key. MK is stored in every card
reader of the bank. It would be impractical to store the secret keys of dl customers in each card
reader.

The block cipher BC is also implemented on the card.

When the card is inserted into the card reader, it will be asked to present its identity number ( Id4in
our case). A genuine card reader can now compute Alice's secret key &, from (4.1).

The card reader generates arandom string r of n bits and presents it as a challenge to the card. The
card returns BCg,(r) as its response to the card reader. The card reader simply verifies this
calculation. If the card's answer to the challenge r is correct, the card reader "knows' that 4 is
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stored on the card and it will conclude that the card is authentic. Otherwise, it will not accept the
card.

Card Reader

knows k, ID knows MK
ID

computes k = BCyx (ID)
generates random r
as challenge to card

computes ¢ = BCk (r)

checks if ¢ = BCx (1)
An identity verification protocol.
Figure 4.5

The card can use the same protocal to check that the card reader is genuine. It sends its challenge
to the card reader. The reply by the card reader can only be correct if the card reader is able to
compute the secret key k4, i.€. if the card reader knows the bank's master key MK.

Normally, a Persond Identification Code (PIN) is used to link the card to the card holder.

4.2 DES

o DES

In 1974 the National Bureau of Standards (NBS) solicited the American industry to develop a
cryptosystem that could be used as a standard in unclassified U.S. Government applications. IBM
developed a system called LUCIFER. After being modified and simplified, this system became the
Data Encryption Sandard (DES for short) in 1977.

Right away, DES was made available on a fast chip. This made it very suitable for use in large
communication systems. The complete design of DES has been made public at the time of its
introduction. This has never been done before, although in each textbook one can find the remark
that the security of acryptosystem should not depend on the secrecy of the system.

We shall not give a complete description of DES. The reader is referred to [Konh81], [MeyM82],
[MeOoV97], or [Schn96].

DES is ablock cipher operating on 64 bits simultaneously (see Figure 4.6).
The key consists of eight groups of 8 hits. One bit in each of these groups is a parity check bit that
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makes the overall parity in each block odd. So, athough the keysize appears to be 64, the effective
keysize is 56 bits.

ke
Yy Y

64 (56) | bits

plaintext ciphertext
DES

64 bits 64 bits

The Data Encryption Standard
Figure 4.6

DES consists of 16 identical rounds. The 64 input bits are divided into two halves. the 32 leftmost
bits form Lo and the 32 rightmost bits form Rp.

In each round, anew L and R are defined by

Li=Ri, 1<i= 16,
Ri=Li_1®f(R_1,K),1=i=<16. @2

Here, K; stands for a well-defined subsequence of bits from the key K.

Further, f is function of the previous right-half and this subkey X;. This function is defined by
means of a collection of fixed tables, caled substitution tables. The outcome is added
coordinatewise modulo 2 to L;-;. Note that L; is simply the previous right-half. (See Figure 4.7
below.).

The final output of DES is formed from L, and R;s.

L Li-q } [ Ri_1

32 32
subkey

L | |

d
fa

A Typical Round of DES
Figure 4.7
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In Figure 4.7 one can = that the inverse algorithm of DES can be computed from the same
scheme by simply going from the bottom to the top. Indeed, it follows from (4.2) that for al
l<i<16

Ri—l =L
Li-| =R ® f(Ri-1, K;) = R; @ f(Li, K)).

Many people have criticized the decision to make DES a standard. The two main objections were:

i) The effective keysize (56 hits) is too smal for an organization with sufficient resources. An
exhaustive keysearch is, at least in principle, possible.

if) The design criteria of the tables used in the f-function are not known. Statistical tests however
show that these tables are not completely random. Maybe there is a hidden trapdoor in their
structure.

During the first twenty years after the publication of the DES-algorithm no effective way of
breaking it was published. However, in 1998, for the first time, a DES challenge has been broken
by amore or less brute-force attack.

O TripleDES

When it became clear that DES could no longer be used to protect sensitive data, a modification
was introduced, called Triple DES It consists of three DES implementations in a row, except that
the middle one is orientated the other way around. Thus, one has DES, DES*, and then again
DES. See Figure 4.8 below.

key 1 key 2 key 1
—>— DES > DEST > DES |p—>»—
TripleDES
Figure 4.8

There are two interesting things to note about this design. First of all, the third key is the same as
the first key. The effective key search is 2x56 = 112 in this way. This is consdered to remain
secure for many years to come.

The second observation is that the cipher in the middle is DES* instead of DES.
These two features make it possible to keep systems in which Triple DES is implemented

compatible with single DES systems. Indeed, by taking the keys 1 and 2 the same, the above
system reduces to a single DES scheme.
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4.3 IDEA

There are quite a few aternatives to DES. One reason for looking for them may have been the
export restrictions by the American government, another, the costs and patent rights. Contrary to
DES, which uses well chosen tables in each round, some of the dternatives make use of severd
mathematical primitives that are algebraically uncorrelated.

IDEA [Lai92] is such a system. The name stands for International Data Encryption Algorithm.
IDEA ds0 handles 64 hits a a time (see the remark in Subsection 4.1.1 about this size), but has a
key of 128 hits. It consists of 8 identical rounds, which are depicted in Figure 4.9. The 64 bits are
equally divided over four blocks of 16 bits each. These blocks are called X;, 1 < i <4, at theinput
side of a typica round and Y;, 1 <i <4, on the output side. The entries K;, 1 =i < 6, denote
substrings of the key. Their composition depends on the particular round that has taken place.

The mathematical primitives in IDEA operate on these 16 bits. They are the following operations.
. Coordinatewise XOR (addition modulo 2).

In Figure 4.9, this is depicted by &.

In Mathematica the XOR can be performed with the Mod function (here shown on 4-tuples).

Mod[{1l, 1, 0, 0} +{1, 0.1, 0}, 2

. Addition modulo 2!®.
In Figure 4.9, this is depicted by a square with aplussigninit .

Interpret the two inputs as the binary representation of two integers. Add these integers modulo 2'6
and output the binary representation of the sum.

In Mathematica this can be performed with the Frombigits and IntegerDigits functions
(here shown on 4-tuples).

a =FromDigits[{1, 0, 1, 1}, 2]
b=FromDigits[{1, 1, 1, 0}, 2]
su =Mod[a+b, 16]
IntegerDigits[su, 2]
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14

{1, 0, 0, 1}

. Multiplication modulo 216 + 1.
In Figure 4.9, thisis depicted by ®.

Interpret the two inputs (binary 16-tuples) as the binary representation of two integers modulo the
prime number 216 + 1 = 65537. Make an exception for the all-zero word which will be identified
with the integer 2!¢. In this way we have a 1-1 correspondence between binary 16-tuples and the
elements of Zss4, (See Example B.3).

Multiply these two integers modulo 2'¢ + 1, and output the binary representation of the product
16 16

(but map10...0t00...0).

Since, 2!¢ +1 is prime, the multiplication ax b (as defined above) is a one-to-one mapping for
fixed a or b. Below we demonstrate this again for 4-tuples. Note that 2# + 1 is also a prime number.
A= FromDigite[{1, 0, 1, 0}, 2];

b= FromDigita[{0, 1, 1, 0}, 2];

a=Xf{a==0,16; a];
b=If[b==0, 16, b];
pr=Mod[axb, 17]
pr=1f[pr==16, 0, prl;
IntegerDigite([pr, 2, 4]

The reader isinvited to multiply the sequences {1, 0, 0, 0} and {0, O, 1, C}.
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One Round in the International Data Encryption Algorithm
(IDEA)

Figure 4.9

As with DES, IDEA can be inverted by simply going through it from the bottom to the top.

4.4 Further Remarks

RC5 is a scheme that is alittle bit similar to IDEA. Its dgebraic primitives are again the exclusive
or and addition modulo 2%, where w is the word length, but instead of the multiplication modulo
2¥ + 1, which only works if 2* + 1is prime, RC5 makes use of cyclic shifts.

The word length of RC5 is 2w, where the user can sdect w from 16, 32, or 64. An additional
advantage of RC5 is the freedom to choose the number of rounds in the scheme. Depending on the
required speed and security, the user may opt for many or just a few rounds.

In 1993 two attacks on block ciphers were published, that turned out to be surprisingly strong.
These methods are cdled linear and differential cryptanalysis (see [MatsY 93], resp. [BihS93]) and
are in fact known plaintext attacks. Several proposed block ciphers were not strong enough against
these attacks, however the DES agorithm could withstand it. Later it became clear that the
inventors of DES were dready aware of these attacks. For further reading we like to mention
[Knud94].
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At the time of this writing, a collection of proposals are being studied by the (American) National
Ingtitute of Standards and Technology (NIST for short) for anew industrial standard. The names of
these proposds are CAST-256, CRYPTON, DFC, DEAL, E2, FROG, HPC, LOKI97,
MAGENTA, MARS, RC6, RIINDAAEL, SAFER+, SERPENT and TWOFISH (see the web page
‘Advanced Encryption Standard’ http://csrc.nist.gov/encryption/aes/aes_home.htm). The outcome
of this study is not yet clear.

45 Problems

Problem 4.1
Describe the decryption process for a block cipher used in of cipher feedback mode.

Problem 4.2

Consider a block cipher that is used in cipher block chaining mode. Suppose that during transmission, C;,
the i-th ciphertext block, is corrupted. How many plaintext blocks will be affected?

Answer the same question for the case of cipher feedback mode.

Problem 4.3

What is the next sensble block length of IDEA, if the same scheme and the same primitives are being
used, but only the length of the registers is increased? (This length is 16 in IDEA.)

What is wrong with the intermediate values?
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5 Shannon Theory

51 Entropy, Redundancy, and Unicity Distance

In Chapter 2, we have seen that the cryptanalysis of a cryptosystem often depends on the structure
that is present in most texts. For instance in Table 2.1 we could find the key 22 (or —4), because
"tu quoque Brute" was the only possible plaintext that made sense.

This structure in the plaintext remains present in the ciphertext (although in hidden form). If the
extra information arising from this structure exceeds our uncertainty about the key, one may be
able to determine the plaintext from the ciphertext!

We dhall first need to quantify the concept of information. Let X be a random variable defined on
ast X = {xq, xa, ..., x,} by the probabilities

Prx(X =x) = pi, l<isn.
So, Yt ,pi=land p;=z0foralll <ixsn.
We shall show that
J(pi) = ~log, pi (5.1)

is a good measure for the amount of information given by the occurrence of the event x;, 1 <i < n.
The base 2 in (5.1) can be replaced by other choices, but reflects our intuitive notions about
information, as we shall see. With 2 as choice for the base in the logarithm the unit of information
isacaled ahit.

Let X = {x} above (0 »=1). Then p; = 1. Now the occurrence of an event x that occurs with
probability 1 (like the sun will rise again tomorrow) gives no information whatsoever. This
corresponds nicely with J(1) = 0 in (5.1).

Now consider an event that occurs with probability 1/2, like the specific sex of a newborn baby.
So, now X = {b, g}. Assuming that both sexes have the same probability 1/2 of occurring, such an
outcome gives precisaly one hit of information. For instance, a 1 can denote a boy and a 0 can
denote agirl. This one bit of information is again in agreement with J(1/2) = 1in (5.1).

If an event occurs with probability 1/4, then its occurrence gives two bits of information. This is
clear in the case that there are four possible outcomes, each with probability 1/4. Each outcome
can be represented by a different sequence of two hits.

On the other hand, the amount of information that an event gives, when it has a probability of 1/4
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to occur, should be independent of the probabilities of the other possible outcomes. Thus, the
value J (1/4) = 2 (see (5.1)) agrees again with our intuition. Continuing in this way one gets

J/29 =k, k=0 (5.2

The expected value of stochastic variadble J(Prx(X)), defined over X, is caled the entropy of X
and will be denoted by either H(X) or by H(p), where p=(p1, p2, ..., pn). Hence,
H(X) = Exp(J(Prx(X))) = XL, pi J(pi) = — XL, pilog, pi:

H(p)= -k, p:log, p;. (5.3)
Whenn = 2, one often writes p; = p, p» = 1 ~ p, and h(p) instead of H (p):
h(p) = - p.log, p— (1 - p)log,(1 - p), O<p=<l. (5.4

Since x.log, x tends to O for x - U, there are no real problems with the definition and the continuity
of the entropy function H (p) when some of the probabilities are 0 (or 1).

The function h(p) is depicted below (with the Mathematica functiion Plot).

0.2

0.2 0.4 0.6 0.8 1

entropy function H{p) can be evaluated as follows.
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One can give the following interpretations to the entropy H(X) of arandom variable X:

- the expected amount of information that a realization of X gives,

- our uncertainty about X,

- the expected number of bits needed to describe an outcome of X.
With these interpretations in mind one expects the entropy function H(X) to have the following
properties:

Pl H(pi, p2s ... pn) =H(p1, p2, ..., P, 0)

P2:  H(pi, p2, ..., Pr) = H(poi) Po@)s -1 Pom)h
for any permutation o of the index set {1, 2, ..., n}.

P3: O<H(p, p2, ..o pr)<H{Q/n, 1/n, ..., 1/n).

P4 H(pi, pa, - Pa) = H(PL, P2 oo Pueds Puet + Pa) 4 (Pt + pu) H( S22, 2],

The interpretations of these properties are straightforward.

P1 says that adding another event to X but one with probability 0 of occurring does not affect the
uncertainty about X.

P2 dtates that renumbering the different eventsin X leaves the entropy the same.

P3 says that the uncertainty about X is maximal if al events have the same probability of
occurring.

Finaly, P4 dates that the expected number of bits necessary to describe an outcome from X is
equal to the number of bits necessary when combining events x,-; and x, into a single event, say
%n-1, plus the number bits to necessary to distinguish between events x,_; and x, conditional to the
fact that event %,-, did occur.

For instance, if n = 4, then H(+, 1 2and dso

1 i)
4’ 4° 4’ 4
H('}T’ 711”%)*'— (2’ 2) (?11' 2+
Although we shall not prove it here, it can be shown [Khin57] that (5.1) is the only continuous

function satisfying (5.2) yielding an entropy function X%, p; J(p;) satisfying the above mentioned
properties P1-P4.

T+t a=2

1
2

Example 5.1

Consider theflipping of a coin. Let Prhead) = p and Pritail) =1 - p, 0 < p < 1. The entropy is given by
(5.4).

That k(1/2) = 1 is of course confirmed by thefact that one needs one bit to represent the outcome of the
tossing ofafair coin. For instance, 0 « heads and 1« tails.
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Since k(1 /4) ~ 0.8113 one expects that on the average only 0.8113 hits are needed to represent
the outcome of the tossing of an unfair coin with Pr(head) = 1/4. This statement is true in the
sense that one can approach the number 0.8113 arbitrarily close. In the Chapter 6 we shall show
how this is done. The trick will be to represent the outcome of many tossings together by one
single string of bits. For instance with two tossings one can represent the outcomes asfollows:

two tossings probablity representation

hh 1716 111
ht 3/16 110
th 3/16 10
tt 9/ 16 0

The expected length of this representation is

1 3 3 9 _ 27
T‘_3+T;3+-]?2+E1 =95
But each representation describes two outcomes, so this scheme needs 27/32 ~ 0.843bits per
tossing. Taking three, four, ... tossings at a time leads to increasingly better approximations of

h(L/4).

There is however a problem to address, namely that the receiver ofa long string of zeros and ones
should be able to determine the outcomes of the tossings in a unique way. One can easly verify
that any sequence made up from the subsequences 111, 110, 10 and O can only be broken up into
these subsequences injust one way . We shall address thisproblem extensively in Chapter 6.

Example 52 (Part 1)

The 26 letters in the English alphabet can be represented with log, 26 =~ 4.70 bits per letter, by coding
sufficiently long strings of letters into binary strings. Indeed, for k Ietters one needs [log, 26%7 bits and
thus one needs [log, 26*1/ k bits per letter, which converges to log, 26.

On the other hand, the entropy of 1-grams can easily be computed with the probabilities given in
Table 1.1. One obtains 4.15 hitsper letter.

Alsofor hi-grams and tri-grams these computations have been made (see [MeyM82], App.F. One
gets thefollowing values:

H(1-grams) ~4.15 bits/letter,
H(2-grams)2 =~ 3.62 bits/letter,
H(3-grams)/3 2 3.22 bits/letter.

According to some tests the asymptotic value for n — oo isless than 1.5 bits/|etter!
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Definition 5.1

Let (Xg, Xy oo Ag=p )y 1 = 1, denote the plaintext generated by a plaintext source & over
the alphabet £
Then the redundancy D, of (Xg. X, ..., Xa-1) 15 defined by

Dy =n—H{Xg Xy, .... Xa1)

The quantity & = D), /n stands for the average redundancy per letier

If the alphabet sze is q and each symbol is represented by log, ¢ bits, the redundancy is given by
D, =nlog, g — H(Xy, X, ..., X,—1). If adifferent representation of the aphabet symboals is used,
sy with an expected representation length of | bits per symbol, we have
D,, = n.l—H(Xo, X], ey Xn—l)-

The redundancy measures to which extent the length of the plaintext exceeds the length that is
strictly necessary to carry the information of the text (all measured in bits).

Let us now turn our attention to a cryptosystem € consisting of cryptographic transformation E;
indexed by keys k from a key space K. Assume that the unknown plaintext is a regular English
text. In the context of this chapter we assume that the cryptanalist has unlimited computing power.
So, given aciphertext acryptanalist can try out al keysto check for possible plaintexts. As soon as
the ciphertext is just a few letters long, some keys can be ruled out because they lead to
impossible or improbable letter combinations in the plaintext. The longer the ciphertext, the more
keys can be ruled out. They violate the structure or interpretation of English texts. More formally,
they violate the redundancy in the plaintext. Sooner or later, only the key that was used for the
encryption remains as only candidate.

Let us return to the general setting. Let n be the length of the plaintext (in bits). There are 2"
possible binary sequences, but only 2#XoXi--Xu-1) represent meaningful messages. The
probability that a decryption with the wrong key hits a legitimate message is 2#Xo-Xi--Xu-1) 1 21 |
adl keys ae tried out and al are equally likely, one expects to find | % |2HXo-Xi X1} 121
meaningful plaintexts. Let K denote the uniform distribution over the key space % . Then
15K | = 2H® and one can write that 287K 2H(Xo.X1.-..Xa—1} 127 meaningful messages are expected. If
this number is less than 1, very likely it will be just the key used for the encryption that will
survive this analysis. The above happens if

H(K)+H(Xo, X1y .., Xno1) -1 <0,
i.e. if the redundancy satisfies
D, =z H(K).

If K does not have a uniform distribution, we can till use the interpretation that H(K) denotes the
uncertainty about the key to repeat the above reasoning.



80

FUNDAMENTALS OF CRYPTOLOGY

Definition 5.2
Consider a ciphertext-only antack on a cryptosystem € with key-space & and plaintext
source §. Then the unicity distance of this cryptogystem is defined by

min {n € MN* | D, = H(K)|,

where H(K) is the entropy of the key and [, the redundancy in the plaintext.

As soon as the redundancy in the plaintext exceeds the uncertainty about the key, the cryptanalist
with sufficient resources may be able to determine that plaintext from the ciphertext. Thus, the
unicity distance indicates the user of a cryptosystem when to change the key in order to keep the
system sufficiently secure.

Example 52 (Part 2)

We continue with Example 5.2. Assume that a simple substitution has been applied to an English
text (see Subsection 2.1.2). Assuming that all 26! possible substitutions are equally likely, one has

H(K) = =378/ -1 log, 51 =log, 261 ~ 88.382 bits.

If one approximates the redundancy D, in a text of n letters by (4.70 — 1.50)n = 3.20n hits, one
obtains a unicity distance of 88.4/3.2 ~ 28 characters.

According to Friedman [Frie73]: “practically every example of 25 or more characters
representing the mono-alphabetic substitution of a "sensible’ message in English can be readily
solved." These two numbers are in remarkable agreement.

5.2 Mutual Information and Unconditionally Secure Systems

Quite often random variables contain information about each other. In cryptosystems, the plaintext
and the ciphertext are related through the key. In this section we shal give a formal definition (in
the information theoretic sense of the word) of an unconditionally secure cryptosystem

Let X and Y be two random variables, defined on X resp. V. The joint distribution
Prxy(X =x, Y =y)of X and Y is often shortened to just

pxy(x, ¥).

Similarly, the conditional probability Pryy(X =x|Y =y) that X = x, given that ¥ = y, is
denoted by

pxy(x|y).
It satisfies the relation

pPxy(x, ¥} = pxy(x| y).py(y) (5.5)



Shannon Theory 81

The uncertainty about X given ¥ = y is defined anal ogous to the entropy function by
HX|Y = y) =-2L; pxy(x| y)log, pxy(x| ). (5.6)

It can be interpreted as the expected amount of information that a redization of X gives, when the
occurrence of ¥ = y isdready known.

The equivocation H(X |Y) or conditional entropy of X given Y is the expected value of
H(X|Y = y)overdly. Informula,

H(X 1Y) = Zyey py(N-HX|Y =)

5.6
=~ 2yey P¥(¥)-Zrex Pxiy(x| y).Jog; pxiy(x|y)

3.7

(5.5)
=" = Yex Zyey Py(Y)-pxiy(x| y)log, pxy(x|y)

= =Y rex Lyey Pxy(x, y).ogy pxy(xty).

Let H(X, YY) be defined analogously to the entropy function H for one variable.

Theorem 5.1 Chain Rule

HX. V) =HX)+HY|X)=H(F)+ HX|Y)

Proof: We use (5.5) and (5.7).
HX,Y)=

= ~Yex Lyey Pxy(x, ¥).log, pxy(x, y)

= = Frex Dyey PXY(6 Y ogy py () = Ziex T ey Pxy(x, Y)log, pxy(x|y)

==Y ey py(y)log, py(M+HX |Y)=HY)+H(X |Y).
The second equality follows by asymmetry argument.

]

In words, the above theorem states that the uncertainty about ajoint reaization of X and Y equals

the uncertainty about X plus the uncertainty about Y given X.

Corollary 5.2
Let X and ¥ are independent random variables. Then

i) H(X, ¥)= H(X)+ H(Y),
i) H(X | Y)y= H(X),
it} H(Y | X)=H(Y).

Proof: To prove i) we repeat the proof of Theorem 5.1 with px y(x, ¥) = px(x). py(¥).
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H(X, Y) = _Z_ra\' Z_ve}/ p,\ay(X, )‘)-1082 PXJ(& y)
= =Y iex Lyvey PAY(010g; px(x) = B ex Tyey Pxy(x y)logs py(y)
= = Yrex Px(x).logy px(x) = Xyey py(¥)Jog, py(v)

=H(X)+ H(Y).

Statements ii) and iii) follow directly from i) and the chain rule.

The amount of information (see (5.1) that a realization Y = y gives about a possible redlization
X =x can be quantified as the amount of information that the occurrence of X = x gives minus
the amount of information that X = x will give when ¥ = yis aready know. We denote this by
Ix.y(x, y). It follows that

Ixy(x; y) = (-log; px(x)) — (—log, pxy(x| ¥))

(5.5 Px(x).py(¥)
= -1 P C2) PXXPYD e ).
8 Px1y (xly) log, Px.yy) Tyx(y; 0

Note the symmetry in Ix y(x; y) = Ly.x(y; x).
The mutual information I(X; Y) of X and Y is defined as the expected value of Iy y(x; y),i.e.
1(x; y) = = Xxex Zyey Pxy(x ¥)dxy(x; )

Px(0).py(y)

=~ Yrex Zivey Pxy(x, ¥)log, Py ) (5.8)

= = Luex yey Pry(x, Ylogy J2005 = 1(Y; X).

Theorem 5.3
NX:Y) = HIX)+ H(Y) - HIX,. ) = H(X) - HiX |Y) = H(F) - H(Y|X).

Proof: From (5.8) it follows that
IX:Y)=

- _ X px)
ZXE:\ Zyey pxy(x, y).log: Py )

= = Yrex yey Pxy (X, ¥).10g, px(x) + X ex Xyey Pxylx, y)logs pxwlx]y)
= =Y ex Px(x).Jog, px(x) —H(X |Y)=H(X)-H(X |Y).
The other statements follow from Theorem 5.1.
i8]

I (X;Y) can be interpreted as the expected amount of information that Y gives about X (or X about
Y).
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Example 5.3

The binary symmetric channel can be described asfollows. A source sends X = 0 or X = 1, each with
probability 7/2. The receiver gets Y = X with probability / — p and ¥ =1 - X with probability p. It
follows that A" = . = {0, 1}and that

Py = pyr(010) pr(0) + pyrx O N prtd) = = p). % +p L = L.

Similarly, py(I) =1/2. Also py 40, ) =py (I, I} =(1 - p)/2 and
pxy(0 1) =py y(, 0) = p/2. So, for the binary symmetric channel we have by (5.8)

IX;:Y) = ~2{*5E log, 12 + & log, 22} =

=1+p.log, p +(1 - p)log,(1 - p) =1-H(p).

We conclude that the receiver gets 1 - H(p) hits of information about X per received symbol .
How to approach this quantity 1 - H(p) is the fundamental problem in algebraic coding theory
[MacWsr7], Section 1.6.

For p = 1/2 the receiver gets no information (since H(1/2) = 1) about the transmitted symbols,
as isto be expected.

Let us now return to the conventional cryptosystem as explained in Chapter 1. Assume that a
probability distribution Prg(K = k) is defined on the keyspace K and let the sequence of random
variables

M® =My, My, ..., M)
denote the plaintext, and let
C¥ = (Cy, Cy, ..., Cuy)

denote the ciphertext. So, C = E(M®). In most applications v will be equal to u. Since E; isa
one-to-one mapping, the plaintext is uniquely determined by the key and the ciphertext, therefore,
one has

HM®W|K, CV) = 0, 5.9)
Of course the user of the cryptosystem is interested to know how much information C |lesks
about M®,

Theorem 5.4
HM™. O = HiM™) — H(K)

In words: the uncertainty about the key together with the information that the ciphertext gives
about the plaintext is greater than or egual to the uncertainty about the plaintext. Again, this
reflects our intuition.
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Proof of Theorem 5.4:
By (5.9) and the chain rule (Thm. 5.1, which aso applies to conditional entropies) one has that
HEK|CN=HK|CY+HM®W | K, C") = HMW, K|{C™)

=HM@|CY)+ HK|M®™, C)y = HMW | D),

In words: given the ciphertext the uncertainty about the key is a least as great as the uncertainty
about the plaintext. This reflects the property that knowing the ciphertext, one can reconstruct the
plaintext from the key, but not necessarily the other way around.

It follows that
HMW)CYy < HK|CY) < H(K)
and by Theorem 5.3 that
M@ CN = HM ™) = HM @ | CY) 2 HMW) - H(K).

Definition 5.3
A cryptosystem 15 called unconditionally secure or is said to have perfecr secrecy if
f(MW, Chy = 0,

Corollary 5.5
A necessary condition for a cryptosystem to be unconditionally secure is given by

H{M"™) = H(K).

In cryptosystem where al keys and al plaintexts are equally likely, Corollary 55 dates that you
need to have a least as many keys as plaintexts.

Example5.4
Suppose that we have 2* keys, all with probability 7/2* Then
H(K) = ~3%, % log, & =k birs.
If the messages are the outcome of u tossings with a fair coin, one has in a similar way that
H(M™), so, for perfect secrecy one needsk = n.

This can be realized the encryption ¢ =m™ @k, where k™ standsfor thefirst u bits of the key
k and where & stands for a coordinatewise modulo 2 addition. With this encryption, with each
ciphertextc® each possible plaintext is still equally likely.
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53 Problems

Problem 5.1
Show that function — 3%, p;.log, p; satisfies properties P1-P4 in Section 5.1

Problem 52
Leta<1/2.
a) Prove that

1 n

n n nl‘l
< <
n+1 kk(n-ky*t (k) ke (n = k)ynk,

b) Show that these inequalities imply that

n
liMysoo % log z,L;‘gJ (l) = Wa),

where h(x) is the entropy function defined in (5.4).

Problem 5.3

Assume that the English language has an information rate of 1.5 bits per letter. What is the unicity distance
of the Caesar cipher, when applied to an English text?

Answer the same question for the Vigenére cryptosystem with key length r.

Problem 54

Consider a memoryless message source that generates an output letter X that is uniformly distributed over
the alphabet {0, 1, 2}.

After transmission over a channel the symbol Y, that is received, will be equal to X with probability 1 — p,
0<p<1,anditwill beequal to any of the other two letters in the alphabet with probability p/2.

Compute the mutual information 1 (X, Y) between X and .

Problem 55

Let § be a plaintext source that generates independent, identical distributed letters X from {a, b, c, d}. The
probability distribution isgivenby Pr(X =a)=1/2,Pri(X =b)=1/4,and Pr(X =¢) = Pr(x=d) = 1/8.
Consider the two coding schemes:

a —— 00 a —— 0
b —— 01 »  —— 10
¢ ——— 10 ¢ ——— 110
d —— 11 d — 111
scheme A scheme B

The output sequence of the plaintext X is first converted into a {0, I}-sequence by means of one of the
above coding schemes and subsequently encrypted with the DES algorithm.
What is the unicity distance for both coding schemes?

Problem 5.6
Prove that the one-time pad is an unconditionally secure cryptosystem.
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6 Data Compression Techniques

It is clear from Chapter 5 (see Definitions 5.1 and 5.2) that the security of a cryptosystem can be
significantly increased by reducing the redundancy in the plaintext. In Example 5.1 such a
reduction has been demonstrated.

In this chapter we shall describe two general methods to reduce the redundancy. The process of
removing redundancy from plaintextsis caled data compression or source coding.

6.1 Basic Concepts of Source Coding for Stationary Sources

Let aplaintext source § output independently chosen symbols from thealphabet {m,, m, ..., m,}
with respective probabilities pi, p2 ..., p,. Symbol m; will be encoded into a binary string ¢; of
lengthl;, 1 <i<n.

The st {c, ¢2. ..., ¢a} IS called acode C for source §. The idea of data compression is to use such
acode that the expected value of the length of the encoded plaintext is minimal. Since the symbols
generated by the plaintext source are independent of each other, it suffices to minimize the
expected length of an encoded symbol

L= pili 6.1)

The minimization has to take place over al possible codes C for source §. There is however an
additional constraint. A receiver (decoder) has to be able to retrieve the individual messages from
the concatenation of the successive codewords. Not every code has this property. Indeed let
C = {0, 01, 10}. The sequence 010 can be made in two ways: 0 followed by 10 and 01 followed by
0. This ambiguity has to be avoided.

Definition 6.1
A code C is called uniguely decodable (shomened to LL0.) if every concalenation of
codewords from C can only in one way be split up into individual codewords.

Example 6.1

Letn =4 and C =1{0, 01, 011, 111} (this is the code of Example 5.1 in reversed order). This code C is
U.D., as we shall now demonstrate.

Consider a concatenation of codewords. If the left most bit is a 1, the left most codeword is 111. If on the
k

other hand the left most bit is a 0, the concatenation either looks like 077-...7, for somek =0, or it starts
k

with the subsequence 077...70 for some positive integer k.
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Depending on whether k = 31, 31 + 1, or k = 31 + 2, the left most codeword is 0, 01 resp. 011. One
can now remove this codeword and apply the same decoding rule to the remaining, shorter concatenation
of codewords.

Theorem 6.1 McMillan Inequality [McMi36]
A necessary and sufficient condition for the existence of a uniguely decodable code C of
cardinality n with codewords of length [, 1 =i=n, is

Proof: We shall only prove that the inequality above is a necessary condition for the existence of a
U.D. code with codeword ¢; of length /;, 1 <i=<n.That it aso is a sufficient condition will be
proved later in this chapter.

Let L=3%", %/ and let us assume (without loss of generality) that [y <, < ... < {,.Then
h A
LY =(gn, )" = 2, 5
where A; is the number of ways to write jas #;, +1;, +... +1;,.0r, aternatively, Ajisthe number
of ways to make a concatenation of N codewords of total length j.

Because C is U.D., no two different choices of N-tuples of codewords will give rise (when
concatenated) to the same string of lengthj. So, A; < 2.

Substitution of this inequality in (6.2) implies that forall N > 1

I¥N< S, V= NU - 1)+ 1.
Since the left-hand side grows exponentially in N, while the right hand side is a linear function of
N, we conclude that L < 1.

[

As can be seen in Example 6.1, one may have to look for a much longer prefix of the received
sequence than the length of the longest codeword to be able to decode it. Thisis not very practical.

Definition 6.2
A code C is called a prefix code or instantaneous if no codeword is a prefix of another
codeword

The code in Example 6.1 is not a prefix code, since the codeword 0 is a prefix of the codeword 01.
The code in Example 5.1 clearly is prefix code. For the decoding of a prefix code one simply looks
for a prefix of the recelved sequence that is a codeword. Because the code is a prefix code this
codeword is unique. Remove it and proceed in the same way.

Note that when a prefix code is used, one only needs to examine at most I, bits of the received
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sequence to determine the first codeword in the received sequence.

The above observation proves the next theorem.

Lemma 6.2
A [:mflx code is uniquely decodable.

Theorem 6.3 Kraft Ineguality [Kraf49]
A necessary and sufficient condition for the existence of a prefix code with codeword
lengths f;, | =i = n, is

Proof: A prefix code is U.D. by Lemma 6.2. So, it follows from the McMillan inequality (Thm.
6.1) that (6.3) is a necessary condition for a code to be aprefix code.

We shall now prove that (6.3) implies the existence of a prefix code with codewords ¢; of lengths
i, 1 <i=<n,andafortiori of aU.D. code with these lengths.

Without loss of generality /; </, < ... < I,. Because of this ordering and since Y7} ,L, <1we
can define vectors ¢; = (¢,1, ¢i2, ..., ¢iy,), | =i < n,by the binary expansion of X'z} 1/2":

G 0,2 ud,
! ! +...+—7"L.

For instance, ¢; =(0, 0, ..., 0) of length Iy, ¢ =(0, ..., 0, 1,0, ..., 0) of length /; with a one on
coordinate /, etc. By definition, ¢, has length /.

It remains to show that no ¢, can be the prefix of a codeword ¢,, « # v. Suppose the contrary.
Clearly I, # 1., otherwise the two words would be identical. So, /, </, and thus u < v. It aso
follows that

v=1 _I cu-1 1 def. iy Lu/ P’eﬂ"
pIym 7 -2 Pl 2_,-':1 E
h Ly h =1
Z,:l,,ﬂ 3 = ZI=[“+I ZJ L+l 57 2; = S
while on the other hand
v=l 1 _yw-l L _pv-1 1, L
ZJ:I 2Ij Z/:] 2’/ J=n [ = 20"

These two inequalities contradict each other.

Example 6.2
Considerl; =1,1;, =2, 13 =3, andl, =I5 =4.

Since & + 3 + 4+ + 4 + 2 =1, the Kraft inequality is satisfied.
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The proof above gives the following codewords (we have used the Mathematica functions Length, Do.

Table, IntegerDigits, and Print);
1={1,2, 3, 4, 4};

L = Length[l]) c=.}

c[1] = Table[0, {1[[1]]}]

i-1

Z—I”] M, 2], (4, 2, 1}]s

Do[e[i] = Inr.agnrniqit.n[[ =TT
{ |

=

i
Do[Print[c[i]], {i, 1, L}]

{0}
{1, o}
{1, 1, o}
{1, 1, 1, 0}
{1, 1, 1, 1}

This code is a prefix code, as one can easily verify.

It is quite remarkable that the McMillan and the Kraft conditions ((6.2) and (6.3) are the same. It
follows that the smallest average value of the length of a U.D. code is equal to the smallest average
value of the length of a prefix code!

The next two theorems give bounds on the average value of the length of a prefix code (or a U.D.

code).

Theorem 6.4

Consider a plaintext source © that outputs messages m; with probability p. 1 5§ = n.
Let C be a U.D. code which maps message m; into codeword g of length [, 1 sisn
Then the expected value L = 3, p; I; of the length of an encoding satisfies

L= H(p).

Proof: It follows from the well-known inequality Inx < 1 - x, x > 0, and from (6.2) that

H(p)-L=-3%L, pilogy pi— Tty pili = 5 Ziy pin p—’lgl‘ <

e Sh oy 1= g (52 ) -0



Data Compression Techniques 91

Theorem 6.5
Consider a plaintext © that outputs messages my with probability p. 1 =i = n.
Then a prefix code C exists for this source with an expected word length L, satisfying

L<H{pi+1.

Proof: Definel; by I; = [log, 1/ p;], 1 si = n.Then 2 2 1/ p; andthus
/2= ¥ pi= 1

For these values of 1;, 1 < i < n, construct the code C as described in the proof of Theorem 6.3. It is
aprefix code and the expected value L of its length satisfies

L=3L pdi=2L plogy 1/ pl<ZLi pillogy 1/ p+ 1) =H(p)+ 1.

Corollary 6.6
The mimimal expected length of all prefix (or U.D.) codes for a plaintext source & with
probability distnibution p has a value L satisfying

HippsL<H(g)+ 1l

We shal now apply the above corollary to N-tuples of source symbols. Since the entropy of N
independent symbols equals N times the entropy of one symbol, one gets an expected length L™
for an N-gram that satisfies

N.H(p) < L™ < N.H(p)+ 1.
It follows that

M)
Hp s 5~ <Hp++. (6.4)

0, limy o0 % = H(p). This confirms the last of the three interpretation of the entropy function
H, that were given a the beginning of Chapter 5.

We shall now derive some properties that a prefix code with minimal expected L will satisfy.
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Theorem 6.7
Consider the source & which outputs independent symbols m;, 1=i=<n, with
probabilities py =2 pr = ... 2 pa.
Among all U.D. codes for this source, let C be one which minimizes the expected value
L of the length of an encoding. Let this code C have codewords ¢; of length ), | =i =n.
Then, after a suitable reindexing of codewords associated with the messages of the same
probability,
Fl) hL=shs..sk
Pl) € can be assumed to be a prefix code.
P3) . Fh =1
P4) Iy =1y
P5)  Two of the codewords of length [, differ only in their last coordinate

Proof:

P1)  Supposethat p, > p, and L, > /.. Make a new code C* from C by interchanging ¢, and ¢,.
Then C* isaso an U.D. code. The expected length L* of C* satisfies

L*=L+ pu([\' - lu) + I’v(lu - [\') =L+ (pu - pv) ([‘ - lu) < L.
This contradicts our assumption on the minimality of L.
If p,, = p., u < v, Onecanobtain /, </, by a simple renumbering of the indices.

P2)  If aU.D. code exists with expected length L, then a prefix code with the same expected
length L also exists because the necessary and sufficient conditions in Theorems 6.1 and 6.2. are
the same.

P3) If >, ZL, <1 one can decrease I, by 1 and dtill satisfy the Kraft inequality (6.3). By
Theorem 6.2 a prefix code with smaller expected length would exist. This contradicts our
assumption on C.

P4) If 1, > 1,_1 then P impliesthat I, is strictly greater than any of the other codeword lengths.
It follows that the left hand side in P3) will be a rational number with denominator 2. For this
reason it can not be equal to 1.

P5)  Deete the last coordinate of ¢, and call the resulting vector ¢;. Let C" be the code
{cih 2, -ves cnots €3} 11 fOllows from P3) that C* does not satisfy the Kraft inequality (6.3). So C*
is not a prefix code, while C was. This is only possible if ¢;is a proper prefix of some codeword
¢, | <i<n—1. This means that this ¢, must have length Z, too and aso that ¢;and ¢ differ injust
their last coordinate.

U

Property PS5 gives a clue how to construct a U.D. code with minimal expected codeword length.
The method will be described in the next section.
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6.2 Huffman Codes

The Huffman algorithm [Huff52] constructs for every stationary plaintext source a prefix code that
has an average codeword length that is minimal among all U.D. codes for this source. The
algorithm has arecursive character.

If the plaintext source has only two possible output symbols, both with a non-zero probability of
occurring, the best one can do is to assign the symbols 0 and 1 to them. Clearly, L=1< H(p)+ 1
in thiscase.

Each recursion step consists of two parts: areduction process and a splitting process.

The reduction process.

Let & be a plaintext source which outputs independent symbols m;, 1 <i < n, with probabilities
p1 = p2=...z p,. Replace the two symbols m,_; and m, by one new symbol m;_, with
probability pi_; = pa-1 + p». In thisway, anew source & is obtained with one output symbol less
than &.

The gplitting process.

Let C* =f{¢1, ¢2, ..., Cn-2, €} be a prefix code of minimal expected length L* for the output
symbols {my, ma, ..., m,_p, m;_;} of & (to find this code in the recursion process, one may want
to reindex these symbols in order of non-increasing probabilities).

The code Cisgiven by

ci=c for1<isn-2,
Cn-1 = (Q:,_l, 0),
e =1, D

In words, when the symbol m;_, is split up in the two symbols m,_and m,, the codeword ¢_; will
be extended with a0 resp. 1 (or the other way around) to distinguish them.

Example 6.3
Let n = 6 and let the plaintext source &output independent symbols described by the table:

m m m my ms Mg
0.3(0.2)0.210.1]0.1)0.1

To keep track of the reduction process, we use the notation (m,-; +m,) for m;_,. After applying
one reduction and a reordering of the probabilities in non-increasing order we get

m | m | my | (ms+mg) | my
0.3(0.2]0.2 0.2 0.1

Repeating thisprocess, one gets
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m | (mg+ (ms+mg)) | m | m
0.3 0.3 0.20.2
and
(M +my) | m | (mg+ (ms +mg))
0.4 0.3 0.3
and finally
(my + (mg + (ms +mg))) | (mp +m)
0.6 0.4

For the splitting process we traverse the above process in opposite direction. We start with the
code {0,1} and at each splitting of a message into two messages, we append a zero resp. a one.

Note, how m; is replaced by ¢; at each step. We get

(C1+ (e + (C5+C6))) | (€2 +&3)
(0) (1)
and
(€2 + C3) <1 (Ca+ (&5 +Cs))
(1) (0, 0) (0, 1)
and
<1 (€4 + (S5 +C6)) <2 <3
(0, 0) (0, 1) (1, 0y [ (1, 1)
and
<1 < <3 (€5 + C6) <4
(0, 0) [ (2, 0)[(2,2)|(0,1,0)](0,1,1)
and as codefor the source &:
£l <o jox] £4 Cs Lo
(0, 0) | (1, 0)](1,1)|(0, 1, 1)y(|(0,1,0,0)|¢(0,1,0,1)

We see that Iy =i, =13 =2, I, =3, and Is =I5 =4. One can easily check that 3¢_, 1/2% =1 and
that H(p) =< L < H(p). We use the MultiEntropy function defined in Section 5.1 and further the
Mathematica function Length.

Length[p]
MultiEntropy[p_List] := - pl[i]] »Log[2, p[I4i]11]1]

=
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P= {0-3; ﬂ;;, 'ﬂ-:. 0!lr L'l-l; ﬂ-l}:

MultiEntropy([p]

l1=1{2, 2,2, 3, 4, 4}7 len = Length([1l];
lea 4 A

— 21[[i1]

len

Zp[[il} +1[[41]]

isl

2.44644

True

(o8]
i

To demonstrate this Huffman code, we apply it to a text made up by thefirst 6 letters of the
alphabet. Wefirst simulate the source with the Mathematica functions which, Random and Do
(note that <> joins two strings).

SeedRandom[12321]; randomchar[x ] :=
Which[x< 0.3, "a", x< 0.5, "b", x<0.7, "c",
x<0.8, "d", x<0.9, "a", <1, ==l
pourcetext = ""; n =10}
Do[sourcetext =
sourcetext <> randomchar [Random[Real, {0, 1}]1]1. {3, 1, n}ls
| sourcetext

eedchoccaec

To encode we use the Huffman coding determined above and thefunction StringReplace.

| code = BtringReplace[sourcetext, {"a" =+ "00", "b" 4 "10",
ngn 4 m11=, *4d® 5 "011", “"e™ -+ "0100", "£" - "0101"}]

010001000111110111100010011

To compare the length of this particular coding with the entropy we use thefunction MultiEntropy
defined above and the Mathematica function StringLength.
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StringLength[code] /n - MultiEntropy[p]

0.253561

In Mathematica, the decoding can be implemented with the function SringReplace, because this
function worksfrom left to right, asfollows.

i st = StringReplace[code, {"0101" -> "f",
"0100" => "a¥, "011%" - "d", 11" -5 "ew, RjOn _ whw
.Du“ - H&H}]
sourcetext == 8t

eadchocaac

True

In fact, the following figure gives a better way to describe the decoding process. Read the received
string bitwise from left to right. Depending on the input symbol follow the tree from its roct to the
right: a 1 lets you go up and a0 down. As soon as aledf (end point) of the tree has been reached,
write down the corresponding aphabet symbol and start again a the root with the next. For
instance, the first two symbols in "00010000010000101000010011" are "00" and lead to symbol
"a'. The next four symbols are "0100" and lead to "€", etc.

root

Decoding Tree for Huffman Code
Figure 6.1
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Lemma 6.8

Let © be a plaintext source with independent output symbols m;, 1 =i=n, with
probabilities pyzprz...2p,. Let 6 be the reduced plaintext source with
independent output symbols mf, | =i = n =1, with probabilities pf =p, 1 sisn-12,
and p5_y = Pa_i * P-

Assume that C7 is a prefix code for source §° that minimizes the expected value of the
length of any prefix encoding for §°. Let the wonds in C* be denoted by ¢f,
isisn—-1. Define code C for & by g=g for I=i=n-12
Eact =Ly e e ) pe 00, A = (2% g oeen (5 )y 1.

Then C is a prefix code for source & that minimizes the expected value of the length of
any prefix encoding for 6.

Proof: That C is a prefix code is straightforward. Let /;and { denote the length of ¢iresp. ¢.
These numbers are related by /; =/,  <i<n-2,and/,_; =1, =I;_, + 1. The expected lengths L
and L* of Cresp. C* arerelated by:

L= Z:‘:l P L= 27;]2 Pi I+ Pn-1 b+ Pn ly = ;':—12 P:‘ l; + Pu—l(l:[-l +1)+ Pn(l;;_l +1)=

Z:;_l: p; 17 +(fp-1 + Pn) [;‘,—1 +(pn1 + Pn) = ;’;12 p; 17 + Pr I;;—l +(pp—1 + Pn) =L+ (Pn-i + pu).

From Theorem 6.7 and a reasoning like the above, we know that any prefix code € for source &
that minimizes the expected value of the length of an encoding for $ can be reduced to a code for
source §* that has an expected encoding length equal to L — (p,-; + pa). SinceL* was minimal for
S, we have L~ (py_y + po) = L* =L = (py_1 + py), ie. L= L. Since L was minimal for &, we
concludethat £ = L. i.e. C realizes the minimal expected length for an encoding of §.

Theorem 6.9

Let © be a plaintext source © with independent output symbaols my, 1 =i =<, with
probabilities py = 2= ... = py

Then the Huffman code for this scurce will have an expected encoding length L that is
minimal among all U.D. codes for this source.

Proof: For n = 2 the statement is obvious because the Huff man code will be equal to {(0), (1)} with
L = 1. The induction argument is a direct consequence of Lemma 6.8.

6.3 Universal Data Compression - The Lempel-Ziv Algorithms

If one wants to compress data from a source with unknown statistics, the Huffman algorithm can
not be applied. For such a situation, one needs so-called universal data compression techniques.
Examples are the Lempel-Ziv agorithms (there are two of them) and a technique called arithmetic
coding (see [ZivL77], [ZivL78], resp. [RisL79)]).
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In [ZivL77], the authors introduce a window of a fixed length that dlides over the sequence of
source symbols, say from left to right. The dliding window consists of two parts. a larger part on
the left, called the search buffer, and a smaller part on the right, caled the look-ahead buffer. The
source symbols in the search buffer have already been encoded. The encoder encodes as many new
source symbols in the look-ahead buffer as possible by looking in the search buffer for the largest
match of already encoded symbols. Suppose that the first j unencoded source symbols match with
the j symbols in the search buffer that start at position i, but that these j symbols followed by the
next source symbol, say a, could not be matched. Then the encoder outputs the triple (i, j, @) and
the sliding window will move j + 1 characters to the right.

For example, suppose that the search buffer has length 10 and the look-ahead buffer has length 5.
Let the sliding window be given by
12 3 45 6 7 8 9 10 1 2 3 4 5
b b c[alb clbJalcp a
searchbuffer look ahead buffer
The largest match that can be found, are the first three letters in the look-ahead buffer with the
three letters starting a postion 3 in the search buffer. The encoder will send the triple (2, 3, a),
where a is the first symbol that could not be matched. The sliding window will move four

positions to the right. At the beginning, when the search buffer is empty, the first encoding will
start with (0, 0, x), where xis the first symbol of the source.

a

clblc]a‘alcla

a

We shall now discuss a particular variant of the Lempel-Ziv codes. We follow [Well99], where
also an analysis of the performance can be found. The basic idea is that both sides (sender and
receiver) make a dictionary that represents in a smart way substrings that have been transmitted
before. If the new string of characters that is to be compressed is aready in the dictionary, one
encode this string by the index of the corresponding entry in the dictionary. In genera, this index
will be alot shorter than the string. If the new string is not in the dictionary, more work has to be
done.

The dictionary that sender and receiver are making simultaneously will be (alot) larger than the
alphabet A of the source &. However, this dictionary will be stored in a very efficient way by
means of a so-called linked list.

The reader has to redlize that the use of the Lempd-Ziv agorithm involves some overhead.
However, for files of moderate length (say, one page of text) it already makes sense to use them.

o Initialization

As already remarked before, the dictionary will be stored by means of a linked list. Each entry in
the list has its own address u. The corresponding entry consists of an ordered pair (v, a), where v
should be interpreted as a pointer to another entry in the dictionary (so vis again an address) and
where a is aletter in the alphabet A. Let A denote the size of A.
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To initialize the algorithm we start with a dictionary consisting of the following A + 1 entries.

address pointer letter

0 0 (o)

1 0 ai
2 0 as
A 0 an

Note that al these entries point to the list element with address 0. The symbol @ is not an element
of A.ltisan additional symbol, serving as a punctuation mark.

To be ready for the encoding, we set the pointer value v to 0 and the addresspointer uto A+ 1 (u
is the address of the next empty location in the linked list).

0 Encoding

Algorithm 6.10 Encoding for Lempel-Ziy
do begin read the next source symbal a
if (v, @) is already an entry in the dictionary then give v the value of the address
of {v, a) . -
else begin
1) transmit v,
£) make a new dictionary entry (v, a) with address u,
3w = u+ 1 (raise pointer u by 1),
4) give v the value of the address of (0, a)
end

until source stops.

The interpretation of the above is the following. If (v, a) is aready an entry in the dictionary then
the encoder is processing a string of symbols that has occurred at |east once before. By assigning to
v the value of the address of (v, a), one will be able later on to reconstruct this list.

If (v, @) isnot an entry in the dictionary, the encoder is faced with a new string that has not been
processed before. It will transmit v to let the receiver know the address of the last source symbol in
the preceding string. Further, the encoder makes a new dictionary entry (v, a) with address u. The
symbol a will serve as root of a new string. Pointer v is given the value of the address of entry
(0, @). The 0 in this entry points at dictionary entry (0, @) which indicates the beginning of a new
string.

Note that the output symbols of the coding process are dictionary indices, more precisely,

addresses of the linked list. Their length grows logarithmically in the length of the dictionary. Note
aso, that each new source symbol will increasingly often not give rise to a new output symbol,
because the current string will aready have been encoded before.
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Example64 (Part 1)
Consider a binary string {s;)7., that we want to compress. So, A = {0, I}and A =2,
Weinitializethecodingprocessbyputting

Dict = {{0, -1}, {0, 0}, (0O, 1}}
u=3;ve=0) coutput = {}s

Note that we have used the negative number -1 instead of the null symbol @.

To demonstrate the coding process, we output for each new source symbol s; the new dictionary
(represented as linked list), the new values of u and v and the complete output sequence.

We use the Mathematica function Position thatfinds the place of an element in a list. Because
our list contains lists as elements we add [[1]] twice. Note that we subtract 1 from the address,
because our numbering starts with 0 instead of 1.

| Pos[s_List, el List] := Position([s, el][[1]][[1]] -1
For instance
1= {{3}s {5}s {7}, {2}, {1}}s

el = {7}
pos[l, al]

Now we are readyfor the coding process. We use the Mathematica functions Do, If, MemberQ,
Append, andPrint.

s={1, 1,0, 0, 0,1, 0, 1, 1, 0, 0, 1}
Do [If [MemberQ[Dict, {v, s[[1]]1}].

v =Pos[Dict, {v, a[[1]]}]-
output = Append[output, v]; i
Dict = Append [Dict, {v, sa[[i]]1}];
| v =Pos[pict, {0, s[[1]]}11;
i Print[Dict, ", v=", v, ", total cutput is ", ocutput],
i {i, 1, Length(s] }]
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{o, -1}, {0, o}, {o, 1}}, wv=2, total output is {}

-1}, {o, 0}, {o, 1}, {2, 1}, {2, 0}}

{
{{o, -1}, {0, 0}, {0, 1}, {2, 1}}, w=2, total output is {2}
{ ’

, v=1, total output is {2,2}

{{o, -1}, {0, o}, {o, 1}, {2, } {2, 0}, {1, o}}

v=1l, total output is {2, 1

}
{{o, -1}, {o, o}, {o, 1}, {2, 1, {2, 0o}, {1, 0}

v=5, total output is {2 2 1}
{

{{o, -1}, {o, o}, {o, 1}, {2, 1}, {2, o}, {1, 0o}, {5, 1}}

v=2, total output is {2, 2, 1, 5}

{{o, -1}, {o, 0}, {o, 1}, {2, 1}, {2, o}, {1, o}, {5, 1}}

v=4, total output is {2, 2, 1, 5}

{{o, -1}, {0, o}, {o, 1}, {2, 1}, {2, 0}, {3, 0}, {5, 1}, {4, 1}}

v=2, total output is {2, 2, 1, 5, 4}

{{o, -1}, {o, o}, {o, 1}, {2, 1}, {2, o}, {1, 0}, {5, 1}, {4, 1}}

v=3, total output is {2, 2, 1, 5, 4}

{{o, -1}, {o, o}, {o, 1}, {2, 1}, {2, o}, {1, 0}, {5, 1},

{4, 1}, {3, 0}}, w=1, total output is {2, 2, 1, 5, 4, 3}

{{o, -1}, {0, 0o}, {o, 1}, {2, 1}, {2, o}, {1, o}, {5, 1},

{4, 1}, {3, 0}}, w=5, total output is {2, 2, 1, 5, 4, 3}

{{o, -1}, {o, o}, {o, 1}, {2, 1}, {2, o}, {1, 0}, {5, 1},

{4, 1}, {3, 0}}, wv=6, total output is {2, 2, 1, 5, 4, 3}

0 Decoding

For a proper decoding, the receiver must be able to reconstruct the same dictionary as was made by
the transmitter. He can only act whenever a new output symbol arrives. Let v be this new symbol.

By the encoding algorithm (Alg. 6.10) the arrival of v implies that a new element (say the u-th) has
to be added to the dictionary. The pointer of this new entry isgiven by v.

The source symbol for this entry is not known since it is the root symbol of the next string (which
has not been encoded yet by the transmitter). So, only the pair (v, ?) can be added to the dictionary.

The receiver is however able to fill in the missing symbol in the previous dictionary entry (at
address u — 1).

Further, the receiver can decode the complete source symbol string associated with the received
symbol.

We shall demonstrate the above process for the received sequence of Example 6.4.
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Example 6.4 (Part 2)

The receiver initializes just as the receiver did. So, « =3, v =0, and the dictionary is given by

HO, @}, {0, O}, {0, 1}}.
He receives thefollowing list ofsymbols: {2, 2, 1, 5, 4, 3}.
Thefirst received symbol isv = 2.

So, the new dictionary entry will be {2, ?} and will have address u = 3. The question mark can not
befilled in yet.

Pointer 2 in {2, ?} points at the entry with address 2 in the dictionary, which is {0, 1}. This entry
tells us that the last symbol of the previous string was a 1 and thatfor the preceding part we need
to go to the dictionary entry with address 0. This entry is{0, @}, so we are done.

The new dictionary isgiven by {{0, @},{0, 0}, {0, 1}, {2, ?}}.
The second received symbol isv = 2.

Tofill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 2. This entry is {0, 1}. Its source symbol gives the value of the question mark.
Therefore, we get thefollowing dictionary{{0, @},{0, 0}, {0, 1}, {2, 1}}.

Also, a new dictionary entry has to be added, namely {v, ? }={2,?}at address u =4.

Pointer 2 in this new entry {2, ?} points at the entry with address 2 in the dictionary, which is
{0, 1}. This entry tells us that the last symbol of the previous string was a 1 and that for the
preceding part we need to go to the dictionary entry with address 0. This entry is{0, @}, soweare
done. The decoded string isjust "1".

Thenew dictionary isgiven by {{0, @},{0,0},{0, 1},{2, 1}, {2, ?}}.
The third received symbol isv = 1.

Tofill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 1. This entry is {0, O}. Its source symbol gives the value of the question mark. So, we
get thefollowing dictionary{{0, @},{0,0},{0, 1},{2, 1},{2, 0}}.

Also, a new dictionary entry has to be added, namely {v, ? }={1,?}at address u = 5.

Pointer 2 in this new entry {1, ?} points at the entry with address 1 in the dictionary, which is
{0, 0}. This entry tells us that the last symbol of the previous string was a 0 and that for the
preceding part we need to go to the dictionary entry with address 0. This entry is {0, 0}, so we are
done. The decoded stringisjust "1".

The new dictionary isgiven by {{0, @},{0,0},{0, 1}, {2, 1},{2, 0}, {1, ?}}.
Thefourth received symbol is v = 5.

Tofill in the question mark in the current dictionary, we look at the entry in the dictionary with
address v = 5. This entry is {1, ?}. The pointer 1 in this entry refers to another entry in the
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dictionary, namely with address 1, so to entry {0, 0}. Pointer O in this entry means that we are at
the root of a string. The source symbol of entry {0, O} tells us that ?=0. So, we get thefollowing
dictionary{{0, @},{0,0},{0, 1},{2, 7},{2,0},{1, O}}.

Also, a new dictionary entry has to be added, namely {v, ? }={3,?}at address u =6.

Pointer 5 in this new entry {5, ?} points at the entry with address 5 in the dictionary, which is
{1, 0}. This entry tells us that the last symbol of the previous string was a 0 and that for the
preceding part we need to go to the dictionary entry with address 1. This entry is {0, 0}, so the
preceding source symbol is 0 and we are pointed to {0, ¢}. This means that we are done and that
the decoded string isjust "00".

The new dictionary isgiven by {{0, @},{0,0},{0, 7},{2, 7},{2, 0}, {1, O}, {5, ?}}.

The reader is invited to continue this process.

6.4 Problems

Problem 6.1
Decode the string 01100111111111100011, which has been made with the code in Example 6.1.

Problem 6.2

Apply the Huffman algorithm to the plaintext source &that generates the symbols a, b, ¢, d, e f, g, and
h independently with probabilities 1/2, resp. 1/4, 1/8, 1/16 1/32, 1/64, 1/128 and 1/128.

What is the expected number of bits needed for the encoding of one letter? Compare this with the entropy
of the source.

Problem 6.3%
Duplicate Example 6.3 for the plaintext source § that generates the symbols a, b, ¢, d, e f, g, and h
independently with probabilities 1/3, resp. 1/4, 1/6, 1/12, 1/15, 1/20, 1/30, and 1/60.

Problem 6.4
Apply the Welch variant of the Lempel-Ziv encoding procedure to the binary sequence
(0000000000000

Demonstrate the first 5 steps of the decoding process.
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7 Public-Key Cryptography

7.1 The Theoretical Model

7.1.1 Motivation and Set-up

In modern day communication systems, conventiona cryptosystems turned out to have two
essential disadvantages.

i) The problem of key management and distribution.

A communication system with n users, who al use a conventional cryptosystem to communicate
with each other, implies the need of (;) keysand (;) secure channels.

Whenever a user wants to change his keys or a new user wants to participate in the syssemn—1
(resp. n) new keys have to be generated and distributed over as many secure channels.

ii) The authentication problem.

In computer controlled communication systems the electronic equivalent of a signature is needed.
Conventiona cryptosystems do no provide this feature in a natural way, especialy when there is a
conflict between sender and receiver, it is impossible to decide who is right. Any message made by
one of them could a so have been made by the other.

These disadvantages prompted researchers to look for a different kind of cryptosystem.

In [DifH76], W. Diffie and M.E. Hellman published their pioneering work on public-key
cryptosystems. See Figure 7.1, where their system is depicted.

m
L Ann J—b—(Encryption

A

Pg (m) =c Sy (c)=m

Decryption

Pp

Key Source

A public-key cryptosystem for encryption.
Figure 7.1
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Every user U of the cryptosystem makes a pair of matching algorithms P, and S, (or gets them
from atrustworthy authority). These agorithms operate on elements of later to be defined sets.

Algorithm Py has to be made public by U, while agorithm S, has to be kept secret by U.
Depending on the application, these agorithms must satisfy some of following properties:

PK1  Pi@nd Sgreefficient algorithms, i.e. they do not need much computing time or
memory space.

PK2  Sy(Py(m)) = m, for every user U and for each possible message m.
PK3: Itisinfeasibleto find an algorithm S;, from P, that satisfies S;;,(Py(m)) = mfor al m.
PK4  Py(Sy(m)) = m,for every user U and for each possible message m.
PK5: It is infeasible to find an algorithmsS;;, fromPy that satisfiesP;;(Sy(m)) = m for al m.

Properties PK3 and PK5 are not precisely formulated. Their precise meaning depends too much on
the application and may vary in time.

7.1.2 Confidentiality
We assume that properties PK1, PK2, and PK3 hold.

If Alice wants to send an encrypted message m to Bob, she first looks up the public (encryption)
algorithm Pg of Bob. She encrypts m by applying algorithm Pz to m. So, she sends to Bob:

¢ = Pg(m).
Bob recovers m from the received ciphertext c by applying his (secret) algorithm Szto c. Indeed,
Sa(c) = Sp(Py(m)) ‘= m.

To make the system practical to use, property PK1 must hold. It is for the security of the system
that property PK3 has to be required.

PK3 makes it possible to publish the (encryption) algorithms P, without endangering the privacy
of the transmitted messages.

We summarize the encryption scheme in the following table.

Public Py of all users U
Secret Sy toall users, except U
Properties PK1l, PK2, PK3
Encryptionof mby Ann Pg (m) = ¢
Decryption of ¢ by Bob Sg(c) =m

A public-key cryptosystem used for privacy.
Table 7.1
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If auser U wants to change his personal key, he simply generates a new set of matching algorithms
Py and Sy satisfying PK1, PK2 and PK3 and makes Py public. The same has to be done when a
new user wantsto participate in the communication system.

In [DifH76], the authors suggest to use trapdoor, one-way function for the encryption. A one-way
function is afunctionf : A - B with the following properties:

FI)  f(a) is easy to evaluate for any a € 4,
F2) itiscomputationally infeasible to compute £ (b) for amost al b € B.

A trapdoor, one-way function is a one-way function f satisfying the further property that
F3)  fF<(b), b e B, isessy to compute given certain additional information.

Property F1 makes such a function practical to use, while property F2 makes f safe to use for
encryption purposes. Property F3 makes decryption by the receiver possible.

In daily life a telephone book can be used as a one-way function; given a name one can easily find
the corresponding telephone number but not the other way around. Looking up atelephone number

of a person amounts to finding the name of that person. This takes log, L operations, if L is the
number of names in the telephone guide. Finding the name if the telephone number is given means

going through the whole book, name after name. The complexity is L. Property F2 is based on the
exponential relation between log, L and L.

One-way functions f are also used to check the authenticity of a person that wants to get access to
something. Each user U has his own PIN code x, but in acentral computer only the name of U is
stored together with thevalue yy = f(xy).

When U wants to get access he needs to give his name and xy. The value f(xy) will be evaluated
and sent to the computer. If this values matches yy, user U can get access, otherwise not. The
advantage of this system is that the PIN codes x;; do not need to be stored in the computer. So,
anybody who can read out the memory of the computer can still not determine the PIN codes.

In Chapters 8, 9, and 12 we shall discuss various proposals for trapdoor one-way functions that can
be used to turn into a public-key cryptosystem. In the next chapter we shall meet a one-way
function, which does not have atrapdoor.

7.1.3 Digital Signature
We assume that properties PK 1, PK4, and PK5 hold.

If Alice wants to sign a message m that she wants to send to Bob, she applies her own (secret)
algorithm S4 to m, so she sends

c= SA(m)

Bob recovers m from ¢ by applying the publicly known algorithm P4 to c. Indeed,
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Palc) = Pa(Sa(m) 'S m.

The value c can be used by Bob as signature for m, because, by PK5, Alice is the only person who
can compute ¢ from m, i.e. only she can make a ¢ from a given message m such that P4(c) = m.

The converse however is possible: everybody is able to find a pair (m, ¢) such that ¢ carries m's
signature, i.e. suchthat P4(c) = m: simply take any ¢ and compute m = P4(c).

So, Alice has to make sure that a randomly selected ¢ has a negligible probability of leading to a
useful message Pa(c) = m. This can quite easily be achieved by assuming some structure in each
message m, e.g. start with the time and date.

We summarize this signature system explained above in the following table.

Public Pyofall usersU
Secret Sy to all users, exceptU
Properties PK1l, PK4, PK5
Signing of mby Ann Sa (m) = ¢
Verificationof chby Bob Pa(c) =m

A public-key cryptosystem used
for signing a message.

Table 7.2

Note that anybody else can aso verify Alice's signature by computing Pa(c), 0 there is no secrecy.

7.1.4 Confidentiality and Digital Signature
We assume that properties PK1, PK2, PK3, PK4, and PK5 hold.

If Alice wants to send message m in encrypted form with her own signature to Bob, she combines
the techniques of Subsections 7.1.2 and 7.1.3. Thus, she uses her own secret algorithm S, and the
public algorithm P of Bob to send

c= PB(SA(m).
Bob recovers m from ¢ by applying P, Sp to c. Indeed,
PA(S8(c)) = PA(Ss(Pa(Sam))) = Pa(Sa(m) =" m.

Although everybody can look up the public Pg, it is only Bob who can recover m from c, because
only Bob knows Sg.

Bab keeps the pair Sp(c), which is Sg(Pg(Sa(m))),i.e. Sa(m), as Alice's signature on m, just like in
Subsection 7.1.3.

We summarize thisin the following table.
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Public PyofallusersU
Secret Sy toall users, exceptU

Properties PK1l, PK2, PK3, PK4, PK5

Ann sends Py (83 (m)) =c¢
Bob computes Pa (Sp (€)) =
Bob saves Sp (¢) = Sa (m)

A public-key cryptosystem used
for encryption and signing.

Table 7.3

7.2 Problems

Problem 7.1

In a communication network every user U has its own public encryption algorithm P, and secret
decryption agorithm S;. A message m from user A (for Alice) to user B (for Bob) will always be sent in
the format (c, A), with ¢ = Pg(m).

The name of the sender in this message tells Bob from whom the message originates.

Bob will retrieve m from (c, A), by computing Sp(c) = Sg(Ps(m)) =m (see PK2), but Bob will aso
automatically send (Pa(m), B) back to Alice (note that (P4(m), B) has the same format as (Pg(m), A)).In
this way, Alice knows that her message has been properly received by Bob.

a) Show how athird user E (for Eve) of the network can retrieve message m that was sent by Alice to Bob.
You may assume that Eve can intercept all messages that are communicated over the network, and that C
can aso transmit her own texts, as long as they have the right format.

b) Show that communication over this network is still not safe if the protocol is such that Alice sends
Pg((Pg(m), A)) to Bob and that Bob automatically sends Pa((P4(m), B)) back to Alice.
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8 Discrete Logarithm Based Systems

8.1 The Discrete Logarithm System

8.1.1 The Discrete Logarithm Problem

In [DifH76], Diffie and Hellman propose a public-key distribution system which is based on the
apparent difficulty of computing logarithms over the finite field GF(p), p prime, which is aso
often denoted by F, or Z,. The reader, who is not familiar with the theory of finite fields is
referred to Appendix B.

Let o be a primitive element (or generator) of GF(p). So, each nonzero element ¢ in GF(p) can be
written as

c=a" 8.1)

where mis unique modulo p — 1.

Example 8.1
In GF(7) the element @ = 3 is a primitive element, as can be checked from 32 = 2 (mod 7), 3° = 6 (mod 7),
3 =4(mod7), 3° =5(mod 7), and 36 = 1 (mod 7).

This can be done at once with

Mod([34 (1, 2, 3, 4, 5, 6}, 7]

Example 82

In GF(197), the element @ =2 is primitive. Such an element can befound with the Mathematica function
powerList (for which the package Algebra' FiniteFields first hasto beinitialized). This function
finds a primitive element in #, and generates all its powers (starting with the 0-th). The second element in

this list is the primitive element itself.

<< Algebra FiniteFields
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PowerList [GF([p, 1]1[[2]]

To check that 2 is a primitive element modulo 197 is a lot easier. The multiplicative group 2y,
has order 196, so each element has an order dividing 196 (see Theorem B.5).

With thefunction FactorInteger one canfind the different primefactors of 196.

FactorInteger[196]

It now followsfrom

PowerMod[2, 196 /7, 157] == 1
PowerMod [2, 196 /2, 197] == 1

False

Falee

that the order of 2 modulo 197 does not divide 196/2 or 196/7, so the order must be 196.

If m is given, c can be computed from (8.1) with 1. [log, p1 multiplications (see [Knut81], pp.
441-466). One can redize this by creating the table a, a2, o®, a?', ..., @@ """ (each is the
square of the previous one) and multiplying elements from this table, whose exponents add up to
m. To this end the binary representation of m can be used.

Example8.3

Take m=171. Its binary expansion is 10101011, as follows from the Mathematica function
IntegerDigits.

IntegerDigits[171, 2]

{1, 0,1,0,1,.0; 1, 1}

S0, now one has &'7 = a'?%.a7?. &%.0%. 0.

This calculation can also be done on thefly. The leftmost 1 in the binary representation of m



Discrete Logarithm Based Systems 113

sands for e« Each subsequent symbol (from the left) in the binary representation implies a
squaring of the previous result, but if this symbol isa 1 also an additional multiplication by & has
to be performed.

Claar[a]:

[[{“{(n}z}iu}n]zu}j]za]zn

If one has to perform the same modular exponentiation many times, for instance on a smart card
implementation, there are ways to do this with fewer multiplications.

Definition K.1

An addiion chain for an integer m i85 a sequence of  integers
a =l <a) < .. <a-_;<a =m, with the property that each az, 2 < k < [, is the sum
of two (not necessarily different) preceding a;'s.

The index [ is called the lengrh of the chain
The way that addition chains are used for (modular) exponentiation, is clear. If ax = a; +aj,then
a* = a*.a%. Hence, @™ = o can now be computed recursively.
It is, in general, not obvious how the shortest addition chain of an integer m can be found. See
[Knut81], Section 4.6.3 and [Bos92], Chapter 4.
Example 84
An addition chain for m = 15 is the sequence 1,2,3,6,12,15.

Note that the calculation of ’* involves 5 multiplications with this addition chain and 6 multiplications
with the binary method explained before.

In Mathematica the PowerMod function is a fast way to compute modular exponentiations.

a=2;m=171111111; p= 197888888;
FowerMod [a, m, p]

The opposite problem of finding m satisfying (8.1) from c, is not 0 easy. It is caled the discrete
logarithm problem, because in Z,, the exponent m can be written likem = log, c.

In [Knut73], pp.9, 575576, one can find an agorithm that solves the logarithm problem. It
involves roughly ¢, v p operations and ¢, v p hits of memory space (where ¢; and ¢, are some
constants). In Theorem 8.1 a more precise analysis of this algorithm will be given. Writing
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t = log, p (and forgetting about the constants), one gets the following exponential relation between
exponentiation and taking logarithms.

exponentiation t
taking logarithms 2%t/2

The computational discrepancy between
exponentiation and taking logarithms

Table 8.1

8.1.2 The Diffie-Hellman Key Exchange System

We shall now describe how the discrepancy in computing time between exponentiation and taking
logarithms, as depicted in Table 8.1, can be used to execute a key exchange protocol of a "public-
key cryptography"-type. Such a protocol is a method for two parties who do not share a common
secret key to agree on acommon key in a secure manner.

Setting up the system:

1) All participants share as system parameters a prime number p and a primitive element
(generator) a in GF (p).

