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This book is dedicated not to a person but rather to an amusing mathe-
matical wonder: the Apocalyptic Magic Square—a rather bizarre six-by-six 
magic square in which all of its entries are prime numbers (divisible only 
by themselves and 1), and each row, column, and diagonal sum to 666, 
the Number of the Beast. 

T H E A P O C A L Y P T I C M A G I C S Q U A R E 

3 107 5 131 109 311 

7 331 193 11 83 41 

103 53 71 89 151 199 

113 61 97 197 167 31 

367 13 173 59 17 37 

73 101 127 179 139 47 

& For additional wondrous features of this square, see Chapter 101. 



We are in the position of a little child entering a huge library 
whose walls are covered to the ceiling with books in many 

different tongues.The child does not understand the 
languages in which they are written. He notes a 

definite plan in the arrangement of books, 
a mysterious order which he does not 

comprehend, but only 
dimly suspects. 

—Albert Einstein 

Amusement 
is one of humankind's 

strongest motivating forces. 
Although mathematicians sometimes 
belittle a colleague's work by calling it 

"recreational" mathematics, much serious 
mathematics has come out of recreational problems, 

which test mathematical logic and reveal mathematical truths. 
—Ivars Peterson, Islands of Truth 

The mathematician's job is to transport us to new seas, 
while deepening the waters 

and lengthening 
horizons. 

—Dr. Francis 0. Googol 
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A Word from the 
Publisher about 
Dr. Googol 

Francis Googol's date of birth is unknown. According to court records, he was 
born in London, England, and has held various "jobs" including mathematician, 
world explorer, and inventor. A prolific author of over 300 publications, Googol 
achieved his greatest fame with his book Number Madness, in which he argued that 
Neanderthals invented a primitive form of calculus. He also conducted pioneering 
studies of parabolas and statistics and was knighted in 1998. Dr. Googol is a prac-
tical scientist, always testing his theories using apparatuses of his own design. 

Today, Dr. Googol has an obsessive predilection for quantifying anything that 
he views—from the curves of women's bodies to the number of brush strokes 
used to paint his portrait. It is rumored that he even published anonymously a 
paper in Nature on the length of rope necessary for breaking a criminal's neck 
without decapitation. In short, Googol is obsessed with the idea that anything 
can be counted, correlated, and understood as some sort of pattern. Clements 
Markham (former president of the Geographical Society) once remarked, "His 
mind is mathematical and statistical with little or no imagination." 

When asked his advice on life, Googol responded: "Travel and do math-
ematics." 

® ® ® 
Francis Googol, great-great-great-grandson of Charles Darwin, was born to a 
family of bankers and gunsmiths of the Quaker faith. His family life was happy. 
Googol's mother, Violetta, lived to 91, and most of her children lived to their 
90s or late 80s, Perhaps the longevity of his ancestors accounts for Googol's very 
long life. 

When Francis Googol was born, 13-year-old sister Elizabeth asked to be his 
primary caretaker. She placed Googol's cot in her room and began teaching him 
numbers, which he could point to and recognize before he could speak. He 
would cry if the numbers were removed from sight. 

As an adult, Googol became bored by life in England and felt the urge to 
explore the world. "I craved travel," he said, "as I did all adventure." For the next 
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decade, he embarked on a shattering odyssey of self-discovery; in fact, his biog-
raphy reads more like Pirsig's Zen and the Art of Motorcycle Maintenance or 
Simon's Jupiter's Travels than like the life story of a mathematical genius. Googol 
suddenly moved like a roller coaster over some of the world's most mysterious 
physical and psychological terrain: studies of the female monkeys at Kathmandu, 
camel rides through Egyptian desserts, death-defying escapes in the jungles of 
Tanzania. . . . Anyone who hears about Googol's journeys is enthralled by 
Googol's descriptions of the exotic places and people, by his ability to adjust to 
adversity, by his humor and incisiveness, but above all by the realization that to 
understand his world, he had to make himself vulnerable to it so that it could 
change him. 



P r e f a c e 

One Fish, Two Fish, and Beyond 

The trouble with integers is that we have examined only the small ones. 
Maybe all the exciting stuff happens at really big numbers, ones we can't 
get our hands on or even begin to think about in any very definite way. 

So maybe all the action is really inaccessible and we're just fiddling 
around. Our brains have evolved to get us out of the rain, find where the 
berries are, and keep us from getting killed. Our brains did not evolve to 

help us grasp really large numbers or to look at things in a hundred 
thousand dimensions. 

—Ronald Graham 

Mathematics, rightly viewed, possesses not only truth, but supreme 
beauty—a beauty cold and austere, like that of sculpture. 

—Bertrand Russell, Mysticism and Logic, 1918 

The primary source of all mathematics is the integers. 
—Herman Minkowski 

Dr. Googol loves numbers. Whole numbers. Big ones like 1 ,000 ,000 . And lit-
tle ones like 2 or 3. In this book, you will see integers more often than fractions 
like Vi, trigonometic functions like "sine," or complicated, long-winded num-
bers like Jt = 3.1415926. . . . He cares mainly about the integers. 

Dr. Googol, world-famous explorer and brilliant mathematician, knows that 
his obsession with integers sounds silly to many of you, but integers are a great 
way to transcend space and time. Contemplating the wondrous relationships 
among these numbers stretches the imagination, and the usefulness of these num-
bers allows us to build spaceships and investigate the very fabric of our universe. 
Numbers will be our first means of communication with intelligent alien races. 

Ancient people, like the Greeks, had a deep fascination with numbers. Could 
it be that in difficult times numbers were the only constant thing in an ever-
shifting world? To the Pythagoreans, an ancient Greek sect, numbers were tan-
gible, immutable, comfortable, eternal—more reliable then friends, less threat-
ening than Zeus. 

The mysterious, odd, and fun puzzles in this book should cause even the most 
left-brained readers to fall in love with numbers. The quirky and exclusive surveys 
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on mathematicians' lives, scandals, and passions will entertain people at all levels 
of mathematical sophistication. In fact, this book focuses on creativity, discovery, 
and challenge. Parts 1 and 4 are especially tuned for amusing classroom explo-
rations and experiments by beginners. Part 2 is for classroom debate and for caus-
ing arguments around the dinner table or on the Internet. Part 3 contains prob-
lems that sometimes require a little bit more mathematical manipulation. 

When Dr. Googol talks to students about the strange numbers in this book, 
they are always fascinated to learn that it is possible for them to break numeri-
cal world records and make new discoveries with a personal computer. Most of 
the ideas can be explored with just a pencil and paper! 

® ® ® 
Number theory—the study of properties of the integers—is an ancient disci-
pline. Much mysticism accompanied early treatises; for example, Pythagoreans 
explained many events in the universe in terms of whole numbers. Only a few 
hundred years ago courses in numerology—the study of mystical and religious 
properties of numbers—were required for all college students, and even today 
such numbers as 13, 7, and 666 conjure up emotional reactions in many people. 
Today, integer arithmetic is important in a wide spectrum of human activities 
and has repeatedly played a crucial role in the evolution of the natural sciences. 
(For a description of the use of number theory in communications, computer 
science, cryptography, physics, biology, and art, see Manfred Schroeder's Number 
Theory in Science and Communication.) 

One of the abiding sins of mathematicians is an obsession with complete-
ness—an urge to go back to first principles to explain their works. As a result, 
readers must often wade through pages of background before getting to the 
essential ingredients. To avoid this problem, each chapter in this book is less 
than 5 pages in length. Want to know about undulating numbers? Turn to 
Chapter 52, and in a few pages you'll have a quick challenge. Interested in 
Fibonacci numbers? Turn to Chapter 71 for the same. Want a ranking of the 8 
most influential female mathematicians? Turn to Chapter 33. Want a list of the 
Unabomber's 10 most mathematical technical papers? Turn to Chapter 40. Want 
to know why Roman numerals aren't used anymore? Turn to Chapter 2. What 
are the latest practical applications of fractal geometry? Turn to the "Further 
Exploring" section of Chapter 54. Why was the first woman mathematician 
murdered? Turn to Chapter 29. You'll quickly get the essence of surveys, prob-
lems, games, and questions! 

One advantage of this format is that you can jump right in to experiment and 
have fun, without having to sort through a lot of detritus. The book is not 
intended for mathematicians looking for formal mathematical explanations. Of 
course, this approach has some disadvantages. In just a few pages, Dr. Googol 
can't go into any depth on a subject. You won't find much historical context or 
extended discussion. That's okay. He provides lots of extra material in the 
"Further Exploring" and "Further Reading" sections. 

To some extent, the choice of topics for inclusion in this book is arbitrary, 
although they give a nice introduction to some common and unusual problems 
in number theory and recreational mathematics. They are also problems that Dr. 
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Googol has researched himself and on which he has received mail from readers. 
Many questions are representative of a wider class of problems of interest to 
mathematicians today. Some information is repeated so that you can quickly 
dive into a chapter picked at random. The chapters vary in difficulty, so you are 
free to browse. 

® ® ® 
Why care about integers? The brilliant mathematician Paul Erdos (discussed in 
detail in Chapter 46) was fascinated by number theory and the notion that he 
could pose problems, using integers, that were often simple to state but notori-
ously difficult to solve. Erdos believed that if one can state a problem in mathe-
matics that is unsolved and over 100 years old, it is a problem in number theo-
ry. There is a harmony in the universe that can be expressed by whole numbers. 
Numerical patterns describe the arrangement of florets in a daisy, the repro-
duction of rabbits, the orbit of the planets, the harmonies of music, and the 
relationships between elements in the periodic table. Leopold Kronecker 
(1823-1891), a German algebraist and number theorist, once said, "The inte-
gers came from God and all else was man-made." His implication was that the 
primary source of all mathematics is the integers. Since the time of Pythagoras, 
the role of integer ratios in musical scales has been widely appreciated. 

More important, integers have been crucial in the evolution of humanity's 
scientific understanding. For example, in the 18th century, French chemist 
Antoine Lavoisier discovered that chemical compounds are composed of fixed 
proportions of elements corresponding to the ratios of small integers. This was 
very strong evidence for the existence of atoms. In 1925, certain integer relations 
between the wavelengths of spectral lines emitted by excited atoms gave early 
clues to the structure of atoms. The near-integer ratios of atomic weights was 
evidence that the atomic nucleus is made up of an integer number of similar 
nucleons (protons and neutrons). The deviations from integer ratios led to 
the discovery of elemental isotopes (variants with nearly identical chemical 
behavior but with different radioactive properties). Small divergences in pure 
isotopes' atomic weights from exact integers confirmed Einstein's famous equa-
tion E = mc2 and also the possibility of atomic bombs. Integers are everywhere 
in atomic physics. Integer relations are fundamental strands in the mathematical 
weave—or, as German mathematician Carl Friedrich Gauss said, "Mathematics 
is the queen of sciences—and number theory is the queen of mathematics." 

Prepare yourself for a strange journey as Wonders of Numbers unlocks the 
doors of your imagination. The thought-provoking mysteries, puzzles, and 
problems range from the most beautiful formula of Ramanujan (India's most 
famous mathematician) to the Leviathan number, a number so big that it makes 
a trillion pale in comparison. Each chapter is a world of paradox and mystery. 
Grab a pencil. Do not fear. Some of the topics in the book may appear to be 
curiosities, with little practical application or purpose. However, Dr. Googol 
has found these experiments to be useful and educational—as have the many 
students, educators, and scientists who have written to him during his long 
lifetime. Throughout history, experiments, ideas, and conclusions originating 
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in the play of the mind have found striking and unexpected practical applica-
tions. In order to encourage your involvement, Dr. Googol provides computa-
tional hints. 

As this book goes to press, Oxford University Press is delighted to announce 
a web site (www.oup-usa.org/sc/0195133420) that contains a smorgasbord of 
computer program listings provided by the author. Readers have often request-
ed online code that they can study and with which they may easily experiment. 
We hope the code clarifies some of the concepts discussed in the book. Code is 
available for the following: 

® Chapter 2. Why Don't We Use Roman Numerals Anymore (BASIC pro-
gram to generate Roman numerals when you type in any number) 

® Chapter 16. Jerusalem Overdrive (C program to scan for Latin Squares) 

® Chapter 17. The Pipes of Papua (Pseudocode for creating Papua rhythms) 

© Chapter 22. Klingon Paths (C and BASIC code to generate and explore 
Klingon paths) 

© Chapter 49. Hailstone Numbers (BASIC code for computing hailstone 
numbers and path lengths) 

© Chapter 50. The Spring of Khosrow Carpet (BASIC code for Persian carpet 
designs) 

© Chapter 51. The Omega Prism (BASIC code for finding the number of 
intersected tiles) 

© Chapter 53. Alien Snow: A Tour of Checkerboard Worlds (C code for ex-
ploring alien snow) 

© Chapter 54. Beauty, Symmetry, and Pascal's Triangle (BASIC code for com-
puting and drawing Pascal's Triangle) 

© Chapter 56. Dr. Googol's Prime Plaid (BASIC code for exploring prime 
numbers and plaids) 

© Chapter 62. Triangular Numbers (BASIC code for computing triangular 
numbers) 

® Chapter 63. Hexagonal Cats (BASIC code for computing polygonal num-
bers) 

© Chapter 64. The X-Files Number (BASIC code for computing X-Files "End-
of-the-World" Numbers) 

© Chapter 66. The Hunt for Elusive Squarions (BASIC code for generating 
pair square numbers) 

© Chapter 68. Pentagonal Pie (BASIC code for computing Catalan numbers) 

© Chapter 71. Mr. Fibonacci's Neighborhood (BASIC code for computing 
Fibonacci numbers) 
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© Chapter 73. The Wonderful Emirp, 1597 (REXX code for computing prime 
Fibonacci numbers) 

© Chapter 83. The Leviathan Number (C and BASIC code for comparing 
Stirling and factorial values) 

© Chapter 85. The Aliens in Independence Day (C and BASIC code for com-
puting number and sex of humans) 

© Chapter 88. The Latest Gossip on Narcissistic Numbers (BASIC code for 
searching for all cubical narcissistic numbers. Also, C code for factorion 
searches) 

© Chapter 89. The abcdefgh problem (REXX code for finding solutions to the 
abcdefgh problem) 

© Chapter 94. Perfect, Amicable, and Sublime Numbers (BASIC code for 
finding perfect and amicable numbers) 

© Chapter 96. Cards, Frogs, and Fractal Sequences (REXX code for comput-
ing fractal signature sequences. Also, BASIC code to compute Batrachions) 

© Chapter 99. Everything You Wanted to Know about Triangles but Were 
Afraid to Ask (BASIC code for generating Pythagorean triangles and for 
computing side lengths of triangles that pray) 

© Chapter 100. Cavern Genesis as a Self-Organizing System (C code for 
exploring stalactite formation) 

© Chapter 123. Zen Archery (Java code for solving Zen problems) 
For many of you, seeing computer code will clarify concepts in ways mere 

words cannot. 
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Part i 

Fun Puzzles 
and Quick 
Thoughts 

Your vision will become clear only when you can look 
into your own heart. Who looks outside, dreams; 

who looks inside, awakens. 
—Carl Jung 

Where there is an open mind, there will always be a frontier. 
—Charles Kettering 

Mathematics is the hammer that shatters the ice 
of our unconscious. 

—Dr. Francis O. Googol 



C h a p t e r 1 

Attack of the 
Amateurs 

Every productive research scientist cultivates and relies upon nonrational 
processes to direct his or her own creative thinking. Watson and Crick 

used visualization to conceive the DNA molecule's configuration. 
Einstein used visualization to imagine riding on a light beam. 

Mathematician Ramanujan usually saw a vision of his family Goddess 
Narnagiri whenever he conceived of a new mathematical formula. The 

heart of good science is the harmonious integration of good luck in mak-
ing uncommonly made observations, nonrational processes that are only 

poorly suggested by the words "creativity" and "intuition." 
—John Waters, Skeptical Inquirer 

Amazingly, lack of formal education can be an advantage. We get stuck in 
our old ways. Sometimes, progress is made when someone from the out-

side looks at mathematics with new eyes. 
—Doris Schattschneider, Los Angeles Times 

Are you a mathematical amateur? Do not fret. Many amazing mathematical find-
ings have been made by amateurs, from homemakers to lawyers. These amateurs 
developed new ways to look at problems that stumped the experts. 

Have any of you seen the movie Good Will Hunting, in which 20-year-old 
Will Hunting survives in his rough, working-class South Boston neighborhood? 
Like his friends, Hunting does menial jobs between stints at the local bar and 
run-ins with the law. He's never been to college, except to scrub floors as a jani-
tor at MIT. Yet he can summon obscure historical references from his photo-
graphic memory and almost instantly solve math problems that frustrate the 
most brilliant professors. 

This is not as far-fetched as it sounds! Although you might think that new 
mathematical discoveries can only be made by professors with years of training, 
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beginners have also made substantial contributions. Here are some of Dr. 
Googol's favorite examples: 

® In the 1970s, Marjorie Rice, a San Diego housewife and mother of 5, was 
working at her kitchen table when she discovered numerous new geometrical 
patterns that professors had thought were impossible. Rice had no training 
beyond high school, but by 1976 she had discovered 58 special kinds of pen-
tagonal tiles, most of them previously unknown. Her most advanced diploma 
was a 1939 high school degree for which she had taken only one general 
math course. The moral to the story? It's never too late to enter fields and 
make new discoveries. Another moral: Never underestimate your mother! 

® In 1998, college student Roland Clarkson discovered the largest prime num-
ber known at the time. (A prime number, like 13, is evenly divisible only by 
1 and itself.) The number was so large that it could fill several books. In fact, 
some of the largest prime numbers these days are found by college students 
using a network of cooperating personal computers and software download-
able from the Internet. (See "Further Exploring" for Chapter 56 to view the 
latest prime number records.) 

® In the early 1600s, Pierre de Fermat, a French lawyer, made brilliant discov-
eries in number theory. Although he was an "amateur" mathematician, he 
created mathematical puzzles such as Fermat's Last Theorem, which was not 
solved until 1994. Fermat was no ordinary lawyer indeed. He is considered, 
along with Blaise Pascal, as the founder of probability theory. As the coin-
ventor of analytic geometry along with Rend Descartes, he is considered one 
of the first modern mathematicians. 

® In the mid-1990s, Texas banker Andrew Beal posed a perplexing mathemat-
ical problem and offered $5,000 for its solution. The value of the prize 
increases by $5,000 per year up to $50,000 until it is solved. In particular, 
Beal was curious about the equation Ax + By = Cz. The 6 letters represent 
integers, with x, y, and z greater than 2. (Fermat's Last Theorem involves the 
special case in which the exponents x, y, and z are the same.) Oddly enough, 
Beal noticed, when a solution of this general equation existed, then A, B, 
and Chave a common factor. For example, in the equation 36 + 183 = 38, 
the numbers 3, 18, and 3 all have the factor 3. Using computers at his bank, 
Beal checked equations with exponents up to 100 but could not discover a 
solution that didn't involve a common factor. He wondered if this is always 
true. R. Daniel Mauldin of the University of North Texas commented in the 
December 1997 Notices of the American Mathematical Society, "It is remark-
able that occasionally someone working in isolation, and with no connec-
tions to the mathematical community, formulates a problem so close to 
current research activity." 

® In 1998, 17-year-old Colin Percival calculated the five trillionth binary digit 
of pi, (Pi is the ratio of a circle's circumference to its diameter, and its digits 
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go on forever. Binary numbers are 
defined in Chapter 21's "Further 
Exploring" section.) In 1999, 
computer scientist Yasumasa 
Kanada and his coworkers at the 
University of Tokyo Information 
Technology Center computed pi 
to 206,158,430,000 decimal dig-
its. Percival (Figure 1.1) discov-
ered that pi's five trillionth bit, or 
binary digit, is a 0. His accom-
plishment is significant not only 
because it was a record-breaker 
but because, for the first time 
ever, the calculations were distrib-
uted among 25 computers around 
the world. In all, the project, 
dubbed PiHex, took 5 months of 
real time to complete and a year 
and a half of computer time. 
Percival, who graduated from high 

school in June 1998, had been attending Simon Fraser University in Canada 
concurrently since he was 13. 

© In 1998, self-taught inventor Harlan Brothers and meteorologist John Knox 
developed an improved way of calculating a fundamental constant, e (often 
rounded to 2.718). Studies of exponential growth—from bacterial colonies 
to interest rates—rely on e, which can't be expressed as a fraction and can 
only be approximated using computers. Knox comments, "What we've done 
is bring mathematics back to the people" by demonstrating that amateurs 
can find more accurate ways of calculating fundamental mathematical con-
stants. (Incidentally, e is known to more than 50 million decimal places.) 

© In 1998, Dame Kathleen Ollerenshaw and David Bree made important 
discoveries regarding a certain class of magic squares—number arrays whose 
rows, columns, and diagonals sum to the same number. Although their 
particular discovery had eluded mathematicians for centuries, neither dis-
coverer was a typical mathematician. Ollerenshaw spent much of her profes-
sional life as a high-level administrator for several English universities. Bree 
has held university positions in business studies, psychology, and artificial 
intelligence. Even more remarkable is the fact that Ollerenshaw was 85 
when she and Bree proved the conjectures she had earlier made. (For more 
information, see Ian Stewart, "Most-perfect magic squares." Scientific 
American. November, 281 (5): 122-123, 1999) 

Hundreds of years ago, most mathematical discoveries were made by lawyers, 
military officers, secretaries, and other "amateurs" with an interest in mathemat-

1.1 (n 1998,17-year-old Colin Percival calcu-
lated the five trillionth binary digit of pi. His 
accomplishment is significant not only because 
it was a record-breaker but because, for the 
f irst time ever, the calculations were distrib-
uted among 25 computers around the world. 
(Photo by Marianne Meadahl.) 
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ics. After all, back then, very few people could make a living doing pure mathe-
matics. Modern-day French mathematician Olivier Gerard wrote to Dr. Googol: 

I believe that amateurs will continue to make contributions to science and math-
ematics. Computers and networks allow amateurs to work as efficiently as profes-
sionals and to cooperate with one another. When one considers the time wasted 
by many professionals in grant writing and for other paperwork justifying their 
activity, the amateurs may even have a slight edge in certain cases. However, the 
amateurs often lack the valuable experience of teaching or having a mentor. 

This is not to say that amateurs can make progress in the most obscure areas 
in mathematics. Consider, for example, the strange list in Chapter 42 that 
includes the 10 most difficult-to-understand areas of mathematics, as voted on 
by mathematicians. It would be nearly impossible for most people on Earth to 
understand these areas, let alone make contributions in them. Nevertheless, the 
mathematical ocean is wide and accommodating to new swimmers. Wonderful 
mathematical patterns, from intricately detailed fractals to visually-pleasing 
tilings, are ripe for study by beginners. In fact, the late-1970s discovery of the 
Mandelbrot set—an intricate mathematical shape that the Guinness Book of 
World Records called "the 
most complicated object 
in mathematics"—could 
have been made and 
graphically rendered by 
anyone with a high 
school math education 
(Figure 1.2). In cases 
such as this, the com-
puter is a magnificent 
tool that allows amateurs 
to make new discoveries 
that border between art 
and science. Of course, 
the high schooler may 
not understand why the 
Mandelbrot set is so 
complicated or why it is 
mathematically signifi-
cant. A fully informed 
interpretation of these 
discoveries may require a l 2 T h e Mandelbrot set is described in the 1991 
trained mind; however, Guinness Book of World Records as the most compli-
exciting exploration is cated object in mathematics. The book states, "a 
often possible without mathematical description of the shape's outline would 
erudition. require an infinity of information and yet the pattern 

can be generated from a few lines of computer code." 
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Why Don't We Use 
Roman Numerals 
Anymore? 

Rarely do I solve problems through a rationally deductive process. Instead 
I value a free association of ideas, a jumble of three or four ideas bounc-
ing around in my mind. As the urge for resolution increases, the bounc-

ing around stops, and I settle on just one idea or strategy. 
—Heinz Pagels, Dreams of Reason 

Science and art are similar. New scientific theories do not automatically 
result from tedious data collection. To conceive a hypothesis is as creative 
an act as writing a poem. When a hypothesis elegantly explains an aspect 

of reality more clearly than ever before, there is cause for great wonder 
and aesthetic pleasure. 

—Lucio Miele, Skeptical Inquirer 

Dr. Googol was walking through the ruins of the Roman Coliseum, daydream-
ing about his favorite of all things—numbers. Suddenly, he was accosted by a 
small boy. 

"Sir," said the boy, "why don't we use Roman numerals anymore?" 
Dr. Googol took a step back. "Are you talking to me?" 
"You are the famous Dr. Googol?" 
"Ah, yes," said Dr. Googol, "I can answer your question, but before I tell you, 

you must solve a small puzzle with Roman numerals. I don't think this puzzle 
dates back to Roman times, but it looks so simple that it could well be quite 
ancient." Dr. Googol drew the Roman numerals I, I I , and I I I on 6 columns as 
schematically illustrated in the aerial view in Figure 2.1. 

Dr. Googol took a pad of paper from his pocket and started drawing. "Given 
the 6 columns (represented by circles I, I I , and I I I ) , is it possible to connect 
circle I to I, I I to I I , and I I I to I I I , with lines that do not cross or go outside 
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Si vis feire utrum mulier tua fit cafta 

© 

2.1 The Coliseum puzzle. 

the surrounding frame? Your lines must be along the floor. They may be curvy, 
but they cannot touch or cross one another. You can't draw lines through the 
columns." 

The boy studied the figure for several minutes. "Sir, surely this puzzle is 
impossible to solve." 

"It is possible, but I find most people who can't solve the puzzle can solve it if 
they put it away for a day and then look at it again." 

"Wait!" the boy said. "Before attempting your problem, try mine." He 
handed Dr. Googol a card: 

The boy looked deeply into Dr. Googol's eyes. "Without using a pencil, how 
would you make this equation true?" 

As Dr. Googol and the boy pondered the puzzles, Dr. Googol also began to 
tell the boy why Roman numerals survived for so many centuries but eventually 
were discarded like old shoes. 

Today we rarely use Roman numerals except on monuments and special docu-
ments—and for dates at the end of movie credits to make it difficult to deter-
mine when a movie was actually made. You also sometimes see Roman numerals 
on clock faces, which, incidentally, almost always show four as I I I I instead of 

X I + I = X 

® ® ® 
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the traditional IV. (Ever wonder why? See the 
"Further Exploring" section.) We are familiar with 
Roman numerals because they were the only ones 
used in Europe for a thousand years. The Roman 
number system was based on similar ones used by 
the Etruscans, with the letters I, V, X, L, and C 
being based on the Etruscan originals. The Roman 
number system was useful because it expressed all 
numbers from 1 to 1,000,000 with a total of 7 
symbols: I for 1, V for 5, X for 10, L for 50, C for 
100, D for 500, and M for 1,000. Roman numer-
als are read from left to right. The symbols repre-
senting the largest quantities are placed at the left. 
Immediately to the right are the symbols represent-
ing the next largest quantities, and so on. The sym-

bols are usually added together. For example, L X = 60, and MMCIII = 2103. 
M represents 1,000,000—a small bar placed over the numeral multiplies the 
numeral by 1,000. Using an infinite number of bars, Romans could have repre-
sented the numbers from 1 to infinity! In practice, however, 2 bars were the most 
ever used. 

® ® ® 
Numerals are written symbols for numbers. The earliest numerals were simply 
groups of vertical or horizontal lines, each line corresponding to the number 1. 
Today, the Arabic system of number notation is used in most parts of the world. 
This system was first developed by the Hindus and was used in India by the 3rd 
century B.C. At that time, the numerals 1, 4, and 6 were written as they are 
today. The Hindu numeral system was probably introduced into the Arab world 
about the 7th or 8th century A.D. The first recorded use of the system in Europe 
was in A.D. 976. 

Most of Europe switched from Roman to Arabic numerals in the Middle 
Ages, partly due to Leonardo Fibonacci's 13th-century book Liber Abaci, in 
which he extols the virtues of the Hindu-Arabic numeral system. (This is the 
same beloved Mr. Fibonacci discussed by Dr. Googol in Chapter 71.) Islamic 
thinking wasn't far away from the European minds of the Middle Ages. After all, 
the Muslims had ruled Sicily, Spain, and North Africa, and when the Europeans 
finally kicked them out, the Muslims left behind their important mathematical 
legacy. Many of us forget that Islam was a more powerful culture—and more sci-
entifically advanced—than European civilizations in the centuries after the 
Western Roman Empire fell. Baghdad was an incredible center of learning. 

This isn't to say Roman numerals disappeared entirely in the Middle Ages. 
Many accountants still used them because additional and subtraction can be 
easy with Roman numerals. For example, if you want to subtract 15 from 67, in 
the Arabic system you subtract 5 from 7, and 1 from 6. But in the Roman 
system, you'd simply erase an X and a V from L X V I I to get L I I . It's subtrac-
tion by erasing. 
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However, Arabic numerals hold greater power. Because we switched from the 
Roman to the Arabic system, humankind can now formulate exotic theories 
about space and time, contemplate gravitational wave theory, and explore the 
stars. Arabic numerals are superior to Roman numerals because Arabic numerals 
have a "place" system in which the value of a numeral is determined by its posi-
tion. A 1 can mean one, ten, one hundred, or one thousand, depending on its 
position in a numerical string. This is one reason why it's so much easier to write 
1998 than MCMXCVIII—one thousand (M) plus one hundred less than a 
thousand (CM) plus ten less than a hundred (XC) plus five (V) plus one plus 
one plus one (III). Try doing arithmetic with this Roman monstrosity. On the 
other hand, positional notation greatly simplifies all forms of written numerical 
calculation. 

Around A.D. 200, the Hindus, possibly with Arab help, also invented 0, the 
greatest of all mathematical inventions. (The Babylonians had a special symbol 
for the "absence" of a number around 300 B.C., but it wasn't a true zero symbol 
because they didn't use it consistently. Nor did they think of this "absence of a 
number" as a kind of number, anymore than we think that the "absence of an 
ear" is a kind of ear.) The number 0 makes it possible to differentiate between 
11, 101, and 1,001 without the use of additional symbols, and all numbers can 
be expressed in terms of 10 symbols, the numerals from 1 to 9 plus 0. During the 
Middle Ages, the calculational demands of capitalism broke down any remaining 
resistance to the "infidel symbol" 0 and ensured that by the early 17th century 
Hindu numerals reigned supreme. Even during Roman times, Roman numerals 
were used more to record 
numbers, while most calcu-
lations were done using the 
abacus and piling up stones. 

® ® ® 
How far back in time do 
numerals go? Imagine your-
self transported back to the 
year 20,000 B.C. You are 40 
kilometers from the Spanish 
Mediterranean at the cave of 
La Pileta. You shine your 
flashlight on the wall and see 
parallel marks, groups of 5, 
6, or more numbers (Figure 
2.2). Clusters of lines are 
connected across the top 
with another line, like a 
comb, or crossed through in 
a way that reminds you of 
the modern way of checking 
things in groups of 5. Were 

researchers believe the markings represent numbers, if 
you were to explore the cave and consider the teeth of 
the "combs" as units, you could read all numbers up to 
14. In one area of the cave, the numbers 9,10,11, and 
12 appear close together. Could it be that the artist 
was counting something, recording data, or experi-
menting with mathematics? 
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the cave people counting something? You can visit the "Number Cave" today, 
but modern archeologists are not sure of the markings' significance. Neverthe-
less, the discovery of the Number Cave certainly contradicts old-fashioned 
notions that cave people of this period made guttural noises and were only con-
cerned with feeding and breeding. If the people who drew these designs mas-
tered numbers, they had intellects beyond the minimal demands of hunting. 
Also remember that if we were to still regard Mayan friezes and decorated pyra-
mids as merely art, we'd be wrong. Luckily, mathematically minded scholars 
studied them and discovered their numerical significance. 

The earliest forms of number notation that used straight lines for grouping Is 
were inconvenient when dealing with large numbers. By 3400 B.C. in Egypt, and 
3000 B.C. in Mesopotamia, a special symbol was adopted for the number 10. 
The addition of this second number symbol made it possible to express the 
number 11 with 2 symbols instead of 11, and the number 99 with 18 symbols 
instead of 99. 

In Babylonian cuneiform notation, the numeral used for 1 was also used for 
60 and for powers of 60; the value of the numeral was indicated by its context. 
The Egyptian hieroglyphic system evolved special symbols (resembling ropes, 
lotus plants, etc.) for 10, 100, 1000, and 10,000. The ancient Greeks had 2 
systems of numerals. The earlier of these was based on the initial letters of the 
names of numbers: The number 5 was indicated by the letter pi; 10 by the letter 
delta; 100 by the antique form of the letter H; 1000 by the letter chi; and 10,000 
by the letter mu. The second system, introduced in the 3rd century B.C., used all 
the letters of the Greek alphabet plus 3 letters borrowed from the Phoenician 
alphabet as number symbols. The first 9 letters of the alphabet were used for 
the numbers 1 to 9, the second 9 letters for the tens from 10 to 90, and the last 
9 letters for the hundreds from 100 to 900. Thousands were indicated by 
placing a bar to the left of the appropriate numeral, and tens of thousands by 
placing the appropriate letter over the letter M. This more advanced Greek sys-
tem had the advantage that large numbers could be expressed with a minimum 
of symbols, but it had the disadvantage of requiring the user to memorize a total 
of 27 symbols. 

0 See the "Further Exploring" section for discussions of the puzzles. 
9 See [www.oup-usa.org/sc/0195133420] for computer code that generates 

Roman numerals. 
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in a Casino 

The heavens call to you and circle about you, displaying to you their 
eternal splendors, and your eye gazes only to earth. 

—Dante 

Some individuals have extraordinary memories when it comes to memorizing 
cards in a standard playing-card deck. For example, Dominic O'Brien from 
Great Britain memorized, on a single sighting, a random sequence of 40 separate 
decks of cards (2,080 cards in all) that had been shuffled together, with only one 
mistake! The fastest time on record for memorizing a single deck of shuffled 
cards is 42 seconds. 

Dr. Googol was interested in similar feats of mental agility and was attending 
a card-memorization contest at the largest casino in the world—the Foxwoods 
Resort Casino in Ledyard, Connecticut. One of the casino's employees, dressed 
as a Roman gladiator, came to him and slammed a deck of cards (Figure 3.1) on 
the table. 

3.1 A deck of cards. 
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"My good man," Dr. Googol said, "I personally don't have such a good 
memory." 

"Don't worry," the huge man said with a grin. "This tests another kind of card 
ability. If a pack of playing cards measures 1.3 centimeters when viewed side-
ways, what would the measurement be if all the Kings were removed?" 

The gladiator handed Dr. Googol a ruler in case Dr. Googol needed it. 

® ® ® 
Can you help Dr. Googol? Hurry! The casino employee will give him $ 1,000 if 
you can solve this problem within a minute. 

# For a solution, see "Further Exploring." 

C h a p t e r 4 

The Ultimate Bible 
Code 

The aim of science is not to find the "meaning" of the world. 
The world has no meaning. It simply is. 

—John Bainville, "Beauty, Charm and Strangeness: 
Science as Metaphor," Science 281, 1998 

Dr. Googol was visiting Martin Gardner, the planet's foremost mathematical 
puzzle expert and an all-around wonderful human. It was nearly dusk when Dr. 
Googol followed Gardner around his North Carolina mansion filled with all 
manner of mathematical oddities—from glass models of Klein bottles (objects 
with just 1 surface) to strange tiles arranged in attractive shapes to metallic frac-
tal sculptures of unimaginable complexity. 

"Dr. Googol, let me show you something." Martin Gardner withdrew an 
ancient King James Bible from a bookshelf and drew a box around the first 3 
verses of Genesis. 
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1 3 t t the b e g i n n i n g flUob created the Ijeafren a n b t i p lEar t l j . 

2 <Anb t i p eartl} fonts £crttl|out f o r m , a n b fcoib; a n b b a r k n e s s 
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mofreb u p o n tire face of t i p i o a t e r s . 
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Gardner pointed to the Bible. "Select any of the 10 words in the first verse: In 
the beginning God created the heaven and the Earth." 

"Got it," Dr. Googol said. 
"Count the number of letters in the chosen word and call this number n\. 

Then go to the word that is n\ words ahead. (For example, if you picked the first 
the, go to created.) Now count the number of letters in this new word—call it 
m—then jump ahead another «2 words. Continue until your chain of words 
enters the third verse of Genesis." 

Dr. Googol nodded. "Okay, I am in the third verse." 
"On what word does your count end?" 
"God!" 
"Dr. Googol, consider my next question carefully. Your s o u l may depend on 

it. Does your answer prove that God exists and that the Bible is a reflection of 
u l t ima te reality?" 

# For the mind-boggling answer, see "Further Exploring." Your view of real-
ity will change as you embark on this shattering odyssey of self-discovery. 

C h a p t e r 5 

How Much Blood? 

Why does there seem to be something inhuman about regarding human 
beings like roses and refusing to make any distinction between the inside 

of their bodies and the outside? 
—Yukio Mishima 

Dr. Googol was lying in a hospital room, receiving a blood transfusion to 
rid him of a parasite he had recently picked up while exploring the Congo. 
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He began to wonder. . . What is the volume of human blood on Earth today? 
In other words, if all approximately 6 billion people from every country on 
Earth were drained of their blood by some terrible vampire machine, what size 
container would the machine require to store the blood? The answer to this is 
quite surprising. Think about it before reading further. 

The average adult male has about 6 quarts of blood, but a large part of the 
Earth's human population is women and children, so let's assume that each per-
son has an average of a gallon of blood. This gives 6 billion gallons of blood in 
the world. Given that there are 7.48 gallons per cubic foot, this gives us roughly 

4 800,000,000 cubic feet of h u m a n blood 4 

in the world. The cube root of this value indicates that all the blood in the world 
would fit in a cube about 927 feet on a side. To give you a feel for this figure, the 
length of each side of the base of the Great Pyramid in Egypt is 755 feet. The 
length of the famous British passenger ship SS Queen Mary was close to 1,000 
feet. The height of the Empire State Building, with antenna, is 1,400 feet. This 
means that a box with a side as long as the SS Queen Mary could contain the 
blood of every man, woman, and child living on Earth today. Most people would 
guess that a much bigger container would be needed. 

John Paulos, in his remarkable book Innumeracy, discusses blood volumes as 
well as other interesting fluid volumes, such as the volume of water rained down 
upon the Earth during the Flood in the book of Genesis. Considering the bibli-
cal statement "All the high hills that were under the whole heaven were covered," 
Paulos computed that half a billion cubic miles of water had to have covered the 
Earth. Since it rained for 40 days and 40 nights (960 hours), the rain must have 
fallen at a rate of at least 15 feet per hour. Paulos remarks that this is "certainly 
enough to sink any aircraft carrier, much less an ark with thousands of animals 
on board." 

# If all this talk about blood hasn't disturbed you too much, see "Further 
Exploring" for additional bloody challenges. 
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Where Are the Ants? 

The ants and their semifluid secretions teach us that pattern, pattern, 
pattern is the foundational element by which the creatures of the physical 

world reveal a perfect working model of the divine ideal. 
—Don DeLillo, Ratner's Star 

As a child, Dr. Googol had an "ant farm" consisting of sand sandwiched between 
2 plates of glass separated by several millimeters. When ants were added to the 
enclosure, they would soon tunnel into the sand, creating a maze of intricate 
paths and chambers. Since the space between the glass plates was very thin, con-
fining the ants to a 2-dimensional world, it was always easy to observe the ants 
and their constructions. Every day, Dr. Googol added a little food and water to 
the enclosure. 

As an adult, Dr. Googol brought an ant farm, schematically illustrated in Figure 
6.1, to his students. It had 3 chambers marked A, B, and C. Dr. Googol added 25 

ants to the upper area on top above 
the soil. He then covered the glass 
with a dark cloth and waited 25 
minutes. 

Dr. Googol looked at his class of 
attentive students. "Assuming that 
the ants wander around randomly, 
can any of you tell me in which 
chamber reside the most ants? How 
would your answer change if there 
were an additional tunnel connect-

6.1 An ant farm. After the ants randomly i n 8 chamber C t o A V 
walk for a few hours, where do you expect One of the students raised his 
the ants most likely to be: in chamber A, B, hand. "And what do we get if we 
or C? (Drawing by April Pedersen.) give you the correct answer?" 
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"A box of delicious chocolate-covered ants." 
"Not very appetizing," said a girl with a pierced tongue. 
Dr. Googol nodded. "Okay, to the students who get this correct and can 

explain their reasoning, I will give free copies of Dr. Cliff Pickover's phenomenal 
blockbuster Time: A Traveler's Guide." 

"All right!" the students screamed. With this special incentive, the students 
became excited and tried their best to predict the chamber holding the most 
ants. What is your prediction? 

0 For the solution, see "Further Exploring." 

C h a p t e r 7 

Spidery Math 

The structures with which mathematics deals are more like lace, the leaves 
of trees and the play of the light and shadow on a human face than they 

are like buildings and machines, the least of their representatives. 
—Scott Buchanan 

Dr. Googol has always been interested in spiderwebs, and he continually 
searches for beautiful specimens throughout the world. Spiderwebs come in all 
shapes, sizes, and orientations. The largest of all webs are the aerial ones spun by 
tropical orb weavers of the genus Nephila—they can grow up to 18 feet in cir-
cumference! 

Spiders sometimes make mistakes. Researchers have found that spiders under 
the influence of mind-altering drugs spin abnormal webs. Marijuana, for exam-
ple, causes spiders to leave large spaces between the framework threads and inner 
spirals. Spiders on benzedrine produce an erratic, seemingly unfinished web, and 
caffeine leads to haphazardly spun threads. 
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How does all this relate to a fascinating 
mathematical puzzle? One day while walk-
ing through the woods, Dr. Googol came 
upon a huge orb web more than a foot in 
diameter. As the sun reflected from its shiny 
surfaces, he developed this brain boggier. 

Consider a spider hallucinating under 
the influence of some drug. While spinning 
the web, the spider leaves certain gaps in it. 
In Figure 7.1, there are three gaps. Dr. 
Googol calls this simple web a (2, 2) web 
because it is made from 2 radial lines and 2 
circular lines. 

At each node (intersection) in the web, 
the spider constructs a little number that 
indicates the number of other nodes along 
the same radial line and circular line he 
would get to before being stopped by some-
thing—either a gap or an outer edge. In 
Figure 7.2 the spider has marked the top 
node 4, because as he slides down radially, 
he gets to 1 node before the gap, and as he 
slides circularly, he hits 3 other nodes—1 as 
he heads counterclockwise, and 2 in the 
clockwise direction. 

Figure 7.3 shows a (4, 3) web. The wife 
of the spider who spun it has come home, 
devoured her husband (as is the custom of 
some female spiders), and repaired the web. 
She has left his numbers in place as a 
reminder not to become romantically in-
volved with addicted spiders. Can you 
determine where the gaps in the web would 
have been located? 

Finally, "spider numbers" are defined as 
the sum of the numbers at each node in a 
web. For example, the (2, 2) web in Figure 
7.2 has a spider number of 44. Using just 4 
gaps, what are the smallest and largest spi-
der numbers you can produce for a (2, 2) 
web and a (4, 3) web? 

0 For solutions to this spidery prob-
lem, see "Further Exploring." 
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Lost in Hyperspace 

Imagination is more important than knowledge. 
—Albert Einstein 

Dr. Googol has invented numerous problems for the Star Trek scriptwriters. 
Many involve mathematical problems that test their understanding of space, 
time, and higher dimensions. Here's his favorite puzzle. 

Two starships, the Enterprise and the Excelsior, start at opposite ends of a cir-
cular track (Figure 8.1). When Captain Kirk 
says "go," the ships start to travel in opposite 
directions with constant speed. (In other 
words, one ship goes clockwise, the other 
counterclockwise.) 

From its departure point to the first time 
they cross paths, the Enterprise travels 800 
light-years. And from the first time they cross 
to the second time they cross, Excelsior travels 
200 light-years. With so little information, is 
it possible to determine the length of the 
track? Would your answer change if the track 
were another closed curve, but not a circle? 

# For a wonderful solution, see "Further 
Exploring." 

8.1 The starships Enterprise and 
Excelsior, before they start 
their journeys to where no man 
has gone before. 
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Along Came 
a Spider 

It's the sides of the mountain which sustain life, not the top. 
Here's where things grow. 

—Robert Pirsig, Zen and the Art of Motorcycle Maintenance 

Dr. Googol was in a Peruvian rain forest, 15 miles south of the beautiful Lake 
Titicaca, when he dreamed up this tortuous brain boggier. A month later, while 
in Virginia, Dr. Googol gave this puzzle to all CIA employees to help them 
improve their analytical skills. 

Three spiders named Mr. Eight, Mr. Nine, and Mr. Ten are crawling on a 
Peruvian jungle floor. One spider has 8 legs; one spider has 9 legs; one spider has 
10 legs. All of them are usually quite happy and enjoy the diversity of animals 
with whom they share the jungle. Today, however, the hot weather is giving them 
bad tempers. 

"I think it is interesting," says Mr. Ten, "that none of us have the same num-
ber of legs that our names would suggest." 

"Who the heck cares?" replies the spider with 9 legs. 
How many legs does Mr. Nine have? Amazingly, it is possible to determine 

the answer, despite the little information given. 

® ® ® 
Now for the second part of the puzzle. The same 3 spiders have built 3 webs. 
One web holds just flies, the other just mosquitoes, and the third both flies and 



20 © Wonders of Numbers 

mosquitoes. They label their 3 webs "flies," "mosquitoes," and "flies and mos-
quitoes." All 3 labels are incorrect. The insects are wrapped up tightly in web 
strands. How many insects does a spider have to unwrap to correctly label the 
webs? 

Please try to solve at least one of these tantalizing problems. If too difficult, 
draw diagrams and think about them with some friends. If you are a teacher, 
have students work on the puzzles in teams. Whatever you do, don't skip this 
problem and go to the next one. If you take this lazy approach, a live, 2-dimen-
sional spider will emerge from the tiny web, which the publisher's overworked 
typesetter has with luck placed right here: Ht 

U For a solution, see "Further Exploring." 

C h a p t e r 10 

Numbers beyond 
Imagination 

The study of the infinite is much more than a dry, academic game. The 
intellectual pursuit of the Absolute Infinite is a form of the soul's quest 
for God. Whether or not the goal is ever reached, an awareness of the 

process brings enlightenment. 
—Rudy Rucker, Infinity and the Mind 

For a human, there are gigaplex possible thoughts. [A gigaplex is the 
number written as 1 followed by a billion zeros.] 

—Rudy Rucker, Infinity and the Mind 

Dr. Googol sat on a sandy beach, typing on his notebook computer while down-
loading the results of his Big Number Contest via a satellite link to the Internet. 
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A few minutes ago, he had asked his fellow Web-heads to construct an expres-
sion for a very large number using only the following 8 symbols: 

1 2 3 4 ( ) . -

Each digit could be used only once. 
Within a half hour, a teenager in Florida came up with 43 — 12 = 52. (The 

expression 43 denotes exponentiation and is simply 4 x 4 x 4 . ) 
"Not bad for a start," Dr. Googol typed on his notebook computer. "Can 

anyone come up with a solution greater than 52?" 
Dr. Googol got up, stretched, and wiggled his toes in the sand. By the time he 

got back to his computer a gentleman from North Carolina had come up with 
3142. This huge number had 63 digits. 

"You can do better," Dr. Googol typed as his pulse rose with exponentially 
increasing anticipation. 

From various locations around the country came the reply 3421. It had 201 
digits! 

"Very good," he said, shaking with pleasure. 
A woman from New York exclaimed, "I take the prize wi th . l - 4 3 2 . It has 433 

digits!" 
"Excellent," he yelled aloud, although no one could hear him but the seagulls. 

A nearby bird quickly took to the sky. He typed back to the woman, "Good 
work. You recalled that a number raised to a negative power is simply 1 over 
the number raised to the positive value of the power. You also realized that to 
determine the number of digits in a number you simply take the log of the 
number and add 1. This means that . T 432 = 1/.1432= 10432. The log of 10 432 

is 432, and the number of digits is 433." 
Dr. Googol wondered: Is it possible to beat the woman's fantastic 433-digit 

answer? 

# For the world-record holder and more information on numbers too large 
to contemplate, see "Further Exploring." 
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Cupid's Arrow 

The mathematician may be compared to a designer of garments who is 
utterly oblivious of the creatures whom his garments may fit. 

To be sure, his art originated in the necessity for clothing such creatures, 
but this was long ago; to this day a shape will occasionally appear which 

will fit into the garment as if the garment had been made for it. 
Then there is no end of surprise and delight! 

—Tobias Dantzig 

It is Valentine's Day 2000. Dr. Googol is ambling along the Tiber River, watch-
ing the beautiful passersby and enjoying the crisp weather, when a sudden 
wrenching pain in his right atrium interrupts his stroll. As he clutches at his 
heart and falls to the ground, he has a vision of a peculiar man with wings and a 
bow who lands nearby. 

"Just trying out a new arrow my uncle Divisio, God of Arithmetic, gave me," 
the man says. Reaching toward Dr. Googol, the man pulls an arrow studded with 
5 disks out of Dr. Googol's chest 
(Figure 11.1). "Not like the old 
one, this," he continues, run-
ning his hand lovingly over the 
disks. "You get to choose who 
you want as your sweetheart if 
you can solve the puzzle." 

"Use the numbers 1 through 
9," the man tells Dr. Googol, 
"placing 1 digit in each of the 
circles according to the follow-
ing rule: Each pair of digits con-
nected by a line must make a 
2-digit number that is evenly 
divisible by either 7 or 13. For 
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example, 7 and 8 connected by a line would be appropriate because the number 
78 is divisible by 13. You can consider the 2 digits in either order, and no digit 
can be used more than once." 

"For every solution you find," the winged man adds before flying off, "you 
win someone's heart, if you can find a solution in which lines connect the top 
and bottom disks to the base at left as well, you will always be lucky in love. 
There are at least 5 hearts out there for you. Can you win the others?" 

0 For a solution, see "Further Exploring." 
[Editor's note: Dr. Googol shortly woke up from his fainting spell. Physicians 

pronounced his heart normal. His "heart pain" was diagnosed as severe indiges-
tion resulting from a recently eaten wasabi-pepperoni pizza.] 

C h a p t e r 12 

Poseidon Arrays 

Truly the gods have not from the beginning revealed all things to mortals, 
but by long seeking, mortals make progress in discovery. 

—Xenophanes of Colophon 

Poseidon arrays are those in which successive rows are equal to the first row mul-
tiplied by consecutive numbers. That's a mouthful! An example will help clarify 
this. The following pattern 

1 1 1 

2 2 2 

3 3 3 
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is such an array because the second row is twice the first, and the third row is 3 
times the first. Dr. Googol began to wonder if there were similar Poseidon arrays 
where each digit is used only once. After much thought, he discovered 

1 9 2 

3 8 4 

5 7 6 

Notice that 384 is twice the number in the first row, and that 576 is 3 times 
the number in the first row. Are there other ways of arranging the numbers to 
produce the same result, using each digit only once and the same rules? 
Remember, the second row must be twice the first. The third row must be 3 
times the first row. 

# For a solution and additional speculation, see "Further Exploring." 

C h a p t e r 13 

Scales of Justice 

The popular image of mathematics as a collection of precise facts, 
linked together by well-defined logical paths, is revealed to be false. 

There is randomness and hence uncertainty in mathematics, just 
as there is in physics. 

—Paul Davis, The Mind of God 
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Dr. Googol was trapped in the laboratory of a crazy Egyptian entomologist. 
All manner of beetles and bugs flew within jars, climbed the walls, and dangled 
from the ceiling. 

"This is sick," Dr. Googol screamed. 
"Sick?" the scientist said. "I'll show you sick." 
He went to a piece of paper on the table where he had cutouts of his favorite 

insects. He placed the cutouts on schematic drawings of scales. For example, on 
the first scale 2 ants were in one pan and exactly balanced a grasshopper and 
wasp in the other pan: 

Ant Ant Grasshopper Wasp 

Ant Cockroach | Grasshopper 

Cockroach | ? 

"The first 2 sets of scales are in balance," he said while popping a few ants 
into his mouth as a snack. "I want you to assign values to the insects' weights and 
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tell me which insect or sets of insects replaces the empty side of the third scale in 
order to balance it. Each insect species is of a different weight. Assume that the 
cockroach is balanced by some collection of insects." 

Can you help Dr. Googol solve this puzzle and win his release? What strategy 
did you use? 

$ For a solution, see "Further Exploring." 

C h a p t e r 14 

Mystery Squares 

He calmly rode on, leaving it to his horse's discretion to go which way it 
pleased, firmly believing that in this consisted the very essence of adventures. 

—Cervantes, Don Quixote 

Dr. Googol has placed the numbers 1,2,3, and 4 at the corners of a square. Can 
you try to arrange 5, 6, 7, 8, 9, 10, 11, and 12 along the sides of the square so 
that the numbers along each side all add up to the same number? (If you don't at 
least try to solve this intriguing enigma, Dr. Googol may visit you at home—not 
entirely pleasant, since Dr. Googol doesn't stop talking and posing problems.) 

Below is an example where the sums are all unequal. For instance, the top row 
adds up to 18, and the left column adds up to 16. (Notice the 1, 2, 3, and 4 at 
the corners.) 

1 7 8 2 

6 <) 

5 10 

4 11 12 3 
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H o w many solutions can you find in which the numbers along each side add 
up to the same sum? Remember, the numbers 1, 2, 3, and 4 are to remain fixed 
in place. 

0 For a solution, see "Further Exploring." 

C h a p t e r 15 

Quincunx 

We think of the number "five" as applying to appropriate groups of any 
entities whatsoever—to five fishes, five children, five apples, five days. . . . 
We are merely thinking of those relationships between those two groups 
which are entirely independent of the individual essences of any of the 
members of either group. This is a very remarkable feat of abstraction; 

and it must have taken ages for the human race to rise to it. 
—Alfred North Whitehead 

Applications, computers, and mathematics form a tightly coupled system 
yielding results never before possible and ideas never before imagined. 

—Lynn Arthur Steen 

The enormous usefulness of mathematics in natural sciences is something 
bordering on the mysterious, and there is no rational explanation for it. It 
is not at all natural that "laws of nature" exist, much less that man is able 
to discover them. The miracle of the appropriateness of the language of 

mathematics for the formulation of the laws of physics is a wonderful gift 
which we neither understand nor deserve. 

—Eugene P. Wigner, "The Unreasonable Effectiveness 
of Mathematics in the Natural Sciences" 

Five is Dr. Googol's favorite number, and 5-fold symmetry is his favorite sym-
metry. Would you care for a barrage of mathematical trivia befit t ing only the 
most ardent mathophiles? 
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© Not only is 5 the hypotenuse of the smallest Pythagorean triangle, but it is 
also the smallest automorphic number. Let me explain. A Pythagorean trian-
gle is a right-angled triangle with integral sides. For example, the smallest 
Pythagorean triangle has side lengths 3, 4, and 5. An automorphic number 
w, when multiplied by itself, leads to a product whose rightmost digits are 
n. Not counting the trivial case of the number 1, 5 and 6 are the smallest 
automorphic numbers because 5 x 5 = 25 and 6 x 6 = 36. Examining a 
larger number, the square of 25 is 625. Note that 25 appears as the final 2 
digits of 625. 

© Five is probably the only odd untouchable number. (The legendary and 
bizarre mathematician Paul Erdos called a number "untouchable" if it is 
never the sum of the proper divisors of any other number. The sequence of 
untouchable numbers starts 2, 5, 52, 88, 96, 120. A "divisor" of a number N 
is a number d which divides N; it's also called a factor. A "proper divisor" is 
simply a divisor of a number N excluding TV itself.) 

© Also, there are 5 Platonic solids. (The 5 Platonic solids are the tetrahedron, 
cube, octahedron, dodecahedron, and icosahedron. All the faces of a 
Platonic solid must be congruent regular polygons.) 

© The word quincunx is the name for the pattern 

on a die, and it involves both 5 and 1. It's also the name for a particular type 
of 5-domed cathedral, like St. Mark's Cathedral in Venice. (Certain Khmer 
temples in Southeast Asia also use this configuration.) 

Dr. John Lienhard of the University of Houston points out to Dr. Googol 
that most 19th-century forts were square or pentagonal (Figure 15.1), with "bas-
tions" on each corner that gave the old forts the shape of great stone 
"snowflakes." (Bastions are spade-shaped widenings of the corners that let 
defenders fire parallel to the walls.) 

Fort Sumter was 5-sided and sat on the tip of an island in Charleston Bay. 
(The first engagement of the Civil War took place at Fort Sumter, and in a few 
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years most of the fort was reduced 
to brick rubble.) Water came right 
up to 4 of its walls. Only the fifth 
wall needed the protection of bas-
tions. Dr. Lienhard suspects that 5 
was a typical solution to the problem 
of placing bastions close enough 
together without increasing the costs 
of construction and manning the 
walls. 

® ® ® 

15.1 A typical early 19th-century pentag-
onal fortification. (From the 1832 
Edinburgh Encyclopedia.) 

Five occurs in the symmetry of 
several creatures in science-fiction 
literature. For example, Naomi 
Mitchisons Memoirs of a Spacewoman 
describes "Radiates," intelligent 5-
armed creatures resembling starfish 
(Figure 15.2). They live in villages 
composed of long, low buildings dec-
orated with fungi that grow in spiral 
patterns. Radiates don't think in 
terms of dualities, having instead a 5-
valued system of logic. 

Five-fold symmetrical organs are 
sometimes described in science-fic-
tion stories. For example, the Old 
Ones in H. P. Lovecraft's At the 
Mountains of Madness are incredibly 
tough and durable creatures, having 
characteristics of both plants and ani-
mals. They also possess an extraordi-
nary array of senses to help them 
survive. Hairlike projections and eyes 
on stalks at the top of their heads permit vision. The colorful, prismatic hairs 
seem to supplement the vision of the eyes, and in the absence of visible light, the 
species is able to "see" using the hairs. Their complex nervous system and 5-
lobed brains process senses other than the human ones of sight, smell, hearing, 
touch, and taste. When the Old Ones open their eyes and fully retract their eye-
lids, virtually the entire surface of the eye is apparent. 

15.2 A Radiate from Naomi Mitchison's 
novel Memoirs of a Spacewoman. 
(Drawing by Michelle Sullivan.) 

KOUTI RT r AT] A*. 

® ® ® 
The number 5 is also remarkable for its appearance in Earthly biology and in art. 
Five-fold symmetry in biology is fairly common, as evidenced by a variety of 
animal species such as the starfish and other invertebrates. Five-fold symmetry 
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15.3 Several terra-eotta inlays from the smaller dome 
chamber of the Masjid-i-Jami in Isfahan (A.D. 1088). 

r P v 
15.4 The 5-pointed Star 
of Bethelehem. 

15.5. Badge from the 
Leicester family. 

A , 

15.6. Several Japanese crests exhibiting 5-fold 
symmetry. 

also appears in mathematics; for example, in numerous uniform polyhedra. Five-
fold symmetry is relatively rare, however, in the art forms produced by humans. 
Perhaps partly because pentagonal motifs do not tightly pack on the plane, they 
are much rarer than other symmetries in historic and artistic ornament. 
Nevertheless, there are occasional interesting examples of pentagonal ornaments 
in artistic symbols and designs. The oldest and most important examples of 5-
fold symmetry and odd-number symmetry are the 5-pointed star and triangle, 
first used in cave paintings and in the Near East since about 6000 B.C. Since then 
they have been used in sacred symbols by the Celts, Hindus, Jews, and Moslems. 
Later (circa 10th century A.D.) the 5-pointed star was adopted by medieval 
craftspeople such as stonecutters and carpenters. In the 12th century, it was 
adopted by magicians and alchemists. 

® ® ® 
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15.7 Pentagon with Fishes, by Peter 1 5 8 Tropical Fishes, by Peter 
Raedschelders. Raedschelders. 

To begin this picture essay, Dr. Googol invites you to consider some of the 
Persian designs and motifs with pentagonal symmetry. Over the centuries, Persia 
(Iran) has been periodically invaded, and elements of the invading cultures were 
incorporated into the native artistic traditions. Much of Persian art contains 
highly symmetrical designs. Examples of symmetrical ornaments appear on silk 
weaves, printed fabrics, carpets, ceramics, stone, and calligraphy. Occasionally, 
we find a 5-fold symmetrical design in Persian ornament. Figure 15.3 shows 
terra-cotta inlays from the smaller dome chamber of the Masjid-i-Jami in Isfahan 
(A.D. 1 0 8 8 ) . 

Religious symbols sometimes contain pentagonal symmetry; an example, 
shown in Figure 15.4, is the 5-pointed Star of Bethelehem. Various symmetrical 
designs have also appeared in heraldic shapes. In the Middle Ages these designs 
on badges, coats of arms, and helmets generally indicated genealogy or family 
name. Figure 15.5 shows a badge from the Leicester family. The Japanese also 
had similar family symbols for the expression of heraldry. The family symbol, or 
mon, was known in Japan as early as A.D. 900 and reached its highest develop-
ment during feudal times. Figure 15.6 shows several Japanese crests containing 
5-fold symmetry. These kinds of crests are found on many household articles, 
including clothing. 

Symmetrical ornaments, such as those in this chapter, have persisted from 
ancient to modern times. The different kinds of symmetry have been most fully 
explored in Arabic and Moorish design. The later Islamic artists were forbidden 
by religion to represent the human form, so they naturally turned to elaborate 
geometric themes. To explore the full range of symmetry in historic ornament, 
you may wish to study the work of Ernst Gombrich, who discusses the psychol-
ogy of decorative art and presents several additional examples of 5-fold symmetry. 

Finally, Belgian artist Peter Raedschelders frequently uses 5-fold symmetry in 
his art, and several of his recent works are presented here (Figures 15.7-15.10). 
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One of his passions is to deter-
mine mathematically interesting 
ways to pack regular pentagons 
with fish and snakes (Figures 
15.7-15.9). He enjoys the chal-
lenge because other artists often 
shy away from the difficult pack-
ing of a pentagon. Notice that the 
snakes are moving along a 
strangely shaped single surface. 
Figure 15.10 illustrates a train 
that is able to ride along the vari-
ous seemingly planar surfaces of 
this weird star. Hop on, and take a 
long, exciting ride! 

15.10 Train, by Peter Raedschelders. 
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Jerusalem Overdrive 

Who carved the nucleus, before it fell, into six horns of ice? 
—Johannes Kepler 

Dr. Googol was in Jerusalem, overseeing the construction of a new multidenom-
inational religious center that would house prayer rooms for the 3 major reli-
gions: Judaism ($), Christianity (fl1), and Islam (G). To make it more difficult 
for terrorists to bomb any single religious group, and to minimize religious con-
flicts, the architect is to design the center as a 3-by-3 matrix of prayer rooms so 
that (when viewed from above) each row and column contains only 1 prayer 
room of a particular religious denomination. An aerial view of the religious cen-
ter looks like a tic-tac-toe board in which you are not permitted to have 2 of the 
same religions in any row or column. Is this possible? 

The following is an arrangement prior to your attempt to minimize conflict: 

•a* •a- ft 

G G G 
For a second problem, consider that you must place the prayer rooms so that 

each row and column contains exactly 2 religions. Is this possible? 
You can design a computer program to solve this problem by representing the 3 

religions as red, green, and amber squares in a 3-by-3 checkerboard. The program 
uses 3 squares of each color. Have the computer randomly pick combinations, and 
display them as fast as it can, until a solution is found. The rapidly changing ran-
dom checkerboard is fascinating to watch, and there are quite a lot of different pos-
sible arrangements. In fact, for a 3-by-3 checkerboard there are 1,680 distinct 
patterns. If it took your computer 1 second to compute and display each 3-by-3 
random pattern, how long would it take, on average, to solve the problem and dis-
play a winning solution? (There is more than 1 winning solution.) 

0 For a solution, and more on religious patterns and magic squares, see 
"Further Exploring." 
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The Pipes of Papua 

In Samoa, when elementary schools were first established, the natives 
developed an absolute craze for arithmetical calculations. They laid aside 
their weapons and were to be seen going about armed with slate and pen-
cil, setting sums and problems to one another and to European visitors. 

The Honourable Frederick Walpole declares that his visit to the beautiful 
island was positively embittered by ceaseless multiplication and division. 

—T. Briffault 

I like that abstract image of life as something like an efficient factory 
machine, probably because actual life, up close and personal, seems 
so messy and strange. It's nice to be able to pull away every once in 

awhile and say, "There's a pattern there after all! I'm not sure 
what it means, but by God, I see it!" 

—Stephen King, Four past Midnight 

Late last autumn, while enjoying the brisk New England air, Dr. Googol took a 
walk with Omar Khayyam, his octogenarian friend. Omar whispered a tale 
about his buddies who had once explored Papua New Guinea in the southwest-
ern Pacific Ocean. Dr. Googol should tell you right up front that he can never be 
certain as to the accuracy of Omar's tales. During the past 10 years his stories 
have evolved into highly embellished tales, composed of myth and truth, per-
haps more of the former than the latter, depending on his mood. Whatever the 
case, Dr. Googol recounts his colorful story here and lets you decide about the 
authenticity of Omar's old recollections. 

Omar's friends were camping on a riverbank when they heard strange flutes or 
wooden pipes. There was a certain rhythm to the pipes, but the tones never quite 
repeated themselves. Occasionally a drum seemed to beat the same rhythm. A 
few men explored the surrounding bush but, even after much searching, never 
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succeeded in locating the source of the sounds. Sometimes the sounds seemed to 
come from the north, at other times from the east. 

The sounds emanated from a 2-tone pipe. Edward Fitzgerald was one of the 
explorers on the journey, and he was sufficiently interested in this peculiar phe-
nomenon to record it in his tattered notebook, using & and to represent the 
long and short tones he heard. Luckily the pipe sounds were slow enough to allow 
the explorer to accurately record the rhythmic pattern. The first few entries were: 

Then the player would pause for a minute and then start again. On the next 
line of the notebook were the drawings: 

The notebook contained several pages of these symbols. By midnight, the 
pages of the notebook were exhausted. 

Years later, Omar came into possession of the notebook from Fitzgerald, who 
croaked, "It's the strangest thing ye ever heard. It ain't exactly irregular and it ain't 
exactly regular, either." Omar, who has some mathematical training, spent many 
days examining the pages of & and symbols. His conclusion was startling. 

Dr. Googol and Omar continued their walk in the cool night air. Suddenly, 
Omar stopped dead in the middle of the sidewalk under an amber streetlight. He 
looked Dr. Googol in the eye. "You might not believe this, but that strange pat-
tern of b and symbols turned out to be a well-known, exotic pattern of binary 
numbers called the Morse- Thue sequence—it's visually represented with a string 
of Os and Is." Omar went on to explain that the sequence is named in honor of 
the Norwegian mathematician Axel Thue (1863-1922) (pronounced "tew") and 
Marston Morse of Princeton (1892-1977). Thue introduced the sequence as an 
example of a nonperiodic, recursively computable string of symbols—a phrase 
that should become clear to you in the following discussion. Morse did further 
research on the sequence in the 1920s. 

There are many ways to generate the Morse-Thue sequence. One way is 
to start with a 0 and then repeatedly do the following replacements: 0 - ^ 0 1 and 
1 10. In other words, whenever you see a 0 you replace it with 01. Whenever 
you see a 1 you replace it with 10. Starting with a single 0, we get the following 
successive "generations": 

0 
0 1 
0 1 1 0 
0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
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Try generating this with a pencil and paper. You begin with 0, and replace it 
with 01. Now you have a sequence of two digits. Replace the 0 with 01 and the 
1 with 10. This produces the sequence 0110. The next binary pattern is 
01101001. Notice that 0110 is symmetrical, a palindrome, but the next pattern, 
01101001, is not. But hold on! The very next pattern, 0110100110010110, is a 
palindrome again. Does this pattern continue to hold for alternate sequences? 
The mysteries of this remarkable sequence have only begun. 

Notice that the fourth line of the sequence can translate into the 
^ f ^ ^ ^ f ^ 1 ^ 1 ^ ^ sounds in Omars story if you let represent 0 and b repre-
sent 1. Amazing! 

You can generate the pipe sequence in another way: each generation is 
obtained from the preceding one by appending its complement. This means that 
if you see a 0110 you append to it a 1001. There is yet a third way to generate 
the sequence. Start with the numbers 0, 1, 2, 3, . . . and write them in binary 
notation: 0, 1, 10, 11, 100, 101, 110, 111, . . . . (Binary numbers are explained 
in detail in the "Further Exploring" for Chapter 21. Hop there now if you need 
background information.) Now calculate the sum of the digits modulo 2 for 
each binary number. That is, divide the number by 2 and use the remainder. For 
example, the binary number 11 becomes 2 when the digits are summed, which is 
represented as 0 in the final sequence. This yields the sequence 0, 1, 1, 0, 1, 0, 0, 
1, . . . , which is the same sequence yielded by the other methods! 

Let Dr. Googol tell you why this sequence is so fascinating. For one, it is self-
similar. This means you can take pieces of the sequence and generate the entire 
infinite sequence! For example, retaining every other term of the infinite 
sequence reproduces the sequence. Try it. Similarly, retaining every other pair 
also reproduces the sequence. In other words, you take the first 2 numbers, skip 
the next 2 numbers, etc. Also, the sequence does not have any periodicities, as 
would a repetitious sequence such as 00, 11, 00, 11. However, although aperi-
odic, the sequence is anything but random. It has strong short-range and long-
range structures. For example, there can never be more than 2 adjacent terms 
that are identical. One method for finding patterns in a sequence, the Fourier 
spectrum, shows pronounced peaks when used to analyze the sequence. Using 
this mathematical method, you can make a graph showing the frequencies in the 
data plotted versus position in the sequence, with the more intense frequency 
components shown in the third dimension, or more simply as a darker point on 
a 2-dimensional graph. 

The sequence grows very quickly. The following is the sequence for the eighth 
generation. 

0110100110010110100101100110100110010110011010010110100110 
0101101001011001101001011010011001011001101001100101101001 
0110011010011001011001101001011010011001011001101001100101 
1010010110011010010110100110010110100101100110100110010110 
011010010110100110010110 
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0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 
1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 
1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 
0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 
0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 
0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 
1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 
0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 
0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 
1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 
1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 
0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 
1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 
0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 
1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 
1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 
0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 
0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 
0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 
1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 
0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 
0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 
1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 
0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 
0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 
0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 
1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 
0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 
1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 
0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

Table 17.1 A Morse-Thue sequence for the 11th generation. 

Table 17.1 shows the sequence for the eleventh generation. Sometimes certain 
patterns emerge when a sequence is stacked up on itself in this manner. Can you 
see any patterns here? Another way to represent the Morse-Thue sequence is to 
redraw it as a "bar code" of sorts, placing vertical lines wherever a 1 occurs and 
skipping a space wherever a 0 occurs. To make the positions of " 11" entries clear 
to the human eye, wherever two Is appear consecutively, try joining them by 
short ladder-like steps. Dr. Googol also likes to draw the Morse-Thue sequence 
with botanical shapes. Here the Is are replaced by flowers and the 0s by spaces: 



38 © Wonders of Numbers 

0110100110010110100101100110100110010110011010010110100 
1100101101001011001101001011010011001011001101001100101 
1010010110 

The diagram looks even better when tall trees are used. Can you arrange the 
rows and columns in a way that better reveals the sequence's patterns? What 
would it be like to walk through this strangely spaced forest? Imagine holding 
the hand of someone you love as you explore an infinite Morse-Thue forest that 
stretches for as far as your eye can see. 

$ For more on the musical qualities of these patterns, see "Further 
Exploring." 

S For computer hints, see [www.oup-usa.org/sc/0195133420]. 

C h a p t e r 18 

The Fractal Society 

I believe that scientific knowledge has fractal properties, that no matter 
how much we learn, whatever is left, however small it may seem, is just as 

infinitely complex as the whole was to start with. That, I think, 
is the secret of the Universe. 

—Isaac Asimov, I, Asimov. 

God gave us the darkness so we could see the stars. 
—Johnny Cash, "Farmer's Almanac" 

Dr. Googol belongs to a group of mathematicians who meet each month in a 
secret club. Status in their Fractal Society is based on the prowess with which an 
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18.1 Fractal Fantasies playing board (degree 2). 

individual plays mathematical games and proves mathematical theorems. The 
center of such activity is a building called the Imaginarium, which is shaped like a 
Mandelbrot set. There are various pleasurable rewards bestowed upon club mem-
bers in proportion to the novelty of theorems they solve. Dr. Googol's favorite 
society game is called Fractal Fantasies. 

The playing board for the Fractal Fantasies is a fractal nesting of intercon-
nected rectangles. (Figure 18.1). Dr. Googol is so enthralled with this game that 
he has cut the design into the roofing slabs of his home and the surface of his 
kitchen table. The board for Fractal Fantasies contains rectangles within rectan-
gles interconnected with dashed lines as shown in Figure 18.1. There are always 
two rectangles within the rectangles that encompass them. The degree of nesting 
can be varied. Beginners play with only a few nested rectangles, while grand mas-
ters play with many recursively positioned rectangles. Tournaments last for days, 
with breaks only for eating and sleeping. The playing board illustrated in Figure 
18.1 is called a "degree 2" board, because it has two different sizes of rectangles 
within the large bounding rectangle. Beginners usually start with a degree 1 
board, and grand masters have been known to use a degree 20 board. One player 
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uses white playing pieces (like stones); the other uses black. Each player starts 
with a number of pieces equal to half the number of vertices (dots) on the board 
minus 2. For the board here, each player gets 19 stones. With alternate moves, the 
players begin by placing a stone at points on the black dots that are empty. As 
they place stones, each player attempts to form a row of 3 stones along any 1 of 
the horizontal sides of any rectangle. This 3-in-a-row assembly of stones is called 
a Googol. When all the stones have been placed, players take turns moving a piece 
to a neighboring vacant space along one of the dashed or straight connecting 
lines. When a player succeeds in forming a Googol (either during the alternate 
placement of pieces at the beginning of the game, or during alternate moves along 
lines to adjacent empty points), then the player captures any 1 of the opponents 
pieces on the board and removes it from the board. These removed stones may be 
kept in star-shaped receptacles represented by the black stars at the top and bot-
tom of the board in Figure 18.1 (In some versions of the game, an opposing stone 
cannot be taken from an opposing Googol.) A player loses when he or she no 
longer has any pieces or cannot make a move. 

Mathematicians and philosophers will no doubt spend many years ponder-
ing a range of questions, particularly for boards with higher nesting. Computer 
programmers will design programs allowing the board to be magnified in differ-
ent areas, permitting convenient playing at different size scales. They'll all wish 
they had fractal consciousnesses allowing the contemplation of all levels of the 
game simultaneously. 

Many of Dr. Googol's dearest friends have spent years of their lives ponder-
ing the following questions relating to Fractal Fantasies. No one has succeeded 
in answering these questions for games with degree higher than 2. Various 
centers have been established and funded in order to answer the following 
research questions: 

1. What is the maximum number of pieces that can be on the board without 
any forming a row? 

2. Is there a best opening move? 

3. If the large bounding square has a side 1 foot in length, and each successive 
generation of square has a length 1/6 of the previous, what is the total length 
of lines on the board? 

4. If a spider were to start anywhere on the board and walk to cover all the 
lines, what would be the shortest possible route on the board? 

5. How many positions are possible after 1 move by each player? 

6. How large would a degree 100 board have to be in order for the smallest 
squares to be seen? How many playing pieces would be used? What length of 
time would be required to play such a bizarre game? 

# For reader comments, see "Further Exploring." 
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The Triangle Cycle 

The mathematical rules of the universe are visible to men 
in the form of beauty. 

—John Michel 

Dr. Googol spends long hours contemplating a number puzzle called the 
Triangle Cycle. The puzzle begins with that simple shape of geometry—the tri-
angle—and soon becomes fiendishly complex. Place a single digit at each corner 
of a triangle so that the lines that connect adjacent digits create 2-digit numbers 
that are multiples of either 7 or 13. 
(The 2-digit number needs to be a 
multiple in only 1 direction.) For 
example, a line connecting 1 and 9 
is valid because you can read it as 19 
or 91, and 91 equals 1 3 x 7 . We can 
make a triangle starting with these 
two digits by putting a 3 in the third 
corner, as seen in Figure 19.1a. One 
of these lines connects 1 and 3, 
forming the number 13 (13 times 
1), while the other connects 3 and 9, 
forming 39 (13 times 3). 

But the puzzle is far from over. 
Draw a new triangle inside the first, 
with its corners cutting the sides of 
the larger triangle in half. Now pick 
3 more numbers for the new cor-
ners. Be careful: you've actually cre-
ated 4 triangles, and each has to 
obey the rules outlined above. 

19.1 Playing board for the Triangle Cycle game, 
(a) A starting position, (b) Triangles within 
triangles, (c) A cycle 1 solution, (d) A cycle 
2 solution 
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The easiest solution uses the same 3 numbers (see Figure 19.1b). Let's first 
take a look at the 6 lines that make up the outer triangle. In clockwise order 
starting from the top corner, they form the following valid numbers: 39, 91, 13, 
39, 91, and 13. On the inner triangle, counterclockwise from the top left corner, 
the numbers are 13, 39, and 91. 

You can draw a third triangle inside the second that is a copy of the first, as 
shown in Figure 19. lc—and a fourth and a fifth and so on until infinity. The tri-
angles flip up and down (A V A V . . . ) forever. Dr. Googol likes to call this a 
cycle 1 solution because it can repeat the same triangle forever. A cycle 2 solu-
tion, on the other hand, flips back and forth between two different triangles; 
Figure 19. Id shows one example. 

A cycle 4 solution, as you might expect, uses 4 different triangles. Can you 
figure 1 out? Can you find higher cycles? 

0 For a solution and additional challenges, see "Further Exploring." 

C h a p t e r 20 

iQ-Block 

Even if the rules of nature are finite, like those of chess, might not science 
still prove to be an infinitely rich, rewarding game? 

—John Morgan, Scientific American 267(6), 1992. 

An interesting example of cultural contamination occurred in a secluded 
West African valley when Dr. Googol left behind a mathematical puzzle called 
IQ-Block (manufactured by Hercules, designated as Item No. P991A, UK 
Registered No. 2013287, and made in Hong Kong). The puzzle, schematically 
illustrated in Figure 20.1, consists of 10 brightly colored polygonal pieces of 
plastic. The 10 pieces fit together to form a square. Only 1 piece is shaped like a 
rectangle. The others are more complex. One is shaped like a Z. The remainder 
are /--shaped. To play IQ-Block, first choose a shape you like, place it in the 
upper left, and do not change its position as you try to place the other 9 blocks 
into the remaining space on the square playing board. The manufacturer boasts, 
"There are more than 60 different kinds of arrangements" of pieces that will fill 
in the square playing board. The company also states, "It is an incredible game. 
Join us in challenging your IQ." 
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' • I I I I I I 
20.1. IQ-Block. Scramble the puzzle pieces and see if your 
friends can put them together again in a square. Is there 
more than 1 way to do this? 

After the natives found IQ-Block protruding from the jungle floor in the 
Congo, they quickly translated the playing manual and passed out copies to all 
members of their local clan. They began to study the game and hold tourna-
ments. During these tournaments, masters attempted to form as many possible 
different arrangements of pieces within the bounding square as possible before a 
10-minute alarm rang. 

Here are some challenges and digressions: 

© The manufacturer of IQ-Block boasts that there are over 60 different ways 
of placing the pieces together to form a square. Is this correct? Just how 
many different arrangements are there? Some Congo philosophers argued 
that there are only 10 different unique arrangements, while others asserted 
that there are over 1000 ways of solving the puzzle! Who is closer to the 
truth? 

© On a particularly frigid evening, in a fit of frustration, a master at the game 
swallowed a polygonal playing piece to prevent his opponent from finding 
any solutions. Their glistening eyes locked in open warfare. Suddenly a 
blush of pleasure rose to his opponent's cheeks—and she then created a 
square of slightly smaller dimensions. Can you create a square after remov-
ing a piece, using all the remaining pieces? 
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® After giving this puzzle to 5 friends, Dr. Googol found that none could cre-
ate a square by arranging the 10 pieces. So, even if there are "60 different 
ways" of solving this, you should not despair if the task seems too difficult. 
Try IQ-Block on your friends, colleagues, children, and students to see if 
any can even find a single way of arranging the pieces to form a square. Dr. 
Googol looks forward to hearing from you regarding this intriguing puzzle. 

0 For a solution and additional challenges, see "Further Exploring." 

C h a p t e r 21 

Riffraff 

The ratio of the height of the Sears Building in Chicago 
to the height of the Woolworth Building in New York is the same to 
four significant digits (1.816 vs. 1816) as the ratio of the mass of a 

proton to the mass of an electron. 
—John Paulos, Innumeracy 

After weeks of searching, Dr. Googol has finally found a beautiful, spacious, low-
rent apartment with French doors and a southern exposure. But on his first 
night, he discovers a slight disadvantage: all the apartments surrounding his are 
filled with musicians who practice only after the sun goes down. Not only can't 
Dr. Googol sleep, but each musician plays the most unmelodious pattern. Above 
him is the maniacal mathematical trumpeter Fermats Navarro. Every night he 
plays the same thing. He starts with a long note (shown on the next page as a ©), 
then plays a long note followed by a short blast (shown on the next page as a ©), 
and then plays a longer phrase of long and short blasts, continuing through the 
night, each phrase longer than the last: 
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© 
©© 
©©©© 
©©©©©©©© 
©©©©©©©©©©©©©©©© 

Below Dr. Googol is the similarly maniacal trombone player Curtis Euler. He 
jams his fist into the mouth of the trombone to create normal and muted sounds 
symbolized by (when the trombones mouth is open) and • (when his fist 
closes the opening). The odious melody grows ever longer: 

The apartment to the east of Dr. Googol's is occupied by violinist Itzhak 
Pythagoras. He plays his seemingly random riff of short and long notes over and 
over again: 

e ® ® e ® e ® e e e ® e ® e e e ® e ® e e e ® e e e e 
e ® e ® e e e e e ® e e e ® e ® e . . . 

This can be represented as a string of Os (long notes) and Is (short notes): 

01101010001010001010001000001010000010001010 . . . 

On the west side is the great saxophonist Hank Mobius. He plays a run of 
77 notes, then a run of 49, then one of 36 (J^ j f l j 3 j 3 j 3 j a j 3 j f l j 3 j a j a j 3 
ja J3 ja js j3 J3), one of 18 ( j a j S j i j S j i j S j a j f l j f l ) , and finally one of 8 
(fi fifi J3). 

After a week without sleep, Dr. Googol goes to all his neighbors and asks 
them if they could play during the day. They all give him the same response: "If 
you can figure out the pattern in my playing, I'll stop playing at night." 

Can you help Dr. Googol with his very difficult problem? If you are a teacher, 
have your students work in teams. 

0 For solutions to these difficult problems, and for more odd and challeng-
ing number sequences, see "Further Exploring." 
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Klingon Paths 

The advancement and perfection of mathematics are intimately con-
nected with the prosperity of the State. 

—Napoleon 

Dr. Googol was watching Star Trek on television when he invented this grue-
some puzzle. This grid of numbers is Klingon City, and it's a tough place to live. 
Each Klingon inhabiting this world carries a bomb worn at the hip as a testa-
ment to his courage. As a Klingon walks through the grid of squares, the first 
time he comes in contact with a number, his bomb receives a signal; if the bomb 

6 8 18 15 24 20 2 20 

6 2 15 2 17 15 3 7 

0 11 18 16 20 15 1 11 

6 2 6 13 4 17 20 16 

5 12 7 2 3 5 18 23 

7 13 3 2 2 11 4 23 

16 23 10 2 4 12 5 10 

17 12 10 1 13 12 6 20 
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is exposed to that number a second time, the bomb explodes and the Klingon 
dies. Klingons, being brave warriors, never show fear—in fact, they love the bru-
tal challenge of the game. 

A Klingon can walk on any square in Klingon City and can move horizontally 
or vertically but not diagonally. What is the longest path the Klingon can take 
without dying? Remember, the Klingon must wander around while trying to 
avoid numbers encountered previously—otherwise the Klingon explodes. 

0 For the solution and additional challenges, see "Further Exploring." 
S For a computer program to study this class of puzzles, see [www.oup-

usa.org/sc/0195133420]. 

C h a p t e r 23 

Ouroboros Autophagy 

Blindness to the aesthetic element in mathematics is widespread and can 
account for a feeling that mathematics is dry as dust, as exciting as a 

telephone book. . . . Contrariwise, appreciation of this element makes the 
subject live in a wonderful manner and burn as no other creation of the 

human mind seems to do. 
—Philip J. Davis and Reuben Hersh, The Mathematical Experience 

Ouroboros, the mythical serpent always seen chewing or swallowing its own tail, 
is a symbol of growth, destruction, and the cyclic nature of the universe. Our 
Ouroboros is made up of 13 sections, each of which houses a number (Figure 
23.1). Wrapped inside the outer serpent, which contains the numbers 0 through 
12, are 4 generations of circular serpents, each also marked by 13 sections. These 
sections, though, do not have their numbers yet. You must use the numbers in 
the first (outer) serpent to find the numbers in the second, the numbers in the 
second to find those in the third, and so on. Here's how it works: The number 
you put in the first section of the second serpent will indicate the total number 
of Os to be found among the second serpent's sections. The section below the 1 
of the first serpent indicates the total number of Is in the second serpent. The 
section below the 2 indicates the total number of 2s in the second serpent, and 
so on. For example, the 3 in the section below the 0 of the first serpent would 
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23.1 Each Ouroboros is made of 13 sections containing a number. (The concentric 
snakes get smaller and smaller as they progress toward the middle of the figure.) 

indicate that there must be exactly 3 zeros in the second serpent (but there's no 3 
in that position in the real answer). 

Use the second serpent to find the numbers in the third. The number in the 
section under our fictional 3 would indicate how many 3s appear in the third 
serpent. When you've found all the numbers in the third serpent, use them to 
figure out the number in the fourth, then use the fourth serpent to solve the 
fifth. Eventually Ouroboros will begin to cycle with the same 2 sets of numbers. 
How many serpents does it take before it begins to cycle? 

What would happen if each serpent were made up of 10 sections, the first 
with the numbers 0, 1,2, 3, 4, 5, 6, 7, 8, 9? What if each serpent were made of 
20 sections, the first with the numbers 0 to 19? A hundred sections, numbers 0 
to 99? How about 0 to 5? What if the outer serpent's numbers were 1, 2, 2, 3, 3, 
3, 4, 4, 4, 4? Can you think of any other Ouroboros numbers that need more 
serpents before they cycle (or don't cycle)? 

$ See "Further Exploring" for more ophidian delights. 
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interview with a 
Number 

The natural numbers came from God and all else was man-made. 
—Leopold Kronecker 

If we are to believe bestselling novelist Anne Rice, vampires resemble humans in 
many respects but live secret lives hidden among the rest of us mortals. There are 
also vampires in the world of mathematics, numbers that look like normal fig-
ures but bear a disguised difference. They are actually the products of 2 progeni-
tor numbers that when multiplied survive, scrambled together, in the vampire 
number. Consider 1 such case: 27 x 81 = 2,187. Another vampire number is 
1,435, which is the product of 35 and 41. 

Dr. Googol defines true vampires, such as the 2 previous examples, as meeting 
3 rules. They have an even number of digits. Each of the progenitor numbers 
contains half the digits of the vampire. And finally, a true vampire is not created 
simply by adding Os to the ends of the numbers, as in 

270,000 x 810,000 = 218,700,000,000 

True vampires would never be so obvious. 
Vampire numbers secretly inhabit our number system, but most have been 

undetected so far. When Dr. Googol grabbed his silver mirror and wooden stake 
and began his search for them, he found, in addition to the 2 listed above, 5 
other 4-digit vampire numbers. Can you find others? Can you find any vampire 
numbers with more digits in them? 

0 See "Further Exploring" for a solution. 
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The Dream-Worms of Atlantis 

There is no such thing as a problem without a gift for you in its hands. 
You seek problems because you need their gifts. 

—Richard Bach, Illusions 

On the Pacific Ocean floor lives a group of mathematician mermaids who spend 
their days in contemplation of the following game called Ocean Dreams. The 
mermaids use bits of coral and trained marine worms, but we dry-landers can 
play with a pencil and paper on graph paper. 

