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Preface

This book gives a concise presentation of ideas and methods used by the
author to develop the Cli�ord-Einstein program of the geometrization of the
equations of physics, and also to solve various fundamental problems of modern
theoretical physics proceeding from the concept of the universal principle of
relativity and the theory of physical vacuum. In his studies the author made
an attempt to combine phenomena of seemingly di�erent nature and to sketch
a coherent picture of modern physics.

The author is most grateful to V. Yu. Tatur and all those who, directly or
indirectly, made the publication of this book possible. Special thanks are due
to my friends and colleagues E. A. Gubarev, A. N. Sidorov, and I. A. Volodin.

Many ideas expounded in this book were presented in my �rst monograph
published in 1979 with a support of M. A. Adamenko and I. S. Lakoba at
Moscow University Press.

I remember with gratitudemy productive talkswith V. Skalsky, an Associate
Professor at Slovak Polytechnic, who made some valuable points about various
vacuum states of matter.

Useful comments of A. E. Akimov have been encouraging in many respects
for my studies of torsion �elds and interactions.

The attention and support of all these persons contributed enormously to
the publication of this book.

Last but not least, the author must record his deep obligation to Elena
Turantaeva who was good enough to edit the book and read the proofs.

1993

Gennady Shipov

Preface to English edition

The translation of the book into English is shortened as far as it doesn't
contain the 5th chapter of the Russian edition. This chapter is dedicated to
phenomena of seemingly di�erent nature and its absence doesn't in
uence the
main scienti�c results.

1998

Gennady Shipov
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Conventions1

Three-dimensional tensor indices are denoted by the Greek letters �;�; 
; : : :
and take the values 1, 2, 3.

Three-dimensional vectors (e.g., linear and angular velocity) are denoted as:
~v and ~! or v and !:

Four-dimensional tensor indices are denoted by Latin letters i; j; k : : :; they
assume the values 0, 1, 2, 3. Letters from the �rst part of the alphabet
(a; b; : : : ; h) are used as tetrad indices, e.g., eia; (a= 0;1;2;3):

Spinor indices in the spinor�-basis are denoted by RomancapitalsA;B : : : ; _C : : : _D
and take the values 0,1 or _0; _1. Spinor indices in the �-basis are labeled by Greek
letters �;�; : : : ; _
; _Æ : : : :

Symmetrization and antisymmetrization of pairs of indices:

S(ij) =
1

2
(Sij + Sji); S[ij] =

1

2
(Sij � Sji):

Exclusion of an index from symmetrization or antisymmetrization:

S(ijjjk) =
1

2
(Sijk + Skji); S[ijjjk] =

1

2
(Sijk � Skji):

Passing over to local (tetrad) indices: Sabc = eaiS
i
jke

j
be
kc.

External product: ea ^ ec = aaec � ecea.
The Levi-Chivita pseudotensor: "ijkm; dual tensor:

�

Sij=
1
2
"ijkmS

km .
The matrix representation of
(a) tensor quantities :

Sabk or, discarding the matrix indices a and b, Sabk ! Sk ;

(b) spin-tensor quantities: SA
_B

C _Dk
! Sk .

A matrix product: [Tm; Tk ] = TmTk � TkTm.
Hermitian conjugate matrices: S+

B _Dkn
.

Derivatives

Partial derivativeswith respect to the translational coordinates xi are labeled
by a comma in front of an index, i.e., f;k = @f=@xk = @kf ; a covariant derivative
with respect to the Christo�el symbols �ijk is denoted by rk or rku

i = @ku
i+

�ijku
j.

A local covariant derivative: rau
b = @au

b + �bcau
c.

A covariant derivative
�

rk with respect to the connection �i
jk = eiae

a
j;k of

the A4 geometry:
�

rk ui = @ku
i + �i

jku
j .

1The following is a list of only some important notations. All the conventions are explained
in the text.
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An external derivative: d.
A spinor derivative: @A _B .

Translational metric and tetrads

Translational coordinates: x0; x1; x2; x3 .
The metric signature: (+ ���):
A translational linear element:

ds2 = �abe
a
ie
b
jdx

idxj , �ab = �ab = diag(1� 1� 1 � 1)
The structural equations of the group of translations of the A4 geometry:

r[arb]x
i = �
 : : c

ab rcx
i.

1-form of the tetrad: ea = eaidx
i.

Rotational metric and torsion

Rotational coordinates: '1; '2; '3; �1; �2; �3:

Rotational metric: d�2 = d�bad�
a
b = T a

biT
b
ajdx

idxj ,
d�ab = �d�ab :

The torsion of A4 geometry: 
 : : i
jk = eiae

a
[k;j] =

1
2
eia(e

a
k;j � e

a
j;k):

The contorsion tensor of A4 geometry (the rotational Ricci coeÆcients):

T i
jk = �


: : i
jk + gim(gjs


: : s
mk + gks


: : s
mj ) = eiarke

a
j:

1-form of contorsion: T a
b = T a

bkdx
k = T a

bce
c ; T(ab) = 0:

The structural equations of a rotational group (the matrix indices are dis-
carded): r[krm]e

i = 1
2
Rkme

i, where Rkm = 2r[mTk] + [Tm; Tk]:

Connection and curvature of A4 geometry

Connection: �i
jk = �ijk + T i

jk = eiae
a
j;k;

�i
[jk] = T i

[jk] = �

: : i
jk ; �i

(jk) = �ijk + gim(gjs

: : s
mk + gks


: : s
mj ):

Curvature:

Sijkm = 2�i
j[m;k] + 2�i

s[k�
s
jjjm] =

= Ri
jkm + 2r[kT

i
jjjm]+ 2T i

c[kT
c
jjjm] = 0

where Ri
jkm = 2�i

j[m;k]
+ 2�i

s[k
�s
jjjm]

| the Riemann tensor.

1-form of connection: �a
b = �a

bkdx
k = �a

bce
c:

The Cartan structural equations:
(a) �rst structural equations: dea � ec ^ T a

c = 0;
(b) second structural equations: Ra

b + dT a
b + T c

b ^ T
a
c = 0:

Spinor �-basis

Newman-Penrose symbols: �A
_B

i :
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Translational metric: gij = "AC " _B _D
�A

_B
i �C

_D
j , where "AB is a fundamental

spinor

"AB = "AB = "
_C _D = " _C _D

=

�
0 1
�1 0

�
:

The rotational Ricci coeÆcients:

TA _BC _Dk = �i
C _D
rk�A _Bi:

The rotational Ricci coeÆcients in terms of Carmeli matrices: TA _B with
matrix elements (TA _B)C

D:

The Riemann curvature in terms of Carmeli matrices: RA _BC _D :

The equations of physical vacuumwritten in Carmeli matrices:

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)A

P �i
P _B

+ �i
A _B

(T+
_DC
)
_R
_B
�

�(TA _B)C
P�i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
; (As)

RF _ED _B = @D _BTF _E � @F _ETD _B � (TD _B)F
STS _B � (T+

_ED
)
_F
_B
TF _F+

+(TF _E)D
STS _B + (T+

_EF
)
_F
_B
TD _F + [TF _E; TD _B]: (Bs+)

+ Hermitially conjugate equations.
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Introduction

Geometry with absolute parallelism was �rst considered in 1923-24 in the
works of Weitzenbock [1, 2] and Vitali [3, 4]. Weitzenbock suggested that there
exist in the n-dimensional manifold M with coordinates x1; : : : ; xn of Rieman-
nian spaces with a zero Riemann-Christo�el tensor

Sijkm = 2�i
j[m;k] + 2�i

s[k�
s
jjjm] = 0: (4.1)

Relationship (4.1) was regarded as the condition of parallel displacement of
an arbitrary vector in a given space in the absolute (independent of path) sense.
In 1924 Vitali introduced the concepts of the connection of absolute parallelism
[3]

�k
ij = ekae

a
i;j; (4.2)

; j = @
@xj

; i; j; k : : := 0;1;2;3;
a; b;c : : := 0;1;2;3;

where eka and e
a
i are basic vectors de�ned at each point of space and translatable

in the absolute sense to any point of the space in any direction. Weitzenbock
[5] showed that the connection (4.2) can be represented as the sum

�i
jk = �ijk + T

i
jk; (4.3)

where

�ijk =
1

2
gim(gjm;k + gkm;j � gjk;m); (4.4)

are the Christo�el symbols and

T i
jk = �


::i
jk + gim(gjs


s
mk + gks


::s
mj) (4.5)

are the Ricci rotation coeÆcients [6] for the basis eai.
The tensor 
::ijk, de�ned as


::ijk = eiae
a
[k;j] =

1

2
eia(e

a
k;j � e

a
j;k); (4.6)

came to be known as the anholonomity object [7], therefore the emergence of
the geometry of absolute parallelismcontinued the development of anholonomic
di�erential geometry [8].

Cartan and Schouten [9, 10], proceeding from the group properties of the
space of constant curvature, introduced the connection (4.3), in which the com-
ponents of the Ricci rotation coeÆcients (4.5) are constants.

Cartan and Schouten reasoned as follows. Suppose that in a n - dimensional
di�erentiable manifold M with the coordinates x1 ; : : : ; xn we have n contrava-
riant vector �elds

�ja = �ja(x
k); (4.7)

where
a; b; c : : : = 1 : : : n



10 PART 2.

are vector indices, and
i; j; k : : : = 1 : : :n

are coordinate indices.
Suppose that

det(�ja) 6= 0

and that the functions �ja satisfy the equations

�ja�
k
b;j � �

i
b�
k
a;j = �C

::f
ab �

k
f ;

where the constants C::f
ab have the following properties:

C::f
ab = �C::f

ba ; (4.8)

C::a
fbC

::f
cd + C::a

fcC
::f
db +C::a

fdC
::f
bc = 0: (4.9)

We can then say that we have an n-parametric simple transitive group (group

Tn) operating in the manifold such that C::f

ab are structural constants of the

group that obey the Jacobi identity (4.9). The vector �eld �
j

b is said to be
in�nitesimal generators of the group.

Let now the basis ekb , de�ned at each point of the manifold M , meet the
condition

det(eja) 6= 0:

If we suppose that
eja(x

k
0) = �ja(x

k
0);

where xk0 are the coordinates of some arbitrary point P , then we have for the
function eja(x

k
0) the equations

ejae
k
b;j � e

j
be
k
a;j = �C

::f
ab e

k
f : (4.10)

It follows from the normalization condition for the basis

eaie
j
a = Æ

j
i ; eaie

i
b = Æab ; (4.11)

and from (4.10), that

C::i
jk = 2eiae

a
[k;j] = eiaC

::a
bce

b
je
c
k : (4.12)

Comparing (4.8) and (4.6), we see that


::ijk =
1

2
C::i
jk ;

i.e., the components of the anholonomity object of a homogeneous space of
absolute parallelism are constant.

It is easily seen that the connection (4.2) possesses a torsion. In our speci�c
case

�k
[ij] = �


::k
ij = T k

[ij] = �
1

2
C::i
jk :
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It was exactly in this manner that Cartan and Schouten introduced connection
with torsion [9, 10]. Therefore, the development of the geometry of absolute
parallelismbrought about the emergence of the Riemann-Cartan geometry with
the connection

�ijk = �ijk +
1

2
(Cijk � Cjki � Ckij); (4.13)

where Sijk = �1
2Cijk is the torsion of space.

Further development of the geometry of absolute parallelismin the n-dimensional
di�erentiable manifold M with coordinates x1; : : : ; xn (geometries An) is de-
scribed in the works of Bortolotti [11{14], Griss [15], Schouten [16, 17], Eisen-
hart [18] and other authors [19-25]. Speci�cally Bortolotti [12] was the �rst to
point out that the Cartan-Schouten connection and the Weinzbock-Vitali (4.2)
connection is one and the same thing. Besides, Bortolotti showed that the tensor
(4.1) can be represented as the sum

Sijkm = Ri
jkm + 2r[kT

i
jjjm]+ 2T i

c[kT
c
jjjm] = 0; (4.14)

where
Ri

jkm = 2�ij[m;k] + 2�is[k�
s
jjjm] (4.15)

is the Riemann tensor, and the quantities T i
jk are given by (4.5).

In 1937 Thomas [20, 21] approached absolute parallelism as parallel displa-
cement of vectors "in toto," since the connection of space An (just as that of
a 
at space En) is integratble. Therefore, a vector speci�ed at some point An

can be speci�ed at any other point of space. Lastly, the works [23{25] give a
classi�cation of spaces with absolute parallelism.

GeometryA4 has been �rst used by Einstein [26] in applications to problems
of theoretical physics. The scientist made an attempt to combine the equations
of his theory with the equations of the Maxwell-Lorentz electrodynamics [27].
We note in passing that within the framework of the geometry of absolute
parallelism Einstein has written most (all in all 13) works.

By developing Einstein's program to construct a uni�ed �eld theory, this
author came to the conclusion that it is necessary to use the A4 geometry
as a geometry of space of events in universal relativity theory and the theory
of physical vacuum. Unlike Einstein and his following, the author employed
Cartan's structural equations of the geometry of absolute parallelism, which
are generalizations of Einstein's vacuum equations Rik = 0 for the case where
the energy-momentum tensor on the right-hand side of Einstein's equations is
geometric in nature.

The program of uni�ed �eld theory put forward by Einstein boils down to
solving two strategic problems of modern theoretical physics:

(a) the minimum program has it as its goal to geometrize the equations
of electromagnetic �eld and to combine them with the equations of Einstein's
theory of gravitation;

(b) the maximumprogram is aimed at the search for completely geometrized
equations of the gravitational and electromagnetic �eld (including sources), i.e.,
the geometrization of the �elds that form matter.
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Although much time was devoted to this search (around 30 years), Einstein
failed to solve the problem in a form acceptable to science. Together with many
outstanding scientists of the time he wrote a wealth of works relying on various
geometries. But all of them failed to meet the above requirements (a) and
(b). Also, it was unclear how to geometrize spin �elds (e.g., Dirac's �eld) that
are sources of electromagnetic �elds. Wheeler added to the program of uni�ed
�eld theory a further point that required a spinor treatment of the equations of
the uni�ed �eld. The latter condition can be met in the case where the main
geometric quantities of the theory are spinors rather than tensors. A spinor
treatment of classical geometries was given in the works by Penrose [38, 40, 54],
which was of much help to me in my constructing a theory of physical vacuum,
a present-day outgrowth of Einstein's program of uni�ed �eld theory.



Chapter 5

Geometry of absolute

parallelism in vector basis

5.1 Object of anholonomicity. Connection of

absolute parallelism

Consider a four-dimensional di�erentiable manifold with coordinates xi (i =
0;1;2;3) such that at each point of the manifold we have a vector eai (i =

0;1;2;3) and a covector ejb (b= 0;1;2;3) with the normalization conditions

eaie
j
a = Æ

j
i ; eaie

i
b = Æab : (5.1)

For arbitrary coordinate transformations

dxi
0

=
@xi

0

@xk
dxk (5.2)

in coordinate index i the tetrad eai transforms as a vector

eai0 =
@xi

@xi
0
eai: (5.3)

In the process, in the tetrad index a relative to the transformations (5.2) it
behaves as a scalar.

Tetrad eai de�nes the metric tensor of a space of absolute parallelism

gik = �abe
a
ie
b
k ; �ab = �ab = diag(1 � 1 � 1 � 1) (5.4)

and the Riemannian metric

ds2 = gikdx
idxk : (5.5)

Using the tensor (5.4) and the normal rule [29], we can construct the Christof-
fel symbols

�ijk =
1

2
gim(gjm;k + gkm;j � gjk;m): (5.6)

13



14 CHAPTER 5. GEOMETRY OF ABSOLUTE. . .

that transform following a nontensor law of transformation [29]

�k
0

j0i0 =
@2xk

@xi0@xj0
@xk

0

@xk
+
@xi

@xi0
@xj

@xj0
@xk

0

@xk
�kji (5.7)

with respect to the coordinate transformations (5.2). In the relationship (5.6)
and farther on we will denote the partial derivative with respect to the coordi-
nates xi as

; k =
@

@xk
: (5.8)

Di�erentiating the arbitrary vector eai gives

eai;j0 =
@xj

@xj0
eai;j: (5.9)

Applying the di�erentiation operation (5.9) to the relationship (5.3) gives

eai0;j0 =
@xi

@xi0
@xj

@xj0
eai;j +

@2xi

@xi0@xj0
eai: (5.10)

Alternating the indices i0 and j0 and subtracting from (5.10) the resultant
expression, we have

eai0;j0 � e
a
j0;i0 = (eai;j � e

a
j;i)

@xi

@xi0
@xj

@xj0
:

Considering (5.3), we can rewrite this relationship in the form

ek
0

a(e
a
i0;j0 � e

a
j0;i0) = eka(e

a
i;j � e

a
j;i)

@xi

@xi
0

@xj

@xj
0

@xk
0

@xk
:

By de�nition, the di�erential

dsa = eaidx
i (5.11)

is said to be complete, if the following relationship holds:

eai;j � e
a
j;i = 0: (5.12)

Otherwise, for eai;j�e
a
j;i 6= 0, the di�erential (5.11) is not integrable (equal-

ity (5.12) is the condition of integration for the relationship (5.11)).
We will introduce the following geometric object [30]


::ijk = eiae
a
[k;j] =

1

2
eia(e

a
k;j � e

a
j;k) (5.13)

with a tensor law of transformation relative to the coordinate transformations
(5.2)


::i
0

j0k0 = 
::ijk
@xj

@xj
0

@xk

@xk
0

@xi
0

@xi
: (5.14)
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Clearly, if the condition (5.12) is met, this object vanishes. In that case,
tetrad eai is holonomic and the metric (5.5) characterizes holonomic di�erential
geometry. If the object (5.13) is nonzero, we deal with anholonomic di�erential
geometry, and the object (5.13) itself is called an object of anholonomicity.

We will rewrite the relationship (5.10) in the following manner:

eai0;j0 =
@2xi

@xi
0

@xj
0
eai +

@xi

@xi
0

@xj

@xj
0
eai;j =

=

�
@2xk

@xi
0

@xj
0
+
@xi

@xi
0

@xj

@xj
0
�k
ij

�
eak ; (5.15)

where we have introduced the notation

�k
ij = ekae

a
i;j (5.16)

and used the orthogonality condition (5.1).
It is seen from the relationships (5.15 ) that the object �k

ij gets transformed
relative to the transformations (5.2) as the connection

�k0

i0j0 =
@2xk

@xi
0

@xj
0

@xk
0

@xk
+
@xi

@xi
0

@xj

@xj
0

@xk
0

@xk
�k
ij: (5.17)

The connection of a space given by (5.16) is called the connection of absolute
parallelism [31].

Interchanging in (5.17) the indices i and j gives

�k
0

j0i0 =
@2xk

@xj
0

@xi
0

@xk
0

@xk
+
@xi

@xj
0

@xj

@xi
0

@xk
0

@xk
�k
ji: (5.18)

Subtracting (5.18) from (5.17) gives

�k0

[i0j0] =
@xi

@xj
0

@xj

@xi
0

@xk
0

@xk
�k

[ij]: (5.19)

It follows from the relationships (5.16) and (5.13) that the connection of
absolute parallelism features the torsion

�k
[ij] = �


::k
ij ; (5.20)

de�ned by the object of anholonomity.

5.2 Covariant di�erentiation in A4 geometry. Ricci

rotation coeÆcients

The de�nition of the covariant derivative with respect to the connection of the
geometry of absolute parallelism (A4 geometry) �i

jk from a tensor of arbitrary

valence U i:::p
m:::n has the form

�

rk U
i:::p
m:::n = U

i:::p

m:::n;k + �i
jkU

j:::p
m:::n + : : :+ �p

jkU
i:::j
m:::n�

�j
mkU

i:::p
j:::n � : : :��j

nkU
i:::p
m:::j:

(5.21)
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This de�nition enables some quite useful relationships in A4 geometry to be
proved.

Proposition 5.1. Parallel displacement of the tetrad eai relative to the
connection �i

jk equals zero identically.
Proof. From the de�nition (5.21) we have the following equalities:

�

rk e
i
a = aia;k + �i

jke
j
a; (5.22)

�

rk e
a
j = eaj;k ��i

jke
a
i: (5.23)

Since the connection �i
jk is de�ned as

�i
jk = eiae

a
j;k; (5.24)

we have
eiae

a
j;k ��i

jk = 0:

Multiplying this equality by eai and taking into consideration the orthogo-
nality conditions (5:1), we get

�

rk eaj = eaj;k ��i
jke

a
i = 0: (5.25)

To prove that the relationship (5.22) is zero, we will take a derivative of the
convolution eaje

i
a = Æij

(Æij);k = (eaj e
i
a);k = eiae

a
j;k + eaje

i
a;k = 0:

Hence, by (5.24), we have
�i
jk = �e

a
je
i
a;k (5.26)

or
eaje

i
a;k + �i

jk = 0:

Multiplying this relationship by eja and using the conditions eaje
i
a = Æij, we

have
�

rk eia = eia;k + �i
jke

j
a = 0: (5.27)

Proposition 5.2. Connection �i
jk can be represented as the sum

�i
jk = �ijk + T i

jk; (5.28)

where �ijk are the Christo�el symbols given by the relationship (5.6), and

T i
jk = �


::i
jk + gim(gjs


::s
mk + gks


::s
mj) (5.29)

are the Ricci rotation coeÆcients [30].
Proof. Let us represent the connection (5.28) as the sum of parts symmetrical
and skew-symmetrical in indices j; k

�i
jk = �i

(jk) + �i
[jk]; (5.30)
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where

�i
(jk) =

1

2
(�i

jk +�i
kj); �i

[jk] =
1

2
(�i

jk ��i
jk):

We now add to and subtract from the right-hand side of (5.30) the same ex-
pression

�i
jk = �i

(jk) + �i
[jk]+ gim(gjs�s

[km] + gks�
s
[jm])�

gim(gjs�
s
[km] + gks�

s
[jm]):

(5.31)

We then group the terms on the right-hand side of (5.31) as follows:

�i
jk = �i

(jk) � g
im(gjs�

s
[km] + gks�

s
[jm]) +

+ �i
[jk]+ gim(gjs�

s
[km] + gks�

s
[jm]): (5.32)

Since
�i

[jk] = �

::i
jk ;

it follows from (5.32) and (5.29) that

�i
jk = �i

(jk) � g
im(gjs�

s
[km] + gks�

s
[jm]) + T i

jk: (5.33)

We now show that

�ijk = �i
(jk) � g

im(gjs�
s
[km] + gks�

s
[jm]): (5.34)

Actually, we have the relationships

�i
(jk) = eiae

a
(j;k) =

1

2
eia(e

a
j;k + e

a
k;j);

�i
[jk] = eiae

a
[j;k] =

1

2
eia(e

a
j;k � e

a
k;j);

gjs = �abe
a
je
b
s; (5.35)

therefore (5.34) become

�ijk = eiae
a
(j;k) + gim(�abe

a
je
b
[m;k] + �abe

a
ke

b
[m;j]) =

=
1

2
�cd�abe

i
ce
m
d (e

b
me

a
j;k + ebme

c
k;j) +

+
1

2
gim

�
�ab(e

a
je
b
m;k � e

a
je
b
k;m) + �ab(e

a
ke

b
m;j � e

a
ke

b
j;m)

�
:

Regrouping the terms here gives

�ijk =
1

2
gim

�
(�abe

a
je
b
m);k + (�abe

a
ke

b
m);j � (�abe

a
je
b
k);m

�
:

Hence, by (5.35), we obtain

�ijk =
1

2
gim(gjm;k + gkm;j � gjk;m); (5.36)
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or

1

2
gim(gjm;k + gkm;j � gjk;m) =

= �i
(jk) � g

im(gjs�
s
[km] + gks�

s
[jm]) = �ijk : (5.37)

Substituting (5.37) into (5.33), we get the relationship (5.28).

Proposition 5.3. The Ricci rotation coeÆcients T i
jk can be represented

in the form
T i
jk = eiarke

a
j; (5.38)

T i
jk = �e

a
jrke

i
a; (5.39)

where rk stands for a covariant derivative with respect to the Christo�el �ijk
symbols.
Proof. We will represent in the relationships (5.25) and (5.27) the connection
�i
jk as the sum (5.28)

�

rk e
a
j = eaj;k � �ijke

a
i � T

i
jke

a
i = 0; (5.40)

�

rk e
i
a = eia;k + �ijke

j
a + T i

jke
j
a = 0 (5.41)

Since, by de�nition [29], we can write

rke
a
j = eaj;k � �

i
jke

a
i;

rke
i
a = eia;k + �ijke

j
a;

then (5.40) and (5.41) can be written as

rke
a
j � T

i
jke

a
i = 0; (5.42)

rke
i
a + T i

jke
j
a = 0: (5.43)

Multiplying (5.42) by eia and (5.43) by eaj , respectively, we will obtain
(using the orthogonality conditions (5.1)), by (5.42), (5.43), the relationships
(5.38) and (5.39).

We will now calculate the covariant derivative
�

rk with respect to the metric
tensor gjm, knowing that gjm = �abejae

m
b

�

rk gjm =
�

rk �
abejae

m
b =

�

rk e
j
ae

ma =

= ema
�

rk e
j
a + eja

�

rk e
ma:

From the relationships (5.25) and (5.27), we have

�

r gjm = 0: (5.44)
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On the other hand, applying the formula (5.21) to the relationship (5.44),
we �nd that

�

rk g
jm = g

jm

;k + �j

pkg
pm + �m

pkg
jp = 0: (5.45)

Substituting the connection �i
jk as the sum (5.28), we will write the rela-

tionship (5.45) in the form

�

rk g
jm = rkg

jm + T
j

pkg
pm + Tm

pkg
jp = 0: (5.46)

From the equality

rkg
jm = gjm;k + �jpkg

pm + �mpkg
jp = 0; (5.47)

we have, by (5.46),

T j
pkg

pm + Tm
pkg

jp = T jm
k + Tmj

k = 0:

This equality establishes the following symmetry properties for the Ricci rota-
tion coeÆcients:

Tjmk = �Tmjk : (5.48)

Therefore, in the A4 geometry the Ricci rotation coeÆcients have 24 indepen-
dent components.

5.3 Curvature tensor of A4 space

The curvature tensor of the space of absolute parallelism Sijkm is de�ned in

terms of the connection �i
jk following a conventional rule [18]

Sijkm = 2�i
j[m;k] + 2�i

s[k�
s
jjjm] = 0; (5.49)

where the parentheses [ ] signify alternation in appropriate indices, whereas the
index within the vertical lines j j is not subject to alternation.