2) Each participant P chooses an integer mp, 1 <m, < p -2, a random, computes cp = ™ and
puts cp in the public key book. Participant P keeps mp secret.
Using the system:

Let us now assume that Alice (A for short) and Bob (B) want to communicate with each other
using a conventional cryptosystem, but that they have no secure channel to exchange a key. With
the public key book, they can agree on the common secret key

kA,B = q@mAamB,

Alice can compute k4,5 by raising the publicly known cg of Bob to the power m,4, which only she
knows herself. Indeed,

(cg)™4 = (@™B)"A = @™A™B =k, .
Similarly, Bob finds kg by computing (c4)™=.

If somebody else (Eve) is able to compute m4 from c4 (or mg from cg), she can compute the key
k4 just like Alice or Bob did. By taking p sufficiently large, the computation time of solving this
logarithm problem will be prohibitively large. Diffie and Hellman suggest to take p about 100 bits
long. A different way offinding k4, from c4 and cg does not seem to exist.

There is no obvious reason to restrict the size of the finite field to a prime number. So, from now
on the size of the field can be any prime power g = p® (see Theorem B. 16 or Theorem B.20).
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In [Lune87], Chapter XIlII, efficient algorithms to find primitive elements in finite fields are
described. See aso Problem B.6 and Problem B. 10.

We summarize the key distribution system in Table 8.2.

system fieldsizeqg
parameters primitive element o
secret key of P mp
publickey of P cp = a™
common key of A and B ka g =a™ms
Ann computes (cp)™
Bob computes (ca)™s

The Diffie-Hellman Key Exchange System
Table 8.2

Example 85 (Part 1)
Letp =797and @ = 2.

Alice chooses as a random secret exponent m,4 = 56 and Bob as a random secret exponent nig = 111. They
compute their public key with the PowerMod function.

chA = PowerMod[2, 56, 197]
cB = PowarMod[2, 111, 157]

Alice can compute the common key with Bob by raising the publicly known cg to the power ma,
which she only knows. She gets:

PowerMod [82, 56, 157]

b

Bob gets the same common key by raising ca to the power mg. Indeed, he gets:

| PowearMod[178, 111, 197]
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8.2 Other Discrete Logarithm Based Systems

8.2.1 ElGamal's Public-Key Cryptosystems

In [EIGa38], two public-key systems are described that are based on the discrete logarithm
problem. One can be used for encryption purposes, the other as a signature scheme.

In both systems the transmitted text is longer than the plaintext.

o Setting It Up

As system parameters, al participants share a prime number p and a generator (primitive element)
a of the multiplicative group Z3,. The generalization to finite fields is straightforward and will be
omitted.

A variation that one sees quite often is to consider Z;; with g prime and an element a € Z; of large
prime order, say p, instead of taking a primitive element. Note that by Theorem B.5, p must divide

o1

Each participant P chooses an integer mp, 1 <m, < p — 1, a random, computes cp = @7 (mod p)
and makes cp public. Participant P keeps mp secret.

As a variation, each participant can adso choose his own finite field and primitive eement a,
instead of having them as system parameters, but there seems to be little reason to do .

o ElGamal's Secrecy Sysem
Encryption of a message for Bab.

Suppose that Alice wants to send a private message u to Bob. The message is represented by an
integeruin {0 1, ..., p— 1.

Alice selects arandom integer r and computesR = .
Next, Alice computes S = u.cp'.

Alice sends to Bob, the pair (R, ).

Decryption by Baob.
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Bob receives the pair (R, S) and can quite easily retrieve the message u with his own secret mpg
with the following calculation:

S/R™ =ucg"[a"™8 = ua™B [a""B = u.
Example 8.5 (Part 2)
We continue with Example 8.5. Wehave p = 197, @ =2 and cg = 82 as public parameters.

The number mg = 111 is only known to Bob.

Suppose that Alice wants to encrypt message u=123 for Bob.
Let r = 191 be the random integer chosen by Alice (it is coprime with p - ).
Alice sends the pair (R, S) computed by

p=197;a =23 ch = 82;
r = Random|[Integer, {0, p-21}]
u=1233;
R = PowerMod[a, r, 187]
| 8 =Mod[PowarMod[cB, ¥, 197] =u, p]

To decrypt, Bob computes S/R™ modp with his own secret mp =111 by means of the
Mathematica functions Mod and PowerMod.Note that PowerMod[a, -1, p] computes the
multiplicative inverse ofa modulo p (see Subsection A.3.3).

mB = 111;
Mod [ 8 « PowerMod [FowerMod [R, mB, p], -1, p]. P]

An eavesdropper can not determine r from R, since we assume that taking logarithms is
intractable. For that reason, this eavesdropper is not able to divide out (cg)" from S (to obtain the
Secret u).
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o ElGamal's Signature Scheme

Signing of a message by Alice.

Suppose that Alice wants to send a signed message u to Bob. The message is again represented by
anintegeruin (0, 1, ..., p—2|

Alice selects arandom integer r that is relatively primeto p — 1 and computesR = a”.
Next, Alice uses her secret exponent m4 to compute 5 satisfying
u=myR+rS (modp - 1). (8.2)
Alice can use the extended version of Euclid's Algorithm to find S efficiently.
Alice sends to Bob the triple (u, R, §, where the pair (R, S serves as signature on the message u.

Verification of the signature by Bob.

Bob receives the signature (R, S together with the message u.
Bob checks this signature by verifying that
@ = (cA)R RS (mod p).
This relation has to hold because by (8.2)
o' = amaR oS = (@m)R (@) = (c4)R.RS (mod p).
Example 8,5 (Part 3)
Continuing with Example 8.5, where wehave p =197, @ =2 and ¢4 = 178 as public parameters.
The number m4 = 56 is only known to Alice.
Suppose that Alice wants to sign message u=123 for Bob.
Let r = 97 be the random integer chosen by Alice (it is coprime with p —1).

Alice computes

p=197ya =1 mA = 56

r=973yu=123; 8=.;

R = PowerMod[a, r, 197]

E/. Bolve[{r8==u-mA =R, Modulus == p-1}, 8] [[1]]

(Fa
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tofind the signature (R, S = (98, 171) that she adds to her message u.
Bob checks this signature by verifying 2% = (c4)® RS (mod p):

cAh=178y R=98) 8 = 171;
FowerMod [a, u, p] ==
Mod [ PowerMod[cA, R, p] » FowerMod[R, 8, p]l. Pl

True

8.2.2 Further Variations

In the EIGamal scheme, the signature on a message u consists of two parts: R, being a” withr
random, and S being asolution of ¥ =m4 R + r.§ (mod p — 1) (see (8.2)). Of course one can vary
this so-cdled signature equation.

The next three variations do exactly this. The reader that wants to know more about them than is
presented below is referred to [MeOoV96] and [Schned6].

o Digital Signature Standard
In the Digital Sgnature Standard (see [FIPS34]) the signature equation is given by:
rS=u+my.R (modp-1).

The system is designed by the National Security Agency (NSA) and adopted as standard by the
Nationa Institute of Standards and Technology (NIST).

DSS adds two sequences of 160 bits each to the end of a document as guarantee of its authenticity
and integrity. To this end, it first compresses the document to a sequence of 160 bits by means of a
cryptographically secure hash function (see Section 13.2), called the Secure Hash Algorithm (see
[MeOoV96], $9.53 and [ Schned6]).

To st up the system the following joint parameters are chosen:

i) A prime number g whose binary representation has a word length that is divisible by
64 and lies between 512 and 1024.

i) A prime factor p of g — 1 that is 160 bits long.
iii)  Avalue g = (h9~"P mod q), where h islessthan ¢ — 1, such that g is greater than 1
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Sinceg” = k9! = 1 (mod ¢) by Format's Theorem (A. 15), it follows that the multiplicative order of
g divides p. On the other p is prime, therefore, g has multiplicative order p itself (see aso
Theorem B.5).

Each user U chooses a secret exponent my, computes ¢y = g™ (mod ¢) and makes ¢y public.

When Alice wants to sign afile M, she first computes its 160 digits long hash value h(M) with the
Secure Hash Algorithm.

Next, she chooses a random number r < p and adds as signature to M the numbers R and S, both
of length 160, defined by:

R = ((g" mod ¢) mad p),
S.or=HhM)+mu R(mod p).

A receiver can check the authenticity and integrity of the received message M by evaluating:

w =58 (mod p),

x = h(M).w (mod p),

y = R.w(mod p),

U = ((g*.(c4)’ mod ¢) mod p).

If R=U the document will be accepted as genuine and coming from Alice. By a simple
substitution one can verify that the relation » = U indeed should hold.

The function of the random number r above is to hide the secret key of Alice.

o Schnorr's Signatur e Scheme
In Schnorr's signature scheme [Schno90] the signature equation (see (8.2) is given by:

S=maR+r(modp-1).

o The Nyberg-Rueppel Signature Scheme

The Nyberg-Rueppel signature scheme [NybR93] is slightly different from the others. Here, R is
defined by

R = u.a” with r random.

The signature equation (see (8.2) is given by:
S=maR-r (modp-1).

In the Nyberg-Rueppel scheme, the message « can be retrieved directly fromRand S, since
usRa™" = RS ™R = RS (@) = Ra’ [ ca® (mod p).

If u is not the hash value of a much longer other file, this feature is an advantage, because only R
and S have to be sent.
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8.3 How to Take Discrete Logarithms

When one has to take a logarithm in GF(q), the most obvious way to reduce the workload is to
factor ¢ — 1 in prime power factors, compute the logarithm for each of these factors, and then
combine the results with the Chinese Remainder Theorem (Thm. A.19). In Subsection 8.3.1, this
method will be demonstrated for a particular technique.

As we have said before, discrete logarithm based systems are often set up in a multiplicative
subgroup of GF(q). This generalization does not affect the methods that will be discussed in this
section.

8.3.1 The Pohlig-Hellman Algorithm

In [PohH78], Pohlig and Hellman demonstrate that discrete logarithms can be taken much faster
than in V¢ operations, if g—1 has only small prime divisors. We shall first demonstrate this
method for two speciad cases.

0 Special Cass g—-1=2"
Examples of prime numbers that are a power of 2 plus one are given by ¢ =17, g =257, and
qg=2"%+1.

| B=16; PrimeQ[2® + 1]

So, let @ be a primitive element in a finite field GF (g). The problem is to find m, 0 s m < g -2,
satisfying (8.1) for given value of c.

Let mo, my, ..., m,_; be the binary representation of the unknownm, i.e.
m=m0+m|2+...+m,,_12"", mief{0, 1}, 0<i<n-1.

Of course, it suffices to compute the unknown m;'s. Since « is a primitive element of GF(g) we
know (see also Theorem B.21) that a9~ ! =1 anda’ # 1 forO <i< g— 1.

It also follows that @@~1/2 = -1, because the square of a9~V is 1,while =12 £ 1. (We also
use here that by Theorem B.15 the quadraticequation x2 = 1 has + 1 as only roots.) Hence
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412 = (@m)a=D12 = gmia-DI2 = almotmy 2+ 4m,_y 1N g-nn

a prim. +1, if mg =0,

amola-1/2 = .
{ -1, ifmg=1.

Therefore, the evaluation of ¢9-2 in GF(q), which takes a most 2. [log, g1 multiplications, as we
have seen in Subsection 8.1.1), yields my.

Compute ¢, = c.&~™.Now m,; can be determined in the same way as above from

C(Iq—n/a = olmy 24my 224 _my_ 277 (g-1y4

1, if my =0,

- qm(a-12 = { i
-1, ifm =1.

Compute ¢; = ¢.@™2™ = c.a~mo+™ 2 and determine m, from (c;)@~1"8, Repeat this process until
also m,_; (and thusm) has been determined.

The above algorithm finds m from c in at most
n.(2.[log, g1 +2) ~ 2. (log, )* ~ 2r%,

operations, where the term +2 comes from the evaluation of the ¢,'s(in the i-th step o2 "' has to be
squared and the outcome may or may not have to be multiplied to ¢;_y).

Comparing with Table 8.1, we observe that in the current case (i.e. g =2" + 1),the discrepancy
between the computational complexity of using the Diffie-Hellman scheme (one exponentiation
involving 2n multiplications) and breaking it ( =~ 2 n?multiplications) is quadratic, which is not
significant enough to make the system secure.

Remark:

Note that when g — 1 = .2, s odd, the t least significant bits of m can be found in exactly the
same way.

Example 86
Consider the equation 3™ = 7mod 17. S0, q = 17, @ = 3, and¢ = 7. Note that &~/ = 6.

Writing m = my +2 m; +4 m; +8m;3, wefind mo by evaluating ¢“=/72 mod q.
PowerMod[7, 8, 17]
16

Since this is -1 we know thatm, = I. Computec; =¢/3 =6.c =8mod 17. Thenm; can be found
frome; 9= mod q

PowerMod[8, 4, 17]
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Again thisis -1, som; = 1. Computec; =¢; /3% =6°.c; = 16 mod 17. Then my can befoundfrom
29" mod q

PowerMod [16, 2, 17]

Since the outcome is 1, we have my = 0.S0, ¢3 = c2and mzcan befound from ¢;9-1//6 mod ¢

PowerMod[16, 1, 17]

Wenow alsohave m; = I and thusm = 1.20 #1.2! +0.22 +1.2% = ]]1. Wecan check thiswith:

PowerMod[3, 11, 17]

o General Case ¢ — 1 hasonly small primefactors

Let ¢— 1 =[1%, p™, where the p;'s are different primes and the exponents »; are strictly positive
(see the Fundamental Theorem in Number Theory, Thm. A.6). We assume that all p;'s are small.
Later we shall say precisely what we mean by that.

Instead of solving m from (8.1) directly, we shall determine
m? = m(mod p), 1=<is<k. (8.3)

With the Chinese Remainder Theorem (Thm. A.19) one can compute m efficiently from these
m(i)'s.

To determine m" (the others m®'s can be found in the same way) we write it in its p,-ary
representation. For the sake of convenience we drop all the sub- and superscripts referring to the
i=1case

mVY=my+m p+...+me p*', me{0,1,..,p-1), 0sl<n-1.

Similarly to the Specid Case k=1, p=2), we will find the coefficients m; by single
exponentiations.

Coefficient mg can be found by evaluating ¢“-'P, From Theorem B.21 it follows that
(cla-Py? = 1 whichimpliesthat ¢'9-1"# isap-th root of unity.
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Define the primitive p-th root of unity why w = a@"Pand make a table of 1, w, «?, ..., WP
Then, because m = m" mod p” and m"? = my mod p, we have

ca=1/p = (@mya-DIp = gmia=1ip = a™a-1/p — gmola-Wp — ymo
So, asimple table lookup of ¢@=1r will yield my.

To determine m,, we first compute ¢; = c.e=™ and then evaluate @ etc., until m) has been
determined. Similar calculations have to be made to determine the other m(?'s.

For this algorithm, we have to make tables of the powers of the primitive p-th roots of unity for all
the prime factors of g - 1.

The values of these factors have to be small enough to be able to store them.

Each time that we want to take a logarithm the algorithm will have to take TX, n; exponentiations,
therefore, the algorithm involves

3k, 2.Tlog, gl.n, ~ 2.1og, q.(3X, mi) < 2 (log, g

operations, if we forget about the lower order terms. Again we have a quadratic relation between
using the Diffie-Hellman key-exchange system and breaking it.

o An Example of the Pohlig-Hellman Algorithm

Example 8.7
Consider Equation (8.1) with ¢ = 8101, primitive element =6.
Note that q is a prime number, so GF(q) = £z;0;.

Preliminary Calculations.

First of all we factor ¢ —1 and compute the multiplicative inverse of 6 modulo 8101 with the
Mathematicafunctions Factor Integer and PowerMod.

g=8l01l;a=6;
FactorInteger|[qg-1]
¥ = PowarMod[a, -1, q]

S0, g-1=22.3*52and o' =6751.

Next we use the PowerModfunction again to calculate the primitive 2-nd, 3-rd and 5-th roots of
unity: Wy =6(8101-l)/2 =64050, wh =6(8101-1)/3 =65883, and w; =6(8101—l)/5 =6l620.‘
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8100
5883

1547

S0, wy =8100, w, = 5883, and w; = 3547. With the Table function we make thefollowing three
tables:

{1, 8100}

{1, 5883, 2217}

{1, 3547, 356, 7077, 5221}

Hence, we have tables

pL=2 i o] 1 ]
(w1)?]1]8100

(w)?|11]5883|2217

Pr=5] 1 o 1 2 3 4
(w3)* | 1]3547 3567077 [ 5221
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The preliminary work for the Chinese Remainder Theorem consists of solving thefollowing three
systems of linear congruence relations:

(usl (mod 4)

us=0 (mod8l)
IUEO (mod 25)
(vso (mod 4)
<v=1 (mod8l)
{vz=0 (mod25)
jsz (mod 4)
w=0 (mod8l)
[wsl (mod 25)

These three systems can  be solved with  the  Mathematica  function

Chinese Remainder Theorem for ~which we firss have to load the package
Number Theory 'Number TheoryFunctions

<<NumbarTheory NumbarTheoryFunctions’

| FE = A BeE - SRR S

u = ChineseRemainderTheorem[ {1, 0, 0}, {4, B1l, 25}] :
¥ = ChineseRemainderTheorem|[{0, 1, 0}, {4, 81, 25}] !
W = ChineseRemainderTheorem|[{0, 0, 1}, {4, B1, 25}] [

ey et T kA

17786

So, u = 2025 (mod 8100), v = 6400 (mod 8100), w = 7776 (mod 8100).
This concludes the preliminary work.

Solving Equation (8.1) for: ¢ = 7531, ¢ = 8101.

We first determine m'? =mmod p™, 1 <i < 3, as defined in (8.2), with the method explained
above. Of course, the tables that wejust made have to be consulted at each step.

First prime factor. p=2,n=2
c= =7531, c®W0-L/2 - 8100, my=1,
c1= c.al =8006, c,(8101-1/22 _ 1 o0,

Hencem) =1 +0.2! = 1.

Second prime factor. pr=3,n=4.
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c= =7531, c®0D3 2217, mp =2,
c1 =  c.a? =6735, ¢ ®01L/32 o o=,
- a = 6735, c(B101-11/3°  _ 9917, my =2,
c3= cp.a?3 26992, cy8101-1/30 _ 5883 -1,

Hencem® =2 +0.3' +2.32 +1.3 =47.

Third prime factor: py=5n3=2.
c= = 7531, B10-1)/5 - 5221, m =4,
c1= c.oct =7613, ¢ B8010/5T 356 =2,

Hencem! =4 +2.57 = I4.

The final solution mis given by:

8 u.m VS = WO =

Mod[2025+1 + 6400+ 47 + 7776+ 14, 8100)

E6AY
This can easily be checked.

PowerMod[6, 6689, 8101]

7831

In Mathematica, the precalculation of a, b, and c¢ is not really necessary, because m can be
computed directly from m”, m®, and m'® with the Chinese Remainder Theorem function:

ChineseRemainderTheorem|[{1, 47, 14}, (4. 81, 25}]

If g—1 has large prime factors, the dominant term in the workload of the Pohlig-Hellman
algorithm will be the Y%, p; exponentiations necessary for the generation of the tables
{1, wi, ..., P71}, 1 i<k, and the number T4, n; of exponentiations, necessary to determine
the m\'s,

In the next subsection, we shall explain a method to take logarithms if one (or more) of the prime
power factors of g — 1 istoo large to store the tables in the Pohlig-Hellman method.
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8.3.2 The Baby-Step Giant-Step Method

If one (or more) of the prime power factors of ¢ — 1 is too large for the Pohlig-Hellman method,
the method below can be used. It gives the user full freedom to balance the length of the table that
he wants to store and the remaining workfactor.

We start with an example.

Example 8.8
Consider the equation 29" = 30 (mod 97) and assume that we can only store a table with 10field elements.

We make a table of 29 mod 97 for i =0, 1, ..., 9 and we compute 29~ mod 97 with the Mathematica
functions Table, PowerMod, GridBox, and Transpose.

g=97; a=29;
powers = Table[ {PowerMod[25, i, g], i}, (i, 0, 9}];:
GridBox|[Transpose [powers],
RowLines -> True, ColumnLines -> True] // DisplayForm
| ® = PowarMod[a, -1, g]

We alsofind that 29! = 87 (mod 97).

Writing m=10j+i,0=<i<9, we see that 29" =30 (mod97) can be rewritten as
29 =30.297'0 i (mod 97) or as 29" = 30.87'%J (mod 97). Snce 87!% =49 (mod 97), we have the
equivalent problem ofsolving 29 = 30.49/ (mod 97), 0 <i < 9.

We do this by trying j =0, 1, ... and each time checking if 30.49/ mod 97 occurs in the list of
powers {1, 29, 292, ..., 29°) (mod 97). Note that m < 97,50 j < |97/10] = 9.

To facilitate the table lookup, we sort the elements in the table of powers with the function Sort .

sortedpowers = Sort [powers] ;
GridBox[Transpose [sortedpowers],
RowLines -»> True, ColumnLines -> True] // DisplayForm

G |14 1B |29 |37 |42 |54 |65 |77

0|81 S 6

3 4 2 9
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Next, we try 30.49/mod 97 until we see the answer appear in the table above. We use the
Mathematica functions, While, MemberO, and Mod. We also print the corresponding column of
the table of sorted powers (j has to be decreased by 1, because we started the numbering of j with
0).
j=0;
While[
MemberQ|[sortedpowers, [Mod[30+499, 97], _}] == Falge,
J=3+1]s
3
sortedpowersa[[]j -1]]

We conclude that j =4 and that 30.49/ mod 97 occurs in table as 14, which is 29° mod 97(hence
i =5). Indeed

| Mod[30«49%, 97] == Mod[29%, 97]

It follows that m =10 j +i = 10.4 +5 =45. Indeed, 29*° = 30mod 97, as can be easily checked
with:

| PowerMod[29, 45, 97]

The above method will now be stated in full generality.
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Theorem 8.1 Baby-Step Giant-Step Method
Let o be a primitive element of GFig). Let p be a divisor of g — 1 (not necessarily prime)
and define w = a¥~WF_Sa, w is a primitive p-th root of unity
Let ¢ be any p-th root of unity. Then, for every (trade-off value) ¢, D=+ = 1, one can
find the exponent m, 0 = m = p — 1, satisfying
&=
with an algorithm that uses
271 + log, pf) operations,
plog. g bits of memory space,
and an initial calculation involving
F'.(1 + log; p"yoperations.

Proof: Let u =[p']. We make a table of the successive powers w'. 0 < i <u— 1. This requires
1 ~ p' multiplications.

Next, we sort this table in p'log, p' operations, see [Knut73], pp.184. Together this explains the
number of operations in the precalculation.

Each of the « ~ p’ field elements in the table needs log, ¢ bits of memory space. This explains the
memory requirement above.

Define i and j by
m=ja+i, O<si<u=p.

Observe that

3

!
H

1t

0<js<Ltxp
Of course solving ¢ = w™ isequivalent to finding i and |, 0 < i < u, satisfying

W = cw I

To solve this equation, we simply compute c.w™*, for I=0, 1, ... and check if the outcome
appears in the table. This will happen when [ = j.so before / =[p!~].

For each value of | we have to perform 1 multiplication and atable look-up, which costs another
log, p' operations.

a

For ¢ = 1/2 this algorithm reduces to the v'g (both for memory and time complexity) agorithm
that was mentioned &t the end of Subsection 8.1.1.

The two extreme cases of the algorithm are:
t=0: notableatal; al powers 1, 8, 82, ... need to be tried.
r=1; completetable of 1, 8, 82, ..., B9 'is present; only a single table look-up is needed.

Note that the product of computing time and bits of memory space in the above algorithm is more
or less constant.
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8.3.3 The Pollard-p Method

The time complexity of the Pollard-p Method [Poll78] is the same as that of the Baby-Step Giant-
Step method explained in the previous section. The advantage lies in the minima memory
requirements.

We shdl explain the Pollard-p Method for the specid case of a multiplicative subgroup G of
GF(qg) of prime order. So, we want to solve m, 0 <m < p, from the equation ¢ = o™ (e (8.1)),
where a € GF(g) has order p, p prime, and where ¢ € GF(g)is some given p-th root of unity. Note
that p divides ¢ — 1 by Theorem B.5..

Example 89 (Part 1)

To avoid calculations in afinitefield, we takefor g the prime number 4679. Note that ¢ — /7 =2 x2339.
Further we observe that 11 is a primitive element of GF(4679) and thus that @ = 1714-1/233% = 1 ]2 = [2]
is the generator of a multiplicative subgroup of order 2339. All these calculations can be easily checked
with the Mathematica functions PrimeQ, Factor Integer, PowerMod and the function
MultiplicativeOrder

| MultiplicativeOrder[a_, n_] := TE[GCD[a, n] == 1,
' Divisors[ EulerFPhi[n] ] //.
: {x_ :.P_} -» If {FMrHﬂd[ﬂ- Xy n] == 1, x, {Y}] 1z

that was introduced in Subsection B.4.1

I
! q=4679;

| PrimeQ[q]

' FactorInteger[qg- 1]

| Multiplicativeorder[1il, g]
| PowerMod[11, 2, q]

| MultiplicativeOrder[121, q]
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2339

Further on, we shall continue with this example, when we want to solve the equation
121" = 3435 (mod 4679).

Note that this equation must have a solution, since 3435 is indeed a 2339-th root of unity in
GF(4679). Indeed, all 2339-th roots of unity are a zero of x*3?° — 1 and by Theorem B.15 there are
no other zeros of this polynomial.

PowerMod [3435, 2339, 4679)

In order to solve ¢ = a™, we partition the multiplicative subgroup G of GF(q) of order p, in three
subsets G;, i = 0, 1, 2, as follows:

x € G; = x = i(mod 3).

We define a sequence {x;};-o in GF(q) recursively by xp = 1and

(x? mod ¢), if x; € Gy,
Xie1 = f(x) = { (c.x; mod g), if x, e Gy, 8.4)
(@.x;mod q), if x; € Gy,

With the sequence {x;};.o We associate two other sequences {a;};»¢ and {b;};»o in such away that for
dli=0

x,-=af”"c"'.

Tothisend, take ag = by = 0 and use the recursions

(2a, mod p), if x; € Gg,

aivl ={ a, if x; € G,
(@, + 1 mod p, if x; € Gy,

(2 b; mod p), if x; € Gy,

bt ={(bi+]modp), if x; € Gy,
b, if x; € G,

Note that by induction

Xiel = 22 = (@ cP)? = 2% 2b = it bt if x; € Gy,

Xipl = €, = .04 ¢ = @4t b= 0o e if x; € G,

Xirl = @.X; = Q.0 ¢ = o P = ofn bt if x; € Gy,
As soon as we have two distinct indices i and jwith x; = x;we are done, because this would imply
that a® cf = ®s s and thus that &% = ¢?=%. Provided that &; + b;, we have found the solution
m = (a;—a;)/(b; — bj) (mod p).



Discrete Logarithm Based Systems 133

If b; = b;, which happens with negligible probability, we put ¢’ = c. and solve ¢' = @™, where
m'=m+1.

To find indices i and j with x = x;, we follow Floyd's cycleffinding algorithm: find an index i
such that x; = x;; (0, take j =2 4).

To this end, we start with the pair (x;, x»), calculate (xa, x4),then (x3, x¢),and so on, each time
calculating (xi41, x2:42) from the previously calculated (x;, x2;)by the defining rules x;.1 = f(x))
and xz;42 = f%(x2;) Inthisway, huge storage requirements can be avoided.

Example 8.9 (Part 2)

We continue with Example 8.9. Hence, we have g =4679, & =121,an element of (prime) order
p =2339, andc = 3435. |.e. we have the equation:

121™ = 3435 (mod 4679).

The recurrence relation for thefx;};»; Sequence can be evaluated by means of the which and Mod
functions.

RecX[x , alp ,c_, g ] := Which[ Mod[x, 3] == 0, Mod[x?, g].
| Mod[x, 3] ==1, Mod[cs+x, g], Mod[x, 3] == 2, Mod[alp+x, g] ]

The smallest index i, i = 1, satisfying x; = x2; can quite easily befound with the help ofthe while
function.

alp = 121; ¢ = 3435; g = 4679;
xl = RecX[1, alp, ¢, q];
%2 = RecX[xl, alp, ¢, gl i=1;
While[xl != %2, x1 = RecX[x1, alp, ¢, ql;
x2 = RecX[RecX[x2, alp, ¢, q], alp, ¢, ql;si=4+1];
i

0, x75 = X552 andm = (a;s; —azs)/ (bzs —bis2) (mod 2339). However, above we did not update
the values of the sequences g and by. We will do that now.

RecurrDef[{x_, a_, b_}] 1= Which|[
Mod[x, 3] == 0,
{Mod [x*, q], Mod[2a, p], Med[2Db, p]}.
Mod[x, 3] ==1, {Hod[c*x, q] , a, Mod[b+1, p]}, .
Mod[x, 3] == 2, {Mod[alp=x, q], Mod[a+1, p], b}]
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i=76
x1=492, a;=84, b;j=2191
®z.1=492, az =286, by ;=915

Indeed, the relation 2% ¢ gives the same value for i = 76 andi = 2 x 76:

453

The solution m of 121™ =3435(mod4679) can now be determined from
m = (286 —84) /(2191 - 915) (mod 2339).

1111
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Truea

The p in the name of this algorithm reflects the shape of the {x;};.sSequence: after a while it starts
cycling around. The memory requirements of Floyd's cycle finding agorithm are indeed minimal.
The expected running time is v p . For further details, the reader is referred to [Poll78].

8.3.4 The Index-Calculus Method

o General Discussion

To describe the index-calculus method in genera we consider a cyclic group G of order N
generated by an element g. So, G = fe, g, g% ..., gV "fand gV =e.

In this setting we want to solve mfrom g™ = h (see (8.1)) for agiven h e G.
The basic idea of the index-cal culus method consists of the following steps:

1) Sdect an appropriate subset S of G with the property that a large proportion of the elements
of G can be expressed as a product of elements of 5 in an efficient way. This set Siis called the
factor base. An element g € Gthat can be expressed as a product of elements of Sis called smooth
with respect to S. Let k be the size of S In the next two steps each element in Swill be written as a
power of g.

2) Find a sufficiently large collection | of exponents i with the property that each g, i € 1, can be
expressed efficiently as a product of elements of S sy g'=s"' 537 ... 5. Taking the log, of
both hands, we get a st of linear congruence relations

i=ulo s +uplog, s+ ... +u log_ s; (mod N), iel.
1 log, 2 log, X log,

3 Treating the numbers log, s;, 1< j<k, a unknowns, solve the above system of linear
congruence relations (for this, the system of linear congruence relations has to have rank k and the
st | will have to be sufficiently large).

4) Pick a random exponent r and try to express g" has a product of elements of S As soon as this
has happened, say g".k = s\' s3* ...s;*, We again take the log, of both hands and get

r+m=v log,si +valog, 52+ ... + vy log, se (mod N).

Since the values of each log, s; has already been determined in Step 3 and r was chosen, m can be
determined from this congruence relation.

Note that Steps 2 and 3 aim to solve the logarithm problem for al the elements in the factor base.
Step 4 tries to reduce the current logarithm problem to the factor base elements.
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It may be clear that the optima size of the factor base S is a compromise between manageable
Storage requirements and the probability that a random element in G (namely g"#) can be
expressed as a product of elements of S

In general, there are two (related) unresolved problems in the above approach.
» How can one determine a good factor base?
» How does one express an element in G as product of elements of S?

In the next subsubsections we demonstrate the above method for two special cases where more can
be said about the above two questions.

Complexity

There are many variations of the index-calculus method. Typicaly, their complexity grows
subexponentia in log, N, while the methods described in Subsections 8.3.1, 8.3.2, and 83.3 are all
exponential in log, N.

o Z,,i.e the Multiplicative Group of GF(p)
Inthiscase, G =11, 2, ..., p— 1}. Let g be agenerator of this group.

Choice of the factor base S the first k prime numbers, py, p2, ..., p.

If k is sufficiently big, a large proportion of the elements in G can be expressed as product of
powers of these k primes, i.e. they will be smooth with respect to S

Technique to express an element in G as product of elements of S divide the element by the p;'s.
Complexity

Adleman in [Adle79] analyzes this technique in detail and arrives at a complexity of
expCV Inplninp

for some constant C.

Example 810

Consider Zs;; with primitive element g = 2. That 541 is prime and that 2 is a primitive element can be
checked with the Mathematica functions pPrimeQ, FactorInteger, and PowerMod. Indeed, the order
of 2 divides | Zg, | = 540 by Theorem B.5, therefore, we only have to check that 2P="4 2 } (mod 541) for
the divisorsof p = 541.

D = 541;
PrimeQ[p]
FactorIntager|[p - 1] -
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True

PowerMod[2, (541-1) /3, p]
PowarMod[2, (541-1) /5, p]

540

Asfactor base S we take the set of thefirstfive prime numbers, which can be generated with the
Mathematicafunctions Prime and Table.

I Table[Prime[i], {i, 1, 5}]

I = P e

We want to write each of the elements in thisfactor base as a power of g =2, i.e. we want to solve
the logarithm problemfor the elements in thefactor base. To this end, we try tofind powers of
g =2in Zs4;” that can be expressed as product ofelementsin {2, 3, 5, 7, 11}. For this, we can use
the Mathematicafunction FactorInteger and PowerMod. When trying

p = 5-‘1?
try = PowerMod[2, 102, p]
FactorInteger[try]

we see that we have no completefactorizationin {2, 3, 5, 7, 11}.

After some trial and error we didfind the elements 2/4, 28/, 2207, 2214 and 23% achieving our goal.
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P =541;

FactorInteger[FowerMod[2,

FactorInteger [FowerMod[2,
| FactorInteger|[PowerMod[2,
FactorInteger [PowarMod[2,

14; p]]
81, pl]
207, pl1]
214, p]]

FactorInteger [PowerMod[2, 300, p]]
G B R B e B B

P S B W B el e

5. 2} {11, 1))

5. 11,07, 1

2, 5}, {11, 1})

Writing m; = log, 2, my; =log, 3, my =log, 5, my =log, 7, ms =log, 11 and taking the logarithms
on both sides givesfive linear congruence relationsin my, my, ..., ms.
For example, 2297 =52 .11’ mod 541 can be rewritten as

2207 = 92.10gy 5 pl.logy 11 = p2m3 gms prd §41
Taking log, on both sides gives the congruence relation

207 =2 m3 +ms mod 540.
So, we have:

14 =m; +my +ms (mod 540),
81 =m; +my +2my (mod 540),
207 =2m3 +ms (mod 540),
214 =mj3 +my (mod 540),

300 = 5m; +ms (mod 540),

The above system of linear congruence relations can be solved with the SoIve function:

ml-.jB2=.; 3. ds.  mS5=.y

Solve[{ml +md + m5 == 14 , ml + m2 + 2 »md == B1,
2+m3 +m5 == 207, m3 +md == 214, Sml + m5 == 100,
Modulus == 540}, {ml, m2, m3, md, m5}]
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S0, we know that

m; =log,2 =1, my =log,3 =104, mj3 =log,5 =496, my =log,7 =258,
ms =log, 11 =295

or, equivalently

2! =2mod 541, 219 = 3mod 541, 29 =5mod 541, 2%°% =7 mod 541,
229 = I mod 541.

If the above linear congruence relations are not linearly independent one has to replace some
equations by others until they are linearly independent.

Let us nowfind a solution of 2™ = 345 (mod 541).

From

FactorInteger|[345]
E‘m'.'I:vr:v::In!:mu:.::nr[Iiaum:‘.['..‘2 345, 541]]
FactorInteger[Mod[2%° 345, 541]]
FactorInteger [Mod[2'? 345, 541]]

we see that 345 can not be expressed as product of elements of S, nor can 22 x 345 and 2/% x 345,
but2’? x345 = 2* 7/ in GF(541).

We conclude that

13+m=3.m;+1.my =3x1+258 =261(mod 540),
therefore, the solution of 2™ = 345 (mod 541) is given by

m = 248 (mod 540).

This can easily be checked with

FowerMod[2, 248, 541]
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345

Because of the small parameters, we canfind out explicitly how many elements in {1, 2, ..., 540}
can be expressed as product of dlements of S We use the Mathematica functions Select.
Flatten, Table, Sort,and Length and make use of thefact that the exponent of 2 is at most

Llog, 541] = 9, the exponent of 3 is at most [log; 541 = 5, etc., in any number less than 541.

BaseProd = Salect| :
Flatten| Table[ 2% 342 5i3 714 15158
{i1, 0, Leg[2, 541]},
{iz, 0, Log[3, 541]},
{i3, 0, Log[5, 541]},
{i4a, 0, Log[7, 541]}.
{i5, 0, Log[1l, 541]}]1].
# <541&] // Sort
Length [BaseProd]

(12 s 506, T, 8, 9710, 11, 12, 14,15 1618, 20, 231 ,-22,

14, 25, 27, 28, 2, 32, 33, 35, 36, 40, 42, 44, 45, 4B, 43, 50,
54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, B4, B8, 90,
96, 98,939, 100, 105, 108, 110, 112, 1230, 121, 125,136, 128,

132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176,
180, 189,192, 196, 198, 200, 210, 216, 220, 224, 215, 231, 240,
242, 243, 245, 250, 252, 256, 264, 270, 275, 280, 288, 294, 297,
300, 308, 315, 320, 324, 330, 336, 343, 350, 352, 360, 363, 375,
378, 384, 385, 392, 396, 400, 405, 420, 432, 440, 441, 448, 450,
462, 480, 484, 4B6, 490, 495, 500, S04, 512, 525, 528, 539, 540)

142

Therefore, about a quarter of all elements in G can be expressed as product of elements of S That
means that on the average it takesfour trials (choices of r) before g” A can expressed as a product
ofelements of{2, 3, 5, 7, 11}.
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o GF2")
All elements in GF(2") can be represented by means of binary polynomials of degree < nin x
modulo an irreducible polynomial f(x) (see Theorem B.16). One writes GF(2") = GF(Q2)[x]/(f (x)).

Let the polynomia a = a(x) denote a primitive element of GF(2"). Then GF(2") can aso be
represented by binary polynomias of degree < » modulo the minimal polynomia p(x) of e.lt
follows that @ is a primitive element in GF(2)[e]/(p(@)), i.e. X is a primitive element in
GF(2)[x]/(p(x)).

Se Example B.6, where f(x) = x* + x* + x? + x + 1 defines GF(2*) and where a(x) =1+ xis a
primitive element of GF(2%) = GF(2)[x]/(x* + x* + x> + x + 1). This element ais a zero of the
primitive polynomial p(x) = x* + x* + 1. In GF(2)[x]/(x* + x* + 1) the dlement X is a primitive
element

Equation (8.1), that we want s0 solve, can be reformulated as:

for every polynomial c(x) of degree < n,find the exponentm, 0 < m < 2" — 2,such that
x™ = c(x) (mod p(x)).

As choice of the factor base 5 we take al binary, irreducible polynomias of degree <o, say
p1(x), pa(x), ..., pr(x). (The number of such polynomialsis given by Theorem B. 17).

As atechnique to express an element in GF(2") as a product of elements of S, we simply divide the
element by the polynomials p(x).

A polynomia u(X) that can be expressed as a product of elements of S is called smooth with
respect to S

Complexity

Coppersmith [Copp84] analyzes this algorithm and finds as asymptotic running time

expC Yanmaninn?

Later, further improvements have been found with names like number field sieve and function field
sieve (see [AADM93], [Adledd], and [HelR83]).

For an excellent survey on the discrete logarithm problem we refer the reader to [Odly85].

Example 8.11

We want to take a logarithm in GF(2/9). To represent GF(2!%)properly and tofind a primitive element in
it, we look for a primitive polynomial of degree 10. We do this with the Mathematica function
FieldIrreducible for which the package Algebra 'FiniteFields' hasto be readfirst.

| =< Algebra FiniteFields iz
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£14 = GF[2, 10]; '
FieldIrreducibla[fld, x]

LB

So, we take GF(2'%) = GF(2)[x]/(x'® +x” +I) which has x as primitive lement. Equation (8.1)
now reads like:

find m such that x" = c(x) (mod x'° +x7 + ).

Asfactor base S we shall take the set ofall irreducible polynomials of degree <4.

The reader may remember that all binary, irreducible polynomials of degree d appear in the
factorization of 2" — x (see Theorem B.35).

Clear[x];
| Fnctcr{x’a - %, Modulus -> z]
| Factor [x“' - %, Modulug -> 2]

Hence, as factor base S we have:

pi(x) =x, pa(x) =1 +x,

p3x) =1 +x +x7, pix) =1 +x+1,
ps(x) =1 +x2 +x3, psl0) =1 +x +x2 +x° +x*,
pr(x) =1 +x +x7, ps(x) =1 +5° +x°.

We want to write each of the elements in thisfactor base as a power of x, i.e. we want to solve the
logarithm problemfor the elements in thefactor base. To this end, we try tofind powers of x in
GF(2)[x]/(x!° +x” + 1) that can be expressed as a product of the polynomials pj(x), I = j <8.
We use the Mathematicafunction Factor and PolynomialMod.

| attempt = PolynomialMod[x*®, {x'®+=x" +1, 2}]
i Factor [attempt, Modulus -> 2]
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We conclude that x* is not smooth with respect to our factor base S. After some trial and error we
find thefollowing list of smooth powers of x:

Factor[PolynomialMod[x, {x'" +x" +1, 2}], Modulus -> 2]
Factor [PolynomialMod[x*®, {x*" +x” +1, 2}], Modulus -> 2]
Factor[PolynomialMod[x**", (= +x"+1, 21], Modulus -» 2]
Factor [PolynomialMod[x?1, (x® +x"+1, 2}], Modulus -> 2]
Factor[FolynomialMod[x1¥, {x!" +x" +1, 2}], Modulus -> 2]
Factor [PolynomialMod[#'57, (x'° +x” +1, 2}], Modulus -> 2]
| Factor[PolynomialMod[x*°®, {x'®+x" +1, 2}], Modulus -> 2]
Factor [PolynomialMod[x'%", {x*® +x” +1, 2}], Modulus -> 2]

(1+2)% (L+x+x" +x°+xY)

(l+x) (l+x +3*) [lex+x2+30 +x%)
(1+x+x%) (Lensx) (1+x+x?)
(1+3) [l+2x +32) (L+2x+x")
11+x+x3) (1+a+2%)°

Writing  pi(x) = x™ (mod x'0 +x” +1), these relations give rise to eight linear congruence
relations. For instance, the last equation gives

7 = (1 +x+35)U +22 + 35 = (™) () = xm4*2m5 (mod 10 +x7 +1).
Taking the logarithm on both sides gives the linear congruence relations
787 = my +2 ms(mod 1023),

since 1023 is the multiplicative order of the primitive element x. In this way, the eight relations
above can be rewritten as

I =m; (mod 1023),
86 =my +ms (mod 1023),
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140 =2m; +2m3 (mod 1023),
211 =5my; +mg (mod 1023),
319 =my; +mg +mg (mod 1023),
457 =m3 +my +my; (mod 1023),
605 =my +ms +my (mod ]023),
787 =my +2ms (mod 1023).

This forms a system of congruence relations that can be solved with the Mathematica function
Solve.

[ Clear[ml, m2, m3, md, m5, m6, m7, m8];
Solve[{ml ==1, md +m5 == 86, 2ml + 2m3 == 140,
| Sm2 +mb == 211, m2 + m6 + mB == 319, m3 + md + m7 == 457, |
| m2+m5+m7 == 605, md + 2m5 == 787, Modulus == 1023},
{ml, m2, m3, md, m5, m6, m7, mB}]

{{Modulus —+ 1023, mB -+ B27, ml <+ 1, m3 = 69,
mé = 591, m7 -+ 1003, m2 » 947, md - 408, m5 =+ 701} )

3), we know that my; =1, my =947, m3 =69, my =408, ms =701, mg =591, m7 = 1003, and
me =827.

Ifthe linear congruence relations are not linearly independent one has to replace some equations
by others until they are linearly independent.

Let us nowfind a solution of x™ = I +x +x% +x° (mod x'° +x +1).

From

Factor|
PolynomialMod([l +x+x® +x*, (x'"+x" +1, 2}], Modulus -> 2]
| Pactor[PolynomialMod[x®® (1 +x+x®+x"), {x®+x" +1, 2}],
| Modulus -=> 2]

; g a2 5 T
(T +x) (L +aexd s + 24007+ x")
(1+x+3°)1° (1+x+x")

we see that I +x+x% +x%an not be written as product of polynomials in S but
01 +x +x8 +x%) can.

We conclude that 50 +m =2mj; +m; =2 x69 + 1003 = 118(mod 1023), so the solution of
X" =1 +x+x° +x° (mod x'° +x7 +1) isgiven by

m = 68 (mod 1023).
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This can be checked by

PolynomialMod [x*°, {x"" +x" + 1, 2}]

84 Problems

Problem 8.1

Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use
GF(p), with p = 541and primitive element a=2.

User B makes cg = 123 public. If m, = 432, what will be the common key k45 that A and B use for their
communication?

Problem 8.2

Users A and B want to use the Diffie-Hellman system to fix a common key over a public channel. They use
Fax]/(x'9 + X* + 1) as representation of GF(2'9). User B makes ¢z =0100010100 public, which stands for
the field element x+x* +x7. If m4 =2, what will be the common key that A and B use for their
communication?

Problem 83
Demonstrate the Special Case version of the Pohlig-Helmann algorithm, that computes logarithms in finite
fields of dze g = 2" + 1, by evaluating log;(142)in GF(257).

Problem 8.4

Check that 953 is a prime number and that 3 is a generator of Z3s;. Find the three least significant bits of
the solution m of the congruence relation 3™ = 726 mod 953.

(See the remark in the discussion of the special case ¢ — 1 = 2"in Subsection 8.3.1.)

Problem 85
Compute log,(135) in GF(353) with the Pohlig-Hellman algorithm.

Problem 8.6
Find a solution of log,, 55 in GF(197) by means of the Baby-Step Giant-Step method, when only 15 field
elements can be stored.

Problem 8.7%

Check that e = 662 is a primitive 2003-th root of unity in GH4007) (note that 4007 is a prime number).
Let G be the multiplicative subgroup G of order 2003 in GF(4007) generated by «@.Check that 2124 is an
element of G.

Determine logg, 2124 by the Pollard -p method.

Problem 8.8
Check that g = 996 is a generator of the multiplicative group Z3q,;. Set up the index-calculus method with
afactor base of size 6 and determine logggg 1111.
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Problem 8.9¥
Solve the equation x™ = 1 + x> + x% (mod x1 + x3 + 1)in the setting of Example 8.11.

Problem 8.10M
What is the probability that a random element x™ (mod x'® + x> + 1) is smooth with respect to the set of
irreducible, binary polynomials of degree =< 10 (see Example 8.11).



9 RSA Based Systems

9.1 The RSA System

In 1978 R.L. Rivest, A. Shamir and L. Adleman [RivSA78] proposed a public key cryptosystem
that has become known as the RSA system. It makes use of the following three facts:

1) Exponentiation modulo a composite number n, i.e. computing ¢ from ¢ = m? (mod ») for given
mand e, is arelatively simple operation (see Subsection 8.1.1).

2) The opposite problem of taking roots modulo a large, composite number n, i.e. computing m
from ¢ = m¢ (mod n) (which can be written as m = V¢ (mod n)) for given ¢ and e, is, in general,
believed to be intractable.

3) If the prime factorization of n is known, the problem of taking roots modulo n is feasible.

9.1.1 Some Mathematics

From Appendix A we quote Theorem A.14 and the definition of Euler's Totient function (Def.
AB):

Theorem 9.1 Euler
Let a and n be integers. Then
gedlg, a)=1 = o =1 (modn), (9.1)

where Euler's Totient Function y{n) counts the number of mtegers i between 1 and
that are coprime with n. The function @(n) can be computed from the relation:

pin) = n| II'Iu. ."|'ri||'-r|:I : 15 (9.2

The reader can check the above in any example with the Mathematica functions Gcb and
EulerPhi.
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n=1999; 8 = 1234;
GCD[a, n]

ph = EulerFhi [n]
PowarMod[a, ph, n]

9.1.2 Setting Up the System

o Step 1 Computing the Modulus

Each user U of the system chooses two different large prime numbers, sy py and gy. In the
origina proposa the suggested length was about 100 digits.

Letny = py qu. It follows from (9.2) that

¢ny) = nu(1 = S=) (1= =L) = (py = D (qu = D). ©.3)
This can aso be seen directly. The n integers in between 1 and ny = py gyae al coprime with
ny except for the gy multiples of py (namely py, 2. pu, 3. pu, ..., qu.py) and the py multiples
of gu (namely gy, 2.q9u, 34qu, ..., pu.qu) In this counting, one should redize that the number

pu qu has been subtracted once too often.

Example9.1 (Part )

To keep this example manageable participant Bob will keep his primes reasonably small. He makes use of
the Mathematicafunctions Prime and EulerPhi.

pB = Prime[1200]

gE = Prime[1250]

nb = pB * gB

phiB = BulerPhi [nB]

e
-]
L

J
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99052741

o Step 2 Computing theExponentse, and dy

User U chooses an integer ey, 1 <ey < @(ny), with ged(ey, ¢(ny)) = 1. User U computes the
uniqueinteger dy, satisfying

ey dU = 1l (mod ‘P(HU)), 1< dU < ‘p(nu)‘ (94)

For instance, U can use Euclid's Algorithm (see Section A.2) to find dy in less than log; ¢(ny)
operations (Theorem A.9) with f = (1 +V5)/2.

Example 9.1 (Part 2)

The random choice of eg and the computation of dg can be made with the Mathematica functions
Random, While, and ExtendedGCD.

| eB = Random|[Integer, {1, nB}];
| While[GCD[aB, phiB] 1=1,
' aB = Random [ Integer, {1, nB}]]s
| aB

ExtendedGCD[eB, phiB]

S0, Bob hasep = 81119923 anddg = 17089915. This can be checked by the Mod calculation:

dB = 17089915;
Med [aB« 4B, phiB]
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o Step 3MakingPublic: ey and ny

Each user U makes ey and ny public, but keeps dy; secret. The primes numbers pyand gy no
longer play arole. User U may use them to reduce the complexity of his calculations as we shall
e later on. They may not be made public by U.

9.1.3 RSA for Privacy

If user A, say Alice, wants to send a secret message to Bob (user B) she represents her message in
any standardized way by a number m, 0 <m < ng. Next, Alice looks up the public exponent egof
Bob. She will send the ciphertext ¢ computed from

¢ = m°8 (mod ng).

Bob can recover m from ¢ by raising it to the power dg which he only knows. Indeed, for some
integer | one has

9.4)

©.1)
e8 = (meBYls = ;BB = mHeng) = ety T m (mod ng). 9.5)

when ged(m, ng) = 1. In Problem 9.2 the reader is invited to verify that the system also works
when ged(m, ng) # 1.

We summarize the RSA secrecy system in the next table.

public ey and ng of all users U
secret dy of user U
property ey dy =1 (mody (ng))
message to Bob 0<m<ng
encryptionby A ¢ =m® (modng)
decryptionby B c9 = m (modng)

The RSA System for Privacy
Table 9.1

The public and secret exponents in the RSA system are traditionally called eyand dyto denote
the encryption resp. decryption functions that they have in this subsection.

Example 9.1 (Part 3)

We continue with the parameters of Example 9.1, so0 np=99052741, ep =81119923, and
dg = 17089915. The encryption ¢ =m®® (mod ng) of message m = 12345678 leads with the
Mathematica function PowerMod to
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nB = 99052741; eB = 81119923; dB = 17089915;
m=12345678;
¢ = FowarMod [m, eB, nE]

Bob decrypts this by computing ¢?8 (mod ng), which gives m.

FowearMod[c, dB, nE]
12345678

It is possible to reduce the work factor of the decryption process by means of the Chinese
Remainder Theorem (Thm. A.19). Indeed, since Bob knows the factorization of ninto pxg,he
can do the following.

Bob precomputes integers a and b mod n, satisfying

ra=1 {(mod p)
.a=0 mod q!
~b=0 (mod p)

fb;l (mod q)

Next, Bob computes m; =cf(modp) and m; =cf(modg), where ¢; =(cmod p) and
¢, = (cmod ¢). Note that all these calculations take place modulo the integers p and q that are
typically half the length of n. By the Chinese Remainder Theorem, m = (¢? mod n)is now given by
my.a + my.b (mod n).

There is even an extra bonus in this approach. The exponent d in the calculations of m; and m; can
be reduced modulo p-1, rep. ¢-1, by Femat's Theorem (Thm. A.15). Indeed,
m =c? =chmodp, with d; =(dmod p) and a similar statement is true for the mod g
calculations.

Altogether, this way of computing ¢? mod nreduces the workload by a factor of about 4.

Example 9.1 (Part 4)

We continue with the parameters of Example 9.1, so pg = 9733, qg = 10177, ng=99052741,
ep =81119923, anddy = 17089915. To compute the solutions to

1 (mod 8733
0 (mod 10177)

[
1

o o

o

=0 {(mod 9733)

fb
Ilb=1 (mod 10177
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we load the Mathematica package NumberTheory ' NumberTheoryFunctions'

45287650
537650592

Next, we calculate m; = c? (mod p) andm; = ¢¢ =%

A PR T

(mod gq). We get
T

2440

9281
523
4411
4234
897

The result of the decryption process is now given by m;.a +my.bmodn and coincides with our
earlier decryption process.
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n=93052741;
Mod[mlea +mZwsb, n]

9.14 RSA for Signhatures

The RSA system can equally be used to sign messages. To sign a messagem, 0 < m < ng, Bob will
compute ¢ = (m?® mod ng).

The receiver of ¢, say Alice, can easily retrieve the original message from ¢*# (mod n), because
Bob's parameters ez and ng are public. To check this we repeat (9.5) (with a minor variation):

©4 ©.1
c*8 = (m*B)°B = m*B 98 2 gl +ietnn) = m.(m#ne)y! A m(mod ng). 9.6)

for dl mwith gcd(m, ng) = t. The relation ¢*2 = m (mod ng) a0 holds when gcd(m, ng) # 1.1n
Problem 9.2 the reader is asked to prove this.

Alice should keep ¢ as Bob's signature on m. Only Bob can have made ¢ out of m, because he is the
only oneknowing dp. The reader is advised to reread the discussion above Table 7.2.

public ey andny of all usersU
secret dy of user U
property eydy =1 (mody (ny))
message of Bob 0 <m<ng
signingby B c =m% (modng)
verificationby A c®8 =m (modng)
signature thepair (m, c)

The RSA System for Signing
Table 9.2

Example 9.1 (Part 5)
Bob signs message m = 11111111 by computing ¢ = m®8 (mod ng).

m=11111111;
¢ = PowerMod [m, dB, nB]
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Alice verifies this by computing ¢?® (mod ng), which gives m.

9.15 RSA for Privacy and Signing

Suppose that Alice wants to sign a confidential message m to Bob. The solution described in
Subsection 7.1.4 , namely Alice first signs m with her secret key and then encrypts the result with
Bob's public key, can not always be applied directly in the RSA-case.

To se this, we observe that Alice would like to send
¢ = (m? (modny))® (modng). 9.7

However, this mapping is not one-to-one if ns > np. For instance, the messages m =1 and
m = (1 + ng)*4 will both be mapped to ¢ = 1.

Since Alice and Bob do not want to share their prime numbers, we must have ns < np. In this case,
Bob can recover m as follows:

(¢?8 (mod ng))*4 (mod ns) = m.
To verify this, combine (9.5) with (9.6).

Of course, there now is the problem of what to do when Bob wants to sign a confidential message
to Alice. A simple solution is to have every user U make two sets of parameters, one with its

modulus smaller than some threshold T and the other with its modulus larger than T. In this

setting, the sender uses his own smaller modulus for the signature and the receivers larger modulus
for the encryption.
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public ey; andny; of allusers U, i=1, 2
secret dy; ofuser v, 1 =1, 2
properties epi dys =1 (modo (nyi))

ny: < T < nyz

message from 0 <m< na;
Alice toBob

Alice sends c= ((m®: mod na;) %82 mod ngy)
Bob computes { (c92 mod ngy) A mod na;) = m
Bob keeps as mand ( 982 mod ngy)
signature which is equal to

{m%Al mod na;)

RSA for privacy and signing
Table 9.3

If there is an argument between Alice and Bob, they will go to an arbitrator. This arbitrator is
given the pair m and « = (¢#82 mod ng;) by Bob. As an integer, the latter is equal to (m?4 mod ny),
since

©.0 ©.5)
(c¢¥52mod ngy) = (((m?ar mod na;)®? mod ng)*82 mod ng2) = (M modnyy).

Just like in Subsection 9.1.4, the arbitrator now checks if uf4/ = m (mod ny;).

If this is the case, the message m came indeed from Alice, if not, u will not be considered as
Alice's signature on m.

Note that the arbitrator does not need to know the secret exponents of Alice or Bob to make his
decision. Therefore, Alice and Bob can continue to use their original set of parameters.
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9.2  The Security of RSA: Some Factorization Algorithms

9.21 What the Cryptanalist Can Do

Suppose that an eavesdropper, say Eve, gets hold of a secret message ¢ = m®® (mod ng) for Bob.
Once Eve knows the secret exponent dp of Bob, she can compute m from the ciphertext c in
exactly the same way as Bob can, namely by computing ¢?8 (mod ng) (sce (9.5)).

To determine dg from the public exponent eg and the relation ep.dg = 1 (mod ¢(ng)) (see (9.4)) is
easy for Eve as soon as she knows ¢(ng): just like Bob did when he set up the system, she will use
Euclid's Algorithm.

To find ¢(ng) = pp.gg (see (9.3)) from the publicly known modulus rg, Eve will have to find the
factorization of ng.

At the time of the introduction of RSA, Schroeppel (not published) had a modification of a
factorization algorithm by Morrison and Brillhart [MorB75]. It involved

e\/ Inzininn Operan ons

In the next table we have made use of the Mathematica functions TableForm, Table, EXP,
Sqgrt, Log, and N to give an impression of the growth of the above expression.

{k, N[Exp[ Sqrt[Log[10*k] Log[Log[104k]]]]. 3]},

{k, 25, 250, 25}1, TablaHeadings ->

{{}s {"length in digits", "complexity"}}.
TableAlignments -> {Center}]

|
| TableForm| Table|
|

length in digits complexity
25 4.3x10"
50 1.42x10*"
75 B.99x 10
100 2 .34 =10
125 3.41x10
150 26x10
175 2.25=10
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As one can ¢, if nis about 200 digits long, the above cryptanalysis is clearly not tractable. On the
other hand, much larger numbers have been factored than was thought to be possible a the time
that the original RSA scheme was proposed (at the time of the printing the record stood a 512 bits
numbers). For this reason, one now sees proposals for implementations of RSA with a much larger
modulus.

An example of a fast modern factorization algorithm can be found in [LensH86]. Other methods
will be discussed in Section 9.2.3. There does exist specia factorization algorithms that run faster
if nis of a special form. We shall discuss one of these methods in the next subsection.

Up to now, there seems to be no way of breaking the RSA system other than by factoring the
modulus n. There is no formal proof however that these two problems are equivalent. In Section
95 we shall discuss a variant of the RSA system for which it can be shown that bresking it is
equivalent to factoring its modulus.

A drawback of having to choose large moduli is that the execution of a single exponentiation takes
more time than one may like, especially when one wants to encrypt a long file. Quite often in such
a situation one shal use a hybrid system: a symmetric system with secret key k is used for
encryption of the data and the RSA scheme is used to send this key securely to the receiver (using
the public parameters of the receiver).

When generating p and q it is a bad idea to first generate p and then try out p+2, p+4, ... for
primality. One redly wants p — ¢ to be large. Indeed, if a cryptanalist can guess p - g, for instance
by checking al likely values, it follows from

4n=4pqg=(p+q’-(p-q7

that p +q dso can be determined. From these two linear relations p and g can be found, which
implies that the system has been broken.

Example 9.2
Let n = 5007958289. Guessing that ¢ — p = 200, we get p +gfrom

n=5007958289; \1|' 4 n+ 200%
141534

Fromp +q = V4n +200° and g — p = 200, we get that g = (V4n +200° +200)/2.
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q-= ["-.|||4n+20ﬂ1 +zuu]/2

| P ;q-iuﬂ

TO8ET
ps#g==n

We concludethat | p — ¢ | hasto be large. A way to do this is to take g morethan p+vp.

In the literature one can dso find a few attacks on the RSA system, that have a probability of
success which is not significantly more than the probability that a randomly chosen integer a
smaller than n has a non-trivial factor in common with n. This factor would then be p or g. The
probability that the latter happens can be evaluated with the Euler Totient function ¢(n)and is
given by

n—gtn) 93 pq-(p=D(g=1) _ prg=l _ 1
n Py P4 [

assuming that p <g¢. That one should not take p too smal will follow from the factorization
algorithm that we shall discuss in the next subsection.

Because the "attacks" mentioned above have such a small probability of success, we choose not to
discuss them here. Some of the problems at the end of this chapter are based on them.

9.2.2 A Factorization Algorithm for a Special Class of Integers

We shdl now briefly discuss a factorization algorithm that runs faster than the generd
factorization algorithms that we shall address later under the assumption that at least one of the
prime factors of n, say p, has the property that p - 1only contains small prime factors.

o Pollard's p — 1 Method

In [Poll75], Pollard describes away to factor nin vp steps, where p is the smallest prime divisor
of n. This explains why we have to take p and q both large.

The assumption in Pollard's p — 1 method is that in the factorization of n at least one of the two
factors, say p, has the property that p — 1 has only small prime factors. To be more precise, an
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integer is said to be smooth (see aso Subsection 8.3.4) with respect to Siif al its prime factors are
less than or equal to S. We shall assumethat p — 1 is smooth with respect to some integer S

Example 9.3

The prime number p = 70877 has the property that p —1is smooth with respect to S =50,as one can
check with the Mathematica function FactorIntegerand Prime0Q.

p=T0877) PrimeQ[p]
FactorInteger|[p - 1]

For each prime number r, r < §, the largest power of r that is still less than or equal to n can be
determined from

r<n ,orequivaently, i<log, n.
Define R by
R= npsS, p prime pUOg, "l (98)

Example 9.4 (Part 1)

Consider the number n = 670089228] and assume that at least on of itsfactors, say p, is smooth with
respect to § = 50. It follows from

Prime[15]
Frima[16]

that there are 15 primes less than or equal to S = 50. So, R can be calculatedfrom (9.8) with the
Mathematicafunctions Prime Log and Eloor as follows

15
n = 6700892281; R = | | (Prime[1])"oor! teslFrinalil )]
i=1
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40495671803608T7157154810988T73511450516B7154638935149024506072T7076"
02214282424813734946501919403167962039754577870030089486336000000

oooooo00

To see the exponents of the primes up to 50 (out of curiosity), we give

FactorInteger|[R]
2. 32 i 5, 14} 11}, {11, 9} 1 19, 7
{23, 7}, {29, 6}, {31, 6} 17, 6}, {41, &} 4 = 47, 5}]

If p~ 1 is smooth with respect to S, each prime power r that divides p - 1, will also be a factor of
R, since i will be a most |log, n}. It follows that (p — 1) divides R.

We know from Fermat's Theorem (Thm. A.15) that any integer a, 1 <a < p, will satisfy
a™ "' =1(mod p). Since (p = 1)| R, dsoa® = 1 (mod p).

Now take a random integer a, 2 < a < n, and check if ged(a, n) = 1. If this ged is not 1, we have
found afactor of n and we are done.

If ged(a, n) = 1 it follows from a® = 1 (mod p) that p{(a® - 1). Since it is very unlikely that aso
a® = 1 (mod ), we shall almost certainly find a factor of n (namely p) from ged(a® — 1, n). Note
that a® does not have to be evaluated for this calculation, the value of a® (mod n) suffices.

Example 94 (Part 2)

Tofind afactor ofn =6709248019 we pick a random a in between 2 and r» ~ / and compute the
ged of a®aR 1 with n by means of the Mathematica functions Random, PowerMod, and GCD.

a = Random[Integer, {2, n}]
GCD[FowerMod[a, R, n] -1, n]

3922094384

Itfollows that p =81919 is afactor of n. The other factor follows from n/ p = 81799. Note that if
g is also smooth with respect to S we would havefound n as outcome of the ged calculation.

We summarize Pollard's p — 1 method in the following table.

input : integer n.

select a smoothness parameter S.
calculate Rfrom (9.8).

select a randoma, 2 <a<n.
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compute d = gcd (a® -1, n).
if 1<d<n then d isa factorofn
else STOP or select a new randoma
Pollard’s p — 1 Method to Factor n

Figure 9.1

To make Pollard's p -~ Imethod infeasible, one often chooses so-caled safe primes when setting
up the RSA system. These strong primes are primes p of the form p=2p'+1,where p'isa
(large) prime. Inthiscase, p ~ 1 hasjust one small factor.

9.2.3 General Factorization Algorithms

o ThePollard-g Method

Let p be an unknown prime factor of the integer n that we want to factor. Now look a the
sequence ap, 44, .., defined recursively by

ap=1,

aiy1 =a?+1 (mod p),i 2 0.
Suppose that we have found indices u and v with v># and a, = a, (mod p). Then clearly
ged(a, — a,, n) isdivisible by p and very likely this ged is equa to p.

Of course, p is not known, so we replace the above recursion relation by

a =1,
a =a?+1 (modn), iz 0. ©9)

Since p|n we will find the factor p from ged(a, — a,, n) for the same values of u and v (the
probability that other large factors of n divide this gcd is negligible).

Instead of having to store al previously computed values of a;, i = 0,we use Floyd's cycle-finding
agorithm to find an index k such that a;; = g; and then we take ¥ =k and v = 2. The idea is
smply that one darts with a; and a; and recursively determines the par (a;, ap;) from

(@i-1, az-1y)-
The above is summarized in the following figure.
input : integern.
puta=1, b=2.
do a« (a’°+1) modn,
be (((B+1) modn)? +1) modn
until d =ged (a, b) > 1

if d <n then d is a factorofnn
else STOP

Pollard's o Method to Factor n
Figure 9.2
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Example 9.5

To find a factor of n = 9032411471 with the above method we use the Mathematica functions Khile,
Mod, and GCD functions.

n=168149075693;
aslyb=23;d=6CD[b-a, n];
Wh.i.le[d:: i a=Mod[a®+1, n];

b=Mod[ (Mod[b®+1, n])" +1, n]; d=GCD[b-a, n] ]
d

So, 350377 is afactor of n = 168149075693. The quotient n/p is 479909, which happens to be a
prime too, as can easily be checked with thefunction primeo.

a=n/350377

PrimaQ[a]

o Random Squar e Factoring Methods

This method and the next one are related to the Index-Calculus Method discussed in Subsection
8.34. The reader may want to read the introduction there first, but that will not necessary for the
understanding of the discussion here. We assume that n is a composite odd integer.

The method consists of the following four steps.
Step

Construct the set S = {p;, p2, ..., pe} consisting of the first k prime numbers, 0 p; =2, p, =3,
etc. The s&t 5 will be called the factor base.

Step2:
Find sufficiently many pairs (a;, b;) such that
a,2 = b; (mod n) 9.10)
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and such that b; is smooth with respect to S i.e. b; factors completely into elements of the factor
base S, say
b, = H_I;:l p;“], with Ujj = 0.

Put w; = (uy, u12, ..., uyx). Pairs (a;, b;) satisfying property (9.10) can be found by trying random
choices of a;. An alternative is to use any suitable recursion relation that generates candidates for
a;. For instance, after trying a; = a one may want to try a; = ((a* + 1) mod n).

Step 3

Find a collection of b;'s whose product is a perfect square. Quite clearly, only the parity of the u; ;'s
matters in this condition, so let us put v;; = (u;;mod2) and v; = (v1 1, vi2, ..., vix). We write
v; = u;(mod 2).

Since any k + 1 vectors y; (al of length k) must be linearly dependent over Z,,there must be a non-
trivial linear combination adding up to Q. Such a linear combination can be found very efficiently
with standard methods from linear algebra.

Let | denote the subset of {1, 2, ..., K} with 2;c; v; =0 (mod 2). Set
x=]ligra, ad  y={([li b2

Step 4:

It follows from (9.10) that x*>=y?(modn), i.e. n divides (x-y)(x+Yy). Assume that

x £ £ y(modn) (the probability that this happens is at least 1/2 as we shall see in a moment and as
will be demonstrated more extensively in Subsection 9.5.1 for the case that n is the product of two

different primes). Then x -y must be divisible by a non-trivial divisor of n. In other words,

ged(x — y, n) yields a non-trivial factor of n.

If ged(x—y,n)=n one has to try to find another perfect square, either by another linear
dependency between the y;'s or by exchanging one of the pairs {(a;, b;) for anew one.

Consider the congruence relation x> = y? (mod n) where y is assumed to have a given fixed value
that is coprime with n. Further, let p? be any factor in the prime power decomposition of n (see
Theorem A.6). Then x? = y? (mod p®) hasjust two solutions, namely x = + y(mod p?).Indeed, for
a = 1 this follows from Theorem B. 15. For a > 1, we still havethat p® must divide either.x - yor
x+y, because if p|(x—yyand p|(x+ y)then p|2 y,but p+ y(since nisodd, aso p will be odd).
We concludethat x = £ y (mod p*) dsowhena > 1.

It now follows directly from the Chinese Remainder Theorem (Thm. A.19) that relation
£ = y? (modn) has 2! solutions, where | is the number of different prime numbers dividing n.
Only two of these 2/, I = 2, solutions are given by x = + y (mod n), therefore, the probability that
gcd(x - y, n) yields anon-trivial factor of nisat least (2! -2)/2/ =2/4=1/2.

input : integer n.
make factorbase S = {pi, ., Pk}
find pairs (a;, b;) with
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a; random, a? =b; (modn), b; smooth w.r.t. S

find index set I suchthat ﬂ . b; is aperfect square
1€

put x = Hie, ai, ¥ =~f[lierbi

put d=gcd(x-vy, n)
if d <n then d is a factorofn
else retry with other I
Factoring by Random Squares

Figure 9.3

Example 9.6

Suppose that we try to factor n = 71271 with the above method. Wefirst make thefactor base consisting of
thefirst 8 primes by means of the Mathematicafunctions Table and Prime

8 = Table[Prime[i], {i, 1, 8}]

Next, we use the function Randomto generate a random a, I <a <n,and the function
FactorInteger tofactor b = a? (mod n).

n=1271; a = Random|Intager, {1, n}]
b = Mod [a?, n]
| PactorIntagar(b]

Unfortunately, b = 614 is not smooth with respect to S, but after some trial and error wefound the
following nine smooth numbers (they are put in a list called a).
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i a® mod n factors 5 T i

583 53z f{2-BYn kT iYL 1k F
536 50 {{2. 1}, 5. 2}}

1137 162 {{2. 1}, {3, 43}

421 572 I G e L TR o B B
727 1064 e O L e B L T
1034 245 {15, 1}. 4% 2}

1051 102 R B B S s T
107 10 b2y A s i

1111 180 {{z2, 2}, {3, 2}, {5. 1}}

The exponents in thefactorization of the b;,'s are given by the vectors ; that form the rows of the
matrix U below. The vectors y; are the modulo 2 reductions ofthe ;'s. Theyform the rows of the
matrix V below.

For instance, b; =532 =22.7.19givesu; =12,0,0,1,0,0,0, I}and v, ={0, 0,0, 1, 0, 0, 0, I}.
These two rows are the first row of the matrices U resp. V below. We use the function
MatrixForm to display them.
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e e B R e B
PRVl Bl o B R M
ST T ST S
e S e Rl e o O e
r Ut P Ry By ¥ (L 1 1
T e 1 T 1N 1
s M (g o s R [ R s
I R T (TR e
[ e o oo [y v Tl o JEAR RN T
E 0N T T T Y T
s Gt vl SR 1 e 1 0 R |
o R R e R
o JEOSR I o N (R O o T |
T B L B B |
oo o0 0.0 0
; oo e TR v e :
10 oo o000l
T T TR T

Tofind a non-trivial linear combination of the rows of V adding up to the all-zero vector modulo
2, weusetheNullSpace and Transpose functions.

NullSpace[Transpose|[V], Modulus -> 2]

{{o,0,0,0,0,1,0,0,1},
s e RO 1T TR B O e i PR P WP P T Tl R

We see that the first of the above linear dependencies between rows of V reflect two identical
rows, but the third one does give an index set | that can be used, namely 7 = {1, 3, 5).

It leads to the values x =a; asasand y = V b; b; bs

x=al[[l]]=+al[[3]]+=a[[5]]
¥=(b[[1]]1+b[[3]] «b[[5]])"?
| GCD[x-v, n]

481907217

41
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We conclude that p =41 is afactor ofn = 1271.Indeed 1271 =31 x41.

n/f4l1

o Quadratic Sieve
The complexity of this method is given by
‘914923..(Inn)”3 (Inln n)z/3 operations.