First make a 10-by-10 array of dots (Figure 25.1). Each worm consists of 5 
connected lines that stretch over 6 dots. One of the dots at the end of the worm's 

Examples: 

1 nrrie- , , \ . . I 

Peasants: U . . T U , 

Zombies: a 1 1 i 

• • i 
• • 

• • 

: r 

[ s i n >—• • • • • 

25.1 The Ocean Dreams playing board. 
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L at end (The Zombies): 
i | 

p _ n r ~ 7 7 
; — 1 _ l ! r_ 

- - ' i 1 ' - i 1 

U at end (The Peasants): 

! ' ! ' _ n - _ n 1 

i - 1 ; 

at end (The Lords): 

I 

25.2 Several worm contortion patterns. 

body is circled to indicate its head. The worms can contort their bodies at right 
angles to form different shapes, but they can't reuse a grid point through which 
another part of their body passes. The allowed movements are up, down, right, 
and left. Figure 25.2 shows some, but not all, worm contortion patterns. The 
Zombies have a l_ at one end. The Peasants have a l_l at one end. The Lords have 
a at one end. (Hint: There is 1 worm missing from the Zombies collection 
and 1 worm missing from the Peasants collection. Can you complete these sets 
in Figure 25.2?) 

In the game, each player, on his or her turn, has to position a worm on the 
grid points. In Figure 25.1, player 1 has first placed a Lord with a black head. 
Player 2 has placed a peasant (at right) with a white head. Player 1 next places a 
Zombie with a black head. The worms of two players cannot overlap or share the 
same dot. In other words, every dot in the grid can only be occupied once. The 
worms cannot lie across one another but can be tightly folded and intertwined. 
The game is over when no one can add another worm to the grid. To determine 
who wins, count the number of Lords, Peasants, and Zombies. Each Lord is 
worth 3 points, each Peasant 2 points, each Zombie 1 point. One player may use 
open circles on the ends of his or her worms to denote their heads, while the 
other can use closed circles. 

To make matters more interesting, there are 2 final constraints. There is a 
whirlpool created by a strange undertow at the center of the grid—denoted by a 
W with a circle around it. As a result of the undertow, the worms are pulled 
toward it. Therefore, the head of each worm must be closer to the center of the 
grid than the tail of each worm. Additionally, the worms discharge toxins—so, 
to play it safe, their heads may not be on adjacent, orthogonal grid units. (This 



means that the heads may not be next to one another in the up, down, left, or 
right direction.) 

Dr. Googol looks forward to hearing from readers who have played Ocean 
Dreams. What is the best strategy? Does the first player have an advantage? Does 
this change when there are 3 or more players competing? What happens with 
bigger boards? 

Remember: Dr. Googol has not listed all of the possible worm contortion pat-
terns; there are more Zombies and Peasants than shown here. How many unique 
worm contortion patterns are there? 

0 For a solution, see "Further Exploring." 

C h a p t e r 26 

Satanic Cycles 

I'm one of those people who believe that life is a series of cycles—wheels 
within wheels, some meshing with others, some spinning alone, but all of 

them performing some finite, repeating function. 
—Stephen King, Four past Midnight 

Dr. Googol brought a large unicycle to his classroom and started riding up and 
down the aisles. 

"Sir," said a student after several minutes, "why are you doing this?" 
Dr. Googol hopped off the unicycle. "Why? I'll tell you why. Listen to my tale 

about a demon bicyclist riding through the burning depths of Hell." 
Most of Dr. Googol's students sat in rapt attention, although a boy with 
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26.1 You can solve this wheel by inserting a multiply symbol 
between 5 and 3 to form 5 x 3 = 15. 

spiked orange hair promptly got up and left the room. Dr. Googol did not seem 
to notice. 

"In the crimson caves of Hell rides a bicyclist," Dr. Googol said. "He rides 
by the lost human souls and allows them to view his bicycle wheels for 1 min-
ute. Surprisingly, each of his wheels has a mathematical formula that can be 
written out by starting at the correct number and following around the wheel's 
circular tire in a clockwise or counterclockwise direction until the formula is 
determined." 

Dr. Googol went to the blackboard and drew the wheel in Figure 26.1. "For 
example, this bicycle wheel contains the formula 5 x 3 = 15. (You start at the 5 
and proceed clockwise, inserting the appropriate mathematical symbols as 
needed.) If you are not able to determine the correct formula within 1 minute, 
you are relegated to the Stygian depths for all eternity. However, if you can cor-
rectly identify the formula before the bicyclist rides on, then you enter the 
empyrean realm of Paradise—not to mention getting an A in my class." 

Dr. Googol held up a plaque inscribed with the bicycle wheels in Figure 
26.2. Can you help his students identify the formulas they contain? Only the 
symbols +, x, /, and = and exponentiation are permitted. You may use each of 
these symbols, at most, 2 times in your formulation. For example, 1 x 2 x 3 x 4 



would not be permitted because the multiplication symbol is used 3 times. Con-
catenation of digits to form multidigit numbers is allowed as often as needed. 
(You must proceed around the wheel back to the starting point, or beyond the 
starting point as in the 5 x 3 = 15 example). Can you solve Dr. Googol's wheels 
in Figure 26.2? 

0 See "Further Exploring" for solutions and further classroom experiments. 

C h a p t e r 27 

Persistence 

Science is not about control. It is about cultivating a perpetual condition 
of wonder in the face of something that forever grows one step richer and 
subtler than our latest theory about it. It is about reverence, not mastery. 

—Richard Power, The Gold Bug Variations 

Dr. Googol once lectured during a summer session at Harvard University. As he 
looked over his class of eager postdoctoral students, he smiled at Monica, his best 
pupil. 

Dr. Googol started by drawing on the blackboard: 
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969, 486, 192, 18, 8 

He turned back to the class. "Can anyone tell me how the following sequence 
arises?" 

Monica instantly stuck up her hand. "Sir, in '969, 486, 192, 18, 8' each term 
is the product of the digits of the previous term." 

"Monica, you are amazing. Now let me tell you about 969's persistence. The 
persistence of a number is the number of steps (4 in our example) before the 
number collapses to a single digit. Now, consider 2 mighty difficult questions: 

" 1. What is the smallest number with persistence 3? 
"2. What is the smallest number with the persistence of 12? (Hint: This one 

is so difficult, don't even bother trying to solve it.)" 
Dr. Googol looked at the befuddled students. Even Monica seemed distressed 

as she ran her shaking fingers through her dark hair. 
Dr. Googol stared Monica straight in the eyes. "Monica, I will give a $100 bill 

to anyone who can answer question 1, and a $1,000 bill to anyone who can 
answer question 2. Take as long as you like to think about this extraordinarily 
delightful and devilish problem." 

0 For some commentary, see "Further Exploring." 

C h a p t e r 28 

Hallucinogenic Highways 

We live on a placid island of ignorance in the midst of black seas of infin-
ity, and it is not meant that we should voyage far. 

—H. P. Lovecraft, The Call of Cthulhu 

<$> Number Maze 1, 
a visual intermission before 
the next book part . . . . 

Dr. Googol was driving the interstate highways in Colorado when he devel-
oped this simple-looking but fiendishly difficult problem. Starting at the bottom 
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29.1 Hallucinogenic Highways. Can you reach the Finish with a sum 
of 84? (Drawing by Brian Mansfield.) 

in Figure 28.1, you must find a path to the Finish in the Rocky Mountains by 
traveling the roads. Each time you pass a sign, you add the sign's number to a 
cumulative sum. Can you reach the Finish with a sum of 84? 

If you are a teacher, have your students work in teams to solve this problem. 
What strategy did your students use? Have them develop their own highway 
puzzles using other operations including minus and multiply. For safety's sake, 
make sure students have not imbibed too many caffeinated beverages before 
embarking on these strange highways. (Your car is small, so you can avoid signs 
at intersections, like 27 and 7, if you turn sharply.) 

0 For a solution to this hellishly difficult maze, see "Further Reading." 



Part ii 

Quirky Questions, 
Lists, and 
Surveys 

God exists since mathematics is consistent, and the devil exists 
since we cannot prove the consistency. 

—Morris Kline, Mathematical Thought 
from Ancient to Modern Times 

Goethe opposed the use of the microscope, since he believed that 
what cannot be seen with the naked eye should not be seen, and that 
what is hidden from us is hidden for a purpose. In this, Goethe was a 
scandal among scientists, whose first, firm, and necessary principle is 

that if something can be done, then it should be done. 
—John Bainville, "Beauty, Charm and Strangeness: Science as 

Metaphor," Science 281, 1998 

® ® ® 

In addition to being fascinated with integers, Dr. Googol has always been 
fond of making mathematical lists. He is always asking questions. What if this? 
Who is that? Rank this! Why this? Many of the lists that follow have been con-
structed using information provided by exclusive surveys and discussions with 
mathematicians around the world. The rankings are not the definitive word on 
the subject. Rather, in the Talmudic tradition of presentation and analysis, the 
lists are open for discussion. You will no doubt disagree with some of the rank-
ings, but this makes for lively, philosophical debate. Enjoy! Dr. Googol wel-
comes your comments. 
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Why Was the First Woman 
Mathematician Murdered? 

The mathematical world of today owes Hypatia a great debt. . . . At the 
time of her death, she was the greatest mathematician then living in the 

Greco-Roman world, very likely the world as a whole." 
—M. Deakin, American Mathematical Monthly, 1994 

Reserve your right to think, for even to think wrongly is better 
than not to think at all. 

—Hypatia 

The Pythagoreans of ancient Greece were fascinated by numbers, such as the tri-
angular numbers mentioned in Chapter 62. In fact, the Pythagoreans worshiped 
numbers as gods. What ever became of Pythagorean thoughts and ideas once 
Pythagoras died? It turns out that Pythagoras's philosophy, modified by Plato, 
outlasted all other philosophies of ancient Greece. Even up to the 6th century 
A.D., the numerical gods were still worshiped, but during the Dark Ages their 
meaning was lost. 

The Pythagoreans and their offshoot Platonists were the only ancient philo-
sophical schools to allow women to share in the teaching and the only sects 
that produced outstanding woman philosophers. Unfortunately, one of their 
best, Hypatia of Alexandria (370-415), was martyred by being torn into shreds 
by a Christian mob—partly because she did not adhere to strict Christian prin-
ciples. She considered herself a neo-Platonist, a pagan, and a follower of Pythag-
orean ideas. Interestingly, Hypatia is the first woman mathematician in the 
history of humanity of whom we have reasonably secure and detailed knowledge 
(Figure 29.1). 

Hypatia was born in Alexandria during times of turbulent power struggles 
between Romans and militant Christians. Her father, Theon, was a respected 
mathematician and astronomer. When he recognized Hypatias talents and desire 
to learn, he educated her even though most people of their era did not support 
the idea of educating women. Together they began writing books on Euclid's and 
Diophantus's works. 

Hypatia was a respected, charismatic teacher, well liked by all her students. 
Because she was famous for being the greatest of problem solvers, mathemati-
cians who had been stuck for months on particular problems would write to her 
seeking her advice. She was said to be physically attractive and determinedly celi-
bate. When asked why she was obsessed with mathematics and would not marry, 
she replied that she was wedded to the truth. 
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Hypatia edited books on geome-
try, algebra, and astronomy. Her 
main focus was on Euclidean geom-
etry and solving integer equations, 
and she authored a popular treatise 
on the conics of Apollonius. In one 
of her mathematical problems for 
her students, she asked them for the 
integer solution of the pair of simul-
taneous equations: x-y = a, x2-y2 

- (x - y) + b, where a and b are 
known. Can you find any integer 
values for x, y, a, and b that make 
both of these formulas true? 

Aside from being a mathemati-
cian, Hypatia assisted in the design 
of astrolabes, mechanical devices that 
replicate the motion of the planets. 
She also helped design urinonmeters 
to measure the specific gravity of 
urine. These were of potential use in 
determining the proper dosages of 
diuretics used to treat illnesses. 

Sadly, we know more about Hypatia's death than about other significant 
events in her life. The Christians were her strongest philosophical rivals, and 
they officially discouraged her teachings, which were Pythagorean in nature with 
a religious dimension. Donning a philosopher's cloak and making her way 
through the city, she spoke publicly about the writings of Plato, Aristotle, and 
other philosophers to anyone who wished to hear. 

On a warm March day in A.D. 414, after having engaged her students in a 
brilliant philosophical discussion, Hypatia guided her chariot confidently down 
the streets of Alexandria toward her home. She noticed a crowd in front of a 
church, and before she could turn her chariot away, two men pulled her out. 
"Kill the pagan!" they shouted. Like many victims of terrorists today, she may 
have been seized merely because she was a well-known figure and prominent on 
the other side of the religious divide. 

The historian Edward Gibbon provided a sad account of her death: 

On a fatal day, in the holy season of Lent, Hypatia was torn from her chariot, 
stripped naked, dragged to the church, and inhumanely butchered by the hands 
of Peter the Reader and a troop of savage, merciless fanatics; her flesh was scraped 
from her bones with sharp oyster-shells, and her quivering limbs were delivered to 
the flames. 

Her horrible death was recorded by 5th-century Christian historian Socrates 
Scholasticus. After reporting her murder to Rome, Orestes, a former student of 
Hypatia, requested an investigation. The investigation never took place, suppos-

29.1 Hypatia. 
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edly because of the lack of evidence and witnesses. Her murder adversely affect-
ed educational freedom for many years. Mathematics entered a period of stagna-
tion, and it was not until after the Renaissance that another woman, Maria 
Agnesi, made her name as a mathematician. 

We feel certain that the extraterrestrial message is a mathematical code of 
some kind. Probably a number code. Mathematics is the one language we 
might conceivably have in common with other forms of intelligent life in 
the universe. As I understand it, there is no reality more independent of 

our perception and more true to itself than mathematical reality. 

What if spaceships from another world suddenly appeared in our skies? What if 
tomorrow morning you turned on your radio and heard a strange, pulsating tone, 
and what if you learned that the same thing was happening across our planet? 

Dr. Googol often fantasizes that he is a handsome computer genius watching as 
a giant alien mothership arrives in Earth orbit and immediately begins to transmit 
a cyclic tone down to the nations of Earth. The world frantically tries to under-
stand the aliens' intentions—until Dr. Googol deciphers the alien message: it's a 
countdown to weapon firing. The President of the United States attempts to rea-
son with the creatures, who give Earthlings one choice: become their slaves, or die. 
The aliens demonstrate their massive orbital firepower by destroying large U.S. 
cities, and the military forces of many nations try to retaliate with little effect. 

If we really ever do receive a message from the stars intended to be deciphered 
by us, just how will it be sent, and how difficult will it be to interpret? If we 

What if We Receive 
Messages from the 
Stars? 

C h a p t e r 30 

—Don DeLillo, Ratner's Star 
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decided to reply, how would we send a message? One possibility is that we or 
aliens would use radio waves beamed into space at frequencies between 1 and 
10,000 megahertz, because these frequencies travel relatively easily through 
space and through the atmosphere of planets like our own. The first part of the 
message would be easy to understand so it would attract attention, such as a 
series of pulses representing the numbers 1, 2, 3. . . . This could be followed by 
more intricate communications. 

9 9 ® 
Many science-fiction novels have dealt explicitly with alien signals and their 
decipherment. For example, in Buzz Aldrin and John Barnes's bestselling novel 
Encounter with Tiber, Earth's astronomers detect a signal from Alpha Centauri, 
the triple star of which the faintest component is the closest star to Earth, about 
4.3 light-years away. Scientists first attempt to determine around which of the 
stars the alien transmitter is orbiting by analyzing the Doppler shift (change in 
frequency) occurring for waves coming from a moving object. 

Bits and pieces of the signal seem to be strangely ordered, like a sequence of 
tones, 2 different pitches stuttering at an enormous rate. Unfortunately, the Earths 
atmosphere is nearly opaque to radio at the transmission wavelength of 96 meters, 
because the signal cannot easily penetrate the ionosphere. Thus it is impossible to 
catch more than brief snatches of the message even with the most sensitive radio 
telescopes on the ground. Luckily, the scientists find a way to make use of a space 
station upon which they mount simple antennas to listen to the signal. 

Despite their skepticism, the scientists continue to study the signal and dis-
cover it is a pattern of high tones, low tones, and silences. Assuming that the 
silences are spaces, and because the transmission comes as triple beeps, it seems 
likely that the message is in base 8. 

Scientists call the high tones "beeps" (represented below by a 9 ) and the low 
tones "honks" (represented by a $ ) . A group of 3 beep-or-honk choices has 8 
different arrangements: 

9 9 9 
9 9 9 
9 9 9 
9 9 9 
9 9 9 

9 9 9 
9 9 9 

9 9 9 
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The digits are likely to stand for the digits 0-7, which are the 8 digits for a 
base 8 system. The string of digits in the message could represent pictures or text. 

The most common numbering system on Earth is base 10. In other words, we 
have 10 digits, 0 through 9. In our base 10 representation, each digit represents 
a power of 10. For example, the number 2,010 is 2 x 103 + 0 x 10* + 1 x 101 + 
0 x 10° where 103 = 1000, 102 = 100, 101 = 10, and 10° = 1. However, there's 
no reason to assume that aliens would use a base 10 number system, and it's 
unlikely that a message from the stars would arrive in base 10 numbers. On 
Earth, our mathematical calculations are based on 10 because we have 10 fin-
gers. In fact, our language suggests the connection between fingers and our num-
ber system—we use the world digit to designate both a number and a finger. 
Because our base 10 system comes from our use of 10 fingers, what would a base 
8 system tell us about the anatomy of aliens? Perhaps a base 8 system would 
denote an alien with a thumb and 3 fingers on each hand, or a creature with 8 
tentacles, or a thumb and a finger on each of its 4 arms. An even wilder possibil-
ity is that the aliens have 3 heads and these are all the combinations of nodding 
and shaking that are possible! (Of course, it is possible that their number system 
tells us nothing about their anatomy. After all, what did the Babylonian's base 60 
system tell us about their anatomy?) 

As scientists study the message, they find it repeats every 11 hours and 20 
minutes. Each group of 16,769,021 base 8 numbers takes about 2Vi seconds to 
be received, so there are 16,384 such groups in all. What could it mean? 

The first thing to check is the number 16,769,021. Does it have any unusual 
properties? It turns out that you can use a simple factoring program to determine 
it is equal to 4,093 times 4,097—2 prime numbers. Since a prime number isn't 
evenly divisible by another number (except itself and 1), an alien could transmit 
a gridlike pattern whose size is the product of two prime numbers. As a result, 
there are only a couple of possible arrangements for the numbers in the grid. (In 
fact, the pattern could be a photo consisting of an array of pixels as on your com-
puter screen.) On the other hand, if the image were composed of, for example, 
10,000,000 pixels with many factors, there would be a very large number of pos-
sible arrangements, such as 5 x 200,000, 10,000 x 1,000, and many others, and 
this would make the image difficult to decode. 

9 9 9 
In Encounter with Tiber, it turns out that the 8 groups of honks and beeps repre-
sent 8 different intensity values in an image: 0 for black, 7 for white, and 1-6 for 
intermediate intensities. By representing these brightness values on a 4,093-by-
4,097 grid, the astrophysicists determine that each transmission is a frame of a 
movie. When played sequentially on a computer, 8 creatures are seen waving as 
they climb into a spacecraft! Other more technical information follows including 
instructions on how to find an alien encyclopedia containing poems, paintings, 
music, literature, science, engineering, and jokes of a civilization centuries in 
advance of Earth's. 

Would you like to view such an alien encyclopedia? In Encounter with Tiber, 
some people worry that humanity is not ready for advanced knowledge from the 
encyclopedia. "What if you'd given Napoleon the atomic bomb?" scientists and 
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politicians ask. "What if the Civil War had been fought with airplanes dropping 
poison gas on cities?" Should the encyclopedia be made available to all the 
nations on Earth? 

Do you think that communication with aliens would create widespread hys-
teria? The psychologist Carl Jung believed that contact with superior beings 
would be devastating and demoralizing to us because we'd find ourselves no 
more a match for them intellectually than our pets are for us. Such fears and jeal-
ousies might cause various extremists groups, such as the Ku Klux Klan, to try to 
kill the aliens. 

9 For further information on aliens, numbers, and messages from the stars, 
see "Further Exploring." 

C h a p t e r 31 

A Ranking of the 5 Strangest 
Mathematicians Who Ever Lived 

Erdos covered the floor with cereal. He couldn't close a window by 
himself. He woke you up at 4 A.M. shouting about number theory. 
Paul Erdos may have been the world's worst houseguest, but he was 

also the world's most generous and prolific mathematician. 
—Paul Hoffman, The Man Who Loved Only Numbers 

Most classmates regarded Ted Kaczynski as alien, or not at all. 
—Robert McFadden, New York Times 

Freedom means having power; not the power to control other people but 
the power to control the circumstance of one's own life. 

—Unabomber Manifesto 

There were five clear winners when respondents were asked to name the five 
strangest mathematicians who ever lived. 

1. Paul Erdos (1913-1996) This legendary mathematician, one of the most 
prolific in history, was so devoted to math that he lived as a nomad with no 
home and no job. As discussed in fantastic detail in Chapter 46, sexual pleasure 
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revolted him; even an accidental touch by anyone made him feel uncomfortable. 
During the last year of his life, at age 83, he continued churning out theorems 
and delivering lectures, defying conventional wisdom that mathematics is a 
young person's sport. On this subject, Erdos once said: 

The first sign of senility is when a man forgets his theorems. The second sign is 
when he forgets to zip up. The third sign is when he forgets to zip down. 

Paul Hoffman, author of The Man Who Loved Only Numbers, notes: 

Erdos thought about more problems than any other mathematician in history and 
could recite the details of some 1,500 papers he had written. Fortified by coffee, 
Erdos did mathematics 19 hours a day, and when friends urged him to slow down, 
he always had the same response: "There'll be plenty of time to rest in the grave." 

2. Srinivasd Ramanujan (1887-1920) Ramanujan, who started life as a 
clerk in the accounting department of the Madras post office, became India's 
greatest mathematical genius and one of the greatest 20th-century mathemati-
cians. Ramanujan made substantial contributions to the analytical theory of 
numbers and worked on elliptic functions, continued fractions, and infinite 
series. He came from a poor family, and his mother took in boarders, which cre-
ated a crowded home. Ramanujan was very shy and found it hard to speak. He 
excelled in math but usually failed all his other courses. When he was 13, he bor-
rowed a high school student's math book and mastered it in a week. Because he 
was deprived of manuals that could teach him about rigorous proofs, Ramanujan 
developed rather strange methods to establish mathematical truths. Mathema-
tician G. H. Hardy remarked: 

His ideas as to what constituted a mathematical proof were of the most shadowy 
description. All his results, new or old, right or wrong, had been arrived at by a 
process of mingled argument, intuition, and induction, of which he was entirely 
unable to give any coherent account. 

Ramanujan, although self-taught in mathematics, was given a fellowship to 
the University of Madras in 1903, but the following year he lost it because he 
devoted all his time to mathematics and neglected his other subjects. Hardy, a 
professor at Trinity College, invited him to Cambridge on the basis of a now-
historic letter Ramanujan wrote him, which contained some 100 theorems. A 
leading expert in calculus, Hardy found himself dealing with a collection of for-
mulas completely unfamiliar to him. He said: 

These relations defeated me completely; I had never seen anything in the least like 
them before. A single look at them is enough to show that they could only be 
written down by a mathematician of the highest class. 

Some years later, Ramanujan, weakened by his strict vegetarianism, became 
quite sick with tuberculosis. However, neither physicians nor his family could 
persuade him to stop his studies. He returned to India in February 1919 and 
died in April 1920 at the age of 32. During that period he wrote down about 
600 theorems on loose sheets of paper. These were discovered only in 1976 by 
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Professor George Andrews of Pennsylvania State University, who termed them 
the Lost Notebook of Ramanujan. Many of Ramanujan's formulas came to occu-
py central places in modern theories of algebraic number theory, and today 
scholars wonder how he could envision such equations when he didn't have any 
of the supporting knowledge to understand them. 

3. Pythagoras (580-500 B.C.) A Greek philosopher, Pythagoras was 
responsible for important developments in mathematics, astronomy, and the 
theory of music. Philosopher Bertrand Russell once wrote that Pythagoras was 
intellectually one of the most important men who ever lived, both when he was 
wise and when he was unwise. Pythagoras is also the most puzzling mathemati-
cian in history, because he founded a numerical religion whose main tenets were 
transmigration of souls and the sinfulness of eating beans, along with a host of 
other odd rules and regulations. 

4. Theodore Kaczynski (b. 1942) Ted Kaczynski, also known as the Una-
bomber, was a mathematican who rose swiftly to academic heights even as he 
became an emotional cripple, loner, and murderer. Kaczynski's 25-year self-
imposed exile in the Montana woods was particularly appropriate for this man 
who had always been alone. The May 26, 1996, New York Times noted that the 
cabin "suited this genius with gifts for solitude, perseverance, secrecy and metic-
ulousness, for penetrating the mysteries of mathematics and the dangers of tech-
nology, but never love, never friendship." The remoteness of the cabin was 
probably as much a means of limiting others' access to him as it was a symbol of 
freedom. Before he became a hermit, Kaczynski wrote several notable papers on 
the mathematical properties of functions in circles and boundary functions. 
Although his IQwas measured as 170, he exhibited many odd characteristics: 
excessive (pathological) shyness, fascination with body sounds, a metronomic 
habit of rocking, and frequent concerns about germs, infections, and other 
health matters. His room at school stank of rotting food and was piled high with 
trash. After teaching for 2 years and publishing mathematical papers (Chapter 
40) that impressed his peers and put him on a tenure track at one of the nation's 
most prestigious universities, he suddenly quit, spent nearly half his life in the 
woods, and killed three strangers and injured 22 others. Throughout his life, 
Kaczynski found it painful to make errors and corrected minor errors in others. 
He shut himself up in his bedroom for days at a time and seemed incapable of 
sympathy, human insight, and simple connections with people. Although 
Kaczynski does not have the eminence of Erdos, Ramanujan, or Pythagoras, his 
mathematics papers were sufficiently complex to warrant his inclusion on this 
brief list. 

5. John Nash (1928—) This brilliant mathematician received the 1994 
Nobel Prize in Economics. Nash's prize-winning work appeared almost half a 
century earlier in his slender 27-page Ph.D. thesis written at the age of 21. 

In 1950, Princeton graduate student John Nash formulated a theorem that 
enabled the field of game theory to become an important influence in modern 
economics. Compulsively rational, he often turned life's decisions—whether 
to take the first elevator or wait for the next one, or whether to marry—into 
calculations of advantage and disadvantage, mathematical rules divorced from 
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emotion. In 1958, Fortune singled Nash out for his achievements in game theo-
ry, algebraic geometry, and nonlinear theory, calling him the most brilliant of the 
younger generation of mathematicians. He seemed destined for continued 
achievements, but in 1959 he was institutionalized and diagnosed as schizo-
phrenic. Brilliant when he was young, Nash slipped into and out of schizophre-
nia for decades, believing that aliens had made him emperor of Antarctica. At 
other times he believed himself to be a messianic figure. Princeton and its aca-
demic staff stood by Nash and kindly let him wander about the math depart-
ment for almost thirty years. There he became a mute figure who scribbled 
bizarre equations on blackboards in the mathematics building and searched for 
secret messages in numbers. He believed that ordinary things—a telephone 
number, a colorful necktie, a dog racing across the grass, a Hebrew letter, a sen-
tence in the newspaper—had hidden and important significance. Sadly, Nash's 
son was also schizophrenic, but he was sufficiently versed in math that Rutgers 
University granted him a Ph.D. John Nash once remarked: "I would not dare to 
say that there is a direct relation between mathematics and madness, but there is 
no doubt that great mathematicians suffer from maniacal characteristics, deliri-
um, and symptoms of schizophrenia." The most famous biography on John 
Nash is Sylvia Nasars A Beautiful Mind. 

C h a p t e r 32 

Einstein, Ramanujan, Hawking 

There is no branch of mathematics, however abstract, which may not 
someday be applied to the phenomena of the real world. 

—Nicolai Lobachevsky 

Dr. Googol surveyed many mathematicians on the following question: 
Which of the following would have had the most profound effect on our 

world today? 

1. Physicist Albert Einstein lived another 20 years with a 
clear mind. 

2. Mathematician Srinivasa Ramanujan lived another 20 
years with a clear mind. 

3. Astronomer Stephen Hawking was not afflicted with Lou 
Gehrig's disease. 
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Several respondents suggested that Stephen Hawking's affliction forced him 
to concentrate on black hole theory and also increased public interest in these 
theories. Therefore, they thought that removal of his affliction would not have 
had a favorable effect on the world. 

Some mathematicians believed that Albert Einstein could have made great 
contributions to the "theory of everything" if he had lived longer, but others 
suggested that Einstein (and Ramanujan) had reached their peak during their 
lives and would not have contributed significant additional information. For 
example, Einstein made early, important discoveries in the theory of Brownian 
noise as a model for microscopic phenomena, energy and charge as a quantified 
phenomena, light speed and mass as constraints on spacetime, and fundamental 
forces as a deformation of space. But all these achievements came from very 
peculiar analyses and interpretations of older works that were in place in the 
early 1900s. Toward the end of his life, he made little progress in synthesizing 
new theories. 

Nevertheless, debate on Dr. Googol's questions still rages. Mathematician 
Charles Ashbacher suggests to Dr. Googol: 

There is no doubt in my mind that if Albert Einstein had lived another 20 years 
the world would be profoundly impacted. Einstein was not only the greatest 
physicist of the 20th century with obvious major accomplishments, but he was 
also very influential in other ways. It was the letter from Einstein to President 
Franklin Roosevelt that tilted the balance in favor of the Manhattan Project. He 
commanded so much respect in the world that it is possible he could have tem-
pered some of the events of the world well into the 1980s. Any changes as a result 
of any new discoveries in physics would be icing on the cake. 

Philosopher of science Dennis Gordon says: 

If Albert Einstein had been so fortunate to have had 20 additional years with a 
sound mind, perhaps he would have collaborated with a young and vigorous 
Stephen Hawking to either demonstrate or disprove the existence of the long-
speculated gravitons. 

Given the same good fortune, maybe we would have gained some insight into 
Ramanujan's extraordinary intuition and thought processes. How was Ramanujan 
able to generate such astounding results when even he himself was often unable to 
offer proofs? I am reminded of the scene in the movie Amadeus in which Mozart is 
shown producing perfectly written symphonies on the first draft; maybe the 
thought processes of both geniuses were very similar. And, further, with 20 addi-
tional years, Ramanujan might have solved all of David Hilbert's famous 23 prob-
lems [discussed in Chapter 36] and then later humbled Hilbert with solutions to 
several more then-unknown problems. 

Ramanujan, described in detail in Chapter 31, was a self-taught mathematical 
genius, who used his gut instinct to attack the frontiers of mathematical analysis 
of his time (modular functions, analytic number theory, partitions, iteration 
theory, transcendance properties). However, he sometimes advanced slowly and 
was unable to transfer his insights to others and other fields. Perhaps 20 years 
more of activity would not have changed his approach. On the other hand, 
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respondents suggested that 20 years more would have been very significant for 
mathematicians like Archimedes, Roger Cotes, Niels Abel, Evariste Galois, 
Bernhard Riemann, Henri Poincare, Jacques Herbrand, and Allan Turing, all of 
whom were extremely creative when they died. 

Perhaps a greater effect would have resulted if Evariste Galois, the founder of 
modern algebra and group theory, had not been killed at age 21 in a gun duel. 
(Galois, a genius and child prodigy, is discussed in Chapter 36.) His mathemati-
cal ideas and innovative methods were too advanced for his time; therefore, few 
contemporaries could understand his insights. Many had trouble filling in the 
steps he saw as obvious. If Galois had lived longer and continued his work in 
group theory and algebraic equations, the world would have been affected 
immensely. 

® ® ® 
Given all these thoughts, it is not clear which of the 3 situations would yield the 
biggest impact on humanity. Respondents generally thought that Hawking's 
affliction, while sad on a personal level, did not hinder his effect on math and 
science. A longer life for Einstein would have given the world a scientist hero for 
a longer period of time and therefore increased public interest in science. Perhaps 
a long life for Ramanujan would have had the greatest impact, especially consid-
ering his fantastic mathematical output and short life. This leads to other ques-
tions. What if Ramanujan had developed in a more nurturing environment? 
Although he would have been a better-trained mathematician, would he have 
become such a unique thinker? Could he have discovered so many wonderful 
formulas if he had been taught the rules of mathematics early on and pushed to 
publish his results with rigorous proofs? Perhaps his relative isolation and pover-
ty enhanced the greatness of his mathematical thought. For Ramanjuan, equa-
tions were not just the means for proofs or calculations. The beauty of the 
equation was of paramount value. The intrinsic elegance of his formulas causes 
them to play key roles in the most unusual circumstances. 

Ramanujan's most "beautiful" formula draws a shocking connection between 
an infinite series (at left) and a continued fraction (middle). It is wonderful that 
neither the series nor the chain fraction can be expressed through the famous 
numerical constants IT and e, and their sum mysteriously equals JiTe/l . Try 
to compute the value on the left side of the equals sign, for several terms, and 
see how it compares with the right side when substituting IT = 3.141592 and 

2.718282. 

Ramanujan's Most Beautiful Formula 

1 + — + - J — + 1 + I + . . . + \ = J^ 
1-3 1-3-5 1-3-5-7 1-3-5-7-9 1+ I v 2 

+ —i-
1+... 

(Please send the publisher a note of thanks for allowing Dr. Googol to insist 
on adding this typographical monstrosity to this book.) 
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A Ranking of the 8 Most influential 
Female Mathematicians 

It is impossible to be a mathematician without being a poet in soul. 
—Sofia Kovalevskaya, quoted in Agnessi to Zeno by Sanderson Smith 

Despite horrible prejudice in earlier times, several women fought against the 
establishment and persevered in mathematics. Until the 20th century, very few 
women received much education, and the path to more advanced studies was 
usually blocked. Many of these women had to go against the wishes of their fam-
ilies if they wanted to learn. Some were even forced to assume false identities, 
study in terrible conditions, and work in intellectual isolation. Consequently, 
very few women contributed to mathematics. The following ranking of the 8 
most influential female mathematicians was compiled through extensive research 
and by surveying mathematicians. These women did more than just influence 
the course of mathematics. They also affected people's perceptions of women's 
role in all intellectual endeavors. 

Many of these women came from mathematical families. Emmy Noether, 
Hypatia, Maria Agnesi, and others never married, partly because it was not 
socially acceptable for women to pursue mathematical careers, and, therefore, 
men were not likely to wed brides with such controversial backgrounds. Russian 
mathematician Sofia Kovalevskaya was an exception to this rule; she arranged a 
marriage of convenience to a man who was agreeable to a platonic relationship. 
For Sofia and her husband, the marriage allowed them to escape their families 
and concentrate on their respective research. The marriage also allowed Sofia a 
greater freedom to travel because, at the time, it was more suitable for a married 
woman to travel around Europe than a single woman. 

When Dr. Googol asked dozens of mathematicians, "Who were the most influ-
ential female mathematicians in history?" there were several clear favorites, listed 
below. Again, this list is not meant to be definitive; rather, it should stir debate and 
discussion. Much of the biographical information comes from Dr. John J. 
O'Connor and Professor Edmund F. Robertson's "MacTutor History of Mathe-
matics Archive," http://www-history.mcs.st-andrews.ac.uk/history/index.html. 

1. Hypat ia (370-415) Hypatia, who is discussed more extensively in 
Chapter 29, was famous for giving the most popular discourses in Western 
civilization and for being the greatest of problem solvers. She was the first 
woman to make a significant contribution to the development of mathematics. 
The daughter of the mathematician Theon, she eventually became head of the 
Platonist school at Alexandria. She came to symbolize scientific ideas, which, 
unfortunately, the early Christians identified with paganism. She met her death 
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at the hands of a mob who dragged her from her chariot and peeled off her skin 
with oyster shells. 

2. Sofia Kovalevskaya (1850-1891) Kovalevskaya made valuable contri-
butions to the theory of differential equations and was the first woman to receive 
a doctorate in mathematics. (Note: In case you are confused when searching for 
information on S. K., both her first and last names seem to be spelled in various 
ways in English translation including Sonia, Sofya, and Sonya, and Kovalevsky, 
Kovalevski, Kovalevskia.) Like most other mathematical geniuses, Sofia fell in 
love with mathematics at a very young age. Sofia wrote in her autobiography: 
"The meaning of these concepts I naturally could not yet grasp, but they acted 
on my imagination, instilling in me a reverence for mathematics as an exalted 
and mysterious science which opens up to its initiates a new world of wonders, 
inaccessible to ordinary mortals." When Sofia was 11 years old, she hung calcu-
lus papers on all the walls of her bedroom. When learning mathematics from the 
family's tutor, she said, "I began to feel an attraction for my mathematics so 
intense that I started to neglect my other studies." Sofia's father decided to put a 
stop to her mathematics lessons, but she secretly read math books late at night. 
Sofia was forced to marry so that she could go abroad to pursue higher educa-
tion. (Her father forbid her to study at a university, and Russian women were 
not permitted to live apart from their families without the written permission of 
their father or husband.) 

At the age of 18, Sofia entered a sad and tense marriage with Vladimir 
Kovalevski, a young paleontologist. In 1869, Sofia went to Heidelberg to study 
mathematics but discovered that women could not go to the university. 
Eventually she persuaded the university authorities to let her attend lectures 
unofficially. Sofia immediately attracted the teachers' attention with her mathe-
matical brilliance, and virtually all of her professors were delighted about their 
gifted student and spoke about her as an extraordinary phenomenon. (Spending 
the summer of 1869 in England, Sofia and her husband met Charles Darwin, 
Thomas Huxley, and George Eliot.) 

In 1871, Sophia Kovalevskaya moved to Berlin to study with mathematician 
Karl Weierstrass, but again she was not allowed to attend courses at the universi-
ty. Ironically, this actually helped Sofia, because it forced Weierstrass give her 
more personal attention. By the spring of 1874, Kovalevskaya had completed 3 
papers, each of which Weierstrass deemed worthy of a doctorate. (The 3 papers 
were on partial differential equations, abelian integrals, and Saturn's rings.) In 
1874, Kovalevskaya received her doctorate, summa cum laude, from Gottingen 
University. However, despite this doctorate and enthusiastic letters of recom-
mendation from Weierstrass, Kovalevskaya was unable to obtain an academic 
position because she was a woman. Her crushing rejections resulted in a bitter 6-
year period during which she did no research. In 1878, Kovalevskaya gave birth 
to a daughter, and then returned to her study of mathematics. In 1882, she 
began work on the refraction of light and wrote 3 articles on the topic. 

She began to lecture on mathematics in Stockholm and was appointed to a 
professorship in June of that year. She taught courses on the latest topics in 
analysis, became an editor of the journal Acta Mathematica, interacted with all 
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the famous mathematicians of Paris and Berlin, and organized many interna-
tional conferences. In 1886, Kovalevskaya was awarded the Prix Bordin of the 
French Academy of Sciences for her paper on the solution on the rotation of a 
rigid body around a fixed point. 

3. Emmy Amalie Noether (1882-1935) Noether was described by Albert 
Einstein as "the most significant creative mathematical genius thus far produced 
since the higher education of women began." She is best known for her contri-
butions to abstract algebra and, in particular, for her study of "chain conditions 
on ideals of rings." Moreover, in 1915, she discovered a result in theoretical 
physics sometimes referred to as Noether's Theorem, which proves a relationship 
between symmetries in physics and conservation principles. This basic result in 
the general theory of relativity was praised by Einstein. Noether's work in the 
theory of invariants led to formulations for several concepts of Einstein's general 
theory of relativity. In 1933, despite her amazing accomplishments, the Nazis 
caused her dismissal from the University of Gottingen because she was Jewish. 
She later lectured at the Institute for Advanced Study in Princeton. 

4. Sophie Germain (1776-1831) Germain made major contributions to 
number theory, acoustics, and elasticity. When she was 13, Sophie read a book 
about the death of Archimedes at the hands of a Roman soldier. She was so 
moved by this story that she decided to become a mathematician. (Legend had it 
that Archimedes was so engrossed in the study of a geometric figure in the sand 
that he failed to respond to the questioning of a Roman soldier. As a result he 
was speared to death. This sparked Sophie's interest; if someone could be so 
engrossed in a problem as to ignore a soldier and then die for it, the subject must 
be interesting!) Sophie's parents felt her interest in mathematics was inappropri-
ate, so at night she secretly began studying the works of Isaac Newton and math-
ematician Leonhard Euler. Her parents responded by taking away her clothes 
once she was in bed and depriving her of heat and light so that she would be 
forced to stay in her bed at night instead of studying. This did not work as 
planned. Sophie would wrap herself in quilts and use candles she had hidden in 
order to study at night. Finally her parents realized that Sophies passion for 
mathematics was "incurable," and they let her learn. Sophie obtained lecture 
notes for many courses from the Ecole Polytechnique. (Note the oddly similar 
situation of the young mathematician Mary Somerville, whose father took away 
her candles for studying and said, "We must put a stop to this, or we shall have 
Mary in a straitjacket one of these days.") 

After reading Joseph-Louis Lagrange's lecture notes on analysis, Sophie used 
the pseudonym M. LeBlanc to submit a paper whose originality and insight made 
Lagrange search desperately for its author. When he discovered "M. LeBlanc" 
was a woman, his respect for her work remained, and he became her sponsor 
and mathematical counselor. Sophie proved that if x, y, and z are integers and if 
x5 + y5 = z5, then either x, y, or z must be divisible by 5. "Germain's theorem" 
was an important step toward proving Fermat's Last Theorem for the case 
where n equals 5. This was to remain the most important result related to 
Fermat's Last Theorem from 1738 until the contributions of Ernst Eduard 
Kummer in 1840. (Fermat's Last Theorem says that if x, y z, and n are positive 
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integers, then xn + yn = zn cannot be solved for any n greater than 2.) Sophie 
also worked on theories of elasticity, publishing several memoirs on the sub-
ject. The most important of these deals with the "nature, bounds, and extent of 
elastic surfaces." 

5. Maria Agnesi (1718-1799) Agnesi is noted for her work in differential 
calculus. When she was 7 years old, she mastered the Latin, Greek, and Hebrew 
languages, and at the age of 9 she published a Latin discourse defending higher 
education for women. During her teens, she privately studied the mathematics 
of Descartes, Newton, Leibniz, and Euler. She also tutored the family's younger 
children and was hostess at scientific and mathematical meetings arranged by her 
father. At the age of 20, she published Propositiones Philosopbicae, a treatise on 
philosophy. For the next decade, she worked on her 2-volume mathematics book 
Analytic Institutions for the Use of Italian Youth, which was finally published in 
1748. Volume 1 dealt with algebra and precalculus mathematics, and volume 2 
discussed differential and integral calculus, infinite series, and differential equa-
tions. Her clearly written textbooks included a discussion of the cubic curve now 
know as the "witch of Agnesi." (The word witch is in fact a mistranslation of ver-
siera, which can mean either "curve" or "witch.") Agnesi's book received imme-
diate praise, and the Bologna Academy of Science elected her a member. In 
1749, Pope Benedict XIV awarded her a gold medal, and the next year he 
appointed her to teach mathematics at the University of Bologna, an extremely 
rare position for a woman because very few women were allowed to even attend 
a university. However, she turned down the appointment, and, after the death of 
her father two years later, she stopped doing scientific work altogether. Agnesi 
devoted the last 47 years of her life to caring for sick and dying women. 

6. Helena Raisowa (1917-1994) Raisowa grew up in Warsaw, at a time 
when the German invasion of Poland in 1939 made it very dangerous for her to 
pursue mathematics. Nevertheless, she persevered and studied for her master's 
degree. In 1944, when the Germans suppressed the Warsaw Uprising, Rasiowa's 
thesis burned together with her entire house. She survived with her mother in a 
cellar covered by ruins of the building. Her 1950 doctoral thesis (Algebraic 
Treatment of the Functional Calculus of Lewis and Heyting), presented to the 
University of Warsaw, was on algebra and logic. Rasiowa was promoted continu-
ally, reaching the rank of full professor in 1967. Her main research was in alge-
braic logic and the mathematical foundations of computer science. She always 
believed that there are deep relations among the methods of algebra, logic, and 
the foundations of computer science. In 1984, Rasiowa developed techniques 
that are now central to the study of artificial intelligence. Rasiowa wrote hun-
dreds of papers and books and edited numerous journals. 

7. Nina Karlovna Bari (1901-1961) Bari was an outstanding Russian 
mathematician, the first woman student at Moscow State University, and author 
of over 50 research articles and textbooks such as Higher Algebra (1932) and The 
Theory of Series (1936). She edited the complete works of mathematician Nikolai 
Luzin and was the editor of 2 important mathematics journals. She also translat-
ed Henri Lebesgue's famous book (on integration) into Russian. Her extensive 
research monograph on trigonometric series became a standard reference for 
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mathematicians specializing in the theory of functions and trigonometric series. 
8. Grace Hopper (1906-1992) Hopper taught mathematics at Vassar and 

in 1944 worked with mathematician Howard Aikin on the Harvard Mark I 
computer. At this time she coined the term bug for a computer fault. (The orig-
inal "bug" was actually a gypsy moth that caused a hardware fault in the Mark I!) 
In 1949, Hopper designed improved computer compilers. She also helped devel-
op Flow-Matic, the first English-language data-processing compiler. She retired 
from the Navy with the rank of commander in 1966, but she continued to help 
standardize the Navy's computer languages. In 1991, she was awarded the 
National Medal of Technology. 

Some runners-up: Julia Robinson (1919-1982), who studied number the-
ory and was the first woman mathematician to be elected to the National 
Academy of Sciences and first woman president of the American Mathematical 
Society; Mary Cartwright (1900-1998), who studied analytic function the-
ory and was the first woman mathematician to be elected a Fellow of the Royal 
Society of England; Sun-Yung Alice Chang (b. 1948), who studies nonlinear 
partial differential equations and various problems in geometry; and K a r e n 
Keskulla Uhlenbeck (b. 1942), a leading expert on partial differential equa-
tions whose work has provided analytic aids for using instantons as an effective 
geometric tool. (Instantons are particle-like wave packets that occupy a small 
region of space and exist for a tiny instant.) 

C h a p t e r 34 

A Ranking of the 5 Saddest 
Mathematical Scandals 

Contrary to popular belief, mathematics is a passionate subject. 
Mathematicians are driven by creative passions that are difficult to 

describe, but are no less forceful than those that compel a musician to 
compose or an artist to paint. The mathematician, the composer, the 

artist succumb to the same foibles as any human—love, hate, addictions, 
revenge, jealousies, desires for fame, and money. 

—Theoni Pappas, Mathematical Scandals 
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Here's a quick quiz on (and ranking of) quirky, sad mathematical scandals. 
Dr. Googol has never found a person who could identify all the people referred 
to below: 

1. What brilliant, famous, and beautiful woman mathematician died in incred-
ible pain because her mother withdrew all pain medication? (Hint: The 
woman is recognized for her contributions to computer programming. The 
mother wanted her daughter to die painfully so that her daughter's soul 
would be cleansed.) 

2. Which brilliant mathematician was forced to become a human guinea pig 
and subjected to drug experiments to reverse his homosexuality? (Hint: He 
was a 1950s computer theorist whose mandatory drug therapy made him 
impotent and caused his breasts to enlarge. He also helped to break the 
codes of the German Enigma machines during World War II.) 

3. What famous mathematician deliberately starved himself to death in 1978? 
(Hint: He was perhaps the most brilliant logician of the 1900s.) 

4. Which innovative mathematician suffered from a series of nervous break-
downs over a period of 30 years and died in a mental institution? (Hint: He 
was one of the most brilliant mathematicians of the 19th century and an 
avid explorer of the infinite.) 

5. What important 11 th-century mathematician pretended he was insane so he 
would not be put to death? (Hint: He was born in Iraq and made contribu-
tions to optics.) 

# For answers, see "Further Exploring." Do you know anyone who can iden-
tify all 5 people? 

C h a p t e r 35 

The 10 Most important Unsolved 
Mathematical Problems 

If we wish to make a new world we have the material ready. The first one, 
too, was made out of chaos. 

—Robert Quillen, OMNI magazine 
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In this section, Dr. Googol presents a ranking of the 10 most famous and/or 
unsolved mathematical "problems" today, as voted on by other mathematicians. 
Notice that many of the items on the list have a "classic" flavor in the sense that 
most of these problems were posed before 1900. A few have their roots in the 
mathematics of ancient Greece. Also, many of these problems can be stated sim-
ply (at least to mathematicians), and solutions are likely to have a great impor-
tance for mathematics and its development in the next century. Some of these 
problems are excruciatingly difficult, so Dr. Googol advises you to skip the 
tongue-twisting mathematical jargon to get an overall feeling for the problems. 
The proof of the Riemann hypothesis was mentioned most often by the mathe-
maticians Dr. Googol interviewed. 

1. Proof of the Riemann Hypothesis The "zeta function" can be repre-
sented by a complicated-looking curve that is useful in number theory for inves-
tigating properties of primes. Written as £(x), the function was originally defined 
as the infinite sum £(*) = 1 + (1/2)* + (1/3)* + (1/4)* + . . . etc. When * = 1, this 
series has no finite sum. For values of x larger than 1, the series adds up to a finite 
number. If x is less than 1, the sum is again infinite. The actual zeta function, 
studied and discussed in the literature, is a more complicated function that is 
equivalent to this series for values of x greater than 1, but has finite values for any 
real or complex number, the real part of which is different from 1. (Complex 
numbers are of the form a + bi where i= v'-l and a and b are real numbers). Here's 
the big question: For what values does this function equal 0? We know that the 
function equals 0 when x is -2, - 4 , - 6 , . . . , and that the function has an infinite 
number of 0 values for the set of complex numbers, the real part of which is 
between 0 and 1—but we do not known exactly for what complex numbers these 
0s occur. Mathematician Georg Bernhard Riemann (1826-1866) conjectured 
that these 0s probably occur for those complex numbers the real part of which 
equals 1/2. Although there is vast numerical evidence favoring this conjecture, it 
is still unproven. The proof of Riemann's hypothesis would have profound conse-
quences on the theory of prime numbers and on our understanding of the prop-
erties of complex numbers. 

2. Proof of the Goldbach Conjecture Christian Goldbach (1690-
1764) conjectured that every even positive integer is equal to the sum of 2 prime 
numbers (numbers not divisible by any integer greater than 1 except themselves). 
There are many examples where this is true, such as 10 = 5 + 5 and 100 = 47 + 53. 
Is it always true? He also conjectured that every positive integer greater than 2, 
even or odd, is equal to the sum of 3 primes. Although the first conjecture has been 
verified for all even integers at least as high as 100,000,000, no definitive proof for 
it has been found. Only a partial proof of the second conjecture was presented in 
1937 by the Soviet mathematician Ivan Matveyevich Vinogradov. 

3. Poincare Conjecture French mathematician Henri Poincare (1854-
1912) conjectured that a simply connected closed 3-dimensional manifold is a 
3-dimensional sphere. ("Simply connected" means that any closed path can be 
contracted to a point. In general, a manifold may mean any collection or set of 
objects. It is sometimes convenient to think of a manifold as an abstract general-
ization of a surface. Despite many attempts, no one has proven this conjecture, 
and it remains a cause celebre in mathematics. The conjecture is important in 
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the history of mathematics partly because it focused attention on manifolds as 
objects of study. As a result, Poincare influenced much of 20th-century mathe-
matics, which emphasizes geometric objects. 

4. Langlands Philosophy In January 1967, Robert Langlands, a 30-
year-old Princeton mathematics professor, wrote a letter to the famous number 
theorist Andre Weil. Langlands asked for Weil's opinion about two new con-
jectures: "If you are willing to read [my letter] as pure speculation, I would 
appreciate that. If not—I'm sure you have a waste basket." According to the 
February 4, 2000, issue of Science, Weil never wrote back, but Langlands letter 
turned out to be a "Rosetta stone" linking two different branches of mathemat-
ics [See Dana Mackenzie, "Fermat's Last Theorem's First Cousin," Science 
287(5454): 792-793, 2000]. In particular Langlands posited that there was an 
equivalence between Galois representations (relationships among solutions to 
equations studied in number theory) and automorphic forms (highly symmetric 
functions). Part of the problem is to work out what the correct formulation of 
the conjecture should be. Langlands philosophy asserts that one can associate 
automorphic representations to Galois representations, and that for irreducible 
representations one obtains cuspidal representations. This is also sometimes 
referred to as the Langlands program. Robert Langlands's vision is to bring group 
representation methods into the arithmetic theory of automorphic forms. (Does 
this all sound like mathematical gibberish? See "Further Exploring.") 

5. Various Prime Number and Perfect Number Questions For 
centuries, mathematicians have tried to explain the underlying pattern behind 
the primes. Perhaps no pattern exists. Certain prime numbers occur in pairs, just 
two apart; these are called twin primes. Here are some twin primes: (3,5), 
(5,7), (11,13,) (17,19), (29,31). A long-standing conjecture of mathematics 
holds that there are an infinite number of twin primes. So far, no proof or 
disproof has come forth. (Notice that twin primes differ by only 2, which is as 
close as primes can be to each other. If they differed by 1, one of the numbers 
would have to be even and therefore divisible by 2.) Will we ever develop a for-
mula that generates all prime numbers or that counts the number of primes up to 
a particular large number? 

As discussed in Chapter 95, a perfect number's proper divisors add up to the 
number itself. For example, 6 is perfect because 6 = 1 + 2 + 3, and 1, 2, and 3 
divide into 6. (A "proper divisor" is simply a divisor of a number N excluding 
AHtself.) Are all perfect numbers even? Is there an inexhaustible supply of perfect 
numbers? 

6. T h e S t r u c t u r e of Pi Pi (expressed by the Greek letter ft) has been 
calculated to billions of digits. What significant patterns, if any, exist in the 
seemingly-random digits of pi? (In 1991, the Chudnovsky brothers, two emi-
nent pi researchers, wrote: "The decimal expansion of pi in billion plus range 
passes with flying colors all classical randomness tests: frequency, chi square, 
poker, arctan law, . . . etc." (See "Further Reading".) 

7. Does P = NP? This relates to the number of steps required by computer 
algorithms. Very generally speaking, problems for which proposed solutions can 
be verified easily are sometimes referred to as NP problems. The P stands for 
polynomial time, which is the formal definition of fast. The /V stands for nonde-
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terministic, referring (misleadingly) to a notion that these problems could be 
solved easily if we were able to build computers that can nondeterministicially 
guess good solutions. This area is associated with the currently hot research area 
of "computational complexity," where problems are encountered that are solv-
able only by running a computer for millions of years. For example, Martin 
Gardner in Gardner's Whys & Wherefores notes that the infamous "traveling-sales-
man problem" asks for the shortest route that visits n points on the plane. 
Computers can hope to solve this problem when n is small, but as n increases, 
running time rapidly accelerates to impractical lengths. These kinds of problems 
belong to a category known as NP complete. Gardner suggests that these prob-
lems are connected in such a way that if a procedure is ever found for solving one 
of them in a reasonable time, all others will be solved. 

8. Artin Conjecture This conjectures that Artin £-series are holomorphic 
for irreducible Galois representations. (This is the apparently simplest case of 
Langlands philosophy, at present unapproachable.) 

9. Various Computer/Mathematical Problems Can we develop a 
rigorous mathematical theory of computer programming? (The world grows 
more dependent on computer software, but there is no rigorous theory that can 
be applied to verify program correctness.) Can a Turing machine do everything 
that any digital computer can do? Can we develop a rigorous theory of artificial 
intelligence? (For computers to replace humans in dangerous or routine tasks, 
the machines must be able to deal with a wide range of possibilities.) 

10. What are the limits of human and machine intelligence? 
How are the brain and computer alike? Can mathematics be used to answer this 
question? 

Outrageously difficult runners-up suggested by colleagues in e-mail: various 
problems in sphere packing 

© Which model of set theory best describes the "real world"? 

© Hilbert's 18th conjecture 

© the abc conjecture 

© Can numbers be factored in polynomial time (related to problem 7)? 

© various problems relating to the axiom of choice . . . 

In the spring of 2000, the Clay Mathematics Institute (www.claymath.org) 
announced a most-wanted list of seven of the most intractable math problems in 
the world. With a reward of $1 million for each problem solved, this was the 
biggest math prize ever announced. The seven problems are: P versus NP, the 
Hodge Conjecture, the Poincare Conjecture, the Riemann hypothesis, Yang-
Mills existence and mass gap, Navier-Stokes existence and smoothness, and the 
Birch and Swinnerton-Dyer Conjecture. (For more information, see Charles 
Seife, "Is that your final equation?" Science, May 26, 288(5470): 1328-1329.) 

# If you think the brief explanations for Langlands philosophy and the 
Artin conjecture sound like gibberish and want more information, see "Further 
Exploring." 
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A Ranking of the 10 Most 
influential Mathematicians 
Who Ever Lived 

Taking mathematics from the beginning of the world to the time of 
Newton, what he has done is much the better half. 

—Gottfried Leibnitz 

No great discovery was ever made without a bold guess. 
—Isaac Newton 

Of the thousands of famous and important mathematicians who have affected 
the course of human history, which have most influenced our lives and our 
thoughts? Here is a ranking of the 10 most influential mathematicians who ever 
lived, starting with the most influential, Isaac Newton. (Anonymous persons, 
such as the first cave person to scratch numerical representations on cave walls, 
were disqualified from the list.) 

Dr. Googol was surprised at the remarkable agreement among many respon-
dents' lists. He urges you to experiment by composing your own list, which will 
no doubt differ from the one presented here. 

1. Sir isaac Newton (1643-1727) Brilliant English mathematician, physi-
cist, and astronomer. He and Gottfried Leibniz invented calculus independently. 
Isaac Newton was so influential that some extra background on his odd life 
may appeal to you. Newton was a posthumous child born with no father on 
Christmas Day 1642. In his early 20s, he invented calculus, proved that white 
light was a mixture of colors, explained the rainbow, built the first reflecting 
telescope, discovered the binomial theorem, introduced polar coordinates, and 
showed that the force causing apples to fall is same as the force driving planetary 
motions and producing tides. Many of you probably don't realize that Newton 
was also a biblical fundamentalist, believing in the reality of angels, demons, and 
Satan. He subscribed to a literal interpretation of Genesis and believed the Earth 
to be only a few thousand years old. In fact, Newton spent much of his life try-
ing to prove that the Old Testament is accurate history. One wonders how many 
more problems in physics Newton would have solved if he had spent less time on 
his biblical studies. Newton said many of his physics discoveries resulted from 
random playing rather than directed and planned exploration. He likened him-
self to a little boy "playing on the seashore, and diverting myself now and then in 
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finding a smoother pebble or a prettier shell than ordinary whilst the great ocean 
of truth lay all undiscovered before me." Newton, like other great scientific 
geniuses (such as Nikola Tesla or Oliver Heaviside), had a rather strange person-
ality. For example, he had not the slightest interest in sex, never married, and 
almost never laughed (although he sometimes smiled). Newton suffered a mas-
sive mental breakdown, and some have conjectured that throughout his life he 
was a manic depressive with alternating moods of melancholy and happy activi-
ty. Today we would classify this as bipolar disorder. 

2. Johann Carl Friedrich Gauss (1777-1855) Worked in a wide vari-
ety of fields of math and physics including algebra, probability, statistics, num-
ber theory, analysis, differential geometry, geodesy, magnetism, astronomy, and 
optics. His work has had an immense influence in many areas. As a boy his great 
mathematical precocity came to the attention of the Duke of Brunswick, who 
paid for his education. A notebook kept in Latin by Gauss as a youth was dis-
covered in 1989 showing that, from the age of 15, he had conjectured many 
remarkable results, including the prime number theorem and ideas of non-
Euclidean geometry. He published papers in astronomy, the theory of errors, dif-
ferential equations, optics, and magnetism. Manuscripts unpublished until long 
after his death show that he had made many other discoveries including the the-
ory of elliptic functions. 

3. Euclid (365-300 B.C.) Greek geometer, number theorist, astronomer, and 
physicist, famous for his treatise on geometry The Elements, a 13-book extrava-
ganza and the earliest substantial Greek mathematical treatise to have survived. 
The enduring nature of The Elements makes Euclid the leading mathematics 
teacher of all time. Euclid's Elements has essentially served as the standard means 
of teaching geometry for some 2,500 years and has taught the world how to 
think systematically. When Abraham Lincoln wanted to learn the meaning of 
demonstrate in practicing law, he turned to reading Euclid by candlelight in his 
Kentucky log cabin. Euclid also wrote other works on geometry, astronomy, 
optics, and music, many of which are lost forever. 

4. Leonhard Euler (1707-1783) Swiss mathematician, and the most pro-
lific mathematician in history. Even when he was completely blind, he made 
great contributions to modern analytic geometry, trigonometry, calculus, and 
number theory. Euler published over 8,000 books and papers, almost all in 
Latin, on every aspect of pure and applied mathematics, physics, and astronomy. 
In analysis he studied infinite series and differential equations, introduced many 
new functions (e.g., the gamma function and elliptic integrals), and created the 
calculus of variations. His notations such as e and Jt are still used today. In 
mechanics, he studied the motion of rigid bodies in 3 dimensions, the construc-
tion and control of ships, and celestial mechanics. Leonhard Euler was so prolif-
ic that his papers were still being published for the first time 2 centuries after his 
death. His collected works have been printed bit by bit since 1910 and will even-
tually occupy more than 75 large books. 

5. David Hilbert (1862-1943) German mathematician and philoso-
pher, judged by many as the foremost mathematician of the 20th century, who 
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contributed to the theory of algebra, number fields, integral equations, func-
tional analysis, and applied mathematics. Measured in terms of influence, 
Hilbert's work in geometry is second after Euclid's. Hilbert published Grund-
lagen der Geometrie in 1899, which added immensely to the field of geometry. 
His famous 23 Paris problems still challenge mathematicians with important 
mathematical questions. (At the second International Congress of Mathema-
ticians, which met at Paris in 1900, Hilbert reviewed the basic contemporary 
trends of mathematical research, then formulated 23 problems, extending over 
all fields of mathematics, that he believed should occupy the attention of mathe-
maticians in the following century.) Because of Hilbert's prestige, mathemati-
cians spent a great deal of time tackling the problems, and many were solved. 
Some, however, have been solved only very recently, and still others continue to 
daunt us. 

6. Jules Henri Poincare (1854-1912) Great French mathematician, 
mathematical physicist, astronomer, and philosopher. He was the originator of 
algebraic topology and of the theory of analytic functions of several complex 
variables. In applied mathematics, he studied optics, electricity, telegraphy, cap-
illarity, elasticity, thermodynamics, potential theory, quantum theory, and the 
theory of relativity and cosmology. In the field of celestial mechanics, he studied 
the 3-body problem and theories of light and electromagnetic waves. He is 
acknowledged as a codiscoverer, with Albert Einstein and Hendrik Lorentz, of 
the special theory of relativity. In his work on planetary orbits, Poincare was first 
to consider the possibility of chaos in a deterministic system. 

7. Georg Friedrich Bernhard Riemann (1826-1866) German math-
ematician who made important contributions to geometry, complex variables, 
number theory, topology, and mathematical physics. His ideas concerning the 
geometry of space had an important influence on modern relativity theory. He 
clarified the notion of integrals by defining what we now call the Riemann inte-
gral. His first publication, in 1851, was on the theory of complex-variable func-
tions including the result now known as the Riemann mapping theorem. In this 
and a later paper (1857) on abelian functions, he introduced the concept of 
"Riemann surface" to deal with multivalued algebraic functions; this was to 
become a major idea in the development of analysis. His famous lecture "On the 
Hypotheses That Underlie Geometry," given in 1854 in the presence of the aged 
Gauss, first introduced the concept of a "manifold," an ^-dimensional curved 
space, greatly extending the non-Euclidean geometry of Janos Bolayai and 
Nikolai Lobachevski. Riemann's ideas led to the modern theory of differentiable 
manifolds, playing an important part in current attempts to unify relativity and 
quantum theory. Riemann's name is associated with the Riemann hypothesis, a 
famous unsolved problem concerning the zeta function, which is central to the 
study of the distribution of prime numbers. 

8. Iivariste Galois (1811-1832) Responsible for Galois theory. Famous 
for his contributions to group theory, Evariste Galois produced a method of 
determining when a general equation could be solved by radicals. Although he 
obviously knew more than enough mathematics to pass the Lycee's examinations, 
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Galois's solutions were often so 
innovative that his university 
examiners failed to appreciate 
them. Also, Galois would per-
form so many calculations in his 
head that he would not bother to 
outline his arguments clearly on 
paper. These facts in addition to 
his temper and rashness denied 
him admission to the Ecole Poly-
technique. 

When he was taunted into a 
duel, he accepted, knowing he 
would die. The circumstances 
that led to Galois's death have 
never been fully explained. It has 
been variously suggested that it 
resulted from a quarrel over a 
woman, that he was challenged 
by royalists who detested his re-
publican views, or that an agent 
provocateur of the police was 
involved. In any case, preparing 
for the end, he spent the entire 
night feverishly writing his 
mathematical ideas and discover-
ies in as complete a form as he could. Figure 36.1 shows a page from his last 
night's writing on quintic equations (equations with the term x*). 

The next day, Galois was shot in the stomach. He lay helpless on the ground. 
There was no physician to help him, and the victor casually walked away, leaving 
Galois to writhe in agony. 

Not until 1846 had group theory progressed sufficiently for his discoveries to 
be appreciated. Galois never received recognition for his extraordinary work and 
advanced ideas, but his legacy has had a great impact on 20th-century mathe-
matics. His mathematical reputation rests on fewer than 100 pages of posthu-
mously published work of original genius. 

9. Rene Descartes (1596-1650) French philosopher and mathematician 
whose work La geometrie became one of the most influential geometry books in 
history. Descartes was a Catholic all his life, and he was careful to modify or even 
suppress some of his later scientific views—for example, his sympathy with 
Copernicus—perhaps fearing the wrath of the Inquisition. Nevertheless, he 
made important contributions in astronomy, including his theory of vortices, 
and more especially in mathematics, where he reformed algebraic notation and 
helped found coordinate geometry. Descartes had a lifetime habit of staying in 
bed meditating and reading until 11 A.M. 

36.1 The frantic mathematical scribblings Galois 
made during the night before his fatal duel. On this 
page, on the left below the center, are the words 
line femme, with femme crossed out—a reference 
to the woman at the center of the duel. 
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10. Blaise Pascal (1623-1662) French geometer, probabilist, combina-
torist, physicist, and philosopher. Pascal and Pierre de Fermat founded probabil-
ity theory independently. Pascal also invented the first calculating machine, 
studied conic sections, and produced important theorems in projective geome-
try. His father, a mathematician, was responsible for his education. Blaise was 
not allowed to begin a subject until his father thought he could easily master it. 
As a result, the 11-year-old boy worked out for himself in secret the first 23 
propositions of Euclid. At 16, he published essays on conics that Descartes 
refused to believe were the handiwork of a teenager. In 1654, Blaise Pascal decid-
ed that religion was more to his liking, so he joined his sister in her convent and 
gave up mathematics and social life. 

Runners-up: Gerolamo Cardano, Kurt Godel, Georg Cantor, and 
John Napier. Napier's invention of logarithms was a major advance and freed 
people from a considerable amount of mathematical drudgery. 

C h a p t e r 37 

What is Godel's Mathematical 
Proof of the Existence of God? 

Were theologians to succeed in their attempt to strictly separate science 
and religion, they would kill religion. Theology simply must become a 
branch of physics if it is to survive. That even theologians are slowly 

becoming effective atheists has been documented. 
—Frank Tipler, The Physics of Immortality 

Perhaps the most interesting example of a mathematician studying cosmic ques-
tions is Austrian mathematician Kurt Godel, who lived from 1906 to 1978. 
Sometime in 1970, Godel's mathematical proof of the existence of God began to 
circulate among his colleagues. The proof was less than a page long and caused 
quite a stir: 
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Axiom 1. (Dichotomy) A property is positive if and only if its negation is 
negative. 

Axiom 2. (Closure) A property is positive if it necessarily contains a pos-
itive property. 

Theorem 1 A positive property is logically consistent (i.e., possibly it has 
some instance.) 

Definition. Something is God-like if and only if it possesses all positive 
properties. 

Axiom 3. Being God-like is a positive property. 

Axiom 4. Being a positive property is (logical, hence) necessary. 

Definition. A property P is the essence of x if and only if x has P and P is 
necessarily minimal. 

Theorem 2 If x is God-like, then being God-like is the essence of x. 

Definition. NE(x): x necessarily exists if it has an essential property. 

Axiom 5. Being NE is God-like. 

Theorem 3• Necessarily there is some x such that x is God-like. 

How shall we judge such an abstract proof? How many people on Earth can 
really understand it? Most logicians and mathematicians that Dr. Googol consult-
ed were not able to explain all aspects of the proof, and so it is difficult to assess its 
full nature. Is the proof a result of profound contemplation or the raving of a 
lunatic? Recall that Godel's academic credits were impressive. For example, he was 
a respected mathematician and a member of the faculty of the University of 
Vienna starting in 1930. He emigrated to the United States in 1940 and became 
a member of the Institute of Advanced Study in Princeton, New Jersey. Godel is 
most famous for his theorem that demonstrated there must be true formulas in 
mathematics and logic that are neither provable nor disprovable, thus making 
mathematics essentially incomplete. (This theorem was first published in 1931 in 
Monatshefte fur Mathematik undPhysick, volume 38.) Godel's theorem had quite 
a sobering effect upon logicians and philosophers because it implies that within 
any rigidly logical mathematical system there are propositions or questions that 
cannot be proved or disproved on the basis of axioms within that system, and 
therefore it is possible for basic axioms of arithmetic to give rise to contradictions. 
The repercussions of this fact continue to be felt and debated. Moreover, Godel's 
article in 1931 put an end to a centuries-long attempt to establish axioms that 
would provide a rigorous basis for all of mathematics. 
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Over the span of his life, Godel kept voluminous notes on his mathematical 
ideas. Some of his work is so complex that mathematicians believe many decades 
will be required to decipher all of it. Author Hao Wang writes on this very sub-
ject in his Reflections on Kurt Godel (Cambridge, Mass.: MIT Press, 1987): 

The impact of Godel's scientific ideas and philosophical speculations has been 
increasing, and the value of their potential implications may continue to 
increase. It may take hundreds of years for the appearance of more definite confir-
mations or refutations of some his larger conjectures. 

Godel himself spoke of the need for a physical organ in our bodies to handle 
abstract theories. He also suggested that philosophy will evolve into an exact the-
ory "within the next hundred years or even sooner." He even believed that 
humans will eventually disprove propositions such as "there is no mind separate 
from matter." 

Alas, Dr. Googol is not a logician and cannot appreciate Godel's 11-step 
proof of God's existence. Dr. Googol welcomes comments from more erudite 
readers on this proof, which he obtained from: Wang's Reflections, page 195. 

C h a p t e r 38 

A Ranking of the 10 Most 
influential Mathematicians 
Alive Today 

Music is the pleasure the human mind experiences from counting without 
being aware that it is counting. 

—Gottfried Leibnitz 

Here is a ranking of the 10 most influential mathematicians alive today, based on 
surveys and interviews with mathematicians. 

1. Andrew Wiles (b. 1953) Wiles is Eugene Higgins Professor of Math-
ematics at Princeton. His famous paper proving Fermat's Last Theorem is titled 
"Modular Elliptic Curves and Fermat's Last Theorem," published in the 1995 
Annuals of Mathematics. (Fermat's Last Theorem says that if x, y, z, and n are pos-
itive integers, then x" + y" = z" cannot be solved for any n greater than 2.) 
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During his 8-year search for a proof, Wiles had brought together most of the 
breakthroughs in 20th-century number theory and incorporated them in one 
stupendous proof. Along the way, he created completely new mathematical 
methods and combined them with traditional ones in novel ways. In doing this, 
Wiles opened up novel lines of attack on many other mathematical problems 
and made tremendous contributions toward the resolution of long-standing fun-
damental problems in number theory. The problems that he has addressed on his 
own and jointly with others include the Birch and Swinnerton-Dyer conjectures, 
the main conjecture of Iwasawa theory, and the Shimura-Taniyama-Weil conjec-
ture. Wiles has been awarded the Schock Prize in Mathematics from the Royal 
Swedish Academy of Sciences and the Prix Fermat from the Universite Paul 
Sabatier. He also received the 1995-96 Wolf Prize "for spectacular contributions 
to number theory and related Fields, for major advances on fundamental conjec-
tures, and for settling Fermat's Last Theorem." In 1995, mathematician John 
Coates announced: 

In mathematical terms, the final proof is equivalent of splitting the atom or find-
ing the structure of DNA. A proof of Fermat is a great intellectual triumph, and 
one shouldn't lose sight of the fact that it has revolutionized number theory in one 
fell swoop. 

Mathematician Ken Ribet notes: 

There's an important psychological repercussion, which is that people now are 
able to forge ahead on other problems that they were too timid to work on before. 

2. Harold (Donald) Coxeter (b. 1907) Coxeter made significant 
advances in geometry. In particular he made contributions of major importance 
in the theory of polytopes (polygons in higher dimensions) and non-Euclidean 
geometry. His hundreds of books and articles cover diverse areas. Coxeter met 
M.C. Escher in 1954, and the two became close friends. Coxeter also had an 
influence on architect Buckminister Fuller. 

3. Roger Penrose (b. 1931) This British mathematician and physicist pre-
dicted singularities in black holes. A professor of mathematics at the University 
of Oxford in England, Penrose also pursues an active interest in recreational 
math, which he shares with his father. While most of his work pertains to rela-
tivity theory and quantum physics, he is fascinated with a field of geometry 
known as tessellation, the covering of a surface with tiles of prescribed shapes. 
Penrose received his Ph.D. at Cambridge in algebraic geometry. While there, he 
became interested in a geometrical puzzle involving the covering of a flat surface 
with tiles so that there were no gaps and no overlaps. In particular, Penrose 
found shapes that could tile a surface but did not generate a repeating pattern 
(known as quasi-symmetry). These tilings are useful in understanding certain 
chemical substances that form crystals in a quasi-periodic manner. A French 
company has recently found a practical application for substances that form 
these quasi-crystals: they make excellent nonscratch coating for frying pans. 
Professor Penrose was knighted in 1994 and awarded the prestigious Wolf Prize 
for Physics in 1988, which he shared with Professor Stephen Hawking. 
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4. Edward Witten (b. 1951) Witten, an American, is one of the foremost 
leaders in reviving the symbiosis between physics and mathematics and is famous 
for his work with superstring theory and other areas of mathematical physics. 
When modern science was born in the 1600s, physics and mathematics were 
united in one discipline. They gradually evolved into different fields, and by the 
middle 1900s research in these fields had little in common. Witten's work on 
string theory has inspired a new generation of theoretical physicists and also led 
to new research in pure mathematics. He is the first and only physicist to be 
awarded the Fields Medal; the mathematical equivalent of the Nobel Prize, it is 
awarded to mathematicians under 40 years of age for outstanding, seminal 
research in mathematics. 

5. William Thurston (b. 1946) Thurston conducted pioneering work in 
geometry, particularly 3-dimensional topology and foliations. He was appointed 
a full professor at Princeton University only 2 years after receiving his Ph.D. and 
is widely regarded as being among the most creative mathematicians in the 
world. He has solved or clarified dozens of fundamental problems in geometry 
and topology. In his work on foliations, Thurston transformed an existing field 
of mathematics. Thurston is a member of the National Academy of Sciences and 
a Fields medalist. At the International Congress of Mathematicians in 1983, 
Professor C.T.C. Wall spoke of Thurston's work: "Thurston has fantastic geo-
metric insight and vision; his ideas have completely revolutionized the study of 
topology in 2 and 3 dimensions and brought about a new and fruitful interplay 
between analysis, topology and geometry." 

6. S t e p h e n S m a l e (b. 1930) A Fields Medal recipient, Smale is famous for 
work on the Poincare conjecture, Morse theory, topology, and various aspects of 
chaos theory. In June 1996, he received the National Medal of Science, the high-
est honor in science and technology awarded in the United States. Although 
Smale has worked in many areas, including differential topology, nonlinear analy-
sis, economic theory, computation, and mechanics, his work in chaos and dynam-
ical systems will be best known to many readers. Smale's 1960s work on the 
structure stability of vector fields led to the construction of the horseshoe map and 
his early study of chaotic phenomena. (To make a simple version of Smale's horse-
shoe, you take a bar and repeatedly fold, stretch, and squeeze it, like a mechanical 
taffy-maker with rotating arms stretching taffy, doubling it up, stretching it again, 
and so on. This topological transformation provided a basis for understanding the 
chaotic properties of dynamical systems.) In 1967, he published a landmark sur-
vey article on hyperbolic systems, which outlined a number of outstanding prob-
lems, stimulating much of the work that followed in the next 20 years. 
Subsequently he applied dynamical systems ideas to various physical processes, 
including the «-body problem and electric circuit theory, and to economics. 

7. Robert P. Langlands (b. 1950) This pioneering mathematician and 
1982 Cole Prize recipient works on automorphic forms, Eisenstein series, and 
product formulas. Langlands, of the Institute for Advanced Study, in Princeton, 
and Andrew J. Wiles of Princeton University shared the 1995-1996 Wolf Prize 
in Mathematics; Langlands received it for "his path-blazing work and extraordi-
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nary insight in the fields of number theory, automorphic forms, and group rep-
resentation." Langlands shaped the modern theory of automorphic forms with 
foundational work on Eisenstein series, group representations, Z-functions and 
the Artin conjecture, the principle of functoriality, and the formulation of the 
far-reaching Langlands program. His contributions inspire present and future 
researchers in these fields. 

8. Michael Freedman (b. 1951) Freedman has received many honors, 
including a Fields Medal in 1986 for his work on a dimension 4 analogue of the 
Poincare conjecture—one of the famous problems of 20th-century mathematics, 
which asserts that a simply connected closed 3-dimensional manifold is a 3-
dimensional sphere. He was California Scientist of the Year in 1984, and in that 
same year he was made a MacArthur Foundation Fellow and elected to the 
National Academy of Sciences. In 1985, he was elected to the American 
Academy of Arts and Sciences. In June 1987, Freedman was presented with the 
National Medal of Science at the White House by President Ronald Reagan. The 
following year, he received the Humboldt Award, and in 1994 he received the 
Guggenheim Fellowship Award. 

9. John Horton Conway (b. 1937) John von Neumann Professor of 
Mathematics at Princeton University. Author of numerous publications in math-
ematics, and the inventor of The Game of Life. (His coauthored books include 
On Numbers and Games; Winning Ways for Your Mathematical Plays; Sphere 
Packing, Lattices and Groups; and The Book of Numbers) To develop Life, 
Conway used the basic premise of von Neumann's automata and created a 
checkerboard world. This world is inhabited by single cells who live or die based 
on the state of the cell and its neighbors. Therefore, at any instant, a Life uni-
verse can be described completely by specifying which cells are on and which are 
off. This type of world has come to be known as a cellular automaton and is an 
important tool for artificial life research. 

10. Alexander Grothendieck (b. 1928) Grothendieck provided unifying 
themes in geometry, number theory, and topology. He was born in Berlin, where 
his Russian father was murdered by the Nazis. Grothendieck moved to France 
in 1941 and later entered Montpellier University. After graduating from 
Montpellier he spent the year 1948-49 at the Ecole Normale Superieur in Paris, 
then moved to the University of Nancy, where he worked on functional analysis 
and became one of the Bourbaki group of mathematicians. 

Grothendieck's years between 1959 and 1970 are described as a golden age 
during which mathematics flourished under his energetic leadership. During this 
period, Grothendieck's work provided unifying themes in geometry, number 
theory, topology and complex analysis. He received the Fields Medal in 1966. 

Martin Gardner (b. 1914) appeared on many lists. While he is not a 
mathematician, many respondents felt that his regular columns in Scientific 
American and numerous books have done more to heighten modern interest in 
mathematics than any other writing in history. Therefore, his influence is great 
and may warrant his inclusion on this list. In 1996, Martin Gardner received the 
Forum Award of the American Physical Society. The citation read: 
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. . . for his popular columns and books on recreational mathematics which intro-
duced generations of readers to the pleasures and uses of logical thinking; and for 
his columns and books which exposed pseudoscientific and antiscientific bunk 
and explained the scientific process to the general public. 

Kendrick Frazier in the April 1998 Skeptical Inquirer notes: 

Gardner's mind is highly philosophical, at home with the most abstract concepts, 
yet his thinking and writing crackle with clarity—lively, crisp, vivid. He achieved 
worldwide fame and respect for the three decades of his highly popular mathemat-
ical games column for Scientific American, yet he is not a mathematician. He is by 
every standard an eminent intellectual, yet he has no Ph.D. or academic position. 
He has a deep love of science and has written memorable science books (The Ambi-
dextrous Universe and The Relativity Explosion, for instance), and yet he has devot-
ed probably more time and effort to—and has been more effective than any 
thinker of the twentieth century in—exposing pseudoscience and bogus science. 

Runners-up: Jean-PiefTe SetTe (b. 1926; number theory, algebraic 
geometry), Vladimir Arnold (b. 1937; dynamical systems, geometry), 
Richard Borcherds (b. 1959; group theory), William Timothy Gowers 
(b. 1963; Banach space theory and combinatorics), Maxim Kontsevich (b. 
1964; algebraic curves and manifolds), and Curtis T. McMullen (b. 1958; 
theory of computation, dynamical systems, 3-manifolds). 

C h a p t e r 39 

A Ranking of the 10 Most 
interesting Numbers 

The tantalizing and compelling pursuit of mathematical problems offers 
mental absorption, peace of mind amid endless challenges, repose in 

activity, battle without conflict, refuge from the goading urgency of con-
tingent happenings, and the sort of beauty changeless mountains present 

to senses tried by the present-day kaleidoscope of events. 
—Morris Kline 
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Here is a ranking of the 10 most interesting numbers, based on surveys and 
interviews with mathematicians. 

1. 0 See Chapter 2 on the importance of 0 in history and positional nota-
tion. 0 is the additive identity for a + 0 = a. 

2. U Normally we think of it (3.1415 . . . ) as the ratio of the circumference 
of a circle to its diameter. So did pre-17th-century humanity. However, in the 
17th century, jr was freed from the circle. Many curves were invented and stud-
ied (e.g., various arches, hypocycloids, witches), and it was found that their areas 
could be expressed in terms of Jt. Finally n ruptured the confines of geometry 
altogether. For example, today it relates to uncountably many areas in number 
theory, probability, complex numbers, and series of simple fractions such as 
Jt/4 = 1 - 1/3 + 1/5 - 1 / 7 . . . . As another example of how far JT has drifted from 
its simple geometrical interpretation, consider the book Budget of Paradoxes, 
where Augustus De Morgan explains an equation to an insurance salesman. The 
formula, which gives the chances that a particular group of people would be alive 
after a certain number of days, involves the number Jt. The insurance salesman 
interrupts and exclaims, "My dear friend, that must be a delusion. What can a 
circle have to do with the number of people alive at the end of a given time?" 

Even more recently, Jt has turned up in equations that describe subatomic 
particles, light, and other quantities that have no obvious connection to circles. 
John Polkinghorne (a physicist at Cambridge University before he became an 
Anglican priest in 1982) believes this points to a very deep fact about the nature 
of the universe, namely that our minds, which "invent" mathematics, conform 
to a reality of the universe. We are tuned to its truths. (See Sharon Begley's 
"Science Finds God" in the July 20, 1998, issue of Newsweek) 

3. e The base of the natural system of logarithms; the limit of (1 + I In)" as 
n increases without limit. Its numerical value is 2.7182 . . . (note that if we use 
n = 10 in the formula we get (1 + 1 /10)10 = 2.59 . . . , and if we use n- 20 we get 
(1 + 1/20)20 = 2.65 . . . ) . The constant e is related to the other important num-
bers, 1, Jt, and i, by eK[ - -1 . Additionally, e, like Jt, is an example of a transcen-
dental number (see Chapter 44 for more information on transcendentals, which 
cannot be expressed as the root of any algebraic equation—for example, a poly-
nomial—with rational coefficients.) Numerous growth processes in physics, 
chemistry, biology, and the social sciences exhibit exponential growth typified by 
the formula y = ex. This function is exactly the same as its derivative, a fact that 
partially explains e's frequent occurrence in calculus. Many hanging shapes in 
nature (like a rope suspended at two points and sagging in the middle) follow a 
catenary curve defined by {a!2)(ex/a + e~x/a). 

4. i Imaginary unit. If you were asked to find an xsuch that x2 + 1 = 0, you 
would quickly realize that there was no real solution. This fact led early mathe-
maticians to consider solutions involving the square root of negative numbers. 
Heron of Alexandria (c. A.D. 100) was probably the first individual who formal-
ly presented a square root of a negative number as a solution to a problem. (For 
trivia aficionados, it was -J-63). These numbers were considered quite meaning-
less, and hence the term imaginary was used. When imaginary numbers were 
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first considered, many people were not sure of their validity. What real-world 
significance could they have? Today, amazingly, imaginary numbers are every-
where in science—from hydrodynamics to electrical theory. The space shuttle's 
flight software uses them for navigation. They're used by protein chemists for 
spatially manipulating models of protein structure. Ted Kaczynski, the Una-
bomber, spoke of imaginary numbers fondly throughout his highly theoretical 
mathematical journal articles. Carl Friedrich Gauss coined the word complex in 
1832 to describe numbers with both real and imaginary components. 
Humanity's expansion into the realm of complex numbers turned many difficult 
problems into relatively easy ones. 

5. -12 The square root of 2 has a numerical value of 1.414214.. . . When it 
was first proved to be irrational (that is, it could not be expressed as the ratio of 
two integers like 7/5), a whole new area of mathematics was developed. The 
Pythagoreans, a mystical brotherhood based on the philosophical teachings of 
Pythagoras, discovered that the diagonal of a square with sides of length 1 is not 
a rational number. This was considered so shocking that those who knew about 
it were sworn to secrecy for fear that it might disrupt the fabric of society! It is 
often said that when Hippasus discovered that the ratio between the side and the 
diagonal of a rectangle cannot be expressed in integers, this shattered the 
Pythagorean worldview. The problem caused an existential crisis in ancient 
Greek mathematics. The digits of 1.4142 . . . go on forever without any known 
pattern. Pythagoreans dubbed these irrational numbers alogon, or unutterable. 

6. 1 A factor of all numbers, 1 has no factors but itself. It is the multiplica-
tive identity for 1 x a = a. 

7. 2 The only even prime number. In the words of Richard Guy, this makes 
it the oddest prime of all. Notice that 2 + 2 = 2 x 2 , which gives it a unique arith-
metic property. Importantly, it is the basis for the binary system of numbers 
upon which all computers are built. Powers of 2 appear more frequently in 
mathematics and physics than those of any other number. 

8. Eu ler ' s G a m m a (y) Numerical value, 0.5772. . . . This number links 
the exponentials and logs to number theory, and it is defined by the limit of 
(1 + 1/2 + 1/3 + . . . + \ln- log n) as n approaches infinity. In addition to many 
infinite series, products, and definite integral representations, Euler's constant 7 
also plays a role in probability. Calculating 7 has not attracted the same public 
interest as calculating jt, but 7 has still inspired many ardent devotees. While we 
presently know Jt to billions of decimal places, only several thousand places of 7 
are known. The evaluation of 7 is considerably more difficult than that of Jt. 

9. Chaitin's constant (ft) An irrational number which gives the proba-
bility that a "universal Turing machine" (for any set of instructions) will halt. 
The digits in Q are random and cannot be computed prior to the machine halt-
ing. (A Turing machine is a theoretical computing machine that consists of an 
infinitely long magnetic tape on which instructions can be written and erased, a 
single-bit register of memory, and a processor capable of carrying out certain 
simple instructions. The machine keeps processing instructions until it reaches a 
particular state, causing it to halt.) Chaitin's constant has implications for the 
development of human and natural languages and gives insight into the ultimate 
potential of machines. 
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10. X 0 (Aleph naught) A "transfinite" number. Even though there are an 
infinite number of rational and irrational numbers, the infinite number of irra-
tionals is in some sense greater than the infinite number of rationals. To denote 
this difference, mathematicians refer to the infinity of rationals as and the 
infinite number of irrationals as C, which stands for continuum. There is a sim-
ple relationship between Cand K0. It is C = 2K0. The "continuum hypothesis" 
states that C = Xj; however, the question of whether or not C truly equals is 
considered undecidable. In other words, great mathematicians such as Kurt 
Godel proved that the hypothesis was a consistent assumption in one branch of 
mathematics. However, another mathematician, Paul Cohen, proved that it was 
also consistent to assume the continuum hypothesis is false! Interestingly, the 
number of rational numbers is the same as the number of integers. The number 
of irrationals is the same as the number of real numbers. (Mathematicians usual-
ly use the term cardinality when talking about the "number" of infinite numbers. 
For example, true mathematicians would say that the "cardinality" of the irra-
tionals is known as the continuum.) Thinking about the number of elements in 
infinite sets led to the discovery of transfinite numbers and the fact that there are 
different "levels" of infinity. 