Proposition 5.4. The Riemann-Christo�el tensor of a space with the
connection (5.26) equals zero identically.
Proof. From the relationship (5.26) we have

eaj;k = �i
jke

a
i: (5.50)

Di�erentiating the relationship (5.50) with respect to m gives

eaj;k;m = (�i
jke

a
i);m = �i

jk;me
a
i + eai;m�

i
jk =

= (�i
jk;m + eiae

a
s;m�

s
jk)e

a
i = (�i

jk;m + �i
sm�

s
jk)e

a
i:

Alternating this relationship in indices k and m we get

�2eaj;[k;m] = 2(�i
j[m;k]+ 2�i

s[k�
s
jjjm]) = Sijkme

a
i: (5.51)
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Since the operation of di�erentiating with respect to indices k and m is
symmetrical, we have

eaj;[k;m] = 0;

From this equality, considering that eai in (5.51) is arbitrary, we will get

Sijkm = 0: (5.52)

Proposition 5.5. Tensor Sijkm can be represented as the sum

Sijkm = Ri
jkm + 2r[kT

i
jjjm]+ 2T i

c[kT
c
jjjm] = 0; (5.53)

where
Ri

jkm = 2�ij[m;k] + 2�is[k�
s
jjjm] (5.54)

is the tensor of the Riemannian space A4.
Proof. Substituting the sum �i

jk = �ijk + T i
jk into (5.49) gives

Sijkm = 2�ij[m;k] + 2�is[k�
s
jjjm] + 2T i

j[m;k] + 2T i
s[kT

s
jjjm]+

2T i
s[k�

s
jjjm]+ 2�is[kT

s
jjjm] = 0: (5.55)

Using (5.54), we will write (5.55) as follows:

Sijkm = Ri
jkm + 2T i

j[m;k] + 2T i
s[kT

s
jjjm]+

+2�sj[kT
i
jsjm]+ 2�is[kT

s
jjjm] = 0: (5.56)

If now we add to the right-hand side of this relationship the expression

�2�s[km]T
i
sj = 0;

and take into consideration that [29]

rkU
i:::p
m:::n = U

i:::p

m:::n;k + �ijkU
j:::p
m:::n + : : :+ �pjkU

i:::j
m:::n �

�jmkU
i:::p
j:::n � : : :� �jnkU

i:::p
m:::j; (5.57)

we will obtain from (5.56) the equality (5.53).
Let us now rewrite the relationship (5.53) as

Ri
jkm = �2T i

j[m;k] � 2T i
s[kT

s
jjjm]: (5.58)

Substituting here (5.38) and (5.39)

T i
jk = eiarke

a
j; T i

jk = �e
a
jrke

i
a;

we obtain
�2T i

j[m;k] = �2e
i
ar[krm]e

a
j � 2r[ke

i
jajrm]e

a
j;

�2T i
s[kT

s
jjjm] = 2easr[ke

i
jae

s
ajrm]e

a
j = 2r[ke

i
jajrm]e

a
j:
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Therefore, it follows from the relationships (5.58) that

Ri
jkm = �2eiar[krm]e

a
j = 2eiar[mrk]e

a
j : (5.59)

Proposition 5.6. The torsion �eld 
::ijk of the A4 space satis�es the
equations

�

r[k 

::i
jm] + 2
::s[kj


::i
m]s = 0: (5.60)

Proof. Alternating the expression (5.49) in indices j; k;m and using the rela-
tionship �i

[jk] = �

::i
jk , we get

Si[jkm] = 2
::i[jm;k] + 2�i
s[k


::s
jm] = 0: (5.61)

If then we add and subtract here the quantity

2�s
[kj


::i
jsjm] + 2�s

[km

::i
j]s;

we will have

2
::i[jm;k]+ 2�i
s[k


::s
jm] � 2�s

[kj

::i
jsjm]� 2�s

[km

::i
j]s +

2�s
[kj


::i
jsjm] + 2�s

[km

::i
j]s = 0:

Using the formula (5.21), we can rewrite this relationship as follows:

2
�

r[k 

::i
jm] � 2
::s[kj


::i
jsjm] � 2
::s[km


::i
j]s =

= 2
�

r[k 

::i
jm] + 4
::s[kj


::i
m]s = 0;

(5.62)

whence we have (5.60).

Proposition 5.7. The Riemann tensor Ri
jkm of the A4 space satis�es

the equality
Ri

[jkm] = 0: (5.63)

Proof. Alternating the relationship (5.54) in indices j; k;m and using the equal-
ity

T i
[jk] = �


::i
jk ;

we have
Ri

[jkm] = 2r[k

::i
jm] + 2T i

s[k

::s
jm]:

If in the right-hand side of the equality we add and subtract the quantity

2T s
[kj


::i
jsjm] + 2T s

[km

::i
j]s;

we obtain

Ri
[jkm] = 2r[k


::i
jm]+ 2T i

s[k

::s
jm] � 2T s

[kj

::i
jsjm]� 2T s

[km

::i
j]s +

+2T s
[kj


::i
jsjm] + 2T s

[km

::i
j]s = 2

�

r[k 

::i
jm] � 2
::s[kj


::i
jsjm] �

�2
::s[km

::i
j]s = 2

�

r[k 

::i
jm] + 4
::s[kj


::i
m]s = 0;

which proves the validity of the relationship (5.63).
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5.4 Formalism of external forms and the

matrix treatment of Cartan's structural

equations of the absolute parallelism

geometry

Consider the di�erentials

dxi = eaeia; (5.64)

dei b = �a
be
i
a; (5.65)

where

ea = eai dx
i ; (5.66)

�a
b = eaide

i
b = �a

bkdx
k (5.67)

are di�erential 1-forms of tetrad eai and connection of absolute parallelism�a
bk .

Di�erentiating the relationships (5.64), (5.65) externally [31], we have, respec-
tively,

d(dxi) = (dea � ec ^�a
c)e

i
a = �S

aeia; (5.68)

d(deia) = (d�b
a ��c

a ^�
b
c)e

i
b = �S

b
ae
i
b: (5.69)

Here Sa denotes the 2-form of Cartanian torsion [31], and Sba { the 2-form
of the curvature tensor. The sign ^ signi�es external product, e.g,

ea ^ eb = eaeb � ebea: (5.70)

By de�nition, a space has a geometry of absolute parallelism, if the 2-form
of Cartanian torsion Sa and the 2-form of the Riemann-Christo�el curvature
Sba of this space vanishe

Sa = 0; (5.71)

Sba = 0: (5.72)

At the same time, these equalities are the integration conditions for the
di�erentials (5.64) and (5.65).

Equations
dea � ec ^�a

c = �S
a; (5.73)

d�b
a ��c

a ^�
b
c = �S

b
a; (5.74)

which follow from (5.68) and (5.69), are Cartan's structural equations for an
appropriate geometry. For the geometry of absolute parallelism hold the condi-
tions (5.71) and (5.72), therefore Cartan's structural equations for A4 geometry
have the form

dea � ec ^�a
c = 0; (5.75)

d�b
a ��c

a ^�
b
c = 0: (5.76)
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Considering (5.28), we will represent 1-form�a
b as the sum

�a
b = �ab + T a

b: (5.77)

Substituting this relationship into (5.75) and noting that

ec ^�a
c = ec ^ T a

c;

we get the �rst of Cartan's structural equations for A4 space.

dea � ec ^ T a
c = 0: (A)

Substituting (5.77) into (5.76) gives the second of Cartan's equations for A4

space.
Ra
b + dT a

b � T
c
b ^ T

a
c = 0; (B)

where Ra
b is the 2-form of the Riemann tensor

Ra
b = d�ab � �cb ^ �

a
c: (5.78)

By de�nition [31], we always have the relationships

dd(dxi) = 0; (5.79)

dd(deia) = 0: (5.80)

In the geometry of absolute parallelism these equalities become

d(dea � ec ^ T a
c) = Ra

cfde
c ^ ef ^ ed = 0; (5.81)

d(Ra
b + dT a

b � T
c
b ^ T

a
c) = dRa

b + R
f

b ^ T
a
f � T

f

b ^ R
a
f = 0: (5.82)

Here
Ra

cfd = �2T
a
c[d;f ]� 2T a

b[fT
b
jcjd]:

Equalities (5.81) and (5.82) represent the �rst and second of Bianchi's iden-
tities, respectively, for A4 space. Dropping the indices, we can write Cartan's
structural equations and Bianchi's identities for the A4 geometry as

de � e ^ T = 0; (A)
R + dT � T ^ T = 0; (B)
R ^ e ^ e ^ e = 0; (C)

dR + R ^ T � T ^ R = 0: (D)

Proposition 5.8. The matrix treatment of the �rst of Cartan's struc-
tural equations (A) of the A4 geometry has the form

r[ke
a
m] � e

b
[kT

a
jbjm] = 0: (5.83)
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Proof. Let us write equations (A) as

dea � ec ^ T a
c = 0: (5.84)

Further, by (5.66), we have

dea = d(eamdx
m) = rke

a
mdx

k ^ dxm =
1

2
(rke

a
m � rme

a
k)dx

k ^ dxm

and, also,

eb ^ T a
b = ebkT

a
bmdx

k ^ dxm =
1

2
(ebkT

a
bm � e

b
mT

a
bk)dx

k ^ dxm :

Substituting these relationships into equations (5.84) we will derive the mat-
rix equations in the form

r[ke
a
m] � e

b
[kT

a
jbjm] = 0; (A)

where the matrixes eam and T a
bm in world indices i; j;m; : : : are transformed as

vectors

eam0 =
@xm

@xm
0
eam ; (5.85)

T a
bm0 =

@xm

@xm0
T a

bm; (5.86)

and in the matrix indices a; b;c; : : : they are transformed as follows:

ea
0

m = � a0

a eam; (5.87)

T a0

b0k = � a0

a T a
bk�

b
b0 +�a

0

a�
a
b0;k : (5.88)

In relationships (5.87) and (5.88) the matrices @xm
0

=@xm form a translation
group T4 that is de�ned on a manifold of world coordinates xi. On the other
hand, the matrices �a

0

a form a group of four-dimensional rotations O(3:1)

�a
0

a 2 O(3:1);

de�ned on the manifold of "angular coordinates" ea i. Actually, the tetrad ea i

is a mathematical image of an arbitrarily accelerated four-dimensional reference
frame. Such a frame has ten degrees of freedom: four translational ones con-
nected with the motion of its origin, and six angular ones describing variations
of its orientation. The six independent components of the tetrad ea i represent
six direction cosines of six independent angles de�ning the orientation of the
tetrad in space.

Proposition 5.9. The matrix rendering of the second of Cartan's struc-
turing equations (B) of the A4 geometry has the form

Ra
bkm + 2r[kT

a
jbjm]+ 2T a

c[kT
c
jbjm] = 0: (5.89)
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Proof. We will expand the 2-form Ra
d as

Ra
b =

1

2
Ra

bcde
c ^ ed =

1

2
Ra

bkmdx
k ^ dxm : (5.90)

Further, we have

dT a
b = d(T a

bmdx
m) = rkT

a
bmdx

k ^ dxm =

1

2
(rkT

a
bm � rmT

a
bk)dx

k ^ dxm; (5.91)

and also

T a
c ^ T

c
b = T a

ckT
c
bmdx

k ^ dxm =

=
1

2
(T a

ckT
c
bm � T

c
bmT

a
ck)dx

k ^ dxm : (5.92)

Let us substitute the relationships (5.92){(5.94) into

Ra
b + dT a

b � T
c
b ^ T

a
c = 0:

Simple transformations yield

1

2
(Ra

bkm +rkT
a
bm � rmT

a
bk + T a

ckT
c
bm � T

c
bmT

a
ck)dx

k ^ dxm = 0:

Since here the factor dxk ^ dxm is arbitrary, we have

Ra
bkm +rkT

a
bm � rmT

a
bk + T a

ckT
c
bm � T

c
bmT

a
ck = 0;

which is equivalent to the equations (5.89).

Proposition 5.10. The matrix form of the Bianchi identity (D) of A4

geometry is
r[nR

a
jbjkm] + Rc

b[kmT
a
jcjn]� T

c
b[nR

a
jcjkm] = 0: (5.93)

Proof. The external di�erential dRa
b in the identities (D) has the 2-form

dRa
b =

1

2
rnR

a
bkmdx

n ^ dxk ^ dxm =

=
1

6
(rnR

a
bkm +rmR

a
bkn +rkR

a
bmn)dx

n ^ dxk ^ dxm : (5.94)

In addition, we have

R
f

b ^ T
a
f =

1

2
R
f

bkmT
a
fndx

k ^ dxm ^ dxn =

=
1

6
(Rf

bkmT
a
fn+ R

f

bnkT
a
fm + R

f

bmnT
a
fk)dx

k ^ dxm ^ dxn; (5.95)

T
f

b ^R
a
f =

1

2
T
f

bnR
a
fkmdx

n ^ dxk ^ dxm =

=
1

6
(T f

bnR
a
fkm + T

f

bmR
a
fnk + T

f

bkR
a
fmn)dx

n ^ dxk ^ dxm : (5.96)
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Substituting relationships (5.94){(5.96) into the identity

dRa
b + Rf

b ^ T
a
f � T

f
b ^ R

a
f = 0

and considering that dxn ^ dk ^ dxm is arbitrary, we get

rnR
a
bkm +rmR

a
bkn +rkR

a
bmn + R

f

bkmT
a
fn + R

f

bnkT
a
fm +

+Rf

bmnT
a
fk � T

f

bnR
a
fkm � T

f

bmR
a
fnk � T

f

bkR
a
fmn = 0;

which is equivalent to the identity (5.93).
The �rst of Bianchi's identities (C) of A4 geometry in indices of the group

O(3:1) is written as
Ra

[bcd] = 0; (5.97)

or, which is the same, as

�

r[b 

::a
cd] + 2
::f[bc


::a
d]f = 0: (5.98)

5.5 A4 geometry as a group manifold.

Killing-Cartan metric

The matrix representation of Cartan's structural equations of the geometry
of absolute parallelism indicates that, in fact, this space behaves as a manifold,
on which the translations group T4 and the rotations group O(3:1) are speci�ed.
We will consider A4 geometry as a group 10-dimensional manifold formed by
four translational coordinates xi (i = 0;1;2;3) and six (by the relationship
eaie

j
a = Æi

j) angular coordinates eai (a = 0;1;2;3). Suppose that on this
manifold a group of four-dimensional translations T4 and a rotations group
O(3:1) are de�ned. We then introduce the Hayashi invariant derivative [32]

rb = ekb@k; (5.99)

whose components are generators of the translations group T4 that is speci�ed
on the manifold of translational coordinates xi. If then we represent as a sum

ekb = Ækb + akb; (5.100)

i; j; k : : : = 0;1;2;3; a; b; c; : : := 0;1;2;3;

then the �eld akb can be viewed as the potential of the gauge �eld of the trans-
lations group T4 [32]. In the case where akb = 0, the generators (5.99) coincide
with the generators of the translations group of the pseudo-Euclidean space E4

.
We know already that in the coordinate index k the nonholonomic tetrad

eka transforms as the vector

ek
0

a =
@xk

0

@xk
eka;
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whence, by (5.100), we have the law of transformation for the �eld aka relative
to the translationss

ak
0

b =
@xk

0

@xn
anb +

@xk
0

@xn
Ænb � Æ

k0

b : (5.101)

We de�ne the tetrad eia as

eia = rax
i (5.102)

and write the commutational relationships for the generators (5.99) as

r[arb] = �
::cabrc; (5.103)

where�
::cab are the structural functions for the translations group of the spaceA4.
If then we apply the operator (5.103) to the manifold xi, we will arrive at the
structural equations of the group T4 of the space A4 as

r[arb]x
i = �
::cabrcx

i (5.104)

or
r[ae

i
b] = �


::c
abe

i
c: (5.105)

In this relationship the structural functions �
::cab are de�ned as

�
::cab = ecir[ae
i
b]: (5.106)

It is seen from this equality that when the potentials of the gauge �eld of
translations group akb in the relationship (5.100) vanish, so do the structural
functions (5.106). Therefore, we will refer to the �eld 
::cab as the gauge �eld of
the translations group.

Considering that T c
[ab] = �


::c
ab , we will rewrite the structural equations

(5.106) as
r[ke

a
m] � e

b
[kT

a
jbjm] = 0: (5.107)

It is easily seen that the equations (5.107) can be derived by alternating
the equations (5.42). What is more, they coincide with the structural Cartan
equations (A) of the geometry of absolute parallelism.

The structural equations of group T4, written as (5.106), can be regarded
as a de�nition for the torsion of space A4. So the torsion of space A4 coincides
with the structural function of the translations group of this space, such that
the structural functions obey the generalized Jacobi identity

�

r[b 

::a
cd] + 2


::f

[bc

::ad]f = 0; (5.108)

where
�

rb is the covariant derivative with respect to the connection of absolute
parallelism�a

bc. Comparing the identity (5.108) with the Bianchi identity (5.98)
of the geometry A4, we see that we deal with the same identity. The Jacobi
identity (5:108), which is obeyed by the structural functions of the translations
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group of geometry A4, coincides with the �rst Bianchi identity of the geometry
of absolute parallelism .

The vectors
eia = rax

i; (5.109)

that form the vector strati�cation [31] of the A4 geometry, point along the
tangents to each point of the manifold xi of the pseudo-Euclidean plane with
the metric tensor

�ab = �ab = diag(1; �1; �1; �1): (5.110)

Therefore, the ten-dimensional manifold (four translational coordinates xi

and six "rotational" coordinates eia) of the geometry of absolute parallelism
can be regarded as the strati�cation with the coordinates of the base xi and
the (anholonomic) "coordinates" of the �bre eic: If on the base xi we have the
translations group T4, then in the �bre eic we have the rotation group O(3:1).
It follows from (5.109) that the in�nitesimal translations in the base xi in the
direction a are given by the vector

dsa = eaidx
i : (5.111)

If from (5.111) and the covariant vector dsa = eiadxi we form the invariant
convolution ds2 , we will obtain the Riemannian metric of A4 space

ds2 = gikdx
idxk (5.112)

with the metric tensor
gik = �abe

a
ie
b
k:

Therefore, the Riemannian metric (5.112) can be viewed as the metric de-
�ned on the translations group T4.

Since in the �bre we have the "angular coordinates" eia that form a manifold
in which group O(3:1) is de�ned, then it would be natural to de�ne the structural
equations for this group, as well as the metric speci�ed on the group O(3:1).

Let us rewrite the relationships (5.38) and (5.39) in matrix form

T a
bk = eaiT

i
jke

j

b = rke
a
je
j

b; (5.113)

T a
bk = eaiT

i
jke

j

b = �e
a
irke

i
b: (5.114)

These relationships enable the dependence between the in�nitesimal rotation
d�ab = �d�ba of the vector eai at in�nitesimal translations dsa to be established.
In fact, by (5.113) and (5.114), we have

d�ab = T a
bkdx

k = Deaje
j

b; (5.115)

d�ab = T a
bkdx

k = �eaiDe
i
b: (5.116)

where D is the absolute di�erential [29] with respect to the Christo�el symbols
�ijk . Using (5.115), we can form the invariant quadratic form d�2 = d�abd�

b
a

to arrive at the Killing-Cartan metric

d�2 = d�abd�
b
a = T a

bkT
b
andx

kdxn = �DeaiDe
i
a (5.117)
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with the metric tensor
Hkn = T a

bkT
b
an: (5.118)

Unlike metric (5.112), the metric (5.117) is speci�ed on the rotations group
O(3:1) that acts on the manifold of the "rotational coordinates" eai.

Let us now introduce the covariant derivative

�

rm= rm + Tm; (5.119)

where Tm is the matrix T a
bm with discarded matrix indices. We will regard

the components of the derivative as generators of the rotations group O(3:1).
Applying this operator to the tetrad ei that forms the manifold of "angular
coordinates" of the A4 geometry, we will arrive at

�

rm ei = rme
i + Tme

i = 0; (5.120)

hence
Tm = �eirme

i: (5.121)

It is interesting to note that, just as in (5.109) we have de�ned six "angular
coordinates" eia through the four translational coordinates xi, so in (5:121) we
can de�ne 24 "supercoordinates" T a

bm through the six coordinates eia.
It follows from (5.120) that

rme
i = �Tmei: (5.122)

Recall that in the relationships (5.120)-(5.122) we have de�ned throughrm

the covariant derivative with respect to �ijk . We will now take the covariant
derivative rk of the relationships (5.122)

rkrme
i = �rk(Tme

i) = �(rkTme
i + Tmrke

i) =

= �(rkTme
i + Tme

ieirke
i):

Using (5.121), we will rewrite this expression as follows

rkrme
i = �(rkTm � TmTk)ei:

Alternating this expression in the indices k and m gives

r[krm]e
i =

1

2
Rkme

i; (5.123)

where

Rkm = 2r[mTk] + [Tm; Tk]: (5.124)

Introducing in equations (5.124) the matrix indices (the �bre indices), we
will obtain the structural equation of the group O(3:1)

Ra
bkm = 2r[mT

a
jbjk] + 2T a

c[mT
c
jbjk]: (B)
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It is easily seen that the structural equations of the rotations group (B) coincide
with the second of Cartan's structural equations (5.124) of the geometry A4.

In this case the quantities T a
bk and R

a
bkm vary in the rotations group O(3:1)

following the law
T a0

b0k = � a0

a T a
bk�

b
b0 + � a0

a �ab0;k ; (5.125)

and appear as the potentials of the gauge �eld Ra
bkm of the rotations group

O(3:1). In the process, the gauge �eld of the group O(3:1) obeys the formula

Ra0

b0km = � a0

a Ra
bkm�

b
b0 : (5.126)

Note that the structural functions of the rotations group of A4 geometry are
the components of the curvature tensor Ra

bkm . It can be shown that the struc-
tural functions Ra

bkm of the rotations group O(3:1) satisfy the Jacobi identity

r[nR
a
jbjkm] + Rc

b[kmT
a
jcjn] � T

c
b[nR

a
jcjkm] = 0; (D)

which, at it was shown in the previous section, are at the same time the second
Bianchi identities of the A4 space.

Let us introduce the dual Riemann tensor

�

Rijkm=
1

2
"spkmRijsp; (5.127)

where "spkm is the completely skew-symmetrical Levi-Chivita tensor. Then the
equations (D) can be written as

rn

�

R
a
b
kn+

�

R
c
b
knT a

cn � T
c
bn

�

R
a
c
kn = 0 (5.128)

or, if we drop the matrix indices, as

rn

�

R
kn+

�

R
knTn � Tn

�

R
kn = 0: (5.129)

5.6 Structural equations of A4 geometry in the

form of expanded, completely geometrized

Einstein-Yang-Mills set of equations

Einstein believed that one of the main problems of the uni�ed �eld theory
was the geometrization of the energy-momentum tensor of matter on the right-
hand side of his equations. This problem can be solved if we use as the space of
events the geometry of absolute parallelismand the structural Cartan equations
for this geometry.

In fact, folding the equations (B); written as

Ri
jkm + 2r[kT

i
jjjm]+ 2T i

s[kT
s
jjjm] = 0 (5.130)

in indices i and k, gives

Rjm = �2r[iT
i
jjjm]� 2T i

s[iT
s
jjjm]: (5.131)
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If then we fold the equations (5.131) with the metric tensor gjm, we have

R = �2gjm(r[iT
i
jjjm]+ 2T i

s[iT
s
jjjm]): (5.132)

Forming, using (5.131) and (5.132), the Einstein tensor

Gjm = Rjm �
1

2
gjmR;

we obtain the equations

Rjm �
1

2
gjmR = �Tjm; (5.133)

which are similar to Einstein's equations, but with the geometrized right-hand
side de�ned as

Tjm = �
2

�
f(r[iT

i
jjjm]+ T i

s[iT
s
jjjm])�

�
1

2
gjmg

pn(r[iT
i
jpjn] + T i

s[iT
s
jpjn])g (5.134)

Using the notation

Pjm = (r[iT
i
jjjm]+ T i

s[iT
s
jjjm])

then, by (5.134), we have

Tjm = �
2

�
(Pjm �

1

2
gjmg

pnPpn): (5.135)

Tensor (5.135) has parts that are both symmetrical and skew-symmetrical
in indices j and m, i.e.,

Tjm = T(jm) + T[jm]: (5.136)

The left-hand side of the equations (5.133) is always symmetrical in indices
j and m, therefore these equations can be written as

Rjm �
1

2
gjmR = �T(jm); (5.137)

T[jm] =
1

�
(�ri


::i
jm � rmAj � As


::s
jm) = 0; (5.138)

where
Aj = T i

ji: (5.139)

Relationship (5.138) can be taken to be the equations obeyed by the torsion
�elds 
::ijm, which form the energy-momentum tensor (5.135).

In the case where the �eld T i
jk is skew-symmetrical in all the three indices,

we get
Tijk = �Tjik = Tjki = �
ijk: (5.140)
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For such �elds the equations (5.138) become simple, namely

ri

::i
jm = 0: (5.141)

The energy-momentum tensor (5.135) is symmetrical in indices j;m and
appears to be given by

Tjm =
1

�
(
::ism


::s
ji �

1

2
gjm


:ji
s 
::sji ): (5.142)

By (5.137), we have

Tjm =
1

�
(Rjm �

1

2
gjmR): (5.143)

Using (5.131), (5.140) and (5.142) gives

Rjm = 
::ism

::s
ji ; (5.144)

R = gjm
::ism

::s
ji = 
:jis 
::sji : (5.145)

Substituting (5.144) and (5.145) into (5.143), we arrive at the energy-momentum
tensor (5.142).

Through the �eld (5.140) we can de�ne the pseudo-vector hm as follows


ijk = "ijkmhm ; 
ijk = "ijkmh
m; (5.146)

where "ijkm is the fully skew-symmetrical Levi-Chivita symbol.
In terms of the pseudo-vector hm we can write the tensor (5.142) as follows

Tjm =
1

�
(hjhm �

1

2
gjmh

ihi): (5.147)

Substituting the relationships (5.146) into (5.141), we get

hm;j � hj;m = 0: (5.148)

These equations have two solutions: the trivial one, where hm = 0, and

hm =  ;m; (5.149)

where 	 is a pseudo-scalar.
Writing the energy-momentumtensor (5.148) in terms of this pseudo-scalar,

we will have

Tjm =
1

�
( ;j ;m �

1

2
gjm 

;i ;i): (5.150)

Tensor (5.150) is the energy-momentum tensor of a pseudo-scalar �eld.
Let us now decompose the Riemann tensor Rijkm into irreducible parts

Rijkm = Cijkm + gi[kRm]j + gj[kRm]i +
1

3
Rgi[mgk]j; (5.151)



5.6. STRUCTURAL EQUATIONS. . . 33

where Cijkm is the Weyl tensor; the second and third terms are the traceless
part of the Ricci tensor Rjm and R is its trace.