As with the previous methods, we shall not explain all details of this factorization technique. Let n
be the number that we want to factor.

To start we need a so-called factor base S which means that Sis alist of k primes (which k primes
will be determined later).

Letr= [\/ﬂ and let the polynomial f(x) be defined by
fO =+ -n=x'+2rx+r~-n.

Note that P <n<(r+ 1)), 0 0<n-r?<2r+1=<2vn +1. It follows that if x is smal in
absolute value, then aso f(x) will be small (when compared to n).

Forx=0, 1, £2, ... defineaby a = x+ rand test b = (x + r)*- n for smoothness with respect to
S i.e test if dl prime factors of b are in S. If so, we save the pair (a, b) in alist of pars (a;, b))
with this property.

Note that a? = (x + r)? = b; (mod n), just as in equation (9.10).

If a prime p divides b;, then p|((x+r)*—n) for some known value of x. This means that
n = (x+r)? (mod p) and thus that n is a quadratic residue (QR) mod p. This means that the only
prime factors that will appear in the factorization of any of the b;'s will have Jacobi symbol
(n/p)=1.

So, we let the factor basis S consist of the k smallest p;, 1= j=<k, with the property that
(n/pj)=1.Weadso add -1 and 2 to S, becausetheb;'s may be negative and/or even.

Now that we know how to construct alist of pairs (a;, b;), satisfying
a? = b; (mod n),
b; is smooth with respect to S,
we can continue with Step 3 in the algorithm described in the previous subsubsection.

We summarize the quadratic sieve method in the following figure.



168 FUNDAMENTALS OF CRYPTOLOGY

input : integer n.
make factorbasesS = (-1, 2, p;, ... px} with(n/p;) =1
find pairs (a;, b;) witha; - L\/;J small,

a? = b; (modn), andb; smoothw.r.t. S

find index set I such that ﬂ . b; aperfect square
1€

putx:ﬂidai, Y =) (lser bi)

putd=gcd (x-vy, n)
if d <n then d is a factorofn
elseretrywithother I

Quadratic Sieve Factoring Algorithm

Figure 9.4

We shall only give an example of the first two steps of the quadratic sieve method.

Example 9.7

Let n =661643. To make a factor base with 10 primes, we use the Mathematica functions while
Length, JacobiSymbol, Prime, and AppendTo.

n= 6616427 k=10;
BE={({-1, 2}z i=2;
While[Length[88] - 2 < k, {
If [Jacobisymbol[n, Prime[i]] ==1, {
AppendTo[88, Prime[i]]]si=41+1];
88

iy fo

To try out if any of f(=5), f(—4), ..., f(5) is smooth with respect to S we use the functions
TableForm,Tablgand FactorInteger:

| m= 6616437 Clear([x, £];
r= l'\."r;f jm=5;
Flx_] := (x+x)}?-n;
TablaForm[ Table[ {r+i, E£[i].
FactorInteger[£f[i]] // OutputForm}. {i, -m, m}]]
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B08 877 1} B77S, 1

BO9 T162 1, 1} 2. 1 {358

B1l0O 5543 1} 241, 1
811 1922 1,:41} b e i 5 1
B12 2299 1} 2 {1%, 1}
B13 &74d y i e | 2 (337, 1
Bl4 953 [[953,

ElS 582 2 1] 1291 1

BlE 1213 11 :

B17 SH4G . 1 i 1 3, 1
El8 TdE1 481

We see that we have only found three pairs (a;, b;), namely (811,-3922), (812, -2299), and
(817, 5846).

So, we need to try a larger range of values. We leave the rest of this example as an exercise to the
reader (see Problem 9.7).

9.3 Some Unsafe Modes for RSA

9.3.1 A Small Public Exponent

We shall discuss here two particular dangers described in [Hast88] (see dso [CoppFPRI6]). The
first one is the situation that more people have chosen the same (small) public exponent and that a
sender wants to transmit the same message to all of them. The second danger is when a sender
wants to transmit several mathematically related messages to the same receiver, who happens to
have a small public exponent.

Both dangers may appear farfetched to the reader, but since exponentiations modulo large numbers
are till rather cumbersome, it remains very appealing in practical situations to select small public
exponents.

o Sending the Same Message to More Receivers Who All Have the Same Small Public Exponent

Suppose that Alice wants to send the same secret message m to Bob, Chuck, and Dennis. Let the
public modulus of these three people be given by the numbers ng, ne,and np.Now assume that
they al happen to have the same public exponent e = 3, The messages that Alice will transmit are
Cg =
cc=m’ (modnc) for Chuck, 9.11)

m® (modng) for Bob,
3
cp =m® (modnp) for Dennis.
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Almost certainly the three moduli will be coprime (otherwise at least two of moduli are
compromised in atrivial way). The eavesdropper Eve, who intercepts g, cc, and ¢p can use the
Chinese Remainder Theorem (Thm. A. 19) to determine m? (mod rg nc np) from (9.11).

Since it can be assumedthat m < min ng, ne, np', alsom® < ngnenp holds. So, the above
means that Eve in fact has found the integer m>. To compute mis now straightforward.

Example9.8

Suppose that ng =137703491, nc = 144660611, and np = 149897933. Let the three intercepted messages
be given by cg = 124100785, cc = 85594143, and cp = 148609330.

To solve the system of linear congruence relations
m? = cg (mod ng); m* = cc (mod ne); m® = cp (mod np),

with known right hand sides and known moduli, we use the Mathematicafunction
ChineseRemainderTheorem. TO this end wefirst have to load the package
Number Theory ‘NumberTheoryFunctions .

<<MumberTheory NumberTheoryFunctions’

neE = 137703491; nC = 144660611; nD = 149897933
| eB = 124100785; eC = 85594143; cD = 148609330;
| mCubed = ChineseRemainderThecrem[{cB, eC, eD}, {nB, nC, nD}]

1BB1563525396008211918161

We conclude that m’ = 1881563525396008211918161 (mod ng n¢c np). Sncem® < ngnenp, we
even have

m’ = 1881563525396008211918161.

Tofind m is now easy.
| m = (mCubed)'’?

That this outcome is correct can easily be checked by means ofthe Mod  function.
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Mod[m®, nB] == cB
Mod [m®, nC] == cC
Mod[m®, nD] == cD

I'Tue

T'rue

o Sending Related Messages to a Receiver with Small Public Exponent

Alice wants to send two secret messages, say m; and m; to Bob, who happens to have apublic
exponent eg that israther small. Let ng be Bob's modulus. Now, assume that the two messages of
Alice are related in alinear way, say my = a.m; + b,whereaand b arein Z,,,and assume further
that eavesdropper Eve knows this linear relation.

Coppersmith et al. [CoppFPRI6] describe two surprising methods for Eve to recover the plaintext
m.

Direct Method
We shall first describe this method for the casee = 3.

Let the encryptions of m, and m, be denoted by ¢y, resp. ¢;.S0, ¢; = mj} (mod ng)and
Cy = (a.ml -'-b)3 (mod ﬂB). Then
blc; +2a%c;~b%) _ 3a*bm{+3a’b’mi+3ab’m,
a(c;—ac; +2b%) ~ 3a3bm} +3a2b2m, +3ab’

= m, (mod ng). (9.12)
With the Mathematica function Simp11fy one can verify these calculations as follows

Clear[a, b, ¢l, ¢2, ml, m2];

Simplify|
b(c2+2a’cl-b?)
af{ci-a’cl+2b?)

/- {el->ml?, c2-> (as+ml+b)?}]

A particular simple caseisgivenby m; = mand my =m + 1,i.e. @ = b = 1.Then (9.12) reducesto

m+ 1D +2md -1 _ 3m +3mt+3m

m+1¥—m+2  3mi+3m+3 = m (mod ng)
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Example 9.9

Suppose that ng = 477310661 and that the messages m; and m; are related by m; = 3m, + 5 (mod ng). S0,
a=3andb =35. Letc; =477310661 and c, = 5908795. Then m; can be computed with the Mathematica
functions Mod and Solve asfollows

| clear [¢l, 2, £, g, ml1, m2, a, b])

| m=d4T7T3106861;

el = 5908795; c2 = 3T4480016;
as3;bh=5;
f=llﬂd[h{{:2+2u!'c1—h!}, n]s

| g=Mod[a (c2-a’cl+2b%), n];

| Bolve[{f ==g+ml, Modulus ==n}, ml]

{ {Modulus -+ 477310661, ml - 321321321} }

So, we have foundm; =321321321. That this is indeed the solution can be verified quite easily as
follows

ml = 321321321;

| m2= Mod[3+ml+ 5, n]
PowerMod([ml, 3, n] ==cl
PowarMod|[m2, 3, n] == c2

9342646
True
True

Ifa=>b=1andeg > 3, amethod like the above still exists. In fact, it can be shown [CoppFPR6]
that polynomials P(m) and Q(m) exist such that each of them can be expressed as rational
polynomials in ¢; = m? (mod ng) and ¢, = (m + 1)° (mod ng) and such that Q(m) = m.P(m). For
e, = 5 these polynomials are given by

P(m) =c% +2¢ c%—4c%cz +c?—2c‘§+9c| Lo +8cf+c2 -2c,

Qm)=9c¢,c3-9¢.

Again, one can check this with
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Clear[cl, c2, m];
P=c2’+2clwc2®*-4cl1®c2+cl®-2¢c2%+
Sclec2+Bel?’+c2-2cl; Q=9clwc2? -9 cl?;
Expand([P //. {cl =>»m*, €2 => (m+1}7}]
Expand|[Q //. {el ->» m*, c2 -» (m+1)%}]

Simpl:lf_?[E 1. {el->m’, c2-> (m+1)?}]
P

To find such a solution, write P = ¥, ., pij ¢ ¢f and Q = ¥, <, 4i,j ¢} ] -Next, substitute
c; =(m+ 1) and ¢, = m? in P and Q to obtain two polynomialsin mof degree ( < e)>. Now,

equate the coefficients of min Q(m) = m.P(m). Thisgives2((e+ 1) +e+... +2+ 1) =
2 (e ; 2) =(e+2) (e + 1) linear equations in the coefficients of P and Q. So, there is in fact a large
solution space.

Since the number of terms in P(m) and Q(m) grows quadratic in e the above approach will still be
rather cumbersome for larger values of e.

Method through GCD calculation

For arbitrary values of e there is amore direct way to determine m, and m; from ¢; and ¢, when
they satisfy a polynomia relation that is known to the eavesdropper. Suppose that

my = f(m;) (mod ng). The ideais to compute the ged of z2 — ¢; and (f(2))¢ — c». Indeed, since m;
is azero of both polynomials, it follows that both are divisibleby z - m;.As a consequence, also
the ged will contain this factor. Almost certainly the ged will not contain any other factors.

We shall demonstrate this idea with an example.

Example 9.10

Leteg = 5, np = 466883. Further suppose that the message m; and m; are related by m; =2m, +3and
that they are encrypted into ¢; = 66575, resp. ¢; = 387933. We want to compute

ged(z’ — 66575, (27 +3)° — 387933) mod 466883. In general, this can not be done since ng is not prime.
Also Mathematica can not do this directly. We shall simplyfollow the polynomial version of Euclid's
Algorithm step for step. Problems may arise, when numbers appear that are not coprime with n. This
happens rarely and is not bad at all. Indeed, one almost alwaysfinds in this way a non-trivial factor ofn,
so the system will be broken!
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In thefirst step we calculate f; = (2z +3)° —387933and f, = z° —66575and then divide f,by f,. Weuse
the Mathematica functions PolynomialMod and Expand.

n=466883;

cl= 66575 c2 = 387933;
fl=Expand[(2z+3)5 - 2] .
f2=z-c1 !
£3 = PolynomialMod[£1 - 32 £2, n]

ba dr i Rl SR ST

387690+ 810z + 1080 =* + 7202 + 240 2* + 32 2°
66575 + z°
342061 + 610 = + 1080 =2 + 720 =¥ + 240 =*

To keep the division process more manageable, we normalize f3;by multiplying it with the
multiplicative inverse ofits leading coefficient (mod ng). We use the Mathematica function
PowerMod.

InverseLeadCoaff = PowerMod[240, -1, n]
£3 = PolynomialMod [ InverselLeadCoeff « £3, n]

258731
176877 + 408526 z + 2334462 + 3 ¥ + 2*

We continue with this division process until f; = 0for some k. The ged will be given by fi ;.

‘ £4 = PolynomialMod [£2 - £3 » (z + 466880), n] i
|

120290 + 381818 z + 291812 2% + 233446 =°

‘ InverseLeadCoeff = PowerMod [233446, -1, n]
| f4 = PolynomialMod [InverseLeadCoeff « £4, n]

103752



RSA Based Systems

175

184581 + 292352 £ + 116723 2% + 2

£5 = PolynomialMod[£3 - £f4 « (z + 350163), n]

355162 + 4681 z + 202714 2*

InverselLeadCoeff = PowerMod[203714, -1, n]
f5 = PolynomialMod [ InverseleadCoeff « £5, n]

349909

397084 + 98465 z + 2

| £6 = PolynomialMod[£4 - £5+ (z + 18258), n]

451016 + B7731 =

| InverselLeadCoeff = PowerMocd [B87731, -1, n]
| £6 = PolynomialMod[InverseLeadCoeff «» £6, n]

132235

466340 + =

| £7 = PolynomialMod [£5 - £6 « (z + 99008), n]

We conclude that k = 7 and that
gcd(z5 — 66575, (27 +3)° —387933) = 7 +466340 = 7 — 543 (mod 466883).

Therefore, the secret message mis 543. One can check this with the Mathematicafunction
PowerMod.
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m=543;
PowerMod [m, 5, n] == cl
PowarMod[2m+ 3, 5, n] == 2

=

The above approach of finding m by computing aged is still practical for e up to 32 bits long
([CoppFPR96]).

9.3.2 A Small Secret Exponent; Wiener's Attack

Wiener [Wien90] shows that it is unsafe to use the RSA system with a small secret exponent d,
where "small" means something like ¥'n. This observation is of importance, because often one is
inclined to reduce the work load of the exponentiation, by choosing a smal exponent. For
instance, if a smart card is used to sign messages (see Subsection 9.1.3), it will have to compute
exponentiations ¢/ (mod n). If the card has limited computing power, a relatively small value of d
(of course not so small that d can be found by exhaustive search) would be handy.

We first show that we can replace (9.4) by the slightly stronger relation
ed=1(modicm(p-1,g-1)),

where 1om denote the least common multiple. We remark that p — 1 and g — 1 both divide ¢(n) and
0 does lem(p - 1, g — 1). Now note that for a correct functioning of the RSA system, one only
needs that e.d = 1 (mod p — 1) and e.d = 1(mod q - 1). The reason is that these two congruences
are sufficient to prove that (9.5) and (9.6) hold modulo p resp. modulo g. From the Chinese
Remainder Theorem it then follows that (9.5) and (9.6) aso hold modulo n. We conclude that it is
sufficient that e.d = 1 (mod lem(p - 1, g — 1)).

The subsequent cryptanalysis will dead with this most general case. It is the cryptandist's aim to
find d satisfying this relation (and also p and q). The above congruence can be rewritten as

ed=1+Klemp-1,9-1=1+E(p-D(g-1),

where G=ged(p-1, g~ 1). If K and G have a factor in common, the above relaion may be
further simplified to

ed=1+%(p-1)(g-1), with ged(k, g) = 1. (9.13)
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One should realize that often G (and thus aso g) will be very small. In a typical RSA system, p
and g will be safe primes, meaning that p—1=2. p' and g -1 = 2.4, with p' and ¢' prime. So, in
thiscaseG=2andg=1o0r 2

Let us rewrite (9.13) by dividing both handsby d.n ( = d.p.q and rearranging the terms:

ety o ©.14)
What we like to show is that k/(d.g) is a convergent of the continued fraction of the known
rational e/n. Since these continued fractions are easy to compute, it is then possible to find the
secret exponent d (and k and g).

Theorem 9.2

Assume that p ~ g ~ vn, e~n and 2 g,

Then k ~ (g.d) and the numbers d, k, g, p, and g can be found from the continued
fraction of & /n for secret exponents o up to n'™,

Remark 1:

We shall be a little doppy with the use of the ~ symbol. What we mean with a ~ b is something
like "a and b have the same order of magnitude”.

Remark 2:

We already discussed the likelihood that g is small. If d is selected as a small integer, the value of
e will be like that of a random number in the range {1, 2,...,lem(p—1, g— 1)}, 0 adso the
assumption e ~ n is very reasonable. The same holds for p ~ g ~ ¥'n (see the discussion around
Example 9.2).

Remark 3:

Relation (9.14) implies that ﬁ > <, therefore, it suffices to check only the odd convergents of
en.

Proof of Theorem 9.2:
If e ~ n then k ~ g.d by (9.14), since the other terms there all tend to zero. It further follows from
(9.14) that

ke _L(L+L_L)__'_|Sdk_“;si_‘+ﬁ(%+i)

Since 2 g.d < d* < n'? we conclude that

I_k_ ¢ 1 1

— L g —=

< .
dg n Vi 2dg?

It follows from Theorem A.35 that the rational number k/ (d.g) will appear as a convergent in the
continued fraction of e/n. Since ged(k, g) =1 and since (9.13) aso implies that ged(k, d) =1, it
follows from Corollary A.32 that k and d.g will be obtained from one of the convergents. Because
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g isvery small, we can find g and d with a small trial and error effort.

From (9.13) one can now compute (p — 1) (g — 1) and since p.q is known, one can aso find the
factorization of n into p and q.

Example 9.11

Consider n = 9998000099 and e =6203014673. Let us compute the successive convergents of e/n. Wefirst
load the Mathematica package Number Theory *continuedrFractions' and then we can use the
functions ContinuedFraction and Normal.

<<NumberTheory ContinuedFractions”

n=9998000099; @ = 6203014673;

Normal [ContinusdFraction[e/n, 2]]
Normal [ContinuedFracticon[e/n, 4]]
Normal [ContinuedFraction[e /n, &]]
Normal [ContinuedFraction|[e/n, 8]]

wn

18
25

Let us check why the last one does not lead to d (the other cases are even simpler). Writing
18/29 =k/(d.g) leadsto k =18, g =1, andd = 29. An easy argument to show that this is not the
right value ofd is an encryption followed by a decryption, not resulting into the original message.
We use thefunction PowerMod.

m=123; d = 29;
¢ = PowerMod[m, &, n];
PowerMod[c, d, n] ==m .

False
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Let us try the next convergent.

85
137

Writing 85/137 =k/(d.g) leads to k=85 g=1 and d=137. From (9.13) we get
(p-Di(g-1)=9993745862.

9397800120

Together with n = p.gq = 9998000099 weget p+q —1 =p.g—(p-1(g—-1) =

195979

S0, p and g are the roots of (x — p) (x —q) = x* — 199980 x +9998000099. They can befound with
thefunction Solve

{{x - 99989}, {x-99991}]

Indeed, 99989 x 99991 = n.
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9.3.3 Some Physical Attacks

Clearly physical attacks on cryptographic implementations are beyond the scope of this
introduction. Nevertheless, two such attacks will be mentioned briefly, because of their relation to
theory that we have explained here.

a Timing Attack

Suppose that RSA is implemented on a hardware device (like a smartcard), and that the secret
exponentiation (m — (m? mod n) or ¢ - (¢? mod n)) in the RSA process follows a computational
scheme of the type explained in Subsection 8.1.1, i.e. any method that consists of repeated
squarings and/or multiplications. See for instance Example 8.1.3.

It is further assumed in this attack (see [Koch96]) that an observer can measure the eectro-
magnetic radiation or power consumption of the device and can clock the length of the various
calculations. Typically, amultiplication takes longer than a smple squaring operation.

In this way, the attacker can determine the particular sequence of squarings and multiplications
that the program went through. Based on the outcome, he can simply compute the secret exponent
d stored on the card.

For instance, if the measurements give Sg.S9.M.Sq.Sq.M.Sq.Sq.M.Sq.M, where Sq stands for
Squaring and M for Multiplying, we get the exponent from

Claar[a];

[{“{Hl}’]! l}:)z ‘)zrl

2
a

171

=]

o The " Microwave" Attack

Suppose again that RSA is implemented on a hardware device (say a smartcard), but now assume
that the secret exponentiation (m — (m? modn)or ¢ - (c¢? mod n))in the RSA process makes use
of the Chinese Remainder Theorem (Thm. A.19). See for instance Example 9.1, Part 4. So, we
assume that two independent exponentiations take place on this device: one modulo p and one
modulo g, wheren = p.q.

Now suppose that this RSA implementation is used to sign data (this is the simplest version of the
attack, cfr. [LensA96] and [BoDML97]). So, typically, the attacker presents a message m to the
smart card and would normally expect ¢ = (m? mod n) back. However, the attacker submits the
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smart card, when it is making its calculations, to the right kind of radiation ("just put it in a
microwave" is an oversimplification of this attack) and hopes that in one of the two
exponentiations an incorrect calculation will be made.

For instance, the smart card calculates ¢, = (m? mod p) correctly, but gets awrong valuefor c,, i.e.
¢," # (m? mod q). The reader should remember that in the smart card values a and b are stored

satisfying

rasl mod pj
as=0 mod o)
bz(0 (mod p
Lbsl (mod g

So, the card will output c¢'=(a.c; +b.co;'modn). Now note that since b =0(mod p)and
a = 0(mod q)

c~c¢'=a.c| —a.c; =0(mod p),

c—c'=b.cy—b.cy'=blc;~¢2')£0 (mod g).
It follows that ged(c ~ ¢', n) gives a non-trivial factorization of n.

It depends on the application whether the attacker can let the card give the correct value of ¢ too,
for instance by having the card sign m again without introducing any radiation). A way around this
problem is to let the attacker sdlect a message ¢, compute m = (¢® mod n) with the public exponent
e and submit m when attacking the card. In this way, the correct value of c is aready known
beforehand.

Example 9.1 (Part 6)

We continue with the parameters of Example 9.1, so pg = 9733, g = 10177, ng=99052741,
ep = 81119923, and dp = 17089915.

Further, a =45287650 and b = 53765092 (see Ex. 9.1, Part 4).
When, m = 12345678, the correct value of c isgiven by
n=39052T4l; e = B1119923;

fe=111113211)
m = FowerMod|[c, e, n]

So, when signing m = 24307114 the card should producec = 11111111.

In his calculations the card computes numbers ¢; and ¢; and gets ¢ asfollows:
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p=5733; gq=10177;

d=17085915; d1l =Mod[d, p-1]7d2 =Mod[d, gq-1]s
ml = Mod[m, p]; m2 = Mod[m, g];

a=45287650; b = 53765052;

ol = PowerMod[ml, d1, p];

c2 = PowerMod[m2, 42, q];s

c=Mod[arcl+b=c2, n]

11111171

However, when ¢, is calculated incorrectly due to radiation, say c¢;' = 8763, the card will produce
an incorrect value ¢’ for ¢ = 11111111 and the ged of the difference of these two numbers with n
will yield afactor of n.

clPrime = 8765;

| ¢Pr = Mod[a«clPrime + bwc2, n]

GCD[e - ePr, n])

92608527

10177

The number 10177 is indeed one of the twofactors of n.

9.4

94.1

How to Generate Large Prime Numbers; Some Primality Tests

Trying Random Numbers

To make the RSA system practical, one needs an efficient way to generate very long prime
numbers. The following pseudo-algorithm describes a probabilistic way of how this can be done.

Algorithm 93 Method to generate an [-digits long prime number
Siep 1: Write down a random, odd integer u of { digits long.

Step 2: Test the candidate u for primality.
If u is not prime, go back to Step 1, otherwise STOP.
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In the next two paragraphs we shall discuss several ways to test an integer u for primality. The first
two tests do not give an absolute guarantee that u is prime, but the probability that a composite
number u meets the test can be made arbitrary small. The second test (of which only an outline
will be given in Section 9.3.3) can guarantee the primality, but it is much dower. For other tests
we refer the reader to [Knut81], Section 4.5.4.

Example 9.12

In Mathematica one can use the functions Random, Prime0, and khile to simulate the above
algorithm. Note that the parity of u is not tested below (this is not an essential part of the above algorithm

anyway).

u=1l;1l=3; |
att = 0;
While[PrimeQ[u] == False, att = att + 1;

u = Random|[Integer, {10 %, 10%*}]1;
Print["prime number is ", u]
Print[att, " attempt(s)"]

prime number is 907
7 attempt (s)

How often does one expect to have to go through Steps 1 and 2 in the above "algorithm" before
obtaining a prime? To answer this question we have to know the fraction of the prime numbers in
the set of odd, I-digit numbers. To this end we quote the Prime Number Theorem (Th. A.2).

Theorem 9.4
Let m(x) count the number of primes less than or equal to x (see Definition A.1). Then

s Ml
iy, o o

With the Prime Number Theorem one can quite easily obtain an approximation of the fraction of
odd, I-digit numbers that are prime. One gets

10! 10/-1
a(10h-n(10-Yy PN.T. T0d ~ gt 2091-10) 2
(10/-10-1)2 ~ (10°-10-172 — 9.4(-1)In10 ~ 1ln10

For instance, with Z = 100, one gets

1=100;
EstimateProb[l_] =

2(9+1-10)/ (9+1#(1-1) +Log[10]);
N[EstimateProb[100], 3]
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0.00BGR

prime generation algorithm above will be 115.

9.4.2 Probabilistic Primality Tests

o The Solovay and Strassen Primality Test

Let p be a prime number. We recall from Definition A.9 that an integer u with p r u (read: p does
not divide u), is called aquadratic residue (QR) modulo p, if the equation

x* = u(mod p),

has an integer solution. If p + u and this congruence relation does not have an integer solution, u
will be called a quadratic non-residue modulo p (NQR). The well known Legendre symbol (u/p)
(see Definition A. 10) is defined by

+1 if uis a quadratic residue mod p,
(%) ={-1 if u is a quadratic nonresidue mod p,
0 if pdivides u.

The Jacobi symbol (%) (see Definition A.11) generalizes the Legendre symbol to all odd integers
m. Let m = IT; (p)* wherethe p;'s are (not necessarily distinct) odd primes. Then, (<) is defined
by

(3) =TL(5)"
In Section A.4, the reader can find al kinds of properties of the Legendre symbol and the Jacobi
symbol. These properties culminate in an extremely efficient algorithm to compute the values of

these symbols. An example can be found there. In Mathematica, both symbols can be computed
with the JacobiSvmbol function:

I u=12703; m= 16361; JacobiSymbol[u., m]

1

As amatter of fact, since min the example above, is a prime number, it is quite easy to compute a
"square-root" of u. For a discussion of how this can be done, we refer the reader to Section 9.5. In
Mathematica one can simply use the Solve function.
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Clear[x];
Solve[{x® == 12703, Modulus == 16361}, x]

{ {Modulus - 16361, x -+ T008}, [{Modulus —» 168361, x = 9353})

Indeed, (+7008)% = 12703 (mod 16361), as can be checked with the PowerMod function.

— "
| PowerMod[7008, 2, 16361]

| SaF=E FRFESCE . SRS _— -

12703

To find a solution of the equation .x* = « (mod m) for composite integers m is, in general, a very
difficult problem and intractable for large values of m (see [Pera86] for a discussion of this
problem).

If mis the product of different primes and this factorization is known (!), one can find the square
root of u by finding the square root of u modulo al the prime factors of m and then combine the
result by means of the Chinese Remainder Theorem. In Section 9.5, this method will be
demonstrated. When m has higher prime powers in its factorization, matters get much more

complicated.
Let p be a prime number, p > 2. We recall from Theorem A.23 that for all integers u:

(&) = w2 (mod p). 9.15)

The Solovay and Strassen Algorithm [SolS77] relies on the following theorem.

Theorem 9.5
Let m be an odd integer and let & be defined by

G = {DErr{m | gedie, m) =1 anfl{:':‘-}zuc'“""':'{modm]:

Then

|G l=m—1 if m is pnime. (9.16)
|G| ={m=1)f2 if m i not a prime, (9.17)

Proof: If m is prime, every integer 0 <u <m satisfies (9.15), and has ged 1 with m, s
|G|=m-1inthiscase

So, we now consider the case that m is not a prime number. Clearly, G is a subgroup of the
multiplicative group
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Z;, = {0<swu<m|gedlu,my=1)}.

It follows (from Theorem B.5) that the cardinality of G divides that of Z;,. So, if G # Z, we can
conclude that |G| < |Z;|/2=9m)/2<(m-1)/2.This would prove the theorem. We
conclude, that it suffices to prove the existence of an element u in Z;, with (£) # «*"~'/2 (mod m).

We distinguish two cases. In [SolS77], the authors omit to consider the case that mis a square. In
the proof below, which is due to J.W. Nienhuys (private communication), Case 1 will cover this
possibility.
Case 1: The number mis divisible by at least the square of some prime number. We write m = p’.s
with p an odd prime, r = 2, and ged(p, s) = 1.
Let u be a solution of the system simultaneous congruence relations:
u=1+ p(modp"), (9.18)
1 =1 (mod s). (9.19)
By the Chinese Remainder Theorem (Thm. A.19) such a solution u exists and is unique modulo m.
Clearly, ged(u, p") = ged(u, s) = 1, 0 ged(u, m) =1, i.eue Z,,.

It follows from (9.18), the binomial theorem, and an argument similar to the proof of Theorem
B.26 that «™ = (1 + p)" = 1 (mod p"). By (9.19) we a0 havethat «" = 1 (mod s). By the Chinese
Remainder Theorem we now have that & = 1 (mod m).

Since u # 1 (mod m) by (9.18), it dso follows that ™! # 1 (mod m). This in turn implies that
1"=12 & + | (mod m). which implies that u can not satisfy (9.15). We conclude that this element u
is amember of Z;,, but not of G.

Case 2: mis the product of s distinct prime numbers, say m = py py ... p,, With s = 2.

Let a be a quadratic non-residue modulo p,. By the Chinese Remainder Theorem there is a unique
integer u modulo m satisfying the system simultaneous congruence relations

u=a(modp), (9.20)
u=l(modp),2=<i=<s. 9.21)

Clearly, ged(u, p;)=1for 1 <i=<s, soue Z;,. To show that u ¢ G, we need to show that (9.15)
does not hold.

Since u=1(mod p;), 2=<i=s, it follows that (r”—’) =1 for these indices. But (ﬁ) = (ﬁ) =-1,

because a is NQR. From the definition of the Jacobi symbol (Def. A.I 1) it followsthat (&)= -1.
In particular thisimplies that (£)=-1(mod pnforany 2<i<s.

On the other hand, (9.21) impliesthat #™~"/2 = 1 (mod p;)forany 2 < i < s.Hence
(u/m) £ "™ Y2 (mod p,)

forany i,2 <i < s, and afortiori (9.15) does not hold.
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We can now describe the Solovay and Strassen Algorithm.

Alporithm 9.6 Solovay and Strassen primality test
input  odd integer m (candidate)
security parameter k
initialize prime=True; i=1;
while prime and [ = k do
begin
select a random integer u, 1 <& <m;
if gediu, m) # 1 or (u /) 2 5™ (mod m) then prime=False;
i=i+1:
end
output prime

In the algorithm above, k can be any positive integer. The probability that k independently and
randomly selected elements u will pass the two tests, given in Algorithm 9.6, while mis not prime,
is less than or equal to 27* by Theorem 9.5. By taking k sufficiently large, the probability that a
non-prime number survives the above algorithm can be made arbitrary small.

See however the Miller-Rabin test in the next subsubsection, where we have 4% as probability that
a composite number is not detected after k tests.

Example 9.13

Totest ifthe oddnumber m = 1234563 isprimewe usethe Mathematicafunctions GCD, Jacobi Symbol,
PowerMod, and Mod.

| m=1234563;
! u=1212121;
i GCD[u, m] == 1
| Mod [JacobiSymbol [u, m] - PowerMod[u, (m-1) /2, m], m] == 0

True
False
The reader is invited to test m = 104729 for primality.

o Miller-RabinTes

The Miller-Rabin test [Mill76], [RabiSOa] is based on the fact (see Theorem B.14) that the
equation x> = 1 (mod p) has only two solutions: x = +1 (mod p).

So, let m be an odd integer that we want to test for primality. Assuming for a moment that misin
fact prime, we have by Fermat's Theorem (Thm. A.15) that any integer a with ged(a, m) = 1
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satisfies a™! = 1 (mod m).

Since m -1 is even, it follows that a"-D2 = +1(modm). If a2 happens to be +1and
(m-1)/2 is even, we can repeat the argument, so in this case we conclude that
a="* = + 1 (mod m), etc. In this way, one can prove the following lemma.

Lemma 9.7

Let p be a prime and write p - 1 = a.2f, with a odd. Let « be an integer in between 1
and p - 1. Then

gither & = 1(mod p)

or #* Y = -1 (mod p) forsome 0 i < f.

To test an odd integer m for primality we proceed as follows. First we write m — 1 = a.2/,witha
odd. Next we pick a random integer u, 2<u<m, and compute from left to right
w,ut? u®? . As soon as one of these numbers is not in {—1, 1}, while the next oneis +1,or
if ¥ £ 1 (modm) we may conclude that m is composite and we can stop.

We repeat the test k times, where k is a security parameter, that will be discussed in a moment.

a.2t

Let m be an integer and let u be such that ¥*-*" = 1 (mod m), j = 1, while w1 (mod m).
Then u is called a strong witness to the compositeness of m. It gives a proof that m is composite.

On the other hand, let m be composite and let u be an integer that satisfies #® = 1 (mod m) or
u?? = —1 (modm) for some 0 < j < f — 1, then this u is called a strong liar (to the primality) of
m.

For an efficient primality test we want composite numbers to have as few strong liars as possible.

Algorithm 9.8 Miller-Rabin primality test
input  odd integer m (candidate)
SECUTity parameter &
initialize prime=True; i=1;
writem =1 =a 2/, a odd,
while prime and i < k do
begin
select a random integerw, 1 <u<m-1;
compute x = (1 modm)
if £ # £ 1 (mod m) then
hegin put j=1
while x & + 1 (modm) and j= f—1
do begin x « (= modm)
if x = | (mod m) then prime=False
J=j+1
end
if x # —1 (mod mt) then prime=False
end
i=i+1; -
end
output prime
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Example 9.14

Let m = 7933. Then m — 1 = 1983.2%. Let uspick a random u and compute «/%4*2' for i =0, 1, 2. We use
the Mathematica functions while and EvenoO to write m -1 as .2/ and use Random, PowerMod ,
Print ,and Do fortheactual test.

(1583, 2}

4225

7932

1

1
We see that no matter how often we run this, we shall always get (+1, +1, +I)or (=1, +1, +1),
or (x, =1, +1).

Example 9.15

Let m = 429. A strong witness of the compositeness of m is given by the choice u = 34, as we can see below.
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m=439;
£ =0;a=m-1; Whila[EvenQ[a], £=£+1ja=a/2]s
{a, £}
u=3id
x = PowerMod [u, a, m];
Do[{Print([x], x = Mod[x*, m]}, {i, 0, £}]

{107, 2}

i4

265
298
1

What remains to be done is to give an estimate of the fraction of strong liars modulo a composite
number. The next theorem says that this fraction is a most 1/4. This means that the probability
that a composite number will not be detected after k runs of the Miller-Rabin test is at most
(1/4). This compares very favorably with the Solovay and Strassen primality test where this
probability can only be upperbounded by (1/2)*.

Theorem 9.9

Let m be a composite number, m #+ 9, Then the number of strong liars in between | and
m — | is at most ¢(m) /4, where ¢ denotes Euler's totient function.

In other words: the probability that after & runs Algorithm 9.8 has not established the
compositeness of a non-prime m is at most 47%,

The proof of Theorem 9.8 (see [Moni80] or [Rabi80a)) is very technical and does not give further
insight to the reader of this introduction.

If m =9, @(m)/4 will be 6 /4, which is lessthan the two "strong liars' —1and +1.

9.4.3 A Deterministic Primality Test

Primality tests that prove in a deterministic way that a certain is prime or not are of course much
slower than probabilistic algorithms of the type discussed in the previous subsection.

We shall now explain the idea behind the deterministic primality test of H. Cohen and H.W.
Lengtra jr. [CohL82]. This test is an improvement of [AdPR83]. We shall not give a complete
description of this test. That would involve too much advanced and deep number theory. We
closdy follow the excellent introductory article by Lenstra [LensH83].
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We start by quoting Fermat's Theorem (Thm. A. 15).

Theorem 9.10 Fermat
Let m be a prime number and let a be any integer. Then

a™ = a (mod m). (9.22)

Let m be an integer that we want to test for primality. A single integer a that does not satisfy
(9.22), provesthat mis not aprime number.

Unfortunately, the opposite is not true. For instance, m = 561 sdtisfies (9.22), while
m=3x11x17. To e this we  first compute  lem(p(3), @(11), (17)
Thend A7 lem(2, 10, 16) = 80. Let a be coprime with 561. It follows from Euler's Theorem (Thm.
A.14) that ¢® is congruent to 1 modulo each of the three prime divisors of 561. The Chinese
Remainder Theorem (Thm. A.19 now implies tha % =1(mod561). Hence,
@' = a.@®) = a(mod 561).

For the values of a that have a factor in common with 561, (9.22) can be proved in a similar way.

The reader may want to verify the above with the Mathematica functions Factor Integer and
PowerMod :

m= 561y FactorInteger[m]
a=543;
PowerMod [a, m, m] == a

i B B e B RS e b i e
True

Composite integers m with the property that a™! = 1 (modm), for al awith ged(a, m) = 1, are
commonly called Carmichael numbers.

The converse of a dlightly stronger statement than Theorem 9.10 does hold however. In the sequel,
(a/ m)denotes, as usual, the Jacobi symbol.

Theorem 9.11
An odd integer m is prime if and only if for all integers a

gedla, m)=1 == 4™ "W = (g /m) (mod m)
Proof: That the relation above holds for prime numbers was already remarked on in (9.15). The
converse was first proved by Lehmer [Lehm76], but it also follows directly Theorem 9.5.
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O

The above theorem is of course not a very efficient primality test for numbers that are more than
100 digits long. Lenstra offersthe following "attractive”" aternative.

Theorem 9,12
An odd imteger m 15 prime if and only if every divisor 4 of m is a power of m.

Proof: This statement iscompletely trivial, sinced = | = m® and d = m = m! aretheonly divisors
of aprime number m. All other numbersin between 1 and m can not be written as power of m.

[l

Clearly it is not this theorem that we want to use as a primality test, but a variation of it does turn
out to be very powerful. We shall show that under certain conditions every divisor of m looks a
little bit like a power of m.

Theorem 9.13
Let m be an integer m that is coprime with 6. Assume further that

(uf m) = ™" (mod m) foru=-1,2, and3, (9.23)

a2 = _1 (mod m) for some integer a. (9.24)

| Then, for each d dividing m

d = m! (mod 24) for some non-negative integer, (9.25)

| In fact, (9.19) can be strengthened to
d =m' (mod 24) for j=0arl. (9.26)

Condition (9.24) can not be omitted in the theorem above. Indeed, m = 1729 = 7x 13 x 19 does
satisfy (9.23), but does not satisfy (9.25). Note that m = 1 (mod 24), therefore, no power of m will
ever be equal to one of the prime divisors of m.

All these statements can be checked with the Mathematica functions Factor Integer,
JacobSymbol, PowerMod, and Mod:
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m=1729; FactorIntegar[m]

Mod[m, 24]
| Mod[JacobiSymbol[-1, m] - PowerMod[-1, (m-1) /2, m], m] == 0
| Mod[JacobiSymbol[2, m] - PowerMod([2, (m-1) /2, m], m] == 0
| Mod[JacobiSymbol([3, m] - PowerMod[3, (m-1) /2, m], m] == 0

[ S——— -

({11003, 1) [1951))

True
True

True

Before we prove Theorem 9.13, we shall illustrate how it can be used to test the primality of
integers m, 24 < m < 242, After the proof we shall discuss generalizations of Theorem 9.13, that
yield efficient primality tests for larger values of m.

Algorithm 9.14 {Cohen and Lenstra limited primality test)

input m, 24 < m < 242,

initialize prime=True,

test 1: if ged(m, 6) # 1 then prime=False

test 2: if (u/m) 2 82 fmodm)  fora=-1,2, ord

then prime=False

test 3: find an integer a with 8™ 1Y = — 1 (mod m);
if no such integer a exists then prime=False

test 4: compute d = (m mod 24).
ifd = 1 and | m then prime=False

outpul prime

Proof: The first matter to be addressed is Test 3. If m is prime, the probability that a random
1 <a<m satisfies (9.24) is 1/2 by Theorem A.23 and Theorem A.20. So, in two tries one can
expect to find an integer a satisfying (9.24). If no such integer a exists, mis not prime.

More can be said about this step. Assuming the Extended Riemann Hypothesis one can even prove
that (9.24) hasasolution «, 1 < a < 2 (logm)?,if mis prime. (See also [Perasg6].)

If m meets the first three tests, we know from Theorem 9.13 that each divisor d of m must be
congruent to 1 or m modulo 24. Since m < 242, we may assume that d < 24 (otherwise consider
n/d instead of d). It follows that d isin fact equal to 1 or to (mmod 24).
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The possibility that 4 = (mmod 24), d > 1, is ruled out by Test 4. It follows that this divisor d
must be equal to 1. We conclude that mis prime.

U

To be able to prove Theorem 9.13 we need the following lemmas. The first gives a necessary and
sufficient condition for two integers m; and m,, both having ged 1 with 6, to be congruent to each
other modulo 24.

Lemma 9.15
Let my and mry be two integers, both coprime with 6. Then

my = my (mod 24) = (u/m)=(u/m)foru=-1 2 and3.

Proof: There are eight integers m, 1 < m < 24, that are coprime with 6, namely 1 5, 7, 11, 13, 17,
19 and 23. For each of these values m we calcul ate thevalues (i /m) for u = —1, 2, and 3 by means
of Corollary A.24, Theorem A.25, resp. Theorem A.27 or with the Mathematica functions
JacobSymbol, which can be applied at once to a whole list of numbers.

m=14{1, 5, 7, 11, 13, 17, 18, 23};
| JacobiSymbol[-1, m]
JacobiSymbol [2, m)
JacobiSymbol[3, m]

It is easy to verify that the matrix with these three vectors as rows has the property that al columns
are different. This shows that the three values (u/m), u=-1,2, 3, uniquely define m from
{1,5,7, 11, 13, 17, 19, 23}.

L

For example, by looking at the second column, we see that m =35 is uniquely defined in
{1,5,7, 11, 13, 17, 19, 23} by thethreevalues(-1,m)=1,(2/m)=—1,and (3/m) = — 1.

Lemma %.16
Let m be any integer. Then

{m, 6) =1 == mt & 1 (mod 24).
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Proof: Since m is not divisible by 3, it follows that m® = 1(mod 3). Similarly, since m is odd, it
followsthat m> = 1 (mod 8). To see this, write m =2.n+ L. Then m* = 2.n+ 12 =4n(n+ 1) + 1.

Since, 3 and 8 are coprime, the statement follows from the Chinese Remainder Theorem.
[}

Of course, we could have checked the above lemma with the Mathematica function Mod as follows

| m= {1, 5, 7, 11, 13, 17, 19, 23} l
Mod [m?, 24] ‘

We are now ready to prove Theorem 9.13.
Proof of Theorem 9.13:

It is a direct consequence of condition ged(m, 6) = | and Lemma 9.16 that each exponent j in
(9.25) can be reduced modulo 2. This shows that (9.25) can be replaced by (9.26)

Next, note that it suffices to prove (9.25) for prime divisors d of m only. Write m — 1 = f .2 and
d~-1=g.2!, where f and g are odd and where k > 0, / > 0.

We shall first prove that { = kand then use Lemma 9.15 to show that either d =" (mod24) or
d = n' (mod 24).

Raise both sides in condition (9.24) to the power g and reduce the result modulo d. Since d [m and
g is odd, one obtains

a/# 2 = (=D = ~1 (modd).

Since we assume that d is prime and since a can not have a factor in common with d or m, it
follows from Fermat's Theorem (Thm. A. 15) that

a*Y gD 1/ = (mod d).

We conclude from these two congruence relations that
k-1<L

Now consider u € {~ 1, 2, 3}. Since g isodd and 4 | m, we have
ul #2702 g2 e (u/m)* = (ufm)(modd).

On the other hand (again because d is prime), we have

_ 5 .11
w2 = rd-on 029 (e/dV = (u/d)(modd).
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It follows from the two last congruence relations that for i = -1, 2, 3
(ujd) = (u/m)lH. 9.27)

Note that we have replaced the congruence relation above by an equality sign. We can do this,
because both hands have value —1 or 1.

If/ =k, relation (9.27) and Lemma 9.15 together imply that d = m = m' (mod 24).

On the other hand, if /> k, the right hand side of (9.27) is equal to 1, which is also (#/1). So,
Lemma 9.15 yields that ¢ = | = »#” (mod 24).

]

Crucia in the application of Theorem 9.13 is the fact that we can replace (9.25) by (9.26). Because
of this, only one condition needed to be tested in the fourth step of Algorithm 9.14. The reason that
(9.25) could be replaced by (9.26) (see Lemma 9.16) is the fact that

ged(n,24) = n?=1(mod24).

Theorem 9.13 can only prove the primality of integers m, 24 < m < 242, For larger values of m one
needs generalizations of Theorem 9.13. As may be expected, the exponent in Lemma 9.16 will
have to be increased in these generalizations. An example of such ageneralization would be

gedim, 65520) = 1 = m!? = 1 (mod 65520).
In order to test 100-digit numbers for primality, one uses

ged(m, ) = 1= m"™0 = | (mod 65520).
where s isthe 53-digit number

26x3Ix52x72x 11 x13x17x19%x31x37x41x43x61x71
XT3x113x127x 181 x211x241x281x337x421 x631x 1009 x 2521.

Note that ¥'m < s, if m has not more than 100 digits. A rough outline of the primality test of a 100-
digit number is as follows.

Algorithm 9.17 (Cohen and Lenstra; outline of primality test)

input m < 101

initialize prime=True,

test 1: if gedim, 5) £ 1 then prime=False

test 2: if m fails any of 67 congruence relations like (9.23)
then prime=False

test 3 compute = (' mods), fori = 1, 2, ..., 5038,

if any of these o divide m then prime=False
output prime
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If mis composite, the agorithm above will sometimes yield a factor of m. The probability that this
will happen however, is very small. In most cases that m is composite, the algorithm will terminate
in Step 2 and one does not obtain a factor of m. The algorithm above can be adapted to test larger
integers for primality. The expected running time is

(]n n)c Inlnn

where ¢ is some constant.

95 The Rabin Variant

In Subsection 9.2.1, it was mentioned that no other general method of breaking RSA is known
than by factoring n. In [Rabi79], Rabin proposes a variant of the RSA system, whose cryptanalysis
can be proved to be equivalent to the factorization of n.

9.5.1 The Encryption Function

In the RSA system, each user U had to sdect a public exponent e, with ged(ey, ny) =1 (see
(9.2)). In Rabin's variant, all users U take the same exponent

ey = 2. 9.28)
We remind the reader of the discussion in Subsection 9.3.1.

Since ged(2, ¢(ny)) = 2, because both py — 1 and gy — 1 ae even, encryption is no longer a one-
to-one mapping. Indeed, if ¢ =m? (mod ny), with ged(c, ny) = 1 and ny = py qu, it follows that
the congruence relation x? = ¢ (mod py) has two solutions, namely +m (mod py) and, similarly,
the congruence relation x? = ¢ (mod g/) will have the two solutions +m (mod g). By the Chinese
Remainder Theorem (Thm. A. 19), the congruence relation

x% = ¢ (mod ny) (9.29)

has four solutions modulo ny. What happens if ged(c, ny) # 1 is an easy exercise for the reader
(see Problem 9.5).

Example 9.16 (Part 1)

Consider the encryption of the messagem = 12345678 modulo the modulus n = 9733 x 10177 = 99052741
(we use the Mathematica functions Prime and PowerMod).
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93052741
43962531

To find the four messages that are mapped to the same ciphertext, we have to combine the four
systems of linear congruence relations x = +m (mod p) and x = £m(mod q) with the Chinese
Remainder Theorem. We have to load the package Number Theory 'Number Theory Functions' to
be able to use thefunction ChineseRemainderTheorem.

12345678

48738630
50314111

BET07063

To check this we calculate
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I PowerMod [ml, 2, nB]
i PowarMod [m2, 2, nB]
| powerMod[m3, 2, nB]
| PowerMod[md, 2, nB]

43962531

We note that the image space of the encryption function is not the whole set (0, 1, ..., ny}. Asa
consequence, this variant by Rabin can not be used in a straightforward way as a signature scheme.
(See the related Fiat-Shamir protocol in Chapter 14.)

9.5.2 Decryption

o Precomputation

How does one decrypt a message ¢ = m? (mod ) in the Rabin variant of the RSA system? As
explained earlier in this section, we do this with the Chinese Remainder Theorem. As
precalculation, one computes integers a and b satisfying

a=1(mod py) and a=0(modgqy), (9.30)

b = 0(mod py) and b=1(modgy). (9.31)
The solutions a and b can easily be found as follows; for instance, to find a, we obtain a = lqy
from the second congruence relation and substitute this in the first congruence relation. One gets

the congruence relaion Lgy = 1 (mod py), which can be solved with the extended version of
Euclid's Algorithm, (Alg. A.8). Seedso Example A.3.

These systems of congruence relations can aso be solved directly with the Mathematica function
ChineseRemainderTheorem  for which the package
Number Theory ‘Number Theory Functions' hasto be loaded first.

Example 9.16 (Part 2)
Continuing with the parameters of Example 9.16, we need to solve
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a=1(mod9733) and a=0(mod 10177),
b=0(mod9733) and b =1(mod 10177).

<<NumberTheory NumberTheoryFunctions®

—

| a=ChineseRemainderTheorem[{1, 0}, {9733, 10177}]

|
| b=ChineseRemainderTheorem[{0, 1}, {9733, 10177}]

45287650
33765092

S0, a =45287650 and b = 53765092.

o Finding a Square Root Modulo a Prime Number

Next, one has to solve the congruence relation x? = ¢ (mod py) (and, similarly, x2 = ¢ (mod gy)). If
¢ =0 the solution is obvious, o, let us assumethat ¢ % 0 (mod py).

For notational reasons we omit the subscript U from now on. It turns out that an immediate
technique to find x is not always possible. We consider three cases.

Cael:p=3(mod4)

If ¢ is the square of some element min Z, (such a c is caled a quadratic residue modulo p; see
Section A.4), the two solutions of x2 = ¢ (mod p) are given by +c®*D/4, Indeed, if we square this
expression we get from Fermat's theorem:

(£cPI4Y2 = PHD2 = ¢ (P2 = ¢ =) A L (mod p).

Example9.17

Consider the prime p = 3571 which is congruent to 3 modulo 4. The number ¢ = 2868 is a quadratic
residue modulo p as can be checked with the Legendre symbol. To verify all these assertions we use the
Mathematica functions Prime, Mod , and Jacobi Symbol.
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p=Prima[500]
Mod|[p, 4] ==3
c= 2868

JacobiSymbol [a, p] == 1

3571
True
True

The solution of x? = 2868 (mod p) isgiven by m = 28687+ = +3234 (mod 3571).

To verify this we use the Mathematica function PowerMod .

m = PowerMod[c, (p+1) /4, p]
PowerMod[{m, -m}, 2, p]

3234

(2868, 2868)

Case2: p =5(mod8)

With a dlight refinement of the method used above it can be shown that the solution of
x? = ¢ (mod p) in this case is givenby +c?*38 if (P~1/4 =1 (mod p) and by +2. c.(4. c)P~9 if
cP=biA = 1 (mod p).

See Problem 9.14, which addresses this case.

Example 9.18

Consider the prime p = 3581 which is congruent to 5 modulo 8. The number ¢ =2777 is a quadratic
residue modulo p as can be checked with the Legendre symbol, which is a special case of the Jacobi
symbol.
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p=Prima[501]
Mod[p, 8] ==5
c=2177; |
JacobiSymbol[e, p] == 1 [

3581
True

True

The solution of x? =2177 (mod p) is given by m = £21770*D = +3100 (mod 3581) because
P~ = [ (mod p) (otherwise the answer would be 2. c.(4. ¢)(?=78),

If [PowerMod[c, (p-1) /4, p] ==1,

m = PowerMod|[c, (p+3) /8, p],

m=Mod[2 c»PowerMod([d o, (p-5) /8, p] P1]
PowerMod [{m, -m}, 2, p]

3100

Cae 3 p=1(mod8)

A fast deterministic algorithm to solve this congruence relation does not exist. We follow
[Rabi79].

In Section A.4 we have introduced QR as the set of quadratic residues modulo p and NQR as the
st of quadratic non-residues modulo p.

Let r and s denote the two solutions +m of the congruence relation x> = ¢ (mod p). Then r + u and
s + u arethe two solutions of (x — #)* — ¢ = 0 (mod p). In other words,

-wl-c=x—(r+w)x—(s+u) 9.32)
over the finite field Z , (=GE(p)).

Since r £ s (mod p), it follows that the field element (r +u)/(s + u) Will never take on value 1
Since the mapping u — (r + u) /(s + u) is one-to-one for u € Z,, u # —s, weconcludethat

{(r+uw/(s+u) | ueZp\{—s}}zl,,\{l}. (9.33)
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The reader may want to verify this by means of the Mathematica functions Table, Mod,
PowerMod, and Union.

{18888 4 e, 157 7 10, 0)

{&G Al v 5017125 13)

{0, 2,34, 56, 7.8, 9,10, 11, 12,713, 14, .15, 156,17, 18]}

It follows from (9.33) and Theorem A.20 that for half of the admissible values of u the element
(r+u)/ (s +u) will bein QR {0} and for the other half it will be in NQR. In the first case, either
u = —ror (by Theorem A.21) both r + « and s + 2« will be an element of QR or they will both be in
NQR. In the latter case, exactly one of them will be in QR and the other will be in NQR.

A property of quadratic residues modulo a prime number that we shall need later on is given by
(A.16):

P2 — 1 = [0 (X ~ ).

Example 9.19
As an example, consider the QR's mod 11. We introduce a newfunction:

{1,3,4,5, 9}

So, the QR's modulo 11 are given by: 1, 3, 4, 5, and 9. We now compute with the Mathematica
function PolynomialMod:
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PolynomialMod[(x-1) (x-3) (x-4) (x-5) (x-9), 11] J
L 3 e e = kb bn Wy vogogwn IR TEER T S SR LR

This is indeed equal to x° ~ 7 modulo 11.

It follows from the above discussion, in particular from (9.33) and (A. 16), that for a randomly
chosen u, u € Z,\{~s},

ged((x — u)? — ¢, x(xXP~ V2 — 1) (mod p) 9.34)
will be
Xx-u-r, ifu+reQr(J{0} and u + s € NQR,
x-u-g, if u+ r e NQR andu+se QR {0},
1, if u+ r e NQR and u + s is NQR,

(x-u)?-c, ifu+reQRU{0} andu+se QR {0}.

The counting arguments above imply that with probability —‘pL_‘;ﬁ =1 one of the first two

possibilities will occur. So, with probability 1/2 we have a non-trivial factor of (x — u)? — ¢. Since
u is known, one dso has found the value of r or s.

Note that in the extremely unlikely, remaining case, namely if u = —s, expression (x — u)? — ¢ will
reduce to x2 + 2 5.x. So, the ged in (9.34) will contain a factor x and the other factor will yield the
solution s.

An example of the above method will be given later.

The expected number of u's that one has to try in this algorithm before finding a solution of
x2 = c(mod p) is the reciprocal of 1/2, i.e. 2. For a discussion of other methods of taking square
roots modulo a prime number, we refer the interested reader to [Peradg].

o The Four Solutions

The final step in the decryption agorithm is of course to use the Chinese Remainder Theorem to
combine each of the two solutions of x*=c(mod p) with each of the two solutions of
x* = c(mod g).

Example 9.16 (Part 3)

We continue with the parameters of Example 9.16. S, p=9733, ¢q=10177,
n = pxgq =99052741, and the solutions of

a=1(mod9733) and a=0(mod10177),
b=0(mod9733) and b =1(mod 10177).
aregiven by a = 45287650 and b = 53765092.
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Let ¢ =9513124 be a ciphertext. Since p =5 (mod 8) and ¢ = I (mod 8), wefollow Case 2 tofind
the square root of c modulo p and Case 3 tofind the sguare root of ¢ modulo g.

Y9513124 modulo p by Case 2
We calculate ¢P~D# = [ (mod p) with the Mathematica functions PowerMod and Mod

868

V9513124 modulo q by Case 3

We want to find the zeros of x? —9513124modulo g. We take a random u in Z, and compute
ged((x —uy? —9513124, x(x9~"2 — 1)) and hope to find a linear factor. We use the Mathematica
functions PowerMod,PolynomialGCD and

2492 + 10155 x + x°

Wetry again
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u=111; x=.;
Polynomial@CD[ (x-u)® - e, x (%373 _ 1), Modulus -> q]

1438 « x

It follows that one of the square roots is given by x — 111 — g = x + 1438 (mod g). S0, by

g =Mod[-111 - 1438, q]

B&28

It follows from the Chinese Remainder Theorem (Thm. A.19) that the four square roots of
2 = 9513124 (mod 99052741) are given by

Mocd[asf +bag, n]
Mcd[axf-b+g, n]
Mod[-a«f +b=+g, n]
Mod[-axf-b=g, n]

6969696
63567091
35485650

92083045

9.5.3 How to Distinguish Between the Solutions

Let f be one of the two solutions of x? = ¢ (mod py) and let g be one of the two solutions of
x* = c(mod qy). Further, let a and b be the solutions of the linear congruence relations (9.30) and
(9.32).

Then, by the Chinese Remainder Theorem (Thm. A. 19), the four solutions of (9.29) are given by
+ f.axg.b(modny).

One would like the sender and receiver to be able to distinguish between the four solutions in such
away that they can agree on one of them. In some cases this can be done quite easily. Indeed, if
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py ad gy are both congruent to 3 mod 4, one has by Corollary A.24 that ~1 is a NQR both
modulo py and modulo gy . Hence, exactly oneof f and —f is QR and the sameistrue for g and
—0. Replacing f by - f and/or g by-g, if necessary, one has without loss of generality that

+f.a+g.b isQRmodpy, +f.a+g.b isQRmodqy,

+f.a-g.b isQRmodpy, +f.a-g.b isQRmodqy,

-f.a+g.b isQRmodpy, -f.a+g.b isQRmodgy,

-f.a-g.b isQRmodpy, -f.a-g.b isQRmodgy.

By Definition A.11 and the second statement in Theorem A.26 we have that
(fa+gb/ny)=(-fa-gb/ny)=1, while (fa-gb/ny)=(-fa+gb/ny)=-1. Of the
two solutions with Jacobi value +1, one will lie in between 1 and (ny — 1)/2, the other will lie
between (ny + 1)/2 and ny — 1 (or both are equal to 0).

We conclude that there is a unique solution msatisfying ¢ = m < (ny — 1)/2 and (m/ny) = 1. So,
sender and receiver can agree to use only messages of this form.

Example9.20 (Part 1)

Let ng =77 and ler ¢ =53 be a received message. Repeating the decryption process explained in the
previous subsection, weget f =2, g =8 a =22,and b = 56.

With the Mathematica functionsMod and JacobiSymbol, we get the following four possible messages
with their respective Jacobi symbol value.

nB =773

f=2;g9=8;

a=22; b=56;

ml=Mod[axf+b+g, nB];

m2 =Mod[avwf-bwg, nB];

m3 =Mod[-a+f+b+g, nB];

mé =Mod[-a+f -bwg, nB];

Print[ml, " *, JacobiSymbol[ml, nB]]

Print[m2, " ", JacobiSymbol[m2, nB]]

Print[m3, * *, JaccbiSymbol[m3, nB]]
| Print[m4, " ", JacobiSymbol[m4, nB]]

30 -1
58 1
19 1
47 -1

We conclude that m = 19 is the unique solution with (m/77) = 1 and 0 <m < 33, so m =19 was
the message transmitted by the sender.
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If py (or gy) is congruent to 1 modulo 4, one can dill agree to use only messages with
O<m<(ny-1)/2. To ge&t (m/ny)=1 the sender and receiver could restrict themselves to
shorter messages, say 20 digits shorter, and fill up the remaining 20 digits in such a way that the
resulting message has Jacobi symbol 1 modulo ry.

9.54 The Equivalence of Breaking Rabin's Scheme and Factoring n

We shall now show that breaking Rabin's variant of RSA is equivalent to factoring n,. Of course,
when the factorization of ny is known to the cryptanalist, Rabin's system is in fact broken, because
the cryptanalist can use the same methods to decrypt as the receiver can (see Subsection 9.5.2).

Theorem 9.18

Let n = pxg, where p and g are prime. Let R denote an algorithm that for every c,
which is the square of an integer, finds a solution of = = ¢(mod n) with Fin) operations.
Then a probabilistic algorithm exists that factors n with an expected number of
operations that is 2 (F(n) + 2 log, n).

Proof: Select a random m, 0 < m < n, compute ¢ = m? (mod n) and solve x* = m (mod n) with
algorithm A in F(n) steps. Let k be the solution found by R. The following four possibilities each
have probability 1/4:

1) k=+m(modp) and k=+m(modgqg),
i1} k=+m(modp) and k=-m(modq),
iii) k= -m{(modp) and k= +m(modqg),
ivy k=-m(modp) and = -m(modqg) .

Indeed, there are four different messages that are mapped to ¢ and they are al four equally likely.

In caseii), gedtk —m, n) = p and in caseiii) gedk —m, n) = q. So, the calculation of ged(k — m, n)
will yield the factorization of n with probability 1/2. This computation involves less than 2 log, n
calculations by Theorem A.9, therefore, each choice of m involves at most F(n)+2log,n
operations.

Since the probability of successis 1/2, one expects to need two tries.

Example 9.20 (Part 2)

Suppose that n» =77 and that the value of m that we have picked is 30. Then
¢ =30° = 53 (mod 77). Now assume that Algorithm A findsk = 19 as solution to x* = 53 (mod 77)
(see Example 9.20for these parameters).

Then one of thefactors of n will befound from ged(k —m, n). This would also have happened if A
had found k = 58, but not with 30 or 47.

All these calculations can easily be checked with the Mathematicafunction GCD.
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na=T77; m=30;
GCD[19 - 30, n] i
GCD[58 - 30, n] i
| @CD[30 - 30, n]
GCD[47 - 30, n]

11

27

9.6 Problems

Problem 9.1
Consider the RSA system with n = 383 x 563 (so r = 215629) and public key e = 49. So, a plaintext m will
be encrypted into ¢ = E(m), where

E(m) = m* (modn).

Prove that every ciphertext ¢ satisfies E'%(c) = ¢ (modr). (Hint: use Fermat's Theorem and the Chinese
10

Remainder Theorem.) The notation E'%(¢) stands for E(E( ... E(c))).
Give an easy way for a cryptanalist to recover plaintext m from ciphertext c.

Problem 9.2
Verify that the RSA secrecy system (or signature scheme) works correctly when a message m has a non-
trivial factor in common with the modulus n = px g, i.e. show that

(m®)? = m(modn)
when ged(m, n) = p or q (asalways e and d denote the public resp.secret exponents).
(Hint: useFermat's Theorem and the Chinese Remainder Theorem.)

Problem 9.3

Consider the RSA cryptosystem with modulus n = px g and public exponent e.

a) Prove that the number of solutions of the equation m* = 1 (mod p), when udivides p -1, is exactly u
(hint: use the multiplicative structure of GE(p), Theorem B.20)

b) Show that each solution of m¢~! = 1 (mod p) is a solution of mecde-1.r~1) = | (mod p) and vice versa
(use Fermat's Theorem).
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c) Prove that the number of solutions of the equation m® = m (mod p) isgivenby 1 + ged(e— 1, p - 1).
d) Prove that the number of plaintexts m satisfying

m¢ = m(modn)

(in which case encryption does not conceal a message), is given by
{l1+gedle-1, p—D){l +ged(e -1, g- 1)}

(Hint: use the Chinese Remainder Theorem.)

Problem 9.4

Demonstrate the principle of the Solovay and Strassen primality test on the number m = 33. The number m
has been made small in this problem to keep the calculations simple. So, do not make use of numbers that
"incidentally" have a factor in common with m.

Problem 9.5
Give a Mathematica implementation of Algorithm 9.14 and test it out for two values of m, 24 < m < 242,

Problem 9.6 ¥
Give acomplete factorization of n = 110545695839248001 by means of Pollard's o Algorithm.

Problem 9.7
Complete Example 9.7. (Hint: extend the search to (- 105, 105).)

Problem 9.8
Apply the Wiener attack to n = 6089471299 and e = 3097347557.

Problem 9.9
Find a strong liar for the composite number m = 85.

Problem 9.10

Suppose that Alice has sent the same secret message to B, C, D, E, and F by means of the RSA system. Let
the public moduli of these people be given by ng = 324059, nc = 324371, np = 326959, ng = 324851, and
nr = 324899. Assume that they al have the same public exponent e = 5.

Let the intercepted messages be given by cp = 68207, cc = 96570, cp = 251415, cg = 273331, resp.
cr = 154351,

Determine Alice's message (see Example 9.8).

Problem 9.11

Suppose that Alice has sent secret messages my = m and my = m* + 10m + 20 to Bob by means of the RSA

system. Let Bob's modulus be ng = 483047 and ep = 3. Suppose that you have intercepted the transmitted

ciphertexts ¢, = 346208 resp. ¢; = 230313 and that you know the above relation between m; and m;.
Determine m, (see Example 9.10).

Problem 9.12

Consider the Rabin variant of the RSA system. So, only the number n is public.

Suppose that a message m, | < m < n, has been sent that has a non-trivial factor in common with n.
How many possible plaintexts will the receiver find at the end of the decryption process?
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Problem 9.13

The Rabin variant of the RSA system is used as cryptosystem with n = 17419 x 17431. Demonstrate the
decryption algorithm of this system for the ciphertext ¢ = 234279292.

Which solution will come up if the method described in Subsection 9.5.3 is being followed? Why can this
method be applied?

Problem 9.14

Let p=5(mod8) and let ¢ be a quadratic residue modulo p.

a) Show that ¢»~Y4 = £ 1 (mod p).

b) Show that the solution of x2 = ¢ (mod p) isgivenby +cP*38 if P=D% = | (mod p).

c) Show that the solution of x* = ¢ (mod p) is given by £2 ¢4 c)?~"8 if P~ = —1 (mod p). (Hint: use
Theorem A.25 which impliesthat 2 is not a quadratic residue modulo p)
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10 Elliptic Curves Based Systems

[t will turn out in this chapter that discrete-logarithm-based cryptosystems can aso be defined over
elliptic curves. For RSA-based systems the same can be done, but there seems to be little reason to
do so. For discrete-logarithm-like systems over elliptic curves, it may very well be that smaller
parameters are possible with the same level of security as the regular systems over finite fields.

However, many questions regarding EC-systems are still open a this moment, making it unclear
what the future of these systems will be.

10.1  Some Basic Facts of Elliptic Curves

Let GF(g) be afinite field with q elements, where ¢ = p™. The number p is prime and is called the
characteristic of GF(g). If m =1, we have GF(g) = Z,,, the set of integers modulo p.

The so-called (affine) Welerstrass equation is given by
Y +uxy+vy=x+ax+bx+c. (10.1)

It is defined over any field (like R or C), but for cryptographic purposes we shall always assume
that the coefficients are in GF(q).

If p#2, one can simplify the Weierstrass equation by means of the transformation
y— y—(u.x+v)/2. One obtains (with new valuesfor a, b, and ¢

V=P +axt+bx+c (10.2)
If dso p # 3, one can apply x = x — a/3 to further reduce this form to:

yY=x3+bx+c (10.3)
If p =2, two standard simplifications of (10.1) are possible. They are given by

Y+ry=x +axt+e (10.4)

Y +vy=x+bx+ec. (10.5)

Definition 10.1

An elliptic curve & over GFlg) is defined as the set of points (x, ¥) satisfying (10.1)
together with a single element £, called the poinr ar infiniry.

To verify if a point (u, v) lies on a particular eliptic curve, say y* = x> +2x + 3 over Zs, is quite
easy.



214 FUNDAMENTALS OF CRYPTOLOGY

p=5;

a=0;b=2;¢c=3;

EC[x_, v ]=¥'-x-asrx’-bax-cj ‘
{u, v} = {1, 4};

Mod[EC[u, v]. p] ==0 ‘

True

To see if & contains a point with a given x-coordinate we can use the Mathematica function
Solve. Since the Weierstrass equation is quadratic in y, there will be a most two values of y (see
Theorem B. 14).

p-ll]
Sulvu[{y’ s=x?-5x%+3, x==13, Modulus == p}, {¥}] [

{{Modulus -+ 11, x—+3, ¥y= 2}, (Modulus =+ 11, x=+ 3, v+ 9}}

So, x = 3 leads to thevalues y = +2, i.e. to the points (3, 2) and (3, 9). The reader should try some
other values of x.

The reader is referred to Subsection 9.5.2 to find a discussion on how the square root of a
quadratic residue modulo a prime number can be determined by mathematical means.

It follows from the above that apoint P = (x, y) on an elliptic curve is completely characterized by
its x-coordinate and the "sign" of y. This reduces the storage requirement of P by amost a factor
2. Ifg=p, p>2, the "sign" of y can be defined as being plusonewhen 0 < y<(p-1)/2 and &
minus one otherwise.

If g = p™, p>2, onecan use likewise the "sign" of the left-most nonzero coordinate in the p-ary
representation of y.

For small values of p, one can find all points on & by trying out al possible value of x and check
in each case if (10.1) has a solution. Below, we use the Mathematica functions Flatten, Table,
and Solve.

Clear[x, ¥]r '

i p=11; '
| Flatten| {
‘ Table[ Sclve[ {y® == 2*-5x + 3, x==u, Modulus ==p}], E
{u, 0, p-1}], 1] |
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{{Modulus -+ 11, v+ 5, x-+ 0}, (Modulus-+11, v+ &6, x>0},
{Modulus +11, v =1, x+ 2}, {Modulus > 11, ¥ =10, x =+ 2},
{(Modulus = 11, y= 2, x= 3}, {Modulus->11, ¥y= 9, x=3},
{Modulus -+ 11, ¥+ 5, x+ 4}, {Modulus—+11, y =+ 6, x =4},
{Modulus +11, v+ 2, x5}, {Modulus =11, y-+ 9, x=+5},
(Modulus -+ 11, vy =5, x =+ 7}, (Modulus »11, v+ 6, x> 7},
{(Modulus +11, v +4, x -9}, {Modulus =+ 11, v+ 7, x> 9}}

We see that for p = 11, there are 14 solutions. There is a (imprecise) probabilistic argument to
predict the number of points on &: for each value of x, equation (10.1) will have two solutions with
probability 1/2 and no solutions with probability 1/2, leading to about g solutions.

As supporting evidence of this statement, consider the right hand side in (10.2) and assume that
p>2. If, for a given value of x, the right hand side is a square in GF(p) (there are (p—1)/2
squares, namely all even powers of a primitive element in GF(p); or see Theorem A.20), there will
be two solutions for y. If the right hand side is 0O, there is only one solution, namely y =0.There
are no other solutions.

A famous theorem by Hasse [Silv86] states:

Theorem 10.1 Hasse
Let N be the number of points on a elliptic curve over GFig). Then

|IN-(g+1)| s2vq

Note that in the example above, we have indeedthat | 14 - 12| <211

In genera, it is very hard to find the precise number of points on an elliptic curve. There is
however an algorithm by Schoof [Scho95] which computes this number (see also [Mene93] for a
further discussion).

Although it is not necessary for the understanding of the rest of this chapter, we like to remind the
reader of the possibilities in Mathematica to make calculations over fields GF(p™) with m > 1.

Example 10.1

As an example of a curve over GF(2*) = GF(2)[e]/( + &’ +a*) (see Table B.2), we can consider the
equation y? =x® +ax +1. To test if (@?, @') is on the curve we first load the Mathematica package
Algebra ‘'FiniteFields'.

<< Algebra FiniteFields"
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fis =GrFr[2, {1, 0, 0, 1, 1}]1:
al = £16[{0, 1, 0, 0}];
EC[x , ¥y ]=y'-x-alsx-1; !
(u, v} = {a1%, a1l);
EC[u, ¥] |

Indeed, (/%) = (a?)’ +a(a?) + 1, as can be checked with

al® +al?s1
(a114)?

10.2 The Geometry of Elliptic Curves

The reason that we are interested in elliptic curves is the addition operation that can be defined on
them. This operation will have O € & (the point a infinity) as its unit-element and will have the
structure of an additive group.

