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Foreword

As a teenager, Greg created independently of Kolmogorov and
Solomonoff, what we call today algorithmic information theory, a sub-
ject of which he is the main architect. His 1965 paper on gedanken
experiments on automata, which he wrote when he was in high school,
is still of interest today. He was also heavily involved in IBM, where
he has worked for almost thirty years, on the development of RISC
technology.

Greg’s results are widely quoted. My favorite portrait of Greg can
be found in John Horgan’s—a writer for Scientific American—1996
book The End of Science. Greg has gotten many honors. He was a
guest of distinguished people like Prigogine, the King and Queen of
Belgium, and the Crown Prince of Japan.

Just to be brief, allow me to paraphrase Bette Davis in All About
Fve. She said, “Fasten your seat belts, it’s going to be a bumpy talk!”
Ladies and Gentlemen, Greg Chaitin! [Laughter & Applause]

CRi1sTIAN CALUDE introducing GREGORY CHAITIN at the DMTCS’96
meeting at the University of Auckland.



Preface

If a catastrophe were to suddenly threaten to destroy everything that
I've ever written, this book is what I would try to preserve! What’s
here is basic, everything else is technical details. This book is the final
version of a course on the limits of mathematics that I've given several
times. It contains transcripts of my three favorite lectures, and in these
transcripts I've tried to retain the flavor of a live performance in front
of an audience. Facing an audience gives me a special energy that I
don’t get when I'm lecturing to a typewriter!

After these three lecture transcripts, comes a lot of LISP code, and
then finally some Mathematica code.

For this course I had to invent a new LISP dialect. Unfortunately
there is no manual for my LISP, but two of the lectures explain it, and
there is a long lisp run, examples.r, that contains lots of comments
and shows every feature of the language. So I think that what’s here is
equivalent to a tutorial plus a manual.

I've also included the code for my LISP interpreter. It’s three-
hundred lines of Mathematica, and it’s in an Appendix at the end of
the book.

Unfortunately software is ephemeral, it changes out from under you,
and you have to run as fast as you can to stay in the same place! The
code in the Appendix is Mathematica Version 2 code, not the latest
version of Mathematica, which is Version 3. I also coded the interpreter
in C, and C might be replaced by Java in the not too distant future!
Since this course is now in its final form, I've decided to get out of the
race, to freeze the software.

vil
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But you can understand the basic ideas in this book by reading the
lectures without going through the LISP code. And you can read my
LISP code and examine the LISP runs without having a LISP inter-
preter. So everything essential is here in this book. Being able to run
the LISP interpreter is certainly helpful—that was the whole idea of
my course, that it should be a “hands on” computer course—but I also
gave this course a few times without computers, and that seemed to
work too, even if it wasn’t as exciting.

You can also run my LISP code in your head, which is the way that
mathematics is traditionally done. Then just think of it as a formalism,
rather than as a programming language.

I've enormously enjoyed giving this course or overviews of it, in
Maine, privately in my office, in Santa Fe and Albuquerque, in Roma-
nia on the Black Sea, in Abisko and Rovaniemi on the Arctic Circle,
and in Helsinki, Copenhagen and Auckland. It was tremendous fun,
and I'm very, very grateful for these invitations—they stimulated me to
work through the ideas and produce many, many versions of the soft-
ware. So I want to thank George Markowsky, John Casti, Cris Calude,
Walter Meyerstein, Bernard Moret, Ed Angel, Veikko Keridnen, Gau-
tam Dasgupta, Tor Ngrretranders and Anders Karlqvist.

I must also thank the Santa Fe Institute, which I have had the
pleasure of visiting regularly. Two of the chapters in this book are
lectures that I gave during those visits. And I still remember solving
some of the key problems one sleepless night at John and Vivien Casti’s
friendly home.

And none of this could have happened without IBM, which has sup-
ported my research for three decades. In particular, I'm grateful to my
current management chain, Lee Nackman and Ambuj Goyal, for making
it possible for me to finish this book. And I admire the very bright and
determined participants in my courses, brave pioneers! “Merci beau-
coup” and “Tusind tak,” everyone! Final thanks to Hans-Christian
Reichel for the frontispiece photograph he took in the University of Vi-
enna, classroom where Godel lectured.

GREGORY CHAITIN, April 1997
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“He thought he had THE TRUTH!”
GWEN, the literary agent in
Norman Chaitin’s play Off Broadway.



RANDOMNESS IN
ARITHMETIC AND THE
DECLINE AND FALL OF
REDUCTIONISM IN
PURE MATHEMATICS

Bulletin of the European Association for Theoreti-
cal Computer Science No. 50 (June 1993), pp. 314—
328

G. J. Chaitin, chaitin@Qwatson.ibm.com

Lecture given Thursday 22 October 1992 at a Mathematics — Computer
Science Colloquium at the University of New Mezico. The lecture was
videotaped; this is an edited transcript.

1. Hilbert on the axiomatic method
Last month I was a speaker at a symposium on reductionism at Cam-

bridge University where Turing did his work. I'd like to repeat the talk
I gave there and explain how my work continues and extends Turing’s.

1



2 G. J. Chaitin

Two previous speakers had said bad things about David Hilbert. So I
started by saying that in spite of what you might have heard in some
of the previous lectures, Hilbert was not a twit!

Hilbert’s idea is the culmination of two thousand years of math-
ematical tradition going back to Euclid’s axiomatic treatment of ge-
ometry, going back to Leibniz’s dream of a symbolic logic and Russell
and Whitehead’s monumental Principia Mathematica. Hilbert’s dream
was to once and for all clarify the methods of mathematical reasoning.
Hilbert wanted to formulate a formal axiomatic system which would
encompass all of mathematics.

Formal Axiomatic System
—
—

—

Hilbert emphasized a number of key properties that such a formal
axiomatic system should have. It’s like a computer programming lan-
guage. It’s a precise statement about the methods of reasoning, the
postulates and the methods of inference that we accept as mathemati-
cians. Furthermore Hilbert stipulated that the formal axiomatic system
encompassing all of mathematics that he wanted to construct should
be “consistent” and it should be “complete.”

Formal Axiomatic System
—— consistent

—— complete

N

Consistent means that you shouldn’t be able to prove an assertion
and the contrary of the assertion.

Formal Axiomatic System
—— consistent A A

—— complete

N

You shouldn’t be able to prove A and not A. That would be very
embarrassing.
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Complete means that if you make a meaningful assertion you should
be able to settle it one way or the other. It means that either A or not
A should be a theorem, should be provable from the axioms using the
rules of inference in the formal axiomatic system.

Formal Axiomatic System
—— consistent 4 - A

—— complete A - A

N

Consider a meaningful assertion A and its contrary not A. Exactly
one of the two should be provable if the formal axiomatic system is
consistent and complete.

A formal axiomatic system is like a programming language. There’s
an alphabet and rules of grammar, in other words, a formal syntax. It’s
a kind of thing that we are familiar with now. Look back at Russell
and Whitehead’s three enormous volumes full of symbols and you’ll feel
you're looking at a large computer program in some incomprehensible
programming language.

Now there’s a very surprising fact. Consistent and complete means
only truth and all the truth. They seem like reasonable requirements.
There’s a funny consequence, though, having to do with something
called the decision problem. In German it’s the Entscheidungsproblem.

Formal Axiomatic System
—— consistent A A

— complete A - A

—— decision problem

Hilbert ascribed a great deal of importance to the decision problem.

HILBERT

Formal Axiomatic System
— consistent A A

— complete A ~A

—— decision problem

Solving the decision problem for a formal axiomatic system is giving
an algorithm that enables you to decide whether any given meaningful
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assertion is a theorem or not. A solution of the decision problem is
called a decision procedure.

HILBERT

Formal Axiomatic System
—— consistent A - A

—— complete A - A

—— decision procedure

This sounds weird. The formal axiomatic system that Hilbert
wanted to construct would have included all of mathematics: elemen-
tary arithmetic, calculus, algebra, everything. If there’s a decision pro-
cedure, then mathematicians are out of work. This algorithm, this
mechanical procedure, can check whether something is a theorem or
not, can check whether it’s true or not. So to require that there be a
decision procedure for this formal axiomatic system sounds like you're
asking for a lot.

However it’s very easy to see that if it’s consistent and it’s complete
that implies that there must be a decision procedure. Here’s how you do
it. You have a formal language with a finite alphabet and a grammar.
And Hilbert emphasized that the whole point of a formal axiomatic sys-
tem is that there must be a mechanical procedure for checking whether
a purported proof is correct or not, whether it obeys the rules or not.
That’s the notion that mathematical truth should be objective so that
everyone can agree whether a proof follows the rules or not.

So if that’s the case you run through all possible proofs in size order,
and look at all sequences of symbols from the alphabet one character
long, two, three, four, a thousand, a thousand and one... a hundred
thousand characters long. You apply the mechanical procedure which
is the essence of the formal axiomatic system, to check whether each
proof is valid. Most of the time, of course, it’ll be nonsense, it’ll be
ungrammatical. But you’ll eventually find every possible proof. It’s
like a million monkeys typing away. You'll find every possible proof,
though only in principle of course. The number grows exponentially
and this is something that you couldn’t do in practice. You’d never get
to proofs that are one page long.

But in principle you could run through all possible proofs, check
which ones are valid, see what they prove, and that way you can sys-
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tematically find all theorems. In other words, there is an algorithm,
a mechanical procedure, for generating one by one every theorem that
can be demonstrated in a formal axiomatic system. So if for every
meaningful assertion within the system, either the assertion is a the-
orem or its contrary is a theorem, only one of them, then you get a
decision procedure. To see whether an assertion is a theorem or not
you just run through all possible proofs until you find the assertion
coming out as a theorem or you prove the contrary assertion.

So it seems that Hilbert actually believed that he was going to solve
once and for all, all mathematical problems. It sounds amazing, but
apparently he did. He believed that he would be able to set down a
consistent and complete formal axiomatic system for all of mathematics
and from it obtain a decision procedure for all of mathematics. This is
just following the formal, axiomatic tradition in mathematics.

But I'm sure he didn’t think that it would be a practical decision
procedure. The one I've outlined would only work in principle. It’s
exponentially slow, it’s terribly slow! Totally impractical. But the idea
was that if all mathematicians could agree whether a proof is correct
and be consistent and complete, in principle that would give a decision
procedure for automatically solving any mathematical problem. This
was Hilbert’s magnificent dream, and it was to be the culmination of
Fuclid and Leibniz, and Boole and Peano, and Russell and Whitehead.

Of course the only problem with this inspiring project is that it
turned out to be impossible!

2. Godel, Turing and Cantor’s diagonal
argument

Hilbert is indeed inspiring. His famous lecture in the year 1900 is a
call to arms to mathematicians to solve a list of twenty-three difficult
problems. As a young kid becoming a mathematician you read that list
of twenty-three problems and Hilbert is saying that there is no limit to
what mathematicians can do. We can solve a problem if we are clever
enough and work at it long enough. He didn’t believe that in principle
there was any limit to what mathematics could achieve.
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I think this is very inspiring. So did John von Neumann. When he
was a young man he tried to carry through Hilbert’s ambitious program.
Because Hilbert couldn’t quite get it all to work, in fact he started off
just with elementary number theory, 1, 2, 3, 4, 5, ..., not even with
real numbers at first.

And then in 1931 to everyone’s great surprise (including von Neu-
mann’s), Gédel showed that it was impossible, that it couldn’t be done,
as I'm sure you all know.

Godel 1931

This was the.opposite of what everyone had expected. Von Neu-
mann said it never occurred to him that Hilbert’s program couldn’t be
carried out. Von Neumann admired Go6del enormously, and helped him
to get a permanent position at the Institute for Advanced Study.

What Godel showed was the following. Suppose that you have a
formal axiomatic system dealing with elementary number theory, with
1, 2, 3, 4, 5 and addition and multiplication. And we’ll assume that it’s
consistent, which is a minimum requirement—if you can prove false re-
sults it’s really pretty bad. What Godel showed was that if you assume
that it’s consistent, then you can show that it’s incomplete. That was
Godel’s result, and the proof is very clever and involves self-reference.
Godel was able to construct an assertion about the whole numbers that
says of itself that it’s unprovable. This was a tremendous shock. Gédel
has to be admired for his intellectual imagination; everyone else thought
that Hilbert was right. \

However I think that Turing’s 1936 approach is better.

Godel 1931
Turing 1936

Godel’s 1931 proof is very ingenious, it’s a real tour de force. I have to
confess that when I was a kid trying to understand it, I could read it
and follow it step by step but somehow I couldn’t ever really feel that
I was grasping it. Now Turing had a completely different approach.

Turing’s approach I think it’s fair to say is in some ways more
fundamental. In fact, Turing did more than Godel. Turing not only
got as a corollary Godel’s result, he showed that there could be no
decision procedure.
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You see, if you assume that you have a formal axiomatic system
for arithmetic and it’s consistent, from Godel you know that it can’t
be complete, but there still might be a decision procedure. There still
might be a mechanical procedure which would enable you to decide if a
given assertion 1s true or not. That was left open by Godel, but Turing
settled it. The fact that there cannot be a decision procedure is more
fundamental and you get incompleteness as a corollary.

How did Turing do it? I want to tell you how he did it because
that’s the springboard for my own work. The way he did it, and I'm
sure all of you have heard about it, has to do with something called the
halting problem. In fact if you go back to Turing’s 1936 paper you will
not find the words “halting problem.” But the idea is certainly there.

People also forget that Turing was talking about “computable num-
bers.” The title of his paper is “On computable numbers, with an ap-
plication to the Entscheidungsproblem.” Everyone remembers that the
halting problem is unsolvable and that comes from that paper, but not
as many people remember that Turing was talking about computable
real numbers. My work deals with computable and dramatically un-
computable real numbers. So I'd like to refresh your memory how
Turing’s argument goes.

Turing’s argument is really what destroys Hilbert’s dream, and it’s
a simple argument. It's just Cantor’s diagonal procedure (for those of
you who know what that is) applied to the computable real numbers.
That’s it, that’s the whole idea in a nutshell, and it’s enough to show
that Hilbert's dream, the culmination of two thousand years of what
mathematicians thought mathematics was about, is wrong. So Turing’s
work is tremendously deep.

What is Turing’s argument? A real number, you know 3.1415926 - - -,
is a length measured with arbitrary precision, with an infinite number of
digits. And a computable real number said Turing is one for which there
1s a computer program or algorithm for calculating the digits one by
one. For example, there are programs for 7, and there are algorithms
for solutions of algebraic equations with integer coeflicients. In fact
most of the numbers that you actually find in analysis are computable.
However they're the exception, if you know set theory, because the
computable reals are denumerable and the reals are nondenumerable
(you don’t have to know what that means). That’s the essence of
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Turing’s idea.

The idea is this. You list all possible computer programs. At that
time there were no computer programs, and Turing had to invent the
Turing machine, which was a tremendous step forward. But now you
just say, imagine writing a list with every possible computer program.

! Godel 1931
D2 Turing 1936
D3

DPa

Ds

Ds

If you consider computer programs to be in binary, then it’s natural
to think of a computer program as a natural number. And next to
each computer program, the first one, the second one, the third one,
write out the real number that it computes if it computes a real (it may
not). But if it prints out an infinite number of digits, write them out.
So maybe it’s 3.1415926 and here you have another and another and

another:
p1 3.1415926 - - - Godel 1931

P Turing 1936
D3
DPa
Ds
Ds

So you make this list. Maybe some of these programs don’t print
out an infinite number of digits, because they’re programs that halt or
that have an error in them and explode. But then there’ll just be a
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blank line in the list.

p1 3.1415926 - - - Gaodel 1931
D2 - Turing 1936
D3
P4
Ds
Ds

I1t’s not really important—Iet’s forget about this possibility.

Following Cantor, Turing says go down the diagonal and look at
the first digit of the first number, the second digit of the second, the
third. ..

P — -dAdlzdldedwdle e Godel 1931
P2 —.da1daedazdasdrsdys - -+ Turing 1936
D3 _-d31d32d_3§d34d35d36 T

b — -d41d42d43%d45d46 T

Ps

Ps — -d61d62d63d64d65@@' e

Well actually it’s the digits after the decimal point. So it’s the
first digit after the decimal point of the the first number, the second
digit after the decimal point of the second, the third digit of the third
number, the fourth digit of the fourth, the fifth digit of the fifth. And
it doesn’t matter if the fifth program doesn’t put out a fifth digit, it
really doesn’t matter.

What you do is you change these digits. Make them different.
Change every digit on the diagonal. Put these changed digits together
into a new number with a decimal point in front, a new real num-
ber. That’s Cantor’s diagonal procedure. So you have a digit which
you choose to be different from the first digit of the first number, the
second digit of the second, the third of the third, and you put these
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together into one number.

P —.dudiadizdiadsdie - - - Godel 1931
P2 —.dadyadyzdrydasdae - - - Turing 1936
Y& —-d31d32%d34d35d36 <o

Ps — .d41d42d43d_41d45d46 co

Ds

Pe —.de1 d62d63d64d65%' o

. #dll ?éd22 ?édSS ?éd44 ?éd55 ?édﬁﬁ T

This new number cannot be in the list because of the way it was
constructed. Therefore it’s an uncomputable real number. How does
Turing go on from here to the halting problem? Well, just ask yourself
why can’t you compute it? I've explained how to get this number and
it looks like you could almost do it. To compute the Nth digit of this
number, you get the Nth computer program (you can certainly do that)
and then you start it running until it puts out an Nth digit, and at
that point you change it. Well what’s the problem? That sounds easy.

The problem is, what happens if the Nth computer program never
puts out an Nth digit, and you sit there waiting? And that’s the halting
problem—you cannot decide whether the Nth computer program will
ever put out an Nth digit! This is how Turing got the unsolvability of
the halting problem. Because if you could solve the halting problem,
then you could decide if the Nth computer program ever puts out an
Nth digit. And if you could do that then you could actually carry out
Cantor’s diagonal procedure and compute a real number which has to
differ from any computable real. That’s Turing’s original argument.

Why does this explode Hilbert’s dream? What has Turing proved?
That there is no algorithm, no mechanical procedure, which will decide
if the Nth computer program ever outputs an Nth digit. Thus there
can be no algorithm which will decide if a computer program ever halts
(finding the Nth digit put out by the Nth program is a special case).
Well, what Hilbert wanted was a formal axiomatic system from which
all mathematical truth should follow, only mathematical truth, and
all mathematical truth. If Hilbert could do that, it would give us a
mechanical procedure to decide if a computer program will ever halt.
Why?
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You just run through all possible proofs until you either find a proof
that the program halts or you find a proof that it never halts. So if
Hilbert’s dream of a finite set of axioms from which all of mathematical
truth should follow were possible, then by running through all possible
proofs checking which ones are correct, you would be able to decide if
any computer program halts. In principle you could. But you can’t by
Turing’s very simple argument which is just Cantor’s diagonal argument
applied to the computable reals. That’s how simple it is!

Godel’s proof is ingenious and difficult. Turing’s argument is so
fundamental, so deep, that everything seems natural and inevitable.
But of course he’s building on Gédel’s work.

3. The halting probability and algorithmic
randomness

The reason I talked to you about Turing and computable reals is that
I'm going to use a different procedure to construct an uncomputable
real, a much more uncomputable real than Turing does.

P —.dudiadizdisdisdie - - Godel 1931

P2 —.dandyadrzdagdrsdas - - - Tuaring 1936

p3  —.ds1dsadszdasdssdse - - - uncomputable reals
DPa —.d41d42d43%d45d46 T

Ps

Ps — -d61d62d63d64d65%' e

. #dll ¢d22 #dSS ¢d44 ¢d55 #dﬁﬁ T

And that’s how we’re going to get into much worse trouble.

How do I get a much more uncomputable real? (And I’ll have to
tell you how uncomputable it is.) Well, not with Cantor’s diagonal
argument. I get this number, which I like to call Q, like this:

= Z 9-lpl

p halts
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This is just the halting probability. It’s sort of a mathematical pun.
Turing’s fundamental result is that the halting problem is unsolvable—
there is no algorithm that’ll settle the halting problem. My fundamental
result is that the halting probability is algorithmically irreducible or
algorithmically random.

What exactly is the halting probability? I've written down an ex-

pression for it:
0= Z 9~ Ipl

p halts

Instead of looking at individual programs and asking whether they
halt, you put all computer programs together in a bag. If you generate
a computer program at random by tossing a coin for each bit of the pro-
gram, what is the chance that the program will halt? You’re thinking
of programs as bit strings, and you generate each bit by an independent
toss of a fair coin, so if a program is N bits long, then the probability
that you get that particular program is 2=%. Any program p that halts
contributes 27/PI, two to the minus its size in bits, the number of bits
in it, to this halting probability.

By the way there’s a technical detail which is very important and
didn’t work in the early version of algorithmic information theory. You
couldn’t write this:

0= Z ol

p halts

It would give infinity. The technical detail is that no extension of a
valid program is a valid program. Then this sum

Z 9-lpl

p halts

turns out to be between zero and one. Otherwise it turns out to be
infinity. It only took ten years until I got it right. The original 1960s
version of algorithmic information theory is wrong. One of the reasons
it’s wrong is that you can’t even define this number

0= Z ol

p halts
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In 1974 I redid algorithmic information theory with “self-delimiting”
programs and then I discovered the halting probability (2.
Okay, so this is a probability between zero and one

0<0= Y 2P <1
p halts

like all probabilities. The idea is you generate each bit of a program
by tossing a coin and ask what is the probability that it halts. This
number €2, this halting probability, is not only an uncomputable real—
Turing already knew how to do that. It is uncomputable in the worst
possible way. Let me give you some clues how uncomputable it is.

Well, one thing is it’s algorithmically incompressible. If you want
to get the first N bits of {2 out of a computer program, if you want a
computer program that will print out the first /V bits of {2 and then halt,
that computer program has to be N bits long. Essentially you're only
printing out constants that are in the program. You cannot squeeze
the first N bits of Q2. This

0<Q= Y 27P<1
p halts

is a real number, you could write it in binary. And if you want to get
out the first N bits from a computer program, essentially you just have
to put them in. The program has to be N bits long. That’s irreducible
algorithmic information. There is no concise description.

Now that’s an abstract way of saying things. Let me give a more
concrete example of how random 2 is. Emile Borel at the turn of this
century was one of the founders of probability theory.

0<0= Y 2P <1
p halts
Emile Borel

QUESTION: Can I ask a very simple question before you
get ahead?

ANSWER: Sure.

QUESTION: I can’t see why 2 should be a probability.
What if the two one-bit programs both halt? I mean, what
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if the two one-bit programs both halt and then some other
program halts. Then (2 is greater than one and not a prob-
ability.

ANSWER: I told you no extension of a valid program is
a valid program.

QUESTION: Oh right, no other programs can halt.

ANSWER: The two one-bit programs would be all the
programs there are. That’s the reason this number

0<Q= Y 2P <1
p halts

can’t be defined if you think of programs in the normal way.

So here we have Emile Borel, and he talked about something he
called a normal number.

0<Q= Y 27F<1
p halts
Emile Borel — normal reals

What is a normal real number? People have calculated = out to a
billion digits, maybe two billion. One of the reasons for doing this,
besides that it’s like climbing a mountain and having the world record,
is the question of whether each digit occurs the same number of times.
It looks like the digits 0 through 9 each occur 10% of the time in the
decimal expansion of 7. It looks that way, but nobody can prove it. I
think the same is true for /2, although that’s not as popular a number
to ask this about.

Let me describe some work Borel did around the turn of the century
when he was pioneering modern probability theory. Pick a real number
in the unit interval, a real number with a decimal point in front, with
no integer part. If you pick a real number in the unit interval, Borel
showed that with probability one it’s going to be “normal.” Normal
means that when you write it in decimal each digit will occur in the limit
exactly 10% of the time, and this will also happen in any other base.
For example in binary 0 and 1 will each occur in the limit exactly 50% of
the time. Similarly with blocks of digits. This was called an absolutely
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normal real number by Borel, and he showed that with probability one
if you pick a real number at random between zero and one it’s going to
have this property. There's only one prehlem. He didn’t know whether
7 is normal, he didn’t know whether v/2 is normal. In fact, he couldn’t
exhibit a single individual example of a normal real number.

The first example of a normal real number was discovered by a friend
of Alan Turing’s at Cambridge called David Champernowne, who is still
alive and who’s a well-known economist. Turing was impressed with
him—I think he called him “Champ”—because Champ had published
this in a paper as an undergraduate. This number is known as Cham-
pernowne’s number. Let me show you Champernowne’s number.

