


A D V A N C E P R A I S E FOR MAZES FOR THE MIND: 
COMPUTERS AND THE UNEXPECTED 

"There seems to be no end to the mathematical and mental nches Clifford Rckover 
keeps giving us. tn this, his latest book, the central theme is exploration, with em-
phasis oh the computer as a recreational tool. The book is a feast of puzzles, science 
fiction, weird numbers, curious sequences strange mazes and games, hyperdimen-
sional structures, fractals, chaos, unorthodox chess and music, computer Java lamps, 
pi curios, games, and a thousand other points of mathematical light'—all interlaced 
with dazzling illustrations " 

— Martin Gardner. Scientific American 

"Original, unusual, a treat for the eyes and a workout for the brain. The graphics guru 
is back!" 

— Ian Stewart, author of Does God Pia^ Dice? 
and editor, Mathematics Review 

"Clifford Pickover is the best new math writer in years. His work coruscates with wit 
and energy Buy this book and feed your headl" 

— Rudy Rucker, author of The Fourth Dimension 
and /nfinity and the Mind 

"A delightful trip along the fractal frontier between art and mathematics. Once again, 
it raises the old problem: does mathematics really exist,or do we make it all up^ if so 
there are some pretty weird minds out there—and good luck to them!" 

—Arthur C. Clarke 

"I tossed and turned in bed, but I Could not put Mazes for the Mind down all night At 
breakneck speed I raced along the roller-coaster voyages of the mind Pickover has 
constructed." 

— Prcrf. Akhfesh Lakhtakia, Editor. 
Specufations in Science and Technology 

"Buckle your mental seatbeJts and keep your eyes open: it's a whole new ride ot 
Pickover's visual express." 

—A. K. Dewdney, Scientific American 

"Pickover's amazing mind has produced yet another fascinating book of unexpecte d 
computer adventures. A spectacular cornucopia brimming with the beautiful andth-»-
bizarre—never a dull moment." 

—Peter S0rensen , Computer Graphics World 

"Pickover has outdone himself! Join this marvelous computer safan—experience thr 
kingdom of the siugs and fractal ants, leam of extraterrestrial messages in our genes I 
and of music machines discover fascinating new computer worlds in art, music, 
mathematics, and science. Here's a gem of a book to be enjoyed by the computer 
illiterate and savored by the computer expert." 

—Theoni Pappas, author of The <oy of Mathemat* s 







Mazes for the Mind: 
Computers and the Unexpected 



Other Books by 
Clifford A. Pickover 

Computers, Pattern, Chaos and Beauty 
Computers and the Imagination 

Visions of the Future 
Spiral Symmetry 

The Pattern Book* 
The Visual Display of Biological Information* 

Frontiers in Computing Systems Research: Scientific Visualization* 

* Forthcoming 



Mazes for the Mind: 
Computers and the Unexpected 

Clifford A. Pickover 

St. Martin's Press New York 



© Clifford A. Pickover, 1992 

All rights reserved. For information, write: 
Scholarly and Reference Division, 
St. Martin's Press, Inc., 175 Fifth Avenue, New York, N.Y. 10010 

First published in the United States of America in 1992 

Printed in the United States of America 

Library of Congress Cataloging-in-Publication Data 

Pickover, Clifford A. 
Mazes for the mind : computers and the unexpected / 

Clifford A. Pickover. 
p. cm. 

Includes bibliographical references and index. 
ISBN 0-312-08165-0 
1. Computer games. 2. Puzzles. I. Title. 

GV1469.15.P53 1992 
794.8—dc20 92-16668 

CIP 



To my parents 





source of all true art and science. He to whom this emotion is a stranger, 
who can no longer pause to wonder and stand wrapped in awe, is as good as 
dead. " Albert Einstein 

Welcome to my computer zoo. Think of this book's strange puzzles, problems, 
and artwork as exotic, sometimes beautiful, animals. The cages are the book 
chapters, computer programs, and your own thoughts. Sometimes the bars of a 
cage may bend a little, letting a weird animal escape. Don't run away. Keep it as 
a pet to stimulate your imagination. 

You should get ready for a roller coaster ride through the unpredictable and 
exciting universe of computers, games, puzzles, mazes, and computer art. Topics 
include: fractal spiders, electronic kaleidoscopes, checkers-playing robots, and 
games which model the migration of early humans from Africa to the rest of the 
world. The emphasis is on creativity and fun. For many sections, no specialized 
knowledge is required. Even though there are a number of chapters with math-
ematical ideas and computer programming hints, almost all problems are of the 
"stop-and-think" variety that do not require programming or sophisticated math-
ematics to allow readers to explore and imagine. 

For many years, I have been designing and collecting simple puzzles, games, 
and mazes - many of which can be explored either using a computer or with just 
a pencil and paper. A majority of the puzzles in my collection are entirely ori-
ginal; others are often extrapolated from, or inspired by, puzzles which date back 
several centuries and from various civilizations. Here I present a few favorites 
from my collection. Some of the puzzles are deceptively easy, while others are 
fiendishly difficult. 