To be able to define a suitable addition on &, we shall make use of the property that any line
intersecting & in at least two points, will intersect it in a third. Here, a tangent point should be
counted twice. The point O at infinity is the intersection point of al vertical lines.

We shall first show a picture of an elliptic curve over the reals. We use the Mathematica function
ImplicitPlot forwhichthe package Graphics ‘ImplicitPlot hasto beloaded first.
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<< Graphics  ImplicitPlot’ |

| elliptic = ImplicitPlot[y® ==x"-5x+ 3, (x, -3, 3}]

4

=1
L
Lt

-4

The reader is invited to change the coefficient of x in the function plotted above from -5 to -4
and -3 and observe how the graph changes.

To see how the line y = x + 1 intersects y? = x* — 5 x + 3 we use the additional functions Epilog
and Line.
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-4l

To find the intersection points numerically, one can use NSolve.

{{y=»=-1., x=+2.}, {y—+0.381966, x—+ 0.618034},
{¥ = 2.618B03, x> -1.61803}}

When the curve is defined over Z,, we can find the intersection points of a line with the curve by
means of the Solve function as follows.

{{Modulus -+ 11, y+1, x =+ 2},
(Modulus + 11, y -+ 2, x=+ 3}, {Modulus=+11, y=+6, x=+7}}

A different way to find the intersection points of aline y = u.x+ v with an elliptic curve is to
substitute y = u.x + v in (10.1), obtain athird degree equation in x and find its factorization.
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Example 10.2

Suppose that we are working over Z;,. Tofind the intersection points of y =4x + Iwith y? =x> —=5x +1,
we factor (4 x + 1)? — (X — 5 x + 1) with the Mathematicafunction Factor.

p=11;

Clear [x];

ec=x-5x+3;

1l=dx+1;

Factor[il® - ec, Modulus -> p]

10 (2 +x) (T +x) (B +x)

We get as x-values of the intersection points. -2, -7, and -8 From y =4x+/ wefind the
solutions (9, 4), (4, 6), and (3, 2).

| x=Mod[{-2, -7, -8}, p]
I y=Mod[d+x+ 1, p]

{9, 4, 3]

o A Line Through Two Distinct Points

Let Py =(x, y;) and P; = (x2, y2) be two distinct points on an elliptic curve & (both not at
infinity). Let £ be the line through P, and P,. How do we find the third point on the intersection
of Lwith &7 If x; = x; and y; = — y,the point O will be defined as this third point.

So, let us consider the case that x; # —x;. Theline £ though P, and P, is given by:

Y-y =Ax—x),  withA=222 (10.6)

X=X}
We discuss two cases.

p#2

Assume that the elliptic curve is aready in reduced form (see (10.2)). Substitution of (10.6) into
this relation yields (A(x — x;) + y;)? = x* +a.x*> + b.x + ¢. Since we know two roots of this third
degree equation, there must be a third one (to be caled x3). So, the same equation can aso be
written as (x — xy) (x — x3) (x — x3) = 0. Comparing the coefficient of x2in both notations, we get

x3=A—a-x; —x3, (10.7)
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and, by (10.6),
y3=Ax3 —x)+y). (10.8)

Example10.3

Consider the élliptic curve y2 =x* +11x* +17x +25 over Z;,. The points P; =(x;, y1) =(2, 7) and
Py =(x2, y2) = (23, 9) lieon &as can be verified with the Mod function asfollows;

The slope A of the line £'through P, and P; is given by (10.6): 2 = 25 =2 x3 =6. Here we use

the PowerMod function to get the multiplicative inverse of 21 modulo 31.

25 SR

That the point P; = (0, 26) indeed lies on & can be verified with the calculation
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True

p=2
We now assume reduced form (10.4). As above, we substitute (10.6) into (10.4) and look at the
coefficient of x2. We get

x3=a-A2—-A-x —x, (10.9)
y3=A0n —x) +y. (10.10)

Note that al minus signs can be replaced by plus signs, when p = 2.

o A Tangent Line

There is one more possibility that we want to discuss, namely that P, = (xy, y;) = P,. Let Lbe the
tangent line to &€ though P. This meansthat £ meets £in P = (x;, y1), and that the dope of Lis
the same as the derivative of &in P. One usually views P as point of intersection with multiplicity
two.

Over R this situation looks like:
ImplicitPlot[y' ==x-5x-3, {x, -3, 4},

PlotRange -> {-4, 4},
Epilog -» Line[ {{-3, 3}, {4, -4}11]

* /

At this moment we exclude the possibility that £ is a double tangent line to & (meaning that its
multiplicity is 3). If it were, the tangent line already intersects £in apoint with multiplicity 3.
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In the sequel, when we spesk of taking a derivative of a polynomial over afinite field we mean to
take the formal derivative and then reduce the coefficients modulo the characteristic of the field.

For instance, in GF(3™) the derivative of x*+2x3 +x? + Lis given by 4x*+6x?+2x which
reducesto x* +2 x.

p#2

The dope of the tangent line through apoint P = (x;, y;) on the curve y? = x* + a.x? + b.x + ¢ (see
(10.2)) is given by the vaue of y' determined through implicit differentiation, 0
2 y1.y' = 3x} +2a.x; + b. We conclude that the tangent line through P is given by
3x3+2ax)+b

2y

To find the third point of the line £ through & we can till use (10.7) and (10.8).

y—y =Ax—-x), with A= (10.11)

p=2
The slope of the tangent line through a point P = (x;, y;) on the curve y? + x.y = x> + a.x® + ¢ (see

(10.4)) is given by the value of y' determined from 2 y;.y'+ y; +x1.y' =3x3 +2a.x, i.e. by
y1 +x1.y" = x3. Hence, the tangent line through P is given by

x2+v s
—yi=Ax-x),  withA=Z2h =y 40 (10.12)
y Xy X

To find the third point on Lthrough &we observe that (10.9) (take x; = x;)reduces to

x3 = a—/\z—/\=a+xf+(l—ll)2+xl+i—:=
a+x2]+x1+y2'—+:2l"v—'“&4)a+x21+x1 +"?;‘i%"211
ie
X=X+ (10.13)
and that (10.10) reduces to
=+ n+ ) (10.14)
Example 104

Consider the eliptic curve y? +x.y = x° +a? x* + @over GF(16), where @* = @ + 1. The point (2?, @'?)
lies on this curve, as can be easlly checked, once we have loaded the Mathematica package
Algebra 'FiniteFields '.

<< Algebra’ FiniteFields’
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{0.0,1,1),

{0, 0, 1, 0);

0, (x3, y3) =(2f, ¢?). This can all be checked easily.

S R

{0, 0,1, 0},
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10.3 Addition of Points on Elliptic Curves

In the previous section, we have shown how the line through two points on an elliptic curve &
intersects that curve in a third point and how that point can be computed efficiently. The same
holds for aline that is tangent to &, with the understanding that the tangent point is counted twice.

We are now ready to define an addition on &. The geometric idea behind the formulas below is the
following. First of al, if P = (x, y) isapoint on an elliptic curve & determined by (10.1), then

-P=(x,-y—ux-v)
Ifu=v=0,likein (10.2), this reduces to
-P=(x, -y).

Geometrically, this can be described as follows: compute the line £ through O and P. It intersects
& in athird point, namely ~P. As noted before, the point O at infinity should be interpreted as the
intersection point of al vertical lines.

To add points P, and P,, both not at infinity, execute the following two steps:

1) Compute the line £ through P; and P, (or tangent line though Py, if Py = P3) and find the third
point of intersection with &. Let this be Q.

2) The sum P, + P, is defined as P; := ~Q.

The point O serves as unit element of this addition and is its own inverse.
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Definition 10.2 addition
Let P be a point on an elliptic curve & (5o, it defined by (10.1)), with O as point at
infinity. Then we define the sums

P+0=0+P=P,

Further, let Py = (x;, v;) and P; = (x3, ¥2) be two points on &, both not 0. Then the: sum
Py + P, is defined by

PPy=-0Q if x; # x3.
Here, (2 is the third point of intersection of & with of the line £
through (x;, ¥) and (x3, ¥1).

i) Py = - if Py = P and the tangent line through P iz a single tangent.
Here,  is the third point of intersection of £ with the tangent £
through P.

i) Py = =P if P; = P; and the tangent line through P is a double tangent.

iv) Ps=0 if Py ==Ps.

Note that possibility iii) can be interpreted as a specia case of ii).

We shall depict the two most typical cases, namely i) and ii), by means of elliptic curves over the
reals. We need again package Graphics ‘Implicitplot'.

<< Graphics’ ImplicitPlot’
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.

-4

The points on an elliptic curve together with the addition defined above form an additive group.
We shal not prove that here. The reader is referred to [Mene93] or [SIIT92]. Note that the only
non-trivial part to verify is the associativity of the addition.

€ ot
A ¥

Theorem 102 L e
mmmmmma mmmmmmhmmz
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L

With the following Module one can compute the sum of two points (the point O at infinity will be
denoted by {O}) on an dliptic curve over GF(g) with characteristic p > 2. We make use of
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formulas (10.6), (10.7), (10.8) and (10.11). and use the Mathematica function Which with the
same order of cases asin Definition 10.2.

L9
(7, 6)
(4. 5)

{4, 6}
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et
{3, 4}

Observe that the tangent through (4, 6) is adouble tangent, so by Definition 10.2, iii)
(4,6)+(4,6)=-(4,6)=(4,5).

As is common in additive groups, 2 P will stand for P + P,smilarly 3 P stands for P + P + Petc.
Similarly, 0P stands for O and —n.P stands for —(n.P). These multiples of P are often called the
scalar multiples of P.

The order of P is the smallest positive integer nwith n.P = 0. Since &€ is afinite group, this notion
iswell defined. The st {0, P, 2P, ..., (n - 1) P} isacyclic subgroup of &. It follows that n divides
[E [ (see Theorem B.5).

Now that we have the Module EllipticAdd, defined above, it is quite easy to compute n.P, n = 1.
recursively as follows:

P=llia=0;b=6c=3;P={(9, 4}

£[1] =B

f(n_] s=£[n] = EllipticAdd([p, a, b, ¢, F, f[n-1]]1s

Table[f[n], {n, 1, 5}] // ColumnForm

{9, 4}
{7. &)
{7 =)
(9. 7}

{o]

So, on thecurve y? = x* + 6 x + 3 over Z;, thepoint P = (9, 4) has order 5.

In the next section, it will be important to have points available on an elliptic curve Ethat have a
very large order. If the cardinality of & is known and of a specia form, for instance |&] is asmall
multiple of alarge prime factor, then it is quite easy to find pointson &with a known large order.

As an example, consider |&|=3x7919 = 23757. Suppose that 3 P # O. Then P has order 7919
or 23757. 1f 7919 P = 0 then P has order 7919, otherwise 3 P will have this order. To check these
assertions, apply Lemma B.4 and Theorem B.5 (rewrite the multiplicative notation in the additive
notation that we use here).
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104  Cryptosystems Defined over Elliptic Curves

Mogt notions in this section can be viewed as direct translations of notions introduced in Chapter
8 but now using addition over an elliptic curve as principa operation instead of modular
multiplication. Modular exponentiation will translate into scalar multiplication.

For the above reason, it will often suffice tojust present the new formulations without copying al
the proofs.

In [Demy94] one can find a RSA-like cryptosystem defined over elliptic curves. However, to break
the system it is sufficient to factor its modulus. Since the original RSA system had the same
security restriction and is faster in its calculations, there seems to be little reason to use this
generalization of RSA to elliptic curves.

10.4.1 The Discrete Logarithm Problem over Elliptic Curves

We have seen in Section 10.3 how to add points on an elliptic curve &. This is an operation with
relatively low complexity. To compute scalar multiples of a point P, say n,P for some integer n, we
can use repeated addition, but it is much more efficient to copy the ideas of Subsection 8.1.1.

Example 105

Take n=171. Its binary expanson is 10101011, as follows from the Mathematica function
IntegerDigits.

limtwnrnig‘itl{l'?l; 2]
i R TR e e T N

So, to compute 171 P, it suffices to compute

2P=P+P,
4P=2P+2P,
8P=4P+4P

J28P =64P +64P

and add the suitable terms. This can be done on thefly asfollows:
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Clear[F];
2(2(2(2(2(2(2P)+P)) +P)) +P) +P

171 P

Note that we only added partial results to themselves or to P. (The reader may want to look at
Example 8.3for the analogous modular arithmetic problem.)

Of course, addition chains may further reduce the complexity of these calculations.

The opposite problem of computing scalar multiples of a point is the following:

Definition 10.3

Let & be an elliptic curve. Let P be a point on £ and let (0 be a scalar multiple of P.

The discrete logarithm problem over an elliptic curve is the problem of determining n
for given P and { from the relation

nP=0,

Although we shall see more efficient ways to solve (10.15) than by simply trying n =1, 2, ..., al
the methods have a complexity of the form n?, @ > 0, and 0 they are exponentially slower than the
(logarithmic) complexity of computing n.P out of P.

10.4.2 The Discrete Logarithm System over Elliptic Curves

Now that we have formulated the discrete logarithm problem over elliptic curves, we can describe
the analogue of the Diffie-Hellman key exchange protocol (see Subsection 8.1.2).

As system parameters one needs an elliptic curve Eover afinitefield GF(g)and a point P on the
curve of high order, say the order n of P is 150-180 digits long.

Each user U of the system, selects a secret scdar my, computes the point Q@ = my P and makes
Oy public. Alice and Bob can now agree on the common key K45 = m4 mg P. Alice can find this
common key by computing m4 Qp with her secret scalar my4 and Bob's public Qp.Bob can do
likewise.

This system is summarized in the following table.
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system elliptic curve £ over GF (q)
parameters point Pon & of high order
secret key of U my
publickeyof U Qu =my P
common key of A and B Ka,p =mamgP
Ann computes my QOp
Bob computes mg Qa

The Diffie-Hellman Key Exchange System over Elliptic Curves
Table 10.1

Example 106

Consider the lliptic curve & over Zys; defined by y? =& +100x? +10x + 1. The point P = {121, 517}
lies on it as can be checked with the Mathematicafunction Mod.

P =863;
la=100;b=10;c=1;
x=121; ¥ = 517;
Mod[y* - (W +axx® +bax+c), p] ==

True

The order of P is 432. To show this, we check that 432 P = O and that (432/p) P # O for the
prime divisors of 432. We make use the binary expansion of these coefficients (to befound with the
function IntegerDigits). We also use of the EllipticAdd function defined in Section 10.3 and
the Do function.

FactorInteger[432]
IntagerDigits[432, 2]
IntegerDigits[432 /2, 2]
IntegerDigits[432 /3, 2]

{{2. 4}, {3, 2}}
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{1, 0,0,1,0,0,0, 0}

{9}
(19, 0}
{341, 175}

Let Alice choose my = 130 and Bob mg =288. Then Q4 = (162, 663)and Qp = (341, 688), as can
be checked asfollows (note that we have chosen very friendly secret scalars).

(162, 663)
(341, €88)

Alice can compute the commen key Kag with the calculation Kag =ma Qg where my = 130 is
her secrer key. She finds

{341, 688}
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Likewise, Bob can compute the common key Ksp with the calculation K4 g =mp Qs where
mp = 288 is his secret key. He alsofinds
OB[0] = {162, 663};
QB[i_] ==
QB[i] = EllipticAdd([p, a, b, ¢, QB[i -1], QB[i-1]];
EllipticAadd(p, a, b, o, QB[8], QB[5]]

{341, 688)

Now that the Diffie-Hellman key exchange system over elliptic curves has been described, it really
is a straightforward exercise to show that the EIGamal protocol and the other systems, described in
Section 8.2, can be rewritten in the language of eliptic curves.

10.4.3 The Security of Discrete Logarithm Based EC Systems

In Section 8.3, various methods are described to take the discrete logarithm over a finite field. The
Pohlig-Hellman algorithm, the baby-step giant-step method, and the Pollard-pmethod can al be
directly trandated into elliptic curve terminology: just replace modular exponentiations by scalar
multiplication on the elliptic curve.

At the time of this writing, the index-calculus method has defeated any attempt to transfer it
efficiently to the elliptic curve setting (see [Mill86]). That is of great cryptographic significance,
because the index-calculus method was the only one with a subexponential complexity. This
means that in regular discrete-logarithm-like systems the index-calculus method is the governing
factor in determining the size of its parameters (to keep the system computationally secure). Since
the index-calculus method is no longer around in the elliptic curve setting, one can afford much
smaller parameters to achieve the same level of security.

At the time of this writing, the XEDNI method has been proposed [Silv98] as an alternative to
solve the eliptic curve discrete logarithm problem. Further anadysis is needed to determine the
implications of this method.

There are specia attacks on discrete logarithm based elliptic curve cryptosystems. These attacks
make it necessary to avoid special classes of elliptic curves. In particular, one should not use
singular curves,

supersingular curves,
anomalous curves.

We shall not describe these attacks (see [MeOkV93], [SatA98], and [Smar98]. In each case the
logarithm problem over an elliptic curve can be translated to the logarithm problem over a finite
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field (or an even simpler problem). We shall explain in one case that one can counter these attacks
by simply avoiding these special curves.

Before we do so, we need to introduce a new notion. We homogenize the Weierstrass equation
(10.1). This means that we multiply each term in it with the smallest power of z in such away that
al terms have the same degree:

Flx, y,2)= Y z+uxyz+vyz - ~ax’z-bxz-cz* =0. (10.16)

Note that if (x, y, 2) satisfies (10.16), then so does A(x, y, z). For that reason, one often normalizes
solutions to (10.16) by requiring the right-most non zero coordinate to be equal to 1

Points (x, y) that satisfy (10.1) now lead to solutions (x, y, 1) of (10.16). The (somewhat
mysterious) point O at infinity can be represented by (0, 1, 0).

A point on acurve & is acaled singular if all partial derivatives 8F /dx, dF /8y, and OF [0z are
zero. An elliptic curve can not contain two singular points. If a curve & contains a singular point
then it iscalled asingular curve, otherwiseit is caled anon-singular curve.

With some effort one can show that (10.2) defines a non-singular curve if and only if the cubic
expression on its right side has no multiple roots. For (10.3) with ¢ # 0,this is equivalent to the
condition 4 b + 27 ¢2 # 0 (mod p).

When p = 2, (10.4) gives non-singular curveswhen ¢ # 0 and (10.5) when v £ 0.
The above means, that it is quite simple to test if a curve is non-singular or not.

We shall not give a definition of what supersingular means. Here it suffices to know that curves
defined by (10.5) are supersingular and need to be avoided. Again, it is easy to avoid these curves.

Finally, anomalous curves are elliptic curves & over Z,, with the property that | €1 = p.
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105 Problems

Problem 10.1%
How many points lie on the elliptic curve defined in Example 10.1?

Problem 10.2
Find the intersection points over Z3; of the lines y=4x+20 and y=4x+21 with the elliptic curve
¥ =x +25x+10.

Problem 10.3
Find the line that is tangent to the elliptic curve y? = x* + 11 x2 + 17x + 25 over Zs, in the point (2, 7).
Where else does this line intersect the curve?

Problem 10.4¥

Consider the elliptic curve & defined by y? = x* + 1122 + 17 x + 25 over Zy,.

Check that the points P = {12, 10} and Q = {25, 14} lieon &. What is —P? Compute the sum of P and Q
without using the Mathematica procedure presented in Subsection 10.3.

Problem 105
Consider an ellipticcurve &. Let P on & have order n. What is the order of —P?

Problem 10.6¥

Consider (again) the elliptic curve & defined by y? = x* + 11x% + 17 x + 25 over Z;.

Determine the orders of P = {27, 10} and Q = {24, 28}. What can you conclude about the cardinality of &
(hint: use Theorem B.5)?

What is the cardinality of & (hint: use Theorem 10.1)?

Construct a point of maximal order from P and Q.

Problem 10.7¥
Duplicate Example 106 for the elliptic curve & over Zs; defined by the equation
v =3+ 111x + 11 x+ 1. Usefor P apoint of order a least one hundred.



11 Coding Theory Based Systems

11.1  Introduction to Goppa codes

In this chapter it is assumed that the reader is familiar with algebraic coding theory. A reader
without this background can freely skip this chapter and continue with Chapter 12. From
[MacWS77] we recall the following facts about Goppa codes.

Theorem 11.1
Let G(x) be any irmeducible polynomial of degree r over GF (2*). Then the set

[(Glx), GF(2™)) = { (cudueoram € 10, 1" | Tocarz = = 0 (mod G(x)) | (1.1}

defines a binary Goppa code of length n=2", dimension k = n—tm and minimmm
distanced = 21+ 1.
A fast decoding algorithm with running time n.1, exists (see [Pant75]).

Note that we have used the elementsin GF(2™) as an index et for the coordinates of the vectors in
{0, 1}". The notions used above mean that the elements in I'(G(x), GF(2™)) (which are called
codewords) form a linear subspace in (0, 1}* of dimension at least n —t.m and that different
codewords differ in at least 2¢+ 1coordinates (one says that the Hamming distance dy (¢, ¢")
between different codewordsisat least 2 ¢ + 1).

A decoding algorithm will map any word in {0, 1}" that differs in at most t coordinates from a
codeword ¢ (which is unique by the triangle inequality) to that codeword. Hence, if a codeword ¢
is transmitted and the received word r differsfrom ¢ in no more than t coordinates (dy (¢, r) < 1),
the receiver is able to recover ¢ from r. For this reason, t is caled the error-correcting capability
of the code I'(G(x), GF(2™)).

Any kxn matrix of which the rows span a particular linear code is called a generator matrix of
that code. It follows from this definition that the code can be described by

{mG |l melo, 1)) (11.2)

Example1l1(Part 1)

Let o be the primitive element in GF(2%) satisfying e* + @ + 1 = 0. After having loaded the Mathematica
package Algebra ‘FiniteFields‘ we can generatethelog table of GrF2?) with thefunctions
MatrixFormand PowerList.
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fL 00 0y
0-l=00
0B | B o 1)
o B ¢ s i |
10001
i Bl ) e
5 b W |
¢ i S bl
01l
-0
o B e vl |
: Bl s BT b
Lo 2500
1 I S )
b1 e B L8

Consider the binary Goppa code 7(G(x), GF(2%)) of length 16 defined by G(x) = x¥* +x + . That
G(x) is indeed an irreducible polynomial over GF(2#) can easily be checked with the Mathematica
functions GF, Table, and TableForm because it suffices to show that G(x) has no linear factors.

e B
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o 0,51, 0,0}
T {0, 0,1,0];
2 o R e
3 (1520 1, O
4 (15014015
5 {1, 1,:.0,90)
[ ) e S B
7 {10, 0, 1%
8 [0, 1.:1.1%
] e e e i
10 o B
11 [0, 0 01)
12 {0, 0,1, 0}y
13 {1,00°0,:1)
14 (0,0,0,1)

To determine the inverses I/(x — &) (mod x¥* +x +) in (11.1) we use the Mathenwtica package
Algebra ‘'PolynomialExtendedGCD'

<<Algebra’ PolynomialExtended@CD’ \‘

and the Mathematica function PolynomialExtendedGCD. For instance, 1/(x —a°) (mod
2 +x +a) can befound by

|oX =)

| PolynomialExtendedGCD[x -a®, x* + x +a]

(Lol {0y Ligsx {1 0 1, I35 41,°1- 1. 1);1)

With the logarithm table above we can rewrite these coefficients asfollows:

01+1.a+0.ae+1a° =00

11+l a+l.a%+1 2% =a®.
Itfollowsfrom (A.8) that
(x -2 +2® x) +a5.Gx) =1,

i.e 1/x-a?)=a'"+0%x. This can be checked with the Mathematica function
Polynomial Mod

! Clear[x]
| PolynomialMod[ (x-a®) (al®+a¥x), a®sx+a] i
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{1, 0, 0, 0};

We express all theinverses 1/(x —w), w e GF(2*), in this way as polynomials g + g’ x, by
means of

{1 {i':{l, 'EI'; 1,1} +x10, 0, 1, 1},, {0; 0, 1, 1131}

{1, {x{0, 0,1, 1}5, {0, 0, 1, 1}3}}
{1, {{0, 1, 0, 1);+x (0.1, 1, 0};. {D, » 0)z})
+ 0)21)
1 + 1}3H)
1 + 1)1}
1,1, 0},. {0, » 1}31)
{1, {{1, 0,0, 0)3+x{1, 1,1, 0}, {1, 0}:1}
0
1

1
f1, {{0, 0, 0, 1}3+x {1, 0, 1, O};, {1, 0,1
1
1
o
1
# 1o 1}ss {1, 0, 1, 1}:})
1
1
0
0
1
1
0

{1, {{0, 1; 0, 1})s +x{1;
f1, {{1, 0,1, O}y +x {1,
{1, {x{0, 0, 0, 1} + {0,

1
0
s Bl Tl i
I & |
0

1

{1, {{1, 0,1, O}z +x (1,
{1, {10, 1,1, 0}y+x {1, 1,1, 0}s, {1, 1,1, 0}3})
¢ 0)al)
r 1}31)
0}z}1}
» O}alhl
+ 1}2}}

+ 0)al}

{1, {=x{1,0,1, 0}3+(1,0,1, 1}, {1, 0O,
{1; {x{ﬂ. 0, 0, 1};"‘ IO: 1,1, 1]’21 {ni 0.
{1, {{1, 0,1, 1)z+x{1,1, 0, 0}, {1, 1,

{1, {{0, 0,1, 1}a+x{0, 1,1, 0}s, {0, 1,
{1, {{0, 0,0, 1)+ {1, 0,1, 1}5, {1, O,
{1; {{cln 1,1, 1]:*1{1: 1, 0, u}ja {1i 1,

(a) 10
. a'%\.
g?w} in a 2x16 matrix H. Note that 1/(x —*)appears as (”6 )In
81
column 5, because thefirst column correspondsto « = 0, the second column hasindex &« = 1, etc.
@ 0 0,10 0,3 0,10 0,9 0,13 ] 0,9 0,13 0,11 0,8 all 0,14 0,3 0,8
W= ]

a ao'l? 0,13 0,9 06 0,6 0,3 0,7 0’” 0.7 o° 0,3 0,12 0,13 0,]1 0,]2

Here, we have made use ofthe log table of GF(2%), computed earlier.

and put them as columns [

14

14

The defining equation in (11.1) can be rewritten as

Y oecrah cl86” +85 x) = 0(mod ¥ +x + @),
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or, equivalently, as

(B ccrit) w86 +(Z pegrat Cw 87) x = 0(mod X2 +x + @),
So, we have two linear equationsfor ¢ =(c.),ccre4)

L eGraH Cw g7 =0 and 2 eGrah Cw g/’ =0.
These two equations can be efficiently denoted by

Hcel =0

Expressing each power of @as binary linear combination of 7, 2, % and <?(or using the output
of the Polynomial ExtendedGCD-calculations directly) gives the 8xi6binary matrix H *:

00000101101 01000
0010101 001010001
lJoo0oo0o0r1 10111111017
, roriri1o000001 11111
H:0001110111101011
oo0l10151101010011°01
111 1110111100110
I 1roo015111010010010Q0

S0, another way to describe 7"(x? + x + @, GF(2%)) is
C={ce{0 NeIH T =07}

It is not difficult to check that C is a binary, linear code of length 16, dimension 7 and minimum
distance 5.

We call a matrix H whose nullspace is a particular linear code C aparity check matrix of C. We
write

C=f{ce{0, )" |H =0") (11.3)
The syndrome of a received vector risdefined by: s" = H.,T.

The number of irreducible polynomials of degree t over GF(2™) is about 2™/t (see Corollary
B.18). So, a randomly selected polynomial of degree t over GF(2™) will be irreducible with
probability 1/¢. Since fast algorithms for testing irreducibility (see [Berl68], Ch. 6 or [Rahbi80])
exigt, one can find an irreducible polynomial of degree t over GF(2™),just like in Algorithm 9.3,
by repeatedly guessing and testing.

11.2  The McEliece Cryptosystem

Based on the theory of error-correcting codes, McEliece [McEL78] proposed the following secrecy
system.
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11.2.1 The System

o Setting Up the System

1) Each user U chooses a suitable Goppa code of length ny =2"v and with error-correcting
capability t;. To this end, user U selects arandom, irreducible polynomia py(x)of degree 1, over
GF(2™v) and makes a generator matrix Gy of the corresponding Goppa code I'(py(x), GF(2"v)).
The sizeof Gy is ky X ny.

2) User U chooses a random, dense ky xky nonsingular matrix Sy and a random ny Xny
permutation matrix Py; and computes

GDZSUaupu. (1]4)

3) User U makes Gy, and #y public, but keeps Gy, Syy,and Py secret.

o Encryption

Suppose that user Alice wants to send a message to user Bob. She looks up Bob's publicly known
parameters Gy (of size kg xng) and t5 represents her message as a binary string mof length kg.
Next Alice chooses a random vector ¢ (error pattern) of length npwith a most #gcoordinates are
equal to 1. Asencryption of m Alice sends to Bob

r=mGy+e. (11.5)

(One usually says: the weight of ¢ is a most ¢, denoted by wy (e) < tg, where the weight function
w counts the number of non-zero coordinates in a vector.)

o Decryption

Upon receiving ¢, Bob computes with his secret permutation matrix Pg

L ars L (L4

r.Pg m.Gy(Pgy "' +e(Pp)"' "2 mSpGpPsPs' +¢'=(m.Sp)Ga +e"

where ¢' = e.Pp~! is apermutation of ¢, so it also hasweight ( < #)5. With the decoding algorithm
of the Goppa code I'(py (x), GF(2™¢)) Bob can efficiently decode r.Pp~'.He will find ¢'as error
pattern and can retrieve m.Sg. Multiplication of this expression on the right with Sp~! (known to
Bob) yields the originally transmitted message m € {0, 1}¢2.
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11.2.2 Discussion

o Summary and Proposed Parameters

The McEliece cryptosystem introduced in the previous section can be summarized as follows.

Public Gpand ty of all users U
Gi has size kyxny
Secret py (x), Sy, and Py by eachuser U
Property Sy G Py is the generator

matrix of the Goppa code
defined by py (x) of degree ty

Format of message me {0, 1}%s
of Ann to Bob

Encryption c=m.Gy+e,
weight of eis < tp
Decryption computec' = ¢.Pg?t
decodec' tofindm' =m. S
computem'.Sg ' =m

The McEliece cryptosystem
Table 11.1

The reason that an error pattern e is introduced in (11.5), is of course to make it impossible for the
cryptanalist to retrieve m from ¢ by a straightforward Gaussian elimination process.

McEliece suggests in his original proposal [McE178] to take mg = 10 (so ng = 1024) and ¢z = 50
(so kg ~ 1025 - 50 % 10 = 524).

o Heuristics of the Scheme

The heuristics behind this scheme are not difficult to guess. Take a sufficiently long, binary, linear
block code, that can correct a large number, say t, of errors and for which an efficient decoding
algorithm exists. The code should belong to a large class of codes, making it impossible to guess
which particular code has been selected. Let n be the length of the code and k its dimension.
Manipulate the generator matrix to such an extent, that the resulting matrix looks like a random
kxn matrix of full rank. The decoding complexity of a randomly generated code with these
parameters should be infeasible. In the next section the complexity of several decoding methods
will be discussed.
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In [BerMT77] it is shown that the general decoding problem of linear codes, i.e. how to find the
closest codeword to any word of length n, is NP-complete. We shall not explain what this notion
means exactly. We refer the interested reader to [GarJ79).

Here, it suffices to know that this characterization implies that no known agorithm can decode an
arbitrary word to its closest codeword neighbor in a running time that depends in a polynomial
way on the size of the input.

Moreover, if one were to find such an agorithm, it could be adapted to solve a large class of
equally hard problems.

o Not a Signature Scheme

The encryption function of the McEliece cryptosystem maps binary k-tuples to binary n-tuples.
This mapping is not surjective. Indeed, for the proposed parameter set the number of vectors of
length 1024 at distance < 50to a codeword is

n 1024
2 330 (;) ~ 25U 350 ( i ) ~ 28084

which is an ignorable fraction of the total number of 1024-length words. So, the (secret) function
Sy mentioned in Property PK4 (in Subsection 7.1.1) is not defined for most words in {0, 1}".
Consequently, the McEliece system can not be turned into a signature scheme. See, also Table 7.2.

11.2.3 Security Aspects

We shall now discuss the security of the McEliece cryptosystem by analyzing four possible attacks
on the specific parameters that McEliece suggests. (The most powerful attack at this moment
seems to be [CanS98].)

n=1024; k=524d; £t = 50;

O Gueﬁ'ng Sg and Py

As acryptanalist, one may try to guess Sp and Pp to caculaie Gp from Gy by means of (11.4).
Once G has been recovered, it is not so difficult for the cryptanalist to find the defining Goppa
polynomia py(x) of the Goppa code I'(py(x), GF(2™v)) that has Gp as generator polynomial. One
can now follow the decryption algorithm of Bob to find the transmitted message m.

However the number of invertible matrices Sz and permutation matrices Pg is 0 astronomical
(T4 (2% - 27) resp. n?), that the probability of success of this attack is smaller than the probability
of correctly guessing vector mdirectly.
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o Exhaustive Codewords Comparison

The cryptanalist can compare the received vector r withall 2¢ codewords in the code generated by
Gp. Let ¢ be the closest codeword. It is at distance = rfrom r(by the encryption rule (11.5)) and is
unique because the minimum distance of the code is a least 2t + 1.1t aso follows from (11.5) that

¢=m.Gy. With a simple Gaussian elimination process one can now retrieve the transmitted
messagem from ¢.

This approach involves the following number of comparisons!

5.4918x101%7

Example 11.2 (Part 1

Consider the binary code of length n = 7 and dimension & =4, generated by

oo oM
- - T T -]
oMo
Hooo
o
- T
HEH o

and suppose that r = (4, 1, 0, 0, 1, 0, I is a intercepted ciphertext which is a codeword ¢ plus an
error vector of weight at most 1 (so ¢t = 1).

We shall compare rwith two codewords (instead of 2% = 16)anduseagainthe Mod function:
! r={1,1,1, 0,1, 0, 1};
[ d1=(1,1,1, 1);
c=Mod[il.8, 2]
Mod[r-c, 2]

W B ke e

{0, 00, 1; 0510}

S0, ¢ =§;.G lies at distance =2 from r, which is too much.
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| 42 = {1, 0, 1, 0};
c=Mod[i2.q, 2]

FUNDAMENTALS OF CRYPTOLOGY

Mod([r ~-c, 2]

Now ¢ =i.G lies at distance 1 from r and we conclude that (1, O, 1, 0) was the transmitted

information.

o Syndrome Decoding

The cryptanalist may compute the parity check matrix Hg corresponding to Gy from the equation
Hj.Gy = 0O (see (11.3)). It hasrank n — k. Next, generate al error vectors e of weight a most t,
compute the syndrome Hj; ¢’ for each of them, and put these in atable.

For the intercepted vector r one first computes the syndrome s7 = H.r". From the table one can
find the corresponding error vector e. Subtracting e from rone gets the codeword ¢ = m.Gj(see
(11.5)). With a simple Gaussian elimination process one can now retrieve the transmitted message

m from this vector c.

. . n
The work load of this attack is ¥3% ( ):

i=0

P e =

3.3623 x10%

Example 11.2 (Part 2)

i

50
H[Z Binomial[n, 1], 5]

The parity check matrix of the code introduced in Example 11.2 is given by

r e K
H=|1 0 1
1 s B Rt |

| MatrixForm[H]

1
1

100
0 1 0}s
0 0 1
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e e
oo -

as can be checked with the Mathematicafunction Transpose (and MatrixForm) asfollows

L= = ]

| == }

oo oo
oo oo
= I = = = |

Next, we generate all error vectors ¢ of weight < 7 and compute their syndrome Hj; e”. We put
these in a table. Apartfrom the Mathematica functions Mod, Do, and Print, we also make use of
ReplacePart, which replaces the i-th coordinate of ¢ by the specified value (here its

compliment).

{0, 0,0, 0,0,

{1, 0,0, 0,0,
{0,1,0,0,0,
{0,0,1,0,0,
{0, 0,0,1,0,
{0, 0,0,0,1,
{0, 0,0,0,0,
{0, 0,0,0,0,

With this table it is now easy tofind a codeword at distance < I from r.

o,
a,
0,
Q.
0.
0,
1,
Q,

o}
o}
0}
0}
0}
o}
o}
1}

{0,
{1,
{1,
{0,
{1,
{1,
{0,
{g,

o,
1,
o,
1,
1,
o,
1,
0,

1}
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{1, 0, 1}

This is the syndrome correspondingto e = (0, 1, 0, 0, 0, 0, 0), so the closest codeword is given by

.= {0, 1, u.l' 0, 0, ur. 0}
Mod[r -a, 2]

{1, 0,°1, 0,1, 0, 1}

Since the generator matrix G in this example has the form (I, | P), we can recover the transmitted
information mfrom thefirstfour coordinates inc:

m=(010).

o Guessing k Correct and Independent Coor dinates

The cryptanalist selects k random positions and hopes that they are not in error, i.e. he hopes that ¢
is zero on these k positions. If the restriction of matrix Gy to these k positions till has rank k, one
can find acandidate m' for the information vector m with a Gaussian elimination process.

If the rank is less than k it will very likely still be close to k (see Problem 11.2). So, the Gaussian
elimination process will either lead to only a few possibilities for m' or to no solution at all.

For each possible candidate m' compute m'.G; and check if it lies a distance <t from the
intercepted vector r. If 30, one has found the correct m.

The probability that the k positions are correct is about (1 —t/n)*. The Gaussian elimination
process involves k? steps. So, the expected workload of this method is

N[k (L-t/n)™, 5]

3.5504 x 1017

Although this attack is the most efficient thusfar, it is still not afeasible attack.
Example 11.2 (Part 3)

Guessing that coordinates 2, 4, 5, and 7 are error-free in Example 11.2 we use the Mathematica
functions Transpose and MatrixForm to get the restriction G' of the generator matrix G to
this guess and the restriction ¢’ of the intercepted vector z of Example 11.2 to this guess.
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{21 ", 5' T} gl %
1R b 1)

(Ul . D

1 S 1 B

D e e

fi,0,1,1}

We use the Mathematica functions LinearSolve, NullSpace, and Transpose to see ifthe
equation

{ﬂ; i.l 1]; 0} -

R
has a solution.

Apparently the restriction of G to the four coordinates has full rank. The solution (0, 1, 0, 0) gives
rise to a codeword that has distance =2 tor.
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Let us now try another guess.

| Guess = {1, 3, 6, 7}
| Restra= Transpcse[G] [[ Guess]] ;
MatrixForm|[Transpose [RestrG] ]

orR oo
ol I =
e

L= = =N

rw {1,31,1,90,1, 0, 1};
rRestr = r[ [Guess] ]

A e e

LinearSolve[Restr@, rRestr, Modulus -»> 2]
HullsSpace[RestrG, Modulus -> 2]

{170,170}

{}

The solution (1, 0, 1, 0) now turns out to generate a codeword at distance < 1 to r.

| m= {1, 0, 1, 0}
Mod[r-m.G, 2]

{0,1.0,0, 0, 0,0}

We conclude that (1,0, 1,0) was the transmitted information.

To let Mathematica make guesses one first has to load the
DiscreteMath ‘'Combinatorica:

package

<<DiscreteMath Combinatorica’

and one can then use the Mathematica function RandomK Subset.



Coding Theory Based Systems 251

E mmhﬂﬂt[{l; :- 3: 'i'; sr EJ 7]’! ‘]

| 5

o Multiple Encryptions of the Same Message

It is not safe to encrypt the same message several times with the same encryption matrix Gg. To
e this, let us consider two different encryptions of the same message m, s&y r = m.Gy +¢ and
r'=mGp+e’ (e (11.5)). On the coordinates where rand r!disagree, we know for sure that
either ¢ or ¢' hasa 1. On the coordinates where rand r'agree, we know almost for sure that both r
and r! are error-free.

To be more precise, if the error vectors eand ¢! are truly randomly chosen, as they should be, one
expects the following values

(ei, er ') # coordinates
(0, 0) (n-t)?/n

0, )or(1,0) | 2¢t(n-¢t) /n
(1, 1) t?/n

For instance, when the parameters are n = 1024 and ¢ = 50, one expects ¢; = ¢;' = 1 on roughly
507 /1024 ~ 2.44 coordinates.
Also, one expects
| n=10247 t = 50;
N[(n-t)*/m, 3] |

926,

coordinates where rand r! agree. At most three of these coordinates are likely to be corrupted.

By removing in every possibleway 2 /n coordinates from the coordinate set where rand r'agree,
one almost surely finds a coordinate set that is error free and on which the matrix G} still has full
rank (see Problem 11.2). With a simple Gaussian elimination process one recover m from r.

When the same message has been encrypted more than two times, it is correspondingly easier to
break the system.
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11.2.4 A Small Example of the McEliece System
Example 11.1 (Part 2)

The Goppa code /(x> +x +a, GF(2*)) of Example 11.1 has a generator matrix G that can be
computedfrom the parity check matrix H by means of the Mathematica function Nullspace.

o T R e T i 3y

e T TR T
mFooocoooo

L - -
L e - ]
[=T= = T e e e =1
BEEO D
=R e =N ==
O OO REO
oRroooooD
[ = = = = = T~ - ]
cooMHOoOooOo
coooHOoOOD
(=10 =B =0 = B =0 = =]
(=00 =B = 5= B = B = B =]
[ =38 = B = B = = = -

1
1
1
0
0
10
0
1

The generator matrix G of I"'(x®> +x + &, GF(2%)) will be transformed into G* = 5.G.P, where Sis
an invertible matrix and P a permutation matrix, asfollows:



253

Coding Theory Based Systems

61T P T W e e R o 5t Do MERE B 8 0 2 R TGS B 1

B e b Ul bt R B e M T s I, T, (0 |
9ty 0 LN [0 T B0 SR B N R s T Sk L1

B Sl Y RGO F vl il B 53 0 B R e i Sl b0
ORI B 1 S RO B e R e ST T BTN T v Y il

g W bl s e T R e R s e e B

o Boagt 1 ien Hiogh ¢ [k B + 000 0G0 BOUT, B B Bl M S 0 1

p 1 Bot o B WGs o Bt e Tl v M Il R el | BT o TR R

A possible encoding of the information sequence (1, I, 0, 0, I, 0, 0, I) is given by

]
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110,90, 150, 1,71,0, 1,0, 1,711, 0,-0,0}

Note that errors have been introduced at coordinates 5 and 9.
An eavesdropper has no efficient algorithm tofind the information vector m from the word cw.
The legitimate receiver will first compute ¢d = cw. P~/ with the Mathematicafunction Inverse.

1. B B B 1a 01,0, -3, 3,3 2.0, 0,0, 1)

Next, this vector has to be decoded with a decoding algorithm of the Goppa code
(2 +x +a, GF(2*%). Such a method has not been discussed here. The outcome turns out to be
the vector m' ={1, 0, 0, 0, 1, 1, 1, 0). This can be checked by computing m".G and compare that
with cd. The difference is an error vector err’ of weight 2 which is exactly err.P~’.

{0, 0,0,1,0,0,0,1,0,0,0,0,0,0,0, 0}

'[ﬁi- 'J'. ﬂ, 1; ﬂ, ﬂp U, 1..- u: u} u:- ul ui ni u: D}

To find m, the legitimate receiver computes .S/,

{i,1,0,0,1,0,0,1}

This is indeed the original message.
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11.3  Another Technique to Decode Linear Codes

A large research effort has been made in the past to find decoding algorithms for genera linear
codes. The McEliece cryptosystem has only intensified this quest. Most of these algorithms are of
the type that was discussed before: find k coordinates where the generator matrix has full rank and
where the received vector is error free. Such a technique is called information set decoding.

Here we describe atechnique introduced by Van Tilburg [vTbu88] (see aso [LeeB88)).

Algorithm 11.2 Bir Swapping Technigue
Let & be the generator matrix of a binary code C of length n, dimension k, and minimum
distance d.

Let p =g + ¢ be a received vector, where ¢ € C (say ¢ = i.(7) and ¢ has weight at most 7,
with2r+1l=<d.

Step 1: Apply suitable elementary row operations and a column permutation to G to
bring ¢ in so-called standard form i.e. 5.G.P = (1, | A).

Put £ = r.P and write ' = (£, ", 1), where £ has length k.

Note that £ = m.G P+ g.P = m5' (I | A} + g, where g and ¢' have the same weight.

Step 2; Putg' =y (M | A). The first & coordinates of ¢ and £ are identical.

Step 3. If ¢ and ¢ differ in at most ¢ coordinates, conclude that the first k coordinates are
error-free. Compute g from ' = m.5~" with Gaussian elimination.
Let the algonthm terminate.

Step 4: If ¢ and [ differ in more than ¢ coordinates, pick a mandom row index
i, 1=i<k, and column index j, 1 < j=n-k with A, ; # 0. Construct a new matrix G
from (I | A) by interchanging the i-th and the (k + j)-th column of G (the i-th column of
Iy 1s swapped with the j-th column of A).

Retumn to Step 1, but use there only elementary row operations with the i-th row to bring
the: matrix in standard form again.

Let us demonstrate one cycle of the above algorithm. We continue with Example 11.2.
Example 11.2 (Part 4)

1Egen 0 1a1 0
R Bael ol R IR
G= }
-0 1.9 0.1 1
B B el P e L
| MatrixForm[G]

I:.{:L,:l.,:l.,n,i.ﬂ.l} 5




256 FUNDAMENTALS OF CRYPTOLOGY

LEsD el A 20
LS i B Res Rl S
001 =il 1 s
i o K e R N B

{(1,1,1,0,1, 0,1}

The matrix G is already in standardform. We also see that thefirstfour coordinates of r lead to a
codeword¢’ that has distance 2 to r.

T
(1, 1000, 0 o)
0. 0.0, N, D: 2}

To make a swap we pick G s as non-zero entryfrom columns 5-7 in G. We perform a swap of the
2-nd and 5-th column of G, by using thefunction:

ooo e
-
o-oo
= ooo
coro
(SR =
(S -

To bring this in systematicform we use the Mathematicafunction RowReduce.
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=T e
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In order to analyze the complexity of the bit-swapping algorithm, we let Pr(! + | 1) denote the
conditional probability that exactly 7+ u of the first k positions of eare in error after a swap given
that precisely | were in error before the swap (u = -1, 0, 1).

Let @ = min {t, k}. Then the following straightforward relations hold:

Pr(l- 1) = 4 x 2kttd ifl<lsa, (11.6)
Pr(i+ 11 = &L x LL ifl<l<a-1, (L7
Pl {]—Pr(l—lll)—Pr(l+l|l), iflsli<a-1,

1= 1-Prl—110), ifl=a. 1.8

Example 11.3 (Part 1}

Consider a (binary) code with parameters n =23, k = 12, and ¢t = 3. Then a = min (k, t} = 3. The values of
Pr(l —111) and Pr(! +1]1) can be computed (and printed) from (11.6) and (11.7) with the Mathematica
functionsMin, Do, and Print.
n=23;k=12; t = 3;
a=Min[k, t];
| PrDovn[l ] :=l+(n-k=-t+1) f(kw (n-k));
| PrUp[l_ ] := (k-1)« (t-1) /(k* (n-k));
" Do
Print["Pr(", 1-1, "|", 1, ")}=", PrDown[i]], {i. a, 1, -1}]s
| Print["and"];
| Do[Print[*Pr(", 4+1, "|", i, ")=", PrUp[i]],
{i; a-1, 1, -1}1

Pr(2|3)=7
Prfl|2]=%
.PrEDI‘;]:;Ei
and

Pr(3 !2]:%
Pr(2|l) =%

Note that the probability of a successful swap gets smaller for smaller values of I
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Lemma 11.3

Let Ny, 1 =1 = a, denote the expected number of swaps needed to pass from a state with
1 errors to a state with { = 1 ermors.

Then, the Ny's can be computed recursively by

i i o i

Ny = Prie-1ja) — §=Priak) " (11.9)
1+Pr{lil-11 N, )

.“lrr_|—m". (01100

Proof:

The first equality in equation (11.9) follows directly from the definition of Pr(a —1|a). The
second equality follows from (11.8).

To show (11.10), we note that from state [ — | there are three possible directions for the algorithm
to follow:

i) withprobability Pr(/ — 2|1~ 1) it goesto state / — 2in one step.

ii) withprobability Pr(/— 1|/~ 1) it stays in state /-1 and 0 one can expect the algorithm to
reach state ! — 2 in 1 + N;_; steps.

iii) Withprobability Pr(/|/- 1) it goes back to state / and 0 one expects it to reach state /- 2in
1+ N, + N, steps.

The above proves the following recurrence relation
Ny =P =2{1=1) 10 +Prd = 111 = DL+ Ny b +Prcd 1 1= DA+ N+ Ny,

which reduces to (11.10) because Pr( -2 (/- 1) =1 - Pr({ - 1 | I - D)=Pr{d [{ - 1).

Note that in the calculations of N, only probabilities of the form Pr(i — 1 | i) play arole.

Example 11.3 (Part 2)

Continuing with Example 11.3, we see that the values of N, can be computed recursively with
(11.9) and (11.10).
Numb([a] = 1/ PrDown[a] ; il
Do [Mumb(i - 1] = (1+PrUp[i-1] «Numb[i]) /PrDown[i-1],
{i, a, 2, -1}] : !
Do[Print["Numb(", i, ")=", Numb[i]], {i, a, 1, -1}]

Numb({3) =4

43
5

Humb (2]
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. . _1B06
hmrubfl.-—45
Theorem 11.4
The expected number of swaps for the bit swapping algorithm to find & emor-free
coordinates is given by

gei g LN (11.11)

Pr oof:

The expected number of steps to reach state 0 when one starts in state j, 1 < j < a, is given by the
expected number of steps to reach state j— 1 from state j, plus the expected number of steps to
reach state j — 2 from state j — 1, etc. Thisexplains the inner sumin (11.11):

N,‘+N,_]+...+N1.

The probability of starting in state j is equal to the probability that a randomly selected k tuple
contains j errors. This probability is equal to the fraction of the number of t-tuples out of n that
have intersection j with a given k-tuple (and intersection r ~ j with the other n — k positions). So,
this probability is given by

ol

()

Now, take the product of the two factors above and sum it over all values of j.

Example 11.3 (Part 3)

It follows from Theorem 11.4 that the expected number of swaps that are needed in a code with
n =23k =12, ands =3 (as introduced in Example 11.3) to get 12 error-free coordinates is given

by:

NS = Z (Binomial [k, j] * Binomial[n-k, £ - j] / Binomial[n, £])
i=1

IJZM[I]:

1=l

N[NS, 5]

37.455
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The above hit swapping algorithms gives a significant improvement (also asymptoticaly) over the
methods explained in Subsection 11.2.3. For the strongest result in this area we refer the reader to
[BaKT99).

11.4 The Niederreiter Scheme

The Niederreiter scheme [Nied86] is a variation of the McEliece cryptosystem. It applies the very
same idea to the parity check matrix of alinear code. The scheme is summarized in the Table 11.2
below.

So, again we have a Goppa code I'(py(x), GF(2™), (see (11.1)) defined by user's U Goppa
polynomia py(x) over GF(2™) of degree 7. Let Hy be a parity check matrix of this code. It has
size (ny — ky) xny, where ky; is the dimension of the code.

The code [(py(x), GF(2™)) is t,-error correcting which implies that every vector y of weight
( =1y has a unique syndrome Hy.y. Existing decoding algorithms for Goppa codes find y
efficiently from its syndrome.

Just like in the McEliece system, the structure of the Goppa code has to be hidden from the matrix
Hy. Thisisdone by computing

H{y =Sy Hy Py, (11.12)

where Sy isa(ny — ky)x (ny — ky) invertible matrix and Py a permutation matrix of size ny, (see
(11.4)).

The matrix Hy; has to be made public, together with the value ty,.

If Alice wants to send a message to Bob, she looks up Bob's public parameters H; and t5. She
represents her message by means of a (column) vector mof weight ( = 7). She computes v = Hj.m
and sends that as her ciphertext to Bob.

Bob first multiplies v on the left with Sz'. He obtains v' = S3' m = Hz (Pgm) by (11.12). Since
Ppm isapermutation of m, and thus also of weight ( = #),the decoding algorithm of Bob's Goppa
code will find m' = Pgm efficiently. The message m can now be recovered by multiplying m' on

the left with Pg.
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Public Hj and ty of all users U
H} has size (ny - ky) xny
Secret py (x), Sy, and P; by eachuser U
Property Syl Hy Py is the parity check

matrix of the Goppa code
defined by py (x) of degree ty

Format of message me {0, 1}78
of Ann to Bob weight (@) < tp
Encryption Y=Hi.m
Decryption computey' = Sgl.y

use decoding algorithmto
findp 'with Hy.m' =¥
computem'.Ps ! =m

The Niederreiter cryptosystem

Table 11.2

115 Problems

Problem 11.1

What is the probability that k columns in a random & xn binary matrix have rank k? How about the
probability that £ + 1 columns in this matrix have rank?

Compute these two probabilitiesfor n = 16and k = 5.

Problem 11.2
Let C be a linear code of length n =23 and dimension k = 12. Assume that & most three errors have
occurred. What is the complexity of the various attacks described in Subsection 11.2.3.

Problem 11.3%
Let C be a linear code of length 11 and dimension 6. Suppose that two errors have occurred.How many
swaps are expected to get 6 error-free coordinates if one follows Algorithm 11.2?
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12 Knapsack Based Systems

121  The Knapsack System

12.1.1 The Knapsack Problem

In [MerH78], Merkle and Hellman propose a public key cryptosystem that is based on the
difficulty of solving the knapsack problem. Since then, other knapsack related cryptosystems have
been suggested, most of which turned out to be insecure. An exception, up to now, is the Chor-
Rivest scheme proposed in [ChoR85], but in [Vaud98] it is shown that the suggested parameters in
[ChoR85] are also insecure.

Definition 12.1
Let ay, a3, ..., @, be a sequence of n positive integers. Let also 5 be an integer. The
question if the equation

@ +nat.. +ra=5 (12.1)

has a solution with each x; in {0, 1} is called the knapsack problem.

Note that we do not ask for a solution of (12.1), the question is only if there exists a solution.
Finding a {0, 1}-solution to (12.1) is of course at least as difficult asjust finding out whether a
solution exists.

For large n the knapsack problem is intractable to solve. In fact it has been shown that the
knapsack problem is NP-complete (see [GarJ79] or a very short discussion in Subsection 11.2.2).

For some sequences {a;}1-, it is not difficult to find a {0, 1}-solution to (12.1), resp. to show that no
such solution exists. For example, with the sequence a; = 2/-!,1 < i < n, equation (12.1) will have
asolution if and only if 0 < .5 < 27 ~ [. Finding the solution is very easy in this case.

A much more general class of sequences {a;}l-; exists, for which (12.1) is easily solvable. Thisis
the class of so-called super-increasing sequences.

A sequence {a;}, is called super-increasing, if foral 1 <k <n,

ke, <a. (12.2)
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Algorithm 12.1 solves the knapsack problem for super-increasing sequences. It actudly finds the
solution {x;}=, for each right hand side 5 for which (12.1) is solvable. The idea is very simple:
since %' a; < a,, it followsthat in asolution

xx=1 S=za,

Now, subtract x,a, from S and determine x,-y in the same way. So, recursively for
k=n-1,n-2,..,1

=1 S- 27=k+1 Xi.a,) = ag.

If at the end § — X7, x;.a; = 0 one has found the solution to (12.1), otherwise one may conclude
that (12.1) does not admit a solution.

Algorithm 121.1 Solving the knapsack problem for a super-increasing sequence,

input {x)f.; a super-increasing sequence of positive integers,
5 integer
imitialize k=n

while k = 1do  begin
if 5 = a; then x, = 1 else x, =0,
put 5§ =8 — x .,
putk=k-1
end
if 5 =0 then print {x;|}_, else print "no solution”

Exampie 121 (Fart 1

Consider the super-increasing sequence {a;}5., = {22, 89, 345, 987, 4567, 45678} and the right hand side
§ =5665. To see if(12.1) has a solution we apply Algorithm 12.1.

Because S < ag, we get x5 = 0. Next, we seethat S = as, S0 we have x5 = 1. We subtract asfrom S and get
1098. We see that this new value of S satisfies S = ay, so x4 = 1, ete. Thefinal solutionis{1,1, 0, 1, 1, 0}.

Below the same process is written in Mathematica. We make use of the functions Length, While, If,
and Join. The solution {x;}5_, is formed by prepending each newly found value x; fo {x.+/, ..., xs},
i=6,5 .1

EnapsackForSuperIncreasingSequence[a_List, 8 ] i=
Mcdule([{n, x, X, T},

n = Lengthl[a]; X={}; T=8;

Whila[nz 1,
If[Tza[[n]]l. x=1, x=0];
T=T-xxa[[n]];
X=Join[{x}, X]yn=n-1];

If[T !=0, Print["Ho solution®], X]]
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{1:'1; 071, 1,90}

Indeed

5665

12.1.2 The Knapsack System

o Setting Up the Knapsack System

The knapsack cryptosystem, as proposed in [MerH78] is based on the apparent difficulty of
solving the knapsack problem and the ease of solving this problem for super-increasing sequences.

Each user U makes a super-increasing sequence {u;};%, of length ny. Next, U selects integers Wy
and Ny such that

Ny >3 (12.3)
and

ged(Wy, Ny) = 1. (12.4)
User U computes the numbers

u,' = (Wy.u; mod Nyy), l<isn, (12.5)
and makes the sequence {i;'};¥; known as his public key.
Asaprecalculation for the decryption, user U also computes W 'mod Ny.

The number W;! mod Ny, can be computed with the extended version of Euclid's Algorithm (Alg.
A.8). Indeed, since ged(Wy,Ny)=1, this agorithm will give X and Y such that
1= X.Wy +V.Ny. Itfollowsthat X.Wy = 1 (mod Ny), ie X = W'

Each user keeps the super-increasing sequence {x;}7Y) and the numbers Wy, (Wy)~!, and Ny secret.
Example 12.1 (Part 2)

We continue with the parameters of Example 121 So, Bob chooses
(bi)0_, = (22, 89, 345, 987, 4567, 45678} as his super-increasing sequence. Further, he selects
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Np = 56789, which satisfies N > Y_, b; and Wy = 12345 which is coprime with Np.

Next, he calculates b;’' = (Wg b; mod Ng). Here, we do this with the Mathematica function Mod. To
check the conditions above we need the gD  function.

{44434, 19714, 56639, 31669, 44927, 36929}

So, {bi'le.; =(44434,19714,56639,31669,44927,36929) isthepublic key.
For this small value ofng it already takes some effort to solve the knapsack problem (try 101077).
Thenumber W5? mod Ng can befound with the ExtendedGcD and Mod functions.

{1, {39750, 3704})

Itfollows that Wg! = 39750. Indeed
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o Encryption

Suppose that Alice wants to send a message to Bob. She looks up the public encryption key
{b;'}7%, of Bob. Next, she represents her message by abinary vector (m,, m,, ..., m,,) of length mg
(or by more vectors of this length if the messages is too long).

Alice will send to Bob the ciphertext
C=32 m.b, (12.6)
Example 12.1 (Part 3)

We continue with the parameters of Example 12.1.S0, Bob's public key is given by
{b;")0., = {44434, 19714, 56639, 31669, 44927, 36929).

Let Alice's message be (m)0_, = {1, 1, 0, 0, 0, ). Then the ciphertext that she will send will be
26, mib;' = 101077.

= {44434, 19714, 56639, 31665, 44527, 36525];
m= {lf 1; ﬂ.- 0' np‘ 1}‘
CipharText = m.bb

101077

o Decryption

When Bob receives a ciphertext C he will first multiply it with W5! and reduce the answer modulo
Np (both are his secret parameters). It follows that

26 (12.5)
wz'.C Wzl.38 mib,' = 35 my.b; (mod Np).

Inequality (12.3) impliesthat Y.7%, m;.b; < Np. S0, we can rewrite the above equation as follows:
Zifl m.b; = (WEJC mod Np). (12.7)

Since the sequence {b;}%, is super-increasing, Bob can now apply Algorithm 121 with
(Wg'.C mod Np) asright hand side to recover the message {m;}72,

Example 12.1 (Part 4)

We continue with the parameters of Example 12.1.

Assume that Bob has received C =101077. First Bob computes (Wz!.C mod Ng). with
W;! =39750 and Np =56789.
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| CipherText = 101077;
8 = Mod [WBinverse » CipherText, NB]

45789

He gets 45780. To solve (121) $,m.b;=S, he can use the
KnapsackForSuperincreasingFunction defined earlier.

b= {22, 89, 345, 987, 4567, 45678}, 8 = 5665;
X = FnapsackForSuperIncreasingSequence(b, 8]

o g WL e Y R

o0 A Further Discussion

The knapsack system is summarized in the table below.

Public {u; '}7%; of all users
Secret to U {u:}3%, Wyt Ny
Properties u; ' = Wy.u; (mod Ny),

{u; '}7%; super - increasing,
ged (Wy, Ny) =1

Message for B {m;}733;
Encryption C =y . b;
Decryptionby B Apply Algorithm12.1 to

{u; '}7%; and Wil.Cmod Ng
The Knapsack Cryptosystem
Table 12.1

Even though the knapsack cryptosystem does not have the signature property, for a short while it
gained an enormous popularity. The main reason is the low complexity of its implementation. In
applications, both encryption and decryption can take place a very high data rates.

The authors [MerH78] recommend the users to take length ny = 100, a sequence {w;};Y) satisfying
@ -1)290 <y, < 202190 | << 100,
(it will automatically be super-increasing), and amodulus Ny suchthat

210 4 1 <« Ny <222,
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Note that also (12.3) is satisfied.

It is further recommended that user U makes a permuted version {;'};¥, public instead of {u;'}}¥,
itself to disguise the order of the origina super-increasing sequence. In this way, acryptanaist has
no information about which element «;' in the public knapsack came from (the smallest knapsack
element) «;, forinstance.

The idea of multiplying a super-increasing sequence with aconstant Wy, modulo Ny is of course to
obtain a knapsack that looks random. To increase this effect and thus to increase the security of the
knapsack cryptosystem, [MerH78] advises to iterate this multiplication.

Hence, each user U dso sdects Ny > 704w and 1 < Wy, < Ny, with ged(Wy,,Ny)=1, computes
w;'' = Wy.u;' (mod Nyy), 1 < i < ny, and makes {1;""}Y; public instead of {x;')?Y,.

It makes sense to iterate this process of modulo-multiplication, as is illustrated in the following
example.

Example 12.2

Letn=3and condder {u;}-, ={5 10, 20). Multiplying this sequence with 17 modulo 47 gives

{u; 'Y, =138 29, 11}. Multiplying this sequence with 3 modulo 89 gives {w; "'}, = {25, 87, 33}.

These calculations can be verified with the Modfunction.

u={5, 10, 20}
uu = Mod[17 u, 47]

b={22, 89, 345, 987, 4567, 45678)}; 8 = 5665;
X = FnapsackForSuperIncreasingSequence[b, 8]

It is impossible to find integers W and N that map {«), directly into {x;''};_,;. Indeed the
congruence relations

SW = 25(mod N),
10W =87 (mod N)

imply that N divides 87 — 2 x25 = 37. Snce 37 is a prime, it follows that N =37. It also
follows that W = 5. These values of W and N however violate the third congruence relation

20W = 33(mod N).

This shows that an iteration of modulo-multiplications can not always be replaced by a single
modul o-multiplication.
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The above example also demonstrates something else. Note that the second iteration mapped the
not-super-increasing knapsack {38, 29, 11} into {25, 87, 33}, which after a reordering is a super-
increasing sequence.

This also makes it clear that cryptanalist Eve does not have to guess the origina integers Wy and
Ny (and adso W, and Ny in the iterated case) to convert the public key back into a super-
increasing sequence. Eve can aso decrypt the ciphertext, if she is able to obtain another super-
increasing sequence from {u;'):Y, (resp. (u;""}:Y)).

i=

These observations demonstrate two important things:
1) Iteration does not necessarily increase the security of the system.

2) It may be easier for a cryptanalist to map the public knapsack into a super-increasing
sequence other than the original .

Some critics of the knapsack cryptosystem did not trust the linearity of the system. Their
intuition/experience told them that the knapsack cryptosystem was bound to be broken.

The reader should remember that the general knapsack problem is NP-complete. This impliesin
particular that no known algorithm solves it in polynomial time. However, the property of NP-
completeness has never been proved for the restriction of the knapsack problem to the subclass of
knapsacks, obtained by a single modulo-multiplication of a super-increasing sequence. In 1982,
Shamir [Sham82] showed that the single iteration version of the knapsack system can be broken
with very high probability in polynomial time. This attack was later generdized by others (see
[Adle83] and [Bric85])

In Section 12.2, an outline of the much more genera attack by Lagarias and Odlyzko [LagO83]
will be given.

12.2 The L3-Attack

12.2.1 Introduction

In the original knapsack cryptosystem it is assumed that the secret sequence {w;};Y; is super-
increasing. However, this is not crucial for a knapsack-based cryptosytem. It only makes the
decryption easy, because of Algorithm 12.1. The only essential requirement is that the plaintext-to-
ciphertext mapping {m;};¥, — C in (12.6) is one-to-one.

Since the general knapsack problem is NP-complete, no known algorithm solves it in polynomial
time. Still, it is quite possible that polynomial-time algorithms do exist, which solve with some
positive probability any knapsack problem in a large subclass of knapsack problems. Such an
algorithm would make the knapsack system unsuitable for cryptographic purposes.
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In this section, we shall often use the vector notation u = (uy, uy, ..., u,) for a knapsack {u;}~,.
Before we give an outline of the Lagarias and Odlyzko attack (also called the L’-attack)
[Lag083], we have to define a few new notions.

Definition 12.2
The densiry diu) of a knapsack u = (1, ua, ..., W, is defined by
i - +
diu) = maK ) zicq 1082 4
Example 12.3

For instance, the density of the knapsack {22, 89, 345, 987, 4567, 45678} is 6/log, 45678 ~ 0.39, as can
be checked with the Mathematicafunctions Max, Log, Length, and N.

a =32, 89, 345, b87, 4567, 45678)5
N[Length[a] /Log[2, Max[a]], 2]

.39

The density d(u) serves as measure for the information rate of a knapsack system. Indeed, the
numerator is the number of message bits that are stored in the sum C of the knapsack (see (12.6)).
The denominator is a good approximation of the average number of bits needed for the binary
representation of C. For instance, with u; = 2", 1 < i < n,the density is n/(n - 1) = las it should
be.

We shall show further on that the Lagarias and Odlyzko attack is more likely to break the knapsack
system if its density is smaller.

This may sound like a heavy restriction, but one should realize that nobody likes to use a
cryptosystem that has anon-trivial positive chance to be broken.

12.2.2 Lattices

Definition 12.3

Let (v, ¥, ..., ¥} be a set of vectors in Z* that are linearly independent over R. Then
the set of all integer linear combinations of {vy, 1, ..., ¥} is called an infeger lattice. In
formula:

A={Eh ouploeZ 1sisn)
or
A=Zyi+Zw+... + Fy,.
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We say that the n independent vectors vy, vs, ..., ¥, form a basis for the lattice A. Note that the
basis of a lattice is certainly not unique. Normally, the order of the basis vectors does not matter,
but in the sequel such an order will matter. We shall use thenotation [y, va, ..., ¥,] to indicate a

particular ordering.

Example124

Consider the lattice A in Z2 with basis g =(3, ) and ¢ =(J, 2). It consists of all points of the form

a.(3, )+ .1, 2),with @, # € Z. Below part of this lattice is depicted.

Lattice in R? with basis (3, 1) and (2, 1)
Figure 12.1

For the L3-attack that we shall describe later on, it is of great importance to find a vector in A of
short length, or even better to find a complete basis of short vectors for A. For this reason, we need
to study basis transformations more carefully.

The Gram-Schmidt process is a well known algorithm from linear dgebra to transfer a basis
{v1, ¥2, ..., ¥} Of @linear (sub)space into an orthogona basis, i.e. in a basis {u, 12, --., s} With
the property that al vectors u; are orthogonal to each other, i.e. (w;, 1) =0, for i £ j. It goes as

follows:

U1 = Y1,
U2 = Y2~ Hi2 My,
U3 =¥3— H134) — 23 Ko,

Un = ¥Vn— Hinll — P20 l2 —

where

coo = Moo et

Ljs) l<i<j=<n

Hii = ww
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Example 125
To demonstrate the Gram-Schmidt process wetakey; = (3, 4, 2), v = (2, 5, 2), and v3 = (1, 2, 6) in R°.

vi={3,4,2)};vi={2,5,2);v3=(1,2,6);

ul=vl

uZ=sva={(ul.v2)/(ul.ul))ul |

u3=v3-((ul.v3)/(ul.ul))ul-((u2.v3)/(u2.u2))u2 |
o) |

B3| Ll
L*=1 ]
Ba
wiun
%]

T
—_—

5
[
[ )
e
[++]
e

1
1
LI

2

o
o}
w
=
w

This can also be done in Mathematica. We first load the Mathematica package
LinearAlgejbra ‘Orthogonalization' and then run GramSchmidt. The result will be
orthonormal basis, i.e. we obtain a set of n orthogonal vectors g; that have been further divided by
their length to give them unit-length.

<<LinearAlgabra’ Orthogonalization” i

wi={3,4,2};v2=(2,5,2);vi={1,2,6};
{ul,u2,ud}=CramSchmidt [{vl,vZ,v3}]

([ s e, e

28 af28 " sf25 /7
[Frae s it - i | [~ e, = e, i ]]
Y 1653 * 41653 J1653 ' ' b 5 \J57 i \f5

As we can e in the example above, the vectors w;, 1 <i <n, will, in general, no longer have
integer coordinates. In the context of integer lattices that is an undesirable situation.

In the next subsection we shall discuss an (integer-valued) basis for lattice A, that is not completely
orthonormal, but hastwo other attractive properties.
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12.2.3 A Reduced Basis

Let ||g|l denote the standard Euclidean norm or length of a vector u. So,

lull = (w 0'? = TL, ).

Definition 12.4

A basis (1. ¥1. ..., ¥al of an imteger lattice A 15 called y-reduced, where 1/4 < y <1, if
the orthogonal basis (. w. ..., Me) obtained from (i), ¥, ..., ¥.) theough the Gram-
Schmidt process satisfies

N+ g IP 2y llay P, 2sisa,
(1 = 172, 1si

An alternative definition of a y-reduced basis can be given as follows. Let V; be the k-dimensional
linear subspace of R”, spanned by {yi, va, ..., w} or,equivalently, by {u;, ua, ..., w}.

Let V;* be the orthogonal complement of V,.Define z‘j"’, k +1 < j<n,asthe projection of v;onto

V. In particular, v, = w,,. Then it can be shown (see [LagO83]) that the two conditions in
Definition 12.4 are equivalent to

™17 2y w5 1P =y llwn 1P 2sisn, (12.8)

resp.

) ~1 1 -1 . .
[ (I N Iv l<i<j=n (12.9)

Note that (12.8) implies that the projection of y; onto V=, should not be too small in size (when
compared with the length of w;_;). The inequality in (12.9) says that the projection of v; onto y; is
relatively small.

These two statements can be interpreted by saying that the vectors in a y-reduced basis are of
comparable size and all point in different directions.

In the sequel, y will always be 3/4. The L* — Algorithm (see [LenLL82)) is a very effective way to
find a y-reduced basis for a lattice A. It will not be described in full detail here (see however
Subsection 12.2.5). We quote the following facts from [LenLL82)].

Theorem 12.2

Lat [ys. ¥2. ... ¥} be a basis of an integer lattice A. in £" and let B = man;ze, [l
Then the L -lattice basis reduction algorithm produces a reduced basis {w), Wy, ..., W)
for A in about n'{log BY bit operations.

Theorem 12.3
Let [y, w. ..., s} be a reduced basis for an integer lattice A.
Then

Ny IF = 2" min{|&IF |z € AV
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In fact, Prop. 1.12 in [LenLL82] shows that no vector in areduced basis can be very long.

12.2.4 The L3-Attack

We can now present the idea behind the L*-attack. We want to find a solution to the knapsack
problem 37, x;a; = C (see (12.1)).

The idea of the attack will be to convert the parameters of the knapsack problem into a basis of
some integer lattice A. Then we find a short vector in this lattice with the L*-lattice basis reduction
algorithm. The hope will be that this short vector can be transformed back into the solution
{x;}L,of (12.1).

L’-attackon ¥ a;x; = S.

Step 1
Define the vectors
V1 = {1, 0, ., 0, -ai;
vz = (0, 1, ., 0, -az;
: (12.10)
Vn = 0, 0, .y 1, —an
Yne1 = 0, 0, ., 0, S

Together they form abasis for a (n + 1)-dimensional lattice A in Z"*!.
Note that for the solution {x;)%,0one has
2y XiVi+ Yarl = (X1, X2, .., X, 0).