0<Q= Y 27P<1
p halts
Emile Borel — normal reals

Champernowne
.01234567891011121314 - --99100101 - - -

It goes like this. You write down a decimal point, then you write 0,
1,2,3,4,5,6,7, 8 9, then 10, 11, 12, 13, 14 until 99, then 100, 101.
And you keep going in this funny way. This is called Champernowne’s
number and Champernowne showed that it’s normal in base ten, only
in base ten. Nobody knows if it’s normal in other bases, I think it’s still
open. In base ten though, not only will the digits 0 through 9 occur
exactly 10% of the time in the limit, but each possible block of two
digits will occur exactly 1% of the time in the limit, each block of three
digits will occur exactly .1% of the time in the limit, etc. That’s called
being normal in base ten. But nobody knows what happens in other
hases.

The reason I’'m saying all this is because it follows from the fact that
the halting probability Q2 is algorithmically irreducible information that
this

0<Q= Y 2PF<1
p halts
is normal in any base. That’s easy to prove using ideas about coding

and compressing information that go back to Shannon. So here we
finally have an example of an absolutely normal number. I don’t know
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how natural you think it is, but it is a specific real number that comes
up and is normal in the most demanding sense that Borel could think
of. Champernowne’s number couldn’t quite do that.

This number 2 is in fact random in many more senses. I would say
it this way. It cannot be distinguished from the result of independent
tosses of a fair coin. In fact this number

0<0= Y 2P <1
p halts

shows that you have total randomness and chaos and unpredictability
and lack of structure in pure mathematics! The same way that all it
took for Turing to destroy Hilbert’s dream was the diagonal argument,
you just write down this expression

0<0= Y 2P«
p halts

and this shows that there are regions of pure mathematics where rea-
soning is totally useless, where you’re up against an impenetrable wall.
This is all it takes. It’s just this halting probability.

Why do I say this? Well, let’s say you want to use axioms to prove
what the bits of this number 2 are. I've already told you that it’s
uncomputable—right?—like the number that Turing constructs using
Cantor’s diagonal argument. So we know there is no algorithm which
will compute digit by digit or bit by bit this number 2. But let’s try to
prove what individual bits are using a formal axiomatic system. What
happens?

The situation is very, very bad. It’s like this. Suppose you have a
formal axiomatic system which is N bits of formal axiomatic system
(I'll explain what this means more precisely later). It turns out that
with a formal axiomatic system of complexity N, that is, N bits in size,
you can prove what the positions and values are of at most N + ¢ bits
of Q1.

Now what do I mean by formal axiomatic system N bits in size?
Well, remember that the essence of a formal axiomatic system is a
mechanical procedure for checking whether a formal proof follows the
rules or not. It’s a computer program. Of course in Hilbert’s days there
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were no computer programs, but after Turing invented Turing machines
you could finally specify the notion of computer program exactly, and
of course now we're very familiar with it.

So the proof-checking algorithm which is the essence of any formal
axiomatic system in Hilbert’s sense is a computer program, and just
see how many bits long this computer program is.” That’s essentially
how many bits it takes to specify the rules of the game, the axioms and
postulates and the rules of inference. If that’s IV bits, then you may be
able to prove say that the first bit of (2 in binary is 0, that the second
bit is 1, that the third bit is 0, and then there might be a gap, and you
niight be able to prove that the thousandth bit is 1. But you're only
going to be able to settle IV cases if your formal axiomatic system is an
N-bit formal axiomatic system.

Let me try to explain better what this means. It means that you
can only get out as much as you put in. If you want to prove whether
an individual bit in a specific place in the binary expansion of the real
number {2 is a 0 or a 1, essentially the only way to prove that is to
take it as a hypothesis, as an axiom, as a postulate. It’s irreducible
mathematical information. That’s the key phrase that really gives the
whole idea.

Irreducible Mathematical Information
0<Q= Y 27P<1

p halts
Emile Borel — normal reals
Champernowne
.01234567891011121314 - -- 99100101 - - -

Okay, so what have we got? We have a rather simple mathematical
object that completely escapes us. (2’s bits have no structure. There is
no pattern, there is no structure that we as mathematicians can com-
prehend. If you’re interested in proving what individual bits of this
number at specific places are, whether they’re 0 or 1, reasoning is com-
pletely useless. Here mathematical reasoning is irrelevant and can get

1Technical Note: Actually, it’s best to think of the complexity of a formal ax-
iomatic system as the size in bits of the computer program that enumerates the set
of all theorems.
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nowhere. As I said before, the only way a formal axiomatic system can
get out these results is essentially just to put them in as assumptions,
which means you're not using reasoning. After all, anything can be
demonstrated by taking it as a postulate that you add to your set of
axioms. So this is a worst possible case—this is irreducible mathemat-
ical information. Here is a case where there is no structure, there are
no correlations, there is no pattern that we can perceive.

4. Randomness in arithmetic

Okay, what does this have to do with randomness in arithmetic? Now
we're going back to Godel—I skipped over him rather quickly, and now
let’s go back.

Turing says that you cannot use proofs to decide whether a program
will halt. You can’t always prove that a program will halt or not. That’s
how he destroys Hilbert’s dream of a universal mathematics. I get us
into more trouble by looking at a different kind of question, namely,
can you prove that the fifth bit of this particular real number

0<Q= ) 2P<1
p halts

is a 0 or a 1, or that the eighth bit is a 0 or a 1. But these are
strange-looking questions. Who had ever heard of the halting problem
in 19367 These are not the kind of things that mathematicians normally
worry about. We’re getting into trouble, but with questions rather far
removed from normal mathematics.

Even though you can’t have a formal axiomatic system which can
always prove whether a program halts or not, it might be good for ev-
erything else and then you could have an amended version of Hilbert’s
dream. And the same with the halting probability Q. If the halting
problem looks a little bizarre, and it certainly did in 1936, well, € is
brand new and certainly looks bizarre. Who ever heard of a halting
probability? It’s not the kind of thing that mathematicians normally
do. So what do I care about all these incompleteness results!

Well, Godel had already faced this problem with his assertion which
is true but unprovable. It’s an assertion which says of itself that it’s
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unprovable. That kind of thing also never comes up in real mathe-
matics. One of the key elements in Godel’s proof is that he managed
to construct an arithmetical assertion which says of itself that it’s
unprovable. It was getting this self-referential assertion to be in ele-
1nentary number theory which took so much cleverness.

There’s been a lot of work building on Godel’s work, showing that
problems involving computations are equivalent to arithmetical prob-
lems involving whole numbers. A number of names come to mind. Julia
Robinson, Hilary Putnam and Martin Davis did some of the important
work, and then a key result was found in 1970 by Yuri Matijasevic.
He constructed a diophantine equation, which is an algebraic equa-
tion involving only whole numbers, with a lot of variables. One of
the variables, K, is distinguished as a parameter. It’s a polynomial
equation with integer coeflicients and all of the unknowns have to be
whole numbers—that’s a diophantine equation. As I said, one of the
unknowns is a parameter. Matijasevi¢’s equation has a solution for a
particular value of the parameter K if and only if the Kth computer
program halts.

In the year 1900 Hilbert had asked for an algorithm which will de-
cide whether a diophantine equation, an algebraic equation involving
only whole numbers, has a solution. This was Hilbert’s tenth problem.
1t was tenth in his famous list of twenty-three problems. What Mati-
jasevi¢ showed in 1970 was that this is equivalent to deciding whether
an arbitrary computer program halts. So Turing’s halting problem is
exactly as hard as Hilbert’s tenth problem. It’s exactly as hard to de-
cide whether an arbitrary program will halt as to decide whether an
arbitrary algebraic equation in whole numbers has a solution. There-
fore there is no algorithm for doing that and Hilbert’s tenth problem
cannot be solved—that was Matijasevié¢’s 1970 result.

Matijasevi¢ has gone on working in this area. In particular there is
a piece of work he did in collaboration with James Jones in 1984. I can
use 1t to follow in Godel’s footsteps, to follow Godel's example. You
see, I’ve shown that there’s complete randomness, no pattern, lack of
structure, and that reasoning is completely useless, if you're interested



20 G. J. Chaitin

in the individual bits of this number

0<0= > 2P <1
p halts

Following Godel, let’s convert this into something in elementary
number theory. Because if you can get into all this trouble in elementary
number theory, that’s the bedrock. Elementary number theory, 1, 2, 3,
4, 5, addition and multiplication, that goes back to the ancient Greeks
and it’s the most solid part of all of mathematics. In set theory you're
dealing with strange objects like large cardinals, but here you’re not
even dealing with derivatives or integrals or measure, only with whole
numbers. And using the 1984 results of Jones and Matijasevi¢ I can
indeed dress up 2 arithmetically and get randomness in elementary
number theory.

What I get is an exponential diophantine equation with a param-
eter. “Exponential diophantine equation” just means that you allow
variables in the exponents. In contrast, what Matijasevi¢ used to show
that Hilbert’s tenth problem is unsolvable is just a polynomial dio-
phantine equation, which means that the exponents are always natural
number constants. I have to allow XY. It’s not known yet whether I
actually need to do this. It might be the case that I can manage with a
polynomial diophantine equation. It’s an open question, I believe that
it’s not settled yet. But for now, what I have is an exponential dio-
phantine equation with seventeen thousand variables. This equation is
two-hundred pages long and again one variable is the parameter.

This is an equation where every constant is a whole number, a
natural number, and all the variables are also natural numbers, that
is, positive integers. (Actually non-negative integers.) One of the
variables is a parameter, and you change the value of this parameter—
take it to be 1, 2, 3, 4, 5. Then you ask, does the equation have a
finite or infinite number of solutions? My equation is constructed so
that it has a finite number of solutions if a particular individual bit
of 2 is a 0, and it has an infinite number of solutions if that bit is a
1. So deciding whether my exponential diophantine equation in each
individual case has a finite or infinite number of solutions is exactly the
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same as determining what an individual bit of this

0<= Y 2P«
p halts

halting probability is. And this is completely intractable because Q is
irreducible mathematical information.

Let me emphasize the difference between this and Matijasevi¢’s work
on Hilbert’s tenth problem. Matijasevi¢ showed that there is a polyno-
mial diophantine equation with a parameter with the following prop-
erty: You vary the parameter and ask, does the equation have a so-
lution? That turns out to be equivalent to Turing’s halting problem,
and therefore escapes the power of mathematical reasoning, of formal
axiomatic reasoning.

How does this differ from what I do? I use an exponential diophan-
tine equation, which means I allow variables in the exponent. Matija-
sevi¢ only allows constant exponents. The big difference is that Hilbert
asked for an algorithm to decide if a diophantine equation has a so-
lution. The question I have to ask to get randomness in elementary
number theory, in the arithmetic of the natural numbers, is slightly
more sophisticated. Instead of asking whether there is a solution, I
ask whether there are a finite or infinite number of solutions—a more
abstract question. This difference is necessary.

My two-hundred page equation is constructed so that it has a finite
or infinite number of solutions depending on whether a particular bit
of the halting probability is a 0 or a 1. As you vary the parameter, you
get each individual bit of 2. Matijasevié’s equation is constructed so
that it has a solution if and only if a particular program ever halts. As
you vary the parameter, you get each individual computer program.

Thus even in arithmetic you can find €2’s absolute lack of structure,
¥’s randomness and irreducible mathematical information. Reasoning
is completely powerless in those areas of arithmetic. My equation shows
that this is so. As I said before, to get this equation I use ideas that
start in Godel’s original 1931 paper. But it was Jones and Matijasevic’s
1984 paper that finally gave me the tool that I needed.

So that’s why I say that there is randomness in elementary number
theory, in the arithmetic of the natural numbers. This is an impenetra-
ble stone wall, it’s a worst case. From Godel we knew that we couldn’t
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get a formal axiomatic system to be complete. We knew we were in
trouble, and Turing showed us how basic it was, but 2 is an extreme
case where reasoning fails completely.

I won’t go into the details, but let me talk in vague information-
theoretic terms. Matijasevi¢’s equation gives you N arithmetical ques-
tions with yes/no answers which turn out to be only log N bits of algo-
rithmic information. My equation gives you N arithmetical questions
with yes/no answers which are irreducible, incompressible mathemati-
cal information.

5. Experimental mathematics

Okay, let me say a little bit in the minutes I have left about what this
all means.

First of all, the connection with physics. There was a big controversy
when quantum mechanics was developed, because quantum theory is
nondeterministic. Einstein didn’t like that. He said, “God doesn’t play
dice!” But as I'm sure you all know, with chaos and nonlinear dynamics
we’ve now realized that even in classical physics we get randomness
and unpredictability. My work is in the same spirit. It shows that pure
mathematics, in fact even elementary number theory, the arithmetic
of the natural numbers, 1, 2, 3, 4, 5, is in the same boat. We get
randomness there too. So, as a newspaper headline would put it, God
not only plays dice in quantum mechanics and in classical physics, but
even in pure mathematics, even in elementary number theory. So if a
new paradigm is emerging, randomness is at the heart of it. By the
way, randomness is also at the heart of quantum field theory, as virtual
particles and Feynman path integrals (sums over all histories) show
very clearly. So my work fits in with a lot of work in physics, which is
why I often get invited to talk at physics meetings.

However the really important question isn’t physics, it’s mathemat-
ics. I've heard that Godel wrote a letter to his mother who stayed in
Europe. You know, Godel and Einstein were friends at the Institute
for Advanced Study. You'd see them walking down the street together.
Apparently Goédel wrote a letter to his mother saying that even though
Einstein’s work on physics had really had a tremendous impact on how
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people did physics, he was disappointed that his work had not had the
sanie effect on mathematicians. It hadn’t made a difference in how
mathematicians actually carried on their everyday work. So I think
that’s the key question: How should you really do mathematics?

I'm claiming I have a much stronger incompleteness result. If so
maybe it’ll be clearer whether mathematics should be done the ordinary
way. What is the ordinary way of doing mathematics? In spite of the
fact that everyone knows that any finite set of axioms is incomplete, how
do mathematicians actually work? Well suppose you have a conjecture
that you’ve been thinking about for a few weeks, and you believe it
because you've tested a large number of cases on a computer. Maybe it’s
a conjecture about the primes and for two weeks you’ve tried to prove
it. At the end of two weeks you don’t say, well obviously the reason
I haven’t been able to show this is because of Godel’s incompleteness
theorem! Let us therefore add it as a new axiom! But if you took
(:odel’s incompleteness theorem very seriously this might in fact be
the way to proceed. Mathematicians will laugh but physicists actually
behave this way.

Look at the history of physics. You start with Newtonian physics.
You cannot get Maxwell’s equations from Newtonian physics. It’s a
new domain of experience—you need new postulates to deal with it.
As for special relativity, well, special relativity is almost in Maxwell’s
equations. But Schrodinger’s equation does not come from Newtonian
physics and Maxwell’s equations. It’s a new domain of experience and
again you need new axioms. So physicists are used to the idea that when
you start experimenting at a smaller scale, or with new phenomena, you
may need new principles to understand and explain what’s going on.

Now in spite of incompleteness mathematicians don’t behave at all
like physicists do. At a subconscious level they still assume that the
small number of principles, of postulates and methods of inference, that
they learned early as mathematics students, are enough. In their hearts
they believe that if you can’t prove a result it’s your own fault. That’s
probably a good attitude to take rather than to blame someone else,
but let’s look at a question like the Riemann hypothesis. A physicist
would say that there is ample experimental evidence for the Riemann
hypothesis and would go ahead and take it as a working assumption.

What is the Riemann hypothesis? There are many unsolved ques-
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tions involving the distribution of the prime numbers that can be settled
if you assume the Riemann hypothesis. Using computers people check
these conjectures and they work beautifully. They’re neat formulas but
nobody can prove them. A lot of them follow from the Riemann hy-
pothesis. To a physicist this would be enough: It’s useful, it explains
a lot of data. Of course a physicist then has to be prepared to say
“Oh oh, I goofed!” because an experiment can subsequently contradict
a theory. This happens very often.

In particle physics you throw up theories all the time and most of
them quickly die. But mathematicians don’t like to have to backpedal.
But if you play it safe, the problem is that you may be losing out, and
I believe you are.

I think it should be obvious where I'm leading. I believe that ele-
mentary number theory and the rest of mathematics should be pursued
more in the spirit of experimental science, and that you should be will-
ing to adopt new principles. I believe that Euclid’s statement that an
axiom is a self-evident truth is a big mistake. The Schrodinger equation
certainly isn’t a self-evident truth! And the Riemann hypothesis isn’t
self-evident either, but it’s very useful.

So I believe that we mathematicians shouldn’t ignore inconiplete-
ness. It’s a safe thing to do but we’re losing out on results that we
could get. It would be as if physicists said, okay no Schrédinger equa-
tion, no Maxwell’s equations, we stick with Newton, everything must
be deduced from Newton’s laws. (Maxwell even tried it. He had a
mechanical model of an electromagnetic field. Fortunately they don’t
teach that in college!)

I proposed all this twenty years ago when I started getting these
information-theoretic incompleteness results. But independently a new
school on the philosophy of mathematics is emerging called the “quasi-
empirical” school of thought regarding the foundations of mathematics.
There’s a book of Tymoczko’s called New Directions in the Philosophy
of Mathematics (Birkhauser, Boston, 1986). It’s a good collection of
articles. Another place to look is Searching for Certainty by John Casti
(Morrow, New York, 1990) which has a good chapter on mathematics.
The last half of the chapter talks about this quasi-empirical view.

By the way, Lakatos, who was one of the people involved in this
new movement, happened to be at Cambridge at that time. He’d left
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Hungary.

The main schools of mathematical philosophy at the beginning of
this century were Russell and Whitehead’s view that logic was the ba-
sis for everything, the formalist school of Hilbert, and an “intuitionist”
constructivist school of Brouwer. Some people think that Hilbert be-
lieved that mathematics is a meaningless game played with marks of ink
on paper. Not so! He just said that to be absolutely clear and precise
what mathematics is all about, we have to specify the rules determining
whether a proof is correct so precisely that they become mechanical.
Nobody who thought that mathematics is meaningless would have been
so energetic and done such important work and been such an inspiring
leader.

Originally most mathematicians backed Hilbert. Even after Godel
and even more emphatically Turing showed that Hilbert’s dream didn’t
work, in practice mathematicians carried on as before, in Hilbert’s
spirit. Brouwer’s constructivist attitude was mostly considered a nui-
sance. As for Russell and Whitehead, they had a lot of problems getting
all of mathematics from logic. If you get all of mathematics from set
theory you discover that it’s nice to define the whole numbers in terms
of sets (von Neumann worked on this). But then it turns out that
there’s all kinds of problems with sets. You’re not making the natu-
ral numbers more solid by basing them on something which is more
problematical.

Now everything has gone topsy-turvy. It’s gone topsy-turvy, not
because of any philosophical argument, not because of Godel’s results
or Turing’s results or my own incompleteness results. It’s gone topsy-
turvy for a very simple reason—the computer!

The computer as you all know has changed the way we do every-
thing. The computer has enormously and vastly increased mathemati-
cal experience. It’s so easy to do calculations, to test many cases, to run
experiments on the computer. The computer has so vastly increased
mathematical experience, that in order to cope, people are forced to
proceed in a more pragmatic fashion. Mathematicians are proceeding
more pragmatically, more like experimental scientists do. This new ten-
dency is often called “experimental mathematics.” This phrase comes
up a lot in the field of chaos, fractals and nonlinear dynamics.

It’s often the case that when doing experiments on the computer,



26 G. J. Chaitin

numerical experiments with equations, you see that something happens,
and you conjecture a result. Of course it’s nice if you can prove it.
Especially if the proof is short. I’'m not sure that a thousand page
proof helps too much. But if it’s a short proof it’s certainly better
than not having a proof. And if you have several proofs from different
viewpoints, that’s very good.

But sometimes you can’t find a proof and you can’t wait for someone
else to find a proof, and you've got to carry on as best you can. So now
mathematicians sometimes go ahead with working hypotheses on the
basis of the results of computer experiments. Of course if it’s physicists
doing these computer experiments, then it’s certainly okay; they’ve
always relied heavily on experiments. But now even mathematicians
sometimes operate in this manner. I believe that there’s a new journal
called the Journal of Experimental Mathematics. They should’ve put
me on their editorial board, because I've been proposing this for twenty
years based on my information-theoretic ideas.

So in the end it wasn’t Godel, it wasn’t Turing, and it wasn’t my
results that are making mathematics go in an experimental mathemat-
ics direction, in a quasi-empirical direction. The reason that mathe-
maticians are changing their working habits is the computer. I think
it’s an excellent joke! (It’s also funny that of the three old schools of
mathematical philosophy, logicist, formalist, and intuitionist, the most
neglected was Brouwer, who had a constructivist attitude years before
the computer gave a tremendous impulse to constructivism.)

Of course, the mere fact that everybody’s doing something doesn’t
mean that they ought to be. The change in how people are behaving
isn’t because of Godel’s theorem or Turing’s theorems or my theorems,
it’s because of the computer. But I think that the sequence of work
that I’ve outlined does provide some theoretical justification for what
everybody’s doing anyway without worrying about the theoretical jus-
tification. And I think that the question of how we should actually
do mathematics requires at least another generation of work. That’s
basically what I wanted to say—thank you very much!
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Abstract

Call a program “elegant” if no smaller program has the same out-
put. Ile., a LISP S-expression is defined to be elegant if no smaller
S-expression has the same value. For any computational task there is
at least one elegant program, perhaps more. Nevertheless, we present
a Berry paradox proof that it s impossible to prove that any particu-
lar large program is elegant. The proof is carried out using a version
of LISP designed especially for this purpose. This establishes an ex-
tremely concrete and fundamental limitation on the power of formal
mathematical reasoning.
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New Zealand. The lecture was videotaped; this is an edited transcript.
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Introduction

Good morning, everyone! I'd like to talk about an old subject and
give it a new twist. The subject I want to talk about is from the
1930’s. It’s Godel and Turing’s incompleteness results in their two
famous papers from 1931 and 1936. I want to throw two new things
into the stew. I’'m going to use an approach more like Turing’s than
like Godel’s. So algorithm is very important the way I'll do it. But
I'm going to throw in a new thing, which is program size—I'm going
to look at the size of computer programs. And the other thing is that
I'm not going to use Turing machines or lambda calculus or recursive
function theory or fixed point theorems. I want to actually write out
programs and run them on computers using current techniques that
are used in the industry. You know, good software, 1996 vintage. So
the idea is to look at some very old ideas from the 1930’s revisiting
them using the best software technology that we have available now,
at this moment. So it’s a mixture of extremely philosophical stuff that
probably no mathematicians are interested in, because it deals with
the limits of mathematics—and on the other hand I want to make it as
practical as possible because I want to tell you about actually getting
your hands dirty programming this, and getting it to run efficiently and
fast on our current computers with current software.

To give you another hint of the difference in viewpoint, Godel’s
approach to incompleteness is “This statement is false!” And instead I
use an approach based on the Berry paradox, which is “the first positive
integer that you can’t name in a billion words”. Or even better, “the
first positive integer that this statement is too small to name”. So there
is no self-reference. Actually there is, but it’s a much weaker kind of
self-reference than Godel needs to use. Also, I'll be using LISP as my
programming language, versions of LISP that I have to invent. And a
nice thing about LISP is that I can invent a LISP and program it on
a new computer in a new programming language in about a week. So
it’s easy, it’s small enough, it’s less than a thousand lines of code to do
a LISP. So I think that’s a nice approach. So you won’t see any fixed
point theorems, you won’t see any recursive function theory or lambda
calculus—I want to actually run programs efficiently.

And I won’t need to have a statement say of itself that it’s false. For
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a statement to refer to itself you need to use some cleverness, right? I
don’t need to use cleverness. I only need to have a statement know how
big it is. That’s the only self-reference I need, in order for it to achieve
something that it’s too small to achieve. For a statement to know its
own size is easy. To put a statement within itself is impossible, right?
It doesn’t fit! But just to put the size of a program or statement within
itself is easy, because that’s going to be about log N, it’s going to be
very small compared to the object. So it’s very easy to have an object
know its own size and it takes much more cleverness to have an object
know itself completely. So this is a rather different viewpoint, it’s a
much easier self-reference than Godel’s.