The book is organized into several parts: 

1. Pattern. Computer graphics has become indispensable in countless areas of 
human activity. Presented here are experiments using graphics in math-
ematics and art. Topics include: fractal mazes, artificial kaleidoscopes, lava 
lamps in the 21st century, and number sequences from New Guinea. 
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2. Games and Speculation. Included in this section are discussions of board 
games from ancient civilizations, games played on a map of the human diges-
tive system, and other speculative topics. 

3. Music Beyond Imagination. Presented here are ways for creating "extrater-
restrial melodies" and music from our genes. 

4. Space. In this section are instructions on how to squeeze Einstein's brain into 
a 4-dimensional hypersphere, infinite cages for fleas, and related paradoxes 
concerning endless spaces. 

5. Time. Throughout human civilization and experience, throughout the intri-
cately synchronized biological rhythms of all living creatures, runs the elusive 
entity called time. In this section are several imaginative adventures exam-
ining the very fabric of time and eternity. 

6. Strange Technology. This section describes several favorite and unusual tech-
nologies - from robot surgeons, to nomadology, to fractal optical pipes. Also 
presented are a few sections on strange chess machines, puzzles, miraculous 
chess solutions, and the difficult "Knights in Hell" problem. 

7. Weird Numbers. Presented here are all kinds of strange numbers: parasite 
numbers, U-numbers, bicycle wheels from hell, pyramids of blood, and more. 

In order to further stimulate your imagination, scattered throughout the book are 
Interlude sections which feature various professional artists using science and 
technology. 

In the October 1991 issue of OMNI, Dave Jaffe (author of Mathematical 
Games That Could Not be Solved by People Who Claim They Have High IQs) 

notes that "Math teasers break down into 
two categories, those that cannot be 
solved, and those that can be solved, but 
not by you." Most of the puzzles in my 
book do not fall in either category, and the 
concepts should be interesting for exp-
lorers of various ages and abilities. 

Whereas my previous books Com-
puters and the Imagination and Com-
puters, Pattern, Chaos and Beauty were 
meant to expand your mind, this book is 
designed to shatter your mind. To this 
end, chapter sections such as "The Most 
Difficult Mazes Ever Imagined," "Caged 

Fleas in Hyperspace," "How to Stuff an Elephant in to a 24-Dimensional 
Sphere," and many others, attempt to tear the fabric of your ordinary thinking 
and to push your imagination to the breaking point. 

The seemingly incongruous juxtaposition of mind-stretching exercises with 
sections on mazes, futuristic technology, and artists who use science and tech-



Hq ua lions or No EUj uiition*? IX 

nology may bother some readers. I hope not. I think mental gymnastics and 
games go well with artistic stimulation and exploration. 1 add niy voice lo the 
chorus of others which are suggesting there is only a fine line between sciencc and 
art. Sven G- Carlson in his letter lo Science News says it well: 

"Art and scicnec will eventually be seen to be as closely w>nnectcd as arms lo the 
body. Both arc vital clcmcnIs ol' order and its discovery, The word 'ai-l* derives J.'rom 
the Indo-European base 'ar\ meaning to join or fiL together. Jn this sense, science, in 
Ihe attempt lo karri how and why things fit, becomes art. And when art is seen as the 
ability to do, make, apply or portray in a way that withstands the test of time, its con-
nection with -science becomes more clear.B 

Equations or No Equations? 

In his preface to A Brief history of Time (Bantam), Stephen Hawking refers to 
an old saying of book publishing: "Someone told mc that cach equation I included 
in the book would halve the sales. In the end, however, I did put in one equation. 

F.instein's E = mc1. I hope this will not xearc off 
half my potential readers." In the fall of 1989, 
Roger Penrose completed The Emperor's New 
Mind, which spent 14 weeks on the best-seller list. 
As Publisher's Weekly noted, the book was filled 
with "the kind of equation* that make ordinary-
readers feel that they are 100 TQ points behind the 
times." Although my first inclination was to 
provide you with little or no mathematical for-
mulas, I hyve hackcd away from this idea. For 
those readers who want to learu a little more, the 
equations will provide a useful path. Others will 
wish to pick and choose from the smorgasbord of 
topics and avoid those topics which rely on math-
ematical formulas. In order to encourage your 

— I****— involvement, computational hints and recipes for 
producing some of the computer-drawn figures are provided. Topics are often 
arranged randomly in each section to retain the playful spirit of the book, and to 
give you unexpected pleasures.3 

In addition to my parents, this book is dedicated to other inspirers: Martin 
Gardner, Isaac Asimov, James Randi. and Anhur C. Clarke. Pic Lured here are 
Martin Gardner (top) and Arthur C. Clarke (bottom). 

i There are a few places in this book where companies or products arc mentioned. Tlic.se 
are for illustrative purposes only, as I do not endorse any particular company, product, 
or technology. The artistic line and dot diagrams in this prcfacc arc by Robert Mueller 
and arc dcscribcd in "Interlude: Alien Musical Scores" on page 221. The "Appendix' 
contains solutions to several of the problems posed in this book, as well as a list of inter-
esting products, software, and games. 