So, this vector has length vn, which is relatively very short, eg., if the knapsack has length
n=100we have [{ X, x; v + vuyr || < 10.

Step 2:
Find a reduced basis {w, wa, ..., w,} for Awiththe L3-algorithm ([LenLL82]).
Step 3:

Check if one of the n + 1 "short" vectors w;, | <i < n + 1,has the property that (w;),,; = Oand that
each of the first n coordinates is either O or a, for some constant a.

If s0, check if the vector TII((M)I’ (Wi)ys --., (wy),) IS a solution of (12.1). If it does, STOP,
otherwise continue with Step 4.

Step 4:

Repeat Steps 1, 2 and 3 with Sreplaced by 3 % ; a; — S. If these steps result in asolution {x;'}, for
this new knapsack problem then {x;}%,, defined by x; = 1 —x;', 1 =i <n , will be the solution of
the original knapsack.
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Example 12.6
Consider the knapsack problem with {a;}!?, ={541,400,259,1059,895,590,498,973,41,649} and S = 4517.

Let usfirst make the vectors v, ! <i < 10, as indicated by (12.10). We use the Mathematica functions
Transpose, Append, IdentityMatrix, Do, Table, andMatrixForm.

—— =

a = {541, 400, 259, 1059, 895, 590, 498, 973, 41, 649};

| 8 =4517; .
. mux = Transpose| Append[IdentityMatrix[10], -a]];
Do[v[i] = aux[[i]]., {4, 1, 10}];
v[11] = Append[Table[0, {10}], s];

| rable[v[i], {4, 1, 11}] // MatrixForm

{ 541
-400
=155
~105%
8395
-580
-498
=973
-41
-649
4517 J

;:lﬁl:ri:pl:lﬁl:lﬂl:lﬂl—'
(=0 =B = B = = B = [ = N = R i e
o o oo ook o oD
o e B = I o I e B = Bl o = = =
00000 HEoOE 0O
20 00 =000 000
(=00 = = B o = B = = R = = Rt == = ]
= B = = = = = = = I = =]
DO -oO SO0 a S0

o000 0D000 0O

The vectors {y;, va, ..., ¥50} form the basis ofa latticeA.

Next we use the Mathematicafunction LatticeReduce to find a reduced basis.

LMtticMm['!’nhl-[v[i], 11, 31, 11))]

({1, -2,.°2,0; 050,00, 0,0, 0);

T Y T W el S Yo O ke | e TR R Tl R TS e R T
{lomd=d 0 =1p0 06 L, LB =X}

T Lot SO T i T L e B

(1,1, =10, 0, =2 "L, 0,00, 0}

bt R TR T R e e e B

&0 il b+ R I P RN B o T e e §

[0 el e 1 190 A5 0,71 1)

e T T R s B RERT el RS- ik R e b Bl SR ¢ TP e SRR | IS W SR 1 R b R

We see that only the last output is a two-valued vector on itsfirst 10 coordinates. One of the
values is indeed O, the other value is @=1. Trying out {a;}/?, ={1,1,0,1,1,0,0, 1, 0, 1} gives
indeed Y\7_; a; x; = S.
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xw {1, 1,0, 1; 1,0,0,1;0D, 1}

e B s ae

True

The computing time of Steps 1 and 3 in the L3-attack is ignorable. Therefore, the running time of
this algorithm is essentially (twice) the running time of the L*-algorithm, as given by in Theorem
12.2. There is in no guarantee that the L3-algorithm will find a solution of the knapsack problem.
However the authors of [LagO83] give the following analysis of the L3-algorithm.

Theorem 12.4
Let B 2 2M#% for some constant B =0 and knap=ack length n. Let K(n, B) denote the
number of knapsacks {a;}%; satisfying
1)l sa;=Bforall l =i<n,
2) the L*-amack will find a {0,1]-solution {x}", for (12.1) for each right hand side § for
which there exists such a solution,
Then
Ki(n, B) = B*(1 - e(B)),

where

G{E{Bh:at.—l_‘;lm

for some constant C) and where Cs = 1=(1 + £)' = 0.

Theorem 12.4 states that for any 8> 0and » sufficiently large one can solve the knapsack problem
for almost al knapsacks {a;}/-, with density

an n 1
dlall) = 10 5 < Tpn

With some additional work [LagO83], the inequality above can be weakened to

ddlatie) < (1-0) =boe.

forany fixed e > 0and n. This inequality is probably not the best possible one.

12.2.5 The L3-Lattice Basis Reduction Algorithm

Recall that the L-algorithm must find a basis {y;, vz, ..., ¥») fOr an integer lattice that meets the
requirement given in Definition 12.3:

N+ ptijor iy 12 2y llmieg 17, 2<is<n,

(il =1/2, l<i<js<n,
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(¥.,)
where 4; ; = W.

The L3-algorithm makes use of the following procedure:

Procedure reduce[k, []
Input 1=sl<k
Compute p;
If (| ), | > 1/2 then begin
r=105+ ]
M= Ve =
end

The L*-algorithm now runs as follows:

L*-Algorithm
Input {¥1, ¥2, -..a ¥ ), basis of integer lattice
Initialize k=2
Whilek=n do
begin
reduce(k, k- 1)
compuie || |l, |-y || and g g0
if I < [,'F_Ff—u}'- Il a1 1P
then begin exchange v; and ¥
k= max {2, k- 1}

end
else begin = reducelk, fori=k-1,....2, 1
k=k+1
end

end

For further reading see [LenLL82]. Notice that only the basis {vi, vz, ..., v,}is adjusted in this
algorithm. No vector u; enters the reduced basis, they are only used in the calculations.
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12.3 The Chor-Rivest Variant

The Chor-Rivest scheme [ChoR85] is a knapsack based cryptosystem that does not convert a
secret knapsack, for which the knapsack problem is easy to solve, into the public knapsack, for
which the knapsack problem should be intractable. 1t does make use of the standard conversion of
integers to binary sequences of fixed length. Further, it employes a fixed constant, a fixed choice
of an irreducible polynomial, a fixed choice of a primitive element, a fixed permutation, and an
exponentiation in afinite field for which the logarithm problem is tractable.

In [Vaud9g], it is shown that the parameters suggested in [ChoR85] are not secure. The author
gives suggestions to repair the original proposal. Here we shall only explain the original idea of the
Chor-Rivest scheme.

o Setting Up the System

1 Each user U sdects a finite field GF (¢) for which the logarithm problem is feasible (also
by the cryptanalist). For instance, in view of the Pohlig-Hellman Algorithm explained in
Subsection 8.3.1, this can be achieved by letting g — 1 have only smal prime factors. Further, the
characteristic p of GF(g), so ¢ = p* for some k, should satisfy p > k.

To represent GF(g), U uses a random irreducible polynomial f(x) of degree k over Z,The
elements of GF(g) can be represented by p-ary polynomials of degree < k (see Theorem B. 15).

Note that, for reasons of clarity, we have omitted the subscript U in the above choices by U).

2) User U sdects arandom primitive element ain GF(g). Primitive means that each non-zero
element in GF(g) can be written as some power a' of @, where i < g ~ 1. Note that «, being an
element in GF(g), is adso a p-ary polynomial of degree less than k.

3 For eachie Z,, user U determines the discrete logarithm of the field elements x + ¢ with
respect to the primitive element o. In other words, one needs to find exponents U, ie Z,,
satisfying

@Y% = x + i (mod f(x)). (12.11)
Thisisfeasible by our assumptionin 1).

4) Finaly, user U has to select a random permutation =y of {0, 1, ..., p— 1}and a random
element Dy, 0 < D < g — 1. He computes the numbers

u; = Uny + Dy (modg - 1). (12.12)

and makes these numbers ug, ui, ..., up—; public together with thevalue ¢ = p*.
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(The reader should recall that g — 1 is the order of the multiplicative group of GF(g), see Theorem
B.20).

Example 127 (Part 1)

Bob selects thefinite field GF(73), so p =7 and k = 3.An irreducible, binary polynomial f(x) of degree 3
over Z; can be found with the Mathematica function IrreduciblePolynomial, once the package
Algebra ‘FiniteFields" hasbeenloaded.

S0, f(x) =x° +2x° +x+4. It turns out that « = x is a primitive element in GF(7%). This can be
checked asfollows. From g —1 = 7% —1 =11 x 31, we see that the order of any element is either
1, 11, 31, or 342 (see Theorem B.5). But « = x does not have order 11 or 31, as can be checked
with the following calculations. (We use the GF-function. Note that 342 represents
GF(7’) = Z7x) | (f (x).)

Y :
L =

{6, 1. 3}4

{3, 3, &},

To get a random primitive element @in GF(77%), Bob raises w to the power i with ged(i, g —1) =1
(see Lemma B.4). We use thefunctions Random, GCD, and While.

239
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We find i=239. The random primitive element will be 2 = &/, whichis 3 +4x +5 x? by

{3, 4, 5},

It follows from 83 x239 =1 (mod q — 1) that w = &*°.

To determine the numbers B; satisfying @® = x +i (mod f(x)) we use

B = Table[Mod [B3 « FleldInd[om+ 1], gq-1], {i, 0, p-1}]

[82, 101, 175, 20, 170, 321, 213}

We conclude that By =83, B; =101, B, =175, B; =90, B, =170, Bs =321, Bs =213.
This can be checked with:

a?
L

{{0, 1, 0}s. {1, 1, 0};. {2, 1, 0}4,
{3.1, 0}, {4, 1, O}4, {5, 1, O}5, {6, 1, 0]4}

A few more things need to be done by Bob. He has to select a random number D, 0 <D <q -1,
and a random permutation » of {0, 1,...,6}. We load the Mathematica package
DiscreteMath 'Combinatorica‘ and usethefunction RandomPermutation.

<<DiscreteMath’ Combinatorica’

RD = Random[Integer, {0, q-2}]
pi = RandomParmutation[7]

244

['EJ 3, Tr ITJIr 5r 2| 1"

S0, D=244andr =16, 3, 7,4, 5, 2, 1}, meaning that (1) =6, 7(2) =3, ..., 7(7) = L

(The reader should watch out here. Mathematica labels the entries in a list starting with 1, while
we start with 0. )
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The public key is given by the sequence (12.12): b; = B, +D. We use thefunctions Table and
Mod.

BFerm = Table [B[[pi[[1]]]], {i, 1, T}]
b = Mod[BPerm + RD, q - 1]

{321, 175, 213, %0, 170, 101, 83}

Bl b DL ER YT G DI oy

Bob makes {b;10_, = {223, 77, 115, 334, 72, 3, 327}public and also k = 3.

o Encryption

Now suppose that Alice wants to send a secret message to Bob. She looks up the public parameters
bo, by, ..., bp_y and k of Bob. Shecalculates gz = p*. Alice's message is anumber M in between 1

and(f).
Alice represents her message (in a manner that is shown below) as a binary string
my, my, ..., mp_y Of length p and weight k (exactly k of the m;'s are equal to 1), 0

i mi=k (12.13)
Alice will send

¢ = (Zf5" m; by mod gp). (12.14)
Example 12.7 (Part 2)

Suppose that Alice wants to send a message to Bob. She looks up Bob's public parameters k =3
and {b;)8., = {223, 77, 115, 334, 72, 3, 327} (see Example 12.7). So, she knows that p =7 (and
q=7=341).

. o _ 7
Let Alice's message be M = 19 (which indeed lies in between 1 and (3)).
This can be represented by the binary sequence {m;}¢_, = {0, 1, 1, 0, 1, 0, 0}, as shown
bel ow.
The ciphertext ¢ that Alice will send will be 3$_, m; b;, which is 264 in this case.

! II={|], 1'- 1,' n’ 1; l:h 'ﬂ]l
| et =m.b

264
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There is arecursive way to map a number M, 1 < M < (f) into abinary string mg, my, ..., mp_,

of length p and weight k. It makes use of the well-known identity:

(-0

IfM > (p; l), we put m,_, = 1 and decrease M by (p; 1).This new value will be in between 1
and (Z: 11) and can be described by a string my, m, ..., m,_, of length p — 1and weight & - 1.

p-1

On the other hand, if M s( .

), put mp_, = 0 and describe M by astring mo, my, ..., mp_, of
length p — 1 and weight k.

Algorithm 12.5 Conversion from M to mg, my, ..., mg_ of weight k
il
Input .'.-f,!ﬂ.'.-f-f,[;_}
Initialize I=k

Fori=ltopdo M }(F; ']

then begin my_: =1
p—i
M :=H—[ f ]
L:i=1-1
end
else mp. =0

Example 12.8
7
Let p=7andk = 3. Then [3) =35.

Tofind out into which binary sequence of length 7 and weight 3 the integer M = 19 will be mapped, we
follow the algorithm below, which makes use of the Mathematica functions Table, If, Do, and
Binomial.
p=T7ik=3p
Me = 19;
1=k
| m=Table[0, {i, 1, p}]s
| Do[If[Me > Binomiallp -1, 1],
{m[[i]] = 1,
Ma = Me - Binomial[p-41, 1], 1=1-1}].
{1, 1, p}1:
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o Decryption

Bob receives ¢, which is in fact ¢ = (2{;‘,' m; b; mOqu) by (12.14). He computes C =c¢ -k.Dg
with his secret Dy (see (12.12)).

Next, Bob computes €. Now note that in GF(g):

-1 -1
o€ = ge-*D8 = AL m b))k Dp UL1D o (ZI miBriy+Dp)-k.Dy

-1 - . -
(]2=13) QZ{;I my Byi) = H{;I] (QBII(I))’"' (lzﬁl]) i’;ll (x +7T(l‘))m1.
This means that

€ = 117 (x + 7)™ (mod f(x)).

=1

Next, we add a suitable multiple of f(x) to @ to make its polynomial representation monic. So,
for some B € GF(g): a(x) = a® + B.f(x)is monic.

Since also ['[{’;,l (x + 7)™ is monic, the above in fact implies that
a(x) = [175 (x + 7)™,
It followsthat m; = 1,0 <i < p— 1, if and only if —a(i) is a zero of a(x).

We summarize the decryption process in the following algorithm.

Algorithm 12.6 Decryption of Chor-Rivest Cryptosystem by Bob
Input ciphertext ¢
Bob's Secret  Dg, &, o, fix), .
Compute C = ¢ — k.Dg with secret Dy (see (12.12})).
Compute a®, where @ is Bob's primitive element
Add multiple of f(x) to a© to get monic aix)
Put my; = 1 if and only if —a(i) is a zero of a(x).

Example 12.7 (Part 3)
We continue with Example 12.7. Assume that Bob receivesthe ciphertext ¢ = 264.

Bob's secret parameters are k =3, D =244, 7 =16, 3, 7,4, 5,2, 1}, f(x) =4 +x +2x* +x’and
=3+4x+5x%

Bob subtracts k.Dfrom c,

Fﬂ?=ﬂﬂd[¢t—m:k. q-1]

2le
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Next he raises a to the power C. To write this as a polynomial we use the function
ElementToPolynomial.

|""l-£ i

{2, 1, 3};

2+x+3x et B

Next, Bob has to add f(x) to get the monic polynomial a(x). We use the function
PolynomialMod.

{({2+x) (4+2) (6+x)}

The inverse permutation of 7 can be computed with ITnversePermutation (in the package
DiscreteMath 'Combinatorica' that wehavealreadyloaded)
> ’ i X T ’-i-':-.-:':.." Tk 1t

{Tl E‘r -=l "p 5- 1; 3}

We subtract 1 from these elements because » actson {0, 1, ..., 6} instead of {1, 2, ..., 7). Weget

1651 3pd,-0,2)

From this we see that the numbers 2, 4, and 6 are mapped to 1,4, and 2 under 7~'. In other
words, 7 mapsl, 2, and4to2, 4, resp. 6.
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We conclude that the message vector has ones on the coordinates 1, 2, and 4 (and thus zeros on
the coordinates 0, 3, 5, and 6), i.e. the message vector isgiven by {m;}¢_, =10, 1, 1, 0, 1, 0, 0.

This is indeed equal to the value that was chosen during encryption.

12.4 Problems

Problem 12.1
Solve the knapsack problem if the elements are given by 333, 41,4, 172, 19, 3, 8, and 11 and if the total
size of the knapsack equal's 227.

Problem 12.2
Solve the knapsack problem if the elements are given by 31, 32, 46, 51 63, 72 and 87 and if the total size of
the knapsack equals 227.

Problem 12.3¥

A knapsack cryptosystem has the numbers 381, 424, 2313, 2527, 2535, 3832, 3879, and 4169 as public
key. They are obtained by multiplying the elements of a super-increasing sequence by W = 4673 and
reducing the result modulo 5011.

Decrypt message 11678.

Problem 124

Let py, p2, ..., ps be a sequence of different prime numbers and let P be their product. The numbers a;,
1 <i<n,ae defined by q, = P/ p;.

Let S = 3%, x;.a;, Where each element x, iseither O or 1.

Give a simple algorithm to recover the numbers x;, 1 <i < n,from S

Problem 12.5

Let C=5738 be the ciphertext obtained through a knapsack encryption with {u;)iy
= {437, 1654, 1311, 625, 1250, 1720, 663, 1420, 63, 319} as public knapsack.

Apply the L3-attack to find the plaintext.

Problem 12.6
Which integer will be mapped to the binary vector (1, 1,0, 1, 1,0, 1,0, 1, 1) by Algorithm 125?

Problem 12.74
Work out a complete Chor-Rivest cryptosystem example (including encryption and decryption) for the
parameters p = 11,k = 2.



13 Hash Codes & Authentication Techniques

13.1 Introduction

In Section 1.1 we mentioned confidentiality (privacy) as the first reason why people use
cryptosystem. Of course, this god is very important and it does lead to interesting mathematical
issues, but for the vast majority of data secrecy is not the user's prime concern.

Authentication and integrity on the other hand are almost always essential. Think, for instance, of
receivers of data files, E-mail messages, fax, etc. Violation of the confidentiality does (in general)
little harm, but significant damage may be done if somebody €else is able to tamper with data files.

When studying authentication schemes one needs to distinguish between the following godls:
i) Does one want unconditional security or just computational security?

i) Do the various parties trust each other or not?

iii) Isthere amutually trusted third party?

iv)  Arethedatafilestypically very long orjust short?

V) Is confidentiality also an issue?

vi) Is the system intended for multiple use orjust for single use?

The first two distinctions especialy, have lead to completely different research areas. The main
topic of Section 13.3 will be authentication schemes with unconditional security. This means that
even with unlimited computing power the opponent can not break the system.These schemes are
usually called authentication codes and a particular subclass of them is called A-codes.

Computationally secure systems are based on mathematical assumptions like the infeasibility of
factoring large numbers or of taking discrete logarithms. These methods are caled digital
signature schemes and have aready been discussed in Sections 8.1.2, 8.2.1, 8.2.2, and 9.1.4.

If afile is very long and confidentiality is not an issue a very common technique to add proof of
authenticity and/or integrity toit, isto send itjust like it is and then add arelatively short sequence
of bits (e.g. 100-200) that depend in an intricate way on al the bits in the original message. This
tail should be proof that the message indeed came from the assumed sender and that its contents
have not been changed.

The standard way to redlize this is to hash the file in a cryptographicaly secure way into a short
sequence and compute a signature on this hash value. It is the signature of the hash vaue that is
appended to the origina file. If an authentication scheme is dow in its implementations (as is the
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case with digital signature schemes), this two-step approach may make them very practical.

In many applications, the hash function aso makes use of a secret key that sender and receiver
share. These systems, which are caled Message Authentication Codes (MAC's) are not
unconditionally secure, because somebody with unlimited computing power can, in principle, try
out dl keys.

Hash functions and MAC's are the topic of Section 13.2.

13.2 Hash Functions and MAC's

We do not intend to give a forma description of various types of hash codes. For our purposes, a
global understanding of these codes and their properties suffices.

A hash function (or hash code) is a mapping h from A", the set of al sequences of symbols from
an alphabet A, to A™, where m is some fixed positive integer. So, each sequence over A (of
arbitrary length) will be mapped to a sequence over A of length m. In typical applications
A =1{0, 1} and the value of m ranges somewhere between 64 and 256.

Since one normally wants very fast implementations of hash functions h, we also require that it is
easy to evaluate the hash value for any sequence over A.

To make a hash function cryptographically secure, one often requires one or more of the following
properties to hold.

H1:  The hash function h is a one-way function (see Section 7.1.2), i.e. for dmost al outputs b
it is computationally infeasible to find an input a € A* such that b = h(a).

H2:  The hash function h is weak callision resistant. This means that for agiven value of a it is
computationally infeasible to find a second value @' € A*, a # a',such that h(a) = h(a’).

H3:  The hash function h is strong collision resistant This means that it is computationally
infeasible to find a pair of values a, a' € A*, a # a',such that h(a) = h(a").

The implications of these requirements may be clear to the reader. For instance, H2 implies that if
the hash values h(a) of afile a is protected by a digital signature, one can not replace it by another
file & with the same hash value, simply because it is infeasible to find such an a".

Property H3 is even much stronger and makes it possible to convince ajudge that the system has
been compromised.

Example 13.1

Consider m = I and A = Z,. To hash a = (ay, a;, ..., a;) one sSimply takes b = (3!_,a; mod n). This hash
value depends on all symbols in a and is easy to compute, but it does not meet any of the requirements H1-
H3.
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Example 132

Consider again m =1 and A = Z,. Tohasha =(ag, a;. ..., a;) one computes b = (! a;)’ mod n). If n
is a large composite number, property H1 will hold, because taking square roots modulo such an integer n
is considered to be infeasible (see Theorem 9.18).

With the Mathematica functions Mod and Length this hashfunction can be easily evaluated.

h[inputfile List, nn_Integer] := I
Langth[inputfile) a {
Mod | Z inputfile[[i]]| , mn]
i=1
n=989;
in = {189, 632, 500, 722, 349};

hiin, n]

Properties H2 and H3 are not met, because —a will have the same hash value as a. Also, when one
coordinate is increased and the next one decreased by the same amount, the hash value remains
the same.

alternative = Mod[-in, n)
h[alternative, n]

{800, 357, B9, 267, 640}

955

Even if a hash function meets properties H1-H3, it is till possble to intercept a transmission
(a, h(a)) and replace it with another file (a', h(a"). For this reason, one sometimes wants to
introduce a secret key, shared by sender and receiver. The hash function h will now be cdled a
message authentication code (MAC) and is afunction of A* X K to A™, where K is the key space,
just asin conventional cryptosystems.

Example 133

Let m =64 and A = Z,. With DES;(u) we denote a DES encryption of a block u of length under key k .
Assume that k is the key that Alice and Bob share.

Now, consider a binary file {a,, aa, ..., a;} oOf length | that Alice is going to send to Bob. Alicefirst pads it
with sufficient zeros to make the length a multiple of 64. Let L be this new length. To compute the hash
valueon {ay, az, ..., a.} Alicefollows the following algorithm:
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Algorithm 13.1 Using DES as Messape Authentication Code

input binary string {a, a3, ..., ag}, padded to make 64 | L.

e

initialize h={00,...0
fori=0to (L/564) - 1 do h = DESg(h & [gegis1, Q64425 - Todiveal)
output hash value h

The receiver duplicates the above calculations to verify that thefile has not been changed and was
indeed sent by Alice.

Ofcourse, we could have used any other block cipher instead of DES in this example.

It is also possible to use ablock cipher as a keyless hash function. To this end one also makes the
key apublic parameter.

The implicit assumption when using a block cipher for authentication purposes is that for a fixed
key it behaves as a random permutation on the input set. Also, one hopes that the block cipher is
cryptographically secure. In the next section, authentication codes will be discussed that are not
based on any mathematical assumption.

There are many different standards for hash functions. The reader is referred to [MeOoV97] and
[Schn9g].

13.3  Unconditionally Secure Authentication Codes

13.3.1 Notions and Bounds

No authentication scheme can give an absolute guarantee that an accepted message comes from a
particular user, say Alice. For instance, there is always a small probability that a (randomly or
otherwise) generated sequence could have been made by Alice, but in fact was not. It will then be
accepted by others as a genuine document from Alice.

It follows that it is necessary to define and compute the probability of a successful fraud. However,
in such computations there is an essential difference between assuming the computational security
of certain problems (as we do in public key cryptosystems), or not making any further assumptions
at all (unconditional security). This last situation will be the topic of this section.

We shall assume that Alice and Bob trust each other and have agreed upon a secret key. This
assumption is not really necessary, but then the notion of atrusted third party (like an arbitrator)
must be introduced.

Let us start with a simple example.
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Example 134

Alice wants to send a single bit ofinformation (a yes or a no) to Bob by means of a word of length 2. Alice
and Bob have 4 possible keys available. Alice and Bob make use of thefollowing matrix:

key\sent |00 (01 (10} 11
1 of1|-1-
2 1(-104-
3 -10f(-|1
4 -[-1110

Authentication Code for two messages.

Table 13.1
So, message 1 will be sent as word 11 under the third key.

The probability that somebody else can successfully impersonate Alice is 1/2, because only two of
thefour words in {00, 01, 10, 11} are possible as transmitted word under the joint secret key of
Alice and Bob.

An opponent Eve who tries to replace a transmitted message by another one will know that only
two keys can possibly have been used, but she does not know which one. So, the probability of a
successful substitution is also 1/2. For instance, if Eve intercepts 01, she knows that either
message 1 was sent (under key 1) or message 0 was sent (under key 3). In thefirst case, she needs
to transmit 00 and in the second case it should be 11, therefore, she succeeds with probability 1/2.

The above scheme even gives secrecy, because every transmitted word can come from message 0
or from message | (both with probability 1/2).

The generd definition of an authentication code (we deviate here from the standard notation in the
theory of authentication codes in order to avoid confusion with the standard notation in the theory
of error-correcting codes) is as follows:

Definition 13.1
An authentication code is a triple (M, K, C) and & mapping [ : Mx % = C such that
for all m, m' & A and for all k X

Jelm) = film') =3 m=m" {13.1)

The set M is called the message ser, K the key ger, and C the codeword set

An authentication code can be depicted by atable U with the rows indexed by the keys kin %,the
columns indexed by the codewords c in C and entry (k, ¢) in U given by mif anm e A exists such
that fi(m) = ¢ (such an m is unique by (13.1)) and by a hyphen if such an m does not exist. We
shall call this table the authentication matrix of the code.
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In Example 134 above, M = {0, 1}, K ={1, 2, 3, 4}and C = {00, 01, 10, 11}.The authentication
matrix of this code is given by Table 13.1.

Condition (13.1) impliesthat f; is an injective mapping for each possible key.

When Bob receives codeword ¢ € C from Alice, he will accept it as a signed version of message
m e M, where m is uniquely determined by fi(m) = c. Here k is the key that Alice and Bob have
agreed upon. To make the system practical, f; should be easily invertible for each key. To this end,
f (and C) will often have amuch simpler structure.

Deefinition 13.2
An A-code is a triple (M, %, T) and a mapping g : MK =T,
Given key ke X, message me M will be transmitted as (m, 1), where ¢ = gy(m) is

called the authenticator of m.

By taking fi(m) = (m, gi(m)) and C = MxT we e that an A-code is a specia case of an
authenticationcode.

A good authentication code is designed in such a way that fraudulent words & are spread evenly
over C, while the subset of words that the legitimate receiver expects, knowing the common key
k e K, isonly afraction of this sat.

Thus the aim of an authentication code is that not only Bob, but also an arbitrator, can check the
authenticity of a properly made c (in the case of an A-code by verifying that g,(m) = t, in the case
of a general authentication code by checking that c is in the image space of f), but an

impersonator who does not know the key has only a small probability of getting aword ¢ accepted.

An attack by an impersonator is caled an impersonation attack.

The same should be true if the enemy wants to replace a genuine codeword ¢ (made with the
proper key) by another one, say ¢, that represents a different message. This kind of attack is called
a subdtitution attack. Note that in this case, some information on the key is available to the
opponent. We shall not discuss systems in which the same key can be safely used more than once
by the legitimate users.

In the following definitions we shall assume that keys will be chosen from K with a uniform
distribution and that messages will be chosen from AA with a uniform distribution.

Let us assume that a genera authentication code is being used by Alice and Bob. To maximize the
probability of a successful impersonation, the opponent can do no better than select and send a
codeword ¢ € C that will have the highest probability of being accepted by the legitimate receiver.
This is the case if for the maximum number of keys & € K the codeword ¢ will be in the image
space of f;.

Another way of saying this is that one looks for the column in the authentication matrix that has
the maximum number of hon-hyphen entries. The column index c of that column will be sent.
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Definition 13.3
The probability P is the maximum probability of a successful impersonation attack, i.e.

i HheKice fUMI .
PI‘M&; T3] |:|3._'_|

In Example 134, each codeword is the image of a message under exactly two of the four keys
(each column counts two non-hyphens). So,P; =2/4 =1/2.

In case of a substitution attack one has intercepted a codeword ¢ e C. This restricts the possible
keys that may have been used by sender and receiver to {k € K| c € fi(M)}. The best attack for
the opponent is to search among those codewords that are possible with these keys for the one that
occurs the most often.

A different way of saying this is that in the authentication matrix of the code one looks at the
column under the intercepted ¢ and removes al rows from the matrix that have a hyphen in that
column (these rows are indexed by a key that can not have been used). Also delete the column
indexed by c. Among the remaining columns one looks for the one with the largest number of non-
hyphen entries. The column index c' of that column will be substituted for c.

Definition 13.4
The probability Py is the maximum probability of a successful substitution attack, i.e.

Hi e e i LA & ' LA
b= e i LAMRI

Py = maX, sep e (13.3)

In Example 134, each codeword IS the Image of a message under exactly two of the tour keys. For
each of these two keys, the other possible message will be mapped to a distinct codeword. So,
Ps=1/2.

The maximum of the two probabilities in (13.2) and (13.3) is often caled the probability of
successful deception. In formula

PD = max {Pl, Ps}. (13.4)

Since an authentication function fi is injective for each k € K, it follows that exactly | M|
codewords must be authentic for any given key. In other words, it follows that each row of the
authentication matrix U of an authentication code has exactly | M| non-hyphen entries. Since U
has | % | rows and |C | columns it follows that the average number of non-hyphen entries over the
columns of U is || x {M]|/|C]|. So, the maximum fraction of hon-hyphen entries per column
isatleast | M|/ |C]. Thisprovesthe following theorem.
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Theorem 13.2
The maximum probability Py of a successful impersonation in an authentication scheme

for (M, K, C) satisfies

P = %"
Similarly, in the case of the substitution attack the restriction of the authentication matrix U to the
rows where an intercepted codeword ¢ has non-hyphen entries consists of | {k € K| c € fi(M)} |
rows, each with | M|-1 non-hyphen entries. After deleting the column indexed by c, this
restriction has |C| -1 columns. So, the average value of the relative frequency of non-hyphen
entriesin this restriction of U is (| M| =1)/(|C|-1).This proves the following bound.

Theorem 13.3
The maximum probability Ps of a successful substitution in an authentication scheme
for (M, K, C) satisfies

14=1

P :
5E

If the messages and keys are not uniformly distributed over the message space and key space, it is
still possible to derive lowerbounds on P, Pg,and Pp.In these lowerbounds, functions appear

that we have discussed in Chapter 5. For the proofs of the next two theorems, we refer the
interested reader to [Joha94b).

Theorem 13.4

Let M, K, and C denote random vanables defined on M, 'K, and C, related by a function
f:iMxK = C, satisfying (13.1). Further, let H(X |¥) and [(X;Y) denote the
conditional entropy function resp. the mutual information function. Then

Py = 2-NEK), (13.5)
Py = 27400 (13.6)
P

o oy {13.7)

The bound in (13.7) is called the square root bound. Authentication codes meeting this bound are
caled perfect.

Theorem 13.5
A necessary condition for an authentication code to be perfect is that

M| = V%7 +1.
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For further reading on authentication codes, we refer the reader to [GiIMW74], [MeOoV97],
[Schn96], and [Simm92].

13.3.2 The Projective Plane Construction

In [GIIMW?74] one can find a nice description of a perfect authentication scheme. We first need to
describe what a projective plane is, before we can explain this construction

o A Finite Projective Plane

A projective plane is a kind of geometric object that differs somewhat from planes in regular
Euclidean geometry. It is defined in a forma way by a set of axioms, that among others does not
alow for parallel lines! After the definition we shall give a construction of these projective planes

that will explain the name "projective".

We gtart with afinite set 2, whose elements are called points. Further, £ is a collection of subsets
¢ c P, cdled lines. We shal say that a point P "lies’ on aline ¢, if P e¢. Also, two lines may
"intersect" in a point, etc., s, we adopt al the regular terminology from geometry. To avoid
trivialities, we shall assume that al lines contain at least two points ((f € LYy=(|f| = 2)).

Definition 13.5
The pair (#, L) is called a finite projective plane if the following axioms hold:

PP-1: There are at least four points, no three of which lie on the same line.
PP-2: For every pair of points there is a unique line going through them.
PP-3: Every pair of lines intersect in a unique point.

Property PP-1 is there to avoid the following object in our considerations. All lines have
cardinality two and go through the same point (depicted below) except for one line which goes
through the remaining points
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Theorem 13.6
Let (¥, L) be a projective plane. Then there exists a constant a, called the order of the
plane, such that:

PP-4 Every line contains exactly n + 1 points.
PP-5 Every point lies on exactly n + 1 lines.
PP6 |Pl=|Ll=r+a+]1.

Proof:
Proof of PP-4. Every line contains exactly » + 1points.

Our first step is to show the claim that each pointin # lieson a least three different lines. Let us
start with four points P, Q, R, and S no three of which are colinear (see PP-1). For each of these
points, any of the other three defines a unique line through them by PP-2. For a point T not on any
of the lines going through two of the points P, Q. R, and S, the claim is also trivial (each of these
four points defines a unique linethrough T). We leave it as an exercise to the reader to prove the
claim for apoint that is on one of the six lines going through two of the points P, Q, R, and S.

Now, consider an arbitrary point P. We know that at least three lines go through it. Let Q be a
point on one of these lines, say on line ¢. We shall show that al the other lines through P have the
same cardinality. To thisend, let Ag = P, Ay, A, .... A, be the points on line m through P (where
m+{) and let By = P, By, By, ..., B, be the points on line n through P (where  # ¢, n + m). We
need to show that m = n.

For each 0 < i < m thereis aunique line through @ and A; by PP-2. By PP-3 this line will intersect
nin apoint, say By. This is a one-to-one mapping, because a line through Qand B, can not
intersect min two points (by PP-3). We conclude that = > n. By interchanging the role of mand n
we may conclude that m = n.

So, all the linesthrough P, except possibly for the line that also meets Q, have the same cardinality
n + 1. Byputting Q on one of the other lines through P, say n, and repeating the above argument,
we may conclude that all lines through P have cardinality » + 1.
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Let U be another point. For exactly the same reason as above, al the lines through U have the
same cardinality, say u + 1. However one of these lines also goes through P by PP-2. It follows
that u = n.

Proof of PP-5: Every point lies on exactly » + ! lines.

Consider a point P and a line m not through P. Let the points on m be numbered
My, Ma, ..., M,,,. Each point M; on mtogether with P defines a unique line passing through them
(property PP-2). These lines are al different by the uniqueness property in PP-2. On the other
hand, every line through P must intersect m in a unique point. We conclude that » + 1 lines pass
through P.

Proof of PP-6: |P|= |L]|=n*+n+1.

Consider a point P. There are n + 1 lines through P, each containing n other points. This gives rise
to 1+ (n + 1) n points. There are no other pointsin P by PP-2.

Similarly, consider aline . There are » + 1 points on it, each being on n other lines. This gives rise
to 1 +(n + 1) n lines. There are no other linesin £ by PP-3. (Notice the symmetry between points
and lines in Definition 13.5.)

Example 135

Take n =2. Then |#| = |.£| =7. Each line contains three points and each point lies on three lines. This
projective plane is depicted in thefollowingfigure.

The 7 lines in this figure are the three outer edges, the three bisectors and the circle in the middle.
So, Lconsists of thefollowing seven lines:

%1 ={P;, P2, P3}, £ ={P,, P4 Ps},

4 =P, Ps, P7}, /3 ={P2, P4, Pe)},

/s ={P2, Ps, P7}, /s ={P3, P4, P7},
/7 = {P3, Ps, Pg).

The projective plane of order 2 is unique and is called the Fano plane.
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A projective plane is often described by means of its incidence matrix. This the matrix A of which
the rows are indexed by thelines ¢ € £, the columns by the points P € Pand where

Apye = {

1 if Pont,
0 otherwise.

The incidence matrix of the Fano plane (with the labeling given in the figure above) is

f1:1 1.0 0 0 0) |
170 0 110 :
1 000001 I
01010 10]|; |
05150 0 11 |
0011001

P S e ek G B B

The properties in Definition 135 and Theorem 136 can be directly trandated into the following
matrix requirements.

PP-2
PP-3
PP-4
PP5
PP-6

Every two different columns of A have inner product 1.
Every two different rows of A have inner product 1.
Every row of A has n + 1 ones.

Every column of A has n + 1 ones.

Matrix A has n? + n + 1 rows and columns.

These properties can be summarized in the formula

AAT=AT A=nl+J. (13.8)

where J is the al-one matrix of size (n? +n+ 1)x(#* + n+ 1) and 1the identity matrix (of the

same size).

For the example above we can check this with the Mathematica functions Transpo se and

MatrixForm.

MatrixForm[A.Transpose[Ai]]
MatrixForm|[Transposa[A] .A]

| T S R N A

[l el R S P

[l T R T T

[l el el T
[

P Lk e
R S SR T
e e
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o A General Congtruction of a Projective Plane

There is ageneral construction of projective planes of order g, where g is a prime power. There are
other constructions of projective planes, but they all have an order that is a prime power. It has
been shown that no projective plane exists of order 6 and 10.

Let V(3, q) denote a 3-dimensional vectorspace over GF (g), the finite field of ¢ elements. Its
elements are vectors g = (ay, a3, a3) With a; in GF(g). The cardindity of V(3, g)is q. Let
0=(0,0,0).

Each linethrough 0 can be described by a non-zero vector g:
{Ag| A € GF(g)}. (13.9)

Of course, non-zero scalar multiples of g will give rise to the same line in V(3, ¢). So, there are
(¢ - 1)/(g—-1) = g* + g+ 1 different lines through 0.

Similarly, aplanethrough 0in V (3, ¢) can be described by a non-zero vector u:
(a1, a2, a3) € V(3, @) laj u) + aa up + as u3 = 0. (13.10)

Again, non-zero scaar multiples of u will give rise to the same planein V(3, g), therefore, there
ae (g -1)/(g-1)= ¢* +q+ 1 different planes through 0. A different way to describe a plane
through Q is{Ag + ub | A € GF(q), u € GF(¢)}.

Each non-zero point on a plane through 0 defines a line through 0. As before, non-zero scaar
multiples of this point define the same line. We conclude that there are (¢ - 1)/(g—1) =g +1
lines (through 0) on a plane (through Q).

Each line {Aa|A € GF(g)} can be embedded in a plane {Ag+ ub|A € GF(q), u € GF(g)} by
selecting any of the g* — g points not on the line. Of course, not all these planes are different. A

particular plane containing {Ag | A € GF(q)) can be obtained by any of the ¢> — g pointsin the plane
not on the line. It follows that each line (through Q) lies on exactly (¢ - ¢)/(g*> —q) = ¢ + 1planes

(through 0).

Theorem 13.7
Let 7 be the set of lines throngh 0 in V{3, g), where g is prime power, and let .£ be the
set of planes through 0 in V(3, g). Then (P, £) 15 a projective plane of order g.



300 FUNDAMENTALS OF CRYPTOLOGY

Remark 1

It is easy to get confused here. The projective points correspond to linesin V(3, ¢)(through 0) and
the projective lines correspond to planesin V (3, ¢) (through 0).

Remark 2:
Note that we have already verified the properties PP-4, PP5, and PP-6 mentioned in Theorem 136.

Pr oof:
Proof of PP-1:

The four lines through Q and each of the points (1,0, 0), resp. (0, 1, 0), (0, 0, 1), (1, 1, 1) define
four projective points in #, no three of which lie on a projective line. The reason is that no three of
these four pointsin V(3, ¢) lie on the same plane through 0.

Proof of PP-2:

Le P and Q be two different projective points, and let them be defined by the lines
{Ag | A € GF(g)} and {Ab|A € GF(¢)} in V(3, ¢). There is exactly one plane containing these two
lines, namely {Aa+ ub|A € GF(g), ¢ € GF(g)). This plane defines the unique projective line
through P and Q.

Proof of PP-3:

Let # and mbe two different projective lines. They correspond to two planesin V(3, ¢) through 0.
The line of intersection of these two planes is a line through Q,which defines the unique projective
point on both £ and m.

8]

There are different techniques of generating a set of g? + ¢ + 1 non-zero points in V(3, g)that will
give rise to different lines and planes through Q in V(3, ¢) (see (13.9) and (13.10)), i.e. to
q* +q + | different projective points and projective planes.

A nice way, as we shall see in the following example, is to take a primitive element in GF(g*),say
w, represent it as vector in V(3, g), and take as points the elements 1, w, ..., w79, Indeed, let
@ = w@-Ma-D = yi*+a+! Since w has order ¢* - 1, it follows that « has order g— 1. It dso
follows that {0, 1, e, ..., @#7%} = GF(g) (see Theorem B.29 and the Remark a the end of
Subsection B.4.6). This means that for each 1< j =g -2 the points w and @@ ~Die-1 in
V(3, @) give rise to the same projective point and thus we only have to consider 1, w, ..., wT*,

Example 136

Take g = 3. Tofind a primitive polynomial of degree 3 over GF(3), wefirst have to load the Mathematica
package Algebra ' FiniteFields' After that we can apply thefunction FieldIrreducible.

<< Algebra FiniteFields"
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1+2x +2°

S0, GF(3’) can be described by the set of ternary polynomials modulo f(x) = x° +2 % + 1. Let
w € GF(3’) be a zero of f(x). Since f(x) is a primitive polynomial, itfollows that « has order 26.
This can be checked with

fo, 0, 1},

{2, 0, 0}

The element @ = &/ ~@=D js ¢13 = 2inthiscase. Indeed, {0, I, @} = GF(3).

So, the 3° +3 +1 =13 projective points can be found by computing «/, 0 <i < 13.In this
example, we take the equivalent set 7 < i < 13 to keep the output uniform in appearance.

{0, 1, 0},
{0, 0, 1}y
{2, 0, 1L
(2 25 1k
{2, 2, 0},
{0, 2, 2},
{1, 0, 1},
I 3. 1}y
{2, 2,2,
[ A T
{2, 1, 0}y
{0, 2, 1}
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{2, 0, 0},

To check if a projective point «f =(ay, az, a3) lies on the projective line defined by
@l = (uy, up, uz) (see (13.10)), we need to check if ay u; +ay uy +a;u; = 0.In Mathematica this
can be done asfollows (the [[1]] removes the subscript in the presented output).

{2, 2, 0}

{0, 2,1}
False

So, we are now ready to generate the projective plane of order 3. We present it by means of its
incidence matrix.

¥

E e e B g e o B B TR Bl T
B T R 1 R R R
1 D e S 1T g
T R o R R ] o 1
e ST e L1« T Rl 5 I e 1
R T e W R T B T R B e
I R T T e B i e, T T R SR
ER T T B e U R R T B
PRI o e T R T | R el L
e g ] e i B T T T V8
i Ll B b RS i T iy o T T L
b T T U R e RS T I e T RS T

G R e e R L L Y B

We can check the properties PP-2, PP3 and PP4, PP5 by computing (see (13.8))
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- s W IR I T ol % ot B o B el BT
o Bl B e B I T B W L B 5
s o O B S Do R0 BRCH K, L0 B B

i1114111111111’
e Bbege W0 B - B Rl AR et T IS TR Bl |
o g B Ty B T s BT R, T PR e G L
R T o B R I T R TS S gl By !
"Rk b EE 0 2 T R o e AL R TR Wi g |
b il LT e P et R Bl L s B
p W L L ity e I (e e o T N, [
p e Bk RS el I o B T S TR PR Bty L}
s I o R T v i I O B T W |

s b R 2 L B il B ot U B B

o The Projective Plane Authentication Code

Definition 13.6

Let (F, L) denote a projective plane. Let £ be one of the projective lines.

The corresponding authentication code (M, K,C) is defined by M=/,
K =P\|P|Pon{}, C = £\(f)} and the mapping

Sfp() is the unique line ¢ through P and (2, PeK. Qe M.

In words, the message set M consists of the pointson ¢,the key space ‘Kconsists of all points not
on ¢, the code sat C consists of all linesin £, except for ¢itself.

Finding the message back from the received codeword c is quite easy. Just intersect ¢ = f»(Q) with
¢. Their intersection point is the message.

That the above scheme defines an authentication code is easy to check. Its parameters are given in
the following theorem.

Theorem 13.8
The A-code defined by a projective plane of order n has parameters

[IMl=n+1, |K|=n% |Cl=n®+n.
The probabilities of success for the impersonation and substitution attack are given by

P=Ps=1

The reader may want to check the above theorem on the Fano plane below. The four points not on
¢ form the key space X, the three points on ¢ the message space M, and the other six lines the
codeword st C.
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Proof of Theorem 13.8:

The parameters in this theorem follow directly from Theorem 13.6.

To compute Py, we observe that an opponent can do no better than to select as a codeword a line ¢
(c#¢) that contains as many points outside ¢ (these are the possible keys) as possible. However, this
number of pointsoutside ¢ is independent of the choice of c. It isn by PP-4. So, by (13.2),

= —n 1
PI_I’KI 4 n'

Similarly, if the opponent has observed codeword ¢ (not equal to ¢), there are still n keys (points on
¢ but not on ¢) posshle. Let P be the intersection of cwith ¢.To replace it with another message
(point @ on ¢) the opponent can do no better than select aline dthrough such a point Qwith as

many points on ¢ as possible. But by PP-2 this number is 1, independent of the choice of ¢ and d,
namely the unique point of intersection of c and d. So, by (13.3),

a

The authentication codes coming from projective planes, are perfect because Py, Ps, and Pp are dll
1/n, whichisequa to 1 /v %K.

Moreover, |[M|=n+1=+v|%K| +1, 0, Theorem 135, tells us that the message s is of
maximal size given this key set.

A construction of authentication codes by means of shift register sequences can be found in
[Joha944]. Its implementation is simpler than the projective plane construction above. For large
message sets, e.g. data files, the codes discussed in Section 13.3.4 may be more practical.
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13.3.3 A-Codes From Orthogonal Arrays

Definition 13.7

An orthagonal array OAln, k, A) is a k% (A.n) matrix of n symbols, such that in any
two rows every possible pair of symbols occurs exactly A times.

The number A is called the index of the orthogonal array and k its deprh.

Note that the above implies that each symbol occurs exactly A.x times in each row.

Example 137 (Part 1)
An example ofan OA(4, 5, 1) isgiven by

i e R N WO B S Nl L Dl Qi g Tt o R |
L Wl B B R CRRY Fre O R R B S B TR 1 |
Us 10 L3381 0:.3-3 73 3 075 3oL 0.1
i RO Hotec O DEl R B SIS NS el B e T Bk e ]
i B B e B o0 FOER RGBT IEEe WHR- Sl i B B

The following theorem shows how orthogonal arrays define A-codes in anatural way.

Theorem 13.9
Let If be an orthogonal array OAls, k, A). Let the rows of U/ be indexed by the set M
and the columns by the set %K. Further, put T ={l, 2, .., n). Define the mapping
2 MxK =T by gilm) = Uyy. Then g defines an A-code with parameters: | M| =k,
K| = dn?, |T | =n.
Further

Pr=Pg=1/[n

Proof: The parameters of this A-code follow from those of U.

The chance that an impersonation attack succeeds is 1/n, because each symbol occurs equally
often in arow of U.

The probability of a successful substitution attack is also 1/n. The reason is that each intercepted
authenticator occurs A with each possible symbol, no matter which message was intercepted and
which message one wants it to be replaced with.

Example 137 (Part 2)
For instance, in the matrix U defined above, message 4 under key 13 will be authenticated by
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m=4; k=13;
O[[4, 13]]

1

When, message 4 is intercepted with authenticator 1, one knows that the key is among
{2, 8, 11, 13}. Mathematica canfind these positions with the functions Flatten and Position.

i 1l = Flatten[Poaition[O[[4]]., 1]]

{2, B, 11, 13}

Each other row has all four symbols on these four locations. This can be checked with the
functions MatrixForm and Transpose. The [[1]] below gives the restriction of the matrix to
the rows indexed by the elements of the list |.

’7 BubU = Transpose[U] [[1]] »
| MatrixForm|[Transposa[Subl] ]

Lak

o

[ R
=] B3 L e
W oMM
B L

There is a great deal of literature on orthogonal arrays. See [Hall67] or [BelL86] for constructions,
bounds and existence results. For instance, it is known that an OA(g, g + 1, 1)exist for al prime
powers g, because orthogonal arrays with these parameters exist if and only if projective planes of
order q exist (see Theorem. 13.7 for a construction of a projective plane of order g).

Below we give a sketch of the proof of this result.

Let (P, £) be a projective plane of order g. Pick any of the lines ¢ in £. Number the points on ¢ by
Py, P, ..., P, and the other pointsby Q1, Qa, ..., Q-

Let £L;, 1 <i<gq+1,bethe collection of dl lines through P; except for ¢ itself. By PP-5, each £;
has cardinality g. Number the linesin each £;from1to gq.

DefineU;;, 1 =si<g+1,1=j=q? ask wherek 1 <k =g, istheindex of the unique linein £;
that meets Q; (whichisthe unique linein .£ through P; and Q). Then U isan OA(q, ¢ + 1, 1).
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Example 13.8
Consider the incidence matrix A of the projective plane of order 3 in Example 13.6.

Next we perform some column permutations on A to get a line / as top row with all its points on
the left. We use the Transpose function.

p W o o M TR TR Y e
gowsns3eitn ito0i0 10590
bl s T B TR B P B e e
i B T T N R IR R S e
BP0 D0 i S 0
050507 15070 00010 10
|po1 0001100001
ERE0T 065150 010 0 01
AR L R R B B B 1 B
Bl oies a0 11 000 01 070 0
o a1 0 0 170 001
B 10 M vty T Rl et [ B B v B R g
ET AT M B TR e e P O e e R
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Next we perform a number of row exchanges to get the subsets £; nicely aligned (£ will appear
inrows2, 3,4, £ inrows5, 6, 7, ec).

e e W g 1 v S PR R R Dol e By P
gt Ve 1R D s FRL 1 R LR R IR 1 i G
il AT R e e [ I i N B B
b i Bl R e [ R B e v e Wkl B
1[5 B R S R 1 e R e Y n Ll
i B G P R e R RS 1 R R
e L R e S R T TR N e )
R e B Bl w TSR LT N W o POy o R 1 BN S
1 i O L e R T Rl s I B S |
et 15 T L B R B B
e R B L T ¢ i e R R R §
et R e R B il T R T Tl 1 BRL T B
R R b R v S R 1 Y

The last 9 columns define the orthogonal array OA(3, 4, 1). For instance, column 5 minus itsfirst
entry looks like (1,0, 0,0, 1, 0,0, 0, 1, 0, O, 1). This vector is the concatenation of four three-
tuples, each containing one I. It will be mapped tofour entries in {1, 2, 3}, depending on whether
the 1 is on thefirst coordinate, the second, or the third, therefore, column 5 will be mapped to
1,2 3 3).

In this way the last 9 columns are mapped with the Mathematica functions Table, If,and Do to
the 4 x 9 matrix:
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e T A W D R R
< e 5 S SR b I R T B 2
Wi R e Sl e R e YO Eh i |
v Rl B e o il R Sl S |

This is indeed an OA(3, 4, 1) and hence it defines an A-code with | Af | =4, |A | =9, |7 | =3
and P; =Ps =1/3.

Note that the last 9 columns in U (or A) can befurther permuted to get

W M |

i
1
1
2

N W
W R W
YT T
WO W
WON W
OB
MW W W
-

13.3.4 A-Codes From Error-Correcting Codes

In [JohKS93] it is shown how authentication codes can be constructed from error-correcting codes
(EC-codes) and vice versa. In this subsection we shall show how to convert an EC-code to an A-
code. Our description is slightly different from the original one.

Let C beany (n, | C|, dy) EC-code over GF(q), i.e. C is a subset of V(n, g), the n-dimensional
vectorspace over GF(qg), with minimum Hamming distance dy. The latter means that al elements
in C, which are called codewords, differ in at least dy coordinates from each other. The dimension
n of V(n, g) isaso cdled the length of C.

Let C have the additional property that
ceC = ¢+AleC, forall A e GF(g), (13.11)
where 1 stands for the all-one vector.

For instance, any linear code containing the all-one vector satisfies (13.11). Note that (13.11)
implies that g divides the cardinality of C.

The relation ~ defined on C by
¢~¢! ifandonlyif ¢—¢'=A] forsomeA e GF(g), (13.12)

defines an equivalence relation on C. Let M be a subcode of C, containing one representative from
each equivalence class. So, M hascardinality |C| /gand C={m+A.1|me M, A € GF(g)}.

Letm;, 0<i<|C]|/gq, be any enumeration of the codewords in M. As message s&¢ M for the
authentication code that we are constructing, we take AM=1{0, 1, ..., ({C{ /g)— 1). This means
that we have a 1-1 correspondence between the subcode M and the index st M. It is often
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convenient not to distinguish between these two sets. So, from now on we shall spesk of message
m; instead of message i.

Example 13.9 (Part 1)

Consider the binary linear code C with generator matrix

oo oM
copEoOo
o B oo
= o o S
HOoWM
HHEHOM |
o |

This means that C consists of the 16 vectors in the (binary) linear span of the rows. It is easy to
check that different codewords in C differ in at least 3 coordinates. This makes C a (7, 16, 3) code
in V(7, 2). Some readers may recognize C as a Hamming code.

That the all-one word is in C can easily be checked.
| inf = {1, 1, 1, 1};
‘ Mod [inf.G, 2]

Itfollows that C satisfies (13.11).

As subcode M of C we take all codewords in C withfirst coordinate equal to 0. So, M consists of
the linear span of the lower three rows of G. The message set A7 = {0, I, ..., 7} will be identified
with M.

The key set K of the authentication code that we are constructing, will consist of the pairs (i, 1)
with 1 <i <nand A € GF(g). So, K =11, 2, ..., n} xGF(¢g) and | K| = n.q.

The authenticator g, (m) of messagem € M under key k = (i, &) is simply given by
g lm =m+A (13.13)
So, the authenticator set 77isjust GF(Q).

Theorem 13,10

Let C be an (n, | C|. dg) code satisfying (13.11). Let M be a subcode of C containing
one element of each equivalence class under relation (13.12).

Let K =1{1,2, ..., nxGFig) and T = GFig). Further, g (m): MxK —T is defined
by (13.13).

Then (M, K, T is an A-code with parameters

IMI=[Cl/q 1Ki=ngq. |Tl=4g (13.14)
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Pr=1/q. Ps<1~dy/n. (13.15)

Remark:

To make Ps acceptably low, one needs EC-codes with dy close to n. For g-ary codes this is no
problem, as we shall seein Example 13.10. Of course, q also needs to be large.

Proof of Theorem 13.10:
The parameters in (13.14) follow immediately from the construction.

To compute P,;, we note that an opponent who wants to impersonate the sender needs to find the
right authenticator for his message m! However, for each coordinate 1<i<n the st
{m; + XA € GF(¢)} is equal to GF(q). In other words, each symbol occurs equally often as
authenticator of m'. So, the probability that the opponent will choose the correct authenticator is
1/4, independent of the choice of the authenticator and independent of the message m!' that the
opponent tries to transmit. Thisprovesthat P, = 1/4.

An opponent who wants to replace an authenticated message (mn, 1), (Where ¢ = g, (m)) by another
authenticated message, knows that the key in use is from a set of n possible keys (7, A).To be more
precise, for each coordinate 1 < i < n thereis exactly one value of A suchthat m; + A = ¢.

The optimal strategy for the opponent who wants to substitute another authenticated message for
(m. 1) isto find a message m', m' + m, such that in g, (m") =¢' for as many of those n keys as
possible. This symbol 7' isthe authenticator for ;' that will be accepted most likely.

It remains to show that ¢' will be accepted in a most »—dy cases, which implies that the
probability of a successful substitution is a most (n—dy)/n =1 —dy/n. This assertion follows
from

HE D e(l,2, .n}xGF(@) [ (m); + A=t &(m), +A=1t'}]
=[{lsisnim-mH, =t -1}
=n-dym-m,(t-t)1

Sn—dH,

because m—-m' and (¢ —¢')1 are different words in the code C (m and m' are in different
equivalence classes).

Example 13.9 (Part 2)

To illustrate the second part of the proof above, we continue with the code of Example 13.9. If
Alice wants to send message 7, she finds m with the Mathematica function IntegerDigits
from:
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e B B )

{0, 1,1,1,0,0,1}

(Remember that all messages had theirfirst coordinate equal to 0.)

Suppose, that Alice and Bob have agreed upon key (3, 1), Then Alice will append the
authenticator ¢ = (m); +1 =0 (mod 2) to her message, therefore, Alice will send

(7.0}

Opponent Eve, observing this codeword, can conclude that the key is in the set
(WDl =sis7, m+Ad=tmod2))={1,0),2, 1,3 1,4 1), (5 0),,0), (7 ). To veify
this, we use the Mathematicafunctions Table and Mod.

{{2. 0} {2; 1}, {3, 1}, {4, 1}. {5, 0}, {6, O}. {7, 1}]

Suppose now that Alice wants to send message 5. The corresponding codeword m'is given by

(0,1,0,1,0,1, 8}

If Eve chooses ¢’ =0 as authenticator she has a probability of 4/7 of getting her message
accepted, because exactly four of the possible keys would lead to this authenticator. With
authenticator ¢' = I this probability is 3/7. (We use the Mathematica functions Length and
Intersection totest this.
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t'=0p
" = Table[{i, Mod[t"' -m'[[i]], 2]}, {i, 1, 7}]
Length[Intersection[T, T']]

{{1,0}. {2. 1}, (3. 0}, {4, 1}, {5, 0}, {6, 1}, {7, D}}

Example 13.10

The g-ary Reed-Solomon code of dimension k (see [MacW77]) has length n = g — 7 and minimum distance
dy =n —k. By multiplying each coordinate with a suitable constant, one may assume that 1 € C. Theorem
13.10 gives an A-code with parameters:

IM| =g, |K|=(g-1aq, IT |=gq.
Pr=1/q, Ps<kf(g-1).

The method explained in this section is certainly not the only way to make A-codes from EC-
codes. It does have the property that each impersonation attack has the same probability of success
(namely 1/q).

Since every message can have each symbol in 7~ = GF(q) as authenticator, it follows that the
codeword st C has cardinality | M|.g. Thisimpliesthat Theorem 13.2 holds with equality.

In [JohK S93] the authors aso show how to convert an A-code into an error-correcting code.
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134  Problems

Problem 13.1
Prove that properties PP-1,PP2,PP3 in Definition 135 imply that a projective plane also contain four lines,
no three of which go through the same point.

Problem 13.2
Prove that the Fano plane is unique (apart from arelabelling of the points and lines).

Problem 133

Compare the Projective Plane Authentication Code construction (see Definition 136) with the
authentication codewith M =K = C = Z, defined by the one-time path, i.e. m-—c with ¢ = m + k (modq).
Also, answer this question when M is arandom subset of Z, of size x/Z

Problem 134
Check that the rows of the incidence matrix in Example 13.6 can be permuted in such a way that the matrix
becomes a circulant (each row is cyclic shift to the right of the previous row).

Problem 13.5#

Use the same technique as in Example 13.6, to determine the top row of an incidence matrix of a projective
plane of order 5.

Cycle this row around and check that it does define a projective plane of order 5.

Problem 13.6 ¥
Convert the orthogonal array OA(4, 5, 1) in Example 13.7 into a projective plane of order 4.

Problem 137
Show that condition (13.11) in Theorem 13.10 can be replaced by the requirement that C contains at least
one codeword of weight n.

Problem 13.8%
Repeat Example 13.9 (both parts) for theternary (11, 3%, 5) code generated by
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14 Zero Knowledge Protocols

Cryptographic protocols are exchanges of data between two or more parties following a precise
order and format with the goal of achieving a particular security. Of course, the above definition is
not very precise, but we have aready seen some examples of cryptographic protocols. One is the
identity verification protocol in Subsection 4.1.2, another is the Diffie-Hellman key exchange
protocol in Subsection 8.1.2 and a few others are mentioned in Section 8.2.

A zero-knowledge proof'is a technique to convince somebody else that one has certain knowledge,
without having to reveal even a single bit of information (or a fraction thereof) about that
knowledge. As a consequence, the verifier nor any passive eavesdropper gains any information
from taking part in any number of executions of the protocol.

One may think of using a zero-knowledge protocol in the situation that one wants to use an ATM
to withdraw money from a bank account. Instead of having to enter a PIN-code it should be
enough to convince the teller that one knows this PIN-code. One wants to do this in such a way
that no information about the PIN-code is released. In the next section, we shall give an example
of how this can be done. In Section 14.2, another identity verification will be presented.

141 The Fiat-Shamir Protocol

As in Subsection 4.1.2, we are again in the situation that a smart card wants to convince a smart
card reader that it is genuine. A trusted party that has to issue these cards selects a large composite
number n, for instance n is the product of two large primes p and g, just as in the RSA system. The
number n is a system parameter known to all parties.

The security of the Fiat-Shamir protocol [FiaS87] will be based on the assumption that taking
square roots modulo a large composite number n is, in general, intractable. This is the same
assumption that was made in the Rabin variant of the RSA system (Section 9.5). In Theorem 9.18,
it was shown that the problem of finding a square root modulo a composite number is as hard as
factoring it.

The trusted party computes an identity number ID for the smart card that should have the
additional property that

ID = 52 (mod n) (14.1)
for some integer s. The number ID may be computed from the name of the card holder and other

relevant data, but a few bits should be left open for the trusted party to complete in order to make
ID the sguare of an integer modulo n (1D has to be a quadratic residue mod p and mod ¢).
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The trusted party computes the square root s of ID (it can do this, because it knows the
factorization of n, see Subsection 9.5.3) and stores s in a segment of the memory of the smart card
that is not accessible from the outside world.

One round of the Fiat-Shamir Protocol is depicted in Figure 4.1 below.

Smart Card Card Reader

knows s, ID, n knows n
D

generates a random r
computes t = (r? mod n)

selects randome from {0, 1}
computes u = {r.s®modn)

checks if u? = t.ID® (modn)

Fiat-Shamir identification protocol (one round)

Figure 14.1

The smartcard or card holder makes the identity number ID known to the card reader. To prove
that the card was indeed issued by the trusted party, the card wants to convince the card reader that
it knows s, the square root of ID modulo n.

To this end, the card generates arandom number r, computes its square
t = (r* modn) (14.2)

and sends that to the card reader. In the jargon of this field, t is caled a witness to the card's
knowledge of r.

The card reader selects arandom number e from 10, 1} and presents that as a challenge to the card.
How the protocol responds to the challenge depends on the value of e.

Ife = 0, the card simply sends the random number r back. The card reader then checks if its square
is indeed equal to the value t that it received earlier from the card.

If e = 1, the card computes u = r.s, the product of the random number r and the secret square root
s, and sends u to the card reader. The card reader checks if u? is indeed equal to +x ID modulo n,
which should be the case, since ¢ = r* (mod n) and ID = s? (mod n).

In Figure 14.1, these two aternatives are combined in the response u = (r.s mod n). The card
reader checks if
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u? = +IDf (mod n). (14.3)

It may be clear that if the card can supply r (when e = 0) and a the same time can supply r.s (when
e = 1), it must know the square root s of ID. It is aso clear that if the smart card fails the test in
(14.3), the card reader will reject the smart card.

If an unauthorized smart card knows beforehand the value of the challenge e, it can fool the card
reader. This is obvious in the e =0 case. In this case, the smart card takes a random r, presents
t=(r?modn) as witness and later presents r itself as response. The secret square root s never
played arolein these cal culations.

If the illegitimate card knows that the challenge will be 1, it generates a random r, computes
t=r*/ID(modn) and presents this value of t to the card reader. After having received the
challenge e =1, the smart card will present u = r. The card reader checks (see (14.3)) if «? is
congruenttot. ID modulon. Thisisobviously thecasewith « = r andr = r*/ID (mod n).

Note that the unauthorized card can not meet the challenge if he makes the wrong guess about the
challenge. So, it will be caught with probability 1/2, if the smart card sdlects its challenge at
random.

For this reason, smart card and card reader will run k times through the above protocol, where k is
a security parameter. A smart card that does not know the value of s can guess the k random
challenges with probability (1/2)¥, so it will be caught with probability 1 - (1/2)%.

The card should not use the same random number r twice, because as soon as the card reader
knows both r and r.s (through u), it can calcul ate the secret square root s.

The idea of proving certain things without revealing any information about it is counter-intuitive,
but very powerful. There is a growing field of applications of zero-knowledge proofs.

Examples are electronic voting schemes that make it possible to cast votes in an anonymous way .
On the other hand, the voter will be caught when attempting to vote twice. In these schemes, it can
be checked that all votes have been counted in the final tally.

Another application is a payment system that alows you to withdraw money from your account in
digitd form and spend it anonymously. Even your own bank can no longer trace it to you.
However, if you try to double spend the money, your identity can be recovered.

14.2 Schnorr's Identification Protocol

Schnorr's identity verification protocol [Schn91] is based on the difficulty of the discrete logarithm
problem (Table 8.1). As in the Diffie-Hellman scheme, al participants share some parameters.
First of al there is a finite field GF (q) (this could be Z,,if q is prime) and a prime divisor p of
q-1. Let w be a primitive element of GF(q) and take @ = w'9-YP. Thena is a primitive p-th root
of unity. This means that 1, a, ..., @ 'are al different and that ? = 1.
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Example 14.1 (Part 1)

Let p=104729 andg =8 p +1 =837833. Take w = 3 and @ = &9~DP = o =6561. To check that q is

prime and that «» = 3 is a primitive element in Z, (which makes « a primitive p-th root of unity), we use

the Mathematica functions Prime, PrimeO, and thefunction MultiplicativeOrder (defined in Appendix
D) which computes the multiplicative order ofan element..

MultiplicativeOrder[a_ , n_] := If[GCD[a, n] == 1,
| Divisors[ EulerPhi[n] ] //.
{#_,y } -> If[PowarMod[a, x, n] ==1, x, {¥]}] ]1#

p = Prime [10000]
g=8p+1

PrimeQ[q]

om= 37 MultiplicativeOrder[om, g]
al = om®

1047259
B37833

True

6561

Each participant P (P for prover) sdects a random secret exponent xp, computes yp = a*f, and
makes this value public. It is assumed that other participants are able to verify that yp is indeed P's
public parameter. This can be redized if a trusted authority signs yg or if the public values are
posted on atrusted "bulletin board". If someone else, say V for Verifier, wants to check P's identity
yp he does this by checking that P knows the corresponding xp. Of course, P does not want release
the secret value of xp to anyone. Therefore, he uses a cryptographic protocol to convince V that he
has knowledge of xp.

Example 14.1 (Part 2)

Prover P has identity number yp =693 and secret exponent xp =18126. Indeed,
#8126 = 693 (mod g).
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xF = 181265 yP = 693;
PowerMod[al, xP, q] ==

True

Schnorr's identification protocol goes as follows. The verifier is presented with P's identity number
yp. Next, prover P generates a random exponent r, 0 < r < p, computes g = @” and presents this
value p to the verifier V as a witness to his secret xp. The verifier sdects a random number s,

0 < s < p, and hands this to P as challenge. Prover P responds by computing « = r+ s.xp and
gives this value to V. The verifier checks that o = o.(yp)'. This relation should hold, because
a* = a5 = o (") = p.(yp)*. This scheme is depicted in the following diagram.

Prover Verifier

knows Xp, ¥p, P, @, & knows p, @, @

generates randomr from Zp
computes p = aF

selects random s from Zp

computes u = r +s.Xp
modulo p

checks if a” = 0. (yp)°*

Schnorr's identification protocol

Figure 14.2
Example 14.1 (Part 3)

In the input below, the above protocol is executed. The Mathematica functions Random, Mod, and
PowerMod are used

r = Random[Integer, p]; rho = Pmrlod[al, xr, q]z

Print["witness is ", r]

8 = Random|[Integer, p]; Print["challenge is ", 8]
u=Mod[r +s+xP, p]; Print["response is ", u]

i I'm:‘lind[l.]‘., u, q] == Iud{rhnt!mrllod[yr, g8, ql, a]

witness is 36431
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challenge is 29041

response is 65643

True

Of course, the prover will only be able to give the right response if he knows xp satisfying
a* = yp. If he does not know xp, he can guess the correct value of u with probability 1/p. The

vaue of p will be very large to make the discrete logarithm problem intractable (see Subsection
8.1.1).

Note that in the relation u = r + s.xp only the values u and s are known to V. In other words, the
random value r makes sure that no information on X, is lesked to V. This observation aso shows

that the prover should not use the same random number r twice. Indeed, from two relations
u) = r+sp.xp and uy = r+s3.xp With known sy, s, i, and 1, the verifier can easily determine r
and the secret xp. Onehas xp = (U — u2) /(51 — $2).

Example 14.1 (Part 4)

For the same witness, we generate a second challenge and response.

88 = Random[Integer, p]; Print ["second challenge is ", 8s8]
uu = Mod[r + 88 «+ XP, p] Print["second response is ", uu]
PowerMod[al, u, g] == Mod [rho « PowerMod [¥P, 8, ], 4]

second challenge is 62706

second response is 21550

Trua

Tofind X, we compute xp = (u; —u2)/(s; —s2):

i Mod( (u - uu) « PowerMod|[s - 88, -1, p], P] i
|

18126

The value 18126 is indeed the secret exponent X, oftheprover.

14.3 Problems

Problem 14.1%
Duplicate Example 14.1 for p = 113.Find a suitable value for q.



15 Secret Sharing Systems

15.1 Introduction

In this chapter we shall not introduce a new cryptosystem, but we shall discuss a related topic. We
start with an example from [Liu68].
"Eleven scientists are working on a secret project. They wish to lock up the documents in a
cabinet 0 that the cabinet can be opened if and only if six or more of the scientists are present.

What is the smallest number of locks needed? What is the smallest number of keys to the locks
each scientist must carry?'

Clearly, for each 5-tuple of scientists there has to be at least one lock, that can not be opened by

them. Also each of the six remaining scientists has a key of that lock. More than one such lock per

5-tuple is not needed. So, (151) locks are needed and each scientist carries (11 5_ 1) keys. These

numbers can be calculated with the Mathematica function Binomial .

Binomial[1l, 5]

[
|
| Binomial[1l-1, 5]
1

The solution ahove is of course not very practical. Similarly, the described situation is not very
redistic. However, there exists very rea situations where one wants to share some sensitive
information among a group of people, in such away that only certain privileged coalitions are able
to recover the secret information. Examples are a masterkey of a payment system or a private key
that one does not want to store in a single place.

In a general setting, if P is a privileged group of people, meaning that they should be able to
recover the secret data, then any other group containing P as a subgroup, should aso be privileged.
Also, if N is not privileged then any subset of V should not be privileged.
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Definition 15.1

An access structure (U, P, N) consists of finite set ' (of users), and two disjoint
collections ¥ and N of subsets of L/ (% for the privileged subsets and N for the non-
privileged) with the property that

PeP, PcBcl — BeP,
NeN AcN peesty AeN.

In the exampleabove, U = {1, 2, ..., 11}, P consists of al subsets of U of size at least 6 and N of
all the other subsets of U. It is a special case of what is generally caled athreshold scheme.

It is often convenient to list only the set of the minimal elements of #, denoted by #-, which can
be obtained from # by leaving out each element of # that properly contains another element of P.
Similarly, one often represents N by the subset A7 consisting of its maximal elements.

An access structure is called complete or perfect if each subset of U is either in P or in N.

Definition 15.2

Let § be a random variable defined on a finite set 8. Assume that 5 is uniformly
distributed on S,

Let L/ be a collection of n participants, each having obtained a particular element 5; out
of 5 from some trustworthy authority. Further, let (f, ¥, N) be an access strucure.
Then the collection {5;},.; is called a secrer sharing scheme for (U, P, N) if it satisfies
the following two properties:

[5551] each privileged group P of participants (Pe) can compute the secret S.
[5552] each non-privileged group N of participants (NeN) can not compate any

information on 5.

