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Mobius was the epitome of the absentminded professor. He was shy 
and unsociable . . . and so absorbed in his thought that he was forced to 
work out a whole system of mnemonic rules . . . so as not to forget his 
keys or his inseparable umbrella. . . . 

What was perhaps his most impressive discovery-that of one-sided 
surfaces such as the famous Mobius strip—was made when he was almost 
seventy, and all the works found among his papers after his death show 
the same excellence of form and profundity of thought 

-Isaak Moiseevich Yaglom, Felix Klein and Sophus Lie 

There's a theory that the universe is forever folding back and over on 
itself like a cross between a Mobius curve and a wave. If we catch that 
wave, it will be quite a ride. 

-Gene Roddenberry's Andromeda, "Answers Given to Questions Never 
Asked," Episode 401 
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astronomers developed into the most powerful and influential thinkers in 
the world. 

Martin Gardner's Mathematical Magic Show and numerous other books 
by Gardner provide delightful introductions to the Mobius band and 
topology. Many Web sites provide useful information on the Mobius strip, 
and I particularly enjoyed Alex Kasman's Mathematical Fiction site, 
which discusses the occurrence of mathematics in fiction: http://math. 
cofc.edu/faculty/kasman/MATHFICT/default/html. The Web-based 
encyclopedias Wikipedia (http://en.wikipedia.org) and Eric W. Weis-
stein's MathWorld, a Wolfram Web Resource (http://mathworld. 
wolfram.com) are always excellent sources of mathematical information. 

Other interesting Web sites, technical and artistic sources, and rec-
ommended reading are listed in the references section. 

The chapter patent-diagram frontispieces are from U.S. Pat. 
3,648,407 (1972, Introduction), U.S. Pat. 3,991,631 (1976, Chapter 1), 
U.S. Pat. 4,919,427 (1990, Chapter 2), U.S. Pat. 4,384,717 (1983, Chapter 
3), U.S. Pat. 4,640,029 (1987, Chapter 4), U.S. Pat. 3,758,981 (1973, 
Chapter 5), U.S. Pat. 4,253,836 (1981, Chapter 6), U.S. Pat. 5,411,330 
(1995, Chapter 7), U.S. Pat. 3,953,679 (1976, Chapter 8), U.S. Pat. 
6,779,936 (2004, Solutions), and U.S. Pat. 396,658 (1998, References). 

http://math
http://en.wikipedia.org
http://mathworld


MOBIUS LIMERICKS 
TO GET YOU IN THE MOOD* 

A young man named Mobius (quite clever), 
A circle of paper would sever. 

He'd then tie a knot 
As part of his plot 

To stay in Las Vegas forever. 
-Paul CUverley 

Quoth mother of four year old Pete: 
"You may not cross Mobius Street." 

But an easy walk, 
Once around the block, 

Allowed him to manage the feat 
-Chuck Gaydos 

There once was a fellow from Trent 
Who conversed with a Mobius bent. 

On and on he would blather 
On this and that matter 

With twisting one-sided intent. 
-Quinn Tyler Jackson 

Said the ant to its friends: I declare! 
This is a most vexing affair. 

We've been 'round and 'round 
But all that we've found 

Is the other side just isn't there! 
-Cameron Brown 

* These limericks are the winners of the MObius Limerick Contest, which I 
sponsored while writing this baak. 

x l i i 
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INTRODUCT ION 

August Ferdinand MObius was born on 17 November 1790 and died on 
26 September 1868. During the course of his lifetime, the pursuit of 
mathematics in Germany was transformed. In 1790, it would be hard 
to find one German mathematician of international stature; by the time 
he died, Germany was the home and training ground of the world's 
leading mathematicians . . . 

-John Fauvel, "A Saxon Mathematician," 
in Mobius and His Band 

A Hole through a Hole in a Hole 

The universe cannot be read until we have learnt the language and become 
familiar with the characters in which it is written. It is written in math-
ematical language, and the letters are triangles, circles and other geomet-
rical figures, without which means it is humanly impossible to comprehend 
a single word. 

-Galileo Galilei, Opere, II saggiatore, 1633 

When I talk to students about topology, the science of geometrical 
shapes and their relationships to one another, I stretch their minds by 
sketching several simple shapes. Some look like doughnuts, others like 
pretzels, and a few like twisted bottles with long necks. I then pose a 
question to my audience: Can you imagine a hole through a hole? 

The most common answer is that this is impossible. I smile and 
respond, "Well, I am about to show you something even better than a 
hole in a hole. I will show you a hole in a hole in a hole!" With a flourish, 
I make a sketch of the object in figure 1.1, and the audience invariably 
smiles with delight Throughout this scrapbook of curiosities, I hope to 
surprise you with other geometrical treats. 

X V 



X I i T H E M O B I U S S T R I P 

II 
A playful dog loses his bone in a hole through a hole in a hole. 

(Drawing by April Pedersen.) 

Topology is about spatial relationships and glistening shapes that span 
dimensions. It's the Silly Putty of mathematics. Sometimes, topology is 
called "rubber-sheet geometry" because topologists study the properties of 
shapes that don't change when an object is stretched or distorted. The best 
way for people of all ages to fall in love with topology is through the con-
templation of the Mobius strip—a simple loop with a half twist (figure 1.2) 

1.2 
A Mobius strip. 
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The Skull of Dr, Mobius 

Emi a great mathematician is almost always unknown to the public. His 
"adventures" are usually so confined to the interior of his skull lhat only 
another mathematician cares to read about them. 

-Martin Gardner, "Tfa Adventures of Stanislaw Ulam, * 1976 

In this book 111 frequently digress into topics related to the Mobius strip 
and topology that you won't find in most math books- For example, just 
a few months before writing this introduction, I had the opportunity to 
see the skull of my hero, the mathematician August Ferdinand Mnbius, 
who described the strip that bears his name. The upper half of Mobiua's 
skull appears in a weird 1905 photo published in his grandson's book 
AiiSgcwahlte werke (Selected Work$ (figure 1.3}. 

13 
The skulls of August Ferdinand Mfitoius (above) and Ludwig van Beethoven IbeJowJ, 
from a hook by grandson Paul MBbius. Paul disinterred his dad to create this bizarre 

phoio [Soiree: Paid MbhiiHsAjsGwofcre W&ke, VW ?, Tcrfeiffl, The Bri t ish Uhrat\| r 

19D5, as cSspiayed in Nitons and His Bond, p 1?, edfted by John Fauvtf, 
Raymond f lood, and ficfcin Wilson. (NewYorfc Dxford University Press, 1993). 
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Grandson Paul Mobius, an often-brilliant neurologist, did have a few 
odd notions, including such archaic ideas that a left fronto-orbital bump, 
which anatomist Dr. Franz Gall designated the "mathematical organ," 
was particularly large on August Mobius's head. Today, of course, we 
don't take Dr. Gall's phrenological ideas seriously. Looking at the photo 
of August Mobius, I can't tell if the supposed bump existed on his head, 
but I do know that Paul made a vast study of mathematicians' heads, col-
lecting skull data from men living and dead and including photos in his 
thorough monograph on this subject His mission was to demonstrate 
that mathematical ability was intimately linked to bumps on the head. 

Thinking about all these skulls gives me a shiver. Exhumations at the 
Leibzig cemetery gave Paul the perfect opportunity to dig up his grand-
father's skeleton so he could handle the skull and make his observations. 

Mobius Strips Are Everywhere! 

A mathematician, like a painter or poet, is a maker ofpatterns. If his pat-
terns are more permanent than theirs, it is because they are made with ideas. 

-G. H. Hardy, A Mathematician's Apology, 1941 

The Mobius strip has fascinated both mathematicians and laypeople ever 
since Mobius discovered it in the nineteenth century and presented it as an 
object of mathematical interest As the years passed, the popularity and 
application of the strip grew, and today it is an integral part of mathematics, 
magic, science, art, engineering, literature, and music. It has become a 
metaphor for change, strangeness, looping, and rejuvenation. In fact, today 
the Mobius band is the ubiquitous symbol for recycling, where it represents 
the process of transforming waste materials into useful resources (figure 1.4). 

1.4 
The ubiquitous symbol for recycling 
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The recycling symbol consists of three twisted chasing arrows in the 
shape of a triangle with rounded vertices. If the correspondence of the 
symbol to the Mobius band is not clear to you, the similarity will 
become evident as you read further. What would Mobius have thought 
if he could look into the future and see that the most common use of his 
loop was in the area of waste disposed! The recycling symbol was 
designed in 1970 by Gary Anderson, a student at the University of 
Southern California at Los Angeles. Anderson submitted his logo to a 
nationwide contest sponsored by the Container Corporation of America. 

Today, the Mobius strip is everywhere-such a compelling shape! Var-
iously called the "Mobius strip" (38,000 Web sites), "Mobius band" 
(seven thousand Web sites), or "Mobius loop" (11,000 Web sites), interest 
in the wonderful object is growing. Of course, one cannot take these 
Googled Web site numbers too seriously, because the phrase may some-
times refer to the name of a rock group or a non-Mobius object. 

In this book I will touch on the Mobius strip's appearance in a variety 
of settings, from molecules and metal sculptures to postage stamps, liter-
ature, architectural structures, and models of our entire universe. The 
strip is featured in countless technology patents, which decorate the fron-
tispieces of each chapter and are briefly covered in chapter 4. 

Today, the Mobius strip has become common in jewelry, including 
popular golden pendants inscribed with Hebrew verses from the Bible. 
It's the logo for Mobius: The Journal of Social Change. It's the name of a 
Santa Cruz, California, company that specializes in the conservation and 
restoration of oil paintings. In 2004, Mobius beer, infused with taurine, 
ginseng, caffeine, and thiamine, went on sale in Charleston, South Car-
olina, each can emblazoned with the Mobius strip. "Mobius beer will 
keep you going on and on all night long," says the company literature. 
Even the calcium dietary supplement Caltrate features a big purple 
Mobius strip on its packaging. 

MOBIUS is also the name of a poetry magazine, whose logo is a 
Mobius strip. The "Mobius Flip" is the name of an acrobatic stunt per-
formed by freestyle skiers that involves a twist while somersaulting 
through the air. The Colorado Ski Museum sells a half-hour videotape 
tided The Mobius Flip, featuring spectacular glacier skiing. In addition, 
various waterskiing sports feature "Mobius tricks" and related inverted 
spins on hydrofoil water skis. 

Numerous Mobius objects have entered my own personal hall of 
fame. For example, my favorite wood engraving that features a Mobius 
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band is Dutch artist M. C. Escher's Md'bius Strip II, which presents red 
ants crawling on the surface of a Mobius strip. My favorite Mobius strip 
sculpture is Swiss-born artist Max Bill's Endless Ribbon, made of granite 
and displayed in sculpture gardens in the early 1950s. My favorite 
movies featuring the strip are Md'bius, directed by Gustavo Mosquera, 
and Eternal Sunshine of the Spotless Mind, directed by Michel Gondry. We'll 
discuss Mobius plots in literature and movies in chapter 8 and in this 
book's conclusion. 

These days the Mobius strip has also become an icon for endlessness, 
and we'll touch on many popular, offbeat, and imperfect Mobius 
metaphors, as well as geometrical objects that are more precisely identi-
fied as Mobius strips. In literature and mythology, the Mobius metaphor 
is used when a protagonist returns to a time or place with an alternative 
viewpoint, because a true Mobius strip has the intriguing property of 
reversing objects that travel within its surface. This geometrical reversed 
will be made clear in chapter 6. 

Perhaps the most common contemporary use of the term "Mobius 
strip" occurs when alluding to any kind of mysterious looping behavior, 
or as author John Fauvel says, "The cultured pervasiveness of the notion 
of the Mobius band is now assured because, rather like some other pop-
ular mathematical metaphor, it has begun to be used in all kinds of con-
texts for which it is thoroughly inappropriate." Some of the quotes at the 
ends of each chapter are examples of these amusing contemporary uses. 

Smorgasbord 

Geometry is unique and eternal, and it shines in the mind of God. The 
share of it which has been granted to man is one of the reasons why He is 
the image of God. 

-Johannes Kepler, " Conversation with the Sidereal 
Messenger," 1610 

As in all my previous books, you are encouraged to pick and choose 
from the smorgasbord of topics. Sometimes, I repeat a definition so that 
it is easier for you to browse chapters that most interest you. Many of the 
chapters are brief to give you just the tasty flavor of a topic. Those of you 
interested in pursuing specific topics can find additional information in 
the referenced publications. In order to encourage your involvement, the 
book contains several puzzles (denoted by an «> symbol) for you to 
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ponder, with solutions at the end of the book. Spread the spirit of this 
book by posing these questions to your friends and colleagues the next 
time you plunk down on the couch to listen to the Mobius Band, a con-
temporary western Massachusetts music trio playing at the edges of rock, 
electronic, and experimental music. 

Whatever you believe about the possibility of some of the weird 
shapes in this book and the strange models for the cosmos, my topolog-
ical analogies raise questions about the way we see the world and will 
therefore shape the way you think about the universe. For example, you 
will become more conscious about what it means to visualize a one-sided 
object in your mind or what it means to have orientation-reversing paths 
in space. 

By the time you've finished this book, you will be able to do the 
following: 

• understand arcane concepts such as paradromic rings and ekpy-
rotic models of the universe's creation 

• impress your friends with such terms as Schulpforta, homeomor-
phisms, sphere eversions, nonorientable surfaces, Boy surfaces, 
cross-caps, Roman surfaces, reed projective planes, the Mobius 
function |i(n), squarefree numbers, Merten's conjecture, the ubiq-
uity of j i 2 / 6 , hexaflexagons, Mobius shorts, Mobius tetrahedra, 
solenoids, Alexander's horned spheres, prismatic doughnuts, the 
barycentric calculus, and Bonan Jeener's Klein bottles 

• write better science fiction stories involving the Mobius strip 
• understand most people's rather limited view of space and shape. 

You might even want to go out and see Eugene Ionesco's play The Bald 
Soprano with its Mobius-like twist, read my novel The Lobotomy Club, 
which centers on a mythical arrangement of brain cells called a cerebral 
Mobius strip, or buy one of the latest glass Klein bottles available on the 
Web from Acme Klein Bottle. 

Geometry and the Imagination 

I could be bounded in a nutshell and count myself a king of infinite 
space. 

-William Shakespeare, Hamlet, 1603 
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When I receive e-mail from teachers and laypeople about mathematics, 
I find that the mathematical objects that excite them most are geomet-
rical shapes with startling properties. They are also fascinated by the idea 
that our universe could comprise a space shaped like a doughnut or 
include higher dimensions. All students seem to be delighted by the 
miraculous four-dimensional Klein bottle or by contemplating what it 
would be like to live on a Mobius band. 

Alas, most high school students are never exposed to topology. Hope-
fully, this book on August Ferdinand Mobius and his band may serve as a 
brief teaser to more advanced concepts, especially for readers who would 
never go beyond trigonometry at school or even in technical jobs. Inter-
estingly, although topology grew out of puzzles involving simple objects 
such as the Mobius band, today the modem topologist wades in a morass 
of mathematical theory. In fact, some topologist friends are suspicious of 
theorems that must be visualized to be understood. Martin Gardner notes 
the following in Hexaflexagons and Other Mathematical Diversions. 

People who have a casual interest in mathematics may get the idea 
that a topologist is a mathematical playboy who spends his time 
making Mobius bands and other diverting topological models. If 
they were to open any recent textbook in topology, they would be 
surprised. They would find page after page of symbols, seldom 
relieved by a picture or diagram. 

In this book, I hope to give readers a taste of topology, higher dimen-
sions, and bizarre twisted forms using very few formulas. Topology is an 
infinite fountain of strange and wondrous forms, and I've been in love 
with recreational topology for many years for its educational value. Con-
templating the simplest of problems stretches the imagination. More gen-
erally, the usefulness of mathematics allows us to build spaceships and 
investigate the geometry of our universe. Numbers and geometry will be 
our first means of communication with intelligent alien races. It's even 
possible that an understanding of topology and higher dimensions may 
someday allow us to escape our universe when it ends in either great heat 
or cold, and then we could call all of spacetime our home. 

Today, mathematics has permeated every field of scientific endeavor 
and plays an invaluable role in biology, physics, chemistry, economics, 
sociology, and engineering. Mathematics can be used to help explain the 
colors of a sunset or the architecture of our brains. Mathematics helps us 



C L I F F O R D A . P I C K O V E R jtVN 

build supersonic aircraft and roller coasters, simulate the flow of Earth's 
natural resources, explore subatomic quantum realities, and image far-
away galaxies. Mathematics has changed the way we look at the cosmos. 

Quotations 

A mathematician is a machine for turning coffee into theorems. 
-Paul Erdos, quoted in Paul Hoffman's The Man Who 

Loved Only Numbers 

I'm a voracious reader and keep a scrapbook of intriguing quotations 
that come across my line of sight each day. Many come from newspa-
pers, magazines, and books that I'm reading. At the end of each chapter 
of this book are snippets from these sources that feature a Mobius strip 
metaphor in an interesting way. I denote these timely and sometimes 
quirky quotes with a symbol. I welcome your feedback and look for-
ward to your own Mobius quotation submissions. Enjoy! 

M S B I U S S T R I P IN R E L I G I O N 

But God has no skin and no shape because there isn't any outside ta him. With 
a sufficiently intelligent child, I illustrate this with a Mabius strip. 

—Alan Watts, The Book- On the Taboo Against Knowing Who You Are 

Like the Mdbius strip, the inside and outside of God are the same. 
—Frank Fiore, To Christopher; From a Father to His Son 

Only a Jew can understand that God's will and our free will work hand in hand. 
It would drive other people crazy. It's like a Mobius strip: it's in and out and up and 
down, together. 

—Robert Eisenberg, Boychiks in the Hood: Travels in the Hasidic Underground 





M O B I U S M A G I C I A N S 

Mdbius is a household name-at least, it is in mathematical houses-thanks 
to a topological toy. But August Mdbius influenced mathematics on many 
leoels . . , {1lis modern legacy] is a large part of today's mathematical 
mainstream. 

-Ian Stewart, "Mobius's Modern Legacy," 
in Mobius and His Band 
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When I was in third grade, I went to a neighbor's birthday party that fea-
tured a magic show. A magician in a tall black hat handed me a band, 
which it seemed he had made by pasting together the ends of shiny strips 
to form a long loop of ribbon. He had three such loops—one strip was 
red, another blue, the third purple. The magician's name was Mr. Magic. 
Very original. 

Mr. Magic smiled as he drew a black line along the middle of each of 
the long strips, like a dashed line painted on a highway (figure 1.1). He 
showed the strips to the audience. One kid grabbed, and Mr. Magic said 
something like, "Patience!" 

11 
A Mobius strip with line drawn along the middle 

I was a shy child and well-behaved. Mr. Magic must have sensed that 
and handed me a scissors. "Young man, cut the strip lengthwise along the 
line." He motioned along the dashed line on one of the strips. 

I was excited and continued to cut the red strip until I reached the 
starting point of my cut. The red band fell apart to form two totally 
separate rings. "Cool," I said, but really I wasn't too impressed. Still, I 
wondered about what was happening. 

"Now cut the others." 
I nodded. After I cut the blue strip, it formed a single band twice as 

long as the original. Someone clapped. He handed me the remaining 
purple strip. I cut this one, and it formed two interlocking rings-like two 
links of chain. 
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Each color behaved so differendy—now that was pretty cool! The bands 
had totally different properties, although they had looked identical to me. 
A few years later, a friend explained the mysterious trick to me. The red, 
blue, and purple strips were each created differendy when the ends of the 
ribbons were joined. The loop of red ribbon was the most straightfor-
ward. It was a simple loop with no twist, resembling an ordinary con-
veyor belt or a thick rubber band. The blue loop, however, was the famous 
Mobius strip, formed by twisting the two ends of the ribbon 180 degrees 
with respect to each other before pasting the ends together. This is typi-
cally called a "half twist." The purple loop was formed by twisting one 
end 360 degrees relative to the other before pasting the ends. 

Today, magicians often call this stunt the Afghan Bands trick, 
although I'm not sure where the name originates. The trick, performed 
under this name, dates back to around 1904. 

According to Martin Gardner's Mathematics, Magic, and Mystery, the 
earliest reference for use of the Mobius strip as a parlor trick is the 1882 
English edition of Gaston Tissandier's Les recreations scientifiques, first pub-
lished in Paris in 1881. Carl Brema, an American manufacturer of all 
kinds of magic tricks, frequendy performed the Afghan Bands trick in 
1920, using red muslin instead of paper. In 1926, James A. Nelson 
described a method for preparing a paper band so that two cuttings of 
the band produced a chain of three interlocked bands (figure 1.2). 

FIRST CUT 

SECOND CUT 

CEMENTEn 
OVERLAf 

ENTIRE BAND 
HAS TWO 
TWISTS IN 
DIRECTION 
OFARROW 

c 
1 . 2 

James A. Nelson's method for preparing a "magical" paper band so that two 
cuttings of the band produce a chain of three interlocked bands. 

(After Martin Gardner, Mathematics, Magic, and Mystery.) 
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Magician Stanley Collins described another fascinating trick in 1948 
involving a twisted band and a ring. He placed a small metal ring on 
a paper or cloth strip and then joined the ends of the strip after three 
twists to form a closed loop. As usual, the magician cuts along the 
middle of the band (like cutting along the centerline of a highway) 
until he reaches the starting point, producing one large strip knotted 
around the ring. 

Today, professional magician Dennis Regling, who performs "gospel 
magic" for Sunday schools and Bible camps, uses Mobius strip magic for 
enhancing belief in God. Just like Mr. Magic, Dennis uses the rings in a 
gospel presentation by calling up three volunteers. Next, he places the 
large rings over the heads of the volunteers and explains " . . . how God 
has made us, and though we are alike in many ways, he has given each 
of us special gifts too. That we are all uniquely special in God's eyes." He 
cuts the three different loops with scissors, each producing the three out-
comes I described previously. 

Another professional gospel magician, Eric Reamer, also uses the 
three loops to promote religion. Eric is part of a national evangelistic 
ministry designed to bring the "truth of the Gospel of Jesus Christ" to a 
"needy" world by using visual object lessons and optical illusions. First, 
he shows his audience the loop with no twists and says, "I love circles! 
They are so cool! They have no beginning, and no end, and that reminds 
me of God!" He then describes how Jesus was similarly eternal, and he 
tears the standard loop to form the two separate but identical loops, 
which symbolize God the Father and Son. 

Next, he presents the loop with the full twist and explains that the 
Bible teaches us that God created us in his image, and that God "sent 

Jesus, so that we might ask Him into our hearts, and be eternally together 
with God!" Eric tears the loop, creating two interlocked loops. 

Finally, Eric presents the true Mobius loop with the half twist, and 
says, "God must have a lot of love for us to send His only Son, don't you 
think?" He then asks the audience to imagine how large this love must 
be. He tears the Mobius strip and shows the audience that the loop has 
doubled in length. Eric says that this trick also lends itself to lessons on 
fellowship and marriage. 

We will delve into explanations for this magic in coming chapters 
and explore even more unusual shapes, but for now it is amusing to 
ponder how Mobius's abstract paper in mathematics, which introduced 
the strip over a century ago, is today used for mystifying children and 
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for gospel magic that attracts children to Jesus and deepens faith in the 
divine. 

<» Treadmi l l Puzz le 

For this puzzle, let us imagine that Dr. Mobius was a successful but eccentric 
inventor. During his travels through Saxany, he invents the exercise device shown 
in figure 1.3. He hopes that he and his heirs will someday make a lot of money 
with his ingenious machine. But does it really work? As Dr. Mobius runs, will the 
treadmill turn, or is it locked, thereby causing Dr. Mobius to run off the end and 
plunge into the deep ravine? What effect does the figure eight belt have an the 
operation of the device? Would the operation be different if this figure eight 
were replaced with a Mobius strip (a loop of conveyor belt with a half twist]? If 
the device does not work, haw would you fx it? Would the device function any 
differently if all belts were twisted7 (Turn to the solutions section for an answer.) 

1.3 
Will the belts on Dr. Mobius's exercise treadmill turn freely if the figure eight belt is 

replaced by a Mobius strip? (Drawing by Brian Mansfield.) 
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A Word on Mobius's Place in History 

It is an accident af history that Mdbius's name is remembered because of a 
topological party-piece. But it was typical that Mobius should notice a simple fact 
that anyone could have done in the previous twa thousand years—and typical 
that nobody did, apart from the simultaneous and independent discovery by 
Listing. 

—Ian Stewart, "Mdbius's Modern Legacy," in Mobius and His Band 



K N O T S , C IV I L IZAT ION , A U T I S M , 

AND THE C O L L A P S E OF S I D E D N E S S 

A burleycue dancer, a pip, 
Named Virginia, couldptd in a zip! 

Bui she read science fiction 
And died of constriction 

Attempting a Mubius strip. 
-Cyril Kornbiuth, "The Unfortunate Topokgisi," 1957 
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Ants Inside Spheres 
If I were to hand you a hollow sphere containing an ant, it's easy to see that 
the sphere has two distinct sides. An ant walking on the inside of the sphere 
can't reach the outside surface, and an ant crawling on the outside can't 
reach the inside. 

A plane extending in all directions to infinity also has two sides-an ant 
crawling on one side cannot reach the other. Even a finite plane, such as 
a page of paper torn from this book, is considered two-sided if an ant is 
not allowed to traverse the sharp edges of the boundaries of the paper. 
Similarly, a hollow doughnut shape, or torus, has two sides. A can of soda 
has two sides. The first one-sided surface discovered and investigated by 
humans is the Mdbius strip. It seems far-fetched that no one on Earth had 
described the properties of one-sided surfaces until the mid-1800s, but the 
history of science and mathematics has recorded no such observations. 

A Mobius strip (or band) is a fascinating surface with only one side and 
one edge. As I suggested in the previous chapter, to create the strip, simply 
join the two ends of a long strip of paper after giving one end a 180-degree 
twist with respect to the other end. The result is a one-sided surface-a bug 
can crawl from any point on such a surface to any other point without ever 
crossing an edge. In contrast, if you join the ends of the strip without 
twisting, the result resembles a cylinder or a ring, depending on the width of 
the strip. Because a cylinder has two sides, you can color one side of the 
cylinder red and the other green. Try coloring a Mobius strip with a crayon. 
It's impossible to color one side red and the other green because it has only 
one side (Figure 2.1). This also means that you can draw a continuous line 
between any two points on a Mobius strip without crossing an edge. 

2.1 
Attempting to color a Mobius strip. Two painters are confused as they try to paint one 

side red and one side green. This confusion is actually the key component of a 
tragicomical story titled "A. Botts and the MBbius Strip,' discussed in chapter 

8, in which a painter tries repeatedly to paint just one "side* of a Mobius belt. 
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Construct a Mobius strip yourself right now and place it on a table. 
Put one finger on one edge and another finger on the "other." Keep 
one finger stationary as you move the other finger along the edge. 
Eventually, the moving finger will touch every point along the edge 
and collide with the stationary one, clearly showing us that the strip 
has only one edge. In fact, any strip of paper with an odd number of 
half twists is Mobius-like because all such strips have only one surface 
and one edge. 

Dissecting the Band 
The Mobius strip has numerous fascinating properties. If you cut 
along the middle of the strip, as I discussed when referring to the 
magic tricks in chapter 1, instead of producing two separate strips, 
you will be left with one long strip with two half twists in it. If 
you cut this new strip along the middle, you get two strips wound 
around each other. In other words, this second cutting produces two 
linked bands. 

Alternatively, if you cut along a Mobius strip a third of the way in 
from the edge, you will get two strips—one is a thinner Mobius strip, 
and the other is a long strip with two full twists in it (a full twist is a 
360-degree twist). Let's try to visualize this. We've learned that if 
you cut along the middle of a Mobius strip, you will return to the 
starting point of the cut in the middle of the strip. You'll be traversing 
the strip one time before returning. O n the other hand , if you 
start cutting one third of the way from one edge, you will not 
meet the start of your cut until you've been around the Mobius 
strip twice, because on the second time "around" your cut will be 
a third of the strip's width away from your starting cut along the 
strip. 

In other words, the cutting takes you twice around the Mobius 
band before you return to your storing point and produces two bands 
(figure 2.2). Let's call the two resulting strips band A and band 
B. Band A is identical to the original Mobius band except its width 
is a third of the original—in fact it is the central third of the orig-
inal Mobius strip. Band A is the smaller of the two bands in figure 
2.2. Band A is linked with band B, which is twice as long as A. 
Thus, the trisection of a Mobius strip produces the small Mobius 
band A linked to the longer two-sided band B that has four half 
twists. 
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2.2 
Cutting along a Mobius strip, a third of the way in from the edge, 
produces two strips—one is a thinner Mobius strip, and 

the other is a long strip with two half twists in it. 

In Mathematical Magic Show, Martin Gardner has shown that it is pos-
sible to manipulate the interlocked A-B rings from figure 2.2 until they 
sit together to form a triple-thick Mobius band, as shown in figure 2.3. 
The darkened edge is the edge of ring A. 

2.3 
2 3 A triple-thick Mobius band can be formed from the A and B rings from figure 2.2 

Let's examine this triple-thick object more closely. In this wonderful 
nesting, the two outer "strips" appear to be separated all the way around 
by a Mobius strip sandwiched "between" them. Gardner notes that the 
same structure can be constructed by putting three identical strips 
together, holding them as one, giving them a half-twist, and then joining the 
three pairs of corresponding edges. If you attempt to color the triple-thick 
band blue on its "outside," you will find it possible to interchange the out-
side layers so that the blue side of the larger band goes into the interior, 
and the triple-thick band becomes white on its "outside." 

Let's consider other cutting experiments. If you start with a "parent" 
Mobius band with three half twists and then cut it along the middle to 
produce a child, you'll generate one larger child band with eight half 
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twists. You can imagine lots o f cutting experiments, but we can make a 
number of generalizations. For example, to calculate the number of half 
twists in a child, double the number of half twists in the parent band and 
add two. 

Mobius himself considered and drew various variants of the Mobius 
strip. Figure 2.4 is f rom MSbius's unpublished writings and shows his 
band and several twisted relatives. The kx/p of paper has two sides if the 
number of half twists is even and one side if the number is odd. 

ZA 
M f i b i u s ' s b a n d a n d s e v e r a l t y r i sTed relatives, f r o m M b b k x j ' s o w n u n p u b l i s h e d w r i t i n g s . 

[Source: Mtiblijsfc Wsrte, t page S20. See also page 12? of Wdtous ortd Hts 8andt edited 
by John FauvH Raymond Flood, and Robin W t e o n [Oxford un ive fd iy Press, 1993). 

We can use mathematical notations to make more generalizations on 
the cutting properties of twisted strips. Imagine that one end of the paper 
strip receives m half twists (that is, is twisted through m n radians or m x 
180°) before it is glued to the other end. If m is even, we create a surface 
with two sides and two edges. If the strip is cut along a midline between 
the edges, we obtain two rings, each of which had m haif twists and which 
are linked together Vi m times. If m is odd, we produce a one-Bided sur-
face with one edge. If this loop is cut along the midline, we obtain only 
one ring, but h has 2m+2 half twists, and tf m is greater than 1, the result 
is knotted. 

Simple Sandwich Mdbius Strip 
One of the most mystifying Mobius arrangements is the sandwich 
Mobius strip, created with just two strips of paper. I have known people 
to ponder this for hours while listening to Pink Floyd without ever fully 
appreciating what they have beheld. Start your construction by placing 
one strip on top of the other, like two pieces of bread in a sandwich. 
Together, give the strips both a half twist and tape them as if you were 
constructing a single Mobius strip (figure 2.5). 
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2 5 
A sandwich Mobius strip, created from two strips of paper, has remarkable properties. 

Hold the double-layer object in your hands. At first, you'll think you 
have created a pair of nested Mobius strips that hug each other along 
their shared surface. But how can we truly understand our creation? 
First, probe the arrangement carefully with a toothpick. Slip the 
toothpick between the bands. Slowly move it around the bands, and 
you'll return to your starting point. Yes, it seems perfecdy clear that you 
have two separate bands, for there is always a space between them. 

Now, take a red crayon and start coloring one of the Mobius bands. Con-
tinue around the entire surface. You will end up returning to your starting 
point, having twice navigated the sandwich Mobius band, which seems to 
indicate that the bands are not nested but rather that they are one band with 
one surface and one edge. For the final shocker, gendy pull the two bands 
apart, and you will discover a single large band with four half twists! 

Ljubljana Ribbon, Autism, and Vortex Knots 
A Slovenian friend once demonstrated similar kinds of outcomes from cutting 
exercises presented as a magic trick with a political lesson. In particular, she held 
up a shining crimson ribbon that, when cut, turned into a trefoil knot, a knot with 
three crossings (figure 2.6). The trick was supposed to show how individual 
countries benefited when they came together to form the European Union. 

Her crimson ribbon, which she called a Ljubljana ribbon, had three 
half twists, instead of the usual single half twist for a Mobius strip. When 
divided lengthwise, the Ljubljana ring turns into the trefoil knot This con-
forms to the rule we just discussed: if m is odd, we generate only one ring 
from cutting the loop, but it has 2 m + 2 half twists, and the result is knotted. 

Mathematicians have studied the trefoil knot extensively since the 
early 1900s. The knot's mirror images are not equivalent, as first proved 
in 1914 by German mathematician Max Dehn (1878-1952). Dehn wrote 
one of the first systematic expositions of topology in 1907. (In 1940 
he fled Nazi persecution and managed to become the only mathe-
matician ever to teach at Black Mountain College in the U.S.) 
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<<8 
Mirror 

?.6 
Trefoil knot. The mirror images of th is knot a re not the same, and rip 
matter how you tw is t , sh i f t , or de form one of t he Knots, y o u cannot 

make i t look l i k e i h e other un less you cot t he kno i and re t le h-

No matter bow you stretch, move, or deform the knots in figure 2.6, you 
can never transform one into the other. This simple knot got its name from 
plants of the genus Trifolium, which have compound trifoliate leaves. The knot 
is the basis for countless sculptures and logos, such as the emblem of Ctixa 
Gad dt IkptisiUx {the largest bank in Portugal) and John Robinson's trefoil 
knot sculpture, which resides in the garden of Robinson's studio in Somerset, 
England (Ggure 2.7]. Note that Robinson's knot is constructed from a ribbon 
twisted in such a way as to have only one side. The trefoil knot also appears 
in the famous M. C. Escher engraving Krwtt and in Jos Leys's computer 
artwork, which are famous for their realistic lighting and shading (figure 2.8} 

27 
Professor Ronnie 8rov>n of the University of Wales, Bsngcr, and sculptor John 

Rcfcinsonsiand before Robinson's trefoil Knot sculpture immorto l i ty . The w x k has 
been adopted by the Department of Mathematics, University of Wales, Barigor, as the 

departmental logo. ( Image courtesy of Edition L imi ted Oeneva.) 
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j l 
2 . 8 

Trefoil knot computer graphics by Jos Leys. 

The study of knots, such as the trefoil knot, is part of a vast branch of 
mathematics dealing with closed twisted loops. For centuries, mathemati-
cians have tried to develop ways to distinguish tangles that look like knots 
from true knots and to distinguish knots from one another. For example, the 
two configurations in Figure 2.9 represent two knots that for over seventy-
five years were thought to represent two distinct knot types. In 1974 a math-
ematician discovered that it was possible to simply change the point of view 
of one knot to demonstrate that both knots were the same. Today we call 
these "Perko pair knots." Although these have been listed as distinct knots 
in many knot tables since the nineteenth century, New York lawyer and 
part-time topologist Kenneth Perko showed that they were in fact the same 
knot by manipulating loops of rope on his living room floor! 
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Two knots are considered to be the same if you can manipulate one 
of them without cutting so that it looks exactly like the other with 
respect to the locations of the over- and under-crossings. Knots are 
classified by, among other characteristics, the arrangement and 
number of their crossings and certain characteristics of their mirror 
images. More precisely, knots are classified using a variety of invari-
ants, of which their symmetries is one and their crossing number is 
another, and characteristics of the mirror image play an indirect role 
in the classification. No general, practical algorithm exists to deter-
mine if a tangled curve is a knot or if two given knots are interlocked. 
Obviously, simply looking at a knot projected onto a plane-while 
keeping the under- and over-crossings apparent-is not a good way to 
tell if a loop is a knot or an unknot. (The unknot is equivalent to a 
closed loop like a simple circle that has no crossings.) For example, 
consider the "mystery unknot" in figure 2.10. Can you tell that this is 
an unknot by manipulating the object in your mind? I asked dozens 
of colleagues, and most were unable to determine if this was a knot 
or an unknot simply by looking at it. Could an autistic savant or 
someone with Asperger's syndrome (high functioning autism) see the 
solution in his or her mind? Children with autism are sometimes fas-
cinated with items that are not typical toys, such as pieces of string, 
complex balls of yarn, or rubber bands. Some continually tie knots in 
strings. 

Of the people I surveyed, one woman who could tell this was an 
unknot, simply by looking, had knitting experience. A woman with 
Asperger's syndrome was also able to solve this in thirty seconds. She 
described the process to me as unlooping the string in her head-
unwinding it until it became a circle. 

2.10 
The "mystery unknot." Is this figure a knot? 
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In 1961 Wolfgang Haken, now of the University of Illinois at Urbana-
Champaign, devised an algorithm to tell if a knot projection on a plane 
(while preserving the under- and over-crossings) is actually an unknot. 
However, the procedure is so complicated that it has never been imple-
mented. The paper describing the algorithm in the journal Acta Mathe-
matica is 130 pages long. 

The trefoil knot and the figure eight knot are the two simplest 
knots, the first having a representation with three crossings and the 
second with four (figure 2.11). No other knot classes can be drawn 
with so few crossings. Over the years, mathematicians have created 
seemingly endless tables of distinct knots. So far, over 1.7 million 
nonequivalent knots containing sixteen or fewer crossings have been 
identified. 

Simple knots like the trefoil and figure eight knots also happen to be 
the basis for early attempts at a "string theory" for atoms, an area of 
research that some readers might be surprised to find took place in the 
nineteenth century. Mathematician and physicist Lord William 
Thomson Kelvin (1824-1907) accelerated the mathematical theory of 
knots during his attempts to model atoms, which he suggested were actually 
different knots tied in the ether that he believed permeated space. He 
proposed that atoms were actually tiny knotted strings, and the type of knot 
determined the type of atom (figure 2.12). Physicists and mathemati-
cians of his day set to work making a table of distinct knots, believing 
they were constructing a table of the elements. Kelvin's definition of a 
knot was the same as that used by topologists: a knot is a closed curve 
that does not intersect itself and that cannot be untangled to produce a 
simple loop. The topological stability and the variety of knots were 
thought to account for the stability of matter and the variety of chemical 
elements. 

211 
Trefoil (left) and figure eight knot (right) 
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Lead? Sodium? 

2.12 

Near the end of the nineteenth century, some scientists believed that each 
atom corresponded to a different knot tied in the ether 

Scientists took Kelvin's theory of "vortex atoms" seriously for about 
two decades. Even the famous physicist James Clerk Maxwell (1831-1879) 
thought that "it satisfies more of the conditions than any [model of the] 
atom hitherto considers." Kelvin's vortex atom theory inspired Scottish 
physicist Peter Tait (1831-1901) to begin an extensive study and catalogue 
of knots to help him understand when two knots were actually different 
However, much of this excitement with knot theory suddenly came to a 
halt once scientists discovered that the invisible ether of space did not 
exist Alas, interest in knots continued to wane for decades. 

Chemistry has come a long way since the days of Kelvin. Today, 
chemists are able to perform the difficult task of actually synthesizing 
knotted molecules, including molecules with trefoil knots. I'll show you 
some of these in chapter 4. 

Scientists have also made DNA trefoil and figure eight knots. Closed 
circular DNA molecules, such as plasmids, can be knotted, and different 
DNA knots can be separated experimentally by a laboratory technique 
called gel electrophoresis, in which an electrical current forces molecules 
across a span of gel. A molecule's properties determine how rapidly an 
electric field can move the molecule through a gelatinous medium. 
Knots with different crossing numbers have different speeds of 
movement in the gel, and hence produce distinct gel bands. 

Entire conferences are devoted to knots today. Scientists study 
knots in fields such as molecular genetics-to help us understand how 
to unravel a loop of DNA-and particle physics in an attempt to rep-
resent the fundamental nature of elementary particles. For example, 
Phoebe Hoidn and Andrzej Stasiak of the University of Lausanne, 
Switzerland, and Robert Kusner of the University of Massachusetts at 
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Amherst, study the mathematical complexities of certain knots to 
develop new theories with the potential to explain properties of ele-
mentary particles like electrons. 

To understand Hoidn and Stasiak's work, we must first recognize that if 
a long, practically weighdess, silk fiber loop is charged electrostatically (for 
example, by rubbing it) and then released so that it can relax (ideally, in a 
gravity-free environment), the ring will form a perfect circle because this bal-
anced shape is a minimum energy configuration. Surprisingly, an electro-
statically charged trefoil knot does not form a shape that keeps its three loops 
as large as possible. Instead, the trefoil knot tightens into a very small region 
on a perfect circle. This tightening behavior takes place for other kinds of 
knots as well. In their efforts to think of ways to prevent such tightening, 
mathematicians are developing models that may one day help us under-
stand the properties of electrons, which are sometimes modeled as little 
loops of charge, maybe even knotted loops. Within different knot families, 
Hoidn and Stasiak have found atomlike characteristics such as the quantiza-
tion of energy (steplike energy differences corresponding to different knots). 

Protein biochemists are also fascinated by knots that may reside in 
large biomolecules. In 2000, British mathematical biologist William R. 
Taylor developed an algorithm for detecting knots in protein backbones, 
the coordinates of which are stored in protein databases. In particular, he 
scanned more than three thousand different protein structures stored in 
the Protein Data Bank, a worldwide repository of 3-D biological macro-
molecular structure data. 

Taylor found eight knots in his quest. Most of these knots were simple 
trefoil knots. Several knots were detected in proteins not previously rec-
ognized as knotted. One knot occurred in the enzyme acetohydroxy acid 
isomeroreductase, which was interesting because it sat very deeply in the 
folded protein, far from the ends of the protein backbone, and in the form 
of the more complicated figure eight knot. Taylor's 2000 paper in Nature 
describes a protein-folding pathway that may explain how such strange 
knots are formed. In order to find protein knots, Taylor begins by compu-
tationally "holding" the two ends of the protein backbone fixed while the 
rest of the molecule shrinks until it sometimes forms an obvious knot. 

Knots such as the trefoil and figure eight have inspired humans for 
centuries. A pointy form of the trefoil knot, called a triquetra, was used 
by the Celtic Christian Church to symbolize the trinity, but the symbol 
predates Christianity as a Celtic symbol of the triple goddess (Maiden, 
Mother, and Crone). It's also the symbol of the occult TV show Charmed, 
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where it's frequently seen as an ornament hanging from a black cat's 
collar and represents the three beautiful Halliwell sisters working 
together as a single force. Back in the 1970s, the triquetra was made 
famous by its appearance on the jacket of Led Zeppelin's fourth album. 