Why I Love (Pure) LISP

But let me start telling you why I think LISP should be loved by mathe-
maticians. I think it’s the only computer programming language that is
mathematically respectable, because it’s the only one that I can prove
theorems about!

LISP
So why do I love LISP?! Well, the answer is, because it’s really set
theory, and all mathematicians love set theory!

Set Theory

LISP is just a set theory for computable mathematics rather than for
abstract mathematics. Of course in set theory the basic object would
be a list, say, of three objects

{4, B,C}

And as a joke one way to explain LISP is to say, well, take all the curly
braces and make them into parentheses and take the commas out and
make them blanks!

(ABC)
Syntactically that will show you what LISP is like. LISP objects are
these parenthesized expressions which can be nested to arbitrary depth.

(A4 (B C) 123)
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And objects are just separated by blanks. So this
(A (BC) 123)

is a list with three elements, first A4, second (B C), and third 123. The
second element (B C) is in turn a list with two elements. So these are
just sets of sets. The only difference between a list and a set is that
there is a first, a second, a third element, and elements can be repeated.
But otherwise this is just a computerized version of set theory. Just like
in set theory where you create everything out of sets—in fact, if you're
an extremist, you create everything out of the empty set—in LISP this

(A (B C) 123)

is everything. This is your universal substance. This is the wood out of
which you build the world! And it’s simultaneously data and programs,
they are these objects, which are called symbolic expressions (or S-
expressions). And the things you can put inside S-expressions are words
or numbers.

Also LISP is very mathematical in that you don’t think about time,
and you don’t think about executing a program and that it does things
that change the state of the world. What you think of in LISP is you
think a program is an expression and you evaluate the expression giving
you a value. But nothing happens! You don’t think of time and you
don’t think of values being assigned to variables, you don’t think of
goto’s. Instead in a LISP expression you define functions, you apply
the functions to values, and the final thing you get is a final value. So
it’s very much a mathematical notion, of expressions giving values.

Now let me give you an example of a LISP program. I can’t give
you a complete course on LISP—if I had an hour I could! Of a reduced
LISP that I've invented. So let me give you an example. Let’s take
factorial, which is a typical LISP function. By the way, for experts, my
LISP is Scheme-ish, it’s a LISP that looks a lot like Scheme, but I had
to make some changes. So let’s define factorial of V.

define (fact N)

And we'’re going to say that if N is equal to 1, then it’s going to be 1.
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if=N1 1

Otherwise it’s going to be N times factorial of N minus 1.
* N (fact - N 1)

So the final result, if we put in all the parentheses, is this.

(define (fact N)
(if (=N 1) 1
(* N (fact (- N 1)))))

So we’re just using Polish prefix notation. For example, this
(- N 1)

is N minus 1. Okay, so this program defines factorial. We’re going to
call it fact of variable N. If N is equal to 1, then factorial of NV is
1. Otherwise it’s the product of N times factorial of N minus 1. And
then to use it to get 3 factorial, you write

(fact 3)

and this gives 6 after the definition of factorial has been processed.

(fact 3) ——> 6

Now actually I don't like to write all these parentheses. LISP pro-
grammers haven’t heard about parenthesis-free Polish notation! So I
just write

define (fact N)
if=N1 1
* N (fact - N 1)

The other parentheses are understood.

Also in theory what we just did was bad, because we defined a
function in one S-expression and then we use it in another S-expression.
These are two separate S-expressions. That means that the first S-
expression is having an effect, it’s leaving a definition. You don’t want
to do that in LISP. In theoretical LISP, an expression has to define
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within itself all the functions that it needs, and then use them. Because
there is no lasting effect of evaluating a LISP expression. But you can
define a function locally and then use it. In fact, the only way to get
a value to be assigned to a variable is to have it be the argument of a
function which binds the value to the variable within the appropriate
scope. Anyway, I don’t want to get into all the details. Let me just
show you the correct one-expression version of our factorial example.
It uses let-be-in, which is a three-argument function.

let (fact N) if = N1 1 * N (fact - N 1)
(fact 3)

This expands to

(’lambda (fact) (fact 3)
>lambda (N) if = N1 1 * N (fact - N 1)
)

or

(¢’ (lambda (fact) (fact 3)) )
(> (lambda (N) (if (=N 1) 1 (x N (fact (- N 1))))) )
)

whose value is 6. Here ’ is the one-argument quote function, meaning
no evaluation occurs, and triples of the form

(lambda (arguments) body)

are function definitions.

And if T add that car gives you the first element of a list, that cdr
gives you the rest of the list, and that cons puts them back together,
then you know essentially all of LISP! Oh, I forgot to say that nil
is another name for the empty list (). And there’s a way to test if
something has elements or not, that’s atom.

Okay, that’s all the time I can devote to LISP. But I think that you
can see from these examples that LISP is very pretty, it’s very elegant,
it’s very mathematical, and it’s not at all like a normal programming
language.
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Proving LISP Programs Are Elegant

Now let me give you an incompleteness result. I think it’s a very dra-
matic incompleteness result, if you like LISP, that you can do with
LISP. I emphasized that LISP programs are expressions. Now let’s
define an elegant LISP expression

Elegant LISP Expression

to be a LISP expression with the property that no smaller expression
has the same value. So now we’re looking at the size of LISP expres-
sious. LISP expressions are written out in characters, and you just
take some standard format for writing them out with blanks in the
right places, and you ask, “How big is it?” You measure the size in
characters. You count the blanks too, you have some standard format,
and this gives a natural way to define the size of a LISP expression. And
I'll say that a LISP expression is elegant if no smaller expression gives
the same value that it does. Okay? By the way, the value of a LISP
expression is also a LISP expression. Everything is an S-expression in
this world.

So clearly for any LISP object there is a most elegant expression
that gives it as its value, and there may even be several. But what if
you want to prove that the LISP expression that you've got is elegant,
that no smaller expression has the same value? Well, the surprising
answer is that you can’t prove that!

Now I'm going to prove this incompleteness result. I'll start with
a hand-waving proof, and then I'll tell you the trouble you get into if
you try to program out the proof.

The hand-waving proof goes like this. You start like the incomplete-
ness result in Turing’s original paper in 1936. You say, let’s assume you
have a set of axioms and a set of rules of inference which are so formal,
so well specified, that there’s an algorithm to check if a proof is valid.
Then you run through all possible proofs in size order, check which ones
are correct, and you get one by one all the theorems—they’re in order
of the size of the proofs. So you're given this formal axiomatic system

FAS
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and you start running through all possible proofs and getting all the
theorems.
FAS — Theorems

And T'll simplify the formal axiomatic system because I’'m only inter-
ested in theorems which give elegant LISP expressions, where you prove
that a particular S-expression is elegant. So I'll think of a formal ax-
iomatic system as a computation which starts running and every now
and then it throws out a LISP expression that it claims it’s demon-
strated is elegant. So it’s just a black box that every now and then
outputs an expression that’s elegant, that it’s demonstrated is elegant.
Okay?

So you start doing this and you just keep going until you find a
LISP expression that’s elegant, that you’ve proved is elegant, but it’s
much more complicated than the formal axiomatic system. And then
I'll show you that you get into trouble, you get a contradiction.

Oh, I forgot to say that at this point the formal axiomatic system
is in the form of a LISP expression.

FAS (S-expression) — Theorems

I hadn’t told you this before. LISP is a nice language for doing things
like formal axiomatic systems, because it’s a symbolic language, but I'll
have to explain in more detail later how this works.

Now let me start over and be more precise. The way this proof goes,
is you're going to have a large LISP expression which somewhere in it
is going to have the formal axiomatic system, contained within it.

( (formal axiomatic system) )

The proof of this incompleteness result consists of exhibiting this large
LISP expression which in fact is going to be exactly 410 characters of
LISP bigger than the formal axiomatic system that it contains. So you
put the formal axiomatic system that you want to show has limitations
in the right place in this big expression. And there are 410 additional
characters of LISP programming that I wrap around the formal ax-
iomatic system. What are these 410 additional characters for?

( 410 characters (formal axiomatic system) )
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What this large LISP expression does, is it starts running the formal
axiomatic system, getting the theorems that it produces, which are
elegant LISP expressions, until it finds an elegant LISP expression that
is larger than it is. How does this large LISP expression know its
own size? It gets its own size by adding 410 to the size of the formal
axiomatic system that it was given; 410 is just a constant embedded in
the large expression. So the large LISP expression

( 410 characters (formal axiomatic system) )

takes the formal axiomatic system and determines its size (we provide
a built-in function for doing that), adds 410 characters to that, which
happens to be the number of characters in the wrapping for the formal
axiomatic system, and at that point this expression

( 410 characters (formal axiomatic system) )

knows its own size exactly. Then it starts running the formal axiomatic
system looking for the first elegant LISP expression that is larger than
it is. Once it finds this elegant LISP expression, it runs it to get the
value of the elegant expression, and then it returns this value as its own
final value. So the value of this big LISP expression

( 410 characters (formal axiomatic system) )

is the same as the value of an elegant LISP expression which is larger
than it is. But that’s impossible! This contradicts the definition of

elegance, because this
( 410 characters (formal axiomatic system) )

large LISP expression is at least one character too small to produce
that value.

In other words, we have a LISP expression which is 410 characters
larger than the formal axiomatic system that it contains. It’s given
a formal axiomatic system, it measures its size and adds 410 to that,
which happens to be the right way to calculate the exact size of the
entire LISP expression. Then it starts running the formal axiomatic
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system searching for a proof that some LISP expression is elegant that’s
larger than this

( 410 characters (formal axiomatic system) )

whole thing is. And once it finds this elegant LISP expression, it runs
it, and produces as value of this

( 410 characters (formal axiomatic system) )
expression the value of that elegant LISP expression. But this
( 410 characters (formal axiomatic system) )

is too small an expression to produce that value! That’s the whole
point! So either the formal axiomatic system was lying, and produced
a false theorem, or in fact this

( 410 characters (formal axiomatic system) )

won’t work, because it will never find the elegant LISP expression that
it’s searching for, it will never find an elegant LISP expression larger
than it is, it will never find an elegant LISP expression that’s more than
410 characters bigger than the formal axiomatic system that it’s using.

So we've gotten an upper bound on the size of provably elegant LISP
expressions. The upper bound is this: A formal axiomatic system whose
LISP complexity is N cannot prove that a LISP expression is elegant if
the expression’s size is greater than N + 410. So at most finitely many
LISP expressions can be shown to be elegant.

That’s great, but I should emphasize that this overview of the proof
sweeps a lot of programming problems under the rug! To get the 410
characters of LISP that I need to make the above proof work, I have to
add some things to normal LISP. So now I'm going to tell you about
these programming problems.

What We Have to Add to LISP

As I said, there are some problems programming all this. Normal LISP
really isn’t good enough. But any other programming language would
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be even worse! I had a version of this proof in 1970, and in words
you can explain the idea; it’s very simple. But let’s say vou want to
actually program this out and run it on a computer, on an example,
and check that it works. Well the answer is, no existing programming
language is really adequate for the task. And I really want to run this
on a computer. I'm a computer programmer, I earned a living as a
computer programmer for many years! I think LISP is almost the right
language. But it’s still not quite right. So I had to take the heart of
a normal LISP, pure LISP, LISP with no side-effects, and add a few
things to it, to make things work.

The main thing that I added to LISP is this. Normal LISP is based
on a function called eval.

eval

Eval is the LISP universal Turing machine, it’s the LISP interpreter.
LISP is not a compiled language, it’s an interpreted language. So the
LISP interpreter is always present while a LISP program is running.
And since you have the interpreter there all the time, a LISP program
can create a LISP program and then immediately run it. In a normal
programming language, you have to compile a program before you can
run it. But in LISP it works seamlessly, you just use eval.

So the LISP universal Turing machine is called eval, and it’s built
in, it’s a primitive function that’s provided for free. You could program
it out in LISP, just like Turing programmed out his universal Turing
machine. But in fact you’re just given this

eval

as a built-in function. Unfortunately, this is not the right built-in func-
tion for my incompleteness proof. I need a time-limited eval that I call
try.

try

Recall that in LISP notation
(f xy)

means just what

f(z,y)
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means in normal mathematical notation, it’s the function f applied to
the arguments z and y. Now let me explain what try does. Here’s how
you use try. You give it a time limit and a LISP expression.

(try time-limit lisp-expression)

It’s a way to try to evaluate the given expression for a limited amount
of time, just in case the LISP expression goes on forever and never
returns a final value.

Why do I need this? Well, in my proof I've got a formal axiomatic
system, and it goes on forever producing theorems, it never stops. So
eval would be no good. If somebody gives you a formal axiomatic
system and you run it using eval, you never get anything back, it just
goes on forever. So what I need is a time-limited eval, a way to run
the formal axiomatic system for a certain amount of time and see which
theorems show up before the time runs out. And then I’'m going to loop
and run the formal axiomatic system for more and more time, until I
find the theorem that I'm looking for.

If you read the source code for a LISP interpreter, in a low-level
language like C or, God forbid, machine language, well, it’s just eval,
that’s all the interpreter is. Eval is constantly calling itself recursively.
My interpreter isn’t based on eval, it’s based on try instead. Try plays
the same role that eval does in a normal LISP interpreter.

So we have a formal axiomatic system, and we try running it like
this

(try time-limit formal-axiomatic-system)

and then we gradually increase the time limit while we examine the
theorems produced by the formal axiomatic system. How does try
give us the information that we need to do this? More generally, what
is the value of the following try?

(try time-limit lisp-expression)

Try always returns a value, it never gets stuck in an infinite loop. In
fact, try always returns a triple of the following form

(success/failure value/out-of-time captured-intermediate-results)
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If we’re trying a formal axiomatic system, this triple will be
(failure out-of-time theorems)

Success means that the try was a success because the evaluation
completed. Failure means that the evaluation did not complete. If the
try was a success, then the second element will be the value of the LISP
expression that was being evaluated. If not, it will indicate here that
the evaluation ran out of time. And the third element will always be
a list containing all the output, all the intermediate results, produced
during the evaluation. In the case of a formal axiomatic system this
will be a list of theorems. In fact, with the formal axiomatic systems
that we considered before, it will be a list of elegant LISP expressions.

So try provides a way of handling infinite computations that output
intermediate results instead of having a final value. It’s the way that
I deal with formal axiomatic systems in LISP. Try captures all the
intermediate results, it gives us all the theorems. And the 410-character
wrapping in my proof that you can’t prove that large S-expressions are
elegant uses try to run the formal axiomatic system for longer and
longer amounts of time, until it finds an elegant LISP expression that’s
bigger than the formal axiomatic system and its wrapping. If such an
elegant LISP expression is found, then it uses eval, which is just a try
with no time bound, to get the value of the elegant LISP expression.
That’s the final value that

( 410 characters (formal axiomatic system) )

returns, and that’s how we get the contradiction that proves my incom-
pleteness theorem!

Okay, this is straightforward. It’s a simple proof. The idea is sim-
ple, but it took me a quarter of a century to do the programming! It
wasn’t easy to come up with the LISP expression that proves this in-
completeness result. But now that I've done the work, we're rewarded
with a very sharp incompleteness result. To prove that an N-character
LISP expression is elegant you need a formal axiomatic system whose
LISP complexity is at least N —410. Before, all we had here was N —c,
not N — 410, and we had no idea how big ¢ might be.
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Discussion

So this is fairly straightforward, it’s a very simple proof! And I have two
claims about this piece of work that I want to discuss with you. First of
all, I claim that this is a very fundamental incompleteness result!
Secondly, I'm going to try to convince you that LISP is beautiful!

Why is this a very fundamental incompleteness result? The game
in incompleteness results i1s to try to state the most natural problem,
and then show that you can’t do it, to shock people! You want to
shock people as much as possible! Now there are many ways to shock
people—this is the best that I can do. What’s so shocking here? Well,
the notion of an elegant LISP expression is very straightforward. There
are lots of them out there! An infinity of them! But you can only prove
that finitely many LISP expressions are elegant, unless you change the
rules of the game by changing the formal axiomatic system. And you
can’t prove that a LISP expression is elegant if it’s more than 410
characters bigger than the LISP implementation of the axioms and
rules of inference that you’re using to prove that LISP expressions are
elegant.

I hope that computer scientists will find this shocking. After all,
LISP expressions are very natural objects. Although the notion of
an elegant LISP expression has no practical significance, it’s not too
farfetched, and it has a straightforward mathematical definition.

Of course, computer programmers don’t usually want an elegant
program, they want a program that works, that they can get running
as fast as possible. Their boss wants the programs to be understand-
able in case a programmer quits and gets a better job elsewhere. And
sometimes elegant programs are cryptic and hard to understand. Nev-
ertheless, as a sport programmers sometimes try to out-do each other in
the compact cleverness of their programs. The notion of elegance is not
entirely foreign to the spirit, to the ethos of computer programming, to
computer programming as a sport or as an art. Even though this may
not be the way that a company that pays programmers wants them to
do things!

And another good thing about this incompleteness result is that it’s
easy enough to understand what it is that you can’t do, that it may be
interesting that you can’t do it!
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Now another thing that’s interesting about this is that in 1970 I
had essentially this proof. In words you can explain it very easily. The
novelty here is that I’ve taken the trouble to actually program this out
on a real computer in a real computer programming language. And in
spite of the fact that the ideas are simple, one could never really do this
before. So the other message that I have for you theoreticians is that
LISP, or some version of it, because I had to invent one, LISP really is
beautiful from a mathematical point of view. I view LISP as the set
theory of computational mathematics. And if I were in a university,
which I’'m not, and I wanted to give a first course in theoretical com-
puter science, this theorem about elegant LISP expressions would be
the very first thing that I would give the students. In fact, [ would as-
sume that the students knew no computer programming at all. T would
give them LISP, a toy version, an elegant version, the heart of LISP,
as their first programming language. And then I would hit them over
the head with this incompleteness result! That would be my approach.
Yes?

Question. Do you think you’d get tenure?!

Answer. No! You see why I'm not at a university!

Okay, unfortunately normal LISP wasn’t quite good enough. I ad-
mit though that I made some changes just for the fun of it, because
it’s so easy to do a LISP, that every time anyone does a LISP, they
always “roll their own” version. That’s the problem with creativity!
You can’t stop it! That’s why I’ve made many, many different LISP
dialects. But in addition to the changes that I made mostly for the fun
of it, I did have to invent a way for LISP expressions to produce an
infinite amount of output. And I had to change eval into try in order
to be able to carry out my incompleteness proof elegantly.

Now you may object that there was no reason to add try, and that
[ could have defined try in LISP, without adding any new primitive
functions to LISP. Well, that’s true, but it would be a gruesome piece
of work. Though LISP programmers do love to show that you can do
LISP in LISP, that you can program eval as a LISP function, that
LISP is powerful enough to easily express its own semantics. But why
should one program eval in LISP, when the interpreter itself is eval?!
You're doing the same work twice! So I don’t think that it is cheat-
ing to provide eval/try as a primitive function. [t’s not substantially
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more work to do my LISP built around try than to do a normal LISP
built around eval, and this makes my proof run much, much faster
than if try were programmed in LISP. So partly I do this for program-
ming convenience, partly for execution speed, and partly because I'm
trying to understand what are the right primitive functions, the right
fundamental notions, for doing metamathematics.

By the way, let me mention that I originally wrote my LISP in
Mathematica, because it’s the most powerful programming language
I know. The LISP interpreter is about three-hundred lines of Mathe-
matica code. Then I redid it in C, and it’s a thousand lines of C, and
the program is incomprehensible, which means that I'm a good C pro-
grammer! The C version of the interpreter runs a hundred times faster
than the Mathematica version, but the program is completely incom-
prehensible. You can find this software and my course on the limits
of mathematics, from which my result on elegant LISP expressions is
taken, you can find all this in my web site at

http://www.cs.auckland.ac.nz/CDMTCS/chaitin

In fact, it’s a course that I gave at Rovaniemi, Finland, and the precise
URL is

http://www.cs.auckland.ac.nz/CDMTCS/chaitin/rov.html

You can also find some of this material in my article in J. UCS, Vol. 2,
No. 5.

Okay, so this is my fantasy for a first course on theoretical computer
science, and I think that this could even work with bright high school
students. There’s very little in it that’s technical, and the toy LISP
is easier to learn than a real LISP. My goal has always been to teach
quantum mechanics, general relativity and Godel’s incompleteness the-
orem to bright high school students! So obviously, the way I would
teach such extremely bright youngsters programming would be with
LISP—that’s for theory. To actually get work done on the computer,
I would teach them Mathematica, which is what high school students
are learning in Rovaniemi!
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Algorithmic Information Theory

Okay, I've used up half my time, but this discussion of elegant LISP
expressions was actually just a warm-up exercise! This is not really the
incompleteness result that I'm most proud of. Let me tell you what else
you have to do starting in this spirit to get to my best incompleteness
result. I'll outline the rest of my Rovaniemi course.

First I should tell you that I'm not going to use LISP expression
size as my program-size complexity measure. That was simple and
casy to understand, but it’s not the right complexity measure for doing
algorithmic information theory! So the first thing I want to do is define
a new universal Turing machine.

UTM

Instead of taking in LISP expressions and putting out LISP expressions,
which we did before, now the input program will be a bit string, and
the output will be a LISP S-expression.

UTM: Bit String — LISP Expression

So this is the computer that we’re going to use to measure the size of
programs. How does this computer work? Well, the program will be a
long bit string, which the universal Turing machine will read from left
to right.

Bit String—
'The beginning of the program is going to be a LISP expression in binary,
and I use eight bits for each character.

Bit String—LISP Expression (8 bits/char)

So every program for my universal Turing machine starts with a LISP
expression telling you the other Turing machine to simulate, that’s the
idea. And LISP is a good language for expressing algorithms.

So to make a program, you take a LISP expression, and then you
convert it into a list of 0’s and 1’s, and I have a primitive function in
my LISP for doing that, and you end up with a very long bit string. It
will have eight bits for each character. And I also provide a function to
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measure the size of a LISP expression, and another for determining the
length of a list. In fact, I provide primitive functions for all the right
things so that my proofs will be easy to do!

Okay, so the universal Turing machine starts off by reading in a
LISP expression in binary, eight bits per character, and how does it
know where the LISP expression ends? Well, I’ll just put a special
character next to serve as endmarker, that’ll be the next eight bits of
the program. In UNIX there are a number of characters that people
use to indicate the ends of things, and I’ve picked one of them, the
newline character \n. In fact, my primitive function for converting a
LISP expression into a bit string automatically supplies this special
eight-bit pattern at the end.

Bit String—LISP Expression, NL

So there’s this special character and when you get to it you know that
you’ve finished reading the LISP expression.

After it finishes reading the LISP expression at the beginning of
the bit string, the universal Turing machine starts running it, it starts
evaluating the LISP expression. Think of this as the program, and as
data we’re going to give it the binary program for the Turing machine
that’s being simulated.

Bit String—LISP Expression, NL, Data

How does the LISP expression that’s being evaluated get access to
its binary data? Access is tightly controlled. Basically, the only way
to access the data is by using a primitive function (with no arguments)
that returns the next bit of the binary data. And it’s very, very im-
portant that this primitive function can only return a 0 or a 1, but
it cannot return an end of file indication. If you run out of data, the
program aborts! This forces the program to be self-delimiting, which
means that it has to indicate within itself how far out it goes. In other
words, the initial LISP expression has to decide by itself how much data
to read. For example, one simple convention is to double each bit of
the binary data and then use a pair of unequal bits as an endmarker.
But there are much more clever schemes for packaging binary data.
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And if the LISP expression doesn’t abort because it requested data
that wasn’t there, then the final value that it returns will be the fi-
nal output produced by my new universal Turing machine. There may
also be additional, intermediate output, which will also be LISP S-
expressions. (The intermediate output is produced by a special primi-
tive function that’s an identity function, but which has the side-effect
of outputting its argument.)

Why do we have to give binary data to the LISP expression? It’s
because the bits in a LISP S-expression are redundant due to LISP
syntax restrictions. So you have to add to the LISP expression, which
is a powerful way to express algorithms, raw binary data “on the side.”
There you have maximum flexibility, there you can really take advan-
tage of each bit. And the initial LISP expression is going to determine
the scheme that’s used for reading in the raw binary data.

To convince you of the power of this self-delimiting scheme, let
me show you how easy it is to use subroutines—you just concatenate
them! The fancy way of saying this is that because programs are self-
delimiting, algorithmic information content is subadditive. What does
this mean? Well, let’s say that you’re given two programs to calculate
two separate S-expressions. Then it’s easy to combine these programs
and get a program to calculate the pair of S-expressions. In fact, to do
this you only need to prepend a particular 432-bit prefix.