C h a p t e r 40 

The Unabomber's 10 Most 
Mathematical Technical Papers 

Let /"be our finite skew field, ,F*its multiplicative group. Let 5 be 
any Sylow subgroup F*, of order, say, p". Choose an element g of order 

p in the center of S. If some hE. S generates a subgroup of order p 
different from that generated by g, then g and h generate a commutative 

field containing more than p roots of the equation xf - 1, an impossibility. 
Thus 5 contains only one subgroup of order p and hence is either a cyclic 

or general quaternion group. 
—T. J. Kaczynski, "Another Proof of Wedderburn's Theorem" 

The majority of people engage in a significant amount of naughty behavior. 
—Unabomber Manifesto 
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Ted Kaczynski, also known as the Unabomber, was a mathematically adept 
Harvard graduate (see Chapter 31). After teaching for 2 years and publishing 
mathematical papers that put him on a tenure track at one of the nation's most 
prestigious universities, he suddenly quit, spent nearly half his life in the woods, 
and used homemade bombs to kill 3 strangers and injure 22 others. 

Ted Kaczyinski's research into the properties of functions of circles was by all 
accounts brilliant, but when he sent his papers to journals for publications, he 
did so quietly, without telling his professors or classmates. (This occurred before 
Kaczyinski became a hermit in the woods and started killing people.) When his 
articles began appearing in respected mathematics journals, professors and stu-
dents were amazed. According to Joel Shapiro, a fellow student now a mathe-
matics professor: 

While most of us were just trying to learn to arrange logical statements into coher-
ent arguments, Ted was quietly solving open problems and creating new mathe-
matics. It was if he could write poetry while the rest of us were trying to learn 
grammar. 

Various mathematicians have said that Kaczynski's papers, such as "Boundary 
Functions for Functions Defined in a Disk" and "On a Boundary Property of 
Continuous Functions," were cutting-edge mathematics when they were pub-
lished. In order to help judge Kaczynski's work, Dr. Googol acquired his papers 
and spread them out on the table. Alas, despite some mathematical training, Dr. 
Googol cannot understand Kaczynski's works. Here are some of Kaczynski's eru-
dite titles: 

1. Kaczynski, T. J. (1967) Boundary Functions (doctoral dissertation). Ann 
Arbor: University of Michigan. (This 80-page thesis won "best thesis of the 
year" in the math department at the University of Michigan.) 

2. Kaczynski, T. J. (1964) Another proof of Wedderburn's theorem. American 
Mathematical Monthly. 71: 652-653. 

3. Kaczynski, T. J. (1964.) Distributivity and (-l)x = -x (proposed problem). 
American Mathematical Monthly. 71: 689. 

4. Kaczynski, T. J. (1965) Boundary functions for functions defined in a disk. 
Journal of Mathematics and Mechanics. 14(4): 589-612. 

5. Kaczynski, T. J. (1965) Distributivity and (-l)x = -^(problem and solution). 
American Mathematical Monthly. 72: 677-678. 

6. Kaczynski, T. J. (1966) On a boundary property of continuous functions. 
Michigan Mathematics Journal. 13: 313-320. 

7. Kaczynski, T. J. (1969) Note on a problem of Alan Sutcliffe. Mathematics 
Magazine. 41: 84-86. 

8. Kaczynski, T. J. (1969) The set of curvilinear convergence of a continuous 
function defined in the interior of a cube. Proceedings of the American 
Mathematics Society. 23: 323-327. 
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9. Kaczynski, T. J. (1969) Boundary functions and sets of curvilinear conver-
gence for continuous functions. Transactions of the American Mathematics 
Society. 141: 107-125. 

10. Kaczynski, T. J. (1969) Boundary functions for bounded harmonic func-
tions. Transactions of the American Mathematics Society. 137: 203-209. 

Dr. Googol shouldn't feel too bad about not comprehending any of the 
Unabomber's papers. According to the hype, there are few who can fully ap-
preciate Kaczynski's work without considerable mathematical education. 
Professor Maxwell O'Reade, who was on Kaczynski's dissertation committee, 
noted, "I would guess that maybe 10 or 12 people in the country understood or 
appreciated it." 

C h a p t e r 41 

The 10 Mathematical Formulas 
That Changed the Face of 
the World 

Perhaps an angel of the Lord surveyed an endless sea of chaos, then trou-
bled it gently with his finger. In this tiny and temporary swirl of equa-

tions, our cosmos took shape. 
—Martin Gardner 

A few years ago, Nicaragua issued 10 postage stamps bearing las 10 formulas 
matemdticas que cambiaron la faz de la tierra. (the 10 mathematical formulas that 
changed the face of the world). Isn't it admirable that a country so respects math-
ematics that it devotes a postage-stamp series to a set of abstract equations? Have 
other countries produced a similar series? 

Dr. Googol is not sure how the Nicaraguan government determined which 
particular formulas should be elevated to so high a status. Perhaps a survey was 
conducted among the mathematicians in the country. In addition to scientific 
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merit, perhaps such practical issues as space limitations were considered so as to 
avoid long formulas on small stamps. 

Dr. Googol conducted his own informal survey as to which formulas scien-
tists considered "the 10 mathematical formulas that changed the face of the 
world." The survey was conducted via electronic mail networks, and a majority 
of the respondents were mathematicians (professors, other professionals, and 
graduate students). Here's the answer to this question from approximately 50 
interested individuals who gave Dr. Googol their opinions as to the most impor-
tant and influential equations. The equations are ordered from most influential 
to least influential, based on the number of different people who listed the same 
formulas when they sent their lists to Dr. Googol. For example, E - mc2 received 
the most votes. 

How many of the following formulas can you identify? If you can identify 
more than 5, you are probably more knowledgeable than 99% of the people on 
Earth. If you can identify all equations in the top 10 and all the equations in the 
runners-up list, you are worthy of cavorting with the antediluvian gods. Dr. 
Googol identifies these equations later in the chapter. 

T H E T O P I O 

Here are the 10 most influential and important mathematical expressions, listed 
in descending order of importance: 

1. E = mc2 

2. a2 + b2 = c2 

3. s0$E • dA = 

4. x= {-b ±J b2 - Aac)l (2a) 

5. F = ma 

(j. 1 + eiT = 0 

7. c = 2%r, a = irr2 

8. F = Gmxmi /r2 

9. f(x) = lcneinTx/L 

10. e'9 = cosd + zsin0, tied with a" + bn = c", n S 2 

T H E R U N N E R S - U P 

These mathematical expressions did not score high enough to be included in the 
top 10 but scored favorably. They are listed in no particular order but are num-
bered for reference. 

1. f(x) =f(a) +f'(a)(x-a) + f"(a)(x-a)2l2l. . . 

2. s = vt+ at2/2 
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3. V=IR 

4. z-> z2 + fi, (for complex numbers) 

5. e = limB_a)(l + l/«)H 

6. c2 = a2 + b2 -2abcosC 

7. J"Ai£4 =2tt x x 

8. d/dxjaf(t)dt = f(x) 

9. H{2vi)§f(z)/(z-a)dz=f(a) 

10. dy/dx = \imh^0(f(x + h)-f(x))/h 

11. d2^/dx2 = - [8 j t 2 m/A 2 (E 

N I C A R A G U A L I S T 

Here is a list of Nicaragua's postage-stamp equations. Note how many of these 
formulas agree with the top 10 list based on Dr. Googol's own informal survey. 

1. 1 + 1 = 2 

2. F = Gmlm2 /r2 

3. E = tnc2 

4. eXaN = N 

5. a2 + b2 = c2 

6. S = k\o%W 

7. V= Vc\nm0/mi 

8. X = h/mv 

9. \72E = (Ku/c2)(d2E/dt2) 

10. F\Xi = F2X2 

Do you recognize several of these formulas? 

® ® ® 

I D E N T I F I C A T I O N O F E Q U A T I O N S 

Here are the solutions for the Nicaragua stamp list: (1) Basic addition formula. 
(2) Isaac Newton's law of universal gravitation. If the two masses rri\ and m2 
are separated by a distance, r, the force exerted by one mass on the other is F, 
and G is a constant of nature. (3) Einstein's formula for the conversion of matter 
to energy. (4) John Napier's logarithm formula. This allows us to do multi-
plication and division simply by adding or subtracting the logarithms of num-
bers. (5) Pythagorean theorem relating the lengths of sides of a right triangle. 
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(6) Bolzmann's equation for the behavior of gases. (7) Konstantin Tsiolkovskii's 
rocket equation. It gives the speed of a rocket as it burns the weight of its fuel. 
(8) De Broglie's wave equation, relating the mass, velocity, and wavelength of a 
wave-particle, h is Planck's constant. De Broglie postulated that the electron 
has wave properties and that material particles have an associated wavelength. 
(9) Equation relating electricity and magnetism, derived from Maxwell's equa-
tions, which form the basis for all computations involving electromagnetic 
waves including radio, radar, light, ultraviolet waves, heat radiation, and X rays. 
(10) Archimedes' lever formula. 

Here are explanations for some of the formulas in Dr. Googol's own lists. 
(3) One of Maxwell's equation for electromagnetism. (4) The quadratic formula 
for solving equations of the form ax2 + bx + c= 0. (5) Newton's second law, relat-
ing force, mass, and acceleration. (7) Gives the circumference and area of a 
circle. (9) represents a Fourier series. Complicated wave disturbances may be 
represented as the sum of a group of sinusoidal-like waves. (10) The first formu-
la is Euler's identity relating exponential and trigonometric functions; the second 
formula represents Fermat's Last Theorem. (Runner-up 7) The Gauss-Bonnet 
formula, where % is the Euler characteristic. (Runner-up 9) Cauchy's integral 
formula in complex analysis. 

A few respondents suggested Fermat's Last Theorem be included among the 
top 10 influential mathematical expressions because a significant amount of 
research and mathematics has been a direct result of attempts to prove the theo-
rem. This theorem by Pierre de Fermat (1601-1665) states that there are no 
whole numbers a, b, and c such that a" + b" = c" for n > 2. (In 1995, Andrew 
Wiles published a famous paper in the Annuals of Mathematics that finally 
proved Fermat's Last Theorem.) In 1769, Leonhard Euler stated that he thought 
the related formula a4 + b4 + c4 = d4 had no possible integral solutions. Two 
centuries later, Noam Elkies of Harvard University discovered the first solution: 
a = 2,682,440, b= 15,365,639, c = 18,796,760, and 20,516,673. (For more 
information, see: Elkies, N. (1988) On a4 + b4 + c4 = d4. Mathematics of 
Computation. Oct. 51(184): 825-35.) 

C O M M E N T S F R O M C O L L E A G U E S 

Clifford Beshers of Columbia University suggested adding a fixed loan payment 
formula to the top 10 because populations that govern industrial economies have 
had a great impact on our world. The fixed loan payment formula involves vari-
ables such as the monthly interest rate, principal, and duration of the loan. 

Roy Smith of the Public Health Research Institute in New York noted the fol-
lowing about c1 = a1 + b2 (the Pythagorean formula for right triangles): 

This formula is vital to any vector problem, and hence vital to most of physics. 
Any field of study using complex numbers, such as electronics, involves the con-
version between polar and rectangular forms, and this formula has application 
here. This formula is one of the first things the Scarecrow in The Wizard of Oz 
recited when he got his brain. If you consider the formula's logical extension, the 
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law of cosines for non-right triangles (C2 = A2 + B2 - 2ABcos (6)), then you have 
the basic formula that surveyors use to measure land. The related formulas for 
solving spherical triangles were used for celestial navigation, which allowed people 
to explore the entire world by sea. 

Charles Ashbacher, editor of the Journal of Recreational Mathematics, wrote to 
Dr. Googol with "significant disagreements with the list." For the record, 
Charles's top 10, with a few of his explanations, follow: 

1. 1 - 2 = - 1 (The positive integers are intuitively obvious. This formula estab-
lishes the existence of negative integers, the first "nonintuitive" set of num-
bers imagined by humans.) 

2. -[2 * mtn (This formula established the existence of irrational numbers and 
was the first instance where it was proven that some things, like "all" of the 
digits of J2, will never be known.) 

3. aO b = a x base x base + 0 x base + b (This formula establishes the concept 
of positional notation and the use of 0 as a place-holder. This eliminated 
enormously cumbersome systems such as Roman numerals and greatly sped 
up all manner of computation. It also allowed arithmetic to be mechanized.) 

4. F = ma 

5. E = mc2 

6. V=IR 

7. X = h/mv 

8. F = Gm\m2 /r2 

9. c = 2ttr 

10. elaN = N 

$ For more reader comments on formulas that changed the world, see 
"Further Exploring." 
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The 10 Most Difficult-
to-Understand Areas of 
Mathematics 

In heterotic string theory . . . the right-handed bosons (carrier particles) 
go counterclockwise around the loop, their vibrations penetrating 22 com-
pacted dimensions. The bosons live in a space of 26 dimensions (including 

time) of which 6 are the compacted "real" dimensions, 4 are the dimen-
sions of ordinary space-time, and the other 16 are deemed "interior 
spaces"—mathematical artifacts to make everything work out right. 

—Martin Gardner, The Ambidextrous Universe 

String theory may be more appropriate to departments of mathematics or 
even schools of divinity. How many angels can dance on the head of a 
pin? How many dimensions are there in a compacted manifold thirty 
powers of ten smaller than a pinhead? Will all the young Ph.D.'s, after 
wasting years on string theory, be employable when the string snaps? 

—Sheldon Glashow 

String theory is twenty-first-century physics that fell accidentally into 
the twentieth century. 

—Edward Witten 

We can hardly imagine a gorillas understanding the significance of prime num-
bers, yet the gorillas genetic makeup—its DNA sequence—differs from ours by 
only a few percentage points. These minuscule genetic differences in turn pro-
duce differences in our brains. Additional alterations of our brains would admit a 
variety of profound concepts to which we are now totally closed. What mathe-
matics is lurking out there that we can never understand? What new aspects of 
reality could we absorb with extra cerebrum tissue? And what exotic formulas 
could swim within the additional folds? Philosophers of the past have admitted 
that the human mind is unable to find answers to some of the most important 
questions, but these same philosophers rarely thought that our lack of knowledge 
was due to an organic deficiency shielding our psyches from higher knowledge. 

If the yucca moth, with only a few ganglia for its brain, can recognize the 
geometry of the yucca flower from birth, how much of our mathematical capac-
ity is hardwired into our convolutions of cortex? Obviously, specific higher 
mathematics is not inborn, because acquired knowledge is not inherited, but our 
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mathematical capacity is a function of our brain. There is an organic limit to our 
mathematical depth. 

How much mathematics can we know? The body of mathematics has general-
ly increased from ancient times, although this has not always been true. Math-
ematicians in Europe during the 1500s knew less than Grecian mathematicians 
at the time of Archimedes. However, since the 1500s humans have made 
tremendous excursions along the vast tapestry of mathematics. Today there are 
probably around 300,000 mathematical theorems proved each year. 

In the early 1900s, a great mathematician was expected to comprehend the 
whole of known mathematics. Mathematics was a shallow pool. Today the math-
ematical waters have grown so deep that a great mathematician can know only 
about 5% of the entire corpus. What will the future of mathematics be like as 
specialized mathematicians know more and more about less and less until they 
know everything about nothing? 

The following is a ranking of the 10 most difficult areas of mathematics 
today, from most difficult to least. Of course, the question is inevitably biased. 
As French mathematician Olivier Gerard notes, a theory can be "difficult" for 
many reasons. It can be poorly written. It can also be temporarily difficult 
because some pieces are lacking (such as in a jigsaw puzzle). Most mathematics 
does not seem to be "eternally" difficult, but many areas are difficult because one 
must go through a lengthy initiation, review, and training process before hoping 
to say anything useful or new. 

The following are the 10 most difficult-to-understand areas of mathematics, 
as ranked by mathematicians around the world. Items 1, 2, 3, and 10 are very 
closely related. 

1. Motivic cohomology (cohomology theory) 

2. Special cases of the Langlands junctoriality conjecture—examples include 
U{2,1), as applied to Hilbert modular varieties and stabilization of the trace 
formula) 

3. Advanced Number Theory—includes the mathematics used in the proof of 
Fermat's Last Theorem (by Andrew Wiles). 

4. Quantum groups 

5. Infinite-dimensional Banach spaces 

6. Local and micro-local analysis of large finite groups 

1. Large and inaccessible cardinals 

8. Algebraic topology 

9. Superstring theory 

10. Non-abelian reciprocity (Langlands philosophy), automorphic representations, 
and modular varieties 
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Don't ask Dr. Googol to define these for you. Most seasoned mathematicians 
don't understand much about these detailed specialties or insanely difficult areas. 
Those few mathematicians that do understand these areas can't explain them to 
a general audience. Given all this, here is a brief explanation of superstring theo-
ry. Various modern theories of "hyperspace" suggest that dimensions exist 
beyond the commonly accepted dimensions of space and time. The entire uni-
verse may actually exist in a higher-dimensional space. This idea is not science 
fiction; in fact, hundreds of international physics conferences have been held to 
explore the consequences of higher dimensions. From an astrophysical perspec-
tive, some of the higher-dimensional theories go by impressive-sounding names 
such as Kaluza-Klein theory and supergravity. In Kaluza-Klein theory, light is 
explained as vibrations in a higher spatial dimension. Among the most recent 
formulations of these concepts is superstring theory that predicts a universe of 
10 dimensions—3 dimensions of space, 1 dimension of time, and 6 more spatial 
dimensions. In many theories of hyperspace, the laws of nature become simpler 
and more elegant when expressed with these several extra spatial dimensions. 

The basic idea of string theory is that some of the most basic particles, like 
quarks and fermions (which include electrons, protons, and neutrons), can be 
modeled by inconceivably tiny, 1-dimensional line segments, or strings. Initially, 
physicists assumed that the strings could be either open or closed into loops, like 
rubber bands. Now it seems that the most promising approach is to regard them 
as permanently closed. Although strings may seem to be mathematical abstrac-
tions, remember that atoms were once regarded as "unreal" mathematical 
abstractions that eventually became observables. Currently, strings are so tiny 
there is no way to "observe" them; perhaps we will never be able to. In some 
string theories, the loops of string move about in ordinary 3-space, but they also 
vibrate in higher spatial dimensions perpendicular to our world. As a simple 
metaphor, think of a vibrating guitar string whose "notes" correspond to differ-
ent, "typical" particles such as quarks and electrons along with other mysterious 
particles that exist only in all 10 dimensions, such as the hypothetical graviton, 
which conveys the force of gravity. Think of the universe as the music of a hyper-
dimensional orchestra. And we may never know if there is a hyper-Beethoven 
guiding the cosmic harmonies. 

In the last few years, theoretical physicists have been using strings to explain 
all the forces of nature—from atomic to gravitational. Although string theory 
describes elementary particles as vibrational modes of infinitesimal strings that 
exist in 10 dimensions, many of you may be wondering how such things exist in 
our 3-dimensional universe with an additional dimension of time. String theo-
rists claim that 6 of the 10 dimensions are "compactified"—tightly curled up (in 
structures known as Calabi-Yau spaces) so that the extra dimensions are essen-
tially invisible. 

As technically advanced as superstring theory sounds, it could have been 
developed a long time ago. This is according to string-theory guru Edward 
Witten, a theoretical physicist at the Institute for Advanced Study in Princeton. 
For example, he indicates that it is quite likely that other civilizations in the uni-
verse discovered superstring theory, then later derived Einstein-like formulations 
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(which in our world predate string theory by more than half a century). 
Unfortunately for experimentalists, superstrings are so small that they are not 
likely ever to be detectable by humans. Consider the ratio of the size of a proton 
to the size of the solar system; this is the same ratio that describes the relative size 
of a superstring to a proton. 

John Horgan, an editor at Scientific American, recently published an article 
describing what other researchers have said of Witten and superstrings in 10 
dimensions. One researcher interviewed exclaimed that in sheer mathematical 
mind power, Edward Witten exceeds Einstein and has no rival since Newton. So 
complex is string theory that when a Nobel Prize-winning physicist was asked to 
comment on the importance of Witten's work, he said that he could not under-
stand Witten's recent papers; therefore, he could not ascertain how brilliant 
Witten is. 

Recently, humanity's attempt to formulate a "theory of everything" includes 
not only string theory but membrane theory, also known as M-theory. In the 
words of Edward Witten (who Life magazine dubbed the sixth most influential 
American baby boomer), "Mstands for Magic, Mystery, or Membrane, accord-
ing to taste." In this new theory, life, the universe, and everything may arise from 
the interplay of membranes, strings, and bubbles in higher dimensions of space-
time. The membranes may take the form of bubbles, or they may be stretched 
out in 2 directions like a sheet of rubber, or they may be wrapped so tightly that 
they resemble a string. The main point to remember about these advanced theo-
ries is that modern physicists continue to produce models of matter and the uni-
verse requiring extra spatial dimensions. 

C h a p t e r 43 

The 10 Strangest Mathematical 
Titles Ever Published 

I once asked Gregory Chudnovsky if a certain impression I had of mathe-
maticians was true, that they spend immoderate amounts of time declar-

ing each other's works trivial. "It is true," he admitted. 
—Richard Preston, The New Yorker, 1992 
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Strange. Weird. Intriguing. The following is a list of 10 serious mathematical 
papers with strange, indecipherable, and/or amusing titles. Candidates for this 
list were nominated by students, educators, and researchers around the world. 

T H E T O P 1 0 

The award for all-time strangest title goes to Dr. A. Granville: 

Granville, A. (1992) Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's 
Triangle. American Mathematical Monthly. April, 99(4): 318-331. 

Second place goes to Dr. Forest W. Simmons of Portland Community College for: 

Simmons, F. (1980) When homogeneous continua are Hausdorff circles (or yes, 
we Hausdorff bananas). In Continua Decompositions Manifolds (Proceedings of 
Texas Topology Symposium 1980). University of Texas Press. (Not too surprisingly, 
the illustrations are reminiscent of bananas!) 

Third place goes to the romantic S. Strogatz for: 

Strogatz, S. (1988) Love affairs and differential equations. Mathematics Magazine. 
61(1): 35. (This is an analysis of the time-evolution of the love affair between 
Romeo and Juliet.) 

Fourth place goes to A. Berezin for: 

Berezin, A. (1987) Super super large numbers. Journal of Recreational Mathe-
matics. 19(2): 142-143. (This paper discusses the mathematical and philosophical 
implications of the "superfactorial" function defined by the symbol $, where N% = 
M N T h e term A", is repeated TV! times.) 

Fifth place goes to Alan Mackay for: 

Mackay, A. (1990) A time quasi-crystal. Modern Physics Letters B. 4(15): 989-991. 

Sixth place goes to J. Tennenbaum for: 

Tennenbaum, J. (1990) The metaphysics of complex numbers. 21st Century 
Science. Spring 3(2): 60. 

Seventh place goes to Tom Morley for: 

Morley, T. (1985) A simple proof that the world is 3-dimensional. SIAM Review. 
27: 69-71. (The article starts, "The title is, of course, a fraud. We prove nothing 
of the sort. Instead we show that radially symmetric wave propagation is possible 
only in dimensions one and three.") 

Eighth place goes to the encyclopedic Professor Akhlesh Lakhtakia, from the 
Department of Engineering Science and Mechanics at Pennsylvania State Uni-
versity, for: 

Lakhtakia, A. (1990) Fractals and The Cat in the Hat. Journal of Recreational 
Mathematics. 23(3): 161-164. (Reprints available from: Prof. A. Lakhtakia, Dept. 
of Engineering Science, Pennsylvania State University, University Park, PA 16802.) 
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Ninth place goes to R. C. Lyness for: 

Lyness, R. C. (1941) A1 Capone and the Death Ray. Mathematical Gazette. 25: 
283-287. 

Tenth place is shared by several individuals: 

Englebretsen, G. (1975) Sommers' proof that something exists. Notre Dame 
Journal of Formal Logic 16: 298-300. (The review [MR 51 #7803] by K. Inoue, 
says "The author points out that E Sommers's proof that something exists is 
invalid.") 

Hale, R. (1978) Logic for morons. Mind. 87: 111-115. 

Braden, B. (1985) Design of an oscillating sprinkler. Mathematics Magazine. 58: 
29-33. 

Taylor, C. (1990) Condoms and cosmology: The "fractal" person and sexual risk 
in Rwanda. Social Science and Medicine. 31(9): 1023-1028. (This entry might 
have been higher up on the list had it been published in a mathematics journal.) 

Hoenselaers, C, and Skea, J. (1989) Generating solutions of Einstein's field equa-
tions by typing mistakes. General Relativity Gravity. 21: 17-20. (The authors 
made some typing mistakes entering the problem into a computer and came out 
with new solutions to the equations.) 

Marchetti, C. (1989) On the beauty of sex and the truth of mathematics. Rivista 
di Biologia — Biology Forum. 82(2), 209-216. 

Khrennikov, A. Yu. (1999) Description of the operation of the human subcon-
scious by means of p-adic dynamical systems. [Russian] Doklady Akademii Nauk. 
365(4): 458-460. 

C h a p t e r 44 

The 15 Most Famous 
Transcendental Numbers 

"Math is a perfection in expression, like ballet or a shaolin class martial art. 
—V. Guruprasad 
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In this book's introduction, Dr. Googol explained his love of integers and hinted 
he would seldom discuss complicated numbers like JT with an infinite number of 
digits. Please forgive him for this brief yet fascinating digression into transcen-
dental numbers. 

The mathematical constant pi, denoted by the Greek letter at, represents the 
ratio of the circumference of a circle to its diameter. It is the most famous ratio 
in mathematics both on Earth and probably for any advanced civilization in the 
universe. The number Jt, like other fundamental constants of mathematics such 
as e = 2.718 . . . , is a transcendental number. The digits of Jt and e never end, 
nor has anyone detected an orderly pattern in their arrangement. Humans know 
the value of JT to over a billion digits. 

Transcendental numbers cannot be expressed as the root of any algebraic 
equation with rational coefficients. This means that Jt could not exactly satisfy 
equations of the type Jt2 = 10 or 9ot4 - 240ot2 + 1492 = 0. These are equations 
involving simple integers with powers of 3T. The numbers Jt and e can be 
expressed as an endless continued fraction or as the limit of an infinite series. 
The remarkable fraction 355/113 expresses Jt accurately to 6 decimal palaces. 

Many of you have probably heard of jt and e. But are there other famous tran-
scendental numbers? After conducting a brief survey of readers, Dr. Googol 
made a list of the 15 best-known transcendental numbers. Can you list these in 
order of relative fame and/or usage? 

1. Jt = 3 .1415 . . . 

2. e= 2 . 7 1 8 . . . 

3. Euler's constant, y = 0.577215 . . . = l i m ^ ^ l + 1/2 + 1/3 + 1/4 + . . . 
IIn —ln(«)) (Not proven to be transcendental, but generally believed to be 
by mathematicians.) 

4. Catalans constant, G= 2(-l)k/(2£ + l)2 = 1 - 1/9 + 1/25 - 1/49 + . . . (Not 
proven to be transcendental, but generally believed to be by mathemati-
cians.) 

5. Liouville's number, .110001 . . . (This is an example of a transcendental 
number "discovered" much later than pi or e. It was first discussed in 1851 
and named after its "inventor," French mathematician J. Liouville. You can 
compute this fascinating number with where <2 < ^ < r. 
The numbers a^ are integers. The resulting number is a Liouville number of 
base r. If the values for ay are all 1, and r - 10, we get: 1/10 + 1/101 x 2 + 
1/101 x 2 X 3 + Believe it or not, the decimal value can easily be written 
down: 0.110001000000000000000001000 . . . which has a 1 in the 1st, 
2nd, 6th, 24th, etc., places and 0s elsewhere.) 

6. Chaitin's constant, the probability that a random algorithm halts. (Noam 
Elkies of Harvard notes that this number is not only transcendental but also 
incomputable.) 
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7. Champernowne's number, 
0.12345678910111213141516171819202122232425 . . . (This is con-
structed by concatenating the digits of the positive integers. Can you see the 
pattern?) 

8. Special values of the zeta Junction, such as ^(3) (Transcendental functions can 
usually be expected to give transcendental results at rational points. 
Technically speaking, ^(3) is known to be irrational but not yet proven to be 
transcendental, although it is generally believed to be my mathematicians.) 

9. ln(2), 0.6931 . . . 

10. Hilbert's number, 2 (This is called Hilbert's number because the proof of 
whether or not it is transcendental was one of Hilbert's famous 23 problems. 
In fact, according to the Gelfond-Schneider theorem, any number of the 
form is transcendental where a and b are algebraic, a is neither 0 nor 1, 
and b is not rational. Many trigonometric or hyperbolic functions of nonze-
ro algebraic numbers are transcendental.) 

11. eT 

12. i ' (Not proven to be transcendental, but generally believed to be by mathe-
maticians.) 

13. Morse-Thue's number, 0.01101001 . . . (See Chapter 17 for more informa-
tion.) 

14. i' (Here i is the imaginary number J^-l. If a is algebraic and b is algebraic 
but irrational, then ab is transcendental. Since / is algebraic but irrational, 
the theorem applies. Note also: i' is equal to €~*12 and several other values. 
Consider = e!'°8 '= e'x,%12. Since log is multivalued, there are other pos-
sible values for i'.) 

15. Feigenbaum numbers, e.g. 4.669 . . . (These are related to properties of 
dynamical systems with "period-doubling" oscillations. The ratio of succes-
sive differences between period-doubling bifurcation parameters approaches 
the number 4.669. . . . Period doubling has been discovered in many physi-
cal systems before they enter the chaotic regime. Feigenbaum numbers have 
not been proven to be transcendental but are generally believed to be.) 

Keith Briggs from the Mathematics Department of the University of 
Melbourne in Australia computed what he believes to be the world record 
for the number of digits for the Feigenbaum number: 

4.()(j9201(j091()2990()718532038204()(i2()l()172581855774757()8(j32745 
651343004134330211314737138()89744023948()138171(i59848551898 
151344()8(i271420279325223124429888908908599449354(>323()71341 
1532481714219947455()443()58237932020095()1058330575458()17()52 
222070385410(»4()74949428498145339172()2005(i8755()()5952339875(i 
03825037225 
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Briggs carried out the computation using special-purpose software designed 
by David Bailey of NASA Ames running on an IBM RISC System/6000. 
The computation required a few hours of computation time. For more 
information, see: Briggs, K. (1991) A precise calculation of the Feigenbaum 
constants. Mathematics of Computation. 57: 435. 

Some final questions: Is - l - ' a transcendental number? Is there a compact 
formula relating e, pi, z, and phi, the golden ratio described in Chapter 96? 
Drum roll please . . . one answer is e'n + 2<j> = J5 • 

C h a p t e r 45 

What is Numerical Obsessive-
Compulsive Disorder? 

The rationality of our universe is best suggested by the fact that we can 
discover more about it from any starting point, as if it were a fabric that 

will unravel from any thread. 
—George Zebrowski, "Is Science Rational," OMNI, June 1994 

When we learn more about the function gone wrong in obsessive-com-
pulsive disorder, we will also learn more about the most mysterious 

secrets of the nature of man. 
—Judith Rapoport, M.D., The Boy Who Couldn't Stop Washing 

Individuals afflicted with obsessive-compulsive disorder are often compelled to 
commit repetitive acts that are apparently meaningless such as persistent hand 
washing, counting objects, checking to see if doors are locked, and avoiding 
oddly stressful situations such as stepping on the cracks of the sidewalk. 
Obsessive-compulsive disorder involving numbers is particularly sad and fasci-
nating. The great inventor Nikola Tesla had "arithromania," or "numerical 
obsessive-compulsive disorder." He demanded precisely 18 clean towels each 
day. If asked why, Tesla provided no explanation. Table accoutrements and tow-
els were not the only items he demanded come in multiples of 3. For example, he 
often felt compelled to walk around the block 3 times, and he always counted his 
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steps while walking. He chose room number 207 in the Alta Vista Hotel, 
because 207 is divisible by 3. When dining, he always stacked 18 napkins in a 
neat little pile because he favored numbers divisible by 3. 

Does numerical obsessive-compulsive disorder often involve particular num-
bers? Are obsessions with odd numbers more likely than even? Do obsessions 
ever involve numbers larger than 10? To better understand numerical obsessive-
compulsive disorder, Dr. Googol pored through many case histories and created 
a list sorted by the number with which the person was obsessed: 

© 1. No cases found. 

© 2. No cases found. 

© 3. A 13-year-old girl (see "9") is compelled to knock 3 times on the edge of 
the window and 3 times on a nearby door before unlocking the door. 

© 4. Case 1: An 11-year-old boy's life is ruined because the number 4 domi-
nates his existence. Case 2: A teenage boy must have everything in 4s and 
avoids 6s. (He also has the compulsion to see the bottoms of his feet when-
ever he looks at the clock in his room.) 

© 5. No cases found 

© 6. Case 1: A college boy avoids repeating any actions 6, 13, 60, 66, or 130 
times. Multidigit numbers (such as 42 or 33) adding up to 6, 13, or 130 
must be avoided. Case 2: A teenage boy begins his day normally, then sud-
denly the only thing on his mind is the repeating numbers "6, 6, 6, 6" or "8, 
8, 8, 8." He reports, "I had no control over these numbers; they had a mind 
of their own—my mind." 

© 7. The 11-year-old boy listed under "4" suddenly switches to a heptaphiliac 
when, after a brain operation, he has the very time-consuming compulsion 
to touch everything 7 times and ask for everything in 7s. He swallows 7 
times. (His heptaphilia is cured by Anafranil, a drug that helps many afflict-
ed with obsessive-compulsive disorder.) 

© 8. Case 1: A 12-year-old boy is compelled to turn around exactly 8 times in 
a coat room in order to calm himself. Case 2: A boy in the shower strokes 
the right side of his head 8 times, applies shampoo, then strokes another 8 
times, rinses 8 times, and strokes 8 times again. He repeats the process for 
the left side. 

© 9. A 13-year-old girl must lift her feet and tap 9 times on the edge of her bed 
before climbing into it. 

© 22. An 18-year-old boy is compelled to count to 22 over and over again. He 
taps on the wall 22 times or in multiples of 22. He walks through doorways 
22 times and gets in and out of his chair 22 times. The boy becomes addict-
ed to drugs, which have interesting effects on his 22-ness. For example, 
while on amphetamines and cocaine, his 22-tapping increases to the point 
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where all his time is spent tapping out 22 all over his walls. LSD makes the 
ritual completely disappear. 

© 50. A 7-year-old girl must count to 50 in between reading or writing each 
word. This time-consuming ritual makes her an extremely slow reader in the 
second grade. 

© 13, 60, 66, 130. See the college boy listed under "6." 

© 100. The 13-year-old girl listed under "9" must also count to 100 after 
brushing her teeth. 

One wonders if the incidence of "numerical obsessive-compulsive disorder" is 
lower in societies with less emphasis on numbers or in pre-literate societies. Most 
of the time, people with obsessive-compulsive disorder know that their behavior 
is illogical or self-destructive, but like someone with a super-strong addiction, 
they find it impossible to stop. For example, a person may spend 5 hours a day 
washing himself and still feel dirty. Another sufferer must check the door hun-
dreds of times a day to make sure it is locked. Some pluck out every hair on their 
heads. Children may play endlessly with strings or pick up objects with their 
elbows to avoid getting their hands dirty. These children usually continue to suf-
fer the same symptoms as adults if untreated. 

One of the cures for obsessive-compulsive disorder is the drug Anafranil 
(clomipramine), which affects the metabolism of serotonin in the brain. Other 
drugs such as fluoxetine (Prozac) and fluvoxamine (Luvox) also are useful. 
The success with these drugs leads many researchers to believe that obsessive-
compulsive disorder has a physical basis—just like manic depression (biploar dis-
order) or epilepsy. LSD is another drug that increases serotonin levels and appears 
to "cure" obsessive-compulsive disorder. (The use of LSD outside of the laborato-
ry may be dangerous. Mood shifts, time and space distortions, and impulsive or 
aggressive behavior are complications possibly hazardous to an individual who 
takes the drug.) Amphetamines make the disease worse, probably because they 
affect the dopamine system, which acts against the serotonin system. 

Medical imaging studies suggest that obsessive-compulsive disorder is caused 
by an abnormality in a part of the brain known as the basal ganglia, buried 
deep within the brain and in the frontal lobes. In particular, one portion of 
the basal ganglia called the caudate nucleus appears to behave differendy in 
people with obsessive-compulsive disorder. People with Tourette's syndrome 
and Parkinson's disease also have abnormalities in these areas. Evidence contin-
ues to mount for obsessive-compulsive disorder's biological basis. For example, 
obsessive-compulsive disorder appears to have a genetic component and often 
runs in families. Some obsessive-compulsive disorder starts after a first epileptic 
seizure. The fact that many obsessive-compulsive disorder sufferers have move-
ment disorders, such as facial tics, at one point during the course of their disease 
further suggests a biological cause. 



Chapter 46 

Who is the Number King? 

Mathematics is the only infinite human activity. It is conceivable that 
humanity could eventually learn everything in physics or biology. But 
humanity certainly won't ever be able to find out everything in mathe-
matics, because the subject is infinite. Numbers themselves are infinite. 

—Paul Erdos 

Erdos' driving force was his desire to understand and to know. You 
could think of it as Erdos' magnificent obsession. It determined 

everything in his life. 
—Ronald Graham, AT&T Research 

Dr. Paul Erdos was a legendary mathematician who was so devoted to math that 
he lived as a wanderer with no home and no job. Like Dr. Googol, his best 
friends were the integers. 

Paul Erdos kept working on mathematics until his death from a heart attack 
in 1996 at the age of 83 while attending a mathematics meeting in Warsaw. 
Erdos (pronounced air-dosh) was one of the greatest, most eccentric, and most 
original mathematicians of all time. His passion was to both pose and solve dif-
ficult problems in number theory (the study of properties of integers) and in 
other areas like discrete mathematics, which is the foundation of computer sci-
ence. He was also one of the most prolific mathematicians in history, with more 
than 1,500 papers to his name. 

Erdos is often remembered as being stooped and slight, and wearing socks 
and sandals. In order to pursue his mathematical obsession, he stripped himself 
of all the usual burdens of daily life—finding a place to live, driving a car, paying 
income taxes, buying groceries, and writing checks—and relied on his friends to 
look after him. "Property is nuisance," he said. 

Because he focused so intently on numbers, his name is not well known out-
side the mathematical community. He wrote no bestselling books and showed 
little interest in worldly success and personal comfort. In fact, he lived out of a 
suitcase (which he never learned to pack) for much of his adult life. He gave 
away all the money he made from lecturing and mathematical prizes in order to 
help mathematics students or to offer cash prizes for solving problems he had 
posed. Erdos left behind only $25,000 when he died. 

Sexual pleasure revolted him; even an accidental touch by anyone made him 
feel uncomfortable. Like many others in this book, Erdos never married or had a 
family. He often referred to husbands as "slaves" and wives as "bosses." Yet he 
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was not a hermit like Ted Kaczynski (the Unabomher and brilliant mathemati-
cian discussed in Chapter 31) or Henry Cavendish (the eccentric but genius 
physicist and chemist). In fact, Erdos hated to be alone, and almost never was; he 
loved to attend conferences and enjoyed the attention of mathematicians. His 
main aim in life was "to do mathematics: to prove and conjecture." 

Concentrating fully on mathematics, Erdos traveled from meeting to meet-
ing, carrying a half-empty suitcase and staying with mathematicians wherever he 
went. Ronald Graham of AT&T Research often handled Erdos's money for him, 
setting aside an "Erdos room" in his house for helping to manage Erdos's life. In 
fact, many of Erdos's colleagues took care of him, lending him money, feeding 
him, buying him clothes, and even doing his taxes. In return, he inundated them 
with brilliant ideas and challenges—with problems to be solved and masterful 
ways of attacking them. 

Dr. Joel H. Spencer, a mathematician at New York University's Courant 
Institute of Mathematical Sciences, once noted: "Erdos had an ability to inspire. 
He would take people who already had talent, that already had some success, and 
just take them to an entirely new level. His world of mathematics became the 
world we all entered." 

Erdos was born into a Hungarian-Jewish family in Budapest in 1913, the only 
surviving child of parents who were mathematics teachers. He was educated 
mostly at home until 1930, when he entered the Peter Pazmany University in 
Budapest, where he was soon at the center of a small group of outstanding young 
Jewish mathematicians. Erdos practically completed his doctorate as a second-
year undergraduate. He received his doctorate in mathematics from the Univer-
sity of Budapest and in 1934 came to Manchester on a postdoctoral fellowship. 

By the time he finished at Manchester in the late 1930s, it became clear that it 
would be an act of suicide for a Jew to return to Hungary. (Most members of his 
family who remained in Hungary were killed during the war.) Therefore, in 1938 
Erdos sailed for the United States, where he was to stay for the next decade. 
During his first year, at the Institute for Advanced Study in Princeton, he wrote 
groundbreaking papers that founded probabilistic number theory. He also solved 
important problems in approximation theory and dimension theory. When his 
fellowship at the institute was not renewed, he started his wanderings, with longer 
stays at the University of Pennsylvania, Notre Dame, Purdue, and Stanford. 

The great mathematical event of 1949 was an elementary proof of the Prime 
Number Theorem, given by Atle Selberg and Erdos. The result, which predicts 
the distribution of primes with some accuracy, was first proved in 1896 by 
sophisticated methods, and it had been thought that no elementary proof could 
be given. Erdos was only 20 when he discovered this elegant proof for the 
famous theorem in number theory. The theorem says that for each number 
greater than 1, there is always at least 1 prime number between it and its double. 

Erdos never saw the need to limit himself to a single university. He needed no 
laboratory for his work, no library or equipment. Instead he traveled across 
America and Europe from one university and research center to the next, 
inspired by making new contacts. When he arrived in a new town he would pres-
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ent himself on the doorstep of the most prominent local mathematician and 
announce: "My brain is open." While a guest, Erdos would often work furiously 
for a few days and then leave when he had exhausted the ideas or patience of his 
host. (He was quite capable of falling asleep at the dinner table if the conversa-
tion was not about mathematics.) He would end sessions with "We'll continue 
tomorrow, if I live." 

Although his research spanned a variety of areas of mathematics, Erdos con-
tinued his interest in number theory for the rest of his life, posing and solving 
problems that were often simple to state but notoriously difficult to solve and 
that involved relationships between numbers. Erdos believed that if one can state 
a problem in mathematics that is unsolved and over 100 years old, it is probably 
a problem in number theory. 

Erdos, like many other mathematicians, believed that mathematical truths are 
discovered, not invented. He mused about a Great Book in the sky, maintained by 
God, that contained the most elegant proofs of every mathematical problem. He 
used to joke about what he might find if he could just have a glimpse of that book. 

It is commonly agreed that Erdos is the second most prolific mathematician 
of all times, being superseded only by Leonhard Euler, the great 18th-century 
mathematician whose name is spoken with awe in mathematical circles. In addi-
tion to Erdos's roughly 1,500 published papers, another 50 or more are still to be 
published after his death. (Erdos was still publishing a paper a week in his 70s.) 
Erdos undoubtedly had more coauthors (around 500) than any other mathe-
matician in history. He collaborated with so many mathematicians that the phe-
nomenon of the "Erdos number" evolved. To have an Erdos number 1, a 
mathematician must have published a paper with Erdos. To have a number of 2, 
he or she must have published with someone who had published with Erdos, and 
so on. Four and a half thousand mathematicians have an Erdos number of 2. 

At the end of 1999, researchers discovered that winners of the Fields medal— 
math's Nobel equivalent—all have an Erdos number of 5 or less. In addition, 
more than 60 Nobel laureates, many in fields far removed from mathematics, 
can brag of single-digit Erdos numbers. Watson and Crick, for example, have 
numbers of 7 and 8. (See Constance Holden, "Analyzing the Erdos star cluster" 
[Science, February 4, 287(5454): 799, 2000].) 

Erdos would always make use of whatever time was available to do mathe-
matics. It was common for him to listen to music and to do mathematics at the 
same time; he would even bring notebooks to concerts and start solving prob-
lems. According to legend, on a long train journey he wrote a joint paper with 
the conductor. 

During his lifetime Erdos had many close friends and faithful and cherished 
disciples, but he had the deepest emotional contact with his mother, who started 
to accompany him on his incessant travels when she was in her mid-'80s and 
continued to do so till her death at the age of 91 in 1971. The death of his 
mother was an incredible blow from which he never fully recovered. After she 
died he found solace in doing even more mathematics than before. Erdos 
launched himself into his work with greater vigor, regularly working a 19-hour 
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day. He fueled his efforts almost entirely by coffee, caffeine tablets, and ben-
zedrine. He looked more frail, gaunt, and unkempt than ever, and often wore his 
pajama top as a shirt. 

In spite, or perhaps because, of his eccentricities, mathematicians revered him 
and found him inspiring to work with. He was regarded as the wit of the mathe-
matical world, the one man able to produce short, clever solutions to problems 
on which others had suffered through pages of equations. 

C h a p t e r 47 

What 1 Question Would You Add? 

The mathematical spirit is a primordial human property that reveals itself 
wherever human beings live or material vestiges of former life exist. 

—Willi Hartner 

After reading through all of these chapters with lists and outrageous questions, 
what question would you ask Dr. Googol? 

Dr. Googol asked mathematicians from around the world, "What 1 question 
would you add to my list of questions?" Here is a sampling of replies: 

1. What effect would doubling the salary of every mathematics teacher have on 
education and the world at large? 

2. How important are new mathematical findings to the advance of science 
(including astronomy and physics) in the 21st century? 

3. What are the 5 most beautiful ideas in mathematics? (Suggestions included 
Riemann surfaces, Fermat's Last Theorem, Euler's equation, the Funda-
mental Theorem of Algebra, and the Fundamental Theorem of Calculus.) 

4. What are the 5 mathematical theories you find overrated or so publicized 
that serious work in the fields are hindered by the hype? 

5. What are the 5 mathematical theories you find most underrated, unknown, 
or underused? 

6. Who are the 5 mathematicians and nonmathematicans who best communi-
cate their mathematical ideas to nonspecialists? 
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7. The discovery of a number or property of a number sometimes opens up 
entirely new areas of mathematics. Which discovery had the greatest impact 
on the development of modern society? 

8. What is your favorite proof of Pythagoras's theorem? (Note that this theo-
rem is the most-proved theorem. A book published in 1940 entitled The 
Pythagorean Proposition contained 370 different proofs of it.) 

9. Should the National Science Foundation fund a project whose goals were to 
determine 1 trillion digits of Jt? 

10. How profound would it be if mathematicians discovered strange and unusu-
al patterns in the first trillion digits of Jt? 

11. Would you rather marry the best mathematician in the world or the best 
chess player? Why? 

12. How important is the mathematical concept of fractals? Should Benoit 
Mandelbrot receive the Nobel Prize? Will strange and totally new patterns 
be discovered in the Mandelbrot set, or have we already seen all the basic 
structural themes and patterns? 

13. Answer this question with yes or no. Will your next word be no"'. 

C h a p t e r 48 

Cube Maze 

We should take care not to make the intellect our god; it has, of course, 
powerful muscles, but no personality. 

—Albert Einstein, Out of My Later Life, 1950 

<a> Number Maze 2, 
a visual intermission before 
the next book part . . . . 

Dr. Googol created a cubical array of metallic spheres with numbers painted on 
each sphere. Figure 48.1 is a schematic illustration of the original 3-dimensional 
model. Although it's more fun to hold the model in your hand and turn it 
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48.1 Cube Maze. Can you reach the arrow at the end with a sum of 202? (Drawing by 
Brian Mansfield.) 

around as needed, you can still have a terrific challenge by trying to trace a path 
from the arrow at the top to the arrow at the bottom such that the sum of all the 
spheres you pass through is 202. 

Dr. Googol originally intended to give the model to all potential girlfriends to 
solve before he would even consider marrying them. However, after Monica 
threw the puzzle at his head, Dr. Googol reconsidered and has instead published 
this illustration here for the first time. He has also sent models to the leaders of 
several nations as gifts, and, alas, none could solve the puzzle. In fact, no one on 
the planet has yet solved the puzzle. Can you? 

$ For a solution, see "Further Exploring." 



Part iii 

Fiendishly 
Difficult 
Digital Delights 

I don't need to know where I'm going 
to enjoy the road I'm on. 

—Deepak Chopra, Ageless Body, Timeless Mind 

The mathematician's eye is a mystic mirror, 
not only reflecting reality but absorbing it. 

—Dr. Francis 0. Googol 
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Hailstone Numbers 

What could be more beautiful than a deep, satisfying relation between 
whole numbers. How high they rank, in the realms of pure thought and 

aesthetics, above their lesser brethren: the real and complex numbers. 
—Manfred Schroeder, Number Theory in 

Science and Communication, 1984 

The external world exists; the structure of the world is ordered; 
we know little about the nature of the order, nothing at all 

about why it should exist. 
—Martin Gardner, "Order and Surprise," 

paraphrasing Bertrand Russell, 1985 

On a recent trip to the Himalayas, Dr. Googol found himself walking in a blind-
ing hailstorm! The hailstones drifted up and down in the wisps and eddies of 
wind. Sometimes the stones shot up for as far as his eye could see and then came 
plummeting back to Earth, smashing into the ground like little meteorites. Dr. 
Googol smiled because he realized hailstones provide a wonderful metaphor for 
one of the most famous and unusual problems in number theory. He whipped 
out a piece of paper from his pocket and began scribbling a strange sequence of 
numbers: 7, 22,11, 34,17. 

"Hailstone number" problems have fascinated mathematicians for several 
decades and are studied because they are so simple to calculate yet apparently 
intractably hard to solve. To compute a sequence of hailstone numbers, start by 
choosing any positive integer you like. 

if your number is even, divide it by 2. 
if it is odd, multiply by 3 and add 1. 
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Next, take your answer and repeat the rule. Again, if your answer is even, 
divide it by 2. If it is odd, multiply by 3 and add 1. Repeat this process for as 
long as you like. For example, the hailstone sequence for 3 is 3, 10, 5, 16, 8, 4, 
2 , 1 , 4 , . . . . (The " . . . " indicates that the sequence continues forever as 4, 2, 
1, 4, 2, 1 4, etc.) Dr. Googol sometimes like to draw little melting hailstones 
indicating the numbers in the sequence: 

4 

Like hailstones falling from the sky through storm clouds, this sequence drifts 
down and up, sometimes in seemingly haphazard patterns. Also like hailstones, 
hailstone numbers always seem eventually to fall back down to the ground (the 
integer 1, represented as a single A). In fact, most mathematicians believe that 
every hailstone sequence ends in the cycle 4, 2, 1, 4, . . . , no matter what num-
ber the sequence starts with: 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 
(repeating over and over again) 

This hailstone conjecture (about settling back to 1) has been numerically 
checked for a large range of starting points, and the current record has been set 
by N. Yoneda, who has checked all integers less than 1,000,000,000,000. 

Do you think that all hailstone numbers fall back down to 1 ? Various large cash 
awards have been offered to anyone who can prove or disprove this. The hailstone 
sequence, also known as the 3n + 1 sequence, gives rise to a mixture of regularity 
and disorder: it is definitely not random, but the pattern resists interpretation. 
(This problem in number theory can be placed in a much larger context of chaos 
theory, which involves the study of a range of mathematical and physical phenom-
ena exhibiting a sensitive and often irregular dependence on initial conditions.) 
Computer graphics can be used to reveal patterns in this hailstone sequence so that 
mathematical structures are made more obvious to the mathematician. Unfor-
tunately, computer graphics has been little exploited in 3 n+ 1 research. 
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49.1 Hailstone numbers produced by just 1 
starting number, 54. 

49.2 Hailstone numbers for all starting 
numbers between 1 and 1,000 on the x axis. 
The paths of the hailstone numbers are 
along the y axis. 

Figure 49.1 shows a hailstone 
sequence for just one starting value, 54. 
Its path length (before settling back 
down to 1) is 112, and the maximum 
value reached is 9,232. The plot sug-
gests a seemingly chaotic trajectory that 
eventually settles back down to 1. 

Figure 49.2 is a plot for all the start-
ing numbers between 1 and 1,000 along 
the x axis. As the hailstone numbers 
drift up and down, Dr. Googol plots a 
dot along the y axis. (So that he can rep-
resent the information in a small plot, 
he excludes all y values of the hailstone 
numbers greater than 1,000.) Notice 
the plot reveals a pattern of diagonal 
lines of varying density that pass 
through the origin, a pattern of hori-
zontal lines, and a diffuse "background" 
of chaotically positioned dots. Can you 
figure out why there are these patterns? 
The diffuse horizontal lines represent 
certain values that are much more likely 
than others. An outstanding example is 
state 9,232. Of the first 1,000 integers, 
more than 350 have their maximum at 
9,232. Why are there other patterns? 
The hailstone numbers clearly display 
preferred values, but exactly why these 
values and clusters of values exist is 
unclear. Every possible integer state and 
trajectory length (path before returning 
to 1) can be produced—but again 
some numbers appear more often than 
others. As Paul Erdos commented on 
the complexity of 3« + 1 numbers, 
"Mathematics is not yet ready for such 
problems." 

$ For more information on hailstone numbers, see "Further Exploring." 
9 See [www.oup-usa.org/sc/0195133420] for a computer program to gener-

ate hailstone numbers. 
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The Spring of Khosrow Carpet 

The essences are each a separate glass, through which the sun 
of being's light is passed—each tinted fragment sparkles in the sun: 

a thousand colors, but the light is one. 
—Jami (15th century) 

A mathematician, like a painter or a poet, is a maker of patterns. 
If his patterns are more permanent than theirs, it is because 

they are made with ideas. 
—G. H. Hardy\ A Mathematician's Apology 

I believe the geometric proportion served the creator as an idea 
when He introduced the continuous generation of similar objects 

from similar objects. 
—Johannes Kepler 

Dr. Googol was touring Teheran, Iran, when a carpet dealer showed him a frag-
ment of the famous Spring of Khosrow Carpet, an ancient Persian rug. 

"Gorgeous," Dr. Googol said. "What is it?" 
"It's the most costly and magnificent carpet of all time—made for the 

Ctesiphon palace of the Sasanian King Khosrow I. He was king between A.D. 
531 and 579." 

The merchant told Dr. Googol that the carpet was called the Spring Carpet 
because it represented, in silk, gold, silver, and jewels, the blossoming splendor 
of spring. It was also called the Winter Carpet because it was used in bad weath-
er, when real gardens were unavailable. In this way, it symbolized the king's 
power to command the return of the seasons. 

Dr. Googol stooped down to take a closer look and saw a paradise with 
streams, paths, rectangular plots of flowers, and flowering trees. Water was repre-
sented by crystals, soil by gold, and fruits and flowers by precious stones. The 
merchant told Dr. Googol that when the Arabs captured Ctesiphon in 637, the 
carpet, which measured about 84 square feet (7.8 square meters), was cut into 
fragments and distributed to the troops as booty. 

As Dr. Googol contemplated the sad tale, he recalled his favorite algorithm 
for generating Persian carpet designs. Figure 50.1 results from the simplest of 
algorithms and shows self-similar patterns, that is, repeated patterns at different 
size scales. One part of the recursion recipe requires us to start with a large rec-
tangle, subdivide it into 4 equal rectangles, and continue the process until 
we cannot go any further. The carpets look beautiful in color, but even in this 
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50.1 Self-similar carpet synthesized using a simple algorithm. 

black-and-white representation, we can begin to appreciate the infinite reservoir 
of structures. In a computer program, the algorithm colors each cell in a matrix 
by assigning a cell a number from 0 to m-1 where m is the number of colors 
available. 

# For more details on the algorithm, see "Further Exploring." 
9 See [www.oup-usa.org/sc/0195133420] for a BASIC code listing. 
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The Omega Prism 

It may well be doubted whether human ingenuity can construct 
an enigma of the kind which human ingenuity may not, by proper 

application, resolve. 
—Edgar Allan Poe, The Gold-Bug 

On a cool night in November, Dr. Googol sees a streaking across the sky. After a 
few minutes, there is a glowing in a nearby cornfield. Upon closer inspection, he 
finds an object resembling a Rubik's cube protruding from the ground. 

When he picks up the crystalline object, he finds that it is nearly cubical, and 
its 6 faces are tiled in a colorful substance that luminesces. On the ground by the 
object is a note, which reads: 

You hold in your hands an Omega Prism, a 230 mm x 
231 mm X 232 mm brick mhose faces are tiled mith 1 
mm X 1 mm squares, If you mere to dram a straight fine 
on the rectangular faces from one corner to another, on 
mhich face does the diagonal line cross the most tiles? 
Can you determine the number of tiles crossed for any 
face? To solve this puzzle, you are not permitted to trace a 
diagonal on a prism face and count the number of tiles 
crossed. 6)e are matching, ff you fail to solve the puzzle 
mithin a meek, me miff cofonize the Earth and use humans 
as food for further thought. 

Dr. Googol stares at the Omega Prism for several minutes, clenches his fists, 
and throws the prism to the ground. Even if he were allowed to trace the diago-
nal with a marker, the colors are blinking so rapidly that it would be nearly 
impossible for him to count the crossed tiles. A wind begins to blow through the 
field—a cold wind that sounds like the chanting of monks. 

Simultaneously, Omega Prisms land in New York City, London, Tokyo, 
Moscow, and Calcutta. Unfortunately, none of the people who find the prisms 
can solve the problem. Can you help save the Earth? Given just the side lengths 
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51.1 Small version of the Omega Prism. Humans find it difficult to count tiles inter-
sected by a diagonal line without actually using a straightedge and drawing a line. 
When the colors blink, it is impossible for humans to count "intersected" tiles by 
eye alone. 

of Omega Prisms, can you determine the number of square tiles through which 
a diagonal crosses? How do solutions change as the faces grow? 

Figure 51.1 shows a computer graphics rendition of a smaller Omega Prism. 
Renditions of the actual 230-by-231-by-232 prism contain facets so small that 
they are impossible to distinguish when printed on a page. The purpose of 
Figure 51.1 is to emphasize the difficulty individuals have when they attempt to 
count tiles intersected by a diagonal line without actually using a straightedge 
and drawing the line. When the colors blink, it is impossible for humans to 
count "intersected" tiles by eye alone. 

& For a solution and additional speculation, see "Further Exploring." 
S See [www.oup-usa.org/sc/0195133420] for a BASIC code listing that is 

explained in "Further Exploring." 
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The incredible Hunt 
for Double Smoothly 
Undulating integers 

The essence of mathematics resides in its freedom. 
—Georg Cantor 

Dr. Googol was exploring the African jungles when he came upon a large snake 
whose body undulated up and down, up and down, like waves on the water. He 
had to watch out before the snake encircled him in its muscular twists and turns! 
Slowly, Dr. Googol began to ponder mathematical undulation. 

The term undulation in mathematics has a similar meaning to the up-and-
down bends in the snake's body. For example, if an integer's digits are alternately 
greater or less than the digits adjacent to them (consider 4,253,612), then the 
number is called an undulating integer. The term smoothly undulating integer 
refers to numbers whose adjacent digits oscillate, as in 79,797,979. 

A double smoothly undulating integer is one that undulates in both its deci-
mal and binary representations. (Binary numbers are defined in the "Further 
Exploring" section of Chapter 21.) For example, 1010 is an undulating binary 
number. There are some trivially small smoothly undulating integers, such as 21 
(with binary representation 10101). Dr. Googol calls this trivial because a 2-digit 
oscillation can hardly be called an oscillation. However, he asks you if there are 
any multidigit double smoothly undulating integers. He has searched for such an 
integer and never found one, and he has long doubted that such numbers exists. 
Of course, his brute-force computer searches provide no real answer to the ques-
tion, and it would be interesting to prove the conjecture that there is no double 
smoothly undulating integer. It is also interesting to speculate whether there is 
anything special about the arrangement of digits within a decimal number corre-
sponding to a binary undulating number. Casual inspection suggests that the 
arrangement is random. 

Note that if an rc-digit decimal number is selected at random, the chance that 
it will be smoothly undulating is 81/9 x 10""', which is approximately equal to 
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1/10" for large n. This means that if the decimal equivalent of a smoothly undu-
lating binary integer could be considered as a random arrangement of digits, the 
probability of it being smoothly undulating becomes exceedingly small. Note 
also the interesting fact that there is a constant number, 81, of possible undulat-
ing integers for any given K-digit decimal number. This speeds the search for 
double smoothly undulating integers using a computer. You may wish to use 
computer graphics to find patterns in the undulation of even/odd numbers in 
the decimal equivalents. 

$ For more information on undulating numbers, see "Further Exploring." 

C h a p t e r 53 

Alien Snow: A Tour of 
Checkerboard Worlds 

He became aware of a kind of sparkle in the air ahead. Fairy lights 
blinking on and off. Cal saw three-dimensional patterns within the cloud, 

geometric ratios building and rebuilding in dazzling arrays. 
—Piers Anthony, Ox 

So begins a science-fiction saga that describes humanity's first encounter with 
ephemeral entities resembling points of light on a 3-dimensional checker-
board—lights that move and change shapes according to mathematical laws. 
Some readers will recognize the cloud as a 3-dimensional cellular automaton. 
The theme saturates Ox, even to the point where each chapter begins with a 
small cellular grid decorated by dots. The presence or absence of a dot in a grid 
cell indicates which of 2 states a cell is in (that is, the cell is either on or off). 

In general, a cellular automaton is an array of cells and a finite collection of 
possible states. At any given moment, each cell of the array must be in one of the 
allowed states. The rules that determine how the states of its cells change with 
time are what determine the cellular automaton's behavior. There is an infinite 
number of possible cellular automata, each like a checkerboard world in its own 
right. The world can be a 1-dimensional strip of cells, a 2-dimensional grid, or, 
as in Ox, a 3-dimensional array. Of course, even higher dimensions are possible, 
but they are difficult to represent as clearly as the lower dimensions. 
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In this chapter, Dr. Googol explores some personal favorites among the 2-
dimensional cellular automata, and he passes along some algorithms that you 
can feed your personal computer. 

Cellular automata comprise a class of simple mathematical systems that are fast 
becoming important as models for a variety of physical processes. Some cellular 
automata act in bizarre and random-looking ways, while others exhibit highly 
ordered behavior. It all depends on the rules of the game. Cellular automata have 
been used to model the spread of plants, animals, and even forest fires. They have 
mimicked fluid flow and chemical reactions. They have even been investigated as 
computers in their own right! Cellular automata are also referred to variously as 
"homogenous structures," "cellular structures," and "iterative arrays." 

The concept of the cellular automaton was introduced in the 1950s by John 
von Neumann and Stanislaw Ulam. They saw in cellular automata an idealized 
system capable of modeling fundamental qualities of life itself. Self-reproduction 
seemed possible. By the 1960s, as computers became widespread in academic 
institutions, the Cambridge mathematician John Horton Conway grew interest-
ed in cellular automata. Conway discovered a particular cellular automaton he 
called Life, not only because its two states resembled life and death but because 
computer experiments with certain configurations of cells produced behavior 
that could only be called lifelike. The game was first publicized by Martin 
Gardner in his "Mathematical Games" column in the October 1970 issue of 
Scientific American. Since that time, cellular automata have become a very popu-
lar area of research for physicists, computer scientists, and mathematicians. They 
have particular appeal because any differential equation can be converted into a 
corresponding cellular automaton. This one simple fact opened the door to a 
brand-new exploration of many differential equations, most of them being mod-
els for various physical processes of great interest to scientists. 

The Game of Life makes an ideal introduction to the subject of cellular 
automata. It is "played" on a 2-dimensional grid of cells, each cell being in 1 of 
2 states (alive or dead) at any one time. During each new generation at a partic-
ular time t, each cell "decides" whether it will be alive or dead. All cells use exact-
ly the same rules. In particular, each cell considers its own state and the state of 
its 8 neighbors, 4 along edges and another 4 at the corners. The rules themselves 
are simple: 

1. If a cell is alive at time t, it will remain alive at time t + 1 if it has no more 
than 3 neighbors (otherwise it is too crowded) and no fewer than 2 living 
neighbors at time t (which would make it too isolated). 

2. If a cell is dead at time t, it will remain dead unless it has exactly 3 living 
neighbors. These act as parents. 

Using these rules, Life can exhibit fantastically complicated and hard-to-predict 
behavior. The cellular game has spawned a software-publishing industry and 
hundreds of papers, books, and computer experiments. After exploring differ-
ent sets of Lifelike rules, some scientists have suggested that, given a large enough 
array of cells in random states, and given a long enough time, very complicated, 
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self-replicating entities would merge. They might even evolve to produce intel-
ligent societies that develop and compete. It would be hard not to call such entities 
u 1 • » 
alive. 

If you believe that only flesh and blood can support consciousness, then you 
are probably wondering how Dr. Googol could consider cellular automata 
alive—even the supercomplex cellular entities evolving on huge checkerboard 
worlds. To his way of thinking, there's no reason to exclude the possibility of 
nonorganic sentient beings. If our thoughts and consciousnesses do not depend 
on the actual substances in our brains but rather on the structures, patterns, and 
relationships among parts, than the automata "beings" could think. If you could 
make a copy of your brain with the same structure but using different materials, 
the copy would think it was you. 

® ® ® 
C E L L S T H A T L I V E F O R E V E R 

Now let's consider a cellular automaton developed by cellular-automata pioneer 
Stanislaw Ulam. Although the automaton grows according to certain rules, it 
differs from the Game of Life because the Ulam automaton has no rules for 
death. The rules dictate that any configuration will grow without limit as time 
progresses. Once a cell is on, it lives forever. 

If Dr. Googol represents the two states of growth by 0 and 1, the fate of a sin-
gle 1, isolated amid Os, is interesting to watch. In fact, you can simulate what 
happens on a sheet of paper. A 5-by-5 grid suffices to demonstrate the first 2 
generations of growth. A black circle represents a 1. An unfilled square repre-
sents a 0. Here is how it all starts: 

• • • • • 
• • • • • 
• • • • • 
• • • • • 

The Ulam automaton is easy to set up, yet the behavior is intriguing. Given 
the «th generation, the n +1 generation arises from just 1 rule: a new cell is 
"born" (changes its state from 0 to 1) if it is orthogonally adjacent to 1 and only 
1 living (1) cell of the rath generation. { Orthogonal implies the up, down, right, 
and left directions.) Thus, if the previous pattern is counted as generation 1, 
then generations 1 through 4 are easy to work out: 

• • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • 
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53.1 Ulam's automaton at generation 200. 

What would the pattern look like at the 200th generation? The answer lies in 
the illustration in Figure 53.1. 

It is particularly fascinating to watch this pattern grow. It shows fractal ambi-
tions, each corner elaborating a square of its own. A close examination of its 
structure reveals a highly orderly tree structure in which each tiny black dot rep-
resents a cell in state 1. It is possible to travel from the center of the configura-
tion to any black cell along a "branch" of black cells. 

Dr. Googol's favorite cellular automaton is called Alien Snow. He invented 
this automaton, which has a time-dependent rule. Give a cell in state in the »th 
generation, the cell will enter state 1 if, 

1. when n is even, the cell is orthogonally adjacent to exactly 1 cell in 
state 1; 

2. when n is odd, the cell touches exactly 1 cell in state 1. 



128 ® Wonders of Numbers 

By touches Dr. Googol means that the cell is adjacent to the cell in state 
1 along either an edge or a corner. The rule could be framed in the form of an 
algorithm: 

Alien Snow Algorithm 
for each pair (i,j) 
if A(i,j) = 0 then 

if n even then add up 4 neighbors A(k,l) 
else add up 8 neighbors A(k,l) 

if sum = 1 then B(i,j) <r 1 else B(i,j) <r 0 
for each pair (i,j) 
A(i,j) B(i,j) 

53.2 Alien Snow started from a single "seed" at center. 
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53.3 A hexacylcic version of the Alien Snow cellular automaton. 

(.A is the current array used for plotting, and B is a temporary array used to 
hold new cell states. The symbol indicates an assignment. Even cycles use 
orthogonal neighbors. Odd cycles use all 8 neighbors.) 

The Alien Snow algorithm uses the statement "for each pair (i,j)" to indicate 
a double loop in a computer program. The size of the loop will depend on the 
dimensions of your display as measured in pixels or some other graphic element. 
The statement "add up neighbors A(k,l)" refers to a looped or direction enumer-
ation of the cells in each of the two kinds of neighborhood. In the case of even 
cycles, the neighborhood of nearby cells will have values (k, I) equal to (/, j -1) , 
(i, j + 1), (i -1, j), (i + 1, j). In odd cycles, k and /will vary from i - 1 to / +1 and 
from; - 1 to j +1, respectively. The same basic program structures can be used to 
produce other cellular automata with similar neighborhoods. 

The illustration in Figure 53.2 shows what happens when the Alien Snow 
rules are applied to a single 1 in the center of the screen. Note the elaborate fes-
toons and barred patterns that predominate. 

A second variation on Alien Snow can be found in Figure 53.3. Here, Dr. 
Googol has used the same time-dependency rule but with a delayed cycle. On 
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the Hth generation, the cellular automata use the orthogonal neighborhood pro-
vided that n is a multiple of 6 (i.e., n = 0 mod 6). If not, the cellular automata 
use the full neighborhood of 8 neighbors for each cell. One would think that if 
this second variation on Alien Snow spends the great majority of its time behav-
ing like the original, unmodified Alien Snow, then it would generate patterns 
that resembled it much more closely. 

0 For other experiments with Alien Snow, see "Further Exploring." 
H See [www.oup-usa.org/sc/0195133420] for program hints. 

Dr. Googol was climbing Cheops's pyramid in Egypt when he became mes-
merized by the triangular faces created by row upon row of large, rectangular 
bricks. He began to imagine a number painted on each face of the pyramid as a 
grin of pure delight lit up his face. He was dreaming of Pascal's triangle—one of 
the best-known integer patterns in the history of mathematics. The famous 
mathematician Blaise Pascal was the first to write a treatise about this progres-
sion of numbers, in 1653—although the pattern had been known by Omar 
Khayyam as far back as A.D. 1100. The first 7 rows of Pascals triangle can be 
represented as 

C h a p t e r 54 

Beauty, Symmetry, 
and Pascal's Triangle 

A mathematician is someone who can take a cup of coffee 
and turn it into a theory. 

—Paul Erdos 
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1 1 
1 1 1 1 
1 2 1 1 2 1 
1 3 3 1 or 1 3 3 1 
1 4 6 4 1 1 4 6 4 1 
1 5 10 10 5 1 1 5 10 10 5 1 
1 6 15 20 15 6 1 1 6 15 20 15 6 1 

Take a look at the triangle at right. You can see that each entry, other than the 
Is, is the sum of the 2 numbers immediately above. For example, to get the 2 in 
the third row, we add the two Is above in the second row. This pattern continues 
indefinitely. Do you think there are any rows that have all odd entries? 

There are infinitely many fascinating patterns in the triangle. For example, 
start at any 1 at the left side and go along the diagonal, and you'll find that the 
sum is a Fibonacci number (see Chapter 71 for information on the Fibonacci 
sequence: 1, 1, 2, 3, 5, 8, 13, . . . where each number is the sum of the previous 
two). If it's hard to see how to create a diagonal, pick a 1 at left, move 1 number 
to the right, and then move up. For example, in this figure add the underlined 
numbers 1 + 5 + 6 + 1 = 13. Try some others: 1 + 4 + 3 = 8, 1 + 3 + 1 = 5, 1 + 2 
= 3. (The role that Pascal's triangle plays in probability theory, in the expansion 
of equations of the form (x + y)and in various number theory applications has 
been discussed extensively by Martin Gardner—see "Further Reading.") 

Mathematician Donald Knuth indicated that there are so many relations in 
Pascal's triangle that when someone finds a new identity, there aren't many peo-
ple who get excited about it anymore, except the discoverer. Many researchers 
have found fascinating geometric patterns in the diagonals, discovered the exis-
tence of perfect square patterns with various hexagonal properties, and extended 
the triangle and its patterns to negative integers and higher dimensions. 

Computer graphics is a good method by which patterns in Pascal's triangle 
can be made obvious. The figures in this chapter represent Pascal's triangle com-
puted with modular arithmetic. For example, Figures 54.1 and 54.2 are Pascal's 
triangles, mod 2; that is, points are plotted for all even numbers occurring in the 
triangle. (Figure 54.2 is a photographic negative of Figure 54.1.) Figure 54.3 is 
the triangle, mod 3. Using the BASIC programming language, you can create 
the even/odd triangle by scanning all entries in the triangle using the condition-
al "IF I MOD K = 0", where lis the numerical entry in Pascal's triangle 
and K= 2. The "Smorgasboard" section at [www.oup-usa.org/sc/0195133420] 
includes computational hints. Patterns computed in this way reveal a visually 
striking and intricate class of patterns that make up a family of regular fractal 
networks. The patterns are self-similar fractals; that is, if we look at any one of 
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54.1 Pascal's triangle mod 2. The arrows indi-
cate a size change in the central triangles every 
km rows (m ~ 0,1, 2, 3 . . . . ) where k is the mod 
index (in this figure, k = 2). The size-change 
relation holds for all triangles mod p where p is 
a prime number. The arrows shown indicate 27, 
24, 25, 24, and 27. 

54.2 Photographic negative of Figure 54.1. The 
numbers on the figure indicate the number of 
dots that make up each triangle in the central 
stack. All perfect numbers appear in this cen-
tral pattern. 

the triangular motifs within Pascal's 
triangle we notice that the same 
pattern is found at another place in 
another size. (These patterns are 
also called Sierpinski gaskets, as dis-
cussed in the "Further Reading" ref-
erences.) 

In Figure 54.1 we observe that 
the central triangles undergo a size 
change (starting at the top triangle 
with 1 dot) every 2m rows where m 
is an integer. If you plot these trian-
gles for other modulus numbers, 
you'll find that the higher the mod-
ulus index k the more intricate and 
harder-to-define are the symme-
tries. Figure 54.4 shows Pascal's tri-
angle for k = 666. 

By visually familiarizing oneself 
with Pascal's triangle for various 
modulus indices, it is possible at a 
glance to determine the prime fac-
tors of k for many Pascal's triangles. 
(For training methods, see the vari-
ous Pickover references.) Also 
notice that if you were to count the 
number of dots in the central trian-
gles starting from the top of Figure 
54.2, you would find that each is 
made up entirely of an even num-
ber of dots. At the top is 6, then 28, 
120, 496, . . . dots. 6, 28, and 496 
are perfect numbers because each is 
the sum of all its divisors excluding 
itself (6 = 1 + 2 + 3). The formula 
for the number of dots in the «th 
central triangle, moving along the 
central axis, is 2M_1(2M-1). Because 
every even perfect number is of the 
form 2"-1(2" -1 ) , where 2" - 1 is 
prime, all even perfect numbers 
appear in the central stacked trian-
gular pattern in Figure 54.2. Look 
closely. Can you find other patterns 
in the triangle? 
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Not only are the patterns pretty 
to look at, but these kinds of self-
similar patterns have been discov-
ered and applied in condensed 
matter physics, diffusion, polymer 
growth, and percolation clusters. 
One example given by Professor 
Leo Kadanoff is petroleum-bearing 
rock layers. These typically contain 
fluid-filled pores of many sizes, 
which, as Kadanoff points out, 
might be effectively understood as 
Sierpinski gaskets. These figures 
also have a practical importance in 
that they can provide models for 
materials scientists to produce new 
structures with novel properties. 
For example, several scientists have 
created wire gaskets on the micron-
size scale almost identical to the 
mod 2 structure in Figure 54.2. The 
area of their smallest triangle was 
1.38 ±0.01 nm2, and researchers 
have investigated many unusual 
properties of their superconducting 
Sierpinski gasket network in a mag-
netic field. 

& For other wonderful exam-
ples of practical fractals—such as 
fractal antennas, reaction chambers, 
Internet traffic, and optical devices 
—see "Further Exploring." 

S See [www.oup-usa.org/sc/ 
0195133420] for Pascal triangle 
program hints. 

54.3 Pascal's triangle mod 3. 
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54.4 "Pascal's Beast"—Pascal's triangle mod 
666. 



Chapter 46 

Audioactive Decay 

If we wish to understand the nature of the Universe we have an inner hid-
den advantage: we are ourselves little portions of the universe and so carry 

the answer within us. 
—Jacques Boivirt, The Heart Single Field Theory 

Dr. Googol was walking along a picturesque street in the German hinterland 
when he suddenly came upon a small boy. He handed the boy a slip of slightly 
soiled paper. 

" Was ist das!" the boy asked. 
On the paper was the following sequence of numbers: 

Row S e q u e n c e 
1 1 
2 1 1 
3 2 1 
4 12 11 
5 1 1 1 2 2 1 
6 ? 

Dr. Googol smiled at the boy and asked if he could guess the numerical 
entries in the next row. The boy looked at the paper for a few seconds and said, 
"This is the Gleichniszahlen-Reihe Monster. But I'm sorry. I don't know what 
comes next. And anyway, I'm not supposed to talk to strangers." 

The boy went running down the street. 
If you do not read German, the boy's comment may conjure up visions of a 

strange animal from a science fiction movie. However, "the Gleichniszahlen-
Reihe Monster" refers to a number sequence with some rather strange and com-
pelling properties, and the German name will be explained shortly. Because the 
sequence never seems to contain a number greater than 3, you don't need sophis-
ticated computers to begin exploring. 

You probably can't guess the numerical entries for the next row. However, the 
answer is actually simple, when viewed in hindsight. To appreciate the answer, it 
helps to speak the entries in each row out loud. Note that row two has two 
"ones," thereby giving the sequence 2 1 for the third row. Row three has one 
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"two" and one "one." Row four has one "one," one "two," and two "ones." From 
this, an entire sequence can be generated. This interesting sequence was 
described in a German article, where Mario Hilgemeier called it die 
Gleichniszahlen-Reihe, which translates into English as "the likeness sequence." 
To the best of my knowledge, the sequence first appeared in the early 1980s, at 
an international student competition held in Belgrade, Yogoslavia. The sequence 
was also extensively studied by mathematician John H. Conway, who called the 
growth process "audioactive decay." The sequence grows rather rapidly. For 
example, row 16 is: 

13211321322113311213211331121113122112132113121113222112 
3113112221131112311332111213211322211312113211 

Row 27 contains 2,012 entries (see Table 55.1). 

3113113221131112311332111213133113311311123112111331121113122113132113121113 
2221123113112311131312211231131122211311133113111311222112111312211312111322 
2112132113213221232112111313111313322112311311222113111221221113122112132113 
1211132221133113113221131112311332311211133112111311222113111312211311123113 
322112111312211312111322212321121113121112133231121321132132212112311321322 
1121113122123211211131221222112112322211231131122211311123113331113131221123 
1131112311211133112111312211213211331121321132122212211131221131211132221232 
112111312111213322112132113213221133112132113221321123113213221121113122123 
211211131221323112112322211213211321322113311213212312311211131122211213211 
331121321123123211231131123311211131221131112311333211213211321223112111311 
222112132113212221132221222112112322211231131122211311123113321112131221123 
1131113311211133112111312211213211312111322211231131122211311123113322113223 
1131122211311123113322112111312211312111322111213122112311311123112112322211 
213211321322113312211223113112221121113122113111231133221121321132132211331 
222113321112131122211332113221122112133221121113122113121113222123211211131 
2111213111213211231132132211211131221232112111312211213111213122112132113213 
221123113112221133112132123222112111312211312112213211231132132211211131221 
131211132221121311121312211213211312111322211213211321322113311213212322211 
2311311222113111231132231121113112221121321133112132112211213322112111312211 
312111322212311222122132113213221123113112221133112132123222112111312211312 
1113222123211211131211121332211213111213122112132113121113222112132113213221 
232112111312111213322112132113213221133112132123123112111311222112132113311 
2132112211213322112311311222113111231133211121312211231131112311211133112111 
3122112132113121113222112311311222113111221221113122112132113121113222112132 
113213221133122211332111213322112132113213221132231131122211311123113322112 
1113122113121113222123211211131221232112311311221132211231132211131221121321 
13213211121332212311322113212221 

Table 55.1 Likeness sequence for row 27. 
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If you were to study the sequence carefully you would find a predominance of 
Is, with 2s and 3s less common. For rows between 6 and 27, there are about 
50% Is, 30% 2s, and 20% 3s. As Hilgemeier proved, the largest number the 
sequence contains is a 3. Is it possible to prove that 3-3-3 can never occur? Dr. 
Googol has looked for three 3s in a row up to row r = 33, which has over 10,000 
entries. You can see from the following representation of row 11 (in which 3s are 
represented by circles in squares) that 3's occurrence seems erratic, like lost ships 
on an infinite sea: 

Wouldn't it be fun to sail on such a sea, sipping from a good bottle of wine, 
searching for adventure amidst the chaos? 

In this chapter, Dr. Googol is particularly interested in the distribution of Is, 
2s, and 3s. While you can simply compute the percentage of occurrence of each 
digit for a given row, this does not tell us anything about any interesting clusters 
or peculiar areas of concentration of one digit over another. To overcome this 
drawback, Dr. Googol transforms the digit strings into 2-dimensional patterns 
that characterize the sequence. A single digit is inspected and assigned a direc-
tion of movement on a plane. To visualize this (and other) ternary sequences, use 
a 3-way vectorgram where the occurrence of a 1 directs the trace one unit at 0°, 
a 2 causes a walk at 120°, and a 3 a walk at 240°. Each of these angles is with 
respect to the x axis. Figures 55.1 to 55.3 show patterns for row 15, containing 
102 digits, row 25, containing 1,182 digits, and row 33, containing over 10,000 
digits. Dr. Googol used different scales to fit the graphs on a page. Notice that if 
the string contained only Is, the walk would be only to the right. 

As you can see from the figures, the sequence is far from random. The upward 
diagonal trend in Figure 55.2 and Figure 55.3 indicates a mixture of predomi-
nantly Is, some 2s, and relatively few 3s. The fact that the trends are fairly linear 

A Y7 A , Xf A Y7 A , Xf 
_y a v 

55.1 Vectorgram for row 15. 
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suggests that the ratios are relatively constant throughout the row. Figure 55.2 
and 55.3 show the occurrence of sudden upward bumps, which eventually 
return to the diagonal baseline. These bumps indicate a temporary change in the 
trend to more 2s. 

You can understand the resulting patterns by considering the directions trav-
eled by various combinations of entries in the sequence. For example, the 
sequence 1-1-1 is totally x-directed. 1-2-3, 1-3-2, and various cyclic permuta-
tions return to the original point (as if traveling along the edges of a A). 

For future experiments, you may wish to compute the slope of the vector-
gram's mean (trend) line as a function of the row number, or make a plot of the 
slope of the mean line versus the number of entries in a row. It appears, from just 
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a few sample points, that the slope of the mean line increases as a function of row 
number. 

Dr. Googol hopes that you will uncover or solve additional mysteries with 
this unusual sequence. If you are interested in the use of 8-way vectorgrams in 
the characterization of genetic sequences, see "Further Reading." 

$ Want a quick way to determine how many digits the Hth term in this 
sequence has? Want to know the largest likeness sequence ever computed? Want 
to learn about other related sequences? See "Further Exploring." 

C h a p t e r 56 

Dr. Googol's Prime 
Plaid 

The Universe is a grand book which cannot be read until one first learns 
to comprehend the language and become familiar with the characters in 

which it is composed. It is written in the language of mathematics. 
—Galileo, Opere II Saggiatore 

Dr. Googol was walking down a back road in the beautiful Scottish countryside, 
wearing a dapper plaid kilt, when he started contemplating various patterns pro-
duced by prime numbers. He sat down on a bench at Ardoe House, his hotel, 
which was a few miles outside Aberdeen. As he gazed longingly at the Scottish 
baronial hall with turrets, heraldic inscriptions, and ornate ceilings, he began to 
draw dots on a piece of paper. 

A prime is a positive integer that cannot be written as the product of 2 small-
er integers. The number 6 is equal to 2 times 3; therefore it is not prime. On the 
other hand, 7 cannot be written as a product of factors; therefore, 7 is a prime 
number or prime. Here are the first few prime numbers: 2, 3, 5, 7, 11,13, 17,19, 
23, 29, 31, 37, 41, 43, 47, 53, 59. Notice that the gaps between successive prime 
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numbers varies; for example, in these first few primes, the gaps are 1, 2, 2, 4, 2, 
4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6. . . . The Greek mathematician Euclid proved that 
there are an infinite number of prime numbers. But these numbers do not occur 
in a regular sequence, and there is no formula for generating them. Therefore, 
the discovery of large new primes requires generating and testing millions of 
numbers. (See Chapter 76's "Further Exploring" for some of the largest known 
prime numbers and how they were calculated.) 

Consider the prime numbers pwhere i = 0,1,2,3, . . . and where p0 = 2, 
p\ = 3, etc. Dr. Googol made a plot of p, vs. pi + l for pi < 2,000 (not shown) that 
yielded a "dusty" (approximately) diagonal line with a slope of about 1. It is 
dusty because there are gaps in the prime number sequence, and roughly diago-
nal since />, is roughly equal to pi + { at the size scale of the plot. Try making this 
plot yourself. 

Dr. Googol generated a visually 
interesting "plaid" structure (Figure 
56.1) by using different shift values a 
and superimposing plots of pj vs. pi+a 
where a - 1, 2, 3, . . . , 200 for p t < 
2,000. The bottom diagonal edge of the 
plaid corresponds to pi vs. p i t T h e gaps 
indicate gaps in the prime number 
sequence. 

As we go to larger and larger integers, 
the primes become increasingly rare, so 
the plaid also becomes more diffuse. 
When Dr. Googol attempts to compute 
a fairly good approximation for the 
number of primes smaller than or equal 
to x, usually designated ir(x), he prefers 
to use 7r(x) ~ xl(\nx- 1.08366). (This 
formula, given by Legendre in 1778, is 
much simpler to implement on a com-
puter than other methods, like the 
Gauss and Riemann methods, although 
this Legendre formula should be used 
only for prime numbers less than 5 mil-
lion. Above 5 million, Legendre's for-
mula becomes less accurate.) 

Dr. Googol computed the prime 
numbers needed to form the plaid pat-
tern in this chapter in just a second or 2, 
using the Sieve of Eratosthenes method. 

# For other odd facts about prime numbers, see "Further Exploring." 
H See [www.oup-usa.org/sc/Ol95133420] for a computer program that gen-

erates prime numbers. 
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Chapter 46 

Saippuakauppias 

I think that modern physics has definitely decided in favor of Plato. In 
fact the smallest units of matter are not physical objects in the ordinary 
sense; they are forms, ideas which can be expressed unambiguously only 

in mathematical language. 
—Werner Heisenberg 

Dr. Googol was in Helsinki, Finland, when he glanced at a local newspaper and 
saw a curious-looking word: 

saippuakauppias 

Dr. Googol turned toward the tall blond woman beside him. "Madam, can 
you tell me what this wonder word means?" 

Her eyebrows raised. "Certainly. It is the Finnish word for 'soap dealer.'" 
"Wonderful!" 
"Sir, why are you so delighted by this word?" 
"Because it is the largest palindrome I have ever seen in any language!" 
Dr. Googol merrily walked away. 
A palindrome is usually defined as a word, sentence, or set of sentences that 

spells the same backward and forward. Dr. Googol doesn't think there are any 
common English words of more than 7 letters that are palindromic. Examples of 
7-letter palindromes are rotator and reviver. An interesting example of a palin-
dromic sentence in which words, not letters, are the units is: 

"You can cage a swallow, can't you, 
but you can't swallow a cage, can you?" 

In this chapter Dr. Googol is more interested in palindromic numbers than 
palindromic words or sentences. Palindromic numbers are positive integers that 
"read" the same backward or forward. For example, 12,321,11, 261162, and 454 
are all palindromic numbers. 

Figure 57.1 is an interesting plot showing the distribution of the first 200 
palindromes when multiplied by a constant. To create the plot, start with an 
integer x between 1 and 200, multiply it by a constant a, and determine if the 
result is a palindrome. The "multiplier" a on the y axis of the plot goes from 1 to 
200. A dot on the graph indicates a palindromic number. The various patterns 
produced are quite interesting, and Dr. Googol is fond of making a few casual 
observations. Note that there is clearly a dense structure below some "hyperbol-
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57.1 Distribution of palindromes. The horizontal axis gives the integers x, and the 
vertical axis indicates the integral multiplier a. A dot on the graph indicates that 
a x x i s palindromic. 

ic" boundary. There is a conspicuous vertical line of closely spaced dots at x = 55 
corresponding to 10 consecutive odd a values that produce palindromes. 
The products are 55 x 91, 55 x 93, 55 x 95, 55 x 97, 55 x 99, 55 x 101, 
55 x 103, 55 x 105, 55 x 107, and 55 x 109. Also, when the x-axis value is an 
even multiple of 5, there are no y data. When the x-axis value is a nonpalin-
dromic odd multiple of 5, the y data are scarce. When x is palindromic, there are 
many j>-data points. Notice the plot has symmetry: if * x y is palindromic, yxx 
is also palindromic. 