The seeker is a finder." 

Ancient. Persian Proverb 
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Chapter 1 

Mazes for the Mind 

"What is this mighty labyrinth - the earth - but a wild maze the moment of 
our birth? Stili as we life pursue the maze extends, nor find we where each 
winding purlieu ends." Unknown author (18th Cen tury) 

When 1 was a very little boy my father would often draw interesting mazes for me 
ou the back of the cardboard inserts which came in his packages of new shirts. 
While growing up, I continued lo be fascinated with mazes. In the fourth grade, I 
formed a "Maze Cooperative" where various friends would challenge cacb other 
with difficult mazes which had lo be constructed in less than 15 minutes. Often 
our goal would be to make the maze aesthetically pleasing as well as interesting to 
solve. 

Of the thousands of mazes I have studied both as a child and adult, my two 
favorite mazes are shown above and facing this page. To solve "The MObius 
Maze/" above, start at one worm and find the other by crawling along the path-
ways as they pass over and under. You must keep in mind which side of the path 
you are on, and you may not crawl over an edge. To solve the stairway maze, 
start at the star near the Lop. and travel Lhe prccarious pathways as they weave 
over and under themselves. 
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Figure 1.1. Two depictions of a Minotaur. According to ancient mythology, a Minotaur 
was a man-eating monster imprisoned in a maze. There drawings are from a Corinthian 
amphora (vase), 5th Century B.C. 

I think that my father's early stimulation with mazes was an important influ-
ence in my life, and to this day I find that mazes provide an interesting boost for 
creativity. Wouldn't it be very useful for today's teachers to assign maze-drawing 
projects to their young students? Not only would this stimulate hand-eye coordi-
nation, but it would also encourage a wealth of useful traits such as patience, 
artistic skill, and an early fascination with solving problems. 

1.1 Minotaurs, Mazes, and the Medieval Church 

The world's most famous maze comes from ancient Minoan mythology. (The 
Minoans were people who lived during 
the Bronze age culture of ancient Crete, 
from 3000 B.C. to 1100 B.C.) The maze 
was built by Daedalus to imprison the 
Minotaur, a man-eating monster 
(Figure 1.1). Through the ages, many 
civilizations used mazes for amusement. 
They were used in the greenery at the 
Hampton Court palace near London, 
and in the pavements of medieval 
churches. The medieval Church actu-
ally used mazes to provide a compact 
path for pilgrims to follow on hands and 
knees by way of penance. These mazes 

usually consisted of a single, forced path to the center, with no choice of ways. 
The octagonal maze at St. Quentin, shown at the left, is an example. It measures 
42 feet in diameter. A similar maze was found in Amiens Cathedral (1288), but 
most of it was destroyed in 1708. 
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F I N D V O U R N A V 
F R O M D U B L I N 
T H R O U G H T H E 
L A B V R I N T H S 
TO L O N D O N . 

Figure 1.2. Computer-generated by Walter Pullen. Pullen is famous for having created 
one of the world's largest mazes. His first gigantic computer maze covered 699 pages of 
paper and was over 23 feet long and 11 feet wide. 

1.2 Movies and Mazes 

Probably the first major movie featuring a maze was the 1953 horror movie The 
Maze. It had all the classic horror attributes: an ancestral Scottish castle, a frog-
like creature, and an enormous hedge maze. The Maze was directed by William 
Cameron Menzies who was responsible for much of the look of Gone With the 
Wind and Invaders from Mars. Stanley Kubrik's The Shining, based on Steven 
King's novel, is a more current example of a movie maze. At the film's climax, 
Jack Nicholson, ax in hand, chases his son through the snow-covered maze. 
Luckily for the son, the deranged Nicholson gets lost in the maze. Yet another 
movie is Labyrinth where a young girl is given only 13 hours to traverse a maze. 
This movie starred rock music iconoclast David Bowie. Sarah, the girl, was forced 
to solve an enormous life-sized labyrinth, filled with dark passages, sneaky traps, 
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Figure 1.3. Chinese lanicc design experts. Shown here arc Daniel Shcclc Dye (kit) and 
Yang Chi-shang (right), who cataloged numerous Chinese lattice designs which arc (he 
basis lor some of my own mazes in this book. 

and fan las lie crealurcs in order lo rescue her baby brother who had [)een kid-
napped by the Goblin King. 

Although noL yet made into a movie, The Man in the Maze by Robert Silver-
berg is a fascinating science fiction tale set in the future, in an age of frequent 
space travel and alien encounters. The maze is an abandoned city, filled with 
deadly traps to keep out intruders. 