The quintessence of ornamental knots is exemplified by the Book of 
Keils, an ornately illustrated gospel bible, produced by Celtic monks in 
about AD 800. It is one of the most lavishly illuminated manuscripts to sur-
vive the medieval period. Scattered through the text are letters, animals, 
and humans, often twisted and tied into complicated knots (figure 2.13j. 
Tightly interlaced bands, knots, and spirals of extraordinary intricacy are 
everywhere. Computer artist Jos Leys has been inspired by Celtic designs 
to experiment with various computer renditions, such as the intricate 
object in figure 2.14. Leys's knot-generation method uses tiles, upon which 
a simple arrangement of "tubes* is placed. The tiles are then arranged on a 
grid, like squares on a checkerboard, to form a mosaic containing an intri-
cate knot Finally, the tile lines are removed to highlight the knotted form. 
In chapter 7,1 will display some even more complicated knots created by 

2.13 
A design From the Book of Kelte from George Bain's Celtic Art. T?>e Methods of 

Construction [New Ycr*. Dover, 1971) 
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2 1 4 
Ccxvputer graphics rendition of 3 complex knot inspired by Celtic designs 

(Created by Jos Leys.) 

Another favorite set of inter locking objects of interest to mathematicians 
and chemists is formed by Borromean rings-three mutually interlocked 
rings named after the Italian Renaissance family who used them on their coat 
of arms. BaUantme Beer also uses this configuration in their logo (figure 2.15). 

2.1S 
Borromean rings 

Notice that Borromean rings have no two rings that are linked, so ifwe 
cut any one of the rings, all three rings fall apart. Some historians specu-
late that the ancient ring configurations once represented the three fami-
lies of Visconti, Sforza, and Borromeo, who formed a tenuous union 
through intermarriages. 

Mathematicians now know that we cannot actually construct a true 
set of Borromean rings with fiat circles; you can see this for yourself if 
you try to create the interlocked rings out of wire, which must be 
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deformed or kinked to make the shape. The theorem stating that Bor-
romean rings are impossible to construct with flat circles was proved by 
Michael Freedman and Richard Skora in their 1987 article "Strange 
actions of groups on spheres" {Journal of Differential Geometry, 25(1): 
75-98], See also Bemt Lindstrom and Hans-Olov Zetterstrom's "Bor-
romean Circles are Impossible," which was published in the 1991 Amer-
ican Mathematical Monthly [98(4): 340-341]. 

In 2004, UCLA chemists created a breathtaking Borromean beauty-
a molecular rendition of interlocked Borromean rings. Each molecule of 
the molecular Borromean ring compound was 2.5 nanometers across 
and contained an inner chamber that was 0.25 cubic nanometers in 
volume and lined by twelve oxygen atoms. The rings include six metal 
ions in an insulating organic framework. Researchers are currently 
thinking about ways in which they may use molecular Borromean rings 
in such diverse fields as spintronics (an emergent technology that 
exploits electron spin and charge) or in a biological context such as med-
ical imaging. 

Knots and the Triumph of Civilization 
It is not an exaggeration to say that knots have been crucial to the devel-
opment of civilization, where they have been used to tie clothing, to secure 
weapons to the body, to create shelters, and to permit the sailing of ships 
and world exploration. Knot patterns have been found on burial stones 
engraved by Neolithic peoples. The Incas used knots as a form of book-
keeping and as "written language" along strings known as quipu. The 
ancient Chinese also used knots for fastening, recording events, and wrap-
ping. The famous Chinese Pan-ch'ang knot, which is actually a series of 
continuous loops, symbolizes the Buddhist concept of continuity and the 
origin of all things. A few of today's knots have their genesis in the Middle 
Ages, when they were used with compound pulleys for lifting and pulling 
loads, which were also usually attached with suitable knots. 

Sailors used and invented knots to tie ropes to poles, to tie ropes 
together, to rig sails, and to hoist loads. Figure 2.16 shows two pages from 
a 1943 edition of the U.S. Navy's centuries-old Bluejacket's Manual that 
features over a thousand pages on such topics as knot tying, signal flags 
and pennants, and boat seamanship. In 1902, when Lt. Ridley McLean 
first wrote this "sailor's bible," he described it as a manual for every 
person in the naval service, from sailor to admiral. 

Today, knot theory has infiltrated biology, chemistry, and physics, 
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2.16 
Two pages from the U.S. Navy's centuries-pld Glo^octefs'AfWlUo/. 

and in many cases has become so advanced that mere mortals find it 
challenging to understand its most profound applications. Pick up any 
modern book on knot theory, and you'll deal with a list of impressive 
sounding phrases like Conway's polynomial, Conway's skein relation, 
the HOMFLY polynomial, Jones's polynomials, spin models, Kauffman 
brackets, finite-order invariants, ambient isotopy, Vassfliev invariants, 
Gauss diagrams, Knotsevich's theorem, the Yang-Baxter quantum equa-
tion, Artin's relation in braid groups, Hecke operator algebra, topolog-
ical quantum field theory (TQFT), and Temperiey-Lieb algebra. In a few 
millennia, humans have transformed knots from ornamental engravings 
on rocks to models of the very fabric of reality. 

<a> Alien Knot Puzzt* 

The geor ;S 2050, and Pons Mdbius, a descendant of August Mobius, and her girl-
friend Wcote ore exploring Fifth Avenue in New Vork City. Suddenly, o race ofinsec-
tile aliens surrounds them. One of the aliens points at Paris. 



C L I F F O R D A . P I C K O V E R jtVN 

"Oh no!" Paris says, her long blond hair shimmering in the sunlight. "What do 
we do now?" 

The tallest afthe aliens approaches Paris and points to a loop of rope on the 
ground [figure 2.1?). Then he blindfolds Paris and Nicole and turns to Paris. 

"Do you think it is likely that the rope on the ground is knotted? 

$ 

2 17 
A loop of rope. What are the chances that this rope Is knotted7 

Nicole clenches her fists. "How do we get ourselves into such absurd 
situations?" 

Paris reaches out to hold her hand. "Nicole, don't worry. Even though I glanced 
at the ground too quickly to notice which segments of rope go over one another, I 
can determine the exact probability of the rope being knotted. Then I can give the 
alien an accurate answer." 

If you were a gambler, would you bet an the rope being knotted ? (Turn to the solu-
tions section far on answer.) 

Mobius Str ips and Al iens 

We had to bend the Thing into a strange shape to get him through the house 
doors, o kind of MBbius knot variant. The Thing didn't mind; his body was super-
fluid anyway. . 

—Jeff Noon, Vurt 

All around her were strange beings. She turned her head and saw that 
somehow she was in a gigantic room... Each tube had what appeared to be a fan 
belt that was twisted in on itself taform a continuously moving Mobius strip. 

-Roger Leir, Casebook: Alien Implants 
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A grin, is that what it was? In an alien, vampire world called Starside on the 
other side of the Mobius Continuum, there at least it might be called a grin 

—Brian Lumley, Necroscope V Deadspawn 
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It is paradoxical thai modesty and even shyness in Mobius's everyday life 
combined in that impressive figure with boldness, fantasy, and abilities. 
The mathematical talent of most mathematicians diminishes with age... 
But time did not diminish Mobius's gifts. 

-Isaak Moistevich Ya$om, Felix Klein and Sophus Lie 

It is a mathematicalfact that the casting of this pebble from my hand alters 
the center of gravity of the universe. 

-Thomas Carlyle,from Sartor Resartus III 

* 5 
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Unfortunately, few detailed English-language biographical accounts on 
Mobius exist. One excellent introduction to the subject is John Fauvel's 
UA Saxon Mathematician" in Mobius and Bis Band. Fauvel also points 
readers to interesting secondary sources on the status of German mathe-
maticians and astronomers during the time of Mobius, 

Because Mobius's mother was a descendant of Martin Luther, I was 
able to reconstruct some of Mobius's family tree by examining lists of 
approximately 7,900 names, compiled by researchers who record the 
names and birth dates of Luther's descendants. These old genealogical 
records allowed me to identify MObius's children and grandchildren, 

August Mobius in a Nutshell 
Several members of MObius's family were both brilliant and famous. In 
fact, the Mobius family must have had special genes for greatness that 
became activated with August Ferdinand Mobius (1790-1868), who 
eventually became a distinguished professor at the University of Leipzig 
(figure 3.1). Or perhaps the genes came from his wife, Dorothea Chris-
tiane Johanna Rothe, who, although completely blind, was able to raise 
a daughter, Emilie, and two sons, August Theodor and Paul Heinrich 
{figure 3.2). August Theodor Mobius became one of the world's foremost 
experts on Icelandic and Scandinavian literature. Grandson Martin 
August Mobius became professor of botany at the University of Frank-
furt and director of Frankfurt's botanical gardens. Great-grandson Hans 
Paul Werner Mttbius was a professor of classical archeology at the Julius-
Maximilians University in WUrzburg. 

3.1 
August Ferdinand Mobius (1?9G-1868] Frorrfispiecefrcm M d b i u & Werke 
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Martin Luther 1 

(Christian reformer, 1483 -1546) * * 

Friedrich Sigmund Keil 
(pastor, 1717-1765) 

I 
Johann Heinrich Mdbius _ Johanne Keil 

(dancing teacher) T (1756 -1820) Mdbius Strip, Function. Etc. 
(1752-1792) T(1756 -1820) ^ ' 

August Ferdinand M&blus Dorothea Rothe 
(1790 • 1868) (daughter of medical doctor) 

• (blind, 1790-1859) I 1 
Heinrich d'Arrest— Emilie August Theodor-i- Helene Paul Heinrich - r Jullene 

(astronomer) (1822-1897) (literature expert) (1825-1889) 
(1821 -1890) 

Georg, Marie, Sophie, Caroline, Dorothea 

I 1 1 
Heinrich, Waiter, Elise Martin August Paul Julius Mdbius 

(died young) (botany professor) (neurologist, 1853-1907) I 
Hens Peul Werner 

(ercheology professor) 
(1895 -1977) Mdbius Syndrome 

, 1003-190 7 

\ 

3.2 
August Ferdinand Mobius's family tree. 

Mobius's grandson Paul Julius Mobius (1853-1907), whom we dis-
cussed in the introduction, became a famous neurologist and psychiatrist. 
Several of Paul's contributions have been acknowledged by subsequent 
physicians who gave the Mobius name to various symptoms or illnesses-
for example, "Mobius sign," "Mobius syndrome," and "Mobius disease." 
Despite Paul's genius, he did receive some flack for his pamphlet "The 
Physiological Mental Weakness of Woman." As a result of its repeated 
republication, he was accused of disliking women and, as a result, some 
of his valid contributions to neuroscience may have been looked upon 
with skepticism. 

I first came across the name Paul Mobius several years ago while 
researching Mobius syndrome, in which children cannot smile. As you 
can imagine, this facial deficit can cause great hardship in life, and today 
a few surgeons perform a complex microsurgery operation called the 
"smile procedure" in order to activate the smile through reattachment of 
nerves and blood vessels. Mobius syndrome is a rare genetic disorder 
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characterized by facial paralysis, caused by the absence or underdevel-
opment of two cranial nerves that control eye movements and facial 
expression. In newborns, the first symptom is an inability to suck. Exces-
sive drooling and strabismus (crossed eyes) may occur. Sometimes, 
people afflicted with Mobius syndrome cannot smile or swallow, or have 
deformities of the tongue and jaw, and have missing or webbed fingers. 
Some cannot move their eyes from side to side or even blink. Mobius 
syndrome may be accompanied by Pierre Robin syndrome, a disease in 
which one has an abnormally small jaw. 

The mathematician Mobius studied theoretical astronomy with Carl 
Friedrich Gauss (1777-1855) in Gottingen for two semesters early in his 
life and became director of the Leipzig observatory in 1848. During his 
life, Mobius was probably better known for his astronomy populariza-
tions than the mathematical discoveries that today bear his name. The 
one-sided Mobius strip only became well known after his death. 

More generally, Mobius was fascinated by surfaces that could be rep-
resented in terms of triangular facets pasted together in various ways. For 
example, he studied rows of triangles arranged such that the resultant strip 
could be twisted and joined at its ends to form a one-sided surface. 
Mobius's notebooks indicated that he developed this concept in Sep-
tember 1858. This discovery of what we now call the Mobius strip was 
published in an 1865 paper tided "On the Determination of the Volume of 
a Polyhedron." In that paper, Mobius also proved that polyhedra (multi-
faceted objects like a tetrahedron) can be imagined that have no volume. 

Sometimes, I dream of going back in time to the mid-1800s and vis-
iting Mobius to tell him how famous his band would be one day. The 
year 1858 was special for many reasons in Europe. Not only was it the 
year Mobius invented his band, but it was also the year Darwin 
announced his theory of evolution and Friedrich Nietzsche received a 
scholarship to an elite preparatory school in Schulpforta, the town of 
Mobius's birth. And, for a final bit of trivia, in 1858, Hyman L. Lipman 
of Philadelphia patented a pencil with an attached eraser. 

As with many other great works in science and mathematics, Mobius 
simultaneously discovered the Mobius strip with a contemporary 
scholar, the German mathematician Johann Benedict Listing 
(1808-1882). Working independendy, Listing first "encountered" the sur-
face in July 1858 and published his findings in 1861. However, Mobius 
seems to have taken the concept a bit further than Listing by more 
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closely exploring the concept of orientability as it relates to Mobius-like 
surfaces. We'll discuss orientability in the coming chapters. Mobius also 
considered numerous other one-sided surfaces, which, as he said, had the 
"extraordinary" property of giving rise to objects with zero volume. In 
all of my searches of the literature, I have not been able to find a refer-
ence to the one-sided surface prior to Mobius and Listing, which is rather 
surprising due to the strip's simplicity. 

The simultaneous discovery of the Mobius band by Mobius and 
Listing, just like calculus by Isaac Newton (1642-1727) and German 
mathematician Gottfried Wilhelm Leibniz (1646-1716), makes me 
wonder why so many discoveries in science were made at the same time 
by people working independenUy. For example, Charles Darwin 
(1809-1882) and Alfred Wallace (1823-1913) both developed the theory 
of evolution independenUy. In fact, in 1858, Darwin announced his 
theory in a paper presented at the same time as a paper by Wallace, a 
naturalist who had also developed the theory of natural selection. As 
another example of simultaneity, mathematicians Janos Bolyai 
(1802-1860) and Nikolai Lobachevsky (1792-1856) developed hyper-
bolic geometry independenUy and at the same time. 

The history of materials science is replete with simultaneous discov-
eries. For example, in 1886, the electrolytic process for refining alu-
minum using the mineral cryolite was discovered simultaneously and 
independenUy by American Charles Martin Hall (1863-1914) and 
Frenchman Paul Heroult (1863-1914). Their inexpensive method for iso-
lating pure aluminum from compounds had an enormous effect on 
industry. 

Most likely, such simultaneous discoveries have occurred because 
the time was ripe for such discoveries given humanity's accumulated 
knowledge at the time the discoveries were made. On the other hand, 
mystics have suggested that there is a deeper meaning to such coinci-
dences. Austrian biologist Paul Kammerer (1880-1926) writes, "We 
thus arrive at the image of a world-mosaic or cosmic kaleidoscope, 
which, in spite of constant shufflings and rearrangements, also takes 
care of bringing like and like together." He compared events in our 
world to the tops of ocean waves that seem isolated and unrelated. 
According to his controversial theory, we notice the tops of the waves, 
but beneath the surface there may be some kind of synchronistic 
mechanism that mysteriously connects events in our world and causes 
them to cluster. 
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Mdbius: A Mathematical "Watchmaker" 
August Ferdinand Mobius was bom in 1790 in Schulpforta, Saxony (now 
Germany). Located in the center of Europe between the cities of Leipzig 
and Jena (figure 3.3), Schulpforta was a thriving school community 
where Mobius's father taught dancing. The Saxon town became Prussian 
in 1815. 

3.3 
Schulpforta, the city of M&bius's birth. 

Mobius was bom during an era of greatness and vast change. Wolf-
gang Amadeus Mozart (1756-1791) was composing his symphonies in 
Vienna and died shortly after Mobius's birth. Ludwig van Beethoven 
(1770-1827) was twenty years old and playing viola. The poet, play-
wright, and novelist Johann Wolfgang von Goethe (1749-1832) visited 
Italy several times in the years leading up to 1790, which contributed to 
his zeal for poetical forms in such plays as Ifihigenie aufTauris (1787) and 
Torquato lasso (1790). And across the Adantic, Ben Franklin died in the 
year 1790. 

Mobius's mother was a descendant of Martin Luther, the German the-
ologian whose teachings inspired the Protestant Reformation. His father, 
Johann Heinrich Mobius, died when August was about three years old, 
and his date of death is given as either 1792 or 1793. 
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Mobius was fascinated by mathematics at an early age but had no 
formal education outside the home until he was thirteen years old. By the 
time he was sixteen, French troops defeated Prussia and Saxony at the 
Battie of Jena, just a few miles from his home. Although this defeat in 
1806 was shocking and demoralizing, it caused a renaissance in German 
culture. To regain their honor and prestige, the Germans began a period 
of self-examination and started to reform their economic and educational 
programs. Schools and teachers became central in society. High school 
teachers were now held in high esteem. The teaching of mathematics 
particularly rose in importance and status. 

In 1809, Mobius graduated from college, and he became a student at 
the University of Leipzig, one of the oldest German universities. As with 
so many families today, Mobius's family also yearned for him to study 
for a prestigious profession, like law. Mobius acquiesced to his family's 
demands for his first year of study, but then his passion for mathematics, 
astronomy, and physics overwhelmed him, and he decided it was better 
to follow his heart than please his family. He soon became a gifted math-
ematician and astronomer. 

In 1813, Mobius traveled to Gottingen, where he studied astronomy 
under the world-famous mathematician Carl Friedrich Gauss. According 
to Calvin Clawson, in his book Mathematical Mysteries, Gauss considered 
Mobius his most talented student. 

Many of the great mathematicians of Mobius's time were 
astronomers—astronomy being a more highly respected and scientific 
profession before pure mathematics blossomed. Mobius's doctoral thesis, 
The Occultation of Fixed Stars, was followed by a postdoctoral thesis, 
Trigonometrical Equations. (Occultations occur when a moving object, such 
as a planet or the moon, blocks the light coming from a more distant 
object, such as another planet or star.) Around this time, he was almost 
drafted into the Prussian army. He resisted, writing that the idea of the 
draft, and the draft of him in particular, was the "most horrible idea" he 
had ever heard, and he threatened that anyone who would "venture, 
dare, hazard, or have the audacity to propose it" would not be safe from 
his swift and sharp dagger. He never did have to serve in the army. 

Mobius pursued his passions and was appointed to the chair of 
astronomy and higher mechanics at the University of Leipzig in 1816. 
Alas, he was not as brilliant a lecturer as he was a mathematician, a 
deficit that slowed his promotion to full professor. In 1820 he married 
and later had three children. 
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According to Isaak Moiseevich Yaglom, author of Felix Klein and 
Sopus Lie, Mobius's entire life passed essentially in one city and one 
building. His study in Gottingen and two or three short excursions 
through Germany in his youth were his principal "adventures." For the 
most part, despite his anti-militaristic vitriol, Mobius was quiet, 
thoughtful, and reserved—a loner who carefully worked through his 
mathematical arguments. His attention to detail is evident in his var-
ious mnemonics that helped him with his schedule and memory. For 
example, before going out for a walk, he recited the German formula 
"3S und Gut," which helped him remember the first letters of objects 
that he wanted to take: Schliissel (key), Schirm (umbrella), Sacktuch 
(handkerchief), Geld (money), Uhr (watch), and Taschenbuch (notebook). 
His life was the epitome of regularity. Each night, he wrote in a scien-
tific diary, and through this diary we can trace the evolution of his 
thoughts. 

Mobius's work habits, personality, and personal life gready affected 
his mathematical career. For instance, his poor teaching skills repelled 
potential fee-paying students from taking his classes. Thus, he had to 
offer his courses for free in order to acquire some students. This is remi-
niscent of other great minds who may have been poor teachers. For 
example, so few students went to hear Isaac Newton's lectures at Cam-
bridge that he often read to the walls. Finally, in 1844 the University of 
Leipzig offered Mobius a professorship in astronomy. 

Mobius was a homebody. His life centered exclusively on his studies 
and his family. This focus on family may have shaped his academic life 
in that few people read his papers, even though his work was original. 
Mobius sometimes found that others discovered the same ideas as him 
years later, publishing them totally unaware of his work. 

Finally, Mobius was a numerical watchmaker, working slowly and 
methodically. Each of his mathematical ideas functioned like a gear that 
must mesh with other gears with utmost precision. According to biogra-
pher Richard Baltzer, editor of August Mdbius, Gesammelte Werke, 

The inspirations for his research he found mosdy in the rich well 
of his own original mind. His intuition, the problems he set him-
self, and the solutions that he found, all exhibit something extraor-
dinarily ingenious . . . He worked without hurrying . . . almost 
locked away until everything had been put into its proper place. 
Only after such a wait did he publish his perfected works . . . 
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Mobius's Research 
Mobius worked from 1827 to 1831 on analytical geometry, projective 
transformation, and mathematical edifices that are now famous and 
referred to as "Mobius nets," the "Mobius function," "Mobius statics," 
the "Mobius transformation," and "Mobius inversion formulas." His 
paper Uber eine besondere Art von Umkehrutig der Reihen introduced the end-
lessly fascinating Mobius function involving just the numbers -1, 0, and 
+1. We will discuss this function in chapter 5 in great detail. 

Mobius was also interested in the mathematics of map coloring, as 
evidenced by the litde problem he posed in 1840. It goes like this: Years 
ago there was a king with five sons. In his will, the king stated that on his 
death his kingdom should be divided by his sons into five regions in such 
a way that each region should have a common boundary with the other 
four. Can the terms of the will be satisfied? The answer is no. Some pop-
ular math books say that Mobius posed, for the first time, the four-color 
map conjecture stating that four colors are sufficient for the unambiguous 
construction of any map on a plane. However, the "five sons" problem 
has less to do with the four-color conjecture than casual inspection. If the 
answer had been yes, then the four-color conjecture would be false. 

We'll discuss the vast variety of Mobius's contributions to mathe-
matics in chapter 5. We've already mentioned a few of his works in 
astronomy, such as his thesis on the occultations of fixed stars. Here is a 
sampling of some of the tides of his mathematical papers and treatises: 

• 1815, An analytical disquisition on certain peculiar properties of 
trigonometrical equations 

• 1827, The barycentric calculus 
• 1829, Metrical relations in the area of linear geometry 
• 1829, Proof a new theorem in statics, discovered by Mr. Charles 
• 1831, Development of the conditions of equilibrium between 

forces acting on a free solid body 
• 1833, On a special type of dual proportion between figures in 

space 
• 1837, On the midpoint of non-parallel forces 
• 1837, Textbook of statics 
• 1838, On the composition of infinitely small rotations 
• 1840, Application of statics to the theory of geometrical relationships 
• 1847, Generalization of Pascal's theorem concerning a hexagon 

inscribed in a conic section 
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• 1848, On the form of spherical curves which have no special 
points 

• 1849, On the law of symmetry of crystals and the application of 
this law to the division of crystals into classes 

• 1850, On a proof of the parallelogram law of forces 
• 1851, On symmetrical figures 
• 1852, Contribution to the theory of the solution of numerical equations 
• 1853, On a new relationship between plane figures 
• 1853, On the involution of points in a plane 
• 1854, Two purely geometrical proofs of Bodenmiller's theorem 
• 1855, The theory of circular transformations in a purely geomet-

rical setting 
• 1855, On involutions of higher order 
• 1856, Theory of collinear involution of pairs of points in a plane 

or in space 
• 1857, On imaginary circles 
• 1858, On conjugate circles 
• 1862, Geometrical development of the properties of an infinitely 

thin bundle of rays 
• 1863, The theory of elementary relationships 
• 1865, On the determination of the volume of a polyhedron 

Works published after Mobius's death On the theory of polyhedra and 
elementary relationships, Theory of symmetrical figures, On an acoust-
ical problem, On the calculation of the reserve funds of a life insurance 
company, and On geometrical addition and multiplication. 

The Death of Mobius 
During Mobius's life (1790-1868), mathematical practice and prestige in 
Germany grew tremendously. Early in Mobius's life, Germany had very few 
mathematicians of distinction, but by the time he died, Germany reigned 
supreme with respect to mathematics and famous mathematicians. This 
German mathematical enlightenment was facilitated by Prussia's uniting of 
numerous independent German states, some of which had had a history of 
acrimony and war. At its peak, Prussia stretched across the north German 
plain from the French, Belgian, and Dutch borders on the west to regions 
near the Lithuanian border and to territories that are now in eastern Poland. 

Mobius died after having celebrated fifty years of teaching at Leipzig. 
His beautiful blind wife Dorothea had died nine years earlier. 
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After his death, historians of science rediscovered Mobius's memoir 
presented to the Academie des sciences, in which he discussed the prop-
erties of one-sided surfaces such as the Mobius strip, which he had dis-
covered in 1858. Mdbius must have had no inkling that his name would 
be forever immortalized by a litde strip of paper with a twist, now used 
in coundess arenas. 

August Ferdinand Mobius Timeline 

Here are many of the important dates in Mobius's life: 

• 1790, Born in Schulpforta, Saxony 
• 1793, Father died 
• 1809, Student at Leipzig University 
• 1813, Traveled to Gottingen. Studied with Gauss. 
• 1815, Completed doctoral thesis on occultation of fixed stars 
• 1816, Appointed extraordinary professor of astronomy, Leipzig 
• 1818-1821, Supervised the Leipzig observatory 
• 1820, Married Dorothea Rothe 
• 1821, Son August Theodor born 
• 1822, Daughter Emilie born 
• 1825, Son Paid Heinrich born 
• 1827, Member, Berlin Academy of Sciences 
• 1827, Published The Barycentric Calculus 
• 1831, Published paper introducing the Mobius function 
• 1834-1836, Wrote popular astronomy treatises 
• 1837, Wrote textbook on statics (two volumes) 
• 1844, Appointed full professor in astronomy, Leipzig 
• 1848, Appointed director of the Leipzig observatory 
• 1853, Grandson Paul Julius Mobius born 
• 1858, Discovered the Mobius band 
• 1859, Wife Dorothea died 
• 1868, August Mdbius died in Leipzig 

The False Dawn Animal 
Because this book is a "scrapbook" of ideas that interest me, I conclude this 
chapter with a digression into the life of another famous Mobius, Karl 
August Mobius (1825-1908), an eminent German zoologist and marine 
biologist Many of August Ferdinand Mobius's descendants pursued 
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careers in medicine or the natural sciences. We have Martin the botany 
professor, Hans the archeologist, and Paul the neurologist Karl, the 
marine biologist, was born the same year as one of August Mobius's chil-
dren, yet I don't think Karl was a descendant of our mathematician 
Mobius. Still, Dr. Karl Mobius's leadership role in Germany, like other 
Mobiuses employed in the sciences, intrigues people like me who are fas-
cinated by the Mobius name, which today denotes learning and brilliance. 
Karl August was the son of Gotdob Mobius, a wheelwright, and Sophie 
Kaps, and was responsible for constructing Germany's first public 
aquarium. He was also one of the world's foremost experts on whale 
anatomy and the formation of pearls. His biggest claim to lame, however, 
was his discovery that Eozpon canadense, which had been considered a living 
creature, was actually a mineral aggregate! Today, the mysterious biomor-
phic aggregate is called "the false dawn animal." 

Many people were fooled by the lifelike quality of Eozsxm canadense. For 
example, in his 1864 presidential address to the British Association for the 
Advancement of Science, Sir Charles Lyell singled out this fossil as "one of 
the greatest geological discoveries" of his time. Charles Darwin, in the fourth 
edition of The Origin of Species (1866), was delighted to be able to cite Eozpon 
as the first fossil evidence that the succession of life on Earth proceeded from 
simple unicellular organisms to complex multicellular animals and plants. 

The Eozpon scandal started when Sir John William Dawson, one of the 
foremost geologists in the mid-1800s, concluded that Eozpon was actually the 
shell of a single-celled protistan, complete with chambers and canals, but 
hundreds of times larger than any of the living forms of his day. In 1865, he 
formally named the putative fossils Eozpon canadense, the "dawn animal of 
Canada." Others claimed that Eozpon was inorganic and merely a layering of 
minerals in marble. For a decade, increasingly heated debates raged. Finally, 
in 1879, Karl Mobius demonstrated that Eozpon was not a creature at all-it 
did not have a single characteristic of a protistan. In a few years, virtually no 
one believed in the dawn animal, which quiedy faded away into the sunset 

The Eozpon story is one of many in the history of science that suggests 
that scientific discovery may be symbolized as a Mobius strip stretching 
through time. In many ways, knowledge moves in an ever-looping 
Mobius strip. With each journey around the loop, we gaze at the universe 
and see previous knowledge from a new perspective as theories mutate 
and new ones form. Some scientific laws may be widely accepted for 
centuries but later need revision or caveats. In fact, science progresses 
mainly because theories and laws are never complete. Newton's Law of 
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Gravity allows us to predict the motioos of bullets and cannon balls. 
However, it does not accurately predict the bending of light rays that 
pass the Earth. This observation requires us to invoke Einstein's general 
relativity, which generalizes Newton's Law. Thus, scientific laws gener-
ally define what humans know about the world at a point in time. The 
laws are crucial in defining the workings of reality. However, scientific 
laws function like oil paintings in which an artist may initially indicate 
significant visual themes, but brush strokes are still to be added- If no 
more brush strokes were to come, scientific progress would end-1 think 
Isaac Asimov had the right idea about the future of knowledge when he 
wrote in his autobiography /. Asimov: A Memoiry "1 believe that scientific 
knowledge has fractal properties; that no matter how much we learn, 
whatever is left, however small it may seem, is just as infinitely complex 
as the whole was to start with. That, I think, is the secret of the Universe." 

<*> M o b i u s M a z e P u z z l e 

Of the thousands of /nozes i have studied bothoso child and adult, my favorite maze 
rs The Mofa'us Maze" from the book Mind-Boggling Mazes by Dove Philips [figure 
3.41 Start at one worn and find the other by ciawting otong the pathways os they pass 
cnwondurxier. Yon must keep in /njnd which side of the path you ore on, end you 
may notcrawi over an edge. (Turn to the solutions section for on answer.) 

3 A 
"The Mtibws Mree'frcm Dave Ftiiiips's Mnd BoggtirtQ hiotes (New Vtotfc Oover, 19?9}. 

Visit his Vfefc she at v/YrrrJ^rair*jgJ»mes.ccm 



X I i T H E M O B I U S S T R I P 

Mobius Strip and L icent iousness 

The Mobius strip has the advantage of showing the inflection of mind into 
body and body into mind, the ways in which, through a kind of twisting or inver-
sion, one side becomes another. This model... provides a way of problematizing 
and rethinking the relations between the inside and the outside of the subject, its 
psychical interior and its corporeal exterior, by showing not their fundamental 
identity ar reducibility but the torsion of the one into the other, the passage, vector, 
or uncontrollable drift of the inside into the outside and the outside into the inside. 

—Elizabeth Grosz, Volatile Bodies: Toward a Corporeal Feminism 

The road af excess leads to the palace of wisdom... and the road is a Mobius 
strip. 

—Bona Witt, Mobius Stripper 

All the controls come off, and out pour looks and words and doings and imag-
inings and a MSbius strip af two bodies gliding and sliding over each other that is 
a wonder to behold. The power of it makes it a little emborrassing to speak af after-
ward as you're eating caakies in the kitchen, thinking, "What the hell was THAT?!" 

—Robert M. Alter and Jane Alter, How Long Till My Soul Gets It Right?: 
100 Doorways on the Journey to Happiness 



T E C H N O L O G Y , T O Y S , M O L E C U L E S , AND 

P A T E N T S 

While holding the side AB fixed, twist the strip through an angle of 780° 
about its middle line parallel to AB', until A'B' is opposite AB, and then 
bring A'B' into coincidence with A. 

—August Mobius, "One-SidedPolyhedra," in Gesammehe Werke 
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In Roger Zelazny's novel Doorways in the Sand, the protagonist encoun-
ters a "Rhennius machine," em alien device featuring a Mobius strip. At 
first, the function of the device is unclear, but it seems to be able to 
mirror, reverse, or turn inside out objects that pass through its aperture. 
Humanity received the machine in a technology exchange with aliens. 

Beside/below me, where I dangled but a couple of feet above the 
floor, hummed the Rhennius machine: three jet-black housings set 
in a line on a circular platform that rotated slowly in a counter-
clockwise direction, the end units each extruding a shaft-one ver-
tical, one horizontal—about which passed what appeared to be a 
Mobius strip of belt almost a meter in width. 

When I first read about the Rhennius device over a decade ago, I had 
wondered if the Mobius strip was used in any real devices today. I 
became obsessed as I searched through the U.S. patent archive and 
slowly uncovered coundess practical applications in modern technology. 
This chapter, motivated by my interest in Zelazny's fanciful Rhennius 
device, is a result of my continuing quest to catalogue every major appli-
cation of the Mobius strip in contemporary devices. 

Mathematical Patents 
According to a recent article in the Economist, the number of patent applica-
tions to the U.S. Patent and Trademark Office (PTO) is growing at around 6 
percent a year. The wait for a decision is on average twenty-seven months-
and much longer for complex applications in advanced sciences. In 2003 
the PTO received around 350,000 applications, and in 2004 the PTO had a 
backlog of over half a million applications to review. Other countries are 
also encountering a phenomenal growth of submissions. For example, 
applications to China's patent office increased fivefold from 1991 to 2001. 

Mathematical formulas and geometrical shapes can't be patented; 
however, if em application of mathematics and geometry is new, useful, 
and unobvious, a patent may be obtainable. Also, if a shape has artistic 
merit and is different from other known shapes, an inventor may obtain 
a design patent. Design patents have limited value for inventors because 
variations on a design may not infringe on the patent. 

Patents that rely on mathematical shapes are quite common and on 
the rise. For example, many dozens of patents focus on novel applications 
of the dodecahedron (em object with twelve pentagonal faces)—from toys 
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to neutron spectrometer monitors for aircraft, to modular buildings, to 
self-supporting biocompatible porous structures used as a bone mass 
replacement (U.S. Pat. 6,206,924, issued 2001) (figure 4.1). 

A figure from the patent "Three-dimensional geometric bio-compatible porous engi-
neered structure for use as a bone mass replacement or fusion augmentation device" 

(i e„ dodecahedral scaffolding in which bone may grow). 

Other patents emphasize the figure eight shape known as the lemnis-
cate in everything from military antennas (U.S. Pat. 6,255,998, issued 
2001) (figure 4.2) to baby pacifiers (U.S. Pat. 6,514,275, issued 2003). 

4 2 
A figure from the patent "Lemniscate antenna element" 

The diamondlike astroid curve is featured in "Cam race for a roller 
clutch" (U.S. Pat. 4,987,984, issued 1991), and various kinds of polyhedra 
appear in patents ranging from golf ball dimples (U.S. Pat. 6,749,525, 
issued 2004) to supports for parabolic reflectors (U.S. Pat. 4,295,709, 
issued 1981) (figure 4.3). 
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4 3 
A figure f rom the patent "Parabolic reflector comprising a plurality of 

t r»ngular reflecting members forming «ref lect ing surface supported by 
a fnamewcffc having a particular geometric pattern" 

One of my favorite uses of mathematics in patents occurs in 
numerous applications of the Reuleaux triangle-a triangle with specially 
curved sides that I show in this book's conclusion. These patents focus 
on drill bits that cut square holes. At first, the notion of a drill that cre-
ates nearly square holes defies common sense. How can a revolving drill 
bit cut anything but a circular hole? But such drill bits exist, with their 
cross sectioos defined by the Reuleaux triangle, named after the distin-
guished mechanical eogineer Franz Reuleaux (182$-1905). For example, 
figure 4.4 is from the 1978 patent for a "Square hole drilT U.S. Pat. 
4,074,77H). The Reuleaux triangle also appears in patents for other drill 
bits, as well as novel bottles, rollers, beverage cans, candles, rotatable 
shelves, gearboxes, and cabinets. 
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4 4 
A figure from the 19P8 patent (U.S. Pat. 4,074,778}, which describes a drill bit for 

drilling a square hole based on the Reuleaux triangle. 

For the mathematically inclined reader, it is easy to construct a 
Reuleaux triangle. First, draw an equilateral triangle of side length r. 
Next, center a compass on each vertex (corner), and draw em arc the 
short distance between the other two vertices. The perimeter of the 
Reuleaux triangle will consist of the three connected arcs and resembles 
the curved triangle at the bottom of figure 4.4. 

Many mathematicians have studied the Reuleaux triangle, so we 
know a lot about its properties. For example, its area is 

A = t (n^!3)r2 

and the area drilled by this kind of drill bit covers 0.9877003907 . . . of 
the area of an actual square. The small difference occurs because the 
Reuleaux drill bit produces a square with very slighdy rounded corners. 

A Smorgasbord of Mobius Strip Patents 
The Mobius strip has had coundess applications in technology, chem-
istry, and engineering. Several patents have been granted for Mdbius 
strips used in conveyor belts designed to wear equally on both sides, in 
toys, and in electronic devices. 

One of the earliest patents is Lee De Forest's 1923 U.S. patent for a 
Mobius filmstrip that records sound on both "sides." A similar concept 
was later applied to tape recorders so that a twisted tape would run in a 
continuous loop twice as long as it would otherwise. 

Mdbius patents started to take off in the late 1940s and early 1950s 
with the issuing of Owen H. Harris's 1949 patent for a Mobius abrasive 
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belt that greatly increases the polishing or abrading surface (U.S. Pat. 
2,479,929) (figure 4.5). Harris describes a Mdbius belt with an abrasive 
surface-typically made with a coating of flint, garnet, corundum, or sil-
icon carbide— that is on both sides of the belt and can be uniformly pre-
sented to an object without changing the belt. Harris claims that the belt's 
increased polishing surface could be used to reduce space in abrading 
machines by providing a shorter abrasive belt that can do the job of a 
bigger ordinary belt. Thus, with his invention, Harris succeeded in 
extending the life of an abrasive belt by presenting a gready increased 
abrading surface without lengthening the belt. He wrote, "If desired, a 
belt of just one-half the length may be used in many installations 
requiring a specific abrading area since the abrading area is doubled 

BY Owen H. Harris 

4.5 
A figure from Owen H. Harris's 1949 patent on a Mobius abrasive belt that greatly 

increases the polishing or abrading surface. 

Huge Mobius strips have been used as conveyor belts that are more 
durable because the wear is distributed over the entire surface area. The B. 
F. Goodrich Company patented a conveyor belt in the form of a Mobius 
strip that lasts twice as long as conventional belts. In 1957, James O. Trinkle, 
who worked for B. F. Goodrich, secured a patent for a flexible Mobius con-
veyor belt used to carry hot materials such as cinders and foundry sand 
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(U.S. Pat 2,784,834). In his patent, Trinkle writes that the belt has a longer 
life when exposed to contact with the heated material. As the belt turns over 
once during each passage of the belt about pulleys, it alternately presents its 
opposite heat-resistant face to carry the hot material. Figure 4.6 includes a 
side view of Trinkle's conveyor belt The Mobius twist occurs at the location 
marked 35, aided by guide rollers 33 and 34. 

mmmkmff^m 
. J 5 j i 

A figure from James 0 Trinkle's 1952 patent for a flexible Mobius conveyor belt used 
to convey hot materials such as cinders and foundry sand. 

The 1960s brings us Mobius patents in more diverse areas, from dry 
cleaning machines to electrical components. For example, in 1964, 
Richard Davis invented a Mobius strip nonreactive resistor (U.S. Pat 
3,267,406, issued 1966) (figure 4.7). Davis's employer, who owned the 
patent, was the United States Atomic Energy Commission, which was 
established almost a year after World War II ended to control the peace-
time development of atomic science and technology. Davis's arrangement 
resembled a triple-thick Mobius band in which a nonconductive strip is 
surrounded by metal foil. Davis found that when electrical pulses flowed 
in both directions around the foil, the strip had interesting electrical prop-
erties. He envisioned this to be useful for high voltage, high frequency cir-
cuits, especially in pulse applications such as radar, for which the design 
and operation of these circuits is gready affected by "unknown reactance 
in the circuit components themselves or in unwanted coupling between 
components." 
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4 7 
A Figure from Richard Davis's 1966 
patent for a Mobius strip electrical 

resistor. 

4.8 
A figure from James W. Jacobs 196? 

patent for a Mobius self-cleaning 
filter belt for dry cleaning machines. 

In 1967, while working for General Motors, James W. Jacobs 
patented a Mobius self-cleaning filter belt for dry cleaning machines (U.S. 
Pat 3,267,406) (figure 4.8). In dry cleaning machines, the efficiency 
of operations depends on the effectiveness of filter elements to 
remove contaminants from the circulating dry cleaning solvent. In the 
Mobius self-cleaning filter, Jacobs provides a belt loop with a half 
twist, each section of which is sequentially drenched and drained so 
that contaminants are first filtered from the liquid onto the M5bius filter 
and then flushed from the filter element. Jacobs's configuration makes it 
possible to easily wash dirt and lint from both "sides" of the Mobius 
filter belt. 

In 1986, Thomas Brown secured a patent for a Mobius capacitor 
(U.S. Pat. 4,599,586) (figure 4.9). Brown uses the Davis Mobius resistor 
as the interior substructure of his capacitor. In particular, the M5bius 
capacitor is constructed by layering the continuous conductive surface 
of the Mobius resistor with a second dielectric material, then layering 
this dielectric with two separate conductive surfaces in such a way that 
the conductive surfaces are diametrically opposite each other. 
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4 9 
A figure from Thomas Brown's 1986 patent for a Mobius capacitor. 

Today, the M5bius strip is invaluable in numerous toys and puzzles 
and in many kinds of technological advancements. The M5bius strip 
plays a role in fun mazes with rolling marbles (U.S. Pat. 6,595,519, 
issued 2003), in power transmission belts (U.S. Pat. 3,995,506, issued 
1976), in small circuit containers that are static resistant (U.S. Pat. 
4,766,514, issued 1988)—and it even has the potential for saving lives. 
As one example, in 2004, John Pulford and Marco Pelosi, working for 
the Apple Medical Corporation in Massachusetts, patented abdominal 
surgical retractors with M5bius rings that provide special kinds of 
torque required to manipulate the retractors during an operation (U.S. 
Pat. 6,723,044). 

Dozens of patents exist with "Mobius" in the tide, including inven-
tions for toy puzzles, band saw blades, long-lasting typewriter ribbons, 
and even a particle accelerating grid. Several patent figures are presented 
throughout this book to suggest the diversity of inventions. To give you 
a further idea of the variety of Mobius inventions and the ingenuity of 
their inventors, the following is a list of several Mobius patents from 1971 
to 2004. 
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• U.S. Pat. 6,779,936 (2004) "One-sided printing and manufacturing 
of a Mobius strip" by Ross Martin of Connecticut The inventor 
describes methods for the convenient manufacturing of seamless 
Mobius strips for use in a variety of retail gift items and as a mar-
keting tool for companies promoting "cyclical concepts." 

• U.S. Pat. 6,607,320 (2003) "Mobius combination of reversion and 
return path in a paper transport system," by Daniel Bobrow et al. 
of California and assigned to the Xerox Corporation. M5bius con-
figurations are used in various printing technologies. 

• U.S. Pat. 6,474,604 (2002) "Mobius-like joining structure for fluid 
dynamic foils" by Jerry Carlow of Texas. Mobius shapes are 
applied to aircraft and related structures. 

• U.S. Pat. 6,445,264 (2002) "Mobius resonator and filter" by Jeffrey 
Pond of Virginia and assigned to the U.S. Navy. Mobius configu-
rations are used in electric circuits and, more generally, in the field 
of electromagnetics. 