Can you find other patterns in this plot? Can you extend this to a 1,000-by-
1,000 plot? 

& See "Further Exploring" for more fun palindromic sentences and for some 
wild challenges. 
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Emordnilap Numbers 

There is no excellent beauty that hath not some strangeness in the proportion. 
—Francis Bacon 

About a year ago, Dr. Googol was lecturing a class at Harvard University. "I want 
someone in the audience to pick any integer, reverse its digits, add the 2 num-
bers together, and continue to reverse and add." 

A boy with punk hair and a pierced nose raised his hand. "Sir, I'll start with 
19.1 reverse its digits to make 91 and then add. 19 + 91=110. I reverse the dig-
its of 110 to make Oil, and then I add. 110 + 011 = 121." 

Dr Googol stomped his foot on the floor. "Yes!" 
"Sir, excuse me?" 
"You just ended up with a palindromic number—that is, the number reads 

the same in both directions. With some numbers, this happens in a single step. 
For example, 18 + 81 = 99, which is a palindrome. Other numbers may require 
more steps. This process of reversing, adding, and looking for palindromes (also 
called an Emordnilap process) is quite wonderful. Of all the numbers under 
10,000, only 249 fail to form palindromes in 100 steps or less. In 1984, Fred 
Gruenberg noted that the smallest number that seems never to become palin-
dromic by this process is 196. (It has been tested through hundreds of thousands 
of steps.)" 

"Sir, have you done tests yourself?" 
"Certainly. Moreover, I have tested the starting number 879 for 19,000 steps, 

producing a 7,841-digit number—with no palindrome resulting. Isn't that im-
pressive? The 7,841-digit number starts with the digits 58084187 . . . and ends 
with . . . 139075! My statistical tests indicate an approximately equal percent 
occurrence of digits 0 through 9 for this large number. Similarly, I have tested 
1,997 for 8,000 steps, with no palindrome occurring." 

The class loudly applauded Dr. Googol's mathematical accomplishments. 

® ® ® 
Are there any patterns underlying this reverse-and-add process? Can we make 
any predictions? The number of steps needed to make a palindrome (called the 
"path length" and represented by p) is often under 5 steps. Figure 58.1 shows all 
path lengths for starting integers n between 1 and 1,000. To produce a conven-
ient graphical representation, Figure 58.1 is truncated in the jy-axis direction; in 
particular, the search for palindromes is stopped after 25 steps. Notice the inter-
esting periodicity in the path lengths made apparent in the graph. Also notice 
that while patterns exist, they are not perfect or entirely regular. A power spec-
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trum can be computed from a 
mathematical method called the 
Fourier transform in order to 
quantify periodic patterns. 

The graph poses dozens of 
questions that are more difficult 
to answer. For example, why are 
the periodic large path lengths 
absent in the 400-500 integer 
range (Figure 58.1)? Also, if we 
were to list the palindrome val-
ues for the moderate-size path 
lengths, we would find a high per-
centage of occurrence of the digit 
8. Why 8? Table 58.1 shows the 
palindromic end points for some 
of the moderate-size path lengths 
for the first 300 starting integers. 

Finally, you may wish to look 
for patterns for larger starting 
integers. For example, the path-
length graph corresponding to 
Figure 58.1 for (1000 ^ n < 10000), while displaying similar interesting peri-
odic patterns, looks quite different. There are many fewer 0-length paths because 
there are fewer starting palindromes. There are various gaps and peaks. The 
resultant graph is left as a curious exercise for you. For those of you who wish to 
learn more about this palindrome problem, see Martin Gardner and Charles 

n Palindrome Path Length 
89 8813200023188 24 
98 8813200023188 24 
167 88555588 11 
177 8836886388 5 
187 8813200023188 23 
266 88555588 11 
276 8836886388 15 
286 8813200023188 23 

Table 58.1 Palindromic end points for some of the moderately-sized path 
lengths. 

58.1 Path lengths for the first 1,000 starting 
integers. To produce a convenient graphic repre-
sentation, the figure is truncated in the y-axis 
direction by stopping the search for palindromes 
after 25 steps). 
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Trigg in "Further Reading." Gardner also discusses the problem for other num-
ber systems (e.g., binary numbers). 

& For just a smidgen more mathematical analysis, see "Further Exploring." 

C h a p t e r 59 

The Dudley Triangle 

One cannot escape the feeling that these mathematical formulae have an 
independent existence and an intelligence of their own, that they are 

wiser than we are, wiser even than their discoverers, that we get more out 
of them than we originally put in to them. 

—Heinrich Hertz 

After studying Pascal's triangle in Chapter 54, Dr. Googol became interested in 
other infinite triangular arrays. He spent many hours contemplating the beauty 
and intricacy of the less-known and less-understood Dudley triangular array, 
proposed in 1987 and represented as follows: 

2 
2 2 

2 1 2 
2 0 0 2 

2 6 5 6 2 
2 6 4 4 6 2 

2 6 3 2 3 6 2 
2 6 2 0 0 2 6 2 

2 6 1 9 8 9 1 6 2 
2 6 0 8 6 6 8 0 6 2 

2 6 12 7 4 3 4 7 12 6 2 
2 6 12 6 2 0 0 2 6 12 6 2 

2 6 12 5 0 12 11 12 0 5 12 6 2 
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Can any of you figure how this triangle was generated? Study it before reading 
further. Is there any human on Earth who could write down the next row of the 
triangle without reading the next paragraph? 

In 1987, Dr. Underwood Dudley conducted extensive research on this trian-
gle. We can denote the location of each array element by its diagonal coordinates 
\myn), where m signifies the rath diagonal descending left to right and n signifies 
the m\\ diagonal descending right to left. Every value in the array a is in the 
range from 0 to the sum of its coordinates, m+n. One way the array can be 
reproduced is by the following formula: 

am,n ~ (m2 + m n + n2 ~ 1 ) m od n + m + 1 

Try experimenting with different values for m and n. The mod function, or 
modulo function, yields the remainder after division. A number x mod n gives 
the remainder when x is divided by n. This number is anywhere from 0 to n -1. 
For example, 200 mod 47 = 
12 because 200/47 has 12 as 
a remainder. 

Like Pascal's triangle rep-
resented graphically in Figure 
54.1, the Dudley triangle is 
bilaterally symmetric. (That 
means a mirror plane could 
be drawn down the center of 
the triangle.) Notice that the 
triangles values grow more 
slowly than those of Pascals 
triangle and that the Dudley 
triangle has fewer odd-valued 
entries. Figure 59.1 shows the 
positions of even entries. 

Can you find any other 
marvelous patterns in the 
Dudley triangle? Experiment! 
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59.1 Dudley's triangle mod 2. Search for structure and 
rapid ways to generate the tri-
angle. Can you extend the triangle to a 3-dimensional pyramid? See the refer-
ences in "Further Reading" for more information on the properties of this 
triangle. 



Chapter 46 

Mozart Numbers 

Of course, we would like to study Mozart's music the way scientists 
analyze the spectrum of a distant star. 

—Marvin Minsky, Computer Music Journal 

Dr. Googol was listening to his favorite Mozart piece, Symphony no. 40 in G 
minor, while contemplating mathematics. As the mellifluous music filled the air 
like a fragrant scent, he soon realized that in order to estimate any Mozart sym-
phony number 5 from its Kochel number A'you can use 

5= 0.027465 + 0.157692 x K+ .000159446 x K2 

(The Kochel catalogue is a chronological list of all of Mozart's works, and any 
work of Mozart's may be referred to uniquely by its Kochel number. For exam-
ple, the Symphony no. 40 in G minor is K.550.) The formula will give an answer 
not more than 2 off, 85% of the time. 

Mozart once wrote a waltz in which he specified 11 different possibilities for 
14 of the 16 musical bars of the waltz, and 2 possibilities for another bar. How 
exciting that Mozart gave us such freedom! This gives 2 x 1114 variations of the 
waltz. What percentage of the number of these waltzes have humans heard? 
What percentage of the waltzes could a human hear in a lifetime? 

For more information on the formula for Mozart symphony numbers, see 
"Further Reading." 
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Hyperspace Prisons 

Wise Mystic. What is the best possible question, 
and what's the best answer to it? 

Dr. Googol: You've just asked the best possible question, 
and I'm giving the best possible answer. 

He showed me a little thing, the quantity of a hazelnut, in the palm of 
my hand, and it was round as a ball. I looked thereupon with the eye of 
my understanding and thought: What may this be? And it was answered 

generally thus: It is all that is made. 
—Julian of Norwich, 14th century 

Dr. Googol enjoys simple-looking geometrical puzzles that require you to esti-
mate the number of overlapping triangles within a diagram such as the one in 
Figure 61.1a. Can you guess how many triangles are in this figure? Stop. Take a 
guess before reading further. This figure contains a walloping 87 triangles. 

Sometimes it is possible to come up with rules that specify the number of tri-
angles in an ever-growing sequence of diagrams, such as the sequence in 61. lb. 
Impress your friends with your ability to compute the number of triangles in the 
nth triangular figure: [n(n + 2)(2n + l)]/8, for even n, and [n(n + 2)(2n + 1) 
- l ] / 8 for odd n. 

Can you count the number of triangles in Figure 61.1c, a more difficult dia-
gram? Actually, this figure will consume too much of your time; let Dr. Googol 
give you the answer—653 triangles—so that you will be free to ponder the more 
interesting enigmas that follow. Why not give these 3 triangle puzzles to a friend 
to ponder? 

One August, while catching fireflies in a jar, Dr. Googol began to develop 
puzzles of a similar geometrical variety, and he calls them "flea cages" or "insect 
prisons" for reasons you will soon understand. He enjoys these flea cages because 
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a 

61.1 Triangle madness, (a) How many overlapping triangles are in this figure? (b) Can you 
determine a rule that gives the number of triangles in the nth figure in this sequence? 
(c) How many more triangles does this figure have than the one figure in (a)? 

they are simpler to analyze than the triangle figures. Also, since the figures con-
sist of a network of perpendicular lines, they are much easier for you (or your 
computer program) to draw. Consider a lattice of 4 squares that form 1 iarge 
square (Figure 61.2). 

How many rectangles and squares are in this picture? Think about this for a 
minute. There are the 4 small squares marked "1," "2," "3," and "4," plus 2 hor-

izontal rectangles containing "1 and 2" and "3 
and 4", plus 2 vertical rectangles, plus the 1 
large surrounding border square. Altogether, 
therefore, there are 9 4-sided overlapping areas. 
The lattice number for a 2-by-2 lattice is there-
fore 9, or L{2) = 9. What is 1(3), Z(4), 1(5), and 
!(«)? It turns out that these lattice numbers 
grow very quickly, but you might be surprised 
to realize just how quickly. The formula describ-
ing this growth is fairly simple for an n-by-n lat-
tice: L(n) = n2(n + l)2/4. The sequence is 1, 9, 
36, 100, 225, 441, For a long time, Dr. 
Googol liked to think of the squares and rectan-
gles (quadrilaterals) as little containers or cages 
in order to make interesting analogies about 

1 2 
3 4 

61.2 How many overlapping quadri 
laterals does this figure contain? 
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how the sequence grows. (Obviously they wouldn't really make very desirable 
cages, because they overlap, but even Dr. Googol can dream.) For example, if 
each quadrilateral were considered a cage that contained a tiny flea, how big a 
lattice would be needed to cage 1 representative for each different variety of flea 
(Siphonaptera) on earth? To solve this, consider that siphonapterologists recog-
nize 1,830 varieties of fleas. Using the equation Dr. Googol has just given you, 
you can determine that a mere 9-by-9 lattice could contain 2,025 different vari-
eties, easily large enough to contain all varieties of fleas. (For Siphonaptera lovers, 
the largest known flea was found in the nest of a mountain beaver in Washington 
State in 1913. Its scientific name is Hystirchopsylla schefferi, and it measured up 
to 0.31 inches in length, about the diameter of a pencil.) 

It is possible to compute the number of cages for 3-D cage assemblies as well. 
The formula is L(n) = ((«3) (n + l)3)/8. The first few cage numbers for this 
sequence are 1, 27, 216, 1000, 3375. 

Can you determine the number of cages for 4-dimensional assemblies? 
How many cubes in a 3-D cage assembly would you need to contain 1 of each 

species of insect on Earth today? To contain all the people on Earth? 

0 See "Further Exploring" for further analyses and information on amazing 
4-dimensional cages. 

C h a p t e r 62 

Triangular Numbers 

Au fond de l'lnconnu pour trouver du nouveau. (Into the depths 
of the Unknown in quest of something new.) 

—Charles Baudelaire, Le Voyage 

Dr. Googol was lecturing the Spice Girls, a famous all-girl British rock band 
popular in the late 1990s. The sun shone brightly as they sat together on a bench 
beside Abbey Road. 

"Let's talk about triangular numbers," Dr. Googol says to Baby Spice, the 
blond-haired woman in the band. (Dr. Googol speculates she received her nick-
name because of her innocent, youthful appearance.) 

She casually flicks her hair to the side. "A triangular number?" 



150 ® Wonders of Numbers 

"Yes." Dr. Googol drops his voice half an octave and assumes a professorial 
demeanor. "Triangular numbers form a series, 1, 3, 6, 1 0 , . . . , corresponding to 
the number of points in ever-growing triangles." He takes a piece of chalk and 
sketches an array of triangular dots on Abbey Road: 

T1 T2 T3 T4 T5 

O O O O 0 
O O O 0 O O 0 0 

o o o O O O 0 0 0 
o o o o o o o o 

o o o o o 

"The early Greek mathematicians noticed that if groups of dots were used to 
represent numbers, they could be arranged so as to form geometric figures such 
as these." 

Baby Spice nods. "Incredible, sir. The possibilities are endless. The fourth tri-
angular number is 10. I wonder what the 100th triangular number is?" She 
begins to count using her fingers. 

"Baby Spice, there's an easier way. The nth triangular number is given by a 
simple formula: n{n + l)/2. The variable n is called the index of the formula. If 
you want the 100th triangular number, just use « = 100 for the index. You'll find 
that the answer is 5,050." 

Perhaps Dr. Googol detects admiration in the Spice Girls' eyes, no doubt 
elicited by his mathematical prowess. 

"Sir, can we use a computer to determine the 36th triangular number?" 
Next to Dr. Googol is a marble statue of Paul McCartney. He reaches into the 

statue's stomach, where he has secretly stashed a notebook computer. A hinged 
door swings out, and he removes the computer and tosses it to Baby Spice. 

Unfortunately, his aim is inaccurate, forcing the Spice Girls to make a leaping 
dive for the computer. They catch it but, in doing so, crash into a marble frieze 
running along the curb, with representations of Mick Jagger of the Rolling 
Stones and Celine Dion. Celine crashes down upon Baby Spice. 

Baby Spice struggles to free herself of the horizontal Celine and brushes her-
self off. "Never mind, sir. My youthful appearance can't be hurt by marble." She 
begins to type furiously on the computer's keyboard with her well-manicured 
fingers. She hands Dr. Googol a computer printout: 

Triangular Numbers: 

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 
171, 190, 210, . . . 
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"Sir, I can't believe it! The 36th triangular number is 666—the Number of the 
Beast in the Book of Revelation." Baby Spice begins to quote from the Bible, 
"Here is wisdom. Let him that hath understanding count the number of the 
beast; for it is the number of a man, and his number is six hundred, three score, 
and six." 

"Just coincidence, Baby Spice." 
"And the 666th triangular number is 222, 111. What a strange arrangement of 

digits!" 
"Calm down, Baby Spice. It's just coincidence." 
"Sir, did you know that each square number is the sum of 2 successive trian-

gular numbers?" 
"What are you getting at?" Dr. Googol's voice is low. 
"Square numbers are numbers like 5 x 5 = 25 or 4 x 4 = 16. Every time you add 

2 successive triangular numbers, you get a square one. For example, 6 + 10 = 16." 
Dr. Googol is intimidated by Baby Spice's mental agility, but then he quickly 

snaps back with a mathematical gem of his own: "Each odd square is 8 times a 
triangular number, plus 1." He begins to draw a grid of squares on Abbey Road. 
"Look at this." He points to the diagram (Figure 62.1). 

Dr. Googol looks back at Baby 
Spice. "The Greek mathematician 
Diophantus, who lived 200 years 
after Pythagoras, found a simple con-
nection between triangular numbers 
T and square numbers K. My dia-
gram shows this graphically. It has 
169 square cells in an array. This rep-
resents the square number K = 169 
(13 x 13). One dark square occupies 
the array's center, and the other 168 
squares are grouped in 8 triangular 
numbers T in the shape of 8 right tri-
angles. I've darkened 1 of the 8 right 
triangles." 

Baby Spice gasps, and the Spice 
Girls stare at one another. Dr. Googol 
feels as if Abbey Road is trembling 
with a minor earthquake. 

"Sir," Baby Spice whispers with a 
trace of hesitation, "no wonder the 
Pythagoreans worshiped triangular numbers. You can find an infinite number 
of triangular numbers that when multiplied together form a square number. For 
example, for every triangular number Tn, there are an infinite number of other 
triangular numbers, Tm such that Tn Tm is a square. For example, T2 x T24 = 30 2." 

Dr. Googol slams his fist down, feeling a slight pain as it makes contact with 
the hot asphalt. He needs to outdo Baby Spice. He shouts back, "666 and 3,003 
are palindromic triangular numbers. They read the same forward and backward." 

62.1 A deep connection between square num-
bers Kand triangular numbers T. A visual 
proof that 87"+ 1 = K. 
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Baby Spice starts singing the lyrics of her hit song "When Two Become One" 
as she types on the notebook computer. "It cannot be," she screams. "The 
2,662nd triangular number is 3,544,453, so both the number and its index, 
2,662, are palindromic." 

Dr. Googol feels a strange shiver go up his spine as he looks into the rock 
star's glistening eyes. He feels a chill, an ambiguity, a creeping despair. The Spice 
Girls are still. No one moves. Their eyes are bright, their smiles relentless and 
practiced. Time seems to stop. For a moment, Abbey Road seems to fill with a 
cascade of mathematical symbols. But when he shakes his head, the formulas are 
gone. Just a fragment from a dream. But the infuriating Baby Spice remains. 

"Baby Spice, I grow weary of our little competition." 
"Sir, triangular numbers are fascinating. Are there other numbers like this? 

Pentagonal numbers? Hexagonal numbers? What properties might these have?" 
"Baby Spice, that's the subject for another day." 

0 For other odd facts about triangular numbers, see "Further Exploring." 
9 See [www.oup-usa.org/sc/0195133420] for a computer program that gen-

erates triangular numbers. 

C h a p t e r 63 

Hexagonal Cats 

Computers are useless. They can only give you answers. 
—Pablo Picasso 

Many years ago, Dr. Googol was visiting a Middle Eastern museum. Outside, 
the villagers were gathered around dozens of primitive ocelot statues. One of the 
bearded men in the gathering began to meticulously arrange the new archeolog-
ical findings on the hot sand amidst the parched and withered cacti. He arranged 
the cats in the shape of concentric hexagons, as shown below. After resting for a 
few minutes, the wizened man groaned, knelt down, and began to count the 
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cats, starting from the center. He noted that there was 1 cat, surrounded by 6 
cats, surrounded by 12, and so on: 

Dr. Googol stepped closer. "I can tell you how many cats there will be in each 
surrounding hexagonal layer." 

The old man looked up. "If you do, we will be forever grateful." 
Dr. Googol began his lecture and to sketch formulas in the sand. 
Can you tell how many cats will be in each layer? 
Before giving you the formula, here is some background to polygonal num-

bers, that is, numbers associated with geometric arrangements of objects. As you 
read in Chapter 62, the early Greek mathematicians noticed that if groups of 
dots were used to represent numbers, they could be arranged so as to form geo-
metric figures, such as triangles, squares, and hexagons. For example, since 1, 3, 
6, 10, and 15 dots can be arranged in the form of a triangle, these numbers are 
called triangular. (Polygonal numbers appeared in 15th-century arithmetic 
books and were probably known to the ancient Chinese, but they were of special 
interest to the Pythagoreans due to their mystical interest in the properties of 
such numbers.) 

The sequence that Dr. Googol derived for the Middle Eastern men was 
Hc= 3 « ( » - l ) + 1, n = 1,2,3,. . . , which defines the centered hexagonal numbers. 
Let's go a step further and introduce a new term sure to impress your friends, 
and hopefully your next Friday-night date. A centered hexagonal number is 
called centered hexamorphic if its digits terminate its associated centered hexago-
nal integer. For example, n = 7 is centered hexamorphic because Hc{7) = 127. 
The number 17 is also centered hexamorphic because Hc{ 17) = 817. The cen-
tered hexamorphic sequence is fascinating to study! Table 63.1 contains a list of 
the first 23 centered hexamorphic integers. Note the interesting fact that all cen-
tered hexamorphic numbers end in the digits 1 and 7. 

A convenient notation a5 = aaaaa can be used, where the subscript indicates 
the number of times the digit or group appears consecutively. Dr. Googol has 
found the following interesting infinite sequence: ^(50^1) = 750^_7150^1, 
k = 0, 1, 2, . . . . Here the k subscripts indicate how many times the 0 is repeat-
ed. For example, k=2 produces //f(5,001) = 75,015,001 (seeTable 63.1). 

Centered hexagonal numbers have a different generating formula from stan-
dard hexagonal numbers: H(n) = n(2n -1); (see Figure 63.1). On the other hand, 

rf Wf tf * 
tf * tf 

tf rf tf tf 
tf tf tf tf tf 

tf tf rf tf 

tf * Wf 
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n centered n H(n)centered 

1 1 1251 4691251 
7 127 1667 8331667 
17 817 5001 75015001 
51 7651 5417 88015417 
67 13267 6251 117206251 
167 83167 6667 133326667 
251 188251 10417 325510417 
417 520417 16667 833316667 
501 751501 50001 7500150001 
667 1332667 56251 9492356251 
751 1689751 60417 10950460417 
917 2519917 

Table 63.1 Centered hexamorphic numbers. 

n H(n) n H(n) 
1 1 376 282376 
5 45 500 499500 
6 66 501 501501 
25 1225 625 780625 
26 1326 876 1533876 
50 4950 4376 38294376 
51 5151 5000 49995000 
75 11175 5001 50015001 
76 11476 5625 63275625 
125 31125 

Table 63.2 Hexamorphic numbers. 

the infinite sequences for hexamorphic and centered hexamorphic numbers are 
similar. For hexamorphic numbers, we have H{50^1) = 50^150^1, k = 0, 1, 
2, . . . Table 63.2 contains a list of hexamorphic numbers. Dr. Googol invites 
your comments on the similarities between the formulas for centered hexamor-
phic and hexamorphic numbers. Why are there similarities? 

Additional infinite sequences in centered hexamorphic numbers are Hc{\GjJ) 
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= 83*16*7, k = 0, 1, 2, . . . and 
Hc{Sk7) = 13*26*7, k= 0 , 1 , 2 , . . . . 
Hexamorphic numbers do not 
contain any numbers ending with 
7, but they do contain numbers 
ending with 1, and these also exist 
in the centered hexamorphic 
sequence. Those of you who wish 
to learn about hexamorphic num-
bers in various bases will enjoy 
Charles Trigg's research (see 
"Further Reading"). 

In closing, Leo A. Senneville 
and Dr. Googol have noted that 
there are some interesting relations 
between centered hexagonal and 
hexagonal numbers. For example, 
the second differences between 
successive terms for centered 
hexagonal numbers are always 6. 
The second differences between successive terms for hexagonal numbers are 
always 4. These statements condense to Hc{n + 1) - 2Hc(n) + Hc(n - 1) = 6, 
H(n + 1) - 2H(n) + H(n - 1) = 4. They also have noted the following infinite 
series: Hc(n)IH(n) = 3(1/2 - l/(4«) - l/(8«2) - l/(l6w3) - . . . ). The sum of 
this series approaches 3/2 as a limit, which is also the ratio of the second differ-
ences. Finally, if you plot curves with natural numbers on the horizontal axis and 
the corresponding value of the hexagonal functions on the vertical axis, the dif-
ference in height between the two curves is always (n -1) 2 . 

Can you find any additional patterns in these wondrous numbers? 

0 For other odd facts about triangular and hexagonal numbers, see "Further 
Exploring." 

S See [www.oup-usa.org/sc/0195133420] for a computer program that gen-
erates polygonal numbers. 
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63.1 Hexagonal numbers. Derived from hexagonal 
points arranged as shown here, they can be gen-
erated using X(n) = n(2n - 1 ) . 
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The X-Files Number 

Mulder: Hey, Scully. Do you believe in the afterlife? 
Scully: I'd settle for a life in this one. 

—"Shadows," The X-Files 

Dr. Googol was on the set of The X-Files, the highly acclaimed TV series in-
volving FBI investigations of paranormal phenomena. He turned to David 
Duchovny, one of the lead actors in the series. 

"David, people have used numbers to predict the end of the world. But pre-
dictions usually don't appear in mathematical journals." Dr. Googol raised his 
eyebrows. "This one appeared in the January 1947 issue of the American Mathe-
matical Monthly." 

"Dr. Googol, let me see that," David said in a low voice. He grabbed the tat-
tered article from Dr. Googol's hand and began to read: 

The famous astrologer and numerologist Professor Umbugio pre-
dicts the end of the oaorld in the year 2141. His prediction is based 
on profound mathematical and historical investigations. Professor 
Umbugia computed the value from the formula 

(d = 1492"- 1770"- 1863" + 2141" 

for n = 0, 1, 2, 3, and so on up to 194S, and found that all num-
bers bihich he so obtained in many months of laborious computation 
are divisible by 1946. flou, the numbers 1492, 177b, and 1863 
represent memorable dates: the discovery of the lYea (liorld, the 
Boston Massacre, and the Gettysburg Hadress. (dhat important 
date may 21*11 be? That of the end orthe (aorld, obviously. 



The X-Files Number ® 157 

David lowered the slightly soiled slip of paper. "Sir, this is incredible. This is a 
perfect case for an X-Files investigation. Could all the numbers produced by the 
formula be divisible by 1946? Could it be that 2141 has anything to do with the 
end of the world?" 

Dr. Googol reached into Gillian Andersons pocketbook and tossed a program-
mable calculator to David. "Write a program, and see what numbers you get." 

David began to type, and he soon handed Dr. Googol the results on a small 
printout. The £ symbols are the computers way of representing scientific notation. 
For instance, 1.00E + 02 would be another way of denoting 1.00 x 102, or 100. 

N W N W 
1 0 6 3.478795E + 19 
2 206276 7 9 .035302E + 22 
3 1.124106E + 09 8 2.246103E + 26 
4 4.106015E + 12 9 5.410357E + 29 
5 1.256519E + 16 10 1.272996E + 33 

"Dr. Googol, the numbers grow awfully quickly! If the units were in years, the 
fifth value is larger than the number of years required for all the stars to have 
died out." David began to pace. "How could scientists in the year 1946 deter-
mine that the results were all divisible by 1946? What is the l va lue for n = 100? 
Are the Wnumbers always divisible by 1946, or do they cease to have that prop-
erty after n= 1945?" 

Dr. Googol nodded. "David, these are all very interesting unanswered ques-
tions. But they'll have to wait." Dr. Googol pointed down the street to an enig-
matic man in black, smoking a cigarette. "David, you're about to have a close 
encounter of the third kind." 

# For more information on X-Files numbers, see "Further Exploring." 
S See [www.oup-usa.org/sc/0195133420] for a computer program that gen-

erates these numbers. 
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A Low-Calorie Treat 

The mathematician's patterns, like the painter's or the poet's, must be 
beautiful; the ideas, like the colours or the words, must fit together in a 
harmonious way. Beauty is the first test: there is no permanent place in 

the world for ugly mathematics. 
—G. H. Hardy, A Mathematician's Apology 

Dr. Googol was enjoying a piece of chocolate cake in Mel's Diner at 1840 
Grand Concourse in the Bronx when he invented "cake integers"—a delicious 
low-calorie snack for health-conscious readers. Here's the big question. Given a 
circular cake, using just 4 straight vertical knife cuts, what's the maximum 

number of pieces you can create? Try this puz-
zle on a few friends. With just 1 cut, the 
answer is obvious: 2 pieces. With 2 cuts, you 
can create, at most, 4 pieces. How many 
pieces can you create with 4 cuts? It turns out 
that the answer is 11 (see Figure 65.1). Most 
of your friends will not get 11 pieces in their 
first attempt! 

Let us define cake integers as having the 
form Cake(n) = {n1 + n + 2)12. Cake inte-
gers indicate the maximum number of pieces 
in which a cake can be cut with n slices. (The 
cake is represented as a flat disc.) The sequence 
goes as 2, 4, 7, 11, 16, 22, 29, 3 7 , . . . 

An integer n is cakemorphic if the last digits 
of Cake(n) = n. For example, if n = 25 and 
Cake(n) were to equal 1,325, n would be 
cakemorphic because the starting number, 25, 
occurs as the last 2 digits. Dr. Googol has not 

o 
Cs 
h c o 

Cs v \) 

N v S3 
65.1 Sample dissections of several 
delicious cakes. You can see that for 
n = 4 (the rightmost cake), C(/») = 11. 
Can any of your friends create 11 
pieces on their first attempt? 



A Low-Calorie Treat © 159 

been able to find a cakemorphic integer even though he searched for all values of 
n less than 10,000,000. He therefore has conjectured that no cakemorphic inte-
ger exists. 

On the other hand, you can show that hexamorphic and even square pyramor-
phic numbers are quite common (Figure 65.2 and Tables 65.1 and 65.2). 

N 
65.2 Distribution of hexamorphic numbers. 

n H(n) n H(n) 
5625 63275625 609376 742677609376 
9376 175809376 890625 1586424890625 
40625 3300740625 2109376 8898932109376 
50000 4999950000 2890625 16711422890625 
50001 5000150001 5000000 49999995000000 
59376 7050959376 5000001 50000015000001 
90625 16425690625 7109376 101086447109376 
109376 23926109376 7890625 124523917890625 
390625 305175390625 12890625 332336412890625 
500000 499999500000 
500001 500001500001 

Table 65.1 Large hexamorphic numbers. The table here continues the table in 
the previous chapter which lists the hexamorphic numbers less than 
63,275,625. Note: this table may contain the most comprehensive list of hexa-
morphic numbers to date. In 1987, the late Charles Trigg searched only as 
f a r as n < 10,000. 
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n S(n) n S(n) 
1 1 960 295372960 
5 55 1185 555371185 
25 5525 2560 5595682560 
40 22140 2625 6032742625 
65 93665 4000 21341334000 
80 173880 5185 46478345185 
160 1378160 6560 94121656560 
225 3822225 6625 96947076625 
385 19096385 8000 170698668000 
400 21413400 9185 258337319185 
560 58695560 9376 274790059376 
625 81575625 10625 399877410625 
785 161553785 
800 170986800 

Table 65.2 Square pyramorphic numbers. 

Hexagonal numbers have the form H(n) = n{2n-\) (see Chapter 62). A number 
is hexamorphic if H{n) terminates with n. The number 125 is hexamorphic 
because H( 125) = 31,125. Square pyramidal numbers are related to 3-D objects 
rather than 2-D polygons. If cannonballs are piled so that each layer is a square, 
then the total number of balls in successive piles will be 5(«) = 1,5, 14, 30, . . . 
n(n + 1)(2n + 1 )/6. Just like hexamorphic numbers, a number is square pyra-
morphic if S{n) terminates with n. 

A crazy challenge: are there any cakemorphic numbers? Another challenge: 
Dr. Googol hands you a doughnut. What's the greatest number of pieces you can 
create with n cuts? 

# See "Further Exploring" for additional findings and for challenges requir-
ing doughnut and pretzel cutting. 



Chapter 46 

The Hunt for Elusive Squarions 

All the pictures which science now draws of nature and which alone seem 
capable of according with observational fact are mathematical 

pictures. . . . From the intrinsic evidence of his creation, the Great 
Architect of the Universe now begins to appear as a pure mathematician. 

—James H. Jeans, Mysterious Universe 

Dr. Googol has always been fascinated by square numbers like 4, 9, and 25. 
(They're called square numbers because 22 = 4, 32 = 9, and 52 = 25.) What 
follows are 4 fiendishly difficult questions regarding "squarions," a general-
purpose term signifying very elusive arrangements of square numbers in a variety 
of settings. 

T H E H U N T F O R S Q U A R I O N A R R A Y S 

One question that Dr. Googol has pondered is whether or not it is possible to fill 
an infinite square array with distinct integers such that the sum of the squares of 
any 2 adjacent numbers is also a square. To illustrate, the following is a 4-by-4 
array with the desired property: 

1836 105 252 735 

1248 100 240 700 

936 75 180 525 

273 560 1344 3920 

For example, 752 + 1802 = 1952. Is it possible to create bigger arrays of this 
kind? Can you? 

T H E H U N T F O R M A G I C S Q U A R I O N S 

While on the subject of square numbers, it's not known if there exists a 3-by-3 
magic square of square numbers, that is, a 3-by-3 arrangement of 9 distinct integer 
squares such that the sum of each row, column, and main diagonal is the same. 
However, it is possible to build arrangements that satisfy the 6 orthogonal sums so 
that the row and column sums are equal. The following is from Kevin Brown: 
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42 232 522 

322 442 172 

472 283 162 

Remarkably, each row and column of this arrangement sums to a square num-
ber: 3,249 = 57 2. Here's a wondrous magic square of this kind constructed using 
prime number squares: 

l l 2 232 712 

612 412 172 

432 592 192 

T H E H U N T F O R S T R O N G S Q U A R I O N S 

What is the smallest square with leading digit 1 that remains a square when the 
leading 1 is replaced by a 2? In other words, if x2 = 1 . . . , is there a y2 = 2 . . . ? 
For example, consider the square number 16. If 26 were also a square, then we 
would have found a solution. 

We can ask a similar question. What is the smallest square with leading digit 
1 that remains a square when the leading 1 is replaced by a 2 and also remains a 
square when the leading digit is replaced by a 3? 

What is the smallest square with leading digit 1 that remains a square when 
the leading 1 is replaced by a 2, and also remains a square when the leading digit 
is replaced by a 3, and also remains a square when the leading digit is replaced 
by a 4? 

T H E H U N T F O R P A I R S Q U A R I O N S 

Certain pairs of numbers when added or subtracted give a square number. For 
example, 10 and 26 are pair squarions or double squarions since 10 + 26 = 36 (a 
square number) and 26 - 10 = 16 (a square number). Stated mathematically, n 
a n d p are pair squarions if n- p= a2 and n + p- b2 where a and b are integers. 
This section indicates interesting patterns in the pair squarions and also provides 
you a simple computer program with which to generate these numbers. 

How are pair squarions distributed? Are they easy to find? What can we know 
about their properties? Table 66.1 lists several pair squarions, denoted by n 
and p. These were generated using an algorithm like the following (and like the 
code at [www.oup-usa.org/sc/0195133420]), which hunts for all pair square 
numbers less than 1,000. 
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1 do p = 0 t o 1000 
2 do n = p+1 t o 1000 
3 a = s q r t ( n + p ) 
4 b = s q r t ( n - p ) 
5 i f (a = t r u n c ( a ) ) & (b = t r u n c ( b ) ) t h e n 
6 s a y p n 
7 end 
8 end 

n P n P 
4 5 22 122 
6 10 24 25 
8 17 24 40 
10 26 24 145 
12 13 26 170 
12 37 28 53 
14 50 28 197 
16 20 30 34 
16 65 
18 82 
20 29 
20 101 
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Table 66.1 Pair squarions. 66.1 Pair squarions for 0 < n , p < 1000. The distribu-
tion is symmetric about the line n - p , and the lower 
part is not plotted. 

Line 5 is used to ensure that both a and b are integers. Figure 66.1 plots the 
positions of all pair squarions less than 1,000 (that is, 0 < n,p < 1,000). The dis-
tribution is symmetric about the line n = p, and the lower part is not plotted. 
The straight line of points at n = p corresponds to n- b2H. Other curves seen in 
the plot correspond to equations such as n2 -p2 = a2b2. Try connecting the dots 
to make a beautiful net-like structure. Can you think of any ways to speed up the 
hunt for pair squarions? 

For a partial solution to the strong squarion problem, and for more analy-
ses regarding pair squarion numbers, see "Further Exploring." 

9 For BASIC code used to search for pair squarions, see [www.oup-
usa.org/sc/0195133420], 
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Katydid Sequences 

No live organism can continue for long to exist sanely under conditions of 
absolute reality. Even larks and katydids are supposed, by some, to dream. 

—Shirley Jackson, The Haunting of Hill House 

One day while dining at an elegant restaurant in "Westchester, New York, Dr. 
Googol found a dead katydid in his spinach souffle. He examined the grasshop-
per-like insect, using his fork. 

"Disgusting," his friend Monica said to him. 
Dr. Googol removed the insect from the spinach. "Monica, this reminds me 

of katydid sequences." 
Monica took a deep breath and rolled her eyes. "Do I want to hear about this?" 
"Sure, it's a remarkable kind of number sequence." 
"Okay, tell me more." There was a hesitation in her voice as she looked up 

toward the ceiling. 
"I call them katydid sequences because they remind me of the rapid (expo-

nentially growing) breeding that katydids and grasshoppers undergo during their 
mating seasons." He paused. "Katydid sequences are defined by the following 2 
functions, which can be visualized as a growing tree." 

Dr. Googol scribbled on a napkin: 

x 2x+ 2 
6x+ 6 

"Here, xis an integer. Start with x= I. These mappings generate two branch-
es of a 'binary' tree. In other words, x has two children, 2x + 2 and 6x + 6." He 
scribbled again: 

10 
71 

4 
N 71 

1 30 
bJ 71 

26 

12 

78 



Pentagonal Pie © 165 

"Each generation requires a month to breed. For example, after 1 generation 
(1 month) we have 4 and 12 as 'children' of the 'parent' 1. When xis 4, the chil-
dren are 10 and 30. The next month produces 10, 30, 26, 78. All the numbers 
that have appeared so far, when arranged in numerical order, are 1, 4, 10, 12, 26, 
30, 7 8 , . . . . No number seems to appear twice in a row; for example there is no 
1 , 4 , 1 0 , 1 0 , . . . . " 

Monica stared at the napkin for nearly half a minute. "So what?" 
Dr. Googol looked up at Monica. "Does a number ever appear twice? Maybe 

we don't see a repetition yet, but would we see one after a year? Hundreds of 
years?" He paused. "If this problem is too difficult for you, consider these simi-
lar katydid sequences. Does a number ever appear twice in the following?" 

2x+ 2, x + 1 

or 

x 2x+ 2, x 5x+ 5 

Monica stared at Dr. Googol. "I'll have to think about this for a while. Now 
it's time for dessert." 

Monica never solved the problems. Can you? Dr. Googol looks forward to 
hearing from anyone who can. 

# See "Further Exploring" for further analyses and surprises. 

C h a p t e r 68 

Pentagonal Pie 

The most important sequences, such as square numbers and the 
factorials, turn up everywhere. The Catalan sequence is in the Top 
Forty in popularity, even if it does not reach the Top Ten. It occurs 

especially often in combinatoric problems. 
—David Wells, Curious and Interesting Numbers 

Dr. Googol was cutting a pentagonal pie with a knife. "Happy birthday, my 
dear," he said to Anika. 
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Anika pulled her blond hair back. "A pentagonal pie. I've never heard of such 
a thing." 

"How many ways can you divide the pie into triangles, starting your straight, 
downward cuts at one corner and ending at another? Your cuts can't intersect one 
another." 

After 5 minutes of thought, Anika cut the pie. "Here is one way," she said. 
"Let me draw all the different ways." 

"Superb!" Dr. Googol said. 
"But Dr. Googol, cant we eat it now? I don't wish to talk further about math 

on my birthday." 
"Wait!" Dr. Googol screamed, just as Anika was about to eat a piece. "Let me 

ask this in a different way. How many ways can a regular «-gon—like a square, 
pentagon, hexagon, etc.—be divided into n - 2 triangles if different orientations 
are counted separately?" 

"Different orientations?" Anika said. 
"Yes. For example, in the pentagonal pie you cut, the pattern of cuts would 

look the same if you roated the pie, but we'll still consider them 5 separate cut-
ting patterns." 

Dr. Googol withdrew a pen from his pocket and started drawing the possibil-
ities for a hexagon (Figure 68.1). Just as he started drawing the different cuts for 
a 7-sided polygon, Anika decided she'd had enough and walked out the door. Dr. 
Googol, deep in concentration, never noticed. He was trying to derive a formu-
la to compute the number of ways the polygonal cakes could be cut into triangles 
for any regular polygon. Can such a formula be derived? Are there more ways to 
slice a 16-sided polygon then there are people on the planet? 

66.1 14 ways to divide a hexagon into triangles. 



An A? ® 167 

0 For a solution and more graphic examples, see "Further Exploring." Hint: 
A sequence called the Catalan sequence can be used to solve this puzzle. 

9 For BASIC code used to study this problem, see [www.oup-usa.org/sc/ 
0195133420]. 

Chapter 69 

An A? 

He remembered exploring those other-worldly curves from one degree to 
the next, lemniscate to folium, progressing eventually to an ungraphable 

class of curve, no precise slope at any point, a tangent-defying mind marvel. 
—Don DeLillo, Ratner's Star 

Dr. Googol was in London lecturing a Mensa group. Mensa has a single qualifi-
cation for membership: you must score in the top 2% of the population on a 
standardized intelligence test. An I Q between 130 and 140 is usually acceptable. 

Dr. Googol went over to a blackboard and drew a single letter: 

a 
Dr. Googol looked at his audience. "Can anyone tell me what this is?" 
A distinguished gentleman with a large mustache raised his hand. "It is an a." 
Dr Googol grinned. "Correct!" He wrote down: 

ana 
"Now what is on the board?" Dr. Googol said. 
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A distinguished woman with a small mustache raised her hand. "It is an a, an 
n, and an a." 

Dr. Googol wrote down: 

anaannana 
The entire audience screamed with glee and picked Dr. Googol up on their 

shoulders. A band started to play as confetti fell from the ceiling. The Mensa 
meeting was brought to a close as the members' roars of jubilant exaltation rose 
to fever pitch. 

® ® ® 
The rule for generating Ana sequences is to begin with a letter of the alphabet 
and to then generate the next row by using the indefinite article a or an as appro-
priate. (This will probably be best understood by English-speaking readers, who 
should say the sequences out loud to best understand them.) The most obvious 
letter to start with is a: 

Generation Sequence 
1 a 
2 ana 
3 ana ann ana 
4 ana ann ana ana ann ann ana ann ana 

The first row contains an a, giving us ana for the second row. How many dif-
ferent words can you generate with this method? It turns out that only the words 
ann and ana occur, but there is an interesting self-similarity cascade here. (For 
sequences like this, self-similarity refers to the fact that there are repeated patterns 
within patterns for different sequence lengths.) One way of visually representing 
the sequence to find patterns is to represent a by a dark icon, such as an alien 
head, and n by a less dark icon, such as the figure of a man: 

9 
• t 9 

• t 9 9 t t 9 t 9 
9 t 9 9 t t 9 t 9 9 t 9 9 t t f I t 9 t 9 9 t t 9 t 9 
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I I I I I I I I I I 
II III III III III IIIIII III IIIII 

Here it's easy to see that what-
ever pattern there is, after the 
second generation (or row) it is 
certainly not symmetrical about 
the midpoint of each sequence. 
A much better way to see the 
structure is to look at Figure 
69.1, created by Dr. Googol's 
colleague Mike Smithson from 
James Cook University. Here a 
is represented as a dark rect-
angle, and n is represented by 
a white space with no rectangle. 
In the sophisticated parlance of 
fractal geometry, this structure is 
known as an asymmetric Cantor 
dust. 

As background, a symmetrical Cantor set can be constructed by taking an 
interval of length 1 and removing its middle third (but leaving the end points of 
this middle third). The top two rows of Figure 69.1 show this removal. This 
leaves two smaller intervals, each one-third as long. In the symmetrical case, the 
middle thirds of these smaller segments are removed and the process is repeated 
over and over to create a symmetrical pattern: 

69.1 Anabiotic Ana fractal. The letter a is 

represented by a dark bar. The letter n is 

represented by a gap. (Rendering by Mike 

Smithson.) 

This symmetrical Cantor set has a "measure zero," which means that a ran-
domly thrown dart would be very unlikely to hit a member of the very sparse set 
in higher row numbers. At the same time, it has so many members that it is in fact 
uncountable, just like the set of all of the real numbers between 0 and 1. Many 
mathematicians, and even George Cantor himself, for a while doubted that a 
crazy set with these properties could exist. As you have just been shown, however, 
such a set is possible to formulate. The dimension D of the symmetrical Cantor 
dust for an infinite number of iterations is less than 1 since D = log2/log3 = 0.63. 
You can read more about the concept of fractional dimensions, and how 0.63 was 
derived, in Manfred Schroeder's Fractals, Chaos, Power Laws. Cantor dusts with 
other fractal dimensions can easily be created by removing different sizes (or 
numbers) of intervals from the starting interval of length 1. Cantor sets are high-
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69.2 Turtles Forever, by Peter 
Raedsehelders. 

ly useful mathematical models for many 
physical phenomena, from the distribu-
tion of galaxies in the universe to the 
fractal Cantor-like structure of the rings 
of Saturn. 

For those of you who are fractal 
experts, can you compute the dimension 
of the Ana fractal? Does it even have a 
single dimension? What happens if you 
start the Ana fractal sequence with a let-
ter other than a? Is this new sequence 
fractal? Are there other verbal fractals 
waiting to be discovered using different 
rules? 

After converting the as and ns to 
tones, Mai Lichtenstein of San Diego, 
California, was able to listen to an 81-
element Ana sequence and Morse-Thue 
sequence described in Chapter 17. They 
sounded very similar to him. He won-
ders if the ratios aln and 0/1 approach 1 

69.3 Fractal Butterflies, by Peter Raedsehelders. 
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69.4 Seal Recursion, by Peter 69.5 Fractal Dinosaurs, by Peter 
Raedschelders. Raedschelders. 

in both sequences. He believes that there are at most 2 of the same elements in 
succession for both sequences. 

Figures 69-2 through 69.5 are the intricately recursive artworks of Belgian 
artist Peter Raedschelders. Like the Ana fractal and Cantor sets, these works rep-
resent a continual repetition of objects at diminishing size scales. If these had 
been constructed using mathematical algorithms and computer graphics, in 
principle the smaller structures could be continually magnified to reveal yet 
smaller structures, like an infinite nesting of Russian dolls within dolls. 

# For more on Ana fractals, see "Further Exploring." 

Chapter 70 

Humble Bits 

One sign of an interesting program is that you cannot readily predict its output. 
—Brian Hayes, "On the Bathtub Algorithm for Dot-Matrix Holograms," 

Computer Language, vol. 3, 1986 
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Dr. Googol was lecturing members of YLEM, the California-based organiza-
tion of artists who use science and technology. "The humble bits that lie at the 
very foundation of computing have a special beauty all their own. It takes just a 
little logical coddling to bring the beauty out. Who would guess, for example, 
that intricate fractal patterns lurk within the OR operation applied to the bits of 
ordinary numbers?" 

A huge man with an orange punk hairdo and Mortal Kombat® tattoos got up 
out of his seat. "Binary numbers* Those are the ones that are made up of just the 
digits 1 and 0." 

Dr. Googol nodded. "Some say they were invented by Leibniz while waiting 
to see the pope in the Vatican with a proposal to reunify the Christian churches. 
Here are the first 7 numbers represented in binary notation: 

0,1, 10, 11, 100, 101, 110, 111, . . . 

The sums of the digits for each number form the sequence (in decimal nota-
tion): 

0 ,1 , 1, 2, 1, 2, 2, 3 ,1 , 2, 2, 3, 2, 3, 3, 4, . . . 

"Notice, just like the Morse-Thue sequence, which I lectured you about earli-
er (see Chapter 17), this sequence is self-similar, if you retain every other term 
you still have the same infinite sequence!" 

"Amazing!" the big man yelled. 
Dr. Googol put up his hand to silence the man. "For the next 10 minutes, I 

want to demonstrate that wonderful graphic patterns can emerge when working 
with binary numbers. In fact, very complex patterns with scaling symmetry can 
arise from the simplest of arithmetic operations that use logical operators such as 
AND and OR." 

And for the next 10 minutes, Dr. Googol flashed image after image upon the 
screen, captivating his audience with his wit, beautiful visuals, and charm. 

® ® ® 
Figure 70.1 was created using an OR operation, which Dr. Googol will now 
explain. For this demonstration we compute the values for a square image con-
sisting of an array of values c,,, in particular ctJ = i OR j, for (1 < i < 800) and 
(1 < j < 800). For example, if i = 6 and ; = 1, c = 7 because 111 = (110 OR 001). 
Just apply a logical operation one bit at a time. (For instance: 1 OR 0 is 1; 0 OR 
0 is 0; and 1 OR 1 is 1.) The variables i and j correspond to the x and y axes of 
the figures in this chapter. The value of c is represented by shades of gray. Figure 
70.1 illustrates c modulo 255. The brightest picture element is therefore 254, 
and this corresponds to bright white. 0 is represented by black. The black, trian-
gular, gasket-like structure represents those (c = 255) pixels that are made black 
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by the modular arithmetic. The frac-
tal nature of the entire pattern is evi-
dent. The black pattern is called a 
Sierpinski gasket, commonly seen in 
cellular automata applications. In 
fact, the same pattern is seen when 
the even entries of Pascal's triangle 
are colored black (see Chapter 54). 
Let us call this pattern a "logical" 
Sierpinski gasket. 

Obviously, Dr. Googol has barely 
scratched the surface of the subject. 
There are endless combinations of 
logical (and arithmetic) operators to 
be tried on the humble binary num-
bers. In the process, some of you will 
discover worlds neither Dr. Googol 
nor anyone else has seen. 

$ For more analysis, see "Further 
Exploring." 

Chapter 71 

Mr. Fibonacci's Neighborhood 

For those, like me, who are not mathematicians, the computer can be a 
powerful friend to the imagination. Like mathematics, it doesn't only 

stretch the imagination. It also disciplines and controls it. 
—Richard Dawkins, The Blind Watchmaker 

Dr. Googol drove to Mr. Fibonacci's neighborhood pet store and bought a pair 
of rabbits to breed. The pair produced a pair of young after a year, and a second 
pair after the second year. Then they stopped breeding. Each new pair also pro-
duces 2 more pairs in the same way, and then stops breeding. How many new 

70.1 Pattern of bits. The pattern was 
produced by ctj = i OR / for (1 < i < S00 ) 
(1 < / < 800 ). The values of c modulo 255 are 
represented by shades of gray. 
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pairs of rabbits would you have each year? To answer this question, write down 
the number of pairs in each generation. First write the number 1 for the single 
pair you bought from the pet shop. Next write the number 1 for the pair they 
produced after a year. The next year both pairs have young, so the next number 
is 2. Continuing this process, we have the sequence of numbers: 1, 1, 2, 3, 5, 
8, 13, 21, 34, 55, 89, 144, 233, 377, . . . . This sequence of numbers, called 
the Fibonacci sequence after the wealthy Italian merchant Leonardo Fibonacci 
(1170-1240) of Pisa, plays important roles in mathematics and nature. These 
numbers are such that, after the first 2, every number in the sequence equals 
the sum of the 2 previous numbers Fn = Fn + Fn _2. The code at [www.oup-
usa.org/sc/0195133420] shows how to program this sequence on the computer. 

T H E A M A Z I N G l / 8 9 

Although not widely known, several mathematicians have discovered that the 
decimal expansion of 1/89 (0.01123 . . . ) relates to the Fibonacci series when 
certain digits are added together in a specific way. Examine the following 
sequence of decimal fractions, arranged so the rightmost digit of the wth 
Fibonacci number is in the n + 1th decimal place: 

n 
1 .01 
2 .001 
3 .0002 
4 .00003 
5 .000005 
6 .0000008 
7 .00000013 

.0112359 . . . 

Unbelievably, 1/89 = .01123595505 Fantastic! Why should this be so? 
Why on Earth is 89 so special? 

R E P L I C A T I N G F I B O N A C C I D I G I T S 

With these digressions, let us switch gears and discuss numerical world records 
with numbers related to Fibonacci numbers. (Maybe you can be the next world-
record holder in the search for these numbers.) In 1989, Dr. Googol discovered 
129,572,008 and 251,133,297—new replicating Fibonacci digits {defined in next 
paragraph) in the range 100 million to 1 billion. At the time, they were the 
largest replicating Fibonacci digits discovered, although today several people 
have taken up the challenge and discovered several larger numbers of this kind. 

A replicating Fibonacci digit, or repfigit, has the remarkable property that it 
repeats itself in a sequence generated by starting with the n digits of a number and 
then continuing the sequence with a number that is the sum of the previous n 
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terms. An example should clarify this. 47 is a repfigit since the sequence (4, 7, 11, 
18, 29, 47) passes through 47. Likewise 1,537 is a repfigit since the sequence (1, 
5, 3, 7,16, 31, 57, 111, 215, 414, 797, 1,537) passes through 1,537. 

In 1987, Michael Keith introduced the concept of replicating Fibonacci dig-
its. At that time the largest known repfigit was the 7-digit number 7,913,837. In 
November 1989, 3 larger repfigits were discovered, and the world's largest rep-
figit was 44,121,607. 

Repfigits are interesting for several reasons. For one, the question of whether 
or not the number of repfigits is infinite is unsolved. It would be interesting to 
find that no repfigit exists for higher numbers of digits, or to discover patterns 
by searching for larger numbers. Moreover, progress on certain famous problems 
has historically been used as a yardstick for measuring the growth in computer 
power. How many hours would your computer require to find Dr. Googol's pre-
vious world record of 251,133,297? 

Table 71.1 indicates all known repfigit numbers under 1 billion. 

# For more information on repfigits and other Fibonacci delights, see 
"Further Exploring." 

H See [www.oup-usa.org/sc/0195133420] for a computer program that gen-
erates Fibonacci numbers. Starting from this, can you create a program that 
computes repfigits? 

2 14 19 38 47 61 75 

3 197 743 

4 1104 1537 3308 3508 3684 4788 7385 7647 7909 

5 31331 34385 34348 55604 63663 86935 93993 

6 120284 129106 147640 156146 174680 183186 298320 355419 694280 925993 

7 1084051 7913837 

8 11436171 33445755 44131607 

9 139573008 351133397 

Table 71.1 Replicating Fibonacci digits less than one billion. The first column 
indicates the number of digits. 
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Apocalyptic Numbers 

Never dismiss the intuition of the ancients, who believed that number is 
the essence of all things. Number is the secret source of entire cultures, 
and men have been killed for their heresies and seductive credos. The 

whole history of mathematics is subterranean, taking place beneath histo-
ry itself, a shadow-world scarcely perceived even by the learned. 

—Don DeLillo, Ratner's Star 

Dr. Googol was contemplating the nature of reality while sitting in St. John the 
Divine, the world's largest cathedral, in New York City. He started to read a 
book called the Revelation (or Apocalypse) of John. Dr. Googol knew this was 
the last book of the New Testament, written using fantastic imagery—blending 
Jewish apocalypticism, Babylonian mythology, and astrological speculation. 
Various mystics have devoted much energy to deciphering the number 666, said 
by John the Apostle to designate the Number of the Beast, the Antichrist. More 
recently, mystical individuals of the extreme fundamentalist right have noted 
that each word in the name Ronald Wilson Reagan has 6 letters. 

Dr. Googol turned to Monica, who sat quietly beside him. "Monica, isn't it 
odd that 666 has especially interesting mathematical properties? For example, 
the number 666 is a simple sum and difference of the first 3 natural numbers 
raised to the sixth power." With very careful penmanship, Dr. Googol wrote on 
the back page of a Bible: 

666 = l 6 - 26 + 3 6 

"It is also equal to the sum of its digits plus the cubes of its digits." 

666 = 6 + 6 + 6 + 6 3 + 6 3 + 6 3 

Dr. Googol looked into Monica's dark eyes and whispered, "I believe that 
there are only 5 other positive integers with this property. Can you find them?" 

Monica looked down. "Dr. Googol, perhaps you had better not write any-
thing more on the Bible. It's not right." 

Dr. Googol nodded. "The sum of the squares of the first 7 primes is 666: 

666 = 23 + 3 3 + 5a + 72 + l l 9 + 13a + 17a 

And here's a real gem: A standard function in number theory is <()(«), which is 
the number of integers smaller than n and relatively prime to n. Amazingly, we 
find that: 



Apocalyptic Numbers © 1 7 7 

4 > ( 6 6 6 ) = 6 - 6 - 6 

(Number theorists call 2 numbers A and B that have no common factors rela-
tively prime or coprime.)" The first 144 decimal digits of pi add up to 666, and 
144 is special because 144 = (6 + 6) x (6 + 6). Finally, the three decimals of pi 
that begin with the 666th are 343 = 7 x 7 x 7." 

Dr. Googol said the last few words so loudly that all the people in St. John the 
Divine turned their heads to stare at him. Without saying another word, Dr. 
Googol and Monica quietly left. 

® ® ® 
About a year ago, Dr. Googol began a computer search for "apocalyptic num-
bers." These are Fibonacci numbers with precisely 666 digits. As described in 
Chapter 71, the sequence of numbers (1, 1, 2, 3, 5, 8, . . . ), is called the 
Fibonacci sequence, and it plays important roles in mathematics and nature. 
These numbers are such that, after the first 2, every number in the sequence 
equals the sum of the 2 previous numbers Fn = F„_; + F„_2. It turns out that the 
3,184th Fibonacci number is apocalyptic, having 666 digits. For numerologist 
readers, the apocalyptic number is: 

1167243740814955412334357645792141840689747174434394372363 
31282736262082452385312960682327210312278880768244979876 
073455971975198631224699392309001139062569109651074019651 
076081705393206023798479391897000377475124471344025467950 
76870699055032297133437094009365444241181520685790404104 
34005685680811943795030019676693566337923472186568961365 
839903279181673527211635816503595776865522931027088272242 
47109476382115427568268820040258504986113408773333220873 
616459116726497198698915791355883431385556958002121928147 
05208717520674893636617125338042205880265529140335814561 
9514604279465357644672902811711540760126772561572867155746 
07026067859229791790424885 3892358861771163 

Is the number shown here the only apocalyptic Fibonacci number? Is there 
any significance to the fact that the first 4 digits and last 4 digits (1167 and 
1163) of the apocalypse number both represent dates during the reign of 
Frederick I of Germany, who intervened extensively in papal politics? In fact, 
Frederick had set up a series of antipopes in opposition to the reigning pope, 
Alexander III. In 1167 Frederick attacked the Leonine City in Rome and was 
able to install one of the antipopes, Paschal III, on the papal throne. Notice that 
in the middle of the apocalyptic number we find the date 1154. On precisely 
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this date, Frederick proceeded to Italy, where he received the Lombard crown at 
Pavia. Toward the end of his life, Frederick went on a crusade and drowned— 
sometime around the year 1194, another date that appears in the enigmatic 
apocalyptic number. 

0 See "Further Exploring" for more oddities involving 666. 
B For hints on computing Fibonacci numbers, see [www.oup-usa.org/sc/ 

0195133420] for Chapter 71. 

Chapter 73 

The Wonderful Emirp, 1,597 

There can be no dull numbers, because if there were, the first of them 
would be interesting on account of its dullness. 

—Martin Gardner, 1992 

"I love 1,597!" Dr. Googol said to his friend Monica as they rode horses along 
the vast Montana outback. 

"I thought you only had eyes for me," Monica said as she brushed back her 
hair, which the faint wind had teased out of place. 

"I do, but don't you realize that 1,597 is both a prime number and a 
Fibonacci number?" Dr. Googol handed Monica a note of explanation. It read: 

prime is a positive integer that cannot be written a& the product of 2 

smaller integers. The number 6 is equal to 2 times 3, but 7 cannot be 

written as a product of factors; therefore, 7 is called a prime number or 

prime. Here are the first fea prime numbers: 2, 3, S, 7, J I, 13, 11, 19, 

23, 29, 3 f, 37, 11, 13, 17, S3, 5 9 . S e e Chapter 7ffor background on 

Fibonacci numbers i, 1, 2, 3, S, 8, ... ) The number 1S97 is also the 

year in tahich the Edict of Nantes teas drafted, cahich gave French 

Protestants (Huguenots) a degree of freedom, opening public offices to 

them and permitting them to hold public {warship in certain cities. 
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Monica folded the note and placed it under her saddle. "Thank you for the 
lovely note, but why does it say 'See Chapter 71'?" 

"It's for a book I'm writing. Never mind that. More interestingly, 1,597 is fas-
cinating because it is an 'emirp,' a prime number that turns into a different 
prime number when its digits are reversed (7,951)." 

As the sun began to set, the meadows and hills were awash in a tangle of gold-
en reflections. Dr. Googol began to dream. 

® ® ® 
1,597 is also the basis for a number problem Dr. Googol dreamed just a year ago 
for which a solution seemed unlikely. Consider the formula x = Vl,597y2 + 1 • Is 
x ever an integer for any integer y greater than 0? You may wish to first compute 
a few values of x in order to get the feel for the formula: 

y x 
1 39.97 
2 79.93 
3 119.89 

You can see that for y= 1,2, or 3, x is not an integer. Is it ever an integer? The 
first method you might use to answer this question is to write a short computer 
program that would simply try thousands of values of y, starting at y = I. The 
program would continually increment y while testing x—for as long as your 
patience and machine time allowed. The program could check each x value to see 
if it were an integer. Unfortunately, your program would run for weeks, and 
probably months, and you would finally toss up your hands and exclaim that 
there is no solution. However, it turns out there is an infinite number of solu-
tions, and the first individual to solve the 1,597 problem was Noam D. Elkies of 
the Mathematics Department of Harvard University. 

The reason it would take your computer so long to find these infinite number 
of solutions is the fact that the smallest integer value for x is 

x = 519711527755463096224266385375638449943026746249 

for a y value of 

y = 13004986088790772250309504643908671520836229100 

(Note the startling occurrence of 5,197 in x. Is this scrambling of 1,597 just a 
coincidence? No one knows for sure.) 

Dr. Elkies, however, did not solve this through the super-CPU-intensive 
search methods. In fact, it has been known at least since the time of French 
mathematician Pierre de Fermat (1601-1665) that for any positive integer D 
that is not a square, there are infinitely many integers x, y such that x2 = Dy + 1. 
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Since Dr. Googol gave you the number 1,597, which is a prime number and 
hence cannot be a square, you know immediately that there is a solution. 
Furthermore, there is a known algorithm that can be used to solve problems such 
as these. These methods involve the use of a continued fraction representation 
for VD~in order to find the smallest solution. These algorithms are now imple-
mented on several commercially available symbolic computation software pack-
ages, which is what Elkies used to solve the 1,597 problem. 

# See "Further Exploring" for additional incredible and bizarre 1,597 chal-
lenges. 

9 For hints on finding prime numbers that are also Fibonacci numbers, see 
[www.oup-usa.org/sc/019 5133420]. 

Chapter 74 

The Big Brain of Brahmagupta 

As in our Middle Ages, the scientists of India, for better and for worse, 
were her priests. 

—Will Durant, Our Oriental Heritage, 1954 

A person who can within a year solve x2 - 92j2 = 1 is a mathematician. 
—Brahmagupta 

Oh, the wonderful Brahmaputra River! Beautiful beyond compare! Last year, Dr. 
Googol was exploring the Brahmaputra, the mighty river that flows 1,800 miles 
from its source in the Himalayas to its confluence with the Ganges River, after 
which the mingled waters of the two rivers empty into the Bay of Bengal. Its 
upper course was long an unsolved mystery because exploration was barred by 
hostile mountain tribes. 

The local tribes never scared Dr. Googol. He boldly went up to a young vil-
lager and said, "Have you ever heard of Brahmagupta?" 

The villager backed up a hasty half-step. "Sir, do you mean Brahmaputra, the 
river? 

"No, Brahmagupta. Not to be confused with Brahmacharia, the vow of chastity 
taken by the ascetic student—a vow of absolute abstention from all sexual desire." 
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The young man raised his eyebrows. "No, I would not confuse those two 
words." 

Dr. Googol nodded. "Brahmagupta was a great Indian mathematician of 
the 7th century and desperately interested in huge numbers. He didn't con-
sider someone a real mathematician unless he could find an integer solution to 
x2 - 9 2 / = 1." 

The villager nodded. "Brahmagupta's brain must have been big." 
Dr. Googol continued. "This kind of problem has always made me wonder 

about the history of large number problems. How long ago were the first huge 
number problems posed, solved, or even considered solvable by humans?" 

Dr. Googol's eyes glazed over as the villager walked away, and when Dr. 
Googol returned home he began to work with colleagues, such as Chris Long 
from Rutgers University, on Brahmagupta numbers, named after the famous 
Hindu mathematician and astronomer who was intrigued by huge number solu-
tions to simple-looking problems. 

® ® ® 
Please don't expect to solve the following problem with pencil and paper! The 
solutions involve ratios of numbers so large that if you were to place a dot on a 
paper every second until you had a number of dots equal to the Brahmagupta 
numbers, our Milky Way galaxy would have rotated many times. (Did you 
know that the Milky Way galaxy's period of rotation is 6 x 1015 seconds?) 

The problem deals with rational numbers. A rational number is a number that 
can be expressed as a ratio of two integers. Here are some fine examples: 1/2, 
4/3, 7/1, 8. All common fractions and all expansions with terminating (or 
repeating) digits are rational. Trigonometric functions of certain angles are even 
rational, for example cos 60° = Vi. (This is in contrast to irrational numbers like 
e and Jt—called transcendental numbers—and all surds such as V27.A surd is a 
number that is obtainable from rational numbers by a finite number of addi-
tions, multiplications, divisions, and root extractions.) 

Our problem can be stated as follows. Find the smallest rational number x 
(smallest in the sense of smallest numerator and denominator) such that there 
exist rational numbers y and z and 

x2 - 1 5 7 = y1, x1 + 157 = s 2 

Jim Buddenhagen of Southwestern Bell Advanced Technology Laboratory 
gave a behemoth solution: 

x = 502401829953380369811377543122940309931350174668896675 
84728816492946182669894640083390462472702407772686242505 
6 9 7 4 4 0 8 7 0 7 2 7 0 1 1 8 2 9 5 1 6 2 6 0 3 9 4 2 7 5 2 4 4 1 8 3 5 0 8 5 5 3 3 4 1 8 6 4 7 2 9 6 5 
460410399610068678034313761 + 5520712785907625818387556946 
1342697367786240398108265147202579226331920116659466022 
1 7 5 2 1 8 7 1 7 8 7 1 3 8 6 0 7 8 3 8 1 6 9 9 5 4 8 6 8 4 9 7 4 7 9 9 0 3 6 5 2 9 4 7 6 9 7 1 9 2 7 0 6 8 
616591606845144977158476992422410434693821197457720 
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y = 4976168309082615289459776489008494215611077198547772938 
6907419538978932445636040315578821358685390299974609232 
14011511689876046242577636636913029860052304292613303022 
945165470508311968736639 * 5520712785907625818387556946134 
269736778624039810826514720257922633192011665946602217521 
871787138607838169954868497479903652947697192706861659160 
6845144977158476992422410434693821197457720 

z = 507141683435535895613678348202590043546771901663807172 
72112514688668416204079391389484275484099986283966106884 
99937346660544850726462041214489884598731864517189496456 
476576826531843826804161 + 5520712785907625818387556946134 
26973677862403981082651472025792263319201166594660221752 
187178713860783816995486849747990365294769719270686165916 
06845144977158476992422410434693821197457720 

(Notice the division symbols buried in these large digit strings.) Buddenhagan 
solved this using theory provided by Don Zagier in a book titled Introduction to 
Elliptic Curves and Modular Forms (page 5) by Neal Koblitz—and by using a large-
integer computer software program called Maple from the University of Waterloo. 

If you substitute these huge numbers into the previous equations, you will 
find that x2 - y2 - 157 and also that x2 - z2 = -157, which are valid solutions 
to the problem. But are these the smallest solutions? 

# See "Further Exploring" for an answer and for further challenges. 

Chapter 75 

1,001 Scheherazades 

I love to count. Counting has given me special pleasure down through the 
years. I can think of innumerable occasions when I stopped what I was 
doing and did a little counting for the sheer intellectual pleasure of it. 

—Don DeLillo, Ratner's Star 

Since the age of 13, every 1,001 days Dr. Googol reads the Thousand and One 
Arabian Nights. (This means Dr. Googol reads the work every 2.74 years.) With 
the exception of the Koran, no other work of Arabic literature has been better 
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known and more influential in the "West than the Thousand and One Arabian 
Nights. This collection of stories is grouped around a central story involving a 
sultan and his lovers. Upon discovering that his wife has been unfaithful to him, 
the sultan vows to take a bride every day and have her executed at dawn. 

When Scheherazade was chosen to be his new wife, each evening she told a 
story to the sultan but did not finish it, promising to do so the following night if 
she survived. This continued for a thousand and one nights, until the sultan 
grew deeply in love with Scheherazade and gave up his cruel execution plans. 

One night after reading the Thousand and One Arabian Nights, Dr. Googol 
began to wonder about a special number called the Arabian Nights factorial. This 
number is defined as the number xsuch that x\ has 1,001 digits. (The exclama-
tion point is the factorial sign: «! = 1 x 2 x 3 x 4 x . . , x h.) Factorials grow 
rather quickly: 5! = 120, 10! = 3,628,800, and 15! = 1,307,674,368,000. What is 
the Arabian Nights factorial? 

® ® ® 
Table 79.1 shows 1,001 Scheherazade clones and a single sultan at bottom right. 
The sultan is getting old but wishes to kiss each woman once and return to his 
original position to rest. Part I: What path should he take to make the fewest 
possible turns along his amorous journey? What path should he take if he wish-
es to find the shortest path? Part II: Answer these 2 questions if the sultan does 
not wish to kiss a woman more than twice along his journey and also wishes to 
take a prime number of steps. (A "step" takes place each time the sultan goes 
from one woman to the next.) 

$ See "Further Exploring" for a solution and comment regarding the 
Arabian Nights factorial. 

m i 1 1 1 1 1 1 I 1 l l l l l I I I I M M 1 I I I t t t t t t I 1 1 1 1 t 1 
n i l 1 1 1 I 1 1 1 1 M i l l M I I M I I I I 1 1 t t I I 1 I I t I I I I 1 
l l l l t t 1 1 1 t 1 1 M i l l I I I I I I I I 1 I I I I 1 I 1 1 1 I t I I t 1 1 
1 1 1 1 1 1 1 1 1 I I I M i l l M M I I I I I I 1 t t t I 1 1 1 1 1 I I I t 1 
M i l 1 1 1 1 1 1 I 1 l l l l l M I I 1 1 1 1 1 I I 1 1 1 I I 1 1 t t I I 1 I I 
l l l l I 1 1 t I 1 1 I l l l l l I I I I I I 1 M M 1 t I t 1 1 1 I I I t I 1 1 
l l l l 1 1 t 1 1 I 1 I • M i l I I I I I I 1 I I 1 1 t t t t t I t I I t t I I 1 
l l l l 1 t 1 1 1 1 1 1 M i l l I I I I I I I I 1 1 1 1 1 1 1 1 t 1 I t I I 1 1 1 
l l l l 1 1 1 1 1 1 I 1 M i l l I I I I I t I I I I 1 I 1 t I I 1 1 1 I t t t I I 
l l l l I 1 1 1 t I I I M i l l I I M I I I t I t t t t I t I I 1 1 1 I I I t I 
l l l l 1 1 1 1 1 1 1 1 l l l l l 1 I t 1 1 1 1 1 1 t 1 t t 1 I t t t I I 1 t I I 1 
t i l l 1 I 1 • 1 I 1 1 M i l l t I t t t I t I t t t 1 1 1 1 1 1 1 1 t t t I 1 1 
l l l l I I t I I I 1 1 M i l l t I t I t I t I t I t I I I t I t 1 t 1 1 1 I t t 
t i l l t t t t 1 t I I M i l l t t t t t t t 1 1 1 1 1 I I t t t t 1 1 t I 1 1 1 
l l l l 1 1 1 t I I I I I I 1 I I t t t t t t t t I t 1 I I 1 I t 1 1 1 t t t t t t 
l l l l I 1 1 I I 1 I I • M M t t I t I t I t I I 1 I t 1 1 1 1 1 1 1 1 1 1 I t 
I I I ! t t I I 1 I 1 1 l l l l l I t t 1 I 1 1 1 1 1 1 I I t I t t t t t t t I I 1 
l l l l 1 I • f t 1 1 1 M i l l t t t t I t t t t t t 1 1 1 1 1 1 1 1 I I t I I 1 
l i l t I t t t 1 1 1 1 M i l l I I I t t t I t t t t I I 1 I t I t t 1 1 1 I t t 
1 1 t t 1 1 I 1 1 t 1 I I I 1 I I I t I t t t I I 1 1 1 1 I I t t I I I t t t t l 1 
1 1 t t I I I t I t I I I I 1 I I I t I t t I I I I I t 1 1 1 I 1 I I I I I 1 I I 1 
1 t t t I t t t t t I I l l l l l t t t t I t t M M M I I T Sultan 

Table 79.1 Find the Sultan's path through the 1001 Scheherazades. (The Sultan 
is lifting weights at the bottom in preparation for his arduous journey.) 
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73,939,133 

It's like asking why Beethoven's Ninth Symphony is beautiful. If you 
don't see why, someone can't tell you. I know numbers are beautiful. 

If they aren't beautiful, nothing is. 
—Paul Erdos 

Dr. Googol was invited to the White House for a special reception honoring the 
country's 30 brightest minds. Reporters and journalists were everywhere. 

The president and first lady began to shake hands with a line of distinguished 
luminaries in the world of science. CNN was airing the reception on live TV. 

When it was Dr. Googol's turn, he smiled at the first lady, then turned to the 
President. "What is special about the number 73,939,133?" 

The president's jaw dropped. 
Secret service agents immediately stepped between Dr. Googol and the presi-

dent. Other agents were speaking into their concealed collar-microphones, fran-
tically trying to get the answer to Dr. Googol's question so that the president 
could wow the press with his mental prowess. 

Can you help the president? 
What is special about this number? (Hint: This number is a prime number— 

a positive integer that cannot be written as the product of 2 smaller integers. But 
something is very special about this particular prime number.) 

For an answer, see "Further Exploring." 
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l±j-Numbers from Los Alamos 

As a teenager I thought that if it's at all possible, or practical, to become a 
mathematician, I would want to be one. Of course, from a practical point 
of view, it was very difficult to decide on studying mathematics at the uni-

versity because to make a living in mathematics was very, very difficult. 
—Stanislaw Ulam, Mathematical People 

Many years ago, Dr. Googol was working at Los Alamos, New Mexico, where he 
met the great mathematician Stanislaw Ulam. Today Ulam is best known for his 
theoretical calculations used for building the hydrogen bomb. However, Ulam 
also worked on a range of fascinating topics in his lifetime including iteration, 
strange attractors, Monte Carlo methods, the human brain, random number 
generators, number theory, and genetics. 

"Dr. Googol," Ulam said, "let me show you something interesting." 
"Stanislaw, you make my heart race." 
Ulam nodded. "Start with any 2 positive integers—for example, 1 and 2. 

Next consider positive integers in increasing order that can be expressed in just 1 
way as the sum of 2 distinct earlier members of the sequence." 

"Stanislaw, speak in simple English!" 
"Let me give you an example." Ulam began to write on a blackboard. "Here 

are the first few numbers starting with 1 and 2." 
Dr. Googol carefully took notes, copying down the numbers onto a card: 

Wx 2:1 2 3 4 6 8 1113 16 18 26 28 36 38 47 48 53 57 62 69 72 77 82 87 97 99 
102 106 114 126 131 138 145 148 155 175 177 180 182 189 197 206 209 219 

Dr. Googol spoke. "I'm going to call these '!±J-Numbers' in honor of you, Dr. 
Ulam. The l±J symbol is a U (for Ulam) with a + symbol. I pronounce the symbol 
just like the letter U. I think I understand how to generate them. For example, 5 
is not a bl-number because there is more than one way to form 5 from summing 
previous sequence members: 5 = 3 + 2 and 5 = 4 + 1. On the other hand, 6 is a 
W-number because it can only be formed by 4 + 2." 

Dr. Ulam continued. "If we draw little vehicles every time we find a Id-num-
ber (and leave a dash where there is no l±)-number), it appears that the l±l-num-
bers are getting ever sparser as we search for them among increasingly larger 
numbers." Dr. Ulam drew the following: 

£ £ £ £ A _ A £ _ £ 
£ _ £ £«Q £ £ 
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Dr. Googol walked away from the great Ulam and began to make some inter-
esting-looking plots using the following computer recipe: 

DO For a l l Ulam Numbers , 1±) 
M o v e P e n T o ( ( ± l , 0 ) ; DrawTo ( l± l , l±J) ; 

END 

This looks like a series of unequally spaced vertical lines that gradually rise 
(Figure 77.1). The spacing is what Dr. Googol likes the best. It's very erratic, 
displaying miscellaneous gaps where no Ulam numbers exist. Many times there 
are visually interesting clumps and pairs. In your own computer program, you 

can DrawTo(!±l,C), where Cis the vertical-
most (y) coordinate of your graphics screen. 
This will give the plot a bar-code appear-
ance. Looking at these kinds of graphs, can 
you determine if there are arbitrarily large 
gaps in the sequence of l±l-numbers? 

Notice that on the l±)-number graph 
there are pairs of consecutive l±J-numbers 
corresponding to (1,2), (2,3), (3,4), and 
(47,48). Are there infinitely many consecu-
tive pairs? In 1966, P. Muller (in his mas-
ter's thesis at the University of Buffalo) 
calculated 20,000 terms and found no fur-
ther examples! On the other hand, more 
than 60% of the U-number terms differ 
from another by exactly 2. 

Dr. Googol's l±J-numbers started with 1 and 2. What are l±J-numbers like for 
other starting integers? 

I±) See "Further Exploring" for other ideas and an introduction to <8>-numbers. 

ji 

77.1 Visualization of (±l-numbers. 
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Creator Numbers SI 

No definition of science is complete without a reference to terror. 
—Don DeLillo, Ratner's Star 

On a cool April day in Athens, Greece, Dr. Googol approached a woman on 
the street who was selling gyro sandwiches. While waiting for the juicy meat to 
turn crispy brown, Dr. Googol handed her his card with the following formula: 

The young woman took the card and turned it over in her well-manicured 
hands. "And what is this supposed to mean?" 

22 j i 
xy "o' 

22.(2 

KJi 
222lJ H^h-Ji WS2/S /mz./y 22. jf 22 222 22jt Kdi 
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207 

Dr. Googol grinned. "It means next to nothing. It is merely meant to 
impress." 

"Impress?" 
"Yes, doesn't it look impressive?" 
"Here is your gyro." She reached into her pocket, smiled, and withdrew a 

small card upon which she scribbled. She handed him the card. "Why don't you 
call me sometime?" 

Dr. Googol smiled back and nonchalantly stuck the card into his pocket. 
When he arrived at his apartment, he withdrew her card with exponentially 
increasing anticipation. Her card was in immaculate condition. On one side was 
the handwritten formula 

81 = (2 3 + 1 + l ) 3 

On the other side were the words 

Athens Psychiatric Hospital 

with a phone number beneath. 
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We will probably never know why the woman wrote the enigmatic equa-
tion—Dr. Googol never found her again—but it stimulated Dr. Googol to con-
duct a bizarre contest. Participants were to construct numbers using just Is and 
2s, and any number of +, and x signs. People were also allowed exponentia-
tion. As an example, let's first consider the problem where only the digit 1 is 
allowed. The number 80 could be written 

80 = (1 + 1 + 1 + 1 + l ) x ( l + 1 + 1 + l ) x (1 + 1 + 1 + 1) 

The creator number for a number n, symbolized as $(«) , is the least number 
of digits that can be used to construct n. In the previous example, we see that 
$(80) S 13 because thirteen Is were used to create 80. A contest that allows 
only Is for forming small numbers turns out not to be very interesting. 
However, once the digit 2 is also allowed, the problem becomes deep, fascinat-
ing, and filled with infinite wonders. Here is an example: 

81 = (23 + 1 + l ) 2 

Here $(81) < 5. Is this the best you can do with Is and 2s? 
The explicit goal of the Creator Numbers Contest is to represent the numbers 

20, 120, and 567 with as few digits as possible. Dr. Googol received hundreds of 
responses and wishes that he could report all of the observations and entries in 
this chapter. Here are some examples. The first triplet of answers came from R. 
Lankinen of Helsinki, Finland: 

$ ( 2 0 ) < 5 , for 20 = 23 + 3 + 2 + 2 

$ ( 1 2 0 ) < 6, for 120 = ((2 + l ) 3 + 2)3 - 1 

$ ( 5 6 7 ) < 9, for 567 = 2 x 2 x ((2 x (2 x 2 + 2))a - 2) - 1 

But is this the best one can do for the 3 numbers? Can they be expressed with 
fewer digits? It turns out that 567 can be constructed with just 8 digits. Dan 
Hoey of Washington, D.C., the contest winner, computed the minimum values 
for all 3 numbers. Here are his minimal answers (which, Dr. Googol believes, use 
the smallest possible number of digits): 

$ ( 2 0 ) < 5 for 20 = (1 + 2 + 2) x (2 + 2) 

$ ( 1 2 0 ) < 6 for (2 + (1 + 2) 3 ) 2 - 1 

$ ( 5 6 7 ) < 8 for (23 + 3 + 3 - 1) x (2 + l ) 3 

The contest becomes more interesting if we allow concatenation of digits 
(thus permitting multidigit numbers such as 11, 12, 121, etc.). For this case, the 
winning entries come from Mark McKinzie of the University of Wisconsin's 
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Mathematics Department. Here are Mark's answers: 

$ ( 2 0 ) < 3 for 20 = 22 - 2 

$ ( 1 2 0 ) < 4 for 120 = l l 3 - 1 

$ ( 5 6 7 ) < 6 for 567 = (2 + l ) 2 + 1 x 21 

Another equally successful set of answers comes from Ya-xiang, Beijing, 
China: 

$ ( 2 0 ) < 3 for 20 = 21 - 1 

$ ( 1 2 0 ) < 4 for 120 = 1 2 1 - 1 

$ ( 5 6 7 ) < 6 for 567 = 21 x (2 + l ) 2 + 1 

Can you do any better than these solutions? 

$ See "Further Exploring" for detailed analyses and additional challenges, 
including the search for hard numbers. 

Chapter 79 

Princeton Numbers 

Jesearc sat motionless within a whirlpool of numbers. He was fascinated 
by the way in which the numbers he was studying were scattered, 
apparently according to no laws, across the spectrum of integers. 

—Arthur C. Clarke, The City and The Stars, 1956 

In 1991, Dr. Googol visited David P. Robbins, a mathematician from Princeton, 
New Jersey, who had published an article in the Mathematical Intelligencer with 
the unusual title "The Story of 1, 2, 7, 42, 429, 7436, . . . . " The paper deals 
with an interesting sequence of integers starting with 1—but very quickly its 
members include behemoth numbers with hundreds of digits. The sequence can 
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be represented by R2, . . . ., and it can be computed using the following 
formula: 

„ _ 1 (3i + 1)! 
Rn = n , = o („+i)i 

Dr. Googol loves the fancy-looking symbol II. Don't you? It simply indicates 
a repeated product. For example, II j i - 1 X 2 X 3 = 6. The exclamation point 
is the factorial sign: »! = 1 X 2 X 3 X . , , », The computer code at [www.oup-
usa.org/sc/0195133420] gives you additional hints on how to compute this 
repeated product for different values of n. For example, for n - 2 we need to 
compute the numerator and denominator for i = 0 and i = 1 and multiply the 
results: l!/2! x 4!/3! = Vi x 24/6 = Vi x 4 = 2. Using the formula for Rn, it is not 
too difficult to determine the seventh and eighth terms of the series: 

218347,10850216 

Dr. Googol has included a list of the first 25 numbers in Table 79.1 Do more 
of these numbers end in 00 than you would expect by chance? The 31st number 
(the largest Dr. Googol has computed) is: 

745790164537531254584694336446020102450093361981171934259 
4448739658061730204945465190362255297438758806424576 

Before going further and offering a challenge, let Dr. Googol tell you a bit 
about Dr. Robbins and the problem he was working on. Robbins is a mathe-
matician at the Communications Research Division of the Institute for Defense 
Analysis in Princeton. He received his formal mathematics education at Harvard 
and MIT. Robbins refuses to state any mathematical specialty, insisting that he is 
"interested in any mathematical problem as long as its statement is easily under-
stood and surprising." Robbins has enjoyed computers since childhood, begin-
ning with a peculiar fascination with his father's Friden calculator. The sequence 
in the R„ equation has the mathematical community all in a quandary. In the 
last few years the sequence has arisen in 3 separate and distinct problems dealing 
with the analysis of combinations, and no one on Earth has been able to explain 
why. The details of the branch of mathematics called combinatorics are beyond 
the scope of this book but the next paragraph should whet your appetite by dis-
cussing 1 application. 

A L T E R N A T I N G S I G N M A T R I C E S 

The Rn sequence seems to be relevant to the number of ways numbers can be 
arranged in special kinds of matrices. As most of you probably know, a matrix is 
an array of numbers organized in rows and columns. Here is an example of a 
matrix with 5 rows and 5 columns: 



Princeton Numbers ® 1 9 1 

n R 
1 1 
2 2 

3 7 
4 42 
5 429 
6 7436 
7 218348 
8 10850216 
9 911835460 
10 129534272700 
11 31095744852375 
12 12611311859677500 
13 8639383518297652500 
14 9995541355448167482000 
15 19529076234661277104897200 
16 64427185703425689356896743840 
17 358869201916137601447486156417296 
18 3374860639258750562269514491522925456 
19 53580350833984348888878646149709092313244 
20 1436038934715538200913155682637051204376827212 
21 64971294999808427895847904380524143538858551437757 
22 4962007838317808727469503296608693231827094217799731304 
23 639678600348796935600782403668485485803162060205454197694128 
24 139195130590028911121955178430809752278606772281224640157476731328 
25 51125173829571287017224567391919410147905063533336189533617647958933050 

Table 79.1 Robbins Princeton Numbers. 

0 1 0 0 0 
1 - 1 0 1 0 
0 1 0 - 1 1 
0 0 0 1 0 
0 0 1 0 0 

This is a square N-by-./Vmatrix where N = 5. Its entries are all Os, Is, and 
- Is , and its rows and columns sum to 1. Also notice that, upon omitting the 
Os, the Is and - I s alternate in every row and column. Such matrices are called 
alternating sign matrices. For N - 1 there is 1 alternating sign matrix, and for 
N = 2 there exist 2 alternating sign matrices. For N = 3 there are 7 matrices, 
including 
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0 1 0 
1 - 1 1 
0 1 0 

Can you find the other matrices? Notice that the number of different N-by-N 
alternating sign matrices appears to follow the sequence in the R„ formula at the 
beginning of this chapter: 1, 2, 7, . . . . We might be tempted to conjecture that 
R„ gives the number of alternating sign matrices with TV rows and TV columns. 
In fact Robbins has used a computer to check that this conjecture holds for 
all N up to TV = 16. Recently, it's been proved that this conjecture holds in 
general. 

S O M E C H A L L E N G E S 

Let us reconsider the first equation in this chapter. It is not obvious from the 
equation that the values of R„ are integers! Might there not be a value for n such 
that the denominator doesn't divide the numerator evenly? You need not wonder 
about this too long. Robbins says that all values of R„ are indeed integers. (Can 
you prove this?) Why not test this for yourself by making a list of a few numera-
tor and denominator terms? Even if you do not have access to a computer, a 
pocket calculator should suffice for the first few terms. 

Can you compute more than the 6 terms in the title of Robbins's article? 
Could the 31st term given in this chapter be the largest Robbins number ever 
computed? Can you break this record? On a computer, you could compute the 
product in the equation using 

R=1 
FOR 1=0 TO N - l 

R = R * f a c t o r i a l ( 3 * 1 + 1 ) / f a c t o r i a l ( N + I ) 
END 
PRINT R 

where "factorial" is the factorial function. Perhaps this will give you a hint as to 
how to program the formula in the programming language of your choice. 

& See "Further Exploring" for a zillion more challenges. 
3 For computer recipes, see [www.oup-usa.org/sc/0195133420] 



Chapter 72 

Parasite Numbers 

He dove his thumb into the soft glob of red licorice he held, making it a 
little bigger than the parasite which lay on Sarah's neck. . . . He bent for-
ward toward the blistery growth. It was covered in a spiderweb skein of 

crisscrossing white threads, but he could see it beneath, a lump of pinkish 
jelly that throbbed and pulsed with the beat of her heart. 