1.3 Egyptian Labyrinth 

The term labyrinth is often used when referring to a maze. "Labyrinth" was the 
name given by the Greeks Lo buildings containing a number of chambers and 
intricate passages. Aside from the mythological Minotaur^s maze mentioned in an 
earlier scelion, Lhcre may have exislcd an ancienl Kgyptian labyrinth situated 
somewhere to the east of Lake Moeris in northern Egypt. According to Greek his-
torian Herodotus, who lived in the 5th CcnLury H.C., the entire building contained 
12 courts and 3.000 chambers (1,500 above and 1.500 below ground)! Herodotus 
himself went through the upper chambers but was not permitted to visit those 
underground, which he was told contained the loinbs of aileienl kings. 
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1.4 The Largest Computer-Generated Maze in the World 

Recently, one huge computer-generated maze stretched over 200 sheets of paper. 
Loren Buchanan, a visualization lab manager at the Naval Research Laboratory 
at Washington, D.C., once translated the program, which generated the maze, 
from BASIC to PL/I . The program could easily generate 1000-page mazes in 
less than 20 minutes. The largest maze Buchanan ever saw printed by the 
program was a little over 200 pages in length, computed on an IBM 4341. Larger 
mazes were avoided so as not to incur the wrath of the Computer Center 
employees. The 200-page maze took a little over 4 hours to solve by a team of 4 
people. 

In 1987, one of the world's largest computer-generated mazes was produced 
by Walter Pullen of Kent, Washington. Pullen is currently 20 years old, and is a 
Senior in the Computer Science Department at the University of Washington in 
Seattle. His maze was over 23 feet long, 11 feet wide, and covered 688 pages. 
The intricate design took him 11 days just to print, with his computer running 8 
hours a day. The maze is stored on eight floppy disks, and requires one megabyte 
of disk space (enough space to store about 1 million characters). The 688 pages 
were taped together using more than 20 rolls of transparent tape. 

For comparison with Pullen's maze, consider that one of the world's largest 
life-sized mazes is "II Labirinto" in Italy, where Napoleon was lost in 1807. It 
has four miles of internal passages. Pullen estimates that his maze is two-tenths 
of a mile longer than II Labirinto. The passageways of Pullen's maze are between 
one-eight and one-quarter inches wide, and it would take a human (with computer 
help) probably over a month to solve. Pullen has not attempted to work the maze 
manually with a pencil. Like myself, Pullen credits his father for getting him 
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END. 

Figure 1.5. Pickover Chinese lattice maze 

started in mazes while he was in kindergarten. Today, Pullen hopes to use univer-
sity computer science classes to help him create even better mazes. Pullen 
recently wrote to me: 

I notified the Guiness Book of World Records about my 688-page maze which had 
100,000 dead ends and only one correct solution. My hope was to have it entered as a 
world record; however, Guiness wouldn't accept a computer-generated maze, because 
they only included mazes through which people can walk. I learned from Guiness that 
I wasn't the only person who had tried to make large computer mazes. Some students 
at a college in Massachusetts had created a computer maze which was printed on 
2800 sheets of paper, measuring 7 inches wide and nearly half a mile in length! Not 
wishing to be outdone, I did create a new maze of the same elongated type, a few 
hundred feet longer than theirs! This maze had 22 miles of passages in it, stretched 
over 3031 pages, and required nine computer ribbons for printing. My memory effi-
cient maze algorithm ran on a Radio Shack computer. 

Pullen continues to design interesting mazes, although they are much smaller 
than his world-breaking masterpieces. Figure 1.2 is one of Pullen's recent 
designs. This "British Maze" was created by hand, with help from the computer 
in filling some of the area left in the maze after Pullen designed the solution and 
the main traps. To solve it you must start in the middle of Ireland, and then wind 
your way through the maze-map. Finally you must enter England and finish up 
at the location in London. 
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-START HERE 

-END HERE 

Figure 1.6. Computer-generated maze. Start at the region labeled "P." Finish at the 
region labeled "R." You may hop from one cluster of connected lines to another if they 
contain the same letters. 

1.5 Design Your Own Chinese Lattice Maze 

My own mazes (such as in Figure 1.4 and Figure 1.5) are based on the Chinese lattice 
designs of Dr. Daniel Dye and his assistant Yang Chi-shang (Figure 1.3). Dr. Dye's 1937 
book Chinese Lattice Designs is a classic work, both in the West and in China, and it con-
tains diagrams of the intricate geometric window grids of China. Lattice windows were 
used in China for 3,000 years. Many of the old windows were destroyed in the series of 
revolutions and local wars that took place from 1911 to 1949. The majority of my Chinese 
lattice mazes are based on patterns from the Szechwan Province in Western China. Often 
I start with a design in Dye's book, and then block various "pathways" in order to create 
an interesting maze. 