• U.S. 6,217,427 (2001) "Mobius strip belt for linear CMP tools" by 
Christopher Case e t al. of New Jersey and assigned to Agere Systems 
Inc. The inventors describe a Mobius belt for polishing surfaces. In 
particular, the invention is used for the "chemical-mechanical pol-
ishing of silicon wafer substrates used in fabricating integrated 
circuits." The belt is constructed as a flexible Mobius strip of a rub-
berized urethane. 

• U.S. Pat. 5,557,178 (1996) "Circular particle accelerator with Mobius 
twist" by Richard Talman of New York and assigned to the Cornell 
Research Foundation, Inc. The inventor describe a circular particle 
accelerator with a twisted element at one location that gives the accel-
erator various unique properties. The inventor says that "two traver-
sa l of the ring are required to return the particle to a corresponding 
state, thus the accelerator is termed a 'Mobius' accelerator." 

• U.S. Pat. 5,411,330 (1995) "Mobius shaped mixing accessory" by 
Yury Arutyunov et. al. of the Russian Federation and assigned to 
Novecon Technologies. A Mobius-shaped mixing blade is 
mounted to a shaft. A mirror-image Mobius shaped mixing blade 
is mounted to a second nearby shaft. 

• U.S. Pat. 5,324,037 (1994) "Mobius strip puzzle" by Ewell 
Greeson of Georgia. The inventor describes a puzzle game in the 
shape of a Mobius strip containing several columns and rows. The 
solution to the puzzle consists of words or phrases spelled by 
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aligned letters, or a predetermined pattern formed from aligned 
colors or symbols. 
U.S. Pat. 4,968,161 (1990) "Ribbon cassette for reinking only one 
longitudinal half of a Mobius ribbon" by Yoshio Kunitomi et. al. of 
Tanashi Japan and assigned Citizen Watch Company. An endless 
inked M5bius ribbon is used for printing on paper. 
U.S. Pat. 4919427 (1990) "Mobius ring puzzle" by Itzhak Keidar eL 
al. of Tel Aviv, Israel. This puzzle includes strips of flexible mate-
rial in the form of twisted loops. 
U.S. Pat. 4,766,514 (1988) "Pseudo-Mobius static-resistant circuit 
container" by Kevin Johnson of California. A Mobius-strip con-
tainer is used to shield electronic circuits. 
U.S. Pat. 4,640,029 (1987) "Mobius strip and display utilizing the 
same" by Richard Hornblad eL al. of Wisconsin and assigned to 
DCI Marketing. The inventors describe a display device that uses 
flat continuous tape in the form of a Mobius strip. 
U.S. Pat. 04599586 (1986) "Mobius capacitor" by Thomas Brown 
of New York. The inventor describes a capacitive enclosure in the 
shape of a Mobius strip, along with an electric element to measure 
voltage and phase differences of input signals or to act as a filter to 
attenuate current flow. 
U.S. Pat. 04384717 {1983) "Mobius strip puzzle" by Daniel Morris 
of Washington. The inventor describes a puzzle that uses multiple 
Mobius strips linked in novel ways. 
U.S. Pat. 04253836 {1981) "Mobius belt and method of making the 
same" by Joseph Miranti of Missouri and assigned to Dayco Cor-
poration. Power transmission belts are made from spliceless 
Mobius strips. 
US. Pat. 04189968 (1980) "Mobius strip bandsaw blade," by 

Joseph Miranti of Missouri and assigned to Dayco Corporation. 
The inventor describes a bandsaw with a blade in the shape of a 
Mobius strip. 
U.S. Pat. 04058022 (1977) "Mobius drive belt fastener" by Harry 
Pickburn of New York. A Mobius drive belt and Mobius drive belt 
fastener are used for transmitting power between pulleys. The 
Mobius fastener allows the belt to be rotated in numerous ways. 
U.S. Pat. 04042244 (1977) "Mobius toy" by Thomas Kakovitch of 
Maryland. This handheld toy challenges the manual dexterity and 
concentration of the user. The toy includes a Mobius ring formed 
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from an elongated band having grooves in both "sides" to define a 
raceway for a rolling-ball playing piece. The band contains a hole, 
closed by a one-way door, to allow the ball to selectively visit 
either side of the puzzle. 

• U.S. Pat. 3,991,631 (1976) "Woven endless belt of a spliceless and 
Mobius strip construction" by J. Lehman Kapp of North Carolina. 
The inventor describes a Mobius belt used in manufacturing and 
material handling operations. The belt is characterized by having 
increased surface and edge wear potential. 

• U.S. Pat. 3,953,679 (1976) "Telephone answering device utilizing 
Mobius loop activating switch" by Neal Buglewicz of California 
and assigned to Phone-Mate. A telephone answering device uses a 
conventional tape recorder and an endless broadcast recording 
tape in the form of Mobius loop. 

• U.S. Pat. 3,758,981 (1973) "Mobius band type amusement device" 
by Richard Hlasnicek eL al. of Colorado. The inventors describe a 
toy that includes transparent tubing mounted on a Mobius strip. 
Steel balls travel in the tube. The inventors note, "Movement of 
the balls in the tubing may produce an audible sound that adds to 
the interest of the observer handling the device." 

• U.S. Pat. 3,648,407 (1972) "Dynamic Mobius band" by Jerome 
Pressman of Massachusetts. The inventor describes a Mobius band 
track along with a self-propelled vehicle that moves about the track 
"to demonstrate the one-sided topological characteristics of the 
surface." 

• U.S. Pat. 3,621,968 (1971) "Ribbon cartridge with Mobius loop in 
ribbon" by Nicholas Kondur, Jr. of Michigan and assigned to Bur-
roughs Corporation. This inventor describes an inked Mobius ribbon 
that has double the effective length of a ribbon without a twisL The 
ribbon is moved by a drive roller on a printing machine. 

Knot Patents: From Shoelaces to Surgery 
Various knots have been invented and patented in a variety of fields. 
For example, figure 4.10 shows the patented "Partially tied surgical 
knot" (U.S. Pat. 5,893,592). According to the author, the knot is useful 
during "minimally invasive surgical procedures where access to the 
site is limited." 

U.S. PaL 5,997,051 describes a shoelace tying system for use with 
shoelaces in sneakers, shoes, or boots (figure 4.11). This 1999 patent, by 
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Paul and Majorie Kissner describes how to tie shoes that "resist inadver-
tently becoming untied . . . but can easily be untied when desired." 

4.10 
Partially tied surgical knot (U.S. Pat. 5,893,592). 

4.11 
U.S Pat. 5,99?,051 describes a shoelace tying system. 

One wonders how much money is collected from people who tie 
these knots and thereby infringe on the patent 

Mdbius and Knotty Chemistry 
In the previous sections, I've emphasized the occurrence of the Mobius 
strip in visible objects; that is, objects we can touch, see, and feel, like 
M5bius conveyor belts and toys. In this section, we explore M5bius 
strips and trefoil knots on the molecular level, about which litde was 
known until recendy. Before giving concrete examples, let's examine 
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chirality in chemistry. A chiral molecule is one that is not superimposable 
on its mirror image, in the same way that these two symbols, in a 2-D 
universe, cannot be made to superimpose no matter how we slide them 
around on the plane of this page: 

£J & 
More particularly, the two mirror forms of a chiral molecule—called 

enantiomorphs—cannot be mapped to each other by rotations and transla-
tions alone. Chirality also refers to the "handedness" of a molecule that is 
not symmetrical. As an analogy, your right hand and left hand are enan-
tiomers: they are mirror images, and you cannot wear a left glove on your 
right hand. The arrangement of your thumb and fingers in three dimen-
sions makes your right hand and your left hand different from each other. 
This handedness property is known as chirality, which is derived from the 
Greek word for hand. 

Some objects are achiral because they have mirror images that can be 
superimposed upon each other. In other words, such an object is iden-
tical to its mirror image. A hammer, most socks, and the letter "I" are all 
achiral objects. On the other hand, the letter "R" is chiral. 

Just as human hands come in left and right varieties, so do many mol-
ecules. Chirality is quite common in nature. For example, all creatures 
use only right-handed sugars and left-handed amino acids. More than 50 
percent of the world's top one hundred drugs are chiral, including such 
well-known medicines as Lipitor, Paxil, Zoloft, and Nexium. 

Molecules that are helices can be right- or left-handed, like a clock-
wise and counterclockwise seashell or spiral staircase and are therefore 
also nonsuperimposable on their mirror image. 

Mobius strips formed with a clockwise twist or counterclockwise twist are 
enantiomers of each other. In the early 1980s, chemists were able to synthe-
size Mobius-band molecules with a carbon and oxygen backbone as schemat-
ically shown in figure 4.12. In 1982, David Walba, Rodney Richards, and R 
Curtis Haltiwanger of the University of Colorado at Boulder discovered an 
efficient means for synthesizing the first molecular Mobius strip ever made 
by humans. The edge of the molecular band is traced out by chemical bonds, 
while the interior of the band is represented by a sequence of "rungs" formed 
by carbon double bonds. To create the structure, they started with a mole-
cule shaped like a ladder with three rungs, each rung a carbon-carbon double 
bond (figure 4.13, top). During the chemical reaction, the ladder curved so 
that the ends could be joined. The two ends had the potential to unite in one 
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of three ways, so that Mother Nature sometimes creates a circular loop—like 
a cylindrical strip-and at other times the loop will be a Mobius strip with 
either a clockwise or counterclockwise twist In principle, more highly twisted 
molecules may result, but space-filling models indicate that such reactions 
are very unlikely. Figure 4.13 is a schematic representation of the parent 
molecule, diol ditosylate, that may produce the two molecules—the 
Mobius molecule (two variants on left) and the cylinder (right). 

y 
0 ^ 0 — C - O — o - J > 

C O 

4.12 
A Mobius band molecule. For diagrammatic simplicity, the 0-0 symbols are not actual 
bonds, because each has a -CHJCHJ- group between them. The additional atoms are 

omitted in this figure to make it easier to visualize the Mobius configuration 

HO —\ O O —0 ° X „ JC , „x 
N>H, DMF, high dilution 

o o ore 

413 
Creating a Mobius molecule The ladderlike diol ditosylate (top) has ends that, when 
joined, produce roughly equal amounts of two molecules, the Mobius molecule (two 

variants on the left) and the cylinder (right). (Figure courtesy of David Walba.) 

The properties of the ordinary paper M5bius strip are exhibited in 
Walba's microscopic biochemical one. Breaking the three rungs (carbon-
carbon bonds) holding the two molecular edges together corresponds to 
cutting a Mobius strip along its middle, which produces one longer loop. 
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When divided this way, the Mobius molecule also becomes a single band 
with twice the circumference of the original. 

The two different molecular M5bius strips, half twisted clockwise and 
counterclockwise, are not topologically equivalent because neither can 
be deformed into the other. If you looked at either strip in the mirror, the 
reflection of one looks like the other because the two strips are mirror 
images of each other. 

Usually, chemists have a hard time controlling the amount of each 
mirror-image form, or enantiomers, in chemical reactions in drug prepara-
tions. For example, the drug thalidomide has a right-handed form that is 
useful in sedating pregnant women. However, the left-handed form causes 
birth defects. Tragically, many women took thalidomide in the 1960s for the 
sedative effect and gave birth to children with severe birth defects due to 
the presence of the left-handed version. However, even if women were to 
take only the right-handed form, birth defects would result because the 
enantiomers are converted to each other in the body. This means that if a 
woman is given either enantiomer, both isomers will be found in the blood. 

In the case of the common pain reliever ibuprofen (found in Advil, 
Motrin, Nuprin, and Medipren), the molecule's right-handed form is one 
hundred times less powerful than its left. Due to the expense and diffi-
culty involved in preparing a single-enantiomer form, all ibuprofen for-
mulations currendy marketed are an equal mixture of both enantiomers. 

Other examples of enantiomers with vasdy different effects include 
the drug penicillamine, which has one enantiomer that is antiarthritic 
and another that is toxic. One form of ethambutol treats tuberculosis, 
while the other causes optical neuritis that can lead to blindness. The 
Parkinson's disease drug levodopa (L-dopa) is marketed in an enan-
tiomerically pure form because the D-form can cause granulocytopenia, 
that is, a loss of white blood cells. 

Today, chemists can create all kinds of exotic molecular topologies. 
For example, French scientists Christiane Dietrich-Buchecker and Jean-
Pierre Sauvage from the Universite Louis Pasteur in Strasbourg have 
made molecular trefoil knots of various kinds. 

Sauvage is a synthetic chemist who has been fascinated by the aes-
thetics of the molecules he creates and says that "the search for aestheti-
cally attractive molecules has been a goal since the very origin of 
chemistry." In particular, the trefoil knot holds particular interest for him, 
as it has represented "continuity and eternity in early religious sym-
bolism" and illuminates the art of many ancient civilizations. 
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In the last few years, Sauvage's group has paved the way for the prepa-
ration of knots constructed around transition metal ion templates. To 
create molecular knots, he uses two molecular "threads," which are inter-
laced on two transition metal centers, leading to a double helix. After 
cyclization and demetalation, a knotted system results. Several years of 
research were necessary for him and Dietrich-Buchecker to finally synthe-
size the first chemical trefoil knot using copper atoms as templates. 
Sauvage writes to me, "Christiane Dietrich-Buchecker and I were the first 
people to make a trefoil knot with molecules-at least, artificially, because 
nature has made molecular knots for millions of years, with DNA or pro-
teins!" Figure 4.14 shows a schematic chemical diagram of a left-handed 
and right-handed knot created by Sauvage and colleagues. 

In chapter 2, we discussed the work of British mathematical biologist 
William R. Taylor who developed an algorithm for detecting knots in 
protein backbones, and the various trefoil and other knotted proteins he 
discovered as a result of scanning protein structures stored in the Protein 
Data Bank. In 2002, researchers at the Argonne National Laboratory and 
the University of Toronto found a knot in a protein from the most ancient 
type of single-celled organism, an archaebacterium. Long ago, protein 
folding experts believed that forming a knot was beyond the ability of a 
protein. Today, protein chemists not only know that knots exist but they 
hypothesize that some of the discovered knots may stabilize the amino 
acid subunits of the protein. Biochemists hope that understanding the 

left-handed knot right-handed knot 

4.14 
Chemical diagram of a left-handed and right-handed knot created by Jean-Pierre 

Sauvage and Christiane Dietrich-Buchecker. 
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entire range of protein shapes will shed light on the process that proteins 
use to fold into three-dimensional structures from linear chains of amino 
acid subunits. If scientists can accurately predict the shape of a protein 
from the sequence of the gene that codes for it, they may be able to better 
understand diseases and develop new drugs that rely on a protein's 3-D 
shape, which controls the protein's function. 

The archaebacterium knot discovered in the primitive organism in 
2002 comes from Methanobacterium thermoautotrophicum, a primitive crea-
ture able to break down waste products and produce methane gas. Bio-
chemists know which gene codes for the 268-amino acid protein, but 
they do not know the knotted protein's function. 

A few remarkable proteins have recendy been discovered to contain 
backbones with a Mobius topology. My favorite is kalata B1, a small pro-
tein that is the active component in the kalata-kalata plant, which women 
in Africa brew to accelerate labor in childbirth. Kalata B1 is twenty-nine 
amino acids long and contains three disulfide bridges, two of which form 
a ring. The third descends through the ring, creating a knot. Though my 
topologist friends may not qualify this as a true knot, the resultant struc-
ture cannot be undone without damaging the protein chain. Addition-
ally, the protein backbone has a Mobius twist, the biological significance 
of which is still a mystery. Small plant proteins such as kalata B1 are now 
classified as two types: bracelet cyclotides (having the topology of a 
cylindrical bracelet with two surfaces) and Mobius cyclotides (having the 
topology of a Mobius strip with one surface). Kalata B1 is a Mobius 
cyclotide. Because kalata B1 has insecticidal and antimicrobial proper-
ties, scientists are now considering its use to protect crops through bio-
engineering. Professor David Craik from the University of Queensland 
suggests that kalata B1 could be inserted into a cotton plant's genes to 
protect the plant from the ravages of certain caterpillars, thereby 
removing the need to use chemical sprays that are of environmental con-
cern. Moreover, because the protein is very stable and resistant to attack 
from digestive enzymes in the human body, perhaps kalata-like proteins 
will someday be used as a framework for new drugs that can be taken 
orally because they are not broken down so quickly in the stomach. 

Moving to much larger Mobius objects in the field of chemistry, in 
2002, researchers at Hokkaido University in Japan described a Mobius 
loop formed by crystals of a compound of niobium and selenium, 
NbSeg. They were surprised that a crystalline ribbon should adopt the 
Mobius topology in view of the crystal's inherent rigidity, which would 
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be expected to prevent it from either bending or twisting. NbSe^ is an 
inorganic conductor, and the Mobius strip is a single NbSej crystal. To 
produce the shapes, they soaked a mixture of Se and Nb powder at 
740°C in an evacuated quartz tube for about a day. Scanning electron 
microscopic images reveal Mobius crystals typically arouod 50 microm-
eters in diameter and less than 1 micrometer in width. The Japanese 
researchers believe that their Mobius crystals offer "a oew route to 
exploring topological effects in quantum mechanics as well as to the coo-
struction of new devices.*1 

Other scientists also stud)' the properties of real and hypothetical mol-
ecules that have interesting twists and turns, figure 4.15 is a hyj>othetica] 
Mobius molecule studied by European chemists Sonsoles Martin-Santa-
maria and Henry S. Rzepa. These chemists study the properties of 
Mobius strips formed by imparting one, two, or three twists to various 
lengths of molecules known as cyclacenes. This molecule is special in 
that it is an armatic molecule-namely a molecule in which electrons are 
free to cycle around circular arrangements of atoms, which are con-
nected by bonds that are a hybrid of a single bond and a double bond. 

4.15 
A molecular MobiuS band courtesy of Henry S Fzepa 

Dr. Rzepa's work was theoretical, but in December, 2003, German 
scientists reported the actual synthesis of the world's first MObius aro-
matic hydrocarbon molecule. The German researchers discovered an 
ingenious method for joining two eight-carbon aromatic molecules to 
form a sixteen-carbon non-orientable molecule. To create the molecule, 
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researchers irradiated the reaction mixture for four hours with a mercury 
lamp. The Mobius molecules that resulted formed red crystals, whereas 
non-Mobius molecules form clear crystals. 

Holiday Mdbius TVain 
I finished writing this chapter on Christmas Day and would like to con-
clude with a Mobius patent from China for a Mobius strip train track suit-
able for winding around Christmas trees. In particular, U.S. Pat. 
5,678,489, "Electrically-operated moving body traveling on a rail capable 
of explaining free quadrants described in the Mobius theorem" was issued 
in 1997 to Xian Wang of Changsha, China and assigned to Studio Eluceo 
Ltd. and Jya Cheng Enterprise Co. Ltd. The inventor describes a 
delightful electric train traveling on a Mobius train track with various 
supports. Two parallel metal tracks are used so that the train can make 
contact on "upper" and "lower" surfaces of the tracks. A controller is used 
to adjust the current to the tracks and power the train, which has rollers 
made of permanent magnetic material that are attracted to the tracks. 

The patent gives further details on how the train is held on the track 
when upside-down on the one-sided surface. Figure 4.16 shows an 
example of the Mobius Chinese train held by supports on the ground. 
Figure 4.17 shows a figure from the patent showing how the train track can 
be used to decorate a Christmas tree as it meanders around the branches 
and through ornaments. 

Merry Christmas, spirit of Mobius. 

51 
4.16 

U.S. Pat. 5,678,489 issued in 1997 for an electric Mdbius track and train set. 
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4.1? 
Electric Mobius train track meandering about a Christmas tree. 

<a> Graph Theory Puzz le Invo lv ing Animals 

In the next chapter, we'll discuss graph theory, which often deals with different 
ways of connecting objects. To whet your appetite, here's a problem that many of 
my colleagues find impossible to solve, at least at first glance. 

Noah has unloaded his ark, and the animals have scattered in their haste for 
freedom. His job is now to unite male andfemale of the same species. In figure 4.18, 
the rabbit, horse, and elk at the bottom are all touching the south wall of a very large 
fenced enclosure. Three other animals are positioned so that the horse is touching 
the north wall. Is it possible to connect animals of the same kind using lines you draw 
along the ground? The lines may not cross or touch the enclosure walls (In other 
words, you must try to draw a line from the rabbit to the rabbit, the horse to the 
horse, and the elk to the elk.) The paths you draw may be curvy, but they cannot 
touch or cross each other, nor can they go "through" the animals or touch the lake. 
If you can solve this problem within five minutes, Noah will give you a golden 
Mdbius strip worth $1 million in today's currency. (Turn to the solutions section for 
an answer.) 
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4.18 
A simple graph? Draw lines to connect animal pairs without crossing lines and 

without drawing a line through the animals or the boundaries. 

Mobius Strip in Fashion and Ha i rs ty le 

United Nude, an innovative shoe-design company, looks to graphic designers 
to design materials for its new shae collections. United Nude's unique design of 
the Mdbius shoe, shaped fram one continuous piece of material, a Mobius strip, 
has been inspired by architect Mies van derRohe's iconic Barcelona chair. 

—Barbara Wentzel, "Pushing the Boundaries," World Textile Publications 

Carneval Mbbius Stole—$48.00. This is so much fun to wear! We used 
"Carneval," a wonderful soft cotton & rayon luscious, lofty yam from Muench Yarns, 
and knit every raw into a Mdbius stole that can dress up any summer outfit. You 
can move in this and the stole stays in place. We highly recommend this yam for 
its quality, drape and natural fibers. Works well in large size. A Kn'ittingbag design. 

—Knittingbag.com Catalogue, Knitting Bag, LLC 

Is Donald Trump's hair brushed forwards or backwards ? (Seriously, it's like an 
infinity pool now, like a furry Mdbius strip with no beginning or end, just flow.) 

—Whitney Pastorek, "Oonald toys with 18 new victims," 
Entertainment Weekly, September 2D04 



STRANGE A D V E N T U R E S IN T O P O L O G Y AND 

B E Y O N D 

Mobius's working habits demonstrate most clearly how marvelous discov-
eries can be made by patiently building on the simplest cases and always 
working fully through the special (and seemingly least interesting) exam-
ples. We can all wait fir genius to strike, but patient work also brings its 
rewards. 

-Jeremy Gray, "Mdbius's Geometrical Mechanics," 
i» Mttbius and His Band 
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Mobius's mind ranged far and wide—from one-sided surfaces to strange 
integer functions such as the one we today call the "Mobius function" in 
his honor. In this chapter we'll discuss several of his mathematical dis-
coveries. We'll also contemplate topology and higher dimensions, which 
provide background for the next chapter on the shape of the universe 
and the possible existence of other realities. 

The Endurance of Mathematics 
Benoit Mandelbrot, the father of fractal geometry, once said that a math-
ematical topic dating from 150 years ago is old "but not dead and dried 
to dust." In contrast, he observes that this is very different in a field like 
physics, "where something that is 100 years old but not in textbooks is, 
for all practical purposes, dead." This endurance of mathematics is never 
more apparent than with Mobius's work. His one-sided surfaces and 
bizarre functions are still contemplated with zeal today, with new dis-
coveries and intuitions emerging frequendy with the aid of computers, 
and with implications beyond mathematics, such as in the behavior of 
subatomic particles, the shape of space, and the genesis of our universe. 

Parameterization 
Mathematicians sometimes use parametric equations to represent sophisti-
cated geometrical shapes. Parameterizations are sets of equations that express 
a set of quantities as functions of a number of independent variables. 
Perhaps the most famous examples are the equations for the circle. In the 
usual Cartesian coordinates, we have the standard equation of a circle: 

2,2 2 x +y=r 

where r is the radius of the circle. We can also define a circle in terms of 
parametric equations: 

x = r cos flj 
y = r sin (t) 

where 0 < t < 360 degrees or 0 < t < 2JI radians. To create a graph, com-
puter programmers increment the value for t and connect the resultant 
(x, y) points. The smaller the increments in t, the smoother the resultant 
representation of the circle. 

Mathematicians and computer artists often resort to parametric 
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representations because certain geometric forms are very difficult to 
describe as a single equation* as we could for a circle. For example, one para-
meterization of a circular helix is: x = a sin(|), y = a cos{/), and z— at/i^X.^ 
where a and tare constants. Try a=0.5, c= 5.0, and 0 < t< 10m. A plot of this 
circular helix curve resembles a wire spring. To draw a conical helix, try x= 
aX zX sin(/)y y a X ^cosff), and z— t/(2nc) where a and c are constants 
(figure 5.1). Conical helices are used today in certain kinds of antennas. 

5.1 Conical teJix. (Rendering by Jos Leys ) 

One of my favorite parameterizations is represented by spherical 
Lissajous curves generated from 

x = r sin(6/j cos{ty), y = r sin($4 stnfo^ z = r cos(6(1 

which I used to create the artwork in figure 5.2, You can try simple ratios 
of such as 1/2 or 1/3 to produce visually interesting results. 

5.2 
Spherical Lissajous curve. 
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In fact, even if we restrict ourselves to the plane, incredible beauty 
can be found in a variety of algebraic and transcendental curves. Many 
of these curves express beauty in their symmetry, leaves and lobes, and 
asymptotic behavior. Butterfly curves, developed by Temple Fay at the 
University of Southern Mississippi, are one such class of beautifid, intri-
cate shapes (figure 5.3). The equation for the butterfly curve can be 
expressed in polar coordinates by 

p =eco,9-2cos40 +sin5(6/12) 

This formula describes the trajectory of a point as it traces out the but-
terfly's body, p is the radial distance of the point to the origin. 

5.3 
Butterfly curves defined by a simple formula 

With this introduction to parametric equations, we can now ponder 
equations for the Mobius strip. One typical parameterization is: 

x(u,v) = ( l + -fcos-f )cos(a) 
=( l+- jcos- | ) s in(«) 

z(u,v) = " f sin-j 
(0 < « < 2n;-I <D<1) 
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This creates a Mobius strip of width 1 and radius 1 that is centered at (0, 
0, 0). The parameter u runs around the strip like a racer along a race-
track. The parameter v moves from one edge to the other. 

It's also common to represent a Mobius strip in cylindrical polar coor-
dinates (r, 0, by log(r)sin(0/2) = ^cos(0/2). 

Paradromic Rings 
Researchers from the late 1800s to the present day have catalogued the 
effects of giving extra twists to pieces of paper before joining the ends to 
form Mobiuslike strips. The surprising results are called paradromic rings. 
Some of the possible paradromic ring structures are listed in the fol-
lowing table. 

Half Cuts Apparent Actual Result 
Twists Pieces 

1 1 2 1 band, length 2 

1 1 3 1 band, length 2 
1 Mobius strip, length 1 

1 2 4 2 bands, length 2 

1 2 5 
2 bands, length 2 

1 Mobius strip, length 1 
1 3 6 3 bands, length 2 

1 3 7 
3 bands, length 2 

1 Mobius strip, length 1 
2 1 2 2 bands, length 1 
2 2 3 3 bands, length 1 
2 3 4 4 bands, length 1 

For example, the first row of the table corresponds to a cut down the 
center of a Mobius strip, as in figure 1.1. When your cut is complete, you 
have two "apparent strips" or "divisions." However, when you then 
stretch out the result, you find you have only one piece, as shown in the 
final column of the table. In the second row, we cut the Mobius strip a 
third of the way from an edge, a remarkable experiment we discussed in 
chapter 2. In this case, we produce three apparent pieces, which, when 
stretched out, reveal themselves to actually be one Mobius strip and one 
loop (two pieces). In the third and fourth rows, we are allowed two cuts; 
depending on where the cuts are made, there will be either four or five 
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apparent pieces when we are finished cutting, but when we stretch them 
out, we find two or three loops, respectively. 

Notice that nowhere does the table tell us where to make the cuts on 
the strip. It simply shows various possibilities. If you make a Mobius 
strip, you'll find that it really doesn't matter where you make the cut indi-
cated in the table's second column, as long as your cut is not in the 
center. The first two rows describe nearly the same situation-the one cut 
in the first row is a cut along the center; the second row describes an off-
center cut. A similar logic applies to other rows in the table. 

Adventures in Topology 
According to Norman Biggs, author of "The Development of Topology" 
in Mobius and His Band, Mobius probably did not think of himself as a 
topologist because there was no general area of mathematics called 
topology during his lifetime. Nevertheless, his ideas, papers, and dia-
grams have had a profound influence on the development of topology. 

The river of topology has its source in Leonhard Euler (1707-1783), 
the Swiss mathematician and physicist who is often considered, together 
with Gauss, to be the greatest mathematician who ever lived. One of 
Euler's interests centered on ordinary shapes with corners, faces, and 
edges. Years later, Mobius became fascinated by Euler's work that estab-
lished relationships between the number of edges, vertices, and faces of 
a simply connected polyhedron. To understand this area of geometry, let 
us imagine that Mdbius lived in a house in Schulpforta that resembles the 
shape in figure 5.4. 

5 4 
The house that Mobius built 
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For simplicity, we will assume that his house has no windows and doors— 
not a very practical house but a perfect model for us to use when 
studying topology. Mobius's simple house has 10 vertices (V), 17 edges 
(Bj and 9 faces (F). If you don't see this, remember that a vertex is a 
corner, an edge is where two walls meet, and a face is either a wall, part 
of a roof, or the floor. Euler observed that for a house like Mobius's, we 
have the relation: 

For example, for this house, we have 10 -17 + 9 = 2. Antoine Jean Lhuilier 
(1759-1840) wondered if Euler's formula still would work with more com-
plex shapes, such as a simple house with a courtyard (figure 5.5). 

This house has 16 vertices, 32 edges, and 16 faces. Inserting these values 
into Euler's formula we get 

Uh-oh! This shows us that Euler's formula does not work once we add 
windows, courtyards, and doors to Mobius's simple house. But by 
making a quick fix, Lhuilier discovered a more general formula: 

V-E+F = 2. 

5 5 
The house that Mobius built, with central courtyard 

V-E + F=0 

V-E + F= 2 - 2 G 
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where G is the number of holes in an object For example, a house with 
two separate interior courtyards, like a brick with two square holes 
drilled all the way through, has G = 2. It turns out that V- E + F= 2 -
2G is true for a wide variety of shapes. (Some complexities arise when 
we want to define the "number of holes" because holes may join and coa-
lesce in curious ways, like tunnels in an ant colony, or like the hole 
within a hole through a hole in the introduction.) 

Notice that the same formulas apply to flat maps such as the one in figure 
5.6, for which we have V- E + R = 2. Here, R is the number of regions, 
including the outer boundary of the planar map. In figure 5.6, V= 15, E= 
23, and R—10, and the formula holds. The formula fails the moment we add 
a disconnected oval region, corresponding to a hole or lake, which repre-
sents a vertex connected to itself. However, if we connect the hole to one of 
the edges with a line segment, as indicated by the dashed line in figure 5.7, 
the formula becomes valid again. By adding the line, we have also added 
another vertex (at the far point of the line) and created two additional edges. 

5.6 
Lemuria map can be used to demonstrate Euler's formula, V-£ + R = 2 

5 7 
Map containing an island nation. 
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While on the subject of maps, note that the chromatic number of a sur-
face describes the maximum number of regions that can be drawn on the 
surface so that each region is given a different color, yet each color will 
border every other color. For example, the chromatic number for a 
square sheet is four (figure 5.8). 

1 r - , 2 -m-
4 

1 2 
3 4 5 3 

6 h 

5_ 

6 

5 
6 

Square Tube Mobius Klein Projective 
Strip Bottle Plane 

4 4 6 6 6 
5 8 

Map coloring on a variety of surfaces. The square diagrams at the top show 
how edges join in each model The second row of squares shows one way 

the surface can be mapped to accommodate the maximum number 
of colors. Chromatic numbers are at the bottom. 

To understand figure 5.8, note that the square diagrams at the top 
show how edges are joined in each model. Sides with arrows are 
"sticky" and connect to each other with the directions of their arrows 
coinciding. The second row of squares shows one way that the surface 
can be mapped to accommodate the maximum number of colors, 
which are represented by different numbers. If you were to actually 
color the regions different colors, you would color regions of both 
sides of the paper (as though the paper were translucent) because you 
must think of the sheet as having zero thickness. Chromatic numbers 
are along the bottom of figure 5.8. 

Today, we know that a square, cylinder, and sphere have a chromatic 
number of 4. A Mobius strip, Klein bottle, and projective plane have a 
chromatic number of 6. (We'll discuss Klein bottles and projective planes 
later in this chapter and in the next chapter.) A torus, which you can 
think of as the surface of a doughnut, has a chromatic number of 7. This 
means that on a Mobius strip, six colors are needed to ensure that no 
bordering areas on any map will be colored the same. (Although we can 
find an example of a map requiring six colors for the Mobius strip, this 



X I i T H E M O B I U S S T R I P 

doesn't mean that it is necessary that every map require six colors on a 
Mdbius strip.) 

Using the metaphor of a geopolitical map, the chromatic number of a 
surface is the minimum number of colors needed to properly color any 
map on the given surface so that countries with common borders get dis-
tinct colors. Thus, if you draw a complicated map, like a map of the 
United States, on a Mobius strip, then it is possible to color it with at most 
six different colors so that no two adjacent regions have the same color. 

Mapmakers have known for centuries that just four colors are suffi-
cient for coloring any map drawn on a plane—so that no two distinct 
regions that share a common edge are the same color, although two 
regions can share a common vertex and have the same color. Some 
planar maps require fewer colors, but all maps can certainly be done 
with four. Four colors are sufficient for maps drawn on spheres and cylin-
ders, but seven colors are sufficient to paint any map on a torus. 

Although no one had ever found a map on a plane that needs more 
than four colors, for about a century mathematicians tried in vain to 
prove this apparendy simple theory. Finally, in 1976, mathematicians 
succeeded in proving the four-color theorem with the help of a com-
puter, making it the first problem in pure mathematics to use a computer 
to produce an essential component for the proof. 

Today, computers are playing increasing roles in mathematics, helping 
mathematicians verify proofs so complex that they sometimes defy 
human comprehension. The four-color theorem is one example. Another 
is the classification of finite simple groups, described in a multiauthor 
project of ten thousand pages. As Dana Mackenzie points out in Science 
["What in the Name of Euclid is Going on Here?"], the traditional people-
centered methods for ensuring that a proof is correct breaks down when 
a paper reaches thousands of pages. With respect to the four-color the-
orem, graph theorist John Robin Wilson notes, "Mathematicians over 40 
years old couldn't be convinced that a proof by computer was correct, 
and those under 40 couldn't be convinced that a proof with 700 pages of 
hand calculations was correct." A "streamlined" proof of the four-color 
theorem was published in 1995. Even with this more compact approach, 
a computer was required to check more than a billion different maps, 
something that would take a human mathematician many lifetimes. 

I point out in my book A Passion for Mathematics that we live in an age 
where even simple computer tools like spreadsheets give modern math-
ematicians power that Heisenberg, Einstein, and Newton would have 
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lusted after. As just one example, in the late 1990s, computer programs 
designed by David Bailey and Helaman Ferguson helped produce new 
formulas that related pi to log 5 and two other constants. Erica Klarreich 
reports in the April 24, 2004, Science News, once the computer had pro-
duced the formula, proving that it was correct was extremely easy. Often, 
simply knowing the answer is the largest hurdle to overcome when for-
mulating a proof. 

The four-color theorem has even fascinated science fiction authors. 
Martin Gardner, in "The Island of Five Colors," tackles the four-color 
theorem, which was unproved at the time he wrote the story in 1952. 
Gardner's tale is loaded with geometrical musings and even mentions the 
correct chromatic numbers for the torus, Mobius strip, and Klein botde. 
The protagonist also alludes to many exotic surfaces like the cross-cap 
(discussed later in this chapter), a Tuckerman strip (a Mobius strip with 
an edge in the form a triangle), and the two-layer sandwich Mdbius strip 
that we discussed in chapter 2. In the story, we learn about prior attempts 
to prove the four-color theorem and explore a fictional counterexample 
m the form of a mysterious African island divided into five simply con-
nected districts—each of which borders the other and the ocean. The pro-
tagonist is so confused by the remarkable island's arrangement of 
districts, which seem to contradict the four-color theorem, that he paints 
the island's districts with five colors, red, blue, green, yellow, and purple, 
and then has a friend take a photo from the air to help understand how 
the paradoxical district configuration could exist. In particular, the pro-
tagonist buys twenty thousand gallons of water-based paint and sprays 
the five districts with spots of color twenty feet in diameter at intervals of 
fifty yards. On the ground, it's difficult to tell what the district shapes are, 
but he hopes an aerial view will make this clear. Alas, the aerial photos 
do not develop properly, and he never understands the mysterious rela-
tionships between the shapes of the districts. The story ends with a math 
professor on the island who is suddenly yanked into a Klein botde by a 
gigantic insect! Our protagonist looks into the bottle's opening but sees 
only swirling fog and feels an icy upward rush of air. He yells the pro-
fessor's name, but only hears faint echoes and faraway voices in a strange 
language. What a story! 

As an April Fools' joke, I once told friends that I had made the stun-
ning discovery of an unusual configuration of hypothetical countries that 
also required five colors to color the regions, so that two regions with a 
common edge did not have the same color (figure 5.9). Some friends 
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slaved at coloring my map for a long time and triumphantly showed me 
their results, before realizing I was just joking. 

5.9 
Da Vinci code map. How many colors do you need to color this unusual 

configuration of hypothetical countries so that regions with a 
common edge do not have the same color? 

Robin Wilson, author of Four Colors Suffice, makes the surprising 
observation that the four-color problem has been of little importance to 
mapmakers and cartographers. As evidence, mathematical historian 
Kenneth May observed that a sample of atlases in the large collection of 
the Library of Congress indicates "no tendency to minimize the number 
of colors used," and "maps utilizing only four colors are rare." Moreover, 
books on cartography and the history of mapmaking do not mention the 
four-color property. 

Mobius's TViangulated Band 
This introduction to some fundamental concepts of basic topology leads us 
to Mobius's band and Mobius's thoughts when he made his remarkable 
finding. Mobius, like Antoine Jean Lhuilier, wondered what geometry and 
topology would be like for objects that are more unusual than the simple 
Mobius house (figure 5.4) that started our discussion. To facilitate his 
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studies of one-sided surfaces, Mobius constructed surfaces from flat trian-
gular pieces. For example, a faceted Mobius band can be made from a 
number of triangles as shown in figure 5.10. 

5.10 
The Mobius band represented as a surface of triangular facets 

Mobius explained one-sidedness in terms of the way the triangular 
facets of an object fit together. We can understand Mobius's thinking by 
defining the difference between clockwise and counterclockwise rota-
tions of nearby triangles. For example, in triangle 1 in figure 5.10, we can 
define the order A-B-C to be counterclockwise. In triangle 2, let's start 
from the strip's top edge as we did for triangle 1. For triangle 2, C-B-D is 
counterclockwise. Notice that shared edges B-C in triangle 1 and triangle 
2 have a different order with respect to the rotations of the triangles. Tri-
angles are called "compatible" when their shared edge is oriented in 
these opposite senses. However, at the location where we join the edges 
of the strip to form a Mobius band, the adjacent triangles will not be 
compatible. Thus, just like Euler, Mobius focused on edges and vertices, 
and he extended previous work to study Euler-like characteristics in one-
sided objects. 

Dr. Johann Listing and Homeomorphisms 
In 1858, German mathematician Johann Benedict Listing (1808-1882) 
codiscovered the object we now call the Mobius strip. Listing is also often 
regarded as the founder of topology because in 1847 he wrote a book 
tided Vortstudien z}ir Topologie, and he had coined the word topology at 
least a decade earlier. Many of his topological ideas were probably stim-
ulated by Gauss, with whom Listing first studied in 1829. Listing's 1861 
book Der Census r&umlicher Complexe oder Verallgemeinerung des Euler'schen 
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Satzfs von den Polyedem (The Census of Spatial Complexes or Generalizations of 
Euler's Theorem on Polyhedra) contains a description of the Mobius band. 
Some have speculated that Gauss may have given both Mobius and 
Listing the idea of a Mdbius band, but this is mere speculation. 

Incidentally, about the same time Listing was contemplating the 
Mobius band, he was near bankruptcy due to his and his wife's misman-
aging of family finances and living beyond their means. Listing bor-
rowed money frequendy while his wife continually abused credit and 
often ended up in court. The profligate spending of his wife, along with 
her mistreatment of servants, who frequendy brought her before the 
magistrates, is said to have diminished Listing's standing in the academic 
community. As a result, his pioneering mathematical work received less 
recognition than it should have. 

Among his many interests, Listing studied the value of V- E+ F for 
polyhedra, which today is known as the polyhedron's Euler number. As we 
have discussed, the number is constant for solids that have the same number 
of holes and pieces; in other words, for solids that are related by transfor-
mations called homeomorphisms that involve no cutting and tunneling. 

Two geometrical objects are called homeomorphic if the first can be 
deformed into the second by stretching and bending. (Technically, cutting 
is sometimes permitted, but only if the two parts are later glued back 
together along exacdy the same cut, and neighboring points before the cut 
are neighbors after the cut.) For example, a square and a circle are homeo-
morphic. A hollow sphere containing a smaller solid ball is homeomorphic 
to a hollow sphere with a solid ball outside of it You can cut the outer 
sphere, move the inner ball through the cut to the outside, and then glue 
the sphere together along exacdy the same cut. Or you can translate one 
sphere in the fourth dimension and return it to the third dimension. If two 
objects are homeomorphic, one can find a continuous function that maps 
points from the first object to corresponding points of the second object 
and vice versa. Such a function is called a homeomorphism, and it must 
map points in the first object that are "close together" to points in the 
second object that are "close together." Topology is the study of those prop-
erties of objects that do not change when homeomorphisms are applied. 

The classic example of a homemorphism is the transformation of a 
doughnut into a coffee cup. We can deform a very malleable, rubberlike 
doughnut into the shape of a coffee cup without any cutting or pasting. 
The hole in the doughnut simply becomes the handle, with its hole, for 
the coffee cup. On the other hand, the surface of a doughnut (called a 
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torus) is not the same as the surface of a solid ball (called a sphere). There 
is no way to morph one into the other without cutting and pasting in 
ways that are not permitted with a homeomorphism. 

Operations requiring tunneling are not homeomorphisms, and cut-
ting a faceted object may change the value of V- E - F. Interestingly, 
homeomorphisms ignore the space in which surfaces are embedded, so 
deformations are permitted to be completed in a higher dimensional 
space. This means that mirror images are homeomorphic because they 
can be transformed into each other by rotation in a higher dimension. (If 
this is not clear to you, it will become obvious in the next chapter when 
we slide 2-D congruent blobs on a plane; these blobs are not superim-
posable unless we lift one out of the plane and flip it over.) Thus, two 
Mobius bands that are mirror images of each other, because they are 
twisted in opposite directions, are topologically identical. 

All Mobius strips with an odd number of half twists are homeomor-
phic to each other. And all strips with an even number of half twists are 
homeomorphic to each other. But a strip with an even number of half 
twists is not homeomorphic to one with an odd number of half twists. 
Also, a Mobius strip essentially comes in two forms: the right-handed 
and left-handed, which can be turned into each other only if we could 
rotate the strip in the fourth dimension. 

The property of being one-sided or two-sided is a topological invariant; 
however much we bend and stretch the band, it continues to have only one 
side. This means that a one-sided surface like a Mobius strip cannot be 
turned into a two-sided one by topological transformations. As I men-
tioned, with topological transformations we may, in principle, cut the strip, 
twist it, and even tie it into knots, but we must paste the strip back together 
in such a way that adjacent points before the cut are still adjacent (This 
kind of pasting is why a trefoil knot and a circle are homeomorphic.) How-
ever, this constraint prevents us from adding or subtracting an odd quan-
tity of half twists to strips. Today, topology and Mobius bands have 
important consequences for physics, cosmology, and mechanics. 