—Stephen King, Four past Midnight 

"Help! Get it off me," Monica screamed. 
Dr. Googol and Monica were exploring the deep jungles of Africa when she 

discovered a wet leech stuck to her ankle. 
Dr. Googol nodded, withdrew a salt shaker from his backpack, and sprinkled 

salt on the leech. It began to scream and promptly dropped to the moist forest 
floor. 

Monica took a deep breath. "Thank you." 
They resumed their hike as Dr. Googol told Monica all about parasites. 
The number 102,564 is a remarkable number that Dr. Googol discovered one 

day during his late-evening computer explorations. He calls this number a para-
site number, for reasons that will soon become clear. In order to multiply 
102,564 by 4, simply take the 4 off the right end and move it to the front to get 
the answer. In other words, the solution is the same as the multiplicand except 
that the number 4 on the right side is moved to the left end: 

102,564 x 4 = 410,256 

Isn't this an incredible number? How many numbers with this quality exist 
within the numerical jungle, swimming peacefully and undetected in the swamp 
of mathematics? These kinds of numbers remind Dr. Googol of a biological 
organism that contains a parasite (digit) that roams around the body of the host 
organism (the multidigit number in which the parasite resides) as it gains energy 
by feeding (the multiplication operation). Dr. Googol has written several pro-
grams to search for parasite-containing numbers (or parasite numbers, for brevi-
ty), such as 102,564. If you search for all potential parasite numbers generated 
by different 1-digit multipliers, you'll find that they are exceedingly rare. It 
seems that the only parasite number less than 1 million is the 4-parasite 
102,564. (The term 4-parasite indicates that the number 4 is the multiplier.) 

Do the other digits give rise to any parasite numbers? Are there multipliers for 
which no parasite number exists? How much computer time will be spent on 
this, now that Dr. Googol has asked this question? 
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There do exist occasional "pseudoparasites" lurking within the integers less 
than a million. These are numbers like 128,205, which when multiplied by 4 
also move the last digit to the first position: 

128,205 x 4 = 512,820 

(Dr. Googol calls these pseudoparasites only because the last migrating digit is 
not the same as the multiplier.) Here are some other 4-pseudoparasites: 

153,846 x 4 = 615,384 
179,487 x 4 = 717,948 
205,128 x 4 = 820,512 
230,769 x 4 = 923,076 

Here is a 5-pseudoparasite: 142,857 x 5 = 714,285. 
Both parasites and pseudoparasites seem to be as rare as diamonds. As Dr. 

Googol searches for parasites during the late-night hours, he challenges you to 
beat him in his search using the computer of your choice. On your mark. Get 
set. Go! 

& See "Further Exploring" for more information on parasites so huge that 
no sane person should care about them. 

Chapter 81 

Madonna's Number Sequence 

We are like the explorers of a great continent who have penetrated to its 
margins in most points of the compass and have mapped the major 

mountain chains and rivers. There are still innumerable details to fill in, 
but the endless horizons no longer exist. 

—Bentley Glass, Scientific American, vol. 267, 1992 

On a fine frigid day, Dr. Googol's friend Madonna Mobius gave Dr. Googol and 
his disciples a number puzzle. "What is the significance of the following 
sequence of digits?" Mobius asked them. 
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425260376469080434957 

After rattling off the sequence, Mobius suffered a heart attack and died. The 
evening air was as astringent as alcohol, as Dr. Googol continued to study the 
sequence while the dead mathematician's body grew cold on the snowy ground. 
Even after years of study, no mathematician can fathom the mystery of this 
sequence. Can you? 

# For a solution, see "Further Exploring." 

Chapter 82 

Apocalyptic Powers 

We live on an island of knowledge surrounded by a sea of ignorance. As 
our island of knowledge grows, so does the shore of our ignorance. 

—John A. Wheeler, Scientific American, vol. 267, 1992 

Dr. Googol presented the following number to his disciples and asked them 
what was special about it: 

182,687,704,666,362,864,775,460,604,089,535,377,456,991,567,872 

After much discussion, one young woman spoke: "It is the first power of 2 
that exhibits 3 consecutive 6s." 

Dr. Googol's disciples applauded with delight. In fact, this number is equal 
to 2157. Dr. Googol calls numbers of the form 2' that contain the digits 666 
apocalyptic powers because of the prominent role 666 plays in the last book of the 
New Testament. In this book, called the Revelation (or Apocalypse) of John, 666 
is designated as the Number of the Beast, the Antichrist. 

Are there any other apocalyptic powers for higher values of i, or is this the 
only one? Dr. Googol has enlisted the help of IBM's Deep Blue computer in the 
computational search for double apocalyptic powers, which contain six 6s in a 
row, but he was never able to find an example. Can you find such a number? 

& For a discussion, see "Further Exploring." 
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The Leviathan Number 

None is so fierce that dare stir Leviathan up. 
—Job 41:10 

Dr. Googol's obsession with huge numbers reached maddening heights when he 
startled scientists with the monstrous Leviathan number (represented by the 
symbol }$)—a number so large as to make the number of electrons, protons, 
and neutrons in the universe (1079) pale in comparison. (It also makes a googol 
[lO100] look kind of small). 

is defined by the following identity: 

tf = ( 1 0 6 6 6 ) ! 

where the ! indicates factorial. It derives its name from a huge sea dragon or ser-
pent of some kind that often symbolizes evil in Christian literature and in the 
Old Testament. The Leviathan number is also intimidating from a mathematical 
standpoint due to its probable incalculability, as we will soon see. 

Recently Dr. Googol asked colleagues a number of questions pertaining to the 
Leviathan number. For example: 

© What are the first 6 digits of 

© Could modern supercomputers compute the Leviathan, or will this be 
beyond the realm of humankind for the next century? 

© Even if we cannot compute how many other characteristics of this num-
ber can we write down? 

$ For the answers, see "Further Exploring." 
9 See [www.oup-usa.org/sc/0195133420] for code explained in "Further 

Exploring." 
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The Safford Number: 
365,365,365,365,365,365 

Mathematics is the only science where one never knows what one is 
talking about nor whether what is said is true. 

—Bertrand Russell 

What is special about the huge number 

365,365,365,365,365,365 
? 

Dr. Googol's story begins with the calculating prodigy Truman Henry Safford 
(1836-1901) of Royal ton, Vermont. When Safford was 10 years old, Reverend H. W. 
Adams asked him to square, in his head, the number 365,365,365,365,365,365. 
Dr. Adams reported: 

He flew around the room like a top, pulled his pantaloons over the tops of his 
boots, bit his hands, rolled his eyes in their sockets, sometimes smiling and talk-
ing, and then seeming to be in agony, until in not more than a minute said he, 
133,491,850,208,566,925,016,658,299,941,583,255! 

Truman Safford graduated from Harvard, became an astronomer, and soon 
lost the amazing computing powers he had in his youth. 

Another prodigy was Johann Dase (1824-1861), who had incredible cal-
culating skills but little mathematical training. He gave exhibitions of his calcu-
lating powers in Germany, Austria, and England. In 1849, while in Vienna, he 
was urged to use his powers for scientific purposes, and he discussed projects 
with mathematician Carl Gauss and others. In 1844, Dase used his calculating 
ability to calculate pi to 200 places. (This was published in Crelle's Journal for 
1844.) Dase also constructed 7-figure log tables and produced a table of factors 
of all numbers between 7,000,000 and 10,000,000. Gauss requested that the 
Hamburg Academy of Sciences allow Dase to devote himself full-time to his 
mathematical work but, although they agreed to this, Dase died before he was 
able to do much more. 

Legend has it that to compute pi Johann Dase used j t/4 = arctan(l/2) + arc-
tan(l/5) + arctan (1/8) . . . with a series expansion for each arctangent. He ran 
the arctangent job in his brain for almost 2 months. Here is Dase's pi calculation: 
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3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 
82148 08651 32832 06647 09384 46095 50582 23172 53594 08128 
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 

Dase had an incredible brain. He could give the number of sheep in a flock 
after a single glance. He could multiply two 8-digit numbers in his head in 54 
seconds, 2 40-digit numbers in 40 minutes, and two 100-digit numbers in 8 
hours! Dase is said to have performed such computations for weeks on end, run-
ning as an unattended supercomputer. He would break off his calculation at 
bedtime, store everything in memory, and resume calculation after breakfast. 
Occasionally, Dase had a system crash. 

# For Arthur C. Clarke's skeptical comment on Johann Dase, see "Further 
Exploring." 

Chapter 85 

The Aliens from independence Day 

Nobody has ever domesticated mankind. We are thus a wild species, 
as wild as the day we first went howling across the savanna. Perhaps 
the self-taming process of becoming a civilized species did not tame 

us to visitors, but only to ourselves. . . and then not very well, 
given our violent history. 

—Whitley Strieber, Communion 

Infinity is where things happen that don't. 
—S. Knight 

Dr. Googol was once daydreaming about walking through the Nevada desert 
with Captain Steven Hiller, the hero of the science-fiction movie Independence 
Day. Suddenly Dr. Googol heard a sound in the sky as a huge alien ship appeared 
above him veiled in fiery clouds. All over the Earth, alien crafts launched an 
incredible attack. The alien destroyers were 15 miles long, and the mother ship 
was 200 miles in length, both impossible for any Earthly weaponry to destroy. 
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An alien appeared before Dr. Googol. It must be a hoax. If the creature 
evolved on an alien world, why should it look so humanoid? The alien stood 
upright and was bilaterally symmetric; that is, its left and right sides looked the 
same. It had fingers, 2 jointed legs and arms, a head with 2 eyes, and a large cra-
nium. In fact, stripped of its biomechanical armor, the alien looked more like a 
human than does an Earthly lemur, with whom we share greater than 95 percent 
of our genetic material. 

Science-fiction writers have explored a far greater diversity of alien life forms in 
books than Hollywood can ever explore in movies, because the Hollywood alien 
must trigger instantaneous emotional impact; this requires a design based on rec-
ognizable human facial expressions of threat and menace. In fact, most of the 
"evil" Hollywood aliens since the 1953 War of the Worlds have had a tendency to 
look mean and cranky, or like skullfaced sex-fiends. In reality, if we ever meet real 
aliens we will have a hard time understanding their moods by looking at them. 

® ® ® 
Dr. Googol slowly came out of his dream and began to formulate a mathemati-
cal problem involving aliens abducting humans. In Dr. Googol's scenario, the 
scary alien 9 from Independence Day comes down to Earth, captures 1 male 
human f (in this case, the U.S. president), and takes him to a large spaceship 
hovering in the Earths upper atmosphere. The creature realizes that the male is 
unhappy without a companion, so the next year it abducts 1 female | . 

Each succeeding year the creature duplicates its removals of the preceding 2 
years, stealing the same number of humans, of the same sex, and in the same 
order. Thus, in the third year, the creature captures a male and then a female 

t t 
In the fourth year, it takes a female, a male, and then a female; and so on. The 

sequence goes as M, F, M F, F M F. . . . 

I t i i i i i 
Is it possible to determine the sex of the one-billionth human taken? Would 

the captured males be satisfied with the ratio of females to males ( f / f ) exist-
ing on the spaceship when the one-billionth human is taken? (Assume that the 
humans do not breed for the duration of this experiment.) 

It turns out that the sex of the «th human is not too difficult to compute. In 
fact, in 1957, an obscure little paper was written on this class of problem, and a 
generating formula was discovered by T. E Mulcrone of Loyola University. The 
Mulcrone formula can be adapted to Dr. Googol's questions as follows. Let's 
denote a male by the number 1 and a female by the number 2. The sequence of 
males and females then becomes M„ = 1, 2,1 2, 2 1 2,.... The rath term Mn can 
be quickly computed from Mulcrone's formula: Mn = [kn] - [kin - 1)], where 
k = (J5~+ 1 )/2, and the brackets indicate an integer truncation. In other words, 
[,x] is the greatest integer not exceeding x. 
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"We men 
are happy! 

t 

C and BASIC program listings are provided so that you can compute the rath 
term of the sequence. You can also use these programs to compute the ratio of 
males to females by maintaining a count of their numbers through time. Why 
not make a plot of the growth in the number of males and females through the 
years? You should find that by the time the 500th human is taken there will be 
191 males and 309 females: 

M t t t t H t H t t t t t H H t t t H t t f 
H t H t H t t t t t t t t t t t t t t t t t t t ! 
M t M t t t t t t t t H t M t t H t H t t t 
H t t t t t t t t H t H i t f t t H t H t t t 
H M t t t H H t t t t t t t t H t t t t t H 
t t t t t t t t t t t t t t t t H t H t t M t H 
H H t t t t t H H H t H t H t t M t t t 
t t t H t t t t t t t t M t H t t t t t H t t t 
H t H t t t t H H M t t t t t t t t t t t t t 
H t t t t H t t t t t t t t t t t t t t t t t t t t 
t t t t t t t t t t t t t t t t t t t t t t t t t t t t 

f t t t t t t t t t t t t t t t t t t t t t t t 
t M t M M M M M M M N M M 
H t H H H t H t H t H H H H 
M M M t M M M M M M M M f 
H t H H i H H t H H H H t H 
H H H H H H H H H H H t t 
t t t t t t t t t t t t t t t t t t t t l t t t 
I H H t H H t H H t H t H H t 
H t H t H t H t t t i t H t H t t i 
M t M M M M M I M M t M N f 
H t H H H H H H H t H H H i 
M M M M M M t M M M M I M 

t t t t t t t t t t t t t t t t t t t t t t t t 
t t t t t t f t t t l t t t t t t t l t t l t t 
t t t t t t « # # t t « t t t t t t t t t # t t 
H H H H H H H H H H H H 

H H H H f H H H H H H H t 
t M t M f t t f t t t t M I M M M 

"We women 
need more 
men." 
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After 1,000 years, there will be 382 males and 618 females. 
Armed with these simple yet powerful programs, we can now determine the 

sex of the one-billionth abductee. If the first abduction is considered to have 
taken place in year 0, then, using the Mulcrone formula, we can determine that 
it takes only 42 years for the alien to accumulate 1 billion humans. (This is 
about a sixth of the worlds population and roughly the number of Chinese.) 
The ratio of females to males is 1.618 to 1, which, as one computer programmer 
from Boca Raton said, "is better than the ratio in most bars." 

# For further alien explorations, see "Further Exploring." 
9 See [www.oup-usa.org/sc/0195133420] for program examples. 

Chapter 86 

One Decillion Cheerios 

One thing I know and that is that I know nothing. 
—Socrates 

O n Christmas Day 1999, Dr. Googol was eating a bowl of Cheerios® cereal, 
staring at all the doughnut-shaped morsels, daydreaming about endless streams 
of 0s. As he started to line up pieces of breakfast cereal in a row with his left 
hand, he used his right hand to list all the special qualities of the number 1 decil-
lion. First, he noted, a decillion is a very large number: 10 raised to the power of 
33, or 1 followed by 33 zeros. He formed the number with Cheerios: 

one decillion = 
1,000,000,000,000,000,000, 

000,000,000,000,000 

Aside from its obvious enormity, there is something unbelievably special 
about a decillion, which we can write more succinctly as 1033. Before revealing 
the strange answer, let's get an idea about how large 1 decillion is. It's greater 
than the number of atoms in a human breath (1021). However, it's smaller than 
the number of electrons, protons, and neutrons in the universe (1079). What Dr. 
Googol finds most interesting is that 10 33 is the largest power of 10 known to 



2 0 2 ® Wonders of Numbers 

humans that can be represented as the product of 2 numbers which themselves 
contain no zero digits: 

1033 = 233 x 53 3 = (8,589,934,592) x (116,415,321,826,934,814,453,125) 

For a variety of technical reasons, some mathematicians believe that no one 
will ever be able to find a larger power of 10 that can be represented as the prod-
uct of 2 numbers which themselves contain no zero digits. 

Oh my! Do you think humanity will ever find such a number? Dr. Googol's 
personal opinion is that the answer is "Never!" Could he be wrong? 

# See "Further Exploring" for additional analysis. 

Chapter 87 

Undulation in Monaco 

Such as say that things infinite are past God's knowledge may just as well 
leap headlong into this pit of impiety, and say that God knows not all 

numbers.. . . What madman would say so? What are we mean wretches 
that dare presume to limit His knowledge? 

—St. Augustine 

The number 69,696 is a remarkable number and certainly among Dr. Googol's 
top 10 favorite integers. For one thing, the number starts with 696, the very year 
that Dr. Googol's favorite Chinese poet, Chen Zi'ang, composed the following 
haunting poem: 

Balfad on Climbing Youzhou Timer 

(Witness not the sages of the past, 

Perceive not the oiise of the future, 

Reflecting on heaven and earth eternal, 

Tears flaming doan / lament in loneliness. 

—Chen Zi'ang, ft.O. 6 9 6 
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Moreover, 69,696 is almost exactly equal to the average velocity in miles per 
hour of the Earth in orbit, and it is also the surface temperature in degrees 
Fahrenheit of some of the hottest stars. More important are its fascinating math-
ematical properties. 

One day while in his Monaco villa, Dr. Googol presented this number to his 
friend Dorian and said: "What do you find significant about 69,696?" 

Dorian gazed into the Mediterranean Sea as it crashed into huge rocks. In the 
fractured sides and grottos of the massive cliffs were strange, rich blues and 
weathered aquamarines. After a few seconds, she replied, "That is too easy. It is 
the largest undulating square known to humanity." 

Dr. Googol pondered this answer, and he himself started to undulate in a 
mixture of excitement and perhaps even terror. The sounds of the sea became 
deafening as it surged into the cavernous bellies of worn boulders and exploded 
in steepled and gabled sprays of foam. 

To understand Dr. Googol's passionate response, we must digress to some 
simple mathematics. As discussed in Chapter 52, undulating numbers are of the 
form ababababab. . . . For example, 171,717 and 28,282 are undulating num-
bers. A square number is of the form y = x2. For example, 25 is a square number. 
So is 16. An undulating square is simply a square number that undulates. 

When Dr. Googol conceived the idea of undulating squares a few years ago, it 
was not known if any such numbers existed. It turns out that 69,696 = 2642 is 
indeed the largest undulating square known to humanity, and most mathemati-
cians believe we will never find a larger one. 

Dr. Noam D. Elkies from the Harvard Mathematics Department wrote to Dr. 
Googol about the probabilities of finding undulating squares. The chance that a 
"random" number around xis a perfect square is about 1 Ijx. More generally, the 
probability is x f o r a perfect dt\i power. Since there are (for any k) only 81 
&-digit undulants, one would expect to find very few undulants that are also per-
fect powers, and none that are very large. Dr. Elkies believes that listing all cases 
may be impossible using present-day methods for treating exponential Diophan-
tine (integer) equations. 

# See "Further Exploring" for more information on undulating squares as 
well as on other undulants such as undulating prime numbers. 



Chapter 72 

The Latest Gossip 
on Narcissistic Numbers 

The brain is a three-pound mass you can hold in your hand that can con-
ceive of a universe a hundred-billion light-years across. 

—Marian Diamond 

Number is the bond of the eternal continuance of things. 
—Plato 

Dr. Googol was watching the TV show Xena: Warrior Princess. In this particular 
episode, Xena was gazing at her beautiful physiognomy reflected in a pool of 
water. 

Monica turned to Dr. Googol. "She's such a narcissist!" 
"Narcissist?" 
"Yes, she can't take her eyes off herself." 
"Hold on. This reminds me of something infinitely more interesting than 

Xena." Dr. Googol paused to collect himself, then reached for a piece of chalk. 
"Narcissistic numbers are the sums of powers of their digits. In other words, they 
are «-digit numbers that are equal to the sum of the «th powers of their digits." 
Dr. Googol went over to the blackboard attached to the top of his TV. He wrote 
an example of a narcissistic number: 

153 = l 3 + 53 + 3 3 

"The numbers 370 and 371 are also narcissistic numbers. Variously called 
narcissistic numbers, numbers in love with themselves, Armstrong numbers, or 
perfect digital variants, this kind of number has fascinated number theorists for 
decades. For example, the English mathematician Godfrey Hardy (1877-1947) 
said, 'There are just four numbers, after unity, which are the sums of the cubes of 
their digits. . . . These are odd facts, very suitable for puzzle columns and likely 
to amuse amateurs, but there is nothing in them which appeals to the mathe-
matician.'" 

Xena began to slash at a bunch of thieves with her huge, glittering sword. 
Dr. Googol continued. "I gave 153 as an example of such a number. Can you 

find other narcissistic numbers? Can you find larger narcissistic numbers?" 
Monica took the chalk from Dr. Googol's hand. "There's time to think about 

that later. Let's just watch the show." 
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® ® ® 
The largest narcissistic number discovered to date is this incredible 39-digit 
number: 

115,132,219,018,763,992,565,095,597,973,971,522,401 

(Each digit is raised to the 39th power!) Can you beat the world record? What 
would Godfrey Hardy have thought of this multidigit monstrosity? What is the 
density of narcissistic numbers? In other words, are there 4-digit narcissistic 
numbers, 5-digit numbers, 6-digit numbers, etc., or do they get progressively 
rarer as one searches for ever-larger examples? 

# See "Further Exploring" for more on narcissistic numbers and for the lat-
est gossip on lonely numbers /> called factorions. 

B See [www.oup-usa.org/sc/0195133420] for help computing these kinds of 
numbers. 

Chapter 89 

The abcdefghij Problem 

I do not know what I may appear to the world, but to myself I seem to 
have been only a boy playing on the sea shore, and diverting myself now 
and then finding a smoother pebble or a prettier sea shell than ordinary 

whilst the great ocean of truth lay all undiscovered before me. 
—Isaac Newton 

Dr. Googol was visiting the IBM T. J. Watson Research Center in Yorktown 
Heights, New York, when he walked up to a blackboard and wrote down: 

(abf = def X ghij 
Several of the IBM researchers stared with amusement at the odd formula. 

Others pointed with hyperbolically increasing interest and gestured and took 
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notes. From the long hallway came several security guards, evidently curious as 
to how Dr. Googol had gotten into the building without a proper security pass. 

Dr. Googol bowed and then motioned to the wonderful-looking equation. 
"Each letter stands for a number from 0 to 9. Can you find values for a, b, c, d, 
e,f,g, h, i, and j that make this equation correct? Each digit must be unique. For 
example, the first expression could be 12 3 but not 122 because the 2 is repeated." 

The researchers jolted away to the nearest computers and began to furiously 
code the problem. 

Dr. Googol clapped his hands. "I'm sure your managers will realize that this is 
a wonderful programming exercise and justify the time you are spending on the 
problem. As a reward, I will give the first person who solves this autographed 
copies of Dr. Cliff Pickover's recent books The Science of Aliens and Strange 
Brains and Genius: The Secret Lives of Eccentric Scientists and Madmen." 

The scientists and programmers roared with delight as their nimble fingers 
raced across their keyboards like angelfish swimming through clear water. 

# See "Further Exploring" for a solution and for much tougher problems. 
H See [www.oup-usa.org/sc/0195133420] for computer code used to solve 

this problem. 

Chapter 90 

Grenade Stacking 

Students must learn that mathematics is the most human of endeavors. 
Flesh-and-blood representatives of their own species engaged in a 

centuries-long creative struggle to uncover and to erect this magnificent 
edifice. And the struggle goes on today. On the very campuses where 

mathematics is presented and received as an inhuman discipline, cold and 
dead, new mathematics is created. As sure as the tides. 

—J. D. Phillips, Humanistic Mathematics Network Journal, 
no. 12, Oct. 1995 

While on his tour of duty in Vietnam, Dr. Googol was stacking grenades in such a 
way that each layer formed a square array of grenades. For example, the top of the 
square pyramid contained 1 grenade, the next 4 grenades, the next 9, and so on. 
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r 
# 

The number of grenades in the entire pyramid was therefore a sum of consec-
utive squares, beginning with 1: 

l 8 + 22
 + 3 a + 4a + . . . . 

"I have an amazing problem!" he thought. 
He began to wonder if he could find a sum of consecutive squares, beginning 

with 1, that equaled a square number n; for example, l 2 + + 32 + 4a + . . . . 
= ril. It turns out that the only nontrivial solution known to humanity is 
l a + 23 + 3a + 4a + + 243 = 70a. 

Are there other solutions if we allow any set of k consecutive squares (not nec-
essarily beginning with 1) such that the sum is a square number? Are there solu-
tions for consecutive cubes such that the sum is a cubical number? Would you 
like to be the first person on Earth to find these? 

& See "Further Exploring" for more comments and challenges. 

Chapter 91 

The 450-Pound Problem 

Mathematicians study structure independent of context, and their science 
is a voyage of exploration through all the kinds of structure and order 

which the human mind is capable of discerning. 
—Charles Pinter, A Book of Abstract Algebra 

On New Year's Eve 1994, Dr. Googol was leafing through the Sunday Telegraph 
of London. The newspaper offered a cash prize (450 pounds sterling) to the first 
person who sent them a solution, in coprime positive integers greater than 100, 
for this equation: 

M 3 / 5 3 ; + f c 3 / D 3 ; = 6 
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Let's say that again in simple English. Two integers are said to be coprime if 
their greatest common divisor equals 1. For example, 5 and 9 are coprime, while 
6 and 9 are not coprime because their greatest common divisor is 3. 
Unfortunately, Dr. Googol had no time to solve this problem, and mathematician 
Kevin Brown beat him to the prize. Finding the solution was quite a challenge, 
and Kevin determined that the solutions involved incredibly large numbers: 

A = 79222057266254960819025292611212161768608793943824566 
580605160 8621113641830336450448115419524772568639 

C— 677959805103821424723263992665061838773573375138707379 
34706199386093375292356829747318557796585767361 

B= D = 43 6066841882 0711170950024593240851673665433429374 
77344818646196279385305441506861017701946929489111120 

Let's see you solve this with pencil and paper! The offer turned out to be legit-
imate, and the Telegraph actually did send Kevin Brown £450 ($706.50). (Kevin, 
a controls engineer at the Boeing Company in Seattle, Washington, graduated 
from the University of Minnesota with a bachelor's and master's degrees in 
engineering. See his fascinating math Web page at http://www.seanet.com/ 
"ksbrown/index.htm.) 

The famous mathematician Adrien Marie Legendre (1752-1833) once stated 
that this particular equation had no solutions, although it's not clear why he 
thought so. (Technically speaking, when B = D, B and D are usually not con-
sidered coprime; perhaps Legendre was right after all!) In any case, if we permit 
B = D, there is a smaller solution, namely (17/21)3 + (37/21)3 = 6. (But the 
Telegraph's stipulation that the integers be greater than 100 was clearly intended 
to exclude this easier solution.) 

Incidentally, mathematicians currently do not believe that there are any posi-
tive integer solutions such that x2 +_y3 =z6. (In other words, x, y, and z must be 
three positive integers.) 

Here are some other examples that appear to have no integer solutions. 
Except for « = 1, /» = 1; » = 2, m = and n = 3, m = 2, there appear to be no 
other solutions for this deceptively simple-looking formula: 

I 2" - 3 m I =1 

Even more interesting, the equation a" -bm = 1 has no positive integer solu-
tions with m,n > 1 other than a = 3, n = 2, b = 2, m = 3. Dr. Googol believes that 
mathematicians have proved that I 2" - 3m I > (2")e^" for n > 27, and also 
that there exists a number c > 1 such that I 2" - 3m I > (2")l(nc). 

Dr. Googol does not know if there are other solutions to the problems in this 
chapter. 

0 For more on coprime numbers, see "Further Exploring." 



Chapter 92 

The Hunt for Primes in Pi 

On the basis of my historical experience, I fully believe that mathematics 
of the twenty-fifth century will be as different from that of today as the 

latter is from that of the sixteenth century. 
—George Sarton, A History of Science, 1959 

Last summer, Dr. Googol jumped from a C-130's cargo ramp at 29,000 feet— 
the height he needed to carry him within striking distance of his target. From his 
pistol belt was suspended a Heckler & Koch USP 9mm semiautomatic pistol. 
His vest was equipped with class II body armor. He breathed oxygen through a 
small tank on his back. The jump—a HALO (high altitude, low opening) inser-
tion—would bring him right on target: Beijing, China. 

As he fell through the dark sky, he turned to Monica, his partner in the covert 
operation. 

"Monica, 3 is a prime number. So is 31. These numbers are also the first and 
first 2 digits in the decimal expansion of Jt = 3.14159. . . . I'm wondering if 
there are other integers k such that the first k decimal digits of n are prime? Can 
you find any? Do you think they are commonplace?" 

The rushing wind whipped through Monica's hair like a flock of seagulls. "Dr. 
Googol, it turns out that 314,159 (k = 6) is also a prime number." 

"Oh, Monica, you've made me so happy!" 
"Dr. Googol, can you tell me why we are going to infiltrate military installa-

tions around the world? Are we going to disable the small computers of rogue 
terrorists? Are we going to disable the atomic weapons of the less stable super-
powers?" 

"In a manner of speaking, yes. We are going to have their computers begin to 
hunt for pi-primes. This will render the military ineffective and bring world 
peace." 

Before Dr. Googol and Monica opened their chutes, Dr. Googol wondered if 
the next pi-prime would ever be found. Would it be so large that it is beyond the 
reach of modern supercomputers? Perhaps the next pi-prime (symbolized by 
Jt^) will be relegated to the realm of myth, like the superhuman Olympian gods 
of yore. 

0t See "Further Exploring" for more comments on pi-primes. 



Chapter 72 

Schizophrenic Numbers 

The pursuit of mathematics is a divine madness of the human spirit. 
—Alfred North Whitehead, Science and the Modern World 

Brilliant mathematician Kevin Brown seems to have discovered a wonderfully 
weird set of numbers called schizophrenic numbers, £}. For any positive integer 
n, let f(n) denote the integer given by the recurrence 

/(«) = 10 x / ( « - l ) + n 

with the initial value /(0) = 0. Think of this as a mathematical feedback loop. 
You plug in a number, and out comes a solution. You plug the solution back into 
the formula, and out comes a new solution, and so on. For example: 

/ ( l ) = 10 x 0 + 1 = 1 
/ ( 2 ) = 10 x 1 + 2 = 12 
/ (3 ) = 10 x 12 + 3 = 123 
/ (4 ) = 10 x 123 + 4 = 1234 

"This sequence looks boring," you say to Dr. Googol? Ah, but here's where 
the schizophrenia begins. The square roots of these numbers f(n) for odd inte-
gers n give a bizarre, persistent pattern. The square roots appear to be "rational" 
for periods—that is, a number that can be expressed as a ratio of 2 integers—and 
then disintegrate into irrationality. (Recall that rational numbers sometimes have 
infinitely repeating strings of a digit; for example, 1/3 = 0.33333333. . . .) This 
mathematical schizophrenia is exemplified below by the first 500 digits of = 
-J/(49) (typeset to show the interesting patterns): 

ijm = 
l i m i i i i i i i i i i i i i i i i i i i i . i i i i i i i i i i i i i i i i i i i i i i 

0860 
555555555555555555555555555555555555555555555 

2730541 
66666666666666666666666666666666666666666 

0296260347 
2222222222222222222222222222222222222 
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0426563940928819 
4444444444444444444444444444444 

38775551250401171874 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

808249687711486305338541 
66666666666666666666666 

5987185738621440638655598958 
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

0843460407627608206940277099609374 
9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0642227587555983066639430321587456597 
222222222 

1863492016791180833081844 . . . 

Isn't this a splendid arrangement of digits? If you look closely at $5 (49), you'll 
see that the digit sequence consists of repeated digits alternating with "random-
looking" strings. The repeating strings become progressively smaller, and the 
irregular strings become larger, until eventually the repeating strings disappear— 
as if a numerical God has turned off water from a mathematical fire hose. 
However, by increasing n we can slow down the eventual demise of repeating 
digits. Oddly enough, the repeating digits are always 1, 5, 6, 2, 4, 9, 6, 3, 9, 2, 
. . . . Why is this so? We may call this sequence (1, 5, 6, 2, . . . ) the schizophrenic 
sequence—the key to calmness in an otherwise chaotic world. 

The construction and discovery of schizophrenic numbers was prompted by a 
claim (posted in the Usenet newsgroup sci.math) that the digits of an irrational 
number chosen at random would not be expected to display obvious patterns in 
the first 100 digits. It was said that if such a pattern were found, it would be 
irrefutable proof of the existence of either God or extraterrestrial intelligence. 
(An irrational number is any number that cannot be expressed as a ratio of 2 
integers. Transcendental numbers like e and pi, and noninteger surds such as 
J27are irrational.) 

It's obvious from (49) that certain easy-to-construct irrational numbers are 
filled with wonderful patterns that are ripe for future exploration. Dr. Googol 
looks forward to hearing from anyone who makes other wonderful discoveries in 
the little-researched area of large schizophrenic numbers. 



Chapter 72 

Perfect, Amicable, and 
Sublime Numbers 

Just as the beautiful and the excellent are rare and easily counted, 
but the ugly and the bad are prolific, so also abundant and deficient 
numbers are found to be very many and in disorder, their discovery 

being unsystematic. But the perfect are both easily counted and drawn 
up in a fitting order. 

—Nichomachus, A.D. 100 

Man ever seeks perfection but inevitably it eludes him. He has sought 
"perfect numbers" through the ages and has found only a very few— 

twenty-three up to 1964. 
—Albert H. Beiler, Recreations in the Theory of Numbers 

Dr. Googol raises his hand. "Monica, I want to tell you about perfection." His 
voice is a whisper, as if he is afraid he is being watched. 

"Perfection, sir?" 
Dr. Googol nods. "Perfect numbers are the sum of their proper divisors. 

For example, the first perfect number is 6 because 6 = 1 + 2 + 3. (A proper 
divisor is simply a divisor of a number N excluding N itself.) The next perfect 
number is 28 because its divisors are 1, 2, 4, 7, and 14—and 28 also equals 
1 + 2 + 4 + 7+ 14." 

Monica's eyes seem to be locked onto Dr. Googol's hairy mustache and gold-
en birthmark. "Dr. Googol, there must be other perfect numbers." 

"Yes, but these numbers are so rare that they have a special significance in my 
heart." Dr. Googol pauses. "I think perfection is rare in numbers just as good-
ness and beauty are rare in humans. On the other hand, imperfect numbers are 
common, and so is ugliness and evil." 

"Imperfect numbers?" 
"Those where the sum of the factors is greater or less than the number itself." 
Monica nods. "My friend Bill mentioned abundant numbers to me. Can you 

explain what these numbers are?" 
Dr. Googol pinches his lower lip with his teeth. "How dare he reveal that 

secret!" Dr. Googol then takes a deep breath. "If the original number is less than 
the sum of its factors, I call it abundant. As an example, the factors of 12 are 1, 
2, 3, 4, and 6. And these factors add up to 16. If greater, the number is deficient. 
For example, the factors of 8—1, 2, and 4—add up only to 7." 
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"Most numbers are either abundant or deficient? Perfection is rare." 
Dr. Googol nods. "You've got it!" Then he leans toward Monica as if observ-

ing a painting in a museum. "Monica, two numbers are amicable, or friendly, if 
the sum of the divisors of the first number is equal to the second number, and 
vice versa. The ancient philosophers considered them to have the same parent-
age, and in their divine world these numbers are more congenial than numbers 
that are unfriendly." 

"I don't get it." 
"Here's an example. 220 and 284 are amicable. Let's list all the numbers by 

which 220 is evenly divisible." 
Monica leans forward and clasps her hands together like an eager child. "Uh, 

let's see—1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, all go into 220." 
"Excellent. Now add up all those divisors. What do you get?" 
"1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 = 284." 
"Very good, Monica. The answer is 284. Now let's try the same trick with 

284. Its perfect divisors are 1, 2, 4, 71, and 142. Now, add them up." 
"You get 220, Dr. Googol." 
"Yes! Therefore 220 and 284 are amicable numbers. The sums of their divisors 

are equal to each other." 
Monica nods. "Interesting. Amicable numbers, like perfect ones, are quite rare." 
"War is always easier than peace." 
"220 and 284 would be perfect marriage partners in the eyes of a numerical 

God." 
Dr. Googol nods. "A perfect marriage." 
Dr. Googol walks over to a wall of the White House and scrawls on it with a 

piece of charcoal. He lowers his voice an octave, and he thinks he sees awe in 
Monica's eyes. "The first 4 perfect numbers—6, 28, 496, and 8,128—were 
known to the late Greeks. Nicomachus and Iamblichus knew about these." 

Monica raises her hand. "Do all perfect numbers end in an 8 or 6?" 
"I'm not sure. But I do know that every even perfect number is also a triangu-

lar number." He pauses. "Perfect numbers are very rare. The fifth perfect num-
ber, 33,550,336, was found recorded in a medieval manuscript. To date, 
mathematicians know only about 30 perfect numbers. No one knows if the 
number of perfect numbers is infinite." 

A chill goes down Dr. Googol's spine when he says the word infinite. 
He begins to pace. "Perfect numbers thin out very quickly as you search larg-

er and larger numbers. They might disappear completely—or they might con-
tinue to hide among the multidigit monstrosities that even our computers can't 
find." 

Monica raises her hand. "What about amicable numbers?" 
Dr. Googol nods. "Over a thousand amicable numbers have been found. 

Another pair includes 17,296 and 18,416." 
On her notebook computer, Monica begins to furiously type a program to 

search for and print amicable numbers. The computer soon prints several num-
bers on a slip of paper: 
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Amicable Numbers 
220 and 284 5,020 and 5,564 
1,184 and 1,210 6,232 and 6,368 
2,620 and 2,924 10,744 and 10,856 

"Good work, Monica." 
Monica takes the slip of paper and studies it. 
Dr. Googol continues his discussion. "Mathematicians have also studied 

sociable numbers. In these sets of numbers, the sum of the divisors of each num-
ber is the next number of a chain. For example, in 1918 a man named Poulet 
found the following sociable number chain: 

12,496 14,288 15,472 14,536 -» 14,264 12,496 

Sociable chains always return to the starting number. Poulet's chain and a 28-
link chain starting with 14,316 were the only sociable chains known until 1969, 
when suddenly Henri Cohen discovered seven new chains, each with 4 links." 
(See Figure 94.1) 

94.1 A wonderful 28-link amicable number chain. 
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Dr. Googol's voice grows in intensity and speed. "A pair of amicable numbers, 
such as 220 and 284, is simply a chain with only 2 links. A perfect number is a 
chain with only 1 link." He takes a deep breath. "No chains with just 3 links 
have been found, despite massive searches. There are certainly none with a 
smallest member less than 50 million! These hypothetical 3-link chains are called 
crowds. Mathematically speaking, a crowd is a very elusive thing and may not 
exist at all." 

"Dr. Googol, you talk about discovering numbers as if we're searching for 
stars in the heavens." 

"It's a little like that. There's a lot of unexplored territory." 
Just then the floor begins to shake. Dr. Googol and Monica look warily from 

one to the other like condemned criminals. 
"Dr. Googol, we never should've stayed here so long. What if the White 

House staff found one of our computers? We could be in deep trouble." 
"It's okay. I'm friends with the president. He lets me use this office. In return, 

I advise his staff on economic issues." 
"Okay." 
"Before we leave, I want to tell you about some numerical beasts even rarer 

than the perfect numbers." Dr. Gogool walks over to a wall and begins to sketch. 
"For any positive integer n let "E, («) and W(«) denote the number of divisors of n 
and sum of the divisors of n, respectively. A number Nis called sublime if | (A0 
and 1f(AO are both perfect numbers. The only 2 known sublime numbers are 12 
and this one:" 

60865556702383789896703717342431696226578307733518859705 
28324860512791691264 

The latter number was discovered by Kevin Brown. (12 is sublime because its 
divisors are 12, 6, 4, 3, 2, and 1. The number of divisors is therefore perfect, as 
is the sum of its divisors.)" 

"Amazing." 
"Monica, here are my final questions for you. Will humanity ever be able to 

find another sublime number, or prove that no others exist? Can there exist an 
odd sublime number?" 

& See "Further Exploring" for more on abundant, amicable, and perfect 
numbers. 

9 See [www.oup-usa.org/sc/0195133420] for computer code used to find 
perfect and amicable numbers. 
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Prime Cycles and d 

The real voyage of discovery consists not in seeking new landscapes 
but in having new eyes. 

—Marcel Proust 

Any positive integer can be expressed as the product of primes in just one way. For 
example, 10 = 5 x 2 and 24 = 2 x 2 x 2 x 3 . Let's define a new function d («) 
which is the sum of the prime factors of n. For example d (24) = 2 + 2 + 2 + 3 = 
9. As far as Dr. Googol can tell, iterations of the form x d (ax + b) invariably 
lead to closed loops for any integers a and b. By closed loops, Dr. Googol means a 
repeating sequence of integers. For example, mathematician Kevin Brown has dis-
covered that if you use any initial value of x less than 100,000, iteration of 
d (8x + 1) always leads to the 23-step cycle 

66 46 47 42 337 63 106 286 119 953 
76 -> 39 313 175 470 - » 3761 30089 367 103 24 
193 111 -> 134 - » 66 . . . 

On the other hand, iteration of d (7x + 3) always leads to 1 of the following 
2 cycles for any initial value of x. 

cycle #1: 30 74 521 85 38 269 66 39 30 . . . 
cycle #2: 92 647 118 -> 829 2905 10171 -> 109 -> 385 92 . . . 

One particularly long loop occurs for d (13* + 12), which has a period of 59 
and appears to be the only possible limit loop for this function. Dr. Googol 
wonders if every iteration is eventually periodic, and if there is a finite number of 
limit cycles for any given function. 

Can you shed further light on these strange prime cycles? The first person to 
make a new discovery and mail it to Dr. Googol receives a beautiful fractal print. 
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Cards, Frogs, and 
Fractal Sequences 

A mathematician who is not also something of a poet will never be a 
complete mathematician. 

—Karl Weierstrass 

Make a set of cards numbered 1, 2, 3 , . . . n and hold them face up in your hand. 
Take the top card and place it face up on the bottom of the deck. Place the next 
card face up on a table. Continue this process until all n cards are face up on the 
table. How far down in the pile on the table do you have to look to find the orig-
inal top card? 

The answer relates to a sequence that begins with 

1,1, 2,1, 3, 2, 4 ,1 , 5, 3, 6, 2, 7, 4, 8,1, 9, 5 ,10, 3,11, 6, 12, 2, 13, 7,14, 
4, 15, 8, . . . 

For example, if you use 5 cards numbered, in order, 1, 2, 3, 4, and 5, the ini-
tial 1 will be the third card in the deck on the table. Interestingly, this sequence 
is fractal, containing infinite "copies" of itself. You can test this for yourself. If 
you delete the first occurrence of each integer, you'll see that the remaining 
sequence is the same as the original: 

1,1, a, 1,3,2,4,1, 5, 3,6, 2, t, 4, 8,1,9, 5,10, 3,44, 6, 2,13, 7,14, 4,15, 8 , . . . 

Do it again and again, and you get the same sequence! Can you create a for-
mula to generate the £th member of this sequence? What will the top card be for 
a deck of 100 cards? (See "Further Reading" for Clark Kimberling references on 
this interesting sequence.) 

® ® ® 
Another example of a fractal sequence is the "signature sequence" of a positive 
irrational number R, such as 42. To create this amazing sequence, arrange the set 
of all numbers i +jR, where i and j are nonnegative integers, in ascending order: 

*(1) +j{l)R< i(2) + j(2)R< i(3) + j(S)R< .. . 

Then z'(l), /(2), /(3), . . . defines the signature of R. For example, the signa-
ture of the square root of 2 starts with 
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1, 2, 1, 3, 2,1, 4, 3, 2, 5,1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8 ,1 , 4, 7, 3, 6, 
9, 2, 5, 8, . . . 

If you delete the first occurrence of each integer, you'll see that the remaining 
sequence is the same as the original. To compute this sequence, all Dr. Googol 
did was to write down the first few possibilities for i + jx -[2 and arrange them 
in order from least to greatest: 

1. 1 + 1 x i l = 2.414 6. 1 + 3 x J~2 = 5.243 
2. 2 + 1 x J~2 = 3.414 7 . 1 + 1 x ^ 2 = 5.414 
3. 1 + 2 x { 2 = 3.828 8. 3 + 2 x -J~2 = 5.828 
4 . 3 + 1 x ^ 2 = 4.414 9. 2 + 3 x = 6.243 
5. 2 + 2 x J 2 = 4.828 10. 5 + 1 x ^ 2 = 6.414 

In this example, i values form the fractal sequence. 
Does this work for other irrational numbers, or is there something special 

about J2? Why does the sequence exhibit such wonderful fractal properties? 
Does the initial number have to be irrational? Could it be any random number? 
Would you generate a fractal sequence for the schizophrenic irrational number 
discussed in Chapter 93? 

# For more information on fractal signature sequences, see "Further 
Exploring." 

H See [www.oup-usa.org/sc/0195133420] for computer code used to create 
these sequences. 

® ® ® 
Want another example of a fractal sequence? The following one is called the 
golden sequence: 

1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 . . . 

It can be created using the following algorithm. Start with 1, then replace 
1 by 10. From then on, we repeatedly replace 1 by 10 and each 0 by 1. 
This sequence has many remarkable properties that involve the golden ratio 
<j> = 1.6180339.. . = ( l + j 5 ) / 2 . If we draw the line y - <j>x on a graph, (that is, 
a line whose slope is <j>) then we can see the sequence directly (Figure 96.1). 

Whenever the 0 line crosses a horizontal grid line we write 1 by it on the line, 
and whenever the <p line crosses a vertical grid line we write a 0. (The line can 
never cross exactly at an intersection of the vertical and horizontal grid lines.) 
Now, run your finger along the 0 line starting at (0,0), and you will generate a 
sequence of Is and 0s—the golden sequence. Ron D. Knott of the University of 
Surrey in the United Kingdom has translated the sequence into an audio file by 
mapping Is to A notes (220Hz) and 0s into the A an octave higher (440Hz), 
played at about 5 notes per second. He notes that the rhythm is hypnotic, hav-
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96.1 One way to generate the 
golden sequence. The diagonal 
line is y = (|>x. 

ing a definite beat that keeps changing but holds one's attention. One wonders if 
the golden string ever repeats. 

The sequence can also be generated by beginning with 1 and 10, then adjoin-
ing successive numbers as follows: 

1 
10 
101 
10110 
10110101 
1011010110110 
etc. . . . 

Here are some other observations about this unusual sequence: 

© The number of Is and Os in this sequence form a Fibonacci sequence, and 
the ratio of Is to 0s approaches (j) as more terms are added. 

© Underline any subsequence of the golden sequence—for example, the subse-
quence 10:10 11010 110 1 1 0 . . . . You'll find that 10 follows the preced-
ing 10 by the following number of places: 2122121 If 2 is replaced by 1 
and 1 by 0, the golden sequence is replicated which shows that it is "self-
similar" at different scales—that is, it is a fractal sequence. 
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® ® ® 
Dr. Googol's favorite fractal sequences are the batrachions. Batrachions form a 
class of bizarre and infinite mathematical curves that hop like frogs from one 
"lilypad" to the next as they parade along the number system. These little-known 
curves derive their name from batrachian, which means frog-like. (To pronounce 
the word, note that the ch has a k sound.) 

In addition to hopping in a strange manner from integer to integer, they also 
have other interesting properties. For example, they are often fractal, exhibiting 
an intricate self-similar structure when examined at different size scales. Also, 
they evolve from very simple-looking recursive formulas involving integers. 

As background, perhaps the most common example of recursion in program-
ming and in mathematics is one that defines the Fibonacci numbers. As men-
tioned several times in this book, after the first 2, every number in this sequence 
equals the sum of the two previous numbers: FN = FN_, + FN_2 for N> 2 and 
F 0 = F1 = 1. This defines the sequence: 1, 1, 2, 3, 5, 8, 13, 21,. . . . 

With this brief background to recursion, consider Dr. Googol's favorite batra-
chion, produced by this simple, yet weird recursive formula: 

a(n) = a(a(n -1)) + a(n - a(n -1)) 

The formula for the batrachion is reminiscent of the Fibonacci formula in 
that each new value is a sum of 2 previous values—but not of the immediately 
previous 2 values. The sequence starts with a{l) = 1 and a(2) = 1. The "future" 
values at higher values of n depend on past values in intricate recursive ways. 
Can you determine the third member of the sequence? At first, this may seem a 
little complicated to evaluate by hand, but you can begin slowly by inserting val-
ues for n, as in the following: 

a(3) = a (a (2)) + a(3 — a(2)) 
a (3) = a(l) + a(3-1) 
a(3) = 1 + 1 = 2 

Therefore, the third value of the sequence, a{3), is 2. The sequence a(n) seems 
simple enough: 1, 1, 2, 2, 3, 4, 4, 4, 5 , . . . . Try computing a few additional num-
bers. Can you find any interesting patterns? The prolific mathematician John H. 
Conway presented this recursive sequence at a talk he gave at AT&T Bell Labs 
entitled "Some Crazy Sequences" (see "Further Reading"). He noticed that the 
value a(n)/n approaches Vi as the sequence grows, and n becomes larger. Table 
96.1 lists the first 32 terms of the batrachion and the ratio a{n)/n. 

Dr. Googol first became interested in this sequence after reading Manfred 
Schroeder's delightful book Fractals, Chaos, Power Laws, but, alas, there were no 
graphics included to help readers gain insight into the behavior of the batra-
chion. It turns out that this sequence has an incredible amount of hidden struc-
ture. Figure 96.2 is a plot of a{n)/n for values of n between 0 and 1000. Notice 
how the curve hops from one value of 0.5 to the next along very intricate paths. 
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n a(n) a(n)/n n a(n) a(n)/n n a(n) a(n)/n 
1 1 1.0 15 8 .5333 29 16 .5517 
2 1 1.0 16 8 .5 30 16 .5333 
3 2 .666 17 9 .5294 31 16 .5161 
4 2 .5 18 10 .5555 32 16 .5 
5 3 .6 19 11 .5789 
6 4 .666 20 12 .6 
7 4 .5714 21 12 .5714 
8 4 .5 22 13 .5909 
9 5 .5555 23 14 .6086 

10 6 .6 24 14 .5833 
11 7 .6363 25 15 .6 
12 7 .5833 26 15 .5769 
13 8 .6153 27 15 .5555 
14 8 .5714 28 16 .5714 

Table 96.1 First 32 Terms of the Batrachion 

Each hump of the curve 
appears to be slightly lower 
than the previous, as if a 
virtual frog were tiring as it 
explored higher and higher 
numbers. As the frog nears 
infinity, will it stop its 
hopping and lie dormant 
at a{n)/n = 0.5? Magnifi-
cation of the figure reveals 
more and more humps 
with an intricate self-simi-
lar arrangement of tiny jig-
gles along the path. 

96.2 B a t r a c h i o n a ( n ) / n f o r 0 < n < 1 , 0 0 0 . 

# Want to know a lot more about batrachions and read about the $10,000 
cash award? See "Further Exploring." 

S See [www.oup-usa.org/sc/0195133420] for computer code. 



Chapter 97 

Fractal Checkers 

Eternity is a child playing checkers. 
—Heraclitus, 6th-5th century B.C. 

Dr. Googol loves a particular class of self-similar objects called fractal checkers, 
which can easily be constructed using checkerboards of different sizes. The idea 
of producing interesting patterns by repeatedly replacing copies of a pattern at 
different size scales dates back many decades and includes the work of mathe-
maticians Helge von Koch, David Hilbert, and Giuseppe Peano. More recently 
work has been done by Benoit Mandelbrot and A. Lindenmeyer. Artists such as 
M.C. Escher, Victor Vasarely, Roger Shepard, and Scott Kim have also experi-
mented with recursive patterns that delight both the mind and eye. The designs 
in this chapter are so intriguing and simple to compute using a personal com-
puter that Dr. Googol will give some computational recipes for those of you who 
are computer programmers. 

To create the intricate forms, start with a collection of squares called the ini-
tiator lattice. The initial collection of squares represents one size scale. At each 
filled (black) location in the initial array Dr. Googol places a small copy of the 
filled array. This is the second size scale. At each point in this new array, Dr. 
Googol places another copy of the initial pattern. This is the third size scale. He 
only uses 3 size scales for computational speed and because an additional size 
scale does not add much to the beauty of the final pattern. 

In mathematical terms, begin with an S-by-S square array (A) containing all 
Os to which Is, representing filled squares or sites, are added at random loca-
tions. Here's an example: 
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0 0 0 0 0 0 0 
0 0 0 1 1 1 0 
0 0 0 1 0 0 0 
0 0 0 1 0 0 0 
0 1 1 1 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

Just how many patterns can you create by randomly selecting array locations 
and filling them with Is? To answer this question, Dr. Googol likes to think of 
the process of filling array locations in terms of cherries and wineglasses. 
Consider an 5-by-5 grid of beautiful crystal wineglasses. Throw M cherries at the 
grid. A glass is considered occupied if it contains at least 1 cherry. With each 
throw, a cherry goes into one of the glasses. How many different patterns of 
occupied glasses can you make? (A glass with more than 1 cherry is considered 
the same as a glass with 1 cherry.) 

It turns out that for an S-by-S array and M cherries, the number of different 
patterns is S2\I[(S2 - »)!«!]. As an example of how large the number of 
potential patterns is, consider that 32 cherries thrown at a 9-by-9 grid creates 
more than 10 22 different patterns. This is far greater than the number of stars in 
the Milky Way galaxy (1012) and greater than the number of atoms in a person's 
breath (1021). In fact, it is about equal to the estimated number of stars in the 
universe (1022). 

For Figures 97.1 and 97.2, Dr. Googol used 5 = 7 . Here are the initiator lat-
tices for these figures, respectively from left to right: 

• • • • • • • 

Smaller arrays would lead to fewer potential patterns, and greater values of 
S sometimes lead to diffuse patterns with the scaling used. Are patterns with 
larger starting arrays and greater size scales more aesthetically pleasing to you 
than those produced with the 7-by-7 arrays here? Extrapolate the algorithm here 
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97.1 Fractal checkers: dual wine glass. 97.2 Fractal checkers: Martian with 2 feet. 

to 3-D structures and higher dimensional structures. How many different pat-
terns can you produce in a 9-by-9-by-9 3-D initial array? Generalize the recur-
sive lattice program to nonsquare grids—for example, triangular grids. 

Chapter 98 

Doughnut Loops 

Mathematics is not a science—it is not capable of proving or disproving 
the existence of things. A mathematician's ultimate concern is that his or 

her inventions be logical, not realistic. 
—Michael Guillen, Bridges to Infinity 
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Doughnut puzzles are fiendishly difficult, but, as with many problems in math-
ematics and science, the rules of the game are really quite simple. In fact, you can 
study them using just a pencil and paper. Dr. Googol enjoys working on them 
while actually eating a chocolate doughnut. 

Doughnut puzzles are played on an annular (ringlike) board filled with ran-
dom numbers from 0 to 100. Table 98.1 is a typical example, rendered as a rec-
tangular region with a hole in the middle to make the playing board easier to 
typeset. Each "site" on the board contains a single-digit number or a 2-digit 
number. If you like, create your own puzzle using a graph paper and pencil. 

Imagine an ant that starts on any number on the board. The ant's job is to 
find the longest possible path through the board by moving horizontally or 
vertically (not diagonally) through adjacent squares. This means the ant takes a 
single step (up, down, right, or left) during each movement. There are two addi-
tional constraints: (1) Each number along the ant's path must be different; that 
is, the ant can use each number only once along its path. (2) The ant may only 
travel in an all-clockwise or ail-counterclockwise direction. In other words, the 
ant must go round and round in one direction, bur it can orthogonally switch 
among the 3 "tracks" as useful. 

What is the longest path you can find? How many different unique ant paths 
would you expect to find in doughnut puzzles of this size? The puzzle here is more 
like a disc, but you could extend the puzzle so that ants tunnel through the inte-
rior of 3-D doughnuts. Use computer graphics to display the longest paths as the 
computer finds them. Explore huge doughnut worlds containing thousands of 
locations. How would the kinds of solutions (and difficulty of finding solutions) 
change as the board size approaches infinity? Given a set of doughnut worlds con-
structed randomly as in this chapter, what is the average "largest path" you would 

2 3 11 84 10 92 63 72 19 91 98 68 51 16 46 77 14 12 46 63 
23 51 26 34 73 94 27 49 73 98 60 44 36 31 79 73 67 72 56 74 
11 71 40 25 22 31 83 31 20 96 23 96 74 3 6 13 97 87 25 33 
87 92 73 79 50 3 
45 57 61 33 55 81 
23 48 43 85 50 28 
73 42 29 39 97 92 
56 31 61 "Doughnut Puzzle" 17 23 19 
88 40 52 13 32 71 
54 79 11 51 56 49 
9 60 43 11 99 47 

99 13 20 34 12 32 
12 48 26 67 37 34 49 56 99 32 39 94 11 23 9 29 45 56 62 65 
90 70 70 15 25 6 44 77 8 66 14 54 93 3 78 95 99 99 18 69 
13 20 62 53 61 6 82 55 43 79 98 37 46 26 97 66 43 49 25 64 

Table 98.1 A Typical Doughnut Puzzle. 
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expect to find? Is it better to start your path at a particular place in the board? In 
other words, do certain regions give rise to longer paths than others? 

# See "Further Exploring" for a solution. 

Chapter 99 

Everything You Wanted 
to Know about Triangles 
but Were Afraid to Ask 

You teach best what you most need to learn. 
—Richard Bach, Illusions 

"Dr. Googol, thank you for coming to visit me." 
There is a sudden crackling sound as William Jefferson Clinton walks to Dr. 

Googol and, with his right foot, crushes a half-eaten bag of potato chips that Dr. 
Googol had brought in. 

"Excellent." Dr. Googol pauses. "Let's have a little fun." 
"More Pythagorean mysticism?" Clinton says eagerly. 
Dr. Googol nods. He draws this diagram on the wall: "As you know, 

Pythagoras's famous theorem is that in a right-angled triangle the sum of the 
squares of the shorter sides, a and h, is equal to the square of the hypotenuse c, 
that is, (c2 = a2 + b2)." 

b 

Bill Clinton nods. 
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"Bill, more proofs have been published of Pythagoras's theorem than of any 
other proposition in mathematics! There've been several hundred proofs." 

"Dr. Googol, are Pythagorean triangles ones where a, b, and c are integers, 
like 3-4-5 and 5-12-13?" 

"Correct, but Pythagoras's favorite, 3-4-5, has a number of properties not 
shared by other Pythagorean triangles, apart from its multiples such as 6-8-10." 

"I know. It's the only Pythagorean triangle whose 3 sides are consecutive num-
bers." 

"Very astute, Mr. President. It's also—" 
Bill Clinton, beaming at the compliment, lifts his hand to silence Dr. Googol. 

"Dr. Googol, it's the only triangle of any shape with integer sides, the sum of 
whose sides (12) is equal to double its area (6)." 

Dr. Googol continues, slightly annoyed by President Clinton's interruption 
and intellectual prowess. "It's truly an amazing triangle. But here's something 
that may make you think twice about 666, the Number of the Beast in the Book 
of Revelation." 

"Go on, Googol." 
"There exists only one Pythagorean triangle except for the 3-4-5 triangle 

whose area is expressed by a single digit. It's the triangle 693-1924-2045- Its area 
is—" He pauses to heighten the suspense. "666,666." 

"Wow!" Bill Clinton says. "Let's tell Hillary and Chelsea." His eyes quiver. 
For a moment, Dr Googol thinks he hears the whispers of Secret Service 

agents. Then he decides it must be the wind. 
Dr. Googol calmly reaches for a notebook computer hidden beneath the pres-

ident's desk. "Let me show you a magic set of formulas that will allow you to 
search for Pythagorean triangles. They've been known since the time of 
Diophantus and the early Greeks:" 

One Leg of Triangle: X=m2 -n2 

Second Leg of Triangle: F= 2mn 
Hypotenuse of Triangle: Z= m1 + n2 

"Dr. Googol, how do you use the formulas?" 
"Just select any integers m and n, and you should get a useful result. For 

example, if m = 2 and n = 1, we get x = 3, y = 4, z = 5." 
"Fascinating, Dr. Googol. Let me write a program to search for Pythagorean 

triplets. I learned all about computers from A1 Gore." 
Bill Clinton furiously types on the notebook computer, then hands Dr. 

Googol a printout: 

X Y Z 
3 4 5 
8 6 10 
15 8 17 
10 24 26, e tc . 
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"Mr. President, here are some mind-boggling facts about Pythagorean trian-
gles. In every triplet of integers for the sides of the triangles, 1 integer is always 
divisible by 3 and 1 by 5. The product of the 2 legs is always divisible by 12, and 
the product of all 3 sides is always divisible by 60." Dr. Googol pauses. "Here's a 
star showing Pythagorean triangles each having 1 side equal to 120." 

X\"K> °>5 II m m \ \ / / 

— -

Bill Clinton seems breathless from Dr. Googol's endless barrage of facts. 
Dr. Googol looks into Bill Clinton's handsome eyes. "Bill, can you find any 

triangles, like 3-4-5, that have consecutive leg lengths?" 

$ For an answer, and more mind-boggling information on triangles, see 
"Further Exploring." 

S See [www.oup-usa.org/sc/0195133420] for program code. 



Chapter 100 

Cavern Genesis as a 
Self-Organizing 
System 

His cave, it seemed, had no right even to be there. It went on and on, 
winding and scraping till it came out on the other end at a great domed 
railway terminal of a room, hung with dripping stalactites, and with wet 
stalagmites like whale penises thrusting up from the floor to meet them." 

—J. P. Miller, The Skook 

Although Dr. Googol is in his office listening to Andreas Vollenweider's Caverna 
Magica on his headphones, 30 miles of caverns plunge and twist away from him 
in every direction. There are passages of impenetrable stalagmites (Figure 100.1). 

He shines a light into a crevice. The surface of the cave walls is aquamarine. 
Above are glittering stalactite chandeliers. He imagines the air smells clean and 
wet, like hair after it is freshly shampooed. 

He walks a little further. Huddled together like little hobbits, the smaller sta-
lagmites of calcite cluster near a clear pool. The larger ones look like rib bones of 
some giant prehistoric creature. 

With just a few clicks of the mouse, he's entered another world, a virtual 
world created with mathematical simulations and computer graphics. 

Ever since he read about the Lechuguilla Cave deep beneath a southern New 
Mexico desert and about various European caves, he's been fixated on cavern 
synthesis—getting his computer to create a lifelike giant maze whose furthest 
chambers are as yet unfathomed. The Lechugilla Cave is one of the newest won-
ders of the subterranean world. Discovered in 1986 and described in the March 
1991 National Geographic, the cave includes glittering white gypsum chandeliers 
2 feet long, walls encrusted with aragonite bushes, and weird balloons of hydro-
magnesite once inflated by carbon dioxide. Danger is everywhere—funnel-like 
pits, 65-mile-an-hour winds, darkness . . . 

Naturally, Dr. Googol couldn't resist the lure of creating a virtual cavern in 
the safety of his cybernetic surroundings. Little did he know when he began his 
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100.1 Virtual cavern produced by simple mathematical simulations and rendered 
with computer graphics, if you want to view real caverns, take a look at the World 
Wide Web home page for the Speleology Information Server at http://hum.amu.edu. 
pl/~sgp/spec/links.html. For other computer graphic simulations, see 
http://sprott.physics.wisc.edu/pickover/home.htm. 

research that the simplest of algorithms would produce stalactite formations of 
such incredible beauty and richness. The idea behind cavern synthesis is straight-
forward. In natural caves, stalactites often form due to the deposition of lime-
stone by water slowly dripping from the cavern ceiling. The air space in the 
cavern allows gases to escape from water, causing solid material to precipitate. 
Generally speaking, his computer recipe for cavern formation 

1. starts with a nearly smooth cavern ceiling; 
2. randomly examines a few ceiling positions and notes which 

is lowest; 
3. adds a drop of limestone at the point found in step 2; and 
4. repeats steps 2 and 3. 

As this computational recipe is repeated thousands of times, a few regions are 
gradually selected and accumulate material as they grow longer and longer. This 
is similar to what happens in a natural cavern as gravity pulls liquid from the 
growing stalactites. 

The included program code (see [www.oup-usa.org/sc/0195133420]) will start 
you on your way to cavern synthesis. In this example, the initial cave ceiling is 
represented using a 512-by-512 array called cave. The cave array stores the height 
profile of stalactites. A zero value in the array means no material has been 
deposited at that particular x,y location. As the stalactites grow, the array values 



Cavern Genesis as a Self-Organizing System ® 2 3 1 

grow larger. In Step A of the code, the initial cave ceiling is seeded with small 
numbers to simulate a nearly smooth ceiling. In Step B, the program simulates 
the deposition of little circular disc droplets. The droplets are positioned at 
points where the cave values are large in order to simulate deposition at the tips 
of growing stalactites. After numdrop droplets have been deposited, the cave 
array is filled with numbers that indicate the spatial extent of deposits from the 
ceiling. The actual conversion of the cave array to a lighted, shaded cave is left to 
your favorite 3-dimensional graphics package. Dr. Googol used the IBM 
Visualization Data Explorer software, which can read in the cave array of data, 
triangulate it, and then perform the necessary hidden surface elimination and 
shading. Dr. Googol does most of his work on AIX or Windows NT systems 
with hardware graphics acceleration, although you should be able to convert the 
cave data to input formats used by other renders running on other operating sys-
tems. Even if you do not have a three-dimensional renderer, simply assigning 
colors to the cave array values produces a visually interesting picture where sta-
lactites are, for example, represented by bright-colored regions in a 2-dimension-
al figure. 

In a 3-dimensional rendering, before your eyes, stalactites evolve from a near-
ly smooth cavern ceiling. Stalagmites rise up from the floor to meet their stalac-
tite partners simply by reflecting ceiling structures onto the floor. In future 
simulations, you may wish to evolve more realistic stalagmites, which normally 
have thicker proportions than stalactites. Dr. Googol would be happy to give 
additional details of the cavern simulation to those who write him. 

Using a cavern growth program, you can compresses centuries of cave evolu-
tion into minutes or seconds depending on the speed of your computer. Feel free 
to explore the cavern as it evolves, but don't forget to stop the simulation after 
some time, lest you be trapped forever in the labyrinthine chambers. You want 
some room to breathe. Continual elongation of stalagmites and stalactites will 
eventually result in junctions and the formation of columns. 

The virtual cavern reminds Dr. Googol of a "self-organizing system," in 
which large-scale patterns arise from simple rules operating on tiny components 
of a system. When you look at the smooth initial cave ceiling in the simulation, 
there's no way you can tell where the large stalactites will eventually form. But 
after a few seconds of simulation, a dozen stalactites might begin to take shape. 
Similar behaviors arise in traffic jams, the aggregation of slime molds or bacteria, 
the formation of termite mounds, and the flocking of birds. 

Even though cavern synthesis appears to run on autopilot with no conductor 
needed to orchestrate the locations of the stalactites, cavern creation can still be 
a tricky business. Dr. Googol's parameters are delicately poised between simplic-
ity and complexity to make beautiful patterns. For example, in step 2 of the 
computational recipe, you should not scan too many ceiling points to find the 
lowest one on the ceiling, or after a minute you'll end up with a single large sta-
lactite. As you perform hundreds of simulations, do you see any patterns in the 
stalactite positions or sizes? Do stalactites tend to cluster or stay away from one 
another? Watching the patterns evolve as a function of parameters may tell us a 
little about real caves, but, more important, it alters the way we make sense of 
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nature. From treelike branches sprouting in human lungs to tendrils spreading 
through cooling crystals, nature's large-scale structures evolve from mindless 
microscopic individual behaviors creating pattern and beauty from chaos. It 
seems that both biological and geological structures grow in the chaos of the cos-
mos by forming order through wisps and eddies of time. 

Of course, the idea of creating virtual reality structures for human exploration 
is not new. In fact, in my books and articles (see "Further Reading"), I have dis-
cussed a variety of virtual reality journeys: computer-generated lava lamps deco-
rating living room walls in the 21st century, virtual vacations on Mars, electronic 
ant farms, and so forth. These examples not only please the eye but confound the 
mind with their complexity derived from simple rules. 

The future of electronic spelunking is equally bright. Just as today we play 3-D 
interactive computer games like Doom or Quake, in the future we should look 
forward to exploring virtual caverns such as the ones Dr. Googol is beginning to 
explore. Who knows what odd geological formations we will encounter? If his 
simple algorithms generate lifelike and intricate formations, slightly more com-
plex computational recipes will no doubt produce formations like those found in 
the Lechuguilla Cave: delicate helicite tendrils, calcite pearls, and gypsum beards. 

Like a submarine pilot exploring coral formations in the Sargasso Sea, modern 
computers allow one to explore the strange and colorful caverns using a mouse. 
Specifically, Dr. Googol's simulations run on an IBM RISC System/6000 or IBM 
IntelliStation equipped with graphics accelerators. As the prices of computers 
decrease while performance increases, I'm sure we'll all be exploring together. 
Maybe you'll even be able to buy a cavern generator purchased as a plug-in chip. 

Not only will virtual spelunking appeal to artists, but it will also be of interest 
to scientists seeking the causes of real geological structures. For example, the for-
mation of stalactites and stalagmites depends on various factors including a 
source rock above the cavern, downward percolation of water supplied from rain, 
tight but continuous passageways for this water (which determine a very slow 
drip), and adequate air space in the void to allow either evaporation or the escape 
of carbon dioxide from the water, which thus loses some of its solvent ability. 
These kinds of variables could be investigated using more detailed computer sim-
ulations. It would be fascinating to explicitly model the effect of gravity and then 
see how hypothetical caverns might form on other planets with different gravities. 

Dr. Googol likes to speculate that virtual decorations of the future will be 
grown by computer algorithms and projected or displayed on the ceilings of our 
own homes. But now it is time to roam. Dr. Googol lets his gaze drift to the 
pockets of rocks around him, noting the flowing harmony of the fractal forma-
tions, the crystalline outcroppings of rock coated with strips of velvet purple. A 
cool peace floods him. 

He wants to place his finger in the lake. It is perfectly black. The stalactites 
and stalagmites and slippery cave walls are shimmering and alive. 

He shines a light over the water. It is clear now and filled with nodules. It's a 
shame he can't blow on the water and see countless ripples appear on its surface. 
That is for the future. Someday the cold air will brush against him like a cat. He 
will hear the mystical sounds that have lulled others cave explorers: the humming 
of stalactites; the wild, seemingly desperate cry of the wind through the cave. 
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Where is the rest of the world? It hardly matters. 
In the future, students, movie special effects houses, and artists may explore 

the virtual caverns, which can be rapidly generated and contain an infinite reser-
voir of magnificent topographical features. It would be interesting to apply some 
of the new terrain synthesis methods, such as those based on erosion, to these 
intricate landscapes and view the results. The various successes in terrain genera-
tion over the last decade provide continuing incentive for more research on the 
rapid generation of natural and artistic landscapes. 

B See [www.oup-usa.org/sc/0195133420] for program code. 

C h a p t e r 101 

Magic Squares, Tesseracts, 
and Other Oddities 

Mathematical inquiry lifts the human mind into closer proximity with 
the divine than is attainable through any other medium. 

—Hermann Weyl (1885-1955) 

In Islam, the number 66 corresponds to the 
numerical value of the word Allah. Figure 101.1 is 
an Islamic magic square that expresses the number 
66 in every direction when the letters are convert-
ed to numbers. The square's grid is formed by the 
letters in the word Allah. Magic squares such as 
this were quite common in the Islam, but seem not 
to have reached the West until the 15th century. 
From a historical perspective, Dr. Googol's favorite 
Western magic square is Albrecht Diirer's, which is 
drawn in the upper right-hand column of his etch-
ing Melencolia I (Figure 101.2). The variety of 
small details in the etching has confounded schol-
ars for centuries. Scholars believe that the etching 
shows the insufficiency of human knowledge in 
attaining heavenly wisdom, or in penetrating the 
secrets of nature. 

4 
P-

fill 
4 ir y HI 
4 J JS 

Hi 
4 4S & HI 

101.1 An islamic magic square 
that expresses the number 66 in 
every direction. The grid is 
formed by the letters in the 
word Allah. 
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101.2 Melencotia I, by Albrecht Durer (1514). This is usually considered the most 
complex of Diirer's works; its various symbolic nuances have confounded scholars 
for centuries. Why do you think he placed a magic square in the upper right? 
Scholars believe that the etching shows the insufficiency of human knowledge in 
attaining heavenly wisdom, or in penetrating the secrets of nature. 

Diirer's 4-by-4 magic square, which can be represented as 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 

contains the first 16 numbers and has some fascinating properties. The two cen-
tral numbers in the bottom row read 1514, the year Durer made the etching. 
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Also, in the vertical, the horizontal, and 2 diagonal directions, the numbers sum 
to 34. In addition, 34 is the sum of the numbers of the corner squares (16+ 13 + 
4 + 1 ) and of the small central square (10 + 1 1 + 6 + 7). The sum of the remain-
ing numbers is 68 = 2 x 34. Was Diirer trying to tell us something profound 
about the number 34? 

Mark Collins, a colleague from Madison, Wisconsin, with an interest in both 
number theory and Diirer's works, has studied the Diirer square and finds some 
astonishing features when converting the numbers to binary code. (In binary 
representation, numbers are written in a positional number system that uses only 
two digits: 0 and 1—as explained in the "Further Reading" for Chapter 21.) 
Since the first 16 hexadecimal binary numbers start with the number 0 and end 
with 15, he subtracts 1 from each entry in the magic square. Below is the result: 

15 
1111 

2 
0010 

1 
0001 

12 
1100 

4 
0100 

9 
1001 

10 
1010 

7 
0111 

8 
1000 

5 
0101 

6 
0110 

11 
1011 

3 
0011 

14 
1110 

13 
1101 

0 
oooo 

Remarkably, if the binary representation for the magic square is rotated 45 
degrees clockwise about its center so that the 15 is up and the 0 down, the result-
ant pattern has a vertical mirror plane down its center: 

1111 
0100 0010 

1 0 0 0 1 0 0 1 0 0 0 1 

0 0 1 1 0 1 0 1 1010 1100 

1110 0110 0111 

1101 1011 
oooo 

For example, in row 2, 0100 is the mirror of 0010. (Dr. Googol very much 
doubts that Diirer could have known about this symmetry.) 

If we rotate the binary square counterclockwise so that the 12 is at the top and 
the 3 at the bottom, then draw an imaginary vertical mirror down the center of 
the pattern, we see a peculiar left-right inverse: 
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1100 
0001 0111 

0010 1010 1011 
1111 1 0 0 1 0110 o o o o 

0 1 0 0 0 1 0 1 1101 

1000 1110 
0011 

For example, in the second row, 0001 and 0111 are mirror inverses of each 
other. 

Mark Collins has discovered the presence of mysterious intertwined hexa-
grams when the even and odd numbers are connected: 

Dr. Googol would be interested in hearing from those of you who find addi-
tional meaning or patterns in Diirer's magic square. Mark Collins and Dr. 
Googol are unaware of other magic squares having the symmetrical properties 
when converted to binary numbers. Mark has also done numerous experiments 
converting these numbers to colors and comments: "I believe this magic square 
is an archetype as rich in meaning and mysticism as the I Ching. I believe it is a 
mathematical and visual representation of nature's origami—as beautiful as a 
photon of light." Mark suggests you should create other mitosis-like diagrams by 
connecting 0 to 1 to 2 to 3. Then lift up your hand. Connect 4 to 5 to 6 to 7. 
Connect 8 to 9 to 10 to 11. Connect 12 to 13 to 14 to 15. 

A rather bizarre 6-by-6 magic square was invented by the mysterious A. W. 
Johnson. No one knows when this square was constructed, nor is there much 
information about Johnson. (Dr. Googol welcomes any information you may 
have.) All of its entries are prime numbers, and each row, column, diagonal, 
and broken diagonal sums to 666, the Number of the Beast. (A broken diago-
nal, is the diagonal produced by wrapping from one side of the square to the 
other; for example, the outlined numbers 131, 83, 199, 113, 13, 127 form a 
broken diagonal.) 
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The Apocalyptic Magic Square 

3 107 5 131 109 311 

7 331 193 11 83 41 

103 53 71 89 151 199 

113 61 97 197 167 31 

367 13 173 59 17 37 

73 101 127 179 139 47 

® ® ® 
Another amazing magic square is the Kurchan array, named after its discoverer, 
Rodolfo Marcelo Kurchan, from Buenos Aires, Argentina, He believes this to be 
the smallest nontrivial magic square having n2 distinct pandigital integers and 
having the smallest, pandigital magic sum. Pandigital means all ten digits are 
used, and 0 is not the leading digit. Below is the awesome Kurchan array; the 
pandigital sum is 4,129,607,358: 

The Kurchan Array 

1037956284 1036947285 1027856394 1026847395 

1026857394 1027846395 1036957284 1037946285 

1036847295 1037856294 1026947385 1027956384 

1027946385 1026957384 1037846295 1036857294 
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Even more amazing is the mirror magic square: 

Mirror Magic Square 

96 64 37 45 

39 43 98 62 

84 76 25 57 

23 59 82 78 

If you reverse each of the entries you obtain another magic square. In both 
cases the sums for the rows, columns, and diagonals is 242: 

69 46 73 54 

93 34 89 26 

48 67 52 75 

32 95 28 87 

Isn't that a real beauty? 
Finally, mathematician John Robert Hendricks has constructed a 4-dimen-

sional tesseract with magic properties. Just as with traditional magic squares 

101.3 Magic tesseract by John Robert Hendricks. 
(Rerendered by Carl Speare.) 
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whose rows, columns, and diagonals sum to the same number, this 4-dimension-
al analogue has the same kinds of properties in 4-space. Figure 101.3 represents 
the projection of the 4-dimensional cube onto the 2-dimensional plane of the 
paper. Each cubical "face" of the tesseract has 6 2-D faces consisting of 3-by-3 
magic squares. (The cubes are warped in this projection in the same way that the 
faces of a cube are warped when drawn on 2-D paper.) To understand the magic 
tesseract, look at the 1 in the upper left corner. The top forward-most edge con-
tains 1, 80, and 42, which sum to 123. The vertical columns, such as 1, 54, and 
68, sum to 123. Each oblique line of three numbers, such as 1, 72, and 50, sums 
to 123. A fourth linear direction shown by 1, 78, and 44 sums to 123. Can you 
find other magical sums? This figure was first sketched in 1949. The pattern was 
eventually published in Canada in 1962, and later in the United States. Creation 
of the figure dispelled the notion that such a pattern could not be made. 

0 For more on magic squares, see the "Further Exploring" section for 
Chapter 16. 

More significant mathematical work has been done in the latter half of 
this century than in all previous centuries combined. 

—John Casti, Five Golden Rules, 1996 

Have you ever noticed that many of our ancient designs consist of symmetrical 
and repeating patterns? For example, consider the beautiful Moorish, Persian, and 
other motifs in tiled floors and cloths. Among Dr. Googol's favorite ornamental 
patterns are those found on century-old Russian Easter eggs that wealthy individ-
uals and members of the royal family gave to one another. Some of these eggs 
were made of gold and silver and decorated with enamel, precious stones, and 

C h a p t e r 102 

Faberge Eggs 
Synthesis 
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miniature paintings. The most splendid were commissioned by the czar from 
Faberge, the leading firm of Russian jewelers at the turn of the 20th century. 

Faberge eggs are beyond the financial resources of most humans on the plan-
et. Today, however, personal computers equipped with low-cost graphics acceler-
ators bring the beauty and mystery of "self-decorating" eggs to computer 
hobbyists. The patterns are based on the mathematical concept of a "residue"— 
the remainder after subtracting a multiple of a modulus from an integer. (2 and 
7 are residues of 12 modulo 5.) 

® ® ® 

T H E S E C R E T A L G O R I T H M 

How can the beauty of the symmetrical ornaments and designs of various 
cultures be simulated with the aid of a computer? From an artistic standpoint, 
sinusoidal equations provide a deep reservoir from which artists can draw. Com-
putational recipes, such as those outlined in the following, interact with such 
traditional elements as form, shading, and color to produce classical and futuris-
tic images and effects. The mathematical recipes function as the artist's helper by 
allowing the artist to experiment with a range of parameters and to select results 
that are considered attractive or visually interesting. Indeed, structures produced 
by the equations includes shapes of startling intricacy. 

To compute the egg-decorating patterns, a real number c is first calculated for 
a range of (i,j) pairs: 

c'k-j = 1 + 0.5 x [sin{(j>k + fk x 0 + s'mWk + Skx ;)] 

where the index £has the value 1, 2, and 3, to produce intensity values for three 
color channels (red, green, blue) used by the graphics software, and 1 < i < 400, 
1 < j < 400. This creates 3 2-dimensional sinusoidal arrays c with values ranging 
from 0 to 1 as a function of i and j on a 400-by-400 grid controlled by phases 
4>{0<ct><l),\p(0<^<l), and frequencies / (0.15 < / < 0.8 ). (Values for 
the sin functions are in radians.) The 4>, xj/, and / values are held constant for a 
particular egg. This means that 6 phase values and 3 frequency values determine 
a particular egg's pattern. The 3 values of q at each point in the array are used to 
control the red, green, and blue colors at each point on the the egg surface after 
additional mathematical manipulation. 

In order to make the resultant pattern tile-like for the purposes of egg-decora-
tion, the resulting ci values in the first equation are multiplied by m^ truncated 
(made an integer), and divided by another integer jS*. The remainder is used to 
determine the color of the egg surface at location i, j. Large remainders corre-
spond to high intensities of either red, green, or blue. A remainder of 0 corre-
sponds to zero intensity, or black. Values of mk ranged from (3̂ , < m^ < fit + 20. 
Values of ranged from 1 < fi^ < 10. This truncation and residue approach 
applied to the first equation in this chapter can be expressed as 

4j = [»* x U + 0-5 x (sin(0t + fk X i) + sin(ifa + fkx j))] mod |St 
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where the brackets indicate truncation to an integer; for example, 1.6 is truncat-
ed to 1. The various ranges for multipliers, modulo values, frequencies, and 
phases were empirically determined to give a diverse, attractive set of patterns, 
and readers are encouraged to experiment with their own ranges to suit their 
own aesthetic tastes. 

To map the final color arrays for red (q), green (c2), and blue (c}) to the egg 
surface, a spherical or ellipsoidal surface transformation is made; for example, 
2 1 - i2 ~ j2 where i and j denote positions along an (x,y) plane coincident 
with the plane of the paper or computer screen. Elongation in the x or y direc-
tion can be accomplished using 3-dimensional graphics scaling routines or by 
altering the z function. The surface is rendered using rectangular facets, and the 
surface normal at each point determined by vector (i, j, z) for the purpose of 
lighting calculations by the graphics software and hardware. 

Ten years ago, when I wrote about "self-decorating eggs" and first experi-
mented with black-and-white, 2-dimensional, repetitive ornaments, I would 
have had trouble believing how fast and elegantly these forms can be rendered 
today on personal computers. In particular, the eggs in Figure 102.1 were com-
puted using a C program calling OpenGL (3-D graphics) routines on an IBM 
IntelliStation running a Windows N T operating system. To increase rendering 

102.1 Algorithmic Faberge eggs, with organic infestations. 
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speed, only one light source was used and only the front surface of the eggs was 
computed. If computation of the sine function limits the rate at which eggs are 
computed, the value for the sine function may be precomputed and stored in a 
look-up table. The program chooses random values for phases, frequencies, mul-
tipliers, and mod factors within the given ranges and presents a new egg to the 
viewer about once every three seconds. To avoid lower-frequency patterns, which 
may be visually less interesting, Dr. Googol sometimes has the program reject 
frequencies below a certain threshold value (for example, / = 0.15 ). For greater 
variety, other functions may be used, such as frequency-modulated sinusoids of 
the form sin(<£ + sin(4> + /)). Other variants of the First equation in this chapter 
may also be used. 

® ® ® 

S O M E T H O U G H T S 

Alexander III started the tradition of ornate egg design in 1885. Every year he 
commissioned an egg from his court jeweler, Peter Carl Faberge, as a gift to his 
wife, the Empress Maria Feodorovna. After Alexander's death, his son Nicholas II 
continued the tradition, commissioning two eggs from the firm. At Easter, Faberge 
himself would present one egg to the Dowager Empress Maria Feodorovna, while 
his assistant would present the second to Alexandra Feodorovna, Nicholas's wife. 
In all, 56 of these masterpieces were produced between 1885 and 1917; however, 
only 10 of these have remained in Russia. Masters from the Faberge firm worked 
on each Easter egg for nearly a year. 

Today Dr. Googol likes to imagine Faberge and Alexandra Feodorovna sitting 
in his office behind a personal computer and selecting eggs that have special appeal 
for them. Faberge adjusts the modulus factor as Alexandra screams for more. 

The self-decorating eggs remind Dr. Googol of snowflakes. No two eggs ever 
seem to be alike as viewers watch an endless variety of forms parade on their 
screen. Figure 102.1 shows just a few examples of the remarkable panoply of 
designs made possible with the algorithm. By "turning a dial" that controls the 
various parameters, an infinite variety of attractive designs is generated with rel-
ative computational simplicity—and for this reason, the eggs may be of interest 
for designers of museum exhibits and other educational displays for both chil-
dren and adults. 



Chapter 103 

Beauty and Gaussian 
Rational Numbers 

An intelligent observer seeing mathematicians at work might conclude that 
they are devotees of exotic sects, pursuers of esoteric keys to the universe. 

—P. Davis and R. Hersh, The Mathematical Experience 

The purpose of this chapter is to illustrate a very simple graphics technique for 
visualizing a large class of graphically interesting manifestations of complex 
rational numbers. As background, complex rational numbers are of the form p/q, 
where p and q can be complex numbers of the form a + b\ where i = J^A and a 
and b are integers. As an example of a complex rational number, consider 
(1 + 2i)l(3 + 3*))- In other words, p = p'= ip", and q = q'= iq", w i t h p ' , p " , q', 
q" all integers. Accordingly, 

^f . ' ft ^t . >tr t • // Lt r . // // // t / tt p_ = p +ip = p +ip x q - iq = pq +p q p q -pq 
t , ' ft r . ' tt r 'ft f) . ttl I tj , tr") q q + tq q + iq q - iq <1+1 

The complex fractions thus consist of the numbers x + iy where x and y are 
real fractions. 

Following the lead of L. R. Ford, we may construct a sphere that represents 
the complex fraction p/q by having the sphere touch the complex plane at loca-
tion p/q and having the radius equal to \l(2qq) , where q is the conjugate of q. 
(Given a complex number a + bi, the complex conjugate is a — bi.) Alas, Ford in 
1938 had no means of visualizing the results of his ideas, and his only diagram 
contained four hand-drawn spheres. Perhaps due in part to lack of visualization 
methods, his paper is almost entirely devoted to 2-dimensional worlds where a 
few circles are positioned on rational points on a line, an idea discussed in 
Pickover's book Keys to Infinity. Therefore Dr. Googol could not resist the temp-
tation of bringing Ford's ideas into the modern age. In doing so, it becomes evi-
dent that the Gaussian (i.e., complex) rational spheres provide an infinite 
graphical treasure chest to explore. In fact, it turns out that spheres describe the 
fabric of our complex rational number system in an elegant way. 

How many neighbor spheres touch an individual sphere? Two fractions are 
called adjacent if their spheres are tangent. Any fraction has, in this sense, an 
infinitude of adjacents. Any sphere has an infinitude of spheres that kiss it. It can 
be shown that if spheres are placed at complex fractions (P/Q) and (p/q), then the 
spheres are tangent (adjacent) when I Pq - pQ\ = 1. For example, consider two 
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spheres in Figure 103.1 The distance AB between sphere centers is a function of 
the horizontal distance AC and the vertical distance CB (the difference of the 
radii). Therefore 

AB = -j\P/Q~p/q\2 + 6 

where 

6 = 1 1 
.2 QQ 2 qq_ 

103.1 Geometrical study. 

Thus, 

AB = 
.2 QQ 2 qq_ 

\Pq-pQ\2-\ 
QCL-qq 

If IPq - pQ\ > 1, then AB > AD + EB, and the spheres do not kiss. If 
\Pq-pQl = 1, then sphere /VQandp/qkiss (i.e., the fractions are "adjacent"). It 
is not possible for spheres to intersect. 

Figure 103.2 shows a computer graphics rendition of the Gaussian rational 
froth. In the original color images, color is a function of the spheres' radii. Figure 
103.3 is a magnification of a side view of Figure 103.2. Figure 103.4 is the same 
as Figure 103.2, with the large red spheres removed to reveal underlying struc-
ture. Figure 103.5 is a ray-traced rendition of the froth with the central sphere 
made transparent to reveal underlying structure. 