1.6 Build Your Own Computer-Generated Mazes 

r 
An intriguing computer-generated maze is shown in Figure 1.6. I constructed 

this by randomly placing two different simple patterns 
of lines on a plane. The two hook-shaped patterns are 
shown at left. The object is to get from a starting point 
labeled "P" to a finishing point labeled "R." You can 
travel along any line-paths which are connected on the 
plane, or "hop" from one point to another with the same 

label. For example, you can travel from point E to R on this diagram. Once point 

~Jr 
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A L G O R I T H M : How to m a k e a simple c o m p u t e r - g e n e r a t e d m a z e . 

DO l = 1 to 200 
x = R a n d o m 
y = R a n d o m 
P a t t e r n T y p e = R a n d o m 
IF P a t t e r n T y p e > .5 T H E N DO 

M o v e P e n T o ( x , y ) 
P l o t L i n e T o (x + 0 . 0 3 , y ) ; P l o t L m e T o ( x + 0 . 0 4 , y + 0.04) 
P l o t L i n e T o ( x - 0 . 0 5 , y + 0.04); P l o t L i n e T o ( x - .05, y - . 0 5 ) 

END 
IF P a t t e r n T y p e < .5 T H E N DO 

M o v e P e n T o ( x , y); P l o t L i n e T o ( x , y + 0.03) 
P l o t L i n e T o ( x + 0 . 0 3 , y + 0.03) 

END 
END 

Pseudocode 1.1. How to make a simple computer-generated maze. Random numbers are 
generated between 0 and 1. The lower left hand corner of the maze is at (0,0). The upper 
right is at (1,1). You can place labels on the intricate cluster of lines by hand. The two 
hooklike maze motifs are defined by the "PatternTypes" in the code. 

R is reached, you then look for another point R labeling a line, or a connected 
cluster of lines, somewhere else on the plane. To draw the two simple maze motifs 
(hook patterns), use a random number generator to randomly position either of 
the two motifs. Draw the final intricate maze similar to the one in Figure 1.6 
using the simple computer recipe in Pseudocode 1.1. 

1.7 Fractal Mazes: The Most Difficult Mazes Ever Imagined 

"I thought of a labyrinth of labyrinths, of one sinuous spreading labyrinth 
that would encompass the past and the future and in some way involve the 
stars." J. L. Borgess, 1962, The Garden of Forking Paths 

Mazes can be constructed from intricate geometrical shapes called fractals. Frac-
tals are objects which continue to exhibit structural details no matter how much 
the edge of the object is magnified. These rough-edged objects or patterns often 
appear self-similar which means that no matter what scale is used to view the 
pattern, the magnified portion of the fractal shape looks just like the original 
pattern. Figure 1.7 shows a typical example derived from a simple mathematical 
formula of the form2 z = f ( z ) + c. B. Mandelbrot, the father of fractals, 
informally defines fractals as "shapes that are equally complex in their details as 
in their overall form. That is, if a piece of a fractal is suitably magnified to 
become of the same size as the whole, it should look like the whole, either exactly, 
or perhaps only after slight limited deformation." 

2 See Mandelbrot (1982), Pickover (1990), and Wegner and Peterson (1991) for more on 
this formula. See also "Fractal Spiders and Frame-Robertson Bushes" on page 87. 
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Figure 1.7. An example of a fractal maze. The path marked "end" is not actually the 
end of the maze; it is just the branch you have to travel on to reach the end of the maze 
which is too tiny to be seen without further magnification near this part of the figure. 

Mazes constructed from fractals are probably the most difficult mazes that 
could ever be constructed. In order to solve a fractal maze, the viewer would have 
to magnify different regions of the maze to be explored. Connected regions of the 
maze necessary for the maze's solution would have to be magnified even to be 
seen. Like the ever-decreasing cats in Dr. Seuss's The Cat in The Hat Comes 
Back, certain aspects of the maze will never be seen unless one knows where to 
magnify the objects. 

Consider the famous bush-shaped Mandelbrot set (M-set) for constructing 
mazes. This fractal object, pictured at left, is created using complex geometry and 
contains a myriad of minuscule tendrils. One could place the starting point of a 

maze on one of the various tendrils, or stubs, and 
then place the finishing point somewhere else on 
the object at a different magnification. Extreme 
magnifications of the M-set maze are easy to 
display using a computer. Note that if you con-
sider the width of a personal computer screen to 
be about a foot, and zoom into the M-set so that a 

piece of the M-set 1 x 10" 12 units wide fills the screen, then the original M-set 
would extend to Jupiter. This naturally produces a pretty difficult maze to solve! 
The M-set contains so much detail, and is so extensive, that magnifications of the 
M-set will easily yield pictures never seen before by human eyes. The M-set struc-
ture consists of super thin spiral and crinkly paths connecting an infinite number 
of island shapes. The incredible vastness of the M-set with its infinite number of 
island shapes has lead Wegner and Peterson (1991) to remark: "You may have 
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A 

Figure 1.8. Koch curve maze. You can construct this maze by continually replacing the 
center third of every straight line segment with a V-shaped wedge. After a few million 
generations, the length of the curve has become so great that you could not trace the maze 
in your entire lifetime. Koch and Hilbert mazes are pretty boring since they consist of a 
single path with no choice of ways. 

heard of a company that for a fee will name a star after you and record it in a 
book. Maybe the same thing will soon be done with the Mandelbrot set!" 