Of course, a Mobius band can't really be transformed into its mirror 
image or into a band with three half twists in our universe. However, if 
it floated in 4-D space, we could deform it in a higher dimension and 
return it to 3-space as a loop with any odd number of half twists or either 
handedness. Even a band with no twists (like a cylinder) could, in theory, 
be lifted into 4-space, twisted by a higher-dimensional alien, and 
dropped back into our space with any even number of half twists of 
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either handedness. However, the alien cannot change a standard cylin-
drical loop into a Mobius strip because the cylinder has two edges and 
the Mobius band has only one. To change two edges into one, the alien 
would have to break both of them and join them to each other's breaks. 

Mdbius gave a lot of thought to these weird higher-dimensional rota-
tions. He wrote in Werke that a solid could be rotated into its mirror 
image if we were "able to let one system make a half revolution in a 
space of four dimensions. But since such a space cannot be conceived, 
this coincidence is impossible in this case." 

Ghosts, Mdbius Strips, and the Fourth Dimension 
When I talk about the fourth dimension, I am referring to a spatial 
dimension that corresponds to a direction different from all the direc-
tions in our world. Students usually ask, "Isn't time the fourth dimen-
sion?" Time is one example of a fourth dimension, but there are others. 
Parallel universes may even exist besides our own in some ghosdy 
manner, and these might be called other dimensions. But in this section, 
I'm interested in a fourth spatial dimension-one that exists in a direction 
different from up and down, back and front, right and left. 

Look at the ceiling of your room. From the corner of the room radiate 
three lines, each of which is the meeting place of a pair of walls. Each line is 
perpendicular to the other two lines. Can you imagine a fourth line that is 
perpendicular to the three lines? If you are like most people, the answer is a 
resounding no. But this is what mathematics and physics require in setting 
up a mental construct involving four-dimensional space. 

What does it mean for objects to exist in a fourth dimension? The sci-
entific concept of a fourth dimension is essentially a modern idea, dating 
back to the 1800s. However, the philosopher Immanuel Kant (1724-1804) 
considered some of the spiritual aspects of a fourth dimension: 

A science of all these possible kinds of space would undoubtedly 
be the highest enterprise which a finite understanding could 
undertake in the field of geometry. . . . If it is possible that there 
could be regions with other dimensions, it is very likely that a God 
had somewhere brought them into being. Such higher spaces 
would not belong to our world, but form separate worlds. 

We've discussed the idea of aliens manipulating Mobius strips in higher 
dimensions, and this reminds me of the nineteenth-century astronomer 
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Johann Carl Friedrich Zollner (1834-1882), who promoted the idea of 
ghosts from the fourth dimension. He was an astronomy professor at the 
University of Leipzig-Mobius's alma mater-and worked with the Amer-
ican medium Henry Slade. Zollner performed various tests on Slade to 
determine if Slade was a charlatan or could really access higher dimensions. 
For example, Zollner gave Slade a string held together as a loop. The two 
loose ends were held together using some sealing wax. Amazingly, Slade 
seemed to be able to tie knots in the string, something that should not be 
possible in a loop of string. Of course, Slade probably cheated and undid 
the wax, but if he could tie knots in the sealed string, it would suggest the 
existence of a fourth dimension. Let me explain why. 

Imagine that we are together, and I hand you a string with a piece of 
wax sealing the two ends, as in figure 5.11. The circle with the "Z" repre-
sents the sealing wax that Zollner applied. A four-dimensional being could 
move a piece of the string in a fourth dimension out of our space. This 
would be like cutting the string in the sense that the string could be moved 
through itself to form a knot. Once the string is oriented correcdy, you 
could move it back "down" into our space, and a knot would be tied 
without moving the ends of the string. Similarly, a 4-D being could deform 
a Mobius band in a higher dimension and return it to 3-space as a loop 
with any odd number of half twists or either handedness. However, the 
being could not change a band with an odd number of half twists to a band 
with an even number without tearing the band because this conversion 
would change the strip from having one edge to having two edges. The 
edge would have to be broken in two places, and the ends of each of the 
two resulting pieces would have to be joined to make two edges. 

5.11 
A four-dimensional being would be the ultimate magician and could knot or unknot a 

string by temporarily lifting it into the fourth dimension. On the left is a string before it 
has been knotted. (Zollner tried to transform the left string into the right without 

breaking the wax circle at the top.) 
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Let's think about knots in different dimensions. A string can't be 
knotted in two-dimensional space no matter how hard you try (figure 
5.12). For creatures confined to living in a plane, there's no way a line can 
cross over itself. In fact, a string or a line can only be knotted in 3-D 
space. And any knot you tied in 3-D space will not stay tied in 4-D space 
because the additional degree of freedom will cause a knot to slip 
through itself. 

5.12 
A string cannot be knotted in a two-dimensional space. 

By analogy, in 4-D space a creature can knot a plane (surface), but this 
plane won't stay knotted in 5-D space. And the knotted plane cannot be 
formed in 3-D space. Of course, the idea of knotting a plane is probably 
confusing to most readers. Imagine a knotted line, and then move it "up" 
into the fourth dimension. The trail it traces will be a knotted plane. It 
never intersects itself. Of course, if we simply leave a trail in 3-space as we 
move a knot, it will intersect itself, but since this "up" is perpendicular to 
all directions in our space, the 4-D knotted plane will not intersect itself. 

Zollner devised three tests to determine if Slade could use the fourth 
dimension to perform miracles. First, he gave Slade two oak rings that 
were to be interlocked without breaking them. Second, he gave Slade a 
snail shell to see if a clockwise spiral could be turned into a counter-
clockwise spiral, and vice versa. Third, he gave Slade a rubber band and 
asked him to place a knot in one strand of the band. (To be precise, it was 
a band made from dried gut, but you get the idea.) 

Alas, Slade could not pass this difficult series of tests. Nevertheless, 
the idea of a fourth dimension continued to amuse and fascinate 
laypeople and scientists. "A higher world is not only possible, but prob-
able," writes Alfred Taylor Schofield in his 1888 book Another World. 
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"Such a world may be considered as a world of four dimensions. Nothing 
prevents the spiritual world and its beings, and heaven and hell, being by 
our very side." 

Zollner was almost completely discredited because of his association 
with spiritualism. However, he was correct to suggest that anyone with 
access to higher dimensions would be able to perform feats impossible 
for creatures constrained to a 3-D world. He suggested several experi-
ments that would demonstrate his hypothesis; for example, linking solid 
rings without first cutting them apart, or removing objects from secured 
boxes. If Slade could interconnect two separate unbroken wooden rings, 
Zollner believed it would "represent a miracle, that is, a phenomenon 
which our conceptions heretofore of physical and organic processes 
would be absolutely incompetent to explain." Perhaps the hardest test to 
pass involved reversing the molecular structure of dextrotartaric acid so 
that it would rotate a plane of polarized light left instead of right. 
Although Slade never quite performed the stated tasks, he always man-
aged to come up with sufficiendy similar evidence to convince Zollner, 
and these experiences became the primary basis of Zollner's Transcen-
dental Physics. This work, and the claims of other spiritualists, actually had 
some scientific value because they touched off a lively debate within the 
British scientific community. 

TUrning Spheres and Doughnuts Inside Out 
The Mobius strip is one of a wide variety of exotic geometrical forms that 
play important roles in topology. Some topological transformations are 
easy to visualize. Most of us can imagine stretching a coffee cup into a 
doughnut, but topology also deals with many nonintuitive transforma-
tions. For example, for many years topologists knew that it was theoreti-
cally possible to turn a sphere inside out, yet they didn't have the 
slightest idea how to do it When researchers began to use computer 
graphics, mathematician and graphics expert Nelson Max of the 
Lawrence Livermore National Laboratory produced an exciting ani-
mated film finally illustrating the transformation of the sphere. Max's 
1977 movie was based on the 1967 sphere eversion work of Bernard 
Morin, a blind topologist at the Louis Pasteur University in Strasbourg, 
France. To create the film, Max started with a set of coordinates obtained 
from wire mesh models depicting eleven stages in the transformation. 

Today, you can order the film "Turning a Sphere Inside Out" on the 
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web from A. K. Peters. The animation begins with a discussion of the 
sphere eversion problem and focuses on how this can be done by passing 
the surface through itself without making any holes or creases. Mathe-
maticians had believed that the problem was unsolvable until around 
1958 when Stephen Smale, now at the University of California, Berkeley, 
proved otherwise. However, no one could visualize the motion without 
the graphics. The steps required to turn a torus inside out are also quite 
difficult to visualize. 

When we discuss the eversion of a sphere, we're not talking about 
turning a beach ball inside out by pulling the deflated ball through its 
opening and then inflating it again. Instead, we are referring to a 
sphere with no orifice. Mathematicians try to visualize a sphere made 
out of a thin membrane that can stretch and even pass through itself 
without ripping or developing a sharp kink or crease. The task of 
avoiding such sharp creases makes the mathematical sphere eversion 
so difficult. 

It turns out there are several ways to accomplish the task, and in the 
late 1990s mathematicians went a step further and discovered a geo-
metrically optimal path—one that minimizes the energy needed to con-
tort the sphere through its transformation. This optimal sphere 
eversion, or optiverse, is now the star of a colorful computer graphics 
movie tided The Optiverse, produced by mathematician John M. Sul-
livan of the University of Illinois at Urbana-Champaign and his Illinois 
colleagues George K. Francis and Stuart Levy. However elegant this 
movie is, we can't use its principles to turn a real sealed balloon inside 
out. Because real balls and balloons are not made of a material that can 
pass through itself, it is not possible to turn such objects inside out 
without poking a hole through them. 

Topologists have also long wondered if it were possible to turn a 
torus inside out through a hole poked in its side. It turns out that this is 
a fairly easy operation. We can do it without tearing the torus so long as 
the torus starts with a hole in its side. Although this surprises some of 
my friends, because it's difficult to visualize, the eversion has been done 
with real tire inner tubes. To help study the torus eversion process, we 
can paint a red ring on the outside of a torus and another on the inside. 
Looking at figure 5.13 (top), the two rings seem to be interlinked like 
two rings in a chain. However, during the process of turning the torus 
inside out, the two rings switch positions without breaking either ring 
(figure 5.13, bottom). 
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513 
Turning a torus inside out through a hole In its side. 

If you wish to experiment yourself and try to turn a real torus inside 
out, the task is easier to accomplish with a cloth model than a rubber 
one. Fold a square cloth in half and sew the opposite ends to make a 
doughnutlike shape. Now cut a hole in the cloth and push the torus 
through the hole. 

Many perplexing puzzles and transformations exist with tori. For 
example, if a torus without a puncture hole in its side is linked like a ring 
in a chain to a torus with a puncture hole (called the "cannibal torus"), 
the cannibal torus can swallow the torus without the hole so that this 
torus is completely inside the cannibal torus. In the process of swal-
lowing, the cannibal torus turns inside out. The wonderful torus-swal-
lowing procedure requires the hole in the cannibal to lengthen 
dramatically. John Stillwell, a mathematician at Monash University, Aus-
tralia, first showed how this could be achieved by stretching and com-
pressing but, of course, without any tearing. 

Beyond the Mdbius Strip 
The one-sided Mobius strip has many interesting close cousins in the 
world of topology. For example, a Klein botde, first described in 1882 by 
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German mathematician Felix Klein, is an object that has a flexible neck 
that wraps back into itself to form a shape with no inside or outside. This 
botde is related to the Mobius strip and can in theory be created by gluing 
two Mobius strips together along their edges or by gluing both pairs of 
opposite edges of a rectangle together giving one pair a half twist. In 
chapter 6, when we consider mathematical models for the entire cosmos, 
I'll discuss the Klein botde in more detail and provide illustrations. 

Another closely related surface is the real projective plane. It's a 
closed topological manifold (i.e. surface) that can be visualized by con-
necting the sides of a square in the orientations illustrated in figure 5.14. 
In other words, the right edge is twisted relative to the left edge before 
gluing the edges together, sis are the top and bottom edges. 

Orientab/e 

5.14 Schematic diagrams showing how to create various surfaces In a 
Mdbius strip, we connect two opposite sides of the square with a twist, 

signified by the arrows in opposite directions In the real projective 
plane, pairs of opposite surfaces are connected with a twist 

The real projective plane is a nonorientable surface, which, as with 
the Mobius strip, means that a creature can travel within the surface and 
find paths that will reverse its handedness when it returns to its starting 
point. A Mobius strip is created when we poke a hole in the real projec-
tive plane. Other surfaces-with fun names like the "Boy surface," "cross-
cap," and "Roman surface"-are all homeomorphic to the real projective 
plane and contain self-intersections when we try to represent these sur-
faces in our 3-D world. 
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A cross-cap is a two-dimensional surface that is topologically equiva-
lent to a Mobius strip. To produce such an object, you can imagine 
sewing the circular edge of a hemisphere to a Mobius strip. The resultant 
surface has no true inside or outside and looks like a dented, brimless 
hat. A cross-cap that has been closed up by gluing a disc to its boundary 
becomes a real projective plane. Two cross-caps glued together at their 
boundaries form a Klein botde. 

Figure 5.15 shows a way to attach a cross-cap to a surface. First, cut a 
hole in a surface and sew a Mobius band to it, edge to edge. In three-
dimensional space, the only way to do this is to permit the Mobius band to 
intersect itself. Because a Mobius band changes the handedness of objects 
that travel within its surface, a cross-cap is also a nonorientable surface. 

Other related shapes include Jakob Steiner's "Roman surface" (which 
looks like a very deformed bowl from one viewpoint) and Werner Boy's 
"Boy surface" (which, in some orientations, looks like a twisted pretzel) 
(figure 5.16). The Boy surface, described by Werner Boy in 1901, is a 
nonorientable surface like the cross-cap and Roman surface, all of which 
can be obtained by sewing a Mobius strip to the edge of a disk in dif-
ferent ways. Unlike the Roman surface and the cross-cap, it has no 
singularities (pinch points), but it does intersect itself. 

515 The cross-cap. To attach a cross-cap to a surface, first cut a hole in 
the surface and sew a Mobius strip to the surface along its edge. 
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S.1G 

Boy's surf** (Computer rencN\»or> by Jos Leys J 

Mdbius Function 
August Ferdinand Mobius's interests went far beyond geometry as he 
explored several exotic integer functions. Throughout the years, I have 
enjoyed cataloguing these kinds of curious mathematical functions, 
which have complicated or elegant behavior, and which provide mathe-
maticians fertile territory for future exploration. Most functions that we 
learn about in high school, like y ~ x2, which defines a parabola, are 
rather smooth and exhibit lame behaviors. In this section, let's study a 
function that has a very irregular behavior and that has intrigued math-
ematicians since the days of Mobius. 

Sometime around 1831, Mobius studied what was later named the 
Mobius function Ln his honor. To understand the function, which is rep-
resented by the Greek letter mu (|i), imagine placing all the integers into 
just one of three large mailboxes as described shortly. The first mailbox 
is painted with a big the second with and the third with K-L" 

c ^ T ) 

0 +1 -1 

In mailbox 0, Mffbius places multiples of square numbers (other than 1), 
including {4,8,9, I2» )t», IS, 20,24,25,27,28,32,36,40,44,45,48,4$, 50, 
52,54,56,60,63, 64, etc}. A square number is a number such as 4,9, 16, 
or 25 that is the square of another integer. For example, 12) = 0 because 
12 is a multiple of the square number 4 and is thus placed in mailbox "0." 

Before proceeding, I would like to digress because we can already 
make some remarkable observations. Mathematicians know that the 
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probability that a number is not located within the "zero" mailbox tends 
toward 6/n2 = 0.6079 . . . as the mailboxes fill up with numbers. Out of 
the first 100,000 numbers, this 6/n2 probability predicts 39,207 numbers 
with |i(n) = 0. The actual figure is 39,206. It always amazes me that n fre-
quendy appears in mathematical areas seemingly unrelated to 7t's orig-
inal application in geometry. 

Let's take another peek in mailbox 0 with its square-containing num-
bers (also called "squarefid" or "nonsquarefree" numbers). Notice that 
the first occurrence of two consecutive numbers occurs at {8, 9}. Three 
numbers occur in a row in the previous list at {48, 49, 50}. It's possible 
to list the smallest term in the first run of at least n consecutive integers 
that are not squarefree: 

• 4 
• 8 

• 48 
• 242 
• 844 
• 22,020 
• 217,070 
• 1,092,747 
• 8,870,024 
• 221,167,422 
• 221,167,422 
• 47,255,689,915 
• 82,462,576,220 
• 1,043,460,553,364 
• 79,180,770,078,548 
• 3,215,226,335,143,218 
• 23,742,453,640,900,972 

Notice that the terms for n = 10 and n = 11 are the same, namely 
221,167,422.1 do not know if mathematicians have ever found two 
consecutive ns like this anywhere else in the sequence. (An interesting 
factoid: No squareful Fibonacci numbers Fp are known with p prime.) 

Now, let us return our attention to the Mobius function and the mail-
boxes. The fundamental theorem of arithmetic tells us that every positive 
integer factors into a unique set of prime numbers. For example, 30 is the 
product of 2,3, and 5. In the -1 mailbox, Mobius places any number that 



X I i THE MOBIUS STRIP 

factors into an odd number of distinct primes, such as {2, 3, 5, 7, 11, 13, 
17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70}. For 
example, 5 x 2 x 3 = 30, so 30 is in this list because it has three prime 
factors. All prime numbers are also on this list because they only have 
one prime factor, themselves. Thus, n(29) = -1 and |i(30) = -1. 

The probability that a number falls in the -1 mailbox is 3/n2, which 
we may write as P[N(N) = -1] = 3/TC2. Here is yet another intriguing occur-
rence of 7t feu from its traditional geometrical interpretation. 

Finally, let's consider the +1 mailbox in which Mobius places all the 
numbers that factor into an even number of distinct primes. For com-
pleteness, Mobius put 1 into this bin. Numbers in this mailbox include 
{1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 
69, 74}. For example, 26 is in this mailbox because 26 = 13 X 2. From 
our discussion, you can see that the Mdbius function has a value of 1 or 
-1 only if no prime is repeated in a number's factorization. The proba-
bility that a number falls in the +1 mailbox is 3/TC2. 

Given this long introduction, we can list the first twenty terms of the 
wonderful Mobius function: n(n) = {1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 
1, 1, 0, -1, 0, -1, 0}. When we plot this function (figure 5.17), it "looks" 
random in the sense that it seems to be chaotic with no discernible pat-
tern or regularity. 

o 25 50 75 100 125 150 175 200 

5 IP 
The erratic Mobius function,/j(n), for values of n up to 200 (Graph by Mark Nandor) 
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The cumulative sum for ji(n) is {1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, 
-3, -2, -1, -1, -2, -2, -3, -3}, which is known as the Mertens function, or 
M{x). Figure 5.18 shows the Mertens function for the first 100,000 values. 

5.18 
Mertens function M(x) for values of x up to 100,000. (Graph by Mark Nandor.) 

In 1897, European mathematician Franz Mertens made the bold con-
1/2 

jecture that \M(x)/x | < 1 for all x. In other words, he asserted that the 
absolute value of M(x) would always be less than the square root of x. 
Mertens made a table of values for both |i(n) and Af(n) that was fifty pages 
long and included values for n up to 10,000. 

Mertens peered long and hard at the list, and as he compared Af[n) to 
n, he made his famous conjecture. In 1897, mathematician R. D. von 1/2 
Sterneck conjectured that \M(x)/x \ < 1/2 after he arduously calculated 
M(x) for x running up to five million and found that \M(x)/x \ < 1/2 was 

1/2 

always true after the first two hundred values. Figure 5.19 shows M(x)/x . 
Notice how the value never goes beyond negative or positive 0.5 after 
the first few hundred values. 

Years later, the Sterneck conjecture was discovered to fail. In partic-
1/2 

ular, for x > 200, the first time \M(x)/x | exceeds 1/2 is at 
M{7,725,030,629) = 43,947, discovered in 1960 by Wolfgang Jurkat. In 
1979, H. Cohen and F. Dress computed the values of M(x) for x up to 7.8 
billion and still the original Mertens conjecture held! 

It wasn't until 1983 that Herman te Riele and Andrew Odlyzko 1/2 

disproved the Mertens conjecture that \M[x)/x | < 1 for all x. Mertens 
function expert Ed Peggjr. tells me that it wasn't until 1985 that Andrew 
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5.19 
MM/x 1 * (1 < x < 10,000) (Graph by Mark Nandor ] 

Odlyzko finally found an actual example near x = 1Or"* where 
|M(x)/x | > 1.06. It is estimated that the first number x that fails the 
Mertens conjecture is greater than 10 . 

In 1987, J . Pintz showed that another Mertens counterexample could 
be found for some x less than 10 . The first value for which |A1{x)/x \ > 
1 is still not known. In 1985, Odlyzko and Riele believed that there were 

20 

no counterexamples to the Mertens conjecture for x < 10 . 
The Mobius function is fascinating, in part, because of the number of 

elegant and profound identities that mathematicians have found that 
involve it. Here are just a few: 

|i(n)lnn _ l 

f |H(»)I ... 15 
n2 

Applications 
The Mobius function has applications in various areas of physics. For 
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example, scientists have found practical uses of the Mobius function in 
various physical interpretations of subatomic particle theory. As physicist 
Donald Spector discusses in his paper "Supersymmetry and the Mobius 
Inversion Function," the Mobius function can be interpreted as giving 
the number of fermions in quantum field theory. A fermion is a particle, 
such as an electron, proton, or neutron, obeying statistical rules requiring 
that not more than one fermion may occupy a particular quantum state. 
The fact that |i(n) = 0 when n is not squarefree is equivalent to the Pauli 
exclusion principle. Spencer writes to me, "Yes, the Mobius function 
does provide insight into the structure of particle theory, and it is also fair 
to say that the applications go in both directions, so that my work shows 
that particle physics can provide insights into number theory." 

Readers interested in applications such as these should consult theo-
retical physicist Marek Wolf's paper "Applications of Statistical 
Mechanics in Prime Number Theory." Patrick Billingsley, professor 
emeritus at the University of Chicago Department of Statistics, has used 
the Mobius function to generate random walks in his paper "Prime num-
bers and Brownian Motion." 

The Mobius function also has deep connections with the distribution 
of prime numbers and has a simple relationship with the famous Rie-
mann zeta function which is of paramount importance in number 
theory because of its relation to the distribution of prime numbers. 
(While many of the properties of the zeta function are known, severed 
important fundamental conjectures, the most famous being the Riemann 
hypothesis, remain unproven.) Consider the famous identity 

f n(»)_ l _ n h 1 \ p' ' 

Here, s is a complex number with real part greater than 1, and the 
product denoted by the FI symbol is over all primes. More generally, 
mathematicians have used the Mobius function as a tool to help solve 
intricate problems in number theory that involve prime numbers. 

Mathematicians find the Mobius function fascinating because almost 
everything about its behavior is unsolved. We don't even know the 
Mobius value for most numbers with over three hundred digits. 

Applications of Old Math 
What other applications might Mobius's strip or his function find 
someday? Certainly, there are many examples of ancient math finding 
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obscure applications centuries later, and such math has even been used 
to describe the very fabric of reality. For example, in 1968, Gabriele 
Veneziano, a researcher at CERN (a European particle accelerator lab) 
observed that many properties of the strong nuclear force are perfecdy 
described by the Eider beta function, an obscure formula devised for 
purely mathematical reasons two hundred years earlier by Leonhard 
Euler. In 1970, three physicists, Nambu, Nielsen, and Susskind, pub-
lished their theory on the beta function, the precursor to modern string 
theory, which says that all the fundamental particles of the universe con-
sist of tiny strings of energy. 

Mobius Function Palindromes ("Mobidromes") 
My colleague Jason Earls from Fritch, Texas, author of Death Knocks, is 
one of the world's experts on the Mobius function when applied to palin-
dromes, numbers that read the same left to right and right to left like 
12,321. One of his pleasing discoveries, made in 2004, involves the 
Mdbius function applied to the palindrome 15,891,919,851 and each 
right truncation of its digits. 

H.(15,891,919,851) = 1 
H(l,589,191,985) = 1 
H(158,919,198) = 1 
H( 15,891,919) = 1 
^(1,589,191) = 1 
n( 158,919) = 1 
n( 15,891) = 1 
H(l,589) = 1 
H(158) = 1 
H(15) = 1 
H(D = 1 

He also discovered the following sequence when the Mobius function 
is applied to the palindrome 79,737,873,797 and each right truncation 
of its digits: 

H(79,737,873,797) = -1 
^(7,973,787,379) = -1 
H(797,378,737) = -1 
H(79,737,873) = -1 
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^(7,973,787) = -1 
H(797,378) = -1 
H(79,737) = -1 
n(7,973) = -1 
H(797) = -1 
H(79) = -1 
H(7) = -1 

Jason spends much of his leisure time searching for Mobius palindromes 
(or "Mobidromes"), like an astronomer scanning the sky for signs of 
extraterrestrial life. He does this for no reason that I can ascertain, except 
for the sheer joy he feels when making discoveries that no one else has 
ever made. Will he ever find a larger Mobius palindrome? Do infinitely 
many Mobius palindromes exist (i.e. palindromes that return 1 or -1 for 
the Mobius function for each right truncation of their digits)? 

The Amazing Ubiquity of n 
We discussed the remarkable occurrence of K when dealing with the 
Mobius function, and I'm generally fascinated by the ubiquity of n in feu-
flung areas of mathematics. Normally we think of n simply as the ratio of 
the circumference of a circle to its diameter. So did pre-seventeenth-cen-
tury humanity. However, in the seventeenth century, n was freed from 
the circle. Many curves were invented and studied—for example, various 
arches, hypocycloids, and witches-and mathematicians found that their 
areas could be expressed in terms of 7t. 

Finally, n ruptured the confines of geometry altogether. Today n 
relates to many areas in number theory, probability, complex numbers, 
and simple fractions, such as JI/4 = 1 -1 /3 + 1/5 - 1 / 7 . . . . It is sometimes 
difficult to account for its wide sphere of influence. 

As an example of how feu n has drifted from its simple geometrical 
interpretation involving circles, consider the book Budget of Paradoxes, 
where Augustus De Morgan explains an equation to an insurance 
salesman. The formula, which calculates the chances that a particular 
group of people would be alive after a certain number of days, involves 
the number 7t. The insurance salesman interrupts and exclaims, "My 
dear friend, that must be a delusion. What can a circle have to do with 
the number of people alive at the end of a given time?" 

Satellite photos of rivers yield n in a strange way. Imagine you are 
examining a photo of the full length of a meandering river. Measure the 
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distance of the river along a straight line connecting the start and end of 
the river, and call this distance D. Next, measure the distance of the river 
along its actual length, as if you were traveling by boat. Call this distance 
R. According to Hans-Henrik Stllum, an earth scientist at Cambridge 
University, it is the average ratio of R to D for meandering rivers. 
Although the ratio varies from river to river, the average value of R/D = 
K is most commonly found for rivers flowing across very gendy sloping 
planes, such as found in Brazil or the Siberian tundra. As Simon Singh, 
author of Fermat's Last Theorem, wrote: "In the case of the river ratio, the 
appearance of n is the result of a batde between order and chaos." 

Even more recendy, n has turned up in equations that describe sub-
atomic particles, light, and other quantities that have no obvious con-
nection to circles. We have already discussed that the probability that a 
randomly chosen integer is squarefree (not divisible by a square) is 6/n2. 
The value 7t2/6, denoted by X, is everywhere in mathematics. For 
example, it appears in the sum of the reciprocals of the squares of the 
positive integers: 

A 6 . . . H 2 

The hypervolume of a four-dimensional hypersphere is 3A.r4. The inte-
gral from 0 to infinity of x/(ex - 1 )dx is [symbol 2]. We also have: The 

• 4 r = -2e 3 I cos( ? . ; i f . ) 6 „-i n2 vB7t+V» rt -9 

-^--TT-l+f cost2"> 
6 — ri1 

expression 6/TC2 = 0.608 . . . or its reciprocals shows up in coundess seem-
ingly unrelated areas of mathematics, giving it an almost mystical signif-
icance. For example, consider that 6/n2 is also the probability that two 
numbers selected at random are coprime. (Number theorists call two 
numbers A and B that have no common factors "relatively prime" or 
"coprime.") As an example of coprimality, two integers are said to be 
coprime if their greatest common divisor equals 1. For example, 5 and 9 
are coprime, while 6 and 9 are not comprime because their greatest 
common divisor is 3. 

In fact, Clive Tooth is so excited about the fantastic occurrences of 
rc2/6 in mathematics and beyond that he has devoted a Web page to this 
topic: http://www.pisquaredoversix.force9.co.uk/. 

http://www.pisquaredoversix.force9.co.uk/
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Finally, while on the subject of coprimality, I cannot resist the urge to 
tell you another quick bit of mathematical trivia. A standard function in 
number theory is §(n), which is the number of integers smaller than n and 
relatively prime to n. Amazingly, we find that: 

<|>(666)=6'6-6. 

This should appeal to people looking for odd occurrences of 666, the 
"number of the beast" in the book of Revelation. 

Mobius Strip and Graph Theory 
Draw several dots on a piece of paper. What is the largest number of dots 
that can be joined by lines that do not intersect and that connect every 
pair of points? (The paths you draw to connect the points may curve.) 
With just two points, we can connect "all the points" with one line (figure 
5.20). With three points, we can connect all the pairs of points to form a 
triangle. With four points, we can still manage to connect every possible 
pair of points. Just how far can we go? 

Plane Mobius Strip 

5 20 
On a plane and on a Mobius strip, what is the largest number of dots that can be 

joined by lines that do not intersect and that connect every pair of points? 

It turns out that four is the largest number of dots, and we can't suc-
ceed in connecting all pairs with five dots drawn on a plane. However, 
the situation gets more interesting if we ask the identical question for dots 
on a Mobius strip. Can you solve this before reading further? Can you 
connect the six dots in figure 5.20 on a Mobius strip with lines that do 
not intersect and that connect every pair of points? When we talk about 
dots on a Mobius surface, we must think of the surface as having no 
thickness so that each line is embedded in the surface like a magic 
marker line that penetrates the paper all the way through. 
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Figure 5.21 is one solution to the six-dot graph problem on a Mdbius 
strip and is discussed in Martin Gardner's Mathematical Magic Show. To 
understand how the diagram illustrates the connectivity of six dots, 
assume that the right and left sides of the strip are connected after a half 
twist. Again, the surface is thought of as having zero thickness with lines 
"in" it in the same way that humans are in their 3-D space. Are there 
other elegant, symmetrical solutions to this problem? 

5.21 
One symmetrical solution to the six-dot graph problem on a Mobius strip 

Hexaflexagons 
Hexaflexagons are geometrical objects that have an odd number of half 
twists and are therefore Mobius surfaces. Martin Gardner made hexa-
flexagons famous in Hexaflexagons and Other Mathematical Diversions: The 
First Scientific American Book of Puzzles and Games. In the book he 
described these elegant paper hexagons that fold from strips of paper 
and reveal different faces as they are flexed. They were first discovered 
in 1939 by Arthur Stone, who set up the Flexagon Committee, which 
brought together famous mathematicians and physicists to investigate 
the properties of these unique shapes. You can learn more about the 
amusing forms using the Google Web search engine. 

Other One-sided Surfaces 
Examples abound for one-sided surfaces with just one edge ("a" and "b" 
in the top row of figure 5.22) and two edges (the remaining six figures). 
The surfaces may be knotted or unknotted and edges may be linked or 
unlinked. The top left figure (a) is a Mobius strip. 
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5 22 
A zoo of one-sided surfaces. Top row: a) edge is a simple closed curve; 
b) edge is knotted; c) both edges are simple closed curves, unlinked; 

d] both edges are simple closed curves, linked; e) both edges are 
knotted, unlinked; f) both edges are knotted, linked; g) one edge 
is simple, one knotted and unlinked; h) one edge is simple, one 
knotted and linked (After David Wells, The Penguin Dictionary 

of Curious and Interesting Geometry } 

For these shapes, you can understand what it means to have a 
"knotted edge" by visualizing the edge as a piece of string. If the knotted 
edge were made of string, it couldn't be untangled to form a simple cir-
cular loop without cutting. If the edges are "linked," then the edge con-
sists of more than one piece of string linked so they can't be separated 
without cutting. More generally, a curve is knotted if it cannot be 
deformed into a circle without cutting it Two curves are linked if they 
cannot be separated without cutting one of them. 

For the Mobius strip, if the central "paper part" disappeared and the 
edge of the strip is visualized as a string, the string could be stretched into 
a circle. However, in the case of a strip with three half twists, if the sur-
face disappears and the edge is turned into a piece of string, the string is 
tangled. 

Mdbius Shorts 
Mobius shorts are one-sided surfaces reminiscent of the Mobius strip. I'm 
not sure who first contemplated the Mobius shorts shown in figure 5.23, 
but several sources attribute it to an unknown researcher named Gour-
malin. I came across this wonderful object while reading Ralph Boas Jr.'s 
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article titled "Mobius Shorts" published posthumously in a 1992 Mathe-
matics Magazine. Boas says that he discovered this in the Dictionnaire des 
mathematiques by Alain Bouvier, Michel George, and Francois Le Lion-
nais (Paris, 1979). This surface is topologically equivalent to a Klein 
botde with a hole in it and is topologically distinct from the Mdbius strip. 

If you want to construct a paper model, start with the T-shaped piece 
of paper shown in figure 5.23. Bend the top of the T to make an 
untwisted ring, and glue A to B. Pass C upward through the ring, turn C 
down (without twisting), and glue C to the outside of the ring at AB. The 
result is a one-sided surface. Try coloring it. What happens if we cut both 
the ring and what was originally the stem along their midlines? Boas 
claimed that neither the Mobius shorts nor the results of cutting are well-
known in American mathematical circles. 

Mdbius Tetrahedra 
A regular tetrahedron looks like a pyramid with a triangular base. The 
object has four vertices, six edges, and four equivalent equilateral trian-
gular faces. Mobius explored a class of tetrahedra, now called Mobius 
tetrahedra in his honor. In particular, Mdbius tetrahedra are a pair of 
tetrahedra, each of which has all its vertices lying on the faces of the 
other. These tetrahedra are not "regular" with identical facets, but each 
tetrahedron is inscribed in the other. (In mathematics, "inscribing" usu-
ally refers to drawing one figure within another figure so that every 
vertex of the enclosed figure touches the outer figure.) Mobius discusses 
these tetrahedra in his 1828 paper "Kann von zjuei dreiseitigen Pyramiden 

A, B,C 

C 
5.23 

Mobius shorts 
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eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissenT' 
(rough translation: "Can two three-sided pyramids that inscribe one 
another be called identical?" or "If two three-sided pyramids can be 
rotated and translated into one another, can they be called identical?"), 
and he shows how the strange geometric situation for Mobius tetrahedra 
can be realized when some of the vertices lie in the extensions of the 
facial planes. The precise arrangement of mutually inscribing Mobius 
tetrahedra is extremely difficult to visualize, and readers are urged to test 
their powers of visualization by studying the "Mobius Tetrahedra" entry 
at http://mathworld.wolfram.com. 

Mobius THangles 
Mobius triangles are triangles on the surface of a sphere. These spherical 
triangles result when a sphere is divided by the planes of symmetry of a 
uniform polyhedron. Figure 5.24 shows an example. 

5.24 Mobius triangles 

This object has 120 Mobius triangles. Each triangle corresponds to 
one tenth of a dodecahedron face or, equivalendy, one sixth of an icosa-
hedron face. Black and white indicates left- and right-handed triangles. 
In other words, the black and white triangles are mirror images of each 
other, also known as enantiomorphs. You can learn more about Mobius 
triangles at George Hart's "Millennium Bookball" Web page, which con-
tains photos of his sculptures that are reminiscent of Mobius triangles. 

The Solenoid 
The Mobius strip becomes a springboard to other mathematical adven-
tures. After years of studying the Mobius Strip, I became interested in 

http://mathworld.wolfram.com
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strange arid beautiful computer graphics generated when studying other 
twisted topological forms. One of my favorite shapes is the solenoid, a 
weird, twisted doughnutlike shape- It's a topological construction that arises 
from, and is related to, a famous fractal called the Cantor set. It is also one of 
the principal examples of a "strange attractor" in dynamical systems theory. 
In this section, we won't dwell on its interesting topological properties, 
which would take many pages (see references for farther reading). Instead, 
we can develop some formulas that help elucidate its self-similar structure 
and facilitate the computer graphical generation of images that are pleasing 
in their simplicity and grace, yet sufficiently complex to intrigue the eye. 

The starting point of the solenoid is the solid torus, followed by a 
strange transformation of the torus. Here's the best way to visualize this. 
The mapping squeezes the tube of the torus to half its original diameter, 
stretches it out to twice its original length, and wraps this length twice 
around, inside the skin of the original torus. In wrapping around twice, 
one coil sits next to another one with no overlap, just as one would coil 
up lengths of a garden hose. The coil makes a half twist as it wraps 
around once, joining back up to itself after two turns. 

I explored the solenoid's form with mathematician Kevin McCarty. We 
found that the representation of nested tori provides quite a visualization 
challenge. Some of our graphics showed the solenoids with varying 
degrees of twisting inside the transparent shell of the standard torus in 
which it resides, like an embryonic snake squeezed within a toroidal egg. 
Figure 5 25, shows an example of a solenoid with the toroidal shell 
removed for clarity. 1 rotate this on my computer screen so I can observe 
it from all angles. 

S.2S 
The solenoid 

These strange objects can be continually twisted. l ike a taffy machine 
with no off switch, the operation of stretching, winding and twisting can 
be repeated indefinitely. As the mapping carries the original torus to an 
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image of itself wrapped twice around, it also carries the twice-wrapped 
image to one wrapped four times around. Each iteration produces 
another tube nested inside the previous one. At each stage, the number of 
windings doubles and the thickness halves. This process converges in the 
limit to a connected set of infinitely thin windings, the "final" solenoid. 

The easiest way to describe the way this mapping works is to use complex 
numbers with a real and imaginary component If this makes litde sense to 
you, turn to the reference section where I have included an outline showing 
how a computer recipe would work. A point inside the solid torus is located 
by a pair of complex numbers (z. w). The z. coordinate represents the longi-
tude angle and locates a point on the unit circle in the complex plane that will 
be the center or spine of the torus. The w coordinate locates a point inside a 
disk of radius 1/2, considered as a piece of the complex plane. The disks are 
imagined to be threaded on the unit circle like a necklace. With these coor-
dinates, the mapping that wraps the torus twice around inside itself is 

f(z, w)^{z\w/2+z/i) 

The term z2 simply wraps the unit circle twice around itself as ^ traverses 
the unit circle once. The term w/2 shrinks the original w coordinate to 
half its size, while the z!4 term moves it away from the w = 0 origin so 
the image does not intersect itself on the second loop. The simple alge-
braic formula allowed by complex number representation makes it easy 
to compute repeated iterations of the mapping as shown in the iterative 
program in the reference section. 

If we were to take a cross section of the solenoid construction perpendi-
cular to the windings, we would see a sequence of nested disks; each disk 
contains two smaller disks. When the longitude angle is zero (z= 1 + 0:), all 
nested disks line up. But for other longitude angles, the varying amounts of 
twist cause the disks to become separated. This separation can be seen in 
figure 5.25, which shows the mapping iterated to the second level of nesting. 

We can also represent the creation of increasingly intricate solenoids 
using nomenclature common in the topological literature. Consider the 
map on the solid torus given by 

/?(M=(2e,Y*+i* '») 

We can visualize what this map means by imagining cutting a torus with 
a sharp knife once to create a long cylinder. Next, we stretch the cylinder 
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to twice its length while contracting its width by y. Wrap the resulting 
long, thin cylinder around itself twice, rejoin the sticky ends, and replace 
it inside the original torus space. Iterating the solenoid map »times results 
in a spindly tube that winds around the inside of the original "fat" torus 
2n times. For additional background on the solenoid, consult Stephen 
Smale's "Differentiable Dynamical Systems," which describes his identifi-
cation of this kind of object as an example of a strange attractor. 

The Horned Sphere 
As we've discussed, the Mobius strip is an example of an object with one 
surface, and the Klein bottle is an object with no distinct inside or outside. 
In addition to these shapes, mathematicians continue to invent strange 
objects to test their intuitions. Alexander's horned sphere is an exam pie of 
a convoluted, intertwined surface for which it is difficult to define an inside 
and outside. Introduced by mathematician James Waddell Alexander 
(lSa&-197l), Alexander's horned sphere (figures 5.26-5-28) is formed by 
successively growing pairs of horns that are almost interlocked and whose 
end points approach each other. The initial steps of the construction can 
be visualized with your fingers. Move the thumb and forefinger of each of 
your hands close to one another, then grow a smaller thumb and fore-
finger on each of these, and continue this budding without limit! 

Although this may be hard to visualize, Alexander's homed sphere is 
homeomorphic to a ball. In this case, this means that it can be stretched 
into a ball without puncturing or breaking it. Perhaps it is easier to visu-
alize the reverse: stretching the ball into the horned sphere without rip-
ping i t The boundary is, therefore, homeomorphic to a sphere. 

5.2$ 
Alexander's homed Sphere (image created by Cameron Bnjwne.) 
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5 2? 
Magnification of Alexanders homed sphere (lm<»ge created by Camwon Browne.) 

5.Z9 
Magnification of Alexander's horned sphere. | Image created h j Cameron Browne.) 

Figure 5.29 is Cameron Browne's representation of Alexander's 
homed sphere embedded in the plane. This "woven horn*' is based on 
Alexander's homed sphere, which, as we discussed, is traditionally visu-
alized as a recursive set of interlocking pairs of orthogonal rings of 
decreasing radius. Cameron embeds his woven horned sphere in the 
plane by reducing the interlock angle between ring pairs from SX) degrees 
to 0 degrees. Next, he creates an over-under weaving pattern to reestab-
lish the ring interlock without intersection to produce the woven hom set. 
Browne tells me that the woven horn construction is a self-similar fractal 
but not technically an area-filling curve, because any open subset of the 
plane will contain points that are a nonzero distance from the curve. 
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Cameron Browne is a professional software engineer with degrees in 
computer science and psychology, two fields he hopes to unite in his 
future research. He has spent the last few years researching automatic 
font decoration and animation for Canon and Microsoft. 

On the Wonders of Prismatic Doughnuts 
While writing this book, I became obsessed with the concept of prismatic 
doughnuts, and 1 experimented with the object in figure 5.30, which I cre-
ated in clay. I invented this strange object, but owing to its simplicity I sus-
pect that mathematicians have investigated it numerous times. Consider a 
hexagonal prism, with two hexagonal ends, that normally has six distinct 
faces, not counting the hexagons at each end. Now consider a twisted hexag-
onal prism made out of clay, whose two hexagonal end plates are joined 

S.29 
Cameron Browne's representation of Alexander's 

homed sphere embedded in the plane. 

5 3a 
How to create a hexagonal, twisted prismatic doughnut wi th onfy one face. 



C L I F F O R D A . P I C K O V E R jtVN 

together like a doughnut I asked colleagues to ponder this question: "How 
many faces does this new doughnudike structure have, given the twist 
shown in the diagram?" Is it possible to make a hexagonal doughnut with 
just one unique face if the prism's back end plate is given the proper number 
of twists relative to the front end plate and then joined to form the doughnut? 