Consider a "physical" analog of the Gaussian rational sphere froth. Imagine 
holding an "infinitely" thin needle above the collection of spheres perched on the 
complex plane. (You may like to think of the complex plane as a pond surface and 
of the spheres as bubbles, each with its lowest point touching the pond surface.) If 
you drop the needle above a rational point in the complex plane, the needle must 
pierce a single bubble and hit the complex plane exacdy at the bubble's point of tan-
gency. However, if you drop the needle from above an irrational complex number, 
the needle cannot pass direcdy to the complex plane from a bubble. In other words, 
the needle must leave every bubble which it enters. However, as Dr. Googol men-
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103.2 Gaussian rational bubbles in the complex plane 
(0 s (p/q) s 1), (0 * (p/q) * 1), (-7 < p', q, p", q" s 7). 

103.3 Magnification of a side view of the bubbles. 

tioned previously, every bubble that the needle leaves is completely surrounded by a 
chain of bubbles. Therefore the needle must enter another bubble. This is true for 
all the bubbles it pierces. Thus, when the needle is dropped above an irrational 
point, it must pass through an infinity of bubbles. 

Gaussian rational froth holds many challenges for computer graphics special-
ists. Since the froth is endless, accurate representation is difficult, particularly as 
the froth is magnified during animated zoom sequences. (Dr. Googol computes 
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the locations of about 15,000 spheres before terminating the computation, and 
this accounts for the small regions devoid of spheres on the complex plane.) 
However, with appropriate computer programs, students, artists, and mathemati-
cians can "swim" through the Gaussian rational froth like a fish through the surf. 
Animations make it possible to "sit" on the falling virtual needle and view the 

103.4 Same as Figure 103.2, with the large, central 
sphere removed to reveal underlying structure. 

103.5 Ray-traced rendition of the froth. Paul A. 
Thiessen (University of Illinois) used the software 
POV-Ray to produce this rendering for Dr. Googol. 



A Brief History of Smith Numbers ® 2 4 7 

mechanism of infinite piercing. What strange oceanic worlds will students and 
artists find as they explore different regions of the Gaussian rational froth? Note 
that if fractions represented by spheres are not "reduced," spheres may lie inside 
spheres—and this can be visualized using transparency. To speed computations, 
Dr. Googol suggests that every fraction in which the numerator and denominator 
have common factors be canceled as far as possible (e.g., 6/8 3/4.) 

Graphics specialists, educators, and mathematicians may find this chapter a 
useful stepping-stone to additional geometrical representations and insight. For 
example, assemblages of spheres may be used as pictorial representations of con-
tinued complex fractions of the form 

1 
a0 + l 

+ i 
a2 +~al + . . . 

where an are complex integers. A final challenge would be to extend these repre-
sentations to quaternionic rational numbers, which make up a 4-dimensional 
algebra containing the complex plane, and Cayley rational numbers, which 
make up an 8-dimensional nonassociative real division ring. 

In order to reveal the intricacy of Gaussian froth, which is not possible in 
small figures in this book, you are invited to examine an example high-resolution 
image on the Web at http://sprott.physics.wisc.edu/pickover/home.htm. 

C h a p t e r 104 

A Brief History of Smith Numbers 

The reviewer is not convinced that Smith numbers are not a rat-hole 
down which valuable mathematical effort is being poured. 

—Carl Linderholm, Mathematical Reviews 

A Smith number is a composite number (a nonprime number) the sum of whose 
digits is the sum of all the digits of its prime factors. Since they were originally 
proposed by Albert Wilanski in the January 1982 issue of Two-Year College 
Mathematics Journal, Smith numbers have been the subject of over 15 published 
papers. The rather startling reason for their name is mentioned below. 

Want an example of a Smith number? The number 9,985 is a Smith number 
because 9,985 = 5 x 1,997, and, therefore 
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Digit Sum Prime Factor Sum 
9 + 9 + 8 + 5 = 5 + 1 + 9 + 9 + 7 

In 1982, the largest known Smith number (4,937,775) was credited to Albert 
Wilansky's brother-in-law, H. Smith, who is not a mathematician. The brother-
in-law's telephone number is 493-7775! 

Since 1982, interest in these numbers has exploded. In 1983, a paper 
appeared in Mathematics Magazine that gave a larger Smith number. The 
authors' discovery was that i f p is a prime whose digits are all Is, then 3304^> is a 
Smith number. (Are there other numbers that could serve this same purpose?) 

In 1986, another odd method for generating Smith numbers was presented, 
leading to Smith numbers such as 

5 x 1110110110111 x (2 x 5)5 = 555,055,055,055,500,000 

and to other behemoths, including one Smith number with 2,592,699 digits. 
1987 was a banner year for Smith numbers, with three papers appearing in 

the Journal of Recreational Mathematics. In these papers, we find palindromic 
Smith numbers, such as 12,345,554,321, the definition of Smith Brothers (con-
secutive Smith numbers), such as 728 and 729, and all other manner of mathe-
matical bewilderment. 

For the best history of Smith numbers, see Underwood Dudley's article in the 
February 1994 Mathematics Monthly. Do you think mathematical studies of 
Smith numbers are worthwhile or significant? Or are they just pure recreation, 
useful for honing one's mathematical prowess but with no possible practical or 
profound results? 

C h a p t e r 105 

Alien ice Cream 

The soul of man was made to walk the skies. 
—Edward Young, 18th century 

<a> Number Maze 3, a visual intermission before the next 
book part 
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This sweet puzzle is from one of Dr. Googol's dreams. Upon waking, he quickly 
crafted the following enigma. 

It is night, and the stars shine brightly on the home of Dr. Googol (schemati-
cally illustrated in Figure 105.1). On the roof is an alien selling a special kind of 
ice cream cone—one that will give you eternal life if you eat it. You have only $ 1, 
which is not enough to purchase the ice cream. There are aliens with dollar bills 
on every floor. Entering or exiting any door requires an alien to give you $5. 
When you use a ladder, an alien hands you $2, and use of the spiral staircase gets 
you $20. 

104.1 Alien Ice Cream. Can you reach the top with exactly $41? (Drawing by Brian 
Mansfield.) 
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If you use a staircase, you add $3 whenever you walk between floors. The fire 
escape on the outside of the building is a zigzagging staircase traveling from level 
to level, but only the ground floor, third floor, and roof have outlets onto it. 

If you wish to eat the alien ice cream, you must start outside on the ground 
floor and somehow make it to the roof with exactly $41. Once you have traveled 
along a stairway, ladder, or the spiral staircase, you may not use them again. If 
you can do this within 30 minutes, the alien will gladly give you the sugary treat. 
Some say the puzzle is impossible. No one on Earth has solved the puzzle—or 
has ever tasted the ice cream of eternity. 

& For a solution, see "Further Exploring." 



Part iV 

The Peruvian 
Collection 

Great mathematics must suggest nature: 
a snow crystal, a mossy cavern, 
a seagull's wing, a viper's tongue, red Peruvian earth, 
the gnarled bark of an ancient oak. 
And in a hundred years, 
when humans have destroyed nature, 
today's mathematics will serve as a portal 
to all that which was beautiful. 

—Dr. Francis 0. Googol 

Mathematics is nothing, 
not even beauty, 
unless at its heart, 
two numbers bloom. 

—Dr. Francis 0. Googol 
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The Huascardm Box 

A Great Truth is a statement whose opposite is also a great truth. 
—Niels Bohr 

Late last summer, Dr. Googol was exploring the Peruvian rain forest at the base 
of Mount Huascaran, the highest mountain in Peru. There he found a mysteri-
ous box. On the box were colored fingers: red, green, and yellow. A fourth finger 
was clear and made of diamond. Under the fingers was the following inscription: 

Inside this box is a small, silent, ^ell-ailed, vibration/ess, battery-pothered fan. 

The colored fingers are on/off buttons. One of them is connected to the fan; the 

other 2 colored fingers are dummies, not connected to the fan. Idhen a finger 

is up it is on. Idhen it is damn it is off! The diamond finger cannot he 

mooed. 

You may toggle the fingers as you oiish. Once you have toggled the fingers in 

the pattern of your choice, you may look inside the box. By inspecting the fan, 

you knout tahich finger controls it Hoa> do you knoat? You get only one fookf ft 

correct ansoner allotas you to take the diamond finger. 

Can you help Dr. Googol obtain the magnificent diamond finger \J ? Do you 
think this problem is, in fact, possible to solve? If you are a teacher, it might be 
fun to build a similar box and have students do experiments. 

Dr. Googol traveled further into the jungle and came to another Huascaran Box! 
It had four potentially active switches: red, green, blue, and gold. Next to the 
box was a small pile of red dust, resembling spicy Peruvian paprika. In the top 
of the box, above the fan, was a tiny hole into which Dr. Googol could pour the 
paprika. Again, the colored fingers were on/off buttons, one of which was con-
nected to the fan. The other 3 colored fingers were dummies, not connected to 
the fan. When a finger was up, it was on. When it was down, it was off. In this 
case, the golden finger could also be toggled up and down and could possibly 
influence the fan circuit. 

As with the previous puzzle, Dr. Googol could toggle the fingers as he 
wished. Once he toggled the fingers in the pattern of his choice, Dr. Googol 
could look inside the box. By inspecting the box, he knew which finger con-
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trolled it. He could only look once. This time, a correct answer would allow 
him to take the valuable golden finger. fl 

Can you help Dr. Googol obtain the gorgeous golden finger \J ? 

$ For solutions to both problems, see "Further Exploring." 

C h a p t e r 107 

The intergalactic Zoo 

A mathematician is a blind man in a dark room looking for 
a black cat which isn't there. 

—Charles Darwin 

The lower slopes of the western Andes merge with the heavily forested tropical 
lowlands of the Amazon Basin to form the Montana, which occupies more than 
three-fifths of Peru's area. While exploring the rolling hills and level plains, Dr. 
Googol had a vision. Perhaps the vision resulted from his fatigued mind or from 
the strange plants the locals had given him to eat on his journey. Or perhaps the 
vision was real. We will never know. 

Dr. Googol watched in horror as an alien abducted Earth animals for an 
intergalactic zoo. Getting them safely to the zoo was a problem because the alien 
didn't know which animals might attack others on the way. The alien decided to 
keep the animals in a darkened ship hovering above the zoo until it was time to 
put them in their cages. The darkness should have encouraged the animals to 
sleep rather than fight... or so the alien hoped. 

Inside the ship there were 5 pairs of monkeys, 4 pairs of Peruvian jaguars, and 
2 pairs of tapirs. (A pair consists of a male and female.) When the alien reached 
a huge ark in outer space, he opened a chute that let animals drop from the ship, 
1 at a time, into individual cages. Later he wanted to match the species, and pairs 
within a species. 

It was night, so the alien couldn't tell the animals apart visually. 

% / y£ 
How many animals must the alien drop to ensure that he has 2 animals of the 
same species? 



2 5 4 ® Wonders of Numbers 

How many animals must he drop to ensure that he has a male and female of 
the same species? 

Hurry, the alien needs answers. The Peruvian jaguars are roaring as the mon-
keys scream in terror. Daylight is just minutes away. 

# For a solution, see "Further Exploring." 

C h a p t e r 108 

The Lobsterman from Lima 

I am reminded of a French poet who, when asked why 
he took walks accompanied by a lobster with a blue ribbon around 

its neck, replied, "Because it does not bark, and because 
it knows the secret of the sea." 

—an anonymous fan of Gerard de Nerval 

Peruvian ocean waters are abundant with haddock, anchovy, pilchard, sole, 
mackerel, smelt, flounder, lobster, shrimp, and other marine species. One day 
while visiting several coastal towns, Dr. Googol came upon a huge man selling 
lobsters by the side of a dirt road. The sight of the lobsters made Dr. Googol's 
mouth water. 

"Do you speak English?" Dr. Googol said. 
"Of course. I'm originally from Lima. Would you like a lobster?" 
"How much do they cost? 
The lobsterman raised his eyebrow. "If you answer my mathematical question 

correctly, you get a free lobster. If you answer incorrectly, you pay me $100. You 
must answer within 15 seconds. How does that sound?" 

"Good deal. But I must warn you, I have a Ph.D. in mathematics." 
The lobsterman held up a huge lobster and stared into Dr. Googol's eyes. 

Then he handed Dr. Googol a card with a question. The card smelled of fish and 
of low tide and of crawling things. The lettering on the card was in Old English 
calligraphy. Perhaps the man was trying to impress Dr. Googol with the impor-
tance or difficulty of the question. 
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,3lf l i f t s l o b s t e r frmgljs 1 0 p c a m i i s p l u s I fa l f 

i t s a fxm faetgljl, I j i tfa m u c l j b a t s t t ftretgl}? 

Can you help Dr. Googol answer this odd question? If you think the question 
is difficult, you're not alone. If you think this is too easy, you may be incredibly 
brilliant and arrogant, but Dr. Googol bets that none of your friends can answer 
this within 15 seconds. Try it on your friends. You'll see. So far, none of Dr. 
Googol's friends could solve it without a pencil and paper. If you're a teacher, 
have your students work on this problem and see what answers they arrive at. 
Allow them to use a pencil and paper. 

# For a solution, see "Further Exploring." 

C h a p t e r 109 

The incan Tablets 

I looked at the ancient ruins. These bricks. This light. I was 
exponentially far from New York City. Mathematical distances are never 

measured with rulers. 
—Dr. Francis 0. Googol 

Dr. Googol was exploring the ruins of Machu Picchu, near Cuzco—the remains 
of an ancient city of the Inca Empire. Twelve hundred years previously, the Incas 
had mastered architecture, astronomy, and road building—but Dr. Googol came 
here not to study history but rather to commune with nature and remember his 
ancestors, some of whom could be traced to the ancient Incas. 

As Dr. Googol looked inside the ruin's deep interior, surrounded by the dry 
bricks and old mortar, he came upon a tablet with some odd-looking symbols: 
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T T T TO TO 

TO s K 25 H 
Written in English, next to the symbols, were the following instructions. 

Yen s e e 5 vertical pairs of symbols. 

You are to find a pair of symbols to complete the set 

from among the S possibfe solutions shou>n here: 

25 s TO H T 
TO T TO T 

If you choose correctly and complete the set, the following wonderful events 
will take place: your I.Q. will be increased by 20 points; you will be able to speak 
to the Inca dead and learn their ancient wisdom; you will be able to stop time, 
at will; and you will be able to spend a day with the person of your choice, for 
example, the Dalai Lama, Madonna, Bill Clinton, or Robert Redford. 

Dr. Googol studied the tattered tablets. Why were the instructions in English? 
It must be some kind of hoax. Nevertheless, there must be a solution, and Dr. 
Googol must find it. The rewards, although unlikely, are too great to ignore. 

# For a solution, see "Further Exploring." 



Chapter 100 

Chinchilla Overdrive 

The sense of completeness that is projected by the work of art is 
to be found nowhere else in our lives. We cannot remember our birth, 

and we shall not know our death; in between is a ramshackle circus 
of our days and doings. But in a poem, a picture, or a sonata, the curve 

is complete. This is the triumph of form. It is a deception, but one 
that we desire and require. 

—John Bainville, "Beauty, Charm and Strangeness: 
Science as Metaphor," Science 281, 1998. 

In the sierra of Peru are all kinds of wildlife: the alpaca, llama, vicuna, chinchilla, 
and huanaco. Birds of the region include the partridge, giant condor, robin, 
phoebe, flycatcher, finch, duck, and goose. Here is a puzzle Dr. Googol devel-
oped while watching all the wonderful wildlife and listening to the cries of the 
condors at they circled overhead like floating ashes. 

Dr. Googol has a number of llamas in his private Peruvian zoo. The number 
of llamas plus 10 chinchillas is 2 less than 5 times the number of llamas. If you 
wish, denote the number of llamas by L and the number of chinchillas by C. 
How many llamas does Dr. Googol have? 

$ For a solution, see "Further Exploring." 
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Peruvian Laser Battle 

Mathematics is a war between the finite and infinite. 
—Dr. Francis Googol 

"Have you ever heard of Peruvian Laser Battle?" Monica asked Dr. Googol as 
their canoe floated down the Amazon River, ten miles north of Iquitos, Peru. 

Dr. Googol shook his head. "Please tell me more." 
"Peruvians love science fiction, and Laser Battle is the hottest new game in 

Iquitos. Imagine yourself leading a battle on the Peruvian plains. Your attackers 
are a horde of alien robots." 

"Alien robots?" Dr. Googol said, raising his eyebrow. 
"Use your imagination. The robots are quickly closing in on your soldiers." 
Monica pointed to a piece of paper showing a hexagonal grid with 4 open cir-

cles representing 4 soldiers (Figure 
111.1). Robots were represented by 
filled circles. Far to the north was 
Colombia. To the east was Brazil. To 
the south was Chile. To the west was 
Ecuador. 

"Dr. Googol, your object is to 
destroy all alien robots using your 4 
courageous Peruvian soldiers. With 
only 2 shots each from their rifles, 
your soldiers must destroy all the 
alien robots. To make matters tricky, 
the robots are booby-trapped and 
will explode with thermonuclear 
blasts if hit more than once. So your 
soldiers had better hit each robot 
just once. Rifle shots continue in a 

111.1 Peruvian Laser Battle. The black 
circles are robots. The open circles are 
soldiers. 
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straight line along any of the 6 hexagonal directions (shown by arrows at the top 
of the diagram) until they exit the battlefield, disabling all robots they encounter 
on the way." 

Monica looked at Dr. Googol and grabbed his hand. "Each soldier gets 2 
shots. Remember, to avoid the thermonuclear blasts, your soldiers are instruct-
ed not to hit any robot more than once. Can you determine the directions in 
which your soldiers should fire?" 

# For a solution, see "Further Exploring." 

C h a p t e r 112 

The Emerald Gambit 

Einstein remarked more than once how strange it is that reality, as we 
know it, keeps proving itself amenable to the rules of man-made science. 
But our thought extends only as far as our capacity to express it. So too 

it is possible that what we consider reality is only that stratum of the 
world that we have the faculties to comprehend. For instance, I am con-

vinced that quantum theory flouts commonsense logic only because 
commonsense logic has not yet been sufficiently expanded. 

—John Bainville, "Beauty, Charm and Strangeness: 
Science as Metaphor," Science 281, 1998 

Dr. Googol and Monica traveled to the heart of Arequipa, Peru, to seek ancient 
power. Inside a mighty Inca fortress was Augusto Leguia y Salcedo: mystic, 
soothsayer, and witch doctor. Dr. Googol looked into the wizard's flaming 
magenta eyes and was transfixed by his mesmerizing glance. 

"Oh Great One," Dr. Googol asked, "can you grant me the power of invisi-
bility?" 

"Ah," Augusto Leguia y Salcedo replied, "in order to possess such a power, 
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you must first pass a test." He produced a board 
divided into 25 squares (Figure 112.1). "Place 
these 13 rubies and this single emerald on the 
board so that there will be an even number of 
stones in each row and column and along the 2 
diagonals." 

Dr. Googol reached toward the board, think-
ing that this should be devil's food cake. 

"Wait!" Augusto Legufa y Salcedo cried, his 
eyes taking on a strangely disturbing intensity. 
They seemed to be looking into Dr. Googol, as 
if he were already transparent. "There can be no 
more than 1 ruby per square. The emerald must 
be placed on a square with a ruby. Not one of 
the rows, columns, or diagonals can be empty of stones." He turned over an 
hourglass filled with black sand. "You have 1 hour to solve the problem, or else 
you and your pretty friend will forever remain"—he grinned, and the blood ves-
sels in his head throbbed—"mere visibles." 

$ For a solution, see "Further Exploring." 

C h a p t e r 113 

Wise Viracocha 

This is the project that all artists are embarked upon: to subject 
mundane reality to such intense, passionate, and unblinking scrutiny 
that it becomes transformed into something rich and strange while 

yet remaining solidly, stolidly itself. 
—John Bainville, "Beauty, Charm and Strangeness: 

Science as Metaphor," Science 281, 1998 

Viracocha—the ancient Inca deity and creator of all living things—has a golden 
coin to share with his 4 favorite gods: Apu Illapu, Inti, Hathor, and Anubis. 
On the coin are 8 drawings of anchovies spaced as shown in Figure 113.1. 
(Anchovies are an Inca favorite!) To be fair, Virachocha will break the coin into 
4 equal parts and give 1 to each of his godly friends. 

112.1 The Emerald Gambit 
board. 
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"Wait!" cries Inti, the Inca sun god, "I want 
my piece to contain the same number of 
anchovies as everyone else's." 

"So do I," says Apu Illapu, the rain giver, as 
he raises his staff. 

"No problem," Viracocha replies as he rais-
es his hammer and chisel to divide the coin. 
"Each piece will contain 2 anchovies." 

How does Viracocha cut the coins so that 
each piece has the same area of gold and also 
the same perimeter (edge) length, as well as 
containing 2 anchovies? Viracocha's chisel cuts 
only straight edges, so all your cuts must be 
straight. 

Viracocha has made a wonderful anchovy 
pizza for 3 fellow gods (Figure 113.2). 

"Looks delicious!" cries Inti, the Inca sun 
god-; 

"I'm starved," says Apu Illapu, the rain giver, 
as he throws his staff on the ground. 

"Me too," says Mama-Kilya, the moon 
mother, who starts toward the pizza with knife 
raised. 

"Wait!" Viracocha says. "First you must 
pass my test. Only those who are worthy may 
eat my pizza. I want you to think of a way to 
divide the pizza into sections using 3 circular 
cuts so that 1 anchovy will be in each cut. Let 
me give you an example." 

Viracocha draws a picture with 6 anchovies 
(Figure 113.3) . "Look here. I have used 3 cir-
cles to divide the pie in such a way that 1 
anchovy is in each section. Now, who can do 
this for the delicious pizza pie that has 10 
anchovies?" 

# For solutions, see "Further Exploring." 
(Don't look up the answers until you have con-
sidered both problems; otherwise your eye will 
see both solutions at once and spoil the fun.) 

113.3 V i r acocha ' s example . 
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Zoologic 

Mathematics is used like a microscope to understand the real world. But the 
microscope is flimsy, incomplete, and filled with contradictions. Does this 
mean that the universe, too, is filled with contradictions and paradoxes? 

—Dr. Francis Googol 

The Inca Empire in South America flourished before the European conquest of 
the New World, and it reached its greatest extent during the reign (1493-1525) 
of Huayna Capac. At this time, llamas were the primary beasts of burden; alpacas 
were domesticated and raised chiefly for their fine wool. Other domesticated 
animals included dogs, guinea pigs, and ducks. 

Dr. Googol likes to imagine Capac's ancient zoo, filled with all manner of 
indigenous animals and overseen by a quirky zookeeper named Mr. Gila. 

One warm summer day, Capac's zoo has finally moved all its animals into 
their new homes. Figure 114.1 shows an aerial view of the zoo. Each of the zoo's 
animal enclosures is marked with a circle. The paths between the enclosures, 
shown as lines, are overgrown with weeds. Zookeeper Gila not only has to feed 
all the animals, he has to mow the paths as well. (Back then mowers were a series 
of rotating, machete-like blades.) Each path is 100 feet long. Mr. Gila starts his 
walk at point A, the zoo's entrance, and finishes at point B. How far must he 
travel, and what route should he take, so that his walk is the shortest possible? 
(He may have to travel along some paths more than once.) 

® ® ® 

A T 
• 

B 

f 

114.1 The layout of Mr. Gila's zoo. 
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114.2 Exhibit of 10 skinks. 

In one section of the zoo there is an exhibit of 10 skinks (Figure 114.2). They 
live in an aquarium made of 21 panes of "glass" made from the dried sap of cin-
chona trees and sarsaparilla and vanilla plants. As you can see, the aquarium is 
divided into 10 compartments of equal size. Unfortunately, the feisty skinks 
have cracked 2 panes in attempts to escape. Mr. Gila needs to enclose the 10 
skinks with the remaining 19 panes of glass. The compartments should be of 
equal size, all the glass panes must be used, and there must be no overlapping 
panes of loose ends. Can he do it? 

0 For solutions, see "Further Exploring." 

C h a p t e r 115 

Andromeda incident 

The mathematical spirit is a primordial human property that reveals 
itself whenever human beings live or material vestiges of former life exist. 

—Willi Hartner 

The volcano El Misti stand 5,822 meters (19,101 feet) above sea level in south-
ern Peru. The extinct volcano is part of the Cordillera Occidental, the principal 
arm of the Andes Mountains. Because of its height and clear skies, El Misti is an 
excellent place for observing the stars. 

"Look, Monica." Dr. Googol pointed. "The Andromeda galaxy." 
"Wonderful! I know all about it. It's 2 million light-years from Earth. It's 

the nearest spiral galaxy and the most distant object that we can see with the 
naked eye." 
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Dr. Googol huddled closer to Monica. Perhaps there was romance in the air. 
"May I give you a new puzzle?" 

Monica hesitated. "Sure, but make it the last one for tonight. I'm getting a bit 
tired." 

® ® ® 
Our story begins with an amazing discovery. Happily, there turns out to be intel-
ligent life in the Andromeda galaxy. Unhappily, however, the Andromedans, 

apparently driven mad by our errant 
television broadcasts, have decided to 
attack us. Nine of their best flying 
saucers are heading our way. They 
travel in formation, continuously 
emitting death rays horizontally, verti-
cally, and diagonally. Therefore, they 
must be careful to stay in the arrange-
ment shown in Figure 115.1 so that 
they don't destroy one another. In this 
particular arrangement, no saucer is 
horizontally, vertically, or diagonally 
in line with another. 

Tired of maintaining the strict for-
mation for such a long journey, 3 of 
the saucers wish to move to an adjoin-
ing cell in space. The death rays will be 

turned off for the move. Afterward they will be turned back on, so again no 
saucer can be in line with another. Which 3 of these saucers move, and to which 
3 cells (at present unoccupied) do they pass? 

$ For a solution, see "Further Exploring." 

115.1 Arrangement of flying saucers. 



Chapter 103 

Yin or Yang 

The trick that art performs is to transform the ordinary into the extraor-
dinary and back again in the twinkling of a metaphor. 

—John Bainville, "Beauty, Charm and Strangeness: 
Science as Metaphor," Science 281, 1998 

Viracocha, the great Inca god, is preparing a birthday cake for a friend's twin 
sons. Viracocha knows that one prefers chocolate, while the other prefers vanil-
la. Viracocha, in his wisdom, bakes a 
cake in the shape of the ancient yin-
yang symbol of two opposing cosmic 
forces. He knows this should satisfy 
the children because the symbol is, 
geometrically speaking, a circle divid-
ed into 2 equal parts, and one part of 
the cake is chocolate, the other vanil-
la. Viracocha cuts the cake into 2 
pieces along the curvy line dividing 
the 2 flavors (Figure 116.1). 

When the children come and look 
at the cake, they cry, "Oh Great One, 
there are 4 children to serve, not just 
2. Two of us like chocolate, and 2 of 
us like vanilla." 

Viracocha sighs. "Okay, there is a 
way to cut the cake into 4 pieces of the same size and shape using just 1 more 
cut. You'll even each have the same amount of icing. If you can figure out how 
to make such a cake, the 4 of you will be satisfied." 

Can you help the children divide the yin and the yang into four pieces of 
identical shape and size with a single cut? 

$ For a solution, see "Further Exploring." 

116.1 The chocolate/vanilla cake. 



C h a p t e r 117 

A Knotty Challenge 
at Tacna 

When an electron vibrates, the universe shakes. 
—British physicist Sir James Jeans 

Dr. Googol and Monica were exploring Tacna, the southernmost town in Peru, 
when a band of paramilitary thugs suddenly ambushed Dr. Googol's jeep. From 
the surrounding cocoa trees hung thick ropes with loops at the bottom, as if the 
ruthless men were preparing for a hanging. 

"Oh no!" Monica said. "What do we do now?" 
One of the men approached Dr. Googol and pointed to a loop of rope on the 

ground (Figure 117.1). Then 
he blindfolded Dr. Googol 
and Monica and turned to 
Dr. Googol. "Do you think it 
is likely that the rope on the 
ground is knotted?" 

Monica clenched her fists. 
"How do we get ourselves 
into such absurd situations?" 

Dr. Googol reached out to 
hold her hand. "Monica, don't 
worry. Even though I glanced 
at the ground too quickly to 
notice which segments of rope 
go over each other, I can fig-
ure out the exact probability 
of the rope being knotted. 
Then I can give the man an 
accurate answer." 

117.1 A loop of rope. Tiny white areas indicate 
the intersection points. Do you think this rope 
is knotted? 
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® ® ® 
Dear Reader, if you were a gambler, would you bet on the rope's being knotted? 

$ For a solution, see "Further Exploring." 

We wander as children through a cave; yet though the way be lost, we 
journey from the darkness to the light. 

—The Gospel According to Thomas (XV: 1) 

Before the Spanish invasion, the peoples of Peru were isolated from one anoth-
er by the country's rugged topography. However, a unifying culture spread across 
the Andes 3 times. Beginning in 1000 B.C., the Chavi'n culture permeated the 
region, emanating from the northern ceremonial site of Chavi'n de Huantar. Dr. 
Googol was exploring this site when a small boy ran up to him and handed him 
a clay tablet with strange symbols. 

Dr. Googol looked at the tablet. "These are definitely not symbols of the 
Chavi'n culture." 

"How do you know that?" the boy said. "In any case, it does not matter. I am 
told that if you can decode this message, you will hold the ke^rs to tl|E un t -
frerse." The boy said the last 4 words in a mysterious tone of voice. 

"Very good," Dr. Googol replied. "I love a great challenge. I will have my 
assistant Monica decode this once I return to the village. If she can translate this 
tortuous message, we might both share life universe 's secrets." 

An incident at 
Chavin de Huantar 

C h a p t e r 118 
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# For a hint, see "Further Exploring." 

C h a p t e r 119 

An Odd Symmetry 

Mathematics is a train weaving its way through the infinite landscape of 
reality. As humans progress, the train moves ever forward. More cars are 

added, and rarely is a car discarded. Yet, if mathematics is the train, I can-
not help but wonder: who made the tracks upon which the train rides? 

—Dr. Francis Googol 

Peru's transportation system faces the challenge of the Andes Mountains and of 
the intricate Amazon River system. The only integrated networks are the roads 
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and the airlines; the country's two railroad systems have not been interconnected. 
Dr. Googol was riding the major Peruvian railroad, the Central Railway, 

which rises from the coast at Callao near Lima to cross the continental divide at 
15,700 feet. He was about to take a nap when one of the train conductors 
approached him. 

"My name is Jorgo Chavez," the conductor said. "I understand you are a 
mathematician." 

"I do a little in my spare time," Dr. Googol said nonchalantly. 
"Good, I have a problem for you. Come with me." He led Dr. Googol to the 

next car, in which there were 9 barrels. Each barrel contained several hundred 
plastic models of a single digit. The first barrel contained plastic models of the 
digit 1. The second contained models of 2, and so forth. The ninth barrel had 
plastic models of 9. 

On the wall were several rows of mailboxes with mathematical operations 
between them: 

^D = 
+ = x ^ D 

+ + = 

+ + + ^ D = ^ D x x x 

+ + + + = ^ D x ^ D x ^ D x ^ D x ^ D 

+ + + + ^ + = 

. . . etc . . . 

The conductor pointed to the mailboxes. "In each of your attempts to solve 
the problem, you are only allowed to reach into 1 barrel and place the same 
number in each mailbox in a row to make the mathematics correct." 

"Fascinating," Dr. Googol said. 
"I will give you a hint," said Jorgo Chavez. "There are infinitely many solu-

tions for the first row, = Try it. For example, you can reach into the 1 
barrel and place a 1 in the left mailbox and a 1 in the right mailbox. Of course, 
1 = 1. In fact, you can do this for any digit." 

Dr. Googol nodded. 
"Now look at row 2, sSD + = x Amazingly, the number of solu-

tions drops from infinity to only 1 solution! Can you figure out which single 
digit will make this correct?" 

"Interesting," Dr. Googol said. 
"Now for the hard problem. We wish to continue the exact same logic for the 

remaining rows. What digits can you place in the other rows to make the addi-
tion at left equal to the multiplication at right? Remember, you must use the 
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same digit in each mailbox. So, for example, you could insert a 4 into the row 3 
mailboxes to create 4 + 4 + 4 = 4 x 4 x 4 , but unfortunately this does not yield 
a correct formula. In fact, don't even limit yourself to the barrels of numbers in 
the train. I'll let you use any positive integers. Can you find digits that will make 
this work for an arbitrary number of symmetrically placed mailboxes?" 

# For additional discussion, see "Further Exploring." 

C h a p t e r 120 

The Monolith at 
Madre de Dios 

I just hope that I can laugh through all phases of life, do a little 
mathematics, live to a very ripe old age, and leave the body behind like 

slipping off a tight shoe. 
—Clay Fried (e-mail to Dr. Googol) 

While exploring Madre de Dios, a city in eastern Peru, Dr. Googol came upon 
a large rectangular monolith. On the outside of the huge stone block was an 
array of different symbols. Could it be a code of some sort? One symbol was 
missing from the array. Perhaps some ancient astronauts left the monument 
behind ages ago. Perhaps they wish to assess our intelligence by seeing if we can 
fill in the symbol and complete the array. 

What symbol should be used to replace the missing space in the matrix of sym-
bols? (Hint: Numerical values need to be assigned to the symbols to solve this.) 

What is the logic you used to solve this puzzle? Is there another logic that you 
might use to solve it differently? 
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TO * * * 
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# For a solution, see "Further Exploring." 

C h a p t e r 121 

Amazon Dissection 

As one goes through it, one sees that the gate one went through was the 
self that went through it. 

—R. D. Laing 

The Amazon, with the largest volume of flow of any river in the world, has head-
waters in the Peruvian Andes. Dr. Googol was sailing along one of its main 
branches, the Ucayali River, which originates in southern Peru, when an old man 
came out from the jungle. 

"Can I help you?" Dr. Googol said to the man. 
"Yes. We have heard of your great mental prowess. We have a potential reli-

gious conflict that you can resolve. The Jews, Catholics, Moslems, and a mixture 
of Oriental religious groups live together on my vast jungle. Now the land must 
be subdivided, and we want to keep the religious mixture the same in the 2 new 
lands. More precisely, I want to create 2 areas, both of exactly the same size and 
shape, that contain equal numbers of each religious household. (We want both 
new lands to have the same religious composition for voting and other reasons.)" 

He handed Dr. Googol a card with a symbol representing each religious 
household: 
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The old man continued. "You can use a pencil to define the areas, but all the 
lines you draw must be straight. You can think of this as cutting a rectangular 
cake into 2 identically shaped pieces." 

Can you help Dr. Googol solve this problem? 

& For a solution, see "Further Exploring." 

C h a p t e r 122 

3 Weird Problems 
with 3 

Pure mathematics is religion. 
—Friedrich von Hardenberg, 1801 

The number 3 plays an important role in Peru. Peru is the third largest nation 
in South America. Peru can be divided into 2 geographic regions from west to 
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east: the Costa (coast), the Sierra (highlands), and the Montana, or selva (the 
vast, forested eastern foothills and plains). Agriculture employs about one-third 
of the workforce. But all of these facts are not the primary reasons that Dr. 
Googol is fascinated by the number 3. 

Here are some of the major reasons Dr. Googol loves three. Three is the only 
natural number that is the sum of all preceding numbers. It is the only number 
that is the sum of all the factorials of the preceding numbers: 3 = 1! + 2! In reli-
gion, 3 reigns supreme. For example, in ancient Babylonia there were 3 main 
gods: the Sun, Moon, and Venus. In Egypt there were three main gods: Horus, 
Osiris, and Isis. In Rome there were 3 main gods: Jupiter, Mars, and Quirinus. 
For Christians, 3 symbolizes the Holy Trinity: Father, Son, and Holy Spirit. In 
classical literature, there were 3 Fates, 3 Graces, and 3 Furies. In languages, there 
are 3 genders (masculine, feminine, neuter) and 3 degrees of comparison (posi-
tive, comparative, superlative.) 

German Chancellor Otto von Bismark signed 3 peace treaties, served under 
3 emperors, waged 3 wars, owned 3 estates, and had 3 children. He also organ-
ized the union of 3 countries. His family crest bore the motto: In trinitate forti-
tudo (In trinity, strength). There is a German saying: Alle giite Dinge sind Drei 
(All good things come in 3s). 

With this diversion, Dr. Googol would like the most erudite among you to 
consider 3 fiendishly difficult problems dealing with the number 3 in some odd 
way or another. If you find any number nerd able to solve all of these, Dr. 
Googol invites them to join his Three Lovers Club. 

® ® ® 

G R O W T H 

Start with 3 digits: 1, 2, and 3. Each succeeding row repeats the previous 3 rows, 
in order, as you can see from the following diagram. 

1 

3 
123 
23123 
312323123 
12323123312323123 
2312331232312312323123312323123 

What is the sum of digits in row 100? 

® ® ® 
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3 - A T O M S 

Get rid of all the 2s in the previous sequence. Here Dr. Googol has replaced each 
of them with a Fb: 

1 
H 
3 
1 p3 3 
Ffa 31 Fb 3 
31 Rj 3 \b 31 \b 3 
1 Fb 3 Ft 31 pb 331 Fb 3 f i 31 Fb 3 
p3 3 p3 31 3 Ra 31 Ri 31 R3 3 Ra 3 p3 331 p3 3 p3 31 Fb 3 

Notice that in the last row of this diagram, there are 3 different atomic 
species: 31, 331, and 3. How many different species are there in row 30? 

® ® ® 

C L E A V A G E 

When the sequence first hits a 3, it now undergoes an enzymatic cleavage, and 
the digits on the right of the 3 are swapped with the digits on the left. (If the 
digit appears in the rightmost place, as in 123, nothing is swapped because noth-
ing appears to the right of the 3.) For example: 

1 
2 
3 
123 
23123 now becomes 12323 
312312323 now becomes 123123233 

Now go back to the previous "atom question" and try to find an answer. 

0 For solutions, see "Further Exploring." 
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Zen Archery 

The Buddha, the Godhead, resides quite as comfortably in the circuits of 
a digital computer or the gears of a cycle transmission as he does at the 
top of a mountain or in the petals of a flower; to think otherwise is to 

demean the Buddha—which is to demean oneself. 
—Robert Pirsig, Zen and the Art of Motorcycle Maintenance 

Dr. Googol was climbing Mount Huascaran, the highest mountain in Peru, 
seeking enlightenment from a Zen master who had been living in a mountain 
cave for years. After several hours, Dr. Googol found him sitting on a stone 
throne. 

Dr. Googol bowed. "Sir, I seek enlightenment." 
He nodded, handed Dr. Googol a bow and arrow, and pointed to an unusu-

al target hanging on the wall (Figure 123.1). "With 5 shots, hit 5 different num-
bers on the target that total 200." 

Dr. Googol stepped back. "You've got to be kidding." 
The monk stared. "You have 1 minute." 
What are Dr. Googol's 5 shots? How long did it take you to solve the prob-

lem? 

® ® ® 

The archery master also gave Dr. Googol another problem (Figure 123.2). 
"There are 3 concentric circles of numbers on this target. Start at the outside row 
and hit a number. Go to the middle ring and hit a number. Go to the inner ring 
and hit a number. The sum for your numbers must be 100. Moreover, as you go 
from outer to inner ring, your selected numbers must keep increasing." 

What are the numbers Dr. Googol must give to the Zen master? 
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123.1 Zen archery. Hit 5 numbers for a 
total of 200. (Drawing by Brian Mansfield.) 

123.2 Zen archery. Hit 3 numbers to total 
100, given the rules described in the text. 
(Drawing by Brian Mansfield.) 

$ For solutions, see "Further Exploring." 
S See [www.oup-usa.org/sc/0195133420] for a computer program to solve 

this class of problem. 

C h a p t e r 124 

Treadmills and Gears 

A rock pile ceases to be a rock pile the moment a single man contem-
plates it, bearing within him the image of a cathedral. 

—Antoine-Marie-Roger de Saint-Exupery, Flight to Arras 

Dr. Googol is quite an inventor. During his last visit to coastal Peru, he invent-
ed the exercise device shown in Figure 124.1. He even received U.S. Patent 
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5767852 for this ingenious machine. 
But does it really work? As Dr. Googol 
runs, will the treadmill turn, or is it 
locked, thereby causing Dr. Googol to 
run off the end and plunge into the 
ocean? What effect does the figure-8 
belt have on the operation of the device? 
Would the operation be different if this 
figure-8 were replaced with a Mobius 
strip (a loop of conveyor belt with a half 
twist)? If the device does not work, how 
would you fix it? Would the device 
function any differently if all belts were 
twisted? 

Dr. Googol also invented a device 
consisting of gears and a thin loop of 
rubber (Figure 124.2). If he turns the 
crank at bottom, will the device move, 
or will it lock up? To solve this enigma, 
note that the gear train might lock if 
1) two gears are trying to spin the same 
gear at different rates or 2) two gears are 
trying to spin the same gear in opposite 
directions. Let's assume that the rubber 
loop in the gear train (on the far left) is 
sufficiently slack so that it will take care 
of any differences in the speed of the 
gear train. Therefore, the only way the 
gear train would be locked is if condi-
tion 2 holds. The $20,000,000 question 
is: "Is the gear train locked?" 

& For solutions, see "Further Ex-
ploring." 

124.1 Will the belts on Dr. Googol's patent-
ed exercise treadmill turn freely or not? 
(Drawing by Brian Mansfield.) 

gears in this contraption turn, or will they 
be locked? (Drawing by Brian Mansfield.) 



Chapter 103 

Anchovy Marriage Test 

Sometimes its a form of love just to talk to somebody that you have 
nothing in common with and still be fascinated by their presence. 

—David Byrne 

Late last autumn, Dr. Googol was dining with his friend Monica in a small cafe 
in the town of La Oroya, Peru. They shared a large anchovy pizza while gazing 
at one another and at the beautiful Peruvian tapestries hanging from the ceiling. 

"Monica, did you know that in the 1950s and 1960s Peru's fishing industry 
flourished madly because of the huge anchovy harvests? These fish were con-
verted into fish meal and oil for export as animal feed." 

"They do taste good. Salty." 
Dr. Googol looked into Monica's dark eyes. "Monica, I've been meaning to 

ask you something." He brought out a large diamond ring. 
"Monica, I will marry you if you can answer the following questions." 
"Oh, Dr. Googol, I thought you'd never ask!" 
Dr. Googol handed Monica 3 slightly soiled pieces of paper: 

Using standard mathematical symbols, 
can you make five 9s equal to 1,000? 

and 

Can you add one small stroke to 
make this equation correct? 

6 + 6 + 2 0 = 6 6 6 

and 

Insert 4 parentheses and 3 different mathematical 
symbols to make the following expression true: 

6 6 6 6 6 6 6 5 = 1 1 1 

Monica looked at the papers reeking of anchovies, then back at Dr. Googol. 
"Francis, why must you always test me?" 
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"I want to make sure we are fully compatible." 
"These are the last math questions I'm going to answer for a long time. You 

certainly have enough questions for that silly book you're working on." 
"Monica, do you mean that you are actually able to answer the 3 questions? 

I've never come upon a person who could handle all of them." 

$ For a solution, and to see Monica's response, see "Further Exploring." 





Further Exploring 

Chapter 2 

Why Don't We Use 

Roman Numerals Anymore? 

To solve the boy's puzzle, simply turn the card upside down. 
Dr. Googol conducted a study of almost 500 people regarding the column connec-

tion problem, and he asked people to time themselves as they attempted to arrive at a 
solution. About 20% of the people said this problem was impossible to solve. Those that 
could solve it usually did so in under 2 minutes, and there was little correlation between 
a person's ability to solve the puzzle and age (ages ranged from 20 to 60). The problem 
is in fact solvable, and the solution is left as an exercise for you. If you cannot solve the 
problem, don't think about it for a day; then return to the problem. Many people find 
it easier to solve this on their second attempt a day later. A computer could probably 
solve this class of problem faster than a human; however, humans have one advantage in 
that they have the ability to discard bad attempts rather quickly. Write a computer pro-
gram to randomly place circles so as to create new and unusual "wiring" problems, or 
you can create new puzzles like this with pencil and paper. 

Psychologists have long been interested in the relationship between visualization and 
the mechanisms of human reasoning. Is it significant that people find the puzzle easier 
to solve after returning to it a day later? Is there any correlation in a person's ability to 
solve the puzzle with gender, profession, IQ, musical ability, or artistic ability? 

This type of problem raises questions that pertain to the mathematical field of graph 
theory—the study of ways in which points can be connected. Graphs often play impor-
tant roles in circuit design. One unusual problem in this field involves the following ques-
tion. How does one arrange sticks in a way such that 4 sticks meet end to end, without 
crossing each other, at every point in a geometrical figure on a flat surface? In Figure F2.1, 



4 sticks meet at each vertex. 
This is the smallest arrange-
ment known, but no one 
knows whether it's the small-
est possible way to make a 
figure with 4 sticks meeting 
at each point! 

® ® ® 

F2.1 The amazing Harborth configuration from the "4 sticks" 
problem. (Pattern discovered by Heiko Harborth; diagram 
adapted from Peterson, I. (1990) Islands of Truth. Freeman: 
New York.) 

Why do clock faces with 
Roman numerals almost 
always show the number four 
as IIII instead of IV? There 
are several possible reasons, 
depending on whom you 
consult. (1) IIII provides 
aesthetic balance since it 
is visually paired with the 
VIII on the other side. (2) 
IV is a modern invention 
that the Romans did not use. 
(3) Romans did not wish to 

offend the god Jupiter (spelled IVPITER) by daring to place the first 2 letters of his name 
on the clock face. This latter explanation is unlikely because the idea of placing I before 
V to represent 4 (which makes numbers shorter to write while making them more con-
fusing for arithmetic) was hardly ever used by the Romans themselves and became pop-
ular in Europe only after the invention of printing. (Also note that some clocks do use 
IV—London's Big Ben is the most famous example.) 

Do you think that civilization's use of Roman numerals comes midway in its devel-
opment? Going back in time, we find that cave-wall numbers were some of the initial 
steps toward primitive computing machines. One of the first true calculating machines 
to help expand the human mind was the abacus, a manually operated storage device that 
aids a human calculator; it consists of beads and rods and originated in the Orient more 
than 5,000 years ago. Archeologists have since found geared calculators, dated back to 
80 B.C., in the sea off northwestern Crete. Since then, other primitive calculating 
machines have evolved, with a variety of esoteric-sounding names, including Napier's 
bones (consisting of sticks of bones or ivory), Pascal's arithmetic machine (utilizing a 
mechanical gear system), Leibniz's Stepped Reckoner, and Babbage's analytical engine 
(which used punched cards). 

Continuing with more history: The Atanasoff-Berry computer, made in 1939, and 
the 1,500-vacuum-tube Colossus were the first programmable electronic machines. The 
Colossus first ran in 1943 in order to break a German coding machine named Enigma. 
The first computer able to store programs was the Manchester University Mark I, which 
ran its first program in 1948. Later, the transistor and the integrated circuit enabled 
microminiaturization and led to the modern computer. 
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In the mid-1990s, one of the world's most powerful and fastest computers was the 
special-purpose GRAPE-4 machine from the University of Tokyo. It achieved a peak 
speed for a computer performing a scientific calculation of 1.08 Tflops. (Tflops stands 
for "trillion floating-point operations per second.") With this computer, scientists per-
formed simulations of the interactions among astronomical objects such as stars and 
galaxies. This type of simulation, referred to as an TV-body problem because the behav-
ior of each of the N test objects is affected by all the other objects, is particularly com-
putation-intensive. GRAPE-4 reached its record speeds using 1,692 processor chips, 
each performing at 640 Mflops. Like a web spun by a mathematically inclined spider, 
each processor had intricate connections with the others. The Tokyo researchers hoped 
to achieve petaflops (1015 or 1 million billion floating-point operations per second) by 
the turn of the century with a suite of 20,000 processors each operating at 50 Gflops. 

NASA, the Defense Advanced Research Projects Agency, and the National Security 
Agency are funding the exploration to support mission-critical areas ranging from 
simulating Earth's climate system to breaking the communications of enemy nations. 
Their "hybrid technology multithreaded" (HTMT) architecture for the next genera-
tion petaflop computer is a mix of emerging technologies including helium-cooled 
superconducting processors, memory chips with onboard processing capabilities, an opti-
cal communication network, and holographic storage. (For more information, see: Cohen, 
J. (1998) Mix of technologies spurs future supercomputer. Insights (NASA). July, 6: 2-10.) 

GRAPE-4 was certainly much more expensive than the abacus or Napier's bones, but 
also much faster! 

Chapter 3 

in a Casino 

The answer is 1.2 centimeters. The ruler does not help you, but the employee was wise 
in offering Dr. Googol this distraction. If you disregard the ruler before your minute is 
up, you may brilliantly realize that the measurement is reduced by l/13th, because 4 
cards are removed from 52, and then you can quickly do the necessary mathematics and 
subtract 0.1 from 1.3. Try this on some friends—few will be able to solve it quickly. 

To make the problem more difficult for your friends, start by telling them that the 
deck without Kings is 1.2 cm thick. Next ask your friends, "If the gladiator produces 
four Kings and adds them to the deck, how thick is the deck?" 

Still not sufficiently difficult? How thick will the deck be if the Queens abscond with 
all other cards that show a prime number on their face? (An integer greater than 1 is a 
prime number if its only positive divisors [factors] are 1 and itself.) 

How many consecutive digits of pi (3.1415 . . . ) can you display with a deck of 
cards? (See Chapter 96 for fractal sequences based on cards.) 
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Chapter 4 

The Ultimate Bible Code 

This problem was discussed by Martin Gardner in the August 1998 Scientific American. 
Gardner's wonderful "Mathematical Games" column began in the December 1956 issue 
and ran for more than 25 years, providing a whole library of Scientific American puzzle 
books. 

In this Bible code puzzle, Gardner points out that each chain of words ends on God. 
This answer may seem miraculous, but it actually is the result of the "Kruskal count," a 
mathematical principle first noted by mathematician Martin Kruskal in the 1970s. 
When the total number of words in a text is significantly greater than the number of let-
ters in the longest word, Gardner notes, it is likely that any 2 arbitrarily started word 
chains will intersect at a keyword. After that intersection point, the chains become iden-
tical. As the text lengthens, the likelihood of intersection increases. 

Dr. Googol welcomes any other "miraculous" examples of texts with these kinds of 
properties. Can you discover similar examples using various literary or religious works? 
In a personal communication to Dr. Googol, Martin Gardner notes that if the Krukal 
count is applied to the verse of Exodus, the count ends on man. (This problem was first 
considered by John Paulos.) 

Chapter 5 

How Much Blood? 

Here are some additional sickening challenges for you to consider. So far, none of Dr. 
Googol's colleagues have provided reasonable answers. Can you? 

® Compute the volume of body fluid for an average fish. What size container would 
be needed to contain all the blood of all the fishes in the world? 

© Today, is there more monkey blood in the world or more human blood? Ten thou-
sand years ago, was there more monkey blood in the world or more human blood? 

© Today, is there more insect blood in the world or more human blood? What size 
container is required to store all the insect blood in the world? 

© If all human intestines were tied end to end, would they be able to stretch a dis-
tance equivalent to the distance from the Earth to the Moon? ("Oh, Dr. Googol, 
you are a gross human being for asking this.") 
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Chapter 9 

Where Are the Ants? 
Why not first try simulating this on a computer? You can build your own computerized 
ant farm through which ants can travel by defining a map of tunnels and chambers. 
Next have your simulated ants crawl through the tunnels using a "random walk" proce-
dure. For example, start with 10 ants described by their (x,y) positions in the ant farm. 
Have the computer draw each ant as a little black circle, or as a triplet of circles to rep-
resent the head, thorax, and abdomen. For each increment in time, move the ants a ran-
dom short distance. If an ant bumps into a wall, reflect it back into the tunnel or cham-
ber. You can make the simulation easier to program on a computer by representing the 
chambers and tunnels as squares connected by straight, thin tubes. Those of you with-
out computers can accomplish this simulation by using dots on graph paper and by 
throwing dice to control the ant's movements. 

In which chamber do the most ants reside? To solve this problem theoretically, we 
assume that the ants walk randomly. In this sense, they behave like randomly diffusing 
molecules in a gas. Therefore, the number of ants in each chamber is proportional to the 
area of the chamber. The nature of the interconnecting tunnels should not matter if you 
give the diffusing ants sufficient time to come to an equilibrium state. In other words, 
in Figure 6.1 most ants will reside in chamber C, the chamber with the largest area. 
(Actually, just about as many ants will reside in the upper region outside the connected 
chambers, because this region has an area nearly the same as C.) 

Are you able to simulate this using a computer? What happens if the ants are differ-
ent sizes and move at different speeds, or if an ant's behavior in a chamber is affected by 
the density of ants in the chamber, or if they leave odor tracks behind them for other 
ants to follow, or if an ant can't change directions when in a tube? There are dozens of 
interesting experiments to try. They're not only good fun but will teach you some fun-
damental lessons about the diffusion of particles under different conditions. 

Dr. Googol has been told that the following terms are trademarked by Uncle Milton 
Industries: Ant Farm, Ant Farmers, Ant Farm Village, Ant Way, and Ant Port. You can 
purchase already assembled, low-cost ant farms from Uncle Milton Industries, Culver 
City, CA 90232. The term Ant City is a trademarked name of another ant-enclosure 
manufacturer: Ant City, Natural Science Industries, Far Rockaway, NY 11691. 

Chapter 7 

Spidery Math 
Figure F 7.1 is a diagram showing the 6 gaps left by the hallucinating spider. The answer 
to the question regarding the smallest and largest spider numbers for an arbitrary (n,m) 
web is still a mystery to mathematicians. However, James Doyle from South Orange, 
New Jersey, believes that for the (4,3) web, the largest spider number is 322. He arrived 
at this number by placing 1 gap on each of the 3 circles and placing the fourth gap on 
any 1 of the circles in the section to the immediate left or to the immediate right of the 
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other gap on that circle. The smallest spider number for a (4,3) web appears to be 240. 
You can arrive at this solution by placing 1 gap on each of the 4 straight lines between 
the center point and the first circle. The largest spider number for the (2,2) web is prob-
ably 54. (Place 3 gaps on one circle and 1 gap on the other circle.) The smallest spider 
number for the (2,2) web appears to be 32. (Place 2 gaps on each of the 2 straight lines, 
and 1 gap on each of the 4 sides of the center point.) 

N l l X ' ^ 

5 7 1 \ ) 

11 

13 ^ X 9 \ 
\ \ 

18/ \ \ 

\ \ 
1 3 

13 

11 

C JlO JlO 4 

y/ / 
- i V 

F7.1 Solution f o r s p i d e r math—showing 6 g a p s l e f t 
by t h e hal lucinat ing sp ide r . 

Chapter 8 

Lost in Hyperspace 

Despite the pitifully little information given, we can calculate the answer: 1,800 light-
years. Here's how. When the starships first meet, half of the entire path has been trav-
eled, and this is equal to 800 light-years (what the Enterprise traveled) plus X (what the 
Excelsior traveled). After this meeting, they continue traveling until they meet again. 
During this second part of the journey, an entire path has been traveled, and this entire 
path is equal to 1600 + 2X. Notice that during the second part of the journey, each ship 
covers twice the distance it covered during the first part of the journey. This means 
2X= 200, and the entire circuit is 1,600 + 200 = 1,800 light-years. 

The shape of the track, including a 3-D track, should not matter provided that the 
clockwise and counterclockwise paths between the Enterprise and the Excelsior are the 
same length. 
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Chapter 9 

Along Came a Spider 

M For the first problem, note that Mr. Ten cannot have 10 legs, so he must have either 
8 or 9 legs. Because the spider with 9 legs replies to Mr. Ten's remark, Mr. Ten can-
not have 9 legs. Therefore Mr. Ten has 8 legs. Now consider Mr. Nine. He cannot 
have 9 legs, because this would match his name. Mr. Nine has 10 legs. 

M For the second problem, 1 insect is sufficient. Unwrap 1 insect from the web 
labeled "flies and mosquitoes." Say that it's a fly. Because each web is labeled incor-
rectly, the web cannot be the "flies and mosquitoes" web, and therefore it must be 
the fly web. The web labeled "mosquito" must contain mixed insects, and the web 
labeled "flies" must actually be the mosquitoes web. 

M Here is an unsolved problem on which you can work for hours. There are 4 webs 
labeled "flies and mosquitoes," "mosquitoes and ants," "ants and wasps," and "just 
wasps." All the labels are incorrect. How many insects do you have to unwrap to 
correctly label the webs, and how do you do it? Dr. Googol believes the answer is 
3. Can you confirm his suspicion? 

Chapter 10 

Numbers beyond imagination 

Before showing you the results of the Big Number Contest, Dr. Googol would like to 
digress and give a background on large numbers. The term googol is used to designate a 
very large number: 10 raised to the power of 100, or 1 followed by 100 zeros. 

10000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

American mathematician Edward Kasner popularized this number in the 1930s. 
Most scientists agree that if we could count all the atoms in all the stars we can see, we 
would come up with less than a googol of them. Interestingly, the name googol was 
invented for this number by Kasner's 9-year-old nephew. The same youngster also 
invented the term googolplex for an even higher number: 1 followed by a googol 0s. Our 
limited brain architecture makes it difficult to comprehend numbers such as these. We 
have not needed to evolve this capability to ensure our survival. However, just as chil-
dren slowly become able to name and appreciate larger and larger numbers as they grow, 
civilization has gradually increased its ability to name and deal with large numbers. 

Which number is larger: the number of possible chess games (which Dr. Googol 
denotes by A), or the number of trials needed for a monkey to type Shakespeare's Hamlet 
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by random selection of keys (expressed as 1 chance in B trials)? How do these values 
compare with the number of electrons, protons, and neutrons in the universe, C, or with 
Skewes's number D (which is one of the largest numbers that has occurred in a mathe-
matical proof)? The values of these numbers are listed in the following. 

Chess number: A = LO10™5 

Hamlet number: B = 35 37'000 which is about equal to 10 4 0 0 0 0 

Universe number: C= 10 79 

1034 . 101000 

Skewes's number: D = 1010 (revised in 1955 to have the value D = 101(> ) 

Mathemetician G. H. Hardy called Skewes's number "the largest number which has 
ever served any definite mathematical purpose in mathematics." Hardy determined that 
if one played chess with all the particles in the universe (which he estimated to be 10 87), 
where a move meant simply interchanging any 2 particles, then the number of possible 
games was roughly Skewes's original number: 

1 A 1 0 100000000000000000000000000000000 

A recent mathematical thesis did even better than large numbers! In his book Math-
ematical Mysteries, Calvin Clawson reports that the number of kinks in the core of an 
"embedded tower" is roughly 

E = 10i<>10 

Now that's a big number! The point is that today large numbers such as these are 
often contemplated, but this is a relatively recent development in human history. For 
example, in biblical times, the largest number expressed as a single word was 10,000. 
This occurs in the ancient Hebrew version of the Old Testament as the word r'vavah. 
The word for million was an Italian invention of the 13th century, and the English word 
billion was coined in the 17th century (largely as a curiosity). 

In evaluating and formulating expressions, it is important to recall some of the 
simple rules of exponentiation. For example, (a m ) n = amn. Test this using some small 
numbers. Also, parentheses are often needed to resolve ambiguities. For example, 3 2 3 =/= 
(3 2 ) 3 . As discussed, a number raised to a negative power is simply 1 over the number 
raised to the positive value of the power. For example, 2~3 is 1/23. The expression a^' 
is usually taken to mean To determine the number of digits N in a value X, recall 
that N= log10X+ 1. 

The numbers discussed in this chapter are often much larger than a googol, yet they 
are constructed with the barest of mathematical notation. In the first part of Dr. 
Googol's Big Number Contest, he asked participants to construct an expression for a 
very large number using only the digits 1, 2, 3, and 4 and the symbols (,), the decimal 
point, and the minus sign. Each digit could be used only once. In a second contest, the 
contributors could use, in addition to these symbols, any standard mathematical sym-
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bol (such as the factorial symbol, !) to produce a large number. Each symbol could be 
used only once in the mathematical expression. For both contest parts, the final answer 
had to have a finite value. Of the approximately 50 contributors, the 8 top entries 
are listed. 

For Part 1 of the contest, exponentiation is allowed since it does not require a sym-
bol when traditionally expressed. The following are the results for Part 1. 

F I R S T - P L A C E W I N N E R : WALT H E D M A N A N D TIM G R E E R , N E W YORK 

0 3-(o.a-co i-4>) = 3.33(51"000) o r 3 - 3 5 x io69*9 

This number roughly corresponds to 3 to the nth power where n has approximately 
6990 digits. The number of cubic inches in the whole volume of space comprising the 
observable universe is almost negligible compared to this quantity. 

S E C O N D P L A C E : D I A N A D L O U G H Y , N E W Y O R K 

(.l)-<43a> = 1 x 10* where x = 4 3 9 ~ 1 x 101 9 

This second-place answer has 1 x 1019 digits. (Note: Later in the course of her exper-
imentation Diana discovered that 342 is 1 decimal place larger than 432 so that her 
answer can be changed to = 1 x 1019 where x = 342, which is roughly equal to 
1020.) 

T H I R D P L A C E : R O D D A V I S , N E W Y O R K 

2 3 " (has 1.0979 x 1019 digits) 

F O U R T H P L A C E : R O D D A V I S , N E W Y O R K 

3 4 " = 3 C 4 " ) = 3 4 3 9 8 0 4 6 5 1 1 1 0 4 ( h a s 2 - 1 x 1 0 1 8 d i g i t s ) 

This number roughly corresponds to 3 to the «th power where n has approximately 
6990 digits. The number of cubic inches in the whole volume of space comprising the 
observable universe is almost negligible compared to this quantity. 

F I F T H P L A C E ! D I A N A D L O U G H Y , N E W Y O R K 

(.l)<-438) = 1 x 10432 (h a s 433 digits) 

S I X T H P L A C E : M A N Y P E O P L E F O R T H I S 2 0 I - D I G I T E N T R Y 

3 4 3 1 = 7.37986 x 10 3 0 ° 

Submitters: Gary Hackney, Erik Tkal, Mike Shreeve, and Christine Wolak, among others. 

S E V E N T H P L A C E : M I K E O T T , T O R O N T O 

3(4< 3 + ,>) = 2 2 5 6 = L 1 x 1 0 7 7 ( h a s 7 8 d i g k s ) 
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Note: Technically this answer should be disallowed since the plus sign was not 
allowed in the contest rules. 

E I G H T H P L A C E : W . G U N N , N O R T H C A R O L I N A 

314a (has 63 digits) 

Can you beat the first-prize winner in this contest? 
To create the prize-winning answers for the second part of the contest, contributors 

often placed factorial signs, denoted by the ! symbol, at the end of the expressions list-
ed above. (Recall that, for example, 4 ! = 4 x 3 x 2 x 1.) For those of you who would 
like to evaluate the huge results obtained with factorial symbols, the following formulas 
may be helpful: n\ ~ J2jt~n n"e~n and ln(«!) ~ [»ln(»)] -n. The second-prize winner 
for this part, Dave Challener from New York, also used a gamma function symbol in the 
front of the first solution in Part 1. For positive integers, T(n + 1) = n\ Note that, in gen-
eral, T(x) = J^ t* ' 1 e~'dt,x > 0 or alternatively, ^ = xe<xX\m^{{\ + m)e~xm} where y 
is Euler's constant. 

Mike Shreeve from Atlanta was the first-place winner. His answer made use of a sec-
ond-order Ackermann's function (as described in Aho's book in "Further Reading"), 
which can be expressed by A„ = 2A(»-n with A({)) = ]. The sequence progresses as fol-
lows: 1, 2, 4, 16, 64000, 264'000, . . . . Mike Shreeve believes that this function grows 
faster than any other named function. As big as the gamma answer is, it is smaller than 
v4(4 + 3 + 2 + l). Mike concluded his note to Dr. Googol with the words "I don't even 
want to think about A (3^2'M)." 

Note that James Hunter's and Joseph Madachy's fascinating book Mathematical 
Diversions lists the expression for Contest l's first prize as an example of a very large 
number. They note that this number is 3 to the «th power where n has approximately 
6,990 digits. The number of cubic inches in the whole volume of space comprising the 
observable universe is almost negligible compared to this quantity. 

Let's end this section with some other curiosities and large numbers. One of the 
largest individual numbers that occurs naturally in a theorem is 

8080 17424 79451 28758 86459 90496 17107 57005 75436 80000 00000 

This is the order of the so-called Monster simple group. An example of a finite 
group is a collection of integers from 1 to 12 under the operation of "clock arithmetic," 
so that, for instance, 9 + 6 = 3. The concept sounds simple, but it gives rise to a math-
ematical jungle. For decades, mathematicians have tried to classify all the finite groups. 
One of the strangest groups discovered is the "Monster group," which has over 1053 

elements and a little-understood structure. For a background on this number, see: 
Gorenstein, D., Lyons, R., and Solomon, R. (1994) Mathematical surveys and mono-
graphs: the classification of the finite simple groups. The American Mathematical 
Society: New York. To better understand how symmetries of geometric objects form the 
elements of finite groups, and how a particular string theory, when applied to a folded 
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doughnut in 26 dimensions, has more than 1053 symmetries and produces the Monster 
group, see: Wayt, W. (1998) Monstrous moonshine is true. Scientific American, Novem-
ber, 279(5): 40-41. 

Although Skewes's number, mentioned earlier in this section, is often thought to be 
the largest number ever used in a mathematical proof, there is actually a more recent 
record-holder. Graham's number is an upper bound from a problem in a part of com-
binatorics called Ramsey theory. Graham's number cannot be expressed using the con-
ventional notation of powers, and powers of powers. Let Dr. Googol try to explain it 
using the symbol #. 3#3 means 3 cubed, and in general a#b = ab. 3##3 means 3#(3#3). 
3###3 = 3##(3##3). 3####3 = 3###(3###3). Consider the number 3### . . . ###3 in 
which there are 3####3 "#" signs. Next construct the number 3### . . . ###3 where the 
number of # signs is the previous 3### . . . ###3 number. Now continue the process, 
making the number of # signs in 3### . . . ###3 equal to the number at the previous 
step, until you are 63 steps from 3####3. This is Graham's number, which occurred in 
a proof by Ronald L. Graham, as described by David Wells. 

The Moser is Dr. Googol's favorite huge number. One way of making incredibly 
large finite numbers is through repetition. The Moser (presumably named after mathe-
matician Leo Moser) can be computed as follows: Define n\ to be n". This means 21 = 
22 = 4, and 31 = 33 = 27, etc. If we add more line segments, we find: 2111 = 22" = 411 = 
441 = 25 61 = 256256. Now, define n< (n followed by a wedge) to be n followed by n line 
segments. So 3< = 3111 = 2711 = 27271 = (27A27)A(27A27). (Here the A represents expo-
nentiation.) What a large number! But hold on. We can continue! n followed by a tri-
angle is the same as n followed by n wedges; n followed by a square is the same as n fol-
lowed by n triangles; and, in general, n followed by a k + 1 sided polygon is the same 
as n followed by n sided polygons. Let's just see what 2(A) is: 

2(A) = 2 « = 2II< = 4I< = 256< = 256111 . . . 256 lines . . . lllll 

This is an unimaginably large number, which we'll call Clinton in honor of our 
recent president. Notice that 2(D) = 2(A)(A) = Clinton(A) = Clinton«< . . . Clinton 
wedges . . . < « = something enormous (which we may call Schwarzenneger in honor of 
the enormously muscular movie actor). The Moser is defined as 2(Clinton-gon), a num-
ber so large that the gods will weep over it. Mathematician Matt Hudelson says that it 
is "easy to see that the last digit in the base 10 expansion of the Moser is 6." How does 
he know? What's its second-to-last digit? 

This chapter also discussed large numbers such as the Hamlet number and the chess 
number. Here are a few other large numbers—all less than a googol. The ice age number 
(1030) is the number of snow crystals necessary to bring on the ice age. The Coney 
Island number (1020) is the number of grains of sand on the Coney Island beach. The 
talking number (1016) is the number of words spoken by humans since the dawn of 
time. It includes all baby talk, love songs, and congressional debates. This number is 
roughly the same as the number of words printed since the Gutenberg Bible appeared. 
The amount of money in circulation in Germany at the peak of inflation was 
496,585,346,000,000,000,000 marks, a number very similar to the number of grains of 
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sand on the Coney Island beach. The number of atoms in oxygen in the average thim-
ble is a good deal larger: 1,000,000,000,000,000,000,000,000,000. The number of 
electrons that passes through a filament of an ordinary light bulb in a minute equals the 
number of drops of water that flow over Niagra Falls in a century. The number of elec-
trons in a single leaf is much larger than the number of pores of all the leaves of all the 
trees in the world. The number of atoms in this book is less than a googol. The chance 
that this book will jump from the table into your hand is not 0—in fact, using the laws 
of statistical mechanics, it will almost certainly happen sometime in less than a googol-
plex years. 

Chapter 11 

Cupid's Arrow 

Figure F l l . l shows one solution that will win you a heart. Dr. Googol is aware of 5 
other solutions. Can you find any of them? 

Chapter 12 

Poseidon Arrays 

Here are the only other known solutions. In each of these 3 arrays, all 9 digits are used 
exactly once. 
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2 1 9 

4 3 8 

6 5 7 

2 7 3 

5 4 6 

8 1 9 

3 2 7 

6 5 4 

9 8 1 

Notice that for each of these solutions, the sum of the numbers in each row is a con-
stant. The sum for row 1 is 12, the sum for row 2 is 15, and the sum for row 3 is 18. 
And the sums all differ by the same constant, 3. Dr. Googol wonders if this property 
may be generalized to larger arrays or to arrays using numbers in different bases. (Dr. 
Googol has only considered the numbers in base 10.) 

Here's a related problem. Start with the number in the last row (e.g., 657 or any other 
solution you may find) and continue to form another 3-by-3 matrix using the same rules 
with the new starting number. In other words, the number in the second row must be 
twice the first. The third row must be 3 times the first. However, for this problem you 
may truncate any digits in the beginning. For example, 1,384 would become 384. Keep 
going. How many arrays can you create before it is impossible to continue? Again, each 
digit must be used only once in each matrix. 

Chapter 13 

Scales of Justice 
By assigning Ant = 4, Cockroach = 3, Grasshopper = 7, and Wasp = 1 we find 1 possi-
ble solution of "3 Wasps." This assignment makes the sums on each side of the scale 
equal. How many other solutions are there? If there were 1 cockroach on the left, could 
there ever be anything other than wasps on the right? If there were multiple cockroach-
es on the left, is it possible to balance the scale with ants or grasshoppers by using fewer 
of the heavier insects? 

Now for an odd aside. Did you know that outside of Europe and North America, 
most people on Earth practice entomophagy? They eat insects. In parts of Africa, more 
than 60% of dietary protein comes from insects. Grubs and caterpillars have a lot of 
unsaturated fats. Dr. Googol once attended a banquet hosted by the New York 
Entomological Society where he discovered some interesting appetizers: chocolate crick-
et torte, mealworm ganoush, sauteed Thai water bugs, and waxworm fritters with plum 
sauce. In Colombia, roasted ants are eaten like popcorn. Honeypot ants, with their 
transparent abdomens distended with peach nectar, are delightful sweets. 
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Chapter 14 

Mystery Squares 

There appear to be several solutions to Dr. Googol's puzzle. For example: 

13 7 

8 11 

9 (i 

5 10 

sum = 22 

Another solution is: top (1,7,12,2), left (1,6,11,4), right (2,8,9,3), bottom 
(4,5,10,3). Another is: top (1,11, 8, 2), right (2, 12, 5, 3), left (1, 7, 10, 4), bottom (4, 
6, 9, 3). Note that in the solution 

7 IS 

11 8 

(i » 
10 5 

we find the sets (1, 2, 3, 4), (5,6,7,8), and (9, 10, 11, 12) sorted in clockwise order. Can 
you extend the puzzle to ones in which more numbers are used along the edges of 
the square? 

Chapter 16 

Jerusalem Overdrive 

If you couldn't solve the first problem, work in teams until you solve it. For the second 
problem, here is a way to arrange the religions so that there are only 2 of the same reli-
gions in each row and column: 



Further Exploring © 295 

•fr •fr G 
G G 

Try these problems on a few friends. Dr. Googol has found that many people have 
difficulty visualizing the solution. 

Amazing Latin squares: The Jerusalem Overdrive problem can be thought of as a 
special problem in the remarkably rich mathematical area concerned with Latin squares. 
Latin squares were first systematically developed by Swiss mathematical Leonhard Euler 
in 1779. (Euler's mental powers were so great that his capacity for concentrating on 
math problems did not decline even when he became totally blind.) He defined a Latin 
square as a square matrix with n2 entries of n different elements, none of them occur-
ring twice or more within any row or column of the matrix. The integer n is called the 
order of the Latin square. Recently the subject of Latin squares have attracted the seri-
ous attention of mathematicians because they are relevant to the study of combinatorics 
and error-correcting codes. Here's an example of the occurrence of a Latin square when 
considering the equation z = ( 2 x + y+ l ) modulo 3: 

0 1 2 

0 1 2 0 

l 0 1 2 

2 2 0 1 

y 
To understand this table, consider the case of x = 2 and y = 2 which yields 2x + y + 

1 = 7. 7 mod 3 is 1 because 7/3 has a remainder of 1. This 1 entry is in the last row and 
column of this Latin square. 

Here's an interesting example of an order-10 Latin square containing 2 subsquares of 
order 4 (consisting of elements 1, 2, 3, and 4) and also one of order 5 (with elements 3, 
4, 5, 6, 7), the intersection of which is a subsquare of order 2 (with elements 3, 4): 
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1 9 2 8 0 6 7 4 5 3 
8 2 1 0 9 7 5 3 4 6 

2 1 0 9 8 5 6 7 3 4 

0 8 9 1 2 3 4 6 7 5 

9 0 8 2 1 4 3 5 6 7 

5 6 7 3 4 1 2 0 8 9 
6 7 5 4 3 2 1 8 9 0 

7 4 3 5 6 0 9 1 2 8 

3 5 4 6 7 8 0 9 1 2 

4 3 6 7 5 9 8 2 0 1 

Can you create Latin squares with even greater numbers of internal subsquares than 
this? What is the world record for the number of subsquares in an «-by-« Latin square? 

A traversal of a Latin square of order n is a set of n cells, 1 in each row, 1 in each col-
umn, and such that no 2 of the cells contain the same symbol. Fascinatingly, even when 
a Latin square has no traversals, it is very often the case that partial traversals of (n - 1) 
elements occur in it. Do all Latin squares have a partial traversal of n - 1 elements if the 
squares do not contain a true traversal? Here is an example of a Latin square with an n 
- 1 traversal. (Dr. Googol has marked the traversal path with thick boxes): 

m 6 3 7 4 9 2 5 0 8 

2 [ j»n 4 6 5 8 3 1 9 7 

3 9 fTTJl 
| 5 1 0 1 7 4 2 8 6 

4 8 1 i n 2 6 5 3 7 0 

5 7 2 8 m 0 1 4 6 9 

6 1 8 2 9 rjji'i 7 0 5 3 

7 5 9 1 0 3 1 O I 6 4 2 

8 4 0 5 6 2 9 m 3 1 

9 3 6 4 7 1 0 8 Ian 5 

0 2 7 3 8 5 6 9 I 4 
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Now consider an amazing Latin cube. You can think of it as a stack of file cards. Each 
card contains n rows and n columns. Each number occurs exactly once in each row, once 
in each column, and once in each row and column in the third dimension: 

0 1 2 

1 2 0 

2 0 1 

1 2 0 

2 0 1 

0 1 2 

2 0 1 

0 1 2 

1 2 0 

Can you design a 4-dimensional Latin hypercube? Note that computers are much 
faster than humans in finding errors in Latin squares, cubes, and hypercubes. So, if you 
are not sure if the Latin square you've written down is correct, check each row and col-
umn with a computer program (see [www.oup-usa.org/sc/0195133420]). Have your 
computer create 4-by-4 Latin squares by randomly selecting values for the squares and 
then checking if the result is a Latin square using the algorithm in the program code. 
How long does it take your computer to find a Latin square? Several minutes? Hours? 
Dr. Googol's IBM IntelliStation computer took just seconds to find 3-by-3 Latin 
squares. For large squares, this random method is not very efficient. 

H For a C code fragment used to scan for Latin squares, see [www.oup-usa.org/sc/ 
0195133420]. 

Chapter 17 

The Pipes of Papua 

Why would some obscure tribes in a remote New Guinea rain forest be sounding this 
sequence upon their wooden flutes? Dr. Googol might have doubts as to the accuracy of 
Omar's story, but the rhythm pattern is certainly strange to hear. You may wish to beat 
the sequence out on your desk, or have your computer play the eerie rhythm. If you pre-
fer, you can beat the sequence out on a tabletop with a finger to represent a low tone 
and a pencil to represent a high tone, or you can use short- and long-duration beats. Do 
you hear a pattern? It is strangely compelling, yet it never quite repeats itself in the way 
that most rhythms do. If the sequence is not random, what is its structure? 

Not only do binary numbers provide musical possibilities, they also can yield artistic 
patterns. Graphic patterns produced by binary numbers are so interesting that Dr. 
Googol devotes Chapter 73 entirely to this subject. Interesting information on fractal 
number sequences can also be found in M. Schroeder's Fractals, Chaos, Power Laws. 

For other examples of aperidoic bar codes in mathematics, see Chapter 77 on l±l-
numbers. 

For recent information on the Morse-Thue sequence in many apparently unrelated 
occurrences, see Jean-Paul Allouche and Jeffrey Shallit, "The ubiquitous Prouhet-Thue-
Morse sequence," in Sequences and their Applications: Proceedings of SETA 1998 (New 
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York: Springer, 1999), 1-16. In this paper, the authors provide a survey of the sequence's 
amazing incidence in chess problems, quasicrystal theory, vibrational modes in alloys, 
mathematical physics, combinatorics on words, differential geometry, number theory, 
and the iteration of continuous functions. They also describe how the sequence may pre-
date the work of Thue and Morse, including a description in an 1851 paper by E. 
Prouhet. The authors conclude with the words, "Searching for the many occurrences of 
the Prouhet-Thue-Morse sequence in the literature can be used as a pretext to take a 
delightful stroll through many fascinating areas of mathematics." 

Chapter 18 

The Fractal Society 

Dr. Googol has received numerous mail from readers who experimented with the Fractal 
Fantasies game. For example, Martin Stone from Temple University suggests a distrib-
uted version of the game played over the Internet. He writes, "Imagine a multiuser 
recursive game server dedicated to the fostering of a greater intuitive understanding of 
recursive structures and permutations." David Kaplan from New York University points 
out that the game rules for Fractal Fantasies are similar to those of a medieval game 
called Nine Man Morris played on a different playing board. Paul Miller notes that the 
Fractal Fantasies game was discussed at the Boston chapter of Mensa. He asks, "Can 
pieces of a Googol move out and back (thus forming and reforming the Googol)?" He 
suggests that the Googol pieces be allowed to move only if there is no other legal move. 
Alternatively, if a player moves a piece out of a Googol, he should not be allowed to 
move it back into the same place on the next turn. Michael Currin from the University 
of Natal (South Africa) suggests that the game be adapted to allow more than 2 players. 
Finally, Brian Osman, a 15-year-old from Massachusetts, writes: 

1 greatly enjoyed your description of the Fractal Fantasies in the March 1993 issue of 
BYTE magazine. However, I point out that some of what you said is almost impossi-
ble! I've calculated the number of rectangles and "spots" for every size board, using the 
formula: [2N*') -1 , where /Vis the degree of the board. From this, one can find the 
number of spots by simply multiplying by 6. Once you have this number, divide by 
2 and subtract 2 to find the number of stones for each player. You have stated that 
grand masters have been known to use boards of degree 20. I've checked my calcula-
tions repeatedly, and this would require each player start with 6,291,451 stones! 
Assuming each opening move (only those to place your pieces) took 2 seconds, the 
players wouldn't be able to move until 291.2708797 days after they started the game. 
Am I missing something, or are your numbers as ludicrous as they seem to me? Please 
don't take offense at this. I still found your article very enjoyable. 
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Chapter 30 

The Triangle Cycle 

Figure F19.1 is a cycle 4 solution known as the Ashbacher solution after its discoverer, 
Charles Ashbacher (personal communication). No one to Dr. Googol's knowledge has 
yet discovered a higher cycle. But considering that this solution uses only multiples of 
7, perhaps there is a higher cycle using multiples of both 7 and 13. 

Here are some additional challenges: 
Select a random number between 

1 and 9. Place it in the lower left cor-
ner of the starting triangle. Can you 
make a cycle 2 triangle cycle? Are 
there solutions for any starting num-
ber you choose? 

What is the largest cycle solution 
that can be found? 

The Fibonacci cycle game can be 
played with 2 people. One player 
writes a Fibonacci number at a vertex 
(e.g., 1, 3, 5, 8, 13 . . . ; Fibonacci 
numbers are defined in Chapter 71). 
The second player writes a Fibonacci 
number at another vertex. The goal is 
digit numbers created by concatenating the digits of connected vertices are also 
Fibonacci numbers. The game continues until a person cannot place a number that 
would form a Fibonacci number. (It helps to have a list of Fibonacci numbers at your 
fingertips as you play!) 

Chapter 20 

iQ-Block 

When Dr. Googol presented this puzzle to Joseph Madachy, editor of Journal of 
Recreational Mathematics, Madachy remarked: 

I say you cannot create a square after removing a single piece and using all the remain-
ing pieces. The area of the complete block is 64. The areas of the 10 pieces are 8, 5, 
7, 7, 8, 6, 5, 4, 6, 8. Removal of one of these pieces is simply insufficient to produce 
the next smallest square (7 x 7 = 49 area). I haven't tried it, but it might be possible 
if 2 pieces are removed. 

Charles Ashbacher, book editor of the Journal of Recreational Mathematics, wrote 
a computer program that found over 1,000 solutions rather quickly! He believes the 

1 

9 / « 
/ \ 2/\ 4 / \ 

/ 4 ^ 2 \ 

A ' 4 
8 9 

F19.1 A solution to the Triangle Cycle. 

to continue placing numbers so that the multi-
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F20.1 Joseph Lemire's novel solution with a 

square cutout. The removed piece is shown 

in shaded form in the middle of the 

"square" formed by the other pieces. There 

are probably other solutions with square 

holes. Can you find any? 

number of solutions is in the tens of thousands. Subsequent research by Joseph E. 
Lemire suggests that it is possible to remove a single piece and create an amazing square 
outline (actually, a square cutout) as illustrated in Figure F20.1. The removed piece is 
shown shaded in the middle of the square formed by the other pieces. Charles also wrote 
to Dr. Googol that he found 2 ways to create a square after 2 pieces are removed. His 
constructions were found via a computer, and it seems likely there are others. 

Chapter 21 

Riffraff 

The trumpeter is playing what mathematicians call a Morse-Thue sequence, which was 
discussed in Chapter 17. Whenever a smiley face occurs, it is replaced in the next phrase 
by a smiley face followed by a sad face; sad faces are replaced by a sad face followed by 
a happy face. Notice that every other phrase is symmetrical—a palindrome. 

For the trombone player, each 'ZD is replaced with a closed file followed by an open 
file (CllEzy), and each closed file CD is replaced with an open file G 7 . 

The violinist is simply marking every prime number (numbers divisible only by 
themselves and 1) with a short note. So the second, third, fifth, seventh (and so on) are 
short: 

0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 . . . 

I I I I I I I I I I I I I I 

2 3 5 7 11 13 17 19 23 29 31 37 41 43 

The saxophonist is just multiplying the digits of each number to get the next. 
If you thought all of these were too difficult to solve, don't even think about attempt-

ing the next few brain bogglers. Instead, give them to your worst enemy. The following 
are some incredibly difficult number sequences to ponder—so difficult that rarely any-
one but Dr. Googol could solve them. Solutions follow. Can you supply the missing 
number in the following sequence? 
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10, 11, 12, 13, 20, ?, 1000 

If not, don't be disappointed. Exactly 99.3% of Dr. Googol's colleagues could not 
solve this, even after considering the sequence for days. Perhaps looking at another 
sequence generated by the same rules might help: 

10, 11, 12, 13, 14, 20, 22, ?, 1010 

Not yet? Perhaps an even longer sequence, generated using the same rules, will final-
ly clue you in: 

10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 25, 32, 101, ?, 10001 

Ready for the solutions? For the first 2 sequences, the missing numbers are 22 and 
101, respectively. To create the first sequence, Dr. Googol represented the number 8 in 
different bases, from base 8 to base 2. Can you now solve the third sequence? 

Note: For those of you not familiar with numbers represented in bases other than 10 
(which is the standard way of representing numbers), consider how to represent any 
number in base 2. Numbers in base 2 are called binary numbers. To represent a bina-
ry number, only the digits 0 and 1 are used. Each digit of a binary number represents 
a power of 2. The rightmost digit is the Is digit, the next digit to the left is the 2s 
digit, and so on. In other words, the presence of a 1 in a digit position indicates that 
a corresponding power of 2 is used to determine the value of the binary number. A 0 
in the number indicates that a corresponding power of 2 is absent from the binary 
number. An example should help. The binary number 1111 represents (1 x 23) + 
(1 x 22) + (1 x 21) + (1 x 2°) = 15. The binary number 1000 represents 1 x 23 = 8. 
Here are the first 8 numbers represented in binary notation: 0000, 0001, 0010, 0011, 
0100,0101,0110,0111,...It turns out that any number can be written in the form 
c„bn + cn_ibn~x + . . . c2 b2 + f j bx + cab°, where b is a base of computation and 
c is some positive integer less than the base. 

What is the value of the missing digit in this sequence: 

6 2 5 5 4 5 6 3 ? 

No one has ever gotten this. Do you give up? The solution relates to the number of 
segments on a standard calculator display that are required to represent the digits, start-
ing with 0. 
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Dr. Googol knows that you are finding some of these sequences to be absurd. But that 
does not stop him from presenting you with more. The following are fascinating num-
ber-sequence problems sent to Dr. Googol by readers. They are all nearly impossible for 
mere mortals to solve. Can you supply the missing numbers denoted by a ? symbol? 

® Diep number sequence: 2, 71, 828, ?, . . . 

© Silverman number sequence: 3, 4, 5, 7,11, 13,17, 23, 29, 43, 47, 83,131,137, 
359, 431, 433, 449, 509, 569, 571, 2,971, 4,723, 5,387, ? . . . 

© Lego sequence: 1, 3, 7, 19, 53, 149, 419. . . . What could this sequence possibly 
designate? 

Here are some solutions. Dr. Googol's sequence: Convert between decimal and binary 
representations. For example, 11 (decimal) is 1011 (binary). 1011 (decimal) is 
1111110011 (binary). And so on. The solution to the Diep sequence is 1,828. The *'th 
term of the sequence is the next i digits of e (e = 2.7182818284 . . . ). The Silverman 
sequence lists the indices of the prime Fibonacci numbers. For example, the third, fourth, 
and fifth Fibonacci numbers (F3, FA, F5) are primes. (See Chapter 73 on the "1,597 
problem" for background on prime Fibonacci numbers.) 

The Lego sequence-. Each element a(n) is the number of stable towers that can be built 
from n Lego blocks. 

Chapter 22 

Klingon Paths 

In order to live longest and prosper, the Klingon starts at the 13 on the bottom row. The 
sequence of moves is 13, 1, 10, 12, 23, 16, 7, 5, 6, 0, 11, 2, 8, 18, 15, 24, 17, 20, 4, 3. 
Numerous questions abound. Are there other equally long paths? Are there areas in the 
Klingon world that give rise to longer-lived Klingons? Do certain starting squares have 
a higher probability of yielding older Klingons? For example, do interior squares gener-
ally yield older Klingons than squares on the edge, because the interior squares have 
more neighbors? Can you extend the puzzle to 3 dimensions and higher? Can you 
explore larger worlds such as a 20-by-20 array of squares? How would the puzzle change 
if played on worlds the size of our Earth? Also, what is the shortest path you can find? 

Before leaving this topic, Dr. Googol would like to tell you about simple computer 
programs you can write to explore the mysteries of Klingon paths. For example, the 
BASIC and C programs at [www.oup-usa.org/sc/0195133420] both start by filling a 
grid with random numbers between 0 and 24 or between 1 and 25. (Dr. Googol used 
these programs to generate the Klingon-paths board in Chapter 23, but you can easily 
design worlds by hand.) Next, the programs attempt to find the longest possible path 
for each starting square in the 8-by-8 grid. To do this, the Klingon scans the immediate 
neighborhood of a cell (up, down, right, and left). If the Klingon finds a square with a 
number he never before encountered, he enters that square. The Klingon starts again, 
scanning in 4 directions for a potential move from his new location. The process con-
tinues until the Klingon can no longer find a "safe" square, at which point his coura-
geous life comes to an end. 
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These programs are capable of finding some long-lived Klingons, but are there older 
Klingons lurking in Klingon City? After all, the computer programs did not search for 
every possible path a Klingon could take. For example, once a Klingon found an avail-
able square, he would commit himself to moving in that direction without examining 
every possible path that it could take. (This is a little like real life, isn't it?) 