Arthur C. Clarke recently published The Ghost from the Grand Banks, a 
book that describes a woman so enthralled with her computer-generated Mandel-
brot picture that she spent virtually all her waking hours exploring the pictures 
intricacies. Eventually she went insane. 

1.8 The Fractal Dimension of a Maze 

A parameter called the fractal dimension can be used to describe the difficulty of 
some fractal mazes. Before continuing, let me explain more about this dimension 
parameter. The fractal dimension is a quantitative property of a set of points 
which measures the extent to which the points fill space. A line is one dimen-
sional and a plane is two dimensional, but a bumpy curve with infinite length, 
such as a Koch snowflake curve (Figure 1.8), has a dimension between 1 and 2. 
This snowflake curve is obviously more crinkly - better at filling space - than a 
smooth curve which has dimension one. The closer the dimension is to 2, the 
more a curve fills the plane on which it is plotted. Mazes with a fractal dimension 
of 1.9 may be more "difficult," and more visually interesting, than mazes with a 
dimension of 1.1. 

Consider a fractal maze based on the Koch curve or the Hilbert curve 
(Figure 1.9) which would take several lifetimes even to trace using pencil and 
paper. As you create a more and more complex maze by replacing straight line 
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Figure 1.9. Constructing a Hilbert 

segments with the simple generating pattern, the length of the maze grows. After 
a few million generations, you could not trace the maze in your entire lifetime. Of 
course, this kind of maze is a little like the medieval Catholic church maze, dis-
cussed in "Minotaurs, Mazes, and the Medieval Church" on page 4, which pro-
vided a single, forced path for pilgrims to follow on hands and knees by way of 
penance. Koch and Hilbert mazes are also pretty boring since they consist of a 
single path with no choice of ways. Would the medieval Church have been inter-
ested in these 20th Century Hilbert mazes? 

1.9 An Impossible Maze? 

This section describes a maze that's sure to have you in a quandary. Start at any 
road in Figure 1.10 and see if you can spell out a complete English sentence by 
passing next to letters without travelling on the same road twice. That is, your 
path cannot cross itself. In 1991, I tested my maze on many people. Interestingly, 
everyone tested, even after many hours of deliberation, reported, "This is impos-
sible." Yet it is a very simple puzzle. Here's a hint. The sentence starts on one of 
the four sides of the rectangular border and ends on another side. (See "Solution 
Saraband" on page 419 for the solution.) 

1.10 The Ultimate Maze Book 

David Anson Russo holds a black belt in jujitsu and is currently studying aikido. 
He is also author of some of the most visually interesting, and torturously difficult 
mazes dreamed of by humans (see Figure 1.11). His mazes often remind me of 
Celtic patterns, interwoven with ancient symbols and archetypes, with swirling 
knotlike structures. They also remind me of Leonardo da Vinci's drawing Con-
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Figure 1.10. Text maze. Start at any road and see if you can spell out a complete English 
sentence by passing next to letters without travelling on the same road twice. 

catenation which resembles both a mandala (a symmetrical Buddhist graphic 
symbol) and a maze. In da Vinci's pattern (shown in "Fact File: Tamil Women, 
Louis XIV, Etc." on page 15), a single line produces a complex pattern of knots 
that radiate and revolve outward from the center. In Russo's The Ultimate Maze 
Book, Russo tells a little bit about his philosophy concerning mazes: 

"My mazes have everything to do with my spiritual life. What drives me is to make 
the art and the viewer one. To challenge you, I build in quite a bit of psychological 
warfare as I design each maze. One of my favorite ploys is to overload your mind by 
suddenly giving it a multitude of possibilities from which to choose. Suddenly I'll 
bring you to an intersection of about six to eight trails and your first big decision." 

Russo also makes three-dimensional maze sculptures on large wood turned bowls. 
They are carved in relief, with tunnels and bridges. See his book for more infor-
mation. 