The value S; (to be called the share of i) should be interpreted as partial information of participant
i on the secret S In information theoretical notation (see Chapter 5), SSS1 and SSS2 can be
reformulated as

[SSS1] H (S [{Si}icp ) = O for any PeP.

[SS8S2] H(S [ {Si}ien ) = H(S) for any NeN.
Note that in secret sharing schemes that are not perfect, there may be coalitions C, C ¢ P U N, of

participants that are able to recover some information on the secret S (0, H(S |{S:};ec) < H(S))
without being privileged.
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15.2 Threshold Schemes

A secret sharing scheme {S;}<i<p, 1S Called an (n, K)-threshold scheme, if # consists of dl subsets
of U of cardinality =k and N consists of all subsets of U of cardinality <k - 1. By definition, a
threshold scheme is a perfect secret sharing scheme. Properties SSS1 and SSS2 can be
reformulated as

[TS]] Knowledge of k or moredifferent S;'s makes S computable.

[TS2] Knowledge of a most k — 1different S;'s leaves the secret S completely undetermined, more
precisely al possible valuesin 5 are till equally likely.

Shamir describes (see [Sham79]) the following general construction of (k, n)-threshold schemes
when Sis afinite field GF (), where g has to be larger than n. Here, we shal assume that g is a
prime number, say g = p, in which case S isjust Z,, the set of integers modulo p. The
generalization to GF(g) will be immediate.

This system is based on the well known fact that a line is uniquely defined by any two points on it,
that a parabola is uniquely defined by three points on it, etc. In general, a polynomia of degree
k — 1 isuniquely determined by any k points on it.

Construction 15.1
Let the participants be labeled from 1 to n and let S Z.,,,, p=n, be the secret data.

Consider the polynomial

Fy=S+ax+m2+. +a_ 20, (15.1)

of degree at most k — 1, of which the coefficients a;, 1 = j = k - 1, are selected by some
trustworthy authority in an independent, random way from £, Participant i, 1 = { < n, is
given as his share 5; the pair

& = (i, f{i) mod p). (15.2)

Example 15.1 (Part 1)

In order to construct a (710,4)-threshold scheme for secret S =17in Ze, we hide the secret in the
polynomial f(x) (note the use of the Mathematicafunction Mod)

Clear[£f];

£lx_] s=Mod[17 + Tx+12x* + 5x°, 19] h:
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where the coefficients of x/,1 < j < 3, are selected at random from Z;s.

The values of the shares can be computed with the Mathematica function Table.

Table[{i, £[4]}, {i, 1, 10}] |

[{1./31,°42..5); {3,715}, {4, 6}, (5, 8},
{6. 13}. {7, 12),(&, 0},{9, 4], {10,'17})

To check that the values S;, 1 <i < n, given by (15.2), form a (n, k)-threshold scheme, we have to
check the two conditions TS1 and TS2.

AdTSL:

Suppose that participants iy, i, ..., iy combine their shares S, = (i), f(i1)), Si, = (i, f(i2), ...,
Si, = (i, f(ix)). With the LuGrange Interpolation Formula, it is quite easy to determine f(x).

Indeed,

F0=They £ T 22 (15.3)

-y

since the expression on the right hand side has degree & — 1,just as f(x)does by (15.1). and since
the right hand side takes onvalue §; = f(i;) for x =i, | < j < k,just as f(x) does.

Note that by (15.1), the secret S is given by f(0), therefore, in the calculation of the Lagrange
Interpolation Formula, one can take x = Oright from the start.

Example 15.1 (Part 2)

Suppose that participants 1, 3, 6, and 9 want to retrieve the secret S They pool their shares (1, 3),
(3, 15), (6, 13), and(9, 4).

The LaGrange Interpolation Formula can be performed with the Mathematica function
InterpolatinPolynomial. Thefunction PolynomialMod isused for the reduction
modulo 19.

PolynomialMod|[InterpolatingPolynomial]|
{{1, 3}, {3, 15}, {6, 13}, {9, 4}}, x], 19]

17+ Tx+12 % +5x°

The value of the secret Sis the constant term in this expression. So, § = 17.
AdTS2

Suppose that shares,S;,, Si,» ..., Si,, ae known for some / < .1t follows from (15.1) and (15.3) that
there are exactly ¢*~'~! polynomials g(x} satisfying g(i,) = S;,, | =u <1, and with any fixed value



Secret Sharing Systems 325

for g(0).

Indeed, for any fixed value of g(0) and any fixed group of k ~ 1 — 1 other participants and any given
st of imaginary values of their shares, there isunique g(x) meeting all requirements. This is a
direct consequence of the LaGrange Interpolation Formula.

Example 15.1 (Part 3)

Suppose that participants 1, 3, and 9 attempt to retrieve secret S by pooling their shares (1, 3),
(3, 75) and (9, 4).

Then the secret S can dtill take on any value (and each of these values is still equally likely).
Indeed, adding the pair (0, S to the above three shares leads to a unique polynomial through
(0, 9 and the three shares. This follows from the LaGrange Interpolation formula and can be
checked asfollows.

[ Clear[x]
| Table[ {8, PolynomialMod[ InterpolatingPolyncmiall

| {{o, ), {1, 3}, (3, 15}, {9, 4}}, x], 19]},

I_ {s, 0, 18} ] // TableForm

(1] 2x+x

1 1+9%x+5xt+7x

2 2+16x+09x% +14x?

3 I+dx+13x +2%°

4 d+1lx+17x +9x

5 E+18%x+ 2% +16x3

& B+BEx+Ex +4X

7 7+13x+10x + 11 x7

8 B+x+ldx?+ 182

9 9+Bx+18x2 +6x

10 10+15x+3x% +133°

11 11 +3x+T7x%+x

12 12+10x+11x2+8x%°

13 13 +17x+152* + 15 %’

14 14 + 5%+ 3 x?

15 15«12x+4x* +10x°

16 16+8x*+17x"

17 17+ Tx+ 123 + 5%

18 18+ 14 x+16x2 + 12 x°
Remark 1

In the generalization to arbitrary fields GF(g), the n participants are labeled by different non-zero
field elements a;, 1 < i < n, and the share S; of the i-th participant will be the pair (a;, f{a:)).
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A way to redlize this is to choose a primitive element (generator) @ € GF(qg), label the participants
from 1 to n and give the i-th participant as share the pair (i, f(@)).

Remark 2:

The threshold scheme explained here assumes a trustworthy authority. It is also a system that can
be used only once. As soon as participants have exchanged their shares to retrieve the secret, these
shares are compromised. A new set of shares has to be set up for later use. In the literature one can
find proposals that relax these conditions.

15.3 Threshold Schemes with Liars

In [McE181] a variant of the construction above is proposed, that can handle the situation that
some of the participants provide false information, o the share they provide does not have the
correct value. Some participants may want to do this to prevent others from getting access to the
secret data. It will turn out that it takes two extra shares to recover the secret for each incorrect
share that is contributed. So, if k + 2 ¢ participants pool their shares to recover the secret, at most t
of the shares should be false.

Construction 15.2

Let § be a secret from GF(g), for some prime power g, and let ey, o3, ..., 0, R=g—1,
be a list of a different non-zero elements in GFig), e.g. o, = a', 1 £i=n, for some
primitive element @ in GF(g).

Consider  flx)=S+a x+ax +...+@-1 25!, where the coefficients aj,
1= j=k- 1, are randomly selected from GFig).

The pair (@, fla;)) will be the share §; of the i-th participant. Suppose that &+ 2+
participants (k+ 2 =< n) pool their shares and assume that at most ¢ of these are
Incorrect.

Then each of these participants can efficiently compute fx) and recover secret §.
Maoreover the incorrect shares can be identified.

Proof: The polynomial f(x). used to compute the shares, is of degree <k -1 and has the
additional property that at least £+ of the correct shares lie on it. Could there be another
polynomial, say g(x), with the same properties? The answer is no. Indeed, since there are only
k + 2t shares, any two subsets of at least k + ¢ correct shares must have an intersection of at least k
(honest) shares. These k shares lie on f(x) and on,g(x). Since both f(x) and g(x) have degree a
most k — 1, it followsthat f(x) = g(x).

To determine f(x) the participants can try out all possible functions of degree =< & — Ithrough k of

the shares until a function passes through = & +r of them. Of course, this is not an efficient way.

For an efficient technique, the theory of error-correcting codes is needed (as in Chapter 11). The
shares that are defined above in fact define codewords (f(ay), f(a2), ..., flay,)) in a so-called
shortened Reed-Solomon code with parameters [n, &k, n — k + 1].
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We refer the reader, who is not familiar with this theory, to [MacWS77], Chapter 11. Both the
Berlekamp-Massey algorithm or the Euclidean algorithm give efficient ways to decode this code.
In the context of our problem, where k& + 2¢ shares are known, one has to interpret the other
n—k -2t shares as erasures. If the number of erasures plus twice the number of errors is less than
the minimum distance of a code, one can still correct these errors and erasures. Here
(n-k~2n+2.tisindeed less than n—k + 1. Efficient algorithms exists (see [Berl68], Section
10.4 and [SugK 76]) to correct these errors and erasures for Reed-Solomon codes.

Remark 1: By taking ¢ = 0 Construction 15.2 reduces to Construction 15.1.

Remark 2: If only & +2¢— 1 shares are available and t of them are incorrect, then f(x) is not
necessarily uniquely determined. For instance, it is possible that of &+ 27~ 1shares dl of them
except the first t lie on one polynomial of degree k — 1,while all these shares except the last t lie
on another polynomial of degree < k — 1 (the intersection of the shares sets has cardinality & — 1).

In this case, there is however partial information on the secret.

Example 15.2
Considerk =3, r=171and p =17.

Of thefour shares (1, 4), (2, 1), (3, 5), (4, 4), each three define a parabola, leaving the other point as
incorrect value.

i FolynomialMod|
| InterpolatingPolynomial[{{1, 4}, {2, 1}, {3, 5}}, x], 17]
| PolynomialMod[InterpolatingPolynomiall

| (L 4)s (2, 1), (4 4)), x], 17]

i’ FolynomialMod[InterpolatingPolynomial[

L ({1, 4}, {3, 5}, {4, 4}}, x]. 17]

| PolynomialMcd[InterpolatingPolynomiall[

1i {{2, 1}, {3, 5}, {4, 41}, x], 17]

14 +12x+ 12 x°

10+x+10%*

Z2+11lx+8x

12+8x+6x
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Of the 17 possible secrets four are possible, all with equal probability.

154  Secret Sharing Schemes

Although there is a lot of literature on secret sharing schemes, there are also many central
questions that still need to be answered. For this reason, we only discuss one example of a secret
sharing scheme. The reader is referred to [Bric89] and [Dijk97] to find a discussion of various
generalizations of the technique explained here. For a genera introduction to secret sharing
schemes we refer to [Stin95].

Assume that we have as access structure the set (U, P, M) with U ={L,2,3,4),
P ={{1,2}, (2,3}, (3. 4}) and N*={{L, 3}, {1, 4}, {2, 4}}). This means that any subset of U
containing both users 1 and 2, or users 2 and 3, or users 3 and 4 is a privileged set, while any other
combination of users is non-privileged. Figure 15.1 depicts this situation.

An Access Structure with Four Participants
¢ means privileged, © means non-privileged

Figure 15.1

The secret sharing scheme for this access structure will be set up in two steps. In the first step we
want to share one bit (or byte or string) of information among the four participants.

Let sbe a secret bit that we want to share among the participants of our access structure (U, P, N).
The trusted authority selects two random hits a and b and gives the following shares to the
participants:
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participant share

1 a

2 s+a, b
3 s+b
4 b

A Secret Sharing Scheme with One Secret Bit
Figure 15.2
The + sign stands for addition modulo 2. The reader may easly verify that this scheme meets

requirements SSS1 and SSS2. For instance, participants 1 and 2 can compute 5 from a + (s + a),
where a comesfrom 1 and s + a from 2.

Example 15.3

For instance, if the Trusted Authority wants to share secret s = 1 among the four participants, he may
choosea = I andb = 0. Thesharesof 1, 2, 3, 4 will be 1, resp. (0,0), I, O.

Participants 2 and 4 can not recover s, because they only know s +a and b (twice). Participants 3 and 4
can recover the secret s by adding their sharess +band b: 1 +0 = 1.

We se¢ that in the scheme of Figure 15.2 participant 2 has to store twice as many hits as is the size
of the secret. This ratio can be improved by superimposing a permuted version of the scheme to
itself.

Hence, now we consider asecret consisting of two bitss; and s, .Thetrusted authority selectsfour
random bits a, b, ¢, and d. He gives the following shares to the participants:

participant share
1 a, ¢
2 51 +a, s;+¢, b
3 s1+b, s;+d, €
4 b, d

A Secret Sharing Scheme with Two Secret Bits

Figure 15.3

In this scheme, the ratio between the size of the secret and the size of the longest share (thisratio is
caled information rate) is 2/3. It can be shown that such a ratio is always at most 1. Secret
sharing schemes that have an efficiency rate equal to 1 are called ideal.

There is a general matrix description of constructions of the above type. We shall explain it again
for the example above.

The secret sharing system is described by the matrix G, of the trusted authority and the matrices
G; of the participants 1,2, 3, and 4. The first two columns are labeled by the secret bits (s; and s2)
and the next four columns by the random variables (a, b, ¢, and d). Each row of G; represents one
entry of the share of participant i (expressed in terms of the secret bits and the random bits). The
same holdsfor Gra, Where weview s, s, as his share.
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To see that these matrices indeed represent the secret sharing scheme we multiply them with the
vector (sy, 52, a, b, ¢, d).

Crels e

{a, &}
{a+8l, c+82, b}

{h*'::; d+s2, f-]: S : ; :f1' ..-'_-'-_._ ] ---I ._:--.

L

{b, 4}

We get the secret of the trusted authority and the shares of al the participants, so thisis exactly the
scheme that we had above.

The properties of a secret sharing scheme can now be translated as follows.
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Theorem 15.3

Full rank matrices Gry and G, { € U, describe a secret sharing scheme for access
structure (L, P, N if and only if

i) for each privileged set A € % each row of Gy lies in the linear span of the rows of the
roatrices i € A,

ii) for each non-privileged set & & N no row of Gy lies in the linear span of the rows of
the matrices &0 € B.

To check that the first row of Gra lies in the linear span of the rows of Gy and G; we use the
Mathematica  packege  LinearAlgebra'MatrixManipulation' and the functions
AppendColumng, MatrixForm, LinearSolve, and Transpose.

| << LinearAlgebra MatrixManipulation®y

| n=8TA[[1]]
M = AppendColumns[Gpl, Gp2] s
| MatrixForm[M]

i LinsarSolve[Transpose [M], u, Modulus -3 2]
TR PRI . PR e TR

{1, 0, 0, 9,0, 0}

R R TR R
Leia:05 0170
’rlIIIlI'_'I{IIZI
BB o e
i R L O

‘o | VR P B
This shows that the first row of Gra is the modulo-2 sum of the first row of G, and the first row of
G,.

Similarly, one can verify that s, can not be recovered by participants 1 and 3 in this way: the 2-nd
row (and also the 1-st) of G, isnot in the linear span of the rows of G,and Gs.

u=GTA[[2]]
M = AppendColumns[Gpl, Gp3]:

MatrixForm[M]

LinearSolve [Transposa[M], u, Modulus -»> 2]

{0,1,0,0,0,0)
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o0 1000y
0 0 o0.6.-1°0
1280 S i FI
) [ gy v vR o e |
o0 00 1 0)

LinsarSolwve: :noscl :

Linear egquation encountered which has ne solutieon.

LinearSolwve]|
{4050, 1,00:00) - of0, 0,00 1 0 £1., 0,0, 000 L0000, Ty -0F,
{0, 1,-0,°0,1), {0, 0,0, 1.,°0)). {0, 1, 0,0,0, 0], Modulus= 2]

We conclude this section by remarking that it is not so much a problem to make a perfect secret
sharing scheme for a particular access structure, as it is to make an efficient one, i.e. with high
information rate. Indeed, an inefficient secret sharing scheme for a particular access
structure (U, P, N) goes as follows. Let s be the secret to be shared. For each A € P, sdect

random hits &, 1 < i =| A |, satisfying the binary congruence relation:

SHL A < s (mod2), AeP.

If u € A, then participant u gets one of these a{™.

In the example of U = {1, 2, 3, 4}, P~ ={{1, 2}, {2, 3}, {3, 4}} and N'* = {{1, 3}, {2, 4}, {1, 4}} we
get in this way as share for secret s.

participant share
1 aft?
2 agl'z) +5, a£2'3)
3 a§2’3’ + 5, aﬁj’“
4 af’“ + S

A more compact way to denote this secret sharing scheme is

participant share

1 a

2 a+s, b
3 b+s, ¢
4 c+8

This scheme has efficiency rate 1/2 and uses three random variables, as opposad to the two random
variables in the scheme of Figure 15.2.
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155 Visual Secret Sharing Schemes

In visual secret sharing schemes the secret to be shared consists of an image consisting of black
and white (or of colored) pixels. Here we shall only discuss the black and white case, where
"white" should be understood as "transparent”. For instance, the number 3 can be depicted as
follows.

3

The shares consist of transparencies of the same shape also with black and white pixels. The idea
of avisual secret sharing scheme for an access structure (U, P, N) is that privileged subsets of
participants should be able to determine the secret by putting their transparencies on top of each

other, while non-privileged subsets should obtain no information on the secret from their shares.

A visual secret sharing scheme can not be realized in a straightforward way. As soon asapixel ina
particular share is black, the corresponding pixel in the secret will aso be black. To solve this
problem, each pixel in the secret and in the shares will be subdivided in m subpixels, where m is
called the expansion factor of the scheme. The assumption will be that two visual threshold values
0 <a < B < lexist such that:

o if & most a.m subpixels of a pixel are black, the pixel will be interpreted by the human eye as
white,

o if a least B.m subpixels of a pixel are black, the pixel will be interpreted as black.

If the number of black subpixdls lies dtrictly between a.mand 8.m, we assume that the human eye
will not decide. The difference B-ais an indication for the level of contrast that is till present in

an image if al pixels meet one of the above two requirements. There is biological evidence
supporting the assumption that it is the relative difference in light intensity that is of importance to

the human eye. See [VerT97] for alonger discussion.

In the context of visual secret sharing schemes, we have additional problems to face. For instance,
if the shares of a non-privileged set are put on top of each other and a pixel contains more thana.m
black subpixels, we know that the secret will be black at that place. Of course, such situations have
to be avoided.

It should be clear that once we have avisual secret sharing scheme for one pixel, we can use it for
the other pixels too, creating in this way a visual secret sharing scheme for the entire secret..
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Here, we shal only explain a visual secret sharing scheme for a (n, 2)-threshold scheme. This
means that any two participants should be able to recover the secret, while a single person should
have no information a al about even one pixel. Before we do so, we describe the simple case
where there are just two participants. We make the expansion factor m =2. Let us cal the
following two subdivisions of a pixel L and R (for left black resp. right black):

H (.

L R

Itis clear that L and R put atop each other gives a black pixel, while both L+L and R+R are still
half white and half black. Therefore, we can make a construction with threshold values o =1/2
and g=1.

Construction 15.4

To share a white pixel, the trusted authority gives with equal probability either to both
participants L or to both participants B.

To share a black pixel, the trusied authority gives with equal probability to one
participant L and to the other R.

This gives a (2, 2)-visual threshold scheme with expansion factor m = 2 and threshold
valpes = 1/2and = 1.

Below we give an example of possible shares that participants 1 and 2 have for the secret number
3 above.

Share 1 Share 2

The reader can verify this by making transparencies of these two shares and putting them on top of
each other.

There are many constructions known of (n, k)-visual threshold schemes. We shall describe a
general construction for k = 2. Each particular implementation of the construction will lead to its
own values for the expansion factor m and the threshold values a and 8. It makes use of two nxm
matrices, My and Mjp, that will be used to distribute shares among the n participants for a white
resp. black pixel. These matrices are further characterized by two values r and A and have to
satisfy the following properties:

r m-r

VTS1: Matrix My consists of n identical copies of row 11...100...00.
VTS2 All row sumsin Mg areequd tor.
VTS3: Every pair of rowsin Mp hasinner product A.
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The numbersm, e, B, r, and Awill be related. They can not take on any value.

Example 154 (Part 1)

Take n =4 and m = 6. Let the matrices My and Mg be given by

B O H M HE R

0y
Li]
0
0/

u'|
L]
1
1)

CHOoOKH HEER

L= - (= = - - |
Ll = - ) oo Qo

HSo OB HHHBERH

Note that My and Mg satisfy properties VTSL-VTS3 for r =3and 4 =1.

The matrices My and M3 define two classes of # x m matrices:
My = {Mw.P| PisamXm permutation matrix},
Mp = {Mp.P| Pisamxm permutation matrix}.

To distribute the shares for a particular pixel, the trusted authority takes either Mw or Msp,
depending on whether the pixel is white or black, permutes the columns in a random way and
givesthei-throwtoparticipanti, 1 =<i=<n.

Participant j makes the j-th subpixel white or black, depending on whether the j-th coordinate of
his shareisOor 1.
Example 154 (Part 2)

Suppose that the pixel that needs to be shared is black. The trusted authority selects a random
permutation P with the Mathematica package DiscreteMath'Permutations’ and the function
RandomPermutation asfollows

! <<DiscreteMath’ Permutations”

I RP = RandomPermutation([6]
|

This gives rise to the following permutation matrix (we use the functions Table, Do, and
MatrixForm):
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PlTIhl.[ﬁf '[1; 1- ‘}I {jl' 1, E}]‘

Do[P[[d, RP[[1]]]] =1, {3, 1, 6}];
HatrixForm[FP]

P‘E":lﬁl;'
L= = o = = =
(= = = B = B = i ==
L= =D = B o =R~
H o oo oo
= = B = = T T |

Multiplying Mg on the right with P gives the matrix

PMB = MB.P;
MatrixForm[PME]

S e S
= -
e S = =
L= R =

=~
=1 =

it

Putting the six subpixels in a 3.x2 array in rowmwise order, we get the following four shares for
this black pixel:

Share 1 Share 2 Share 3 Share 4

The reader can easily check that any two of these shares, when put atop of each other, will give
five black subpixels and one white.

Ifthe original pixel would have been white, we would have had

i PMW = MW.P;
|| MatrixForm|PFMW]




Secret Sharing Systems 337

ok B AT R
el I T B T
B e e R
B o i e

This means that all four shares would have looked like

Each Share

Since each row in both My and Mg has the same number of ones (namely r) and since My and
Mg are made from these by multiplying them on the right by all possible permutation matrices, it
follows that each vector of length m and weight r occurs equally likely as a share for a white pixel
as for ablack pixel. This shows that our construction has as lower visual threshold value @ = r/m.

Because My is multiplied by a permutation matrix, it follows from VTSLl that when two
participants have shares of awhite pixel and they combine them, they do not gain anything.

On the other hand, any two rows of Mg have weight r by VTS2 and inner product A by VTS3. This
remains <o if Mp is multiplied by a permutation matrix. It follows that any two shares of a black
pixel have 2 r- A entries equal to one. In the example above r=3 and A = 1, giving 2r-A1 =5
ones in any combination of two sharesWe conclude that the construction by means of Mw and
M; has ahigher visual threshold value 8= (2r-24)/m.

We have proved the following general construction:

Construction 15.5

Let Mp be an n > m matrix satisfying properties VT52 and VT53 for centain values of r
and L. Let My be of the form given by VTS1. Further, let Mw and Mg be the sets
obtained from My resp. My by multiplying them on the right with all possible
permulation matrices.

Then a random choice of a matrix from My in case of a white pixel and a random
choice of a matrix from Mz leads to (n, 2)-visual threshold scheme with expansion
factor m and threshold values ¢ = rfmand § = (2 r=A)/m.
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Corollary 15.6
Take any n and let a be some value in between 2 and n— 1. Let Mg be the matrix

n
consisting of all columns of length n and weight u . Then My has m = [ ]cnlumn.\'.
u

-1
Moreover, every row of My has weight r = [ﬂ !
-

n—2
,l'—-[“_z].

n
This defines a (n, 2)-visual threshold scheme with expansion factor m = [,] and
']

] and any two rows have inner product

threshold values & = u/nand § = (2n—u+ 1)/ nln - 1)

By taking n =4 and # =2 in the above corollary, one gets the construction of Example 154.

Indeed, m=(’;)=(:)=6, r=(2:1)=(?)=3 and A:(’;:g):(g): 1. The visual threshold

valuesare givenby @ =2/4=1/2and 8=5/6.

A disadvantage of the family of constructions described in the Corollary above, is the high
expansion factor m.

A reader who is familiar with the theory of block designs and t-designs may have guessed from
conditions VTS2 and VTS3 that these notions often play a role in the construction of a visual
threshold scheme. We shall explain one particular construction.

Let p be any prime number. We recall from Definition A.9 that an integer u, | < u < p,is cdled a
quadratic residue (QR) if the congruence relation x> = u(mod p) has a solution in Z,. How to
determine if a number u is a quadratic residue is explained in Section A.4. With Mathematica one
can do this with the function JacobiSvmbol, which will output 1 if and only if M isaQR.

For instance, that x* = 12 (mod 13) has a solution (namely +3)follows from

’71.1:'12: m=13; JacobiSymbol[u, m] }

The Jacobi symbol is normally denoted by (%) orjust by y(w), if there is no confusion about the

value of p. Actualy, the value of y(«) is defined to be O, when u =0and —1when | <u < pand u
is not QR.
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Corollary 15.7
Let p be any prime that is congruent to 3 mod 4, Define the px p matrix Mg by
i1, if j—iisOR,

M, =4 -
(Mp);; =1 0, otherwise,

Then every row of Mg has weight r = (p—1)/2 and any two rows have inner product
A=dp-3)/4.

This defines a (m, 2)-visual threshold scheme with expansion factor m = n and threshold
valuessa = (p—l1)/2pand f= (3 p=1)/4p.

Proof:

Fixing arow index i of Mz we seethat j—i, 0 < j< p,takes on al values in Z,,.It follows from
Theorem A.20 that each row in My hasweight (p —1)/2.

Now consider the matrix X = (x(j = )., ;< ,-Matrix Mgcan be obtained from X by replacing all
its -1 -entries by 0. Consider two rows of X and let them be indexed by ijand i».Note that

xtir =i R =) iy = i) CE P - iy - i),
This means that the matrix X is skew-symmetric and that the i;-th entry in row i; is equal to
minusthe {,-th entry in row . We conclude that, apart from a reordering of the coordinates, rows
iyand i» will look like

! 1 “ b ¢ Vi
+l+1 +1T.+10 -t —1 =1, 1
+14+F =t =1+l +1 1. =1

where the two rows may have been interchanged.

The inner product of rows 7y and i» in Mg is given by the value of a (since al —1's in X ae
replaced by 0 to get Mp). To find the values a, b, ¢, d we calculate first

Do xCi— i) xGi=—i2) = 0 x () xlj= (i —ipy) = = 1. (15.4)

The first equality follows from the substitution j—i, - j, the second one follows from Theorem
A.22, sincei; #i» mod p.

Hence, we have the following relations:

24a+b+c+d=p, (X has p columns),
a-b-c+d=-1, (from (15.4)),

T+a+b=(p-1/2, (apply Thm. A.20 to the first row),
a+c=(p-1)/2, (apply Thm A.20 to the second row).

These equations have a unique solution: a=b=d =(p-3)/4and ¢ =(p+1)/4.We conclude
that the inner product of two different rowsin Mg is(p —3)/4.

The Corollary is now adirect consequence of Construction 15.5.
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Example 155

Take p = 13. The matrix Mg can be made with the Mathematica functions JacobiSymbol, If, and
Array as follows:

p=1lj
A[i_, j_] :+= If[JacobisSymbol[j -1, p] ==1, 1, 0]}
ME = Array[A, {p: Pl];

MatrixForm[ME]

e U o e e Rt e T s B |
R B RS S B R
‘1ﬂn1a111nt~a
IUlEIIJ-’lCIll.lE'U
el s Bl S i g R D R
B e e B e LT R
117 00400120 "1"1]
B i v i T B 0 T B R |
illlDI:ICIlEIE-lCI;.
|0111uaﬂ1c-c|1-
B R B R IR B e v O B T

So, we have a (11, 2)-visual secret sharing scheme with expansion factor m = /1 and threshold
valuese =(p-1)/2p=5/1land £ =3p-1)/4p=8/1]
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15.6 Problems

Problem 15.1#

Set up a Shamir (5, 3)-threshold scheme for the secret 15 in GF(17).

Show how participants 1,2 and 3 can recover the secret.

Show that for participants 1 and 2 together each element in GF(17) is an equally likely candidate for the
Secret.

Problem 15.24

Consider a Shamir (7, 4)-threshold scheme in GF(23), where the participants 1,3,4, and 6 pool their shares
(1,13), (3, 19), (4, 19), and (6, 6) to retrieve the secret S What will this secret be?

Suppose that participant 5 shows his share (5, 3). Why is one of these five people lying?

Let all aso participants 1 and 8 contribute there share: (2, 4) and (8, 12). Determine the liar and the rea
Secret.

Problem 15.34

Construct a (7, 4)-threshold scheme over the finite field GF(16) = GF(2)[a]/(a* +a + 1) (see Theorem
B.15).

What are the shares of the participants for secret § = (1, 0, 1, 1) which stands for the field element a®?
Show in detail how participants 2, 4, 5, 7 recover S,

Problem 154
Consider the following scheme over Z5:
participant share
1 a, b, c+s;
2 a+s;, b, ¢
3 b+s;, c-s,5, d
4 b, d+s;

Give the matrix description of this scheme.

Prove that it is a secret sharing scheme for access structure (U, P, N) with U =({1, 2,3, 4},
P =1{{1,2},{2,3} {3, 1}, 3, 4l and NV = {{1, 4}, {2, 4}, {3}}.

What is the information rate of this scheme? Is it perfect? Is it ideal?

Problem 155

Make a visualization of a set of possible shares for a black pixel in (7, 2)-visual threshold scheme, as
congtructed in Corollary 15.7.

What is the expansion factor of this scheme and what are its visual threshold values?
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Appendix A Elementary Number Theory

Al Introduction
Let N denote the st of natural numbers, Z the set of integers, and R the set of real numbers.

An integer d divides an integer n, if n =k d for some k € Z. We shall denote thisby d |». If such
an integer k does not exist, d does not divide n. Thiswill be denoted by d + n.

To check if the integer d divides the integer n, the Mathematica function Integer0O can be used
in the following way.

— —

n=16851;d =123; IntegerQ[n/d] |

True

The Mathematica functionDivisor givesalist of al divisors of anumber n. For instance:

| n=16851; Divisors(n]

{1, 3, 41, 123, 137, 411, 5617, 16851}

An integer p, p> 1, is said to be prime, if 1 and p are its only positive divisors. With p, = 2,
p2 =3, p3 =5, ... we introduce a natural numbering of the st of prime numbers.

V aluable Mathematica functions in this context are Prime and PrimeO:

k = 35; Prime[k]

149

generating the 35-th prime number.

’7::. = 1234567; PrimeQ[n] '

Falae

telling if the input (here 1234567) is prime.
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Theorem Al Euclid

There are infinitely many prime numbers,

Proof: Suppose the contrary. Let pi, p2, .... pi be the set of al primes. Next, we observe that the
integer (I1%, p) + 1 is not divisible by any of the primes py, pa, ..., pr. Let n be the smallest
integer n that is not divisible by any of the primes py, pa, ..., p. It can not be a prime number,
because it is not in the list py, p, ..., px. It followsthat n has anon-trivial factor d. But then this
factor d is divisible by at least of the primes py, pa. ..., p« and so doesn. A contradiction.

a
Between two consecutive primes there can be an arbitrary large gap of non-prime numbers. For

example, the n — 1 elements in the sequence n! +2, n! +3, ..., n! +n are divisible by respectively
2, 3, ..., n. Therefore none of them is prime.

Drefinition A.1
The function #(x) counts the number of primes less than or equal (o #.

In Mathematica, this function is denoted by PrimePi [n].

‘ n=100; PrimePi[n]

25

The next theorem [see [HarW45], p.91] , which we shall not prove, tells us something about the
relative frequency of the prime numbersin N.

Theorem A.2 The Prime Number Thearem

s ) _
UL aflnm 1.

n =1000000; PrimePi[n] / (n/Log[n]) // N ;

1.08449

Two important definitions are those of the greatest common divisor and least common multiple of
two integers.

Definition A.2
The greatest common divisor of two integers a and b, not both equal to zero, is the
uniquely determined, positive integer d, satisfying



Elementary Number Theory 345

o divides both o and & (A1)
and
if f divides both a and b, then f also divides d. (A2)

The greatest common divisor of @ and b is denoted by ged(a, b), or just (a, b).

Definition A3
The least common multiple of two integers a and b is the uniquely determined, positive
integer mr, satisfying

m is divisible by both a and b (A3)
I and
if n is divisible by both a and b then n is a multiple of m. (A4)

The least common multiple of two integers a and b is denoted by lem[a, b] or just
[a. B].

To show the existence of ged, we introduce the set

U={xa+yblxel, yeZ, xa+yb>0}

Let m denote the smallest element in U. We shall show that m satisfies (A.1) and (A.2). Clearly, if
f divides both a and b then f also divides m. So, m does satisfy (A.2). Now, writea=gm+r,
O<r<m (subtract or add m sufficiently often from (resp. to) a until the remainder r lies in
between 0 and m - 1). If r #0, then r € U (since both a and m are in U). This contradicts the
assumption on the minimality of m. So, r = 0, which means that m divides a. Similarly, m divides
b. So, m satisfies (A.1) too.

The uniqueness of gcd(a, b) follows from (A.1) and (A.2). Indeed, if d and 4’ both satisfy (A1)
and (A.2), itfollowsthat d |d' and d'|d. Since both d and d' are positive, it followsthatd = d".

Inasimilar way, the existence and uniqueness of Icm[a, b]can be proved.

Alternative definitions of gcd(a, b) and 1cm[a, b] are:

ged(a, b) is the largest integer dividing both a and b
lem(a, &] is the smallest positive integer divisible by both @ and b.
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The functions GCD and L.CM can be evaluated by Mathematica as follows:

a=12345; b= 67890; GCD[a, b]

15

l a=12345; b=67890; LCM[a, b]

55873470

If two integers have a gcd equal to 1, we say that they are coprime. A conseguence of the above is
the following important theorem.

Theorem A3
Let @ and b be in M, Then there exist integers u and v, such that

gedla, b) = wa +v.b.
In particular, if @ and b are coprime, there exist integers u and v, such that
ua+vh=1,

The following lemma seems too obvious to need a proof.

Lemma A.4
Let d divide a product a b and let the ged of d and a be 1. Then d divides b.

Proof: Since ged(d, «) = 1, Theorem A.3 impliesthat xd + y« =1, for some integers xand .
S0, xdb+yab=b. Sinceddividesab, it follows that d also divides xd & + ya b which equals b.

o
Corollary A5
Let p be prime and let p divide [l,*.,a,—i whereg; inZ, 1 si<k.
Then p divides at least one of the factors ap, 1 =i = k.
Proof: Use LemmaA .4 and induction on k.
|

With an induction argument the following theorem can now easily be proved.



Elementary Number Theory

347

Theorem A.6 Fundamental Theorem of Number Theary
Any positive integer has a unigue factorization of the form

nl #:‘1 g e M.
Leta =1, pi* e;inNand b = T; (pi}, fiin N. Then one easly checks that
ged(a, b) = [ ], pmintenss

lemla, 5] = [ |, pmextenst
gcd(a, b) Icm[a, b] = ab.

(A5)
(A.6)
(A7)

The Mathematlca expression FactorInteger[n] gives the factorization of an integer n. The

outcome is alist of pairs. Each pair contains a prime divisor of n and its exponent.

{{3,2), {5.3), {19, 11}

{13, 3, 15, 23, (7.1}, {19, 1}}
{{3. 2}, {5, 2}, {19, 1}}
{{3,3)}, {5. 3}, {7, 1}, {19, 1}}

True
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A2 Euclid's Algorithm

Let a and b be two positive integers with & = a. Clearly, any divisor of a and b is a divisor of a and

b —a and vice versa. S0, ged(a, b) = ged(a, b — a). Writing b = g.a+r, 0 < r <a, one has for the
same reason that ged(a, b) = ged(r, a). If r=0 (and b = g.a), we may concludethat gcd(a, b) = a,
otherwise we continue in the same way with a and r. So, we write a=gq'r+r', 0 <r' < rhave

ged(a, b) = ged(r', r), €c., until one of the arguments indeed divides the other. This agorithm is
an extremely fast way of computing the ged of two integers and it is known as Euclid's Algorithm.

Algorithm A.7 Simple Version of Euclid's Algorithm

input a, b positive integers

while b= Odo begin
put r as the remainder of the a after division by b,
(So,writea=gb+r.0=sr<h)
puta=fk
putb=r
end

output a

With the Mathematica functionsWwhile,Floor and Print, the above algorithm runs like this

{861, 784}

{784, 77}
{77, 14}
{14, 7}
{7. 0}
If one aso wants to find the coefficients u and v satisfying Theorem A.3, this agorithm can be

adapted as described below. Note that by leaving out the lines involving the integers u; and v;, this
(extended) algorithm reduces to the simple version above.
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Algorithm A.8 Extended Version of Euclid's Algorithm
input bza=0
initialize s=5815 =a;
dg=0:m=Lw=Ly=0kn=1
while s; > 0 do bagin
put n=n+1;
wrlte 5,1 = gn Saei + 500 0 = 5 < 50y
PUL Uy = iy My + N3,
PAE ¥y = g V-] T Vo2
end
put = (=1 by v = (=11 4y :

godia. b) = sy = ua+vh (A.B)

Again Mathematica knows this extended version of Euclid's Algorithm as a standard function. It is
called ExtendedGCD.

a=86l; b=1645; ExtandedGCD[a, b]

{7, {107, -56}]

Note that in the example above one indeed has that

T = gcd(861,1645) = 107x861 — 56x1645
Proof of Algorithm A.8:

First observe that the elements s,, n= 1, form a strictly decreasing sequence of non-negative
integers. So the algorithm will terminate after at most b iterations. Later in this paragraph we shall
analyze how fast Euclid's Algorithm redly is.

From the recurrence relation s, = sx-2 — ¢« sx_1 the algorithm it follows that
ged(a, b) = ged(sg, s1) = ged(sy, $2) = ... = ged(sn-1, su) = ged(s,-1, 0) = 5.
This proves the first equality in (A.8). We shall now prove that for all k, 0 <k < n,
D a+ (1D v b = sy
Note that substitution of & = » — 1 in this relation proves the second equality in (A.8).

For k = 0 and k = 1 the above relation holds by our choice of the initialization valuesfor up, uy, vo
and v;. We now proceed by induction. It follows from the recurrence relations in the algorithm and
from the induction hypothesis, that
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sk=Skc2 —quose—t = (=D a+ Gy b - g (D 2w a+ (- DV v b =

(—l)k—1 (tg-n +qyu-la+ (—l)k (Vi + g Vk—l)b = (—])k_l uga+(— l)l\ Vi b.

|
L

Of course there is no need to keep all the previously calculated values of sy, u; and vi stored in the
program. Only the last two of each together with ¢, will suffice. The reason for introducing them
in the algorithm was only to facilitate the readability of the proof above.

With the Mathematica functionswhile, Flooy and Print, the above algorithm runs like this:

lxlxB6l + -1lx0x1645=861

-1x1xB61 + lx1lx1645=TB4
1x2x861 + -1x1x1645=T77
=1x21xB61 + 1x11x1645=14

lxl07xB61 =+ -1=x56x1645=T

We would like to conclude this section by saying something about the complexity of Euclid's
Algorithm. It may be clear that this algorithm is at it Sowest if a each step the quotient gx has
value 1 (if possible). Thisisthe case if sp-2 = s¢-1 + 8¢ fordl 2 <k <n-1andthat s, =25, ,
s» = 0. In other words, the smallest value of b (and arbitrary 0 < a < b) such that the evaluation of
ged(a b) takes n—1 steps is given by b=F, and a = F,;, wWhere the {F}},.o Sequence is the
famous sequence of Fibonacci humbers defined by Fo =0, Fy = 1, F;p = Fiyy + Fi fori = 0.

By letting Mathematica operate repeatedly on a list of two consecutive Fibonnacci humbers (the
function Nest is used for this), one gets the following method to evaluate these numbers (in the
example Fygo and Fyg; are computed):
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{354224848179261915075, 573147844013817084101}

This could also have been done directly with the function Fibonacci .

354224848179261915075

The reader may check the above analysis in the following way.

0L v = -

(1505 23, 4,856, 7, 8,78, 40, {1, 12,1314, s 16047 18 %
19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

's1, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,

67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, B1, B2,

‘83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98}

Note that the GCDiterations algorithm above does not affect the values of a and b (contrary to our
implementation of the simple version of Euclid's algorithm). It also makes use of the Mathematica
function Mod that will be discussed in the next section.
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Plugging in F, =c f" in the defining recurrence relation of the Fibonacci numbers, s0 in

Foi2 = Fiy + Fy, leads to the quadratic equation f% = f + 1, which has as zero's: ‘—*Z‘E Without
proof we state the following upperbound on the complexity of Euclid's Algorithm. The reader may
prove it with induction on b (distinguish the cases a < % and % <ax<b).

Theorem A.9 Complexity of Euclid's Algorithm
Let a and b be positive integers, b = a, b # 1, and let f = 2% Then the number of
iterations, that Euclid's Algorithm will need 1o compute gedia, ) is at most log, b.

a = Fibonacci[100]; b = Fibonacci[99];
GCDiteraticna[a, b]
Ceiling[Log[ (1 + 8qrt[5]) /2, b]]

98

98

A.3  Congruences, Fermat, Euler, Chinese Remainder Theorem

A.3.1 Congruences

Definition A.4

Two integers a and b are said to be congriens to each other modulo m, if their difference
b — a is divisible by m. This is denoted by
a = b (mod m).

The Mathematica function Modia, m] gives the unique integer r, 0 < r<m, such that
a = r (mod m).

| Aa=12345y m=13; Mod[a, m]
-l R e g

8

An easy test if the integers a and b are congruent of each other modulo m is given by the following
example:

m=13; a=12345; b= 103579; Mod[a-b, m] == 0
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Definition AS
A set of m integers ay, gz, ..., dx i5 called a complete residue system modulo m, if each
inieger is congruent to (exactly) one of the elements a;, 1 = 1 = m, modulo m.

The most commonly used complete residue systems modulo m are the sets {0, 1, ..., m — 1} and
{1, 2, ..., m — 1. With the Mathematica functions Range and Table one can generate these
systems.

m=10;
Tabla[i, {i, 0, m-1}]
Rangea [m]

PO LR RS, 8, )
(12 Ay 8 a7 8,.9, 10)

Clearly the mintegers a;, 1 <i < m, form a complete residue system modulo m if and only if for
each pair | <, j < m one hasthat
agi=a;(modm) = i=j (A9)

The congruence relation = modulo defines an equivalence relation (see Definition B.5) on Z. A
complete residue systemisjust a set of representatives of the m equival ence classes.

Lemma A.10
Letka = kb i{mod m) and gedik, m) = d. Then

a=b (mod s d)

Proof: Write k = k'd and m = m'd with ged(k', m") = 1. It followsfrom ka — k b = xm, for some
xeZ, that k'(a—b)=xm' Since ged(m', k" = 1, it follows from Lemma A.4 that m'}{(a — b),
i.e.a=b(modm".

Lemma A.11
Let @y, @3, ..., @ be a complete residue system modulo m and let gedik, m) = 1.
Then kay, kas, ..., kay 15 also a complete residue system modulo m.

Proof: We use criterion (A.9). By LemmaA.10, & a; =k a;(mod m) impliesthat a; = a; (mod m).
Thisinturnimpliesthat i = j.
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A.3.2 Euler and Fermat

Often we shall only be interested in representatives of those residue classes modulo m, whose
elements have coprime with m. The number of these classes is denoted by the following function.

Definition A.6
The Euler's Totient Function & (see Euler) is defined by

¢iml= [[O0=i<m|gedli,m)=1]}|

In words, ¢(m) is the number of integers in between 0 and m — 1 that are coprime with
.

In Mathematica, this function can be evaluated with the EulerPhi [n]function. For instance

| m=15; EulerPhi[m]

i

B

corresponding to the eight elements: 1, 2, 4, 7, 8, 11, 13, and 14. Later on in this section, we see
how the function ¢{m) can be efficiently computed.

Theorem A.12
For all positive integers m

¥ ) = m.

It is quite easy to see in an example which of the m integers in between 1 and m are contributing
to which term ¢(d) with d | m. When m = 15, we have the divisors 1, 3, 5 and 15 of m. The eight
eements 1, 2, 4,7, 8, 11, 13, 14 all have gcd 1 with 15 (note that ¢(15) = 8) , the four ( = ¢(5))
elements 3, 6, 9, 12 have gcd = 3 with 15, the two ( = ¢(3))elements 5, 10 have ged = 5and the
single ( = ¢(1)) element 0 has ged = 15.

Proof of Theorem A.12:

Let d divide m. By writing r = i d one sees immediately that the number of elements r, 0 < r < .

with ged(r, m) =d is equal to the number of integers i with 0=<i< Zand ged(, %): 1,
therefore, this number is d:(i{;i).

On the other hand, ged(r, m) divides n for each integer r, 0 < r < m. It follows that s, ¢(%}) = m.
This statement is equivalent to what needs to be proved.
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The following non-standard Mathematica statement evaluates sums of function values f[d] over
al divisors d of a given integer m.

One can use this function to check Theorem A. 12.

15

Dwefinition A7

A set of ¢(m) integers ry, ry, ..., e is called a reduced residue system modulo m if
each integer j with ged( j, m) = 1, is congruent to (exactly) one of the elements ry,

1 =isdim)

A reduced residue system can be quite easily generated by means of the following newly defined
functions.

{1, 2, 4,7, 8, 11, 13, 14}

Analogously to LemmaA. 11 one has the following lemma.
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Lemma A.13
Let ry, r3, ..., Fagm be a reduced residue system modulo m and let gedia, m) = 1.
Then ary, @ary, ..., @ Fam s 4150 a redoced residue system modulo m.

With the above lemma one can easily prove that the classes in a reduced residue system form a
multiplicative group (see Subsection B.1.1).

Theorem A.14 {see Euler)
Let a and m be two integers that are coprime. Then

a™™ = 1 (mod m).

It is quite easy to check this theorem in concrete cases.

EulerPhi[m]
| Mod([a*EulerPhi[m], m]

! m=12345; a= 11111; GCD[m, a]
i

Exponentiations modulo some integer can be performed much faster in Mathematica with the

PowerMod [a, b, m| function, which reduces all intermediate results in the computation of a?
modulom.:

m=123456789; a = 1111111111; GCD[m, a]
PowerMod [a, EulerPhi[m], m]
A i O i e |

1

Proof: Let ry, ra, ... reumy be areduced residue system modulo m. By LemmaA. 13

@ (m) S(m) ¢ (m)

¥ n {ar) a®m

=1 =1 =1

r,  (modm).
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m

Since each factor r; is coprime with m, one can divide both hands by [T}~ by Lemma A. 10.

Thisresultsin 1= a®™ (mod m).

Let p be a prime number. Since every integer i, 1< i< p, is coprime with p, it follows that
¢(p) = p - 1. Euler's Theorem implies the next theorem for al values of a except for a's that are a
multiple of p. For these values, the statement in the next theorem is trivially satisfied.

Theorem A.15 Fermat's Little Theorem
Let p be a prime number and let @ be any integer. Then

a’ = a({mod p).

This can easily be checked in individual cases with the Mathematica function PowerMod.

| p= 98947; a= 12345; PrimeQ[p] '
| PowerMod[a, p, p] ==a !

B e ——]

True

True

As we have just observed, ¢(p) = p—1 for prime. Because exactly one of every p consecutive
integers is divisible by p, we have the following stronger result:

$p)=p - (I p) = P (- 1) = p(1 -—] (A.10)
Definition A8

A function [ : M—M is said to be multiplicative, if for every pair of positive integers m

and n

gedim, n) = 1 = fim.n) = f(m) fin).

Lemma A.16
Euler's Totient function ¢im) 15 multiplicative.

Proof: Let mand n be coprime and let ay, aa, ..., agmand by, b, ..., bsmy be reduced residue
systems modulo m resp. n. It suffices to show that the @¢(m) $(n) integersn.a; +m.bj, 1 <i < ¢(m)
and 1 < j=<¢(n), form a reduced residue system modulo mn. It is quite easy to check that the
integers n.a;+mbj, t <i<@myand 1< j<¢(n), are al distinct modulo mn and that they are
coprime withmn. (Use LemmaA. 15 and formula (A.9)).
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It remains to verify that any integer k with ged(k, m.n) = 1,is congruent to n.4; + m.b; modulo mn
forsome 1 <i<@(m) and 1 < j < ¢(n).

From Lemma A. 13 we know that integersi and j, 1 </ < ¢(m) and | < j < ¢(n), exist for which

k=na (modm) and k=b;(modn).

This implies that both m and n divide k — n.a; —m .b,. Since gedim, ny = 1, it follows from (A.4)
and (A.7), that also m.n dividesk — n.a; — m.b;.

Theorem A.17
¢(m) = m I, peime, pim (1 = )

Proof: Combine (A.10) and LemmaA. 16.

In Section A.5 we shall see how adirect counting argument also proves Theorem A. 17.

With the Mathematica functions Lengthand EulerpPhi and the function CoPrimes (which
makes use of CoPrimeQ) defined above one can check Theorem A. 17 as follows:

m=15;

Length [CoPrimes[m] ]
EulerPhi[m]

A.3.3 Solving Linear Congruence Relations

The simplest congruence relation, that one may have to solve, is the single, linear congruence
relation

ax = bi{modm) (A 11)

Theorem A.18

The linear congruence relation a x = b (mod m) has a solution x if and only if gedia, m)
divides b.

Im this case the number of different solutions modulo m is gedia, m).
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Proof: That gcd(a, m)/b is a necessary condition for (A.11) to have a solution x is trivial. We
shall now prove that it is aso a sufficient condition.

Let d = ged(a, m) and write a=a'd, m=m'd and b=b'd, where ged(a', m") = 1. By Lemma
A. 11, the congruence relation a'x =b"(mod m" has a unique solution x'modulo m'. Clearly, a
solution x of « x=b(modm) satisfies x = x'(modm'). So, each solution x modulo m can be
writtenas x'+im', O <i<d. Writea'x'=b'+um',uec Z. Thenforexch 0 si<d,

ax'+imY=da'x'+idam'=db'vudm'+ia'm=b+(u+ia")ym.
Hence, the numbers x' +im', 0 < i < d, represent all the solutions modulo m of a x = b (mod m).
1

The solution of a x = b (mod m), ged(a, m) = 1, can easily be found with the extended version of

Euclid's Algorithm. Indeed, from ua + vm = 1 (see Theorem A.3), it follows that «a = 1(mod m).

So, the solution x is given by bu(modm). If ged(a, m) = 1, one often writes a~! for the unique
element u satisfying «a = 1 (mod m).

Example A.1 (Method 1)
To solve 14 x = 26 (mod 34), we note that ged(14, 34) = 2,which indeed divides 26.

Wefirst solve 7 x* = 13 (mod 17). With the extended version of Euclid's Algorithm wefind
5:7+(-217 =ged(7, 17) =1.%0, 7-5 = 1(mod 17) and x' can be computedfrom
x'=771.13=5.13 = 14(mod 17).

By the theorem above, /4 x = 26 (mod 34)hasthe numbers 14 and /4+ /7=231as solutions modulo 34.

ExtendedGCD[7, 17]
Mod[5 +13, 17]

{1, {5, -2}}
14

Example A.2 (Method 2)

To solve 123456789 x = 135798642 (mod 179424673), wefirst check if gcd(123456789, 179424673)
divides 135798642. Next, we compute 723456789~/ mod 179424673 and then compute
123456789~ - 135798642 which gives 21562478 as solution .

Instead of using Euclid's Algorithm to compute 123456789~ mod 179424673, we can also use
Eider's Theorem. Indeed, a?™ =1(modm) implies that aa?™~! =1(modm) and thus that
a! =a?"~! (mod m).
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172609538

So, the number 172609538 is the multiplicative inverse of 123456789 modulo 179424673. The
solution x of the congruence relation 123456789 x = 135798642 (mod 179424673) isgiven by:

= e g T R e i o MR i e =
s 986 % . Fra I

21562478

We can check this:

135798642 -

L

The Mathematica function PowerMod computes the multiplicative inverse of a number very
efficiently in the following way:

172609538

The Mathematica function Solve gives al the solutions of the congruence relation
a x = b(mod m), if they do exist.

{{Modulus »+ 16, x—+ 2}, {Modulus =16, x=6},
{Modulus - 16, x -+ 10}, {Modulus = 16, x—+ 14} }

To get only the solutions, one can execute
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X /. Bolva[ {12 x == B, Modulus == 16}, x]

{2, 6,10, 14}

The reader is invited to try

i x /. Bolve[ {13 x == 1, Modulus == 16}, x]

Solve[ {12 x == 7, Modulus == 16}, x]

P

A.3.4 The Chinese Remainder Theorem

We shal now discuss the case that x has to satisfy several, linear congruence relations
simultaneously, sy a; x = b; (mod m;) with gedia;, m;) | b; for 1 <i < k. Dividing the i-th relation
by d; = gedia;, mp), 1 <i <k, one gets as before the congruence relation a;'x' = b;‘ (mod m"), with
ged(a;, m;') = 1. By the proof of Theorem A. 18, a solution of this congruence relation is equivalent

to a solution of one of the d congruence relations a;' x = b;' + jm;' (mod m;), 0 < j < d. In view of
this, we restrict our attention to the casethat gedia;, m;) =1 forall i, 1 <i <k.

Theorem A.19 The Chinese Remainder Theorem
Let my, 1 = i = &, be k pairwise coprime integers. Further, let a;, 1 =i = k, be integers
with gediay, m;) = 1. Then the system of k simultaneous congruence relations

a;x = by (mod my), 1=i<k (A.12)

l has a unigue solution modulo [TL, my for all possible k-tuples of integers by, ba, ..., by.

Proof: Suppose that x’and x'' both form a solution. Then a; (x' - x') = 0(modm;), 1 <i <k.By
Lemma A4, m divides x'~x"foral 1=<is<k. Itfollowsthat x'=x"(mod [T%,m;). Hence, if
the k congruence relations have a simultaneous solution, it will be unique modulo [T, m;.

On the other hand, since there are as many different values for x modulo TT&, m; as there are
possible  k-tuples of reduced right hand sides by, b,, ..., bi there must be a oneto-one
correspondence between them.
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The proof above does not give an efficient algorithm to determine the solution of (A. 12). We shall
now explain how this can be done.

Let1 < i<k and let u; be the unique solution modulo [T4, m; of
a; u, = 1 (mod m,), (A.13)
a, u, = 0 (mod m), l<j<k, JEXE (A.14)

With Euclid's Algorithm u; is easy to determine. Indeed from (A.14) it follows that «;is amultiple
of mdefined by [1; ;. mj» sy w; =rm® for some O =r<m,;The value of r follows from
(A.13). Indeed, risthe solution of a; rm? = I (mod m;). Hence

u = {(a’ m(i))"' (mod m')} m(l).
Thenumbers u;, 1 < i < k, can be stored using a most k log, m bits of memory space.

The solution of (A.12) is now given by
x=u by +uzby+ ... +uy by

Example A.3

To solve

3x=7(mod11) 2x=9(mod 13) 12x=5(mod 17)

we rewrite these congruences as

x=3"T7(mod1l) x=2""-9@mod13) x=12"'-5(mod17)
which reduces to

x=4-7(mod11) x=7-9(mod 13) x=10-5(mod 17)

x=6(modll) x=11(mod 13) x=16(mod 17).
Next we compute the solutions of

u; =1(mod11) u; = 0(mod 13) u; =0(mod 17)
u; =0(mod 11) upy = 1 (mod 13) u; =0(mod 17)
u3 =0(mod 11) uz = 0(mod 13) us = 1 (mod 17).

Writing u; =1;-13-17, wy =1-11-17, u; =13-11-13, we find with Theorem A.18, (or the
Solve function) that and thusthat i, =7 (mod 11), 1, =8(mod 13), 1; =5 (mod 17)
uy =221 (mod 11-13-17), uy = 1496 (mod 11 -13-17), u3 =715(mod 11 -13 -17).

We concludethat x =6-221 +11-1496 +16 -715 = 50 (mod 11 -13-17).
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To solve congruence relations x; = b; (mod m;), 1 < i <k, with al the m;'s mutually prime with the
Chinese Remainder Theorem with Mathematica, we first read the package
NumberTheory “NumberTheoryFunctions"

<<NumbarTheory NumberTheoryFunctions”

Such a system can  now be solved with the Mathematica function
ChineseRemainderTheorem that is available in the above package. We demonstrate this by
determining u,, uz, and u3 in the above example.

ChineseRemainderTheorem[{1l, 0, 0}, {11, 13, 17}]
Ehinllihﬂlinﬂ-l‘mom[{ﬂg Dl 1]’: {11- 13, 1?}]

221
1458
715

When considering the system of congruence relations a; x; = b; (mod m;), 1 < i < k,where the m;'s
are relatively prime and where gedia;, mj) =1 for 1 <i <k, it is quite easy for Mathematica to
reduce this system to the equivalent system x; = a;! b; (modm;), 1 <i <k, which can be solved
with the Chinese Remainder Theorem function. We use the functions PowerMod and Mod for this
reduction. They operate equally well on vectors (coordinatewise) as on numbers.

We demonstrate this with the parameters of the example above.

a={3,2, 12}; b={7, 9, 5}:m= {11, 13, 17};
b = Mod [b » PowerMod([a, -1, m], m]
ChineseRemainderTheorem[b, m]

{6, 11, 16}

50
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A4 Quadratic Residues

Let p be an odd prime. The quadratic congruence relation ax?+bx+c=0(mod p),
a #0(mod p), can be simplified by dividing the congruence relation by a followed by the
substitution x - x—b/(2a). In this way, ax’*+bx+c=0(mod p) reduces to a quadratic
congruence relation of the type:

2 = uimod p) (A.15)

Definition A9

Let p be an odd prime and u an integer not divisible by p. Then u is called a quadratic
resigue (QR), if (A.15) has an integer solution, and guadratic non-residue (NQR), if
(A.15) does not have an integer solution.

Definition A.10
Let p be an odd prime and & an integer, The Legendre symbaol [#} is defined by
+1 if wisa quadratic residue mod p,
[%} =1 =1 if wisa quadratic nonresidue mod p,
0 if pdivides u.

If there is no confusion about the actual choice of the prime number p, one often writes
Au) instead of (£).

The Legendre symbol is a special case of the following function.

Definition A.11
Let m = [1; ()% be an odd integer and let & be an integer with gediu, m) = 1.
Then the Jacobi symbol ( ﬁ } is defined by

(&) =TL(L ]

M

where I{-:'; ] denotes the Legendre symbaol.

The Jacobi symbol (and a fortiori the Legendre symbol) can be evaluated with the standard
Mathematica function Jacobi Symbol [u, m]. So, we can check if 12 is a quadratic residue
modulo 13 (indeed 5% =12 (mod 13)) by means of the Jacobi Symbol[12, 13] which should give
value 1.

u=12; m=13; Jacobisymbol[u, m]

We want to derive some properties of the Legendre symbol.

Let a®> = u(mod p). Then, dso (p - a)? = u(mod p). The polynomial x? — u has a most two zeros
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in GF(p) (see Theorem B.15), so modulo p there can not be more than two different solutions to
x* = u(mod p). It follows that the quadratic residues modulo p are given by the integers

2 (modp),lsis J’;_'

or, alternatively, by the integers (p —i)* (mod p), 1 <i =< 1’—} We conclude that there are exactly
L QRs and &1 NQR's. This proves the first of the following two theorems.

Theorem A.20
Let p be an odd prime. Then, exactly J';—' of the integers O, 1, .... p— | are quadratic
residue and P—;-L are quadratic non-residue. In formula

TP x(w) = 0.

The reader can check the above theorem in concrete examples by means of the following two
Mathematica functions.

! 2 a— N— — ——-——‘
p=17; E;Tlcnhi.ﬂy‘nbol[h pl

i=0 |

ListQuadRes[p_] = “ '!
Select [Range[p], JacobiSymbol[#1, p] == 1 &] '

p=17;
ListQuadRes[p]

{12, 4,8, 9,13, 15, 16}

Theorem A.21
Let p be an odd prime. Then for all integers u and v

Fluv) = ylu) y(v)
Proof: This theorem will be atrivial consequence of Theorem A.23 later on. We shall present here

amore elementary proof.

If p divides u or v the assertion is trivial, because both hands are equal to zero. The proof in case
that p does not divide u or v is split up in three cases.

Case 1: uand v areboth QR.
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Then u=da’(mod p) and v=h?(mod p), for some integers a and b. It follows that
u.v = (a.b)* (mod p). So uvis QR.

Case 2: Exactly one of uand v is QR, say uis QR and v isNQR.

Suppose that also u.v is QR. Then there exist integers a and b such that « = @* (mod p) and
wv = b? (mod p). Sincea # 0(mod p), it followsthat v = (b/a)* (mod p). A contradiction!

Cease 3: Bothu and v are NQR.

From Lemma A.11 we know that i -u, i=1,2,..., p— 1, runs through al non-zero elements
modulo p. For the —”;—' values of i for which i is QR, we have by Case 2 that i.u is NQR. So, for
the ’%‘ values of i for which i isNQR, it follows that i.u is QR. Sou.v is QR.

[

Although the next theorem will never be used in this textbook, we do mention it, because it is
often needed in related areas in Discrete Mathematics.

Theorem A.Z2
Let p be an odd prime. Then, for every integer v

p=1 3 ¢ p=1, if pdivides v,
o= Xy +v) =
Lo XEO-X Y liarnine

Proof: If p divides v, the statement is trivial. When p does not divide v, one has by Theorem A.21
and Theorem A.20 that
S0 xC) x(u+v) = T2 xw) x(u+v) = TP7) xw) x (o) (1 +v/u) =
P x(L+viuy=F .0 xOn) =1 + TI x(w) = -1

3
Let u be QR, sy u = a? (mod p). By Format's Theorem WT=ar = (mod p). So, the %‘

QR's are zero of the polynomial X 1 over GF(p). Since a polynomial of degree ”T”over
GF(p) has a most 1’;—' different zeros in GF(p) (see Theorem B. 15), one has in GF(p):

XP-2 _q = TLuisqr (x = u). (A.16)
-1 . . i -1 .2
It also follows that u*T" # 1, if u is NQR. Since («'7') = 1(mod p) by Fermat's Theorem and

since y2 = 1 (mod p) has only 1 and -1 as roots, it follows that W =1 (mod p), if uis NQR.
This proves the following theorem for al u coprime with p. For p |« the theorem is trivialy true.

Theorem A23
Let p be an odd prime. Then for all integers u,

l: } = Y2 {mad p).
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Corollary A.24
Let p be an odd prime. Then

i if p=1(mod4),
I oim if p = 3 (mod4),

Proof: (- 1)*=" = lifand onlyif p =1 (mad4).

Another value of the Legendre symbol that we shall need later on is (%)

Theorem A.25
Let p be an odd prime. Then

(

£ (+1, if p=£1 (mod8),
=1 -1, if p=+3(mod8).

-

Proof:
2T L’_k ma k= [nkfj(zk)]-(n]iﬂ (Zk)) =

il il p-1 -1
S e J(HLT j(2k)].([]kjl+l%ij(p—2k)) = Tl (m . k](modp)
Dividing both hands in the above relation by H,f::: kyields
2}%]‘ = (—I)%I‘IP%I‘J (mod p).
The assertion now follows from Theorem A.23.

We recall the definition of the Jacobi symbol in terms of the Legendre symbol

(%) =[1.(=)" wherem =], p. (A7)

Pi
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Theorem A.26
Let m and n be odd integers. Then the following relations hold for the Jacobi symbaol
i Gianp) = ()

i) (Z)=(2)(2)
il) (o) =(£)(2)
iv) ['—] =1 if and only if m = 1 (mod 4),

m

) [%}=i if and only if m = £ 1 (mod 8).

Proof: The first two relations hold for the Legendre symbol and, by (A.17), aso for the Jacobi
symbol. The third relation is a direct consequence of (A.17).

To see that the fourth relation is a direct consequence of (A. 17) and Corollary A.24, it suffices to
observe that a product of an odd number of integers, each congruent to 3 modulo 4, is aso
congruent to 3 modulo 4, while for an even number the product will be 1 modulo 4. The proof of
the last relation goes analogously (now use Theorem A.25).

One more relation is needed to be able to compute (=) fast. We shal not give its proof, because
the theory goes beyond the scope of this book. The interested reader is referred to Theorem 99 in
[Harw45] or Theorem 7.2.1 in [Shap83].

Theorem A.27 (Quadratic Reciprocity Law by Gauss)
Let m and n be odd coprime integers. Then

AT R —""'"1'«"‘”

o L el

With the relations in Theorem A.25, Theorem A.26, and Theorem A.27 one can evaluate the
Jacobi symbol very quickly.

Example A.4

A27 A.261) A .26 i) A.26v) &A.27
(Ter) =" U5p) =" () =" (F) ()=

=() "G R ) T () )

1829 1829) = G2 1729 1729 1729

. .261) .26)
=(3) () ) () B () =1
It should be easy for the reader to verify that the above method has roughly the same complexity as
Euclid's Algorithm.
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Of course we could have evaluated (1525-) directly with Mathematica, as we have seen before.

A5 Continued Fractions

Quite often one wants to approximate a real number by means of a rational number. For instance,
many people use 22/7 as an approximation of . A better approximation of = is already given by
333/106 and again better is 355/113. One has to increase the denominator to 33102 to get the next
improvement.

I—q+0lzllgﬁf-l'9. .

' :-;'-'..-.:'-oou*as-'z'm; '
-2.66764x1077
5.77891x 10710

It is the theory of continued fractions that explains how to get such good approximations.

Definition A.12 .
A finite continued fraction is an expression of the form

(A.18)
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whereagge Land g, eM, 1 =ism
It will often be denoted by the sequence [ag, ay, .., gl

If m = oo in (A, 18), we speak of an infinite continued fraction. It has the form

|
T
E ————
R

ag +

and will be shortened o [ag, ay, a3, ...].

Clearly, each finite continued fraction represents a rational number. One can find it by simplifying
the continued fraction step by step, starting with a,_; + HL = fmei ¥y 1 dm

a _— Q] Am+a,
m ”’"-1+um m-1 Gm™ 4y

€fc.

In Mathematica this can be achieved with the function Normal .

y i
Normal[3 + ]
T+ + i
15+ 11--5h
1039293
33102

We shall now show that the opposite is aso true: each rational number has a finite continued
fraction.

Lemma A28
Each rational number has a finite continued fraction.

Proof: Let a/b, b> 0, represent a rational number. We apply the simple version of Euclid's
Algorithm (Alg. A.7) to the pair (a, b), 0 we put sy=«, 51 =b,and compute recursively
$i = ¢ Six1 + Six2, With O < 842 < 8541, until 5,2 =0 (andthus s, = g,, s,,1) for some integer m.
Then

5 Gy 5 7 I k 1 |
Y oot e =t

We conclude that a/b has [qo, 41, ..., g..] 8 continued fraction.
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It is important to observe that the representation of a rational humber as a finite simple continued
fraction, where all the g¢;'s (i = 1) are positive, is not completely unique. Although the manner in
which the g' s are calculated with the simple version of Euclid's Algorithm (see proof above)
gives aunique value of the g;'s, it is clear that in the last step we have g, = 2,SINCe §,41 < sy

As the last term in the expansion is a positive integer, and not equal to one, we can therefore
rewrite the last term as follows:

1 1

I (Gn-1) + =

This shows that [qo, g1, .-, gm] hasthe samevalue as{qo, 91 ..., g — 1, 11.

The last term in a continued fraction can be chosen in such a way as to make the number of terms

in the expansion either even or odd, if that would be convenient.

Formula (A. 18) suggests the following way of computing a continued fraction of anumber .

Algorithm A.29
The continued fraction of a number @ can be computed by

initialize &g =
compute recursively a; = ;] and

i) = 1y —a). foriz0,
outpat [ap. @i, @z, ...].

Example A5
Consider @ = 11 /9. Then we get

- Clear[a];

alpha = 11 /9; a[0] = alpha;
af0] = [a[0]]

a[l] =1/ («[0] -a[0]):

To get the next term, we compute

| a[i] = la[1]]
" af2] =1/ (a[1] -a[1]);

4

We continue with
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Power::infy : Infinite exprassian-% encountered.

We conclude that @, = a> and thus that the continuedfraction is given by [1, 4, 2]. We can check
this quite easily:

To let Mathematica compute the continued fraction of a number, first the package
NumberTheory'ContinuedFractions has to be loaded.

To find the continued fraction of a rationa number, one can use the function
ContinuedFraction.
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To express such a continued fraction as a regular fraction, one can use the Mathematica function
Normal again.

B ———

Hormal [ContimuedFraction[Pi, 11]]

-

4272943
1360120

If a continued fraction is given in the form [ay, ay, ..., a,], One gets the regular continued fraction
by means of the function ContinuedFractionForm. The reader should know that in
Mathematica the numbering of the indices starts with 1, 2, etc.

r———

AR=(3,7,15,1,292)};
ContinuedFractionForm[AA]

1+ 557

To obtain the continued fraction of a number a in the form [aq, a1, ..., a,,], One can just appends
[[ 1]] tothe function ContinuedFraction[e, n].

[ ContinuedFraction[Pi, 111[[1]] ol _ J

e B e Wl bl T S e e

Definition A.13
The k-th convergent Cy of a continued fraction [ag, ay, ..., au), 0 = k = m, is defined by
[ﬂ(h Ty vvnn ﬂt]-

These convergents can be quite easily evaluated with the functions Table, Normal, Take,
ContinuedFractionForm. and Length.
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i, R T R -

| [aA1})

22 333 355

{3. B AT T R T

| AA={3,7,15,1,292};
| Table [Hormal [ContinuedFractionForm[Take[AR,1]]],{i,1,Length

103993 4
23102

Each convergent, being arational number, can be written as p; /q,.The values of pyand g can be
found with the Mathematica functions Numerator and Denominator

pS=Numerator [C5]
gS=Dencminator[C5]

CS5=Normal [ContinuedFraction[Pi,5]]

103993
33102

103993

33102

The next theorem gives a nice relation between a continued fraction and its convergents. To be
able to shorten the proof, we shall relax our usual restriction of the integrality of the a;'s.

Theorem A30

Let {ai);p be a finite or infinite sequence of reals, all positive with the possible

exception of ag.

Let €y = py / g be defined by [ag, @y, ..., @] as in (A.18). Then, the numbers p; and g

satisfy the recurrence relation

Po = dg,
do =1,

pL=aga +1,
g1 =dap.

Pe=@ Pi-i + P2, k2 2,
Gk = g Q=1 + -2 k=2

Proof: The proof is by induction on k.

Fork=0,wehavelq'—:)’- =Cy=dg =<, 0 indeed py = ap and ¢y = 1.

Fork = 1, we have £ = C) = |ag, a1] = ag + L= ﬂ‘{‘ji—”,so indeed p, =apa, + land ¢, = a).
1

Assume that the theorem has been proved up to acertain value of k. So,

Py _
Ci = lag, ar, ....oaqy] = 2+ =
i

W Ph-14 P2

(YT
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Now substitute a; = a; + 1/ar,; above. Then

def. Def A 12 1 ]

Cert = lag, ay, .. ap, agei}] = [“U’al""’a"Jrum

1
induct. (et gy v emis = Ghe 1 G P |+ P2+ Py )

{aﬁ“k'_l )q‘.,,ﬂ/k,'_’ Qs 1 gy - g 24

tecrel gy ppapiog recret poy
Qi) Gty d

]

A small result, that we need later, is the inequality
qez Fy, (A.19)

where Fj is the k-th Fibonnaci number, defined by Fo =0, F; = 1,and the recurrence relation
Fy=Fi_1 +Fy_2, k2 2. The inequality g, = F, follows with an easy induction argument from
go>0, g =1, and the recurrence relation ¢y =ayge-1 +qe—2 in which a, =1 (use
Gk Z Gk-1 + Ge-2)-

Lemma A.31
Let Ci = py /i be the k-th convergent of a continued fraction. Then

Pi Q-1 — P ge = (= 1!

Proof: The proof is again by induction on k. For £ =1 we have by Theorem A.30 that
Pigo—poqi =(aga; +1)xX 1 —agxa = 1.