Let me restate this. I like to use H(.) for the size in bits of the small-
est program to calculate something. H(X) is the algorithmic informa-
tion content or complexity of the S-expression X. Then the following
basic inequality states that the complexity of a pair of S-expressions is
bounded by a constant plus the sum of the individual complexities:

H(XY)) <H(X)+ H(Y) + 432.

This inequality states that algorithmic information is (sub)additive,
that we can combine subroutines. How does it work? Well, there’s a
432-bit prefix, which consists of a 53-character LISP S-expression and a
\n. This 53-character expression reads in a LISP S-expression (there’s
a primitive function for doing that) and runs it (another primitive) to
get X. Then it reads in a second S-expression and runs it to get Y.
And then it returns the pair (X Y). That’s 53 characters of code in my
LISP. That’s the general idea; I don’t want to go into the details.
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By the way, this inequality
H(XY) <HX)+HY)+c

has been around for a long time, in fact ever since I redid algorithmic
information theory using self-delimiting programs in the mid 1970’s.
This inequality appears in a lot of papers (with H(X,Y) instead of
H((X Y))), but we never knew how big ¢ could be. It depended on
the choice of universal Turing machine. Well, now I've picked a partic-
ular universal Turing machine, and c is equal to 432! 1 think it’s very
interesting to get a specific value for c.

Algorithmic information theory is a theory of the size of computer
programs, but up to now you've never been able to actually run these
computer programs. I don’t like that! So my new version of algorithinic
information theory is very concrete and down to earth. You have to
learn LISP programming, but you get a theory about the size of real
computer programs, programs that you can actually run and use to
get results. And after you put together a program and test it, you just
look at its size and that gives you an upper bound on the program-size
complexity of something! It’s that easy! I think that this makes my
theory much more concrete and much more understandable. And as a
result of this, I certainly understand program-size complexity better.
So hopefully this approach will also help other people!

Okay, in summary, we’ve got this universal machine. Its programs
are like this:

Bit String—LISP Expression, NL, Data

There’s a LISP expression in binary followed by a delimiter character
followed by raw binary data. And you just measure the size of the whole
program in bits, and that’s our program-size complexity measure. The
next thing you do with this theory, that I do in my course, is to show
that information is additive.

H(XY)) < HX)+ H(Y) + 432

In the course I construct the 432-bit prefix and you see it working. You
actually run the programs.
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The last time I gave this course was in Rovaniemi, Finland, this May,
end of May, when it never got dark, and I had the pleasure of seeing
a room full of people working on their computers, running programs
on my universal Turing machine. They were able to do it and get
results! That was really a thrill for me. Here’s how you do it: First
you write out a LISP expression-—that’s easy to do—then you use a
primitive function to convert it to binary, and you append the binary
data. Then you feed the result to my universal machine, which is just
one line of code in my LISP. To define my universal Turing machine is
very easy in this LISP.

So you see, I'm not using the size of LISP expressions as my
program-size measure, but I am using LISP to define the universal
machine, and I'm also using it to produce the programs that I feed to
the universal machine.

And my universal machine really works! Not just for theory—
we’ve always had universal Turing machines that work for theoretical
purposes—right? since the 1930’s—but you can actually run interesting
programs on it. And the fact that I’'m using a very high-level language,
LISP, as my basis, means that set theory is essentially built into this
universal machine. For example, it’s very easy to program set union
and intersection in LISP. And the kind of algorithms that I want to do,
which are the ones that I use to prove my incompleteness results, are
very easy to express in this language. That’s the point: my universal
machine is good not only for proving theorems, but also for writing
programs and running them on examples in a finite amount of time.

I recently spoke to a professor at the University of New Mexico
in Albuquerque who teaches recursive function theory. He said that
his computer science students felt it was very strange that they were
running programs on computers all day long, but never in their class
on recursive function and computability theory! They felt a kind of
cognitive dissonance, it just didn’t make sense. Maybe, he said, my
approach using LISP would work better, because then students could
run the programs. LISP is a version of recursive function theory that
really works! We’ve learnt much better how to write software since
1930!

But the version of try that I used to analyze whether one can prove
that a LISP expression is elegant is not quite right. So let me show you
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the real try, which has an additional argument. Now it’s like this:
(try time-limit lisp-expression binary-data)

There’s a time limit, there’s a LISP expression that we’re going to try
to run, to evaluate, and now there’s also binary data “on the side,” raw
binary data. The binary data is just a list of 0’s and 1’s—that’s the
easiest way to represent a bit string in LISP—for example

(10101111)

So there are two parentheses and there are blanks between the bits,
but otherwise it’s just like the bit strings that you’ve always known
and loved.

Just as before, we're going to try to evaluate the given LISP expres-
sion in the given amount of time. The new wrinkle is that while it’s
being evaluated this LISP expression has access to raw binary data on
the side. So I'm using try to do a lot of things at the same time! It
does a time-limited evaluation, and it also gives binary data to a LISP
expression.

So while we’re running the LISP expression, there’s a time limit, and
the LISP expression can use a zero-argument primitive function that
says, give me the next bit of the binary data. And it’ll get the next
bit, if there is one. The LISP expression can also use another primitive
function to read an entire LISP S-expression from the binary data. How
does it do it? Well, it reads eight bits at a time, sees the characters
that it gets, paying special attention to blanks and parentheses, until
it gets to a newline character \n. Then it stops. So you don’t always
read individual bits from the binary data, you can also read big chunks
in if you want to.

Now what value do you get back from this try? Remember, you
always get a value back, even if the LISP expression that you're trying
never terminates. That’s why you use try instead of eval. Well, it’ll
still be a triple.

(success/failure value/out-of-time/out-of-data captured-displays)

It’ll start as before with success or failure. If the try was a success,
that means that evaluation of the LISP expression completed, and the
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second element of the triple will be the value that this LISP expression
returned. On the other hand, if the try was a failure, then the second
element of the triple is going to tell us why the evaluation failed. I
already told you one way that the evaluation can fail: you can run out
of time. An evaluation might also fail in many other ways, for example
if you try to apply a primitive function to arguments which are not of
a suitable type. Since I didn’t want to be bothered with that kind of
problem, I made the semantics of my LISP extremely permissive, so
that I don’t have to put a lot of error messages here telling you what
went wrong. In fact, the only way that a try can fail is if it ran out of
time or it ran out of binary data. You run out of binary data if you
use it all up and then try to keep reading it. It’s okay to read the last
bit of the binary data, but then it’s not okay to ask for another bit.

What about the third element of the triple returned by try, the
captured intermediate results? Now it’s “captured displays.” Let me
tell you why.

Intermediate results are important when you’re debugging a big
LISP expression. The final value may not be enough to tell what went
wrong. The cute LISP solution to this problem is to add a one-argument
primitive function that’s an identity function. I call it display.

(display X)

So from the point of view of pure mathematics, display is useless, it
just returns the value of its argument X. But it’s extremely useful,
because display prints the value of its argument on your screen. And
to debug a large LISP expression, you just wrap display’s around
interesting parts of the expression; that doesn’t change the final value.

But in my LISP, in the game I'm playing, display is used for some-
thing much more important than debugging, it’s used to put out theo-
rems. Display enables a LISP expression to produce an infinite number
of results. And that’s very important because I want to model a formal
axiomatic system, which is an unending computation that produces
theorems, as a LISP S-expression. Normal LISP doesn’t really have a
way for a LISP expression to produce an infinite amount of output. So
I had to create this mechanism in which display throws theorems and
try catches them!
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So in my LISP display has official status. It’s not just a debugging
mechanism. It’s the way that a formal axiomatic system outputs each
theorem, it’s an important part of LISP.

So the last thing in the triple returned by a try is a list of captured
displays. Every time that the LISP expression being tried tries to put
something on your screen, it won’t go there, it’ll end up in this list
instead. So if you’re trying a formal axiomatic system, this will be a
list of theorems.

That’s it! This is all there is to it. It’s the entire mechanism for
programming algorithmic information theory in LISP.

The Halting Probability (2

Well, I've shown you all the machinery, but what do I do with it! What’s
the next thing in the course on my web site? Well, there’s not much
time left! Just enough time for a quick summary!

I’ve shown you the basic tools that I need to program out my ver-
sion of recursive function theory, my version of Turing and Godel’s
incompleteness results. Basically, it’s just try, that’s all I have to add
to LISP. It’s what makes it possible for LISP to handle algorithmic
information theory.

When I taught this course in Rovaniemi, I started with a historical
introduction. Then I explained my LISP. Then I show off my universal
Turing machine and run a bunch of simple programs on it. The next
thing I do is I define the halting probability, it’s capital omega.

Q

To define €2 you take my universal machine that has binary programs
and produces LISP expressions, and you just feed it bits that you get
by tossing a coin, that’s independent tosses of a fair coin. And you
ask, what is the halting probability? That’s 2. And I actually give a
LISP program that calculates the halting probability in the limit from
below. You'll find this program explained in my lecture transcript “An
invitation to algorithmic information theory.” It’s in the DMTCS’96
Proceedings. When I gave that talk I was speaking three to five times
faster than I am today—I don’t know how I covered so much material!
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So if you want to see the LISP program to calculate  in the limit
from below, it’s in the DMTCS’96 Proceedings, or look at my Web site,
where there are sample runs.

The next thing I do is I prove that 2 is irreducible algorithmic
information. The precise result turns out to be this:

H(Qn) > N — 8000.

What’s Qxn?7 Well, the halting probability is a real number, so write it
in binary, and take the first N bits after the “decimal” point. So this
inequality states that to get the first IV bits of the halting probability,
you need a program that’s more than N — 8000 bits long. And the
reason is that if you knew the first NV bits of the halting probability,
that would enable you to solve the halting problem for all programs up
to N bits in size. That’s how you prove that ) is irreducible.

And then finally I get what I think is my most devastating incom-
pleteness result, which says that a formal axiomatic system can’t enable
you to prove, to determine, more than

H(FAS) + 15328

bits of the halting probability. This follows from the previous inequality,
the one that states that

H(Qx) > N — 8000.

In other words, since a small program can’t give you a lot of bits of
2, a set of axioms can’t enable enable you to determine substantially
more bits of €2 than there are bits of axioms. That’s what

H(FAS)

is, it’s the number of bits in the smallest program that makes my uni-
versal machine output all the theorems in the formal axiomatic system.
In other words, it’s the complexity of the formal axiomatic system, it’s
the number of bits in its axioms. So the more bits of 2 you want to
determine, the more bits you have to add to your axioms!

My main theorem is a mathematical pun. Turing proved that the
halting problem is undecidable. I prove that the halting probability
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is irreducible! Not only you can’t compress bits of {0 into a program
substantially smaller than the number of bits of {2 you calculate, you
can’t do it using reasoning either. Essentially the only way to get bits
of Q out of a formal axiomatic system, is if you just add those bits as
axioms! So determining bits of €2 is a losing proposition! Mathematical
reasoning doesn’t help at all. Well, that’s not quite right, because of
the constant 15328.
H(FAS) + 15328

If it weren’t for this, I'd say you get out exactly what you put in!

So if you want to prove more bits of ), essentially the only way
to do it is to add them to your axioms. But you can prove anything
by adding it to your axioms. And what ) shows, is that sometimes—
Vs a fairly simple object from the point of view of non-constructive
mathematics—in some relatively elementary branches of mathematics,
the only way to get more out is to put it into the axioms. These
are situations in which mathematical reasoning is really useless, really
impotent! Because if you can get something out of a set of axioms only
by putting it in as a new postulate, why bother! So €2 is really a worst
case, it’s our worst nightmare come true, because it’s

Irreducible Mathematical Information

Conclusion

So to end, let me try to state in words what I find intriguing about €2.
As I'said, Q shows that in some cases you're in big trouble! But let me
emphasize the philosophical discontinuity.

The normal view of mathematics is that if something is true, it’s true
for a reason, right? In mathematics the reason that something is true is
called a proof. And the job of the mathematician is to find proofs. So
normally you think if something is true it’s true for a reason. Well, what
Q shows you, what I've discovered, is that some mathematical facts are
true for no reason! They’re true by accident! And consequently
they forever escape the power of mathematical reasoning. Each bit of
) has got to be a 0 or a 1, but it’s so delicately balanced, that we're
never going to know which it is.
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I used to believe that all of mathematical truth, all the infinite va-
riety of mathematical truth, could be compressed into a small set
of axioms and methods of reasoning that we could all agree on, and
that we learn as mathematics students. I felt this deep in my soul, it’s
part of what makes mathematics beautiful, the sharpness, the clarity—-
it seemed inhuman, even superhuman! Unfortunately the existence of
irreducible mathematical facts shows that in some cases there is abso-
lutely no compression, no structure or pattern at all in mathematical
truth. I don’t know why anyone would want to prove what bits of
(! are. But if you wanted to do that, it would be completely hope-
less. Because, you see, the bits of €2 aren’t 0 or 1 for any particular
reason—they’ve got to be one or the other, it’s a specific 2, there’s a
LISP program for calculating it in the limit from below—but it doesn’t
happen for a reason, it happens by accident. If God were willing to an-
swer yes/no questions, each bit of {2 would require a separate question,
because there are no correlations, there is no redundancy!

But I’'m being too pessimistic. After all, Fermat’s last theorem was
just demonstrated. And I wouldn’t be too surprised if another deter-
mined, brilliant individual were to prove the Riemann hypothesis. In
fact, clever mathematicians do succeed in settling famous conjectures—
remember the announcement that “four colors suffice”?

In this direction

Irreducible Mathematical Information

you can’t go any farther, right? But I think that it’s an interesting
question to understand how come in spite of these results it is in fact
possible to do mathematics so well? I think that the interesting ques-
tion now is not to prove incompleteness results, but to see how come
mathematics is still so wonderful. It is! We can prove wonderful theo-
rems, breathtaking theorems. And I think that it would be interesting
now to try to understand better how this is possible.

I guess that’s the story that I wanted to tell you. Thank you very
inuch!
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Introduction

Hi everybody! It’s a great pleasure being back in this beautiful, beau-
tiful state. You guys were nice enough to invite me up a bunch of times
in the past. And I've usually tried to explain general ideas. I thought
this time I'd try to give a different kind of a talk.

I’ve been working for several years on a project, on a course I call
“The Limits of Mathematics.” And this course in the past three years
has gone through a number of different versions. It has a lot of software
attached to it. And I've been changing this software. I’ve been trying
to explain this software to people as the course. In fact a few weeks
from now I’ll be giving this course in Rovaniemi, Finland, on the arctic
circle, for two weeks.

The way this course is now is that it’s on this Web site that I gave
you guys the URL for in the abstract. It’s an HTML document and
it has a lot of LISP code in it, and just to make life worse this is not
normal LISP. Tt’s pretty close to pure LISP, you know, the heart of
LISP that everybody learns. But I've had to add a few features to
LISP. So this stuff is all available and you're welcome to play with it.
The course is there.

And as general background I suggest my lecture on “Randomness in
Arithmetic and the Decline and Fall of Reductionism in Pure Mathe-
matics” which was published, among other places, by Oxford University
Press in Nature’s Imagination, that’s the name of the volume. That’s
a talk that I gave here.

Recursive function theory revisited

My work basically is doing recursive function theory at the kind of level
it was done in the early days in the 1930’s before it got technical. At
the kind of level that G6del and Turing were doing it where the concern
was what are the limits of mathematical reasoning. And basically I've
added two new things. This is sort of revisited sixty years later, this
stuff. I've added two new things.

One new thing I add to the stew is that an idea that was missing
which is significant is the idea of program-size complexity, or how big
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a program is, how many bits of information there are. Not the time!
In that sense it’s just like the old recursive function theory and Turing
machines. I don’t care about time. But I do care about the size of a
program in bits. Okay? So that’s one new idea.

The other new idea I've added just in the past three years is that I
want to really be able to run the programs on interesting examples on
a computer. In other words, it’s not enough to wave your hands and
talk about an algorithm. I not only want a universal Turing machine
that I can prove theorems with, but one that is fun to actually program
and that you can run interesting examples on with a computer.

John McCarthy invented LISP not just for use in Al [artificial in-
telligence|, not just for use as a practical language. If you look at his
1960 paper on LISP in the Communications of the ACM, he said, “This
is a better universal Turing machine. Let’s do recursive function the-
ory that way!”? And the funny thing is that nobody except me has
really I think taken that seriously. And the reason of course is that
theoreticians didn’t really much care about programming, about really
playing with the computer. So the thing I’ve added is I think nowadays
you have no excuse! If a theory has to do with the size of computer
programs, you want to damn well see the programs, you want to be
able to run them, it ought to be a programming language that is easy
to use.

So I've done that using LISP because LISP is simple enough, LISP
is in the intersection between theoretical and practical programming.
Lambda calculus is even simpler and more elegant than LISP, but it’s
unusable. Pure lambda calculus with combinators S and K, it’s beau-
tifully elegant, but you can’t really run programs that way, they're too
slow. So I would say that I believe that LISP is a powerful language
that can actually be used on a computer to run stuff in a finite amount
of time, but on the other hand it’s simple enough and elegant enough
that you can prove theorems about it. So that’s the kind of game that
I’ve been playing. Okay, so you'll find this on my Web site.

20f course these aren't McCarthy's words, it’s my paraphrase.
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My new LISP & complexity measure

Okay, so let me leap in and give you the general idea. What is this
big new thing you add to LISP, this change you make to LISP to be
able to talk about program-size complexity? Well, you could just take
LISP expressions and measure how big are they in characters, right?
That’s not a bad complexity measure. But it’s not the best complexity
measure.

The best complexity measure says, you have a LISP S-expression,
which is a computer program, and then you have binary data on the
side:

lisp binary
S-exp data

The problem with measuring the size of a LISP program is that due to
LISP syntax the LISP S-expression is redundant. So you really want
to add to the LISP S-expression, which is a powerful way to express
an algorithm, some raw binary data. That’s like having data on a tape
in addition to your program. So in the data the bits can be 0 and 1
independently, and there’s some way that the program can get access
to the data, and then you look at the size of the whole thing.

So basically the universal Turing machine I'm using as my yard-
stick to talk about program size, to use to measure program size, has
programs which are big binary programs:

BINARY PROGRAM
lisp binary
S-exp data

That sounds bad, right? We have this awful machine language in bi-
nary. You're not going to want to write in binary. Well, it’s not so bad.
The beginning of a program is a LISP S-expression converted to binary,
8 bits per character. And you know where the LISP S-expression ends,
because by convention there is always a special ASCII character at the
end.
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BINARY PROGRAM
lisp binary
S-exp data
8 bits/char

So the universal Turing machine starts reading the binary tape bit
by bit. It doesn’t sort of gobble it all in and start running. It reads
each bit of the program as it needs to—that’s very important. And
it starts off by reading a LISP S-expression, and then every time the
LISP S-expression says “Read another bit,” it gets it from what’s left
on the tape, that is, in the binary program. And if the S-expression
attempts to read beyond the end of the binary data, the program is a
failure and is aborted. So that’s how it goes. And then you just add
the total number of bits, which is 8 times the number of characters in
the S-expression plus the number of bits in the data. That gives you
the total number of bits in the program, okay?

So that’s done because just using the size in characters of a LISP
S-expression (or multiplying it by some factor to have it in bits) is no
good. LISP syntax is pretty simple, but even so there’s redundancy
there. So you've got to add this extra binary data on the side.

Programming my UTM in LISP

So let me show you my universal Turing machine programmed out in
my new LISP. When I came here a year ago, I had a LISP, it was
pretty awful. It was a LISP where atoms and variable names were only
one character long. And it was a LISP where there was no arithmetic.
The way you had to do integers was as lists of 0’s and 1’s and you had
to define, you had to program out arithmetic. I thought this was cute,
this is a fun game to play once in your life, but the problem is it’s an
obstacle if I want to explain this to anybody else! So now I have a
LISP like all other LISP’s with long names for atoms, and my universal
Turing machine is now programmed like this.
Define U of p, U is the function, p is the program, as follows:
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define (U p)

cadr try no-time-limit
’eval read-exp
P

Now this is it, this is my universal Turing machine that I described
in words. Try is a primitive function in this LISP sort of like eval in
normal LISP. Try has three arguments, here they are:

no-time-limit
’eval read-exp
P

So this, argument 2,
’eval read-exp

is a LISP expression that we’re going to evaluate with a time limit. In
fact there’s no time limit here:

no-time-limit

You also have associated binary data. Try is the way that you give a
LISP expression binary data. So this

P

is the binary data, it’s the program for the universal Turing machine.
It’s a list of 0’s and 1’s. This is try’s third argument.

Oh by the way, in normal LISP you have to put lots of parentheses.
In my LISP I leave out a lot of them because in my LISP every built-in
function has a fixed number of arguments, so I don’t bother to write

all the parentheses.
Back to the LISP code for my UTM.

(read-exp)

is a primitive function with no arguments. So we’re trying to evaluate
this

(’ (eval(read-exp)))
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normally with a time limit, but in this case with no time limit. And
read-exp reads a LISP expression from the beginning of the binary
data p. And then we evaluate it, in other words, we run it. And while
you’re running it, if within the LISP expression that you read you ask
for more binary data, you get it from what’s left of the binary data.

It works! Try does exactly what it should, I added try to normal
LISP just for this. And try is the real difference between normal LISP
and my LISP. Okay, so this

(define (U p)

(cadr (try no-time-limit
(’ (eval(read-exp)))
p)))

is my universal Turing machine, which I think is not a very big, com-
plicated program.

And the nice thing about this is that you see lots of examples in
my course. What I do is I define LISP functions then I run them on
examples. And there are lots of comments saying why I’m doing it and
what it proves.

Actually there are two versions of each of these LISP runs, one of
them with no comments and running it just on the case that counts,
and another one with all the comments in the world and with lots of
test cases for all the auxiliary functions. I do this because without
comments a program is incomprehensible, but when you put all the
comments in it becomes incomprehensible for another reason—it’s so
big that you can’t find anything. So I present it both ways.

Okay, so one of the things you can do is you can actually get a
program and run it on this machine. So how do you do it? Well, you
take a LISP expression, and then you want to convert it to binary, so I
have a primitive function for doing that, and then you concatenate it to
the binary data that it needs, and then you feed this into the function
U of p that we defined. And in my Web site I have runs of the universal
Turing machine that show how it works.
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A simple program for U that proves a the-
orem

Let me show you a particularly interesting example of this, and I'm
also going to prove a theorem, a very simple theorem about my version
of program-size complexity. This theorem says that the program-size
complexity of a pair of objects is bounded by the sum of the individual
program-size complexities of the two objects plus a constant:

H(z,y) < H(z) + H(y) + c.

What this means is this. H(z) is the size in bits of the smallest
program for the universal machine U of p that calculates z; z is an
S-expression. And H(y) is the size of the one that calculates y. And
putting them together and adding a fixed number of bits you get a
program that calculates the pair (z,y), which won’t have a comma by
the way, since we’re doing LISP, which is without commas.

So how does this work? Well, let me show you what the program
looks like. What you do is you take the minimum size program for z,
the minimum size program for y, and I’ll call that z* and y*, and you
concatenate in front a prefix ¢., a magic prefix that’s going to be ¢ bits
long, and I'll show you this prefix. This gives you

bez"Y".
Then when you give it to the universal machine U of p it’s going to
produce the pair (z,y).

Now what is this prefix ¢, that you’re concatenating in front of these
two bit strings z* and y*? Actually you can put any program for z and
any program for y here in ¢.z*y*. I don’t know the minimum ones.
You’ll see that this prefix works because if you give it any program z*
to calculate z and any program y* to calculate y, this prefix ¢, when
you feed it to my universal machine U of p is going to end up being a

program that calculates the pair (z,y).
So what is this prefix ¢.? Well, the prefix is this. Start with

(cons (eval (read-exp))
(cons (eval (read-exp))
nil))
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Here I'm putting in all the parentheses. Then convert this to a bit
string ¢.. So you write this expression and use a primitive function to
convert it to a bit string and then you use append to concatenate these
lists of bits and get this long bit string:

GexY".