1.11 Truchet Mazes 

Tiles with simple designs can be used to create intricate mazes. The tiles I prefer 
to use are computer-generated "Truchet tiles" named after Dominican priest 
Sebastien Truchet, an engineer with an interest in mathematics and art. He also 

constructed interesting patterns using small tiles containing simple 
designs similar to these. To create Truchet mazes, use an orientable 
square tile with curved lines that join to produce continuous closures 
regardless of how the tiles are oriented. A generating tile is 
diagrammed at left. To produce a truchet maze (Figure 1.13) ran-

domly orient the generating square and place it within the corner of a large 
checkerboard grid. Add successive adjacent tiles to the checkerboard for a partic-

H 



1.12 Fact File: Tamil Wumcn, Louw XIV, Etu. 15 

Figure 1.11. The Ultimate Maze Book. Shown here is Ihe Open Access maze Irom David 
Russo's Ultimate Maze Book. His mazes oi'lcn consist of visually interesting, init?rweaving 
paths. Begin al Ihe arrow at the upper left rim. End in 1he swirling eddy al. ihe maze's 
center. Beware of (he many dead ends and "seductive pHlhs" thai, could pull you 1'ar 1'roin 
your linal goal. (See text lor details, figure © 1.991 by J>. JR.usso, Used with permission 
ol Simon and Scfoi*ter. All right* reserved.) 

ular Riw unlil it is filled, and start a new row. Continue uniil the entire checker-
board array is filled Kvcn niccr mazes can be crcatcd simply by randomly 
orientating a square rile with a single diagonal liae through it (Figure 1.14). 

1.12 Fact File: Tamil Women, Louis XrV, Etc. 

"While. / believe the computer will ultimately cause a minor revolution in all 
of the arts, the results to date ore exceedingly poor and uninspiring." 

Robert Mueller, 1972, Art in America 
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Figure 1.11. Makai Maze. Shown here is a sample maze from David Russo's Ultimate 
Maze Book. Begin at the black diamond region in the center of the white circle at the 
right, tirid at the arrow in the white arrowhead shape at left. The way to reach this maze's 
goal is through the linear zig-zag region left of the center. Here, be careful to choosc the 
right road. (See text for details, figure <£> 199J by D. Russo. Used with permission of 
Simon and Schuster. All rights reserved.) 

<• The most elaborate hedge may.c ever constructed was probably Lh;it of Louis 
XIV at Versailles. 'I'he maze contained 39 fountains and cost the equivalent of 
more than three million dollars to build. 

» liven today, Tamil women in southern India draw labyrinthine patterns on the 
threshold of their homes for protection during the winter solstice period wbcu the 

sun is considered lo have "died." 

If yon travel to the Midwestern United 
States, there is a beautiful labyrinth in New 
Harmony, Indiana. It is made with bushes, 
and in (lie center is a small circular 
building. Recently, the bushes have been 
cut back to rejuvenate Lhe maze and get rid 
of all the shortcuts young folks have cut into 
the paths. The n w c is large, and part of 
historic New Harmony which is managed 
by the University of Indiana. 

- If you are in England, visit the Hampton 
Q m r l Pulace in Hast Moxcly. It's jusL a 40 minute train ride from Tendon. The 
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Figure 1.13. Truchet maze. Mazes can be cons Lruc Led by computer using tiles with 
simple designs. See text for more information. 

palace was occupicd by King Henry VIII, among many other monarchs. In the 
garden is a tall hedge maze designed by Sir Christopher Wren, an architect of 
many of London's eaLhedrals including SL. Paul's. 

• There 23 re many public domain, ma ye software packages available to personal 
computer users. For example, a "screensaver" program called After Dork for 
Macintosh computers (commercially available from Berkeley University) has a 
public domain shareware module which generates mazes and solves them. 

J. J3 Labyrinthodoiitia, Labyrinth Fish* and Labyrinth Parasites 

As a child growing up with mazes all around me, I became interested in many 
words relating to, or sounding like, the word labyrinth, I'll spend » lit lie Lime dis-
cussing them here for true labyrinth aficionados. 

Let ine start by telling you about carnivorous, fresh-water labyrinth fish of 
the order f.abyrinthi. These are found in 
southeast AsLi (Figure 1.15) and Africa. 
IntcresLingly, Lhcy have a maze-like sLrueLurc 
above each gill chamber which enables them 
to breath air while out of water. You can 
think of this as an auxiliary breathing appa-
ratus which supplements the ordinary gills. 
It Is called a labyrinth because the intricate 
structure has many fine capillaries to aid in 
oxygen absorption. To use the labyrinth, the 
fish goes to the surface of the water and 

forces a bubble of air through the labyrinth. IL was oncc thought LhaL Lhcsc fishes 
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Figure 1.14. Diagonal tile maze. Mazes can be constructed by computer using tiles with 
straight lines. Each square of the lattice is cut along one diagonal at random. Is it possible 
to get from one side of the maze to an opposite side? 

required direct contact with the air at the top of the water in order to survive, and 
could not rely on dissolved oxygen in the water alone. However, you can test this 
theory for yourself and prove it wrong! Buy a labyrinth fish, such as a Paradise 
fish, at your local pet shop. Place it in a bottle of water filled to the very top. 
Seal the jar so there is no air space. The fish will show discomfort, but, contrary 
to what might be expected, it will not suffocate for many hours. Of course, it is a 
great advantage to a fish to be equipped with both kinds of breathers in situations 
where the oxygen in the water is so deficient as to suffocate ordinary species. The 
labyrinth fish will be quite happy in oxygen poor environments. I raised quite a 
few labyrinth fishes as a boy, and here are some tips if you are interested in trying 
this yourself. For example, you will kill these fish if your aquaria are too small or 
too clean. The babies particularly require a considerable amount of microscopic 
food which can only be developed and maintained in old water. The presence of a 
few decaying aquarium plants is desirable. I would appreciate hearing from 
readers successful in maintaining these fish in their home aquaria. 
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Figure 1,15, Where the labyrinth fish live. 