It turns out that the hexagonal prismatic doughnut specified in figure 
5.30 has just one face! This assumes that there is no additional twisting 
of the end plates during the joining process. For example, you can start 
traveling down one "road," say face 1, and end back on face 1 after 
touching each apparently different face exacdy once. 

In figure 5.30, if we number the sides consecutively and rotate one end 
by sixty degrees, then side 1 will connect to side 2, side 2 to side 3, side 3 to 
side 4, side 4 to side 5, side 5 to side 6, and side 6 to side 1. We will be able 
to reach any point on the surface from any other without crossing an edge, 
so the object is a one-sided surface. This image has a sixty-degree clockwise 
twist of the back plate relative to the front plate. Similarly, twisting the back 
plate by the same counterclockwise increment will also create a "Mobius 
prismatic doughnut" In addition, twisting 5/6 of the way around in either 
direction will yield a single face, as will 7/6, 11/6, and so forth. 

When I showed the Mobius prism to my colleague Mark Nandor, he 
conjectured that, for a prism with n faces, there are <|>(n) different twists 
(clockwise or counterclockwise) that will yield a single-face, plus any 
twists that are the same fraction rotation beyond a full twist. Euler's phi, 
denoted <|>(n), is the number of numbers less than n that are relatively 
prime to re. As discussed, number theorists call two numbers A and B that 
have no common factors (except 1) "relatively prime" or "coprime." For 
instance, <|>(6) = 2, since 1 and 5 are relatively prime to 6, and <>(10) = 4 
since 1,3, 7, and 9 are relatively prime to 10. So, for a six-sided prismatic 
doughnut, there are two twists in the clockwise direction (1/6 of a twist 
and 5/6 of a twist) that will yield one face. Note that not only can we use 
7/6 and 11/6 twists, but we can also twist in the opposite direction. 

In summary, for a prism with re faces, there are <|>(re) different fractions 
of twists in the clockwise direction that will yield a single face once the 
ends are joined. Each fractional twist corresponds to fc/n, where k is any 
number smaller than re that is also relatively prime to n (the greatest 
common factor of k and re is 1). Note that the prism could also be twisted 
in the counterclockwise direction as well. Lasdy, the prism could be 
twisted more than once around, so a 1 + kJn twist and a 2 + kJ n twist (or 
any N + kJn twist) will also yield single-sided shapes. 
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For a prism with n faces, there are <|>(n) modulo n different fractions of 
twists in either direction that will yield a single-sided figure once the end-
plates are joined. 

<|>(n) has an interesting formula. If the prime factorization of n is n — 
Aa x f i ^ x Ccx ... then 

<D{n)=T{{A-\)/A\[{B-\)/Bi[{a\)/C\ .. . 

So, for 6 = 2 x 3, <>(6) = 6 x (1/2) x (2/3) = 2. As we have seen, the two 
relatively prime numbers to 6 that are less than 6 are 1 and 5. For 300 = 
22 x 31 x 52, <(>(300) = 300 x (1/2) x (2/3) x (4/5) = 80. The numbers 
less than 300 relatively prime to 300 are 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 
27, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 
77, 79, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111, 113, 117, 119, 
121, 123, 127, 129, 131, 133, 137, 139, 141, 143, 147, 149, 151, 153, 157, 
159,161,163, 167, 169,171,173,177,179,181,183,187,189,191,193,197, 
199, 201, 203, 207, 209, 211, 213, 217, 219, 221, 223, 227, 229, 231, 233, 
237, 239, 241, 243, 247, 249, 251, 253, 257, 259, 261, 263, 267, 269, 271, 
273, 277, 279, 281, 283, 287, 289, 291, 293, 297, and 299. 

As a final effort in visualization, look at the hexagonal twisted prism in 
figure 5.30, and imagine gluing to each face a triangular prism so that each 
face of the hexagonal prism is coplanar, with one face of each triangular 
prism. This would mean that each face in the hexagonal prism is now split 
into two new faces by gluing the triangular prism to the face. What properties 
does this hyperprismatic doughnut exhibit when its ends are glued together? 

Perfect Square Dissection of a Mdbius Strip 
A difficult puzzle that has captivated mathematicians for at least a hun-
dred years involves the operation of "squaring a square," also known as 
a "perfect square dissection." The general problem is to tile a square 
using square tiles all of different sizes. This may sound easy, and you can 
even experiment with a pencil, paper, and graph paper, but it turns out 
that very few tile arrangements work. 

The first squared rectangle was discovered in 1909 by Z. Moron. 
Moron found a 33 by 32 rectangle, which uses nine squared tiles of sides 
1, 4, 7, 8, 9, 10, 14, 15, and 18. He also discovered a 65 by 47 rectangle 
tiled with ten square tiles of 3, 5, 6, 11, 17, 19, 22, 23, 24, and 25 (figure 
5.31). For years, mathematicians claimed that perfect square dissections 
of squares were impossible to construct 
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5 31 
Mortin tiling of a rectangle with squares each of different sizes. 

In 1936 four students at Trinity College-R. L. Brooks, C. A. B. Smith, 
A. H. Stone, and W. T. Tutte-became fascinated by the topic, and finally, 
in 1940, these mathematicians discovered the first squared square con-
sisting of sixty-nine tiles! With further effort, Brooks reduced the number 
of tiles to thirty-nine. In 1962, A. W. J . Duivestijn proved that any 
squared square must contain at least twenty-one tiles, and in 1978 he had 
found such a square and proved that it was the only one. 

In 1993, S.J. Chapman found a tiling of the Mobius band using just five 
square tiles whose boundaries do not meet themselves when the band's 
edges are glued (figure 5.32). The arrows in the figure show the two edges 
of the strip that are glued together with a twist A cylinder can also be tiled 
with squares of different sizes, but this requires at least nine tiles. 

A 9x9 square forms when glued 

3 • 7 
2 3 • 7 5 • 

9 
5 32 

Different-sized square tiles on a Mobius band. 

When we attempt to tile a cylinder or Mdbius strip, we must do so 
with the tile edges parallel or perpendicular to the edges of the surfaces. 
However, the torus, Klein botde, and projective plane don't have edges, 
so the tiles can be inlaid at any angle. I have not been able to find much 
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information on square tilings on Klein bottles or projective planes and 
would enjoy hearing from readers on the subject. 

Barycentric Calculus 
One of Mobius's major contributions to mathematics was his barycentric 
calculus, a geometrical method for defining a point as the center of gravity 
of certain other points to which coefficients or weights are ascribed. We 
can think of Mobius's barycentric coordinates (or "barycentrics") as coor-
dinates with respect to a reference triangle. These coordinates are usually 
written as triples of numbers corresponding to masses placed at the ver-
tices of the triangle. In this way, these masses determine a point, which is 
the geometric centroid of the three masses. The new algebraic tools devel-
oped by Mobius in his 1827 book Der Barycentrische Calcul (The Barycentric 
Calculus) have since turned out to have wide application. 

I'll try to make this concept clear with an illustration. The word 
barycentric is derived from the Greek barys (heavy), and refers to the 
center of gravity. Mdbius understood that several weights positioned along 
a straight stick can be replaced by a single weight at the stick's center of 
gravity. From this simple principle, he constructed a mathematics system 
in which numerical coefficients are assigned to every point in space. 

In the process of developing his barycentric coordinates, Mdbius visu-
alized points with weights as in figure 5.33. Imagine a line AB on a plane. 
Let us first dangle weights only at A and B. The center of gravity lies some-
where between A and B along the line that joins them. Next we dangle a 
weight at C, and the center of gravity Pwill be pulled away from line AB 
toward the middle of the triangle ABC. In particular, the center of gravity 

5.33 
Barycentric coordinates. Point P is the barycenter of o, b, and c, and we say that the 

"barycentric coordinates" of P are (o, b, c) 
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is pulled in the direction of PC. In fact, the triangle will balance on a thin 
razor blade placed along the line PC. It also balances along a razor aligned 
on lines PA or PB. The center of gravity Pis called the barycenter, and tri-
angle r e b a l a n c e s on a pin placed beneath the barycenter. 

Mobius then went into great mathematical depth in Der Barycentrische 
Calcul to show several advantages of the use of barycentric coordinates. 
We can restate his principles by noting that for any point P inside a tri-
angle ABC, there exist three masses wA, wg, and Wq If placed at the cor-
responding vertices of the triangle, the center of gravity (barycenter) of 
these three masses will coincide with the point P. Mobius considered wA, 
Wg, and wc as the barycentric coordinates of P. As defined, the barycen-
tric coordinates are not unique. Masses kwA, kwg, and kwc have exacdy 
the same barycenter for any k > 0. 

A full accounting of the usefulness of barcentric calculus in mathemat-
ical theory is beyond the scope of this book, and the reader is urged to 
see Jeremy Gray's "Mobius's Geometrical Mechanics" for an accessible 
introduction. It turns out that barycentric coordinates are a form of gen-
eral coordinates that are used in many branches of mathematics and 
even computer graphics. If we add one additional constraint, namely, wA 

+ u>£ + u>c= 1, then the barycentric coordinates are defined uniquely for 
every point inside the triangle. Many of the advantages of barycentric 
coordinates occur in the field of projective geometry, which is concerned 
with "incidences," that is, where elements such as lines, planes, and 
points do or don't coincide. Projective geometry is also concerned with 
the relationships between objects and the mappings that result from pro-
jecting them onto another surface. As a visual metaphor, consider that 
shadows are the projections of solid objects. Barycentric coordinates also 
arise naturally whenever variable quantities have a constant sum. 

In his article "Barycentric Calculus," Alexander Bogomolny, former 
associate professor of mathematics at the University of Iowa, gives a 
number of practical examples dealing with probability and puzzles. In par-
ticular, he discusses the problem in which we are given three glasses, A, B, 
and C, of respective capacities 8, 5, and 3 ounces. The first glass is full of 
water. The problem is to measure out 4 ounces of water. His solutions 
involve barycentric coordinates by visualizing the points A, B, C at the ver-
tices of a triangular grid. A, B, and Care associated with barycentric coor-
dinates u, v, w, such that u + v + w = 8. Bogomolny then uses three-digit 
strings that correspond to the coordinate values. For example, the apex A is 
referred to by its coordinate string "800," which is just a shorthand for u = 
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8, v — 0, w = 0, or (8,0,0). Pouring from one glass to another corresponds to 
moving from one node to another along one of the triangle's grid lines. His 
internationally acclaimed math Web site www.cut-the-knotorg gives all the 
mathematical details. Suffice it to say that Mobius's barycentric coordinates 
have influenced several areas of theoretical and applied mathematics. 

o> Squiggle Map Color ing Puzz le 

Nina has created a newform of life with a peculiar kind of skin. She calls the lizard-
like animals "morphs" because she can actually design their skin pattern simply by 
drawing with a felt-tipped pen on their backs. The morphs absorbs the dye pattern, 
and all their offspring will have the same design. The colorful creatures are 
becoming all the rage with schoolchildren. Scientists are wondenng how it is pos-
sible for the morphs'offspring to be born with the same skin design as their parents. 
Today, Nina draws a maplike squiggle on a morph using a continuous line, not taking 
her marker off the skin until she returns to her starting point. Figure S.34 shows an 
example of Nina's latest design—just one of many she will produce in the coming 
months. Now it's time for her to color the design. 

If Nina is trying to make sure that no contiguous regions are colored the some, 
what is the minimum number of colors she will need? (In her coloring, two adjacent 
regions con share a common vertex and have the same color, but they can't share 
the same edge ond hove the some color.) Turn to the solutions section for on answer. 

5.34 
Squiggle coloring. What is the fewest number of colors she needs to produce a design 

such that any regions with a common boundary line have different colors? 

http://www.cut-the-knotorg
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o> Pyramid Puzz le 

In this chapter, we've discussed faceted objects, like tetrahedra, Mdbius's house, 
and twisted prismatic doughnuts. This puzzle tests your powers of visualization. 
Jill hos decorated her bedroom with o huge, colorful pyramid, which hos fourfaces 
that are equilateral triongles. Jill has painted eoch foce a different color, either 
red, purple, green, or yellow. 

Jill has a brainteoserfor you. 4s she rotates the pyramid, five different views 
of the pyramid's four corners can be seen fram above. Which of the views in figure 
5.35 is incorrect? (Turn to the solutions section for the onswer.) 

1 3 5 

5.35 
Several views of a triangular pyramid. Which view is incorrect? 

Mobius in Pop Cul ture 

Pretty soon, you will never be more than a three-minute drive from a place 
where you con purchase the following products: o mocha Frappuccino, a chicken 
burrito the size of your heod, NASCAR memorabilio, a cell phone, or on oil chonge. 
The entire universe will be one Mdbius-strip mall without beginning or end. 

—Mark Hasty, the Bemusement Park Blog 

Described as on intergaloctic toke on Jock and the Beanstolk, Through the 
Mobius Strip is the story of physicist Simon Weir, who becomes lost in o spoce-
time portal he creoted. His son, Joe Weir, must search for him through o myriod 
number of planets, filled with wondrous sights and often gigantic beings. 

-Animated-news.com 
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The pulp, coke, dodo, and inert tableting aid are then combined into a solid 
cake, blue-grey in color, which posses through the immersion font and between a 
series of pinch rollers and thousands of tiny idler wheels, to emerge on an endless 
belt, twisted into o three-sided Mobius strip for equalization of wear, where 
workers toil day and night at adding the curlicued frosting accents that make 
every snack a speciol treot 

—Matthew Mclrvin, Mclrvin's Push-Button World of the Future 

The tole's action ends virtually in the same place it storted—Henry standing 
at his bedroom window, staring ot a dark London sky dotted with oirplones— 
seemingly coming full circle, but like o Mdbius strip, this circle hos its twists and 
the route seems longer thon the circle could possibly explain. He stands at the 
open window, shivering, seeing his family's future cut into the predown sky. 

—Rondy Michoel Signor, "Dne Doy in February: Metaphorfor a Life,' 
Chicago Sun-Times 
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A Journey Beyond New Devonshire 
Imagine a land called New Devonshire resembling a typical New Eng-
land suburb. You've lived in New Devonshire for many years. It's a 
tranquil place, and you enjoy wandering its tree-lined streets-past 
ancient churches and rustic parks. New Devonshire is only an hour 
north of New York City, but it might as well be in an entirely different 
universe. The town has little pollution, no skyscrapers, few honking 
horns. The pride and joy of New Devonshire is its bucolic Main Street, 
with the elegant Mobius Memorial Library, cottage-style homes, and 
landscaping with meandering pathways, benches, water fountains, and 
narrow ivy-covered passageways between quaint stores. You've always 
been happy here. 

One day, perhaps because you seek adventure, you decide to ride a 
bike along Main Street farther then you have ever ridden before, farther, 
in fact, than anyone in New Devonshire has ever ridden before. 

"Good luck," says Linda, the town supervisor. She and a hundred 
other friends wave good-bye as you speed away down the street. 

You're a litde nervous. Like most people in New Devonshire, you 
haven't traveled far from home. 

The wind begins to blow along leaf-strewn Main Street. You shiver a 
litde as you pass ancient cemeteries, the Victorian-style Mobius Library, 
and columned homes dating back to the early 1900s. 

Blackbirds cry overhead as they fly through vague perpetual clouds. 
You smell burning leaves. 

The road is starting to fragment this far from home. Tall Lager-
stroemia trees line the road. You admire their vase-shaped trunks that 
sport branches with pale pink flowers. At this point in your journey, 
none of the crossroads have street signs. In fact, there are no signs of 
any kind. 

"Pretty," you say, looking at the sparkles of light falling from the 
shops and houses onto the cobblestones below your bike tires. 

In a few more minutes, the road becomes so narrow at places that 
there is only room for a single vehicle to pass on it at a time. 

The walls of the churches, schools, and shops take on an almond hue. 
You feel a tingling sensation along your back, a pleasant feeling. This church. 
This school yard. The butcher selling sausages. A nun. A young man kissing 
a woman. You squeeze your handlebars. Something is different Children 
play, but a litde too slowly, hopping and skipping as if through molasses. 

The air grows warm yet fresh, and the sky brightens to a pearlescent 
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azure. You look up. The light from the upper stories of the buildings 
make the structures look inviting, cozy. 

You slow your bike, hearing the sound of a church bell; three clangs, 
then a pause; one clang, then a pause. 

Ten minutes later, only small houses line the path. The simple 
dwellings are a hodgepodge of one-story buildings surrounded by 
wooden fences. Occasionally, children giggle and point at you. A donkey 
carrying sacks and a few pieces of wood passes you on its way downhill, 
almost josding you into a muddy puddle. 

Where is this strange adventure headed? Your fingers tremble. Per-
haps this was not a good idea. But then you notice that the road is 
returning to its modem state. Normal looking street signs appear at the 
intersections. A car whizzes by. 

After an hour of traveling, you seem to have returned to your start. 
Linda, the town supervisor, is waving to you. 

"How did it go?" she says, smiling with tears in her eyes. 
You look into her eyes. "I'm not quite sure." You wave to the smiling 

crowd and lean your bike against a wooden bench. Everyone seems 
normal. Reality makes sense. 

But then you look down at the newspaper in Linda's hand. You can't 
read it. The letters seem backwards. 

You reach for a pen and Linda comments that you now seem to be 
left-handed. But you've been right-handed for your entire life! 

The town board convenes a meeting to discuss what may have hap-
pened to you, and several other brave people vow to travel down Main 
Street to see if they can understand the problem and the actual shape of 
the road and their town. 

When the courageous bicyclists return a few hours later, some strange 
things have occurred. The bikes that started out right-handed are now 
left-handed, and, even weirder, physicians discover that the bikers' 
hearts are on the right side of their bodies instead of the traditional left! 
Each person comes back as a mirror image of his former self! 

Gradually, more people make the trip, so that New Devonshire soon 
becomes a land inhabited by a peculiar mix of people and mirror people. 
What a nightmare this is for the local surgeons. And now couples in 
mixed marriages (normal people and mirror people) wonder what their 
children will be like. Watchmakers must design their clocks in two vari-
eties, mirror and traditional, so that both classes of people may be com-
fortable and able to read the time. 
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This story illustrates what it might be like to live in a universe shaped like 
a Mdbius strip. By way of analogy, if a two-dimensional "fladander" lived 
in a Mobius world, he could easily "flip" himself by moving his body 
along his universe without ever leaving the plane of his existence. If a 
fladander travels completely around the Mobius strip and returns, he will 
find that all his organs are reversed (figure 6.1). A second trip around the 
Mobius cosmos would return him to his normal orientation. 

Dr. Mobius, represented as a two-dimensional human in a Mdbius strip universe. If Dr. 
Mdbius travels around the strip, his internal organs will be reversed. 

When we imagine a fladander traveling in a surface as illustrated in 
figure 6.1, we are considering him as a two-dimensional creature trav-
eling within the surface, not on top of it. Obviously, an ant crawling on a 
paper Mobius strip won't be mirror reversed when traveling around it. 
To achieve the required effect, you might imagine an infinitely flat ant 
traveling in the plane of the strip. 

A Mdbius band is an example of a "nonorientable space." This 
means, in theory, it is not possible to distinguish an object on the surface 
from its reflected image. The surface is considered nonorientable if it has 
a path that reverses the orientation of creatures living in the surface. On 
the other hand, if a space preserves the handedness of an asymmetric 
structure, regardless of how the structure is moved about, the space is 
called "orientable." 

We still need to learn more about the large-scale structure of our uni-
verse before we can determine whether orientation-reversing paths 
exist. Imagine the possibilities if these paths were discovered! When 

6.1 
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you traveled in a rocket ship and returned as your mirror image, all 
your screws, scissors, fonts, body organs, and clocks would have 
changed their orientations relative to your friends who never risked the 
journey. If your spouse or loved one returned to you reversed, would 
your feelings for him or her change? Would you notice the difference? 
Could he or she still drive your car, write in a manner legible to you, 
use a computer keyboard, digest the same foods, or read your books? 
Would the enantiomorphic molecules in the bodies of these mirror 
people also be reversed and unable to digest the biomolecules in our 
world? Would there be any advantages to being reversed? Would base-
ball managers with secret access to the orientation-reversing path send 
their players through to confuse their opponents on the playing field? 
Would future societies seeking uniformity send out left-handed people 
in space ships so that upon their return they would be right-handed? 
Would governments purposeMly send out people to be reversed, 
thereby creating whole new segments of the population that could not 
mate with "normal" people or contract deadly pathogens that evolved to 
prey upon biomolecules with particular enantiomorphic characteristics? 

The New Devonshire philosophers ponder all the conundrums 
arising in a quaint town where a bike ride converts people from one ori-
entation to the other. As the bicyclists travel along the orientation-
reversing path, when do their hearts change sides? What about the people 
the riders pass during their journeys? Which of these people have left-
sided hearts, and which have right? Is there a sudden change in handed-
ness, or is the change gradual? Which people along the route have the 
proper enzymes to permit digestion of left- and right-handed molecules? 

Alan Moore in "The New Traveler's Almanac" retells part of the story 
of Lewis Carroll's Through the Looking Glass, and describes a macabre 
account of young Alice's eventual fate. 

[Alice] re-emerged from the strange portal flickering above the 
mantelpiece, which closed not long thereafter. However, in this 
instance there were complications. The child's hair-parting was 
now worn on the other side, and on examination it appeared that 
the positions of the organs in her body had been quite reversed. 
Apparendy in consequence of this, Miss A. L. could no longer 
down or digest her normal food, and in late November of that year 
was weakened unto death by this disorder. 
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The mirroring of the body is not simply a fictional syndrome. People 
afflicted with Mobius mirror disease, more frequendy known as dextro-
cardia with situs inversus, have the position of the heart and sometimes 
other internal organs reversed. These people can live a normal life, 
with only a slighdy increased risk of congenital heart defects. A total 
reversal of organs, called situs inversus totalis, involves complete right-
to-left reversal of the thoracic and abdominal organs. People afflicted 
with situs inversus totalis appear in mirror image when x-rayed. Situs 
inversus totalis has been estimated to occur once in about seven thou-
sand births. 

Sometimes, mirrored organs can have more egregious consequences. 
In 2004, a baby girl was born in China's Henan province with most of 
her organs positioned on the "wrong" side of her body. The child's con-
dition was not discovered until she was six months old and went for a 
routine checkup. Doctors found that her heart, which should lie in the 
left side of her chest, was on the right. Sadly, her heart was also mal-
formed, and even the location of the atriums and ventricles in her heart 
were reversed. Her stomach, which should lie on the left side, was on the 
right, and her liver, supposed to be on the right, was on the left. Nor-
mally, a person's left lung has two parts and the right has three, but this 
was reversed in the Henan baby. Physicians performed heart surgery to 
correct the malformations, but they did not operate on her other organs, 
which were functioning well. 

Hyperspace and Intrinsic Geometry 
In the previous section, we discussed how the Mobius strip can mirror-
reverse a 2-D creature embedded within its surface. But how could this 
possibly apply to us in our higher-dimensional universe? 

Imagine alien creatures, shaped like amoebae, wandering along the 
surface of a large beach ball. The inhabitants are embedded in the sur-
face, like microbes floating in the thin surface of a soap bubble. The 
aliens call their universe "Suibom." To them, Suibom appears to be flat 
and two-dimensional partly because Suibom is large compared to their 
bodies. However, Einsteinoid, one of their brilliant scientists, comes to 
believe that Suibom is really finite and curved in something he calls the 
third dimension. He even invents two new words, "up" and "down," to 
describe motion in the invisible third dimension. Despite skepticism 
from his friends, one day Einsteinoid kisses his wife's pseudopod and 
begins a long journey along what seems like a straight line around his 
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universe. A week later, he returns to his starting point, thereby proving 
that his universe is curved in a higher dimension. During Einsteinoid's 
long trip, he doesn't feel as if he's curving, although he is curving in a 
third dimension perpendicular to his two spatial dimensions. Einsteinoid 
even discovers that there is a shorter route from one place to another. He 
tunnels through Suibom from point A to point B, thus creating what 
physicists call a "worm hole." Later, Einsteinoid discovers that Suibom is 
one of many curved worlds floating in 3-space. He conjectures that it 
may one day be possible to travel to these other worlds. 

Now suppose that the surface of Suibom were crumpled like a sheet 
of paper. What would Einsteinoid and his fellow amoeboid aliens think 
about their world? Despite the crumpling, the amoebae of Suibom might 
conclude their world was perfecdy flat because they lived their lives con-
fined to the crumpled space. Their bodies would be crumpled without 
them knowing it. 

This idea of curved space is not as zany as it may sound. Georg 
Bernhard Riemann (1826-1866), the great nineteenth-century geometer, 
thought constandy about these issues, and he profoundly affected the 
development of modern theoretical physics, providing the foundation 
for the concepts and methods later used in relativity theory. Riemann 
replaced the two-dimensional world of Suibom with our three-dimen-
sional world crumpled in the fourth dimension. It would not be 
obvious to us that our universe was warped, except that we might feel 
its effects. Riemann believed that electricity, magnetism, and gravity 
are all caused by crumpling of our three-dimensional universe in an 
unseen fourth dimension. If our space were sufficiendy curved like the 
surface of a sphere, we might be able to determine that parallel lines 
can meet (just as do longitude lines on a globe), and the sum of angles 
of a triangle can exceed 180 degrees (as exhibited by triangles drawn 
on a globe). 

Around 300 BC, Euclid told us that the sum of the three angles in any 
triangle drawn on a piece of paper is 180 degrees. However, this is true 
only on a flat piece of paper. On a spherical surface, you can draw a tri-
angle whose angles are each 90 degrees! To verify this, look at a globe, 
and trace a line along the Equator, then follow a meridian of longitude 
down to the South Pole, and then make a 90-degree turn and go back up 
another meridian of longitude to the equator. You have formed a triangle 
in which each angle is 90 degrees. You can also draw triangles whose 
angles exceed a sum of 180 degrees. 
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Let's return to our 2-D aliens on Suibom. If they measured the sum of 
the angles in a small triangle, the sum could be quite close to 180 
degrees, even in a curved universe; however, for large triangles, the 
results could be quite different because the curvature of their world 
would be more apparent The geometry discovered by Einsteinoid of 
Suibom would be the intrinsic geometry of the surface. This geometry 
depends only on measurements made along the surface. In the mid-
nineteenth century, there was considerable interest on our own world in 
non-Euclidean geometries; spherical geometries in which parallel lines 
can intersect, for example. When physicist Hermann von Helmholtz 
(1821-1894) wrote about this subject, he had readers imagine the diffi-
culty a two-dimensional creature would encounter moving along a sur-
face as it tried to understand its world's intrinsic geometry without the 
benefit of a three-dimensional perspective revealing the world's curva-
ture properties all at once. Bemhard Riemann also introduced intrinsic 
measurements on abstract spaces and did not require reference to a con-
taining space of higher dimension in which material objects were 
"curved." 

The extrinsic geometry of Suibom depends on the way the surface sits 
in a high-dimensional space. As difficult as it may seem, it is possible for 
Suibom creatures to understand their extrinsic geometry just by making 
measurements along the surface of their universe. In other words, a 
Suibom creature could study the curvature of its universe without ever 
leaving the universe-just as we can learn about the curvature of our uni-
verse, even if we are confined to it. To show that our space is curved, 
perhaps all we have to do is measure the sums of angles of large trian-
gles and look for sums that are not 180 degrees. For years, legends sug-
gested that mathematical physicist Carl Friedrich Gauss (1777-1855) 
attempted this experiment by shining lights along the tops of mountains 
to form one big triangle; however, Gauss did these kinds of experiments 
for triangulation and surveying purposes, and he would have known 
that the triangles produced by rays of light summed to 180 degrees as 
far as it was possible to measure. We still don't know for sure whether 
parallel lines intersect far away in our universe, but we do know that 
light rays should not be used to test ideas on the overall curvature of 
space because light rays are deflected as they pass nearby massive 
objects. This means that light bends as it passes a star, thus altering the 
angle sums for large triangles. However, this bending of starlight also 
suggests that we may imagine that pockets of our space are curved in an 
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unseen dimension beyond our spatial comprehension. Spatial curvature 
is also suggested by the planet Mercury's elliptical orbit around the sun 
that shifts in orientation, or precesses, by a very small amount each year 
due to the small curvature of space around the sun. Albert Einstein 
argued that the force of gravity between massive objects is a conse-
quence of the curved space near the mass, and that traveling objects 
merely follow straight lines in this curved space like meridians of longi-
tude on a globe. 

In the 1980s and '90s, various astrophysicists tried to experimentally 
determine if our entire universe is curved. For example, some have won-
dered if our 3-D universe might be curved back on itself in the same way 
a 2-D surface on a sphere is curved back on itself. We can restate this in 
the language of the fourth dimension. In the same way that the two-
dimensional surface of the Earth is finite but unbounded (because it is 
bent in 3-D into a sphere), many have imagined the 3-D space of our uni-
verse as being bent (in some four-dimensional space) into a four-dimen-
sional sphere called a hypersphere. Unfortunately, astrophysicists are 
unable to draw definitive conclusions because the experimental results 
contain uncertainties. More recent cosmological observations suggest 
that there is probably not much overall curvature to our visible universe; 
however, our visible universe is just a small portion of the entire uni-
verse, which could have all kinds of exotic topologies. The universe 
could be finite but with no boundary, just as a sphere's surface is finite 
but has no edge. In theory, this would mean that if we fly far through 
space, we would never encounter a wall that indicates space goes no fur-
ther. There would be no sign that reads 

You have reached the end of the universe. 
Please turn around and go back home. 

Just as on the Mobius strip, strange things would happen if we lived on 
the surface of a small hypersphere. By analogy, consider a flatlander living 
in a universe that is the surface of a small sphere. If the fladander travels 
along the sphere, he returns to his starting point. If he looks ahead, he sees 
his own back. If you lived in a hyperspherical universe, you too could 
return to your starting point after traveling a long distance. If the hyper-
sphere were small, you'd see your own back while looking forward. As 
alluded to in our discussion of extrinsic geometry, some cosmologists have 
suggested that our universe is actually the surface of a large hypersphere. 
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Through the last hundred years, scientists have speculated on the 
implications of our universe possessing other equally strange topologies 
like hyper-Mobius strips and hyperdoughnuts. For example, in 4-D 
space, various surfaces containing Mobius bands can be buih that have 
no boundary* jus* like the surface of a sphere has no boundary. As we 
discussed, the boundary of a disk can be attached to the boundary of a 
Mtibius band to form a "real projective plane." Two Mobius bands can 
be attached along their common boundary to Form a nonorientable sur-
face called a Klein bottle, named after its discoverer Felix Klein {figure 
6.2). The M&bius band has boundaries-the band's edges that don't get 
taped together. On the other hand, a Klein bottle is a one-sided surface 
without edges. Unlike an ordinary bottle, the "neck" is bent around, 
passing through the bottle's surface and joining the main bottle from the 
inside. 

We can see the interesting relationship between the Mobius strip and 
the Klein bottle by cutting the Klein bottle halfway along its length to 
form two Mobius strips {figure 6.3). One way to build an imperfect phys-
ical model of a Klein bottle in our 3-D universe is to have it meet itself 
in a small, circular curve. (Four dimensions are needed to create a Klein 
bottle without self-intersections.) 

6.2 
A wlre-frama representation of a Klein bottle by Jos Leys AKfein bottle 

is a one-sided surface Like a MCbius strip, you can't paint the 
Inside" o r * color erw the "outside" another 
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Imagine your frustration (or perhaps delight) if you tried to paint just 
the outside of a Klein botde. You start on the bulbous "outside" and work 
your way down the slim neck. The real 4-D object does not self-intersect, 
allowing you to continue to follow the neck which is now "inside" the 
botde. As the neck opens up to rejoin the bulbous surface, you find you 
are now painting inside the botde. 

If an asymmetric fladander lived in a Klein botde's surface, he could 
make a trip around his universe and return in a form reversed from his 
surroundings. Note that all one-sided surfaces are nonorientable, and if 
our universe were shaped like a Klein botde, we could find paths that 
would cause our bodies to reverse when we returned. I urge readers to 
explore my book Sutfing Through Hyperspace for additional information on 
higher dimensions. 

I Love Klein Bottles 
Let me digress from the cosmos topic and tell you about one of my favorite 
patents involving Klein botdes, the "One-sided beverage vessel" (U.S. Pat 
6,419,111, issued 2002), invented by Erl E. Kepner (figure 6.4). As previ-
ously noted, a Klein botde is similar to a Mobius strip in that it has only 
one surface. A true Klein botde cannot be constructed in our normal 3-D 
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universe; however, the basic form is embodied in this invention. The 
Kepner Klein botde coffee mug permits liquid from the interior of the 
coffee mug to exit at the bottom when suction is applied to the bottom of 
the cup. Kepner says, 

The beverage vessel can be used in applications where it is advan-
tageous to be able to empty the container contents without 
pouring the contents over the lip of the container. An example of 
the possible need for this would be if an aircraft pilot's beverage 
vessel would need to be emptied rapidly due to air turbulence. In 
normal use, the pilot would handle and drink from the vessel just 
as with any other coffee cup. 

The liquid may be drained from the cup if a vacuum is applied to the 
bottom of the cup, which contains an opening. 

U.S. Pat. 6,419,111, "One-sided beverage vessel," by Erl E Kepner, July 16,2002 

Kepner concludes his patent, "The future marketing of the beverage 
container of this invention will use these sorts of interesting points to 
stimulate interest among technically well educated people and everyday 
people with em innate curiosity and appreciation for the wonder and 
beauty of mathematics and nature." 

Acme Klein Botde (www.kleinbotde.com) sells Klein botde coffee 
mugs with hollow handles (figure 6.5). Astrophysicist Cliff Stoll, who 
heads Acme Klein Botde, remarks, "A Klein Botde that delivers liquid 
straight to your waiting lips. Yes—you heard me right. You can drink right 
from this cup. Pour in beer and it's a Klein Stein. Would you believe Ein-
stein's Klein Stein? It's a true genus-1 manifold. . . with zero volume and 
nonorientable." 

12 

1i 

.16 

6.4 

http://www.kleinbotde.com
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6.5 Schematic drawing of a cross section through a coffee mug Klein bottle with 
hollow handle, sold by Acme Klein Bottle (www kleinbottle.com) 

The Acme Klein Bottle Web site continues to extol the cup's virtues. 
With Acme's Klein bottle mug, you can fill the inside with coffee and the 
outside with tea. The handle connects the inner and outer chambers, pro-
viding a topological hole. The outer chamber (which is topologically the 
inner chamber) insulates the inner chamber (which topologically is also 
the outer chamber). The seven millimeter air space separates the inside 
from the outside and keeps cold drinks cold longer and hot drinks warm 
longer. Stoll writes, "This Klein Stein is ideal for the mathematical physi-
cist who needs a glass of water while accepting her Nobel Prize." 

Together with Toronto's Kingbridge Centre and Killdee Scientific 
Glass, Cliff Stoll has created the world's largest glass Klein botde. The 
Kingbridge Klein botde is 1.1 meters tall, 50 centimeters in diameter, and 
is made of 15 kilograms of clear Pyrex glass (or 42 inches tall, 20 inches 
across, and 35 pounds.) Cliff Stoll remarks, 

One sided, boundless, and mathematically nonorientable. It 
tickles topologists and amazes visitors. It's the size of a five-year-
old child. A ferret can climb "into" it. It's been a nontrivial glass-
blowing project Indeed, very few glassblowing shops could 
handle this job. (One glass blower said, "Too scary for us!") 

Not content with your everyday Klein botdes, mathematicians and 
computer artists enjoy exploring related shapes with odd properties. Fig-
ures 6.6 and 6.7 depict Bonan-Jeener's Klein surface and ajeener's Klein 
surface of the second order, as rendered by computer artist Jos Leys. The 
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surfaces get their name from Patrice Jeener, a French artist and copper-
plate engraver who is fascinated by the theory of surfaces, and 
Frenchman Edmond Bonan> math professor at Universite de Picardie 
Jules Verne. The Bonan-Jeener Klein bottles have the same topological 
properties as the classical Klein bottle. Jeener, although self-taught in 
mathematics, continues to discover equations for odd surfaces that 
delight the eye and mind. 

$.6 6 7 
fionan-Jeener double Klein surface. JeenetS Klein surface of crder 2. 

{tendering by Jos Leys.l (Rendering by Jos Leys.) 

The Banchoff Klein bottle (figures 6.8 and 6 9} is also based on the 
M&bius band. The computer algorithm I used to produce this form is 
outlined in the reference section for this chapter. Powerful computer 
graphics applications allow us to design unusual objects such as these and 
then investigate them by projecting them in a 2-D image. 

SB 
Banchoff Klein bottle. (Rendering by 

the author.) 

63 
Cnjss section of Bwichoff Klein bottle, 

revnaling "internal" surfaces 
(Rendering by the author.) 
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If you are a teacher, have your students design and program their 
own patterns by modifying the parameters in the equations in the refer-
ence section, and make a large mural of all the student designs labeled 
with the relevant generating formulas. In the last decade, even serious 
mathematicians have begun to enjoy and present bizarre mathematical 
patterns in new ways—ways sometimes dictated as much by a sense of 
aesthetics as by the needs of logic. Moreover, computer graphics allow 
nonmathematicians to better appreciate the complicated and interesting 
graphical behavior of simple formulas. 

To produce the object in figure 6.8,1 place spheres at locations deter-
mined by formulas that are implemented as computer algorithms. Many 
of you may find difficulty in drawing shaded spheres; however, quite 
attractive and informative figures can be drawn simply by placing dots at 
the x, y, z locations. 

Hyperspace Mirrors 
In chapter 5 we discussed how a Mobius strip comes in two forms: the right-
handed and left-handed. One form could only be turned into the other if we 
could rotate it in the fourth dimension. Although the vague notion of a 
fourth dimension had occurred to mathematicians since the time of Kant, 
most mathematicians dropped the idea as fanciful speculation with no 
possible value. They had not discussed the fact that an asymmetric solid 
object could, in theory, be reversed by rotating it through a higher space. 
It was not until 1827 that Mobius showed how this could be done—eighty 
years after Kant's papers on dimension. 

What does it mean to rotate an object in a higher dimension? If you 
encountered a flatlander, you could, in principle, lift him out of his plane 
and flip him around. As a result, his internal organs would be reversed. 
For example, a heart on the left side would now be on the right. Simi-
larly, a 4-D being might flip us around and reverse our organs. Although 
such powers are possible within the auspices of hyperspace physics, I 
should remind readers that the technology to manipulate space in this 
fashion is not possible; perhaps in a few centuries we will explore hyper-
space in ways only dreamed about today in science fiction. 

Many creatures in our world, including ourselves, are bilaterally sym-
metric in their exterior form; that is, their left and right sides are similar, 
like the harlequin longhorn beede in figure 6.10. On each side of our bilat-
erally symmetric body is an eye, ear, nostril, nipple, leg, and arm. In 2004, 
paleontologists at the Nanjing Institute of Geology and Palaeontology 
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discovered the oldest example of bilateral symmetry in a rock quarry in 
southern China. The Vemanimalcula guizfiouena, a microscopic creature that 
lived on the sea floor six hundred million years ago, has paired digestive 
canals on either side of the gut. 

6.10 

The harlequin longhorn beetle is a classic example of bilateral symmetry. 

One way to visualize the flipping of objects in a higher space is to con-
sider the squiggly blobs in figure 6.11, which are obviously not bilaterally 
symmetric. They make an enantiomorphic pair because they are con-
gruent but not superimposable without lifting one out of the plane. We've 
discussed enantiomorphs when discussing molecular Mdbius strips. Sim-
ilarly, in our three-dimensional world, there are many examples of enan-
tiomorphic pairs-these consist of asymmetric solid figures such as your 
right and left hands. (If you place them together, palm to palm, you will 
see each is a mirror reflection of the other.) The squiggly blobs in figure 
6.11, like your two hands, cannot be superimposed, no matter how you 
rotate and slide them on the plane. However by rotating the blobs 
around a line in space, we can superimpose one blob on its reflected 
image. Similarly, your own body could be changed into its mirror image 
by rotating it around a plane in 4-space. 

Rotate 

6.11 
The squiggly shape at the left can be superimposed on the squiggle at the right only if 

it is first rotated out of the page into a higher dimension 
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Mirrors in our 3-D world are two-dimensional planes. In four dimen-
sions, figures are mirrored by a solid. Mirrors are always one dimension 
less than the space in which they operate. 

If there were a hyperperson in 4-space looking at our right and left 
hands, to him they would be superimposable because he could conceive 
of rotating them in the fourth dimension. The same would apply to 
Mobius strips with different handedness as well as seashells with clock-
wise and counterclockwise spirals. 

Oddly enough, there are many examples of non-enantiomorphic hands 
on people and gods in ancient artwork. I have never been able to ascertain 
why this is so. Surely, the artists had the capability and insight to see that 
our left and right hands are mirror images. If you look closely, Egyptian 
wall carvings and paintings frequendy depict pharaohs with two left hands. 
This collapse of enantiomorphism also occurs in Mesopotamian art, in 
depictions of the Babylonian god Marduk, for example. 

Mdbius Worlds 
If our entire universe were suddenly changed into its mirror image, 
would we perceive a difference? To answer this question, consider 
"Lineland" inhabited by only three intelligent gazelles: "Gazelle 1," 
"Gazelle 2," and "Gazelle 3," all facing east; that is to say, they are all 
looking to the right (figure 6.12). Although the diagram shows them as 
two-dimensional drawings, assume that they are really one-dimensional 
and cannot leave the line, which is their universe and in which they are 
embedded. If we reverse Gazelle 2, the change will be apparent to 
Gazelle 1 and Gazelle 2. But if we reverse the entire line of Lineland, the 
one-dimensional gazelles would not perceive a change. We higher-
dimensional beings would notice that Lineland had reversed, but that is 
because we can see Lineland in relation to a world outside it. Only when 
a portion of their world has reversed can they become aware of a change. 
The same would be true of our world. In a way, it would be meaningless 
to say our entire universe was reversed because there would be no way 
we could detect such a change. Why is our world a particular way? 

612 
If our entire universe were suddenly changed into its mirror image, 

would we perceive a difference? 
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Philosopher and mathematician Gottfried Wilhelm Leibniz (1646-1716) 
believed that to ask why God made the universe this way and not 
another is to ask "a quite inadmissible question." To get a better under-
standing of Leibniz's comment, consider a two-dimensional Fladand 
teeming with intelligent amoebae. To mirror-reverse the entire Fladand 
universe, all we have to do is turn the plane over and view it from the 
other side! In fact, we don't even have to turn the world over. Consider 
Fladand to be like a vertical ant farm in which the ants are essentially 
confined to a 2-D world. The world is a left-handed world when viewed 
from one side of the glass and a right-handed world when viewed from 
the other. In other words, Fladand does not have to change in any way 
when you view it from one side or the other. The only change is in the 
spatial relation between Fladand and an observer in 3-space. In the same 
way, a hyperbeing could change his position from a 4-D "up" to a 4-D 
"down" and see a seashell with a right-handed spiral become a left-
handed spiral. If he could pick up the shell and turn it over, it would be 
a miracle to us. What we would see is the shell disappear and then reap-
pear as its mirror image. All of this means that enantiomorphic structures 
are seen as identical and superimposable by beings in the next higher 
dimension. Perhaps only a god existing in infinite dimensions would be 
able to see all pairs of enantiomorphic objects as identical and superim-
posable in all spaces. Many other kinds of spatial distortions are dis-
cussed in detail in my book Surfing Through Hyperspace. 