Using the equations (5.133), written as

Rjm = �

�
Tjm �

1

2
gjmT

�
; (5.152)

we will rewrite the relationship (5.151) as

Rijkm = Cijkm + 2�g[k(iTj)m] �
1

3
�Tgi[mgk]j; (5.153)

where T is the tensor trace (5.135).
Now we introduce the tensor current

Jijkm = 2g[k(iTj)m] �
1

3
Tgi[mgk]j (5.154)

and represent the tensor (5.153) as the sum

Rijkm = Cijkm + �Jijkm: (5.155)

Substituting this relationship into the equations (5.130), we will arrive at

Cijkm + 2r[kTjijjm]+ 2Tis[kT
s
jjjm] = ��Jijkm: (5.156)

Equations (5.156) are the Yang-Mills equations with a geometrized source,
which is de�ned by the relationship (5.154). In equations (5.156) for the Yang-
Mills �eld we have the Weyl tensor Cijkm, and the potentials of the Yang-Mills
�eld are the Ricci rotation coeÆcients T i

jk.
We now substitute the relationship (5.155) into the second Bianchi identities

(D)
r[nRjijjkm] + Rs

j[kmTjisjn]� T
s
j[nRjisjkm] = 0: (5.157)

We thus arrive at the equations of motion

r[nCjijjkm]+ Cs
j[kmTjisjn]� T

s
j[nCjisjkm] = ��Jnijkm (5.158)

for the Yang-Mills �eld Cijkm , such that the source Jnijkm in them is given in
terms of the current (5.154) as follows:

Jnijkm = r[nJjijjkm]+ Jsj[kmTjisjn]� T
s
j[nRjisjkm]: (5.159)

Using the geometrized Einstein equations (5.133) and the Yang-Mills equa-
tions (5.156), we can represent the structural Cartan equations (A) and (B) as
an extended set of Einstein-Yang-Mills equations

r[ke
a
j] + T i

[kj]e
a
i = 0; (A)

Rjm � 1
2
gjmR = �Tjm; (B:1)

Ci
jkm + 2r[kT

i
jjjm]

+ 2T i
s[k
T s
jjjm]

= ��J ijkm; (B:2)

(5.160)
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in which the geometrized sources Tjm and Jijkm are given by (5.135) and (5.154).
For the case of Einstein's vacuum the equations (5.160) are much simpler

r[ke
a
j] + T i

[kj]e
a
i = 0; (i)

Rjm = 0; (ii)
Ci

jkm + 2r[kT
i
jjjm]+ 2T i

s[kT
s
jjjm] = 0: (iii)

(5.161)

The equations of motion (5.158) for the Yang-Mills �eld Cijkm will then
become

r[nCjijjkm] + Cs
j[kmTjisjn]� T

s
j[nCjisjkm] = 0: (5.162)

Equations (A) and (B:2) can be written in matrix form

r[ke
a
m] � e

b
[kT

a
jbjm] = 0; (A)

Ca
bkm + 2r[kT

a
jbjm]+ 2T a

f [kT
f

jbjm]
= ��Jabkm ; (B:2)

where the current

Jabkm = 2g[k
(aTb)m]�

1

3
Tga[mgk]b; (5.163)

is given by

T a
m =

1

�
(Ra

m �
1

2
gamR); (B:1)

m = 0;1;2;3; a = 0;1;2;3:

By writing the equations (5.158) in matrix form, we have

r[nC
a
jbjkm] + Cc

b[kmT
a
jcjn] � T

c
b[nC

a
jajkm] = ��J

a
nbkm ; (5.164)

where
Janbkm = r[nJ

a
jbjkm] + Jcb[kmT

a
jcjn] � T

c
b[nJ

a
jcjkm]: (5.165)

Dropping the matrix indices in the matrix equations, we have

r[kem] � e[kTm] = 0; (A)

Ckm + 2r[kTm] � [Tk; Tm] = ��Jkm ; (B:2)

rn

�

C
kn + [

�

C
kn ; Tn] = ��

�

J
k ; (D)

where the dual matrices
�

C
kn and

�

J
k are given by

�

C
kn = "knijCij;

�

J
nk = "nkimJim; (5.166)

�

J
k = frn

�

J
kn + [

�

J
kn ; Tn]g: (5.167)
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For the Einstein vacuumwe have

Rijkm = Cijkm =
�

Rijkm= Cijkm; (5.168)

therefore the equations (B:2) and (D) become simpler

Ckm + 2r[kTm] � [Tk; Tm] = 0; (B:2)

rnC
kn + [Ckn ; Tn] = 0: (D)

Using the formalismof external di�erential forms, we can write the structural
equations (A) and (B:2) as follows:

dea � eb ^ T a
b = 0; (A)

Ca
b + dT a

b � T
a
c ^ T

c
b = ��J

a
b; (B:2)

and the equations (D) as

dCa
b + Ca

f ^ T
f
b � T

f
b ^ C

a
f = ��N

a
b; (D)

where
Na

b = dJab + Jaf ^ T
f
b � T

f
b ^ J

a
f : (5.169)

Thus, the structural equations of A4 geometry, written as (5.160), represent
an extended set of Einstein-Yang-Mills equations with the gauge translations
group T4 de�ned on the base xi with the structural equations (A); and with
the gauge rotations group O(3:1), de�ned in the �bre eia with the structural
equations in the form of the geometrized equations (B:1) and (B:2):

5.7 Equations of geodesics of A4 spaces

The equations of geodesics for the geometry of absolute parallelism can be
obtained from the conditions of parallel vector displacement

ui =
dxi

ds
(5.170)

with respect to the connection of A4 geometry

�i
jk = �ij + T

i
jk = eiae

a
j;k: (5.171)

In fact, we specialize the tetrad eia so that the vector ei0 would coincide
with the tangent to the world line, i.e.,

ei0 = ui =
dxi

ds
: (5.172)

From the relationships (5:27) for the vector (5.172) we have

�

rk u
i = ui;k + �i

jku
j = 0 (5.173)
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or
@ui

@xk
+ �ijku

j + T i
jku

j = 0: (5.174)

Multiplying this by uk = dxk=ds gives

dui

ds
+ �ijku

juk + T i
jku

juk = 0 (5.175)

or, by (5.170),
d2xi

ds2
+ �ijk

dxj

ds

dxk

ds
+ T i

jk

dxj

ds

dxk

ds
= 0: (5.176)

These four equations (i = 0;1;2;3) are the equations of geodesics of A4 space.
They are also the equations of motion for the origin O of tetrad eia. Since in
the equations (5.176) the Ricci rotation coeÆcients T i

jk have both symmetrical
and skew-symmetrical parts in indices j and k

T i
jk = T i

(jk) + T i
[jk] =

= �
::ijk + gim(gjs

::s
mk + gks


::s
mj); (5.177)

T i
(jk) = gim(gjs


::s
mk + gks


::s
mj); (5.178)

T i
[jk] = �


::i
jk ; (5.179)

we can write the equations (5.176) as

d2xi

ds2
+ �ijk

dxj

ds

dxk

ds
+ T i

(jk)

dxj

ds

dxk

ds
= 0: (5.180)

Considering the structure of the equality (5.178), we will write it in the form

T i
(jk) = gim(gjs


::s
mk + gks


::s
mj) = 2gim
m(jk) ; (5.181)

hence the equations of geodesics for A4 space can be represented as

d2xi

ds2
+ �ijk

dxj

ds

dxk

ds
+ 2gim
m(jk)

dxj

ds

dxk

ds
= 0: (5.182)

For the terns in (5.181) we can introduce the following notation:


:ik:j = gimgks

::s
jm; 
i:jk = gimgks


::s
mj ;

then the contorsion tensor T i
jk for space A4 will become

T i
jk = �


::i
jk � 
:ik:j + 
i:jk; (5.183)

where
�
:ik:j = 
i:jk ;

whence
T i
jk = �


::i
jk + 2
i:jk: (5.184)
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The covariant di�erential of an arbitrary vector vi with respect to the con-
nection (5.171) for parallel displacement frompoint xi to point xi+dxi becomes

Ævi = dvi + �i
jkdx

j = 0: (5.185)

If at an arbitrary point xi of A4 space we have two linear elements Æxi and
dxi and make a parallel translation of Æxi along the element dxi, then for the
�nal point we will have [30]

xi + dxi + Æxi ��i
jkÆx

kdxj = xi + dxi + Æxi + dÆxi: (5.186)

On the other hand, parallel translation of the vector dxi along the vector
Æxi gives

xi + Æxi + dxi ��i
jkdx

k Æxj = xi + Æxi + dxi + Ædxi: (5.187)

Subtracting from the relationships (5.186) the equality (5.187), we get

dÆxi � Ædxi = �(�i
jkÆx

kdxj + �i
jkdx

k Æxj) =

�(�i
jk ��i

kj)Æx
kdxj = �2�i

[jk]Æx
kdxj =

= 2
::sjkÆx
kdxj = �2
::sjk Æx

jdxk : (5.188)

Let us now consider the variation of the integralZ b

a

L(xi; ui)ds; (5.189)

where ui is given by the relationship (5.170). We will write (5.188) as

Ædxi = dÆxi + 2
::sjk Æx
jdxk : (5.190)

Then at each point of the extremum we have

Æui = Æ
dxi

ds
=

d

ds
Æxi + 2
::ijkÆx

j dx
k

ds
: (5.191)

Applying a common variational procedure to the integral (5.189), we getZ b

a

ÆL(xi; ui)ds =

Z b

a

�
L(xi + Æxi; ui + Æui) � L(xi; ui)

�
ds =

=

Z b

a

�
@L

@xi
Æxi +

@L

@ui
Æui

�
ds = 0: (5.192)

Substituting here the relationship (5.191) givesZ b

a

�
@L

@xi
@xi +

@L

@ui
d

ds
@xi +

@L

@ui
2
::ijk@x

juk
�
ds = 0:
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We now integrate by parts the second term here to obtain

Z b

a

�
@L

@xi
�

d

ds

@L

@ui
+ 2
::jik

@L

@uj
uk
�
@xi = 0

or, since @xi is arbitrary, we arrive at [30]

d

ds

@L

@ui
�
@L

@xi
+ 2
::jki

@L

@uj
uk = 0: (5.193)

Let now

L = (giku
iuk)1=2; (5.194)

along the extremum L = 1 by the relationship

giku
iuk = uiui = 1:

Substituting the Lagrangian (5.194) into equations (5.193) gives

gmi
dui

ds
+ �mjku

juk + 2
::smjgsku
kuj = 0: (5.195)

Multiplying this relationship by gim, we get

dui

ds
+ �ikju

juk + 2gimgks

::s
mju

juk = 0

or
dui

ds
+ �ikju

juk + 2gim
m(jk)u
juk = 0: (5.196)

We have thus obtained, using the variational principle, the equations of
the geodesics in the form (5.182). Consider now the equations that describe
the variation of the orientation of the tetrad eia as it moves according to the
equations of the geodesics (5.196). We will rewrite the equations (5.43) as

@ke
i
a + �i

jke
j
a = 0

or

deia + �i
jke

j
adx

k = 0: (5.197)

Dividing these equations by ds yields

deia
ds

+ �i
jke

j
a

dxk

ds
= 0: (5.198)

Further, taking the second derivative d2eia=ds
2 , we will have

d

ds

�
deia
ds

�
=

d

ds

�
@eia
@xk

dxk

ds

�
=

@2eia
@xm@xk

dxk

ds

dxm

ds
+
@eia
@xk

d2xk

ds2
: (5.199)
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Since

@2eia
@xm@xk

=
@

@xm
(��i

ak) = �i
jk;me

j
a �

��i
sk(��

s
jme

j
a) = (��i

jk;m + �i
sk�

s
jm)e

j
a

and
@eia
@xk

d2xk

ds2
= �i

js�
s
km

dxk

ds

dxm

ds
eja;

we have

d2eia
ds2

+ (�i
jk;m ��

i
sk�

s
jm ��i

js�
s
km)

dxk

ds

dxm

ds
eja = 0: (5.200)

Substituting here the sum (5.171), we have

d2eia
ds2

+ (�ijk;m + T i
jk;m � �isk�

s
jm � �iskT

s
jm �

�T i
sk�

s
jm � T

i
skT

s
jm� �ijs�

s
km � T

i
js�

s
km �

��ijsT
s
km � T

i
jsT

s
km)

dxk

ds

dxm

ds
eja = 0: (5.201)

Since independent equations (5.201) (for three Euler's angles and three
pseudo-Euclidean angles) describe the variation of the orientation of tetrad eia
as it moves from the origin O according to the equations of geodesics (5.196).

In A4 spaces, where the metric is 
at

gik = �ik = diag(1� 1� 1� 1); (5.202)

the Christo�el symbols �ijs vanish and the equations (5.201) become

d2eia
ds2

+ (T i
jk;m � T

i
skT

s
jm� T

i
jsT

s
km)

dxk

ds

dxm

ds
eja = 0; (5.203)

and the equations of geodesics (5.175) will become

d2xi

ds2
+ T i

jk

dxj

ds

dxk

ds
= 0: (5.204)

We now introduce the tensor of the four-dimensional angular velocity of
rotation tetrads eia [33]


ij = Tijk
dxk

ds
= �

deia

ds
eaj =

deja

ds
eai (5.205)

with the symmetry properties


ij = �
ji; (5.206)

determined by the symmetry (5.48), for which the Ricci rotation coeÆcients
hold.
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Using (5.205), we will write the equations (5.204) and (5.203) as

d2xi

ds2
+ 
ij

dxj

ds
= 0; (5.207)

d
i j
ds
� T i

jk;m

dxk

ds

dxm

ds
+ T i

js

s
k

dxk

ds
= 0: (5.208)

The skew-symmetric matrix (5.206) can be represented as


ij =

0
BB@

0 
01 
02 
03


10 0 
12 
13


20 
21 0 
23


30 
31 
32 0

1
CCA (5.209)

Let us now give a physical interpretation of the components of the matrix
(5.209). We multiply the equations (5.207) by the mass m and rewrite them as

m
d2xi

ds2
+m
ij

dxj

ds
= 0: (5.210)

If the condition (5.202) holds, there equations can be represented as

m
dui

dso
+m
ij

dxj

dso
= 0; (5.211)

where
dso = (�ikdx

idxk )1=2 (5.212)

is the pseudo-Euclidean metric and ui = dxi=dso .
We represent the equations (5.211) in the form

m
dui

dso
= �mTi(jk)

dxj

dso

dxk

dso
; (5.213)

where the part of T symmetric in indices j and k is given by (5.178).
Assuming that motion governed by the equations (5.213) is nonrelativistic

(v=c� 1), we will write the three-dimensional part of these equations as

m
du�

dso
= �mT�(ok)

dxo

dso

dxk

dso
� 2mT�(�k)

dx�

dso

dxk

dso
(5.214)

or, from the relationship (5.205), as

m
du�

dso
= �m
�o

dxo

dso
� 2m
��

dx�

dso
: (5.215)

Since in the nonrelativistic approximation

dso = cdt; ua =
v�

c
;
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and dxo = cdt, the equations (5.215) can be written as

m
dv�

dt
= �mc2
�o � 2mc2
��

1

c

dx�

dt
: (5.216)

It is known from classical mechanics that the nonrelativistic equations of
motion of the origin O of a three-dimensional accelerated reference frame under
inertia forces alone have the form [34]

d

dt
(mv) = m (�W + 2[v!]) ; (5.217)

where W is the vector of translational acceleration, and ! is the vector of the
three-dimensional angular velocity of rotation of the accelerated reference frame.

We write these equations as

d

dt
(mv�) = m

�
�W�o + 2!��

dx�

dt

�
; (5.218)

where W = (W10;W20;W30);

!�� = �!�� = �

0
@ 0 �!3 !2

!3 0 �!1
�!2 !1 0

1
A (5.219)

! = (!1; !2; !3);

and comparing these with (5.217), we obtain


10 =
W1

c2
; 
20 =

W2

c2
; 
30 =

W3

c2
;


12 = �
!3

c
; 
13 =

!2

c
; 
23 = �

!1

c
:

Therefore, the matrix (5.209) in this case has the form


ij =
1

c2

0
BB@

0 �W1 �W2 �W3

W1 0 �c!3 c!2
W2 c!3 0 �c!1
W3 �c!2 c!1 0

1
CCA (5.220)

It is seen from this matrix that the four-dimensional rotation of the tetrad
eia, caused by the torsion of the A4 spaces, gives rise in physics to inertia �elds
associated with translational and rotational accelerations.
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5.8 Structural equations of right and left A4 geo-

metry

We can consider three forms of the geometry of absolute parallelism.
(1) A4 geometry, with the nonzero Riemannian tensor Ri

jkm and torsion


::ijk . The structural Cartan equations then become

r[ke
a
j] + T i

[kj]e
a
i = 0; (5.221)

Ri
jkm + 2r[kT

i
jjjm]+ 2T i

s[kT
s
jjjm] = 0: (5.222)

(2) A4 geometry, with the zero Riemannian Ri
jkm and nonzero torsion 
::ijk.

In that case the structural Cartan equations can be written as

r[ke
a
j] + T i

[kj]e
a
i = 0; (5.223)

r[kT
i
jjjm]+ T i

s[kT
s
jjjm] = 0: (5.224)

(3) A4 geometry, with the zero Riemannian tensor Ri
jkm and noncoordinate

torsion 
::ijk . The structural Cartan equations of the geometry coincide with the
structural equations of the pseudo-Euclidean space E4, and they look like

Æ

r[k

Æ
e a
j]+

Æ

T
i
[kj]

Æ
e a
i = 0; (5.225)

Æ

r[k

Æ

T
i
jjjm]+

Æ

T
i
s[k

Æ

T
s
jjjm] = 0; (5.226)

where the tetrad
Æ
e a
i determines the "coordinate torsion"

Æ



::i
jk =

Æ
e i
a

Æ
e a[k;j] =

1

2

Æ
e i
a(
Æ
e ak;j�

Æ
e a

j;k): (5.227)

Since in the pseudo-Euclidean space the T4 and O(3:1) groups hold globally
and its internal geometry is trivial, then, for example, in the Cartesian coor-
dinate x0 = ct, x1 = x, x2 = y, x3 = z the structural equations (5.225) and
(5.226) become the identities

0 � 0; (5.228)

0 � 0: (5.229)

If we now go over to the spherical coordinates

x0 = ct; x1 = r; x2 = �; x3 = ';

we will get the equations (5.225){(5.227), which include:
(a) components of the \coordinate" tetrad

Æ
e (0)

0 =
Æ
e (1)

1 = 1;
Æ
e (2)

2 = r;
Æ
e (3)

3 = r sin �;

Æ
e 0

(0) =
Æ
e 1

(1) = 1;
Æ
e 2
(2) =

1

r
;

Æ
e 3

(3) =
1

r sin �
; (5.230)
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(b) components of \coordinate torsion"

Æ


 ::2
21 =

Æ


 ::3
31 = �(2r)�1;

Æ


 ::3
32 = �

1

2
cot �; (5.231)

(c) components of the Ricci rotation coeÆcients

Æ

T
1
22 = r;

Æ

T
1
33 = r sin2 �;

Æ

T
2
33 = sin � cos �;

Æ

T
2
12 =

Æ

T
3
13 = �

1

r
;

Æ

T
3
23 = � cot �: (5.232)

Using the formulas

Æ
gik= �ab

Æ
e a
i

Æ
e b
k ; �ab = �ab = diag(1 � 1 � 1 � 1);

we �nd the components of the metric tensor

Æ
g00=

Æ
g11= 1;

Æ
g22= �r;

Æ
g33= �r2 sin2 �;

the metric

ds2o =
Æ
gij dx

idxj = c2dt2 � dr2 � r2(de2 + sin2 �d'2)

and the components of the Christo�el symbols

Æ

� 1
33 = �r sin

2 �;
Æ

� 1
22 = �r;

Æ

� 2
12 =

Æ

� 3
13 =

1
r
;

Æ

� 2
33 = � sin � cos �;

Æ

� 3
23 = cot �:

(5.233)

Thus, in the pseudo-Euclidean geometryA4, when we deviate fromCartesian
coordinates, instead of the identities (5.228) and (5.229) we get the "coordinate
structural equations" (5.225) and (5.226).

Suppose now that the initial pseudo-Euclidean space A4 is deformed in a
continuous manner (e.g., using conformal transformations) into an A4 space
with a nonzero dynamic torsion �eld and the structural equations (5.223) and
(5.224). We can distinguish the right

+


 ::i
jk = riar

a
[k;j] =

1

2
ria(r

a
k;j � r

a
j;k) (5.234)

and left
�



::i
jk = lial

a
[k;j] =

1

2
lia(l

a
k;j � l

a
j;k) (5.235)

torsion �elds. In these equations ria and l
i
a stand for the right and left tetrads.

respectively.

We well take the right tetrad ria to mean a tetrad
+
e i

a, such that when the
three-dimensional spatial part rotates from the x axis to the y axis the vector
of the angular rotational velocity points along the z axis, so that the rotation
occurs counterclockwise if looking from the side to which the z vector points.
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For example, the four-dimensional rotation matrix (5.220) for the right tetrad
looks like

+


ij=
1

c2

0
BB@

0 �W1 �W2 �W3

W1 0 �c!3 c!2
W2 c!3 0 �c!1
W3 �c!2 c!1 0

1
CCA (5.236)

whereas for the left rotations we have


ij =
1

c2

0
BB@

0 W1 W2 W3

�W1 0 c!3 �c!2
�W2 �c!3 0 c!1
�W3 c!2 �c!1 0

1
CCA : (5.237)

It is seen that
+


ij= �
�


ij : (5.238)

From (5.205) and (5.238), we have

+

T
i
jk = �

�

T
i
jk: (5.239)

Since the metric tensor gik is determined both by the right and left tetrad
in a similar manner [35]

gik = �abr
a
i r

b
k = �abl

a
i l
b
k ; (5.240)

it follows from the de�nition

T i
jk = �


::i
jk + gim(gjs


::s
mk + gks


::s
mj) (5.241)

that the components (5.234) and (5.235) of the right and left torsion �elds di�er
in sign

+


 ::i
jk = �

�


 ::i
jk: (5.242)

By dividing the torsion �elds into left- and right-hand ones, we thereby split

the translations group T4 into the right
+

T 4 and left
�

T 4 translations groups; and
the rotations group O(3:1) into the right SO+(3:1) and left SO�(3:1) rotations
group.

We will write the structural Cartan equations of the A4 geometry, which are
transformed using continuous transformations in T4 and SO+(3:1) groups, as
follows:

r[k

+
e a
j]+

+

T
i
[kj]

+
e a
i = 0; (5.243)

r[k

+

T
i
jjjm]+

+

T
i
s[k

+

T
s
jjjm] = 0: (5.244)

Accordingly, the equations

r[ke
a
j]+ T

i

[kj]e
a
i = 0; (5.245)
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r[kT
i

jjjm]+ T
i

s[kT
s

jjjm] = 0 (5.246)

are transformed continuously in the T4 and SO+(3:1) groups.
It is clear that discrete transformations | inversion transformations | en-

able us to transform the right equations (5.243) and (5.244) into left equations
(5.245) and (5.246), and vice versa.

The property (5.242) of the A4 geometry enables an empty pseudo-Euclidean
geometry to be "split" into right- and left-hand geometries:

Æ



::i
jk =

+



::i
jk +


::i

jk = 0; (5.247)

whose torsion is nonzero. This property appeared to be quite useful for the
description of the production of matter from "nothing" in the theory of physical
vacuum [36].

If now we split the structural Cartan equations (5.221) and (5.222) into right
and left ones, we will get

r[k

+
e a
j]+

+

T
i
[kj]

+
e a
i = 0; (5.248)

+

R
i
jkm + 2r[k

+

T
i
jjjm]+ 2

+

T

i

s[k

+

T

s

jjjm]= 0; (5.249)

r[k

�
e a
j]+

�

T
i
[kj]

�
e a
i = 0; (5.250)

�

R
i
jkm + 2r[k

�

T
i
jjjm]+ 2

�

T
i
s[k

�

T
s
jjjm] = 0: (5.251)

Writing the structuralCartan equations as the extended right and left Einstein-
Yang-Mills equations, we will arrive at

r[k

+
e a
j]+

+

T i
[kj]

+
e a
i = 0; (

+

A)
+

Rjm �1
2
gjm

+

R= �
+

Tjm; (
+

B :1)
+

C i
jkm + 2r[k

+

T i
jjjm]+ 2

+

T i
s[k

+

T s
jjjm] = ��

+

J i
jkm : (

+

B :2)

(5.252)

r[k

�
e a
j]
+

�

T i
[kj]

�
e a
i = 0; (

�

A)
�

Rjm �1
2gjm

�

R= �
�

Tjm; (
�

B :1)
�

C i
jkm + 2r[k

�

T i
jjjm]

+ 2
�

T i
s[k

�

T s
jjjm]

= ��
�

J i
jkm : (

�

B :2)

(5.253)

In the theory of physical vacuum that is based on the universal relativity
principle [37], equations (5.252) and (5.253) describe the right and left matter
produced from vacuum.
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Chapter 6

The geometry of absolute

parallelism in spinor basis

6.1 Three main spinor bases of A4 geometry

The geometry of absolute parallelism, as laid down in vector basis, enables the
structural equations of this geometry of be represented as right (invariant with
respect to the T+

4 and SO+(3:1)) groups and left (invariant with respect to the
T�4 and the SO�(3:1) groups) groups of the structural equations (A+), (B+)
and (A�) and (B�), respectively. Equations (A+), (B+) (or (A�), (B�)) can,
in turn, be split by a transition into a group of equations, whose component
�elds have opposite spins. For this purpose, we have to use spinor basis and
some elements of spinor analysis.

We will view the spinor geometry A4 as a di�erentiable manifold X4, such
that at each point M with the translational coordinates x (i = 0;1;2;3) a two-
dimensional spinor space C2 is introduced [38]. There are three possibilities for
introducing the spinor basis in the spinor space C2 :
(a) spinor �-basis formed by the Infeld-Van der Werden symbols �i

� _�
[39],

which satisfy the equality
rn�

i

� _�
= 0; (6.1)

(b) spinor �-basis formed by the Newman-Penrose symbols �i
A _B

[40], which
satisfy the equality

�

rn �
i

A _B
= 0; (6.2)

(c) spinor dyad basis ��B , which satis�es the equality [41]

"BD��Drk�
�
B = 0: (6.3)

In relationships (6.1){(6.3) the indices �; _�; : : : and A; _B; : : : are spinor in-
dices that take on the values 0,1 and _0; _1. Any local vector Ai that belongs to

47
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C2 can be represented as a spin-tensor of the second rank either in the spinor
�- basis

Ai = A� _��i
� _�
; (6.4)

or in the spinor �-basis

Ai = AA _B�i
A _B
: (6.5)

All the spin-tensors associated with the �-basis will have the spinor indices
�; _�; : : :, and the spin-tensors associated with � basis will have spinor indices
A; _B; : : :. As to dyad ��B , it is a connection between �- and �-basis

�i
A _B

= �i
� _�
��A�

_�

B : (6.6)

Here

�
_�

B = �
�

B;

and the bar on the right-hand side of the equality implies complex conjugation.
Spinor �-basis is connected with the vector basis eai by

�i
A _B

= eia�
a

A _B
; (6.7)

�A
_B

i = eai �
A _B
a ; (6.8)

where � A _B
i are complex Hermitian (� A _B

i = �
_AB

i ) matrices, and the matrices

�a
A _B

and � A _B
a have the form

�a
A _B

= (2)�1=2

0
BB@

1 0 0 1
0 1 1 0
0 i �i 0
1 0 0 �1

1
CCA ; (6.9)

�A
_B

a = (2)�1=2

0
BB@

1 0 0 1
0 1 �i 0
0 1 i 0
1 0 0 �1

1
CCA ; (6.10)

where
det(�a

A _B
) = i; det(�A

_B
a ) = �i:

From the orthogonality conditions for the tetrad eia

eaie
j
a = Æ j

i ; eaie
i
b = Æab (6.11)

and the relationships (6.7){(6.10) follows the orthogonality conditions for the
spinor �-basis

�A
_B

i �
j

A _B
= Æ

j
i ; (6.12)

�A
_B

i �i
C _E

= ÆAC Æ
_B
_E
: (6.13)
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For the spinor �-basis the following orthogonality conditions hold [54]

��
_�

i �j
� _�

= Æ j
i ; (6.14)

��
_�

i �i� _� = Æ��Æ
_�
_� : (6.15)

Whence, by (6.6) and (6.12)-(6.13), follow the orthogonality conditions for
the spinor dyad

�o��
�
1 = 1;

��o �
o
� = ��o���o = 0;
��1 �

1
� = 0:

(6.16)

In addition, there are the relationships [54]

�o��
�
o � �1���o = Æ�� ;

�o��
1
� � �

1
��

o
� = "�� ;

(6.17)

where

"�� = "�� = " _
 _Æ = " _

_Æ =

�
0 1
�1 0

�
(6.18)

is the fundamental spinor [40] that obeys the following relationships:

"��"
�� = "�� = �"�� ; (6.19)

"��"
�� = Æ��Æ

�
� � Æ

�
�Æ

�
� ; (6.20)

"�� = 2; (6.21)

"�[�"�Æ] = 0; (6.22)

"�� =

�
1 0
0 1

�
: (6.23)

The fundamental spinor "�� increases and decreases the indices on the spin-
tensor associated with the �-basis, similar to the metric tensor gik in the vector
basis. In the spinor �-basis it has the form

"AB = "�� �
�
A�

�
B ; (6.24)

so that

"AB = "AB = "
_C _D = " _C _D

=

�
0 1
�1 0

�
: (6.25)

The fundamental spinor "AB increases and decreases indices on the spin-
tensors associated with the �-basis. For example, we have

�:::A:::::: ::: "AB = �::: ::::::B:::; "AB�::: ::::::B::: = �:::A:::::: ::: ;

':::
_A:::

::: ::: " _A _B
= '::: :::

::: _B:::
"

_A _B'::: :::
::: _B:::

= ':::
_A:::

:::::: :
(6.26)
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If the spinor is skew-symmetric in two indices

�:::A:::B::: = ��:::B:::A:::; (6.27)

then, using the fundamental spinor "AB , it can be represented as [40]

�:::A:::B::: =
1

2
"AB�

::: :::C:::
:::C::: : (6.28)

The same properties are valid in the spinor �-basis for the fundamental spinor
"�� .

6.2 Spinor representation of the structural Car-

tan equations of A4 geometry

The relationship (6.28) makes it possible to reduce spinors skew-symmetric
in primed and unprimed indices to spinors that are completely (or partially)
symmetrical in primed and anprimed indices. In the space of spinors of this
type irreducible representations of the groups SL(2:C) are realized [42]. This
group replaces the group SO(3:1) on passing over to the spinor basis.

De�nition 6.1. We will say that the components of a spinor with r symmet-
rical lower indices and with s symmetrical lower primed indices are transformed
in D(r=2;s=2) irreducible representation of the group SL(2:C).