To prove the step from k to k + 1 we use the recurrence relation in Theorem A.30:

Thm. A .30
Peerge = Pedivt = (dgst P ¥ pr-0) g — (@it gx + Ge-r) =

nd

Piot @i — Prdiot = (=D (=¥ = (- DF

Corollary A.32
Let Ci = py /g be the k-th convergent of a continued fraction. Then

Eﬂd{ﬂt. 4'.&.‘-' o ]-r

Proof: This is an immediate consequence of py.; gx — pi gx-1 = (= 1)*71. Indeed, each number
dividing py and ¢, must aso divide 1.
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Theorem A33
Let Cp = py [ gy be the k-th convergent of a finite or infinite continued fraction
[a. @i, ...]. Then
_ =
Ck 1‘:‘-_| = k= 1, [ A200)
Ci = Chz = SCL ) (A21)
T2
Cq}'l:c'_rﬁfl‘C......{C_Ii'ﬂ{-‘]‘f.C:. {A.22)

For an infinite continued fraction, the strictly increasing bounded sequence of the even
convergents has the same limit as the strictly decreasing bounded sequence of the odd
CONVETEENts,

Proof: By LemmaA.31 and Theorem A.30

i
Cp—Cpoy = B — Bl = P -1l g o AL
= iy T~ -1 T ik W1
_r Pi-2 _ PTE-TP-d
Cp=Cpg= =i — S

ik k-2 Ah-1

Y LSS S B T L S b el
k=7 Wi

= S Pyl Wy Py _ ol
Hi-2 dg =2 d
This proves (A.20) and (A.21). That the even convergents form a strictly increasing sequence
follows from (A.21), which implies that Cax — Cax-2 > O (the a;'s are positive). For the same
reason, the odd convergents are strictly decreasing.

To show that each even convergent, say C,;, is less that any odd convergent, say C, j.i, we first
observe that Cy 441 — C24 > 0 by (A.20). We combine this with the above to get

Ci < Copaj < Carig2jr1 < Cappr-

Finaly, by (A.19) and (A.20), for k = 2

(O = Chor | = —t— = —t— < -

dr—i 4k Fet By k=12
thus, the difference between two consecutive convergents tends to zero as k tends to infinity. This
shows that the limit of the even convergents must be the same as the limit of the odd convergents.
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Example A.6

Below we have listed thefirst 10 convergents of » in their natural ordering.

.141505433962264
.141592653011902
L141592653467437

0 3
2 3
4 3
& 3
g 3

3.1415%2653588793

.1415926535810748

= |

3.14155%2653591404

g8

7 3.141592653618916
5 3.141532853921421
3

3.141552920353983
1 3.142857142857143

The next two theorems will be stated without their proofs. These can be found in any introduction
to continued fractions, e.g. [Rose84], but the arguments are too technical for our purposes.

Theorem A.34

Let Ci = py /qi be the k-th convergent of a finite or infinite continued fraction
& = [ay, ay, ...] and suppose that |a-r(s| < |- p/q |.

Then £ > g.

For instance, since 322 is a convergent of z, we now know that only rationals with a denominator

greater than 113 may lie closer to & than 222 does.

113
-

Theorem A.35
Let & & R and let r/s (with ged(r, ) = 1) be a rational such that |a—r/s| < 1/25%
Then rs is a convergent of the continued fraction expansion of .
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This theorem says that a rational number r/ s that lies a distance a most 1/2 s? from anumber «
will appear as convergent in the continued fraction of that number.

A.6  Mobius Inversion Formula, the Principle of Inclusion and
Exclusion

A.6.1 Mobbius Inversion Formula

Often in Discrete Mathematics a function f is defined in terms of another function, say g. The
question is, how g can be expressed in terms of f. With the theory of partially ordered sets and the
(generalized) Mobius Inversion Formula one can frequently solve this problem (see Chapter 1V in
[Aign79]). In this section we shall discuss two important special cases.They both follow from the
theory, mentioned above, but it turns out that they can aso be proved directly.

Often we shall need an explicit factorization of an integer n. We no longer want the strict ordering
of the prime numbers given by p; =2, p, = 3,etc.. However, different subscripts will till denote
different prime numbers.

Definition A.14
Letn=TIL, (p)". & >0, 1 =i =k, where the ps are different primes. Then the
Mébius funcrion gin) (Mdbins) is defined by

1 ifn=1.
F{n)z'! 0 ife; 22 forsomel <1 <k,
Loglyys ifall &; areecual tol.

In other words, p(n)is the multiplicative function satisfying p(1) =1, u(p) = -1, and p(pH = 0,
i = 2, for any prime p. Mathematica has the standard function MoebiusMu [n] toevaluate u (n).

E = 307 Mosbinatenfa) 5 S0 bl ool et

-1
The Mébius function is defined in this peculiar way to have the following property.

Lemma A36
Let n be a positive imeger. Then

rl 1f na=1,

Egnpeld) =1 o

if-n=1;
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Proof: For n=1 the assertion is trivial. For n> 1 we write as above n = [1%, pi, e >0,
1 <i<k. Thenk >0 and thus

L #d) = Zd}ﬂf‘ P ok H) = Lapy gy py HU) =

=1 +Z§=l lei|<12<...<r,sk ﬂ(Ptl Piy 'P,,)

k
=X (l)(—l)’ztl—l)* = 0.

The reader may want to check the above lemma by means of:

Lemma A.37
Let m and n be two positive integers such that m divides n. Then

i, - m =,
0 if otherwise.

i, miin pln f d) ={

Proof: Let n=n'm. For eh d with wm|dln, we write d=d'm Then
Zdomin M [d) =2 gy p(n'/d’), whichby LemmaA.36is 1 forn'=1,(i.e. m =n), and is O for
n'>1.

Theorem A.38 Mibius Inversion Formula
Let f be a function defined on M and let the function g on M be defined by

gin) = Fq Fld), nel,
Then, forall n e M

finy= Ty pid) gln/d) = T, pin/d) gld).

Proof: By the definition of g(n) and LemmaA.37

Edln [J(l’l/d) g(d) = Zzlln H (n/d) Zg’ld f(é‘) = Ze|n f(e) Zd.eldln /.l(ll/d) = f(ll).
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Corollary A.39 Multiplicative Mibius Inversion Formula
Let F be a function defined on ™ and let the function & on M be defined by

g =Tlg fld), neM,
Then forall nin M

Sfin) = [a pld) gla/d) = [Ty pln ) d) gld).

Proof: Substitute g(r) = log (G(n)) and f(n) = log (F(n)) intheMaobius Inversion Formula.

Example A.7

From Theorem A.12 we know that Euler's Totient Function satisfies

2 #d) = n.
It follows from the Mabius Inversion Formula (Thm. A38) that for n =[I%, (pi), e >0,

] <i<k,
#n) =Ly #d) 5 =

n n n k H
=2 _ X LI . — (- — =
7 Zl_qsk " ZISI(jSk PP, =1 P P2PE

(1B =) 1= 5)
This proves Theorem A.17 in a different way.

Theorem B.17 in Section B.3 will show a nice application of the Multiplicative Mdbius Inversion
Formula

A.6.2 The Principle of Inclusion and Exclusion

We shall conclude this section with another useful principle. To develop some intuition, consider
the integers in between 0 and p.g-1, where p and q are different primes. We want to evaluate
¢ (p.q) directly, i.e. we want to count the number of integers i, 0 <i < p.q, that are coprime with
p.g. Of course, this number is pg minus the number of integersi, 0 <i < p.q, that have a
nontrivial factor in common with p.q, i.e. that are divisible by p or g. There are g multiples of p in
therange 0, 1, ..., p.g—1 and similarly p multiples of g. However, one of the multiples of p is
also amultiple of g, namely 0 itself. We conclude that

¢(pg)=pg-p-q+1=(p-1ig-D=pq(l- ‘F)(] -4,

as it should be according to Theorem A. 17.
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Theorem A.40 The Principle of Inclusion and Exclusion

Let 5 be a finite set with N elements. Suppose that the elements in § can satisfy certain
properties Pi(i), 1 sis k.

Let Niiy, i, ..., i;) be the number of elements in § that satisfy properties

Piiy), Plia), ..., Pliy),where 1 sy < i < - - <i; sk, | 555k, (and possibly also
some of the other properties).

Let N(&) denote the mamber of elements in § that satisfy none of the properties P(i),
l=i=<k

Then

N@) =N = Ly N + Dyisicjm NG ) =+ (DEN(L 2, .., ),

Proof: An element sin Sthat satisfies exactly r of the k properties is counted

Nel” Nyt =0
“(1)+(2)_“'+(‘ ) (r)‘( -r={, it r#0.

times in the right hand side, just as in the left hand side.

We leave it as an exercise to the reader to prove Theorem A.17 directly from the definition of the
Euler Totient Function and the above principle (Hint: Let p;, 1 <i < k, denote the prime numbers
that divide n, take $ = {0, 1, ..., n—1}, and say that element s € S has property P(i), | <i sk, ifsis
divisibleby p;.)
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A7 Problems

Problem A.1¥

Let 1%, p,% be the prime factorization of an integer n. How many different divisors does n have?

Forrn = 1000, check your answer with theMathematica functionDivisorSigma [kn] which computes
Y d* (use k = 0).

Problem A.2M
Computeu and v suchthat ged (455, 559) = 4554 + 599 v.

Problem A.3
Prove that ged (@™ - 1, a” — 1) = a#*4™" — 1 for every positive integer a. (Hint: reduce the pair {m, n},
m z n,t0 {m - n, n} and then follow the simple version of Euclid's Algorithm).

Problem A.4¥

a) Check that 563 is a prime number.

b) Use Euclid's algorithm tocompute 11~! (mod 563).
c) Solve 11 x = 85 (mod 563).

Problem A5

Find the solutionsof 33 x = 255 (mod 1689). Note that 1689 = 3x563and use the results of Problem
A.4

Problem A.6
a) Determine ¢(100). Check the result with the EulerPhi function.
b) Compute the two least significant digits of 200429 without using the computer.

Problem A.7¥
Solve the system of congruence relations (hint: use Theorem A.19):
3x=2(mod11), 7x= 9(mod13), 4x =14 (mod15).

Problem A.8%
Determine the Jacobi Symbol (7531, 3465).

Problem A.9

Use the Chinese Remainder Theorem to solve x2 = 56 (mod 143).4int: first reduce it to severa
systems of linear congruence relations).

How many different solutions are there modulo 143?

Problem A.10

Determine the first five terms of the continued fraction of f, the largest zero of f2 = f + 1. Determine
aso the first five convergents.

What do you conjecture about the other terms in the continued fraction of f? Prove this conjecture (hint:
use Algorithm A.29 and the definition of f).

Problem ALl
Prove Theorem A.17 with the Principle of Inclusion and Exclusion (Thm. A.40) and the definition of
the Euler function w(n).



Appendix B Finite Fields
Introductory Remarks

Most readers will be familiar with the agebraic structure of the sets of rational, real, and complex
numbers. These sets have al the properties with respect to addition and multiplication that one
may want them to have. They are called fields.

In discrete mathematics, in particular in the context of cryptology and coding theory, fields of
finite cardinality play a crucial role. In this chapter, an introduction will be given to the theory of
finite fields.

The outline of this is as follows:

In Section B.1, we recapitulate the basic definitions and properties of abstract algebra and of linear
agebra. In particular, we shall show that the set of integers modulo a prime number from a finite
field. In Section B.2, a genera construction of finite fields will be given. In Section B.3 a formula
is derived for the number of irreducible polynomials over a given finite field. This shows that

finite fields exist whenever the size is a power of a prime. An analysis of the structure of finite
fields will be given in Section B.4. In particular, it will be shown that a finite field of size q exists

if and only if g is a prime power. Moreover, such a field is unique, its additive group has the
structure of a vector space and its multiplicative group has a cyclic structure.

B.1  Algebra

Although we assume that the reader is already familiar with al notions discussed in this and the
next subsection, we offer this summary as a service to the reader.

B.1.1 Abstract Algebra

O Set operations

Let S be anonempty set. An operation * defined on 5 is a mapping from §x § into S The image of
the pair (s, t) under * is denoted by s*t. Examples of operations are the addition + in R and the
multiplication xin € The operation * is called commutativeif foral sand t in S

S.1 sxt = txs forallsandtin S.

An element e in S that satisfies

S2 sxe = exs forallsin§.
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will be called a unit-element of (S *).

If (S,*) has a unit-element, it will be unique. Indeed, suppose that e and e' both satisfy S1. Then,
by using S.2 twice one gets

Example B.1

Take S as the set of integers Zand + (i.e. addition) as operation. This operation is commutative and
(Z, +) has 0 as unit-element.

Example B.2

Let S bethe set of 2 x 2 real matrices with matrix multiplication as operation. This operation is not
commutative, e.g.

Falsa ¥ T

L}

10 .
On the other hand, this set Sdoes have a unit-element, namely ( 0 I)' Computefor instance:

o Group

Definition B.1
Let & be a non-empty set and « an operation defined on G. Then, the pair (G, «) is called
a group, if
Gl:  (geh)wk=gelhek)forallg, b, k €G  (associativity),
G2: G contains a unit element, say e,
G3:  foreach gin G an element /i in G exists such that gwh = heg = e.
This element is called the inverse of g and often denoted by g~

Property Gl tells us that there is no need to write brackets in strings like g* h*k. The element h in
Property G3 is unique. Indeed, if h and A" both satisfty G3, then
h=hxe=hx(gxh)=(hxg)xh'=exh'=h'. In the same way one can show that for each
a, b € G the equations
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ax=b and xa=b

have a unique solution in G, namely

x=alb, resp. x=bal
The reader easily checks that (Z, +) in Example B.1 shows a commutative group. Other well-
known examples of commutative groups are. (@, +), (Q\{0}, -), and (R, +).
Example B.2 does not yield a group because not all matrices have an inverse (eg. the al-zero
matrix).

Let (G,*) bea group and H a subset of G with the property that (H,*) is dso a group, then H will
be called a subgroup of G. It can be shown (see Problem B.3) that H is a subgroup of G if and only
if

h hy' eH, forevery h,hyeH.

Let me Z/{0} and define mZ ={mk | k € Z). Then (mZ, +) is a commutative subgroup of
(Z, +), as one can easily check.

Example B.3

Let m € Z /{0} and define Z;; as the reduced residue system
Zy ={0=<i<m)]ged(i, m)=1)}

The cardinality of set Z,; is w(m) by Definition A.6.

Itfollowsfrom Lemma A.13 that the product of two elementsin Z,;can again be represented by an
element in Z;;,. Clearly, 1 isen element of Z; which is the unit element under this multiplication. That
each elementin Z,; has a multiplicative inverse followsfrom Theorem A. 18 (note that withu € Z,; one
has that ged(a, m) = 1 .and thus the equivalence relation a x = I (mod m) has a unique solution).

We conclude that the multiplicative group (Z,;, x)is a commutative group of cardinality g(m).

Commutative groups are aso caled Abelian groups. Quite often, Abelian groups are represented
in an additive way: the operation is denoted by a plus sign and the unit-element is called the zero
element (denoted with azero). An abelian group in this notation is called an additive group.

The most commonly used additive group in this introduction will be (Z,,, 0),but in Chapter 10, we
shall see another example (see Theorem 10.2).

We shall now consider the more interesting situation that two operations are defined on a set. The
first will be denoted by g + A, the second by g -h.
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o0 Ring

Definition B.2

The triple (R, +, -) is called a ring, if

Rl: (R, +)is a commutative group.
Its unit-element will be denoted by 0.

R2:  The operation - is associative.

R3:  Distributivity holds, i.e. forall r, 5, re R
rs+e)=r-s+r-rand(r+s)-t=r-t+3s-r.

From now on we shall often simply write g h instead of g - h. The (additive) inverse of an element

g in the group (R, +) will simply be denoted by —g, just as we write 2g forg +g, and 3g for
g +g+g, etc. Notethat Oreally behaves like a zero-element, because for every r € R one hasthat
Or=(r-rr=r*-r"=0andsimilarly that r0 = 0.

Suppose that the operation ¢ is commutative on R\{0). Then the ring (R, +, -)is caled
commutative. Examples of commutative rings are (R, +, -), (Q, +, -), (Z, +, ), but aso
(mZ, +,-),whenm Q.

Let (R, +, -) be aring and S a subset of R with the property that (S, +, -) is itself a ring, then 5
will be called a subring of R. Note that (62, +, -)isasubring of (2Z, +, -), which in turn isa
subring of (Z, +, -).

o ldeal
Deefinition B.3
A subring (8, +, -)of aring (R, +, -)is called an ideal if
I forall re Randse S [rse S and s r e 5].

Let m € Z\{0}. It is easy to check that any integer multiple of an m-tuple, is aso an m-tuple. It
followsthat (mZ, +, -)isanided in (Z, +, -).

Now suppose that (R, -} has a unit-element, say e, then some elementsin R may have an inverse in
R i.e. an element b such that ab = ba =e. This inverse, which is again unique, is caled the
multiplicative inverse of a and will be denoted by a~!. Clearly, the element O will not have a
multiplicative inverse. Indeed, supposethat r0 = efor some r e R.Then for each a € R one has
thata=ae=a(r0)=(ar)0=0,ie. R=0.

It follows from the above that (R, -), when R # {0}, can not be a group. However, (R\{0}, ) may
very well have the structure of a group.
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D Field

Definition B.4

A triple (F, +, -) is called a field, if ;

Fl:  (F, +)is a commutative group. Its unit-element is denoted by 0.
F2:  (F, :)isa group. The multiplicative unit-element 15 denoted by e,
F3;  Distributivity holds.

Unlike somerings, afield can not have so-called zero-divisors, i.e. elements f and g, both unequal
to 0, whose product f g is equal to O. Indeed, suppose that f g=0 and f #0. Then,
g=eg=("g=r"fg =f"0=0, 0 every element in F is zero.

If asubring (K, +, -) of afield (F, +, -) hasthe structure of afield, we shall cal it a subfield of
(F,+, -).

Examples of fields are the rationals (Q, +, -), the reds (R, +, ), and the complex numbers
(C, +, ), each one being a subfield of the next one.

We spesk of afinite group (G, #), ring (R, +, -), or field (F, +, -) of order n, if G, resp. R, and
F are finite sets of cardinality n. For finite fields it is customary to denote the cardinality by g.

In this chapter, we shall study the structure of finite fields. It will turn out that finite fields of order
q only exist when q is a prime power. Moreover, these finite fields are essentialy unique for a
fixed prime power ¢. Thisjustifies the widely accepted notation #, or GF(q) (where GF stands for
Galois Field after the Frenchman Galois) for afinite field of order g. Examples of finite fields will
follow in Section B.2.

Analogously to commutative rings, we define a commutative field (F, +, -) to be a field, for
which (F\{0], - ) is commutative. The following theorem will not be proved, but is very important
[Cohn77, p. 196].

Theorem B.1 Wedderburm
Every finite field is commutative.

o Equivalence Relations

Definition B.5
Let If be a set. Comesponding to any subset P of UxL, one can define a relation ~ on Uf
by
forallu,velU [u~v = (u,vie Pl
An equivalence relation is a relation with the additional properties:
El: forallue U [u~u] (reflexivity),
E2: forallm,vel [a~v = v~u] (symmetry),
Ed3: foralle, v, wel [(u~v A v~w)= u~w] (transitivity).
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Let U be the set of straight lines in the (Euclidean) plane. Then "being parallel or equal” defines an
equivaence relation.

In Section A.3 we have seen another example. There U = Z and for afixed m, m # 0, the relation
= wasdefined by @ = b (mod m) if and only if mdividesa - b.

Let ~ be an equivalence relation defined on a sst U. A non-empty subset Wof U is cdled an
equivalenceclass, if

El; VV,weW[VNW]/
E2) VWEWVUEU\W [~ (u~w)].

It follows from the properties above, that an equivalence class consists of al elements in U, that
are inrelation ~ with a fixed element in U. Clearly, the various equivaence classes of U form a
partition of U. The equivalence class containing a particular element w, will be denoted by < w >,

Let (R, +, ) be acommutative ring with (multiplicative) unit-element e and let (S, +, -) be an
idedl in (R, +, ). Wedefinearelation = on R by

as=h(modS) & (a-be?) (B.1)
The reader can easily verify that (B.1) defines an equivalence relation. Let R/S (read: R modulo S)
denote the s&t of equivalence classes. On R/S we define two operations by:

<a>»> + <b>» := <a+ b>, a, beR,

<a» - <b»;:;= <ab>, a, beR.

It is easy to verify that these definitions are independent of the particular choice of the elements a
and b in the equivalence class <a > and <b>. Weleave it as an exercise to the reader to prove
the following theorem.

Theorem B.2
Let (K, +, «) be a commutative ring and let (&, +, - ) be an ideal in (R, +, - ). With the
above definitions (RS, +, « ) is a commutative ring with unit-elemeant

Thering (R/S, +, -) iscaled aresidue class ring of R modulo S. In the next section we will see
applications of Theorem B.2.



Finite Fields 389

o Cyclic Groups
Before we conclude this section, there is one more topic that needs to be discussed. Let (G, ) be a

finite group and let a be an element in G\{e}. Let a?, 2%, ..., denote aa, aaa, etc. Consider the
sequence of elements e, a, a?, ..., in G. Since G is finite, there exists a unique integer n such that
the elements e, a, a2, ..., a* ! are al different, while a" = @’ for some j, 0 < j <n. It follows

that a*! = a/*!, etc.. We shal now show that j = 0, i.e. that a” = e. Suppose that j > 0. Then it
would follow from a” = a’ that a™! = a/~!. However, this contradicts our definition of n. We
conclude that the n lements @/, 0 <i < n, are al distinct andthat a” = e.

It is now clear that the elements e, g, 42, ..., a"~! form a subgroup H in G. Such a (sub)group H
is cdled a cyclic subgroup of order n. We say that the element a generates H and that a has
(multiplicative) order n.

Since al elements in a cyclic group are a power of the same element, it follows that acyclic group
iscommutative.

Lemma B3
Let (G, ) be a group and a an element in & of order . Then, for all meZ

a"=r = g|m.

Proof:
Writem=gn+r,0<r<nThen, o™ =¢,iff @ =e,ic. itff r=0,ie.iff n|m.

[
It follows that an element a in G has order d if and only if a =e and a“/? # e for every prime
divisor pof d.

To find the multiplicative order of an integer a in Z;, (so gcd(a, m) = 1), it follows from Euler's
Theorem (Thm. A.14) and Lemma B.3 that one only has to check the divisors of ¢(m). The
following module does this in an efficient way. It makes use of the Mathematica functions GcD,
Divisors, EulerPhi, and PowerMod.
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6855006

Lemma B.4
Let (G, ) be a group and a an element in G of order n. For k > 0, element a* has order

s
ged(k, n) *

Proof:

Let m be the order of a. Since &/ gcd(k, n)isan integer, it follows that
(ak)n/gcd(k,n) — (an)k/gcd(k,n) = pkigedtk,m) e.

From Lemma B.3, we conclude that m divides n/ged (k, n). To prove the converse, we observe that
(@*)" = e. LemmaB.3 implies that n divides k m. Hence, n/gcd(k, n) divides m.

Continuing with the same parameters as above, we have for instance:

2285002

2285002

Analogous to (B.1), one can define for every subgroup (H, -) of a finite group (G, :) an
equivalence relation ~ by
a~biffab-' e H.

The equivalence classes are of the form

{halheH}

as one can easily check. They al have the same cardinality as H. It follows that the number of
equivalence classesis % Asaconsequence | H | divides | G{. This provesthe following theorem.

Theorem B.5

Let (G, - ) be a finite group of order n. Then every subgroup (H, - ) of (G, -) has an
order dividing n. Also every element a, a # e, in G has an order dividing n.
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B.1.2 Linear Algebra

a Vector Spacesand Subspaces
Let F denote an arbitrary field.

Deefinition B.6

A vector space over F is a s2t V of objects which can be added and multiplied by
elements of F such that the result is again in V. Besides, the following properties must
be satisfied:

Lip+v)+w=u+{v+w)forale v,weV,

2, there is a zero-clement in V, ie. an element o such thatv+o=o+v=viorallve V,
3. for every ve V there is an element —v in V such that v+ (=¥} = (V) +v =0,
dutrv=v+uforallu, veV,

S ou+vi=au+aviorallu, ve Vand a eF,

ble+flv=av+ Brvforalle, feFandve V,

T.(xfv=c(fviforalla, feFandveV,

8. 1.v=vforall ve V, where 1 denotes the unit-clernent of the field F.

It is customary to cdl the elements of a vector space vectors although they need not be vectors in
the heuristic sense.

Examples of vector spaces over F are:
i) [F*, the st of n-tuples over F
i) {f(x) € F[x] | deg(f(x)) < n}, the set of polynomials over F of degree less than n.

Often, it is clear from the context over which field a vector space is defined. In that case, the field
will no longer be mentioned.

Definition B.7
A subset W of a given vector space V is called a lincar subspace of ¥ if W iself is a
vector space with the operations already defined in V.

In order to determine whether a given subset of a vector space is a subspace, it is not necessary to
check all eight vector space properties. For instance property 1 holds for al «, v, w € W because it
is stisfied afortiori by al elements in V. We have

Theorem B.6

A subset W of a vector space V' is a linear subspace of V if and only if
(i) oW,

(ii) u+ve Wiorallu, ve W,

{iiijauwe Wirallue Wandax eF.

Every vector space V hastwo so-cdled trivial subspaces. {a} and V.
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Let V be avector space and let vy, v,, ..., v, be elements of V. An expression of thetype

avi+m v+ .. +rayv, Witha; eF
iscaledalinearcombinationof vy, va, ..., v,.

The st of al linear combinations of vy, v,, ..., v, is asubspace of V, which is called the subspace
spannedby vy, va. ..., v,, and will be denotedby < v, va. ..., v, >.

o Linear Independence,BasisandDimension

Probably the most important concept when dealing with vector spaces is the concept of linear
(in)dependency.

Definition B.8

A set of veclors vy, va_ ..., Vs In a vector space V is linearly independent if the equation
@) v + @y + ...+ @, v, = o has only the tivial solotion @y =0, @3 =0, ..., &, =0 If
the set of vectors is not linearly independent it is linearly dependent.

Suppose that the set of vectors vy, v, ..., v, is linearly dependent. Then, there is a linear
combination a; vi + ... + &, v, = o Where at least one ¢; + 0. This enables us to write

viz a7 (@ v+ + @il Vin) + @iy Vil + ...+ @, v,). Thus, we get a different description of
linear dependency.

Theorem B.7
A set of vectors vy, vy, ..., ¥ in & vector space V is linearly dependent if and only if at
least one of these vectors can be expressed as a linear combination of the other vectors.

This implies in particular that any set of vectors that includes the zero-vector o is linearly
dependent.

Theorem B8

Suppose that the vectors vy, vy, ..., v, are linearly independent. If we replace one of
these vectors by the sum of this vector and a linear combination of the other vectors, the
resulting set of vectors is again linearly independent.

Now let W be a subspace of a vector space V, and let {w;, ws, ..., w,} C W.

Definition B.9

The set fwy, wa, ... . Wyl is a basis for W if

(i) this set of vectors is linearly independent,

(i) € Wy s ek Wy > =W, ie any we W is a linear combination of wy, wa ..., wy.

In particular, if W=V we have abasisfor the vector space V itself.

For instance, if V = [F" the following set of vectorsisabasisfor V:
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e =(1,0,...,0), &2=(0,1,0,...,0), ..., ¢,=(0, ..., 0, 1.
Thisbasis is usually called the standard basis.
In the definition we considered only a finite basis. Not every vector space is spanned by a finite

number of vectors. Take for example F =R, and V is the vector space of all real-valued functions
onR.

It can be proved that in every vector space a basis exists. Here we will be concerned only with
vector spaces which are spanned by a finite number of vectors. The following theorem is very
important.

Theorem B.9

Suppose one basis of a subspace W of a vector space V has r vectors, and another basis
has m vectors. Then n = m.

A basis for a vector space is not uniquely determined; however, in the case of a finite basis the
number of vectorsin abasis is uniquely determined.

Definition B.10

If a vector space has a basis with n vectors we call n the dimension of this vector space,
The dimension of the zero vector space {o} is defined to be 0,

o Inner Product, Orthogonality
Let Vbe avector space over the fieldF.

Definition B.11

An inner product on V is a bilinear map V=V = F., It is denoted by (u,v), where u and v
are vectors in V.

Bilinear means that the following properties should hold for al u,v,w € Vand @ € F.

(u+v,w) = (u,w)+(v,w) and (u,v+w) = (U, v)+u,w)

(au,v) = a(u,v) = (uav)

This is a very general definition of an inner product. If in particular F = R or F = € usually
additional properties are required. For instance, in real vector spaces one wants (u, u) to be positive
definite, i.e (u, u) > O for al vectors « # o. In this case, the length or norm of u is defined by
V(u, 1) and often denoted by || u|).

If V=F" then the standard inner product is defined by

Wwv)=u vi+uwvr+...+u,v,. (B.2)
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Definition B.12

(i} Two vectors u and v in V are called orthogonal if (u,v) =0,

(ii) Two subspaces L' and Wof V are called orthogonal if (u,w) = 0 for all u & [/ and w
e W

If the field F is finite then there may exist nonzero vectors u such that (u,u) = 0. For instance, in
the vector space [, where F = {0, 1}, with standard inner product, any vector u with an even
number of nonzero coordinates is orthogona to itself.

Let U be a subspace of V. In many applications it is useful to consider the set of al vectors
orthogonal to U.

Definition B.13
The orthogonal complement of a subspace [7 of V, denoted by L, is the set of all
vectors which are orthogonal to all vectors of L,

In formula:

Ut={velU|(u v)y=0forallue U}
Thefollowing properties hold for subspaces U and W of  afinitedimensional vector space V.

Theorem B.10

i} The orthogonal complement of a subspace 15 a subspace itself, ie. (L*)* = U
ii) dim{U*) = dim{V) — dim{L").

i} If Uf ¢ W, then W c U™

iv) (VY =+ v,

In the case where V = F*, with standard inner product, we have a simple representation of U~. Let
{u1, ua, ..., u,} be abasis for U, and let A be them x n-matrix with rows u, ,......, u,,. Then we
have:

velU*r <= AV =o7,

where the superscript T denotes the transpose of a vector, i.e. the column vector with the same
coordinates as v has.

Definition B.14

A basis [v), ¥3, ..., ¥y) Of a vector space V is called self-orthogonal if all the inner
products (v, vj), { # j, are zero,

It is called self-orthonormal, if in addition (|| w); || =0 for 1 =i = m.
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B.2 Constructions

The st of integers modulo m, m € N\{0}, that was introduced in Section A.3, can dso be
described as the residue classring (Z/m Z, + , -) (see Theorem B.2), since(mZ, +, -)is an ided
in the commutative ring (Z, +, -). This residue class ring is commutative and has <1 > as
multiplicativeunit-element. Thering (Z/m Z, + , - ) is often denoted by (Z,,, +, -).

Theorem B.11
Let m be a positive integer. The ring (£,,, +, -] is a finite field with m elements i and

only if m is prime.
Proof:

= Suppose that m is composite, say m=ab, a>1, and b>1. Then
<0>=<ab>=<ag> <b> while <u># <0> and <b> * <0> S the ring
(Z,,, +. - has zero-divisors and thus it can not he a field.

< Now suppose that m is prime (See aso the Example B.3). We have to prove that for every
equivalenceclass <a>, <a> # <0>, there exists an equivalence class <b>, such that
<a> <b> = <1> Forthisit is sufficient to show that for any a with m r a, there exists an
element b, such that « b = 1 (mod m).This however follows from Lemma A. 13 or Theorem A. 18.

a

For convenience, one often leaves out the brackets around the representatives of equivalence
classes, therefore with a one really means < a >.

Later we shall see that for p prime, (Z,,, +, -) is essentialy the only finite field with p elements.
We shall denote it by (F,, +, -). In information and communication theory one often works with
5, which just consists of the elements 0 and 1.

We are now going to construct finite fieldsF, for g = p™, p prime.
Let (F, +, -) be acommutative field (not necessarily finite) and let F{x] be the set of polynomials

over F, i.e. the set of expressions

FO=fo+r fix+ oLl +... + fix"
where fie F,0<0=<n, and n e N. The largest value of i for whichf; + 0 is called the degree of
f.
Addition and multiplication of polynomialsis defined in the natural way.
hx o+ Zigixt = T (fi+gdx (B.3)
Cifix)(Z;85x) = 54 (Tisjon fig8)) X (B.4)
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ExampleB.4
LetF =/ and consider f(x) = I + x> +x° andg(x) = J + x + x*. Then f(x) +g(x) = x + x> and
fg) =1 +x +x2 +5 +xt +5 + x5

In Mathematica we can perform these calculations the function PolynomialMod as follows

=%+ %

Lox+1 +x +x° +%° 4%t

It is now straightforward to verify the next theorem.

Theorem B.12
Let (F, +, - ) be a commutative field. Then (F[x], +, -) is a commutative ring with unit-
element.

Analogously to the concepts defined in Appendix A for the st of integers, one can define the
following notions in (F[x], +, -): divisibility, reducibility (if a polynomia can be written as the
product of two polynomials of lower degree), irreducibility (which is the analog of primality), ged,
lcm, the unique factorization theorem (the analog of the fundamental theorem in number theory),
Euclid's Algorithm, congruence relations, etc. We leave the detail s to the reader.

The following Mathematica functions can be helpful here: PolynomialMod (which aso reduces
one polynomia modulo another), Factor, PolynomialGCD, PolynomialLCM. Their usage
is demonstrated in the following examples:

::'.l.i2+.x} (2r2x+x2+2x +xt) 2+ +2 0+ 4 20)
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l+x

(L+x°) (1+x+x%)

With the package Algebra ~PolynomialExtendedGCD™ one can use the Mathematica function
PolynomialExtendedGCD:

" [1ax, {1, Mod[x, 2]})

One particular consequence of Theorem B. 12 is stated in the following theorem and its corollary.

Theorem B.13
Let alx) and bix) be two polynomials in Flx] . Then there exists polynomials u(x) and
w(x) in Fix) such that

ulx) alx) + vix) blx) = gediaix), bx)).

Corollary B.14
Let alx) and f(x) be two polynomials in Flx]. such that gedia(x), f(x)) = 1. Then, the
congruence relation
alx)ulx)=1(mod fx))
has a unique solution modulo f{x).

The olution of the above congruence relaion can agan be found with
Polynomial ExtendedGCD. Indeed, from

S AR .'-:_.' R BV Ee L R L A

i

we can conclude that the congruence relation (1 +x2) u(x) = 1(mod 1 + x + x*) has the solution
1 +x+ x}, asone can easily check with:
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PolynomialMod[(1+%®) (L+x+%x*), 1+ x+x', Modulus -> 2]

1

Another important property of F[x] isgiveninthefollowing theorem.

Theorem B.15
Any polynomial of degree i, 1 > 0, in Flx] has at most n zeros in F,

Proof: Forn = 1 the statement istrivial. We proceed by induction on n.

Let u € F be a zero of apolynomial f (x) of degree n over F (if no such u exists, there is nothing to
prove). Write f(x) = (x — u) g(x) + r(x), degree(r(x)) < degree(x —u) = 1. It follows that r(x) is a
constant, say r. Substitution of x = u in the relation above shows that t = 0. We conclude that
fx) = (x - u) gl).

Now g(x) has degree n — 1, thus, by the induction hypothesis, q(x) has at most n-1 zeros in F.
Since a field can not have zero-divisors, we know that each zero of f(x) is either a divisor of x-u
or azero of g(x). It follows that f(x) has at most n zerosin F.

]

Let s(x) be a non-zero polynomial in F[x]. It is easy to check that the set

{a(x)s(x) | alx) e F ).

forms an ided in thering (Flx], +, -). We denote this ideal by (s(x)) and say that S(x) generates
theideal (S(x)).

Conversely, let (S, +, -) be any ided in (F[x], +, -), with S # F[x]. Further, let s(x) be a
polynomial of lowest degree in S Take any other polynomial f(x) in S and write
F(x) =g(x) s(x) + r(x), degreg(r(x)) < degree(s(x)). With properties | and RI, we then have that
aso r(x) is also an element of S From our assumption on s(x) we conclude that r(x) = 0 and thus
that s(x) divides f(x).

It follows from the above discussion that any idea in thering (F[x], +, -)is generated by a single
element! A ring with this property iscaled aprincipal ided ring.

From now on we shall restrict ourselves to finite fields. Up to now we have only seen examples of
finitefields [F ,, with p prime.

Let f(x) € Fp[x] of degree n. We shall say that f is a p-ary polynomial. Let f (x) be the ideal
generated by f(x). From Theorem B.2 we know that (F,[x]/(f(x)}, +, -)is a commutative ring
with unit-element < 1 >. Itcontains p" elements, represented by the p-ary polynomials of degree
<n.
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Theorem B.16

Let (Fp, +. -) be a finite field with p elements. Let f(x) be a polynomial of degree n
over IF ;. Then, the commutative ring (Fp[x]/(f{x)), +. -} is a finite field with
prelements if and only if f(x) is irreducible in F[x].

Proof: (Compare with Theorem B.11 and its proof.)

= Suppose that f(x)=a(x)b(x), with degree(a(x))>0 and degree(h(x)) > 0. Then
<a(x)> <b(x)> = <a(x)b(x)> = < f(x)> = <0>,  while <a(x)> # <0> and
<b(x)> # <0>. So, (F,[x]/(f(x), +., ) isaring with zero-divisors. Hence it can not be a
field.

< On the other hand, if f(x) is irreducible, any non-zero polynomial a(x) of degree <rn will have
a multiplicative inverse u(x) modulo f(x) by Corollay B.14. For this u(x) one has
<a(x)> <u(x)> = < 1> It follows that (F,[x}/(f(x)), +, -) is a field. We know already that
it contains p"elements.

Example B.5
Let g =2 The fidld# consists ofthe two elements O and |. Let f(x) = 1 +x +x°. Then

(Flx]/(1 +x +x°), +, -)is afinitefiedld with 2¢ = & elements. These eight elements can be represented by
the eight binary polynomials of degree < 3. Addition and multiplication have to be performed modulo

I +x +x. For instance

U +x+x2x2=x2+08 + X =@+ DI +x+5)+1 =1 (mod I +x +x).
Thus, »? is the multiplicative inverse of 1 +x +x? in the fidld (F[x] /(I +x +X°), +, -).
In Mathematica one can find an irreducible polynomial over F,, p

prime, with the function IrreduciblePolynomial for which the package
Algebra “FiniteFields™ needs to be loaded first.

1+x® + 230 4+ 52

In Mathematica the field defined by the p-ary polynomial f(x) of degree can be described by
GFlp, {fo. fi, ..., fa}). Addition, subtraction, multiplication, and division can be performed as
follows:
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(1T 0,0, 1),

BT, 5o 0pe ety Sl

{00,200, 0},

{110 10y

or as follows:

(1.0, 1,0, 0],

(1.1, 0,1, 1),
(01000 Oy s

x

TGO Oy BB e o e e Ll R

Two questions that arise naturally a this moment are:

1) Does an irreducible, p-ary polynomial f(x) of degree n exist for every prime number p and
every integer n? If 0, then we have proved the existence of finite fields FF, for al prime powers g

2) Do other finite fields exist?

The first question gets an affirmative answer in the next section. The second question gets a
negative answer in Section B.4.
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B.3  The Number of Irreducible Polynomials over GF(q)

In this section we want to count the number of irreducible polynomias over a finite field F,.
Clearly, if f(x) is irreducible, then s0 is e f(x), for a € F,\{0). Also the ideals (f(x)) and (« f(x))
ae the same, when « € IF,\{0}, therefore, we shall only count so-called monic polynomials of
degreen, i.e. polynomials, whose |eading coefficient (the coefficient of x" ) isequal to L

Definition B.15
f,,‘.[ﬂ'! = # g-ary. irreducible, monic polynomials of degree n,

linm)=lin)=# binary, imeducible polynomials of degree n.

To develop some intuition for our counting problem, we start with a brute force attack for the
specid casethat g = 2. We shall try therefore to determine I(n).

There are only two binary polynomials of degree 1, namely

x and x+ 1.

By definition, both are irreducible. Thus, 1(1) = 2.

By taking all possible products of x and x + 1, one finds three reducible polynomials of degree 2:

x.x = x2, @+ =x+x, and (x+D?=x+x

Since there are 22 =4 binary polynomias of degree 2, it follows that there exists only one
irreducible

polynomial of degree 2, namely

2 +x+l
o, I2) = 1.
Each 3-rd degree, reducible, binary polynomia can be written as a product of the lower degree
irreducible polynomials x, x+1 and x2+x+ 1. In this way, one gets xi(x+ 1)*™, 0<i<3,

(2 +x+1)x, and (2 +x+ 1) (x+ 1).Since there are 23 = 8 binary polynomials of degree 3, we
conclude that there are

8 — 4 — 2=2 irreducible, binary polynomials of degree 3. So, I(3) = 2.

The two binary, irreducible polynomials of degree 3 are:

S+x+1 and L+ +1.

At this moment it is important to note that for the counting arguments above, we do not have to
know the actual form of the lower degree, irreducible polynomias. We only have to know how
many there are of a

certain degree.
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Indeed, to find 1(4) we can count the number of reducible, 4-th degree polynomials as follows:

number
product of four 1 - st degree polynomials 5
- product of one 2 - nd degree polynomial and 1 x3 = 3
two 1 - st degree polynomials
product of two 2 - nd degree polynomials
- product of one 3 - rd degree polynomial and 2 x2 =
one 1 - st degree polynomial
total = 13

It follows that there are 2* — 13 = 3 irreducible, binary polynomials of degree 4. So, 1(4) = 3.

With some additional work one can find these three irreducible, 4-th degree polynomials:

x4+, F+5+1, and A+ A+ x+l

Continuing in this way one finds with the necessary perseverance and precision that I(5) = 6 and
1(6) =9, etc.

The above method does not lead to a proof that I(n) >0 for al neN, let done to an
approximation of the actual value of I(n).

We start all over again.

Let pi(x), i=1,2, ..., be an enumeration of al g-ary, irreducible, monic polynomials, such that
the degrees form a non-decreasing sequence. So, thefirst I,(1) polynomials have degree 1, the next
1,(2) polynomials have degree 2, c..

Any g-ary, monic polynomial f(x) has a unique factorization of the form

[12, (px))e, e, €N, iz 1.

where only finitely many e;'s are unequal to zero. It follows that f(x) can uniquely be represented
by the sequence (e, ea, ... ). Let a; be the degree of pi(x) and let n be the degree of f(x). Then

ejayt+eyay+ ... =n.

So, the polynomial f(x) is in a unique correspondence with the term

(N (gR2)e2 ...
in the expression

T+ +220 4+ Y +z2+2292 4+, ) ...
i.e.in

e -z
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Since there are exactly ¢" g-ary, monic polynomials of degree n, the above proves that

Ne -2y =1+gz+¢*22 + ... = (1-gq27,
orequivalently
[M20-2 = (1-q2).
From our particular ordering we know that a; = k for exactly 1,(k)values of i, thus, the above
relation can be rewritten as
M2, (-2 = (1-q2).
Now take the logarithm of both sides and differentiate the outcome. One obtains:
gl =g = IR k1 k)=
Multiplying both sideswith zyields

2 g =qul —q = IR kL@FU -4 =

= IR kLK) R M = T Sy k1K) 2"
Comparing the coefficients of z on both sides gives the relation

2 k1K) = 4. (B.5)

Theorem B.17
Lyin) = + Tq, pid) g

Proof: Apply the Mdbius Inversion Formula (Thm. A.38) to (B.5).

We can evaluate I,(n) quite easily in Mathematica (see DivisorSum and MoebiusMu)

It is now quite easy to determine the asymptotic behavior of 7,(») and to prove that its value is
always positive.

First of al, 1,(1) =4, since al monic, polynomials of degree one are irreducible by definition. It
follows from (B.5) that
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g+nlyn) < Ty kl,k) = ¢".
Hence
In) = £, (B.6)

On the other hand (B.5) and (B.6) imply that

q" = Sk L) < nlm) + T¥ gt < ni(n) + g2
Together with (B.6) this proves the first statement in the following theorem.

Theorem B.18
For all n the number I;(n) of monic, irmeducible, a-th degree polynomials in F[x]
satisfies
L(1-—fr) s bim s £(1- =),
and
I4(n) > 0.

Proof: That 1,(n) > 0 followsdirectly for n = 3. Forn = 1 and 2, this follows from Theorem B.17,

but aso directly from 7,(1) = ¢ >0 and 1,(2) = ¢* —(q+ l) = (q

) 2) > 0. as one can easily prove

directly.

Corollary B.19
Tn) = 3::

The reader may want to verify this approximation for some particular cases with the following
Mathematica input:

i q- 2; m= lﬂﬂi DH'II{G._} -Iln-h!.uiﬂu[d.] q‘r‘j AE Ao
l[{mﬂm!ul[nﬂll -]‘.l Iq iﬂ] e M A &

B

0.9999999999999991118215794T73501948675013

It follows from this corollary that a randomly selected, monic polynomial of degree n is irreducible
with a probability of about 1/n. With the Mathematica function Factor one can easily check if a
particular polynomial isirreducible or not.
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Factor[l+x+x®+x’ + x*, Modulus -> 2]

1434+ % +x!+:u;"'

B.4 The Structure of Finite Fields

B.4.1 The Cyclic Structure of a Finite Field

It follows from Theorem B.11, Theorem B.16 and Theorem B.18, that finitefields (F,, +, -) exist
for all prime powers q. If g is a prime number F, can be represented by the integers modulo p. If g
is a power of a prime, sy g = p”, F,can be represented by p-ary polynomials modulo an
irreducible polynomial of degree m. We state the above as a theorem.

Theorem B.20
Let p be a prime and § = ™, m = 1.Then a finite field of order g exists.

Later in this section we shall see that every finite field can be described by the construction of
Theorem B.16. But first we shall prove an extremely nice property of finite fields, namely that
their multiplicative group is cyclic! By Theorem B.5, we know that every non-zero element in [,
hasamultiplicativeorder dividinag g — 1.

Definition B.16

An element w in a finite field of order g is called an r-th root of unity if w" = e,
An element w is called a pramitive n-th root of unity if it has order n.

If e is a primitive (g — 1)-st root of unity, then «w is called a primitive element or
generator of F.

Theorem B.21

Let (. +, -)be a finite field and let 4 be an integer dividing g — 1. Then F,, contains
exactly ¢{d) elements of order d.

In particular, {F,\ {0}, -} is a cyclic group of order g — 1, which contains ¢(g — 1)
primitive elements.

Proof: By Theorem B.5, every non-zero element in F, has a multiplicative order d, which divides
g — 1 On the other hand, supposethat [F, contains an element of order d, d | (¢ — 1), say w. Then
all d distinct powers of w are azero of x4 — e. It follows from Theorem B. 15 that every d-th root of
unityinF,, is a power of w. It follows from Lemma B.4 that under the assumption that IF,, contains
an element of order d, F,will contain exactly ¢(d) elements of order d, namely «', with
GCDJ[i, d] = 1.
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Let a(d) be the number of elements of order din IF,,. Then the above implies that

1) a(d) =0 or ald) = ¢(d)
and alsothat

i) Zapg-n ald) = g-1.
On the other hand, Theorem A.12 states that 3 ,,-;, ¢(d) = ¢—1. So, we conclude that
a(d) = d(d) forall d | (g - 1).

Inparticular, u(g — 1) = ¢(g ~ Hwhich meansthat F,contains ¢(g — 1) primitive elementsand that
F,\{0} isacyclic group.

]

To check if a particular element w in GF(q) has order d, d | (g - 1), it suffices to check that w? = 1
andthat w?r % 1for every prime divisor of d. See also the discussion below Lemma B.3.

To find a primitive element in Z,,, p prime, the Mathematica function PowerList can be used.
It finds a primitive elementin Z,, and generates all its powers (starting with the 0-th). The second
element in this list is the primitive element itself. First, the package Algebra “FiniteFieids®
needs to be |oaded.

<< Algebra FiniteFields"

P i 1"!: Primeq(p]
PowerList[GF([p, 1]11[[2]]

True

{3}

Problems B.6 and B.10 indicate an efficient way (due to Gauss) to find a primitive element in a
finite field.

Corollary B.22
Every element w in Fg satisfies

af =, nzl.
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Proof: For w = 0 the statement is trivially true. By Theorem B.5 or Theorem B.21, any w, w # 0,
=1

has an order dividing q — 1. So, it satisfies w’~! = eand thus A0 w? = w.Since w?" = (wW*)¢"" he
proof now follows with an easy induction argument.

Corollary B.23
Let F; be a finite field. Then

H—x= ”"‘"ru (x—w).

Proof: Every element win F, is azero of x4 — x by Corollary B.22, therefore, the right hand side
above divides the left hand side. Equality now follows because the expressions on both sides are
monic and of the same degree.

-

Corollary B.23 will be used later as atool to check if a certain element in fields containing F, is
actually in F, itself.

Example B.6

Consider thefinite fild (F[x]/(f(x)), + -)with f(x) =x* +x* +x* +x + 1. It contains 2¢ = 16 elements,
which can be represented by binary polynomials of degree <4. The element x, representing the class

< x >, isnota primitive element, since .’ = (x + 1) f(x) +1 = I (mod f(x)). S0 x hasorder 5 instead of
15. With Mathematica this can be checked asfollows:

!‘.I.l'i_l+xl+ﬂl+t‘l :__'-' i R
PolynomialMod[x?, £, Modulus -> 2]
PolynomialMod [x®, £, Modulus -> 2]
PolynomialMod [x*, £, Modulus -> 2]
 PolynomialMod[x®, £, Modulus -> 2]

it

1ex+® +x?



408 APPENDICES

The element x + 1 is primitive element (its order is 15), as one can see in Table B.1. It is also easy
to verify. Indeed, x +1 has an order dividing 15. So, one only has to check that (x + 1) raised to
the power 3 or 5 does not reduce to 1 modulo f(x).

1-.+:+!" +t:" -l : S i b S A

143+

Multiplication is easy to perform with Table B.I. For instance

(J+x+2+3)(x+5) =+ D (x+D* =
x+ D7 =(x+ 1?2 =x2 +1 (mod f(x)).

The element x + 1 is a zero ofthe irreducible polynomial y* +y® +1since

(x+ 1 +(x + 1) +1 = 0(mod f(x)).

o

Therefore, in (F2[x]/(g(x), + -)with gx) =x* +x° + I, the dlement x is a primitive element. See
Table B.2.

b
)

W
Rlojik|lolr[Rrlkr|rlolk
Rrlojo|lr|r|lo|bL|lolo| X
Rlolk|lr|r|r|lojlo|o
o|lrkr|ir|lr|ir|lo|lo|lo|o]X
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(1+x)® (1|00 |1
(L+x3? 0010
(L+x) 0011
(1+x)¥® {11201
(1+x)2|o0o |10 |0
(L+xyB3 o 1110
(L+x)¥1o]1410]1
Table B.1 (Falx]/(1 +x+ 2 +x* +x*), +, - ) with primitive element 1 + x.
1| x| x*| %
o lo[ofo]o
1 1]lofo0o7]o
xo]1]lofo
x> 100110
x*|o|o0o| 0|1
x*l1]0|l0]|1
xX*j1 101
xS 111111
x| 1]1|1]0
xlo|l1]1]1
x*[1|ofl11}o0
xPlo|1]07j1
xl1 o] 11
x2|11411(0]0
x3loj1|1]0
x470]0] 1|1
Table B .2 (F2lx]/(1 + x* + x*), +, ) with primitive element x

B.4.2 The Cardinality of a Finite Field

Consider the elements e, 2e, 3¢, etc. in [F,. Since [, is finite, not all these elements can be
different. Also, if ie= je with i< j, aso (j —i)e = 0.These observations justify the following
definition.

Definition B.17
The characteristic of a finite field F, with unit-element ¢, is the smallest positive integer
¢ such that ce =0,
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Theorem B.24
The characteristic of a finite field F is a prime.

Proof: Suppose that the characteristic ¢ can be written as c¢'c", where ¢'> 1 and ¢" > 1. Then
O=ce=(c'e)(c"e),whilec'£#0andc¢"e 0. So, C' e and c" e are zero-divisors. This contradicts
the assumptionthat F, isafield.

Definition B.18

Two finite fields (F,, +, %) and (Fg, &, @) are said to be isomorphic, if there exists a
one-to-one mapping & from [F; onto Fy; (s0 g = g7, such that for all w; and w; inFg:
iy Wi +an) = i) Bidlws),

i) Ylen xun) = i ) @ dlws:).

In words, two fields are isomorphic if after renaming the elements in them they behave exactly the
same with respect to the operations addition and multiplication.

Lemma B.25
Let (F,, +, - ) be a finite field with characteristic p. Then (F, +, - ) contains a subfield
which is isomorphic to (Z,, +, ), i.e. w the integers modulo p.

Proof: The subset {ie| i=0, 1, ..., p—1} forms a subfield of (F,. +, -) which is isomorphic to
(Z4, +. ) under the isomorphismy(ie) =i, 0 < i < p.
0

In view of the lemma above, we can and shall from now on identify the subfield in (F,, +, -) of
order p with the field (Z,, +, -). The subfield I, is often called the ground field of F,.
Conversely, the field F, is called an extension field of F,.

Theorem B.26
Let F; be a finite field of characteristic p. Then F, can be viewed as a vectorspace over
F, and g = p™ for some integer m, m = 1.

Proof: Let uy u;. ..., unbe abasis of F,over F,, i.e. every element win [, can be written as

w=ajup+ aytnnt oo+t
where ¢; e F,,, 1 <i < m, and there is no dependency of the field elements »; over [F,. It follows
that this representation is unique andthusg = ({F), | = p™.

O

At this moment we know that finite fields F, can only exist for prime powers g. TheoremB.20
dtates that [, indeed does exist for prime powers g. That al finite fields with the same value of g
are isomorphic to each other will be proved later.
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B.4.3 Some Calculus Rules over Finite Fields; Conjugates

Theorem B.27
Let w be an element in a finite field F; of characteristic p. Then in F[x]

(x—w) = xF —wh,
Proof: LetO < i< p. Thenged(p, i!) =1, 0
(f) = =Dl = 0 (mod p)
and with the binomial theorem, we have that

x—w) = xP +(—w) = x"—w’.

where the last equality is obvious for odd p, while for p = 2 this equality follows from + 1 = -1.

To demonstrate this we use again the Mathematica function PolynomialMod.

Corollary B.28
Let a;. 1 5§ = k, be elements in a finite field F; of characteristic p. Then for every n

(Thia¥ =IL o .

p .l." +b“.+ c‘“

Proof: Use an induction argument on k and on n. Start with (a; + a;)” = al +db.
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The following theorem often gives a powerful criterion to determine, whether an element in afield
[F, of characteristic p, actually liesin the ground field F .

Theorem B.29
Let F, be a finite field of characteristic p. S0, g = p™, m > 0, and F,; contains F , as a
subfield. Let w be an element in Fq,. Then

wefFpe w=w

Proof: The p elementsin thesubfield F, satisfy x” = x by Corollary B.23. On the other hand, the
polynomial x” — x has at most p zerosinF, by Theorem B.15.

U

Let w be an element inFF,, a field of characteristic p, but w notinF,,. Then w” # w by the previous
theorem. Still thereis relation between w” and w.

Theorem B.30
Let « be an element in a finite field F, of characteristic p. Let fi{x) be a polynomial over
F,. such that f(w) = 0. Then foralln e M

Flew™) = 0.

Proof: Write f(x) = X% fi X', Since f; € F,,, 0 < i <m, one has by Corollary B.22 and Theorem
B.29 that

0 = (fl)" = (Xhg o = Smo(fiw) =

. n » ~
= Yo fl W = X f !y = fle).
(]

In R and € a similar thing happens. If f(X) is a polynomial over the reds and f(w) =0, w € C,
then also f(@) = 0, where @ is the complex conjugate of w.

The following theorem states that the number of different elements w”, i =0, 1, ..., only depends
on p and the (multiplicative) order of w.

Theorem B.31

Let w be an element of order n in a finite field of characteristic p. Let m be the
multiplicative order of p modulo n, ie. p™ = | (mod s), with m > 0. Then, the m
elements

w, &P, ", ..

are all different and o™ = w.
The m elements w” , 0 = i = m— 1, are called the conjugates of tw.
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Proof: By Lemma B.3 (twice), one has that w” = w”’ if and only if p' = p/ (mod n), and thus if
and only if p'~/ =1 (modn), i.e if and only if i = j (mod m).

ExampleB.7

Consider (F,[x1/(f(x)), + -)with f(x) =x? +x' +x? +x + I (see Example B.6). Thefield element x has
order 5. The multiplicative order of 2 modulo 5 is 4. So, x, 22, x2, andx®’are all different, while x** = x.
Indeed, x* = x* +x% +x + I (mod f(x)), ¥* = x° (mod f(x)), while x'6 = x (mod f(x)), as can be checked
with the Mathematica functions Table and PolynomialMod :

B.4.4 Minimal Polynomials, Primitive Polynomials

Theorem B.32
Let [F, be a finite field of characteristic p. Take n | (g — 1) and let w be an element of

order n in F. Further, let m be the multiplicative order of p modulo n.
Then the polynomial

ﬂﬂ'ﬂﬁ'ﬂt'ﬁ"} e . S o Tt 04 O £ (B.T)
SRR R - B iy’ £ 4 i ke b D e i i
has its coefficients in F and it is irmeducible over F . It is called the minimal
polynomial of w overF
Proof: Clearly, m(x) is a polynomial over F,. Write m(x) = ¥, m; x'. We have to show that the
coefficients m are in the ground field F,. To this end we shall use the powerful criterion of

Theorem B.29.
It follows from Theorem B.27 and Corollary B.22 (with n = 1) that



414 APPENDICES

(m()? = [my (.\‘ — whly) = 17 (.\’” _ w,,m) _

=12 (7 - w"') = T (& = @) = m(r).

Hence

Zigm xP' = m(xP)y = (mY = (Zikom x) = Xrymf 2",

Comparing the coefficients of xP on both hands yields m; = m{. It follows from Theorem B.29
that m, e F,, 0 </ <. So, m(x) is a polynomial in Fp,[x].

From Theorem B.30 and Theorem B.31 it follows that no polynomial in F,|x] of degree less than
m can have w asa zero. So, m(x) is irreducible over [F,.

Corollary B.33

Let w be an element of order n in a finite field of characteristic p. Let mix) be defined
as in Theorem B.32 and let f(x) be any p-ary polynomial that has w as zero.

Then f(x) is divisible by m(x).

Proof: Combine Theorem B.30, Theorem B.31, and Theorem B.32.
[

So, m(x), as defined in Theorem B.32, is the monic polynomial of lowest degree over [, having w
asazero. That isthe reason why m(x) is called the minimal polynomial of «w over p.Ithas « and
all the conjugates of w as zeros. The degree of the minimal polynomial m(x) of an element w is
often simply called the degree of w over Fp,.

If m(x) is the minimal polynomial of a primitive element, then m(x) is caled a primitive
polynomial. Mathematica finds a primitive polynomial of degree m over Fin the variable z by
means of the FieldIrreducible function.

Let f(x) be a primitive polynomial over F, of degree m. A table (like Table B.2) in which each

non-zero element in the finite field @F,[x]/(f(x), +, -)is represented as a polynomial in x of
degree < m and as a power of X is called alog table of that field. These tables are very practical to
have when extensive calculations need to be done in the field.
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These logarithm tables can be made quite easily by Mathematica. Depending on whether one
wants Mathematica to select a suitable primitive polynomial or enter one's own, one can type :

FookRErHFODHDRPERKRRKMELDD

1
o
1]
]
g
1
1
1
o
1
1]
1
1
1]
a

L I — R T - - R ..
HFHEOoOFRORHEREEoODOD R OO

or

1 0
0 1
o o
0 0
1 1
0 1
0 0
i 1
1 0
i 1
1 Vi
0 1
1 1
1 [}
1 0

O RHEHNOHNDHEEDOHEODO
HHHHRHoOHOHKFEoDOoORFDOoO
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To determine x' in afield GF[p, m| or, conversely, to find i such that ¥’ is equal to a particular
element in GF[p, m|, one can use the Mathematica functions FieldExp[GHp, m], i], resp.
FieldInd[GHp, m] [{list}]] (essentia for this calculation is the assignment True to PowerListQ).

s
i

L ol T ! e AR T

5

There are several ways to find the minimal polynomial of a field element. We shall demonstrate
two methods.

Method 1:

Let @ be a zero of the binary primitive polynomial x5+ x*+ 1. So, @ has order 31 and the
conjugates of @ are af, @'2, @, and a'”. Then the minimal polynomial of @ can be found
by:

1+x+2d+x* +x°

Method 2:

Let @ be a zero of the binary primitive polynomial x*+x*+1. To find the minimal
polynomial of 8 = o, wefirst compute 1,8, A%, 83, B4, and g% usinga® + o +1=0.
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B catiatent .

We use the Mathematica function CoefficientList to convert the coefficients into
vectors. Note that we use the Join function to pad the output with zeros to make all vectors
of length 5.

o oo o
et = e D S
FHoooo
- O
HoMOOO

—a

We nead to find a linear dependency between 1, 8, g2, B3, B4, and S5, say X%, g: fi=0 with
g € GF(2). To this end we use the Mathematica functions NullSpace and Transpose.
This leads to the minimal polynomial g(x) of .

T

We conclude that 8 has minimal polynomial 1+ x2 + x* + x* + x5,
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B.4.5 Further Properties

Let m(x) be the minimal polynomial of an element w of degree m. It follows from Corollary B.33
that the p™ expressions Y7¢! fiw', fieFp, 0<i<m, take on p™different values. For these
expressions addition and multiplication can be performed just as in (B.3) and (B.4), where the
relation m(w) = 0 has to be used to reduce the degree of the outcome to a value less than m It is
quite easy to check that one obtains a field, that is isomorphic to (F,[x}/ (m(x)), +, +)

If m(x) is primitive, one has that the elements 1, x, ..., x"" = are dl different modulo m(x), just as
the elements 1, w, ..., «'?"~2 are al different. See for instance, Example B.6, where the
primitive element w = 1 + x has minimal polynomial m(y) =1+ y*+ y* Table B.2 shows the
field (F,[x]/ (m(x)), +, .

Lemma B.34

Let m{x) be an irreducible polynomial of degree m over a field with p elements and let n
be a multiple of m.
Then mix) divides " —x.

Proof: Consider the residue class ring (Fp[x]/(m(x)). +, -). This ring is a field with g = p™
elements by Theorem B.16. The field element <x> is a zero of m(x), since
m(<x>) = <mx)>= <0>. It follows from Corollary B.22 (n=1) that < x> is a zero of
x"" —x,n = 1. By Corollary B.33 we conclude that m(x) divides x" ~ x.

Also the converse of Lemma B.34 is true.

Theorem B35
The polynomial s7* — x is the product of all irreducible, monic, p-ary polynomials of a
degree dividing n.

Proof: Let i |n. There are I,(m) irreducible polynomials of degree m over F,,, all of which divide
" —x by Lemma B.34. The sum of their degrees s mliy(m).  Since
Sawmi(m) = p’ = degree(x™ - x) by (B.5), it follows that the irreducible, monic, p-ary
polynomials of degree m1, m | n, form the complete factorization of x" - x.

Example B.8
p=2,n=4,
L) =2, L(2) =1, I,(4) = 3 (see Section B.3).

X0 —x =x(x + D2 +x+ D+ + 2 +x+ D+ + D #x+ 1)
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X (1ex) (Lax+x?) (Lexax®) (Lo +x') (Laxesdeadext)

Corollary B.36
Let f{x) be an irreducible polynomial in F ,[x] of degree m. Let m | n.Then, a finite field
with p" elements contains m roots of fi(x).

Proof: By Theorem B.35, f(x) divides x7 - x, ¢ = p". Onthe other hand, x/ —x = [],.ef, (x - w)
by Corollary B.23.

]

Theorem B.37
Let p be a prime and m & M. Then, the finite field F » is unique, up to isomorphism.

Proof: Write ¢ = p™ and let F, be any finite field of order q.Let f(x) be any irreducible, p-ary

polynomial of degree m. We shall show that [, isisomorphic to F,[x]/(f{(x)). By Corollary B.36,
IF, contains m zeros of f(x). Let w be one of these m zeros. Since f(X) is irreduciblein ¥ ,|x], there
is no lower degree polynomial over F, with w as zero. This implies that the m elements
I, w, ..., w" ' are independent over FF,, thus, any element in F, can be written as sl fa,
fieF, 0<ism-1.

The isomorphism between [F,, and IF,[x]/(f(x)) isnow obvious.

U
Corollary B.38
Fym ii{immomhcm}lsﬂﬁfwldofl:,a if and only if m divides n.
Proof: The following assertions are all equivalent;

i) m|n,
i) (p™ — 1) divides (p" - 1),
i) (x"" = x) divides (x" - x),
iv) l_[we,Fp," (x — w) divides [ ek, (x — w),
V) [Fpm is a subfield of lF,,n.

U

Example B.9
It follows from Corollary B.38 that #,. contains F,; as a subfield, while it doesnot #,; contain asa



420 APPENDICES

subfield. From Table B.2 one can easily verify that the elements 0, 1, x° and x’° form a subfield of
cardinality2? in (F[x)/ (x* +x* +1), + - ).

B.4.6 Cyclotomic Polynomials

Consider a finite field F, of characteristic p. So, g = p™ for some m > 0. By Theorem B.5, every
element in [F, has an order dividing g — 1. Let n[(g — 1) and let w be a primitive n-th root of unity
in F,. For instance, w = a@ " where o is a primitive element in F,. Let d {n and put n = ",
Then 7 is aprimitive d-root of unity. Clearly, the d elements 1, 7, ..., 59~ are a zero of x? - 1. By
Theorem B.15, no other elementin F, isazero of x¥ - 1.

Definition B.19

Let g = p™, p prime. For any d | (g - 1) the p-ary cyclotomic polynomial Q¥(x) is
defined by

Qx) = [T searg of onterq (5 = £)-

If £ had order d, d (g — 1), then by Lemma B.4 also £7 has order d. So, with & a zero of Q¥(x)
also its conjugates are zeros of Q@ (x). It follows from Theorem B.32 that Q'“)(x) is the product of
some minimal polynomials over F, and thusthat Q) (x)is apolynomial over F .

By Theorem B.21, 0')(x) has degree ¢(d). Since w is aprimitive n-th root of unity, it follows that

X'-1= 7=_II (x- wi) = nfqu,fhasordern (x _f) =

= ndln I_IEEFq,fhas orderd (X - 6) = I_Idln Q(d)(x)' (BS)

Theorem B.39
@(x) = [ (4 - 1Y ™.

Proof: Apply the Multiplicative Mébius Inversion Formula (Corollary A.39) to (B.8).

Example B.10

(FO-N(B~1) g _ o
wB-hulzoy T Ea o X -2 41

Q(36)(x) = 1‘1‘”36 (xd _ l)ﬂ(36/d) -

This can also be evaluated with Mathematica:

DivisorProduct[f_, n_] t= Times @@ (£ /@ Divisors(a])

I E
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n=36; Clear[£f, x];
f[d I % {Kd— 1}Ilnibin:'lu.[n|"d.'i
DivisorProduct([f, n] // Simplify

Fa xﬁ P

or directly with the Mathematica function Cyclotomic:

Cyclotomic[36, x]

If p =2, one can write Q¥ (x) =x/? +x0 +1.

The expression for @ (x) in Theorem B.39 seems to be independent of the finite field. This is not
really true, because in the evaluation of that expression the characteristic does play arole.

All theirreducible factors of Q(x) have the same degree, because all the zeros of Q“(x) havethe
same order d. Indeed, by Theorem B.32, each irreducible factor of Q@(x) has as degree the
multiplicative order of p modulo d.

In particular we have the following theorem.

Theorem B.40
The number of primitive, p-ary, monic polynomials of degree m is
gp==1)
—

m_|

Proof: A primitive, p-ary polynomial of degree m divides Q*"~P(x) and this cyclotomic
polynomial has only factors of this type. The degree of Q" D(x) is ¢(p™ — 1).

Example B.11: p=2

K6 —x = x(x? = 1) = x QPP (NQD)QI(x)
where

OV(x) = x+1,

090 = 4x+1,

O9(x) = x* +x0 #x% +x + 1,
O xy=(x* +x+ (¥ +X + D).

Indeed, there are #(15)/4 = 2 primitive polynomials of degree 4. See also Example B.6.
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A way to find all primitive polynomials of degree m over I, is to factor Q7" ~D(x).

Example B.12

(1+x+x%) (1 +x;f+x‘+x*} [1rxt+x%)
(Lex+3? +35 +05) (L +2d +2® +25) (1 +acs b o5+ xB)

Remark:

In this chapter we have viewed F,, g = p™and p prime, as an extension field of F,,however &l the
concepts defined in this chapter can also be generalized to IF,[x], So, one may want to count the
number of irreducible polynomials of degree nin [F,[x] or discuss primitive polynomials over F,,
etc. We leave it to the reader to verify that al the theorems in this appendix can indeed be
generalized from F, and F ,m to F, resp. IF = simply by replacing p by g and g by ¢™.

Example B.13

The field F5 can be viewed as the residue class ring #[x]/(x° +x + @), where @ isan element in £
satisfying @? + @ + 1.
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B.5 Problems

Problem B.1
Provethat ({xeR | x> € Q, x 0}, -) isagroup.

Problem B.2
Prove that the elements of a reduced residue class system modulo m form a multiplicative group.

Problem B.3
Let (G, ») be agroup and H anon-empty subset of G. Then (H, ») is a subgroup of (G, ) ifand only if
hy+hy' € H forevery h;, by e H.

Problem B.4
Prove that there are essentially two different groups of order 4 (hint; each element has an order dividing
4).

Problem B.5
Find an element of order 12 in the group (Z},, x ). Which powers of this element have order 12. Answer
the same question for elements of order 6, 4, 3, 2and 1.

Problem B.6

Let (G, -) denote acommutative group. Let a and b be two elementsin G of order mresp. n.

a) Assume that gcd(m, n) = 1. Show that a-b has order mxn.

b) Assume no longer that gcd(m, n) = 1. Determine integers s and t such that s | m, ¢ | n, ged(s, £) = 1, and
lem(s, 7] = lem[m, n]

¢) Construct an element in G of order lcm[m, n].

Problem B.7¥
Findthemultiplicativeinverseof 1 + x? + x* (mod 1 + x? + x*) over GF(2) (hintl: Thm. B.13; hint2).

Problem B.8¥
How many binary, irreducible polynomials (hintl: Def.B.15; hint2: Thm. B.17) are there of degree 7 and
8?

Problem B.9
Make a log table of GF(2)[x] /(1 + x* +x*) (hint: x isaprimitive element). Usethistableto express
x'% + x20 as power of x.

Problem B.10

Let @ € GF(q) have order m, m < g — 1. What is the probability that a random non-zero element 8 e GF(g)
has an order n dividing m? Give an upperbound on this probability.

Construct an element of order Ilcm[m, n] (hint: see Problem B.6).

(In fact, this method leads to an efficient to find a primitive element in a finite field. It is due to Gauss.)

Problem B.11
Which subfields are contained in GF(625)? Let a be a primitive element in GF(625). Which powers of «

constitute the various subfields of GF(625)? (Hint: Cor. B.38.)

Problem B.12
Prove that over GF(2): e+ PP = 2 L2y P gyt
(Hint: use Cor. B.28.)
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Problem B.13
How many binary, primitive polynomials are there of degree 10? (Hint: Thm. B.40.)

Problem B.14
Determine the binary, cyclotomic polynomial @"(x) (hint: Thm. B.39). What is the degree of the
binary factors of Q" (x).

Problem B.15

What is the degree of a binary, minimal polynomial of a primitive 17-th root of unity (hint: Thm. B.32)?
How many such polynomials do exist? Prove that each is its own reciprocal. Determine these polynomials
explicitly.

Problem B.16
The trace mapping Tr is defined on GF(p), p prime, by

2 -1
Tr(x) = x+ xP +x” 4. 41"

a) Prove that Tr(x) € GF(p), forevery x € GF(p™) (hint: Thm. B.29). So, Tr is a mapping from GF(p™)to
GF(p).

b) Prove that Tr is a linear mapping (hint: Cor. B.28).

c) Prove that Tr takes on every value in GF(p) equally often (hint: use Theorem B.15).

d) Replace p by g in this problem, where q is aprime power, and verify the same statements.



Appendix C  Relevant Famous Mathematicians

Euclid of AIexandria

Born: about 365 BC in Alexandria, Egypt
Died: about 300 BC

Euclid is the most prominent mathematician of antiquity best known for his treatise on geometry
The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics
teacher of al time.