And then you feed it into U and it produces (z,y).
How does this

(cons (eval (read-exp))
(cons (eval (read-exp))
nil))

work? It says, “Read from the binary data.” The binary data when ¢,

is running is going to be z*y*, the rest of the program. So it’s going to

read and run the program z* to calculate z, and that’s going to give

it z. And then it’s going to read off of the rest of the binary data and

run the program y* to calculate y, and that’s going to give it y. And

then it’s going to cons these two things z and y up into a pair. Okay?
So it’s the number of bits in this S-expression ¢,

(cons (eval (read-exp))
(cons (eval (read-exp))
nil))

which is the constant ¢ in
H(z,y) < H(z) + H(y) +c.

So count the number of characters here in ¢., multiply by 8, and that’s
the constant c in this theorem. Okay? So this is pretty straight-forward.

“Computing” the halting probability ()

Now, what do I do next in my course on my Web site? Okay, so I've
defined this universal Turing machine U of p. The next major step in
my theory is to define the halting probability {2. This is a number that a
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lot of people get excited about [laughter|, the halting probability. Well,
I'm going to write down a program to calculate the halting probability
now. Let me actually write it down for you! Here it goes. Let’s write
this program out. So I'm going to write a LISP program as we go.

Okay, so we’re going to define a function that counts how many
programs halt, let’s call it count-halt, which has two arguments, one
is a prefix, and the other is bits-left.

define (count-halt prefix bits-left)

What’s the idea? I'm going to count how many programs for my uni-
versal Turing machine halt... Oh, I should put in time... Let me put in
time, there’s another argument here:

define (count-halt time prefix bits-left)

So I'm going to count how many programs halt on my universal Turing
machine that have this prefix with bits-left bits added on after-
wards, within this amount of time. So this count-halt is the auxiliary
function that I use. Okay?

So the first thing to show you is how you get from this the halting
probability. So before I define the auxiliary function, let me show you
how to define a function omega, the main function, that uses this auxil-
iary function. It’s only one main function with one auxiliary function.
Let’s call it omega of n:

define (omega n)

This is the nth approximation, the nth lower bound on the halting
probability. As n goes to infinity, this will give you the halting proba-
bility in the limit from below. The problem is it converges very, very,
very, very slowly! [Laughter] Noncomputably slowly! Thanks for the
laughs.

Let’s define this function. Well, what I want to do is I want to
cons up a rational number. And the way I do it is, I count how many
programs halt within time n that have as prefix nil, the empty bit
string, and that add n bits to it.

define (omega n)
cons (count-halt n nil n)
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And I cons that with division.

define (omega n)
cons (count-halt n nil n)
cons /

And cons that with, I use - for power, 2 raised to the power n, and
nil.

(define (omega n)
(cons (count-halt n nil n)

(cons /
(cons (" 2 n)
nil))))

This depends on the representation you pick for rational numbers;
I just write out a fraction. And so (omega n) is a triple, I'm creating
a triple. So it’s (the number of programs n bits in size that halt within
time n) divided by 2". Okay?

So that’s the main function. Now let me define the auxiliary func-
tion. The auxiliary function goes like this. You start off with the empty
prefix nil and recursively you start adding bits until you get a full n-bit
program and then you run it for time n and you see whether it halts.
Now how do you program that out in LISP? Well, recursively it’s very
easy, you go like this.

Let’s first see if bits-1left is not equal to 0. If bits-left is greater
than 0, then add a 0 bit to the prefix and subtract one from the number
of bits left, see how many of these programs halt within time n, and
add that to the same thing when you append a 1 to the prefix instead
of a 0.

So we’ve got this:

define (count-halt time prefix bits-left)

if > bits-left O

+ (count-halt time (append prefix ’(0)) (- bits-left 1))
(count-halt time (append prefix ’(1)) (- bits-left 1))

I'll put parentheses in occasionally and other times not. [Laughter]
Well, actually in my LISP you don’t put them in for primitive functions
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and the interpreter adds them, and writes it out for you just so that
you can check that it’s what you meant.

So this is the recursion. This is going to make count-halt look at
all n-bit programs. And what happens when it finally has no bits left
to add? It started off with n bits to append to the prefix, and with
the empty prefix. So now you’ve finally got an n-bit string, you get all
possible n-bit strings. So then you take the n-bit string, and you try
for time n eval read-exp applied to the n-bit data string which is the
prefix. If this try is a success then count-halt is a 1 otherwise it’s a
0.

So now we’ve got this:

define (count-halt time prefix bits-left)
if > bits-left 0
+ (count-halt time (append prefix ’(0)) (- bits-left 1))
(count-halt time (append prefix ’(1)) (- bits-left 1))
if = success car (try time
’eval read-exp
prefix)
1
0

This recursion is going out and seeing whether all possible n-bit
programs halt or not. When you’ve got the whole n-bit program, how
do you see whether it halts or not? You try running it for the time
that you were given, which is going to be n for omega of n. And this
part

(try time
’eval read-exp
prefix)

does that. It’s taking the prefix as the S-expression and the binary
data of a program for my universal Turing machine. It’s reading an
S-expression off of the beginning of the prefix and it’s running the S-
expression with the rest of the prefix as binary data. Okay?

I don’t really have the time to explain this properly. If you were
giving this to students in a class you’d probably take a whole class to
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explain this. And then the students would go and they would play with
it and they would use it. And if you look at my Web site you’ll find
that I'm running count-halt on examples to show that it works. I
also have a different definition of omega of n which is more traditional,
which builds up the list of all n-bit strings, and then sees which halt,
and then counts how many halt. But I think that what I have here is
more elegant, it’s really all you need.

Let me say it in words again.

What you see here in this version of LISP is the nth lower bound
on 2. With increasing positive integers n, omega of n gives you better
and better lower bounds on the halting probability. The problem is
that you never know how far out to go to get the halting probability
with a given degree of accuracy. To get n bits of the halting probability
right, you have to go out Busy Beaver function of n, that is basically
the idea.

You look at all n-bit programs, as prefix you start off with the empty
list of bits, and the bits left to add is n initially, and you’re going to
count how many of them halt within time n. That’s what

(count-halt n nil n)

does.

Discussion of the program for ()

Let’s look at this conceptually and let’s look at it pedagogically. Ped-
agogically, I certainly learned a lot writing this program, right? I had
to invent the programming language, I had to write the interpreter! So
1 learned a lot from this. Is this a good way to transmit an idea to
a student? I don’t know! Reading somebody else’s code is not great,
right?

You really understand an algorithm when you’ve programmed it
and tried it on examples and debugged it yourself. So I think that to
use this in a class effectively you need exercises. You need to ask the
students to do variations on what you’ve presented, so they make it
their own. I don’t do this here. This is a very concise version of the
course.
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If someone really wanted to use this as a course, they could start
with this, which it is at least feasible that someone could understand.
Before it wasn’t. I could understand it. A few very committed people
could sort of try to think they understood it, but I think there’s more
of a chance with this, it looks more like normal LISP. So that’s from
the pedagogic point of view.

Now let’s look at this philosophically. The point is this. This pro-
gram is (Vs definition. This is really it. So if this number is going to
be very mind-boggling, you’d like to pin down very concretely how it’s
defined. And we have.

You’d like to pin down very concretely how (’s defined before you
start being astonished by it. Here  is really very concrete and you
can actually run (omega 0), (omega 1), (omega 2), ... Of course the
time grows exponentially as n goes up, but maybe you can get to one
interesting example. You can try variations of this program to con-
vince yourself that you understand it. And you can try debugging
count-halt separately by running examples to show that it works.
That’s how to convince yourself that this works: run lots of examples.
I haven’t tried giving a formal proof that this program is correct. 1
wonder if that would be an interesting project?

Okay, now 1 once tried explaining this to an astrophysicist who
amazingly enough was briefly interested [laughter|, a very bright guy.
He was so bright that he could understand the previous version of the
program for €2, the one in which the names of built-in functions are a
single character, and where you had to program out arithmetic, you
didn’t have positive integers like we do here. He took the definition of
(omega n) and count-halt, printed them on a small sheet of paper,
folded it up and put it in his wallet. He said that it was like a mantra,
“I have Q in my pocket!” But it was {2 for him only because he was
very bright and he took the trouble to go through this course with me.
I think that this new version is much easier to understand than the one
that he put in his pocket.
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Proof that (2 is algorithmically irreducible

Okay, so what is the next thing that one does in this course on the limits
of mathematics? I've tried to throw out all the inessential stuff and just
give the main ideas. And now we’ll start to see why this number 2 is
significant.

Well, the next thing I do in the course is I point out that (omega
0), (omega 1), (omega 2), ... is a monotone increasing sequence of
rational numbers. So, this isn’t constructive, but we all know that
there is a real number which is the least upper bound of this sequence.
So (omega n) defines in a nonconstructive way a real number Q. It’s
almost constructive. It’s pretty close to being constructive. Really
constructive would be if you could calculate each digit of €2, right? I'm
getting better and better lower bounds, the only thing I don’t have is
I don’t have a way to calculate how far out to go to get a given degree
of accuracy.

Okay, so this defines a real number that I call 2. Now let’s imagine
this number being written in base-two binary, so there’s going to be a
0, a binary point, and then there’re going to be some bits, right?

Q2 =0.011101...

And let’s think of this bit string as a LISP S-expression, it's going to
be a list of 0’s and 1’s separated by blanks. And let’s define Qx to be
the first N bits of this, the LISP S-expression for the first N bits of 2.
It’s a list with NV elements.

The theorem you want to show is that H(Qy) is pretty complicated,
that there’s a lot of information in those first NV bits of §2. In fact it’s
algorithmically irreducible. You cannot compress the first NV bits of 2
into a program substantially less than /V bits in size. The exact result
is that

H(Qy) > N — 8000.

This turns out to be the case.

Why is there a lot of information in the first N bits of Q2?7 It’s not
difficult to see why. If you knew the first N bits of €2, it solves the
halting problem. It would enable you, slowly, but it would enable you
to solve the halting problem for all programs up to N bits in size. So
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once you do that, you run all the programs up to N bits in size that
halt, you see what they calculate, and then you just put what they
calculate together into a list. That gives you something which cannot
be done by a program less than or equal to NV bits in size.

And it takes 8000 bits to explain how to do this. There’s a prefix
¢s000 Which is 8000 bits long that if you put it in front of a program that
calculates the first V bits of 2, this gives you a program to calculate
something whose complexity is greater than N. This shows rather
concretely that this inequality

H(Qy) > N — 8000

has to follow. Okay?

So I'm giving my universal Turing machine U a program which
starts with an 8000-bit prefix ¢gge0. That sounds like a lot, but in
fact it's only a thousand characters of LISP. And then next to it I
concatenate any program {2 for calculating the first NV bits of , if
somehow I had one. I don't know where to get one! So this is what
we’ve got:

U(#s000 QU )-

And then you run this and what the machine U does because of ¢ggoo
is this. First it reads in and runs ¥} to calculate the first V bits of
Q. Then it uses (omega n) to get better and better lower bounds on
Q until Qu is correct, until it gets the first NV bits of {2 right. God, or
an oracle, is giving us the program for the first N bits of 2!

Once U has calculated (omega n) for n high enough that the first
N bits of Q are correct, at that point it’s seen all N-bit programs that
are ever going to halt. In fact, if they ever halt, they halt within time
n.

And then U sees what these programs produce, and it forms the
list of the output of all programs up to N bits in size that halt. And
to finish up everything, U outputs this list and halts. In other words,
this list is the value of

U(¢8000 Q*N)

It’s precisely the list of all LISP S-expressions z with program-size
complexity H(z) < N.
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This list cannot itself have program-size complexity < NV, because it
can’t be contained within itself. So it can’t be the output of a program
less than or equal to N bits in size, it’s got to have program-size com-
plexity greater than N. Therefore this program ¢geoo {23 for producing
the list

U(¢so00 2y)

must be greater than N bits in size. In other words, (the size of any
program that calculates the first N bits of £2) plus 8000 has got to be
greater than N. So you get this inequality

H(Sy) > N — 8000.

Okay?

And in my Web site I actually show you this program. I program
out in LISP the algorithm that I just described in words. You program
it out, it’s not a big deal, ¢gogo 1S about one page of LISP, of my new
LISP. But if you put in a lot of comments and run lots of examples
then it’s more than one page. Okay?

Martin Gardner had an explanation of this algorithm in an article in
Scientific American on § that you’ll find in one of the Martin Gardner
collections. In my Web site this algorithm is actually written out in
LISP and you can run it on some examples. You can certainly run
the auxiliary functions and other pieces of the algorithm and convince
yourself that it works. But when you put it all together, you're not
usually going to be able to run it on the real data Qy, because the
whole point of this is to show that the bits of 2 are hard to know,
they’re algorithmically irreducible.

By the way, it's easy to see that

H(Qy) > N — 8000

implies that € is violently non-computable. Let’s compare the two real
numbers 2 and . 7 has the property that the string of its first N bits
has very small program-size complexity. Given N, you can calculate
the first N bits of 7. So the first N bits of 7 only have about log, N bits
of complexity. But the first N bits of {2 are irreducible, can be reduced
at most 7999 bits, maybe down to N — 7999, we’ve proved that.
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By the way, program-size irreducibility implies statistical random-
ness. So {¥’s irreducibility implies that Q is a normal real number. In
any base, its digits all have the same limiting relative frequency.

Proof that you can’t even deduce what the
bits of (] are

Okay, so the next thing you do with this, and this is the next (and last)
program in this course, is you get an incompleteness result for Q from
this. From this inequality

H(Qy) > N — 8000

which states that €2 is algorithmically irreducible. By the way, I don't
show in the course that this implies statistical randomness. That’s a
detour. I want to go straight to the incompleteness result.

(But I think you can sort of wave your hands and try to convince
people that irreducibility implies statistical randomness. Or you can
actually go and develop algorithmic information theory in excruciating
detail! But in my course my goal is to get to the major incompleteness
results as quickly as possible, illustrating them with interesting LISP
programs, not to develop the entire theory. Now you could also take
the proof of every theorem in my Cambridge University Press book
Algorithmic Information Theory and write down a LISP program for
the algorithm in it. I once started doing that but I quickly gave it up.
It was too much work, and you don’t really want to see every algorithm
in the theory in such detail. I'm concentrating on programming in LISP
what I think are the fun algorithms in the theory, especially the ones
connected with the basic incompleteness results, the ones I want to use
to present what I think are the fundamental concepts in my theory.)

So the last program in this course is the one that yields an incom-
pleteness result for (2.

Let’s start with this question: How do I represent a formal axiomatic
system in LISP? Well, this is the way I do it. Think of it as a black
box which every now and then throws out a theorem. So it’s a program
that you start running, and it may or may not halt, normally it doesn’t
halt, and every now and then it prints out a theorem.
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So why is this a formal axiomatic system? Well, the idea is that I
don’t care about the details of what’s going on inside, what the axioms
are, or what the logic used is like. What I care about is the criterion,
which I think was enunciated rather clearly by Hilbert, that states that
the essence of a formal axiomatic system is that there should be a
proof-checking algorithm. So if that’s the case, you can run through
all possible proofs in size order, see which ones are correct, and print
out all the theorems. Of course this is impractical. The time it takes
to do it grows exponentially, and I wouldn't really want to run such a
program.

But you can cheat and you can just have a LISP S-expression which
every now and then outputs a theorem... It won’t be the final value...
Every now and then it uses a primitive function, I call it display, but
you could also say “output intermediate result.” So I think of a formal
axiomatic system as a LISP S-expression that every now and then calls
a particular new LISP primitive function which outputs an intermediate
result. And that way it puts out a lot of LISP S-expressions, which are
the theorems.

And you can cheat and instead of putting a real formal axiomatic
system in there with a proof-checking algorithm and running through
all possible proofs, which is terribly slow (and never halts), you can
cheat and put in a little example of something that just display’s a few
sample theorems and then halts. That way you can run a little example
and debug algorithms which work with formal axiomatic systems.

How can algorithms work with these toy formal axiomatic systems?
Let’s say that you have a formal axiomatic system. We've agreed that
it’s a LISP program that is going to put out intermediate results using a
new primitive function called display. Actually all normal LISP’s have
a function for outputting intermediate results; you use it for debugging,
right? But it becomes more important in this framework. It plays
an official role in my computerized version of algorithmic information
theory, because try captures all the intermediate results. That’s very
important.

Try is a time-bounded execution/evaluation of a LISP expression.
You use try to run a program with a time limit, giving the program
raw binary data on the side, and capturing all the intermediate
output as well as the final value (if any). That’s very important. You
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see, the new primitive function try that I added to LISP is the way
that you can run a formal axiomatic system for a while and see what
are the theorems that it produces. That’s put in as a primitive function
in this LISP. The value returned by try is a 3-element list (o 37). «o
is success or failure. (3 is the value of the expression being tried if
the try is a success, and is out-of-time or out-of-data if the try is
a failure. And 7 is the list of captured display’s, the list of theorems.
The theorems don’t get displayed, they end up in this list instead.
Okay?

Let me say by the way that this LISP started off as three-hundred
lines of Mathematica. I invented this LISP using Mathematica as my
programming tool; I wrote the LISP interpreter in Mathematica. That
way I could play with my LISP and try it out as the design evolved.
Mathematica is the most powerful programming language that I know.
But it’s slow. So I rewrote the interpreter for this LISP in C. And it's
a thousand lines of C, it’s a hundred times faster than in Mathematica,
but the program is incomprehensible of course.

I think that the Mathematica code is pretty nice. The C code is
incomprehensible! Like all good C programs, it’s too clever. You can
deal with it while you're writing it, and immediately afterwards it’s
already incomprehensible, even for the programmer!

The Mathematica code I have to say I really like. It’s 300 lines
of Mathematica. I think it’s pretty understandable, I think it’s pretty
clean, and I think that if I were presenting this as a course I would go
through the LISP interpreter with the students. I think it’s important
that they should see the code. It’s only 300 lines of Mathematica, and
they could make changes to the interpreter as a way of showing that
they understand it. So it’s there, the Mathematica code is there on my
Web site. (So is the C code. Use it, but don’t try to understand it!)

Okay, so what’s the next (and the last) program? The next program
works with a formal axiomatic system, which is just a mechanism for
producing an infinite set of theorems. It’s given to us as a binary
program for U, FAS*, which is a LISP expression plus binary data, and
we're going to measure its complexity in bits the same way that we did
before. I'll prove that if the formal axiomatic system has program-size
complexity N, then it can enable you to determine, to prove what is
the value of at most N + 15328 bits of the halting probability 2.
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If a FAS has program-size complexity N, then it can enable
you to determine at most N + 15328 bits of Q.3

So how do I show this? Well, I have a Berry paradox kind of proof.
The idea is that if you could prove a lot of bits of 2, then Q wouldn’t
be this irreducible

H(Qx) > N — 8000.

That would give you a way to compress €2 into the axioms of the FAS.
It would give you too concise a way to calculate €. If you could prove
what the bits of €2 are, you’d do it systematically by searching through
all possible proofs, and that would give you a way to calculate the bits
of Q. That’s all we're saying, that it would contradict this

H(Qy) > N — 8000.

So deduction and computation are very close, as Turing already
noticed in his famous 1936 paper “On Computable Numbers...” where
lie proves an incompleteness result using the unsolvability of the halting
problem. My argument is at the same level, it’s analogous.

The new business here is roughly like the paradox of the first un-
interesting positive integer. You know, that’s sort of an interesting
number. So if you could prove that a number’s uninteresting, that
would be an interesting fact about it, and “uninteresting” is the notion
of algorithmically incompressible. So it turns out that you can’t prove
that an N-bit string is algorithmically incompressible if N is larger
than the complexity of your axioms. You can’t prove that an N-bit
string is algorithmically irreducible if it has more bits than the axioms
you’re using for the proof. And similarly it turns out that with N bits
of axioms you get at most N + 15328 bits of 2.

That’s the general idea. Here are the details.

I write out a 7328-bit program ¢r3qs, it’s about one page of LISP
code. Why 7328 bits? Because you have to add that to the constant
in the inequality for H(Qy) to get the constant in our incompleteness
result. So the difference between these two constants 8000 and 15328 is

3Perhaps one should refer to this as the logical (or deductive) irreducibility of €,
to distinguish it from the computational (or algorithmic) irreducibility of {1, namely
the fact that H(Qy) > N — 8000.
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the size of the next program in this course, the last program. Divided
by 8, you get the size of a LISP expression in characters.

And what this LISP program ¢325 does is this. Using try it starts
running the formal axiomatic system that you're assumed to be given
that's IV bits of code. So we’re looking at this:

U(pr328 FAS®...).

The prefix ¢7328, the program that outputs the theorems of the FAS,
and some extra stuff that I'll explain later are concatenated and fed to
U.

¢r328 starts running the formal axiomatic system using larger and
larger time bounds, capturing the intermediate output, which are the
theorems. And it looks at the theorems to see how many bits of Q it
got. And I allow partial determinations where you get some of the bits
but you leave holes with unknown bits between some of the bits that
you do know.

And what ¢7328 does is it looks for a small set of axioms that en-
able you to prove substantially more bits of 2 than there are in those
axioms—at least 15329 bits more. And then it just fills in the holes, the
missing bits, which costs just one bit per bit, one bit for each missing
bit. So ¢+328’s final output and the value of

U(¢r328 FAS™ missing bits of §2)

will be one of the Qx’s. For some N, it’'ll be the list of the first N bits
of Q0. By the way, @d7328 may not need all the bits of FAS*, because it
only keeps a finite part of the potentially infinite computation for the
formal axiomatic system.

So if you could use N bits of axioms to get essentially more than
N bits of Q—more than N + 15328 bits, in fact—then you could fill in
the missing bits at a cost of one bit each, and you get into trouble with
this inequality ‘

H(Qy) > N — 8000.

That’s the point.
So that’s how it goes, the basic idea is straight-forward. And I
actually have this 7328-bit LISP program ¢732s and you can run it.
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Well, you can certainly test the auxiliary functions. You can certainly
run all the auxiliary functions on examples to convince yourself that
they work. But to test the whole algorithm, its main function, you have
to cheat, you don’t give it a real formal axiomatic system, because if
you really try to run through all possible proofs in size order it would
take too long. So you cheat, you give the algorithm a LISP expression
that just throws out a few test theorems that will put the algorithm
(7328 that’s running the formal axiomatic system through it’s paces.

That’s how you convince yourself that this all works. And you may
have to “tweak” things a little bit, you may have to slightly change the
LISP code so that it works with your simple test cases. So you can
convince yourself by running little examples that this would all work
if you really gave it a genuine formal axiomatic system, say Zermelo-
Fraenkel set theory.

I would like to have somebody program out Zermelo-Fraenkel set
theory in my version of LISP, which is pretty close to a normal LISP as
far as this task is concerned, just to see how many bits of complexity
mathematicians normally assume. You see, the whole effort here has
been to get these constants 8000 and 15328. And if you programmed
ZF, you’d get a really sharp incompleteness result. It wouldn’t say that
you can get at most H(ZF) + 15328 bits of €2, it would say, perhaps,
at most 96000 bits! We’d have a much more definite incompleteness
theorem. I hope that somebody will program ZF in LISP. I stop at
this point [laughter|, you know, programming fatigue! And you want to
leave something for the students to do, right? So this is a little job for
them. And if they’re really clever maybe it’ll put out the theorems in
Zermelo-Fraenkel set theory reasonably quickly, not by running through
all possible proofs in size order, which would take too long, but by
doing some kind of tree search so that you can actually have something
interesting happen in a reasonable amount of time.

Discussion

Okay, so why is all this interesting? Well, some of you may know
already, but let me wave my hands frantically in the last few minutes
and say why.
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This looks like a kind of programming madness, right? Up to now,
it looks like what I’ve been telling you is, “Oh how much fun it was
to program something that nobody’s ever programmed before!” Or
maybe just that this is neater than it was in the previous versions of
my course. Yes, programming can be an obsession, it can ruin your
life. You can sit at your terminal watching your life fall apart as you
stay there hacking away until 4 in the morning! But is there any other
justification for this except as a kind of drug? Well, I think so! I think
this has some philosophical significance.

What’s the point about this incompleteness theorem, about this
technical result?

If a FAS has program-size complexity NN, then it can enable
you to determine at most N + 15328 bits of 2.

Well, what it’s really telling you is that you might get some bits
of 1, the first ones, say. You might be able to calculate the first few
bits of 2. In fact, in a different version of this theory, with a different
UTM, (this was with my one-character LISP, my one character per
atom LISP), I did get the first 7 bits of 2, and they were all 1 bits.
You see, once your lower bound on  is 127/128ths, you know that
these bits can’t change. The first 7 bits were 1’'s. And now I have a
much friendlier LISP, but I lost this, I can no longer determine the first
7 bits of 2 this way.