For example, the spinor
FAB = FBA

is transformed in D(1:0), and the spinor

F _C _D
= F _D _C

in the D(0:1) irreducible representation of the group SL(2:C).
We will write the main relationships of the A4 geometry in the spinor �-

basis. This can be accomplished using the spinor representation of the arbitrary
tensor T :::i::::::

::: :::j::: in the �-basis

T :::A _B::: :::

::: :::C _E:::
= �A

_B
i T :::i::::::

::: :::j:::�
j

C _E
(6.29)

or simply replacing the matrix indices by two spinor ones as follows:

eai $ �A
_B

i ; (6.30)

T a
bm $ TA _B

C _Dm; (6.31)

Ra
bkm $ RA _B

C _Dkm ; (6.32)

�ab$ �A _BC _D = "AC " _B _D
; (6.33)

and so on.
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Proposition 6.1. In the spinor �-basis the metric tensor gij of the A4

geometry has the form

gij = "AC" _B _D
�A

_B
i �C

_D
j : (6.34)

Proof. Substituting into
gij = �abe

a
ie
b
j

the relationships (6.7) and (6.8) written as

eai = �A
_B

i �aA _B ; ebj = �C
_D
j�

b
C _D ; (6.35)

we have
gij = �ab�

A _B
i �a

A _B
�C

_D
j �b

C _D
: (6.36)

From the relationships (6.9), (6.10), (6.25) and the de�nition

�ab = �ab = diag(1 � 1 � 1 � 1);

we obtain the following equality:

�ab�
a

A _B
�b
C _D

= "AC " _B _D
:

Substituting this into (6.36), we arrive at the formula (6.34).
We now write the structural Cartan equations in matrix form

r[ke
a
m] � e

b
[kT

a
jbjm] = 0; (A)

Ra
bkm + 2r[kT

a
jbjm]+ 2T a

c[kT
c
jbjm] = 0: (B)

Using the rules (6.30)-(6.32), we write these equations in the spinor �-basis

r[k�
A _B
m] � �

C _D
[k TA _B

jC _Djm]
= 0; (6.37)

RA _B
C _Dkm + 2r[kT

A _B
jC _Djm] + 2TA _B

E _F[kT
E _F

jC _Djm] = 0: (6.38)

Consequently, the second Bianchi identity of the A4 geometry

r[nR
a
jbjkm] + Rc

b[kmT
a
jcjn]� T

c
b[nR

a
jcjkm] = 0 (D)

in the spinor �-basis becomes

r[nR
A _B

jC _Djkm]
+ RE _F

C _D[km
TA _B

jC _Djn]
� TE _F

C _D[n
RA _E

jE _Fjkm]
= 0: (6.39)

Proposition 6.2. If Fij = �Fji is a real skew-symmetrical tensor, then
the corresponding spinor

FA _BC _D = Fij�
i

A _B
�
j

C _D
(6.40)

can be represented in the form

FA _BC _D =
1

2
(" _B _D

FAC + "ACF _B _D
); (6.41)
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where the spinor
FAC = FCA (6.42)

is transformed in the D(1:0) irreducible representation of the group SL(2:C),
and the spinor

FBD = F _B _D
= F _D _B

(6.43)

in the D(0:1) irreducible representation of the same group.
Proof. Since the tensor Fij is skew-symmetric, we have, by (6.40),

FA _BC _D = �FC _DA _B : (6.44)

We rewrite this as

FA _BC _D =
1

2
(FA _BC _D � FC _DA _B =

1

2
(FA _BC _D � FC _DA _B + FC _DA _B �

�FC _DA _B): (6.45)

Using the fundamental spinor (6.25), we can write (6.45) as follows:

FA _BC _D =
1

2
("ACFF _B

F
_D
+ " _B _D

FA _EC

_E): (6.46)

Denoting FAC = (1=2)FA _EC

_E , we have, by (6.44),

FAC =
1

2
FA _EC

_E = �
1

2
FA

_E
C _E = FCA: (6.47)

Further, introducing the notation F _B _D
= 1

2
FF _B

F
_D
and considering that Fij

is real, we �nd

F _B _D
=

1

2
FF _B

F
_D
=

1

2
F _FB

_F
D = FBD: (6.48)

Substituting the relationships (6.47) and (6.48) into (6.46), we arrive at
(6.44). By de�nition, the spinor FAC = FCA belongs to the D(1:0) irreducible
representation of the groups SL(2:C); and spinor F _B _D

= F _D _B
{ to the D(0:1)

irreducible representation of the group.
Since the quantities TA _BC _Dm and RA _BC _Dkn in the equations (6.37) and

(6.38) are skew-symmetric in the pair of spinor matrix indices A _B and C _D , we
can represent them, by (6.27){(6.28), as

TA _BC _Dk =
1

2
(" _B _D

TACk + "ACT
+
_B _Dk

); (6.49)

RA _BC _Dkn =
1

2
(" _B _D

RACkn + "ACR
+
_B _Dkn

); (6.50)

where

TACk =
1

2
"

_B _DTA _BC _Dk ; T+
_B _Dk

=
1

2
"ACTA _BC _Dk ; (6.51)

RACkn =
1

2
"

_B _DR
A _BC _Dkn

; R+
_B _Dkn

=
1

2
"ACR

A _BC _Dkn
: (6.52)

In these relationships the + sign with the spinor matrices implies Hermitian
conjugation.
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6.3 Splitting of structural Cartan equations

into irreducible representations of the

group SL(2:C)

Matrices (6.51) and (6.52) can be transformed in the spinor indices as follows:

TA0

C0k = SA
0

A TA
CkS

C
C0 + SA

0

A SAC0 ;k; (6.53)

T+ _B0

_D0k
= S+ _B0

_B
T+ _B

_Dk
S+ _D

_D0
+ S+ _B0

_B
S

_B
_D0 ;k

; (6.54)

RA0

C0kn = SA
0

A RA
CknS

C
C0 ; (6.55)

R+ _B0

_D0kn = S+ _B0

_B
R+ _B

_Dkn
S+ _D

_D0
: (6.56)

Matrices of the transformations SA
0

A and S+B
_B

form the group SL(2:C), and the
matrices

SA
0

A (6.57)

form the subgroup

SL+(2:C) (6.58)

of the group SL(2:C), in which the spinors belonging to the irreducible repre-
sentation D(r=2;0) are transformed.

On the other hand, the matries

S+ _B0

_B
(6.59)

form the subgroup

SL�(2:C) (6.60)

of the group SL(2:C), in which the spinors belonging to the irreducible rep-
resentation D(0; s=2) are transformed. These properties of the spinors enable
the structural Cartan equations to be split into equations that contain spinors
transformed in D(r=2;0) or D(0; s=2) irreducible representations of the group
SL(2:C):

Proposition 6.3. The second structural Cartan equations (B) in the
spinor �-basis are split into the equations of the form

RACkn + 2r[kTjACjn] + 2TAE[kT
E
jCjn] = 0; (6.61)

R+
_B _Dkn

+ 2r[kT
+

j _B _Djn]
+ 2T+

_B _F [k
T+ _F

j _Djn]
= 0: (6.62)

Proof. We write the second structural Cartan equations (6.38) as

BA _BC _Dkn = RA _BC _Dkm + 2r[kTjA _BC _Djm] + 2TA _BE _F[kT
E _F

jC _Djm]
= 0: (6.63)
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Using the fact that the spinor BA _BC _Dkn is skew-symmetric in the pair of

spinor indices A _B and _CD, we will write it in the form

BA _BC _Dkn =
1

2
(" _B _D

BACkn + "ACB
+
_B _Dkn

) = 0; (6.64)

where

BACkn =
1

2
"

_B _DBA _BC _Dkn = 0; (6.65)

B+
_B _Dkn

=
1

2
"ACBA _BC _Dkn = 0: (6.66)

Substituting (6.61) into the equations (6.65) and (6.66) and using the ma-
trices (6.51) and (6.52), we will arrive at the structural equations (6.61) and
(6.62) in split form. In the derivation we have used the properties (6.19)-(6.23)
of the fundamental spinor "AB .

Proposition 6.4. Matrices TACk and T+
_B _Dk

in the dyad basis ��C have
the following form:

TACk = ��Crk�
�
A = TACk ; (6.67)

T+
_B _Dk

= � _� _D
rk�

_�
_B = T+

_B _Dk
: (6.68)

Proof. We write the matrices

Tabk = eibrkeai

in the spinor basis, using the rules (6.30) and (6.31)

TA _BC _Dk = �i
C _D
rk�A _Bi: (6.69)

Substituting this expression into the �rst one of (6.51) gives

TACk =
1

2
"

_B _D�i
C _D
rk�A _Bi: (6.70)

Using the formula (6.6), we write �A _Bi as

�A _Bi = �� _�i�
�
A�

_�
_B : (6.71)

Substituting (6.71) into (6.70), we have

TACk =
1

2
"

_B _D�i
C _D
rk(�� _�i�

�
A�

_�
_B) =

1

2
"

_B _D�i
C _D

�� _�irk(�
�
A�

_�
_B); (6.72)

since rk(�� _�i) = 0.
Further, considering that

�i
C _D

�
� _�i

= �� _

i��C�

_

_D�� _�i

=

= Æ��Æ _
 _��
�
C�

_

_D = �C�� _D _� ;
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we will write (6.72) as

TACk =
1

2
"

_B _D�C�� _D _�(�
_�
_Brk�

�
A + ��Ark�

_�
_B): (6.73)

In the dyad basis we have the equalities

" _B _D
= � _D _��

_�
_B ; "

_B _D� _D _�rk�
_�
_B = 0;

which are conjugates of (6.3) and (6.24). Using these equalities, we can easily
obtain (6.67). Similarly, for the conjugate matrix T+

_B _Dk
, we have (6.68).

Proposition 6.5. In the spinor �-basis the �rst structural Cartan equa-
tions (A) of the A4 geometry have the form

r[k�
i]

C _D
� T[kjCE�E _D

ji]� �[i
jC _F j

T+

k] _D

_F = 0 (6.74)

or, dropping the matrix indices,

r[k�
i] � T[k�

i] � �[iT+
k] = 0: (6.75)

Proof. Let us take the derivative rk�
i

C _D
:

rk�
i

C _D
= rk(�

i

� _�
��C�

_�
_D) = �i

� _�
(�

_�
_Drk�

�
C + ��Crk�

_�
_D):

Using (6.67) and (6.68), we will write this relationship as

rk�
i

C _D
= �i

� _�
(TCEk�

�E�
_�
_D + T+

_D _Fk
��C�

_� _F
): (6.76)

Here we have used the normalization conditions

��E�
�E = 1; � _� _F

�
_� _F

= 1:

Multiplying the terms on the right-hand side (6.76) we obtain, from (6.71),

rk�
i

C _D
� TCEk�iE_D � �

i _F
C T+

_D _Fk
= 0 (6.77)

or
rk�

i

C _D
� TkCE�Ei_D � �

i

C _F
T+ _F

k _D
: (6.78)

Alternating this relationship in the indices k and i, we obtain the equations
(6.74).

Proposition 6.6. The second Bianchi (D) identities of the A4 geometry
in the spinor �-basis are split into the following equations:

rn
�

RACkn �
�

RECkn T
E
A
n+

�

REAkn T
E
C
n = 0; (6.79)

rn
�

R
+
_B _Dkn

�
�

R
+
_F _Dkn

T+ _Fn
_B

+
�

R
+
_F _Bkn

T+ _Fn
_D

= 0: (6.80)
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Proof. Increasing and decreasing, using the metric tensors �ab and gik, the
tensor indices in the identities (6.150), we will write them in the form

rn
�

Rabkn �
�

Rcbkn T
c
a
n+

�

Rackn T
c
b
n = 0: (6.81)

In this equality we now pass over to the spinor indices using (6.31) and (6.32)
go get

rn
�

RA _BC _Dkn �
�

RE _FC _Dkn T
_EF

A _B
n+

�

RE _FA _Bkn T
_EF

C _D
n = 0: (6.82)

We now write this relationship in the form

Dn

A _BC _Dkn
= 0; (6.83)

where by Dn

A _BC _Dkn
we have denoted all the terms on the left-hand side of (6.82).

Since the relationship (6.83) are skew-symmetrical in the pair of indicesA _B and
C _D , we will write it in the form

Dn

A _BC _Dkn
=

1

2
(" _B _D

Dn
ACkn + "ACD

+n
_B _Dkn

) = 0; (6.84)

where

Dn
ACkn =

1

2
"

_B _DDn

A _BC _Dkn
= 0; D+n

_B _Dkn
=

1

2
"ACDn

A _BC _Dkn
= 0:

Substituting here (6.82), we will get (6.79) and (6.80).
Physically, the spinor splitting of the structural Cartan equations (A) and

(B) implies splitting into the equations of \matter " and \skew-symmetry", just
as it has been done by Dirac in his derivation of equations for the electron and
the positron. We can now write equations that are transformed in the groups
SL+(2:C) as

r[k�
i]

C _D
� T[kjCE�

E
_D
ji] � �[ijC _F jT

+

k] _D

_F = 0; (As)

RACkn + 2r[kTjACjn]+ 2TAE[kT
E
jCjn] = 0; (Bs+)

and in the group SL�(2:C) as

r[k�
i]
C _D � T[kjCE�

E
_D
ji]� �[ijC _F jT

+

k] _D

_F = 0; (As)

R+
_B _Dkn

+ 2r[kT
+

j _B _Djn]
+ 2T+

_B _F [k
T+ _F

j _Djn]
= 0: (Bs�)

In the numerations of these formulas s implies transformation in a spinor
group. Dropping the matrix indices, we will write these relationships as

r[k�
i] � T[k�i] � �[iT

+

k]
= 0; (As)

Rkn + 2r[kTn] � [Tk; Tn] = 0; (Bs+)
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r[k�
i] � T[k�

i] � �[iT+
k] = 0; (As)

R+
kn + 2r[kT

+

n]
� [T+

k ; T
+
n ] = 0: (Bs�)

Correspondingly, discarding the matrix indices in the equations (6.79) and
(6.80), we obtain

rn
�

Rkn +[
�

Rkn; T
n] = 0; (Ds+)

rn
�

R
+
kn + [

�

R
+
kn; T

+n] = 0: (Ds�)

6.4 Carmeli matrices

Equalities (6.67) and (6.68) can be written in matrix form

Tk = �rk�; (6.85)

T+
k = �+rk�

+; (6.86)

where Tk and � are 2�2 complex matrices with elements TA
Bk and �aA, respec-

tively. Multiplying Tk by �kA _B, we can introduce the traceless Carmeli 2 � 2
matrices [44-46]

TA _B = �k
A _B
Tk ; (6.87)

A;C : : : = 0; 1; _B; _D : : : = _0; _1

with the components

T0 _0 =

�
" ��
� �"

�
; T0 _1 =

�
� ��
� ��

�
;

T1 _0 =

�
� ��
� ��

�
; T1 _1 =

�

 ��
� �


�
:

(6.88)

Using matrices (6.87), we can de�ne the matrix elements

(TA _B)C
D =

CD

A _B 00 01 10 11
0_0 " �� � �"
0_1 � �� � ��
1_0 � �� � ��
1_1 
 �� � �


; (6.89)

where (TA _B)C
D is the CD element of the matrices TA _B . Consequently, the

complex conjugate matrices T+
_AB

are

(T+
_AB
)
_D
_C
=

_C _D

_AB _0_0 _0_1 _1 _0 _1 _1
_00 " �� � �"
_01 � �� � ��
_10 � �� � ��
_11 
 �� � �


: (6.90)
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Proposition 6.7. In the Carmeli matrices the �rst structural Cartan
equations (A) of the A4 geometry have the form

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)A

P �i
P _B

+ �i
A _R

(T+
_DC
)
_R
_B
�

�(TA _B)C
P �i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
: (6.91)

Proof. We will write the equations (6.75) as

rk�
i

C _D
� rk�

i

A _B
= TC

E
k�

i
_DE

+ �i
C _F
T+

_D

_F
k �

�TACk�iC _B
� �i

A _E
T+

_B

_E
k : (6.92)

It is easily seen that the equations (6.92) represent the di�erence of the two
relationships

rk�
i

C _D
= TC

E
k�

i
_DE

+ �i
C _F
T+

_D

_F
k ; (6.93)

rk�
i

A _B
= TA

C
k�

i

C _B
+ �i

A _E
T+

_B

_E
k : (6.94)

Multiplying (6.93) by �kA _B , and (6.94) by �kC _D, we get

rk�
i

C _D
�k
A _B

= TC
E
k�

i
_DE
�k
A _B

+ �i
C _F
T+

_D

_F
k�

k

A _B
; (6.95)

rk�
i

A _B
�k
C _D

= TA
P
k�

i

P _B
�k
C _D

+ �i
A _E
T+

_B

_E
k�

k

C _D
: (6.96)

We now introduce the notation

(TA _B)C
E = TC

E
k�

k

A _B
(6.97)

and
@A _B = �k

A _B
rk; (6.98)

and rewrite the relationships (6.95) and (6.96) as

@C _D�
i

A _B
= (TC _D)A

P�i
P _B

+ �i
A _R

(T+
_DC
)
_R
_B
; (6.99)

@A _B�
i

C _D
= (TA _B)C

P �i
P _D

+ �i
C _R

(T+
_BA
)
_R
_D
: (6.100)

Subtracting from (6.99) the equality (6.100), we will arrive at the �rst struc-
tural Cartan equations (6.91) of the A4 geometry, written in terms of Carmeli
matrices.

Consider now the second structural Cartan equations
(Bs+); written in matrix forms

Rkn + 2r[kTn] � [Tk; Tn] = 0: (6.101)

Multiplying the quantity Rkn by �kA _B and �nC _D , we will introduce the
traceless Carmeli matrix

RA _BC _D = Rkn�
k

A _B
�n
C _D

(6.102)



6.4. CARMELI MATRICES. . . 59

with the components [44-46]

R0 _10 _0 =

�
	1 �	0

	2 + 2� �	1

�
; R1 _00 _0 =

�
�10 ��00

�20 ��10

�
;

R1 _11 _0 =

�
	3 �	2 � 2�
	4 �	3

�
; R1 _10 _1 =

�
�12 ��02

�22 ��12

�
;

R1 _10 _0 =

�
	2 + �11 � � �	1 � �01

	3 + �21 �	2 � �11 + �

�
;

R1 _00 _1 =

�
�	2 + �11 + � 	1 � �01

�	3 + �21 	2 � �11 � �

�
:

(6.103)

Proposition 6.8. In terms of Carmeli spinormatrices (6.87) and (6.102),
the second structural Cartan equations (Bs+) of the A4 geometry become

RA _BC _D = @C _DTA _B � @A _BTC _D � (TC _D)A
FTF _B � (T+

_DC
)
_F
_B
TA _F +

+(TA _B)C
FTF _D + (T+

_BA
)
_F
_D
TC _F + [TA _B; TC _D]: (6.104)

Proof. We write the equations (6.101) as

Rkn = 2r[nTk] + [Tk; Tn] (6.105)

or
Rkn = rnTk � rkTn + TkTn � TnTk : (6.106)

Multiplying this by �kA _B�
n
C _D , we will have

RA _BC _D = @C _DTk�
k

A _B
� @A _BTn�

n

C _D
+ TA _BTC _D � TC _DTA _B =

= @C _DTA _B � @ABTC _D � (@C _D�A _B
k � @A _B�C _D

k)Tk +

+[TA _B ; TC _D]: (6.107)

We have used here the condition that

�k
A _B�k

C _E
= ÆACÆ

_B
_E

(6.108)

and the notation
@A _B = �k

A _B
rk : (6.109)

If now in (6.107) we use the relationships (6.99) and (6.100), we will get the
equations (6.103).

Let us write the second Bianchi identities (Ds+) of the A4 geometry in
matrix form

rn
�

Rkn +[
�

Rkn; T
n] = 0: (6.110)

Multiplying these equations by �nE _F , we will render them in terms of
Carmeli matrices as follows:

@C
_D
�

RE _FC _D +�n_EF (r
C _D�A

_B
n )

�

RA _BC _D +

+(rk�
kC _D )

�

RE _FC _D �[T
C _D ;

�

RE _FC _D ] = 0: (6.111)
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Using the relationship (6.99), we can rewrite the identities (6.111) as

@C
_D
�

RE _FC _D �(T
C _D)AE

�

RA _FC _D �

�(T+ _DC) _F

_B
�

RE _BC _D +(TP
_D)CP

�

RE _FC _D +

+(T+C
_Q

)
_Q _D

�

RE _FC _D +[TC _D;
�

RE _FC _D ] = 0: (6.112)

6.5 Component-by-component rendering of

structural equations of A4 geometry

Let us now write the equations (6.91) component by component. For con-
venience, we will introduce the following notation:

Ai

C _DA _B
= @C _D�

i

A _B
� @A _B�

i

C _D
= (TC _D)A

P�i
P _B

+

+�i
A _R

(T+
_DC
)
_R
_B
� (TA _B)C

P�i
P _D
� �i

C _R
(T+

_BA
)
_R
_D
: (6.113)

Also, we will denote the components of the spinor derivative as

@A _B =

_B

A _0 _1
0 D Æ

1 Æ �

; (6.114)

and the components of the spinor �-basis as

�i
A _B

=

_B

A _0 _1

0 li = (Y 0; V; Y 2; Y 3) mi = (�0; !; �2; �3)

1 mi = (�
0
; !; �

2
; �

3
) ni = (Xo;U;X2;X3)

: (6.115)

From (6.113), the spinor component Ai
0 _00 _1 will be

Ai

0 _00 _1
= @0 _0�

i

0 _1
� @0 _1�

i

0 _0
= (T0 _0)0

P �i
P _1

+ �i
0 _R
(T+

_00
)
_R
_1 �

�(T0 _1)0
P�i

P _0
� �i

0 _R
(T+

_10
)
_R
_0 (6.116)

or

Ai

0 _00 _1
= @0 _0�

i

0 _1
� @0 _1�

i

0 _0
=
�
(T0 _0)0

0�i
0 _1
+ (T0 _0)0

1�i
1 _1

�
+

+
�
�i
0 _0
(T+

_00
)
_0
_1 + �i

0 _1
(T+

_00
)
_1
_1

�
�
�
(T0 _1)0

0�i
0 _0
+ (T0 _1)0

1�i
1 _0

�
�

�
�
�i
0 _0
(T+

_10
)
_0
_0 + �i

0 _1
(T+

_10
)
_1
_0

�
: (6.117)
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Using the notation of (6.89)-(6.90) and (6.114)-(6.115) for the components

(TC _D)A
P ; (T+

_BA
)
_R
_D
; @A _B and �i

A _B
, we will obtain, by (6.117),

Dmi � Æli =
�
"mi + (��)ni

�
+
�
li� +mi(�")

�
�

�
�
�li + (��)mi

�
�
�
li�+mi(��)

�
=

= �(�+ � � �)li � �ni + �mi + (� + " � ")mi: (6.118)

Since the vectors mi and li have the following components:

li = (Y 0; V; Y 2; Y 3); mi = (�0; !; �2; �3);

it follows from (6.118) that

ÆV � D! = (�+ � � �)V + �U � �! � (�+ " � ")!; (6.119)

ÆY � � D�� = (�+ � � �)Y� + �X� � ��
�
� (� + " � ")��; (6.120)

� = 0;2;3:

In a similar manner we �nd the following component rendering of the �rst
structural Cartan equations of the A4 geometry

ÆV � D! = (�+ � � �)V + �U � �! � (� + " � ")!; (A:1)

ÆY� � D�� = (�+ � � �)Y � + �X� � ��
�
� (�+ " � ")��; (A:2)

�Y� � DX� = (
 + 
)Y � + (" + ")X� � (� + �)�� � (� + �)!; (A:3)

�V � DV = (
 + 
)V + (" + ")U � (� + �)! � (� + �)!; (A:4)

ÆU ��! = ��V + (� � � � �)U + �! + (�� 
 + 
)!; (A:5)

ÆX� ���� = ��Y � + (� � �� �)X� + ��
�
+ (�� 
 + 
)��; (A:6)

Æ! � Æ! = (�� �)V + (� � �)U � (�� �)! � (� � �)!; (A:7)

Æ�� � Æ�
�
= (�� �)Y � + (� � �)X� � (�� �)�

�
� (� � �)��; (A:8)

� = 0;2;3;

and the complex conjugate equations (
�

A:1) � (
�

A:8) (all in all 24 independent
equations).

Let us now look at the equations (6.107) and write them componentwise.
For instance, we will derive the R0 _10 _0 component of these equations

R0 _10 _0 = @0 _0T0 _1 � @0 _1T0 _0 � (T0 _0)0
0T0 _1 � (T0 _0)0

1T1 _1 +

+(T+

0_0
)
_0
_1T0 _0 � (T+

0_0
)
_1
_1T0 _1 + (T0 _1)0

0T0 _0 + (T0 _1)0
1T1 _0 +

+(T+

1_0
)
_0
_0T0 _0 + (T+

1_0
)
_1
_0T0 _1 + T0 _1T0 _0 � T0 _0T1 _0: (6.121)
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Using the matrices (6.89)-(6.90), (6.103) and the spinor derivative (6.114),
we can represent (6.121) as�

	1 �	0

	2 + 2� �	1

�
= D

�
� ��
� ��

�
�Æ

�
" ��
� �"

�
�

�"
�
� ��
� ��

�
+�

�

 ��
� �


�
��

�
" ��
� �"

�
+

+"

�
� ��
� ��

�
+�

�
" ��
� �"

�
��

�
� ��
� ��

�
+

+�

�
" ��
� �"

�
��

�
� ��
� ��

�
+

(6.122)

+

�
� ��
� ��

��
" ��
� �"

�
�
�
" ��
� �"

��
� ��
� ��

�
:

These equations split into the following three independent equations:

(D � � + ")� � (Æ � �+ �)"� (�+ �)� + (� + 
)� �	1 = 0;

(D � �� � � 3" + ")� � (Æ � � + � � � � 3�)� �	0 = 0;

(D � � + "+ ")�� (Æ + � � �+ �)� � ��+ �� � 2�� 	2 = 0:

Similarly, we will obtain the following independent equations (Bs+):

(D � � � " � ")� � (Æ � 3�� � + �)��

��� + �� � �00 = 0; (Bs+:1)

(D � �� � � 3" + ")� � (Æ � � + � � � � 3�)��

�	0 = 0; (Bs+:2)

(D � �� " + ")� � (�� 3
 � 
)� � �� � �� � ���

�	1 � �10 = 0; (Bs+:3)

(D � � � " + 2")� � (Æ� � + �)" � �� + �� + �
�

��� ��10 = 0; (Bs+:4)

(D + " + ")
 � (�� 
 � 
)"� (� + �)�� (� + �)��

��� + �� + �� 	2 � �11 = 0; (Bs+:5)

(D � � + 3" � ")�� (Æ + � + �� �)� � �� + �� � �20 = 0; (Bs+:6)

(D � �+ ")� � (Æ � �+ �)"� (�+ �)� + (� + 
)��

�	1 = 0; (Bs+:7)

(D � � + " + ")� � (Æ + � � �+ �)� � ��+ ���

�2� � 	2 = 0; (Bs+:8)

(D + 3"+ ")� � (�+ � + 
 � 
)� � �� � (� + �)��
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�	3 � �21 = 0; (Bs+:9)

(�+ �+ � + 3
 � 
)�� (Æ + 3�+ � + � � �)� + 	4 = 0; (Bs+:10)

(Æ � �� � � �)�� (Æ � 3�+ �)� + �� � (�� �)�+

+	1 � �01 = 0; (Bs+:11)

(Æ � �+ 2�)�� (Æ + �)� � ��+ ��� (� � �)
�

�(�� �)" � �+ 	2 � �11 = 0; (Bs+:12)

(Æ� � + 3�)� � (Æ + � + �+ �)�� (� � �)�+

+�� + 	3 � �21 = 0; (Bs+:13)

(Æ � � + �+ �)
 � (�� 
 + 
 + �)� � �� + ��+

+"� � ��� �12 = 0; (Bs+:14)

(Æ � � + 3� + �)� � (�+ � + 
 + 
)�� ��+

+�� � �22 = 0; (Bs+:15)

(Æ � � � � + �)� � (�+ �� 3
 + 
)� � ��+

+�� � �02 = 0; (Bs+:16)

(�+ � � 
 � 
)�� (Æ + � � �� �)� + ���

��� + 2� +	2 = 0; (Bs+:17)

(�� 
 + �)�� (Æ+ � � �)
 � (�+ ")�+

+(� + �)� + 	3 = 0: (Bs+:18)

In addition to these equations, the second structural Cartan equations (B)
include the complex conjugate equations

R+
kn + 2r[kT

+
n]
� [T+

k ; T
+
n ] = 0: (Bs�)

We can write these equations in terms of components by replacing the equations
(Bs+:1){(Bs+:18) by their complex conjugate equations.