The Three-Torus and Other Magnificent Manifolds 
Both the Mdbius band and the Klein botde are surfaces or, as mathe-
maticians call them, manifolds. More precisely, any object that is nearly 
"flat" on small scales is a manifold. For example, a sphere is nearly flat if 
we magnify a tiny portion of the surface, and this is why some people 
centuries ago believed the Earth was flat. Close up, the Earth does 
indeed look flat, although the ancient Greeks noticed that a ship's mast 
was the last part of a ship to disappear over the horizon. 

The surface of a sphere is two-dimensional, but manifolds can have any 
dimension. A smooth line, even if it curves, is a 1-D manifold because a tiny 
section of the curve looks like a line. The curve has the topology of a line. 
Similarly, a two-manifold has the local topology of a plane. A three-mani-
fold has the local topology of three-dimensional space. 

As we have been discussing, a nonorientable manifold has a path that 
brings a traveler back to his starting point mirror-reversed. The surface 
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of a sphere is an orientable manifold. No path exists on a sphere that will 
mirror-reverse a creature traveling in its surface. 

On a sphere, it's also possible to travel in any direction and return to 
your starting point. You can't fall off the edge of a sphere's surface. Thus, 
a sphere is an example of a manifold with no boundary. The surface of 
a torus or doughnut is another orientable surface with no boundary. On 
the other hand, imagine a cylinder made by taping the right and left side 
of a piece of paper together. This cylinder has two boundaries, one at the 
top edge and one at the bottom. 

Please allow me a litde repetition to help you visualize some of these new 
concepts. Recall that the Mobius strip has a boundary just like the cylinder, 
but it only has one boundary, not two. You can verify this for yourself by 
trying to color one edge of a Mobius paper strip red and the other blue. You 
can't If you trace along the edge you'll eventually return to your starting 
point As discussed, using the Mobius strip as a starting point, we can create 
another nonorientable surface, eliminating the edge by curving the strip so 
that the "apparent" two edges are joined. Alas, you can't really construct the 
new manifold in our 3-D world because it would intersect itself. A higher-
dimensional creature could, however, make the closed surface, which is 
called a Klein botde. All we can do in our 3-D world is make a model for a 
Klein botde which shows a self-intersection at the botde's neck. This is a pro-
jection of a 4-D object into 3-space, just like a circle is a projection of a sphere. 
Unlike the Mobius strip, an actual Klein botde would have no boundary. 

As mentioned in chapter 5, another fascinating nonorientable surface 
is the real projective plane. We can imagine constructing it by looking at 
the square starting shape in figure 5.14 for the Klein botde and twist the 
top and bottom edges in addition to the left and right edges before 
gluing. Another way to model the projective plane is to imagine a hemi-
sphere and connect each point on the rim to its corresponding point on 
the opposite side, but with a twist (figure 6.13). 

The projective plane may be visualized by imagining a hemisphere and connecting 
each point on the rim to its corresponding point on the opposite side, but with a twist. 

A 

613 
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The projective plane is a one-sided surface, like a Mobius strip, but it 
cannot be realized in three-dimensional space without crossing itself. 
Like the Klein botde, the projective plane has no boundary. 

In general, a finite manifold without boundaries cannot be built in the 
same dimension in which its inhabitants live, but it's easy to extend our 
imagination to higher dimensions by reasoning, using analogies of lower 
dimensions. You can imagine taking a piece of paper (which is a two-
manifold with a boundary on all sides) and making a torus simply by 
connecting the right and left sides of the paper and the top and bottom. 
To do this, you'd have to fold the 2-D paper in three space. Similarly, we 
can try to imagine making the same kind of connection with a solid cube, 
which is a three-manifold with a boundary on all sides. Imagine if we 
could stretch the cube to connect the right wall to the left wall. If you 
existed in such an object, you could toss a ball to the right and it would 
roll out at the left if the distance it would have to travel was not too far. 
Now try to imagine connecting the cube's front wall to its back wall and 
its top wall to its bottom wall. If you could perform this kind of con-
necting in a higher dimension, you could create a new manifold called a 
three-torus. This object has no boundary, like a two-torus, and if you lived 
in a three-torus universe, it would seem to be an infinite space. 

Over the years, scientists have suggested all kinds of hypothetical 
shapes for the universe in which we live, including a three-torus. If we 
lived in a three-torus, you could peer out into the universe with a pow-
erful telescope and could, in theory, be gazing in the direction of your 
own back. 

We could also visualize constructing a nonorientable three-manifold 
by recalling that a Mobius strip can be made by connecting the ends of 
a rectangle after we give it a half twist or flip. If we could connect the 
front and back side of a cube after giving one face a half twist, when you 
walked toward the back, you would eventually come out the front 
mirror-reversed. All kinds of crazy universes could be made by con-
necting various walls of the cube with different partner walls, with or 
without twists. 

Scientists continue to ponder the shape of the universe. According 
to Charles Seife in "Polyhedral Model Gives the Universe an Unex-
pected Twist," a team of scientists from France and the United States 
have studied measurements from the Wilkinson Microwave 
Anisotropy Probe (WMAP) satellite and reached a surprising conclu-
sion: the universe might be finite and twelve-sided. Although most 
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astronomers with whom I have talked look on this idea as an exotic pos-
sibility rather than a mainstream theory, I don't think it has been ruled 
out by the data. According to this model, opposite faces of the dodeca-
hedron correspond in unusual ways to each other. In fact, these faces are 
actually the same face so that a spaceship flying out one side of the uni-
verse winds up flying back into the other side. 

To make a finite dodecahedral space, one would glue together oppo-
site faces of a slighdy curved dodecahedron-a shape like a soccer ball 
with twelve pentagonal sides. Of course, such gluing is difficult to 
imagine in our ordinary 3-D space. 

In the spirit of full disclosure, I should note that scientists' theories 
about the shape of the universe change almost every month. In April of 
2004, Frank Steiner at the University of Ulm in Germany suggested that 
the universe is shaped like a medieval horn-a very long funnel. In 
Steiner's model of the universe, technically known as a Picard topology, 
the universe is infinitely long in the direction of the funnel's spout, but so 
narrow the universe has finite volume. 

Multiple Universes 
Today, many of my physicist colleagues ponder big questions, like the 
formation of the universe and the ultimate shape of space. Many cos-
mologists have suggested that the big bang that created our universe is 
just one of many big bangs. Luckily for us, our big bang produced stars 
and planets. Most of the planets in our universe are dead worlds, but 
Earth is notable because it has conditions on which life can evolve. Sim-
ilarly, most of the other universes produced by the big bangs might be 
dead universes because they did not happen to have the conditions that 
permitted stars to shine. Just in the last few decades, increasing numbers 
of cosmologists are starting to accept this idea of multiple universes, that 
is, the multiverse, in part due to superstring theory, which suggests that 
many forms for a universe are possible. 

If an infinite number of random (non-designed) universes exist, ours 
could be just one that permits carbon-based life. Some researchers have 
even speculated that child universes are constandy budding off from 
parent universes and that the child universe inherits a set of physical laws 
similar to the parent, a process reminiscent of the evolution of biological 
characteristics of life on Earth. 

The universes that are "successful" from a cosmological-Darwinian 
perspective are those that produce large numbers of child universes with 
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long lifetimes. For example, if we suppose that the central singularities in 
black holes produce other universes, as some have suggested, universes 
with numerous black holes will be successful. Because many forms of black 
holes take a long time to form, these universes will be sufficiendy long-lived 
to allow for galactic formation and stellar nucleosynthesis (the formation of 
elements in stars that life needs). This means that successful universes auto-
matically have nearly the right characteristics for the appearance of life 
forms (figure 6.14). To put it another way, as the cosmological ecosystem 
evolves, the most common universes are those which produce large num-
bers of black holes, stars, and life-forms. If the speculative scenario of 
evolving universes describes reality, then our universe may not be unusual. 

6.14 Cosmological Darwinism. Researchers postulate that baby universes are 
spawned from parent universes, and the babies also have babies. The children inherit 
similar physical laws from their parents, and "successful" universes have a tendency 
to produce successful offspring Successful universes are long-lived and have many 

children and stars, all of which encourages the formation of biological life. 

If our universe is infinite, as some cosmologists suggest, our visible 
universe is just a tiny portion of the cosmos. What we call the laws of 
nature may be just the laws in our pocket of the cosmos, and other laws 
may reign elsewhere. If our universe is infinite, it is likely that configu-
rations of atoms, by chance alone, mimic those in our visible universe. 
According to astrophysicist Max Tegmark, the number of meters one 
must travel to find an exact copy of yourself, assuming that the universe 
is homogeneous and infinite, is 1010 . In other words, by the laws of 

Intelligent butterflies live here 

Parent Universe 
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chance alone, a configuration of atoms just like yours exists somewhere 
else in an infinite universe. 

Here's another way to look at this. We live in a visible universe easily 
encompassed by a sphere one hundred billion light-years across, with a 
finite number of configurations for the matter and energy contained 
within. Let's imagine our visible universe as a gigantic bubble floating 
within our larger universe. (We cannot see infinitely far because the uni-
verse has a finite age and because information cannot travel faster than 
the speed of light.) If our universe is infinite, as some modern physicists 
believe, then nearly identical copies of our bubble likely exist, and they 
contain a replica of our Earth and of you. According to physicist Max 
Tegmark, on average, the nearest of these identical bubbles is about 10 
to the 10100 meters away. Not only are there infinite copies of you, there 
are infinite copies of variants of you. It is almost certain that right now 
you have red eyes and are kissing someone who speaks Etruscan with 
long fangs in some other bubble. If we accept the notion of an infinite 
universe-which is suggested by modern theories of cosmic inflation-
infinite copies of you exist, altered in fantastically beautiful and ugly 
ways. If you yearn for some lover you can never have in this world, it is 
almost certain you are with this person somewhere else in this universe. 
Be happy. 

We Are Simulations 
In our own region of the universe, we've already developed computers 
and the ability to simulate lifelike forms using these computers and math-
ematical rules. I believe that one day we will create thinking beings that 
live in rich simulated ecosystems. We'll be able to simulate reality itself, 
and perhaps more advanced beings are already doing this elsewhere in 
the universe. Huge supercomputers would have the capacity to simulate 
not just a tiny fragment of reality, but a substantial fraction of an entire 
universe. 

What if the number of these simulations is larger than the number of 
universes? Could we be living in such a simulation? Astronomer and 
philosopher Martin Rees suggests that if the simulations outnumber the 
universes, "as they would if one universe contained many computers 
making many simulations," then it is likely that we are artificial life. He 
notes that this theory allows for "virtual time travel" because the 
advanced beings who create the simulation can rerun the past. Rees says 
the following in his essay "In the Matrix" (or "Living in a Multiverse"): 
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Once you accept the idea of the multiverse, and that some uni-
verses will have immense potentiality for complexity, it's a logical 
consequence that in some of those universes there will be the 
potential to simulate parts of themselves, and you may get a sort 
of infinite regress, so we don't know where reality stops and where 
the minds and ideas take over, and we don't know what our place 
is in this grand ensemble of universes and simulated universes. 

Astronomer Paul Davies in "A Brief History of the Multiverse" has made 
similar observations. 

Eventually, entire virtual worlds will be created inside computers, 
their conscious inhabitants unaware that they are the simulated 
products of somebody else's technology. For every original world, 
there will be a stupendous number of available virtual worlds-
some of which would even include machines simulating virtual 
worlds of their own, and so on ad infinitum. 

Some readers may not be aware of the strides computer scientists and 
biologists have already made in the area of "artificial life," in which life-
like entities with complex behaviors are simulated using simple rules 
implemented in computer software. 

The study of artificial life reminds me of mycology (the study of fungi) 
or myrmecology (the study of ants). Researchers have simulated simple 
life-forms with short life spans, living in simple societies. Professor Tom 
Ray of the University of Oklahoma's department of zoology created 
Tierra, a system in which self-replicating machine code programs 
evolved by natural selection. Although these creatures were very small, 
only a few instructions long, they exhibited many behavioral patterns 
found in nature. Diverse ecological communities emerge when many of 
these and other simulated biomorphic entities interact. These kinds of 
digital communities have been used to experimentally examine ecolog-
ical and evolutionary processes, including host-parasite population regu-
lation, the effect of parasites in enhancing community diversity, 
evolutionary competition, punctuated equilibrium, and the role of 
chance in evolution. 

Other kinds of natural behaviors have been exhibited by Craig 
Reynolds's "Boids"-entities that flock or school like birds and fish. Craig, 
who now works for Sony Computer Entertainment, used only three 
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simple rules to govern the life of the Boids: 1) steer to avoid getting too 
close to neighbors; 2) steer to keep on the average heading of the flock; 
and 3) steer to stay near the average position of the neighbors. Rules 
about goal seeking and obstacle avoidance can be added to allow the 
artificial creatures to navigate through a world filled with objects. The 
resulting behaviors based on these simple rules are remarkable, and it is 
not hard to imagine that simple rules and simulations known as cellular 
automata could develop complex societies of reproducing entities, espe-
cially when millions or billions of the creatures interact in huge worlds. 

Examples of other artificial life-forms include Kevin Coble's Neo-
terics, Larry Yeager's Polyworld, and Karl Sims's multilimbed creatures 
(MCs) that compete with one another. The MC brains are neural nets 
and have several sensors. Through competition, the creatures evolve 
intelligent behaviors that would be hard for humans to actually design 
and build into them. 

The Avida system-a joint project of the Digital Life Laboratory at the 
California Institute of Technology and the Microbial Evolution Labora-
tory at Michigan State University-provides a software platform in which 
digital organisms breed thousands of times faster than common bacteria 
and shed light on some of the biggest unanswered questions of evolution. 
Darwin-at-Home is a planetwide effort to create networked digital 
ecosystems and to recreate the evolution of life on Earth by permitting 
computer creatures to evolve (www.darwinathome.org). The Darwin 
teams hope to observe lifelike evolutionary processes in a virtual or 
robotic space. Their interactive computational platform is distributed 
across a large pool of networked computers, which allows people to 
shape each digital biotic ecosystem. 

One of the most famous and earliest cellular automata life-forms is 
John Horton Conway's game called Life. In this simple simulation, cells 
live or die on a two-dimensional grid of cells when they follow just two 
rules: 1) A cell is turned on (lives) if three of its neighbors are turned on, 
and 2) A cell remains on if two or three of its neighbors are also on; oth-
erwise it is turned off (dies). These simple rules control the birth, survival, 
and death of any cells through time. Sometimes, entities or shapes com-
posed of a collection of cells evolve and move around the checkerboard 
universe while maintaining their overall shape, just like a creature 
moving though a pond. In fact, some forms evolve that are able to main-
tain their shape and spawn other shapes that are then able to "explore" 
the environment, essentially simulating the act of reproduction. If lifelike 

http://www.darwinathome.org
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phenomena emerge using such simple rules, we can expect that certain 
rules executed on checkerboard universes could spawn complex soci-
eties given sufficient time and a sufficiendy large world on which to 
evolve. 

Science fiction author Greg Egan suggests in Permutation City that med-
ical imaging technology will improve, and that by 2020 it will reach the 
point where individual neurons can be mapped and the properties of indi-
vidual synapses measured noninvasively. "With a combination of scan-
ners, every physiologically relevant detail of the brain could be read from 
the living organ-and duplicated on a sufficiendy powerful computer." 

Egan suggests that at first only isolated neural pathways will be mod-
eled: "portions of the visual context of interest to designers of machine 
vision, or sections of the limbic system whose role had been in dispute." 

These fragmentary neural models yielded valuable results, but a 
functionally complete representation of the whole organ . . . would 
have allowed the most delicate feats of neurosurgery and psy-
chopharmacology to be tested in advance In 2024 . . . a Boston 
neurosurgeon ran a fully conscious Copy of himself.. . . The first 
Copy's first words were: "This is like being buried alive. I've 
changed my mind. Get me out of here." 

Measuring the Universe's Shape 
In a previous section, we discussed a NASA satellite known as the 
Wilkinson Microwave Anisotropy Probe that has provided information 
that allows scientists to further speculate on the shape of the universe. 
The satellite records the universe's pattern of heat in the form of faint 
microwave radiation. This radiation is an "afterglow" of the big bang 
itself, and thus paints a portrait of the early universe. If the universe were 
infinite, the remnants of the big bang should appear randomly around 
the sky at all sizes. But, according to the satellite's data, the wave size 
may be limited, with no waves extending more than sixty degrees across 
the sky. If the universe were a symphony, it would be missing its deepest 
notes, produced by the cello, bass, tuba, and bassoon. What are we to 
make of these missing notes? Perhaps they indicate that the universe is 
finite and thus cannot produce waves larger than itself. In such a uni-
verse, astronauts could conceivably travel into space in one direction and 
end up finally returning to their starting points like caterpillars crawling 
on the surface of a ball. 
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Dr. George Efstathiou of Cambridge University believes that the 
Wilkinson satellite data may be consistent with a hypersphere. In this 
instance, fluctuations larger than the radius of the sphere might be damp-
ened, producing the observed cutoff in the radiation pattern. Also, the uni-
verse could be spherical yet so large that the visible universe we observe 
seems flat just like the Earth around us may seem flat, because it's just a 
small patch on a giant sphere. 

If the universe were finite in at least one direction, like a cylinder or 
doughnut, the background radiation pattern would have certain kinds of 
restrictions in those directions. Some researchers have proposed that the 
universe could have been born as a doughnut shape. In a doughnut uni-
verse, which is also an example of a multiply connected universe, light 
can travel from point A to point B by more than one direct path. Scien-
tists I interviewed are divided as to whether the universe is finite or infi-
nite. Some say that an infinite universe is most likely, and, as discussed, 
in these universes, almost anything can happen, including there being 
multiple replicas of each one of us, but with slight changes, like some 
replicas having horns on their heads. Other scientists say that nature has 
an easier time making a finite universe. (Examples of finite spaces 
include surfaces known as "compact manifolds," such as the circle, the n-
dimensional sphere, and the torus. The term "compact manifold" usually 
implies a shape that is closed and doesn't have a boundary.) According 
to Dennis Overbye in "Universe as Doughnut: New Data, New Debate," 
a very likely, and perhaps the simplest, shape for a compact, finite uni-
verse is a 3-torus, a doughnut wrapped in three dimensions. We have 
already described this as a cube whose opposite sides are somehow glued 
together. Or think of a computer screen in which you move your cursor 
off the top of the screen only to have it wrap to the bottom of the screen, 
and cursors moving to the right reappear at the left just as they leave the 
screen. A 3-torus universe is considered a flat universe in the mathemat-
ical sense because, for one reason, the angles of a triangle on its surface 
sum to the usual 180 degrees, as if drawn on a plane of paper. This is not 
true for a triangle on a sphere. Parallel lines never meet on a plane or on 
a torus, but they can meet on a sphere. 

Another way to think about a torus being flat is to realize that we can 
straightforwardly map a plane onto the torus surface. As has been well-
known for centuries, a planar map cannot be mapped to a sphere without 
distortions, and this is why so many world map projects have been devel-
oped in the attempt to make useful maps for our spherelike world. 
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Perhaps the most famous of these projections in the Mercator projection, 
developed in 1568 by Gerardus Mercator, a Flemish geographer, math-
ematician, and cartographer. Alas, this projection causes considerable 
size distortion at latitudes approaching the poles, making Greenland look 
bigger than South America. 

Wolves on Cylinders 
If the notion of flat space and closed space is still confusing you, con-
sider that a flat piece of paper is a model for flat closed space. Roll this 
paper into a cylinder. To see why this space is still flat, imagine a wolf 
walking within the surface of the cylinder. The space is said to be flat 
because the wolf does not rotate as it walks around a closed path, trying 
always to keep its body parallel to its previous position. The space is 
considered closed because a wolf walking along a cylinder eventually 
can come back to itself by walking in a straight line-indicating the clo-
sure of its space (figure 6.15). Similarly, a torus is a flat space. One way 
to visualize a torus is to start with a square, called a fundamental 
domain for the torus. Visualize the square as a flat piece of paper that 
can be rolled up by gluing its right and left sides together. A torus can 
be created by connecting the top and bottom of the paper cylinder 
together. 

6.15 
Wolves In cylindrical (left) and spherical (right) universes. The head of the wolf 

is represented by an arrowhead. If the wolf walks along a closed path on the 
cylinder, its body does not rotate. Despite superficial appearances, this space 
is not considered curved. On the other hand, the wolf on a spherical surface 

experiences a rotation of its body as described in the text. 

Topologists call planes, cylinders, and tori Euclidean spaces. In 
Euclidean geometry, for each straight line and a point off the line, there 
is a unique line parallel to the first that passes through the point. And, as 
we've said, the sum of the angles of a triangle equals 180 degrees. The 
torus is a Euclidean (flat) 2-manifold. If the 3-D space in which we live 
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was toruslike, we would be living in a 3-torus. However, even if we were 
certain that our universe was Euclidean, it could have many different 
forms in addition to the 3-torus. In fact, there are only eighteen possible 
Euclidean 3-manifolds. Of these eighteen manifolds, eight are nonori-
entable; that is, they contain an orientation-reversing loop. If you travel 
through one of these orientation-reversing paths, you might not even 
notice the change until you returned to Earth where all the clocks would 
be running counterclockwise. 

Cosmologists, driven by an insatiable curiosity, scan the sky looking 
for hints that our universe could be nonorientable. In principle, we 
would observe characteristic energy patterns if we lived in such a space. 
So far, these patterns have not been observed. 

Returning our attention to figure 6.15, let us try to better under-
stand why the sphere's surface is a model of closed space, but it is not 
flat. Here's yet another way to distinguish a flat space, in which the 
wolf walks on a cylinder, from a curved space, in which the wolf walks 
on a spherical surface. On the right side of figure 6.15, the wolf 
attempts to walk from A to B to C to A, all the while keeping itself par-
allel to its previous orientation, with its head pointing towards the 
right of the figure. However, when it gets back to A, its head will point 
more in the direction toward C than to B, as it originally did. For 
example, as the wolf travels from B to C, its body gradually begins to 
point upward. (If you find this movement difficult to visualize, many 
interactive demos on the Web exist, such as the one at John Sullivan's 
page, http://torus.math.uiuc.edu/jms/java/dragsphere/.) The space is 
said to be curved because as the wolf walks around a closed path while 
always trying to keep its body parallel to its previous position, its body 
experiences a rotation. It has a nonzero rotation of its head. The cur-
vature of the space is revealed by a process called parallel transport On 
the other hand, the wolf can walk around a cylindrical surface along 
the path shown and return to its starting point with zero rotation of its 
body. So even though a cylinder's surface looks curved, it is not 
curved when considered as a model of space. 

Spherical, Flat, and Hyperbolic Universes 
Cosmologists continue to ponder various possible "shapes" for our uni-
verse. For example, space may have positive curvature and resemble the 
surface of a sphere. The geometry of the universe may be flat or 
Euclidean—or it may be hyperbolic, with a negative curvature that may 

http://torus.math.uiuc.edu/jms/java/dragsphere/
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be crudely visualized by examining the seat of a saddle. Many 
astronomers are considering a flat cosmos because it is closely tied to 
"inflation theory"—a popular conjecture that the universe underwent an 
early period of rapid expansion that amplified random subatomic fluctu-
ations to form the current structures in our universe. In much the same 
way that expansion makes a small region of a balloon look flat, inflation 
would stretch the universe, smoothing out any curvature it might have 
had initially. It is astonishing that we live in an age that all of these con-
jectures will soon be testable with satellites scanning the universe's 
microwave background radiation. For example, in a hyperbolic universe, 
strong temperature variations in the microwave background should 
occur across smaller patches of the heavens than in a flat universe. (See 
Ron Cowen's and Ivars Peterson's 1998 Science News articles in the refer-
ences section.) In a closed, hyperbolic universe, what astronomers might 
think is a distant galaxy could actually be our own Milky Way—seen at a 
much younger age because the light has taken billions of years to travel 
around the universe. Montana State University's Neil Cornish and other 
astronomers suggest that, "If we are fortunate enough to live in a com-
pact hyperbolic universe, we can look out and see our own beginnings." 

It is possible that the universe has a strange topology so that different 
parts of it interconnect like pretzel strands. If this is the case, the universe 
merely gives the illusion of immensity, and the multiple pathways allow 
matter from different parts of the cosmos to mix. In the pretzel-shaped 
universe, light from a given object has several different ways to reach us, 
so we should see several copies of the object. If our universe was a 3-
torus, we'd be able to look out into space and see stars over and over 
again due to the wrap-around nature of the universe. 

Inflation theory, which suggests that the universe underwent a run-
away accelerating expansion early in time, implies that our observable 
universe today is a bubble 156 billion light-years in diameter. (During the 
inflation, what is now the observable universe blew up from a region 
smaller than a proton to larger than a grapefruit in a minuscule 10"3S of 
a second.) The observable universe today seems awfully big, but it may 
only be like a grain of dust floating in a universe trillions of light-years 
across. The notion of a "small" finite universe runs counter to inflation 
theory. And if we accept inflation theory, then we are also likely to 
accept the notion of multiple universes because once inflation starts, it 
reoccurs, spawning a chain of universes, like bubbles within bubbles. 
Inflation produces universes that are flat. 
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I'm often asked, "How could the universe be infinite if it was all con-
centrated into a point at the big bang?" One answer is that the universe 
need not have been concentrated into a point at the time of the big bang; 
perhaps only the observable universe was concentrated into a point. The 
universe could have been born infinite at the big bang. (Here, when I say 
"observable universe," I refer to what in principle could have been 
observed given the finite speed of light.) 

Worlds Close to Ours 
Today, many physicists suggest that there are universes parallel to 
ours, like layers in an onion, and that we might detect them as gravity 
leaks from one layer to an adjacent layer. For example, light from dis-
tant stars might be distorted by the gravity of invisible objects residing 
in parallel universes only millimeters away. Since 1997, scientists at 
the University of Colorado at Boulder have conducted experiments to 
search for these possible nearby universes. These researchers search 
for tiny deviations in Newton's inverse square law of gravity that 
might be caused by matter in parallel universes or in a hidden dimen-
sion. The whole idea of multiple universes is not as far-fetched as it 
may sound. According to a recent poll of seventy-two leading physi-
cists conducted by the American researcher David Raub, 58 percent 
of physicists (including Stephen Hawking) believe in some form of 
multiple universe theory. 

One of the latest and most mind-boggling theories of cosmogenesis 
suggests that all the matter and energy in our universe was created when 
a four-dimensional fragment of another universe wrinkled, floated 
through 5-D space, and then imprinted itself on our universe. Charles 
Seife eloquendy describes what is called the "ekpyrotic model," in Science 
magazine: 

In [effectively] five-dimensional space float two perfecdy flat 
four-dimensional membranes, like sheets drying on parallel 
clotheslines. One of the sheets is our universe; the other a 
"hidden" parallel universe. Provoked by random fluctuations, 
our unseen companion spontaneously sheds a membrane that 
slowly floats towards our universe . . . The floater speeds up and 
splats into our universe, whereupon some of the energy of the 
collision becomes the energy and matter that make up our 
cosmos. 
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Some have likened the ekpyrotic "membrane creator" from the 
hidden universe to the "Spirit of God" in the second line of Genesis, 
which reads, "Now the earth was formless and empty, darkness was 
over the surface of the deep, and the Spirit of God was hovering over 
the waters." The formless, dark, and empty earth corresponds to our 
universe prior to the four-dimensional membrane splat that created 
matter and energy here. The "hovering" corresponds to the floating of 
the membrane. Moreover, the ekpyrotic model suggests that at any 
moment another membrane could peel off, float towards our universe, 
and destroy us all. Some physicists say they already see signs of our 
impending doom presaged by the accelerated expansion of our uni-
verse. The possible doom at our doorsteps, predicted by the ekpyrotic 
model of our universe, also has correspondence with various biblical 
prophecies of apocalypse and the End of Days. Obviously, the idea of 
fitting theoretical physics to biblical passages involves extreme flights 
of fancy, but I enjoy the endless debates and mind-stretching dialogue 
that result. 

We can go even further and think about the wild implications for 
multiple universes and what they say about our power in relation to 
God's. Stanford University physics professor Andrei Linde has specu-
lated that it might be possible to create a new baby universe in a lab-
oratory by violendy compressing matter at high temperatures-in fact, 
one milligram of matter may initiate an eternal self-reproducing uni-
verse (see Rucker reference in references section). What would be the 
economic or spiritual gain we would get from creating a universe, con-
sidering it would be extremely difficult, if not impossible, to enter the 
new universe from ours? Should we be looking for such evidence in 
the values of the Planck length, pi, or the golden ratio? Would God 
care if we created such universes at will? Andrei Linde and writer 
Rudy Rucker have discussed methods for encoding a message for the 
new universe's potential inhabitants by manipulating parameters of 
physics, such as the masses and charges of particles, although this 
would be a precarious experiment given the difficulty of manipulating 
these constants in a way that both codes a message and permits life to 
evolve. 
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<a> Pretze l Transformat ion Puzzle 

One of my favorite transformations, known to aficionados as the pretzel transfor-
mation, involves the conversion of the double-looped structure at the top left of 
figure 6 IB to the structure at the top right without cutting the loops In other 
words, it is possible to unchain the two loops without breaking one of the loops. All 
you have to do is assume that the object is made from a very elastic material so 
that it can be stretched. Here's a hint: start by enlarging one of the two loops. 
(Turn to the solution sections for an answer.) 

Pretzel transformation. Can you transform the linked object at the left into the 
unlinked object at the right without cutting one of the loops? (Obviously, you could 

cut the object as shown at bottom, but that would be too easy1) 

If we lived on a hyper-Mdbius strip, and we peered in front of us, we would see 
the back of someone's head. Ax first, we wouldn't think it could be our head, 
because the part of the hair would be on the wrong side. If we reached out and 
placed our right hand on his shoulder, then he would lift up his left hand and place 
it on the shoulder of the person ahead of him. In fact, we would see an infinite 
chain of people, with hands on each other's shoulders, except the hands would 
alternate from the left to the right shoulders 

616 

Mobius Cosmos 

—Michio Kaku, Hyperspace 
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It may seem that the Mdbius strip ar the bridges of Kdnigsberg are a world 
away from the cosmic connection, but that is not so. Outer space is the testing 
ground for Einstein's theory of curved space and time. It is among the unimagin-
ably powerful gravitational fields of distant astronomical bodies that space is 
buckled and bent, perhaps even torn and joined in Mdbius forms, or more compli-
cated topologies. 

—Paul Oavies, The Edge of Infinity: Beyond the Black Hole 

& Now a team led by Ruth Ourrer of the University of Geneva in Switzerland has 
an explanation [as to why we move about in a 3-D universe]. The idea is that the 
cosmos once included branes with up ta eight dimensions, floating about at 
random in a nine-dimensional space. In their model, this 9-D space has the form 
of a torus, or doughnut, with each dimension circling back an itself 

—Stephen Battersby, "How 3-D Space Survive the Great Destruction," 
New Scientist 

Homer, your theory of a donut-shaped universe is intriguing 
—Stephen Hawking to Homer Simpson in The Simpsons 

episode "They Saved Lisa's Brain," 1999 



C H A P T E R ? 

G A M E S , M A Z E S , A R T , M U S I C , 

AND A R C H I T E C T U R E 

To put it bluntly, Mobius was a bit of a plodder; but when Mdbius plodded, 
he plodded with diligence, elegance, and imagination. He never stopped, 
and he got places. His great talent was sorting out other people V ideas and 
seeing them cleariy-ofien more clearly them their creators had done. 

-Ian Stewart, "Mdbius's Modern Legacy," in Mobius and His Band 
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Although many recreational and academic mathematicians are familiar 
with the role Mobius strips play in topology and are familiar with some of 
the mathematical properties of these remarkable bands, I find that most 
people are unaware that this nineteenth-century loop has an interesting 
role today in literature, art, music, and even games. Various fun and 
fiendishly difficult games have been devised and played on Mobius strips, 
Klein botdes, and tori. While writing this book, I've enjoyed playing with 
tic-tac-toe games, mazes, crossword puzzles, word searches, jigsaw puzzles, 
and chess-each on tori, Mdbius strips, and Klein botdes. The Web con-
tains various computer versions to help players manipulate playing 
pieces and boards in these strange games. I should point out that playing 
games on nontraditional surfaces is not just a recreational pastime, but 
the games allow both mathematical novices and experts to better under-
stand the properties of the surfaces and thus deepen their knowledge. 

To whet your appetite, consider figure 7.1, which is a maze played on 
a torus; the top and bottom of the figures are connected as well as the left 
and right sides. Your objective is to start at S, travel through the maze, 
and finish at E. For example, starting at S, you can move up toward the 
1 and then continue on the path marked 1 at the bottom of the maze. Try 
to visualize that the ends of the paper are glued to form the torus and that 
the path is "connected." The solution is provided in the solutions section. 

# , * * 

?l 
Maze played on the surface of a torus 
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Figure 7.2 is trickier to visualize because this maze is solved on a Klein 
botde, which can be modeled by gluing the left and right sides of the 
maze together as you would a torus; the top and bottom are glued with 
a twist. Thus, in this Klein maze, a is connected to a, c to c, and b to b. 
Your goal is to travel from S to E. 

n 

n 
i 

1 1 

1 
1 1 

1 
1 
1 M 

c 

r 
7.2 

Maze played on the surface of a Klein bottle. 

Mobius Mazes 
The first patented Mobius maze that I uncovered is in the form of an 
intriguing toy invented by David O. McGoveran of Boulder Creek, CA 
(U.S. Pat. patent 6,595,519, issued 2003). As you can see from figures 7.3 and 
7.4, the objective is to get a marble in and out of a hole in a Mdbius strip sur-
face. Figure 7.4 shows the channel in which the marble travels. The channel is 
enclosed by a transparent piece of plastic to hold the marble in the maze. 
David explains that a puzzle using a Mobius topology and three-dimensional 
construction makes solving the maze more challenging by "preventing the 
player from seeing all possible layouts at any one time, as the internal and 
external surface are both contiguous and identical." 

One of the first 3-D Mdbius maze toys ever developed and sold on 
the Internet is the "Moby Maze," designed by M. Oskar van Deventer of 
the Netherlands (figure 7.5). To solve the Moby Maze, you must push the 
outer ring along a set of tracks carved into the Mobius strip in order to 
finally remove the ring from the loop. The solution is not too difficult to 
uncover; however, playing with this puzzle is very satisfying and graph-
ically illustrates the one-sided nature of the Mobius strip. 

Oskar tells me that the Moby Maze was very difficult to build because 
the three-dimensional modeling program used to design the puzzle 
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cm 

Joined Ends 

FIG. 4 
7.3 

A patented marble maze played on a Mobius strip (U S. Pat 6,595,519). 

.16 

?A 
A close-up of the track in which the marble travels in the Mobius maze 

(U.S Pat 6,595,519). 

became confused with the idea of a three-dimensional object having only 
one side. Oskar managed to "convince" the program that such an object 
was possible and worthy of building. The puzzle is available for purchase 
at George Miller's Puzzle Palace (http://puzzlepalace.com). 

To better understand the puzzle, note that the notch at the right side 
serves both as entrance and exit. The strip has obstacle walls on its 
surface along both "sides." The topology of the maze includes one 
360-degree loop, two dead-end paths, and a long entrance/exit path. 
This maze may appear simple, but most people get confused by the 

http://puzzlepalace.com
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Moby Maze, designed by M Oskar van Devemer of die Netherlands. To sofve the Moby 
Maze, you must push the outer rlnganiurtd the MfiHus uaek. 

topology of the object and continue traveling round and around, 
seemingly lost forever. The solution involves making a U-tura at the 
correct location, which is counterintuitive to most people who try to 
solve the puzzle. The schematic drawing in figure 7.6 shows the 
topology of the maze paths without the two dead ends. 

7.6 
Schematic figure o* the Mofcy Maze, higNrghting the overall tepdogy of the maze. 

C h e s s 
When playing a game of chess on a Mobius board like the one shown 
with the starting configuration in figure 7.7, all kinds of surprises can 
arise. For example, pieces like the pawn in figure 7.7b can be attacked 
by pieces on the other "side" of the board. In other words, landing 
"underneath" a piece captures it as well as landing "on" i t The configu-
ration in figure 7.7c shows how the pawn does not necessarily protect the 
knight, because the rook may travel in the opposite direction and end up 
beneath the knight. 
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If any readers have played Mobius chess, I would be interested in 
hearing any observations they might have. 

Perhaps one of the most fertile grounds for Mdbius chess research 

_ B 

LI U LI U 
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(b) 

(c) 
?? 

Chess played on a Mdbius band, (a) Possible starting configuration, (b) In Mobius 
chess, either knight can attack the pawn, [c] In this configuration, the pawn does not 
necessarily protect the knight because the rook may travel in the opposite direction 

and end up beneath the knight. (Drawing by Brian Mansfield.) 
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involves the knight's tour on a Mobius board. An ordinary knight's tour is 
one in which a chess knight jumps once to every square on the (8 x 8) chess-
board in a complete tour. Before discussing Mobius boards, let's review what 
is known about standard chessboards. The earliest recorded solution of the 
knight's tour problem is that of Abraham de Moivre (1667-1754), the French 
mathematician better known for his theorems about complex numbers. 
Note that in de Moivre's solution (figure 7.8), the knight ends his tour on a 
square that is not one move away from the starting square. The French math-
ematician Adrien-Marie Legendre (1752-1833) improved on this by finding 
a solution in which the first and last squares are a single move apart, so that 
the tour closes up on itself into a single loop of sixty-four knight's moves 
(figure 7.9). Such a tour is said to be reentrant Not to be outdone, the Swiss 
mathematician Leonhard Euler (1707-1783) found a reentrant tour that 
visits two halves of the board in turn (figure 7.10). (The little squares show 
positions where the knights transit from one half to the other.) 

8 0 
til 

± ± 7 f > 

H i 
L ' « J 

s a t i 
a s s 

D e Moivre 
?8 

De Moivre's knight'stour 

Legendre 
?.9 

Legendre's knight's tour 

I T ^ P r n ^ r n 4 ! 
Euler 
?.10 

Euler's knight's tour. 

The knight's tour can be created on boards of size five or greater 
(figure 7.11). The tours shown on the 5 x 5 and 7 x 7 board, are not reen-
trant. Do you think a computer will ever find a reentrant tour on a huge 
2,001 x 2,001 board? 

To answer the "2,001 question," consider that a reentrant tour must 
visit equal numbers of black and white squares. On a 5 x 5 o r 7 x 7 board 
(or any board with an odd number of total squares) a reentrant tour is 
therefore not possible. 

What about knight's tours on Mobius strips and Klein botdes? Pro-
fessor John Watkins of Colorado College is the leading expert on chess 
games played on Mdbius strips and Klein botdes. In his book Across the 
Board, he theorizes that every rectangular chessboard has the potential 
for a knight's tour if placed on a Klein botde. 
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The knight's tour can be created on boards of size 5 or greater. 
Shown here are order 5,6, and ? boards. 

An tn by n chessboard on a Mobius strip with m rows and n columns-
the rows wrapped around the Mobius strip-has a Knight's tour unless 
one of more of the following three conditions hold: 

(a) m= 1 and n> 1; or n = l and m = 3, 4, or 5 
(b) m= 2 and n is even, or m = 4 and n is odd 
(c) n = 4 and m = 3 

According to Watkins's convention, when a knight moves around the 
board and returns upside down on the "other side," this is considered the 
same square as the starting square. Because the Mobius strip is a 2-D 
surface, we must think of chess pieces as 2-D objects moving inside 
the surface of the strip. 

Watkins is also fascinated by domination of chess pieces on Klein 
botde chessboards. Domination refers to a configuration of chess pieces 
in which every vacant square is "under attack." As an example, five 
queens are required to dominate an 8 x 8 chessboard, and there are 
exacdy 4,860 different ways that these five queens can be arranged so as 
to dominate the board. There are exacdy six ways that two rooks can be 
arranged to dominate a 2 x 2 chessboard, and there are 33,514,312 ways 
in which eight rooks can dominate an 8 x 8 chessboard. 

Figure 7.12 shows how eight kings can be used to dominate a 7 x 7 board 
on a Klein botde. Here, the right-hand side of the board connects to the left 
with a twist, and the top and bottom connect without a twist In general, an 
n x n Klein botde chessboard can be dominated with [(1/3) x (n + 2)]2 - k 
kings if n is of the form n=6k+ 1. This domination occurs on a Klein botde 
with k fewer kings than on a regular chessboard. More generally, the 
number of kings required for domination of an n x n Klein botde is 

(l/9)n2 for n=3k 
(l/3)(n+1)2 for n=3k+2 
[(l/3)(n+2)]2 for n=6A: + l 
[(l/3)(n+2)]2-( 1/6)(n+2) for n=6k+4 
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?12 

Kings dominating a ? X ? chessboard on a Klein bottle. The arrows indicate the sticky 
edges of the chessboard. Arrows in reverse directions indicate that corresponding 

edges are twisted before gluing. 

The fact that amateur and professional mathematicians spend 
their days contemplating chess domination is interesting enough, 
but w h e n they devote their hours to studying and even playing on 
Klein-botde-shaped chessboards, one wonders what else in their lives 
they enjoy doing in nonstandard ways. 

Watkins also tells us that the king's domination number on a Klein 
botde for a rectangular m x n chessboard is given by: 

y ( K ^ = | f l • [¥| - [ ¥ l m= 1, 2, 3 mod 6 
j ( « S £ ) = [ f | • |¥], m= 4, 5, 6 mod 6 

The open bracket symbols, \ and ], represent the ceiling function which 
rounds up to the nearest integer. 

To understand the domination of bishops on a Klein botde chess-
board, examine figure 7.13. Consider a bishop that starts near ton the left 
side. It moves up to a, goes off the board at a, reappears at the bottom, 
continues on to b, where it goes off the board again, and then—because 
of the twist in the Klein botde-it reappears on the left at b and is now 
moving down. The minimum number of bishops for domination of an 
n x n chessboard on a Klein botde is given by: 

>(£!£?)=[in] 
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?.13 
A bishop's diagonal on a Klein bottle. 
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Figure 7.14 shows one way in which five bishops can dominate a Klein bottle. 

/ \ / \ 
\ \ A / / 

\ \ / / \ X / 
-X A X -

/ X s / / A s k / / s k 
\ / A \ ? 

?14 
Five bishops dominate a 9 x 9 chessboard on a Klein bottle. The lines drawn across 

the board indicate squares dominated by the second bishop from the top. 

Knight's tours on ordinary cylinders are also possible. To visualize 
this, we can flatten and cut the cylinder so it looks like a rectangle, place 
"ghost copies" of the basic rectangle at each end, and pretend the corre-
sponding cells are the same as those in the original rectangle. The knight 
may then move off the edge and onto a ghost, provided it is immediately 
replaced at the corresponding position of the original rectangle. Tours on 
a 2 x n cylinder or Mdbius band are possible only when n is odd. Tours 
on a 3 x n and 5 x n cylinder are always possible using a simple repet-
itive pattern. The height of such a cylinder can be any number of the 
form 3a¥5b, which includes all numbers except 1, 2, 4, and 7. Even more 
curious is the fact that several such cylinders can be joined edge-to-edge, 
and the tours may be combined across the boards by breaking them at 
suitable places and rejoining them (figure 7.15). 

It is known that tours on a 4 x 4 torus exist. If a tour is possible on 
an m x n rectangle arranged in the form of a cylinder, it must also be 
possible on a torus and a Klein botde of those dimensions. 