But anyway, you might be able to get some bits of {2 without con-
tradicting ’s logical and computational irreducibility, without contra-
dicting this incompleteness result and this inequality:

e You can determine at most H(FAS) + 15328 bits of (2.
e H(Qn) > N — 8000.

But in spite of this, the basic point is that {2 really shows that some
areas of mathematics have no structure, have no pattern at all.

Let me put it this way. Normally you think that if something is
true, it’s true for a reason, right? In mathematics, the reason is called
a proof, and the job of a mathematician is to find the reason that
something is true, to find a proof. But the bits of {} are mathematical
facts that are true for no reason, they’re accidental!
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Now this is a very specific (2, I've programmed it out. Imagine it
being written in binary. And you ask, an individual bit, say the 33rd
bit, is it a 0 or a 17 Let’s say you're trying to prove which it is. And
the answer is, you can’t! The reason you can’t is because, whether that
particular bit is a 0 or a 1 is true for no reason, it’s true by accident.
It’s so delicately balanced whether it’s going to be a 0 or a 1, that we
will never know!

It’s like independent tosses of a fair coin. Independent tosses of a
fair coin has got to come out heads or tails in each case, but there’s
no reason that it comes out one or the other, right? So it’s exactly the
same story with these mathematical facts, with the bits of 2. There is
1o pattern or structure in the sequence of bits of (2.

I don’t know why anybody would want to try to determine bits of
(2. Although people have played with the Busy Beaver function, which
in a way is like trying to calculate the bits of Q. I don’t know why you’d
try to determine the bits of (2. But if you were to try to do this, what
this incompleteness result shows you is that you’re in big, big trouble!
Because essentially the only way to prove what a bit of  is, is to add
the theorem that you want to prove as a new axiom. It’s irreducible
mathematical information. Now you can prove anything by adding
it as a new axiom. The point here is that for {2 that’s essentially the
only way to do it. No compression is possible.

So there is no structure, there is no pattern, 2 has maximum en-
tropy, it mirrors independent tosses of a fair coin. Now to a physicist
what I'm saying sounds pretty reasonable, right? (2 has maximum
entropy, the bits of ) are completely uncorrelated. But to a mathe-
matician this all sounds weird!

My new {2 is a particular well-defined real number. It’s a real num-
ber with a rather simple definition, I can even write the LISP program
that defines 2 on one computer screen. So you believe, thinking in Pla-
tonic terms, that each bit is either a 0 or a 1, even if I'm never going
to know which. But it’s black or white, right? And what I’'m saying
is that I think that it’s really better to think that it’s grey. It’s really
better to think that each bit of {2 has probability one-half of being 0 or
of being 1—even though it’s a particular well-determined bit, because
I’ve written out the program that defines this number. Defines it, not
by enabling you to calculate it bit by bit—that would contradict §2’s
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unknowability. But the program for {2 does enable you to calculate
better and better lower bounds on €2, so {2 is almost a computable real
number in the same sense that 7 is. Almost, but not quite!

So the game is like this. I'm trying very hard to be constructive, as
constructive as possible. Writing out programs is a sure sign that you're
a constructivist, right? [Laughter| I want to settle all the programming
details. But I'm trying to be as constructive as possible about non-
constructivity! I want to exhibit something that escapes the power
of constructivity, of mathematical reasoning, that you can’t calculate,
but that’s just over the border between the constructible and the non-
constructible. And I think that €2 is pretty damn good, it’s just on the
border.

Now this doesn’t mean that all of mathematics falls down in a heap!
But the normal notion of mathematics was that there were a small,
finite set of axioms and rules of inference that we could all agree on,
from which all the infinite mathematical truth would follow. This is
the tradition that goes back to Euclid, to Leibniz, to Peano, to Frege,
to Russell and Whitehead, to Hilbert. And Gédel showed that there
was a problem. And Turing showed that there was a problem, using a
different method involving computers. And I think that Q follows in
that tradition and shows that the problem is even bigger. However I
don’t think this means that you should stop doing mathematics! So
what is the significance of (} and of incompleteness? Should it affect
how we actually do mathematics? I'll give you my opinion.

Of course the nature of mathematics has been discussed for a long
time! Every generation of mathematicians have their own answer. But
let me share with you my own feelings about this, my tentative conclu-
sions.

There’s a word that a philosopher coined that’s very good. He
says that there's an emerging new school, and emerging new quasi-
empirical view of the foundations of mathematics. One talks about
the formalist school, the logicist school, and the intuitionist school.
Well, Thomas Tymoczko has a book, New Directions in the Philosophy
of Mathematics, which has a whole bunch of articles, including two
of mine, and he thinks that all these articles tend to support a new
quasi-empirical view of the foundations of mathematics.

Now what does quasi-empirical mean? I'll tell you what it means



An Invitation to Algorithmic Information Theory 83

to me. Quasi-empirical means that pure math ain’t that different
from physics! The normal notion of pure math is that mathematicians
have some kind of direct pipeline to God’s thoughts, to absolute truth!
But poor physicists! You know, they tried Newtonian mechanics, it
looks good for a while, then Einstein shows it’s all wrong. Then—
surprise!—quantum mechanics shows that Einstein was wrong! And
now there’s superstring theory. And is it right? Is it wrong? And
mathematicians laugh and say, “Oh those poor physicists! It’s such a
messy subject! They always have to backpedal, they don’t know what
they’re doing! It’s all so tentative!”

Well, I think that mathematics and physics are not really that
different!—Physicists love it when I say this! [Laughter|

Let me try explaining this another way. Euclid said that mathemat-
ics is based on self-evident truths. But my impression is that maybe
axioms are not self-evident truths. I don’t believe in self-evident truths.
Maybe it’s more like in physics. Maybe mathematics should be done
more like physics, where you're willing to add new axioms because
they’re useful, not because they’re self-evident. And then of course you
have to be prepared to say “I goofed!” and remove an axiom, which
mathematicians don'’t like to have to do.

This may sound completely crazy, but in fact it’s not just my opin-
ion. Go6del makes very similar remarks in Volume II of his Collected
Works, in his essay on “Russell’s Mathematical Logic.” This essay was
originally published in the Paul Arthur Schilpp volume The Philosophy
of Bertrand Russell.

I talked about new axioms to a mathematician once, and he replied,
“Okay, I'm willing to add the Riemann hypothesis as a new axiom if
you can prove to me that it doesn’t follow from the usual axioms.”
Well, that’s hard to do, because if the Riemann hypothesis were false,
then there would be a numerical counter-example that one could easily
verify that shows that it’s false. So if you could show that the Riemann
hypothesis is beyond the power of the usual axioms, that would imply
that the Riemann hypothesis is true!

So these ideas are very controversial.

But the whole point of algorithmic information theory, the whole
point of my information-theoretic approach to incompleteness, is that
sometimes to get more information out of a set of axioms, you've just
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got to put more in. So let’s put more axioms in! Physicists have always
done that.

I had these ideas a long time ago. I proved my first information-
theoretic incompleteness theorem in 1970. Although it’s only in the
past two or three years that I discovered how to actually program the
algorithm in my original proof and run it on examples. And I was
recently surprised to discover or rediscover that there are highly relevant
quotes from Einstein and from Goédel. Let me throw them into this
discussion, let me end with that.

Einstein has a very nice remark that I angered some mathematicians
with. But what do they care, he’s only a physicist, right? [Laughter]
In his essay “Remarks on Bertrand Russell’s Theory of Knowledge” in
the Paul Arthur Schilpp volume The Philosophy of Bertrand Russell,
Einstein says that “the series of integers is obviously an invention of
the human mind, a self-created tool which simplifies the ordering of
certain sensory experiences.” So you can see that Einstein’s attitude is
very empirical.

I think that Einstein’s position is that the positive integers are not
a priori, they’re not God given, we invent them like we invent all of
physics. But the positive integers look more a prior: than other con-
cepts because they’'ve been around longer, we invented them a long
time ago. After all, when an idea has been around for a few thousand
years, it’s not surprising that people think that it’s obvious, that it’s
just common sense, that it’s “a necessary tool of thought.” The other
extreme is the latest field theory in physics. That looks a lot more
tentative. It hasn’t been here long, and it’ll probably be shot down
next week, right? And there are probably thirteen different versions!
But in Einstein’s view there is no fundamental difference. The posi-
tive integers have been around for a long time, but they’re still just an
invention.

So I like this quote from Einstein, but it doesn’t convince mathe-
maticians.

Then there are some very interesting remarks made by Godel. You
can find them in Godel’s Collected Works. Go6del’s philosophical posi-
tion is the exact opposite of Einstein’s. Godel believed in the Platonic
universe of mathematical ideas, he believed that the positive integers
are just as real as tables and chairs. There are an infinity of positive
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integers, and they're out there somewhere. They’re in the Platonic
universe of mathematical ideas, that’s where mathematical objects are!

I don’t know! I used to laugh at all of this when I was a kid. But
think about it seriously. You're young, you’re trying to learn mathe-
niatics, you're doing elementary number theory, and you don’t really
start to worry about the fact that elementary number theory presup-
poses arbitrarily large positive integers, and how do they fit in the
universe? Imagine a positive integer that is

1010
1010

digits long. Does it exist? In what sense does it exist? You don’t
care—right?—you prove theorems about it, you know that it would be
commutative, right? a + b is going to be equal to b + a even if neither
number fits in the universe! [Laughter] But then later on in life you
start to worry about this! [Laughter|

So I'm not sure if the positive integers exist anymore. But Godel
thinks that they do, and that philosophical position is associated with
the name of Plato. But it’s really just the classical mathematical posi-
tion that the positive integers really exist, that an infinity of them are
really out there. And starting from that, Godel comes to a very sur-
prising conclusion. Since the positive integers are just as real as tables
and chairs, you can do experiments with them by doing calculations,
and if you see a pattern, you can just go ahead like a scientist would in
dealing with electrons. Since integers are just as real as electrons, why
can’t we use the same kinds of methods that scientists use?

Here are Godel’s exact words, taken from a previously unpublished
manuscript *1951 that is in Volume III of his Collected Works:

“If mathematics describes an objective world just like
physics, there is no reason why inductive methods should
not be applied in mathematics just the same as in physics.”

And in his essay “What is Cantor’s Continuum Problem?” in Vol-
ume II of his Collected Works, Godel says that maybe we’ll come up
with new versions of set theory, maybe we’ll come up with new ideas
about sets the same way that physicists come up with new ideas about
physical objects. The justification for these new principles would be
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that they’re useful, that they help us to organize our mathematical ex-
perience, just as the ultimate justification for physical principles is that
they help us to organize our physical experience.

I think it’s very funny! Here’s Einstein, who’s a diehard empiricist,
and here’s Godel, who's a diehard Platonist, and they sort of come
to the same conclusion! But they were buddies at the Institute for
Advanced Study, so it’s not surprising that they influenced each other.
And the information-theoretic viewpoint that I've explained to you
today leads me in the very same direction.

Another funny thing is that I don’t believe that all this work on
the foundations of mathematics has changed at all the way mathemati-
cians actually work. Godel’s incompleteness theorem was initially very
shocking. But then mathematicians noticed that the kind of assertion
that Godel constructed that’s true but unprovable is not the kind of
assertion that you deal with in your everyday work as a mathematician.
And I think it’s fair to say that about 2 too. The longer I live with €,
the more natural it looks to me. But a skeptic would say, “I don’t care
about the bits of 2, so what if there’s trouble there!”

But I do think that something else is making a difference in how
mathematicians carry on their everyday work. It’s the fact that the
computer has so vastly expanded mathematical experience, that we
just have to deal with it somehow. A lot of physicists do experimental
work on the computer now. There’s even a journal called Ezperimental
Mathematics.

The computer has so vastly increased mathematical experience, that
how do we keep up with all of it? Well, the answer is that sometimes
you see that something seems to be the case, and it’d be nice if you
could prove it, but for the moment you can’t, so you sort of conjecture it.
And if you're doing mathematical physics, then you’re on the borderline
between math and physics, and it’s certainly okay to behave in this way.
But if you're a mathematician, if you're just over the border, then it’s
not so clear anymore.

Well, I once had a conversation like this with a mathematician,
and the Riemann hypothesis came up, and he said, “It works fine the
way we do things now. You have a paper, and you say the paper is
‘modulo the Riemann hypothesis.” So why do you need to call it a
new axiom?” And he has a point. But I do think that if a principle is
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very helpful for a long time, and nobody shoots it down, why not call
it a new axiom? But one shouldn’t do this too quickly. One has to
be careful, the way physicists are, although I sometimes wonder how
careful physicists really are! [Laughter]

Okay, that’s the idea. And if you go to my Web site you’ll find
this course there, together with the Mathematica code for my LISP
interpreter. So you're welcome to play with it, and you're welcome to
send me e-mail about it, and I'd be pleased as Punch if one of you
tried giving my course on the limits of mathematics to real students in
a normal university setting.

Anyway, you guys have been nice enough to invite me for many
years to give talks, and it’s been very stimulating to talk with you, and
for the moment I think I’ve exhausted this train of thought. Of course,
I’'ve been thinking that since I was fifteen years old, but fortunately
every now and then I get a new idea! [Laughter] But for now, that’s
all I have to say, and maybe someday I’ll have more to say, and I’ll
be lucky enough to come out here again and have a chance to kick it
around with you! Thank you very much! [Applause|
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Introduction

In a remarkable development, I have constructed a new definition for a
self-delimiting universal Turing machine (UTM) that is easy to program
and runs very quickly. This provides a new foundation for algorithmic
information theory (AIT), which is the theory of the size in bits of
programs for self-delimiting UTM’s. Previously, AIT had an abstract
mathematical quality. Now it is possible to write down executable
programs that embody the constructions in the proofs of theorems. So
AIT goes from dealing with remote idealized mythical objects to being
a theory about practical down-to-earth gadgets that one can actually
play with and use.

This new self-delimiting UTM is implemented via software written
in a new version of LISP that I invented especially for this purpose. This
LISP was designed by writing an interpreter for it in Mathematica that
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was then translated into C. I have tested this software by running it
on IBM RS/6000 workstations with the AIX version of UNIX.

Using this new software and the latest theoretical ideas, it is now
possible to give a self-contained “hands on” mini-course presenting
very concretely my latest proofs of my two fundamental information-
theoretic incompleteness theorems. The first of these theorems states
that an N-bit formal axiomatic system cannot enable one to exhibit
any specific object with program-size complexity greater than N + c.
The second of these theorems states that an /N-bit formal axiomatic
system cannot enable one to determine more than N + ¢’ scattered bits
of the halting probability 2.

Most people believe that anything that is true is true for a reason.
These theorems show that some things are true for no reason at all,
i.e., accidentally, or at random.

As is shown in this course, the algorithms considered in the proofs
of these two theorems are now easy to program and run, and by looking
at the size in bits of these programs one can actually, for the first time,
determine exact values for the constants ¢ and ¢'.

I used this approach and software in an intensive short course on the
limits of mathematics that I gave at the University of Maine in Orono in
the summer of 1994. T also lectured on this material during a stay at the
Santa Fe Institute in the spring of 1995, and at a meeting at the Black
Sea University in Romania in the summer of 1995. A summary of the
approach that I used on these three occasions will appear under the title
“A new version of algorithmic information theory” in a forthcoming
issue of the new magazine Complexity, which has just been launched
by the Santa Fe Institute and Wiley. A less technical discussion of
the basic ideas that are involved “How to run algorithmic information
theory on a computer” will also appear in Complezity.

After presenting this material at these three different places, it be-
came obvious to me that it is extremely difficult to understand it in its
original form. So next time, at the Rovaniemi Institute of Technology
in the spring of 1996, I am going to use the new, more understandable
software in this report; everything has been redone in an attempt to
make it as easy to understand as possible.

For their stimulating invitations, I thank Prof. George Markowsky
of the University of Maine, Prof. Cristian Calude of the University of
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Auckland, Prof. John Casti of the Santa Fe Institute, and Prof. Veikko
Keranen of the Rovaniemi Institute of Technology. And I am grateful
to IBM for supporting my research for almost thirty years, and to my
current management chain at the IBM Research Division, Dan Prener,
Christos Georgiou, Eric Kronstadt, Jeff Jaffe, and Jim McGroddy.

This report includes the LISP runs *.r used to present the
information-theoretic incompleteness theorems of algorithmic informa-
tion theory. This report does not include the software used to produce
these LISP runs. To obtain the software for this course via e-mail,
please send requests to chaitin@watson.ibm. com.

The New Idea

Here is a quick summary of this new LISP, in which atoms can now
either be words or unsigned decimal integers. First of all, comments
are written like this: [comment]. Each LISP primitive function has
a fixed number of arguments. ’ is QUOTE, = is EQ, and atom, car,
cdr, cadr, caddr, cons are provided with their usual meaning. We
also have lambda, define, let, if and display and eval. The no-
tation " indicates that an S-expression with explicit parentheses fol-
lows, not what is usually the case in this LISP, an M-expression, in
which the parentheses for each primitive function are implicit. nil
denotes the empty list (), and the logical truth values are true
and false. For dealing with unsigned decimal integers we have +,
-, %, 7, <, >, <=, >=, basel0-to-2, base2-to-10.

So far this is fairly standard. The new idea is this. We define
our standard self-delimiting universal Turing machine as follows. Its
program is in binary, and appears on a tape in the following form. First
comes a LISP expression, written in ASCII with 8 bits per character,
and terminated by an end-of-line character ’\n’. The TM reads in
this LISP expression, and then evaluates it. As it does this, two new
primitive functions read-bit and read-exp with no arguments may be
used to read more from the TM tape. Both of these functions explode
if the tape is exhausted, killing the computation. read-bit reads a
single bit from the tape. read-exp reads in an entire LISP expression,
in 8-bit character chunks, until it reaches an end-of-line character >\n”’.
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This is the only way that information on the TM tape may be
accessed, which forces it to be used in a self-delimiting fashion. This
is because no algorithm can search for the end of the tape and then
use the length of the tape as data in the computation. If an algorithm
attempts to read a bit that is not on the tape, the algorithm aborts.

How is information placed on the TM tape in the first place? Well,
in the starting environment, the tape is empty and any attempt to read
it will give an error message. To place information on the tape, one
must use the primitive function try which tries to see if an expression
can be evaluated.

Consider the three arguments «, § and 7 of try. The meaning of
the first argument is as follows. If a is no-time-1imit, then there is
no depth limit. Otherwise @ must be an unsigned decimal integer, and
gives the depth limit (limit on the nesting depth of function calls and
re-evaluations). The second argument 3 of try is the expression to be
evaluated as long as the depth limit « is not exceeded. And the third
argument =y of try is a list of bits to be used as the TM tape.

The value v returned by the primitive function try is a triple. The
first element of v is success if the evaluation of 8 was completed suc-
cessfully, and the first element of v is failure if this was not the
case. The second element of v is out-of-data if the evaluation of 3
aborted because an attempt was made to read a non-existent bit from
the TM tape. The second element of v is out-of-time if evaluation of
[ aborted because the depth limit o was exceeded. These are the only
possible error flags, because this LISP is designed with maximally per-
missive semantics. If the computation § terminated normally instead
of aborting, the second element of v will be the result produced by the
computation 3, i.e., its value. That’s the second element of the list v
produced by the try primitive function.

The third element of the value v is a list of all the arguments to
the primitive function display that were encountered during the eval-
uation of 3. More precisely, if display was called N times during the
evaluation of 8, then the third element of v will be a list of N ele-
ments. The N arguments of display appear in the third element of v
in chronological order. Thus try can not only be used to determine if a
computation 3 reads too much tape or goes on too long (i.e., to greater
depth than o), but try can also be used to capture all the output that
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3 displayed as it went along, whether the computation 8 aborted or
not.

In summary, all that one has to do to simulate a self-delimiting
universal Turing machine U(p) running on the binary program p is to
write

try no-time-limit ’eval read-exp p

This is an M-expression with parentheses omitted from primitive func-
tions. (Recall that all primitive functions have a fixed number of argu-
ments.) With the parentheses supplied, it becomes the S-expression

(try no-time-limit (’(eval(read-exp))) p)

This says that one is to read a complete LISP S-expression from the TM
tape p and then evaluate it without any time limit and using whatever
is left on the tape p.

Some more primitive functions have also been added. The 2-
argument function append denotes list concatenation, and the 1-
argument function bits converts an S-expression into the list of the
bits in its ASCII character string representation. These are used for
constructing the bit strings that are then put on the TM tape using
try’s third argument y. We also provide the l-argument functions
size and length that respectively give the number of characters in
an S-expression, and the number of elements in a list. Note that the
functions append, size and length could be programmed rather than
included as built-in primitive functions, but it is extremely convenient
and much much faster to provide them built in.

Finally a new l-argument identity function debug with the side-
effect of outputting its argument is provided for debugging. Output
produced by debug is invisible to the “official” display and try output
mechanism. debug is needed because try o 3 v suppresses all output
@ produced within its depth-controlled evaluation of 3. Instead try
collects all output # from within S for inclusion in the final value v
that try returns, namely v = (success/failure, value of 3, 6).
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Course Outline

The course begins by explaining with examples my new LISP. See
examples.r.

Then the theory of LISP program-size complexity is developed a
little bit. LISP program-size complexity is extremely simple and con-
crete. In particular, it is easy to show that it is impossible to prove
that a self-contained LISP expression is elegant, i.e., that no smaller
expression has the same value. To prove that an N-character LISP
expression is elegant requires a formal axiomatic system that itself has
at least LISP complexity N — 410. See godel.r.

Next we define our standard self-delimiting universal Turing ma-
chine U(p) using

cadr try no-time-limit ’eval read-exp p

as explained in the previous section.
Next we show that

H(z,y) < H(z)+ H(y) + ¢

with ¢ = 432. Here H(- --) denotes the size in bits of the smallest pro-
gram that makes our standard universal Turing machine compute - - -.
Thus this inequality states that the information needed to compute the
pair (z,y) is bounded by a constant ¢ plus the sum of the informa-
tion needed to compute z and the information needed to compute y.
Consider

cons eval read-exp
cons eval read-exp
nil
This is an M-expression with parentheses omitted from primitive func-

tions. With all the parentheses supplied, it becomes the S-expression

(cons (eval (read-exp))
(cons (eval (read-exp))
nil))
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¢ = 432 is just 8 bits plus 8 times the size in characters of this LISP
S-expression. See utm.r.
Consider a binary string z whose size is |z| bits. In utm.r we also
show that
H(z) <2z|+c

and
H(z) < |z|+ H(|z|) +

with ¢ = 1106 and ¢’ = 1024. As before, the programs for doing this
are exhibited and run.

Next we turn to the self-delimiting program-size complexity H(X)
for infinite r.e. sets X. This is defined to be the size in bits of the small-
est LISP expression £ that executes forever without halting and outputs
the members of the r.e. set X using the LISP primitive display, which
is an identity function with the side-effect of outputting the value of
its argument. Note that this LISP expression £ is allowed to read
additional bits or expressions from the TM tape using the primitive
functions read-bit and read-exp if £ so desires. But of course £ is
charged for this; this adds to £’s program size.

It is in order to deal with such unending expressions £ that the LISP
primitive function for time-limited evaluation try captures all output
from display within its second argument 3.

Now consider a formal axiomatic system A of complexity N, i.e.,
with a set of theorems T4 that considered as an r.e. set as above has
self-delimiting program-size complexity H(T4) = N. We show that A
cannot enable us to exhibit a specific S-expression s with self-delimiting
complexity H(s) greater than N + c¢. Here ¢ = 4872. See godel2.r.

Next we show two different ways to calculate the halting probability
2 of our standard self-delimiting universal Turing machine in the limit
from below. See omega.r and omega2.r. The first way of doing this,
omega.r, is straight-forward. The second way to calculate (2, omega2.r,
uses a more clever method. Using the clever method as a subroutine,
we show that if Qy is the first N bits of the fractional part of the
base-two real number 2, then

H(QN)>N—C
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with ¢ = 8000. Again this is done with a program that can actually be
run and whose size gives us a value for c. See omega3.r.