6.6 Connection of structural Cartan equations

of A4 geometry with the NP formalism

In 1962 Newman and Penrose [40] put forward a system of nonlinear spinor
equations, which appeared to be extremely convenient in the search for novel
solutions of Einstein's equations. In the work [47] by the author of this book is
was shown that the equations of the Newman-Penrose formalism coincide with
the structuralCartan equations of the geometry of absolute parallelism. Indeed,
with spinor Carmeli matrices TC _D one can connect the spintensor TFAC _D using
the relationships

(TC _D)A
P = TA

P
k�

k
C _D = TP

AC _D = �"PF TFAC _D : (6.123)
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Using the matrix elements (6.162) of the Carmeli matrices and the funda-
mental spinor

"AB = "AB =

�
0 1
�1 0

�
;

we will obtain the following notation for the components of the spintensor
TABC _D :

TABC _D =

C _D

AB 0_0 0_1 1_0 1_1
00 � � � �

(01) " � � 

11 � � � �

: (6.124)

Proposition 6.9. First structural Cartan equations of the A4 geometry
coincide with the "coordinate equations" [40]

@A _B�
i

C _D
� @C _D�

i

A _B
= "PQ(TPAC _D�

i
QB � TPCA _B�

i
QD) +

+"
_R _S(T _R _B _DC

�i
A _S
� T _R _D _BA

�i
C _S

) (6.125)

in the Newman-Penrose formalism.
Proof. We will write the structural Cartan equations (A) of the geometry of
absolute parallelism as

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)A

P �i
P _B

+ �i
A _R

(T+
_DC
)_R _B
�

�(TA _B)C
P �i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
: (6.126)

Using the relationship (6.123), we will represent the equations (6.126) as

@C _D�
i

A _B
� @A _B�

i

C _D
= �

�
"PQ(TPAC _D�

i
QB � TPCA _B�

i
QD)+

+ "
_R _S(T _R _B _DC

�i
A _S
� T _R _D _BA

�i
C _S

)
�
:

It is easily seen that these equations are equivalent to (6.125).
We now write the well-known decomposition of the Riemannian tensorRijkm

into irreducible representations

Rijkm = Cijkm � 2g[i[kRm]j]�
1

3
Rgi[mgk]j; (6.127)

where Cijkm is the Weyl tensor (10 independent coordinates); Rij is the Ricci
tensor (nine independent coordinates); R is the scalar curvature. The spinor
representation of these quantities using the Newman-Penrose formalism looks
like [48]

Cijkm $ 	ABCD" _A _B
" _C _D

+ "AB"CD	 _A _B _C _D
; (6.128)

Rij$ 2�AB _A _B + 6"AB" _A _B
; (6.129)

R = 24�; (6.130)
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where spinors 	ABCD and �AB _A _B have the following symmetry properties:

	ABCD = 	(ABCD) ; �AB _A _B = �(AB) _A _B : (6.131)

By de�nition the spinors 	ABCD and �
AB _A _B

are transformed following the
D(2:0) and D(1:1) irreducible representation of the groups SL+(2:C), respec-
tively.

If we now put in juxtaposition to the Riemann tensor Rijkm a spintensor
following the rule

Rijkm$ RA _AB _BC _CD _D ;

then in terms of the spinors (6.128)-(6.130) it can be written as

RA _AB _BC _CD _D = 	ABCD" _A _B
" _C _D

+ "AB"CD	 _A _B _C _D
+

+�AB _C _D"CD" _A _B
+ �CD _A _B"AB" _C _D

+

+2�("AC"BD" _A _D
" _C _D

+

+"AB"CD " _A _D
" _B _C

): (6.132)

This spintensor being skew-symmetric in the pair of indicesA _A and B _B, we
will write it as

RA _EC _BD _PF _Q =
1

2
(" _E _B

RACD _PF _Q + "ACR _E _BD _P F _Q); (6.133)

where

RACD _PF _Q =
1

2
"

_E _BRA _EC _BD _PF _Q; (6.134)

R _E _BD _PF _Q =
1

2
"ACRA _EC _BD _PF _Q: (6.135)

Substituting into these relationships the equality (6.132) gives

RACD _PF _Q = 	ACDF " _P _Q
+ �AC _Q _P "FD +�" _P _Q

("CD"AF + "AD"CF ); (6.136)

R _E _BD _BPQ = "DP	 _E _B _P _Q
+ � _B _EPD

" _Q _P
+�"DP (" _B _P

" _E _Q
+ " _E _P

" _B _Q
): (6.137)

Proposition 6.10. The second structural Cartan equations (Bs+) are
equivalent to the equations [40]

	ACDF " _E _B
+ �AC _B _E"FD + �" _E _B

("CD"AF +

+"AD "CF )� @D _BTACF _E + @F _ETACD _B +

+"PQ(TAPD _BTQCF _E + TACP _BTQDF _E � TAPF _ETQCD _B �
�TACP _ETQFD _B) +

+"
_R _S(TACD _R

T _S _B _EF
� TACF _RT _S _E _BD

) = 0 (6.138)
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in the Newman-Penrose formalism.
Proof. We write the equations (Bs+) in terms of the Carmeli matrices

RF _ED _B = @D _BTF _E � @F _ETD _B � (TD _B)F
STS _B �

�(T+
_ED
)
_F
_B
TF _F + (TF _E)D

STS _B +

+(T+
_EF
)
_F
_B
TD _F + [TF _E; TD _B ]: (6.139)

Using the relationships (6.123), we can represent the equations (6.139) as

RACF _ED _B � @D _BTACE _F + @E _FTACD _B + TS
FD _BTACS _E +

+T
_F
_E _BD

TACF _F � T
S
DF _ETACS _B � T

_F
_B _EF

TACD _F +

+"PQ(TAPD _BTQCF _E � TAPF _ETQCD _B) = 0;

or as

RACF _ED _B � @D _BTACE _F + @E _FTACD _B + "PQ(TAPD _BTQCF _E+

+TACP _BTQDF _E � TAPF _ETQCD _B � TACP _ETQFD _B)+

+"
_R _S(TACD _RT _S _B _EF

� TACF _RT _S _E _BD
) = 0;

(6.140)

where we have introduced the spinor indices in the matrices RA _BC _D and TA _B

following the rule

RA _BC _D ! REFA _BC _D = REFkn�
k

A _B
�n
C _D

;

TA _B ! TCDA _B = TCDk�
k

A _B
:

(6.141)

Substituting into (6.140) the relationship (6.136), we will arrive at the equa-
tions (6.138).

Spintensors 	ABCE and �AB _C _E have the following notation for their com-
ponents [38]:

	ABCE =

CE

AB 00 01 11
00 	0 	1 	2

01 � � 	3

11 � � 	4

; (6.142)

�AB _C _E =

_C _E

AB _0 _0 _0_1 _1_1
00 �00 �01 �02

01 �10 �11 �12

11 �20 �21 �22

; (6.143)

� = �: (6.144)

Using the relationships (6.114), (6.115), (6.124), we can expand the equations
(6.126) of the Newman-Penrose formalism component by component to arrive
at the equations (A:1) � (A:8) plus the complex conjugate equations. Using
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the relationships (6.142)-(6.144) and (6.114) we also can expand the equations
(6.138) of the Newman-Penrose formalismcomponentwise. We will thus end up
with the equations (Bs+:1){(Bs+:18).

The spinor counterpart of the dual Riemann tensor

�

Rijkm=
1

2
"km

spRijsp (6.145)

can be written as

�

RA _AB _BC _CD _D= i
�
"AB"CD	 _A _B _C _D

� 	ABCD" _A _B
" _C _D
�

��CD _A _B"AB" _C _D
+ �AB _C _D"CD" _A _B

+

+2�("AC "BD" _A _B
" _D _C

+ "AB"CD" _A _C
" _B _D

)) : (6.146)

It follows that

�

RA _BC _DEF=
1

2
"

_P _QRA _BC _DE _PF _Q = �i (�" _B _D
	 _ACEF

+

+"EF�AC _B _D + �" _B _D
("AE"CF + "CE"AF )) ; (6.147)

also

�

RA _BC _D _P _Q=
1

2
"EFRA _BC _DE _PF _Q = i

�
" _A _C

	 _B _D _P _Q
�

�" _P _Q
�AC _B _D + �"AC(" _D _P

" _B _Q
+ " _B _P

" _D _Q
)
�
: (6.148)

The dual Weyl tensor
�

C ijkm corresponds to the spintensor of the form

�

C ijkm$
�

CA _AB _BC _CD _D= i("AB"CD	 _A _B _C _D
� 	ABCD" _A _B

" _C _D
):

The self-dual spintensor RA _BC _DEF will be

RA _BC _DEF = i
�

RA _BC _DEF= 	ACEF " _B _D
; (6.149)

whereas the anti-self-dual tensor is

RA _BC _D _P _Q = i
�

RA _BC _D _P _Q= "AC	 _E _B _P _Q
: (6.150)

Proposition 6.11. The second Bianchi identities (Ds+) of the A4 geo-
metry in the spinor �-basis can be represented as

1

2i
"C _D

F _EG _HR _X@P _XRABG _HF _E � 	ABCRT
R
F
F

_D
�

�3	RPB(ATC)
RP

_D
+ �RB _D _XTA

R
C

_X +

+�AB _X _ET
_X

_D

_E
C +�AB _D _XT

_X

_E

_E
C = 0; (6.151)
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where

"C
_DF _EG _HR _X = �i("CG "RF " _D _E"

_H _X � "CF "GR" _D _H"
_E _X): (6.152)

Proof. We will write the equations (6.79) as

rn
�

RACkn �
�

REAkn TC
En�

�

RAEkn TC
En = 0: (6.153)

Multiplying these equations by �k
C _D

gives

@F
_E
�

RBAC _DF _E +
�

RBAC _DF _E r
n�n

F _E +

+
�

RBAR _SF _E �k
C _D

@F
_E�k

R _S �

�
�

RBPC _DF _E TA
PF _E�

�

RPAC _DF _E TB
PF _E = 0: (6.154)

Here we have used the relationships (6.94) and (6.133). Substituting into
(6.154) the relationship (6.148), we will get

iDABC _D + AF _EP _R
i
�
�iC _DRBA

P _RF _E � 2�i
P _RRBAC _D

F _E
�
= 0;

where A
F _EP _R

i stands for the equations (6.125), rewritten as

A
A _BC _D

i = @
A _B
�i

C _D
� @

C _D
�i
A _B
�

�"PQ
�
TPAC _D�

i

Q _B
� TPCA _B�

i

Q _D

�
�

�" _R _S
�
T _R _B _DC

�i
A _S
� T _R _D _BA

�i
C _S

�
= 0; (6.155)

and DABC _D = 0 de�nes the equations (6.151)

DABC _D =
1

2i
"C _D

F _EG _HR _X@R _XRABG _HF _E �

�	ABCRT
R
F
F

_D
� 3	RPB(ATC)

RP
_D
+�RB _D _XTA

R
C

_X +

+�AB _X _ET
_X
_D

_E
C + �AB _D _XT

_X
_E

_E
C = 0;

which proves the Proposition.

Proposition 6.12. The second Bianchi identities (6.151) of the A4 geo-
metry coincide with the Bianchi identities in the work by Newman-Penrose [40].

@P _D
	ABPC � @X (C�AB) _D _X � 3	PR(ABTC)

PR
_D
�

�	ABCP T
P
R
R

_D
+ 2TP

(AB

_X�C)P _X _D �

�T _X _D _V (A�BC)

_X _V � T _X

_V
_V (A�BC)

_X
_D
= 0; (6.156)
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3@A _B�+ @P
_X�AP _B _X � "

_V _W
�
�AP

_X
_W
T _B _X _V

P+

+�
AP _B

_XT _X _W _V
P
�
+ �

PR _B

_XTA
PR

_X
+

+�AP _B

_XTP
R
R

_X
= 0 (6.157)

Proof. Using (6.147) and the equality

�

RABC _D
R _X =

1

2
"C _D

F _EG _HR _XRABG _HF _E;

we �nd that in (6.151)

1

2i
"C _D

F _EG _HR _X@P _XRABG _HF _E = @P _XRABC _D
R _X =

= @P _X

�
" _D

_X	ABC
R � "AB�CR _D

_X � �" _D

_X("CA"B
R + "BA"C

R)
�
:

Substituting this relationship into (6.151) gives

@P _D
	ABPC � @C

_X�AB _D _X + 2"C(A@B) _D�� 	ABCRT
R
F
F

_D
�

�3	RPB(ATC)
RP

_D
+ �RB _D _XTA

R
C

_X + �AB _X _ET
_X

_D

_E
C +

+�AB _D _XT
_X

_E

_E
C = 0: (6.158)

The part of (6.158) symmetrical in the indices C and B can be written as
(6.156); and the part skew-symmetrical in these indices looks like (6.157).

By writing the second Bianchi identities (Ds+) of the A4 geometry compo-
nent by component, we obtain [40]

(D � 4� � 2")	1 � (Æ � 4�+ �)	0 +

+3�	2 + (Æ � 2� � 2�+ �)�00 �
�(D � 2� � 2")�01 � 2��11 +

+2��10 � ��02 = 0; (Ds+:1)

(D � 3�)	2 � (Æ + 2� � 2�)	1 +

+2�	3 + �	0 + (Æ � 2�+

+�)�10 � (D � 2�)�11 � ��21 �
���12 � ��00 + ��01 + ��20 � D� = 0; (Ds+:2)

(D � 2� + 2")	3 � (Æ+ 3�)	2 +

+2�	1 + �	4 + (Æ � 2�+ 2� +

+�)�20 � (D � 2�+ 2")�21 �
�2��10 + 2��11 � ��22 � 2Æ� = 0; (Ds+:3)
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(Æ� 4� � 2�)	1 � (�� 4
 + �)	0 +

+3�	2 + (Æ � 2� + 2�)�01 � (D � 2" + 2"�
��)�02 � 2��12 + 2��11 �
���00 = 0; (Ds+:4)

(Æ � 3�)	2 � (�+ 2� � 2
)	1 + 2�	3 +

+�	0 + (Æ+ 2�)�11 � (D + 2"�
��)�12 � ��22 � ��01 + ��02 +

+��21 � ��10 � Æ� = 0; (Ds+:5)

(Æ+ 2� � 2�)	3 � (�+ 3�)	2 + 2�	1 +

+�	4 + (Æ+ 2� + 2�)�21 �
�(D + 2"+ 2" � �)�22 �

�2��11 + 2��12 � ��20 � 2�� = 0; (Ds+:6)

(D + 4"� �)	4 � (Æ + 4� + 2�)	3 +

+3�	2 + (�+ 2
 � 2
 + �)�20 �
�(Æ + 2�� 2�)�21 � 2��10 +

+2��11 � ��22 = 0; (Ds+:7)

(Æ + 4� � �)	4 � (�+ 2
 + 4�)	3 + 3�	2 +

+(� + 2
 + 2�)�21 � (Æ+ 2�+

+2� � �)�22 � 2��11 + 2��12 �
���20 = 0; (Ds+:8)

(D � 2� � 2�)�11 � (Æ � 2�� 2� +

+�)�10 � (Æ � 2� � 2�+ �)�01 +

+(�+ 2
 � 2
 + �+ �)�00 +

+��12 + ��21 � ��02 �
���20 + 3D� = 0; (Ds+:9)

(D � 2�+ 2" � �)�12 �
�(Æ + 2� � 2�)�11 � (Æ + 2� �

�2� � � + �)�02 + (�+ 2� � 2
 +

+�)�01 + ��22 � ��00 �
���10 � ��21 + 3Æ� = 0; (Ds+:10)
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(D + 2" + 2" � � � �)�22 �
�(Æ + 2� + 2� � �)�21 � (Æ +

+2� + 2� � �)�12 + (�+ 2� +

+2�)�11 � ��10 � ��01 +

+��20 + ��02 + 3�� = 0: (Ds+:11)

To arrive at the complete set of the second Bianchi (D) identities of the
A4 geometry, we will have to add to these equations their complex conjugate
(Ds�).

6.7 Variational principle of derivation of the

structural Cartan equations and the second

Bianchi identities of A4 geometry

To begin with, we will consider the derivation of the structural equations (B)
and of the second Bianchi identities (D) for self-dual and anti-self-dual �elds of
Riemannian curvature, whose Carmeli matrices obey the conditions

Rkn = �i
�

Rkn ;

R+
kn = �i

�

Rkn ;

where
Rkn + 2r[kTn]� [Tk; Tn] = 0;

R+
kn + 2r[kT

+

n]
� [T+

k ; T
+
n ] = 0;

and
�

Rkn=
1

2
"knpsRps;

�

R
+
kn =

1

2
"knpsR+

ps:

Let us take the Lagrange function in the form

L1 = �
1

4
(�g)1=2Tr(RknR

kn) + complex conjugate part: (6.159)

Varying this expression in Tk and T
+
k , we will arrive at the equations (D)

rn
�

Rkn +[
�

Rkn; T
n] = 0; (6.160)

rn
�

R
+
kn + [

�

R
+
kn; T

+n] = 0: (6.161)

For arbitrary �elds of Riemannian curvature the Lagrange function looks
like

L2 = �
1

2
(�g)1=2Tr

�
�

R
kn(�

1

2
Rkn � 2r[kTn]+ [Tk; Tn])

�
+ c.c. part: (6.162)
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Variation of this Lagrangian in
�

Rkn and
�

R+
kn yields the second Bianchi iden-

tities (D)

rn
�

Rkn +[
�

Rkn ; T
n] = 0; (Ds+)

rn
�

R+
kn +[

�

R
+
kn; T

+n] = 0: (Ds�)

On the other hand, variation of the Lagrangian (6.162) in Tk and T+
k gives

the second structural Cartan equations (B) of the A4 geometry

Rkn + 2r[kTn] � [Tk; Tn] = 0; (Bs+)

R+
kn + 2r[kT

+

n]
� [T+

k ; T
+
n ] = 0; (Bs�)

and
�

Rkn=
1

2
"knpsRps;

�

R
+
kn =

1

2
"knpsR+

ps:

Independent variables in the Lagrangian (6.162) are the quantitiesRkn ,R
+
kn ,

Tk , and T+
k . To obtain from them using the variational principle, the �rst

structural Cartan equations (A) of the A4 geometry

r[k�
i] � T[k�i] � �[iT

+

k]
= 0; (As)

we will have to introduce into the Lagrangian (6.162) as independent variables
the matrices �i. This can be done by modifying the Lagrangian (6.162) as it
has been done in [49].

We now write the equations (A); (B) and (D) in spinor form :

(A) Ai
A _BC _D = 0; (6.163)

(B) BF _EACD _B = 0+ c.c. equations; (6.164)

(D) DABC _D = 0+ c.c. equations; (6.165)

where

Ai

A _BC _D
= @A _B�

i

C _D
� @C _D�

i

A _B
� "PQ(TPAC _D�

i
QB �

�TPCA _B�
i
QD)� "

_R _S(T _R _B _DC
�i
A _S
�

�T _R _D _BA
�i
C _S

) = 0; (6.166)

BACF _ED _B = RACF _ED _B � @D _BTACE _F + @E _FTACD _B +

+"PQ(TAPD _BTQCF _E +

+TACP _BTQDF _E � TAPF _ETQCD _B � TACP _ETQFD _B) +

+"
_R _S(TACD _RT _S _B _EF

� TACF _RT _S _E _BD
) = 0; (6.167)
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DABC _D =
1

2i
"C _D

F _EG _HR _X@R _XRABG _HF _E �

�	ABCRT
R
F
F

_D
� 3	RPB(ATC)

RP
_D
+

+�RB _D _XTA
R
C

_X +�AB _X _ET
_X
_D

_E
C + �AB _D _XT

_X
_E

_E
C = 0 (6.168)

and consider the Lagrangian

L3 =
�

R
B

_Q

A _Qkn

�
(2rnTABk + 2TPAnTB

P
k)�

1

4
RBPA

P
nk

�
+ c.c. part:

(6.169)

Here
�

R
B

_Q
A _Qkn = "nkjmRB

_Q
A _Q

jm and "nkjm is a completely skew-symmetrical
Levi-Chivita symbol.

If we take RB
_Q
A _Qkn and TPAn to be independent variables and use the

conventional variational procedure, we will obtain the following equations:

(Bs+)
1

2
RB _PA

_P
kn � 2r[kTjABjn]+ 2TPA[kT

P
jBjn] = 0; (6.170)

(Bs�) complex conjugate equations; (6.171)

(Ds+) rk
�

RB _QA

_Q
nk � 2

�

RP _Q(A

_Q
jnkjT

Pk
B) = 0; (6.172)

(Ds�) complex conjugate equations: (6.173)

Multiplying equations (6.170) by �C _D
n�F _E

n gives

@F _ETABC _D � @C _DTABF _E + TPAF _ET
P

BA _D
� TPAC _DT

P

BF _E
�

�
1

2
R
B _QA

P
F _EC _D

+ TABn(@C _D
�
F _E

n � @
F _E
�
C _D

n) = 0: (6.174)

Using the notation (6.166) and (6.167), we will write (6.174) as

BACF _ED _B + An
CDF _ETABn = 0: (6.175)

We will now multiply (6.172) by �C _D
k to get the relationship

@F
_E
�

R B _QA

_Q
C _DE _F+

�

RB _QA

_Q
C _DE _Fr

k�k
F _E +

+
�

RB _QA

_Q
R _SE _F�

n
C _D@

F _E�R
_S
n �

�
�

RB _QP

_Q
C _DE _FTA

PF _E�
�

RP _QA

_Q
C _DE _FTB

PF _E = 0 (6.176)

or, from (6.166) and (6.167),

iDABC _D +AF _EP _R
n

�
1

2
�nC _D

�

RB _QA

_QP _RE _F � �nP
_R
�

RB _QA

_Q
C _D

E _F

�
= 0:

(6.177)
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Here we have also used the relationship

�

RB _QA

_Q
C _DE _F = i (2	BACF "D _E � 2"CF�AB _D _E + 2�" _D _E

("BF "AC+

+"BC "AF )) :

It is clear that fromthe Lagrangian (6.169) it is impossible to obtain the �rst
structural Cartan equations (A) of the A4 geometry, since it does not contain
�C _D

n.
Let us add to the Lagrangian (6.169) the term

�A
_BC _D

j Aj

A _BC _D
(6.178)

where the quantities �A
_BC _D play the role of Lagrange factors

L4 = L3 + �A
_BC _D

j Aj

A _BC _D
+ c.c. part: (6.179)

The quantities �A
_BC _D

j , just like Aj

A _BC _D
, are Hermitian matrices, which are

skew-symmetrical in the pair of indices [49] A _B and C _D. Varying the Lagrange
density (6.179) in �C _D

n gives [49]

A
j

A _BC _D
= 0 (6.180)

and
DABC _D = �P

_R
k �

_X
nB(�

n

A _XP _R
� �

n

A _XP _R)�
k

C _D
= 0: (6.181)

Since �n
A _XP _R

are Hermitian matrices, from (6.181) we have the equations

(Ds+)
DABC _D = 0: (6.182)

Hence varying the complex conjugate part of the Lagrangian (6.179) gives

D _A _B _CD
= 0: (6.183)

and of the Lagrangian (6.179) in RB
_QA

_Qkn gives

BACF _ED _B + An
CDF _ETABn = 0 (6.184)

or, from (6.180),
BACF _ED _B = 0: (6.185)

Variation of the complex conjugate part in R
_B
Q

_AQkn yields

BACF _ED _B = 0: (6.186)

It has thus been shown that from the Lagrangian (6.179) follow the �rst and
second of the structuralCartan equations of the A4 geometry (equations (6.180),
(6.185) and (6.186)), and also the second of the Bianchi identities (equations
(6.182) and (6.183)).
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6.8 Decomposition of spinor �elds of A4

geometry into irreducible parts

The torsion tensor 
::ijk of the A4 space has 24 independent components, and
it can be represented as the sum of three irreducible parts as follows:


i:jk =
2

3
Æi[k
j] +

1

3
"njks
̂

s + 

i

:jk; (6.187)

where

i:jk = gimgks


::s
mj ; (6.188)

and the vector 
j , pseudovector 
̂j and the traceless part of the torsion 

i

:jk

are given by

j = 
i:ji; (6.189)


̂j =
1

2
"jins


ins; (6.190)



s

:js = 0; 
ijs+ 
jsi+ 
sij = 0: (6.191)

In the spinor basis the spinor representation of the Ricci rotation coeÆcients
TABC _C has the form [40]

TABC _C =
1

2

�
AABC _C +

1

3
("AC�B _C + "BC�A _C)

�
; (6.192)

where the spinor AABC _C is completely symmetrical in the unprimed indices

AABC _C = A(ABC) _C ; (6.193)

and the spinor �B _C is given by

�A _C = AAB
B

_C
: (6.194)

In turn, the spinor �A _C can be decomposed into the Hermitian and anti-
Hermitian parts:

�A _C = �A _C � i�A _C ; (6.195)

where

�A _C =
1

2
(�A _C + � _AC

); �A _C =
1

2
i(�A _C � � _AC

) (6.196)

and
�A _C = � _AC

= �C _A ; �A _C = �A _C = �C _A : (6.197)

The irreducible parts of torsion (6.189)-(6.191) and the spinors (6.193)-
(6.197) are related by


j  ! �A _C ; (6.198)


̂j  ! �A _C ; (6.199)
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k

:js ! AABC _C : (6.200)

Since

ijk = gsk


::s
ij ; (6.201)

we have

A _AB _BC _C  ! 
ijk; (6.202)


A _AB _BC _C =
1

2
(
ABC _C " _A _B

+ 
 _A _B _CC
"AB); (6.203)


ABC _C = AC(AB) _C + � _C(A"B)C : (6.204)

By de�nition, the spinor AABC _C is transformed in the D(3=2:1=2) irre-
ducible representation of the group SL(2;C). Consequently, the spinors �

A _C

and �A _C are transformed in the D(1=2:1=2) irreducible representation of the
group SL(2:C). Using the relationship (6.124), we can �nd the components of
the spinors �A _C and �A _C [50]

�A _C =

�
1
2(� + �)� 1

2("+ ") 1
2 (� + �) + 1

2 (�� �)
1
2(� � �) +

1
2(�� �)

1
2(
 + 
)� 1

2(�+ �)

�
; (6.205)

�A _C = i

�
1
2
(�� �)� 1

2
(" � ") 1

2
(� � �)� 1

2
(�� �)

�1
2
(� � �) + 1

2
(�� �) 1

2
(
 � 
)� 1

2
(�� �)

�
: (6.206)

The Riemann tensor represented in terms of irreducible parts is

Rijkm = Cijkm + gi[kRm]j + gj[kRm]i +
1

3
Rgi[mgk]j: (6.207)

In the spinor basis this becomes [40]

RA _AB _BC _CD _D = 	ABCD" _A _B
" _C _D

+

+"AB "CD	 _A _B _C _D
+ �AB _C _D"CD" _A _B

+

+�
CD _A _B

"AB" _C _D
+ 2�("AC"BD" _A _B

" _C _D
+

+"AB"CD" _A _D
" _B _C

): (6.208)

We also have the following connection:

Cijkm  ! 	ABCD" _A _B
" _C _D

+ "AB"CD	 _A _B _C _D
;

Rij  ! 2�AB _C _D + 6"AB" _C _D
; (6.209)

R ! 24�;

where the spinors 	ABCD , �AB _C _D and � meet the following symmetry condi-
tions:

	ABCD = 	(ABCD) ; �AB _C _D = �(AB)( _C _D); � = �

and belong to the D(2:0), D(1:1) and D(0:0) irreducible representations of the
group SL(2:C), respectively.
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6.9 Spinor set of Einstein-Yang-Mills equations

In the �rst part of the book it was shown that the structuralCartan equations
of the geometry of absolute parallelism (A) and (B) can be represented as an
extended set of Einstein-Yang-Mills equations

r[ke
a
j]+ T i

[kj]e
a
i = 0; (A)

Rjm � 1
2gjmR = �Tjm; (B:1)

Ci
jkm + 2r[kT

i
jjjm]+ 2T i

s[kT
s
jjjm] = ��J ijkm : (B:2)

(6.210)

We will write this set of equations in the spinor basis. To this end, we will
make use of the Carmeli matrices and the Newman-Penrose spinor formalism.
Suppose now we have the right spin A4 geometry, then its equations (A) and
(B) have the form

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)

P
A�

i

P _B
+

+�i
A _R

(T+
_DC
)
_R
_B
� (TA _B)

P
C�

i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
; (As+)

RA _BC _D = @C _DTA _B � @A _BTC _D � (TC _D)
F
ATF _B �

�(T+
_DC
)
_F
_B
TA _F + (TA _B)

F
CTF _D + (T+

_BA
)
_F
_D
TC _F + [TA _B; TC _D ]; (Bs+)

where the components of the matrices �i
A _B

, TA _B and RA _BC _D are given by
(6.115), (6.88) and (6.103), respectively.