Little is known of Euclid's life except that he taught at Alexandria in Egypt. The picture of Euclid
above is from the 18th Century and must be regarded as entirely fanciful.

Euclid's most famous work is his treatise on geometry The Elements. The book was a compilation
of geometrical knowledge that became the centre of mathematical teaching for 2000 years.
Probably no results in The Elements were first proved by Euclid but the organization of the
material and its exposition are certainly due to him.

The Elements begins with definitions and axioms, including the famous fifth, or parallel, postulate
that one and only one line can be drawn through a point parallel to a given line. Euclid's decision
to make this an axiom led to Euclidean geometry. It was not until the 19th century that this axiom
was dropped and non-euclidean geometries were studied.

Zeno of Sidon, about 250 years after Euclid wrote: ,, The Elements, seems to have been the first to
show that Euclid's propositions were not deduced from the axioms alone, and Euclid does make
other subtle assumptions.”

The Elements is divided into 13 books. Books 1-6, plane geometry: books 7-9, number theory:
book 10, 's theory of irrational numbers: books 11-13, solid geometry. The book ends with a
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discussion of the properties of the five regular polyhedra and a proof that there are precisely five.
Euclid's Elements is remarkable for the clarity with which the theorems are stated and proved. The
standard of rigour was to become a goal for the inventors of the calculus centuries later.

More than one thousand editions of The Elements have been published since it was first printed in
1482.

Euclid aso wrote Data (with 94 propositions), On Divisions, Optics and Phaenomena which have
survived. His other books Qurface Loci, Porisms, Conics, Book of Fallacies and Elements of Music
have all been lost.

Euclid may not have been a first class mathematician but the long lasting nature of The Elements
must make him the leading mathematics teacher of antiquity.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/M athemati cians/Euclid.html

Leonhard Euler

Born: 15 April 1707 in Basel, Switzerland
Died: 18 Sept 1783 in St Petersburg, Russia

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory.

Euler's father wanted his son to follow him into the church and sent him to the University of Basdl
to prepare for the ministry. However geometry soon became his favorite subject. Euler obtained
his father's consent to change to mathematics after Johann Bernoulli had used his persuasion.

Johann Bernoulli became his teacher.

He joined the St. Petersburg Academy of Science in 1727, two years after it was founded by
Catherine | the wife of Peter the Great. Euler served as a medical lieutenant in the Russian navy
from 1727 to 1730. In St Petersburg he lived with Daniel Bernoulli. He became professor of
physics at the academy in 1730 and professor of mathematics in 1733. He married and left Johann
Bernoulli's house in 1733. He had 13 children atogether of which 5 survived their infancy. He
claimed that he made some of his greatest discoveries while holding a baby on his arm with other
children playing round his feet.
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The publication of many articles and his book Mechanica (1736-37), which extensively presented
Newtonian dynamics in the form of mathematical analysis for the first time, started Euler on the
way to major mathematical work.

In 1741, a the invitation of Frederick the Great, Euler joined the Berlin Academy of Science,
where he remained for 25 years. Even while in Berlin he received part of his sdary from Russia
and never got on well with Frederick. During his time in Berlin, he wrote over 200 articles, three
books on mathematical analysis, and a popular scientific publication Letters to a Princess of
Germany (3 vols., 1768-72).

In 1766 Euler returned to Russia. He had been arguing with Frederick the Great over academic
freedom and Frederick was greatly angered at his departure. Euler lost the sight of his right eye at
the age of 31 and soon after his return to St Petersburg he became almost entirely blind after a
cataract operation. Because of his remarkable memory was able to continue with his work on
optics, algebra, and lunar motion. Amazingly after 1765 (when Euler was 58) he produced almost
half his works despite being totally blind.

After his death in 1783 the St. Petersburg Academy continued to publish Euler's unpublished work
for nearly 50 more years.

Euler made large bounds in modern analytic geometry and trigonometry. He made decisive and
formative contributions to geometry, calculus and number theory. In number theory he did much
work in correspondence with Goldbach. He integrated Leibniz's differential calculus and Newton's
method of fluxions into mathematical analysis. In number theory he stated the prime number
theorem and the law of biquadratic reciprocity.

He was the most prolific writer of mathematics of all time. His complete works contains 886
books and papers.

We owe to him the notations f(x) (1734), e for the base of natural logs (1727), i for the square root
of -1 (1777), = for pi, X for summation (1755) etc. He also introduced beta and gamma functions,
integrating factors for differential equations etc.

He studied continuum mechanics, lunar theory with Clairaut, the three body problem, elasticity,
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acoustics, the wave theory of light, hydraulics, music etc. He laid the foundation of analytical
mechanics, especially in his Theory of the Motions of Rigid Bodies (1765).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Eul er.html

Pierre de Fermat

Born: 17 Aug 1601 in Beaumont-de-Lomagne, France
Died: 12 Jan 1665 in Castres, France

Pierre Fermat's father was a wealthy leather merchant and second consul of Beaumont-de-
Lomagne. Pierre had a brother and two sisters and was almost certainly brought up in the town of
his birth. Although there is little evidence concerning his school education it must have been at the
local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeau in the second half of the 1620s.
In Bordeau he began his first serious mathematical researches and in 1629 he gave a copy of his
restoration of Apollonius's Plane loci to one of the mathematicians there. Certainly in Bordeau he
was in contact with Beaugrand and during this time he produced important work on maxima and
minima which he gave to Etienne d'Espagnet who clearly shared mathematical interests with
Fermat.

From Bordeau Fermat went to Orléans where he studied law at the University. He received a
degree in civil law and he purchased the offices of councillor at the parliament in Toulouse. So by
1631 Fermat was a lawyer and government official in Toulouse and because of the office he now
held he became entitled to change his name from Pierre Fermat to Pierre de Fermat.

For the remainder of his life he lived in Toulouse but as well as working there he also worked in
his home town of Beaumont-de-Lomagne and a nearby town of Castres. From his appointment on
14 May 1631 Fermat worked in the lower chamber of the parliament but on 16 January 1638 he
was appointed to a higher chamber, then in 1652 he was promoted to the highest level at the
criminal court. Still further promotions seem to indicate a fairly meteoric rise through the
profession but promotion was done mostly on seniority and the plague struck the region in the
early 1650s meaning that many of the older men died. Fermat himself was struck down by the
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plague and in 1653 his death was wrongly reported, then corrected:

| informed you earlier of the death of Fermat. He is alive, and we no longer fear for his health,
even though we had counted him among the dead a short time ago.

The following report, made to Colbert the leading figure in France at the time, has aring of truth:

Fermat, a man of great erudition, has contact with men of learning everywhere. But he is rather
preoccupied, he does not report cases well and is confused.

Of course Fermat was preoccupied with mathematics. He kept his mathematical friendship with
Beaugrand after he moved to Toulouse but there he gained a new mathematica friend in Carcavi.
Fermat met Carcavi in a professional capacity since both were councillors in Toulouse but they
both shared alove of mathematics and Fermat told Carcavi about his mathematical discoveries.

In 1636 Carcavi went to Paris as roya librarian and made contact with Mersenne and his group.
Mersenne's interest was aroused by Carcavi's descriptions of Fermat's discoveries on falling
bodies, and he wrote to Fermat. Fermat replied on 26 April 1636 and, in addition to telling
Mersenne about errors which he believed that Galileo had made in his description of free fall, he
also told Mersenne about his work on spirals and his restoration of Apollonius's Plane loci. His
work on spirals had been motivated by considering the path of free falling bodies and he had used
methods generalised from Archimedes work On spirals to compute areas under the spirds. In
addition Fermat wrote:

| have also found many sorts of analyses for diverse problems, numerical as well as geometrical,
for the solution of which Viéte's analysis could not have sufficed. | will share all of this with you
whenever you wish and do so without any ambition, from which | am more exempt and more
distant than any man in the world.

It is somewhat ironical that this initial contact with Fermat and the scientific community came
through his study of free fall since Fermat had little interest in physical applications of
mathematics. Even with his results on free fall he was much more interested in proving

geometrical theorems than in their relation to the real world. This first letter did however contain
two problems on maxima which Fermat asked Mersenne to pass on to the Paris mathematicians
and this was to be the typical style of Fermat's letters, he would challenge others to find results
which he had aready obtained.
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Roberval and Mersenne found that Fermat's problems in this first, and subsequent, letters were
extremely difficult and usually not soluble using current techniques. They asked him to divulge his
methods and Fermat sent Method for determining Maxima and Minima and Tangents to Curved
Lines, his restored text of Apollonius's Plane loci and his agebraic approach to geometry
Introduction to Plane and Solid Loci to the Paris mathematicians.

His reputation as one of the leading mathematicians in the world came quickly but attempts to get
his work published failed mainly because Ferma never really wanted to put his work into a
polished form. However some of his methods were published, for example Hérigone added a
supplement containing Fermat's methods of maxima and minima to his major work Cursus
mathematicus. The widening correspondence between Fermat and other mathematicians did not
find universal praise. Frenicle de Bessy became annoyed at Fermat's problems which to him were
impossible. He wrote angrily to Fermat but although Fermat gave more details in his reply,
Frenicle de Bessy felt that Fermat was almost teasing him.

However Fermat soon became engaged in a controversy with a more major mathematician than
Frenicle de Bessy. Having been sent a copy of Descartes La Dioptrique by Beaugrand, Fermat
paid it little attention since he was in the middle of a correspondence with Roberval and Etienne
Pascal over methods of integration and using them to find centres of gravity. Mersenne asked him
to give an opinion on La Dioptrique which Fermat did describing it as

groping about in the shadows.

He claimed that Descartes had not correctly deduced his law of refraction since it was inherent in
his assumptions. To say that Descartes was not pleased is an understatement. Descartes soon found
reason to feel even more angry since he viewed Fermat's work on maxima, minima and tangents as
reducing the importance of his own work La Géométrie which Descartes was most proud of and
which he sought to show that his Discours de la method alone could give.

Descartes attacked Fermat's method of maxima, minima and tangents. Roberval and Etienne
Pascal became involved in the argument and eventually o did Desargues who Descartes asked to
act as areferee. Fermat proved correct and eventually Descartes admitted this writing:-

... seeing the last method that you use for finding tangents to curved lines, | can reply toitinno
other way than to say that it is very good and that, if you had explained it in this manner at the
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outset, | would have not contradicted it at all.

Did this end the matter and increase Fermat's standing? Not at al since Descartes tried to damage
Fermat's reputation. For example, although he wrote to Fermat praising his work on determining
the tangent to a cycloid (which is indeed correct), Descartes wrote to Mersenne claiming that it
was incorrect and saying that Fermat was inadequate as a mathematician and a thinker. Descartes
was important and respected and thus was able to severely damage Fermat's reputation.

The period from 1643 to 1654 was one when Fermat was out of touch with his scientific
colleagues in Paris. There are a number of reasons for this. Firstly pressure of work kept him from
devoting o much time to mathematics. Secondly the Fronde, a civil war in France, took place and

from 1648 Toulouse was greatly affected. Finally there was the plague of 1651 which must have
had great consequences both on life in Toulouse and of course its near fatal consequences on
Fermat himself. However it was during this time that Fermat worked on number theory.

Fermat is best remembered for this work in number theory, in particular for Fermat's Last
Theorem. This theorem states that x" + y" = z* has no non-zero integer solutions for X, y and z
when n > 2. Fermat wrote, in the margin of Bachet's translation of Diophantus's Arithmetica

| have discovered a truly remarkable proof which this margin is too small to contain.

These margina notes only became known after Fermat's son Samuel published an edition of
Bachet's tranglation of Diophantus's Arithmetica with his father's notes in 1670.

It is now believed that Fermat's 'proof' was wrong although it is impossible to be completely
certain. The truth of Fermat's assertion was proved in June 1993 by the British mathematician
Andrew Wiles, but Wiles withdrew the claim to have a proof when problems emerged later in
1993. In November 1994 Wiles again claimed to have a correct proof which has now been
accepted.

Unsuccessful attempts to prove the theorem over a 300 year period led to the discovery of
commutative ring theory and a wealth of other mathematical discoveries.

Fermat's correspondence with the Paris mathematicians restarted in 1654 when Blaise Pascal,
Etienne Pascal's son, wrote to him to ask for confirmation about his ideas on probability. Blaise
Pascal knew of Fermat through his father, who had died three years before, and was well aware of
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Format's outstanding mathematical abilities. Their short correspondence set up the theory of
probability and from this they are now regarded asjoint founders of the subject. Fermat however,
feeling his isolation and still wanting to adopt his old style of challenging mathematicians, tried to
change the topic from probability to number theory. Pascal was not interested but Fermat, not
realising this, wrote to Carcavi saying:

| am delighted to have had opinions conforming to those of M Pascal, for | have infinite esteem for
his genius... the two of you may undertake that publication, of which 1 consent to your being the
masters, you may clarify or supplement whatever seems too concise and relieve me of a burden
that my duties prevent mefrom taking on.

However Pascal was certainly not going to edit Fermat's work and after this flash of desire to have
his work published Fermat again gave up the idea. He went further than ever with his challenge
problems however:

Two mathematical problems posed as insoluble to French, English, Dutch and all mathematicians
of Europe by Monsieur de Fermat, Councillor of the King in the Parliament of Toulouse.

His problems did not prompt too much interest as most mathematicians seemed to think that
number theory was not an important topic. The second of the two problems, namely to find all

solutionsof Nx?+1=y* for N not asquare, was however solved by Wallis and Brouncker and

they developed continued fractions in their solution. Brouncker produced rational solutions which
led to arguments. Frenicle de Bessy was perhaps the only mathematician at that time who was
really interested in number theory but he did not have sufficient mathematical talents to allow him

to make a significant contribution.

Fermat posed further problems, namely that the sum of two cubes cannot be a cube (a specia case
of Fermat's Last Theorem which may indicate that by this time Fermat realised that his proof of the
general result was incorrect), that there are exactly two integer solutions of x* +4 = y and that the
equation x?>+2 =y has only one integer solution. He posed problems directly to the English.
Everyone failed to see that Fermat had been hoping his specific problems would lead them to
discover, as he had done, deeper theoretical results.

Around this time one of Descartes’ students was collecting his correspondence for publication and
he turned to Fermat for help with the Fermat - Descartes correspondence. This led Fermat to look
again a the arguments he had used 20 years before and he looked again a his objections to
Descartes optics. In particular he had been unhappy with Descartes description of refraction of
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light and he now settled on a principle which did in fact yield the sine law of refraction that Snell
and Descartes had proposed. However Fermat had now deduced it from a fundamental property
that he proposed, namely that light always follows the shortest possible path. Fermat's principle,
now one of the most basic properties of optics, did not find favour with mathematicians at the
time.

In 1656 Fermat had started a correspondence with Huygens. This grew out of Huygens interest in
probability and the correspondence was soon manipulated by Fermat onto topics of number theory.

Thistopic did not interest Huygens but Fermat tried hard and in New Account of Discoveriesin the
Science of Numbers sent to Huygens via Carcavi in 1659, he revealed more of his methods than he
had done to others.

Fermat described his method of infinite descent and gave an example on how it could be used to
prove that every number of the form 4k +1 could be written as the sum of two squares. For
suppose some number of the form 4%+ 1 could not be written as the sum of two squares. Then
there is a smaller number of the form 4 k + 1 which cannot be written as the sum of two squares.
Continuing the argument will lead to a contradiction. What Fermat failed to explain in this letter is
how the smaller number is constructed from the larger. One assumes that Fermat did know how to
make this step but again his failure to disclose the method made mathematicians lose interest. It
was not until Euler took up these problems that the missing steps were filled in.

Fermat is described as

Secretive and taciturn, he did not like to talk about himselfand was loath to reveal too much about
his thinking. ... His thought, however original or novel, operated within a range of possibilities
limited by that [ 1600-1650] time and that [France] place.

Carl B Boyer says:

Recognition of the significance of Fermat's work in analysis was tardy, in part because he adhered
to the system of mathematical symbols devised by Francois Viéte, notations that Descartes's
Géométrie had rendered largely obsolete. The handicap imposed by the awkward notations
operated less severely in Fermat's favourite field of study, the theory of numbers, but here,
unfortunately, hefound no correspondent to share his enthusiasm.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathemati cians/Fermat.html
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Evariste Galois

Born: 25 Oct 1811 in Bourg La Reine (near Paris), France
Died: 31 May 1832 in Paris, France

Famous for his contributions to group theory, Evariste Galois produced a method of determining
when a general equation could be solved by radicals.

Galois father Nicholas Gabriel Galois and his mother Adelaide Marie Demante were both
intelligent and well educated in philosophy, classical literature and religion. However there is no
sign of any mathematical ability in any of Galois family. His mother served as Galois sole teacher
until he was 12 years old. She taught him Greek, Latin and religion where she imparted her own
scepticism to her son. Galois father was an important man in the community and in 1815 he was
elected mayor of Bourg-la-Reine.

The starting point of the historical events which were to play a magjor role in Gaois life is surely
the storming of the Bastille on 14 July 1789. From this point the monarchy of Louis 16th was in
major difficulties as the majority of Frenchmen composed their differences and united behind an
attempt to destroy the privileged establishment of the church and the state.

Despite attempts at compromise Louis 16th was tried after attempting to flee the country.
Following the execution of the King on 21 January 1793 there followed a reign of terror with
many political trials. By the end of 1793 there were 4595 political prisoners held in Paris. However
France began to have better times as their armies, under the command of Napoleon Bonaparte,
won victory after victory.

Napoleon became 1gt Consul in 1800 and then Emperor in 1804. The French armies continued a
conquest of Europe while Napoleon's power became more and more secure. In 1811 Napoleon was
a the height of his power. By 1815 Napoleon's rule was over. The failed Russian campaign of
1812 was followed by defeats, the Allies entering Paris on 31 March 1814. Napoleon abdicated on
6 April and Louis XVIII was installed as King by the Allies. The year 1815 saw the famous one
hundred days. Napoleon entered Paris on March 20, was defeated at Waterloo on 18 June and
abdicated for the second time on 22 June. Louis XVIII was reinstated as King but died in
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September 1824, Charles X becoming the new King.

Galois was by this time at school. He had enrolled at the Lycée of Louis-le-Grand as a boarder in
the 4 th class on 6 October 1823. Even during his first term there was a minor rebellion and 40
pupils were expelled from the school. Galois was not involved and during 1824-25 his school
record is good and he received several prizes. However in 1826 Galois was asked to repeat the
year because hiswork in rhetoric was not up to the required standard.

February 1827 was a turning point in Galois' life. He enrolled in his first mathematics class, the
class of M. Vernier. He quickly became absorbed in mathematics and his director of studies wrote:

It is the passion for mathematics which dominates him, | think it would he best for him if his
parents would allow him to study nothing but this, he is wasting his time here and does nothing
but torment his teachers and overwhelm himself with punishments.

Galois school reports began to describe him as singular, bizarre, original and closed . It is
interesting that perhaps the most original mathematician who ever lived should be criticised for
being original. M. Vernier reported however

Intelligence, marked progress but not enough method.

In 1828 Galois took the examination of the Ecole Polytechnique but failed. It was the leading
University of Paris and Galois must have wished to enter it for academic reasons. However, he
also wished to enter the this school because of the strong political movements that existed among
its students, since Galois followed his parents example in being an ardent republican.

Back at Louis-le-Grand, Galois enrolled in the mathematics class of Louis Richard. However he
worked more and more on his own researches and less and less on his schoolwork. He studied
Legendre's Géométrie and the treatises of Lagrange. As Richard was to report

This student works only in the highest realms of mathematics.

In April 1829 Galois had his first mathematics paper published on continued fractions in the
Annales de mathématiques . On 25 May and 1 June he submitted articles on the algebraic solution
of equations to the Académie des Sciences. Cauchy was appointed as referee of Galois' paper.
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Tragedy was to strike Galois for on 2 July 1829 his father committed suicide. The priest of Bourg-
la-Reine forged Mayor Galois name on malicious forged epigrams directed a Galois own
relatives, Galois father was a good natured man and the scandal that ensued was more than he
could stand. He hanged himsdlf in his Paris apartment only a few steps from Louis-le-Grand where
his son was studying. Galois was deeply affected by his father's death and it greatly influenced the
direction his life was to take.

A few weeks after his father's death, Galois presented himself for examination for entry to the
Ecole Polytechnique for the second time. For the second time he failed, perhaps partly because he
took it under the worst possible circumstances so soon after his father's death, partly because he
was never good at communicating his deep mathematical ideas. Galois therefore resigned himself
to enter the Ecole Normale, which was an annex to Louis-le-Grand, and to do so he had to take his
Baccalaureate examinations, something he could have avoided by entering the Ecole
Polytechnique.

He passed, receiving his degree on 29 December 1829. His examiner in mathematics reported:

This pupil is sometimes obscure in expressing his ideas, but he is intelligent and shows a
remarkable spirit of research.

His literature examiner reported:

This is the only student who has answered me poorly, he knows absolutely nothing. | was told that
this student has an extraordinary capacity for mathematics. This astonishes me greatly, for, after
his examination, | believed him to have but little intelligence.

Galois sent Cauchy further work on the theory of equations, but then learned from Bulletin de
Férussac of a posthumous article by Abel which overlapped with a part of his work. Galois then
took Cauchy's advice and submitted a new article On the condition that an equation be soluble by
radicals in February 1830. The paper was sent to Fourier, the secretary of the Academy, to be
considered for the Grand Prize in mathematics. Fourier died in April 1830 and Galois paper was
never subsequently found and so never considered for the prize.

Galois, after reading Abel and Jacobi's work, worked on the theory of elliptic functions and abelian
integrals. With support from Jacques Sturm, he published three papers in Bulletin de Férussac in
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April 1830. However, he learnt in June that the prize of the Academy would be awarded the Prize
jointly to Abel (posthumously) and to Jacobi, his own work never having been considered.

July 1830 saw arevolution. Charles 10th fled France. There was rioting in the streets of Paris and
the director of Ecole Normale, M. Guigniault, locked the students in to avoid them taking part.
Galois tried to scae the wall to join the rioting but failed. In December 1830 M. Guigniault wrote
newspaper articles attacking the students and Galois wrote a reply in the Gazette des Ecoles ,
attacking M. Guigniault for his actions in locking the students into the school. For this letter
Galois was expelled and he joined the Artillery of the National Guard, a Republican branch of the
militia. On 31 December 1830 the Artillery of the National Guard was abolished by Royal Decree
since the new King Louis-Phillipe felt it was a threat to the throne.

Two minor publications, an abstract in Annales de Gergonne (December 1830) and a letter on the
teaching of science in the Gazette des Ecoles (2 January 1831) were the last publications during
his life. In January 1831 Galois attempted to return to mathematics. He organised some
mathematics classes in higher algebra which attracted 40 students to the first meeting but after that
the numbers quickly fell off. Galois was invited by Poisson to submit athird version of his memoir
on equation to the Academy and he did so on 17 January.

On 18 April Sophie Germain wrote a letter to her friend the mathematician Libri which describes
Galois situation.

... the death of M. Fourier, have been too much for this student Galois who, in spite of his
impertinence, showed signs of a clever disposition. All this has done so much that he has been
expelled form Ecole Normale. He is without money... They say he will go completely mad. | fear
thisistrue.

Late in 1830 19 officers from the Artillery of the National Guard were arrested and charged with
conspiracy to overthrow the government. They were acquitted and on 9 May 1831 200 republicans
gathered for a dinner to celebrate the acquittal. During the dinner Galois raised his glass and with
an open dagger in his hand appeared to make threats against the King, Louis-Phillipe. After the
dinner Galois was arrested and held in Sainte-Pélagie prison. At his trial on 15 June his defence
lawyer claimed that Gaois had said

To Louis-Phillipe, if he betrays
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but the last words had been drowned by the noise. Galois, rather surprisingly since he essentially
repeated the threat from the dock, was acquitted.

The 14th July was Bastille Day and Galois was arrested again. He was wearing the uniform of the
Artillery of the National Guard, which was illegal. He was also carrying a loaded rifle, severa

pistols and a dagger. Galois was sent back to Sainte-Pélagie prison. While in prison he received a
rejection of his memoir. Poisson had reported that:-

His argument is neither sufficiently clear nor sufficiently developed to allow us tojudge its rigour.

He did, however, encourage Galois to publish a more complete account of his work. While in
Sainte-Pélagie prison Galois attempted to commit suicide by stabbing himself with a dagger but
the other prisoners prevented him. While drunk in prison he poured out his soul

Do you know what | lack myfriend? | confide it only to you: it is someone whom | can love and
love only in spirit. | have lost myfather and no one has ever replaced him, do you hear me...?

In March 1832 a cholera epidemic swept Paris and prisoners, including Galois, were transferred to
the pension Sieur Faultrier. There he apparently fell in love with Stephanie-Felice du Motel, the
daughter of the resident physician. After he was released on 29 April Gaois exchanged letters with
Stephanie, and it is clear that she tried to distance herself from the affair.

The name Stephanie appears several times as amarginal note in one of Galois' manuscripts.

Galois fought a duel with Perscheux d'Herbinville on 30 May, the reason for the duel not being
clear but certainly linked with Stephanie.

You can see a note in the margin of the manuscript that Galois wrote the night before the duel. It
reads

There is something to complete in this demonstration. | do not have the time. (Author's note).

It is this which has led to the legend that he spent his last night writing out al he knew about group
theory. This story appears to have been exaggerated.
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Galois was wounded in the duel and was abandoned by d'Herbinville and his own seconds and
found by a peasant. He died in Cochin hospital on 31 May and his funeral was held on 2 June. It
was the focus for a Republican rally and riots followed which lasted for severa days.

Galois brother and his friend Chevalier copied his mathematical papers and sent them to Gauss,
Jacobi and others. It had been Galois' wish that Jacobi and Gauss should give their opinions on his
work. No record exists of any comment these men made. However the papers reached Liouville
who, in September 1843, announced to the Academy that he had found in Galois' papers a concise
solution

...as correct as it is deep of this lovely problem: Given an irreducible equation of prime degree,
decide whether or not it is soluble by radicals.

Liouville published these papers of Galais in his Journal in 1846.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/Gal ois.html

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)
Died: 23 Feb 1855 in Gottingen, Hanover (now Germany)

Carl Friedrich Gauss worked in a wide variety of fields in both mathematics and physics
incuding number theory, analysis, differential geometry, geodesy, magnetism, astronomy and
optics. Hiswork has had an immense influence in many areas.

At the age of seven, Carl Friedrich started elementary school, and his potential was noticed almost
immediately. His teacher, Bittner, and his assistant, Martin Bartels, were amazed when Gauss
summed the integers from 1 to 100 instantly by spotting that the sum was 50 pairs of numbers each
pair summing to 101.
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In 1788 Gauss began his education at the Gymnasium with the help of Bittner and Bartels, where
he learnt High German and Latin. After receiving a stipend from the Duke of Brunswick-
Wolfenbiittel, Gauss entered Brunswick Collegium Carolinum in 1792. At the academy Gauss
independently discovered Bode's law, the binomial theorem and the arithmetic- geometric mean,
as well as the law of quadratic reciprocity and the prime humber theorem.

In 1795 Gauss left Brunswick to study a Goéttingen University. Gausss teacher there was
Kaestner, whom Gauss often ridiculed. His only known friend amongst the students was Farkas
Bolyai. They met in 1799 and corresponded with each other for many years.

Gauss left Gottingen in 1798 without a diploma, but by this time he had made one of his most
important discoveries - the construction of a regular 17-gon by ruler and compasses This was the
most major advance in this field snce the time of Greek mathematics and was published as
Section VII of Gausss famous work, Disquisitiones Arithmeticae.

Gauss returned to Brunswick where he received a degree in 1799. After the Duke of Brunswick
had agreed to continue Gauss's stipend, he requested that Gauss submit a doctoral dissertation to
the University of Helmstedt. He already knew Pfaff, who was chosen to be his advisor. Gauss's
dissertation was a discussion of the fundamental theorem of algebra.

With his stipend to support him, Gauss did not need to find ajob so devoted himself to research.
He published the book Disquisitiones Arithmeticae in the summer of 1801. There were seven
sections, al but the last section, referred to above, being devoted to number theory.

In June 1801, Zach, an astronomer whom Gauss had come to know two or three years previously,
published the orbital positions of Ceres, a new 'small planet' which was discovered by G Piazzi, an
Italian astronomer on 1 January, 1801. Unfortunately, Piazzi had only been able to observe 9
degrees of its orbit before it disappeared behind the Sun. Zach published severa predictions of its
position, including one by Gauss which differed greatly from the others. When Ceres was
rediscovered by Zach on 7 December 1801 it was almost exactly where Gauss had predicted.
Although he did not disclose his methods a the time, Gauss had used his least squares
approximation method.

In June 1802 Gauss visited Olbers who had discovered Pallas in March of that year and Gauss
investigated its orbit. Olbers requested that Gauss be made director of the proposed new
observatory in Géttingen, but no action was taken. Gauss began corresponding with Bessel, whom
he did not meet until 1825, and with Sophie Germain.
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Gauss married Johanna Ostoff on 9 October, 1805. Despite having a happy persona life for the
first time, his benefactor, the Duke of Brunswick, was killed fighting for the Prussian army. In
1807 Gauss left Brunswick to take up the position of director of the Géttingen observatory.

Gauss arrived in Gottingen in late 1807. In 1808 his father died, and a year later Gauss's wife
Johanna died after giving birth to their second son, who was to die soon after her. Gauss was
shattered and wrote to Olbers asking him give him ahome for afew weeks,

to gather new strength in the arms of your friendship - strength for a life which is only valuable
because it belongs to my three small children.

Gauss was married for a second time the next year, to Minna the best friend of Johanna, and
although they had three children, this marriage seemed to be one of convenience for Gauss.

Gauss's work never seemed to suffer from his personal tragedy. He published his second book,
Theoria motus corporum coelestium in sectionibus conicis Solem ambientium, in 1809, a major
two volume treatise on the motion of celestial bodies. In the first volume he discussed differential
equations, conic sections and elliptic orbits, while in the second volume, the main part of the work,
he showed how to estimate and then to refine the estimation of a planet's orbit. Gauss's
contributions to theoretical astronomy stopped after 1817, although he went on making
observations until the age of 70.

Much of Gauss's time was spent on a new observatory, completed in 1816, but he still found the
time to work on other subjects. His publications during this time include Disquisitiones generales
circa seriem infinitam, a rigorous treatment of series and an introduction of the hypergeometric
function, Methodus nova integralium valores per approximationem inveniendi, a practical essay
on approximate integration, Bestimmung der Genauigkeit der Beobachtungen, a discussion of
statistical estimators, and Theoria attractionis corporum sphaeroidicorum ellipticorum
homogeneorum methodus nova tractata. The latter work was inspired by geodesic problems and
was principally concerned with potential theory. In fact, Gauss found himself more and more
interested in geodesy in the 1820's.

Gauss had been asked in 1818 to carry out a geodesic survey of the state of Hanover to link up
with the existing Danish grid. Gauss was pleased to accept and took persona charge of the survey,
making measurements during the day and reducing them a night, using his extraordinary mental
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capacity for calculations. He regularly wrote to Schumacher, Olbers and Bessel, reporting on his
progress and discussing problems.

Because of the survey, Gauss invented the heliotrope which worked by reflecting the Sun's rays
using a design of mirrors and a small telescope. However, inaccurate base lines were used for the
survey and an unsatisfactory network of triangles. Gauss often wondered if he would have been
better advised to have pursued some other occupation but he published over 70 papers between
1820 and 1830.

In 1822 Gauss won the Copenhagen University Prize with Theoria attractionis... together with the
idea of mapping one surface onto another s that the two are similar in their smallest parts . This
paper was published in 1825 and led to the much later publication of Untersuchungen Uber
Gegenstdnde der Hoheren Geoddsie (1843 and 1846). The paper Theoria combinationis
observationum erroribus minimis obnoxiae (1823), with its supplement (1828), was devoted to
mathematical statistics, in particular to the least squares method.

From the early 1800's Gauss had an interest in the question of the possible existence of a non-
Euclidean geometry. He discussed this topic at length with Farkas Bolyai and in his
correspondence with Gerling and Schumacher. In a book review in 1816 he discussed proofs
which deduced the axiom of parallels from the other Euclidean axioms, suggesting that he
believed in the existence of non-Euclidean geometry, although he was rather vague. Gauss
confided in Schumacher, telling him that he believed his reputation would suffer if he admitted in
public that he believed in the existence of such a geometry.

In 1831 Farkas Bolya sent to Gauss his son Janos Bolyai's work on the subject. Gauss replied

to praise it would mean to praise myself.

Again, a decade later, when he was informed of Lobachevsky's work on the subject, he praised its
"genuinely geometric" character, while in a letter to Schumacher in 1846, states that he

had the same convictionsfor 54 years

indicating that he had known of the existence of a non-Euclidean geometry since he was 15 years
of age (this seems unlikely).
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Gauss had a mgjor interest in differential geometry, and published many papers on the subject.
Disquisitiones generales circa superficies curva (1828) was his most renowned work in this field.
In fact, this paper rose from his geodesic interests, but it contained such geometrical ideas as
Gaussian curvature. The paper aso includes Gauss's famous theorema egregrium:

If an areain E* can be developed (i.e. mapped isometrically) into another area of E?,the values of
the Gaussian curvatures are identical in corresponding points.

The period 1817-1832 was a particularly distressing time for Gauss. He took in his sick mother in

1817, who stayed until her death in 1839, while he was arguing with his wife and her family about

whether they should go to Berlin. He had been offered a position at Berlin University and Minna
and her family were keen to move there. Gauss, however, never liked change and decided to stay
in Gottingen. In 1831 Gauss's second wife died after along illness.

In 1831, Wilhelm Weber arrived in Goéttingen as physics professor filling Tobias Mayer's chair.
Gauss had known Weber since 1828 and supported his appointment. Gauss had worked on physics
before 1831, publishing Uber ein neues allgemeines Grundgesetz der Mechanik, which contained
the principle of least constraint, and Principia generalia theoriae figurae fluidorum in statu
aequilibrii which discussed forces of attraction. These papers were based on Gauss's potential
theory, which proved of great importance in his work on physics. He later came to believe his
potential theory and his method of least squares provided vital links between science and nature.

In 1832, Gauss and Weber began investigating the theory of terrestrial magnetism after Alexander
von Humboldt attempted to obtain Gausss assistance in making a grid of magnetic observation
points around the Earth. Gauss was excited by this prospect and by 1840 he had written three
important papers on the subject: Intensitas vis magneticae terrestris ad mensuram absolutam
revocata (1832), Allgemeine Theorie des Erdmagnetismus (1839) and Allgemeine Lehrsdtze in
Beziehung auf die im verkehrten Verhdltnisse des Quadrats der Entfernung wirkenden
Anziehungs- und Abstossungskréfte (1840). These papers al dedt with the current theories on
terrestrial magnetism, including Poisson's ideas, absolute measure for magnetic force and an
empirical definition of terrestrial magnetism. Dirichlet's principal was mentioned without proof.

Allgemeine Theorie... showed that there can only be two poles in the globe and went on to prove
an important theorem, which concerned the determination of the intensity of the horizontal
component of the magnetic force along with the angle of inclination. Gauss used the Laplace
equation to aid him with his calculations, and ended up specifying a location for the magnetic
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South pole.

Humboldt had devised a calendar for observations of magnetic declination. However, once Gauss's
new magnetic observatory (completed in 1833 - free of all magnetic metals) had been built, he
proceeded to ater many of Humboldt's procedures, not pleasing Humboldt greatly. However,
Gauss's changes obtained more accurate results with less effort.

Gauss and Weber achieved much in their six years together. They discovered Kirchhoff's laws, as
well as building a primitive telegraph device which could send messages over a distance of 5000
ft. However, this wasjust an enjoyable pastime for Gauss. He was more interested in the task of
establishing a world-wide net of magnetic observation points. This occupation produced many
concrete results. The Magnetischer Verein and its journal were founded, and the atlas of
geomagnetism was published, while Gauss and Weber's own journal in which their results were
published ran from 1836 to 1841.

In 1837, Weber was forced to leave Gottingen when he became involved in a political dispute and,
from this time, Gauss's activity gradually decreased. He still produced letters in response to fellow
scientists' discoveries usually remarking that he had known the methods for years but had never
felt the need to publish. Sometimes he seemed extremely pleased with advances made by other
mathematicians, particularly that of Eisenstein and of Lobachevsky.

Gauss spent the years from 1845 to 1851 updating the Géttingen University widow's fund. This
work gave him practical experience in financial matters, and he went on to make his fortune
through shrewd investments in bonds issued by private companies.

Two of Gausss last doctoral students were Moritz Cantor and Dedekind. Dedekind wrote a fine
description of his supervisor

. usually he sat in a comfortable attitude, looking down, dlightly stooped, with hands folded
above his lap. He spoke quite freely, very clearly, simply and plainly: but when he wanted to
emphasise a new viewpoint ... then he lifted his head, turned to one of those sitting next to him,
and gazed at him with his beautiful, penetrating blue eyes during the emphatic speech. ... If he
proceeded from an explanation of principles to the development of mathematical formulas, then he
got up, and in a stately very upright posture he wrote on a blackboard beside him in his peculiarly
beautiful handwriting: he always succeeded through economy and deliberate arrangement in
making do with a rather small space. For numerical examples, on whose careful completion he
placed special value, he brought along the requisite data on little slips of paper.
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Gauss presented his golden jubilee lecture in 1849, fifty years after his diploma had been granted
by Hemstedt University. It was appropriately a variation on his dissertation of 1799. From the
mathematical community only Jacobi and Dirichlet were present, but Gauss received many
messages and honours.

From 1850 onwards Gauss's work was again of nearly all of a practical nature although he did
approve Riemann's doctoral thesis and heard his probationary lecture. His last known scientific
exchange was with Gerling. He discussed a modified Foucalt pendulum in 1854. He was aso able
to attend the opening of the new railway link between Hanover and Gottingen, but this proved to
be his last outing. His health deteriorated slowly, and Gauss died in his sleep early in the morning
of 23 February, 1855.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/M athemati cians/Gauss.html

Karl Gustav Jacob Jacobi

-

Born: 10 Dec 1804 in Potsdam, Prussia (now Germany)
Died: 18 Feb 1851 in Berlin, Germany

Karl Jacobi founded the theory of elliptic functions.

Jacobi's father was a banker and his family were prosperous so he received a good education at the
University of Berlin. He obtained his Ph.D. in 1825 and taught mathematics at the University of
Konigsberg from 1826 until his death, being appointed to a chair in 1832.

He founded the theory of elliptic functions based on four theta functions. His Fundamenta nova
theoria functionum ellipticarum in 1829 and its later supplements made basic contributions to the
theory of elliptic functions.

In 1834 Jacobi proved that if a single-valued function of one variable is doubly periodic then the
ratio of the periods is imaginary. This result prompted much further work in this areg, in particular
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by Liouville and Cauchy.

Jacobi carried out important research in partial differential equations of the first order and applied
them to the differential equations of dynamics.

He aso worked on determinants and studied the functional determinant now called the Jacobian.
Jacobi was not the first to study the functional determinant which now bears his name, it appears
first in a 1815 paper of Cauchy. However Jacobi wrote a long memoir De determinantibus
functionalibus in 1841 devoted to the this determinant. He proves, among many other things, that
if a set of n functions in n variables are functionally related then the Jacobian is identically zero,
while if the functions are independent the Jacobian cannot be identically zero.

Jacobi's reputation as an excellent teacher attracted many students. He introduced the seminar
method to teach students the latest advances in mathematics.

The source of this information is the following webpage:
http://www-history.mcs.st-and.ac.uk/history/M athemati cians/Jacobi.html

Adrien-Marie Legendre

Born: 18 Sept 1752 in Paris, France

Died: 10 Jan 1833 in Paris, France

Legendre's major work on elliptic integrals provided basic analytical tools for mathematical
physics.

Legendre was educated at Collége Mazarin in Paris. From 1775 to 1780 he taught with Laplace at
Ecole Militaire where his appointment was made on the advice of d'Alembert. Legendre was
appointed to the Académie des Sciences in 1783 and remained there until it closed in 1793.

In 1782 Legendre determined the attractive force for certain solids of revolution by introducing an
infinite series of polynomials P, which are now called Legendre polynomials.
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His major work on dliptic functions in Exercises du Calcul Intégral (1811,1817,1819) and eliptic
integrals in Traité des Fonctions Elliptiques (1825,1826,1830) provided basic analytical tools for
mathematica physics.

In his famous textbook Eléments de géométrie (1794) he gave a simple proof that = isirrational as
well as the first proof that =% is irrational and conjectured that is not the root of any algebraic
equation of finite degree with rational coefficients i.e. is not algebraic.

His attempt to prove the parallel postulate extended over 40 years.

In 1824 Legendre refused to vote for the government's candidate for Institut National. Because of
this his pension was stopped and he died in poverty. Abel wrote in October 1826

Legendre is an extremely amiable man, but unfortunately as old as the stones.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/Mathematicians/L egendre.html

August Ferdinand Mobius
B}

a i

Born: 17 Nov 1790 in Schulpforta, Saxony (now Germany)
Died: 26 Sept 1868 in Leipzig, Germany

August Mabius is best known for his work in topology, especialy for his conception of the
Mdbius strip, atwo dimensional surface with only one side.

August was the only child of Johann Heinrich M&bius, a dancing teacher, who died when August
was three years old. His mother was a descendant of Martin Luther. Mdbius was educated at home
until he was 13 years old when, aready showing an interest in mathematics, he went to the College
in Schulpforta in 1803,

In 1809 Mdobius graduated from his College and he became a student at the University of Leipzig.
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His family had wanted him study law and indeed he started to study this topic. However he soon
discovered that it was not a subject that gave him satisfaction and in the middle of his first year of
study he decided to follow him own preferences rather than those of his family. He therefore took
up the study of mathematics, astronomy and physics.

The teacher who influenced Mobius most during his time at Leipzig was his astronomy teacher
Karl Mollweide. Although an astronomer, Mollweide is well known for a number of mathematical
discoveries in particular the Mollweide trigonometric relations he discovered in 1807-09 and the
Mollweide map projection which preserves angles and o is a conformal projection.

In 1813 Mdbius travelled to Gottingen where he studied astronomy under Gauss. Now Gauss was
the director of the Observatory in Gottingen but of course the greatest mathematician of his day, 0
again Mdbius studied under an astronomer whose interests were mathematical. From Gottingen
Mobius went to Halle where he studied under Johann Pfaff, Gausss teacher. Under Pfaff he
studied mathematics rather than astronomy 0 by this stage Mobius was very firmly working in
both fields.

In 1815 M&bius wrote his doctoral thesis on The occultation of fixed stars and began work on his
Habilitation thesis. In fact while he was writing this thesis there was an attempt to draft him into
the Prussian army. Mobius wrote

This is the most horrible idea | have heard of, and anyone who shall venture, dare, hazard, make
bold and have the audacity to propose it will not be safefrom my dagger.

He avoided the army and completed his Habilitation thesis on Trigonometrical equations.
Mollweide's interest in mathematics was such that he had moved from astronomy to the chair of
mathematics at Leipzig so Mdbius had high hopes that he might be appointed to a professorship in
astronomy at Leipzig. Indeed he was appointed to the chair of astronomy and higher mechanics at
the University of Leipzig in 1816. His initial appointment was as Extraordinary Professor and it
was an appointment which came early in his career.

However Mobius did not receive quick promotion to full professor. It would appear that he was
not a particularly good lecturer and this made his life difficult since he did not attract fee paying
students to his lectures. He was forced to advertise his lecture courses as being free of charge
before students thought his courses worth taking.
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He was offered a post as an astronomer in Greifswald in 1916 and then a post as a mathematician
a Dorpat in 1819. He refused both, partly through his belief in the high quality of Leipzig
University, partly through his loyalty to Saxony. In 1825 Mollweide died and Mdbius hoped to
transfer to his chair of mathematics taking the route Mollweide had taken earlier. However it was
not to be and another mathematician was preferred for the post.

By 1844 Mdbius's reputation as a researcher led to an invitation from the University of Jena and at
this stage the University of Leipzig gave him the Full Professorship in astronomy which he clearly
deserved.

From the time of his first appointment at Leipzig Mobius had aso held the post of Observer at the
Observatory a Leipzig. He was involved the rebuilding of the Observatory and, from 1818 until
1821, he supervised the project. He visited several other observatories in Germany before making
his recommendations for the new Observatory. In 1820 he married and he was to have one
daughter and two sons. In 1848 he became director of the Observatory.

In 1844 Grassmann visited Mdbius. He asked Mobius to review his major work Die lineale
Ausdehnundslehre, ein neuer Zweig der Mathematik (1844) which contained many results similar
to Mdbiuss work. However Mébius did not understand the significance of Grassmann's work and
did not review it. He did however persuade Grassmann to submit work for a prize and, after
Grassmann won the prize, Mobius did write areview of his winning entry in 1847.

Although his most famous work is in mathematics, Mobius did publish important work on
astronomy. He wrote De Computandis Occultationibus Fixarum per Planetas (1815) concerning
occultations of the planets. He aso wrote on the principles of astronomy, Die Hauptsétze der
Astronomie (1836) and on celestial mechanics Die Elemente der Mechanik des Himmels (1843).

Mobius's mathematical publications, although not always original, were effective and clear
presentations. His contributions to mathematics are described by his biographer Richard Baltzer in
as follows:

The inspirationsfor his research hefound mostly in the rich well of his own original mind. His
intuition, the problems he set himself, and the solutions that he found, all exhibit something
extraordinarily ingenious, something original in an uncontrived way. He worked without
hurrying, quietly on his own. His work remained almost locked away until everything had been put
into its proper place. Without rushing, without pomposity and without arrogance, he waited until
thefruits of his mind matured. Only after such a wait did he publish his perfected works...
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Almost al Mohius's work was published in Crelle's Journal, the first journal devoted exclusively
to publishing mathematics. Mobiuss 1827 work Der barycentrische Calkul, on analytica
geometry, became a classic and includes many of his results on projective and affine geometry. In
it he introduced homogeneous coordinates and aso discussed geometric transformations, in
particular projective transformations. He introduced a configuration now caled a Mobius net,
which was to play an important role in the development of projective geometry.

Mobius's name is attached to many important mathematical objects such as the Mébius function
which he introduced in the 1831 paper Uber eine besondere Art von Umkehrung der Reihen and
the Mdbius inversion formula.

In 1837 he published Lehrbuch der Satik which gives a geometric treatment of statics. It led to the
study of systems of lines in space.

Before the question on the four colouring of maps had been asked by Francis Guthrie, M&bius had
posed the following, rather easy, problem in 1840.

There was once a king withfive sons. In his will he stated that on his death his kingdom should be
divided by his sons into five regions in such a way that each region should have a common
boundary with the other four. Can the terms of the will be satisfied?

The answer, of course, is hegative and easy to show. However it does illustrate Mobius's interest in
topological ideas, an area in which he most remembered as a pioneer. In a memoair, presented to
the Académie des Sciences and only discovered after his death, he discussed the properties of one-
sided surfaces including the Mébius strip which he had discovered in 1858. This discovery was
made as Mobius worked on a question on the geometric theory of polyhedra posed by the Paris
Academy.

Although we know this as a Mobius strip today it was not Mobius who first described this object,
rather by any criterion, either publication date or date of first discovery, precedence goes to
Listing.

A Mobius strip is a two-dimensional surface with only one side. It can be constructed in three
dimensions as follows. Take a rectangular strip of paper and join the two ends of the strip together
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%0 that it has a 180 degree twist. It is now possible to start a a point A on the surface and trace out
apath that passes through the point which is apparently on the other side of the surface from A.

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/M athemati cians/M obius.html

Joseph Henry Maclagen Wedderburn

Born: 2 Feb 1882 in Forfar, Angus, Scotland
Died: 9 Oct 1948 in Princeton, New Jersey, USA

Joseph Wedder burn made important advances in the theory of rings, algebras and matrix theory.

He entered Edinburgh University in 1898, obtaining a degree in mathematics in 1903. Wedderburn
then pursued postgraduate studies in Germany spending 1903-1904 at the University of Leipzig
and then a semester at the University of Berlin.

He was awarded a Carnegie Scholarship to study in the USA and he spent 1904-1905 at the
University of Chicago where he did joint work with Veblen. Returning to Scotland he worked for
4 years a Edinburgh as assistant to George Chrystal. From 1906 to 1908 he served as editor of the
Proceedings of the Edinburgh Mathematical Society.

In 1909 Wedderburn was appointed a Preceptor in Mathematics at Princeton where he joined
Veblen. However World War | saw Wedderburn volunteer for the British Army and he served,
partly in France, until the end of the war.

On his return to Princeton he was soon promoted obtaining permanent tenure in 1921. He served
as Editor of the Annals of Mathematics from 1912 to 1928. From about the end of this period
Wedderburn seemed to suffer a mild nervous breakdown and became an increasingly solitary
figure. By 1945 the Priceton gave him early retirement in his own best interests.

Wedderburn's best mathematical work was done before his war service. In 1905 he showed that a
non-commutatiove finite field could not exist. This had as a corollary the complete structure of all
finite projective geometries, showing that in al these geometries Pasca's theorem is a
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consequence of Desargues theorem.

In 1907 he published what is perhaps his most famous paper on the classification of semisimple
agebras. He showed that every semisimple algebra is a direct sum of simple agebras and that a
simple agebrawas a matrix agebra over adivision ring.

In total he published around 40 works mostly on rings and matrices. His most famous book is
Lectureson Matrices (1934).

The source of this information is the following webpage:

http://www-history.mcs.st-and.ac.uk/history/M athemati cians/Wedderburn.html



Appendix D New Functions

o AddTwol etters
AddTwolL etters adds two letters modulo 26, wherea =0, b =1, ..., z = 25.

AddTwoLetters[a_, b_] ==
' FromCharacterCode[Mod[ (ToCharacterCode[a] - 97) +
(ToCharacterCode[b] - 97), 26] + 97]

Example:

AddTwoLetters|["b", "c"]

o Caesar Cipher

Applies the Caesar cipher with agiven key to agiven plaintext of small letters.

CaesarCipher [plaintext , key ] :=
FromCharacterCods|

Example:

—— ——

Mod[ ToCharacterCode[plaintext] - 97 +key, 26] + 97]

plaintext = "typshareyourplaintextinsmallleatters";
| key = 24;
-i CassarCipher[plaintext, key]

rwne fopowmspnijyglreveglgkyjjjorrepg

o ColumnSwap

ColumnSwap interchanges columns i and j in matrix B.
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CoPrimes [n_Integer?Positive] :=
Select [ Range[n], CoPrimeQ[n, #] & ]
Example:
Clear[a, b, c, 4, s, £, g, h, 1, 3, k, 1];
a bec d
A= [. f g h]l
I e R B
uzﬂlmﬂﬂp[l; 1r "]f
MatrixForm[AA]
rd b c a
h £ g e
2 Bk, Besl e b
o CoPrimeQ

CoPrime test if two integers are coprime, i.e. have ged 1.

| CoPrimeQ[n Integer, m Integer] := GCD[n, m] == 1

Example:

! CoPrimeQ[35, 91]

| CoPrimeQ[36, 91]

False

Truea

o CoPrimes

CoPrimes generates a list of al integers in between 1 and n that are coprime with n. In other
words, it generates a reduced residue system modulo n.

Coprimes makes use of the function CoPrimeQ defined earlier.
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WAt ¥ Bty 4 __-\_.."
;_mﬂu-[n_:numt mu-.:ln] 1= AR Y R Lo
_ﬁlﬂ_"k'lﬂ:t‘{ lnntn]. m:in-n[m #] a] gy R 4 AR
Example:
coh'ip-t[u] % =i e
; L 1-‘-\3!!' diaarin '.L A ¥ o Tie

{1, 2, 4, 7, 8,11, 13, 14}

o Divisor Product

DivisorProduct calculates [, f[d].

.n111Mt[£_. n_]:= Times @@ (f /@ Divisors[mn])

Example:
e f T s m B $i i S A
Dlvimrrmn[i, :5] SR e
125

o DivisorSum

DivisorSum calculates ¥, f [d]

‘DivisorSum[f_, n_] := Plus @@ (f /@ Divisors[n])

Example:

24
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o EllipticAdd

EllipticAdd evaluates the sum of the points P and Q on an elliptic curve over Z,, given by the
equation ¥ = x* +a.x? +b.x+c. Here p isprime, p > 2.

Example:

A Sl WO e R T i > B P T R
B o B e <o - S o Tﬂ.?‘" il w
e &

i R e =
e
g e ke
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o Entropy
Computes the entropy — p.log, p — (1 — p).Jog,(1 — p)function.

Example:

o ListQuadRes
ListQuadRes gives alisting of al the quadratic residues modulo p.

Example:

BL%0 e, 915, 15, 16}

o MultiEntropy
MultiEntropy evaluates ~ Y%, p; log, p; fora list {py, pa, ..., pa).

Example:
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o MultiplicativeOrder

MultiplicativeOrder computes the multiplicative order of an integer a modulo n, assuming that
they are coprime. So, it outputs the smallest positive integer m such that ™ = 1(mod n).

Example:

1285901112

o KnapsackFor Super | ncreasingSequence

KnapsackForSuperincreasingSequence  finds the {0, 1}-solution of the knapsack problem
Y1, x.a; = S, where {a;}., is a superincreasing sequence.
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{1, 1, 0,1, 1, 0}

o RowSwap

RowSwaps interchanges rows i and j in matrix B.

Example:

1
£
il
c..

d e
g h
ab
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Symbols and Notations
(a, b) greatest common divisor, 344, 345
[a, b] least common multiple, 345

(ﬁ) Jacobi symbol, 364

R/'S  residue class ring, 388

(5(x)) ided generated by g(x), 398

= congruent, 352

[Ivll length of vector, 393

U+ orthogona complement, 394

T(py(x), GF(2™)) Goppacode, 237
u Mobius function, 378

a(x)  number of primes < x, 344
@ Euler totient function, 354
X Legendre symbol, 364

£Xf) output space of LFSR, 35

AC(k) auto-correlation, 28

D, redundancy, 79

d(u)  density of aknapsack, 271

& elliptic curve, 213

ged  greatest common divisor, 344, 345

f* minimal characteristic polynomial, 35
f®  linear complexity, 52

F[x]  ring of polynomials over F, 395

Fy finite field of q eements, 387

GF  Gdoisfield, 387
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h(p) entropy, 76

H(X) entropy, 76

H(X |Y) conditional entropy, 81

I,(n)  number of irreducible polynomials of degree n over F,, 401
I(nN)  number of binary, irreducible polynomials of degree n, 401
[(X,Y) mutual information, 82

lem  least common multiple , 345, 344

Ly linear complexity, 52

N non-privileged set (of an access system), 322

NQR quadratic non-residue , 364

Pp probability of a successful deception, 293

P, probability of a successful impersonation attack, 293

Py probability of a successful substitution attack, 293

P privileged set (of an access system), 322

g cyclotomic polynomial, 420

QR  quadratic residue , 364

Tr trace function, 424

V(n,q) n-dimensiona vectorspace over GF(g), 309

w(X)  weight of a vector, 242

z, integers modulo p, 395
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A

Abelian group, 385
aCCess structure, 322
complete, 322
perfect, 322
A-code (for message authentication), 292
Johansson's construction of A-code from EC-code, 309
from orthogonal array, 305
active cryptanalist, 3
addition of points on an elliptic curve, 225
addition chain, 113
additive group, 385
address, 98
aphabet, 2
algorithm
addition of points on an elliptic curve , 225
Baby-step Giant-step (for taking discrete logarithms), 130
Berlekamp-Massey, 56
bit swapping, 255
Cohen and Lenstra (deterministic primality test 1), 193
continued fraction, 371
conversion from integer to binary weight k vector, 283
decryption of Chor-Rivest, 284
Euclid (simple version), 348
(extended version), 349
factoring agorithms
Pollard p-1, 158
Pollard-g, 161
quadratic sieve, 167
random squares method, 162
Gauss (to find a primitive element), 423
Gram-Schmidt (for orthogonalization process), 272
Huffman (for data compression), 93
index-calculus (for taking discrete logarithms), 135
Floyd's cycle-finding algorithm, 133
knapsack problem for superincreasing sequences, 264
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L3 (for alattice basis reduction), 277

Lempel-Ziv (for data compression), 97

message authentication code based on DES, 290

Miller-Rabin primality test, 188

Pohlig-Hellman, 121

Pollard p-1 (for factoring), 158

Pollard-g (for factoring), 161

Pollard-p (for taking discrete logarithms), 131

primality tests
Cohen and Lenstra (deterministic primality test 1), 193
Miller-Rabin (probabilistic primality test), 188
Solovay and Strassen (probabilistic primality test), 187

quadratic sieve factoring algorithm, 167

Secure Hash (SHA), 119

Solovay and Strassen (probabilistic primality test), 187

taking square roots modulo a prime number, 199

anomalous curve, 235
associative (operation), 334
attack

chosen plaintext, 4

ciphertext only, 3

Coppersmith (on RSA with related messages), 171
exhaustive key search, 10

impersonation, 292

incidence of coincidences (of Vigenére cryptosystem), 16
known plaintext, 3

Kasiski's method (of Vigenére cryptosystem), 19
known plaintext, 3

L? (on the knapsack system), 275

Lagarias and Odlyzko, 270

microwave attack (physical attack of RSA), 180
substitution, 292

timing (physical attack of RSA), 180

Wiener (of RSA with small d), 176

authentication, 1

code, 291
from error-correcting codes, 309
from orthogonal array, 305
from projective plane, 303

matrix, 291

message authentication code, 289
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authenticator, 292
auto-correlation, 28
in-phase, 29

out-of-phase, 29

B

Baby-step Giant-step (for taking discrete logarithms), 130
basis, 392
lattice, 272
self-orthogonal, 3%4
self-orthonormal, 394
standard, 393
y-reduced (of alattice), 274
Berlekamp-Massey agorithm, 56
bi-gram, 2
binary symmetric channel, 83
bit (unit of information), 75
bit swapping algorithm, 255
block, 28
block cipher, 63
Data Encryption Standard, 67
DES, 67
IDEA, 70
RC5, 72
Triple DES, 69
bound (square root), 294
branch point, 58
buffer
look-ahead, 98
search, 98
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Cc

Caesar cipher, 9
Carmichael number, 191
chain rule for conditional entropy, 81
challengein
Fiat-Shamir protocol, 316
block cipher based identity verification protocol, 67
channel (secure), 3
characterigtic (of a field), 409
characteristic polynomial, 35
Chinese Remainder Theorem, 361
Chor-Rivest cryptosytem, 279
chosen plaintext attack, 4
cipher (see cryptosystem)
block, 63
stream, 21
cipher block chaining, 64
cipher feedback mode, 65
ciphertext, 3
ciphertext only attack, 3
code
A- (for message authentication), 292
authentication, 291
Goppa, 237
hash, 288
instantaneous, 88
message authentication, 289
prefix, 88
source, 87
uniquely decodable, 87
unb., 87
codebook mode, 63
codeword, 237
Cohen and Lenstra (deterministic primality test; version1), 193
collision resistant
strong, 288
wesak, 283
column transposition (cipher), 21
commutative (operation), 383
complete
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access structure, 322
residue system, 353
computationally secure, 287
conditional
entropy, 81
probability, 80
confidentiality, 1
congruence relation
linear, 358
quadratic, 364
congruent, 352
conjugate, 412
consistency condition (of Kolmogorov), 4
continued fraction, 369
conventional cryptosystem, 3
convergent, 373
Coppersmith's attack on RSA with related messages, 171
coprime, 346
cryptanalist, 3
active, 3
passive, 3
cryptanalysis, 1
differential (for block ciphers), 72
incidence of coincidences, 16
Kasiski's method, 19
linear (for block ciphers), 72
the method of the probable world, 11
cryptographic transformation, 2
cryptography, 1
cryptology, 1
cryptosystem
Caesar, 9
Chor-Rivest, 279
column transposition, 21
conventional, 3
Data Encryption Standard, 67
DES, 67
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over eliptic curves, 232
ElGamal public key cryptosystems, 116
secrecy scheme, 116
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signature scheme, 118
Enigma, 24
Hagelin, 22
IDEA, 70
knapsack, 268
LFSR, 32
linear feedback shift register, 32
logarithm system (key exchange), 115
McEliece (secrecy scheme), 243
Niederreiter (secrecy scheme, 261
one-time pad, 20
Playfair, 20
polyal phabetic substitution, 15
product, 21
public key, 105
Rabin (variant to RSA), 197
RC5
RSA, 72

secrecy, 150

signature, 153

signature and privacy, 155
simple substitution, 10
symmetric, 3
transposition, 21
Triple DES, 69
unconditionally secure, 84
Vernam, 20
Vigenére, 13

curve

anomalous, 235
elliptic, 213
singular, 235
supersingular, 235

cyclic group, 389
cyclotomic polynomial, 420

D

data compression, 87

Huffman, 93
Lempel-Ziv, 97
universal data compression, 97



Index 477

Data Encryption Standard, 67
deception, 293
decoding
agorithm, 237
information set, 255
decryption, 3
degree of
field element, 414
polynomial, 395
density of a knapsack, 271
dependent (linearly), 392
depth (of an orthogonal array), 305
derivative, 222
DES, 67
dictionary, 98
differential cryptanalysis (for block ciphers), 72
Diffie-Hellman key exchange protocol, 115
Diffie-Hellman key exchange protocol over elliptic curves, 232
digital signature schemes
Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppd, 120
RSA, 153
Schnorr, 120
Digital Signature Standard, 119
dimension of
linear code, 237
vector space, 393
discrete logarithm problem, 113
discrete logarithm problem over elliptic curves, 231
distance
Hamming (between codewords), 237
minimum (of acode), 237
unicity (of a cryptosystem), 80
distributive, 386
divide
integer, 343
polynomial, 396
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E

ElGamal public key cryptosystems, 116
secrecy scheme, 116
signature scheme, 118
eliptic curve, 213
encryption, 3
Enigma, 24
entropy, 76
conditional, 81
equivalence
class, 388
relation, 387
equivocation (conditional entropy), 81
error-correcting capability, 237
Euclid
agorithm (simple version), 348
algorithm (extended version), 349
person, 425
theorem of, 344
Euler
person, 426
theorem of, 356
totient function, 354
exhaustive key search, 10
expansion factor (of a visual secret sharing scheme), 333
extenson field, 410
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F

factorization algorithms

Pollard p-1, 158

Pollard-g, 161

quadratic sieve, 167

random squares method, 162
Fano plane, 297
feedback

coefficients, 33

function, 31

mode, 66

shift register, 31
Fermat

person, 428

theorem of, 357
Fibonacci numbers, 350
field, 387

extension, 410

ground, 410

sub-, 387
finite, 387
Floyd'scycle-findingagorithm, 133
function

feedback, 31

generating, 35

hash, 288

Mobius, 378

multiplicative, 357

one-way, 107

one-way function for hash functions, 288
trapdoor, 107

Fundamental Theorem of Number Theory, 347
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G

Galois

field, 387

person, 434
gap,28
Gauss

algorithm (to find a primitive element), 423

person, 439

quadratic reciprocity law, 368
ged, see greatest common divisor
generate a

group, 389

ideal, 398
generating function, 35
generator of finite field, 405
generator matrix of alinear code, 237
GF, 387
Golomb's randomness postul ates, 29
Goppa code, 237
Gram-Schmidt algorithm (for orthogonalization process), 272
greatest common divisor of

integers, 344

polynomials, 39%6
ground field, 410
group, 384

Abelian, 385

additive, 385

cyclic, 389

multiplicative, 385

sub-, 385

H

Hagelin rotor machine, 22

Hamming distance (between codewords), 237

hash code/function, 288

Hasse (theorem on the number of points on acurve), 215
homogenize, 235

Huffman agorithm (for data compression), 93



Index

481

IDEA, 70
idesl, 386
ideal secret sharing scheme, 329
identity verification protocol
based on a block cipher, 67
Fiat-Shamir, 316
Schnorr, 319
impersonation attack, 292
incidence matrix, 298
incidence of coincidences, 16
inclusion and exclusion, principle of, 381
independent (linearly), 392
index (of an orthogonal array), 305
index-calculus method (for taking discrete logarithms), 135
inequality
Kraft, 89
MacMillan, 88
information, 75
mutual, 82
rate (of a secret sharing scheme), 329
set decoding (of alinear code), 255
inner product, 393
standard, 393
in-phase autocorrelation, 29
instantaneous code, 83
integrity, 1
inverse (in genera), 384
multiplicative, 386
inversion formula of Mébius, 379
irreducible (polynomial), 396
isomorphic (of two fields), 410
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J

Jacobi
person, 445
symbol, 364
joint distribution, 80
Johansson construction of A-code from EC-code, 309

K

Kasiski's method, 19
key, 3
exhaustive search, 10
space, 3
exchange system, 114
Diffie-Hellman (modular arithmetic), 115
Diffie-Hellman over elliptic curves, 232
knapsack
cryptosystem, 268
problem, 263
known plaintext attack, 3
Kolmogorov's consistency condition, 4
Kraft inequality, 89

L

L® — algorithm (for a lattice basis reduction), 277
L3 — attack (on the knapsack system), 275
Lagarias and Odlyzko attack, 270
LaGrange interpolation formula, 324
language, 2
lattice, 271
lcm, see least common multiple
least common multiple

for integers, 345

for polynomials, 396
Legendre

person, 446

symbol, 364
Lempel-Ziv data compression technique, 97
length of

addition chain, 113

code, 237
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feedback shift register, 31
vector, 393

LFSR, 32

line (in projective plane), 295

linear
combination, 392
complexity, 49
congruence relation, 358
cryptanalysis (for block ciphers), 72
equivalence, 49
feedback shift register, 32
(sub-)space, 391

linearly
dependent, 392
independent, 392

linked list, 98

logarithm system, 115

log table, 414

look-ahead buffer, 98

M

MAC (message authentication code), 289
MacMillan inequality, 88
Markov process, 6
matrix
authentication, 291
incidence, 293
generator, 237
parity check, 241
maximal element (of an access structure), 322
message authentication code, 289
microwave attack (physical attack of RSA), 180
Miller-Rabin (probabilistic primality test), 183
minimal
characteristic polynomial, 51
distance (of acode), 237
element (of an access structure), 322
polynomial, 413
minimum distance (of a code), 237
Mdbius
function, 378
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inversion formula, 379
multiplicative inversion formula, 380
person, 447
modes of encryption of a block cipher
cipher block chaining, 64
cipher feedback mode, 65
codebook, 63
modulo, 352
monic (polynomial), 401
multiplicative
function, 357
group, 385
inverse, 386
inversion formula of Mdbius, 380
order of agroup element, 389
mutual information, 82

N

n-gram, 2
Niederreiter encryption scheme, 261
non-privileged subset of an access structure, 322
non-singular curve, 235
NP-complete problem, 244
NQR, 364
n-th root of unity, 405
primitive, 405
Nyberg-Rueppel signature scheme, 120

@)

one-time pad, 20
one-way function for
hash codes, 288
public key cryptosystem, 107
operation(s), 383
Abelian, 385
associative, 384
commutative,383
distributive, 386
order of
cyclic group, 389
element in agroup, 389
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finite field, 387
multiplicative (of a group element), 389
projective plane, 296
orthogonal, 3%
array, 305
complement, 3%
sdf-, 3%
out-of-phase autocorrelation, 29

P

parity check matrix of alinear code, 241
passive cryptanalist, 3
perfect
accessstructure, 322
authentication code, 294
secrecy, 84
period of
polynomial, 38
sequence, 28
periodic sequence, 28
plaintext, 3
source, 4
plane
Fano, 297
projective, 295
Playfair cipher, 20
PN sequence, 34
Pohlig-Hellman algorithm, 121
point (in projective plane), 295
point & infinity, 213
Pollard p-1 method for factoring integers, 158
Pollard-¢ method for factoring integers, 161
Pollard-p method for taking discretelogarithms, 131
polyalphabetic substitution, 15
polynomial, 395
characteristic, 35
cyclotomic, 420
minimal, 413
minimal characteristic, 51
monic, 401
primitive, 414
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reciprocal, 35
positive definite, 393
power series, 35
prefix code,
prime, 343
number theorem, 344
safe, 161
primality test
Cohen and Lenstra (deterministic; version1), 193
Miller-Rabin (probabilistic test), 183
Solovay and Strassen (probabilistic), 187
primitive
element, 405
n-th root of unity, 405
polynomial, 414
principal ided ring, 393
Principle of inclusion and exclusion, 381
privacy, 1
privileged subset of an access structure, 322
product cipher, 21
projective plane, 295
authenti cation code, 303
protocol, 315
Diffie-Hellman key exchange, 115
Diffie-Hellman key exchange over elliptic curves, 232
identity verification (based on ablock cipher), 67
Fiat-Shamir identity verification, 316
Schnorr's identification, 319
zero-knowledge, 315
pseudo-random, 28
public key cryptosystem, 105

Q

QR, 364

quadratic
congruence relation, 364
non-residue, 364
reciprocity law of Gauss, 363
residue, 364
Seve factoring agorithm, 167



Index 487

R

Rabin cryptosystem, 197
randomness postulates of Golomb, 29
random squares method for factoring, 162
RC5, 72
reciprocal polynomial, 35
reduced

basis (of a lattice), 274

residue system, 355
reducible (polynomial), 396
reduction process (in Huffman's algorithm), 93
redundancy (in plaintext), 79
reflexivity (of arelation), 387
relation, 387

equivalence, 387
residue

class ring, 388

complete, 353

quadratic, 364

quadratic non, 364
responsein, 355

Fiat-Shamir protocol, 316

block cipher based identity verification protocol, 67
ring, (in general), 386

principal ideal, 398

residue class, 388

sub-, 386
root of unity
RSA, 405

privacy, 150

signature, 153

signature and privacy, 155
run, 28
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S

safe prime, 161
scalar multiple of point on an dliptic curve, 229
scheme
secrecy, 106
ElGamal, 116
McEliece, 243
RSA,150
secret sharing, 322
signature (ElGamal), 118
threshold, 323
Schnorr's identification protocol, 319
search buffer, 98
secret sharing scheme, 322
ideal, 329
visual, 333
secure channel, 3
Secure Hash Algorithm, 119
security
computational, 287
unconditional, 287
self-orthogona (basis), 394
self-orthonormal (basis), 394
Schnorr signature scheme, 120
Schnorr's Idenitification Protocol, 319
SHA (Secure Hash Algorithm), 119
share, 322
signature equation, 119
signature scheme, 108
Digital Signature Standard, 119
ElGamal, 118
Nyberg-Rueppel, 120
RSA, 153
Schnorr, 120
simple substitution, 10
singular
curve, 235
point, 235
sliding window, 98
smooth number, 135



Index

489

Solovay and Strassen probabilistic primality test, 187
source (of plaintext), 4
source coding, 87
space
linear sub-, 391
trivial, 391
vector, 391
span, 392
splitting process (in Huffman's algorithm), 93
square root (taking them modulo a prime number), 199
square root bound, 294
standard basis, 393
standard inner product, 393
state, 31
stationary, 7
stream cipher, 21
strong
collision resistant, 288
liar (for primality), 183
witness (for compositeness), 183
subfield, 3387
subgroup, 385
subring, 386
subspace (linear), 391
substitution
attack, 292
polyal phabetic, 15
smple, 10
superincreasing (sequence), 263
supersingular curve, 235
symbol
Jacohi, 364
Legendre, 364
symmetric cryptosystem, 3
symmetry (of arelation), 387
syndrome (of a received vector), 241

T

table
log, 414
Vigenére, 14
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tangent, 221
text, 2
theorem
Chinese Remainder, 361
Euclid, 344
Euler, 356
Fermat, 357
fundamental (in number theory), 347
Wedderburn, 387
threshold scheme, 323
timing attack (physical attack of RSA), 180
trace, 424
transitivity (of arelation), 387
transposition cipher, 21
trapdoor function, 107
tri-gram, 2
Triple DES, 69
trivial vectorspace, 391

u

U.D. code, 87
unconditionally secure
cryptosystem, 84
signature scheme, 287
unicity distance, 80
unique factorization theorem, 396
uniquely decodable code, 87
unit-element, 384
universal data compression, 97

\Y

vector, 391
Space, 391
Vernarn cipher, 20
Vigenére
cryptosystem, 13
table, 14
visual
secret sharing scheme, 333
threshold value, 333
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w

weak collision resistant, 288
Wedderburn
person, 451
theorem, 387
Welerstrass equation, 213
weight, 242
Wiener attack, 176
witness (in Fiat-Shamir protocol), 316

X
Xedni (method to solve the elliptic curve discrete logarithm problem), 234

Y
y-reduced basis (of alattice), 274

YA

zero element of
additive group, 385
vector space, 391
zero-divisors, 387
zero-knowledge protocol, 315
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