Consider again the formal axiomatic system A with complexity N,
i.e., with self-delimiting program-size complexity H(T4) = N. Using
the lower bound of N — ¢ on H({ly) established in omega3.r, we show
that A cannot enable us to determine more than the first N + ¢’ bits
of Q. Here ¢ = 15328. In fact, we show that A cannot enable us to
determine more than N + ¢’ bits of {2 even if they are scattered and we
leave gaps. See godel3.r.

Last but not least, the philosophical implications of all this should
be discussed, especially the extent to which it tends to justify experi-
mental mathematics. This would be along the lines of the discussion
in my talk transcript “Randomness in arithmetic and the decline and
fall of reductionism in pure mathematics.”

This concludes our “hands-on” mini-course on the information-
theoretic limits of mathematics.
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[ Test new lisp & show how it works ]
aa [ initially all atoms eval to self ]

expression aa
value aa

nil [ except nil = the empty list ]

expression nil
value O

’aa [ quote = literally ]

expression (’ aa)
value aa

’(aa bb cc) [ delimiters are > " ( ) [ ] blank \n ]

expression (’ (aa bb cc))
value (aa bb cc)

(aa bb cc) [ what if quote omitted?! ]

expression (aa bb cc)
value aa

car ’(aa bb cc) [ here effect is different ]

expression (’ (car (’ (aa bb c¢c))))
value (car (* (aa bb cc)))

car ’(aa bb c¢) [ car = first element of list ]

expression (car (° (aa bb cc)))
value aa

car ’((a b)c d)

97
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expression (car (’ ((a b) ¢ d)))
value (a b)

car ’(aa)

expression (car (’ (aa)))
value aa

car aa [ ignore error ]

expression (car aa)
value aa

cdr ’(aa bb ¢cc) [ cdr = rest of list ]

expression (cdr (’ (aa bb cc)))
value (bb cc)

cdr ’((a b)c d)

expression (cdr (° ((a b) c d)))
value (c d)

cdr ’(aa)

expression (cdr (’ (aa)))
value O

cdr aa [ ignore error ]

expression (cdr aa)
value aa

cadr ’(aa bb cc) [ combinations of car & cdr ]

expression (car (cdr (’ (aa bb cc))))
value bb

G. J. Chaitin
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caddr ’(aa bb cc)

expression (car (cdr (cdr (° (aa bb cc)))))
value cc

cons ’aa ’(bb cc) [ cons = inverse of car & cdr ]

expression (cons (’ aa) (’ (bb cc)))
value (aa bb cc)

cons’(a b)’(c d)

expression (cons (’ (a b)) (’ (c d)))
value ((ab) ¢ d)

cons aa nil

expression (cons aa nil)
value (aa)

cons aa ()

expression (cons aa ())
value (aa)

cons aa bb [ ignore error ]

expression (cons aa bb)
value aa

("cons aa) [ supply nil for missing arguments ]

expression (cons aa)
value (aa)

("cons ’(aa) ’(bb) ’(cc)) [ ignore extra arguments ]

expression (cons (’ (aa)) (° (bb)) (° (cc)))
value ((aa) bb)
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atom ’ aa [

expression
value

atom ’(aa)

expression
value

atom ’( )

expression
value

is-atomic? predicate ]

(atom (’ aa))
true

(atom (° (aa)))
false

(atom (° ()))

true

= aa bb [ are-equal-S-expressions? predicate ]

expression
value

= aa aa

expression
value

= ’(a b)’(a

expression
value

= ’(a b)’(a

expression
value

if true x y

expression

(= aa bb)
false

(= aa aa)
true

b)

= ¢

true

(ab)) ¢ (ab)))

x)

(= C (ab)) ( (a x)))

false

[ if ... then ... else ... ]

(if true x y)

G. J. Chaitin
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value x
if false x y

expression (if false x y)
value y

if xxx x y [ anything not false is true ]

expression (if xxx x y)
value X

[ display intermediate results ]
cdr display cdr display cdr display ’(abc de)

expression (cdr (display (cdr (display (cdr (display (’ (a b
cde))))))

display (abcde)
display (bcde)
display (c d e)
value (d e)

(’lambda(x y)x 1 2) [ lambda expression ]

expression ((’ (lambda (x y) x)) 1 2)
value 1

(’lambda(x y)y 1 2)

expression ((’ (lambda (x y) y)) 1 2)
value 2

(’lambda(x y)cons y cons x nil 1 2)

expression ((’ (lambda (x y) (cons y (cons x nil)))) 1 2)
value (2 1)

(if true "car "cdr ’(a b ¢)) [ function expressions ]
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expression ((if true car cdr) (° (a b ¢)))
value a

(if false '"car "cdr ’(a b ¢))

expression ((if false car cdr) (° (a b ¢)))
value (M ¢c)

(’lambda()cons x cons y nil) [ function with no arguments ]

expression ((’ (lambda () (cons x (cons y nil)))))
value x y)

[ Here is a way to create an expression and then
evaluate it in the current environment. EVAL (see
below) does this using a clean environment instead. ]
(display
cons “lambda cons nil cons display ’cons x cons y nil nil)

expression ((display (cons lambda (cons nil (cons (display (’
(cons x (cons y nil)))) nil)))))

display (cons x (cons y nil))

display (lambda () (cons x (cons y nil)))

value (x y)

[ let ... be ... in ... ]

let x a cons x cons x nil [ first case, let x be ... in ... ]

expression ((’ (lambda (x) (cons x (cons x nil)))) a)
value (a a)

expression x
value X

[ second case, let (f x) be ... in ... ]
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let (f x) if atom display x x (f car x)
(£ > (((a)b)c))

expression

display
display
display
display
value

expression
value

(C’ (lambda (£f) (f (° (((a) b) ¢))))) (° (lambda (
x) (if (atom (display x)) x (f (car x))))))

(((a) b) ©

((a) b)

(a)

a

a

f
f

append ’(a b ¢c) ’(d e f) [ concatenate-list primitive ]

expression
value

(append (° (abc)) (C (de £)))
(abcde f)

[ define "by hand" temporarily ]

let (cat x y) if atom x y cons car x (cat cdr x y)
(cat ’(abc) ’(d e £))

expression

value
cat

expression
value

(¢’ (lambda (cat) (cat (C (abc)) (C (de £)))))

(° (lambda (x y) (if (atom x) y (cons (car x) (cat
(cdr x) ¥))IN))

(abcde f)

cat
cat

[ define "by hand" permanently ]
y P y

define (cat x y) if atom x y cons car x (cat cdr x y)
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define cat

value (lambda (x y) (if (atom x) y (cons (car x) (cat (c
dr x) y))))

cat

expression cat

value (lambda (x y) (if (atom x) y (cons (car x) (cat (c

dr x) y))))
(cat ’(abc) "(de £))

expression (cat (°’ (abc)) (C (de £)))
value (abcdef)

define x (a b ¢) [ define atom, not function ]

define X
value (abc)

cons x nil

expression (cons x nil)
value ((a b ¢c))

define x (d e f)

define X
value (d e f)

cons X nil

expression (cons x nil)
value ((d e £))

size abc [ size of S-expression in characters ]

expression (size abc)
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value 3
size > (abc)

expression (size (’ (a b ¢)))
value 7

length > ( a b ¢ ) [ number of elements in list ]

expression (length (’ (a b c)))
value 3

length display bits ’> a [ S-expression ~-> bits ]
expression (length (display (bits (’ a))))
display (0110000100001010)
value 16

length display bits ’> abc [ extra character is \n ]

expression (length (display (bits (’ abc))))

display (0110000101100010011000110
0001010)
value 32

length display bits nil

expression (length (display (bits nil)))

display (001010000010100100001010)
value 24

length display bits ’ (a)

expression (length (display (bits (° (a)))))

display (0010100001100001001010010
0001010)
value 32

[ plus ]
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+ abc 15 [ not

expression (+
value 15
+ ’(abc) 15

expression (+
value 15

+ 10 15

expression (+
value 25

- 10 15 [ non-negative minus ]

number --> 0 ]

abc 15)

(’ (abc)) 15)

10 15)

10 15)

15 10)

]

10 15)

]

10 15)
0000000000000

than ]

10 15)

expression (-
value 0

- 15 10
expression (-
value 5

* 10 15 [ times
expression (*
value 150
~ 10 15 [ power
expression (°
value 100
< 10 15 [ 1less
expression (K

value true

G. J. Chaitin



The Limits of Mathematics

< 10 10

expression (< 10 10)
value false

> 15 10 [ greater than ]

expression (> 15 10)
value true

> 10 10

expression (> 10 10)
value false

<= 15 10 [ less than or equal ]

expression (<= 15 10)
value false

<= 10 10

expression (<= 10 10)
value true

= 10 15 [ greater than or equal ]

expression (>= 10 15)
value false

= 10 10

expression (>= 10 10)
value true

= 10 15 [ equal ]

expression (= 10 15)

107
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value false
= 10 10

expression (= 10 10)
value true

[ here not number isn’t considered zero ]
= abc 0

expression (= abc 0)
value false

= 0003 3 [ other ways numbers are funny ]

expression (= 3 3)
value true

000099 [ leading zeros removed ]

expression 99
value 99

[ and numbers are constants ]
let x b cons x cons x nil

expression ((’° (lambda (x) (cons x (cons x nil)))) b)
value (b b)

let 99 45 cons 99 cons 99 nil

expression ((’ (lambda (99) (cons 99 (cons 99 nil)))) 45)
value (99 99)

define 99 45

define 99
value 45
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cons 99 cons 99 nil

expression (cons 99 (cons 99 nil))
value (99 99)

[ decimal<-->binary conversions ]
basel0-to-~2 255

expression (basel0O-to-2 255)
value (11111111)

basel0-to-2 256

expression (baselO-to-2 256)
value (10000000 0)

basel0-to-2 257

expression (basel0-to-2 257)
value (10000000 1)

base2-to-10 (1 1 1 1)

expression (base2-to-10 (° (1 1 1 1)))
value 15

base2-t0-10 (1 0 0 0 0)

expression (base2-to-10 (’ (1 0 0 0 0)))
value 16

base2-t0-10 (1 0 0 0 1)

expression (base2-to-10 (> (1 0 0 0 1)))
value 17

[ illustrate eval & try ]

109
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eval display ’+ display 5 display 15

expression (eval (display (’ (+ (display 5) (display 15)))))

display (+ (display 5) (display 15))
display 5
display 15
value 20

try O display ’+ display 5 display 15 nil

expression (try O (display (° (+ (display 5) (display 15))))

nil)
display (+ (display 5) (display 15))
value (success 20 (56 15))

try O display ’+ debug 5 debug 15 nil

expression (try O (display (’ (+ (debug 5) (debug 15)))) nil)

display (+ (debug 5) (debug 15))
debug 5

debug 15

value (success 20 ())

[ eval & try use initial variable bindings ]
cons X nil

expression (cons x nil)
value ((d e £))

eval ’cons x nil

expression (eval (’° (cons x nil)))
value (x)

try 0 ’cons x nil nil

expression (try O (° (cons x nil)) nil)
value (success (x) Q)
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define five! [ to illustrate time limits ]
let (f x) if = display x 0 1 * x (f - x 1)

(f 5)
define five!
value ((’ (Qlambda (£f) (f 5))) (° (lambda (x) (if (= (dis

play x) 0) 1 (* x (f (- x 1)))))))
eval five!

expression (eval fivel)

display 5
display 4
display 3
display 2
display 1
display 0
value 120

{ by the way, numbers can be big: ]
let (£ x) if=x01*x (f - x 1)
(f 100) [ one hundred factorial! ]

expression ((’ (lambda (f) (f 100))) (° (lambda (x) (if (= x
0) 1 (*xx (£ (-x1))N)N

value 93326215443944152681699238856266700490715968264381
621468592963896521759999322991560894146397615651828
62536979208272237582511852109168640000000000000000
00000000

[ time limit is nesting depth of re-evaluations
due to function calls & eval & try ]

try O five! nil

expression (try O five! nil)
value (failure out-of-time ())
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try 1 five! nil

expression (try 1 five! nil)
value (failure out-of-time ())

try 2 five! nil

expression (try 2 five! nil)
value (failure out-of-time (5))

try 3 five! nil

expression (try 3 five! nil)
value (failure out-of-time (5 4))

try 4 five! nil

expression (try 4 five! nil)
value (failure out-of-time (5 4 3))

try 5 five! nil

expression (try 5 five! nil)
value (failure out-of-time (5 4 3 2))

try 6 five! nil

expression (try 6 five! nil)
value (failure out-of-time (56 4 3 2 1))

try 7 five! nil

expression (try 7 five! nil)
value (success 120 (56 4 3 2 1 0))

try no-time-limit five! nil

expression (try no-time-limit five! nil)
value (success 120 (56 4 3 21 0))

G. J. Chaitin
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define two* [ to illustrate running out of data ]
let (f x) if = 0 x nil
cons * 2 display read-bit (f - x 1)

(f 5)
define two*
value (C (lambda (£f) (f 5))) (’ (lambda (x) (if (= 0 x)
nil (cons (* 2 (display (read-bit))) (f (- x 1)))
))))

try 6 twox (1 010 1)

expression (try 6 twox (° (1 010 1)))
value (failure out-of-time (1 0 1 0 1))

try 7 twox (1 010 1)

expression (try 7 twox (° (1 010 1)))
value (success (2 0202) (10101))

try 7 twox (1 0 1)

expression (try 7 twox (> (1 0 1)))
value (failure out-of-data (1 0 1))

try no-time-limit two* ’(1 0 1)

expression (try no-time-limit two* (’ (1 0 1)))
value (failure out-of-data (1 0 1))

try 18
’let (f x) if = 0 x nil
cons * 2 display read-bit (f - x 1)
(f 186)
bits ’a

expression (try 18 (° ((’ (lambda (f) (f 16))) (° (lambda (x)
(if (= 0 x) nil (cons (* 2 (display (read-bit)))
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(f (- x 1)) (bits C a)))
value (success (0220000200002020) (011
000010000101 0))

[ illustrate nested try’s ]
[ most constraining limit wins ]

try 20

’cons abcdef try 10

’let (f n) (f display + n 1) (f 0) [infinite loop]
nil nil

expression (try 20 (’° (cons abcdef (try 10 (° ((’ (lambda (f)
(f 0))) ( (lambda (n) (£ (display (+ n 1)))))))

nil))) nil)
value (success (abcdef failure out-of-time (1 2 3 4 6 6

789) O)

try 10

’cons abcdef try 20

’let (f n) (f display + n 1) (f 0) [infinite loopl
nil nil

expression (try 10 (° (cons abcdef (try 20 (° ((’ (lambda (f)
(f 0))) (C (lambda (n) (£ (display (+ n 1)))))))
nil))) nil)
value (failure out-of-time ())

try 10

’cons abcdef try 20

’let (f n) (f debug + n 1) (f 0) [infinite loop]
nil nil

expression (try 10 (° (cons abcdef (try 20 (’ ((’ (lambda (f)
(f 0))) (C (lambda (n) (f (debug (+ n 1))))))) ni

1))) nil)
debug 1
debug 2

debug 3
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debug
debug
debug
debug
debug

value (failure out-of-time ())

O N B b

try no-time-limit

’cons abcdef try 20

’let (f n) (f display + n 1) (f 0) [infinite loop]
nil nil

expression (try no-time-limit (’ (cons abcdef (try 20 (° ((’
(lambda (£) (f 0))) (° (lambda (n) (f (display (+
n 1))))))) nil))) nil)

value (success (abcdef failure out-of-time (1 2 3 45 6
789 10 11 12 13 14 15 16 17 18 19)) ()

try 10

’cons abcdef try no-time-limit

’let (f n) (f display + n 1) (f 0) [infinite loop]

nil nil

expression (try 10 (° (cons abcdef (try no-time-limit (° ((°
(lambda (£f) (£ 0))) (° (lambda (n) (f (display (+
n 1))))))) nil))) nil)

value (failure out-of-time ())

{ illustrate read-bit & read-exp ]

read-bit

expression (read-bit)
value out-of-data

read-exp

expression (read-exp)
value out-of-data



116 G. J. Chaitin

try 0 ’read-bit nil

expression (try 0 (’ (read-bit)) nil)
value (failure out-of-data ())

try O ’read-exp nil

expression (try O (’ (read-exp)) nil)
value (failure out-of-data ())

try O ’read-exp bits ’abc

expression (try 0 (’ (read-exp)) (bits (’ abc)))
value (success abc ())

try O ’read-exp bits ’(abc def)

expression (try 0 (’ (read-exp)) (bits (’ (abc def))))
value (success (abc def) ())

try O ’read-exp bits ’(abc(def ghi)jkl)

expression (try 0 (° (read-exp)) (bits (° (abc (def ghi) jk1)
)))

value (success (abc (def ghi) jk1) ())

try O ’cons read-exp cons read-bit nil bits ’abc

expression (try O (’ (cons (read-exp) (cons (read-bit) nil)))

(bits (° abc)))

value (failure out-of-data ())

try 0 ’cons read-exp cons read-bit nil append bits ’abc ’(0)

expression (try O (’° (cons (read-exp) (cons (read-bit) nil)))

(append (bits (’ abc)) (° (0))))
value (success (abc 0) ())
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try O ’cons read-exp cons read-bit nil append bits ’abc ’ (1)

expression (try O (° (cons (read-exp) (cons (read-bit) nil)))
(append (bits (’ abc)) (° (1))))

value (success (abc 1) ())

try O ’read-exp bits ’(a b c)

expression (try O (° (read-exp)) (bits (° (a b ¢))))
value (success (a b c) ())

try O ’cons read-exp cons read-exp nil bits ’(a b c¢)
expression (try O (’ (cons (read-exp) (cons (read-exp) nil)))
(bits (* (a b ¢))))

value (failure out-of-data ())

try O ’cons read-exp cons read-exp nil
append bits ’(a b ¢) bits ’(d e f)

expression (try O (° (cons (read-exp) (cons (read-exp) nil)))
(append (bits (’ (a b c))) (bits (’ (d e £)))))
value (success ((abc) (de £)) O)

bits ’a [ to get characters codes ]

expression (bits (’ a))
value (0110000100001 010)

try O ’read-exp (0110 00 0 1) [’a’ but no \n character]

expression (try O (’ (read-exp)) (> (0110000 1)))
value (failure out-of-data ())

try O ’read-exp (0110 0001 0000 10 1)[0 missing]
expression (try O (° (read-exp)) (’ (011000010000

10 1))
value (failure out-of-data ())
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try O ’read-exp (0110 0001 0000 10 10) [okay]

expression (try O (’ (read-exp)) (° (011000010000
1010
value (success a ())

[ if we get to \n reading 8 bits at a time,
we will always interpret as a valid S-expression ]
try 0 ’read-exp
(000010 10) [nothing in record; only \n]

expression (try 0 (’ (read-exp)) (° (0000101 0)))
value (success (O ()

[unprintable character]

try 0 ’read-exp ’(1 11
1 0) [is deleted]

111 11
0000 10
expression (try O (° (read-exp)) (° (111111110000

1010)))
value (success () ()

bits () [ to get characters codes ]

expression (bits ())
value (001010000010100100001010)

[ three left parentheses==>three right parentheses supplied ]
try O ’read-exp (0010 1000 0010 1000
0010 1000 0000 1010

expression (try O (’ (read-exp)) (> (001010000010
10000010100000001010)))
value (success ((())) O)

[ right parenthesis ’a’==>left parenthesis supplied ]
try O ’read-exp (0010 1001 0110 0001
0000 1010) [ & extra ’a’ ignored ]
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expression (try O (’ (read-exp)) (° (001010010110
00010000101 0)))
value (success () ()

[ ’a’ right parenthesis==>’a’ is seen & parenthesis ]
try O ’read~exp (0110 0001 0010 1001
0000 1010) [ is ignored ]

expression (try O (’ (read-exp)) (° (011000010010
10010000101 0)))
value (success a ())

End of LISP Run

Elapsed time is 16 seconds.

godel.r

LISP Interpreter Run

CCC
Show that a formal system of lisp complexity

H_lisp (FAS) = N cannot enable us to exhibit

an elegant S-expression of size greater than N + 410.
An elegant lisp expression is one with the property
that no smaller S-expression has the same value.
Setting: formal axjomatic system is never-ending
lisp expression that displays elegant S-expressions.

111
[Here is the key expression.]
define expression
let (examine x)
if atom x false

if < n size car x car x
(examine cdr x)
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let fas ’display ~ 10 430 [insert FAS here preceeded by ’]

let n + 410 size fas

let t O

let (loop)

let v try t fas nil

let s (examine caddr v)

if s eval s

if = success car v failure

let t +t 1
(loop)
(1loop)
define expression
value ((’ (lambda (examine) ((’ (lambda (fas) ((’ (lambd

a (n) ((’ (lambda (t) ((’ (lambda (loop) (loop)))
(’ (lambda () ((’ (lambda (v) ((’ (lambda (s) (if
s (eval s) (if (= success (car v)) failure ((’ (la
mbda (t) (loop))) (+ t 1)))))) (examine (car (cdr
(cdr v))))))) (try t fas nil))))))) 0))) (+ 410 (s
ize fas))))) (° (display (= 10 430)))))) (’ (lambd
a (x) (if (atom x) false (if (< n (size (car x)))
(car x) (examine (cdr x)))))))

[Size expression.]
size expression

expression
value

(size expression)
430

[Run expression & show that it knows its own size
and can find something bigger than it is.]
eval expression

expression

(eval expression)
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value

10000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
0000000000000000000000000000000

[Here it fails to find anything bigger than it is.]

let (examine x)
if atom x false
if < n size car x car x
(examine cdr x)

let fas ’display ~ 10 429 [insert FAS here preceeded by ’]

let n + 410 size fas

let t O

let (loop)

let v try t fas nil

let s (examine caddr v)

if s eval s

if = success car v failure
let t + t 1

(loop)

(loop)

expression ((’ (lambda (examine) ((’ (lambda (fas) ((’ (lambd

a (n) ((’° (lambda (t) ((’ (lambda (loop) (loop)))
(’ (lambda () ((*> (lambda (v) ((’ (lambda (s) (if
s (eval s) (if (= success (car v)) failure ((° (la
mbda (t) (loop))) (+t 1)))))) (examine (car (cdr
(cdr v))))))) (try t fas nil))))))) 0))) (+ 410 (s
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ize fas))))) (’ (display (- 10 429)))))) (’ (lambd
a (x) (if (atom x) false (if (< n (size (car x)))
(car x) (examine (cdr x)))))))

value failure

End of LISP Run

Elapsed time is 2 seconds.

utm.r

LISP Interpreter Run

CCC
First steps with my new construction for
a self-delimiting universal Turing machine.
We show that
H(x,y) <= H(zx) + H(y) + ¢
and determine c.
Consider a bit string x of length [x].
We also show that
H(x) <= 2|x| + ¢
and that
H(x) <= |x| + H(the binary string for |x]) + ¢
and determine both these c¢’s.

111
[

Here is the self-delimiting universal Turing machine!

]

define (U p) cadr try no-time-limit ’eval read-exp p

define U

value (lambda (p) (car (cdr (try no-time-limit (° (eval
(read-exp))) p))))

(U bits ’cons x cons y cons 2z nil)
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expression (U (bits (’ (cons x (cons y (cons z nil))))))
value (xy 2)

(U append bits ’cons a debug read-exp
bits (b ¢ )
)

expression (U (append (bits (’ (cons a (debug (read-exp)))))
(bits (° (b c A)N))

debug (b c )
value (abcd
L

The length of alpha in bits is the
constant ¢ in H(x) <= 2|x| + 2 + c.
]
define alpha
let (loop) let x read-bit

let y read-bit

if =xy
cons x (loop)
nil
(loop)
define alpha
value ((’ (lambda (loop) (loop))) (° (lambda () ((’ (lam

bda (x) ((’ (lambda (y) (if (= x y) (cons x (loop)
) nil))) (read-bit)))) (read-bit)))))

length bits alpha

expression (length (bits alpha))

value 1104
qy
append
bits alpha

’0011001101)
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expression (U (append (bits alpha) (° (001100110 1)))

)
value (010 1)
u
append
bits alpha
’0011001100)
)
expression (U (append (bits alpha) (° (001100110 0)))
)
value out-of-data

[

The length of beta in bits is the
constant ¢ in H(x,y) <= H(x) + H(y) + c.
]

define beta

cons eval read-exp

cons eval read-exp

nil

define beta
value (cons (eval (read-exp)) (cons (eval (read-exp)) ni
1))

length bits beta

expression (length (bits beta))

value 432
U
append
bits beta
append

bits ’cons a cons b cons ¢ nil
bits ’cons x cons y cons z nil
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expression (U (append (bits beta) (append (bits (’ (cons a (c
ons b (cons ¢ nil))))) (bits (’ (cons x (cons y (c

ons z nil))))))N)

value ((abc) (xy =z

(U

append
bits beta

append
append bits alpha ’(0
append bits alpha ’(1

= O

expression (U (append (bits beta) (append (append (bits alpha
) C (001100110 1))) (append (bits alpha)
(?’ (11001100100DN)N

value ((0101) 1010))

[
The length of gamma in bits is the
constant ¢ in H(x) <= |x| + H(Ix|) + ¢
]
define gamma
let (loop k)
if = 0 k nil
cons read-bit (loop - k 1)
(loop base2-to-10 eval read-exp)

define gamma

value ((’ (lambda (loop) (loop (base2-to-10 (eval (read-
exp)))))) (’ (lambda (k) (if (= 0 k) nil (cons (re
ad-bit) (loop (- k 1)))))))

length bits gamma

expression (length (bits gamma))
value 1024
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U
append
bits gamma
append
[Arbitrary program for U to compute number of bits]
bits’ (1 0 0 0)
[That many bits of datal
0000 000 1)

expression (U (append (bits gamma) (append (bits (> (° (1 00
0))) (0000000 1))
value (00000001)

End of LISP Run

Elapsed time is 19 seconds.

godel2.r

LISP Interpreter Run

CLL
Show that a formal system of complexity N

can’t prove that a specific object has

complexity > N + 4872.