Proposition 6.13. Equations (B:1) in the spinor basis are

2�AB _C _D + �"AB" _C _D
= �TA _CB _D: (6.211)

Proof. In terms of the irreducible spinors (6.209) P �Q the components of the
spinor matrices RA _BC _D are given by [51]

(RA _BC _D)P
Q = " _D _B

�
	CAP

Q � �("PC Æ
Q
A + "PAÆ

Q
C )
�
+ "CA�P

Q
_D _B
; (6.212)

where
(CA _BC _D)P

Q = " _D _B
	CAP

Q (6.213)

are the P � Q components of the spinor matrices of the Weyl tensor with the
the components

C0 _10 _0 =

�
	1 �	0

	2 �	1

�
; C1 _11 _0 =

�
	3 �	2

	4 �	3

�
;

C1 _10 _0 =

�
	2 �	1

	3 �	2

�
; C1 _00 _1 =

�
�	2 	1

�	3 	2

�
; (6.214)

and related with the spinor �" _D _B
("PC Æ

A
Q+ "PAÆC

Q) and "CA�P
Q

_D _B
are the

trace and traceless parts of the Ricci tensor

�"AB" _C _D
= �

1

4
�kA _C�

n
B _DRgkn; (6.215)
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�AB _C _D =
1

2
�kA _C�

n
B _D

�
Rkn �

1

4
gknR

�
: (6.216)

Substituting relationships (6.215) and (6.216) into (6.211) and multiplying

the resultant expression by �A
_C
k�

B _D
n, we arrive at the equations (B:1):

We now represent the matrix RA _BC _D as the sum

RA _BC _D = CA _BC _D + �JA _BC _D ; (6.217)

where the matrix current JA _BC _D has the components [52]:

J0 _10 _0 =
1

2

�
0 0
1
6
T 0

�
; J1 _11 _0 =

1

2

�
0 �1

6
T

0 0

�
;

J1 _00 _0 =
1

2

�
T1 _00 _0 �T0 _00 _0
T1 _01 _0 �T1 _00 _0

�
;

J1 _10 _1 =
1

2

�
T0 _11 _1 �T0 _10 _1
T1 _11 _1 �T0 _11 _1

�
; (6.218)

J1 _10 _0 =
1

2

�
T1 _10 _0 �T0 _10 _0
T1 _01 _1 �T1 _10 _0

�
�

1

2

�
1
6
T 0
0 �1

6
T

�
;

J1 _00 _1 =
1

2

�
T1 _10 _0 �T0 _10 _0
T1 _01 _1 �T1 _10 _0

�
+

1

2

�
�1

6
T 0

0 1
6
T

�
:

Here

TA _BC _D = �kA _C�
n
B _DTkn ; (6.219)

T = gjmTjm; (6.220)

and the energy-momentum tensor Tkn is given in terms of the Ricci rotation
coeÆcients by

Tjm = �
2

�

n
r[iT

i
jjjm]+ T i

s[iT
s
jjjm]�

�
1

2
gpngjm

�
r[ijT

i
jpjn]+ T i

s[iT
s
jpjn]

��
: (6.221)

In the special case where the �eld T i
jk is skew-symmetric in all the three

indices, the tensor (6.219) is [33]

Tjm =
1

�

�

̂j
̂m �

1

2
gjm
̂

i
̂i

�
: (6.222)

Multiplying this by �jA _C�
m
B _D and using (6.199), we get

TA _BC _D =
1

�

�
�A _B�C _D �

1

2
"AC" _B _D

�P _Q�
P _Q

�
: (6.223)
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In addition, we obtain

T = gjmTjm = �
1

�

̂j
̂

j = �
1

�
�P _Q�

P _Q: (6.224)

Hence the \density of spinor matter" is

� = �
1

�c2
�P _Q�

P _Q: (6.225)

We substitute (6:217) into the spinor equations (Bs+) go get

2�AB _C _D + �"AB" _C _D
= �TA _CB _D; (Bs+:1)

CA _BC _D � @C _DTA _B + @A _BTC _D + (TC _D)
F
ATF _B + (T+

_DC
)F_BTA _F�

�(TA _B)
F
CTF _D � (T+

_BA
)
_F
_D
TC _F � [TA _B; TC _D] = ��JA _BC _D : (Bs+:2)

To conclude, we will write the extended set of Einstein-Yang-Mills equations
as

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)

P
A�

i

P _B
+ �i

A _R
(T+

_DC
)
_R
_B
�

�(TA _B)
P
C�

i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
; (As)

2�AB _C _D + �"AB" _C _D
= �TA _CB _D; (Bs+:1)

CA _BC _D � @C _DTA _B + @A _BTC _D + (TC _D)
F
ATF _B + (T+

_DC
)
_F
_B
TA _F�

�(TA _B)
F
CTF _D � (T+

_BA
)
_F
_D
TC _F � [TA _B; TC _D] = ��JA _BC _D : (Bs+:2)

where the spinor indices take on the values A;B;D : : : = 0;1, _A; _B; _D : : : = _0; _1.

6.10 Formalism of two-component spinors

We will introduce the two-component spinors o� and i� [53], connected with
the components of the spinor dyad ��� as follows:

��0 = o�; ��1 = ��; �
_�
_0 = o _�;

�
_�
_1 = � _� ; (6.226)

�;� : : := 0;1; _�; _� : : : = _0; _1:

From the orthogonality condition for the spinor dyad

�0��
�
1 = 1;

��0 �
0
� = ��

0
��

�
0 = 0; (6.227)

��1 �
1
� = 0:

�0��
�
0 � �

1
��

�
0 = Æ�� ;

�0��
1
� � �

1
��

0
� = "�� ; (6.228)
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where

"�� = "�� = " _
 _Æ = " _

_Æ =

�
0 1
�1 0

�
; (6.229)

we derive the normalization condition for the two-component spinors

o��
� = ���o� = 1;

o�o� = �o�o� = 0; ���� = 0; (6.230)

and also the relationships

"�� = o��� � ��o� ; "�� = o��� � o��� ; "�� = o��
� � ��o� :

Spinors o� and i� de�ne the components of the Newman-Penrose symbols
(6.6)

�i
A _B

= �i
� _�
��A�

_�
_B (6.231)

as follows:
�i
0 _0

= �i
� _�
o�o

_� = li; �i
1 _1

= �i
� _�
���

_� = ni;

�i
0 _1

= �i
� _�
o��

_� = mi ; �i
1 _0

= �i
� _�
��o

_� = mi:
(6.232)

The vectors li, ni, mi and mi form an isotropic tetrad. The conventional
tetrad eia can be made up of the vectors of an isotropic tetrad using the rela-
tionships

ei0 = (2)�1=2(li + ni) = (2)�1=2�i
� _�
(o�o

_� + ���
_�);

ei1 = (2)�1=2(mi +mi) = (2)�1=2�i
� _�
(o��

_� + ��o
_�);

ei2 = (2)�1=2i(mi �mi) = (2)�1=2�i
� _�
(o��

_� � ��o _�);

ei3 = (2)�1=2(li � ni) = (2)�1=2�i
� _�
(o�o

_� � ��� _�): (6.233)

Using the relationships

TACk =
1

2
"

_B _D�i
C _D
rk�A _Bi; (6.234)

r� _� = �i
� _�
ri (6.235)

we �nd the following expressions for the components of the Carmeli matrices
[54]:

�� = o�o
_�o
r� _�o
; �� = ��o

_��
r� _��
 ;

�� = ��o
_�o
r� _�o
 ; �� = o�o

_��
r� _��
 ;

�� = o��
_�o
r� _�o
; �" = o�o

_��
r� _�o
 ;

�� = ���
_�o
r

� _�
o
 ; �� = o��

_��
r
� _�
o
 ;

�� = ���
_��
r� _��
 ; �
 = ���

_�o
r� _��
 ;

�� = o��
_��
r� _��
 ; �� = ��o

_�o
r� _��
 ;

(6.236)
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	0 = 	���Æo
�o�o�oÆ; 	1 = 	���Æo

�o�o��Æ ;

	2 = 	���Æo
�o����Æ ; 	3 = 	���Æ o

������Æ ;
(6.237)

	4 = 	���Æ�
������Æ;

�00 = �00 = �
�� _� _Æ

o�o�o _�o
_Æ; �01 = �10 = �

�� _� _Æ
o�o�o _��

_Æ;

�02 = �2 = ��� _� _Æo
�o�� _��

_Æ ; �11 = �11 = ��� _� _Æo
���o _��

_Æ ;

�12 = �21 = ��� _� _Æo
���� _��

_Æ; �22 = �22 = ��� _� _Æ�
���� _��

_Æ :

(6.238)

It follows from (6.236) that

r� _�o� = 
o�o�o _� � �o�o�� _� � �o���o _� + "o���� _��
����o�o _� + ���o�� _� + �����o _� � ������ _�;

(6.239)

r� _��� = �o�o�o _� � �o�o�� _� � �o���o _� + �o���� _��
�
��o�o _� + ���o�� _� + �����o _� � "����� _�:

(6.240)

The components of the spinor derivative (6.114) can be represented in terms
of two-component spinors as

D = �o�o _�r� _� ; � = ���� _�r� _� ;

Æ = �o�� _�r� _� ; Æ = ���o _�r� _� :
(6.241)

In the formalism of two-component spinors there exists the so-called mod-
i�ed formalism [53] that takes into account the "primed" symmetry of spinor
quantities. This symmetry allows the replacement

o�! i��; �� ! io�;

o _� !�i� _�; � _� ! �io _�;
(6.242)

where the unprimed quantities are replaced by primed ones following the rule

(li)0 = ni; (mi)0 = mi; (mi)0 = mi; (ni)0 = li; (6.243)

� = ��0 ; � = �o0; � = ��0 ;
� = �� 0; � = ��0; 
 = �"0: (6.244)

This symmetry property makes it possible to replace in (6.236) unprimed
quantities by primes ones

�� = o _�o�o
r� _�o
 ; �0 = � _�o��
r� _��
 ;

�� = ��o
_�o
r� _�o
 ; � 0 = o�o

_��
r� _��
 ;

�� = o��
_�o
r� _�o
 ; �" = o�o

_��
r� _�o
;

�� = ���
_�o
r

� _�
o
 ; �� = o��

_��
r
� _�
o
 ;

�0 = ���
_��
r� _��
 ; "0 = ���

_�o
r� _��
 ;

�0 = o��
_��
r� _��
 ; �0 = ��o

_�o
r� _��
 ;

(6.245)
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Here instead of 12 spinor coeÆcients we have only six.
The most general transformation under which spinors o�, i� and the condi-

tions (6.230) are retained is

o�! Co�; �� ! C�1�� ; (6.246)

where C is a complex transformation that forms a subgroup of boosts and
three-dimensional rotations. The components of the isotropic tetrad (6.232)
vary under these transformations as follows:

li! A�1li; ni! Ani; mi! ei�mi;

A = CC; ei� = CC
�1
: (6.247)

We will now de�ne a scalar quantity with the following properties:

�! CPC
�q
�: (6.248)

This quantity is said to be a spin and boost weight scalar of the type (p; q)
[53]. It follows from (6.246) that the components of the spinors o� and i� are
scalars of types (1;0) and (�1;0), respectively. The components of the isotropic
tetrad will be

li : (1;1); ni : (�1;�1);mi : (1;�1); mi : (�1;1): (6.249)

In respect of the transformations (6.247) all the spin coeÆcients (6.236) can
be divided into two classes:

(a) quantities that are transformed in a uniform manner, e.g.,

� ! (Co�)(C
�1
� _�)(Co�)r� _�(Co�) = C3C

�1
�; (6.250)

(b) quantitites that are transformed in a nonuniform manner using deriva-
tives of C, e.g.,

� ! (Co�)(C
�1
� _�)(C�1��)r� _�(Co�) =

= CC
�1
� + C

�1
o�� _�r� _�C: (6.251)

If we take into account "primed" symmetry and spin and boost weights, the
main spinor quantities become

� : (3;1); � : (3;�1); � : (1;1); � : (1;�1);
�0 : (�3;�1); �0 : (�3;1); �0 : (�1;�1); � 0 : (�1;1);

	0 = 	04 : (4;0); 	1 = 	03 : (2;0);
	2 = 	02 : (0;0); 	3 = 	01 : (�2;0);

	4 = 	00 : (�4;0); (6.252)
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�00 = �00 = �022 : (2;2); �01 = �10 = �021 : (2;0);
�02 = �20 = �020 : (2;�2); �10 = �01 = �012 : (0;2);
�11 = �11 = �011 : (0;0); �12 = �21 = �010 : (0;�2);

�20 = �02 = �002 : (�2;+2); �21 = �12 = �001 : (�2;0);

�22 = �22 = �000 : (�2;�2);

� = � = �0 = R=24 : (0;0):

For weighted quantities we will introduce new di�erential operators, such
that their action on a scalar � of the type fp; qg is de�ned as

P� = (D � p" � q")�; P 0� = (�+ p"0 + q"0)�;

@� = (Æ� p� + q�
0
)�; @0� = (Æ + p� � q�)�:

(6.253)

Operators (6.253) have the following spin weights:

P : (1;1); @ : (1;�1);
P 0 : (�1;�1); @0 : (�1;1): (6.254)

In terms of (6.252) and di�erential operators (6.253), we can write the spinor
equations (Bs+) in a simpler form [53]. Shown schematically in Fig. 6.1 are
the boost and spin weights of the main spinors of the A4 geometry.
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Figure 6.1: Boost and spin weights of main spinors of the A4 geometry



Chapter 7

Construction of solutions to

structural Cartan equations

of the geometry of absolute

parallelism

7.1 Selection of a frame of reference and

specialization of Newman-Penrose symbols

The structural Cartan equations of any geometry describe the general con-
nection between basic geometrical characteristics of a given geometry. A special
solution of structural equations determines speci�c geometrical quantities, such
as the curvature, connection, metric, etc., characteristic of a given speci�c solu-
tion [55]. For simplicity we will investigate the structural Cartan equations of
the A4 geometry

r[ke
a
m] � eb [kT a

jbjm] = 0; (A)

Ra
bkm + 2r[kT

a
jbjm]+ 2T a

c[kT
c
jbjm] = 0; (B)

written in the vector basis, for their compatibility. These equations are essen-
tially a system that in the general case includes 44 (24 equations (A) and 20
equations (B)) nonlinear partial di�erential equations of the �rst order with the
following unknown functions:

(a) 6 components of anholonomic tetrad

eia = rax
i; (7.1)

(b) 24 components of the Ricci rotation coeÆcients

T a
bk = ejbrke

a
j; (7.2)

85
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(c) 20 components of the Riemann tensor

Ra
bkm : (7.3)

Thus, in the general case we have 44 equations for 50 unknown functions.
This gives us some freedom in choosing a reference frame xi, of the tetrad eia,
and also of the quantitiesT a

bk and R
a
bkm . Therefore, search for speci�c solution

to the set of equations (A) and (B) should rather be referred to as "constructing
solutions."

When constructing solutions it is convenient to represent the structural Car-
tan equations of the geometry of absolute parallelism in the spinor �-basis in
terms of Carmeli matrices

@C _D�
i

A _B
� @A _B�

i

C _D
= (TC _D)A

P �i
P _B

+ �i
A _B

(T+
_DC
)
_R
_B
�

�(TA _B)C
P�i

P _D
� �i

C _R
(T+

_BA
)
_R
_D
; (As)

RF _ED _B = @D _BTF _E � @F _ETD _B � (TD _B)F
STS _B � (T+

_ED
)
_F
_B
TF _F+

+(TF _E)D
STS _B + (T+

_EF
)
_F
_B
TD _F + [TF _E; TD _B]: (Bs+)

where the components of the traceless 2�2 matricesR
F _ED _B

and T
F _E

are found
from the relationships (6:88) and (6:103). Let us now �nd the Newman-Penrose
symbols via the spinor representation of the invariant Haiashi derivative

�A _B
i = rA _Bx

i = @A _Bx
i; (7.4)

where the components of the spinor derivative @A _B are denoted as

@A _B =

_B

A _0 _1
0 D Æ

1 Æ �

(7.5)

From the relationships (7.4)-(7.5) and

�i
A _B

=

_B

A _0 _1

0 li = (Y 0; V; Y 2; Y 3) mi = (�0; !; �2; �3)

1 mi = (�
0
; !; �

2
; �

3
) ni = (X0;U;X2;X3)

(7.6)

we obtain
li = Dxi; ni = �xi; mi = Æxi; mi� = Æxi; (7.7)

and also
Y 0 = Dx0;X0 = �x0; �0 = Æx0; �

0
= Æx0;

V = Dx1 ;U = �x1; ! = Æx1; ! = Æx1 ;

Y 2 = Dx2;X2 = �x2; �2 = Æx2; �
2
= Æx2;

Y 3 = Dx3;X3 = �x3; �3 = Æx3; �
3
= Æx3:

(7.8)
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From the equality
@A _B = �A _B

iri = �A _B
i
;i (7.9)

and the relationships (7.5) and (7.6) it follows

D = liri; � = niri; Æ = miri; Æ = miri (7.10)

or

D = V
@

@x1
+ Y � @

@x�
;

� = V
@

@x1
+X� @

@x�
;

Æ = w
@

@x1
+ ��

@

@x�
;

Æ = w
@

@x1
+ �

� @

@x�
; (7.11)

� = 0;2;3:

Using these relationships, we write the vectors thatmake up the matrix (7.6)
as

li = V Æi1 + Y �Æi�;

ni = UÆi1 +X�Æi�;

mi = !Æi1 + ��Æi�;

mi = !Æi1 + �
�
Æi�: (7.12)

From the orthogonality condition for the Newman-Penrose symbols

�A
_B

i �
j

A _B
= Æ

j
i ; (7.13)

�A
_B

i �i
C _E

= ÆACÆ
_B
_E
: (7.14)

follow the orthogonality conditions for the vectors (7.12)

lil
i = mim

i = mim
i = nin

i = 0;

lin
i = �mim

i = 1;

lim
i = lim

i = nim
i = nim

i = 0: (7.15)

And from the formulas
gij = "AC" _B _D

�A
_B

i �C
_D

j ; (7.16)

"00 = "11 = 0; "01 = �1; "10 = 1;

we �nd
gij = linj + ljni �mimj �mjmi: (7.17)

Vectors that meet the orthogonality conditions (7.15) are null vectors and
in physics they are normally associated with propagation of radiation (i.e., with
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matter that has no rest mass), where concepts of wave fronts, waves, rays, etc,
hold. In the process a family of null hypersurfaces u(xi) =const is introduced.

We will take the vector li to be orthogonal to these hypersurfaces

li = u;i: (7.18)

Further, we will select the coordinates so that [60]

x0 = u;

x1 = r; where r is the aÆne parameter along the null
geodesics

x2;

x3; where x2;3 assign numbers to rays on each
hypersurface and are constant along the rays.

(7.19)

When selecting the coordinates, the vector li and li look like:

li = u;i = x0;i = Æ0i ; (7.20)

li =
dxi

dx1
=
dxi

dr
= Æ1

i (7.21)

or
li = (0;1;0;0); li = (1;0;0;0): (7.22)

From the orthogonality conditions

lin
i = 1; lim

i = 0

it follows that

ni = (1;U;X2;X3);

mi = (0; !; �2; �3); (7.23)

and the relationships (7.11) become

D = V
@

@x1
=

@

@r
;

� = U
@

@x1
+

@

@x0
+X� @

@x�
=

@

@u
+ U

@

@r
+X� @

@x�
;

Æ = !
@

@x1
+ ��

@

@x�
= !

@

@r
+ ��

@

@x�
;

Æ = !
@

@x1
+ �

� @

@x�
= !

@

@r
+ �

� @

@x�
; (7.24)

� = 2;3:

Moreover, the vectors (7.12) will be given by

li = Æ1
i;

ni = Æ0
i +UÆi1 +X�Æi� ;

mi = !Æ1
i + ��Æi� ;

mi = !Æi1 + �
�
Æi�; (7.25)
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� = 2;3:

Since
li = giklk = gikÆ0k = gio = Æi1;

the metric tensor has the following structure [56]:

gik =

0
BB@

0 1 0 0
1 g11 g12 g13

0 g12 g22 g23

0 g13 g23 g33

1
CCA : (7.26)

Using the relationship (7.17) and (7.25), we get

g22 = 2(U � !!); (a)

g2� = X� � (��! + �
�
!); (b)

g
Æ = �(�
�
Æ
+ �



�Æ); (c)


; Æ; � = 2;3:

(7.27)

As is seen from the above reasoning, the coordinates (7.19) selected and
the specialization of the Newman-Penrose symbols using the relationship (7.18)
made it possible to us to derive the dependence (7.27) and the general form
(7.26) of the metric tensor gik of the A4 geometry.

7.2 Specialization of the spinor components of

the Ricci rotation coeÆcients

The spinor structural Cartan equations (As) and (Bs) of the geometryA4 can
be viewed as a matrix of possible geometries of absolute parallelism that di�er
in speci�c set of spinor geometrical characteristics. Therefore, we will assume
the solution of the spinor structural equations (As) and (Bs) (in this reference
frame) to be a set of variables consisting in the general case of:

(a) 6 independent components of the Newman-Penrose symbols

�i
A _B

; (7.28)

(b) 24 independent spinor components of the Ricci rotation coeÆcients

TA _B ; T+
_BA
; (7.29)

(c) 20 independent spinor components of the independent spinor components
of the Riemannian tensor

R
A _BC _D

; R+
_BA _DC

; (7.30)

that transform the equations (As) and (Bs) into identities when substituted
into these equations.
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In our search for solutions to the structural equations (As) and (Bs) we will
rely on the symmetry conditions, and also on physical arguments, e.g., we will
subject the Riemannian tensor to the conditions of Einstein's vacuum

Rij = 0; (7.31)

which can be represented in terms of Carmeli matrices (7:103), (7:214) and
(7:217) as

RA _BC _D = CA _BC _D = 0:

We will now consider the limitations that can be imposed on the components
of the matrices (6:88), using physical reasoning. To this end, we will turn to the
relationship

rk�
i

C _D
=
�
(TA _B)

P
C�

i

P _D
+ �i

C _R
(T+

_BA
)
_R
_D

�
�A

_B
k (7.32)

or
(TA _B)

P
C�

i

P _D
+ �i

C _R
(T+

_BA
)
_R
_D
= rk�

i

C _D
�k
A _B
: (7.33)
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From (7.6), (6:88), and (7.33) we get

(7.34)

lkrk l
i = (" + ")li � �mi � �mi; (7:34a)

nkrk l
i = (
 + 
)li � �mi � �mi; (7:34b)

mkrkl
i = (�+ �)li � �mi � �mi; (7:34c)

mkrkl
i = (�+ �)li � �mi � �mi; (7:34d)

(7.35)

lkrkn
i = �(" + ")ni + �mi + �mi; (7:35a)

nkrkn
i = �(
 + 
)ni + �mi + �mi; (7:35b)

mkrkn
i = �(� + �)ni + �mi + �mi; (7:35c)

mkrkn
i = �(� + �)ni + �mi + �mi; (7:35d)

(7.36)

lkrkm
i = (" � ")mi + �li � �ni; (7:36a)

nkrkm
i = (
 � 
)mi + �li � �ni; (7:36b)

mkrkm
i = (� � �)mi + �li � �ni; (7:36c)

mkrkm
i = (�� �)mi + �li � �ni; (7:36d)

(7.37)

lkrkm
i = (" � ")mi + �li � �ni; (7:37a)

nkrkm
i = (
 � 
)mi + �li � �ni; (7:37b)

mkrkm
i = (�� �)mi + �li � �ni; (7:37c)

mkrkm
i = (� � �)mi + �li � �ni: (7:37d)

Further, using the orthogonality condition (7.15), we have

� = rklim
ilk ; � = rknim

ink ; � = rk lim
imk ;

� = �rknim
imk ; � = rklim

imk ; � = �rknim
imk ;

� = rklim
ink ; � = �rknim

ilk ;

(7.38)

� =
1

2
(rk lin

imk � rkmim
imk);

� =
1

2
(rklin

imk � rkmim
imk);


 =
1

2
(rklin

ink � rkmim
ink);
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" =
1

2
(rklin

ink � rkmim
ilk):

On the other hand, we can write (7.32) as

(7.39)

rklj = (
 + 
)lklj�
��lkmj � �lkmj + (" + ")nklj � �nkmj�
��nkmj � (�+ �)mk lj + �mkmj+
+�mkmj � (�+ �)mklj+
+�mkmj + �mkmj;

(7:39a)

rknj = �(
 + 
)lknj + �lkmj+
+�lkmj � (" + ")nknj + �nkmj+
+�nkmj + (�+ �)mknj�
��mkmj � �mkmj + (�+ �)mknj�
��mkmj � �mkmj ;

(7:39b)

rkmj = (
 � 
)lkmj + �lklj�
��lknj + ("� ")nkmj + �nk lj�
��nknj + (�� �)mkmj�
��mk lj + �mknj + (� � �)mkmj�
��mk lj + �mknj;

(7:39c)

rkmj = (
 � 
)lkmj + �lklj � �lknj+
+(" � ")nkmj � �nk lj�
��nknj + (�� �)mkmj�
��mk lj + �mknj + (� � �)mkmj�
��mk lj + �mknj ;

(7:39d)

Alternating these relationships in the indices k and j gives

(7.40)

r[klj] = �2<(")l[knj]� (� � �� �)l[kmj]� (7:40a)

�(� � � � �)l[kmj] � �n[kmj] � �n[kmj] + 2i=(�)m[kmj];

r[knj] = �2<(
)l[knj] � (� � �� �)n[kmj]� (7:40b)

�(� � � � �)n[kmj] + �l[kmj] � �l[kmj]+ 2i=(�)m[kmj];

r[kmj] = �(� + �)l[knj]+ (2i=(
) + �) l[kmj]+ (7:40c)

+�l[kmj]+ (2i=(")� �)n[kmj] � �n[kmj] � (�� �)m[kmj];

r[kmj] = �(� + �)l[knj] + (�2i=(
) + �) l[kmj]+ (7:40d)

+�l[kmj]+ (�2i=(") � �)n[kmj]� �n[kmj]� (�� �)m[kmj]:
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Convoluting the equations (7.39), we arrive at

(7.41)

rki
k = �(� + �) + " + "; (7:41a)

rkn
k = �(
 + 
) + � + �; (7:41b)

rkm
k = �� + � � � + �; (7:41c)

rkm
k = �� + � + � + �: (7:41d)

Relationships (7.34)-(7.41) appear to be quite useful for the specialization
of the spinor components of the Ricci rotation coeÆcients. Really, we will
require, for instance, that the isotropic vector li should obey the equations of
the geodesics of Einstein's gravitation theory

kkrk l
i = 0: (7.42)

It follows then from (7.34a) that

("+ ")li � �mi � �mi = 0: (7.43)

Clearly, the relationship (7.43) holds, if the spinor components of the Ricci
tensor have the following limitations:

("+ ") = 0; � = � = 0: (7.44)

The conditions of parallel transfer of the vectors mi, mi and ni along lk in
Einstein's gravitation theory become

lkrkm
i = 0; lkrkm

i = 0; lkrkn
i = 0:

It follows from (7.35a), (7.36a) and (7.37a) that these relationships are valid
if

� = � = � = � = " = " = 0: (7.45)

The isotropic vector li is connected with the three optical parameters [40]:
(a) extension

� = (�+ �)
1

2
= 0;5ril

i; (7.46)

(b) rotation

! = (�� �)(2)�1=2 =

�
1

2
r[kli]rkli

�1=2

; (7.47)

(c) shift

j�̂j = (j��j)1=2 =
�
1

2
r(k li)r

k li � �2
�1=2

: (7.48)
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Since we have taken li to be a gradient vector (li = u;i), it follows from
(7.47) that

! = 0; � = �: (7.49)

Furthermore, in that case we have [12]

� = � + �: (7.50)

7.3 Specialization of the spinor components of

the Riemann tensor

It would be a good idea in our search for physically meaningful speci�c solu-
tions to the structural Cartan equations of the A4 geometry to use completely
geometrized Einstein's equations

2�AB _C _D +�"AB" _C _D
= �TA _CB _D: (7.51)

It was shown in Chapter 6 that

�A
_C
j�

B _D
m(2�AB _C _D + �"AB" _C _D

) = Rjm �
1

2
gjmR; (7.52)

�A
_C
j�

B _D
m�TA _CB _D = �Tjm; (7.53)

where the geometrized matter energy-momentum tensor Tjm is derived from
(7:221). Looking at various types of geometrized tensors (7:221), such as, e.g;

(a) energy-momentum tensor of the homogeneous A4 space

T
(1)

jm = �~�gjm; ~� = const; (7.54)

(b) Einstein's vacuum tensor

T
(2)

jm = 0; (7.55)

(c) energy-momentum tensor of isotropic radiation

T
(3)

jm = �lj lm; lili = 0 (7.56)

and so on, we will obtain various limitations to the spinor components of the
matrix RA _BC _D .