To see if humans could beat the computer results, Dr. Googol held a grand Internet 
tournament, asking various interested colleagues on the computer networks to find the 
oldest Klingon in several Klingon cities. He also asked if it were possible to design a 
Klingon city in which each starting square would yield the same maximum length. 
Many respondents used pencil and paper to investigate the worlds. To learn more about 
the Internet Klingon Game competition, and fascinating analyses of similar games, see 
my book Keys to Infinity. 

Figure F23.1 shows a solution. For the outer serpent with the numbers 1, 2, 2, 3, 3, 3, 
4, 4, 4, we find: 

Chapter 23 

Ouroboros Autophagy 

Circle 1: 1 2 2 3 3 3 4 4 4 4 

Circle 2: 4 2 2 3 3 3 1 1 1 1 

Circle 3: 0 3 3 2 2 2 0 0 0 0 

Circle 4: 3 5 5 0 0 0 3 3 3 3 

Circle 5: 0 5 5 5 5 5 0 0 0 0 

Circle 6: No solutions (dead end) 

Can you find any other solu-
tions or interesting Ouroboros 
numbers? 

S n a k e ' s B o d y 

F23.1 Ouroboros solution. 
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Chapter 24 

interview with a Number 

Here are the 5 other 4-digit true vampires: 

21 x 60 = 1,260 15 x 93 = 1,395 30 x 51 = 1,530 
21 x 87 = 1,827 80 x 86 = 6,880 

In fact, there are many larger vampire numbers. There are, for example, 155 6-digit 
vampire numbers. Recently, Dr. Googol challenged computer scientists and mathemati-
cians around the world to submit the largest vampire they could find. One such jewel is 

1,234,554,321 x 9,162,361,086 = 11,311,432,469,283,552,606 

John Childs discovered a 40-digit vampire number using a Pascal program on a 486 
personal computer. His amazing vampire number is 

98,765,432,198,765,432,198 x 98,765,432,198,830,604,534 = 
9,754,610,597,415,368,368,844,499,268,390,128,385,732 

As the numbers get larger and larger, how often do you expect to find vampires? Do 
they become more secretive (sparser) or more outgoing (frequent) as you search for vam-
pires up to a googol? The "Further Reading" section lists the latest technical papers on 
vampire numbers. 

Chapter 25 

The Dream-Worms of Atlantis 

Figure F25.1 shows all possible configurations for a 5-segment worm. 

L at end (The Zombies): 

H - r ~ i — n ~lT_ 
V - - " i - v - . ' S - L S ' - ' 

U at end (The Peasants): 

at end (The Lords): 

I 

F25.1 The complete set of worm contortion patterns. 
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F26.1 Can you solve these wheels? After seeing Dr. Googol's wheels, a few colleagues 

sent him their own. These were submitted to him by Davode Crippa, Stephen Kay, 

and Geoff Bailey. 

Chapter 26 

Satanic Cycles 

Note that if Dr. Googol did not constrain the number of times you could use the oper-
ation symbols, it would be possible to formulate various cycles with 1 in them (but not 
0s) simply using a repeated exponential such as l1' = 1. The first wheel falls into this 
category I53 . Similarly, any cycle with 1 and only 1 0 in it can likewise be solved by 
using all exponentials: 01' = 0. The third wheel in Figure 26.2 falls into this category. 
Let's exclude these trivial kinds of solutions from our consideration. 

Dr. Googol's solution for the leftmost hell wheel in Figure 26.2 is 22 x 2/4 =11. The 
other 2 wheels are left as exercises for you. When Dr. Googol presented them to other 
researchers, he was stunned by just how many solutions his wheels had. Here are some 
other possible solutions to the first wheel: 2 1 ' = - 4 + 2 + 2 = 2, 1 x 2 + 2 t 2 x 
4/1 = 12, or 2 x 2 = 4 = 1 + 1 + 2, or 1 + 1 x 2/2 + 2 = 4, or (((l1)2) x 2) x 2 = 4, or 
2 + 2 - 4 + 1 + 1=2, or 4 - 1 = 1 +2x2 /2 , or 1 x 12 x 2 = 24, or 224112 = 224112. 
A few respondents challenged Dr. Googol with wheels of their own devising (Figure 
F26.1). Can you solve these? 

Bicycle wheels from Purgatory: Since there are often many solutions for a single 
wheel, a much tougher problem is to devise wheels for which there are no solutions! Can 
you do it? Of course, as Bill Mayne of Florida State University has pointed out to Dr. 
Googol, for any string of digits around the wheel a . . . z there are always solutions 
involving multiple revolutions of the wheel: n...z=a...z,a...za...z=a...za 
. . . z, etc. (For example, 12,345 = 12,345 is a case of a trivial wheel-revolution solu-
tion.) At a minimum we must either limit the number of cycles to less than 2 or rule 
out such solutions as a special case. 

Dr. Googol leaves this section with a bit of trivia. More than 90 million Americans 
ride bicycles. The longest tandem bicycle ever made is approximately 67 feet long (for 
35 riders) and was built by Pedalstompers Westmalle of Belgium. 
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Chapter 27 

Persistence 

Here are the smallest numbers with various persistences: 

1 10 
2 25 
3 39 
4 77 
5 679 
6 6788 
7 68889 
8 2677889 
9 26888999 
10 3778888999 
11 277777788888899 

Notice the strange abundance of 8s and 9s. Incredible. Why so many 8s and 9s in a 
row? Dr. Googol can see you wondering what number has a persistence of 12. No one 
knows! We do know that there is no number less than 1050 that has a persistence greater 
than 11. Neil Sloane conjectures that there is a number TV such that no number has a 
persistence greater than N. 

It is conjectured that the largest number lacking the digit 1 with persistence 11 is 
77,777,733,332,222,222,222,222,222,222. 

Chapter 28 

Hallucinogenic Highways 

To solve the highway puzzle, start at the word START. Take the road with the sign that 
says 22. Take the road marked with the 17 sign (do not go past the 7 sign). Take the 
road with the 36 sign. Take the road with the 1 sign. Take the road with the 8 sign (do 
not go past the 27 sign). 22 + 17 + 36 + 1 + 8 = 84. One key to this puzzle is to add a 
number only when you go past the sign, but not if you simply travel on a particular 
road. 

Are there other solutions? 
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Chapter 30 

What if We Receive Messages 

from the Stars? 

God's formula: Humans have thought about sending messages to the stats for decades, 
although there has always been some debate as to what the messages should contain. For 
example, in the 1970s, Soviet researchers suggested we send the message 

10 2 + l l 3 + 123 = 132 + 142 

The Soviets called the equation "mind-catching." They pointed out that the sums on 
each side of the equal sign total 365—the number of days in an Earth year. These imag-
inative Soviets went further to say that extraterrestrials had actually adjusted the Earth's 
rotation to bring about this striking equality! Surely it should catch aliens' attention and 
demonstrate our mathematical prowess. 

Dr. Googol finds the Soviet formula arbitrary and not a good candidate to send. 
Rather, he would somehow try to send the most profound and enigmatic formula 
known to humans: 

1 + ei% = 0 

This formula of Leonhard Euler (1707-1783) unites the 5 most important symbols 
of mathematics: 1, 0, Jt, e, and i (the square root of-1) . 

Another beautiful and wondrous expression involves a limit that connects not only Jt 
and e, but also radicals, factorials, and infinite limits. Surely this little-known beauty 
makes the gods weep for joy: 

Chapter 34 

A Ranking of the 5 Saddest 

Mathematical Scandals 

Here are the answers: 

1. Ada Lovelace, daughter of Lord Byron (the poet), and first computer programmer. 
She analyzed and expanded upon Charles Babbage's plans for difference and 
analytical engines. She explained how the machines could tackle problems in 
astronomy and mathematics. While married to William King, she fell in love with 
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mathematician John Crosse and became obsessed with gambling. During the last 
year of her life, Ada's cervical cancer progressed slowly, and her mother took charge 
of her care. When Ada confessed her affair with Crosse, her mother promptly dis-
carded all of Ada's morphine and opium—the only things holding the horrific pain 
at bay—so that Ada's soul would be redeemed. Ada's last days were spent in agony 
as her mother watched but did nothing. 

2. Alan Turing, computer theorist. His code-breaking work helped shorten World 
War II. For this contribution he was awarded the Order of the British Empire. 
When he called the police to investigate a burglary at his home, a homophobic 
police officer suspected that Turing was homosexual. (The Criminal Law 
Amendment Act of 1885 made a male homosexual act illegal.) Turing was forced 
to make a decision. He could either go to jail for a year or take experimental drug 
therapy. His death 2 years after the therapy, in 1954, at the age of 42, was a shock 
to his friends and family. Turing was found in bed. The autopsy indicated cyanide 
poisoning. Perhaps he had committed suicide, but to this day we are not certain. 

3. Kurt Godel, eminent mathematician and one of the most brilliant logicians of this 
century. The implications of his incompleteness theorem are vast, not only apply-
ing to mathematics but also touching on areas such as computer science, econom-
ics, and nature. At Princeton, one of his closest friends was Albert Einstein. When 
his wife Adele was not with him to coax him to eat—because she was in a hospital 
recovering from surgery—Godel stopped eating. He was paranoid and felt that peo-
ple were trying to poison him. On December 19, 1977, he was hospitalized but 
refused food. He died on January 14, 1978. During his life, he had also suffered 
from nervous breakdowns and hypochondria. 

4. Georg Cantor, the creative mathematician largely responsible for a host of extraor-
dinary mathematical ideas such as the theory of infinite sets, transfinite numbers, 
and even fractals. 

5. Alhazen (965-1039), a contributor to the field of mathematical optics. Al-Hakim, 
the ruler of Egypt, became angry with Alhazen when Alhazen made gross errors in 
his ability to predict and control the Nile's flooding. To save himself from execu-
tion, Alhazen pretended to be insane and was placed under house arrest. When he 
was not feigning insanity, Alhazen made important discoveries in optics, describing 
various aspects of light reflection, magnification, and the workings of the eye. 

For more examples of scandal in mathematics, see Theoni Pappas's Mathematical 
Scandals. 
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Chapter 123 

The 10 Most important Unsolved 

Mathematical Problems 

When Dr. Googol asked many mathematicians what is the most difficult area of math to 
understand, and also what is the most important unsolved mathematical problem, they 
always responded with two words: "Langlands philosophy" or "Artin conjecture." As this 
book goes to press, a proof of the Langlands conjecture for function fields may be at 
hand. A field denotes any algebraic structures consisting of objects (or elements) that can 
be added, subtracted, multiplied, and divided according to the rules that govern real 
numbers. For a general description see: Mackenzie, D., (2000) Fermat's Last Theorem's 
first cousin. Science. 287(5454): 792-793. Andrew Wiles 1994 proof of Fermat's last 
Theorem, one of the greatest mathematical achievements of the twentieth century, can 
also be viewed as the completion of a small part of the Langlands program. The key idea 
is that the Langlands program brings together theories that seem to be very different from 
one another. Thanks to Laurent Lafforgue, a number theorist at the Universite de Paris-
Sud, another piece of Langlands program seems to have finally fallen into place. A 300-
page handwritten version of Lafforgue's proof of "Langlands conjecture for function 
fields" has been circulating among mathematicians since the summer of 1999. 

Dr. Googol asked several mathematicians to explain Langlands philosophy to a gen-
eral audience. Alas, dear reader, you will not get your wish. Here is a sampling of replies. 

Allan Adler from Western Kentucky University: 

As nearly as I can tell, no one knows what the Langlands conjecture says, not even 
Langlands. If that is not the case, I would be glad to read a (hopefully, concise) defin-
itive statement of the most recent version of the conjecture. 

My previous assertion about the Langlands conjecture is somewhat tongue-in-
cheek, masking a more complicated state of affairs, like Bertrand Russell's assertion 
that mathematics is the subject in which we never know what we are talking about, 
nor whether what we are saying is true. The main point I am making is that I believe 
the conjecture has undergone a certain amount of modification over the years as more 
has been learned about the problem. My impression is that although they know a lot 
more now about the relevant mathematics and about what to expect from it, I'm not 
sure there is at this moment a clean statement available which one can call the 
Langlands conjecture. 

Bill Dubuque of MIT: 

Alas, to appreciate the ideas in the Langlands program requires at least a Ph.D.-level 
mathematics education. It would be virtually impossible to attempt to convey these 
ideas to an audience less educated. See Oxford's website [www.oup-usa.org/sc/ 
0195133420] for a long list of references to works of expository character which touch 
on topics related to the Langlands program. I'd suggest starting with Shafarevich, 
Gelbart (1984), and Murty—some of which should be accessible to bright math 
undergrads. 
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Jared Weinstein, age 16: 

There are these things called elliptic curves, see? They look like this, in their most gen-
eral form: y2 = x3 + bx + c. (If you're going to complain about characteristic 2 or 
3, don't.) You could plot this, on the complex plane cross itself, and it would look like 
a donut. A big old 4-D donut. In any case, the Taniyama-Shimura conjecture says that 
all elliptic curves have this magic property called being "modular." Don't ask what this 
means. Unless you care to hear such things as "the mellin transform of the hasse-weil 
1-function produces a spitzenform." As far as I know no person has a real under-
standing of why any elliptic curve should be modular, but nonetheless in 1995 
Andrew Wiles proved a weak form of the Taniyama-Shimura conjecture which applied 
only to "semistable" curves (which, for our purposes, aren't too wild). Luckily this was 
enough to prove Fermat's Last Theorem. But elliptic curves are nice things. They have 
a "group law." Add x5s in there, and you've got troubles. Nonetheless a generalization 
ofTS has been developed. I believe this is the stuff that falls under the category of "the 
Langlands program." Well, that is the flavor of an explanation. 

For information on the Langlands program, you might examine Modular Forms and 
Elliptic Curves published by Springer-Verlag on the Fermat conference. But be fore-
warned. This material is difficult. I don't intend on understanding all of it for anoth-
er 5 or 10 years. The problem (or, perhaps, the blessing) with conjectures as simple as 
Fermat's is that they tend to give rise to incomprehensibly complicated fields of math-
ematical study. 

Bob S. says: 

It is not possible to explain Langlands conjectures to a general audience without some 
basic knowledge of algebraic number theory and field theory. Here is a rough descrip-
tion: The Hilbert Class Field of a polynomial f(x) with root alpha is the maximal 
unramified Abelian extension of Q(a). The Langlands conjectures are an attempt to 
extend this concept to non-Abelian extensions of Q(a). It makes conjectures relating 
certain L functions and Dirichlet series, which are analytic objects, with the purely 
algebraic objects associated with the extension field. The proof by Wiles of the 
Taniyama-Shimura conjecture covers a small part of the Langlands conjectures. 

Berndt S. comments: 

What I was referring to with the term "Langlands philosophy" is Langlands article 
innocently titled "Problems in the Theory of Automorphic Forms" in which he out-
lined his vision to bring group representation methods into the arithmetic theory of 
automorphic forms. After some 30-40 pages of heavy definitions and constructions, 
he poses some questions such as, "Is it possible to define the local £-functions L(s,r,p) 
such that a certain functional equation is satisfied?" Langlands always suggests a pos-
sible or likely outcome. The entire paper is highly speculative but based on deep 
insight that he must have gained during his research on the functional equations of 
the Eisenstein series. The last two phrases in his paper read: "Thus Question 7 togeth-
er with some information on the range of the correspondence of Question 3 may 
eventually lead to elementary, but extremely complicated, reciprocity laws. At the 
present it is impossible even to speculate." This was published in 1970, so Langlands 
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came to his view some time in the late '60s. It was highly influential. The '70s then 
brought a lot of clarification, and Langlands himself (together with Jacquet) carried 
out his program for the group G = GL(2). The correspondence (or association) in this 
case defines a mapping from degree-2 Galois representations to GL(2) automorphic 
representations. When you start with an irreducible representation of the Galois 
group then you get a cuspidal representation of GL(2). You have a kind of mapping 
from Galois representations to automorphic representations such that irreducible rep-
resentations are associated to cuspidal representations (to irreducible ones you get cus-
pidal ones). 

One word to put this into perspective: Langlands conjectures vastly generalize some 
other conjectures made by different people in special areas (and the specialization 
process itself is not easy to carry out). The first such conjecture came from Yutaka 
Taniyama, who killed himself in 1958. This was refined and made very explicit by 
Goro Shimura. Independently, Andre Weil (1906-1998) has made some conjectures 
in this context; in particular he brought forward the astounding idea that any ration-
al elliptic curve might be modular. Until the early 1970s this was assumed to be the 
exception. These latter conjectures are now called Taniyama-Shimura-Weil conjecture. 
Andrew Wiles (born in 1953) proved (a major) portion in 1994. 

Chapter 41 

The 10 Mathematical Formulas That 

Changed the Face of the World 

Philosopher of science Dennis Gordon suggests that D = (nil)2 + (ml3)3, the discrimi-
nant for a cubic equation, should be on the top 10 list. (The value of the discriminant 
determines whether the solutions to a polynomial such as x3 + mx = n are real or com-
plex.) When D < 0, and thus JD is a complex number, we have a case in which all 3 
roots are real. In the 16th century, these kinds of solutions to cubic equations gave neg-
ative numbers and complex numbers their legitimacy and were a major contribution to 
mathematical progress. 

Dennis also believes that (d/dx) ex = ex and \o^(ab) = log a + log b should be includ-
ed. The invention of logs certainly made major changes in the world by removing 
drudgery from multiplication, and certainly made mathematics less prone to error. 

Chapter 48 

Cube Maze 

One solution is 21, 20, 11, 14, 5, 4, 7, 8, 17, 26, 27, 18, 15, 6, 3. Are there other solu-
tions? If you can find any, be sure to let Dr. Googol know. 
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Chapter 105 

Hailstone Numbers 

Bill Richard from Commodore uses the hailstone sequence to produce interesting 
music. The values of the hailstone numbers are used as audio frequencies and scaled so 
that the tones remain in the audible spectrum for humans. For example, he maps the 
number 1 to 40 Hz, because 1 Hz is simply too low to be musically useful. He notes 
that the hailstone numbers produce "a relatively pleasing sequence" of musical notes. 
Notice that the hailstone plots reveal a pattern of diagonal lines of varying density that 
pass through the origin, a pattern of horizontal lines (visually reminiscent of preferred 
energy state diagrams in quantum mechanics), and a diffuse "background." The exis-
tence of the pronounced diagonal lines in Figure 49.2 indicates "likely" transformations 
to which the 3« + 1 sequence naturally gives rise. For the hailstones, we are often mul-
tiplying by 3 and then dividing by 2. Therefore, the linear transformation y = (3/2)x is 
quite common (we can eliminate the +1 in ml for large x). In order to test this idea, 
try plotting lines corresponding to y = (3nl2m)x for values of n and m between 0 and 
5. Several of the lines that you will see are the same as the diagonal lines in the hailstone 
plots. In fact, higher-order lines for a greater range of m and n are needed to account for 
all the diagonal patterns. Note that in Figure 49.2 the diagonal lines are of varying den-
sity—dark lines indicate more probable transforms. All of the darker lines are account-
ed for by low-order transforms (multiplication by 3/2 and 1/2 are among the most prob-
able operations). 

Chapter 50 

The Spring of Khosrow Carpet 

The algorithm for the carpets comes from Anne M. Burns's article titled "Persian 
Recursion," which appeared in a 1997 Mathematics Magazine. The algorithm starts by 
assigning a "color" to the outermost cells arbitrarily to produce a border square (or rec-
tangle). The algorithm then: 

1. Uses the 4 corner cells and a convenient function of 4 variables to determine a new 
color. 

2. Assigns this new color to all interior cells in the middle row and middle column. 

3. Applies the same procedure to each of the 4 new "border squares." 

4. Repeats for smaller and smaller subdivisions 

As is often the case with recursion, if the process is carried out for larger matrices, we 
observe that the patterns repeat on different size scales. See [www.oup-usa.org/sc/ 
0195133420] for BASIC code. 

Open the floodgates of Persian recursion research! What new patterns can you create 
by making modifications to the basic algorithm? Teachers, hold contests with students 
to see who can produce the prettiest pattern. 
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Chapter 123 

The Omega Prism 

If you were to draw on a face of the 230-by-231-by-323 prism, you wouid soon realize 
that a diagonal enters a new tile at the beginning and each time it crosses a horizontal 
or vertical line. However, in situations where the diagonal enters exactly at the corner of 
a tile, the diagonal crosses 2 lines but enters only 1 tile. These corner points are at cor-
ners of rectangles proportional to the whole face. In other words, the diagonals of such 
rectangles are on the main diagonal. 

The number of tiles a diagonal crosses is therefore the length A of one side of a face 
plus the length B of the other minus the greatest common divisor (GCD) of the 
sides' lengths: A + B - GCD(^4,5). The greatest common divisor of 2 integers is the 
largest number that divides both integers. For example, a 231-by-93 face would have 
231 + 93 - 3 = 321 crossed tiles since 3 is the greatest common divisor of 231 and 93. 

In the 230-by-231-by-232 prism given, we have 3 different possible combinations of 
rectangular sides A and B: 

A B GCD Number of Squares Cut by Diagonal 

230 231 1 460 

230 232 2 460 

231 232 1 462 

Students may wish to compute the number of tiles cut for different values of A and 
B using the code at [www.oup-usa.org/sc/0195133420]. Using this approach, one can 
create a figure such as Figure F51.1 which shows the number of tiles cut as a function 
of side length B, while side length A is held at a constant value, in this case A = 230. 

200 250 300 350 400 450 500 
Side Length 

F51.1 Number of tiles cut as a function of side length B with side length A - 230. 
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Side Length 

F51.2 Number of tiles cut as a function of side length B with side length A = 240. 

Side Length 

F51.3. Number of tiles cut as a function of side length S with side length A = 241. 

Notice that the cutting function is quite erratic, displaying dips at various locations 
along the trend line. The first major dip, for example, is at B = 230, because the GCD 
is 230. The distribution of dips seems to have a fractal character as magnification reveals 
additional similar structures. Figure F51.2 is computed for A = 240, which has many 
factors. (Such numbers are called smooth numbers, and a number is said to be V-smooth 
if all the prime divisors of n are less than or equal to where W is a positive integer.) 
Since 240 is smoother than 230, Figure F51.2 has more spikes than Figure F51.1. Figure 
F51.3 is computed for A = 241, which is prime and has a higher probability of yielding 
a large number of cut tiles. 
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Values of GCD = 1 corre-
spond to prism sides that 
yield the most cut squares 
when traversed by a diagonal. 
Figure F51.4 shows a plot of 
those values of A and B that 
yield GCD = 1, and therefore 
this plot visually indicates 
which side lengths should be 
used to create the most cut 
squares. To produce this fig-
ure, GCD is computed for 
1 < A< 200 and 1 < £ < 2 0 0 . 
The density of black dots is 
fairly uniform, and the com-
plexity of the plot belies the 
apparent simplicity of the 
Omega Prism puzzle. 

Number theorists call 2 
numbers A and B that have no 
common factors relatively 
prime, or coprime. Such num-
bers have GCD values equal 
to 1. What is the probability 
that 2 numbers selected at 
random are coprime? Students 
may perform a quick simula-
tion in order to show that the 
probability converges to about 
0.608, as indicated in Figure 
F51.5. To produce this plot, 
Dr. Googol cataloged the 
occurrences of coprimes as A 
and B are iterated in 2 "for" 
programming loops in a C 
program. For large numbers, 
the probability tends toward 
6/jt2. Interestingly, the proba-
bility that a randomly selected 
integer is "square free" (not 
divisible by a square) also 
tends to 6/jt2. 

200 

FS1.4 A solution s p a c e . Black d o t s i nd i ca t e t h o s e va lues 
of A a n d B t h a t should be used t o c r e a t e t h e m o s t cu t 
s q u a r e s on a pr ism f a c e . 

0.75 

1 0.70 
CL 

.1 0.65 

2 3 4 5 6 
x 1 0 3 

Number of Trials 

F51.5 Simulat ion showing t h e probabi l i ty t h a t two n u m -
b e r s s e l e c t e d a t r a n d o m a r e cop r ime . The p robab i l i ty 
conve rges t o a b o u t 0 .606 f o r l a rge n u m b e r s . 

Challenges await students and teachers who attempt to understand additional mys-
teries related to the Omega Prism. For example, try to represent the distribution of 
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pairwise coprimality of 3 or more integers. Also, given IV different colors used to color 
a face, what are the total different number of patterns? Is it NAxB? How unlikely is it 
that, using random colors, one side of a face will be connected to an opposite face with 
a continuous path of identical colors? (A path travels up, down, right, and left.) Finally, 
denote the sum of the length of the 3 sides of the prism as a. What combination of the 
3 sides minimizes the maximum number of tiles crossed on the cube faces? How does 
this change with at 

This chapter provides another example of interesting graphical behavior in simple 
systems. For a technical discussion on "smooth" and "powersmooth" numbers, and on 
the distribution of smooth numbers, see H. Cohen's A Course in Computational Algebraic 
Number Theory. Topics such as these have practical application in the creation of codes 
that are difficult to break. Aside from factorization insight, over the last few years, math-
ematicians have begun to enjoy and present bizarre mathematical patterns in new 
ways—ways sometimes dictated as much by a sense of aesthetics as by the needs of logic. 
Moreover, computer graphics allows nonmathematicians to experience some of the 
pleasure that mathematicians take in their work and to better appreciate the very com-
plicated and interesting graphical behavior of puzzle solution spaces. 

9 See [www.oup-usa.org/sc/0195133420] for a BASIC code listing. 

Chapter 52 

The incredible Hunt for Double 

Smoothly Undulating integers 
This chapter defined undulating numbers, such as 19,283,746, and smoothly undu-
lating numbers, such as 101,010,101, where the alternating digits are consistently 
greater or less than the digits adjacent to them. Stimulated by the material in this chap-
ter, Charles Ashbacher has since identified several numbers that smoothly undulate 
in more than 1 base. For example, 12110 = 1718 = 2327. Also 54610 = 4l4l 5 = 202024 
= 2020203. 

When Dr. Googol first posed the problem of double smoothly undulating integers, 
it caused a near riot and subsequent flood of papers to the Journal of Recreational 
Mathematics. For example, Douglas E. Jackson of Portales, New Mexico, believes that if 
we randomly select a positive integer having between 3 and k digits inclusively in base 
b, the probability that it will be smoothly undulating is [{b - \)2(k- 2)]l(bk - b2). As 
k goes to infinity, this quantity approaches 0. Hence, 0 is the probability that an arbi-
trarily positive integer is smoothly undulating. For a derivation, see: Jackson, D. (1992) 
Problem 1861. Journal of Recreational Mathematics. 24(1): 77. 

But this probability argument does not prove there are no double smoothly undulat-
ing integers. However, D. F. Robinson from the University of Canterbury in New 
Zealand believes he has proven there are no double smoothly undulating integers. For 
a reference to his analysis, see "Further Reading." Other researchers have looked at 
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double smoothly undulating integers in other bases. For example, Ken Shirriff dis-
covered 494,949, which smoothly undulates in bases 10 and 15. For some unknown 
reason, the longest double smoothly undulating numbers all seem to involve base 10 and 
some other base. This remains a mystical problem for future generations (see "Further 
Reading"). 

For further research, let us define smoothly gyrating numbers as those integers whose 
digits go up and down consecutively like a sine wave. The number of digits controlling 
the rise and fall determines the "kind" of number, for example: 

© smoothly gyrating number of the first kind: 12121212 . . . 

® smoothly gyrating number of the second kind: 1232123212321 . . . 

© smoothly gyrating number of the third kind: 1234321234321 . . . 

A double smoothly gyrating number of the nth kind is simply means a number that 
gyrates in two different bases, e.g., base 10 and base 3. 

Can you find a double smoothly gyrating number of the third kind? 
Are there any Fibonacci numbers that smoothly gyrate? 
Can you find a smoothly gyrating number that when multiplied by another smooth-

ly gyrating number produces yet another smoothly gyrating number? 

Chapter 53 

Alien Snow: A Tour of 

Checkerboard Worlds 

Readers might enjoy holding "defect contents" on their computers. Here is how the idea 
works. The term defect is borrowed from crystallography. It refers to an irregularity that 
may occur in a pure solution of some compound. Such an irregularity can form the 
nucleus of a crystallization process. The patterns described thus far all arose from sim-
ple defects, a single 1 in the center of the screen. What happens if you place more than 
one 1 on the screen at the same time? 

As far as such experiments go, why not randomly seed your screen with Is and see 
what develops? Alternatively, you could use very regular patterns, strips, or checker-
boards. 

There is an undeniable beauty to the patterns that develop from cellular automata. 
The richness of forms contrasts starkly with the simplicity of the rules. It is a deeply 
rewarding experience to watch succeeding generations, even in the especially simple cel-
lular automata that Dr. Googol has described here. Persian carpets give way to tile 
mosaics. Peruvian striped fabrics, brick patterns from Asian mosques, and Moorish 
ornaments will grace your screen. 

Natural structures will appear on your screen—from snowflakes to turbulent fluid-
flow patterns. Physicist and cellular automata experimenter Stephen Wolfram has 
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F53.1 Crystals grow from 3 defects. 

pointed out that cellular automata are sufficiently simple to allow us to analyze their 
behavior locally, yet they are sufficiently complex to amaze us globally with very com-
plicated behavior. It should not be surprising that models which show such promise in 
mimicking nature should also be the source of so much beauty. 

C h a p t e r 54 

Beauty, Symmetry, and 

Pascal's Triangle 

Many readers may be interested in recent information on practical fractals. Fractals are 
increasingly finding application in practical products where computer graphics and sim-
ulations are integral to the design process. As one example, Amalgamated Research, Inc., 
located in the state of Idaho, manufactures space-filling fractal conduits. These devices 
contain many root-like outlets and are designed to minimize turbulence. The company's 
engineered fractal cascade (EFC) can draw or inject fluid simultaneously throughout a 
mixing vessel. 

Amalgamated Research's basic invention replaces random scaling and distribution of 
free interfluid turbulence with the geometrically controlled scaling and distribution of 
fluid flow through "engineered" fractals. This means that EFCs can be used as func-
tional alternatives to turbulence, acting as engineered eddy cascades. Engineering appli-
cations include control of flows in chromatography, adsorption, absorption, distillation, 
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aeration, scrubbing, extraction and reactor processes. (For more information, see http:// 
www.arifractal.com/.) 

Another company, Fractal Antenna Systems, Inc., based in Fort Lauderdale, Florida, 
is developing a branching "Fractenna" for hand-held telephony. As the company's name 
implies, Fractal Antenna Systems develops antennas using fractal geometric patterns 
with designs repeated at many size scales. The company's trade secrets do not permit us 
to know all the details at this time, but this highly efficient sender and receiver of elec-
trical waves is said to be no bigger than a small coin. 

Fractal antennas hold great promise, because these miniature, virtually invisible 
devices may be used in everything from wireless LANs to cell phones and televisions. 
Most cellular and wireless devices use wand antennas protruding from cases. Fractennas 
can be incorporated in the wireless or cellular device's casing, making them virtually 
unbreakable. (For more information, see http://www.fractenna.com/.) 

A third practical use of fractals is the fiberoptic faceplate—an array of millions of opti-
cal-fiber tubes packed into a thin cylindrical pipe. The composite tube acts as an image-
plane transfer device. This means that an image entering one surface exits the other sur-
face as an undistorted digitized image, regardless of the shape of the optical tube. You can 
use these tubes like periscopes by bending them in order to see around a corner. 

Several years ago, Lee Cook, a fiberoptic researcher at the Galileo Electro-Optics 
Corporation in Sturbridge, Massachusetts, was interested in preparing arrays of optical 
waveguides that were perfect as possible. Analysis of certain recursive tilings led Cook 
and his colleagues to conclude that the edges of optically useful tilings were fractal in 
nature. This led to the development of assembly techniques and fractal array structures 
that allowed the Galileo researchers to prepare highly ordered fiber arrays. One patent 
has already been granted on these techniques, and Incom, Inc., of Charlton, Massa-
chusetts, has recently purchased Galileo's fractal fiberoptic technology. 

Fractal fiberoptics™ may have been the first engineered fractal materials with opti-
cally useful properties. A fractal fiber array, which consists of fibers of fibers (called 
multi-multifibers), results in an extremely high degree of internal order and an optical-
ly useful packing in the fiberoptic. This increased order produces a markedly improved 
image contrast. The perimeters of these new multi-multifibers are exactly analogous to 
a fractal Gosper snowflake. (To create a Gosper snowflake, recursively transform each 
edge of an equilateral hexagon into 3 segments of equal length so as to preserve the orig-
inal area of the surface.) 

Traffic on the Internet has unpredictable bursts of activity over many time scales. In 
other words, the activity shows spikes and lulls over a period of a few seconds that 
resemble the fluctuations taking place in just milliseconds. This fractal behavior has 
implications for network engineering. For example, fractals may play a role in designing 
buffers for Internet routers, which store packets of information during busy periods 
until the packets can be sent onward to their destination. Because researchers have 
demonstrated the fractal nature of this traffic, buffers are designed to accommodate 
much more variable traffic than was assumed previously. For more information, see: 
Taubes, G. (1998) Fractals reemerge in the new math of the Internet. Science. Sept. 25, 
281(5385): 1947-1948. 

In 1999, physicists Richard Taylor, Adam Micolich, and David Jonas used fractals to 
study the paintings of Jackson Pollock, revealing that the artist was exploring ideas in 
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fractals and chaos before these topics entered the scientific mainstream. In particular, the 
researchers found fractal analysis to be a useful tool for studying the abstract paintings 
produced by Pollock in the 1940s and 1950s. Pollock dripped paint onto vast canvases 
on the floor of his barn. Although recognized as a crucial advance in the evolution of 
modern art, the precise quality and significance of the patterns created by this unortho-
dox technique remained controversial. Today we know that the paintings are fractal and 
display the fingerprint of nature. For more information, see: Taylor, R., Micolich, A., 
and Jonas, D„ (1999) Fractal expressionism. Physics World. Oct., 12(10): 25-28. 

What does the future of fractals hold? Aside from obvious applications in education 
and art, four fields come to mind for especially increased growth: geology, medicine, 
astronomy, and pure math. All of these fields benefit because fractal geometry provides 
a language and conceptual framework for ill-defined geometries, and the power law 
inherent in fractals condenses their description. For example, fractals will be increasing-
ly used in estimating the strength of rocks under shearing forces, in the analysis of mam-
mograms, and in analyzing the randomness of transcendental numbers such as o and e. 
(For more information on practical applications, see http://www.math.vt.edu/people/ 
hoggard/FracGeomReport/node7.html.) Dr. Bruce Elmegreen of IBM is currently using 
fractals to explain the relative proportion of high- to low-mass stars in the sky. The ulti-
mate goal of his work is to explain how the Earth and solar system formed from tenu-
ous, cosmic gas. 

Dr. Googol asked fractal expert Professor Michael Frame of Union College and Yale 
University, "What scientific areas would benefit most by using fractals?" He replied: 

Currently, the largest deficiency is in statistics. Common statistical methodologies 
don't usually make use of the scale invariance characterizing fractals, and as we accu-
mulate more evidence that many real data sets exhibit the long-term dependence and 
long-tailed distributions that can arise in scaling processes, the need for appropriate 
statistical tests is apparent. 

When proper fractal statistics are developed, I imagine the impact in all fields will 
be considerable. Materials science will probably be affected to a great degree. DLA 
(diffusion-limited aggregation) and turbulence remain two of the biggest puzzles. 
With enough computational power to do proper statistics on DLA clusters and tur-
bulent flow patterns, we may begin to develop some real understanding of these 
processes. 

On a different level, the perceived complexity of our surroundings depends in part 
on the language with which we describe them. Finding a better language is the main 
task of science, of literature, of art, of music. To the extent that many natural process-
es exhibit scaling, fractals provide an important component of any language. As we 
develop our ability to understand and analyze fractals, our language for understand-
ing the world improves and simplifies. 



Further Exploring © 321 

Chapter 123 

Audioactive Decay 

According to John Conway and Richard Guy in The Book of Numbers, the number of 
digits in the «th term of this sequence is roughly proportional to 

(1.3035772690342693912570991121525518907307025046594 . . . )» 

Now, isn't that a fine gem for stimulating party conversation? 
So far, the world-record holder for this sequence is Charles Ashbacher of Cedar 

Rapids, Iowa. In May 1992, he sent Dr. Googol a diskette containing nearly 894,816 
digits for row 50, which he computed using a FORTRAN program. He also computed 
the sequence for row 53, which contained nearly 1,982,718 digits. The number would 
not fit on a diskette. Ashbacher estimates that row 53, if printed on paper, would require 
about 417 pages. In August 1992, Ashbacher computed row 56. The number of digits 
is in the range 4,391,696 to 4,391,703. The size of the data file containing the number 
is roughly 5205 KB. The computation required 9 minutes using a VAX 4000. About 1 
minute of this time was spent simply dumping the contents of the array to a file. 
Ashbacher discovered that the number of digits in a likeness sequence for row 77 would 
break the 1 billion mark, requiring 1.2 GB of memory. 

Roger Hargrave from West Sussex, United Kingdom, was inspired by the 
Gleichniszahlen-Reihe sequence to extend the idea to a variation in which a row takes 
into account all occurrences of each character in a previous row. For example, the 
sequence starting with 123 is 123, 111213, 411213, 14311213,.... He named this the 
Gleichniszahleninventar sequence because Inventar is the German word for inventory. 
Oddly, he believes that all his sequences finally oscillate between 23322114 and 
32232114. Can you prove this? 

In 1989, Dr. Akhlesh Lakhtakia and Dr. Googol became intrigued by the fact that 
the likeness sequence can be generalized to the array G(p) where 1 is either 0 or a 
positive integer. The following is an example: 

P 
I P 

1 1 1 p 
3 1 l p 
1 3 2 1 l p 
1 1 1 3 1 2 2 1 l p 

Simply substituting p = 1 into G(p) does not allow us to obtain a standard likeness 
sequence since numbers and symbols are mixed in the construction of these arrays. Dr. 
Googol conjectures that the largest number occurring in G(p) is max(/>,3). Also, if /> > 3 
then p occurs only in the rightmost entry of the row. 



322 ® Wonders of Numbers 

Chapter 105 

Dr. Googol's Prime Plaid 

In his book The Man Who Mistook His Wife for a Hat, physician Oliver Sacks describes 
the twins John and Michael, who were able to define prime numbers up to 20 digits very 
quickly. Yet these same children had difficulty with the simplest additions and substrac-
tions. Divisions and multiplications were impossible for them. They said, "But we can 
see these prime numbers!" 

One way of finding the prime numbers is to use the ancient Sieve of Eratosthenes. A 
list is made of positive numbers; and then all the multiples of 2 are eliminated, starting 
at 4; then all the multiples of 3 are eliminated, starting at 6; the process is repeated until 
all possible eliminations have taken place. (A modern computerized version of the Sieve 
has already become one of the traditional ways of evaluating and comparing computers, 
because the process is lengthy and CPU-intensive.) 

At least once a year, new prime number records are broken using computer searches. 
Consider, for example, the following world records, which list the number of digits for 
the largest known prime numbers: 

Year Num. of Digits Computer Discoverer 

1996 378,632 Cray T94 Slowinski & Gage 

1996 420,921 Pentium (90 Mhz) Armenagaud, Woltman et al. 

1997 895,932 Pentium (100 Mhz) Spence, Woltman et al. 
1998 909,526 Pentium (200 Mhz) Clarkson, Woltman et al. 

1999 2,098,960 Various Hajratwala, Woltman, Kurowski 

The last 4 world records in this list were discovered by participants in GIMPS (the 
Great Internet Mersenne Prime Search), which harnesses the power of thousands of 
small computers to solve the seemingly intractable problem of finding HUGE prime 
numbers. (See also "Further Reading" for Chapter 80.) The 1999 record required 
21,000 computers and three years of searching. A DEC Alpha computer ran for two 
weeks just to verify it. In particular, the 1999 record was achieved by Nayan Hajratwala 
who found a 2,098,960 digit Mersenne prime: 2 6 9 7 2 5 9 3 - l . (Mersenne primes are those 
which are a power of two, minus one.) Nayan Hajratwala is from Plymouth, Michigan 
and works for PricewaterhouseCoopers. Using the GIMPS program and 111 days of idle 
time on his home computer (an Aptiva 350 MHz, Pentium II) Nayan found a 38th 
Mersenne prime number. His computer could have found it in three weeks running full 
time. This makes Hajratwala eligible for a $50,000 award that is offered by the 
Electronic Frontier Foundation (EFF). Larger primes will earn up to $250,000! When 
might we see the first billion digit bevaprime? (For more information, see: Caldwell, 
Chris K„ The Largest Known Prime by Year, http://www.utm.edu/research/primes/ 
notes/by_year.html) 

If the 2,098,960 digit prime number was printed in a 12-point font, without com-
mas, it would stretch over four miles. Prime number hunters believe that household 
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appliances with computerized components could be eventually harnessed to coopera-
tively solve large number problems and also to help their owners earn cash awards for 
mathematical discoveries. 

In 1999, scientists cracked a popular encryption tool for keeping credit card num-
bers and other information secret on the Internet. In particular, scientists had broken 
the RSA-155 code, which protects credit card transactions and secure e-mail in Europe. 
The method uses a 155-digit product of two large prime numbers, for example: 

The Holy Grail of European Spies! 
1094173864157052742180970732 
2040357612003732945449205990 
9138421314763499842889347847 
1799725789126733249762575289 
9781833797076537244027146743 

531593354333897 
(155-digit number) 

1026395928297411057720541965 
7399167590071656780803806680 

3341933521790711307779 
(prime factor) 

X 

1066034883801684548209272203 
6001287867920795857598928152 

2270608237193062808643 
(prime factor) 

In particular, RSA-155 requires one party to send a message to another by using the 
recipient's public key—a 155-digit product of two large primes—to code the original 
message. Decoding the message requires the two prime numbers know only to the recip-
ient. For a long time this encryption was considered unbreakable. Scientists thought 
that factoring a 155-digit number was beyond the scope of practical computations. 
However, a group led by Herman te Riele in Amsterdam factored the huge number 
using 300 personal computers and a Cray 916 supercomputer. The United States com-
monly uses 232-digit numbers for encryption, and the U.S. government uses 309 digits 
for government and military transitions. At the current rate of progress, these codes 
wouldn't be broken for the next 25 years—or so we hope. For more information, see 
Hellemans, A., Internet security code is cracked. Science. Sept. 3, 285(5433): 
1472-1473 (1999). 
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Chapter 105 

Saippuakauppias 

There are many other interesting patterns in the plot, and you will probably find many 
more patterns that no one else has yet discovered. Consult the work of IBM researcher 
Shaiy Pilpel for a list of numbers that are palindromic for both their decimal and bina-
ry expressions. For example, 313 is such a "double" palindrome since 313 = 100111001 
in binary notation (see "Further Reading.") 

Palindromic numbers have often been discussed in the past; for example, see many 
of the issues of the Journal of Recreational Mathematics and the Martin Gardner refer-
ences in the "Further Reading" section. The work in this chapter is a collaboration with 
Akhlesh Lakhtakia. 

Here is a list of mathematician Michael Keith's favorite palindromic sentences: 

© Some men interpret nine memos. 

© T. Eliot, top bard, notes putrid tang emanating, is sad. i'd assign it a name: "Gnat 

dirt upset on drab pot-toilet." 

© Marge lets Norah see Sharon's telegram. 

© Turn! i dump Martin Gardner, i rend rag, 'n' i tramp mud in rut. 

© No D? No L? onon? No, no! LONDON! 

© On a clover, if alive, erupts a vast, pure evil: a fire volcano. 

© O, had I nine more hero-men in Idaho! 

© "Sirrah! Deliver deified desserts detartrated!" stressed deified, reviled Harris. 

© Are we not drawn onward, we few, drawn onward to new era? 

© Tarzan raised Desi Arnaz' rat. 

© Scranton's tots: not narcs. 

Can you think of 5 words in which all the vowels appear in alphabetical order? Here 
are 4: 

© Abstemious: adj., practicing temperance in living 

© Abstentious: adj., characterized by abstinence 

© Facetious: adj., straining to be funny, especially at the wrong time 

© Fracedinous: adj., productive of heat through putrefaction 

Can you think of 3 in which 1 letter is repeated 6 times? Here are 2: 

© Nonannouncement (6 ris): n., the failure to announce 

© indivisibility (6 is): n., the quality or state of being indivisible 
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Can you think of 6 pangrams (sentences that use all the letters in the alphabet)? Here 
are three: 

® The five boxing wizards jump quickly. 

® Pack my box with five dozen liquor jugs. 

® The quick brown fox jumps over a lazy dog. 

Chapter 58 

Emordnilap Numbers 

Some simple observations help to predict the outcome of the reverse-and-add process. 
Let dn be the «th digit in a number, and d j be the «th digit in the reversed number. 
Let p be the path length. Then p < 1 if, for all digits in the number, dn < 4. Also, p is 
greater than 1 whenever there exists a digit such that dn + dn

r> 10. 

Chapter 61 

Hyperspace Prisons 

Tim Greer of Endicott, New York, has generalized the formula to hyperspace cages of 
any dimension m: L(n) = ((nm)(n + l)m)/(2m). Let's spend some time examining 3-D 
cages before moving on to the cages in higher dimensions. 

How large a 3-D cage assembly would you need to contain a representative of each 
species of insect on Earth today? (To solve this, consider that there may be as many as 
30 million insect species, which is more than all other phyla and classes put together.) 
Think of this as a zoo where 1 member of each insect species is placed in each 3-D 
quadrilateral. It turns out that all you need is a 25-by-25-by-25 (n = 25) lattice to cre-
ate this insect zoo for 30 million species. 

In order to contain the approximately 6 billion people on Earth today, you would 
need a 60-by-60-by-60 cage zoo (see Figure F61.1). You would only need a 40-by-40-
by-40 (n = 40) zoo to contain the 460 million humans on Earth in the year 1500. 

Let's conclude by examining the cage assemblies for fleas in higher dimensions. Dr. 
Googol has already given you the formula for doing this, and it stretches the mind to 
consider just how many caged fleas a hypercage could contain, with 1 flea resident in 
each hypercube or hyperrectangle. 

The following are the sizes of hypercages needed to house the 1,830 flea varieties Dr. 
Googol mentioned earlier in different dimensions: 

Dimension (m) Size of Lattice (n) Dimension (m) Size of Lattice (n) 

2 9 .5 3 
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F61.1 A cage containing all humanity. In order to contain the approxi-
mately 6 billion people on Earth today, you would need a 60-by-60-by-
60-cage zoo, the front face of which is shown here. You would only need 
a 40-by-40-by-40 (n = 40) zoo to contain the 460 million humans on 
Earth in the year 1500. 

10 15 20 
Cage Size 

F61.2 Shown here is the number of fleas containable by a lattice cage assembly of 

"size" n in 2-D, 3-D, and 4-D. 
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This means that a small n - 2, 7-dimensional lattice ( 2 x 2 x 2 x 2 x 2 x 2 x 2 ) can 
hold the 1,830 varieties of fleas! An n = 9 hyperlattice in the 50th dimension can hold 
each electron, proton, and neutron in the universe (each particle in its own cage). Figure 
F61.2 shows the number of fleas containable by a lattice cage assembly of "size" n in 
2-D, 3-D, and 4-D. For example, the lower rightmost point indicates that a little more 
than 2 X 105 fleas can be contained in a 30-by-30 lattice. 

Akhlesh Lakhtakia has noted that the lattice numbers L(rt) can be computed from tri-
angular numbers (Tn)m. Why should the number of cage assemblies be related to trian-
gular numbers? (The numbers 1, 3, 6, 10, . . . are called triangular numbers because they 
are the number of dots employed in making successive triangular arrays of dots. The 
process is started with 1 dot, and successive rows of dots are placed beneath the first dot. 
Each row has 1 more dot than the preceding one.) 

Chapter 62 

Triangular Numbers 

Triangular numbers determined by n(n + l)/2 continue to fascinate mathematicians. 
Various beautiful, almost mystical, relations have been discovered. Here are just some 
of them: 

© A number TVis a triangular number if and only if it is the sum of the first M inte-
gers, for some integer M. For example, 6 = 1 + 2 + 3. 

© Tn+
2 - T2 = (n + l)3, from which it follows that the sum of the first n cubes is the 

square of the nth triangular number. For example, the sum of the first 4 cubes is 
equal to the square of the fourth triangular number: 1 + 8 + 27 + 64 = 100 = 102. 

© The addition of triangular numbers yields many startling patterns: Tx + T2 + 
r4, r5 + T6 + T7 + TS = To, + TW, Tn + Tn + r13 + TU + r15 = r16 + r,7 + TI8. 

© 15 and 21 is the smallest pair of triangular numbers whose sum and difference (6 
and 36) are also triangular. The next such pair is 780 and 990, followed by 
1,747,515 and 2,185,095. 

© Every number is expressible as the sum of at most 3 triangular numbers. German 
mathematician and natural philosopher Karl Friedrich Gauss (1777-1855) kept a 
diary for most of his adult life. Perhaps his most famous diary entry, dated July 10, 
1796, was the single line ETPHKA = A + A + A, which signifies his discovery that 
every number is expressible as the sum of 3 triangular numbers. 

Here are some contests: If you square 6, you get 36, a triangular number. Are there 
any other numbers (not including 1) such that when squared yield a triangular number? 
It turns out that the next such triangular-square numbers are 1,225, 41,616, and 
1,413,721. What is the largest such number you can find? 

We can use a little trick for determining huge triangular-square numbers. 8 Tn + 1 is 
always a square number. If the triangular number is itself a square, then we have the 
equation 8x2 + 1 = y2. The general formula for finding triangular-square numbers is 
(1/32)((17+12J2)"+ (17- l2j2)"-2). 
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Here is another approach to finding all numbers that are both square and triangular. 
We want all the solutions of m2 = n(n + l)/2. Solving this for n using the quadratic for-
mula gives n = (-1 +VT + 8 m )l2. Obviously this equation will give an integer value of 
n if and only if the quantity inside the square root is a square, so there must be an inte-
ger q such that q2 - 8m2 = 1. Equations of this form are called Pell's equations, and there 
are infinitely many pairs of integers (q,m) that satisfy this equation. Through a bunch 
of mathematical manipulation we find 4»(2/ ' - l ) = (3 + 2^T)(2>"1) + (3 - 2 f 2 ) a j ~ l ) 

- 2 is a square for every positive integer/ 
Can any triangular number (not including 1) be a third, fourth, or fifth power? 
Mathematician Charles Trigg has found that T̂  i n and T l l l i n are 617,716 and 

6,172,882,716 respectively. Notice that both the triangular numbers and their indices 
are palindromic; that is they can be read backward to yield the same number. Can you 
find a larger palindromic triangular number than these? Why the frequent occurrence of 
the digits 617 in these examples? 

Obviously, today we can compute huge triangular numbers using modern comput-
ers. What's the largest triangular number that Pythagoras could have computed? Would 
he have been interested in computing large triangular numbers? 

If humanity devoted its energy to computing the largest possible triangular number 
within a year, how large a number would result? It turns out that this question has little 
meaning because we can construct arbitrarily large triangular numbers by adding Os to 
55, as in 55, 5,050, 500,500, and 50005,000. These are all triangular! Therefore, one 
large triangular number is: 

5000000000000000000000000000000050000000000000000000000000000000 

You can continue this pattern as long as you like. Dr. Googol wonders if Pythagoras 
or one of his contemporaries noticed a similar pattern. 

Chapter 63 

Both triangular and hexagonal numbers are easily found in Pascal's triangle (defined in 
Chapter 54). For example, a column of Pascal's triangle displays all triangular numbers, 
as underlined below: 

Hexagonal Cats 

i 

i i 

1 2 1 

1 2 3 1 
1 4 6 4 1 
1 5 10 10 5 1 
1 6 15 20 H 6 1 

or 

1 

1 1 

1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 n 6 1 

Can you find where the hexagonal numbers are hiding? 
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Chapter 123 

The X-Files Numbers 

The "end of the world" formula really did appear in the following reference: Starke, E. 
(1947) Professor Umbigo's prediction. American Mathematical Monthly. January, 54: 
43-44. Dr. Googol believes that all Wnumbers, even ones produced for n > 1,945, are 
divisible by 1,946. A detailed mathematical proof of this can be found in American 
Mathematical Monthly. The proof relies on the fact that x-y is a divisor of x" -y" for 
n = 0, 1 ,2 , 

Chapter 65 

A Low-Calorie Treat 

Note that Cake(n) = 1 + Tn where Y„ is the »th triangular number. 
Mike Angelo of IBM believes he has proven the conjecture that no cakemorphic 

numbers exist by the following argument. Let's examine the possible last digits of the 
expression Cake(n)=(n2 + n + 2)12. This is equivalent to evaluating Cake mod 10. If n is 
a multiple of 10, e.g., n = 10*, then Cake mod 10 is equivalent to: (100*2 + 10* + 2)12 
mod 10, which reduces to (5* + 1) mod 10. This expression has only 2 different values 
for all x: 1 and 6. We conclude that all integers that are a multiple of 10 (hence end in 
0) yield Cake integers that end in 1 or 6. Next we evaluate Cake mod 10 for integers 
equal to 1 mod 10, 2 mod 10, . . . 9 mod 10. We include one more evaluation for 1 
mod 10. n = 10* + 1 and Cake = (100(*2)+ 20* + 1 + 10* + 1 + 2))I2 = 50*2 + 15* + 2. 
Therefore Cake mod 10 = 5* + 2. The only possible values are 2 and 7. Thus any num-
ber ending in 1 (e.g. 11 ,21 ,31 , . . . ) yields a cake integer ending in 2 or 7. Hence it is 
impossible for an integer ending in 1 to be cakemorphic. By applying this method to 
the other cases we find that any value of n yields a cake integer that terminates in a dif-
ferent integer from that which terminates n. Hence, we believe no one will ever find a 
cakemorphic integer. 

Dr. Googol invites you to ponder the following: Is there a doughnutmorphic integer*. 
Doughnut numbers are constructed in a manner similar to cake numbers, except that 
the circular pancake region has a hole in it, and hence the sequence for C(n) does not 
equal D(n). Dr. Googol would be interested in hearing from those of you who have 
worked on this problem. 

What about the existence of pretzelmorphic numbers? These numbers concern the 
cutting of a pretzel-shaped object. 

Previously in the chapter, Dr. Googol gave the equation Cake(n) = in1 + n + 2)12 for 
the maximum number of pieces that can be produced with n cuts of a flat, circular 
region. Martin Gardner recently sent us a letter containing similar formulas for a 
(3-dimensional) doughnut and sphere cut with n plane cuts. For a doughnut, the largest 
number of pieces that can be produced with n cuts is («3 + 3 n1 + 8«)/6. Thus a dough-
nut can be sliced into 13 pieces by 3 simultaneous plane cuts (for an illustration, see my 
book Computers and the Imagination). For a sphere, the equation is («3 + 5«)/6+l. For 
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a 2-D crescent moon: (n2 + 3«)/2 + 1. For further information on cutting shapes, see: 
Gardner, M. (1961) The Second Scientific American Book of Mathematical Puzzles and 
Diversions. University of Chicago Press: Chicago. Also: Gardner, M. (1983) New Math-
ematical Diversions from Scientific American. University of Chicago Press: Chicago. 

Chapter 66 

The Hunt for Elusive Squarions 

Squarion arrays: Robert E. Stong from Charlottesville, Virginia, has sent Dr. Googol 
a proof that states for every integer n there is an n-by-n array of distinct integers for 
which the sum of the squares of any 2 adjacent numbers is also a square. 

Strong squarions: The solution to the strong squarion problem is 11,025 (105-
by-105) because 21,025 (145-by-l45). (Colleagues believe that in general we want 
to satisfy the following formula in order to search for other numbers of this variety: 
10*= (y - x){y + x) and 1.5 < (ylx)2 < 2. Can you figure out how this equation came 
about? Are there any other numbers that also satisfy these conditions? Must all such 
numbers end in 5? Dr. Googol does not believe that there is a solution to problem 2 for 
the strong squarions. 

Pair squarions: The first program code for finding pair squares at [www.oup-
usa.org/sc/0195133420] is a fairly traditional way of finding pair squarions. 
Interestingly, one can reduce the search space and computation time significantly. This 
is accomplished by solving for n and p and noting that we only need to examine pairs 
of integers whose difference is even. (Why is this so?) This means n= (a2 + b2)l2 and p 
= (- a2 + b2)!2. Note that b2 - a2 = 2p and hence must be even. Note also that b - a 
must be even. (If b - a were odd, b2 - a1 would be odd.) Therefore, we can generate val-
ues for n and p from a, lvalues where b = a + 2d. A faster program to compute all val-
ues of n and p with n < 1000 is also given at [www.oup-usa.org/sc/0195133420]. This 
faster version was developed by Mike Gursky. 

Chapter 67 

Katydid Sequences 

The katydid sequence (x 2x + 2, x 5x + 5 ) yields a repeat after 3 generations. The 
katydid sequence {x 2x + 2, x x + 1) yields a repeat after 4 generations. 
Dr. Googol has not yet found a repeat for the {x 2x + 2 , x 6x + 6 ) problem, 
nor has he found a solution for the related sequences: (x 2x + 2 , x Ax + 4) or 
(x 2x + 2, x 7x + 7 ). 

A colleague, Michael Clarke from England, has conducted a little study on the katy-
did problem, for the general case of 

X = QX+ C, and C2X + C: 
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and finds several values of Q and C2 that produce duplicates after a number of gener-
ations. 

CI: 1 2 3 4 5 6 7 
1 G2 G4 G5 Gr6 G7 G8 G9 
2 G4 G2 G5 % G3 $ X 
3 G5 G5 G2 G7 & % % 
4 G6 9 Q7 G2 £ £ £ 
5 G7 G3 % 9 X G2 I I 
6 G8 9 % X 9 A G2 9 x 

7 G9 9 iS % 9 9 % G2 

Those entries with a % indicate that no duplicates were found when a search was 
conducted to the tenth generation after starting with an initial value of 1! Only God 
knows if there is ever a duplicate. Gn signifies that a duplication has in fact occurred and 
that it occurs in generation n. In order for members of the same generation to match, 
the 2 members must satisfy the condition that c{c$~ " = c{cf ~]- where g is the num-
ber of the generation and i and j are numbers in the range 0 to g. 

Can you fill in any of the % entries? Since formulating this problem, Dr. Googol has 
stumbled upon some research into similar kinds of sequences by Richard Guy. Take a 
look in the "Further Reading" section. 

Chapter 68 

Pentagonal Pie 

Dr. Googol derived the following sequence for the number of ways a regular n-gon can 
be divided into triangles: 1, 1, 2, 5, 14, 42, 132, 429, 1,430, 4,862, 16,796, 58,786, 
208,012, 742,900, 2,674,440, 9,694,845, . . . Recall that a pentagon could be cut 5 
different ways. This is the fourth number in the sequence. A square can be cut only 
2 different ways. 

These numbers are called Catalan numbers after Eugene Charles Catalan 
(1814-1894), and they arise in a number of problems in combinatorics—the field of 
mathematics concerned with problems of selection, arrangement, and operation within 
a finite or discrete system. (Eugene Catalan had a lectureship in descriptive geometry at 
the Ecole Polytechnique in 1838, but his career was damaged by his being very politi-
cally active with strong left-wing political views.) 

The Catalan numbers can be computed using the following formula, which is not 
too difficult to program on a computer: 

C„ = [ Cj C„ _, _ 

The first two Catalan numbers are 1, which we can write as C(0) = 1 and C(l) = 1. 
The nth Catalan number is defined by the previous formula. What is the largest Catalan 
number you can compute? 
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Order 1 
Root 

Order 2 

Trivalent Vertex 

Order 3 

F68.1 Triavalent trees: order 1, order 2, and order 3. How many different trees can 

you create with 4 nodes? 

g y 2x2 grid 

3x3 grid 

4x4 grid 

F68.2 Different paths for a 4-by-4 grid. How many different paths can you draw 

for a 5-by-5 grid? 
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Among other things, the Catalan numbers describe these: 

1. the number of ways a polygon with n + 2 sides can be cut into n triangles 

2. the number of ways in which parentheses can be placed in a sequence of numbers 
to be multiplied, 2 at a time 

3. the number of rooted, trivalent trees with n+1 nodes (see Figure F68.1) (A trivalent 
tree is a "rooted, ordered" tree in which every vertex, except the root and endpoints, 
has 3 edges connecting to it. Those vertices with 3 edges connected to them are 
called trivalent vertices. The order of a trivalent tree depends on the number of 
trivalent vertices.) 

4. the number of paths of length 2 n through an n-by-n grid that do not rise above the 
main diagonal (see Figure F68.2) 

Another way of saying the second example is that the Catlan numbers count the 
number of ways parentheses can be placed around a sequence of n + 1 letters so that 
there are 2 letters inside each pair of parentheses: 

ab in 1 way: (ab) 

abc in 2 ways: (ab)c a(bc) 

abed in 5 ways: (ab)(cd) a((bc)d) ((ab)c)d a(b(cd)) (a(bc))d 

and so on. 
If you prefer a more visual representation, we can use Catalan numbers to count the 

number of ways of grouping any objects: 

in 1 way: (#';S) 

in 2 ways: (#' » ) « ' f ~ ( « o ) 

f S o f in 5 ways: ( # ' « ) ( • f ) # ' ( ( « « • ) • ) ( ( « * * ) < • ) $ 

Chapter 69 

An A? 
A set that is topologically similar to the Ana fractal and to Cantor dusts starts with a 
circle and consists of 2 circles within 2 circles within 2 circles.... Everything except for 
2 smaller discs is removed. Here we use pairs of circles rather than pairs of lines, and the 
subdivisions are repeated as with the Cantor set described in the chapter. We retain only 
those points inside the circles. Figure F69.1 is a picture of this Cantor cheese with each 
circle's radius very slightly less than half of the previous generation's radius. (The term 
generation refers to the nesting level of the circles.) If we consider just the line along 
the diameter, the fractal dimension for the set of points is close to 1. Smaller fractal 
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dimensions are obtained by using circles 
that are further shrunken and separated so 
that they do not touch each other. 

Returning to the Ana sequence, there 
are many questions for students to consid-
er, and Dr. Googol is certain that new dis-
coveries are just over the horizon: 

© How quickly do the rows of this Ana 
sequence grow in size? 

© What is the ratio of the occurrence of as 
to n's in each row as the sequence grows? 
Try other starting letters. 

© Draw a plot where a causes a line to be 
drawn in a vertical direction (up), and 

F69.1 Cantor cheese of nested circles. an n causes a line to be drawn in a ver-
tical direction (down). As you proceed 

through the letters in a single row, move the pen 1 unit to the right for each letter 
encountered, creating a steplike function. What pattern do you get? What does this tell 
you about the distribution of letters in the row? 

Chapter 70 

Humble Bits 

Figure 70.1 indicates self-similarity of the gaskets for several orders of "dilational invari-
ance," and they possess what is known as nonstandard scaling symmetry, also called dila-
tion symmetry, i.e., invariance under changes of size scale. Dilation symmetry is some-
times expressed by the formula r ar, where r is a vector. Thus an expanded piece of 
the gasket can be moved in such a way as to make it coincide with the entire gasket, and 
this operation can be performed in an infinite number of ways. 

The following discussion considers the case for ( 0 < i< 256 ), (0 <j< 256 ). This 
region corresponds to the upper left "block" of the 9 blocks shown in Figure 70.1. Let 
us consider the number of pixels in the image of a particular shade of gray in order to 
better understand the resulting patterns. For example, there are only 3 possible (i,j) 
pairs that form the logical Sierpinski gasket for c = 256, since c is 100000000 in binary. 
The only three ways to make 256 with OR are (256,0), (0,256), and (256,256). 
However, for 255, all 8 bits must be Is, and there are an amazing 6,561 possible values 
that satisfy our formula (cjj = i ORJ) for c = 255. These 6,561 values are colored black 
for the logical Sierpinski gasket in Figure 70.1. To determine the number of equal-val-
ued pixels there are for a particular value of c, you can use N = 3* where N is the num-
ber of different entries in the (i,j) array that satisfy c = i OR j, and k is the number of 
7s in the binary representation of c. We can understand this equation by considering 
that for each 1 in the binary representation of c, there are 3 bit-pairs (1 OR 1, 0 OR 1, 
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1 OR 0) that produce a 1 under the OR operation. For each 0 in the binary represen-
tation of c, the corresponding bits of i and j must be both 0. 

Notice that if we define (1,6) and (6,1) as duplicate solutions to c,y = i OR j, then 
we obviously have a smaller number of pairs for a particular value of c. Let b{c) be the 
number of 1-bits in c. Then the number of unordered pairs whose OR'ed value is c 
can be written as - S^/d"^ ' . For example, if c = 17, then b(c) = 2, so there are 
32 _ 31 _ 30 = 9 _ 3 _ 1 = 5 solutions. They are (0,17), (1,16), (1,17), (16,17), (17,17). 
Alternatively, we can count the "duplicate" members by considering that there is only 1 
pair of identical numbers, and all other combinations occur twice. Therefore there are 
(3*(c) _ 1)12 + 1 = (3M + 1 ) / 2 u n i q u e combinations. 

Could the patterns of bits in this chapter be converted to interesting music? 

C h a p t e r 71 

Mr. Fibonacci's Neighborhood 

Replicating Fibonacci numbers are also sometimes called Keith numbers after their 
inventor, Michael Keith (see, for example, Journal of Recreational Mathematics, 1994, vol. 
26, No. 3.) Dr. Googol finds these numbers fascinating for several reasos. For one thing, 
they are very hard to find and seem to require exhaustive computer searches. Some tech-
niques are available to speed up the search, but there is no known technique for finding 
a Keith number "quickly." They are in some ways reminiscent of the primes in their errat-
ic distribution among the integers. However, Keith numbers are much rarer than the 
primes—there are only 52 Keith numbers less than 15 digits long. Here they are: 

14 19 28 47 61 
75 197 742 1104 1537 
2308 2580 3684 4788 7385 
7647 7909 31331 34285 34348 
55604 62662 86935 93993 120284 
129106 147640 156146 174680 183186 
298320 355419 694280 925993 1084051 
7913837 11436171 33445755 44121607 129572008 
251133297 (none with 10 digits) 24769286411 96189170155 1715701590 
202366307758 239143607789 296658839738 
1934197506555 8756963649152 43520999798747 
74596893730427 97295849958669 

In addition, at least three 15-digit Keith numbers are known. Is the number of Keith 
numbers finite or infinite? 

Michael Keith presents another challenge: define a cluster of Keith numbers as a set 
of 2 or more Keith numbers (all having the same number of digits) in which all the 
numbers are integer multiples of the smallest number in the set. There are only 3 known 
clusters: (14, 28), (1104, 2208), and (31331, 62662, 93993). Is the number of Keith 
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clusters finite or infinite? He conjectures that the number of Keith numbers is infinite 
and the number of clusters finite, but no proof for either result is known. Since we sus-
pect that there are an infinite number of Keith numbers, the problem of finding the next 
such number always remains a tantalizing one. 

® ® ® 
For mathematical nerds, the repfigit (Keith) sequence can be restated as follows. 
Consider any positive integer TV with n digits d\, d2 , . . . , dn. Consider the sequence 
defined by a^ = d^ (k = 1, 2, . . . , n) and a^ = 2*= ^a^i (k > »). If a^ = Nfor any k, we 
call N a replicating Fibonacci number or Keith number. 

It is possible to speed future computations of the repfdigit formula by observ-
ing: ^ +1 = 2d), - aThe use of this equation may lead to an increase in speed 
^ = (Tishift + T l add)/[(«-l)T l add] where T is the time the computer takes for various 
operations. (A multiplication by 2 can be done by a C language shift operation.) This 
leads to a potential speed improvement of 5 ~ 21 {n - 1). 

Table F71.1 shows the actual sequence generated by 251,133,297. 
After Dr. Googol broke the world record and discovered all repfdigits up to 1 billion, 

a flood of computational research poured forth (see "Further Reading"). However, there 
remain many serious mysteries involving these strange numbers, and several students, 
researchers, and clubs have spent thousands of hours searching for new world-record 
holders. 

® ® ® 
In 1999, scientists discovered a new mathematical constant that relates to Fibonacci 
numbers. In particular, Divakar Viswanath, a young computer scientist at the Mathe-
matical Sciences Research Institute (MSRI) in Berkeley, California, put the ancient 
Fibonacci numbers back in the news by showing an odd connection between rabbits and 
the number 1.13198824. . . . To arrive at this constant, the next time you are trying to 
generate the Fibonacci sequence, flip a coin at each stage of the calculation. If it comes 
up heads, you add the last number to the one before it to give the next number, just as 
Fibonacci did. But if it comes up tails, you subtract. The sequence produced in this man-
ner is a "random Fibonacci sequence." Viswanath, who recently finished a Ph.D. in 
computer science at Cornell University in New York, showed that the absolute value of 
the Mh number in any random Fibonacci sequence is approximated by the Mh power 
of the number 1.13198824. . . . In other words, if you were a gambler, you would bet 
that the bigger N is, the closer the absolute value of the Mh number gets to the Mh 
power of 1.13198824. . . . It's not obvious why this result occurs, and mathematicians 

2, 5, 1, 1, 3, 3, 2, 9, 7, 33, 64,123, 245, 489, 975, 1947, 3892, 7775, 
15543, 31053, 62042, 123961, 247677, 494865, 988755, 1975563, 
3947234, 7886693, 15757843, 31484633, 62907224, 125690487, 
251133297 

Table F74.1. Actual Sequence for 251,133,297. 
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are curious to see if there is a relationship between this number and other known con-
stants, such as the golden ratio. Applications of the sequences are discussed by Ivars 
Peterson in Science News 155(24): 376-377, 1999. This discovery suggests that there is 
still lots of room for mathematical exploration and experimentation, even on a problem 
that began centuries ago as a simple model for rabbit population growth. It's also an 
example of how a random process can lead to a deterministic result when the numbers 
grow large. 

Chapter 72 

Apocalyptic Numbers 

There are many additional problems for you to ponder: 

© Does there exist an apocalyptic prime number? 

© Is it just a coincidence that the keys of a piano appear to exhibit a segment of the 
Fibonacci sequence 1, 2, 3, 5, 8, . . . ? There are 2 black notes, followed by 3 black 
notes. There are 5 black keys in an octave and 8 white keys in an octave! 

While on the topic of piano keys, did you ever notice that the widths of the white 
keys are not all the same at the back ends (where they pass between the black keys)? 
What back-end widths would piano manufacturers chose to use if they wanted to make 
the widths as similar as possible? Mathematician Kevin Brown studied different pianos 
and how they accommodate this problem in "linear programming." Let W denote the 
widths of the white keys at the front, and let 5 denote the widths of the black keys. Then 
let a, b,.. ., g (variables are assigned to their musical equivalents) denote the widths of 
the white keys at the back. It seems impossible to have a = b= ... = g. The best you can 
do is try to minimize the greatest difference between any 2 of these keys. One simple 
approach would be to set d = g = a = (W-B ) and b = c = e = f= (W-B/2) , which gives 
a maximum difference of 5/2 between the widths of any two white keys (at the back 
ends). Dr. Googol asks, "Can you think of a better solution?" 

Incidentally, 666 plays a role in modern times. For example, on July 10, 1991, 
Procter & Gamble announced that it was redesigning its moon-and-stars company logo, 
eliminating the curly hairs in the man-in-the-moon's beard that to some looked like 
6s. The fall 1991 issue of the Skeptical Inquirer notes that "the number 666 is linked 
to Satan in the Book of Revelations, and this helped fuel the false rumors fostered by 

F76.1 
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fundamentalists"; a dozen lawsuits filed by Procter & Gamble to halt rumors associat-
ing the company with Satanism were settled out of court. On May 1, 1991, the British 
vehicle licensing office stopped issuing license plates bearing the numbers 666. The 
winter 1992 issue of the Skeptical Inquirer reports 2 reasons given for the decision: cars 
with 666 plates were involved in too many accidents, and there were "complaints from 
the public." 

Although no one to date has found an apocalyptic prime number, various researchers 
have tried to determine if one exists. Charles Ashbacher uses Bertrand's postulate, which 
states for n > 1 there is always at least 1 prime between n and In. Taking the smallest 
"apocalyptic number" (denoted by ^4=1 followed by 665 Os), we can apply Bertrand's 
postulate 3 times to conclude that there are prime numbers pi, pi, and p3 such that 
a < pi < 2A < pi < 4A < p3 < 8a. Therefore there are at least 3 apocalyptic prime num-
bers. We can go a step further in contemplation of these elusive numbers. According 
to Friend H. Kierstead Jr., the number of apocalyptic primes is very much greater than 
3. The prime number theorem states that the number of primes less than n is on the 
order of »/(ln n). Thus the number of primes less than 10666 is approximately 
10 666/ln(10666) = 10666/(2.303 X 666) = 6.521 x 10662. The number of primes less 
than 10 665 is about 6.531 X 10 s61. Therefore the number of apocalyptic primes is about 
6.521 X 10662 - 6.531 X 10661 = 5.8 X 10662. Quite a few! 

Chapter 73 

The Wonderful Emirp, 1,597 

Here are some additional problems for you to ponder. 
1,597 is an "emirp," a prime number that turns into a different prime number when 

its digits are reversed. Can you find any other emirps? How rare are emirps? What is the 
largest emirp ever computed? Can you find any Iccanobifnumb&cst These are Fibonacci 
numbers that turn into different Fibonacci numbers when their digits are reversed. Is it 
possible that Iccanobif numbers do not exist? 

Here are some variations to the equation Dr. Googol gave. How difficult is it 
to find integer solutions to any of the following: x = J 1597jy2 + 2, x = ,J 1597_y , 
x = ~j 1597y2 + J27x = -Jl597y2 - 1? (Hint: We believe only 2 of these 4 equations have 
integer solutions.) 

Stimulated by Dr. Googol's research, Paul Tourigny found this amazing solution to 
the related problem: x = Jl597y2 - 1. His solution is * = 509,760,496,584,162,107, 
935,182 and y = 12755976753725984792525. He believes this to be the smallest inte-
ger solution. 

Here are the first few prime Fibonacci numbers: 2, 3, 5, 13, 89, 233, 1597, 28657. 
How large a prime Fibonacci number can you compute? 
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Chapter 123 

The Big Brain of Brahmagupta 

These solutions were not quite the smallest ones! But even the smallest solution contains 
unimaginably large numbers. For example, it turns out that the absolute smallest value 
for x is 

224403517704336969924557513090674863160948472041 
17824664537857719176051070357934327140032961660 

For more information on this type of problem you can consult Barry Mazur's paper 
"Arithmetic on Curves," which appeared in the Bulletin oftheAMS (14(2): 255, 1986). 

Here are some additional challenges: 

® Considering that the Brahmagupta numbers (x2 - 157 = y2, x2 + 157 = z1) contain 
so many digits, what would have mathematicians in earlier centuries thought about 
a problem such as this? 

® Historically speaking, how long ago was a solution to this problem even possible? 

® Could someone have solved the Brahmagupta problem, for example, in 1940 or 
1950? What problems considered unsolvable today will be solvable in 50 years? 

® Can you find any 7th-century Brahmagupta numbers for the original integer prob-
lem x2 - 92jy1 = 1 given in the quotation at the beginning of this chapter? Hint: 
Some solutions to this should be easy to discover using a personal computer. 

© One can generalize the 7th-century formula to x1 - Ny2 = 1. Are there any num-
bers Arfor which there is no solution to this problem? For example, Lew Mammel 
Jr. of AT&T Bell Laboratories could not find a solution for N= 53 when doing a 
computer search for all integers y less than 6365. 

As this book went to press, Paul Tourigny, stimulated by Dr. Googol's work with the 
Brahmagupta problems, found that 662492 - 53 x 91002 = 1. 

Chapter 75 

1,001 Scheherazades 

The question "What is the Arabian Nights factorial?" is from a collection of thousands 
compiled by Chris Cole, the editor of the rec.puzzles frequently asked questions list. 

The answer is 450! (450 factorial). How hard is it to determine the number of Os at 
the end of this number? 

Rec.Puzzles is an electronic bulletin board that is part of a large worldwide network 
of interconnected computers called Usenet. In his puzzle collection, Cole notes that 
determining the number of 0s at the end of x\ is not too difficult once you realize that 
each such 0 comes from a factor of 10 in the product 1 x 2 x 3 x 4 x . . . x x. Each 
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factor of 10, in turn, comes from a factor of 5 and a factor of 2. Since there are many 
more factors of 2 than factors of 5, the number of 5s determines the number of Os at the 
end of the factorial. The number of 5s in the set of numbers {1 . . . x] (and therefore the 
number of Os at the end of *!) is z(x) = int(x/5) + int(*/25) +int(*/125) + int(*/625) + 
. . . This series terminates when the powers of 5 in the denominator exceed x. Can you 

write a computer program for this? 

C h a p t e r 76 

73,939,133 

Amazingly, this is the largest number known such that all its digits produce prime num-
bers as they are stripped away from the right! 

73939133 
7393913 
739391 
73939 
7393 
739 
73 
7 

Dr. Googol does not know if there are larger numbers with this property. In the 17th 
century, mathematicians showed that the following numbers are all prime: 

31 
331 
3331 
33331 
333331 
3333331 
33333331 

At the time, some mathematicians were tempted to assume that all numbers of this 
form were prime; however, the next number in the pattern, 333,333,331, turned out 
not to be prime because 333,333,331 = 17 x 19,607,843. Let this be a warning to those 
of you who find mathematical patterns and assume that the pattern continues forever. 
(If we designate n as the number of digits in the 33 . . . 31 numbers, then these num-
bers are prime for n = 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, and 382.) 

Here's a little dissertation on prime numbers for you. As you certainly know if you 
have read the previous chapters, an integer greater than 1 is a prime number if its only 
positive divisors (factors) are one and itself. For example, the prime divisors of 10 are 2 
and 5, and the first 6 primes are 2, 3, 5,7, 11 and 13. The Fundamental Theorem of 
Arithmetic shows that the primes are the building blocks of the positive integers: every 



Further Exploring © 341 

positive integer is a product of prime numbers in 1 and only 1 way, except for the order 
of the factors. The ancient Greeks proved (ca. 300 B.C.) that there are infinitely many 
primes and that they are irregularly spaced (there can be arbitrarily large gaps between 
successive primes). 

In the 19th century, it was shown that the number of primes less than or equal to n 
approaches «/(ln n) as n gets very large; so a rough estimate for the «th prime is n- In n. 

In 1801, mathematician Karl Friedrich Gauss eloquently stated in his Disquisitiones 
Arithmeticae. 

The problem of distinguishing prime numbers from composite numbers and of 
resolving the latter into their prime factors is known to be one of the most important 
and useful in arithmetic. It has engaged the industry and wisdom of ancient and mod-
ern geometers to such an extent that it would be superfluous to discuss the problem 
at length . . . Further, the dignity of the science itself seems to require that every pos-
sible means be explored for the solution of a problem so elegant and so celebrated. 

On January 27, 1998, Roland Clarkson, George Woltman, Scott Kurowski, and oth-
ers discovered a new record prime for that time: 23021377-1. This is the thirty-seventh 
known Mersenne prime (there may be smaller ones, as not all previous exponents have 
been checked). Clarkson, a 19-year-old college student, was one of about 4,000 indi-
viduals involved in GIMPS: The Great Internet Mersenne Prime Search, launched by 
Woltman in early 1996. He found this prime using a program written by Woltman 
linked to the GIMPS Internet database via Scott Kurowski's PrimeNet (Parallel 
Technology for the Great Internet Mersenne Prime Search). As of April 1998, Prime-
Net's sustained throughput was at least 154 billion floating-point operations per second, 
or 4.6 (Pentium Pro 200Mhz) CPU years computing time per day. For the testing of 
Mersenne numbers, this is equivalent to 5.3 Cray T916 supercomputers, fully equipped 
(16 CPUs each) and at peak power. 

GIMPS offers free software to personal computer owners who want to search for big 
prime numbers. 

The primality of their number was verified by David Slowinski, who has found sev-
eral of the recent record primes. The complete decimal expansion of this 909,526-digit 
number is available on the Web. For the current largest known prime number, see the 
Web site http://www.utm.edu/research/primes/largest.html. (See also "Further Explor-
ing" for Chapter 56 for recent developments.) 

C h a p t e r 77 

l±)-Numbers from Los Alamos 

Here are a few i+J-numbers Dr. Googol calculated with starting numbers 1 and 9: 

1 9 10 11 12 13 14 15 16 17 18 20 36 38 39 40 41 42 43 44 46 66 67 68 
69 70 71 72 73 92 101 121 122 123 124 125 126 127 146 155 174 182 201 
211 229 230 237 256 284 285 286 287 288 289 290 291 311 348 365 
368 369 370 . . . 
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Here are a few with starting numbers 1 and 3: 

1 8 4 5 6 8 10 12 17 21 23 28 32 34 39 43 48 52 54 59 63 68 72 74 79 
83 98 99 101 110 114 121 125 132 136 139 143 145 152 161 165 172 176 
187 192 196 201 205 212 216 223 227 232 234 236 243 247 252 256 258 
274 278 . . . 

Notice how these (±)1>3 numbers have many terms separated by 2. 
The following is a long l±)-number sequence computed for the starting numbers 100 

and 101. (Dr. Googol computed this massive sequence using a computer program 
designed for him by Michael Clarke, who lives in the United Kingdom). 

100 101 201 301 302 401 403 501 504 601 603 605 701 706 801 803 805 
807 901 908 1001 1003 1005 1007 1009 1101 1110 1201 1203 1205 1207 
1209 1211 1301 1312 1401 1403 1405 1407 1409 1411 1413 1501 1514 1601 
1603 1605 1607 1609 1611 1613 1615 1701 1716 1801 1803 1805 1807 1809 
18111813 1815 1817 1901 1918 2001 2003 2005 2007 2009 2011 2013 2015 
2017 2019 2101 2120 2201 2203 2205 2207 2209 2211 2213 2215 2217 2219 
2221 2301 2322 2401 2403 2405 2407 2409 2411 2413 2415 2417 2419 2421 
2423 2501 2524 2601 2603 2605 2607 2609 2611 2613 2615 2617 2619 
2621 2623 2625 2701 2726 2801 2803 2805 2807 2809 2811 2813 2815 
2817 2819 2821 2823 2825 2827 2901 2928 3001 3003 3005 3007 3009 
3011 3013 3015 3017 3019 3021 3023 3025 3027 3029 3101 3130 3201 
3203 3205 3207 3209 3211 3213 3215 3217 3219 3221 3223 3225 3227 
3229 3231 3301 3332 3401 3403 3405 3407 3409 3411 3413 3415 3417 
3419 3421 3423 3425 3427 3429 3431 3433 3501 3534 3601 3603 3605 
3607 3609 3611 3613 3615 3617 3619 3621 3623 3625 . . . 

L. Kerry Mitchell, an aerospace engineer at the NASA Langley Research Center in 
Hampton, Virginia, suggested to Dr. Googol the concept of modified !±J-numbers, or 
^-numbers. In these cases, addition is replaced by multiplication in the definition of 
l±J-numbers. Starting with 2 numbers greater than 1, continue the sequence with those 
numbers that can be written only in 1 way as the product of 2 previous elements. For 
initiators of 2 and 3, here are the first 20 (^-numbers: 

2 3 6 12 18 24 48 54 96 162 192 216 384 486 768 864 1458 1536 1944 3072 

24 is on the list since it can be written only as 2 x 12, but 36 is not since it can be 
written as 2 x 1 8 o r 3 x 12. Notice that ® 2 , 3 are all even after 3. Why? Are all <8>-num-
bers even? 

® ® ® 
In order to study the distribution of gaps between l±)j 2 -numbers, Ken ShirrifF and Dr. 
Googol computed the 100,000 gaps between the first 100,001 l±l12-numbers. Figure 
F77.1 shows the distribution of gaps of size 1 to 200. 
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In the infinite S±)12 sequence, 
gap sizes can be divided into 3 cat-
egories: gaps that never appear, 
gaps that appear a finite number 
of times, and gaps that appear in-
finitely often. Dr. Googol has not 
yet found certain gap sizes, such as 
6, 11, 14, 16, 18,21,26, 28, and 
33. Other gaps (e.g., 1, 4, 9, and 
13) appear infrequently (occurring 
4, 2, 3, and 1 time, respectively). 
Some gaps are very common; for 
example, 37% of the gaps are of 
size 2, and 14% of the gaps are of 
size 3. Of course, these computa-
tional observations do not tell us 
about the properties of l±)12 after 

Gaps 

Gap Width 

F77.1 The distribution of the first 100,000 gaps 

between consecutive l+)l2-numbers. The number of 

times each gap occurs is plotted on a log scale from 

1 to 50,000 along the y axis; gaps that never occur 

are plotted at y = 0. (From a collaboration with Ken 

Shirriff.) 

the first 100,000 W] 2-numbers. 
Note that these missing gaps (e.g., 
6, 11, 14, etc.) are separated by 1, 
2, 3, or 5. Interestingly, these val-
ues are Fibonacci numbers. Is this 
always the case? We would like to hear from any readers who find gap sizes that do not 
manifest themselves in the first 100,000 l±llj2 gaps. 

Chapter 78 

Creator Numbers SI 
Dr. Googol collaborated with Ken Shirriff of the University of California for much of 
the analysis of this problem. Ken wrote a computer program in C that not only search-
es for the minimal solutions for the first 1,500 integers but also searches for the number 
of minimal ways to construct a number. For example, without allowing concatenation 
(multidigit numbers), he finds that there are 208 different ways to write the number 20, 
and 1,128 different ways to write the number 21! Even more exciting is the fact that 
these 208 and 1,128 different ways to write minimal solutions change to just 2 ways and 
1 way if concatenation is allowed. (After all, there is just 1 way to minimally write 21 
by concatenating 2 and 1.) 

The program finds solutions by using dynamic programming techniques. It starts 
with the 1-digit base cases and combines these numbers to generate all numbers that 
have a shortest solution of 2 digits. The 1- and 2-digit results are combined to yield all 
numbers with 3-digit shortest solutions. This process continues until all the desired 
numbers have been found. In order to keep the computations from growing too quick-
ly, Ken Shirriff prunes the results by discarding any results over 10,000. He also limits 
results to integers by only using positive exponents. While the first limit probably has 
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1500 
Number 

F78.1 Minimal integer solutions. These solutions <$(/») are 

for the first 1,500 numbers. Concatenation of integers is 

not allowed. 

no effect on the results, there 
are a handful of shorter solu-
tions that are only obtained 
by using negative exponents. 

Figures F78.1 and F78.2 
show plots of computed val-
ues for <Ŝ (n) vs. n. These 
plots show results for both 
nonconcatenation and con-
catenation contests. Interest-
ingly, minimal solutions 
comprised of fewer than 12 
digits can be found for all 
numbers tested (on average, 
about 7 digits are needed to 
minimally construct «, 1 s n 
<. 1500 ). 

We can also define the 
concept of "hard numbers" 
SI j,{n), which are the small-
est numbers requiring &l(ri) 
digits. For example, 921 is 
the smallest number that re-
quires a walloping 11 digits 
for its expression. Running 
his program on the integers 
up to 1 million, Shirriff 
found the hard numbers list-
ed in Table F78.1. Plots of n 
vs. £l/,(n) seem to increase 
exponentially. Notice that 
almost all hard numbers 
include the digit 1. Why? 

Unusual solutions: The 
contest winner, Dan Hoey, also wrote a Lisp program to confirm his hand calculations, 
and as with Shirriff's C program, he did not initially check for negative exponents. 
However, he later extended his program to negative exponents and discovered they 
sometimes result in shorter solutions. For instance, Hoey notes that if negative expo-
nents are not checked, one might conclude that <Q(640) = 8. However, look at Hoey's 
amazing solution c$(640)= 7 found when using negative exponents: 

1500 
Number 

F78.2 Minimal integer solutions with concatenation. The 

solutions &l(n) were found for the first 1,500 numbers. 

Concatenation of integers is allowed (that is, multidigit 

numbers such as 12 and 121 are permitted). 