Mobius Art Gallery 
The Mobius strip has been the basis for coundess forms in paintings, 
etchings, and sculptures. In this section, I present a large international 
gallery of Mobius and knot forms from artists, designers, mathemati-
cians, and physicists. To start our collection, consider figure 7.16, a con-
temporary model called "Mobius Stairs," made by British artist Nicky 
Stephens (www.nickystephens.com). Notice the smooth twists and turns 
on the railing so that the top surface becomes the bottom and vice versa. 
Three flights of continuous, laminated handrails, supported on ham-
mered copper spindles, twist around carved ash posts. Stephens says, "I 
wanted the handrail to be as fluid as possible, inviting the users to follow 
its twists and turns with their hands." 

http://www.nickystephens.com
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Knighfs tours of cylinders. {») A 3 x nched<ert»ardon acylirnder. [b] Toiwscan be 
visualized by adding'ghosts" en the eods. (c) Tours on several cylinders of different 

sizes cen be Joined together by changing the links in a suitable parallelogram 

C o r r e s p o n d i n g cells 

Mobius stairs by British artist Nicky Stephens. 
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Robert J . Krawczyk and Jolly Thulaseedas of the Illinois Institute of 
Technology in Chicago have considered using the Mobius band as a 
theme for an entire building. However, how could one build a walkway 
around a Mobius band building? At some point in your traversal, the 
walkway's twist would require you to walk upside down! One way 
around this problem is to create a building that is a hollow Mobius enclo-
sure, with a floor or path suspended within i t 

Several countries have recognized the mystery and majesty of Mtfbius's 
works by honoring the Mttbius strip on postage stamps. There must be 
many Bans of the strip in Brazil; I was able to find three Mtibius stamps 
from this nation. Figure 7.17 is ft stamp that commemorates the sixth 
Brazilian Mathematics Congress in Rio dejanerio in 1967. Figures 7.18 
and 7.19 show additional Brazilian stamps of more recent vintage. Figure 
7. IS is especially interesting because collectors of mathematical postage 
stamps refer to this object as a Mobius strip, although it appears to me to 
have two sides. What do you think is the significance of this object? 

71? 
Mobius stamp, ccmmemcfBting the sixth Brazilian 
Mathert̂ icsCccigresain Riode Janeria m 19S? 

?18 ?.19 
Brazilian Mflbius stamp. Brazirac Mobius stamp 

Figure 7.20 shows a 1969 Netherlands stamp with a MtJbius band flat-
tened to a triangle. An almost identical stamp was issued by Belgium at 
the same time. 
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?.20 
Netherlands stanf wtdi a Motrins band flattened to a triangle. 

Figure 72J is a Swiss stamp that is part of an annual series of "Europa 
stamps* that was started in 1957 to emphasize European unity. The stamp 
series continues today. Each set of stamps has a theme, like "vacation" and 
"gastronomy" In 1974, the theme was Swiss sculpture, and the design on this 
particular 1974 stamp represents a sculpture by artist Max Bill (190&-1994). 
A form similar to the one on the stamp is Bill's 1986 sculpture Kontintatitt 
{Cmtimril$> which sits outside Deutsche Bank's Frankfurt headquarters. 

Swiss Mobius stamp featuring the work of sculptor MaK SI 

Bill's granite sculpture at the Deutsche Bank is 4 1/2 meters high and 
is one of his last works. The sculpture depicts the Mobius strip, a motif Bill 
had explored since the early thirties. Bill took an almost obsessive interest 
in the Mobius strip, thereby influencing an entire generation of Swiss 
artists. A huge crane was used to lower this particular eighty-ton sculpture 
in front of the bank. 

Other Mdbius strip sculptures decorate buildings and plazas around 
the world. A stainless steel Mdbius strip, eight feet in diameter, casts a 
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tangle of silver reflections in a pool atop Fermilab's Ramsey Audito-
rium in Batavia, Illinois. A bronze sculpture is installed near an 
entrance to the Science Center at Harvard University in Cambridge, 
Massachusetts. Washington, D.C., overflows with beautiful Mobius 
sculptures. One stainless steel sculpture rests atop a pedestal in front of 
the National Museum of American History. Another lures visitors to the 
entrance of the National Air and Space Museum. Even the plaza in 
front of the U.S. Patent and Trademark Office in Arlington, Virginia, 
flaunts a Mobius strip made of steel that was painted red. Many of these 
majestic sculptures are thickened variants in which the "strip's" cross 
section is essentially an equilateral triangle that is rotated 120 degrees 
along the strip. 

As mentioned in this book's introduction, Dutch artist Maurits Cor-
nells Escher had a strong penchant for the Mobius strip, which appears 
in several of his lithographs, including Mobius Strip I (wood engraving in 
four colors, 1961) and Mobius Strip II (Red Ants) (wood engraving in three 
colors, 1963). Even though the pairs of ants in the lithograph seem to be 
opposite each other, they all exist on the same plane because the Mobius 
strip has, as we know, only one surface. In Mdbius Strip /, we see a single 
bisected band in the form of three fish, each biting the tail of the fish in 
front. Artist Brian Mansfield has been inspired by Escher's work on 
Mobius strips and has created his own Mobius forms (figures 7.22 and 
7.23). Brian creates numerous Mobius worlds inhabited by robots and 
other mechanical beings. He is currendy working on more complex 
inhabited, mechanized worlds in the form of Klein botdes, higher-dimen-
sional nonorientable surfaces, and "triply periodic minimal surfaces that 
have the tetragonal disphenoid as their kaleidoscopic cell" and "Schoen's 
Manta Surface of Genus 19"—a gorgeous surface that resembles the body 
of a stingray fish! 

In figure 7.23, the Mobius strip allows the robots to travel from one 
apparent side to the opposite side, representing cycles of creation and 
destruction, life and death. It is a world in which solenoids and electronic 
brains may be recycled. According to Mansfield, the robots are self-
organizing entities that symbolize the evolution of artificial life-forms that 
explore endless cycles of metamorphosis. The robots eventually merge 
into a vast hive mind by the year 2130. 

LEGO fanatic Andrew Lipson has created numerous Mobius strips 
and related knots and surfaces using LEGO pieces. To generate these 
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7.22 
"A Mobius Dr. Mobius" by Brian Mansfield. 

7.23 
Mobius strip with robots by Brian Mansfield. 

works of art, Andrew writes computer code to guide his creation of the 
overall shape. He experiments with parameters in the code until he envi-
sions an object that looks attractive and that also has a high probability of 
being able to balance. 

Figure 7.24 is Upson's LEGO Mobius strip with litde men walking on 
its surface. Figure 7.25 is a LEGO figure eight knot, a knot that we dis-
cussed in chapter 2. The figure eight model was among his most difficult 
sculptures due to the long sweeping curves that hang unsupported in 
space. Figure 7.26 is a LEGO Klein botde in which the handle penetrates 
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724 ?.?5 
L£GD Mflbius strip, ©Andrew Lipscn. LEJGO figi*T3 ei£rt knol, © Andrew Upson 

~ - ^ m m 

7.2& 

LEJGO Klein bottle, ©Andrew Lipson 

727 LEGO Klein bottle cross section, © tadrew Lipson 
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the main wall of the bottle, as shown in the LEGO cross section in figure 
7.27. Upson's cross-sec tic aa model actually hinges open so that you can 
see what he calls the Klein bottle's "digestive tract" He changed the 
color of the bricks at the top and bottom to emphasize the intersection 
where the tubes cross. As we have already seen in figure 6.3, each half of 
the bottle is topologically a Mobius strip. 

People on the Web offer all kinds of recipes for creating Mdbius 
strips and clothing. For example, New Jersey computer scientist Mark 
E. Shoulson describes a way to knit or crochet a MObius atrip with no 
seams. His site also features him wearing a Mobius atrip yarmulke on 
his head. 

Figure 7.28 is a still image from physicist Michael Trott's computer anima-
tion showing interlocked gears that turn along the length of a M&bhis strip. 
The gears are arranged in two circles to allow the "first" and the last" gear to 
be in sync. Trott holds a Ph.D. in theoretical solid state physics from the Tech-
nical University of Dmenan, Germany, and has been a staff member at Wol-
fram Research since 1994. He is the author of the four-volume Maihematka 
GuideSook for Graphics and is widely regarded for his encyclopedic knowl-
edge of mathematics and nearly every facet of the Mathematica system. 

?.28 
Mflbius gears,© MchaelTirott, reproduced with permission. Adapwd froni Sdutiori 15c 

of Michael Trout's hiathemctko GuidtBoak for Graphics [Springer, 2004). 

Computer programmer and digital sculptor Tom Longtin has also 
experimented with artistic renditions of Mobius strips involving gears, tre-
foil knots, and combinations of Mobius strips and trefoil knots. His works 
are seen in figures 7.29-7.34. Most of these images were created using 
Tom's own modeling software and rendered using a software package called 
Render Man on an SGI computer. Computers indeed provide a powerful 
means of artistic expression. Tom's Web site, www.sover.net/ - dongtin/, has 
additional examples. 

Although figure 7.2f> appears to be rather complex, it still retains the 

http://www.sover.net/
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Mobius strip character. If one takes a strip of paper, twists one end 180 
degrees relative to the other (a half torn) and glues the ends together, then 
all the teeth profiles in this figure could be drawn upon the surface and the 
spaces cut out. Figure Z30 represents a strip of paper that has been twisted 
540 degrees (three half twists) before being formed into a knot and having 
its ends glued together. Once Tom creates this basic motif, he cuts holes 
through the strip, which retains the original topology of both a trefoil knot 

?.30 
. _ Mobius and trefoil knot with £ear$ MSbrtJs ̂ r s by Tom Lorain b y Tflm 

Z31 
Mobius and trefoil knot puzzle by Tom Longtm 
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724 
Mflbius-like object frftb holes by Tom Longtin and fiinus Roekrfs. 

and a Mobius strip. Figure 7.31 is made by giving a strip of paper three half 
twists and then forming a knot by connecting the ends. This, too, is both a 
Mobius strip and trefoil knot Figure 7.32 is an exploded view of puzzle 
pieces showing how they would fit together in a Mfibius strip. Figure 7.33 is 
a classic trefoil knot with hexagonal puzzle shapes drawn upon the surface. 
Figure 7.34 shows a Mtfbius strip with holes. In this peculiar arrangement, 
a Mobius strip is wrapped onto itself. In an ordinary paper Mobius strip, 
we would travel once around while twisting 180 degrees. This one requires 
two trips around to twist 180 degrees. Like a traditional Mobius strip, this 
form had one side and one edge before it was punched with holes. 
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737 
M<jb*JS strip and knot fc«j Rob Sctarein 

Rob Scharein, a researcher who develops educational software for 
visualization in mathematics and science, combines his k>ve of art and 
mathematics when creating the knotted and linked Mobius strips in fig-
ures Z35-Z3Z 
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All of the ribbons in these plots are Mobius-like (Le., nonorientable 
surfaces). Scharein uses his custom-designed software KnotPlot to pro-
duce these plots, and he encourages readers to experiment on their own 
with his software, which you can download for free from the KnotPlot 
Web site (www.pimsjmath.ca/knotplot/). Among other things, he uses his 
software to check that the strips are all nonorientable, as he doesn't want 
to verify by eye some of his more complex knots! Rob is also one of the 
world's leading experts on visualizing extremely complex knots, such as 
those shown in 7M and 7.39. 

238 
Complicated krot by RobSdiarain. 

?.39 
Complicated km* by foob Stfiarein. 

http://www.pimsjmath.ca/knotplot/
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Teja Krasek, a well-known Slovenian artist, spends her time creating 
Mdbius strip sculptures adorned with Penrose tiles (figure 7.40). This pat-
tern of tiles, discovered by English mathematical physicist Roger Pen-
rose, can completely cover an infinite surface, but only in a pattern that 
is aperiodic (nonrepeating). In other words, the tiling pattern does not 
repeat periodically like the hexagonal tile patterns on some bathroom 
floors. When tiling the Mdbius band, Teja uses two different tiles shapes, 
each having four sides of the same length. In particular, one rhombus tile 
has four comers with the angles (72,72,108,108) degrees, and the other 
has angles of (36, 36, 144, 144} degrees. When forming the Penrose 
tiling, ix) two tiles can touch so as to form a single parallelogram. Given 
this restriction, an infinite number of ways exist to tile an infinite plane 
and still leave no gaps in the tiling. The resultant pattern will always 
be aperiodic so that the pattern never repeats exactly. Scientists are 
aware of numerous real-world quasicrystals whose atoms are arranged 
in the same pattern as a Penrose tiling. 

?40 
Penrose til ing on Mobius strip. Sculpture by Teja Krasek 

Naturally, the challenges of forming a Ftenrose tiling on a Mdbius strip 
are many for Teja. For example, she must ensure that tiles perfectly join 
as the two "ends'" of the strip meet in the final, single-sided object. Addi-
tionally, Teja designed the tiling so that the apparent triangular segments 
that touch the edges of her sculptures would form the appropriate 
rhombi if the two edges were attached. Yet another challenge involves 
her coloring the Penrose Mdbius strip using only three colors. In 2000, 
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mathematicians Thomas Sibley and Stan Wagon proved thai a planar 
configuration of such tiles can be colored using only three colors in such 
a way that adjacent tiles receive different colors. 

When Teja creates these sculptures, she starts by drawing or printing 
patterns on paper in both their original and mirror forms. When the tiles 
are finally glued to the strip, she must stick the same tile on both "sides" 
of the strip so that the colored tiles on one side occupy the same position 
and have the same color as on the "reverse" side. She is currently 
working with translucent materials that enable a single tile to be viewed 
on either side, which saves her both work and her sanity. Additional 
examples can be found at her Web site, http://tejakra5ek.tripod.com. 

I should add that T^a's Christmas tree is always decorated with the most 
beautiful, shiny, silver and gold Mtibhis strips I have ever seen {figure 741). 
The strips glisten with sparkling stars along their surfaces, and the tree is 
enough to warm the heart of any romantic mathematician. Teja reminds me 
that we do not need any strings to secure MSbhifi ornaments to the tree 
because they hang on the branches through their centers. 

1 j 

A -
?.41 

Silver and goW Mtibius Christmas tree ornaments by Teja Krasefc. 

For a 2005 snow-sculpting competition held in Breckenridge, Col-
orado, a team of sculptors rendered a split, triply twisted Mobius strip 
designed by computer scientist Carlo H. Sequin of the University of Cal-
ifornia at Berkeley (figure 7.42). In addition to Sequin, the snow-carving 
team consisted of mathematicians Stan Wagon of Macalester College in 

http://tejakra5ek.tripod.com
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SL Paul, Minnesota, John Sullivan of the Technical University of Berlin, 
Dan Schwalbe of Minneapolis, and Richard Seeley of Silverthorne, Col-
orado. The sculptors started with a 10' x 10' x 12* snow block and spent 
the first two days simply removing half of the twenty tons of snow in 
their block to obtain a rough approximation of a triply twisted band. 

7.42 
"KrovDrvicted," snow sculpture by Team Minnesota, Breckenridge, Colorado, ZDD5 

lOe^gn- Carlo H S^u in , UC Berkley; photo by Richard Seeley) 

Mdbius Music 
As we discussed in chapter if you were to travel within a Mdbius uni-
verse, you would return to your starting point with your left and right 
sides reversed. Travel around the strip again, and you'll return to your 
starting point with your organs back to their standard orientation. Simi-
larly, Mdbius music can be created by pasting a musical score to a 
Mdbius strip. The music is played as usual the first time around. When 
the musician has arrived at the starling point, the music is played again 
but with some geometrical variation. For example, the second time 
around the score may be mirrored or played upside down. 

Johann Sebastian Bach wrote Mdbius-like music such as his Crab 
Canon, in which the musician can play from start to finish and then flip 
the musical score upside down and play it again. Austro-Hungarian 
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composer Arnold Schoenberg, several centuries later, experimented 
with crab canons, which he called "mirror canons." 

Although Schoenberg was a musical genius from an early age, some 
of his more unusual works were not well received. When his Chamber 
Symphony no. 1 was played in a 1913 concert, the audience booed. 
Later in the concert, during a performance of some songs by Austrian 
composer Alban Berg, fighting broke out, and the police were called to 
keep the peace. 

Schoenberg, who was an excellent painter, was also superstitious and 
feared the number thirteen. In fact, he tided one of his operas Moses and 
Aron rather than Moses and Aaron, deleting an a because the correct 
spelling had thirteen letters. 

Russian-American composer and linguist Nicolas Slonimsky was 
direcdy inspired by the Mobius strip. Two singers and one piano player 
first performed his "Mobius Striptease" in 1965 in Los Angeles. Here are 
some of the lyrics from the piece: 

Ach! Professor Mobius, glorious Mobius 
Ach, we love your topological, 

And, ach, so logical strip! 
One-sided inside and two-sided outside! 

Ach! Euphorius, glorius Mobius striptease! 

The instructions on the score read, "Copy the music for each per-
former on a strip of 110-b card stock, 68" by 6". Give the strip a half twist 
to turn it into a Mobius strip." The song was, in essence, a perpetual 
vocal canon written on a Mobius band to be revolved around the singers' 
heads during the performance. 

Nicolas Slonimsky (1894-1995) came from a long line of Jewish 
intellectuals on his mother's and father's side. His relatives and fore-
bears included novelists, poets, literary critics, university professors, 
translators, chessmasters, economists, mathematicians, inventors of 
useless artificial languages, Hebrew scholars, and philosophers. 
Slonimsky always had big ambitions and as a teenager wrote his own 
future biography, in which he speculated (inaccurately) that he would 
die in 1967. 

In 1945, Slonimsky became a lecturer in Slavonic languages and lit-
eratures at Harvard University. His musical compositions focused on 
odd structures, and some songs were set to text from tombstones. His 
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orchestral work My Toy Balloon (1942) was a variation on a Brazilian song, 
the score of which included the instruction that one hundred colored bal-
loons be exploded at the climax. He wets also famous for his "grand-
mother chord" containing twelve different tones and eleven different 
intervals. 

Today, several musical groups have "Mobius" in their names. The 
Mobius Band from Massachusetts is a contemporary musical trio that 
uses traditional instruments (guitar, bass, drums, and voice) and modern 
electronic ones (synthesizer, sampler, and electronic percussion). The 
Mdbius Band should not be confused with Mobius Donut, an Oakland, 
California, musical group heavy on melody and groove. Korean musi-
cian Jo Yun fromjaeju Island used multiple synthesizers and an acoustic 
guitar to produce his CD tided Mdbius Strip. The album opens with the 
clanging of church bells, which morph into a tribal rhythm with drums. 
The back cover of the album has four separate flaps, each having a pic-
ture of a peacock feather. 

Musician Peter Hammill's song "The Mobius Loop" has lyrics such as 
"Indecision and uncertainty catch you now. . . . How you're gonna take 
sides now you're on the Mobius loop?" Infinity Minus One, a hard rock 
and metal band from Boston, recorded their first CD, Tales from the 
MSbius Strip in 2002. Their music has diverse influences, including rock, 
metal, film scores, and video games. 

o> Cutting Devil Configurations 

Figure 7.43 shows three paper-strip constructions involving twisted "arms" and a 
hole. What do you think happens when you cut around the center hale of these 
figures along the dotted line? The first configuration has one twisted connector, 
the second has two half twists in the same direction, and the third diagram 
shows an object that has two half twists in the opposite direction. To help visu-
alize the configurations, try to create the strips with poper ond actually perform 
the experiments. The easiest way to create the models is to cut two oval regions 
as shown in figure ?.44. The dashed lines are the guidelines for cutting. To form 
the closed loop, simply tape the ends together with the desired number of half 
twists. 

Can you predict what will happen if you cut along the dotted lines in the two 
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?.43 
What happens when you cut around the center hole along the dotted line? 

?.44 Constructing the devil configurations. 

shapes in figure P.45? Here, we construct two loops of the same length and width. 
In one configuration, one of the arms has a twist. You can create these figures by 
cutting a piece of paper into an X shape and then gluing the arms together. 

?.45 What happens when you cut along the dotted lines? 
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Mdbius Strip in Psychology and Human Relations 

Memory for the survivor, he said, is like a Mdbius strip. Past, present and future 
are connected and the experiences situated anywhere on the loop are accessible. 
In therapy, we have the opportunity to ride that loop, touch past experience and 
relate it to the present. In other words, we can be topographers of our own lives. 

—Marjorie Levenson, "The Mdbius Strip" 

Langdon smiled. "You must be a teacher too." 
"No, but I learned fram a master My father could argue two sides of a Mdbius 

strip." 
Langdon laughed, picturing the artful crafting of a Mdbius strip—a twisted ring of 

paper, which technically possessed only one side. 
—Dan Brown, Angels and Demons 

With striking imagery, Rilke offers us a mystic's map of wholesomeness, where 
inner and outer reality flow seamlessly into each other, like the ever-merging sur-
faces of a Mobius strip, endlessly co-creating us and the world we inhabit. 

—Parker J. Palmer, The Courage to Teach: Exploring the 
Inner Landscape of a Teacher's Life 

Freud's logic was a veritable Mdbius strip of circularity. When patients com-
plied with his insistence that they remember early sexual material, he called them 
astute; when they did not, he said they were resisting and repressing the truth. 

—Thomas Lewis, FariAmini, and Richard Lannon, A General Theory of Love 

As the scenes—and lovers—play against each other, hope clashes with 
sorrow, ambition rings against frustration, a marriage is dashed on the racks and 
pieced back together only to be broken again. The effect is like twisting o wedding 
ring into a Mdbius strip. 

—Chris Page, "Clever Device, Not a Moving Story, Fuels 'The Last Five Years,'" 
Get Dut 2005 
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L I T E R A T U R E AND M O V I E S 

[Mobius had] no body of deep theorems ...but a style of thinking, a working 
philosophy for doing mathematics effectively and concentrating on what's 
important. That is Minus's modern legacy* We couldn't ask for more. 

-Ian Stewart, "Mtibius's Modern Legacy," rn Mttbhis and His Band 

When a man and woman join as lovers, there is a potential infinity of rela-
tionships that, like the Mdbius strip, has no beginning and no end... 

-Carol Berge, A Couple Called MObius: 
Eleven Sensual Short Stories 

"MGbius strippers never show you their backside." 
-Joke circulating on the Internet 

1 ? 3 
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Mobius Stories: Hie Literature of Nonorientable Surfaces 
So many stories exist in which the Mobius strip plays an important role 
that the following is merely a sampling of some Mobius references in lit-
erature and movies. Stories focusing on the Mobius strip had a heyday 
in the 1940s, so we will start our journey there. 

One of the earliest and most creative short stories on the Mobius strip 
is Martin Gardner's "No-Sided Professor" (1946), which appeared in 
Clifton Fadiman's Fantasia Mathematica. In the story, members of the 
Mobius Society-an organization of mathematicians working in the field 
of topology—meet with a Dr. Stanislaw Slapenarski. As they gather 
around a dinner table, replete with silver-plated napkin rings shaped like 
Mobius strips and Klein botde coffee mugs, Dr. Slapenarski explains his 
breathtaking topological discovery. 

Dr. Slapenarski's lecture begins with his uncovering of August 
Mobius's "lesser known treatise" on how to turn an ordinary loop with 
two sides into a Mobius strip with one side. In this (mythical) treatise, 
Mobius says that there was no theoretical reason why a surface could not 
lose both its sides to become a no-sided surface! 

The professor stares at his rapt audience and explains that the no-
sided surface is difficult to imagine, but that doesn't mean it is not real or 
practical. Many concepts in mathematics are inconceivable, including 
higher-dimensional geometry—but that is "no basis for denying either 
their validity or usefidness in mathematics and modern physics." 

Moreover, even a one-sided surface is inconceivable to anyone who 
has not seen and manipulated a Mobius strip. The professor explains that 
people who are handed a Mobius strip to play with sometimes are still 
unable to understand how it has just one side. Given this, the fact that we 
cannot imagine an object does not mean it cannot exist. 

The professor then proceeds to fold a piece of paper into a no-sided 
"Slapenarski surface," using an intricate procedure involving scissors, 
paste, and pale blue paper. At the end of his folding sequence, he smiles 
at the audience and presses one of the projecting ends of the paper 
against the other, and the paper figure vanishes in his hands! It has 
become a zero-sided surface. When the mathematicians in the room 
think this is nothing more than a parlor trick, Slapenarski becomes angry 
and forceMly folds one of the mathematicians into a no-sided surface by 
manipulating the man's arms and legs. The mathematician disappears, 
leaving only his clothes behind. The audience gasps and chaos ensues. 

In Arthur C. Clarke's 1946 short story "The Wall of Darkness," the 
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protagonists live in a universe consisting of only one star and one planet 
named Trilorne. A mysterious, impenetrable wall surrounds the entire 
habitable region of Trilorne, a world in which all exploration is pre-
vented by the wall that appears to extend to the heavens. Civilizations 
on Trilorne have always wondered what is on the other side of the wall. 
Some Trilorne philosophers say, "What is beyond, we shall discover 
when we die, as that is where the dead go." Others say, "Behind the Wall 
is the land where we lived before we were born. If we could remember 
that far back, we would know the answers." A few wise people worry that 
the wall was built to keep something dangerous from entering their 
world. 

Finally, a rich man and his engineer friend determine a way to scale 
the wall by building a great stairway along its edge. Their arduous mis-
sion is to determine what is on the other side. At the end of the quest, 
they learn that they are living on a Mobius strip and that by going over 
the wall, they merely enter their world from the other side. 

For reasons that I don't understand, this discovery of what is on the 
other side of the wall is so objectionable that the two explorers decide to 
blow up the stairway so that no one else can learn the secret of their world. 
In effect, the purpose of the wall is to prevent the world's inhabitants from 
making the complete trip around the strip to learn of the strange topology 
of their space. Perhaps the wall is useful because it gives the inhabitants a 
sense of mystery, prevents them from traversing paths that reverse their 
orientation and handedness, or prevents the discovery of new routes for 
waging war. Clarke never reveals why the protagonists decide to destroy 
the great stairway and keep the shape of the world a secret. 

In William Hazlett Upson's "A. Botts and the Mobius Strip" (1945), a 
Mobius band actually saves the lives of several Australian soldiers. The 
story takes place in the year 1945, when Major Alexander Botts needs a 
way to distract the uncooperative Lieutenant Dixon. He finally decides 
to occupy Dixon's time by having him paint a belt that runs through two 
holes in a pump house wall. Secredy, Botts unlaces the belt, gives it a half 
twist, and laces it together again to form a Mobius strip. When Dixon 
tries to paint the outside of the belt, as he is instructed, without painting 
the inside, he becomes so confused, delayed, and enraged that Botts has 
plenty of time to abscond with a tractor desperately needed for the sur-
vival of Australian soldiers in New Guinea. 

In the same author's "Paul Bunyan versus the Conveyor Belt" (1949), 
uranium miners use a mile-long conveyor belt in the shape of a Mobius 
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strip to transport ore. The protagonists in the story argue at length about 
what would happen if the belt needed to be cut in order to make it 
longer. As the mine lengthens, Bunyan decides to cut the belt down the 
middle to increase its length. 

"That will give us two belts," said Ford Fordsen. "We'll have to cut 
them in two crosswise and splice them together. That means I'll 
have to go to town and buy the materials for two splices." 

"No," said Paul. "This belt has a half twist-which makes it what 
is known in geometry as a Mobius strip." 

The miners renew their arguing when they need to lengthen the belt 
again, and wonder about the results of cutting the lengthened strip. 

When A.J. Deutsch wrote "A Subway Named Mobius" in 1950, he 
was a member of the Harvard astronomy department He was probably 
getting tired of the traffic while commuting to work when he wrote this 
story of the Boston subway system, which becomes so complicated and 
looping that it finally forms a Mobius strip that spans dimensions! Part of 
the subway remains in our world, while one loop goes into a higher 
dimension. Trains make clattering noises, seemingly nearby, but cannot 
be seen. When attempting to explain it, one of the characters in the story 
says that a new piece of track "has made the connectivity of the whole 
subway system of an order so high that I don't know how to calculate it. 
I suspect the connectivity has become infinite." 

The 1996 movie Mobius, directed by Gustavo Mosquera, features a 
train in the Buenos Aires subway system that suddenly vanishes. The 
plot has many similarities to "A Subway Named Mobius." Because the 
subway system has had so many additions and has grown so vast, 
nobody is able to picture it anymore, not even the train engineers. One 
day, a train disappears, and people can hear the train rushing through 
tracks, but can never seem to find it. 

The subway manager tries to come up with an explanation for this 
phenomenon and asks the engineer responsible for the growing subway 
complexity to come talk to him. The engineer resists and sends Daniel, 
a mathematician friend, to the manager to help with the investigation. 

Daniel attempts to obtain the subway layout plans from a mysterious 
Dr. Mistein, who, alas, is not home and cannot be located. Daniel con-
templates the problem and comes to believe that the subway system, 
with its coundess additions over the years, has become so complex that 
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a gigantic Mobius strip has unintentionally formed, and the missing train 
is now trapped on the loop. The subway manager scoffs at the idea of the 
Mobius strip but decides to shut the subway system down in an effort to 
avoid further disappearances. 

Even though Daniel's theories are not seriously considered, he con-
tinues his investigation of the subway. The majority of the movie takes 
place in subway tunnels through which Daniel travels in order to under-
stand the subway layout. One night when he boards a subway on his way 
home, he discovers that he is aboard the lost train! He walks to the first 
car of the train and finds that the missing Dr. Mistein is driving it. 

Although the idea of a disappearing subway train first came from 
the story "A Subway Called Mobius," Mosquera conceives the idea of 
the missing train as a metaphor for the people who disappeared during the 
dictatorship periods in Argentina. Mosquera says that his engineering 
studies in college helped him "appreciate mathematics and abstract ideas 
and the artistic works of people like M. C. Escher [so that the concepts] 
began to all come together" in his film. Indeed, the film features a math-
ematician hero—rare for movies these days—and several references to 
advanced geometry concepts. Mosquera employed forty-five students to 
help find suitable locations for filming; one such location was an aban-
doned Buenos Aires subway station. 

The Mobius strip was also referred to in "Time Squared," an episode 
of Star Trek: The Next Generation. The starship USS Enterprise encounters 
a mute and agitated Captain Picard from six hours in the future. The 
present Picard worries that whatever judgment he made in the future 
must have left him and his crew in a never-ending cycle in which an old 
Enterprise keeps rediscovering a Picard from the future. In the episode, 
Lieutenant Worf remarks, "There is the theory of the Mobius, a twist in 
the fabric of space where time becomes a loop from which there is no 
escape." Geordi responds, "So, when we reach that moment—whatever 
happened will happen again . . . The Enterprise will be destroyed, the 
'other Picard' sent back to meet with us and do it all over again. That 
sounds like someone's definition of hell." 

Several stories written for children or young adults incorporate the 
Mobius strip in their plots. Amy Cameron's The Secret Life of Amanda 
K. Woods (1998) features a Mobius strip on the cover. The main char-
acter, eleven-year-old Amanda from Wisconsin, is a whiz at mathe-
matics. One day, a friend's mathematician parents give Amy a Mobius 
strip to examine. She immediately understands that it is one-sided. 
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Amy is told, "It is called a Mobius strip. It is important to geometry. 
And in life, too, sometimes the outside turns into the inside and the 
inside into the outside." The Mobius strip becomes Amanda's 
metaphor for wisdom, growing maturity, and ability to manage 
opposing demands. 

Mark Kashino's book The Journey ofMSbius and Sidh (2002) includes a 
three-foot-long Mobius strip printed with the story's highlights. The strip 
is laminated for repeated use, and the book also includes an erasable 
marker. The publisher says, "The peculiar properties of the Mobius Strip 
seem an unusually appropriate metaphor for our lifelong search. The 
characters are non-ethnic and multi-colored." 

Another creative biological use of a Mobius strip in science fiction 
occurred in my novel The Lobotomy Club (2002). In the book, a brain sur-
geon named Adam discovers that a certain Mobius topology of neurons 
in the brain creates a portal to new realities. Here is a snippet of dialogue 
between Adam and a beautiful woman named Sayori: 

Adam closed his eyes. "Why am I here?" 
Sayori was now petting the cat, which stretched out beside her 

and purred. "I know about your work on the CMS—the Cerebral 
Mobius Strip." Her eyes seemed to blink whenever the cat's did. 

Kierkegaard eamesdy searched for something in a used Chi-
nese-food container, and then tossed the box into the trash. He set-
ded for a hexagonal pill the color of seaweed. 

Wasabi looked questioningly from Adam to Sayori. "CMS?" 
Sayori nodded. "The CMS is a special topology and network of 

neurons that Dr. Wolf discovered residing in several priests' brains 
after they had ecstatic visions, convulsed, and died a day later. Two 
Tibetan monks reported the same kinds of visions and also died." 

Ikura stopped chewing her gum. "Why did the CMS form in 
these people?" 

Sayori rubbed the cat's pillowy belly. "We don't know," she 
said. "We do know that it allowed them to experience transcendent 
feelings and to perceive reality in heightened ways. Adam nick-
named this rewiring the 'Cerebral Mobius Strip' because the neu-
rons doubled back on themselves in a figure eight." 

The characters in the book learn that our baseline reality is an illu-
sion, and the CMS can help them experience what might be a truer 
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reality. Adam agrees to help members of the Lobotomy Club induce 
the CMS in their brains so that they can safely peer into new worlds. 

My favorite Mobius-shaped animal in literature is the cow named 
Moobius in Ian Stewart's Flatter land (2001). Moobius is intelligent and has an 
extraordinarily long tail that wraps all the way round to touch his face. The 
tail is glued to his nose. Moobius explains that he has two sides locaUy-but 
viewed as a whole—the twist in his tail makes the two sides become one. 

Perhaps the sexiest book with Mobius in the tide is Bana Witt's Mobius 
Stripper (1992), which describes a woman's adventures in the sexual and 
drug underground of San Francisco during the 1970s. The book opens 
with the nineteen-year-old narrator contemplating the possibility of 
acting in porno films. The plot includes a fascinating collection of short 
snippets derived from the author's life, which includes sexual and drug-
induced experiences. The book is quite lively and not for the prudish. 

Mobius-Structured Literature 
The Mobius strip not only appears in movies and literature, but it has 
been used as a model for strangely looping plots. In Mobius-structured 
literature, the plot is sometimes recursive, an echo of itself, or characters 
return to the beginning of the story in a slighdy altered form—as in Frank 
Capra's It's a Wonderful Life (1946), in which George Bailey has the option 
of returning to an earlier time in his life with new wisdom. 

Of course, this is not literally a Mobius strip in the mathematical 
sense, but many have used the metaphor of the Mobius strip to describe 
these odd plot circuits, which are often quite mysterious and emotionally 
moving. For example, science fiction writer Samuel R. Delany's 800-
page novel Dhalgren is full of Mobius-like allusions. One of the main 
characters, Kidd, writes a book that might be the actual text of Dhalgren. 
Every now and then, the flow of time seems to stop. Kidd walks in one 
direction and ends up in another direction. Building locations shift. Days 
pass in the blink of an eye, or in some locations, seconds last for hours. 
The final chapter focuses on a notebook that Kidd finds. Kidd writes in 
its margins, and it seems he has written in the margins before he discov-
ered the notebook. In the end, the notebook consumes itself and the 
world destructs. The book finishes on a sentence fragment that leads 
back to a plot very similar to the beginning of the book, as if the plot 
were stretched out on a Mobius loop with the end mirroring the begin-
ning, with character roles reversed. 

Marcel Proust's In Search of Lost Time (1913) also contains major and 
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minor Mobius loops as the main character Marcel returns to his past to 
reflect on his life. Sometimes, time seems to disappear entirely from 
Proust's work. We spend hundreds of pages examining the nature and 
ideas of a character or a situation, while there is minimal flow of time. In 
"Proust's Ruined Mirror," Jonathan Wallace writes, "In Proust's novel, 
time is a river in which the characters swim; it tends to carry them down-
stream, but like fish, they occasionally reverse themselves and struggle 
against its flow." Proust's greatest desire was to travel through time, to 
recapture the past with its lost memories and people. In some ways, In 
Search of Lost Time resembles a chunk of spacetime that contains past, 
present, and future. In this chunk, the reader and Proust may explore the 
story like they would a hyperspace palace, wandering in time and space 
through rooms anchored in different epochs. 

Proust's work also focuses on various physical paths through town that 
suggest a Mobius strip. In particular, the character of Marcel reminisces 
about his early years spent with relatives in the town of Combray. At one 
end of his aunt's house is a door that leads to a walking path called 
Meseglise Way, also called Swann's Way. The other leads to Guermantes 
Way. On one level, they are just paths that traverse the village and on 
which Marcel's family takes daily walks. One path goes to the estate of the 
wealthy Guermantes family, the other to Swann's middle-class estate. 
However, they represented much more to Proust-difTerent directions in 
life and the choices we make. At the end of his masterpiece, the narrator, 
who has grown old, revisits Combray and discovers a shortcut that unites 
the two paths. He realizes now that the two "ways" are connected after all. 

Thus for me, do the Meseglise Way and the Guermantes Way 
remain linked to so many small events of that one life of all the 
diverse lives that we lead on parallel lines, the one which is the 
fullest of events, the most rich in episodes, the life of the mind. 

Although the Guermantes Way leads to the elegant chateau of the aris-
tocratic Guermantes family, Proust never actually seems to reach the 
chateau because the walking distance is too great. Thus, one path repre-
sents a path to the ordinary, and the other represents a path to the fur-
thest reaches of space, time, and mind. I delve into Proust's work in 
greater detail in my book Sex, Drugs, Einstein, and Elves. 

The comedy Six Characters in Search of an Author (1921) by Sicilian-
born writer Luigi Pirandello (1867-1936) also has a wonderful Mobius 
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plot The protagonists of the comedy are six characters who have been 
created by their author but left in an unfinished drama. They arrive at a 
rehearsal of a Pirandello play and convince the director to allow them to 
perform their drama for him so that they can become whole characters. 
The director eventually agrees to become an author for their new lives. 
During the course of the play with these six characters, some of the char-
acters die, and the director cannot tell if they are acting or actually dead. 
In the end, neither he nor his actors are able to tell what is real. 

In 1937, British writer John Boynton Priesdey (1894-1984) presented 
Time and the Conways, a play in which the action at the end of the second 
act is thirty years later than in the first act, and then in the third act, the 
play loops back to the end of the first act. Thus, in some ways the third 
act might be considered a misplaced middle act. The play begins in 1919, 
when the affluent Conways are joyfidly celebrating Kay's twenty-first 
birthday. The scene jumps to 1938, when the family is again assembled, 
but Europe is on the edge of war. Finally, we return to 1919, and our 
advanced knowledge gives a strange dramatic irony to the events that 
unfold. At a deeper level, the play makes the audience wonder whether 
true happiness is possible, whether or not we can change our destinies, 
and it reinforces an idea that time is not linear and that the past and 
future are always present with us. 

The movie Donnie Darko (2001), directed by Richard Kelly, is a blend 
of supernatural thriller and time travel paradox that focuses on sixteen-
year-old Donnie who lives in suburban Middlesex, Virginia. A demon 
tells him that the world will end in twenty-eight days, sixteen hours, 
forty-two minutes, and twelve seconds. Throughout the movie, Donnie 
sees liquidlike tubes protruding from people's bellies and pointing in the 
direction that person will move in the near future. Donnie Darko sees his 
own lifeline stretching from his belly, as if his actions have been prede-
termined, and he's a pawn, trapped in the jejune jardiniere of time. 

The plot has a strangely looping story that leaves most moviegoers 
bewildered and discussing the movie for weeks. In the end, the movie 
returns to its opening scene, but this time Donnie has foreknowledge and 
is presumably able to save those he loves by sacrificing himself. Film 
critic Jim Emerson, editor of RogerEbert.com, says that the film's 
opening with Donnie waking up on a hillside road at dawn is "essential 
to the movie's endlessly circular (or Mobius-strip) form, and part of what 
draws you back again. It begins with a scene that belongs at the end of 
the last time you watched it—a dream within a dream within a dream . . . 
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And when you think about it that way, it helps locate the entire movie in 
the space-time warp between Donnie's ears." I enjoyed the movie. See it 
and enter a movie form of the Mobius strip. 

Many other movies and stories include a time loop in which charac-
ters return to an earlier time in the movie with the ability to relive the 
past with greater knowledge and to remake their lives. In Brian De 
Palma's 2003 movie Femme Fatale, Laure Ash is a thief who has the mys-
terious and unexplained opportunity to live the movie again and choose 
a wiser path through life. In my book Liquid Earth, the character Max 
has the opportunity to live the entire book again, and renders hope that 
with his new knowledge, he will be able to save the world from reality 
fractures. 

In 50 First Dates (2004), Lucy Whitmore undergos endless successions 
of Mobius-strip lives, as she wakes up each morning with no memory of 
having met Henry Roth the day before. Lucy is afflicted with short-term 
memory loss after a car accident, and she's caught in a perpetual loop. To 
her, every day is the same Sunday in October, which of course makes it 
nearly impossible to form new relationships. Henry falls in love with her 
and tries to imagine ways in which a deep relationship is possible. Grad-
ually, despite her handicap, some small strand of her mind seems to find 
its way into the next Mobius strip day, until she finds herself painting her 
lover's portrait, even though she cannot remember who he is. 

In my book Time: A Traveler's Guide, I give surprising Mobius sce-
narios that involve time travel paradoxes and causal loops. Let's consider 
one of my favorite plotlines that will surely twist your mind. Figure 8.1 
schematically represents the characters' paths through space and time. 
(Assume that the characters have a time travel machine.) In this figure, I 
represent myself by the I in the center, and Monica, the woman I love, 
by the • . Let's assume we initially meet at the position in spacetime 
marked by the 1. A little later, at the position marked by the 2, we marry 
and have a baby daughter, Monica Jr. Her path through life is repre-
sented by the dashed line. Unfortunately, Monica Jr. is abducted by a 
stranger at birth, and we never see her again. She grows up, and at age 
twenty (marked by 3) she decides to go back in time to find her roots. 
After traveling back in time, she spends twenty years growing up and 
having a fairly normal life. Finally, she meets me at 1! We fall in love, 
marry, and the rest is, as they say, history. She is the woman I initially 
met at 1. Meanwhile, at the position marked 4, the "original" Monica Sr. 
and I decide to go back in time in hopes of finding our lost daughter. We 
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go back in time, and at 5 we have a baby boy who grows up (wiggly line 
in figure) to be me 1. At the very bottom of the figure, the "original* 
Monica and I go way back and visit prehistoric cavemen. Notice that 
Monica is her own mother and grandmother, and I am my own father 
and grandfather. 

If time travel is possible, then world-lines might become closed loops. I meet Monica 
(1), and have a baby daughter, Monica junior (2), represented by the dashed line, who 

grows up (3) and decides to travel back in time. Monica junior grows up and meets 
me at (1)! See the text for all the details. 

This scenario does seem quite crazy. After all, who is Monica's 
mother, father, grandfather, grandmother, son, daughter, granddaughter, 
and grandson? Monica Jr. and Sr. are the same person. If we draw more 
of Monica's family tree, we might find that all the branches are curled 
inward and back on themselves, as in a loop. She can be an entire family 
tree unto herself. This is an example of a paradox unlike the one where 
a person goes back in time and kills his grandmother, thus altering the 
past. In the case illustrated in figure 8.1, characters are fulfilling the past, 
not destroying it. Thus the lines in the schematic representation (called 
world-lines by physicists) travel in a closed loop, fulfilling rather than 
changing the past. 