From the relationships (7.51)-(7.53) for tensors of the form (7.54) we will
�nd the following limitations on the components of the matrices (6.103)

�00 = �22 = �02 = �20 = �11 = �01 = �10 = �12 = �21 = 0;

	0 6= 0; 	1 6= 0; 	2 6= 0; 	3 6= 0; 	4 6= 0; (7.57)
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~� =
R

4
= 6�: (7.58)

At the same time, the condition (7.54) imposes, via (6.221), limitations on
the components of the matrices (6.88).

In the case of Einstein's vacuum the conditions (7.55) should be regarded
as equations to be satis�ed by the components of the matrices (6.88). In the
process, in addition to (7.57), we will get

� = 0: (7.59)

For tensors of the form (7.56) we have

�00 = �02 = �20 = �11 = �01 = �10 = �12 = �21 = � = 0;

� = �22 =
��

2
; (7.60)

	0 6= 0; 	1 6= 0; 	2 6= 0; 	3 6= 0; 	4 6= 0:

To get an insight into the physical meaning of each spinor component of the
Weyl tensor 	0, 	1, 	2 , 	3 and 	4, we will consider �ve cases:

(a) 	0 6= 0, the other components are zero;
(b) 	1 6= 0, same as above;
(c) 	2 6= 0, - " -;
(d) 	3 6= 0, - " -;
(e) 	4 6= 0, - " -.
In each of the �ve cases the components of theWeyl tensor have the following

algebraic properties according to Petrov:
(a) N type (or f4g) [57, 58] with the propagation vector ni;
(b) III type (or f31g) with the propagation vector ni;
(c) D type (or f22g) with the propagation vector li and ni;
(d) III type (or f31g) with the propagation vector li;
(e) N type (or f4g) with the propagation vector li.
The propagation vector is meant to be the main light direction [40]. If in

the A4 space the condition of Einstein's vacuumRjm = 0 is met, and the vector
li meets the equations

l[iRj]km[nls]l
k lm = 0; (7.61)

then the vector li corresponds to one of the four main light directions of the
Riemannian tensor, and we have

	0 = 0: (7.62)

If two or more of the main light directions point along the propagation vector
li, then

Rijk[mln]l
jlk = 0 (7.63)

or

	0 = 	1 = 0: (7.64)
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According to the Goldberg-Sax theorem [59], it follows from (7.64) that

� = � = 0: (7.65)

A simple proof of the theorem is given in [40]. It relies on the second Bianchi
identities (Ds+).

Similarly, it can be shown that from the condition

	3 = 	4 = 0 (7.66)

we get

� = � = 0: (7.67)

7.4 Construction of the asymptotic behavior of

insular-type geometries

A4 geometry is said to be an insular-type geometry, if at in�nity its main
characteristics (metric, connection, curvature) are identical to those of a 
at
space.

We will also assume that the conditions of Einstein's vacuum(7.31) and rela-
tionships (7.45), (7.49), (7.50) are valid. With these assumptions the structural
Cartan equations of the A4 geometry (As+), (Bs+) and the second Bianchi
identities (Ds+) can conveniently be split into the following three groups of
equations:

7.4.1 Radial equations containing derivatives with

respect to r

D�� = ��� + ��
�
; (7:68a)

D! = �! + �! � (�+ �); (7:68b)

DX� = (�+ �)�
�
+ (�+ �)�

�
; (7:68c)

DU = (�+ �)! + (�+ �)! � (
 + 
); (7:68d)

(7.68)

D� = �2 + ��; (7:69a)
D� = 2�� + 	0; (7:69b)
D� = �� + �� + 	1 ; (7:69c)
D� = �� + ��; (7:69d)
D� = �� + �� + 	1; (7:69e)
D
 = ��+ �� + 	2 ; (7:69f)
D� = ��+ ��; (7:69g)
D� = �� + �� + 	2; (7:69h)
D� = ��+ �� + 	3; (7:69i)

(7.69)
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D	1 � Æ	0 = 4�	1 � 4�	0; (7:70a)
D	2 � Æ	 = 3�	2 � 2�	1 � �	0; (7:70b)
D	3 � Æ	2 = 2�	3 � 2�	1; (7:70c)
D	4 � Æ	3 = �	4 + 2�	3 � 3�	2: (7:70d)

(7.70)

7.4.2 Nonradial equations

ÆX� ���� = (�+ 
 � 
)�
�
+ ���; (7:71a)

Æ�
�
� Æ�� = (� � �)�� + (�� �)�

�
; (7:71b)

Æ! � Æ! = (� � �)! + (�� �)! + (�� �); (7:71c)
ÆU ��! = (� + 
 � 
)! + �! � �; (7:71d)

(7.71)

��� Æ� = 2�� + (
 � 3
 � �� �)�� 	4; (7:72a)
Æ� � Æ� = (� + �)� + (� � 3�)� � 	1; (7:72b)
Æ�� Æ� = ��� �� � 2�� + ��+ �� � 	2; (7:72c)
Æ�� Æ� = (�+ �)� + (�� 3�)�� 	3 ; (7:72d)
Æ� ��� = �
 + 
�+ �2 � 2�� + ��; (7:72f)
Æ
 ��� = �� + (�� 
 + 
)� � �� + ��; (7:72g)
Æ� ��� = 2�� + (
 + �� 3
)� + ��; (7:72h)
�� � Æ� = (
 + 
 � �)� � 2�� � �� � 	2; (7:72i)
��� Æ
 = (
 � 
 � �)�+ �� � ��� �� � 	3: (7:72j)

(7.72)

7.4.3 U-derivative equations

�	0 � Æ	1 = (4
 � �)	0 � (4� + 2�)	1 + 3�	2 ; (7:73a)
�	1 � Æ	2 = �	0 + (2
 � 2�)	1 + 2�	3 � 3�	2; (7:73b)
�	2 � Æ	3 = 2�	1 � 3�	2 + (�2� + 2�)	3 + �	4 ; (7:73c)
�	3 � Æ	4 = 3�	2 � (2
 + 4�)	3 + (�� + 4�)	4: (7:73d)

(7.73)

Suppose now that the structural Cartan equations of the A4 geometry de-
scribe an insular radiating system. In the process, the quantity 	0 behaves at
an asymptotic along the coordinate r as

	0 = o(r�5); (7.74)

whereas
D	0 = o(r�6): (7.75)

The conditions (7.74) has been chosen on purely physical grounds in such a
manner that the quadrupole radiation in a linear approximation of Einstein's
gravitational theory would correspond to the asymptotic. It is clear that we
could use another kind of asymptotic and have other asymptotic properties
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for the insular A4 geometry. It is precisely what it mean by "constructing a
geometry."

Let now uniform perturbations in the coordinates x2 and x3 do not change
the nature of the asymptotic (7.74) and (7.75), i.e.,

d�	0 = o(r�5); : : : ; d�d�d
dÆ	0 = o(r�5);
d�D	0 = o(r�6); : : : ; d�d�d
dÆD	0 = o(r�6);

(7.76)

where

d� =
@

@X�
; �; �; 
 : : : = 2;3:

Using the relationships (7.74)-(7.76), we can �nd the asymptotic behavior
of all the other spinor quantities that enter the equations (7.68)-(7.73). For
instance, we will show how the asymptotic behavior of the quantities � and � is
to be determined. We will introduce the matrices [40]

P =

�
� �

� �

�
; Q =

�
0 	0

	0: 0

�

Then the equations (7.69a), (7.69b) and their complex conjugates

D� = �2 + ��; D� = �2 + ��;

D� = 2�� + 	0; D� = 2�� + 	0
(7.77)

will become
DP = P 2+ Q: (7.78)

This equation has a solution of the form

P = �(DY )�1; (7.79)

where

Y =

�
y1 y2
y1 y2

�
(7.80)

is a nonsingular solution (for a given P ) to the equations

DY = �PY: (7.81)

It is seen from (7.79) and (7.81) that the matrix (7.80) obeys the equations

D2Y = �QY: (7.82)

The asymptotic behavior of the solutions of the equation (7.82) for the case
where Z

rj	0jdr = o(1);

has the form [40]
DY = F + o(1); (7.83)
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Y = rF + o(r); (7.84)

where F is a constant matrix. Since in this case Q = o(r�5), we will obtain
from (7.82) and (7.84)

D2Y = �rQF + o(r�4) = o(r4): (7.85)

Integrating this twice gives

DY = F + o(r�3); (7.86)

Y = rF + E + o(r�2); (7.87)

where E is a constant matrix. Solution (7.79) can now be written as

P = �r�1I + r�2EF�1 + o(r�3): (7.88)

Here E is a nonsingular matrix and I is a unit matrix. If F = 0, we have from
(7.88)

� = �r�1 + o(r�2); � = o(r�2): (7.89)

Using other equations of the system (7.68)-(7.73) and working through the
same procedure we can �nd for the quantities in these equations the following
asymptotic properties [40]:

�� = o(r�1); �; �; �; �; � = o(r�1);
X�; ! = o(1); �; 
 = o(1);
U = o(r); 	1 = o(r�4);

(7.90)

	2 = o(r�3); 	3 = o(r�2); 	4 = o(r�1):

To get a closer look at the asymptotic behavior of the quantities (7.89) and
(7.90) we will do the following [60]. We will write (7.89) as

� = �r�1 + g(r);
� = h(r);

(7.91)

where g; h = o(r�2).
Substituting (7.91) into (7.69a) and (7.69b) gives

Dg + 2r�1g = g2+ hh = o(r�4);
Dh + 2r�1h = 2gh+ 	0 = o(r�4):

(7.92)

We will at �rst look for a solution to these equations to within the terms of
the order of magnitude o(r�3). Integrating the equations, we �nd g(r) [60]

g = e
�
R

2dr=r
nR

e

R
2dr=r

o(r�4)dr + �0
o
=

= r�2
�R

o(r�4)dr + �0
	
= �0r�2 + o(r�3)

(7.93)
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and a similar solution for h(r). In (7.93) the sign 0 on the integration constant
� implies that the constant is independent of r. Hence

� = �r�1 + �0r�2 + o(r�3); �0 = �0(u; x�);
� = �0r�2 + o(r�3); �0 = �0(u; x�);

(7.94)

� = 2;3:

Using the coordinate transformations r0 = r�r0(u; x�) we can eliminate the
term �0=r02, therefore

� = �r�1 + o(r�3);

� = �0r�2 + o(r�3):

Putting again

� = �r�1 + g(r); � = �0r�2 + h(r);

where
g(r);h(r) = o(r�3); (7.95)

and collecting all the terms in (7.69a) and (7.69b) up to those of the order of
magnitude o(r�5), we have

Dg+ 2r�1g = o(r�4) = �0�0r�4 + o(r�5);
Dh + 2r�1h = o(r�5):

(7.96)

Integrating (7.95) gives

g = r�2

�Z
(�0�0r�4 + o(r�5))r2dr + C1

�
;

h = r�2

�Z
r2o(r�5) + C2

�
or

g = C1r
�2 � �0�0r�3 + o(r�4);

h = C2r
�2 + o(r�4):

It follows from (7.95) that

C1 = C2 = 0;

therefore
� = �r�1 � �0�0r�3 + o(r�4);

� = �0r�2 + o(r�4):
(7.97)

Going over the procedure, we can �nd that

� = �r�1 � �0�0r�3 + o(r�5);
� = �0r�2 + (�0�0 � 0;5	0

0)r
�4 + o(r�5):

(7.98)
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Similarly, we can �nd the asymptotic behavior in r of other variables. The
following are the results obtained in [60]:

(a) for spinor components of the Riemannian tensor

(7.99)

	0 = 	0
0r
�5 + o(r�6); (7:99a)

	1 = 	0
1r
�4 + (4�0	0

0 � �
0�
	0

0;�)r
�5 + o(r�6); (7:99b)

	2 = 	0
2r
�3 + (2�0	0

1 � �
0�
	0

1;�)r
�4 + o(r�5); (7:99c)

	3 = 	0
3r
�2 � �

0�
	0

2;�r
�3 + o(r�4); (7:99d)

	4 = 	0
4r
�3 + (2�0	0

3 + �
0�
	0

3;�)r
�2 + o(r�3); (7:99e)

� = 2;3;

(b) for spinor components of the Ricci rotation coeÆcients

(7.100)

� = �r�1 � �0�0r�3 + o(r�5); (7:100a)

� = �0r�2 + (�0�0 � 0;5	0
0)r

�4 + o(r�5); (7:100b)

� = �0r�1 + �0�0r�2 + �0�0r�3�0 + o(r�4); (7:100c)

� = ��0r�1 + �0�0r�2 � (�0�0�0 + 0;5	0
1)r

�3 + o(r�4); (7:100d)

� = �0;5r�3	0
1 +

1

6
r�4(2�

0�
	0

0;� � 8�0	0
0 + �0	

0

1) + o(r
�5); (7:100e)

� = �0r�1 � �0�0r2 + (0;5	0
1 + �0�0�0)r�3 + o(r�4); (7:100f)

� = �0r�1 � (�0�0 + 	0
2)r

�2 + (�0�0�0 � �0	0
1+

+0;5�
0�
	0

1;�)r
�3 + o(r�4); (7:100g)


 = 
0 � 0;5	0
2r
�2 + (

1

3
�
0

1;� �
1

6
�0	0

1 � 0;5�0	0
1) + o(r�4); (7:100h)

� = �0 � 	0
3r
�1 + 0;5�

0�
	0

2;�r
�2 + o(r�3); (7:100i)

� = 2;3;

(c) for the components of the Newman-Penrose symbols

(7.101)

U = �(
0 + 
0)r + U0 � 0;5(	0
2 + 	

0

2)r
�1 +

1

6
r�2(�

0�
	0

1;�+

+�0�	
0

1;�)� 2(�0	0
1 + �0

1) + o(r�4); (7:101a)
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X� =
1

6
r�3(	0

1�
0�

+ 	
0

1�
0�) + o(r�4); (7:101b)

�� = ��0r�1 � �0�
0�
r�2 + �0�0��0r�3 + o(r�4); (7:101c)

! = !0r�1 � r�2(�0!0 + 0;5	0
1) + o(r

�3); (7:101d)

� = 2;3:

To simplify the remaining computations we will make use of the coordinate
transformations

r0 = r + R(0;2;3) translations

u0 = u; x�
0

= x� ; b = 2;3; of the origin of r,
(7.102)

r0 = r= _
; u0 = 
(u) relabeling of

x�
0

= x� ; hypersurfaces;
(7.103)

r0 = r; u0 = u; relabeling of

x�
0

= x�(0;2;3); geodesics:
(7.104)

From the equations (7.27a) and (7.27b) we have

g�� = �(���
�
+ �

�
��) = �(�0��

0�
+ �

0�
�0�)r�2 + : : :

�; � = 2;3: (7.105)

Using the coordinate transformations (7.102)-(7.104) we can reduce the met-
ric (7.105) to a conformally 
at metric [61,62]. Up to the terms of the order of
o(r�3), we have here

g22 = g33; g23 = g32 = 0: (7.106)

Since
g22 = �2�02�

02
r�2 + o(r�3);

g23 = �(�02�03 + �
02
�03)r�2 + o(r�3);

g33 = �2�03�
03
r�2 + o(r�3);

it follows from the conditions (7.106) that

�02 = �i�03 = P (u; x�): (7.107)

The remaining coordinate transformations for the variables x2 and x3 look
like [62]

x2
0

+ ix3
0

= f(x2 + ix3; u) (7.108)

We will next solve a set of nonradial equations (7.71) and (7.72) in order
to express the integration "constants" obtained in solving the radial equations
through only two functions �0 and P .

By way of example, we will consider the nonradial equation (7.72h)

��� Æ� = (
 + 
 � �)�� 2�� � �� � 	2 : (7.109)
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Using the de�nitions (7.24) of spinor derivatives, we will write (7.109) as

�;0 + U�;1 +X��;� � !�;1 �

��
�
�;� � (
 + 
 � �)� +
+2�� + �� + 	2 = 0: (7.110)

Substituting here the necessary expressions from the solution (7.99)-(7.101)
and di�erentiating with respect to r, we will equate the factors at various degrees
of 1=r to zero1. As a result, from (7:110), we will get:

(1) the factor at 1=r is identically zero;
(2) the factor at 1=r2 is (U0� �0), whence

U0 = �0;

(3) the factor at 1=r3 is

(�0�0);0 + 2�0�0(
0 + 
0)� (�0�0 + �0�
0
) = 0;

and this relationship de�nes 
0 and �0, if the other terms are known;
(4) the factor at 1=r4 is identically zero.
We will introduce the notation

r =
@

@x2
+ i

@

@x3
(7.111)

then the �nal expressions for the <<constants>> �0; 
0; �0; : : : in terms of the two
main functions P and � become:


0 = �0;5(lnP);0;
�0 = 0;5Pr(lnP );0;

�0 = �0;5Pr(lnPP);0;
!0 = P

�
r�0 � 2�0r(lnP )

�
;

�0 = �0
h
ln(�0P 1=2P

�3=2
)
i
;0
;

�0 = U0 = �0;5PPrr ln(PP);

(7.112)

	0
2 � 	0

2 = (Pr!0+

+2�0!0 + �0�
0
)�

�(Pr!0 + 2�0!0 + �0�0);

	0
3 = Pr�0 � Pr�0+ 4�0�

0
;

	0
4 = Pr�0 + 2�0�0�
��0;0 � 4
0�0:

(7.113)

The functions 	0
2 + 	0

2, 	
0
0 and 	0

1 in addition to the functions �0 and P
are the basis functions for insular-type systems.

1For instance, if we have the asymptotic expression Ar�1 + Br�2 + Cr�3 + o(r�4) = 0
(A;B;C are independent of r), then, multiplying this expression by r and putting r!1, we
will get A = 0. Further, multiplying by r2 and letting r ! 1, we will have B = 0; and so
forth.
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Propagation of the functions 	0
2 ;	

0
0 and 	

0
1 in the u - direction is de�ned by

a group of equations (7.73). For instance, the equation (7.73a), to within terms
of the order of magnitude of o(r�6); becomes

	0
0;0r

�5 + 5(
0 + 
0)	0
0r
�5 �

�Pr	0
1r
�5 � 
0	0

0r
�5 �

�2�0	0
1r
�5 � 3�0	0

2r
�5 + o(r�6) = 0;

hence

	0
0;0 + 5(
0 + 
0)	0

0 �

�Pr	0
1 � 4
0	0

0 �
�2�0	0

1 � 3�0	0
2 = 0: (7.114)

The next two equations of group (7.73) (equations (7.73c) and (7.73d)) give

	0
1;0 + 2(
0 + 2
0)	0

1 � Pr	
0
2 � 2�0	0

3 = 0; (7.115)

	0
2;0 + 3(
0 + 
0)	0

2 � Pr	
0
3 � 2�

0	0
3 � 2�0	0

4 = 0: (7.116)

The last equation of group (7.73) is satis�ed identically. Function P can be
chosen so that

P;0 = 0;

i.e.,
P = P (x2; x3); � = 2;3: (7.117)

Under this condition, the equations (7.112) and (7.113) are simpli�ed dra-
matically to yield


0 = 0;

�0 = 0;5rP;
� = 0;
!0 = P 3r(�0=P 2);
�0 = �0;0;

�0 = �P 2rr lnP;

(7.118)

(	0
2 � 	0

2) =

= P 2
�
r(!0=P )� r(!0=P )

�
+

+�0�0;0 � �
0�0;0;

	0
3 = �Pr(P

2rr lnP )�
�P 3(�0;0=P

2);

	0
4 = ��

0
;00: (7.119)

Equations (7.73) now become

	0
0;0 � r(P	0

1)� 3�0	0
2 = 0;

	0
1;0 � Pr	0

1 � 2�0	0
3 = 0;

	0
2;0 � P

2r(	0
3=P )�

��0�0
;00 = 0:

(7.120)
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We can now write the �nal form of the Riemannian metric. The metric of
the insular-type system looks like

gik =

0
BB@

0 1 0 0
1 g11 g12 g13

0 g12 g22 g23

0 g13 g23 g33

1
CCA ; (7.121)

where

g11 = �2P 2

�
@2

@x2
2
+

@2

@x3
2

�
lnP � (	0

2 + 	0
2)r

�1 +

+
1

3
P 2

"
r

(
	

0

1

P

)
+r

�
	0

1

P

�
�

� 6P 4r
�
�0

P 2

�
r
�
�0

P 2

��
r�2 + o(r�3);

g12 = �r�2<(f) + r�3<(h) + o(r�4);
g13 = �r�2=(f) + r�3=(h) + o(r�4);

P = P (x2; x3);
f = 2P 4r(�0=P 2);

h = 4P
�
1
3
	0

1 + P 3�0r(�0=P 2)
�
;

(7.122)

g22 = �2P 2r�2 + 2P (�0+ �0)r�3 �
�6�0�0P 2r�4 + o(r�5);

g23 = �2iP 2(�0 � �0)r�3 + o(r�5);

g33 = �2P 2r�2 � 2P (�0+ �0)r�3 �
�6�0�0P 2r�4 + o(r�5):

In matrix (7.121) the component g11 can be worked out to within the terms
of the order of magnitude of o(r�4), and the terms g�� (�;� = 2;3) to within
o(r�5).

If now we specify the initial conditions 	0
2+	0

2 , 	
0
0, 	

0
1 , �

0 and P at in�nity,
then the problem of the initial values will be overcome.

The zero surface of initial values u0 is determined by the condition

	0
0 = lim

r!1
(	0r

5) < 1:

The initial value �0 is de�ned on the world tube at spatial in�nity. On the
tube we chose

�0 = lim
r!1

(�r2)

as an independent function of the variables u, x2; and x3 . The remaining initial
data are taken on a two-dimensional surface at in�nity that is determined by the
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intersection of the zero surface u0 and the world tube. On that two-dimensional
surface we specify

	0
1 = lim

r!1
(	1r

4); 	0
2 + 	0

2 = lim
r!1

r3(	2 + 	2)

and

P 2Æ�� = lim
r!1

(g��r2)

as functions of x2 and x3.

7.5 Classi�cation of solutions to the structural

Cartan equations of the A4 geometry by isom-

etry groups

It was shown in Chapter 6 that the structural Cartan equations of the A4

geometry can be taken to be gauge equations with gauge groups T4 and O(3:1).
Knowledge of this fact alone is not suÆcient for one to be able to tell vari-
ous speci�c solutions of the structural Cartan equations from one another by
group behavior. This is made possible by the technique of the embedding of A4

geometries into a 
at space Ep of many dimensions (N > 4).
We will make the following assumption:

(1) we will take theA4 space to be a continuous deformation of theMinkowski
space E4(3.1);

(2) we will suppose that A4 has a minimal 
at embedding space Ep(r; s)
of dimensionality p = r + s, where the signature r + s means r positive and s
negative diagonal elements of the metric tensor ��� (�; � = 1;2; : : : ; p) of space
Ep(r; s).

Let now X� be Cartesian coordinates of the 
at space Ep(r; s), and x� be
Gaussian coordinates based on A4 that is embedded into Ep(r; s). Here and
later in the section the Greek indices assume the values 1; : : : ;N .

We will denote the coordinates of a point in space A4 by xi; the coordinates
in directions orthogonal to A4, by xA. Here and in the section the small-cap
Roman indices i; j; k; : : : assume the values 1,2,3,4, and the large-cap Roman
indices A;B;C : : : the values 5 : : :N:

In the embedding the coordinates are transformed as follows:

X� = X�(x�); (7.123)

and the tensors between these two reference frames are transformed using the
derivatives

x
�
� = @x�

@X� ; x�� =
@x�

@X�
;

X�
� = @X�

@x�
; X

�
� =

@X�

@x�
:

(7.124)
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Thus, if ��� are Cartesian components of the metric tensor of a space
Ep(r; s), then its Gaussian components are

g�� = x
�
�x

�

��
��; g�� = X�

�X
�
����: (7.125)

The inverse relationship are

��� = X�
�X

�
�g

����� = x
�
�x

�

�g�� (7.126)

If the A4 space has an isometry group, this group consists of pseudorotations
and re
ections O(r; s) of the space Ep(r; s).

Suppose now that we have a coordinate transformation in Cartesian coordi-
nates

X
0� = X�+ U�; U� = "��X

� (7.127)

that is essentially one in�nitesimal transformation of the groupO(r; s), such that
N(N � 1)=2 of in�nitesimal quantities e�� are constant and meet the condition
e(��) = 0. The isometric nature of the transformation (7.127) is manifested by
the fact that the Lee derivative with respect to U� of ��� vanishes

L��� = U (�;�) = 0: (7.128)

On the other hand, the Gaussian coordinates are transformed as

x�
0

= x� + ��; (7.129)

where �� = x�U� are group generators.
Relationship (7.129) can be split into two parts

xi
0

= xi + �i; xA
0

= xA + �A;

i = 1;2;3;4; A = 5 : : :p:
(7.130)

The embedded A4 space in a Gaussian reference frame is now subject to the
condition

xA = 0: (7.131)

If f(x�) is any real function de�ned in Ep(r; s), then its space-time part will
be

�f(x�) = f(x�)jA4
at xA ! 0:

A function de�ned only on an embeddedA4 surface will be denoted as f(A4).
For instance, we will have

gij
���A4

= x
i
�x

j

��
��
���
A4

= gijA4:

The Killing equations for the vector �� look like

Lg�� =
�

r (���) = 0 (7.132)
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where
�

r (j�i) = 0;
�

r (A�i) = 0;
�

r (��A) = 0: (7.133)

To the transformations (7.130) in an embedded A4 correspond the transfor-
mations

xi
0

= xi + �i jA4
= 0; xA

0

= xA + �A jA4
= 0 (7.134)

on which the following conditions are imposed:

�

r (j�i) jA4
= 0;

�

r (A�i) jA4
= 0;

�

r (��A) jA4
= 0: (7.135)

The covariant derivative of the vector �� in a Gaussian reference frame with

respect to the connection �



�� is

�

r� �� = ��;� + �



���
 = 0: (7.136)

It is seen that the expression for
�

r� �� does not coincide with the expression
for the covariant derivative in A4 space, unless the following condition is met:

xAjA4
= 0: (7.137)

Condition (7.137) has the meaning that transformation (7.129) does not
change the de�nition A4. Condition (7.137) identi�es in the group O(r; s) a
subgroup that de�nes the symmetry of the embedded A4 space. By adding
the group O(r; s) re
ections and the condition (7.137), we will get the isometry
group of A4 space. Since the maximal dimensionality of an embedded space for
Riemannian spaces of dimensionality 4 is 10, then going over the signatures of
embedded spaces makes it possible to establish 22 isometric groups [63].

Given in table 7.1 are Lee isometric groups for various speci�c A4 spaces
and their spinor representations.

The table also provides the most important subgroups. It is suÆcient to
specify one of the groups in the table to give an isometric de�nition of the
appropriate A4 geometry. On the other hand, each solution of the structural
Cartan equations of the A4 geometry has corresponding to it an embedded
space.