640 = (2« 3 + 1>2)) x (1 + 2"9) 

Nevertheless, he believes that 20, 120, and 567 do not benefit from the use of nega-
tive exponents unless some subexpression has a denominator or numerator exceeding 
1012. He found an interesting solution with negative exponents for 567: 
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Without Multidigit Expressions: With multidigit expressions: 

Digits Hard Number Digits H a r d Numt 

2 3 2 3 
3 2 3 5 
4 7 4 7 
5 13 5 29 
6 21 6 51 
7 41 7 151 
8 91 8 601 
9 269 9 1631 
10 419 10 7159 
11 921 11 19145 
12 2983 12 71515 
13 8519 13 378701 
14 18859 
15 53611 
16 136631 
17 436341 

Table F78.1 Hard Numbers. 

567 = (2? + 2)a x (2 - 2"2) 

Should future searches consider using irrational numbers? Hoey writes, "In the same 
way that negative exponents imply fractions, fractional exponents imply irrational num-
bers, and then irrational exponents imply transcendental numbers. In fact, one could 
obtain complex numbers, too, but I don't think that is any help, and you have problems 
with branch cuts there." One question is whether there are any "integers" that benefit 
(in the sense of requiring fewer Is and 2s) by considering and using irrational numbers, 
or rational numbers formed with fractional exponents. Is there any integer that benefits 
from using irrational exponents? Dr. Googol thinks this is a fertile ground for signifi-
cant future research. 

In closing, Dr. Googol does not know for certain whether all of the c$l(ri) values list-
ed here are truly the minimal values. In most cases, they were arrived at through com-
putation and not through any mathematical theory. He looks forward to hearing from 
readers who may be able to find even smaller values than the ones listed here. Much of 
the participation and discussion for Dr. Googol's Creator Numbers Contest occurred in 
the mathematics discussion group sci.math on the Usenet computer network, where this 
contest took place. 
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Chapter 105 

Princeton Numbers 

To compute very large integers in the Robbins formula, you may have to use a pro-
gramming language such as REXX. Alternatively, there are many simple software pack-
ages used to compute large integers, such as Mathematica (Wolfram Research). Other 
notable examples are the large-integer programs of Harry J. Smith. Smith uses his own 
software package to perform multiple precision integer arithmetic: his software package 
can even compute transcendental functions to thousands of decimal places. (Contact 
him at: Harry J. Smith, 19628 Via Monte Drive, Saratoga, CA 95070.) Another alter-
native is the large-integer program Matlab (Mathworks, South Natick, MA). 

® ® ® 
Challenges: Dr. Googol calls a Robbins number R n Robbinmorphic if it terminates with 
n. For example, a one-digit Robbinmorphic number is E 6 = 7436. (For more on other 
morphic numbers, see Chapter 63). If n were a 2-digit number, the last 2 digits of the 
Robbins number would be considered when checking morphicity. And so on. 

Here is one hell of a question for you number nerds: does there exist a 
Robbinmorphic number for n > 7? After Dr. Googol posed this question to friends, 
Harry J. Smith from Saratoga, California, and David Edelheit from Oyster Bay, New 
York, discovered that R ^ is Robbinmorphic because it ends in 32. This is the only 
known large Robbinmorphic number. Is there a larger one? To compute the Robbins 
numbers, Smith used R{n) = R(n -1) x (2«) x (In + 1) x . . . (3« -2)/((«) x (n +1) x 
. . . (2 M -2)). This equation can be easily implemented with an algorithm that has all-
integer intermediate results. (You must use care when using the first formula given in 
this chapter. Even though all Robbins numbers are integers, some of the intermediate 
results in the algorithm are not integers. If intermediate results are stored as integers, 
some small errors may occur.) 

Is there anything special about the arrangement of digits within any of the Robbins 
numbers? Certain Robbins numbers, such as the fourteenth, which starts with 999 and 
ends with 000, do not seem perfectly random. Is the arrangement of digits random? 

Chapter 80 

Parasite Numbers 

After Dr. Googol showed his single 4-parasite number to several colleagues, Keith 
Ramsay of the University of British Columbia came up with an amazing formula to gen-
erate parasite numbers. It turns out that Dr. Googol's brute-force computational search-
es would have taken far too long to find larger parasite numbers. Suppose we start with 
a multiplier digit d and wish to find some (^parasite. All we have to do is evaluate the 
formula dl(l0d -1), and then use the unique segment of digits before the cluster 
repeats. (Every fraction, when expressed as a decimal, either "comes out even" as in 
1/8 = 0.125, or it repeats as in 1/3 = 0.33333 where a single digits occurs over and over 
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again, or it has group-repeats as in 1/7 = 0.142857 142857 . . . ) Let Dr. Googol ex-
plain with an example. Suppose he'd like to find a large parasite for 2. Let's divide 
2 by 19 to get 2/19 = 0.105263157894736842. The "105263157894736842" portion 
repeats over and over and is a 2-parasite because 2 x 105,263,157,894,736,842 = 
210,526,315,789,473,684. (Incidentally, this number is larger than the number of stars 
in the Milky Way galaxy.) Here's an incredible-sized 6-parasite: 

6/59 = .1016949152542372881355932203389830508474576271186440677966 . . . 
1016949152542372881355932203389830508474576271186440677966 x 6 = 
6101694915254237288135593220338983050847457627118644067796 

Do you see how the 6 migrates from the right end to the front after multiplication? 
Knowing Ramsay's formula, you can amaze your friends with multidigit parasites con-
taining hundreds of digits. 

Mike Dederian of Harvey Mudd College in California found something unusual 
about a 5-parasite 

102040816326530612244897959183655 

which can be written as 1 (02) (04) (08) (16) . . . to emphasize the doubling of dig-
its. The reason for this initial pattern is not obvious to us. 

After seeing Dr. Googol's parasite numbers, Joseph S. Madachy, editor of the Journal 
of Recreational Mathematics, sent Dr. Googol a paper he wrote in 1968 that appeared in 
the Fibonacci Quarterly (6(6): 385-389). In the paper are recipes for "instant division," 
which resembles what we might call (using Dr. Googol's terminology) reverse pseudo-
parasites. If you wish to divide 717,948 by 4, merely move the initial 7 to the right, 
obtaining 179,487. Madachy also gives another example: 

9,130,434,782,608,695,652,173 

can be divided by 7 by transposing the initial 9 to the end, obtaining 

1,304,347,826,086,956,521,739 

Other challenges: 

© What is special about the fraction 137174210/1111111111? Try computing this to 
find out. You'll be amazed when you gaze upon its decimal representation. 

© Make a list of all pseudoparasites less than 1 million. 

© Do there exist "ultraparasites" that multiply by swapping both the left- and right-
most digits? 



348 ® Wonders of Numbers 

Chapter 105 

Madonna's Number Sequence 

The digits of pi (JT) are 3.1415926.. . . Notice what happens if you add 1 to each digit? 
One of this book's reviewers felt that the sequence 425260376469080434957 was 

not sufficiently interesting to be included in this book, and therefore Chapter 81 should 
be deleted. If you agree, send Dr. Googol a note, and he will delete Chapter 81 from 
future editions of this book. 

Chapter 82 

Apocalyptic Powers 

Werner Knoeppchen of Glenwood Springs, Colorado, sent Dr. Googol a printout of the 
number 25'000'000. Werner writes: 

The number contains six 6s in a row. Therefore it is an apocalyptic power. I do not 
know if it is the lowest. The printout for 25>000'000 is over 500 pages long, and the 
number contains 1,505,150 digits. It required two weeks for a Mac IICI to calculate 
this number running Mathematica. 

Werner's double apocalyptic power contains inside it the digits "10556666660670," 
which he proudly circled in red ink. 

Charles Ashbacher of Cedar Rapids, Iowa, wrote a Pascal program that searched for 
double apocalyptic powers. He found such powers with exponents of /as follows: 2269, 
2271, 2868, 2870, 2954, 2956, 5485, 5651, 6323, 7244, 7389, 8909, 9195, 9203, 
9271, 9273, 9275, and 9514. (Why are there several "twins" that differ by 2: 2269 and 
2271, 2868 and 2870, 2954 and 2956? Why should a "triplet" exist: 9271, 9273, and 
9275? Just chance?) 

Christopher Becker from Homer, New York, used a DEC VAX 6410 and verified 
Ashbacher s findings regarding double apocalyptic powers. Becker notes that the first such 
number 22269 has 684 digits and has 666666 at the 602nd position. For single apocalyp-
tic powers, he finds 2157, 2192, 2218, 2220, and 2222. Curiously, 2666 is itself an apocalyp-
tic power. Between 2 2000 and 2 3000 Becker finds that more than half of the exponents are 
apocalyptic powers. Becker has also searched for St. John powers, which have the digits 
153 (Simon Peter caught 153 fish for Jesus). 2115 is the first St. John power. 

Becker later used a DEC Alpha computer to search for triple apocalyptic numbers 
with nine 6s in a row. He searched as high as 2 raised to a quarter-million using his cus-
tom C program. After using five hours of computing time, he found the following 
triplet of triple apocalyptic exponents that differ by 2: 192916, 192918, and 192920. 
He also found 212253, 237373, 241883, and 242577. 

John Graham of Penn State Wilkes-Barre, Pennsylvania, and RW.W. Taylor of the 
National Technical Institute for the Deaf (Rochester Institute of Technology, Rochester, 
New York) have both proven that there is an infinite number of apocalyptic powers. 
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John Rickert from the Rose-Hulman Institute of Technology, Terre Haute, Indiana, 
is currently the world s expert on apocalyptic powers. Stimulated by Dr. Googol's initial 
research on apocalyptic powers, Rickert has made a number of unusual discoveries, some 
of which are reported in the Journal ofRecreational Mathematics 29(2): 102-106, 1998. 
If we call numbers of the form 2k that contain the digits 666 "apocalyptic powers," 
Rickert finds an infinite family of apocalyptic powers of the form 

666362864775460604089535377456991567872 mod 1039. 

He also made several of other discoveries. For example, exponents of the form 
k = 650 +2500», k = 648 + 2500«, and k = 1899 + 2500w produce apocalyptic powers 
for any natural number n. If an apocalyptic power, 2k, contains the sequence of five 
digits 666ab with 50 s 10a+ b <. 74, then 2* + 2 will also be an apocalyptic power. 

Exponents smaller than 1000 producing apocalyptic powers are: 157, 192, 218, 220, 
222, 224, 226, 243, 245, 247, 251, 278, 285, 286, 287, 312, 355, 361, 366, 382, 384, 
390, 394, 411, 434, 443, 478, 497, 499, 506, 508, 528, 529, 539, 540, 541, 564, 578, 
580, 582, 583,610, 612, 614, 620, 624, 635, 646, 647, 648, 649, 650, 660, 662, 664, 
666, 667, 669, 671, 684, 686, 693, 700, 702,704, 714, 718, 720, 723,747, 748, 749, 
787, 800, 807, 819, 820, 822, 823, 824, 826, 828, 836, 838, 840, 841, 842, 844, 846, 
848, 850, 857, 859, 861, 864, 865, 866, 867, 868, 869, 871, 873, 875, 882, 884, 894, 
898, 920, 922, 924,925, 927, 928, 929, 931, 937, 970, 972, 975, 977, 979, 981, 983, 
985, and 994. 

Rickert also discovered that double apocalyptic powers for any natural number n can 
be produced by k = 423152 + 1562500n. The smallest such number is k = 423152. How 
far can we extend this madness? Is it possible to find a k so that 2k contains 666 con-
secutive 666s (1988 consecutive 6s)? This large number, called the Goliath number arid 
denoted by the symbol K certainly exists. Behold the following beauty: 

The Smallest Known Goliath Y0 = 2k where 
k = 5 8 8 5 6 8 7 7 2 4 1 1 8 4 0 1 9 4 1 3 1 6 0 3 1 5 3 2 3 4 4 9 3 5 5 6 7 1 0 2 9 5 0 7 9 4 7 7 8 5 7 1 2 0 9 8 4 1 9 2 2 6 5 2 3 2 3 9 1 7 8 9 4 1 9 8 8 0 4 3 8 9 
0 6 9 2 1 9 3 1 9 9 0 3 1 6 0 9 2 7 0 5 9 4 8 9 9 1 5 1 5 4 8 5 7 7 6 0 4 6 4 4 4 8 2 5 4 2 9 5 9 6 8 1 8 0 6 9 5 9 2 0 2 7 9 7 9 6 8 4 9 4 6 3 0 7 5 7 0 8 2 9 0 
1 9 9 3 4 2 3 5 5 8 7 0 5 8 9 6 4 7 8 2 0 2 0 0 3 7 3 2 4 1 6 2 7 6 1 4 0 9 4 0 6 3 7 0 3 0 4 6 3 1 0 0 6 0 0 6 5 3 0 4 0 9 7 8 0 8 0 9 9 4 6 7 2 9 2 6 8 2 
4 1 3 8 5 6 6 4 6 3 6 6 4 8 6 4 1 9 1 2 7 3 7 6 8 6 5 4 1 0 5 9 3 7 3 8 0 0 5 5 1 1 8 3 7 2 3 4 1 7 0 4 7 8 6 4 1 7 4 1 8 3 9 0 8 0 5 9 5 9 9 8 3 4 8 9 6 3 0 
9 5 7 5 9 9 3 7 9 6 1 8 9 2 0 7 0 5 3 8 7 3 0 3 8 1 8 7 9 5 5 6 0 0 1 4 2 0 7 9 7 6 2 7 4 5 1 8 4 3 5 7 9 9 4 7 9 7 2 7 9 7 3 7 8 7 5 6 5 4 3 8 6 1 6 6 3 3 1 8 0 3 3 9 5 8 
6 0 0 9 9 1 5 8 8 0 0 3 6 6 3 7 4 5 4 9 8 4 3 7 3 8 2 9 0 9 9 7 1 6 0 1 7 4 3 8 6 3 1 7 9 9 1 9 9 9 4 5 0 5 9 4 0 6 3 9 2 0 5 3 2 8 3 3 4 5 9 5 8 5 9 3 9 8 3 0 4 2 9 3 
4 4 8 5 5 5 3 5 4 1 1 8 6 0 1 1 8 4 1 7 9 3 6 6 3 1 1 7 1 7 7 9 6 5 4 6 5 9 7 9 3 7 8 4 4 0 0 5 8 9 8 0 5 8 3 7 8 9 9 0 1 3 8 4 7 2 7 1 5 6 5 5 5 4 5 0 4 3 4 1 0 8 4 4 5 9 
8 8 9 5 1 1 1 9 7 3 1 0 5 4 3 3 4 6 4 3 5 6 3 0 1 3 5 8 0 3 8 1 3 9 3 0 0 9 5 6 1 5 7 9 7 6 0 2 9 0 7 2 3 2 9 7 1 8 5 4 5 2 1 2 7 0 6 9 7 0 4 9 7 0 0 9 5 1 6 4 9 9 3 4 7 
1 9 9 3 7 0 9 2 1 2 5 8 3 7 3 2 3 5 5 1 2 1 1 5 5 4 8 7 0 4 1 4 9 9 3 6 7 1 0 4 1 4 1 4 6 7 7 4 6 4 2 0 8 4 0 7 5 5 4 4 3 0 0 4 3 3 0 0 1 8 6 5 3 0 3 9 0 2 3 1 9 6 4 3 3 7 
8 9 7 2 9 7 6 6 8 3 8 0 8 6 6 0 6 0 1 9 5 5 6 2 9 5 6 4 0 0 0 4 0 9 7 9 3 0 3 8 7 2 5 3 6 0 0 9 4 3 3 2 6 7 2 6 8 8 5 7 6 9 7 2 5 2 4 7 4 0 5 6 8 8 5 0 7 5 5 6 4 6 7 1 
2 2 8 7 9 7 6 3 4 0 1 4 7 3 1 5 9 1 7 1 6 4 2 6 5 8 8 0 3 0 9 0 9 4 3 0 2 1 9 7 9 0 0 5 6 4 4 1 9 0 9 6 1 0 7 0 7 8 5 5 0 8 0 4 8 5 7 7 9 6 4 0 3 5 0 9 4 4 2 0 9 7 2 7 5 
0 1 4 7 5 1 8 4 9 6 3 3 7 9 3 7 5 6 8 1 7 5 0 9 8 0 5 9 2 7 3 5 2 9 7 6 1 0 2 8 3 0 9 0 4 4 1 8 1 7 4 3 4 1 9 2 0 3 9 9 3 5 5 5 4 4 6 2 7 0 1 8 8 1 9 3 9 4 4 3 1 3 0 6 3 
3 6 2 5 6 0 2 4 4 2 7 4 7 3 2 4 7 0 0 0 9 6 8 6 1 4 9 5 2 1 6 4 3 8 0 8 3 1 5 8 0 9 6 8 6 8 2 0 0 7 6 3 2 4 2 9 6 8 3 1 9 1 0 1 6 4 8 2 0 6 5 4 4 7 6 9 0 5 8 8 9 6 4 2 
1 7 7 5 7 0 5 9 6 6 9 8 4 8 7 4 7 6 7 3 7 8 3 5 1 7 6 3 6 4 2 0 4 9 8 0 8 8 1 2 3 4 4 0 4 8 5 3 0 7 8 0 6 2 7 9 5 3 4 3 0 3 7 3 7 5 3 2 2 4 9 8 6 0 5 9 6 5 3 1 8 3 5 4 7 
1 3 3 7 9 5 8 0 0 5 6 8 9 6 8 4 8 3 8 1 3 9 5 5 3 3 7 0 7 3 0 9 3 0 9 2 2 4 6 1 1 8 8 3 1 8 6 7 5 4 6 9 6 8 4 5 2 8 0 7 8 3 0 7 7 7 2 8 7 5 2 3 1 9 3 6 4 6 5 7 5 4 4 7 9 
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8 8 9 5 8 3 3 9 1 2 5 5 3 6 4 1 3 5 4 4 1 1 7 7 2 3 7 1 6 4 8 9 5 9 1 5 1 4 3 3 3 3 3 3 7 7 2 3 1 9 1 7 4 2 5 8 5 4 5 0 8 8 2 9 4 7 5 6 4 7 7 8 9 9 5 7 9 6 8 9 4 0 9 3 5 6 
6 0 1 8 1 0 6 3 8 7 9 0 6 4 1 9 3 9 0 7 7 4 8 1 7 9 3 1 5 9 2 3 9 8 8 8 5 0 6 7 5 3 3 7 8 2 3 7 6 3 0 5 1 9 4 8 5 7 6 6 3 9 5 4 8 5 5 3 6 6 7 7 4 0 1 7 7 6 7 9 6 8 8 5 6 
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1 5 6 2 0 2 6 9 5 5 7 4 9 7 7 7 3 1 8 0 1 9 8 2 6 9 6 2 9 7 7 5 5 8 7 7 9 6 2 4 2 0 7 1 3 2 7 8 2 4 3 6 4 3 5 1 9 7 1 5 5 6 7 7 1 0 2 3 7 1 9 7 4 9 7 4 3 5 1 5 7 6 4 1 3 6 9 
0 6 0 4 6 6 3 2 4 6 3 7 3 3 2 0 3 0 0 7 5 0 9 8 1 9 7 1 1 8 8 8 9 7 7 8 6 7 4 0 6 5 3 8 9 8 0 3 3 1 3 8 4 0 2 9 4 7 0 0 0 4 9 8 4 1 9 3 0 1 9 8 9 9 3 8 1 5 5 5 6 5 8 2 
8 6 0 5 8 6 7 2 4 8 4 3 2 2 5 8 7 5 2 7 2 3 2 8 6 2 0 6 9 9 6 5 5 9 2 9 4 9 7 2 7 9 5 8 2 1 4 7 5 3 4 6 3 7 8 0 8 8 4 9 3 8 8 9 2 1 8 1 9 0 3 9 3 3 8 4 7 4 8 7 0 9 8 1 
6 6 0 9 6 4 5 2 6 6 5 1 0 6 6 3 2 7 4 5 6 8 3 1 4 3 6 6 4 2 0 0 1 2 2 8 6 0 9 5 9 0 2 4 8 6 0 7 7 2 4 6 9 4 3 9 4 8 8 5 0 4 
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There are probably Goliath numbers smaller than this, and there are certainly larger 
Goliath numbers. In fact, larger values of Tcan computed from k + 4 x 52858 

It seems likely that there is some A'so that for any k > K, 2k is an apocalyptic power. 
Rickert suggests that a proof of this is beyond our current techniques. Further explo-
ration shows that there are only twenty exponents between 20,000 and 100,000 that do 
not produce apocalyptic powers. These exponents are 20271, 20300, 20509, 20644, 
20710, 21077, 21600, 21602, 22447, 22734, 23097, 23253, 24422, 24441, 25026, 
25357, 25896, 26051, 26667, and 29784. 

Rickert conjectures that all powers of 2 larger than 229784 are apocalyptic powers. 
(Currently 29,784 is the largest known non-apocalyptic power.) This would mean that 
there are exactly 3,715 powers of 2 that are not apocalyptic powers. Note that the fre-
quency of double apocalyptic exponents is clearly increasing in the list of exponents 
smaller than 10,000 producing doubly apocalyptic powers. 

Dr. Googol asks if there is some Kso that for any k > K, 2k is a Goliath number T? 
In another words, at what point in our number system do all numbers suddenly become 
Goliath numbers. Is f 0 x f 0 a Goliath number? 

is Y0 ^ a Goliath number? 

Chapter 83 

The Leviathan Number ^ 

Michael Palmer from the United Kingdom was the first person on Earth to deter-
mine the first 6 digits of Interestingly, you don't have to compute all the digits of 
the Leviathan to determine just the first 6. The reasoning is as follows. 

Factorial functions can be approximated by Stirling's formula. It's named after James 
Stirling (1692-1770), a Scot who began his career in mathematics amid political and 
religious conflicts. He was friends with Newton but devoted most of his life after 1735 
to industrial management. 

Stirling's ingenious formula for approximating factorial values is n\ ~ J2jt x e~ " 
x nn + V2. At [www.oup-usa.org/sc/0195133420] Dr. Googol provides BASIC and C 
code for computing Stirling approximations, actual factorial values, and the percentage 
difference between the 2. Notice that this formula give a useful approximation for n\ 
when n is large. For example, when n = 6, Stirling's approximation gives a value of 710, 
and the true value of n\ is 720. When n is 23, Stirling's approximation is 25,758,524, 
968,130,088,000,000, and the true value is 25,852,017,444,594,486,000,000. Notice 
that the difference between the 2 values actually increases as a function of n, but the per-
centage difference decreases with greater values. Why not make a graph showing this 
percentage difference as a function of «? Because many modern software packages 
today allow us to compute large factorials (though presumably not so large as a googol), 
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people often forget Stirling's formula. However, until a few years ago, this was the only 
way to approximately determine factorials for large numbers. 

Let's use Stirling's formula to compute the first few digits of the Leviathan ^ with-
out computing all the digits. Michael Palmer notes that for n = 10666, the term n" +1/2 

in Stirling's formula is a power of 10 and can be ignored when trying to determine the 
first 6 digits of Next, let's look at the exponential term in Stirling's formula. Here 
we have which can be rewritten as 10_1° x k where k = log10f. Next, we split 10666 * k 

into its integer and fractional parts, say m and f , giving us e~i0 = 10~m x 10 
We can ignore the 10~m part since it is a power of 0.1, and therefore the first 6 dig-

its of 10666! are given by the first six digits of /2jt x 10~( Michael used a mathemati-
cal software package called AXIOM to compute this, using a high number of digits 
(777) to ensure accuracy. Therefore, 10666 x k is 434,294 . . . 9,652.27174945413317. 
. . . Next, using what remains of Stirling's formula, we find J2jt x IQ- 0 27174945 = 
1.340727397. He therefore concludes that the left 6 digits of the Leviathan number are 
134,072. 

Could today's computers compute the entire Leviathan, or will this be beyond the 
realm of humankind for the next millennium? The number of digits in ^ is more than 
10668, and this is much greater than the number of particles in the universe. Further-
more, even if a googol digits could be printed (or stored) per second, is would still 
require so much time that the universe would come to an end before the printing or 
storing was completed. Therefore such a computation will always be beyond the realm 
of humanity. If you are interested in computing the number of trailing 0s of see my 
book Keys to Infinity. 

As we climb the integers in our quest for infinity, we find several famous large num-
bers. The baby Leviathan 99 ' is the largest number that can be written using only 3 dig-
its. It contains 369,693,100 digits. If typed on paper, it would require around 2,000 
miles of paper strip. Since the early 1900s, scientists have tried to determine some of the 
digits of this number. Fred Gruenberger recently calculated the last 2,000 digits and the 
first 1,200 digits. 

Even more unimaginable is 3, which has a value of 9 5 ' . If typed on paper, 3 would 
require i o 3 6 9 6 9 3 0 9 4 miles of paper strip. Joseph Madachy has noted that if the ink used 
in printing 3 was a 1-atom-thick layer, there would not be enough total matter in mil-
lions of our universes to print the number. Shockingly, the last 10 digits of 3 have been 
computed. They are 1,045,865,289. 

Here's a tough problem for you. Is the following statement true or false? How do you 
know? 

A final observation on big numbers. The largest "physically imaginable" size is that 
of our entire universe, 10 with 29 0s after it (in centimeters). The smallest size, describ-
ing the subatomic world, is 10 with 24 0s (and a decimal) in front of it. On this grand 
size scale, humans are right in the middle. Does this mean humans hold a central, priv-
ileged place in the cosmos? Did God place us here? 
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Chapter 105 

The Safford Number 

Arthur C. Clarke recently wrote to Dr. Googol expressing his skepticism over the story 
of Dase calculating pi to 200 places in his head. Clarke wrote, "Even though I've seen 
fairly well authenticated reports of other incredible feats of mental calculation, I think 
this is totally beyond credibility." Clarke, stimulated by Dr. Googol's Dase report, 
recently wrote Stephen Jay Gould asking how it is possible for such extraordinary abili-
ties as human calculators to have evolved through natural selection. Clarke asks, "What 
is the survival value in the jungle of the ability to multiply a couple of 50-digit numbers 
together?" 

Dr. Googol looks forward to hearing from readers who can confirm or deny the leg-
ends of Dase's extreme computing ability. 

Chapter 85 

The Aliens from independence Day 
If you want to use the computer programs at [www.oup-usa.org/sc/0195133420] to 
compute sexes for a large number of years, it's important to have a high-precision value 
for and you might want to check the value that is used in your particular computer 
language. (You don't have to worry about this issue if you only want to compute the sex 
of the first few thousand abductees.) For example, many people who tried to use the 
Mulcrone formulation computed that a female would be the billionth person taken. 
This is because BASICA gives a value of 2.2360680103 for J5 on some machines, 
whereas the true value is 2.236067977. . . . 

Notice that the number of males and females, and total number of humans, begin to 
follow the well-known Fibonacci sequence: 

Year 0 1 2 3 4 5 6 7 8 . . . 
Number of Males 1 0 1 1 2 3 5 8 1 3 . . . 
Number of Females 0 1 1 2 3 5 8 13 21 . . . 
Total 1 1 2 3 5 8 13 21 34 . . . 

(As mentioned in other chapters, the Fibonacci sequence of numbers—1, 1, 2, 3, 5, 
8, etc.—is such that, after the first 2, every number in the sequence equals the sum of 
the 2 previous numbers F„ = F„ _ j + F„ _ 2). The sum of elements F{ through Fn is 
Fn+2 -1. Using this relationship, it's possible to show that the number of people abduct-
ed during a particular year is simply Fyear (in this case, the first abduction is considered 
to have taken place in year 1). The total number of people abducted including the cur-
rent year, is Fyear+2-l. As to questions about the sex ratio, it's possible to show that the 
ratio of the number of females to males converges to FJFn _ j = <j>. Here <j> is known as 
the golden ratio and is equal to 1.61803.... It appears in the most surprising places in 
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nature, art, and mathematics. The symbol 4> is the Greek letter phi, the first letter in 
the name Phidias, a classical Greek sculptor who used the golden ratio extensively in 
his work. 

In order to avoid any numerical precision problems that may arise with the Mulcrone 
formulation, Ram Biyani has suggested a formulation involving only integer calcula-
tions. In particular, we can use a recursive function that computes the sex, s, of the 
xth person in the yth year using a previously generated sequence of the number of 
persons taken in each year (the Fibonacci sequence). The recursive relationship is 
s(y,x) = s(y-2,x), if x< F(y - 2); s(y,x) = s{y -1, AT- F(y - 2)), if x > F(y - 2), 
where F(y) is the number of persons taken in the year y, and i (y,x) is the sex of the xth 
person taken in year y. 

Here are some additional challenges for you to ponder: 

© How many years would the alien require to remove the entire population of the 
Earth (about 6 billion people)? 

© Can you use this fact to determine the sex of the billionth person? 

© How do the sex ratios change if, during the first year, you start with 2 people, for 
example, M M, or F M? 

C h a p t e r 86 

One Decillion Cheerios 

Scott Bales from North Carolina notes that any possible solution must be of the form 
2* X 5* = 10*. If this is not true, 1 of the multiplicands' terms will have both 2 and 5 
as factors, and the last digit of this term will be 0. The problem therefore is to find a 
power of 2 and a power of 5 that do not have Os in them. Scott has written a Turbo 
Pascal program (running on a 486 DX) to check 5* for all values of x less than 60,000. 
Using his program, Scott found 558 to be the only power of 5 greater than 533 that also 
contained no 0s. However the power of 2 for * = 58 yielded a number with at least 
one zero. Scott says, "Do I think such a number exists? I don't know—early evidence 
doesn't look good. If it exists, I think humanity will one day find it." 

Chapter 87 

Undulation in Monaco 

Bob Murphy used the software Maple V to search for undulating squares, and he dis-
covered some computational tricks for speeding the search. For example, he began by 
examining the last 4 digits of perfect squares (i.e., he computed squares mod 10,000). 
Interestingly, he found that the only possible digit endings for squares that undulate are 
0404, 1616, 2121, 2929, 3636, 6161, 6464, 6969, 8484, and 9696. By examining 
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squares mod 100,000, then mod 1,000,000, then mod 10,000,000, etc., he found that 
no perfect square ends in 40404, 6161616, 63636, 464646464 or 969696, thereby 
allowing him to speed further the search process. Searching all possible endings, he 
asserts that, if there is an undulating square, it must have more than 1,000 digits. 

Dr. Helmut Richter from Germany is the world's most famous undulation hunter, 
and he has indicated to Dr. Googol that it is not necessary to restrict the "mod search-
es" to powers of 10, and that arbitrary primes work very well. He has searched for undu-
lating squares with a million digits or fewer, using a Control Data Cyber 2000. No 
undulating squares greater than 69,696 have been found. 

Randy Tobias of the SAS Institute in North Carolina notes that there are larger 
undulating squares in other number bases. For example, 2922 = 85264 = 41414 base 12. 
And 121 is an undulating square in any base. (121 base n is (n + l)2.) Interestingly, 
we find that there are very few undulating powers of any kind in base 10. For example, 
a 3-digit undulating cube is 73 = 343. However, Randy Tobias conducted a search for 
other undulating powers and only found 343 as an undulant formed by raising a num-
ber to a power p. He has checked this for 3 <p< 31 and for all undulants less than 10100. 
Undulating powers are indeed rare! 

Undulating prime numbers, on the other hand, are more common. For example, 
Randy has discovered the following huge and wondrous undulating prime: 

7 + 720 x (1004" - l ) /99 = 

72,727,272,727,272,727,272,727,272,727,272,727,272,727,272,727, 
272,727,272,727,272,727, 

272,727,272,727,272,727,272,727,272,727,272,727 

(It has 99 digits.) To find this monstrosity, he also used the software program called 
Maple. The program scanned numbers using two lines: 

(a*10 + b)*(l()**(2*(k + l ) ) - l ) / {){) 
a + l()*(a*10 + b)*(10"(2*(k + 1 » - 1) / 99 

f o r ( 0 < £ < 5 0 , l < t f < w - l , 0 < £ < ? z - l ) . The Maple "isprime()" function was 
used to check whether a number is prime. Maple makes it possible to work with very 
large integers. 

There are many other undulating primes with many digits. However, there does not 
seem to be any undulating prime with an even number of digits. (Considering that 
ababab . . . ab= ab X 10101 . . . 01, we should not expect to find any even-digit undu-
lating primes.) Dr. Googol would be interested in hearing from readers who have 
searched for undulating primes with larger periods of undulation, such as found in the 
prime number 5,995,995,995 (which does not finish its last cycle of undulation). 

Finally, binary undulants are powers of 2 that alternate the adjacent digits 1 and 0 
somewhere in their decimal expansion. For example, the "highest-quality" binary undu-
lant Dr. Googol has found is 2949. It has the undulating binary sequence 101010 in it, 
which he has placed in parentheses in the following: 
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2949 = 4758454107128905800953799994079681792420032645310062268 
97846994981(101010)2913293995344538606387700321887355916128617 
51376145467278574369826493065785952766280250550668943187159661 
65965114697527579847654265035245990594167958620092162821027166 
09115705865638544337453260521036049116206989312 

Here 949 is called an undulation seed of order 6, since it gives rise to a 6-digit undu-
lation pattern of adjacent Is and 0s. When Dr. Googol challenged mathematicians and 
programmers around the world to produce a higher-order binary undulant, many took 
up the challenge. The highest-quality binary undulant known to humanity before 1999 
was discovered by Arlin Anderson of Alabama. He was the first to find that 2 1802 con-
tains an 8-digit binary undulation. After much hard work he also found that 27694891 

starts with the digits 10101010173 . . . , and a week later he discovered that 21748219 

gives rise to a 10-digit undulant! Since Arlin only checked the last 240 digits of each 
number, he feels it is almost certain that there is a bigger binary undulation somewhere 
in the first million powers of 2. Considering that 21000000 contains around 300,000 
digits, the chance of finding a 10101010101 or 01010101010 is large. (Arlin uses a 
custom C program for large integer computation. The program runs on an Intergraph 
6040 Unix workstation and on a 486 PC. Searching 240 digits in 2 million powers of 2 
required 15 hours.) 

How do binary undulants vary with the base b\ For example, for the case of b = 2, 
there are many binary undulants. Is it possible that as b increases, the quality of the best-
known cases decreases? 

In 1999, John Rickert from the Rose-Hulman Institute of Technology, Terre Haute, 
Indiana, discovered a binary undulant with 2002 digits of alternating 1010s. The expo-
nent }i for the binary undulant contains 2,862 digits, starting with the digits 
1705096307158733196 and ending with the digits 1125807122675. The actual num-
ber 2W has X log102)l digits, which is approximately 5.13x10 2860 digits. (The sym-
bols T 1 denote the "ceiling function," which returns the smallest integer that is greater 
than or equal to a given number. Example : T354.891 = 355.) 

For the enjoyment of the most manic of number nuts (Dr. Googol uses the term 
affectionately), here is H for the highest quality binary undulant known to humanity. 

The highest quality binary undulant 2 where H = 
1 7 0 5 0 9 6 3 0 7 1 5 8 7 3 3 1 9 6 2 7 2 8 3 7 8 2 2 8 6 1 2 1 0 5 0 6 0 4 4 2 3 8 2 4 2 3 4 3 3 4 5 4 8 2 7 0 9 7 5 2 2 3 7 9 7 1 4 8 0 3 6 9 9 1 3 6 9 9 3 6 6 5 5 9 
7 5 3 5 3 6 3 9 8 9 1 0 7 2 6 3 0 4 8 2 6 4 1 1 5 7 8 3 8 1 8 6 3 5 9 0 2 9 8 3 0 9 9 1 4 8 8 1 6 8 4 4 7 4 3 3 7 6 1 5 2 5 6 5 5 6 7 8 5 7 1 6 0 8 5 5 7 9 2 0 9 4 4 0 5 
8 7 9 8 6 7 3 5 9 3 7 8 2 9 1 1 3 7 7 3 6 6 6 9 5 4 6 3 5 1 4 8 9 1 9 0 8 6 3 4 9 4 4 5 4 9 4 7 3 4 2 6 5 5 8 5 7 0 2 5 9 3 5 5 0 4 4 1 0 3 7 5 6 4 9 2 3 1 7 6 3 4 6 1 1 
5 5 4 0 6 5 3 0 3 5 8 4 8 7 5 2 6 7 5 5 4 3 7 7 0 8 8 8 0 0 3 4 2 7 4 8 7 7 9 1 3 5 0 1 6 4 0 6 6 2 7 4 6 9 1 7 2 1 1 4 9 5 3 5 7 8 5 7 4 7 6 8 1 3 9 8 3 9 6 9 8 8 7 8 4 7 
3 6 5 7 5 0 9 6 9 9 3 3 0 1 9 1 9 0 4 7 3 9 8 8 7 0 0 0 1 1 8 9 8 9 2 5 3 4 2 4 0 3 0 3 1 7 7 5 8 2 1 8 9 1 9 8 9 3 3 2 2 7 1 7 5 4 0 6 0 3 1 1 6 1 2 6 5 7 7 0 6 9 5 1 1 1 
1 3 0 9 4 6 0 1 5 1 9 4 1 1 2 8 8 5 6 9 3 0 0 8 9 9 0 6 9 7 6 6 4 9 8 2 1 0 0 3 1 2 3 0 0 7 3 0 0 8 9 0 5 9 6 4 3 2 9 7 7 1 6 9 3 7 8 7 3 1 5 4 1 8 5 6 7 3 7 2 9 6 4 2 4 
3 8 1 1 7 7 4 2 6 0 1 6 1 1 5 8 1 6 3 4 5 9 5 1 9 7 6 6 1 4 9 2 4 2 8 5 9 6 8 0 5 5 2 9 8 9 2 2 1 5 3 3 2 0 2 0 3 8 0 2 1 4 8 1 2 0 9 5 0 4 0 6 4 8 7 0 5 1 4 9 5 5 8 8 1 
5 3 4 0 2 6 2 4 5 9 5 2 9 1 0 0 4 8 8 6 5 9 9 7 5 2 0 5 6 6 2 2 3 5 7 6 1 3 3 3 9 1 0 8 7 2 0 0 7 2 0 8 2 9 4 4 8 9 3 3 7 9 7 4 8 9 3 8 7 7 7 9 8 1 1 0 4 4 6 2 4 3 2 8 5 
1 8 1 7 2 1 9 5 5 5 4 6 5 5 4 2 1 6 5 7 1 5 9 9 0 1 5 3 9 5 9 9 5 7 5 1 8 9 1 6 8 0 6 8 6 3 8 4 6 6 7 8 5 7 4 8 7 2 4 8 5 9 0 3 2 6 8 1 7 3 8 8 0 7 1 4 9 0 8 1 9 6 1 3 3 
9 1 9 4 5 3 7 0 4 1 5 1 8 2 1 0 6 2 5 5 6 9 4 8 3 7 0 6 0 4 0 3 0 7 2 3 8 9 3 5 7 9 4 6 8 0 9 4 0 4 5 9 5 0 8 4 1 0 6 0 4 4 4 7 9 4 4 2 5 7 7 4 1 5 9 7 5 4 1 7 9 5 6 9 4 
9 1 5 1 2 9 7 8 2 8 6 4 0 2 5 9 3 6 4 8 7 7 3 3 5 1 9 6 5 2 9 0 6 4 0 7 6 4 7 6 1 2 9 1 4 5 3 2 7 3 8 5 8 8 3 1 9 8 0 6 0 5 4 8 6 9 0 1 5 7 4 8 5 6 1 5 2 9 2 7 8 9 5 4 3 
2 3 1 1 0 2 1 5 1 9 7 4 5 4 5 8 6 7 7 0 4 1 2 0 8 0 6 0 5 5 5 7 5 7 9 5 4 9 4 3 7 0 0 2 9 1 5 0 2 7 0 1 7 7 2 3 3 8 4 5 8 0 5 7 4 0 9 6 3 7 1 3 5 3 3 4 3 9 3 8 1 0 3 3 5 5 
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2 0 3 3 2 7 7 3 8 7 0 1 8 7 1 1 4 3 3 1 7 9 5 9 6 9 6 8 1 2 2 7 1 6 2 2 5 6 9 5 8 2 5 8 7 1 5 7 8 0 2 9 1 6 2 1 5 8 3 0 6 1 6 4 2 0 0 5 2 5 5 7 5 1 5 4 8 6 3 4 1 4 9 3 8 7 
4 5 1 4 3 9 6 0 7 6 1 4 6 0 7 2 5 6 4 9 2 9 1 3 2 1 5 4 3 5 5 0 3 7 3 3 9 2 8 4 1 8 6 0 2 5 2 9 7 8 7 6 0 0 5 1 5 4 9 0 5 0 0 5 4 1 4 3 5 4 2 5 0 6 2 5 9 3 9 7 4 7 3 4 5 



356 ® Wonders of Numbers 

8 6 8 2 7 8 3 9 9 9 5 1 6 2 8 6 4 1 7 0 2 0 0 2 4 5 2 5 5 7 9 4 0 8 4 7 9 2 4 7 1 7 7 7 7 5 1 1 8 2 8 3 6 9 9 4 1 7 2 7 6 1 2 1 9 7 2 7 4 6 8 8 5 2 0 2 1 7 9 7 7 0 0 5 5 6 
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The Latest Gossip on 

Narcissistic Numbers 

In this chapter, Dr. Googol discussed numbers of the kind: 

153 = l 3 + 53 + 33 

He began to wonder if there were any cubes that are the sum of 3 consecutive cubes. 
Here is 1: 33 + 43 + 53 = 63. Are there any others? 

On a similar line of thought, factorions (denoted by the symbol A") are numbers that 
are the sum of the factorial values for each of their digits. (For a positive integer n, the 
product of all the positive integers less than or equal to n is called n factorial, usually 
denoted as n\ For example, 3! = 3 X 2 x 1.) The number 145 is a factorion because it 
can be expressed as 

145 = 1! + 4! + 5! 

Two tiny examples of A are 

1 = 1! and 2 = 2! 

The largest known A" is 40,585; discovered in 1964 by R. Dougherty using a com-
puter search, it can be written as 

40,585 = 4! + 0! + 5! + 8! + 5! 
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Can you end the loneliness of the factorions? Do any others exist? 
Various proofs have been advanced indicating that 40,585 is the largest possible 

A and that humans will never be able to find a greater A In fact, these 4 factorions 
are the only factorions known to humanity. How can this be? 

A more fruitful avenue of research may be the search for —factorions "of the 
second kind," which are formed by the product of the factorial values for each of their 
digits. Additionally, there are hypothetical Aj,—factorions "of the third kind" formed 
by grouping digits. For example, a factorion of the third kind might have the form 

abcdef= (ab)\ + c\ + d\ + {ef)\ 

where each letter represents a digit. (Any groupings of digits are allowed for factorions 
of the third kind.) 

Near-factorions A"* are w-digit numbers that are the sum of factorial values for n-1 
of their digits. (For example, a number of the form abc = a\ + c\ would be a Do 
they exist? To date, Dr. Googol is unaware of the existence of A"®, or and 
he would be interested in hearing from readers who can find any. 

Parenthetically, he should point out that Herve Bronninan from Princeton University 
has recently found some magnificent factorions in other bases, most notably 
519,326,767, which in base 13 is written as 8.3.7.9.0.12.5.11 and is equal to 8! + 3! + 
7! + 9! + 0! + 12! + 5! + 11! (You can interpret this base 13 number as 8 x 137 + 3 x 136 

+ 7 x 135 + 9 x 134 + 0 X 133 + 12 X 132 + 5 x 13' + 11 x 13°. Some write this num-
ber as 83790C5B13.) 

This chapter also discussed the narcissistic number, 153. 153 is special for other 
reasons: 

® 153 = 1! + 2! + 3! + 4! + 5 

© When the cubes of the digits of any 3-digit number that is a multiple of 3 are 
added, and the digits of the resulting number are cubed and added, and the process 
continued, the final result is 153. For instance, start with 369, and you get the 
sequence 369, 972, 1080, 513, 153. 

© 153 is the seventeenth triangular number. 

©St. Augustine, the famous Christian theologian, thought that 153 was a mys-
tical number and that 153 saints would rise from the dead in the eschaton. How 
is that? St. Augustine interpreted the Bible using numbers. For example, he was 
fascinated by a New Testament event (John 21:11) where the Apostles caught 153 
fish from the sea of Tiberias. Seven disciples hauled in the fish, using nets. St. 
Augustine reasoned that these 7 were saints. Why 7 saints? Since there are 7 gifts 
from the Holy Ghost that enable people to obey the 10 Commandments, he 
thought the disciples must therefore be saints. Moreover, 10 + 7 = 17, and if we 
add together the numbers 1 through 17, we get a total of 153. The hidden mean-
ing of all this is that 153 saints will rise from the dead after the world has come 
to an end. 
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As one searches for larger and larger narcissistic numbers, will they eventually run out, 
as in the case of the lonely factorions? If they are proved to die out in one number sys-
tem, does this mean they are finite in another? (Newsflash: Martin Gardner wrote to Dr. 
Googol recently and indicated that the number of narcissistic numbers has been proved 
finite. They can't have more than 58 digits in our standard base 10 number system.) 

Finally, Kevin S. Brown writes that he knows of only three occurrences of n\ + 1 = 
m2, namely 25 = 4! + 1 = 52, 121 = 5! + 1 = l l2 , and 5041 = 7! + 1 = 712. We do not 
know if there are any others. Perhaps these "Brown numbers" will be as lonely as the fac-
torions. The prolific mathematician Paul Erdos long ago conjectured that there are only 
3 such numbers, and he offered a cash prize for a proof of this! 

For various proofs relating to factorions, see my book Keys to Infinity. 

S See [www.oup-usa.org/sc/0195133420] for program code to search for factorions. 

Chapter 89 

The abcdefghij Problem 
Using the program code at [www.oup-usa.org/sc/0195133420] we can compute values 
for the variables that satisfy the equation (ab)c = def X ghij. Here are some possibilities: 
{a= 4, b = 8, c= 3, d= 1, «? = 9 , / = 2,g= 0, h=5,i= 7,j=6); (a = 4,b=8, c= 3, 
d=5>e=7,f=6,g=0,h=\,i=9,j=2)-{a=8,b = 4,c=3,d=5,e=7,f=6, 
g = 1, h = 0, i = 2, j = 9). Dr. Googol does not know if there are any solutions to a relat-
ed problem: (ab)c = de' X ghij. 

Here's a much tougher challenge from mathematician Kevin Brown. The number 
588,107,520 is expressible in the form (X2 - 1)(72 - 1) (where X,Yare integers) in 5 
distinct ways, and Kevin asks if anyone knows a 6-way-expressible number. So far, no 
6-way-expressible number has been found, although such a number has not been 
proved impossible. Regarding 5-way numbers, Dean Hickerson and Fred Helenius both 
independently found 5 more, so as of now the complete list of 5-way expressible 
numbers is 588,107,520; 67,270,694,400; 546,939,993,600; 2,128,050,512,640; 
37,400,697,734,400; and 5,566,067,918,611,200. Dr. Googol does not know if there 
are infinitely many such numbers, or even if there are any more beyond this list. 

Dr. Googol leaves you with a final unsolved problem. For positive integers x,y, what are 
the solutions to equations of the form axy + bx+ cy = d where a, b, c, and d are integers? 

Chapter 90 

Grenade Stacking 

As discussed in Laurent Beeckman's article in the May 1994 American Mathematical 
Monthly, if we allow any set of k consecutive squares (not necessarily beginning with 1), 
there are solutions for k = 1,2, 11, 23, 24, 33, 47, . . . For each of these we have infi-
nitely many sequences of k consecutive squares whose sum is a square. For example, with 
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k = 24 we not only have the previous sequence, l2 + 22 + 33 + 44 + . . . . + 242 = 702, 
but we also have 92 + 102 + 112 + . . . + 322 = 1062, 202 + 212 + 222 + . . . + 432 = 1582, 
etc. Can you find others? In general, it seems that the sum of the 24 squares beginning 
with m2 is a square for m = 1,9, 20, 25, 44, 76,. . . . 

Chapter 91 

The 450-Pound Problem 

If you select 2 random numbers, what is the chance they will be coprime? The answer 
is 6/Jt2. This is also the probability that a randomly selected integer is "square free" (not 
divisible by a square! Now that you have this "secret" knowledge, perhaps you can make 
some money gambling with your friends. Have them pick numbers at random from a 
pile of 200 cards with the numbers 1 through 200. None of you looks at the cards. Can 
you profit from your knowledge of the odds that the number is square free? (See Chapter 
5Is "For Further Reading" for more information on coprime numbers.) 

Chapter 92 

The Hunt for Primes in Pi 

Mathematicians are aware of pi-primes, Tt", for k = 1,2, 6, and 38, which correspond 
to the primes 

7C(k ) = 3, 31, 314159, 3141592()535897932384()2(»433832795028841, . . . ? 

Does anyone know the next Tt" in this sequence? Dr. Googol believes that there are 
infinitely many primes of the form Tt̂ (k) but that neither humans nor any lifeforms in 
the vast universe will ever know the next prime beyond Jl"(38). It is simply too large for 
our computers to find. 

Martin Gardner in his book Gardner's Whys and Wherefores notes that several 
researchers have searched for "piback primes." Symbolized as 7t' , these are primes in 
the first n digits of o running backwards. We would expect them to be more numerous 
than Tt", because all pibacks end in 3 (the first digit of Jt), one of the four numbers a 
prime must end with; the others are 1, 7, and 9. By contrast Tt" numbers can end in 
any number, which means only 40% of the numbers have a chance to be prime. Seven 
iT numbers have been found: 3, 13, 51413, 951413, 2951413, and 53562951413, and 
979853562951413. 

If you can find any ^-primes, write to Dr. Googol. 
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Chapter 105 

Perfect, Amicable, and 

Sublime Numbers 

As Dr. Googol told Monica, the first 4 perfect numbers, 6, 28, 496, and 8,128, were 
known to the late Greeks and Nicomachus, a disciple of Pythagoras. Perfect numbers are 
indeed difficult to find. 

The first 10 perfect numbers are 

1. 2Ma = 6 
2. 29M3 = 28 
8. 24M5 = 496 
4. 2fiM7 = 8128 
5. 213M13 = 33550336 
6. 216M17 = 8589869056 (Discovered in 1588 by Cataldi) 
7. 218M19 = 137438691328 (Discovered in 1588 by Cataldi) 
8. 23 0M3 1 = 2305843008139952128 (Discovered in 1772 by Euler) 
9. 26 0M6 1 (Discovered in 1883 by Pervusin) 
10. 28 8M8 9 (Discovered in 1911 by Powers) 

The thirtieth perfect number, 2216090M2i609i> was found using a Cray supercomput-
er in 1985 (see Table F94.1). 

To understand this list of the first 10 perfect numbers, first note that perfect num-
bers can be expressed as 2X(2X* 1 -1) for special values of X. Euclid proved that this rule 
was sufficient for producing a perfect number, and Euler, 2,000 years later, proved that 
all even perfect numbers have this form, if 2^ -1 is a prime number. (In this notation, 
TV is X+ 1.) Such numbers are called Mersenne prime numbers MN after their inventor 
Marin Mersenne (1588-1648). For example, 127 = 27 - 1 is the seventh Mersene num-
ber, denoted by M7, and it is also prime and the source of the fourth perfect number, 
2 6 M y . (Mersenne prime numbers are a special subclass of Mersenne numbers generated 
by 2^-1) . 

Note that Table F94.1 rapidly becomes obsolete as more prime numbers are discov-
ered at a rate of about 1 per year by computer searches such as GIMPS (see "Further 
Exploring" for Chapters 56 and 76). 

Like many of the best mathematicians centuries ago, Marin Mersenne was a theolo-
gian. In addition, Father Mersenne was a philosopher, music theorist, and mathemati-
cian. He was a friend of Descartes, with whom he studied at a Jesuit college. Mersenne 
discovered several prime numbers of the form 2N -1 , but he underestimated the future 
of computing power by stating that all eternity would not be sufficient to decide if a 
15- or 20-digit number were prime. Unfortunately the prime number values for TV that 
make 2 ^ - 1 a prime number form no regular sequence. For example, the number is 
prime when N= 2,3,5,7,13,17,19,.. . . Notice that when Nis equal to the prime num-
ber 11, Mu = 2,047 which is not prime because 2,047 = 23 x 89. 

In 1814, P. Barlow in A New Mathematical and Philosophical Dictionary wrote that 
the eighth perfect number was "probably the greatest perfect number that ever will be 
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2 N - 1 ( 2 W - 1 ) 

Number N Discovered (year, human) 

1 - 4 2,3,5,7 in or before the middle ages 
5 13 in or before 1461 

6 - 7 17,19 1588 Cataldi 
8 31 1750 Euler 
9 61 1883 Pervouchine 

10 89 1911 Powers 
11 107 1914 Powers 
12 127 1876 Lucas 

13-17 521,607,1279,2203,2281 1952 Robinson 
18 3217 1957 Riesel 

19-20 4253,4423 1961 Hurwitz & Selfridge 
21-23 9689,9941,11213 1963 Gillies 

24 19937 1971 Tuckerman 
25 21701 1978 Noll & Nickel 
26 23209 1979 Noll 
27 44497 1979 Slowinski & Nelson 
28 86243 1982 Slowinski 
29 110503 1988 Colquitt & Welsh 
30 132049 1983 Slowinski 
31 216091 1985 Slowinski 
32? 756839 1992 Slowinski & Gage 
33? 859433 1993 Slowinski 

Table F94.1 Several Perfect Numbers. 

discovered for they are merely curious without being useful, and it is not likely that any 
person will attempt to find one beyond it." Barlow placed such a limit on human knowl-
edge because, before computers, the discovery of Mersenne primes depended on labori-
ous human computations. M i { or 231 - 1 = 2,147,483,647 is quite large, even though 
Euler in 1772 was able to ascertain that it is a prime number. 

With the electronic computer, Barlow's limit on humanity's knowledge was rendered 
invalid. Because of their special form, Mersene numbers are easier to test for primality 
then other numbers, and therefore all the recent record-breaking primes have been 
Mersenne numbers—and have automatically led to a new perfect number. 

There is a bizarre and puzzling relationship between cubes and perfect numbers. 
Every even perfect number, except 6, is the sum of the cubes for consecutive odd num-
bers. For example: 

28 = l 3 + 3 3 

496 = l 3 + 3 3 + 5 3 + 73 

8,128 = l 3 + 3 3 + 5 3 + 73 + 9 3 + l l 3 + 133 + 158 
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9 [www.oup-usa.org/sc/0195133420] contains a BASIC program listing for com-
puting perfect numbers. 

Odd perfect numbers are even more fascinating then even ones for the sole reason that 
no one knows if odd perfect numbers exist. They may remain forever shrouded in mys-
tery. On the other hand, mathematicians have cataloged a long list of what we do know 
about odd perfect numbers; for example, computer searches as far as 10300 have not 
found an odd perfect number. Mathematician Albert H. Beiler says, "If an odd perfect 
number is ever found, it will have to have met more stringent qualifications than exist 
in a legal contract, and some almost as confusing." Here are just a few: 

An odd perfect number 

© must leave a remainder of 1 when divided by 12 or a remainder of 9 when divided 
by 36. 

© It must have at least 6 different prime divisors. 

© If it is not divisible by 3, it must have at least 9 different prime divisors. 

© If it is less than 109118, it is divisible by the 6th power of some prime. 

Author and mathematician David Wells comments, "Researchers, without having 
produced any odd perfects, have discovered a great deal about them, if it makes sense to 
say that you know a great deal about something that may not exist." Throughout both 
ancient and modern history, the feverish hunt for perfect numbers became a religion. 
The mystical significance of perfect numbers reached a feverish peak around the 17th 
century. Peter Bungus, for example, was among a growing number of 17th-century 
mathematicians who combined numbers and religion. In his alchemic book titled 
Numerorum Mysteria, he listed 24 numbers said to be perfect, of which Mersenne later 
stated that only 8 were correct. Mersenne went on to add 3 more perfect numbers, for 
N = 67, 127, and 257, in an equation that can be used for even perfect numbers 
(2'v~ ')(2iV -1), but it took a walloping 303 years before mathematicians could check 
Mersenne's statement to find errors in it. 67 and 257 should not be admitted, and per-
fect numbers corresponding to N = 89 and 107, for which the Mersenne numbers are 
prime, should be added to the list. 

How could Mersenne, back in the 17th century, have conjectured about the existence 
of such large perfect numbers? After centuries of debate, no one has an answer. Could 
he have discovered some theorem not yet rediscovered? Recall that empirical methods of 
his time could hardly have been used to compute these large numbers. (The Mersenne 
number for N= 257 has 78 digits.) 

Zealous attempts at perfection are not limited to Peter Bungus and Mersenne. Even 
in the 1900s there have been startling attempts to find the Holy Grail of huge perfect 
numbers. For example, on March 27, 1936, newspapers around the world trumpeted 
Dr. S. I. Krieger's discovery of a 155-digit perfect number (2 256(2257 -1)). He thought 
he had proved that 2257 - 1 is prime. The Associated Press release, appearing in the Neu> 
York Herald Tribune, was as follows: 

Unfortunately for Dr. Krieger, a few years earlier the number 2257 - 1 had been found 
to be composite (nonprime). Editors of Mathematical journals therefore wrote letters to 
the New York Herald Tribune complaining that it had sacrificed accuracy for sensation-
alism in reporting the Krieger story. 
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P E R F E C T I O N IS C L A I M E D F O R 1 5 5 - D I G I T N U M B E R 

Man Labors 5 Years to Prove Problem Dating from Euclid 

New York Herald Tribune, March 27, 1936 
Chicago, March 26 (AP).—Dr. Samuel I. Krieger laid down his pencil and 

paper today and asserted he has solved a problem that had baffled mathematicians 
since Euclid's day—finding a perfect number of more than nineteen digits. 

A perfect number is one that is equal to the sum of its divisors, he explained. 
For example, 28 is the sum of 1, 2, 4, 7, and 14, all of which may be divided into 
it. Dr. Krieger's perfect number contains 155 digits. Here it is: 

26, HIS, 615, 859, 885, 194, 199, 148, 049, 996, 411, 692, 254, 958, 731, 
641, 184, 786, 755, 447,122, 887, 443, 528, 060,146, 978, 161, 514, 511, 
280, 138, 383, 284, 395, 055, 028, 465, 118, 831, 722, 842, 125, 059, 
853, 682, 308, 859, 384, 882, 528, 256. 

Its formula is 2 to the 513th power minus 2 to the 256th power. The doctor 
said it took him seventeen hours to work it out and five years to prove it correct. 

El Madshriti, an Arab of the 11th century, experimented with the erotic effects of ami-
cable numbers by giving a beautiful woman the smaller number 220 to eat in the form 
of a cookie, and himself eating the larger 284! I am not sure whether his mathematical 
approach to winning the woman's heart was successful, but this method may be of inter-
est to all modern dating services. Imagine restaurants of the future branding the numbers 
into 2 pieces of filet mignon for 2 prospective marriage candidates. Perhaps amicable-
number tattoos will one day be used for mathematical displays of public affection. 

Our Arab friend, El Madshriti, was not the last to make use of amicable numbers to 
unite the sexes. In the 14th century, the Arab scholar Ibn Khaldun said in reference to 
amicable numbers: 

Persons who occupy themselves with talismans assure that these numbers have a par-
ticular influence in establishing union and friendship between two individuals. One 
prepares a horoscope theme for each individual. On each, one inscribes one of the 
numbers just indicated, but gives the strongest number to the person whose friendship 
one wishes to gain. There results a bond so close between the two persons that they 
cannot be separated. 

When Ibn Khaldun used the term strongest number, he was not certain whether to 
use the larger of the 2 amicable numbers or the one that had the most divisors. 

Since antiquity, Arabs have been interested in different ways of finding amicable 
numbers. One personal favorite is taken from the Arabian mathematician-astronomer 
Thabet ben Korrah (A.D. 950). Select any power of 2, such as 2X, and form the numbers 

a= 3 X2 x -1 
b = 3 x 3 ' - 1 - 1 
c = 9 x 22*-' - 1 
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If these are all primes, then 2xab and 2xc are amicable. When x is 2, this gives the 
numbers 220 and 284. ([www.oup-usa.org/sc/0195133420] contains a BASIC program 
listing for computing amicable numbers.) 

The number 672 is one of many multiply perfect numbers—numbers such that the sum 
of all their divisors is an exact multiple oi the number. For example, 120 is a triple perfect 
number because its divisors 1+2 + 3 + 4 + 5 + 6 + 8+ 10 + 12 + 15 + 20 + 24 + 30 + 40 
+ 60 + 120 add up to 360, which is 3 x 120. Similarly, 672 is a triple perfect number. 

There have been several recent attempts to explain the mysterious title of Hugo 
von Hoffmannsthal's tale The Story of the 672nd Night. Hugo von Hofffnannsthal 
(1874-1929), was an Austrian poet, dramatist, and essayist, best known for writing 
libretti for Richard Strauss's operas. One explanation for his title is the fact that 672 
is a multiply perfect number, but literary scholars are not certain that this is 
Hoffmannsthal's reason for using 672. (Some scholars suspect that the 672 in The Story 
of the 672nd Night is connected with the tale 1001 Arabian Nights.) 

As already mentioned, an even perfect number has the form 2N ~X{2NHarry 
J. Smith of Saratoga, California, wrote a program using Borland C++ to compute a 
perfect number if given the exponent of a Mersenne prime. For a large perfect number 
(N= 859,433, see Table F94.1), his result is an output file 530,462 bytes long. 

No one knows if perfect numbers eventually die out as one sifts through the land-
scape of numbers. The mathematical landscape is out there, waiting to be searched. The 
Pythagoreans could find only 4 perfect numbers, and we can find over 30. Will human-
ity ever discover more than 40 perfect numbers? There is a limit on humans' mathe-
matical knowledge arising not only from our limited brains but also from our limited 
computers. In a strange way, the "total" of mathematical knowledge is godlike— 
unknowable and infinite. As we gain more mathematical knowledge, we grow closer to 
this god, but can never truly reach him. All around us we catch glimpses of a hidden 
harmony in the works of humans and nature. From the Great Pyramid of Cheops to pat-
terns in plants, we see evidence of design by precise geometrical laws. Nobly, we con-
tinue to search for the connections underlying all that is beautiful and functional. 

5,775 and 5,776 are 2 consecutive abundant numbers. Is it possible to find 3 con-
secutive abundant numbers? It was not until 1975 that the smallest triplet of consecu-
tive abundant numbers was discovered (by Laurent Hodges and Michael Reid): 

171.078.830 = 2 x 5 x 13 x 23 x 1973 
171.078.831 = 33 x 7 x 11 x 19 x 61 x 71 
171.078.832 = 24 x 21 x 344,917 

Chapter 96 

Cards, Frogs, and Fractal Sequences 

There are many definitions of fractal, or self-similar, sequences; the one that seems to fit 
some of the sequences in this chapter is given by Benoit Mandelbrot in his The Fractal 
Geometry of Nature: "An unbounded set S is self-similar with respect to the ratio r, when 
the set r(S) is congruent to 5." Let me give some examples. Consider a sequence of inte-
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gers x1,x2, x}, X4, x 5 , . . . as in the previous example, 1, 1, 2, 1, 3 , . . . This sequence 
is self-similar with respect to the ratio 2, because x2, x4, x 6 , . . . is identical to x{, x2, 
x3,. . . . Of course, we can generalize and say a sequence is self-similar with respect to 
the ratio r (ran integer greater than 1) if there is some integer d, 1 s d s r, for which 

it)' ^ j u t d ) > x ( 4 x r+ d)> • • • is identical to x}, x2, x$, X4, x 5 > . . . . 
For instance, with r = 4 we would have every fourth entry of the sequence, and starting 
with x1 (and d-1), X], X5, X9, X13,. . . is the same as x1( x2, x$, X4, x 5 , . . . . Or start-
ing with x2, we find x2, x6, x10, x^, . . . is the same as xj, x2, X3, X4, x5 , . . . . 

In this chapter, I also consider fractal-like sequences that consist of any string that 
contains copies of itself, even if the string doesn't quite conform to the above rules. For 
example, consider the letter string: 

a, b, a, c, b, d, d, c, b, e, a, d, c, f, b, e, a, d, g, c, f, b, e . . . 

If you delete the first occurrence of each letter, you'll see that the remaining string is 
the same as the original. 

a, «T b, o, C, b, a, d, c, £ b, e, a, d, f , c, f, b, e . . . 

I refer to this type of sequence as fractal-like because, like most fractals, it has "parts 
that resemble the whole." 

To arrive at a traditional definition of signature sequence, let 6 be an irrational num-
ber; S{d) = {c + A6 : c,d,e f\l[ and let c„(9) + d„(6){9) be the sequence obtained by 
arranging elements of 5(0) in increasing order. A sequence x is said to be a signature 
sequence if there exists a positive irrational number $ such that x = {c„(9)}, and x is 
called the signature of d. The signature of an irrational number is considered a fractal 
sequence according to various literature (for example, in C. Kimberling's paper in the 
reference section). 

Fractal signature sequences: Here are the first few terms for some miscellaneous 
fractal signature sequences computed by David E. Shippee of Littleton, Colorado. 

Number Signature Sequence 
0 . 5 5 0 0 0 0 0 0 = 11 /20 1 1 2 1 2 1 3 2 1 3 2 1 4 3 2 1 4 3 2 1 5 4 3 2 1 5 4 3 2 1 6 5 4 3 2 

0 .707106781 = H / ¥ 1 1 2 1 2 3 1 2 3 1 4 2 3 1 4 2 5 3 1 4 2 5 3 1 6 4 2 5 3 1 6 4 2 7 5 

1 .0498756 = J l O i - 9 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1 6 5 4 3 2 1 7 6 5 4 3 2 1 8 7 6 5 4 3 2 

1 . 1 0 0 0 0 0 0 0 = 1+1 /10 1 2 1 3 2 1 4 3 2 1 5 4 3 2 1 6 5 4 3 2 1 7 6 5 4 3 2 1 8 7 6 5 4 3 2 

1 .41421356 = / 2 ~ 1 2 1 3 2 1 4 3 2 5 1 4 3 6 2 5 1 4 7 3 6 2 5 8 1 4 7 3 6 9 2 5 8 1 4 

1 . 5 0 0 0 0 0 0 0 = 1+1 /2 1 2 1 3 2 4 1 3 5 2 4 1 6 3 5 2 7 4 1 6 3 8 5 2 7 4 1 9 6 3 8 5 2 10 7 

1 . 7 3 2 0 5 0 8 1 = / 3 1 2 1 3 2 4 1 3 5 2 4 6 1 3 5 7 2 4 6 1 8 3 5 7 2 9 4 6 1 8 3 10 5 7 2 

2 . 2 3 6 0 6 7 9 8 = J 5 ~ 1 2 3 1 4 2 5 3 1 6 4 2 7 5 3 1 8 6 4 2 9 7 5 3 1 10 8 6 4 2 11 9 7 5 3 

2 .71828183 = e 1 2 3 1 4 2 5 3 6 1 4 7 2 5 8 3 6 9 1 4 7 10 2 5 8 11 3 6 9 1 12 4 7 10 

3 . 1 0 0 0 0 0 0 0 = n to 1 decimal 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 7 4 1 11 8 5 2 12 9 6 3 13 10 7 4 

3 . 1 4 0 0 0 0 0 0 = Jt to 2 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 7 4 1 11 8 5 2 12 9 6 3 13 10 7 4 

3 .14100000 = Jt t o 3 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 7 4 1 11 8 5 2 12 9 6 3 13 10 7 4 

3 .14160000 = jt to 4 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 7 4 1 11 8 5 2 12 9 6 3 13 10 7 4 

3 .14159265 = n to 8 decimals 1 2 3 4 1 5 2 6 3 7 4 1 8 5 2 9 6 3 10 7 4 1 11 8 5 2 12 9 6 3 13 10 7 4 

7 .07106781 = JEO 1 2 3 4 5 6 7 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 1 16 9 2 17 10 3 18 

1 0 . 0 4 9 8 7 5 6 = / l O l 1 2 3 4 5 6 7 8 9 10 11 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 2 0 10 
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As far as Dr. Googol can tell, all sequences are fractal. Irrational numbers appear to 
yield unique signatures, but rational numbers do not. For example, examine the signa-
ture sequence for 1.5 (1, 2, 1, 3, 2, 4, 1, 3, 5, 2 . . .). This could just as easily be 1, 2, 
1, 3, 2,1,4, 3,2, 5 . . . because 4 + 1 x 1.5 = 1 + 3 x 1.5, so the 4,1 in the first sequence 
could just as easily be the 1, 4 in the second sequence. David E. Shippee included 
sequences for 3.1, 3.14, 3.141, and 3.1416 to see how the sequences might converge. 
Their signatures are all identical. (He used an upper limit of 30 for i and j, giving 900 
entries in the sequence.) It seems that one must have many entries to see a distinction; 
1.e., the sequences converge slowly. 

Batrachions: Let us now consider how fast the frog approaches its 0.5 destination at 
infinity. For example, can you find a value of n beyond which the value of a(n)!n is 
so tiny that it is forever within 0.05 from the value 1/2? (In other words, \a(ri)ln-\l2\ 
< 0.05. The bars indicate the absolute value.) 

A difficult problem? John Conway, the prolific British mathematician, offered 
$10,000 to the person who could find the first value of n such that the frog's path is 
always less than 0.55 for higher values of n. A month after Conway made the offer, 
Colin Mallows of AT&T solved the $10,000 question: n = 1,489. Figure F96.1 shows 
this value on a plot for 0 < n < 10,000 . (For a variety of minor technical reasons, a less 
accurate number is published in Schroeder's book.) As Dr. Googol dictates this, no 
one on the planet has found a value for the smallest n such that a(n)l n is always within 
0.001 of the value 1/2, that is, {\a(n)ln -1/21 < 0.001). (No one even knows if such a 
value exists.) 

Looking at Figure F96.1, we can see that the frog "hits the pond" periodically. In 
fact, a(n)ln "hits" 0.5 at values corresponding to powers of 2, for example, at 2k, k = 1, 
2, 3, . . . Does each hump reach its maximum at a value of n halfway between the 2k 

and 2k+l end points? 
Tal Kubo from the Mathematics Department at Harvard University is one of the 

world's leading experts on this batrachion. He notes that the sequence is subtly con-
nected with a range of seemingly unrelated topics in mathematics: variants of Pascal's tri-
angle, the Gaussian distribution, combinatorial operations on finite sets, and Catalan 

0.60 

0.58 

c 0.56 

<0 

0.54 

0.52 

0.50 

0 2 4 6 8 10 
F96.1 Batrachion a{n)/n for 0 < n < 10,000. 

L 

I I I I 

$10,000 Cash Award 
n = 1,489 

If IV I IV 
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£ Last n such that \a(n)ln -1/21 > e 
1/20 1489 (found by Mallows in 1988) 
1/30 758765 
1/40 6083008742 (found by Mallows in 1988) 
1/50 809308036481621 
1/60 1684539346496977501739 
1/70 55738373698123373661810220400 
1/80 15088841875190938484828948428612052839 
1/90 127565909103887972767169084026274554426122918035 
1/100 8826608001127077619581589939550531021943059906967127007025 

Table F96.1 The infinite Frog. 

numbers. Tal Kubo and Ravi Vakil have developed algorithms to compute the behavior 
of the batrachion as it nears infinity. Indeed, they have found that the frog tires rather 
slowly! For example, the frog's jumps are not always less than 0.52 until it has jumped 
809,308,036,481,621 times! 

Table F96.1 lists the values for different frog jump heights. These values were found by 
Tal Kubo and Ravi Vakil using a Mathematica program running on a Sun 4 computer. 

Colin Mallows, the statistician who conducted the first in-depth study of this class 
of curve, notes that no finite amount of computations will suffice to prove that the reg-
ularities we see in the curve persist indefinitely. He does note that the difference between 
successive values is either 0 or 1. Is this true indefinitely? 

For a variety of novel ways to visualize these sequences, see my book Keys to Infinity. 
Interestingly, it is not clear how one hump in the batrachion is generated from the pre-
vious hump. As Mallows has pointed out, a(100), which is located in the sixth hump, 
is computed as 4*(99)) + a{ 100 - 499)) = 456) + a(44) = 31 + 26 = 57. This shows 
that a point in hump 6 is generated from two points in hump 5 that are far apart. 

Various authors, such as Manfred Schroeder, have discussed how mathematical wave-
forms sound when converted to time waveforms and played as an audio signal. For 
example, Weierstrass curves (which are continuous but quite jagged) are a rich mine of 
paradoxes. They're produced by w(t) = , Ak cos Bkt where AB > 1 + 3it/2. If they 
are recorded on audio tape and replayed at twice the recording speed, the human ear will 
unexpectedly hear a sound with a lower pitch. Other fractal waveforms do not change 
pitch at all when the tape speed is changed. It is rumored (but Dr. Googol has not con-
firmed) that the first batrachion described in this chapter produces a windy, crying 
sound when converted to an audio waveform. He would be interested in hearing from 
readers who have conducted such audio experiments on any of the Batrachions. For 
other musical mappings of number sequences and genetic sequences to sound, see my 
book Mazes for the Mind: Computers and the Unexpected. 
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— 26 27 28 29 — 33 34 35 36 37 38 — 44 45 46 47 
— 25 30 31 32 39 42 43 48 
— 24 40 41 49 50 
— 23 — 51 
21 22 — 52 53 54 
20 19 — 57 56 55 
— 18 17 Doughnut Puzzle 58 

16 Solution 59 
13 14 15 60 61 — 
12 — 62 63 
11 10 9 — 65 64 

8 — 6 6 — 

6 5 4 1 69 
70 

Table F98.1 Doughnut Loop Solution. 

Chapter 98 

Doughnut Loops 

Dr. Googol believes the solution in Table F98.1 is the best solution for the doughnut 
puzzle. Can you find equally long or longer solutions? The maximal path length seems 
to be 70. In the schematic illustration of the path, the first position of the sequence is 
marked 1, the second 2, and so on, and the last is marked 70. Assuming the upper left 
corner to be (1,1) and the lower right (20,15), then this sequence starts at (6,14) and 
ends at (20,15). The first few numbers on the path are 6 — 34 — 37 — 25 — 15 — 
70 — 26 — 20 — 43 — 60 — 9 — 54 —. . . . Since the 54 is the twelfth number in 
this sequence, its position (1,10) is marked 12 in the solution diagram. 

Chapter 99 

Everything You Wanted to Know about 

Triangles but Were Afraid to Ask 

Pythagorean triangles with integral sides have been the subject of a huge amount of 
mathematical inquiry. For example, Albert Beiler, author of Recreations in the Theory of 
Numbers, has been interested in Pythagorean triangles with large consecutive leg values. 
These triangles are as rare as diamonds for small legs. Triangle 3-4-5 is the first of these 
exotic gems. The next such one is 21-20-29. The tenth such triangle is quite large: 
27304197-27304196-38613965. 



Further Exploring © 369 

You can compute these "praying triangle" leg lengths using the BASIC program list-
ing at [www.oup-usa.org/sc/0195133420]. The recipe is as follows. Start with 1 and 
multiply by a constant D = (J2 + l)2 = 5.828427125.. . . Truncate the result to an inte-
ger value and multiply again by D. Continue this process for as long as you like, creat-
ing a list of integers: 1, 5, 29. . . . To produce the leg-length values for praying triangles, 
pick 1 of these integers, square it, divide by 2, and then take the square root. The 2 leg 
lengths are produced by rounding up and rounding down the result. 

Now let's discuss "divine triangles." In 1643, French mathematician Pierre de Fermat 
wrote a letter to his colleague Mersenne asking for a Pythagorean triangle the sum of 
whose legs and whose hypotenuse were squares. In other words, if the sides are labeled 
X, Y, and Z, this requires 

X+ Y= a1 

Z = b2 

X1 + Y2 = Z2 = bA 

It is difficult to believe that the smallest 3 numbers satisfying these conditions are 
X = 4,565,486,027,761, Y= 1,061,652,293,520, and Z = 4,687,298,610,289. Dr. 
Googol has called triangles of this rare type divine triangles because only a god could 
imagine another solution to this problem. Why? It turns out that the second triangle 
would be so large that if its numbers were represented as feet, the triangle's legs would 
project from Earth to beyond the Sun! 

If the ancient Greek mathematician Pythagoras had been told that a race of beings 
could compute the values for the sides of the second divine triangle, surely he would 
have believed such beings were gods. Yet today we can compute such a triangle. We have 
become Pythagoras's gods. We have become gods through computers and mathematics. 

Dr. Googol and Mr. Clinton also discussed the interesting general problem of find-
ing Pythagorean triangles with integer values for the sides. A related but fiendishly more 
difficult task involves searching for solutions to the "integer brick problem." Here one 
must find the dimensions of a 3-dimensional brick such that the distance between any 
2 vertices is an integer. In other words, you must find integer values for a, b, and c 
(which represent the lengths of the brick's 
edges) that produce integer values for the 
various diagonals of each side: d, e, and f . In 
addition, the 3-dimensional diagonal g span-
ning the brick must also be an integer. This 
means that the following equations must have 
an integer solution: 

a1 + b2 = d2 

2 2 2 aL + cL = ec 

a2 + b2 + c2 = g2 

No solution has been found. However, mathematicians haven't been able to prove 
that no solution exists. Many solutions have been found with only 1 noninteger side. 
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Chapter 105 

Alien ice Cream 

Wasn't this a killer problem? You can make your own Alien Ice Cream game by chang-
ing the instructions but using the same illustration. To solve the problem, go up the 
stairway at right connecting the ground floor with the second floor. Go through the 
door. Go out the window and down the ladder. Go up to the third floor using the fire 
escape stairs. Go down the ladder between the third floor and second floor. Go up the 
spiral staircase. Go up the ladder to the roof. 

The numbers in Figure F 105.1 should help guide you. 

F105.1 Alien ice Cream. Follow the numbers. 
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Chapter 123 

The Huascaran Box 

For the first problem, turn on the red finger for 10 seconds. Turn off the red finger and 
turn on the green finger. Quickly open the box. If the fan is continually spinning, then 
the green finger is the one. If the fan is spinning but slows down, then it is connected 
to the red finger. Otherwise, it is the yellow finger. (Physicist Dick Hess of Rancho Palos 
Verdes, California, proposed a similar problem in the 1998 Pi Mu Epsilon Journal, vol. 
10, no. 8, p. 660.) 

For the second problem, turn on the red switch and pour some paprika into the hole 
above the fan. Next, turn off the red switch and wait a while. Next, turn on the green and 
blue switches. Then, as before, switch off the green and immediately open the box and 
look. Dr. Googol's colleague Jim McLean points out that you now have 4 possibilities: 

1. Fan is turning steadily—blue switch controls. 

2. Fan is slowing down and stopping—green switch controls. 

3. Fan is stopped, Peruvian paprika is strewn about—red switch controls. 

4. Fan is stopped, Peruvian paprika is in a small pile—golden switch controls (no fan 
has ever been on). 

Chapter 107 

The intergalactic Zoo 

To be certain that he has 2 animals of the same species, the alien must drop 4 animals— 
1 more than the number of different species. To be certain he has a male-female pair of 
the same species, he must drop 12 animals—1 more than the total number of animal 
pairs. Didn't get these answers? Try writing each animal's species and gender on separate 
scraps of paper. Then put all the papers in a box and withdraw them, 1 at a time, with-
out looking. Now that you see how it's done, can you think of other "animal and alien" 
puzzles? 

Incidentally, various authors render the quote at the beginning of this chapter in sev-
eral flavors. ("A mathematician is a blind man in a dark room looking for 
a black cat which isn't there.") Instead of mathematician, some books use 
philosopher. Some authors attribute it to "anonymous" rather than Darwin. Dr. Googol 
wonders about its true source. Another interesting version floating around the Internet 
is "A theologian is like a blind man in a dark room searching for a black cat which isn't 
there—and finding it!" 
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Chapter 105 

The Lobsterman from Lima 

No, the lobster does not weigh 15 pounds. One good way to have students work on this 
problem is to visualize a balance scale. The lobster is on the left side. On the right side 
are a 10-pound weight and half a lobster. The scale is perfectly balanced. Stop and draw 
the scale now. Now look at the right side of your balance. Notice that the 10-pound 
weight is in essence taking the place of half the lobster. That means another 10-pound 
weight could take the place of the lobster-half. By looking at the drawing, you can see 
that the lobster weighs 20 pounds. If you are a teacher, you could have your class try to 
figure this out with algebra, but more important, try to show your class the value of visu-
alization in problem solving. There's nothing quite like drawing a diagram to illustrate 
a problem before you attempt to solve it. 

Now for a real killer question: 

If the lobster weighs 10 pounds 
plus twice its own weight, 
how much does it weigh? 

Can you solve this without resorting to a pencil and paper? Do you see any possible 
problems with this? 

Chapter 109 

The incan Tablets 

The second pair completes the set because this pair completes every possible pair of the 
4 symbols. Perhaps there are other equally valid solutions? 

Chapter 110 

Chinchilla Overdrive 

Hello. The relevant equation is L + 10 = 5L - 2. The answer is 3. 
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Chapter 111 

Peruvian Laser Battle 

Figure F l l l . l shows a solution. Are there other solutions? 

F l l l . l Solution to Peruvian Laser Battle. 

Chapter 112 

The Emerald Gambit 

Figure F112.1 shows one solution. Can you find others? 

o o o o 
o o 
© 

0 o 
o o o o 

FL12.L One solution to the Emerald 

Gambit. 
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Chapter 105 

Wise Viracocha 

Figures 113.1 and 113.2 show solutions to the puzzles. Can you find others? Try to 
design other Viracocha puzzles using other coin shapes—for example, triangular, pen-
tagonal, and hexagonal. 

F113.1 Solution to Viracocha's coin. F113.2 Solution to Viracocha's pizza. 

Chapter 114 

Zoologic 

In Figure F114.1, Mr. Gila walks along 47 paths, or 4,700 feet. The path he chooses hits 
these enclosures in sequence: 18, 20, 19, 17,18, 20, 21, 13, 14, 10, 9, 5, 6, 10, 11, 7, 
6, 2, 3, 7, 8, 12, 11, 15, 14, 22, 23, 15, 16, 12, 8, 4, 3, 2, 1, 5, 9, 13, 21, 22, 23, 24, 
16, 28, 25, 26, 27, and 28. As you can see, in several instances he must travel a path 
twice. Can you find a shorter route? 

If Mr. Gila places the 19 panes of glass in the manner shown in Figure F114.2, he 
will have 10 enclosures of equal size. 

1 2 3 4 

A ' 
I , 

5 6 7 8 B 
I \ 9 10 11 12 I 

I" 1" 
13 14 15 16 J" 

19 20 21 22 23 24 

|28 J27 

F114.1 Mr. Gila's walk. F114.2 10 enclosures of equal size. 
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Chapter 123 

Andromeda incident 

In Figure F115.1, the 3 saucers have taken up new positions, as indicated by the arrows, 
and still no 2 saucers are in a straight line. Are there any other solutions? 

• 
• 

• 

• 
• 

• — 

• 
\ • 

• / 
FU5.1 New arrangement of flying 
saucers. 

Chapter 116 

Yin or Yang 

The puzzle is actually based on an ancient 
problem. Figure F116.1 is the only solution of 
which Dr. Googol is aware. To satisfy yourself that 
the pieces are in fact the same size and shape, you 
can draw this pattern on a piece of paper, cut out 
the pieces, and superimpose them on one another. 

It's also possible for the children to divide the 
yin and the yang into 4 pieces with the same area 
but different shapes by a single extra cut. Can you 
figure out how? 

F116.1 The chocolate/vanilla 

cake. 
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Chapter 105 

A Knotty Challenge at Tacna 

To solve this knotty problem, consider that there are two possible crossings at each 
intersection point. This means that there are 2 x 2 x 2 = 8 possible sets of crossings. Of 

all these possibilities, only 2 create a knot. 
(Test this for yourself using a loop of string.) 
This means that the probability of having a 
knot is lA. Don't bet on it happening! 

Figure F117.1 shows another possible 
rope configuration. What are the odds that 
it forms a knot? Does the probability of 
knot formation increase with increasing 
numbers of intersection points? What does 
this say about "Murphy's Law"—that ropes 
and strings and electrical cords always seem 
to get tangled when thrown in a jumble in 
your garage? 

Chapter 118 

An incident at Chavi'n de Hudntar 

To decode the "keys to the universe," you must substitute an English letter for each sym-
bol. Rest in peace. 

Chapter 119 

An Odd Symmetry 

You fool! There are no identical positive integers you can put in the mailboxes that will 
make this work beyond the second row, = x And the only solution 
for this row is 2 + 2 = 2 x 2. This problem is so much fun because the solutions drop 
from infinity to 1 to 0 so quickly. 

For example, consider the third line, ^ D + ^ D + ^ D = ^ D x x 
Mathematically speaking, we are trying to find values for a in the equation a + a + a = 
a~x. ax a. This is equivalent to 3a = a}, which is equivalent to a2 = 3, which has no inte-
ger solutions. By induction, we are trying to solve an~l = n. One simple way to deter-
mine if this can have integer solutions for higher values of n is to make a graph of 
y = a"~l and a graph of y = n (which is just a straight line) and see where the 2 lines 

w 
F117.1 Another rope configuration. What 

are the odds that it forms a knot? 
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intersect. As mathematician Dan Winarski points out, after n = 2, an~] is greater than 
n for all integers greater than or equal to 2. Thus, there are no more integer solutions. 

Here is a related problem, developed by Dr. Googol's friend Craig Becker. Are there 
many solutions to the growing pyramid below? To solve this, use any positive integers 
that you like. 

a = a 

a + b = a x b 

a + b + c = a x b x c 

a + b + c + d = a x b x c x d 

a + b + c + d + e = a x b x c x d x e 

a + b + c + d + e + f = a x b x c x d x e x f 

. . . etc 

As David Shippee points out, each row has at least 1 solution. For a row with n terms 
on each side of the equals sign, 1 solution involves the following sequence: [ n - 2) "Is", 
2, n. For example, here is a list of solutions for n = 2 to 5: 

a b c d e 

2 2 

1 2 3 

1 1 2 4 

1 1 1 2 5 

Dr. Googol does not know if there are lots of other solutions, or if there are solutions 
in which each variable has a different value. 

Chapter 120 

The Monolith at Madre de Dios 

One possible solution is to assign values to the symbols as follows: 4 = —, 3 = HI, 
2 = and 1 = In each row, the number assigned to the rightmost symbol is equal 
to the number assigned to the first symbol, plus the second, minus the third, minus the 
fourth. Therefore, 1 solution for the missing symbol is ^Jo. 
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Chapter 121 

Amazon Dissection 

Below is 1 possible solution. (Cut the paper, or draw a line, so that all the symbols 
that fall in the gray squares are on 1 side). Can you find other solutions? 

0 O 0 0 0 

O 0 

0 O 0 

G O *> 0 

0 © 
£ O £ ft 0 

Chapter 122 

3 Weird Problems with 3 

For problem 1, you can define an arithmetic series as follows: ax = 1, a2 = 2, = 3, 
an ~ an-3 + an-2 + an-\ f° r n — 4. The sum of each row in the original problem is the 
sum of its digits. This means that the sum of each row is the sum of the previous 3 rows' 
sums. One can use this information to write a BASIC program to compute the sum for 
the thirtieth row: 45,152,016. 

For problem 2, it appears that no new atomic species will develop in row 30 that are 
not already present in row 8. Joseph Zbiciak predicts what species we see in row 30: The 
species "3" is on the end of every line. Therefore it will be in row 30. The species "31" 
and the species "331" are both imbedded in a row previous to row 30. Therefore they 
will be in row 30, because the "middle parts" of each row are duplicated down the list, 
not modified. The species "1" only shows up every third row. It happens to occur on 
rows such that (row number) mod 3 = 1 . Because 30 mod 3 = 0, the species "1" will not 
occur in row 30. Hence, we have the three species "3", "31", "331" occurring in row 30. 

For problem 3, an exact solution is not known. It appears that this algorithm forces 
Is out in front all of the time and keeps appending 3s on the end of the row. Hence, 
you'll see a proliferation of species such as "3331", "33331," "333331," etc. Zbiciak pre-
dicts that in row 30, you will have all the species from "3," "31," "331," "3331," 
"33331," etc., up to "33333333333333333333333331." 
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Chapter 123 

Zen Archery 

Problem 1 :8+19 + 31+41 + 101= 200. We believe there are roughly 27 distinct solu-
tions. What method did you use to solve this? Must the 8 be present in every solution? 

Problem 2: 10 + 19 + 71 = 100. 

Chapter 124 

Treadmills and Gears 

The treadmill does work. (I believe the treadmill would lock if the figure-8 were 
replaced by a Mobius strip.) The gear train will not lock. 

Chapter 125 

Anchovy Marriage Test 

Monica responded first by throwing her pizza at Dr. Googol. Then she gave him the 
answers. 9 + 9 + 999 = 1,000, and 646 + 20 = 666 (the small stroke is applied to the 
first + symbol). A less creative solution is 6 + 6 + 20 * 666. For the last problem, 
(666/6) X (66-65) = 111. Are there other solutions to these problems? If you were 
Monica, would you marry Dr. Googol? 
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