Formal system is a never halting lisp expression

that output pairs (lisp object, lower bound

on its complexity). E.g., (x 4) means

that x has complexity H(x) greater than or equal to 4.
111

[Here is the prefix.]
define pi

let (examine pairs)



The Limits of Mathematics 127

if atom pairs false
if < n cadr car pairs

let t O
let fas nil

let (loop)

car pairs
(examine cdr pairs)

let v try t ’eval read-exp fas
let n + 4872 length fas
let p (examine caddr v)

if p car p
if = car v success failure
if = cadr v out-of-data
let fas append fas cons read-bit nil
(loop)
if = cadr v out-of-time
lett +t 1
(1loop)

unexpected-condition

(loop)

define
value

pi
((’ (lambda (examine) ((’ (lambda (t) ((’ (lambda
(fas) ((’ (lambda (loop) (loop))) (° (lambda () ((
’ (lambda (v) ((’ (lambda (n) ((’ (lambda (p) (if
p (car p) (if (= (car v) success) failure (if (= (
car (cdr v)) out-of-data) ((’ (lambda (fas) (loop)
)) (append fas (cons (read-bit) nil))) (if (= (car
(cdr v)) out-of-time) ((’ (lambda (t) (loop))) (+
t 1)) unexpected-condition)))))) (examine (car (c
dr (cdr v))))))) (+ 4872 (length fas))))) (try t (
> (eval (read-exp))) fas))))))) nil))) 0))) C (la
mbda (pairs) (if (atom pairs) false (if (< n (car
(cdr (car pairs)))) (car pairs) (examine (cdr pair

§)))))))
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[Size pi.]
length bits pi

expression (length (bits pi))
value 4872

[Size pi + fas.]
length
append bits pi
bits ’display ’(xyz 9999)

expression (length (append (bits pi) (bits (’ (display (’ (xy
z 9999)))))))
value 5072

[Here pi finds something suitable.]

cadr try no-time-limit ’eval read-exp
append bits pi
bits ’display ’(xyz 5073)

expression (car (cdr (try no-time-limit (’ (eval (read-exp)))
(append (bits pi) (bits (’ (display (’ (xyz 5073)
)I)))I))

value Xyz
[Here pi doesn’t find anything suitable.]

cadr try no-time-limit ’eval read-exp
append bits pi
bits ’display ’(xyz 5072)

expression (car (cdr (try no-time-limit (’ (eval (read-exp)))
(append (bits pi) (bits (’ (display (’ (xyz 5072)
1))

value failure

End of LISP Run
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Elapsed time is 153 seconds.

()III(BE;El{r
LISP Interpreter Run
[[[[ Omega in the limit from below! ]1]]]

define (all-bit-strings-of-size k)
if = 0k >(0))
(extend-by-one-bit (all-bit-strings-of-size - k 1))

define all-bit-strings-of-size
value (lambda (k) (if (= 0 k) (° (())) (extend-by-one-bi
t (all-bit-strings-of-size (- k 1)))))

define (extend-by-one-bit x)
if atom x nil
cons append car x ’(0)
cons append car x ’(1)
(extend-by-one-bit cdr x)

define extend-by-one-bit
value (lambda (x) (if (atom x) nil (cons (append (car x)
(> (0))) (cons (append (car x) (’ (1))) (extend-b
y-one-bit (cdr x))))))

define (count-halt p)
if atom p O
+
if = success car try t ’eval read-exp car p
10
(count-halt cdr p)

define count-halt
value (lambda (p) (if (atom p) 0 (+ (if (= success (car
(try t (’ (eval (read-exp))) (car p)))) 1 0) (coun



130 G. J. Chaitin

t-halt (cdr p)))))

define (omega t) cons (count-halt (all-bit-strings-of-size t))

cons /
cons ~ 2t
nil
define omega
value (lambda (t) (cons (count-halt (all-bit-strings-of-
size t)) (cons / (cons (~ 2 t) nil))))
(omega 0)
expression (omega 0)
value (0 /1)
(omega 1)
expression (omega 1)
value 0/ 2
(omega 2)
expression (omega 2)
value 0/
(omega 3)
expression (omega 3)
value 0/ 8
(omega 8)
expression (omega 8)
value (1 / 256)

End of LISP Run

Elapsed time is 38 seconds.
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omega2.r

LISP Interpreter Run
[[[[ Omega in the limit from below! ]]]]

define (count-halt prefix bits-left-to-extend)
if = bits-left-to-extend 0
if = success car try t ’eval read-exp prefix
10
+ (count-halt append prefix ’(0) - bits-left-to-extend 1)
(count-halt append prefix ’(1) - bits-left-to-extend 1)

define count-halt

value (lambda (prefix bits-left-to-extend) (if (= bits-1
eft-to-extend 0) (if (= success (car (try t (O (ev
al (read-exp))) prefix))) 1 0) (+ (count-halt (app
end prefix (> (0))) (- bits-left-to-extend 1)) (co
unt-halt (append prefix (’ (1))) (- bits-left-to-e
xtend 1)))))

define (omega t) cons (count~halt nil t)

cons /
cons - 2 ¢t
nil
define omega
value (lambda (t) (cons (count-halt nil t) (cons / (cons

(" 2 t) nil))))
(omega 0)

expression (omega 0)
value 0/ 1

(omega 1)

expression (omega 1)
value 0/ 2)
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(omega 2)

expression (omega 2)
value 0/ 4

(omega 3)

expression (omega 3)
value 0/ 8

(omega 8)

expression (omega 8)
value (1 / 256)

End of LISP Run

Elapsed time is 33 seconds.

omegad.r

LISP Interpreter Run

CLL
Show that
H(Omega_n) > n - 8000.
Omega_n is the first n bits of Omega,
where we choose
Omega = xxx0111111...
instead of
Omega = xxx1000000. ..
if necessary.

111
[Here is the prefix.]

define pi
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let (count-halt prefix bits-left-to-extend)
if = bits-left-to-extend O
if = success car try t ’eval read-exp prefix
10
+ (count-~halt append prefix ’(0) - bits-left-to-extend 1)
(count-halt append prefix ’(1) - bits-left-to-extend 1)

let (omega t) cons (count-halt nil t)
cons /
cons " 2t
nil

let w eval read-exp
let n length w

let w cons base2-to-10 w
cons /
cons ~ 2 n
nil

let (loop t)
if (<=rat w (omega t))
(big nil n)
(loop + t 1)

let (<=rat x y)
<= * car x caddr y * caddr x car y

let (big prefix bits-left-to-add)
if = 0 bits-left-to-add
cons cadr try t ’eval read-exp prefix
nil
append (big append prefix ’(0) - bits-left-to-add 1)
(big append prefix ’(1) - bits-left-to-add 1)

(loop 0)
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define
value

[Run pi.]

G. J. Chaitin

pi
((’ (lambda (count-halt) ((’ (lambda (omega) ((’ (
lambda (w) ((’ (lambda (n) ((’ (lambda (w) ((’ (la
mbda (loop) ((’ (lambda (<=rat) ((’ (lambda (big)
(loop 0))) (° (lambda (prefix bits-left-to-add) (i
f (= 0 bits-left-to-add) (cons (car (cdr (try t (’
(eval (read-exp))) prefix))) nil) (append (big (a
ppend prefix (° (0))) (- bits-left-to-add 1)) (big
(append prefix (’> (1))) (- bits-left-to-add 1))))
))))) ( (lambda (x y) (<= (* (car x) (car (cdr (c
dr y)))) (* (car (cdr (cdr x))) (car y))))))))
(lambda (t) (if (<=rat w (omega t)) (big nil n) (1
oop (+ t 1)))))))) (cons (base2-to-10 w) (cons / (
cons (T 2 n) nil)))))) (length w)))) (eval (read-e
xp))))) (’ (lambda (t) (cons (count-halt nil t) (c
ons / (cons (7 2 t) nil)))))))) (’ (lambda (prefix
bits-left-to-extend) (if (= bits-left-to-extend 0
) (if (= success (car (try t (° (eval (read-exp)))
prefix))) 1 0) (+ (count-halt (append prefix (’ (
0))) (- bits-left-to-extend 1)) (count-halt (appen
d prefix (° (1))) (- bits-left-to-extend 1)))))))

cadr try no-time-limit ’eval read-exp
append bits pi
bits °’
[Program to compute first n = 8 bits of Omegal

expression

value

0000 0001)

(car (cdr (try no-time-limit (’ (eval (read-exp)))
(append (bits pi) (bits (° (° (0000000 1)))
)))))
(out-of-data out-of-data out-of-data out-of-data o
ut-of-data out-of-data out-of-data out-of-data out
-of-data out-of-data () out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
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a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-~data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of~data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-



136

[Size pi.]
length bits

expression
value

G. J. Chaitin

of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out-of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data out-of-data out-of-data out-of-data

out-of-data out~of-data out-of-data out-of-data ou
t-of-data out-of-data out-of-data out-of-data out-
of-data out-of-data out-of-data out-of-data out-of
-data out-of-data out-of-data out-of-data out-of-d
ata out-of-data out-of-data out-of-data out-of-dat
a out-of-data)

pi

(length (bits pi))
8000

End of LISP Run

Elapsed time is 148 seconds.

godel3.r

LISP Interpreter Run

[t

Show that a formal system of complexity N

can’t determine more than N + 8000 + 7328

= N + 15328 bits of Omega.

Formal system is a never halting lisp expression
that outputs lists of the form (1 0 X 0 X X XX 1 0).
This stands for the fractional part of Omega,
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and means that these 0,1 bits of Omega are known.

X stands for an unknown bit.

111
[Here is the prefix.]
define pi

let (number-of-bits-determined w)
if atom w O
+ (number-of-bits-determined cdr w)
if = X car w
0
1

let (supply-missing-bits w)
if atom w nil
cons if = X car w
read-bit
car w
(supply-missing-bits cdr w)

let (examine w)
if atom w false
[if < n (number-of-bits-determined car w)]
[ Change n to 1 here so will succeed. ]
if < 1 (number-of-bits-determined car w)
car w
(examine cdr w)

let t O
let fas nil

let (loop)
let v try t ’eval read-exp fas
let n + 8000 + 7328 length fas
let w (examine caddr v)
if w (supply-missing-bits w)

137
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if = car v success failure

if = cadr v out-of-data
let fas append fas cons read-bit nil
(loop)
if = cadr v out-of-time
let t +t 1
(loop)

unexpected-condition

(loop)

define
value

[Size pi.]
length bits

expression
value

[Run pi.]

pi
((’ (lambda (number-of-bits-determined) ((’ (lambd
a (supply-missing-bits) ((’ (lambda (examine) ((’
(lambda (t) ((’ (lambda (fas) ((’ (lambda (loop) (
loop))) (° (lambda () ((’ (lambda (v) ((’ (lambda
(n) ((° (lambda (w) (if w (supply-missing-bits w)
(if (= (car v) success) failure (if (= (car (cdr v
)) out-of-data) ((’ (lambda (fas) (loop))) (append
fas (cons (read-bit) nil))) (if (= (car (cdr v))
out-of-time) ((’ (lambda (t) (loop))) (+ t 1)) une
xpected-condition)))))) (examine (car (cdr (cdr v)
)))))) (+ 8000 (+ 7328 (length fas)))))) (try t (°
(eval (read-exp))) fas))))))) nil))) 0))) (° (lam
bda (w) (if (atom w) false (if (< 1 (number-of-bit
s-determined (car w))) (car w) (examine (cdr w))))
))))) (° (lambda (w) (if (atom w) nil (cons (if (=
X (car w)) (read-bit) (car w)) (supply-missing-bi
ts (cdr w)))))))) (’ (lambda (w) (if (atom w) O (
+ (number-of-bits-determined (cdr w)) (if (= X (ca

rw) 01))))))

pi

(length (bits pi))
7328
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cadr try no-time-limit ’eval read-exp

append bits pi

append [Toy formal system with only one theorem.]
bits ’display ’(1 X 0)
[Missing bit of omega that is needed.]

(1)
expression (car (cdr (try no-time-limit (° (eval (read-exp)))
(append (bits pi) (append (bits (’ (display (° (1
X0))))) ¢ (1)))))))
value (110
End of LISP Run

Elapsed time is 94 seconds.



APPENDIX. LISP
INTERPRETER IN
MATHEMATICA

(**x** lisp.m: LISP interpreter **x*x)

(***xx INSTRUCTIONS FOR USING THIS LISP INTERPRETER *x*x**x

To run the lisp.m interpreter, first enter Mathematica

using the command math. To load the interpreter, enter
<< lisp.m

To run a LISP program xyz.l and produce xyz.r, enter
run @ "xyz"

To run several programs, enter
run /@ {"xxx","yyy","zzz"}

To run the eight LISP programs in the course, enter
runall

Type Exit to exit from Mathematica.

Here is how to run the programs that compute the halting
probability Omega in the limit from below:

math

<< lisp.m

run /@ {"omega","omega2"}

run @ "“omega3"

Exit

Reference: Wolfram, Mathematica, 2nd Ed., Addison-Wesley, 1991.
*okokok ok )

getbit[] :=

Block[ {x},
trouble = False; (* Mma bug bypass *)

141
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If[ atom@ tape, (trouble = True; Throw@ "out-of-data")];
x = car@ tape;

tape = cdr@ tape;

If[ x === 0, 0, 1]
1

getchar[] := FromCharacterCodel[
128*getbit [1 + 64#getbit[] + 32*getbit[] + 16#getbit[] +
8xgetbit[] + 4*getbit[] + 2*getbit[] + getbit[]

]
getrecord[] :=
Block[ { ¢, line = "", str },
inputbuffer2 = {};
While[ "\n" =!= (¢ = getchar[]),

line = line <> ¢ ];

If[ trouble, Throw@ "out-of-data"]; (* Mma bug bypass *)

(* keep only printable ASCII codes *)

line = FromCharacterCode®

Cases[ ToCharacterCode@ line, n_Integer /; 32 <= n < 127 1;
str = StringToStream®@ line;

inputbuffer2 = ReadList[str, Word, TokenWords—>{"(", ")"}];
Close@ str;

(* convert strings of digits to integers *)

inputbuffer2 = If[DigitQe@#, ToExpression@#, #]& /@ inputbuffer2 ;
]

getexp[rparenokay_:False]
Block[ { w, d, 1 ={} },
(* supply unlimited number of )’s if tokens run out *)
If[ inputbuffer2 == {}, w = ")",

w = First@ inputbuffer2;

inputbuffer2 = Rest@ inputbuffer2 ];

Switch[

W’

")", Return@ If[rparenokay,")",{}],

",

(While[ ")" =!= (d = getexp[Truel),

AppendTo[1,d]

1;

Return@ 1
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]
atom[x_] :=

MatchQ[ x, {}|_Stringl|_Integer ]
car[x_] :=

If[ atom@ x, x, First@ x ]
cdr(x_] :=

If[ atom@ x, x, Rest@ x ]
cons[x_,y_] :=
If[ MatchQ[y,_Stringl|_Integer], x, Prepend[y,x] ]

evalle2_,a_,d2_]

Block[ {e = e2, d = 42, £, args, x, y, z},
If[ MatchQle,_Integer], Return® e ];
If[ atom@ e, Block[ {names,values,pos},
{names,values} = a;
pos = Position[names,e,{1}];
Return@ If[ pos == {}, e, values[[pos[[1,1]11] ]

11;

f = eval[car@ e,a,d];
e = cdr@ e;

Switch(

f’

"n " Return® car@ e,

"if", Return@

If[

eval[car@ e,a,d] =!= "false",
eval [car@cdr@ e,a,d],
eval[car@cdr@cdr@ e,a,d]

1

1;

args = eval[#,a,d]& /@ e;

x = carQ args;

y = car@cdr@ args;

z = car@cdr@cdr@ args;
Switch[

f,

"read-bit", Return@ getbit[],

"read—exp", Return@ (getrecord[]; getexpll),

"bits", Return® Flatten[ ( Rest@ IntegerDigits([256 + #, 2] )& /@
ToCharacterCode[ output@x <> "\n" ] ],

"car'", Return@ car@ x,

"cdr", Return@ cdr@ x,
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"cons", Return® consl[x,y],
"size", Return@ Stringlength@ output@ x,
"length", Return@ Length@ x,
"+", Return@ (nmb@x + nmbQy),
"=, Return@ If[ nmb@x < nmb@y, 0, nmb@x - nmbQy ],
"', Return@ (nmb@x * nmb@y),
"=, Return@ (nmb@x "~ nmb@y),
"<", Return® If[nmb@x < nmbQy, "true", “"false"],
“>", Return@ If[nmb@x > nmbQy, "true", "false"],
">=", Return@ If[nmb@x >= nmbQy, "true", "false"],
"<=", Return@ If[nmb@x <= nmbQy, "true", "false"],
"base10-to-2", Return@ IntegerDigits[nmb@x, 2],
"base2-to-10", Return@ Fold[ (2 #1 + If[#2===0,0,1]1)&, 0, x ],
"append", Return@ Join[ If[atom@x,{},x], If[atom@y,{},y] 1,
"atom", Return@ If[ atom@ x, "true", "false" ],
"="_ Return@® If[ x ===y, "true", "false" ],
"display", Return@ (AppendTol[out,x];
If[ display, print[ "display", output® x ] J;

x),

"debug", Return@ (print[ "debug", output@ x ];
x)

1;

If[ d == 0, Throw@ "out—of-time" ];

d--;

Switchl[

f’

"eval", Return@ evall[x,,d],
"try", Return@
Block[ {out = {}, tape = z, display = False, xxJ},

If[ x === "no—time-limit", xx = Infinity, xx = nmb@ x ];
If[ xx < d,

Catch@ {"success",evally,,xx],out} //

If[ # === “out-of-time", {"failure" ,#,out}, # 1 & ,
Catch@ {"success",evally,,d],out} //

If[ # === "out—-of-time", Throw@ #, # ] &

17/

If[ # === "out-of-data", {"failure",#,out}, # ] & ] (* end block *)
J; (* end switch *)

f = cdr@ f;

eval[ car@cdr@ f, bind[car@ f,args,al, d ]
]

nmb[n_Integer] := n

nmb[_] := 0
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bind[vars_Zatom,args_,a_] :=
a

bind[vars_,args_,a_] :=

Block[ {names,values,pos},

{names,values} = bind[ cdr@ vars, cdr@ args, a ];
pos = Position[names, car@ vars, {1}];
{Prepend[Delete[names,pos], car@ vars],
Prepend[Delete[values,pos], car@ args]}

]

evalle_] :=

(

out = tape = {};

display = True;

print[ "expression", output® e ];

Catch[ eval[ e, {names,defs}, Infinity ] ]
)

evalle_,,d_] := evalle,{{"nil"},{{}}}.d]

run[fn_] := run([fn, "lisp.m", ".r"]
word2[]:=

Block[ {w,line,str},

While[

inputbuffer == {},

line = Read[i,Record];

If[ line == EndOfFile, Abort(] 1;

Print@ line;

WriteStringl[o,line,"\n"];

(* keep only printable ASCII codes *)

line = FromCharacterCode®

Cases[ ToCharacterCode@ line, n_Integer /; 32 <= n < 127 ];
str = StringToStream@ line;

inputbuffer = ReadList[str, Word,

145

Tokenwc,rds_>{"("’ ll)'l’ n[u’ n]u’ n;u’ u\uu}];

Close@ str
1;
w = First@ inputbuffer;
inputbuffer = Rest@ inputbuffer;
(* convert string of digits to integer *)
If[DigitQ@w, ToExpression@w, w]
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word[] :=
Block{ {w},
While[ True,

w = word2[];
If[ w =!= "[", Return@ v J];
While[ word[] =!= "]" ]

]

]

get[sexp_:False,rparenokay_:False] :=

Block[ {w = word[], d, 1 ={}, name, def, body, varlist},
Switchl

W’

")", Return@ If[rparenckay,")",{}],
I'("’

While[ ")" =!= (d = get[sexp,Truel),
AppendTo[1,d]

1;

Return@ 1

1;

If[ sexp, Return@ w ];

Switchl[

W,

M\ get[Truel,

"cadr",

{"car",{"cdr",get [1}},

"caddr",
{"car",{"cdr",{"cdr",get[1}}},

"let",

{name,def,body} = {get[],get[],get[1};
If[

'MatchQ[name,{}|_String|_Integer],
varlist = Rest@ name;

name = First@ name;

def = {"’",{"lambda",varlist,def}}

1;

{{"’",{"lambda",{name},body}},def},
"read-bit"|"read-exp",

{v},

"car"|"cdr" |"atom"|"’"|"display"|"eval®|"bits" | "debug" |
"length"|"size"|"base2-to-10"|"base10-to-2",

G. J. Chaitin
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{v,get (1},
“"cons"|"="|"lambda"|"append"|"define" |
ngn ' "w_n ' Myt ' tt~n ' nen I nyn ' g=n I n>=n’

{vw,get[],get1},
wifn I Hlet" I "try" , {w,get [] ,get [] ,get []}’
W

—>

]
]

(* output S-exp *)
output2[x_String] := x<" M
output2[x_Integer] := ToString[x]<>" "
output2[{x___3}] :=
Block[ {s},
s = StringJoin["(", output2 /@ {x}];
If[ StringTake[s,-1] == " ", s = StringDropl[s,-1] 1;
s <> ")y "
]
output[x_] := StringDrop[ output2@x ,-1 ]

blanks = StringJoin@ Table[" ",{12}]

print[x_,y_] := (print2[x,StringTakely,50]1];
print["",StringDroply,50]]) /; StringLength[y] > 50
print[x_,y_] := print2[x,y]

print2[x_,y_] := print3[StringTake[x<>blanks,12]<>y]

print3[x_] := (Print(x]; WriteString[o,x,"\n"])
let[n_,d_] :=
(

print[ "define", output@ n J;
print[ "value", output@ d ];
PrependTo [names,n];
PrependTo[defs,d];

)

run[fn_,whoami_,outputsuffix_] :=
(

inputbuffer = {};

names = {"nil"}; defs = {{}};

t0 = SessionTimel[];

o = OpenWrite[fn<>outputsuffix];
i = QOpenRead[fn<>".1"];
print3["LISP Interpreter Run"];
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print3@ "“;

CheckAbort [

While[True,

(print3e@ "";

Replace[#,{

{"define" ,{func_,vars___},def_} :> let[func,{"lambda",{vars},def}],
{"define",var_,def_} :> let[var,def],
_ :> print[ "value", output@ eval@ # ]
1]

Y& @ get[];

print3e@ ""

]’

1;

print3@ "End of LISP Run";

print3@ "";

print3@ StringForm[

"Elapsed time is ‘¢ seconds.",
Round[SessionTime[]-t0]

1;

Close® i;

Close® o

runall := run /@ {"examples","godel","utm","godel2",
"omega","omega2","omega3","godel3"}

$Recursionlimit = $IterationLimit = Infinity
SetOptions[$0utput,PageWidth->Infinity];
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