Shown in table 7.2 are some minimum embedded spaces for a series of A4

spaces that feature various Riemannian metrics [63].
All these spaces can be derived as solutions to the structural Cartan equa-

tions of A4 geometry (e.g., Riemannianmetric of G�odel space has been obtained
in Ozsvath [50] using the Newman-Penrose method, i.e., as a solution of the
structural equations).

7.6 A4 geometry with a Schwarzschild-type met-

ric

In order to construction an A4 geometry that has a Schwarzschild metric the
following condition must be met: (7.45), (7.49), (7.50), (7.55), (7.59), (7.65),
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Table 7.1:

p Ep(r; s) Lp(r; s) Spinor Most important
group subgroups

4 E4(3.1) SO(3:1) SL(2:C)
4 E4(2:2) O(3:1) SU(1:1)� SU(1:1)
5 E5(4:1) SO(4:1) SL(4:C) SU(2)� SU(2)
5 E5(3:2) SO(3:2) SU(1:1:1:1) SU(1:1)� SU(1:1)
6 E6(5:1) O(5:1) SL(4:C)
6 E6(4:2) O(4:2) SU(2:2) SU(2)� SU(2)
6 E6(3:3) O(3:3) SL(4:C) SU(1:1)� SU(1:1)
7 E7(6:1) SO(6:1) SL(8:C) SU(4)
7 E7(5:2) SO(5:2) SU(2:2:2:2) SU(2:2)

7 E7(4:3) SO(4:3) SL(8:C) SU(2)� SU(2)
8 E8(7:1) O(7:1) SL(8:C) SU(4)
8 E8(6:2) O(6:2) SU(1:1)� SU(4:4) SU(4)
8 E8(5:3) O(5:3) SL(16:C) SU(2)� SU(2)
8 E8(4:4) O(4:4) SU(1:1)� SU(2:2:2:2) SU(2)� SU(2)
9 E9(8:1) SO(8:1) SL(16:C) SU(4)
9 E9(7:2) SO(7:2) SU(4:4:4:4) SU(4:4)
9 E9(6:3) SO(6:3) SL(16:C) SU(4)
9 E9(5:4) SO(5:4) SU(2:2:2:2:2:2:2:2) SU(2)� SU(2)
10 E10(9:1) O(9:1) SL(16:C)
10 E10(8:2) O(8:2) SU(8:8) SU(8)
10 E10(7:3) O(7:3) SL(16:C)
10 E10(6:4) O(6:4) SU(4:4:4:4) SU(4)
10 E10(5:5) O(5:5) SL(16:C)

Table 7.2:

Ep(r:s) Metric of immersed space
E (4.1) De Sitter-Einstein space
E6 (5.1) Kruskal space
E6 (4.2) Schwarzschild space
E7 (5.2) Petrov space T2=C4=4 [22]
E7 (4.3) Petrov space T1=C4=5;6
E9 (6.3) Robinson-Trautman space C � 0
E9 (5.4) Robinson-Trautman space C � 0
E10 (6.4) Axial-symmetrical Weyl space
E10 (5.5) G�odel space
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(7.66) and (7.67). The physical meaning of these constraints has been considered
earlier in the book. As a result the structural Cartan equations (7.69)-(7.73)
become:

(1) radial equations that contain a derivative with respect to r

D�� = ���; (7:138a)
D! = �! � (�+ �); (7:138b)

DX� = (�+ �)�
�
+ (�+ �)�

�
; (7:138c)

DU = (�+ �)! + (�+ �)! � (
 + 
); (7:138d)

(7.138)

D� = �2; (7:139a)
0 = 0; (7:139b)
D� = ��; (7:139c)
D� = ��; (7:139d)
D� = ��; (7:139e)
D
 = �� + �� + 	2 ; (7:139f)
0 = 0; (7:139g)
D� = �� + 	2; (7:139h)
0 = 0; (7:139i)

(7.139)

0 = 0; (7:140a)
D	2 = 3�	2 ; (7:140b)
Æ	2 = 0; (7:140c)
0 = 0; (7:140d)

(7.140)

(2) nonradial equations

ÆX� ���� = (�+ 
 � 
)��; (7:141a)

Æ�
�
� Æ�� = (� � �)�� + (�� �)�

�
; (7:141b)

Æ! � Æ! = (� � �)! + (�� �)! + (�� �); (7:141t)
ÆU ��! = (�+ 
 � 
)!; (7:141c)

(7.141)

0 = 0; (7:142a)
Æ� = (� + �)�; (7:142b)
Æ�� Æ� = �� � 2�� + ��+ �� � 	2; (7:142c)
Æ� = �(�+ �)�; (7:142d)
��� = �
 + 
� + �2; (7:142e)
Æ
 ��� = �� + (�� 
 + 
)�; (7:142f)
Æ� = 2��; (7:142g)
��� Æ� = (
 + 
 � �)� � 2�� � 	2; (7:142h)

��� Æ
 = (
 � 
 � �)�; (7:142i)

(7.142)

(3) U-derivative equations

0 = 0; (7:143a)
Æ	2 = 3�	2 ; (7:143b)
�	2 = �3�	2 ; (7:143c)
0 = 0: (7:143d)

(7.143)
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In the reference frame we have chosen the structural equations have the form

D =
@

@r
; Æ = !

@

@r
+ ��

@

@x�
;

� =
@

@u
+ U

@

@r
+X� @

@x�
; Æ = !

@

@r
+ �

� @

@x�
;

� = 2;3:

and the commutation relation

r[arb] = �
::cab (7.144)

become
(7.145)

�D � D� = (
 + 
)D � (� + �)Æ � (� + �)Æ; (7:145a)

ÆD � DÆ = (�+ � � �)D � �Æ; (7:145b)

Æ���Æ = (� � �� �)�+ (�� 
 + 
)Æ; (7:145c)

ÆÆ � ÆÆ = (�+ �)D + (�� �)�� (� � �)Æ� (�� �)Æ; (7:145d)

therefore we can proceed with integration of the equations. Integration be-
gins with the radial equations that contain the derivative D. For instance, the
solution to the equation (7.139a), with the condition � = � has the form

� = �r�1: (7.146)

Di�erentiating (7.139a) with respect to Æ gives

ÆD� = 2�Æ�: (7.147)

Applying the complex-conjugate operator (7.145b) to �, we have (� = 0)

(ÆD � DÆ)� = (�+ �)D� � �Æ�; (7.148)

whend by (7.147), we have

DÆ� � 3�Æ� = ��2(�+ �): (7.149)

Using (7.139a), (7.139d) and (7.139e), we obtain the general solution (7.149)

Æ� = �(�+ �)� 2�0�3; (7.150)

where �0 is an integration constant. Calculating (�D � D�)	, (Æ�� �Æ)	
and (ÆÆ � ÆÆ)	 (here and later we will use the notation 	2 = 	; 	0

2 = 	0)
using the relationships (7.140b,c), (7.143b,c) and (7.145), we will arrive at three
new equalities

��+ D� = �(
 + 
)� ��; (7.151)

Æ� = �(� + �); (7.152)
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Æ�+ �� = ��(� + �) + �(
 � 
): (7.153)

Substituting (7.150) into (7.152) and integrating, we will get �0�2 = 0,
whence �0 = �0 = 0.

Integrating the remaining radial equations gives [65]

� = ��0 ;

� = ��0 + �2�;

� = ��0;


 = 
0 + ��0�0 + ��0�0 + �21=2	0;

	 = �3	0; (7.154)

U = U0 � r(
0 + 
0) + �
�
�0!0 � 1=2	0

	
+ �

n
�0!0 � 1=2	

0
o
;

! = �!0 + �0 + �0;

�� = ���0 ;

X� = X0�+ ��0�0� + ��0�
0�
; � = 0;2;3:

Applying the operator (7.145a) to � and using the equation (7.139a), we will
obtain

2��� � D�� = �2(
 + 
)� �Æ� � �Æ�: (7.155)

Solving this equation using (7.142b), (7.150), (7.154) and considering that
�0 = 0, we get

�� = �M0�2 + �0(�0 + �
0
)�2 + (
0 + 
0)�+

+
�
�0(�0 + �0)� �0�0

�
�2 � 1=2�3(	0 + 	0): (7.156)

Substituting this relation into (7.151) and integrating gives

� = �0 + �M0 + 1=2�2(	0 + 	
0
): (7.157)

The next phase of integration consists in substituting the derived solutions
of the radial equations (7.146), (7.154) and (7.155) into the remaining unused
equations. After di�erentiating with respect to r, we will equate to zero the
factors at the same degrees of 1=r. We will end up with a set of equations for
quantities independent of r.

Applying the operators Æ; Æ and � to � = �1=r, we have

Æ� = !�2; Æ� = !�2; �� = U�2: (7.158)

Comparing these equalities with (7.142b), (7.150) and (7.156) gives

M0 = M
0
; (7.159)

!0 = 0; (7.160)
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U0 = �0(�0 + �
0
) + �0(�0 + �0)� �0�0 �M0: (7.161)

From (7.142c) we get

�0 = 0; (7.162)

�
0�
�0;� = ��

0(�0 + 3�
0
� �0) + 1=2(	0 � 	

0
); (7.163)

�
0�
�0;� = 2�

0
�0: (7.164)

Consequently, from the equations (7.142g), (7.142d) and (7.142c) we will
have

�0��0;� = ��0(3�0 + �0);
�0��0;� = ��

0(2�0 � �0); (7.165)

�0��0
;� � �

0�
�0;� = 2�0(�

0
� �0) +M0 ;

�
0�
M0

;� = �2M0(�0 + �
0
);

�0 = 0:

(7.166)

Substitution of the last of these equations into the equality (7.161) gives

U0 = �M0 : (7.167)

From (7.142f-i) and (7.153) we get

X0��0;� = ��
0(
0 + 3
0);

�0�M0
;� = �2M0(�0 + �0);

X0��0
;� � �

0�

0;� = �
0(�0 � �

0
);

X0��0;� � �
0�
0;� = 
0(�0 + �0) � 2
0�0;

X0�M0
;� = �2M0(�0 + 
0):

Equations (7.141) enables us to write

�0�X0�
;� �X

0��0�;� = 2
0�0� � (�0 + �0)X0�;

�
0�
�0�;� � �

0��
0�

;� = �2�
0
�0� + 2�0�

0�
;

�; � = 0;2;3:

Substituting 	 = �3	0 into the equations (7.140c), (7.143b) and (7.143c),
we will obtain

�0�	0
;� = �3	0(�0 + �0 � �0); (7.168)

�
0�
	0
;� = �3	0(�0 + �

0
): (7.169)

X0�	0
;� = �3	0(
0 + 
0 + �0); (7.170)
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Let us consider the case of

	0 = 	
0
; 	0 = const: (7.171)

Then from (7.166) and (7.167) and also from (7.164) and (7.160)) it follows that


0 + 
0 = 0; �0 + �
0
= 0: (7.172)

We will constrain ourselves to the case �0 = 0: Considering that �0 = 0, we
will obtain that � = 0: Equations (7.141) will then become

(7.173)

X0�M0
;� = 0; (7:173a)

�0�M0
;� = 0; (7:173b)

X0��0
;� � �

0�
0;� = �2
0�0; (7:173c)

�0��0
;� � �

0�
�0;� = 4�0�0 +M0 ; (7:173d)

�0�X0�
;� �X

0��0�;� = 2
0�0� ; (7:173e)

�
0�
�0�;� � �

0��
0�

;� = �2�0�0� + 2�0�
0�
: (7:173f)

Next we carry out the transformations

x� = x�
0

(x�):

We will thus have the relation X0� = Æ�0 satis�ed. Now the only arbitrary
element in the selection of coordinates is the transformations

(7.174)

x0
0

= x0 + f(x2; x3); (7:174a)

x2
0

= g(x2; x3); (7:174b)

x3
0

= h(x2 ; x3): (7:174c)

Integrating (7.173) gives
M0 = const:

Using the transformations

li
0

= li; ni
0

= ni; mi0 = mi exp[i�0(x�)]; (7.175)

we can achieve

0 = 0: (7.176)

It follows from this and (7.173e) that �0� is independent of x0.
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We will introduce the notation

�02 = P (x2; x3); �03 = iP (x2; x3) (7.177)

and use the transformations (7.175) to make P a real function. The only arbi-
trariness will be the transformation of the coordinates and the components of
the light tetrad of the form

li
0

= [A0(x�)]�1li; ni
0

= A0(x�)ni; mi0 = mi;

r0 = A0(x�)r
(7.178)

with the constant A0 in the transformation (7.174a) and the transformation

� = g(�);

where
� = x2 + ix3: (7.179)

Using the notation (7.111), we will write the equations (7.173d) and (7.173f)
in the form

�0 = 1=2rP; r

"
�
00

P

#
= r

�
�00

P

�
;

"0 = M0 = 2P 2rr ln(
p
2P )

1

2
:

Using the remaining arbitrariness and the selection of the coordinates and
components of the light tetrad enables us to write the solutions of these equa-
tions as

p
2P = 1+ 1=2"0��; �00 = 0; �0 = 1=2"0�;

"0 = �1=2;0:

We now use the results obtained for the components of the Newman-Penrose
symbols to obtain

�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0); �i
0 _1
= �(0;0; P; iP );

�0
_0

i = (1;0;0;0); �1
_1

i = (�U;1;0;0); �0
_1

i = �
1

2�P
(0;0;1; i):

Using the relationship

gij = "AC" _B _D
�A

_B
i �

C _D
j

we can now derive the metric tensor gik

gik =

0
BB@
�2U 1 0 0
1 0 0 0
0 0 �(2�2P 2)�1 0
0 0 0 (2�2P 2)�1

1
CCA ; (7.180)
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where
U = �"0 + 	0=r: (7.181)

(7.182)

Let now e0 = 1=2, it is then convenient to go over to the coordinates

ct = x0 �
Z
dr=2U; r = x1 ;

sin � =
(��)1=2

(1 + 1=4��)
; tg' =

x3

x2
:

We will end up with the Riemannian metric

ds2 =

�
1�

2	0

r

�
c2dt2 �

�
1�

2	0

r

��1

dr2� (7.183)

�r2(d�2 + sin2 �d'2);

that coincides with the metric of the Schwarzschild space at

	0 = MG=c2: (7.184)

Notice that, unlike the Schwarzschild metric of Einstein's theory, the met-
ric (7.183) is de�ned on a translations group T4 of the geometry of absolute
parallelism.

At �0 = 0 and �0 = �1=2 we have two more solutions that describe spheri-
cally symmetrical objects with mass M (not necessary rest mass), which move
at light and faster-than-light velocities

ds2 =

�
�
2	0

r

�
c2dt2 �

�
�
2	0

r

��1

dr2� (7.185)

�r2(d�2 + �2d'2);

ds2 =

�
�1 �

2	0

r

�
c2dt2 �

�
�1 �

2	0

r

��1

dr2 � (7.186)

�r2(d�2 + sh2�d'2):

Combining all the results, we will write

Main geometrical characteristics of A4 geometry with a Rieman-

nian metric of Schwarzschildian type

(7.187)

1. Coordinate u; r; x2 and x3 are given by (7.19).
2. Components of the Newman-Penrose symbols
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�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0); �i
0 _1
= �(0;0; P; iP );

�0
_0

i = (1;0;0;0); �1
_1

i = (�U;1;0;0); �0
_1

i = �
1

2�P
(0;0;1; i);

U = �1=2 + 	0=r; P = (2)�1=2(1 + ��=4); � = x2 + ix3;

	0 = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �1=r; � = �� = ��0=r; 
 = 	0=2r;

� = �"0=r + 2	0=r2; � = �=4:

4. Spinor components of the Riemannian tensor

	 = �	0=r3:

Substituting the components of the Ricci rotation coeÆcients of the solution
(7.187) into the rotational Killing-Cartan metric, we obtain

d�2 = �
(	0)2

2r4
dx20 �

2(	0 � r)
r

d�2 � (7.188)

�
2(	0 � r) sin2 �

r
d'2 :

7.7 Some physically meaningful solutions of the

structural Cartan equations of A4 geometry

Skipping detailed computations, we will simply provide some exact solutions
of the structural Cartan equations of the A4 geometry, which are given physical
interpretation in the theory of physical vacuum.

7.7.1 Solution with a variable source function

(7.189)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0); �i
0 _1
= �(0;0; P; iP );
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�0
_0

i = (1;0;0;0); �1
_1

i = (�U;1;0;0); �0
_1

i = �
1

2�P
(0;0;1; i);

U(u) = �1=2 + 	0(u)=r; P = (2)�1=2(1 + ��=4); � = x2 + ix3;

	0 = 	0(u):

3. Spinor components of the Ricci rotation coeÆcients

� = �1=r; � = �� = ��0=r; 
 = 	0(u)=2r2;

� = �1=2r + 	0(u)=r2; �0 = �=4:

4. Spinor components of the Riemannian tensor

	2 = 	 = �	0(u)=r3; �22 = � = � _	0(u)=r2 = �
@	0

@u

1

r2
:

The Riemann metric of the solution (7.189) in the coordinates (7.182) has
the form

ds2 =

�
1�

2	0(t)

r

�
c2dt2 �

�
1 �

2	0(t)

r

��1

dr2� (7.190)

�r2(d�2 + sin2 �d'2):

7.7.2 Solution with quark interaction

(7.191)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0
= (0;1;0;0); �i

1 _1
= (1;U;0;0); �i

0 _1
= �(0;0; P; iP);

�0
_0

i = (1;0;0;0); �1
_1

i = (�U;1;0;0); �0
_1

i = �
1

2�P
(0;0;1; i)

U = �1=2 + ~�r2; P = (2)�1=2(1 + ��=4); � = x2 + ix3:

3. Spinor components of the Ricci rotation coeÆcients

� = �1=r; � = �� = ��0=r; 
 = ~�r;

� = �1=2r � ~��r2; �0 = �=4:

4. Spinor components of the Riemannian tensor

� = ~�=6 = R=24 = const:

The metric of the Riemannian solution (7.191) in the coordinates (7.182)
has the form

ds2 =
�
1� �r2=3

�
c2dt2 �

�
1 ��r2=3

��1
dr2� (7.192)

�r2(d�2 + sin2 �d'2):
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7.7.3 Solution with a short-range (nuclear) interaction

(7.193)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0); �i
0 _1

= �(�irN�=
p
2;0; P; iP ); �i

1 _0
= �i

0 _1

�0
_0

i = (1;0� rNx3=
p
2 P; rNx

2=
p
2P ); �0

_1
i = �

1

2�P
(0;0;1; i); �1

_0
i = �0

_1
i ;

�1
_1

i = (�U;1;UrNx3=
p
2 P;�UrNx2=

p
2P ):

U = �
1

2
+ ��r2N ; P = (2)�1=2(1 + ��=4); � = x2 + ix3;

rN = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �(r + irN)
�1; � = ��0; � = ��; �0 = �=4;


 = �2	0=2; � = �=2 + �2	0=2 + ��	
0
=2; 	0 = irN :

4. Spinor components of the Riemannian tensor

	2 = 	 = 	0�3:

The metric of the Riemannian solution (7.193) in the coordinates (7.182)
has the form

ds2 = �[cdt + 4rN sin2(�=2)d']2+ dr2=�� (7.194)

�(r2 + r2N)(d�
2 + sin2 �d');

where

� = 1 �
2r2N

r2 + r2N
: (7.195)

7.7.4 Solution with an electronuclear interaction

(7.196)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0);

�i
0 _1

= �(�irN�=
p
2;0; P;iP ); �i

1 _0
= �i

0 _1
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�0
_0

i = (1;0� rNx3=
p
2 P; rNx

2=
p
2P );

�1
_1

i = (�U;1;UrNx3=
p
2 P;�UrNx2=

p
2P );

�0
_1

i = �
1

2�P
(0;0;1; i); �1

_0
i = �0

_1
i ;

U = �
1

2
+ ��(rre=2 + r2N); P = (2)�1=2(1 + ��=4);

� = x2 + ix3; rN = const; re = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �(r + irN)
�1 ; � = ��0; � = ��; �0 = �=4;


 = �2	0=2; � = �=2 + �2	0=2 + ��	
0
=2; 	0 = re=2 + irN :

4. Spinor components of the Riemannian tensor

	2 = 	 = 	0�3 :

The Riemannian metric of the solution (7.196) in the coordinates (7.182)
has the form

ds2 = �[cdt+ 4rN sin2(�=2)d']2 + dr2=�� (7.197)

�(r2 + r2N)(d�
2 + sin2 �d');

where

� = 1 �
rre + 2r2N
r2 + r2N

: (7.198)

7.7.5 Solution with electronuclearquark interaction

(7.199)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1

= (1;U;0;0);

�i
0 _1

= �(�irN�=
p
2;0; P; iP); �i

1 _0
= �i

0 _1

�0
_0

i = (1;0� rNx3=
p
2 P; rNx

2=
p
2P );

�1
_1

i = (�U;1;UrNx3=
p
2 P;�UrNx2=

p
2P );

�0
_1

i = �
1

2�P
(0;0;1; i); �1

_0
i = �0

_1
i ;

U = �
1

2
+ ��(rer=2 + r2N � 8~�r4N) + ~�(r2+ 5r2N);
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� = x2 + ix3; P = (2)�1=2(1 + ��=4);

rN = const; re = const; ~� = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �(r + irN)
�1; � = ��0; � = ��; �0 = �=4;


 = 
0 + �2	0=2� ~�r; � = �=2 + �2	0=2 + ��	
0
=2 � ~�r2�;

	0 = re=2 + irN = const; 
0 = �i~�rN :

4. Spinor components of the Riemann tensor

	2 = 	 = 	0�3 ;� = ~�=6 = R=24 = const:

The metric of the Riemann solution (7.199) in the coordinates (7.182) has
the form

ds2 = �[cdt + 4rN sin2(�=2)d']2+ dr2=�� (7.200)

�(r2 + r2N)(d�
2 + sin2 �d');

where

� = 1 �
rre + 2r2N � 16~�r4N

r2+ r2N
� 2~�(r2 + 5r2N): (7.201)

7.7.6 Solution with Coulomb-Newton interaction and three-
dimensional rotation of a source

(7.202)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0
= (0;1;0;0); �i

1 _1
= ��(
;�Y;0; a);

�i
0 _1

= �
�
p
2
(ia sin�;0;1; icosec�); �i

1 _0
= �i

0 _1
;

�0
_0

i = (1;0;0;�a sin2 �);

�1
_1

i = ��
�
Y; (��)�1;0;�a sin2 �Y

�
;

�0
_1

i = �
�
p
2

�
ia sin �;0;�(��)�1;�i
sin �

�
; �1

_0
i = �0 _1i ;


 = r2 + a2; Y = (r2 + a2� 2	0r)=2;

a = const; 	0 = re=2 = const:
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3. Spinor components of the Ricci rotation coeÆcients

� = �(r � ia cos �)�1; � = � cot ��=(2)3=2;

� = ia sin��2=(2)1=2; � = � � �; � = Y �2�;


 = �+ (r + 	0)��=2; � = ia sin ���=(2)1=2:

4. Spinor components of the Riemann tensor

	2 = 	 = 	0�3 :

The metric of the Riemannian solution (7.202) in the coordinates (7.182)
has the form

ds2 =

�
1 �

2	0r

r2 + a2 cos2 �

�
c2dt2 +

4	0ra

r2 + a2 cos2 �
sin2 �d'cdt �

�
r2 + a2 cos2 �

r2 � 2	0r + a2
dr2 � (r2 + a2 cos2 �)d�2 �

�
�
r2 + a2 +

2	0ra2

r2 + a2 cos2 �
sin2 �

�
sin2 �d'2: (7.203)

7.7.7 Purely torsional solution

(7.204)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1

= ��(
;�Y;0; a); �i
0 _1

= �
�
p
2
(ia sin�;0;1; icosec�);

�i
1 _0

= �i
0 _1
; �0

_0
i = (1;0;0;�a sin2 �); �1

_1
i = ��

�
Y; (��)�1;0;�a sin2 �Y

�
;

�0
_1

i = �
�
p
2

�
ia sin�;0;�(��)�1;�i
sin �

�
; �1

_0
i = �0

_1
i ;


 = r2 + a2; Y = (r2 + a2)=2; a = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �(r � ia cos �)�1; � = � cot ��=(2)3=2;

� = ia sin��2=(2)1=2; � = � � �; � = Y �2�;


 = � + r��=2; � = ia sin���=(2)1=2:

The metric of the Riemannian solution (7.204) in the coordinates (7.182)
has the form

ds2 = c2dt2 �
r2 + a2 cos2 �

r2 + a2
dr � (r2 + a2 cos2 �)d�2 �

�(r2 + a2) sin2 �d'2: (7.205)
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7.7.8 Solution with a variable Coulomb-Newton

interaction and three-dimensional rotation of a
source

(7.206)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0
= (0;1;0;0); �i

1 _1
= ��(
;�Y;0; a);

�i
0 _1

= �
�
p
2
(ia sin�;0;1; icosec�); �i

1 _0
= �i

0 _1
;

�0
_0

i = (1;0;0;�a sin2 �);

�1
_1

i = ��
�
Y; (��)�1;0;�a sin2 �Y

�
;

�0
_1

i = �
�
p
2

�
ia sin �;0;�(��)�1;�i
sin �

�
; �1

_0
i = �0

_1
i ;


 = r2 + a2; Y = (r2 + a2� 2	0r)=2;

a = const; 	0 = 	0(u):

3. Spinor components of the Ricci rotation coeÆcients

� = �(r � ia cos �)�1; � = � cot ��=(2)3=2;

� = ia sin ��2=(2)1=2; � = � � �; � = Y �2�;


 = �+ (r + 	0(u))��=2; � = ia sin���=(2)1=2;

� =
�i _	0(u)ra sin��2�

21=2
:

4. Spinor components of the Riemannian tensor

	2 = 	 = 	0(u)�3;

	2 = �i _	0(u)a sin ��2�=(2)3=2 � 2i _	0(u)ra sin��3�=(2)1=2;

	4 = �	0(u)ra2 sin2 ��3�=2 + _	0(u)ra2 sin2 ��4�;

	12 = �i _	0(u)a sin��2�=(2)3=2;

	22 = ��	0(u)ra2 sin2 ��2�2=2� _	0(u)r2�2�2;

The metric of the Riemannian solution (7.206) in the coordinates (7.182)
has the form

ds2 =

�
1�

2	0(t)r

r2 + a2 cos2 �

�
c2dt2 +

4	0(t)ra

r2 + a2 cos2 �
sin2 �d'cdt �

�
r2 + a2 cos2 �

r2 � 2	0(t)r+ a2
dr2 � (r2 + a2 cos2 �)d�2 �

�
�
r2 + a2+

2	0(t)ra2

r2 + a2 cos2 �
sin2 �

�
sin2 �d'2: (7.207)
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7.7.9 Solution with electronuclear interaction and

three-dimensional rotation of a source

(7.208)

1. Coordinates x0 = u; x1 = r; x2 = �; x3 = '.
2. Components of the Newman-Penrose symbols

�i
0 _0

= (0;1;0;0); �i
1 _1
= ��(�;��;0; a);

�i
0 _1
= �

�
p
2
(ia sin� + 2irN cot �;0;1; icosec�); �i

1 _0
= �i

0 _1
;

� = r2 + r2N + a2; � = (r2 � r2N + a2� rer)=2;

rN = const; a = const; re = const:

3. Spinor components of the Ricci rotation coeÆcients

� = �(r + irN � ia cos �)�1; � = ��0; � = �2�0;

� = ��0 + �2�0; � = ���0;

� = �=2 + �	0=2 + ��	
0
=2 + �2��0�;


 = �2	0 + ��(�0�0 + �0�0) + �2��0�0;

	0 = re=2 + irN ;

�0 = ��0; �0 = �
1

4
(2)1=2 cot �; �0 = �

1

2
ia(2)1=2 sin�:

4. Spinor components of the Riemannian tensor

	2 = 	 = 	0�3 :

The nonzero components of the metric tensor gij have the form

guu = ��(r2r � r2N + a2 cos2 �);

gur = 1;

gu' = �2��rN cos �� + 2��a sin2 �(rer=2 + r2N); (7.209)

gr' = �a sin2 � � 2rN cos �;

g�� = �r2 � (rN � a cos �)2;
g'' = ���(a sin2 � + 2rN cos �)2 � �� sin2 ��2:
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