Another Mobius plot occurs in Gabriel Josipovici's stories collected in 
Mdbius the Stripper (1974), which deal with a man who is nervous about 
his writer's block. Mobius's story is displayed on the top of each page, 
and the text of the ncurator's story about Mobius is in the lower half of 

i 
Time 

8.1 
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each page. At the end of the top story, Mobius kills himself, which cre-
ates a stark blank page that confronts the narrator in the bottom half 
story. Toward the end of the ncurator's story at the bottom, he finally 
overcomes his writer's block and starts to write Mobius's story printed at 
the top. 

In a similar vein, The Gift (1937) by Vladimir Nabokov features a pro-
tagonist named Fyodor. Fyodor is a Russian living in Berlin, and he is 
having a great deal of difficulty getting his writings published. Near the 
end of the book, Fyodor tells his girlfriend Zinia that he wants to write a 
book about how he started writing and met her. It seems that the book 
Fydor wants to write is the book the reader has been reading! In this 
sense, Fyodor is no longer a character in the novel, but its author. 

In Mobius literature, the plot is sometimes recursive, an echo of itself, 
or one plot exists within the frame of another. I've heard the term "met-
alepsis" sometimes used when referring to times in Mobius plots in 
which the characters cross boundaries between layered plots. For 
example, in Coleman Dowell's novel Island People (1976), a low level 
becomes the top level, taking over the narrative and creating a kind of 
Mobius band. The story involves an unnamed man who leaves the city 
to live in a house he has bought on a tiny island. The man appears to be 
a loner or an outsider among the "island people," who live on the island 
year-round. Though he lives a solitary life with his dog, he does enjoy 
occasional visitors from the city. Suddenly, the reader realizes that this 
tale of the loner on the island is the story "The Keepsake," written by 
another unnamed man living under circumstances identical to those of 
the first man, though somewhat more isolated from the world beyond his 
island. Reviewer Christopher Sorrentino, writing for Center of Book Cul-
ture, explains, "It's a book that doesn't seem to have been written as 
much as it seems to crawl out of i t se l f . . . [The book's character avatars] 
echo one another across the chasm of the novel . . . Coundess parts of 
Island People set off sympathetic vibrations with coundess other parts." 
Eventually, the man invents a female alter-ego, who haunts him as his 
mind disintegrates. 

In Daniel Hayes's Tearjerker (2004), we encounter Evan Ulmer, a frus-
trated writer discouraged by his growing collection of book rejections but 
eager to learn more about the book business. He kidnaps an editor from 
a prestigious New York publishing house so that the editor will explain 
the process to him. It turns out that Evan has written a book about a 
failed writer kidnapping an editor, and he would like to get this book 
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published. During the week that Evan kidnaps his victim, he also meets 
a strange woman named Promise who uses Evan as a character in a novel 
she is writing. In it, he's having an affair with a fifty-year-old woman. She 
wants Evan to meet her mother so she can study their interactions in 
order to make her book more realistic. Meanwhile, the kidnapped editor 
begins to critique Evan's novel, which may be the book that the reader 
is reading. The Seattle Times calls Tearjerker a "sly litde Mobius strip of self-
reflective narrative invention." 

Eugene Ionesco's The Bald Soprano (1950) has a Mobius-like twist at its 
conclusion. In the play, Mr. and Mrs. Smith invite Mr. and Mrs. Martin 
over for dinner. The play begins as a seemingly ordinary comedy on 
proper English manners. Mr. Smith is seated in his armchair and wears 
slippers. He smokes a pipe and reads a newspaper by the fireplace as he 
discusses food with Mrs. Smith. 

But then weirdness ensues with irregular clock chimes and strange 
dialogue. In the beginning, the conversation makes sense, but the dia-
logue soon loses coherence and meaning, until the characters' responses 
seem to be random. The climax is like a dissonant symphony performed 
by musicians on LSD. The characters' inability to communicate leads to 
frustration and conflict. I don't think anyone reading the play could pos-
sibly understand what the last pages mean. Here is some sample dialogue 
toward the end of The Bald Soprano: 

Mr. Martin: One doesn't polish spectacles with black wax. 
Mrs. Smith: Yes, but with money one can buy anything. 
Mr. Martin: I'd rather lull a rabbit than sing in the garden. 
Mr. Smith: Cockatoos, cockatoos, cockatoos, cockatoos, cockatoos, 
cockatoos, cockatoos, cockatoos, cockatoos, cockatoos. 
Mrs. Smith: Such caca, such caca, such caca, such caca, such caca, 
such caca, such caca, such caca, such caca. 

The conclusion has a distincdy Mobius sort of loop to deepen the 
mystery: the characters reperform the play after exchanging roles. The 
final stage directions of the play read, "Mr. and Mrs. Martin are sitting 
like the Smiths at the beginning of the play. The play starts again with the 
Martins, who are saying exacdy the same words as the Smiths in the first 
scene." The play has actually been performed with several variations on 
the twisted loop theme, so that the play oscillates with the same dialogue 
only with different couples saying the dialogue. Critics suggest that The 
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Bald Soprano shows how human conversation and other interactions have 
devolved into a collection of trite platitudes and how verbal mayhem 
erupts when proper English people lose their ability to communicate. 

An easier to understand story, which is still filled with absurdity, is 
Danish writer Solvej Balle's According to the Law (1996). This book con-
tains four interconnected stories that wrap around one another in a 
braided topological loop. The book starts with a Canadian biochemist 
who examines the brain of a young woman who has recendy died of 
hypothermia and who has bequeathed her body to science. Next we meet 
Tanja, a Swiss law student who has paranormal powers that cause 
passersby to writhe in agony. We also encounter Danish mathematician 
Rene who wants to occupy as litde volume as possible to become a 
human zero. Finally, Alette, a Canadian sculptor, dreams of merging with 
inanimate matter. She commits suicide and completes the Mobius strip by 
being the woman whose brain is being studied in the opening of the book. 

In Stephen King's Song of Susannah: Dark Tower VI, King places him-
self in the book as a character. The gunslinger in the novel arrives in 
Maine in 1977 and hypnotizes a young horror writer, telling him he must 
finish the Dark Tower book series because the destiny of the world 
depends on it. King concludes the novel with a newspaper story about 
his death. 

John Barth's Lost in the Funhouse has a foreword that explains how the 
book is "strung together on a few echoed and developed themes and [cir-
cles] back upon itself; not to close a simple circuit like that of Joyce's 
Finnegan's Wake, emblematic of Viconian eternal return, but to make a 
circuit with a twist to it, like a Mobius strip, emblematic of—well, read the 
book." 

The first Barth story in Lost in the Funhouse, called "Frame-tale," is lit-
erally a Mobius strip because it is a single page with the words "ONCE 
UPON A TIME THERE" written at one edge and "WAS A STORY 
THAT BEGAN" on the opposite side, with instructions for joining the 
ends to make a Mobius strip. Martin Gardner notes that the Doubleday 
edition of "Frame-tale," is designed to be read on an actual strip. The 
reader is told to cut the page along the dotted lines, then do a half twist 
to make a Mobius strip, on which one can endlessly read "Once upon a 
time there was a story that began once upon a time there was a story that 
began once upon a time there was a story that began . . . " 

Barth himself said in a 1998 interview with Elizabeth Farnsworth on 
NewsHour with Jim Lehrer, 
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The tale is meant to be put on a Mobius strip, one of those guys 
that goes around-it's a circle with a twist, as is the book that fol-
lows i t . . . . It's short on character, it's short on plot, but above all, 
it's shor t . . . and it does remind us of the infinite imbeddedness of 
the narrative impulse in human consciousness. I like to think if 
Scheherazade had had this litde gadget, her problems would have 
been solved—the king would have gone to sleep, she could have 
started her novel, the end. 

In a similar vein, Denise Duhamel's poem "Mobius Strip: Forgetfid-
ness," in her 2005 book Two and Two, requires the reader to photocopy 
the poem and fashion it into a Mdbius strip. The poem focuses on people 
with Alzheimer's disease and uses the strip to reinforce our impression 
of the distorted and fragmented nature of the afflicted person's mind. 

Klein Bottle Literature Sampler 
Novels and short stories have numerous references to Klein botdes. Paul 
J . Nahin's enigmatic story "Twisters," which appeared in the May 1988 
edition of Analog magazine, begins with a Dr. Adams, a small-town physi-
cian, passing by a previously abandoned lot and noticing a doughnut 
shop that had not been there the day before. The kindly Dr. Adams rea-
sons that with modern building techniques, it was at least possible that 
such a shop could be built in one day. Inside, he finds the usual assort-
ment of doughnuts plus several "that had such curious twist" that at first 
he couldn't focus his eyes on an entire doughnut at once. He decides to 
buy a few of the twisted doughnuts. Later, while at his office, Dr. Adams 
finds that the doughnut absorbs all the coffee in his cup just by touching 
the liquid. And when he puts his ear near the doughnut, he hears a windy 
sound near its center. After much experimentation, Dr. Adams learns just 
how dangerous these "twisters" are as they absorb anything that takes a 
bite of them. "Apparendy anything could pass through the gate . . . But 
it took the proximity of teeth (or more likely anything with calcium) to 
trigger the suction into overdrive." Adams determines that these 
doughnut twisters are Klein botdes and function as deadly traps made by 
the alien shopkeeper. Adams's goal for the remainder of the story is to 
make sure that no one takes a bite out of the tasty but deadly twister 
Klein botdes. 

Martin Gardner's Visitors from Oz (1999) is a sequel to the Oz books in 
which Dorothy travels to New York City through a Klein botde built 
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from two Mobius strips by the same engineer who built the body of the 
Tin Man. While in New York, Dorothy appears on The Oprah Winfrey 
Show. Audience members, of course, think the Scarecrow and the Tin 
Man are just actors and not the real thing. 

In Bruce Elliot's "The Last Magician" (1952), a magician uses a Klein 
botde while performing for aliens. The trick turns out to be dangerous. 

Duneen was in real bad trouble. He was half in and half out of the 
Klein botde. He was on the inside-outside, never-come-right side 
of the botde. There he was, and there he is now. In the museum 
with all the other last things. And there he'll stay. They can't break 
the botde because that would divide him. And since they can't 
break the botde, there he will remain, not alive and not dead—sus-
pended midway between here and there. 

Andrew Crumey's Mobius Dick features a Mobius strip on the novel's 
cover. Crumey (pronounced "Croomey") has a Ph.D. in theoretical 
physics and is literary editor of Scotland on Sunday. In the novel, physicist 
John Ringer receives a text message on his "Q-phone" that simply says, 
"Call me: H." But who is H? Could "H" be his lover Helen from many 
years ago? This triggers his investigation into the development of new 
mobile phone technology taking place at a research facility in a Scottish 
village. During Ringer's adventures, the world transforms, and people 
experience amnesia, telepathy, false memories, and inexplicable coinci-
dences. The plot is filled with psychoanalysis, inversions, cycles, and self-
reflexive writing. Ringer wonders if coincidences are occurring with 
increasing frequency. If so, perhaps quantum experiments have caused 
the collapse of our universe's space-time continuum. Perhaps the twisted 
text of the novel comes from a parallel world. 

When the reader discovers that a novelist named Harry Dick was 
writing a novel with a character named John Ringer, the reader begins 
to wonder which universe is real, or if "real" has any meaning at all. 
Throughout Mobius Dick, multiple stories coil around one another like 
trefoil knots. The funniest scene occurs when Ringer attends a woman's 
talk tided "Vicious Cycloids." During her presentation, the woman inter-
prets a passage in Moby Dick, "with its facile relativism, its denial of objec-
tive certainty, its intellectual game playing"-a description that applies to 
Mobius Dick itself. 
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I hope you have enjoyed this brief introduction to movie and literature 
plots that feature nonorientable objects or that exhibit surprising, avant-
garde loops. I look forward to hearing from you so that together we may 
catalogue additional examples of Mdbius stories that both confound and 
delight. Let's conclude with three Mobius-like quotations that have 
always intrigued me: 

"I am the thought you are now thinking." 
-Douglas Hofstadter, Metamagical Themas 

"As one goes through it, one sees that the gate one went 
through was the self that went through it." 

-R . D. Laing, The Politics of Experience 

He watched her for a long time 
and she knew that he was watching her 

and he knew that she knew he was watching her, 
and he knew that she knew that he knew; 

in a kind of regression of images 
that you get when two mirrors face each other 

and the images go on and on and on 
in some kind of infinity." 

-Robert Pirsig, Lila 

<» Ant Planet 

Lisa is alone in her bedroom playing with bugs. She enjoys making mazelike struc-
tures with leftover wires from her electrical experiment. If an object touches the 
wire, it rings a buzzer. Today, Lisa is experimenting with ants. The ants she places 
in these structures can only escape from certain locations without ringing the 
buzzer 

The ant prison mazes are of a peculiar type. Topologically speaking, they are 
Jordan curves, such as the one shawn in figure 8.2, which is merely a circle that 
has been twisted out of shape. Recall that a circle divides any flat surface into two 
areas—inside and autside. Like a circle, Jordan curves have an inside and outside— 
and to get from one to the other, at least one line (wire) must be crossed. 
Let's return to the ant story. Lisa is fantasizing about intelligent ants. One day, a 
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Ant trapped in a Jordan curve. 

"prisoner" ont named Mr. Nadroj is able to accurately determine whether or not he 
is on the inside or the outside of the maze simply by poking his head over the 
wires and looking in one direction. What's the quickest way a creature can deter-
mine whether he is inside or outside the Jordan prison ? How can you easily tell if 
the ant in the drawing can escape without actually trying to trace a path to the 
outside ? (Turn to the solutions section for an answer.] 

Life in Mobius Suburbia 

Swedesboro is one of those idiosyncratic, particular places that contradict the 
prevailing perception of South Jersey as little more than a Mobius strip of malls, 
an endless (if not relentless) agglomeration of big-box retail meccas with little in 
common but an area code and a propensity for traffic jams. 

—Kevin Riordan, "South Jersey town debates identity," 
The Courier-Post, September 19,2004 

"You can be anywhere at all, any time. What do they call that thing?" 
"A Mobius strip," Henry said. "That's a nice idea. You could go back and visit 

your life anywhere and any time you wanted." 
"It sounds like flypaper" Farlie said. 

—Anne Rivers Siddons, Islands 
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A F E W F I N A I W O R D S 

What makes a great mathematician? A fed for form, a strong sense of 
what is important Melius had both in abundance. He knew that 
topology was important. He knew that symmetry is a fundamental and 
powerful mathematical principle. The judgment of posterity is dear: 
M&bm was right. 

-fan Stewart, "MGbius's Modern Legacym Mdbius and His Band 

FIG. 3 
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The Mdbius Strip as a Launchpad 
This completes our meandering survey of the Mobius strip in science, 
mathematics, and art. We've only touched the tip of the iceberg for most 
of these topics, but you should now have a better appreciation for the 
role of this looping, one-sided surface in a variety of disciplines. Some-
times I wonder why I am personally so compelled to contemplate the 
Mobius strip, and why so many people are delighted by its marvelous 
properties. Perhaps it is a metaphor for something eminendy simple but 
surprising and difficult to predict. It is a ubiquitous symbol and, as in 
some novels, provides a vehicle to alter our minds and to see new 
worlds. It's the stuff of magic and the symbol of dreams. 

I continue to be fascinated by the application of the Mobius strip in 
a range of technological inventions. Similar to the Reuleaux triangle-
the triangle with curved sides that we discussed in chapter 4-these 
simple geometries did not find many practical applications until rela-
tively late in humankind's intellectual development. Not until Franz 
Reuleaux (1829-1905) discussed his famous triangle (figure C.l), formed 
from the intersection of three circles at the corners of an equilateral tri-
angle, did the curvy triangle begin to find numerous uses. Although 
Reuleaux wasn't the first to draw and consider such a curve, he was the 
first to demonstrate its constant-width properties and the first to use the 
triangle in numerous real-world mechanisms. The triangle's construction 
is so simple that modern researchers have wondered why no one before 

R 

Cl 
Reuleaux triangle (in bold] and some of its applications 
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Reuleaux had exploited it use. The shape is a close relative of a circle 
because it has a constant width-the distance between two opposite 
points is always the same. Its circumference, 2icR, is the same as for a 
circle, except that for the Reuleaux triangle, R is the length shown in 
figure C.l. 

As I drift off to sleep at night, I imagine glittering Mobius strips and 
Reuleaux triangles while I contemplate new inventions and think about 
the shape of our universe. Our nature is to dream, to search, and to 
wonder about our place in a seemingly lonely cosmos. Perhaps this is a 
reason that philosophers and writers have speculated about universes 
and higher dimensions shaped like Mobius strips, and what their inhab-
itants might be like. For many young prospective scientists, the Mobius 
strip is a launchpad to more sophisticated geometries and topological 
exploration. 

Many cosmological models have been devised in which our universe 
curves through 4-space in a way that could, in theory, be tested. For 
example, Einstein suggested a universe model in which a spaceship 
could set out in any direction and return to its starting point. In this 
model, our 3-D universe is treated as the hypersurface of a huge hyper-
sphere. Going around it would be comparable to an ant walking around 
the surface of a sphere. In other universe models, our universe is a hyper-
surface that twists through 4-space like a Klein botde or a 3-torus, a 
doughnut wrapped in three dimensions. 

Using various satellites, astronomers now actively search for evidence 
of the universe's shape by studying temperature fluctuations in deep 
space. Although recent evidence suggests that the nearby regions of our 
universe may be quite ordinary, no one knows how the entire cosmos 
may be shaped. 

Mathematicians dating back to Georg Bernhard Riemann (1826— 
1866) have studied the properties of multiply connected spaces in which 
different regions of space and time are spliced together. Physicists who 
once considered this an intellectual exercise for armchair speculation are 
now seriously studying advanced branches of mathematics to create 
practical models of our universe and to better understand the possibili-
ties of parallel worlds, travel using wormholes, and methods for manip-
ulating time. Even if these odd universes are unlikely or difficult to 
ascertain given current technology, the shapes in this book make physi-
cists alert to numerous possibilities to consider for topological triage— 
a process in which models are sorted and considered in terms of their 
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likeness to elucidate the nature of the universe. Both lay people and sci-
entists have become more aware about what it means to visualize an 
abstract object or twisted space. 

Zen Buddhists have developed questions and statements called koans 
that function as a meditative discipline. Koans ready the mind so that it 
can entertain new intuitions, perceptions, and ideas. Koans cannot be 
answered in ordinary ways because they are paradoxical; they function 
as tools for enlightenment because they jar the mind. Similarly, the con-
templation of the Mdbius strip is replete with koans, and that is why 
this book teases you with so many different topics, although space lim-
itations did not permit us to explore any single topic in great depth. 
The Mobius strip is a koan for scientific minds. 

Eternal Sunshine 
For me, some of the most interesting areas for Mobioid behavior and 
Mobius koans occur in literature, where the Mobius strip is a metaphor 
for looping plots. We've discussed several examples in chapter 8. The 
Mobioid movies and stories function partly as metaphysical explo-
rations. Often they are dark, self-enclosed, with a special dreamlike logic 
to help us transcend individual consciousness. 

We can conclude with another Mobius-structured plot. In the haunting 
movie Eternal Sunshine of the Spotless Mind, Joel and Clementine decide to 
erase their memories of each other after they fall out of love. Inevitably, 
they meet again, retaining vestiges of their memories, and fall in love 
again. 

Much of the movie takes place within Joel's mind. When Joel is in the 
middle of the memory-erasing procedure, he becomes aware that his 
memories of the woman he loved are disappearing from his mind, and 
he wants the procedure stopped. His herculean task is to devise ways to 
protect as much of his memory of Clementine as he can, and to find a 
way to escape from the procedure despite being in a dreamlike state. 

Near the end of the movie, the viewer returns to the movie's start, 
where one sees the opening scene in light of new knowledge of the char-
acters' predicaments. Mdbius ribbons are everywhere in the story. In 
some of the dreamlike scenes during the mind-erasure procedures, Joel 
chases Clementine down a street only to find the street looping back on 
itself, and he frustratingly keeps finding Clementine running behind him. 
Thus, not only do we have a Mobius plot in which the end of the movie 
returns to the beginning with the characters changed by vestigial memories, 
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we also have the insertion of looping realms within the recesses of their 
minds as Joel and Clementine fight to remember the love they once 
shared, to understand what is real and what is fantasy. Does an eternal 
bond continually unite and reunite Joel and Clementine as they loop 
back and find that what they're seeing all happened earlier and is just 
now about to be erased from their minds? 

Perhaps at the end of the movie, Joel and Clementine have found a 
way to leave the surface of the Mobius strip. Instead of running from 
each other, love brings together their imperfect personalities, making the 
line between reality and fantasy unimportant. They cherish their time 
together and live every moment in the "now," relishing their dreams, 
living close to each other, knowing that their dreams, at any time, could 
be cleansed from their minds forever. 

Simple Math 
Many of the Mobius puzzles in this book are of interest to recreational 
mathematicians and mathematical amateurs, groups of enthusiasts whose 
members have had strong records in making important mathematical 
discoveries. In 1998, self-taught inventor Harlan Brothers and meteorol-
ogist John Knox developed an improved way of calculating a funda-
mental constant e (often rounded to 2.718). Studies of exponential 
growth-from bacterial colonies to interest rates-rely on e, which can't be 
expressed as a fraction and can only be approximated using computers. 
Knox demonstrated that amateurs continue to make strides in mathe-
matics and can help find more accurate ways of calculating fundamental 
mathematical constants. Perhaps you will one day discover some 
remarkable new property of the Mobius strip or invent a new toy based 
on its peculiar properties. 

Another "beginner" who made substantial contributions to mathe-
matics was Maijorie Rice, a San Diego housewife and mother of five, 
who was working at her kitchen table in the 1970s when she discovered 
numerous new geometrical patterns that professors had thought were 
impossible. Rice had no training beyond high school, but by 1976 she 
had discovered fifty-eight special kinds of pentagonal tiles, most of 
which were previously unknown. Her most advanced diploma was a 
1939 high school degree for which she had taken only one general 
math course. The moral of the story? It's never too late to enter fields 
and make new discoveries. Another moral: Never underestimate your 
mother! 
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The idea that very simple yet profound mathematics can still be dis-
covered today is not as far-fetched as it sounds. For example, mathe-
matician Stanislaw Ulam, in the mid to late twentieth century, was 
bursting with simple but novel ideas that quickly led to new branches of 
mathematics such as those that focus on cellular automata theory and the 
Monte Carlo method. As Martin Gardner points out in "The Adventures 
of Stanislaw Ulam" (1976), "Over and over again, Ulam has obtained 
profound results in fields about which he knew little. Perhaps because of 
that, he was able to see the problems in fresh ways." 

x^nother example of simplicity and profundity is Penrose tiling-the 
pattern of tiles we discussed in chapter 7 that is made with just two shapes 
of tile and was discovered as recendy as 1&74 by Roger Penrose. These 
tiles can completely cover an infinite surface in a pattern that is always 
nonrepeating (aperiodic). Aperiodic tiling was first considered merely a 
mathematical curiosity, but physical materials were later found in which 
the atoms were arranged in the same pattern as a Penrose tiling, and now 
the field has an important role in chemistry and physics. We should also 
consider the intricate and strikingly beautiful behavior of the Mandelbrot 
set, a complicated fractal object described by a simple formula, z — ^ + c, 
and unearthed at the end of the twentieth century (figure C.2). 

c? 
An example o( a fractal, a shape with infinite detail that is spawned from a simple 

mathematical formula. 
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Computers will probably facilitate future discoveries of startling charac-
teristics of seemingly simple mathematics. Returning to the striking 
example of the Mandelbrot set, Arthur C. Clarke in The Ghost from the 
Grand Banks once noted, 

In principle [the Mandelbrot set] could have been discovered as 
soon as men learned to count. But even if they never grew tired, 
and never made a mistake, all the human beings who have ever 
existed would not have sufficed to do the elementary arith-
metic required to produce a Mandelbrot set of quite modest 
magnification. 

Dr. Mandelbrot himself discussed his discovery of the set in a 2004 New 
Scientist interview: 

Its astounding complication was completely out of proportion 
with what I was expecting. Here is the curious thing: the night I 
saw the set, it was just wild. The second night, I became used to 
it. After a few nights, I became familiar with it. It was as if 
somehow I had seen it before. Of course, I hadn't. No one had 
seen it. No one had described it. The fact that a certain aspect of 
its mathematical nature remains mysterious, despite hundreds of 
brilliant people working on it, is the icing on the cake to me. 

Unlike the Mandelbrot set, the Mobius strip didn't require a com-
puter to help reveal its profundity. Thus, the Mobius strip is the ultimate 
metaphor for something simple, yet profound-something anyone could 
have discussed centuries prior to its discovery, but didn't. The Mobius 
strip is a metaphor for magic and mystery, and a perpetual icon that stim-
ulates us to dream new dreams and look for depths even in seemingly 
shallow waters. 

<a> Ambiguous Ring 

Figure C.3 shows on ambiguous ring. Why or why not is this the same as a Mdbius 
strip ? (Turn to the solutions section for an onswer.) 
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C.3 
Amblgious ring Is this a Mobius Strip7 

Mobius in Business and Government 

Government today is organized as kind of a Mdbius strip, with mistrust 
flowing round ond round. 

—Philip K. Howard, The Collapse of the Common Good: 
How America's Lawsuit Culture Undermines Our Freedom 

Personal nomes also creote o unique, self-reinforcing benefit loop—o kind of 
marketing Mobius strip. When people whose names are included in the firm name 
get good publicity, the entire firm's reputation is enhanced. 

—Harry Beckwith, What Clients Love. A Field Guide to Growing Your Business 

I watched agog os sniggering reports of CIA torture were passed off as some-
thing normal on TV amid Mobius-strip assurances thot ...the President is blame-
less. 

—Michael Gilson-De Lemos, "MG's Most Controversial Article yet," Citizens for 
Legitimate Government 

Those consequences in o Mdbius strip world where everything folds bock into 
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our own lives are not just "out there" but "in here," in our souls, where the corro-
sive acid of self-deceit challenges the American belief thot we are good or better 
or different. 

—Richard Thieme, "I Was a Victim of the KGB," Common Oreams News Center 



FIG. 2A 

FIG. 2B 



S O L U T I O N S 

Chapter 1 
The treadmill seems to be locked. Assuming the good doctor is trying to 
run forward, each axle in the machine should turn counterclockwise as seen 
from the reader's point of view. However, the figure eight belt, in order to 
work properly, needs to turn each of its axles in a different direction. 

If the figure eight belt is replaced by a Mobius strip belt in the form 
of a loop (not a figure eight), the machine should work and turn the axles 
to which it is attached in the same direction. In fact, such belts are gen-
erally superior to ordinary belts because they can wear half as quickly 
because the belt presents both "sides" of the rubber to the axles. 

Chapter 2 
To solve this knotty problem, consider that there are two possible cross-
ings at each intersection point. This means that there are 2 x 2 x 2 = 8 
possible sets of crossings. Of all these possibilities, only two create a knot. 
(Test this for yourself using a loop of string.) Thus, the probability of 
having a knot is one in four. Don't bet on it happening! 

Figure A.l shows another possible rope configuration. What are the 
odds that it forms a knot? Does the probability of knot formation 
increase with increasing numbers of intersection points? What does this 
say about Murphy's Law-that ropes and strings and electrical cords 
always seem to get tangled when thrown in a jumble in your garage? 

A.1 
Another possible rope configuration. What are the odds that it forms a kno t ' 

2 0 1 
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Chapter 3 
Figure A.2 is one solution to T h e Mobius Maze'1 by Dave Phillips. 

A.2 
One solution to The Mbfaius Mare" by Dave Philips. 

Chapter 4 
Figure A.3 shows one solution. Many of my genius friends have told me 
that this puzzle was impossible to solve. However, if my friends looked 
at the puzzle a day later, they usually could solve it on the second day. 

A:s 
One solution to the Noah's AA pcrrle. 
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Chapter 5 
For the squiggle puzzle, note that if you draw a map on a plane using 
a continuous line, not taking your pencil off the paper and returning 
to the starting point, you only need two colors to produce a map in 
which any regions with a common boundary line have different 
colors. Figure A.4 is one example of such a coloring. Try it with other 
patterns! 

A.4 
A solution to the squiggle map puzzle. 

For the pyramid puzzle, it turns out that the second view is incor-
rect. First, let's look at views two and four. Notice that the missing 
color is green for both. This means green must be at the hidden base 
in these views. Thus, two and four can't both be right. One of them 
must be wrong, and therefore the first, third, and fifth views must be 
correct. 

Now, let's examine the third view. Try to imagine the green facet as 
the base for view three. That means the sides of the pyramid are red, 
purple, and yellow. This is the same as the pyramid in view four. This 
leaves us with view two being the incorrect view. 

Chapter 6 
Figure A.5 is one way you can transform the linked rings to the 
unlinked rings. 
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One way in which you can transform the linked rings to the unlinked 
rings without cutting a ring. (After David Wells, The Penguin Dictionary 

of Curious and Interesting Geometry.) 

Let's conclude with yet another loop problem, and I'll give you the 
answer so as not to torture your brain further. In figure A.6, it's possible 
to transform the three interlocked loops at the left of the figure so that 
one loop is unchained from the other. 

A.6 
Another wonderful transformation without breaking loops. The three loops 
at the left transform to the configuration at the bottom right so that one 

loop is unchained from the other. (After David Wells, The Penguin 
Dictionary of Curious and Interesting Geometry ) 
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Chapter 7 
Figure A. 7 indicates the path to travel to solve the torus maze. Simply 
travel from / to 2 to 3 to 4. Figure A. 8 shows the solution to the Klein 
botde maze. Travel from / to 2, and you're finished! 

* 1 _ 2 

s 

* 3 * 

U 

n 
1 2 . 

+ r * * 

A? 
Solution for the torus maze. 
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r 
c 
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r 

A.8 Solution for the Klein bottle maze. 
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Regarding the devil configurations, the constructions are equivalent 
to a twist with the addition of a single connecting strip, as shown in figure 
A.9. If one or both twist sequences contain an odd number of half twists, 
then only one piece results when the figure is cut along the dotted line. 
If each sequence of twists contains an even number of half twists, two 
separate and interwined pieces result. 

The solution to the problem illustrated in figure 7.44 is the large square 
band framing figure 7.44. The solution is the same no matter how many 
half twists you include in one arm. A flat square band of paper always 
results! I learned about these puzzles in James Tanton's Solve This: Math 
Activities for Students and Clubs and Martin Gardner's Mathematical Magic 
Show. 

Chapter 8 
The quickest way Mr. Nadroj can tell whether he is inside or outside the 
Jordan curves is to count the number of times an imaginary line drawn 
from his body to the outside world crosses a wire. Figure A. 10 shows sev-
eral sample lines. If the straight line crosses the curve an even number of 
times, the ant is outside the maze; if it crosses an odd number of times, the 
ant is inside. 

A.9 
A twisted strip with the addition of a single connecting strip. 
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Back in the real world, French mathematician Marie Ennemond 
Camille Jordan (1838-1922) offered a proof of the same rules for deter-
mining the inside and outside of these kinds of curves. (The proof was 
corrected in 1905 by Oswald Veblen.) Jordan was originally trained as 
an engineer. 

Note that ajordan curve is a plane curve that is a deformed circle, and 
it must be simple (the curve cannot cross itself) and closed (it must have 
no endpoints and must also completely enclose an area). On a plane or 
sphere, Jordan curves have an inside and outside—and to get from one 
side to the other, at least one line must be crossed. However, on a torus, 
Jordan curves do necessarily require a line crossing. 

Conclusion 
I believe this object can be classified as an optical illusion or an "impos-
sible object" in the spirit of other famous impossible objects with names 
such as the Freemish crate, the Penrose staircase (often drawn by M. C. 
Escher and on which you can walk "upstairs" forever), the Penrose tribar 
(which has three cylindrical prongs arranged in a strange way), the Pen-
rose triangle, and the ambihelical hexnut. You can find many more sim-
ilar objects on the Web. 
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The ambiguous ring show in the conclusion (figure C-3] seems to 
have two sides, which means it is not a Mobius loop. 

Do you think that the ambiguous ring shown in figure A. 11 has 
MObius properties? This figure was created by Dr. Donald E. Simanek, 
professor of physics at Lock Haven University of Pennsylvania, Does the 
Penrose triangle in figure A. 12 have only one face? 

A.11 

Ambiguous ringbi/ Dr. Donald E Simanek 

A 
A l 2 

Periroso triangle. 

If you use your hand to cover the left or right third of figure A.l 1, the 
figure seems "conflict-free.* When you look at the left side of the ring, 
everything seems normal, consistent with a washer seen from above. 
When you look at the right of the ring, everything seems consistent with 
a washer seen from below. But when you observe all of the ring at once, 
your analytical brain kicks in and says "impossible!" 
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Your journey ends with a maze by Dave Phillips. 
Help one robot find the other by traveling the shortest route. 

The ends of spirals are dead ends. 
No climbing over the edges, of course. 



1 g 0 T H E M O B I U S S T R I P 

MSbius Strip in Language 

But "not sure" is exactly how a lot of Vietnam soldiers, Kerry included, felt 
about the war mission itself. Kerry wrote this passage in such a way that you can 
take it the other way, tao, if you feel like it. This is MObius-strip rhetoric, which 
reads, "I'm not sure I'm coming home" and "I'm nat sure I'm doing the right thing" 
an the same side of a one-sided strip, and as plain an example as you will ever see 
afa politician talking out of both sides of his mouth. 

—Matt Taibbi, "Mere Words," FreezerBox.com 

>4t two hours without interruption, though, the MObius-strip dialogue can 
grow disorienting and it's possible to miss the unobtrusive conclusion alto-
gether. 

—"Shimmer Traverse Theatre," Edinburgh Financial Times 
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The second-quantized fermionic vacuum state of the G = SU{2) 
and r = 2i chiral Yang-Mills theory in the Hamiltonian formula-
tion (temporal gauge W0= 0) then has a Mdbius bundle structure 
over a specific non-contractible loop of x3-independent static 
gauge transformations. 

-F. R. Klinkhamer, "Z-string Global Gauge Anomaly and 
Lorentz Non-Invariance," Nuclear Physics B, 1998 

2 11 
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I've compiled the following reference list that identifies much of the 
material I used to research and write this book. It includes information 
culled from books, journals, and Web sites. As many readers are aware, 
Web sites come and go. Sometimes they change addresses or completely 
disappear. The Web site addresses listed here provided valuable back-
ground information when this book was written. You can, of course, find 
numerous other Web sites relating to the Mobius strip by using search 
tools such as the ones provided at www.google.com. 

If I have overlooked an interesting mathematical puzzle, person, reference, 
or factoid relating to Mobius that you feel has never been fully appreci-
ated, please let me know about i t Just visit my Web site, www.pick 
over.com, and send me an e-mail explaining the idea and how you feel it 
influenced the world. In the interest of space, I have intentionally not cov-
ered more advanced mathematical concepts, including Mdbius nets, 
Mobius dualities, Mobius transforms, Mobius statics, Mobius transforma-
tions, Mdbius groups, Mobius inversion formulas, and Mobius bundles. If 
readers have a pressing demand to learn about these subjects, perhaps I 
will write a future book devoted solely to these intricate topics. 

In the meantime, you may consult Roger Penrose's The Road to Reality: 
A Complete Guide to the Laws of the Universe (2005) for related Mobius 
delights, including an introduction to Mobius fiber bundles. Generally 
speaking, a fiber bundle is a space that locally resembles a product of two 
spaces but may possess a different global structure. Mathematical draw-
ings of fiber bundles often resemble a collection of hairs (the fibers) 
growing from a scalp (the base manifold)—as depicted at MathWorlds's 
bundle Web site: http://mathworld.wolfram.com/FiberBundle.html. 
Fiber bundles serve as convenient theoretical tools for particle physicists. 

To give readers a feel for the "look" of some of the other advanced 
Mobius concepts, consider that a Mdbius transformation is a function of 
the form 

where ad ± be and where a, b, c, and daie complex numbers. The point 
Z = -dl c is mapped to f i j = The point z = 00 is mapped to f£) = al c. 
Aside from their use in mathematics and physics, Mobius transforma-
tions can be used by artists to produce stunning fractal images (figures 
R.1, R.2, R.3, R.4). The deep mathematical significance behind many of 
these Mobius-tranformation graphics can be found in David Mumford, 

http://www.google.com
http://www.pick
http://mathworld.wolfram.com/FiberBundle.html
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Caroline Series, and David Wright's Ituira's Pearls: The Vision of Felix Klein 
(2002). The shapes are fractals produced by iteration (repetition) of 
Mobius transformations and their inverses. The details in the figures con-
tinue for many magnifications-like endlessly nested Russian dolls. 

R.1 
A Klginian group image—a limit set generated by Mob'us transformations of the f orm 
2 [az +b ] / i cz +<*) Mon? particularly, this fractal image was generated with two 
Mfihius transformations and their inverse transformations This iterative process will 

repeatedly displace an i ihial point in the ccmptex plane. The resultant set of points forme 
the limit sec represented graphically in this figura No matter how often and in whax order 

the cisplacements are repeated,the new pcints fall somewhere on the fifcurtfs curved 
shapes MBbius transformations wfll transform circles to circles, and this property yields 

the sphere-like objects in the image. (Mwork by Jos Leys, wwwjosteys.com.) 

R 2 
Same as R1, with different values of 
a, b, c, w id cf (Artwork by Jos Leys, 

wwwjosleys.com.) 

R.3 
A graphical experiment using the 

Mobius Transformation (Artwork by 

£d Pegg, >-. www.mathpoX2le.com] 

http://www.mathpoX2le.com


2 1 4 T H E M f l B I U S S T R t P 

R.4 
AsmuE Schmidt's Comfie* Continued fraction algorithm uses M&bilfe 

transforms to generate ever-finer tessellations of the ptane. Doug 
Henstey's picture of part of the fifth tessellation illustrates the 
striking reservoir of shapes and patterns that are woven into 

the fabric of mathematics 

The Mdbius transform Tfoi a function jfdefined on the positive integers 
is represented as 

{Tm=^{dUn/d)=lf{n/dUd) 

where n is the usual Mtibius function, and the notation d\ nindicates that d 
is a divisor of n. The function If is also called the MObius inverse of / 

Using the M&bius inversion formula, if and / « ) are arithmetic func-
tions satisfying 

for every integer £1 

then 

f[n)=*Lg(d) Jl(n/<f) for every integer >1 
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where |i is the usual Mobius function, and the notation d \ n indicates that 
d is a divisor of n. 

In Mobius's duality for three-dimensional space, each point corre-
sponds to a plane, and vice versa. Jeremy Gray in Mobius and His Band 
notes that "the anti-symmetric case is new, and is one of Mobius's 
finest discoveries. The discovery that in odd-dimensional spaces there 
is a new kind of duality, not associated with quadrics, is due to Mobius 
and arose from his study of geometrical mechanics." 

Readers may consult www.wikipedia.org or http://mathworld.wol-
fram.com for different notations for these formulas. These Web sites 
are regularly updated as readers discover additional properties and 
applications for these Mobius concepts. Fauvel, Flood, and Wilson's 
Mobius and His Band provides further insight. 

Deliciously complicated quotations can be pulled from the Web 
when searching for references to the Mobius bundle. I leave you with 
this gem to accompany the quotation that begins this section: 

The Thom complex of the Mobius band is the projective plane, 
and MD is its suspension spectrum, i.e. SZ2. The transformation 
6 jy. MD —> HZ2 can now be identified with the inclusion of the 
(stable) 1-skeleton, i.e., the mod 2 Hurewicz m a p . . . . Denote by 
p / / the Mobius bundle which is the 1-dimensional vector bundle 
constructed by gluing the trivial bundles over [0, 1/2] and [1/2, 
1] by multiplication by -1 in the fiber over 1/2. Thus, although 
p / / is the trivial bundle, it is equipped with opposite trivializa-
tions on the two halves of I. Denote by p/ / the stable version. We 
call p / / the (stable) Mobius twist. 

—Roger Fenn, Colin Rourke, Brian Sanderson, 
"James Bundles," 2003 

Readers continue to send me creative mazes made on Mobius 
worlds floating in space. Figure R.5 is a gem from master maze maker, 
Dave Phillips. He wrote this to me: "Find the path that the four flies 
take if they all travel the same route without meeting, and without 
retracing their path until they reach their original position. Keep track 
of which side of the path you are on." 

http://www.wikipedia.org
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R.5 
Mobius fly maie by Dave Philips, f ind the path that the four flies ts te if they all travel 
the same route without meeting and without retracing their path until they reach their 

original position. Keep track of which side of the pathycu are o a 

Mobius Strip In A e s t h e t i c s 

Whot hod seemed tike o An ear progression wos reofly o hind of bWbius strip. 
The progression of on began at Lascoux only to end, some 15,000 years later, 
with artists aspiring to point Wee cavemen. Now, ofter the end of art, anything 
goes. 

—Natasha Oegen, The Philosophy of Art: A Conversation 
With Arthur C. Domo," The Nation 

S m ^ i o a small, doubie-handled ctSN'ron pot, the mgrecfents were arranged 
In harmonious Japanese symmetry. Ivory colored slices of creamy textured wfu 
fanned half the circumference of the per, met by Wt>biu$*tr<p-tike cvrte afgekai-
nous fish cake, folk*v?d by round daikon s'/ces (hat looked tike pole oppie rmgs, 
and ending with spears of baby corn. 

—tarrcrine GengO, "My Troves With Sokhpki,' 
Fairfteld County Weekly 
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pi = 3.14159; 
for i = 0 to circlepts do 
begin 
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Chapter 6 
Notes: 

Visible universe. In 2004, the visible universe was estimated to have a 
radius of 78 billion light-years and be 13.7 billion years old. (The radius 
of the universe is not 13.7 billion light-years because space continually 
expands, with the most rapid expansion occurring early in the birth of 
the universe.) 

Lines on a sphere. Some scientists do not consider latitude lines on the 
Earth as parallel "lines." Except on the equator, latitude "lines" are not 
the shortest distance between two points. The great circle path between 
points on the Earth, idealized as a sphere, is a geodesic, where the term 
"great circle" refers to any circle on a sphere that has the same diameter 
as the sphere. In intuitive terms, an elastic band stretched along a path 
that is not a geodesic would contract its length for energy reasons to a 
nearby shorter path. 

How many copies of you exist? Researchers suggest that if the matter and 
energy in the universe are created by random quantum fluctuations, as 
cosmic inflation dictates, then there will be an infinite number of copies 
of the finite configuration of matter and energy in our visible universe, 
which is easily contained in a sphere 100 billion light years in diameter. 
Scientists believe that a lump of matter and energy enclosed in a finite 
sphere can be arranged in only a finite number of ways—due to a restric-
tion known as the "holographic bound." Learn more in Charles Seife's 
"Physics Enters the Twilight Zone." 

http://mathworld.wolfram.com/MoebiusTetrahedra.html
http://mathworld.wolfram.com/MoebiusTriangles.html


1 g 0 T H E M O B I U S S T R I P 

ALGORITHM: How to Create a Banchoff Klein Bottle 

for[u= 0; u < 6.28; u = u + ,2]{ 
for(v= 0; v<6.28;v=v + .0S{ 

x = cos(u]*(sqrt(2] + cos(u/2)*cos(v) + sin(u/2) * sin(v) * cos(v)); 
y = sin(u)*(sqrt(2) + cos(u/2]*cos(v] + sin(u/2) * sin(v)*cos(v)); 
z = -sin(u/2)*cos(v) + cos( u/2 ]*sin(v]*cos(v]; 
DrawSphereCenteredAt(x,y,x) 
} 

} 
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