I'iguru- 1.16. HutUirfly Maze. Reproduced from Maze Craze !! 1973 with j^rrnission 
froin I'rice Stern Sloan, Inc., IXK Angeles, California. I'Oorder this maze 1KX>IC, dial («()()) 
42)-0S92. Start at the tiny word UBECIN." 
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Figure 1,17, The Discvv Thrower (Dhcohotoy), Rome, Hetty. Reproduced from Tough 
Mares III © 1991 with permission from Price Stern Sloan, Inc., Angeles, C.ilifoinin. 
To order this maze book, dirt! (800) 42I-0H92. 

Aside from labyrinth fish, you may also be fascinated by the Ltibyriniho-
dontia, a major group of extinct amphibia, domi-
nant in the late Paleozoic und Triassie. Some 
scientists think thai the labyrinchodonts may have 
been the ancestors of all land vertebrates. These 
labynntliodonts looked somewhat like today's 
newLs - bat some were as large as alligators. They 

had labyrinthine teeth where ihe dentin layer is enfolded into complex patterns 
and ridges. I am interested in hearing front readers with pictures of these teeth. 
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Laburnum is a genus of trees and shrubs with beautiful butterfly-like flowers. 
Their roots taste like licorice, but please 
don't attempt to test my taste observation, 
since their seeds are highly poisonous. Cows 
which consume the plant will die, although 
rabbits remain totally unharmed. The wood 
of these weird laburnums has a striking 
greenish-brown or reddish-brown hue and is 

ideal for cabinet making. Laburnum wood was once of the most prized kinds of 
timber in all of Scotland. 

Finally, Labyrinthistis is an inflammation of a mazelike structure in the 
internal ear, and Labyrinthula is a genus of an organism which is a parasite in 
aquatic plants. 

1.14 Credits: Mobius and Stairway Mazes 

The Mobius and stairway mazes at the beginning of this chapter are from master maze-
maker Dave Phillips' book Mind-Boggling Mazes published by Dover (1979, NY). Some 
of his mazes have hundreds of possible solutions. Phillips remarks, "Do not expect to 
doodle your pencil leisurely through these mazes, for here you will find mazes which will 
intrigue you with their geometric trickery and will involve you in mystifying journeys." 

1.15 The Diabolical Die 

The following products all relate to mazes and should stimulate your imagination. 
• Three-Dimensional Mazes: 1) The Diabolical Die. This wooden die contains a 

network of tunnels in which a metal ball is hopelessly lost. One of the holes is an exit. Ishi 
Press International, 76 Bonaventura Dr, San Jose, CA 95134. 2) Miller's Maze. 3-D 
marble maze. Creata International, Los Angeles, CA 90045. 3) Snafooz. Computer-de-
signed jigsaw-like pieces which must be assembled to form a pretty, colorful cube. Idea 
Group, Box 12637, Palm Desert, CA 92260. 4) Mighty Maze. 3-D marble maze. Creata 
International, Crystal Lake, IL 60614. 

• Two-Dimensional Mazes: 1) Simply Amazing. Mazes which contain a central 
rotating insert. Rotate the inner square by 90 degrees, and a new maze is created. Yiee 
Co., Newport Beach, CA 92660 ($2.00). 2) Connections. Fascinating strategy game for 2 
players. Link opposite sides of the board with tiles. Connections North America, Box 49, 
Cardiff-by-the-Sea, CA 92007. 3) Master Labyrinth. A strategy game using 33 tiles to 
create a network of connected paths and dead ends. 2-4 players. The maze is made partic-
ularly difficult because the locations of the players, as well as the maze configuration, are 
constantly changing. Ravensburger/International Playthings. 

1.16 Cross References 

See "Knights in Hell" on page 321 for a chess maze. See "Slugs Trapped in Jordan 
Curves" on page 45 for Jordan curve mazes. For information on fractals, see: "Smithson's 
Fractal Anabiotic Ana Sequences" on page 35, "Fractal Spiders and Frame-Robertson 
Bushes" on page 87, and "Labyrinthine Lundin Curves" on page 103. For fractal integer 
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.sequences and patterns see "The Drums of UIupu" on page 71 and "Beauty and the Bits" 
on page 79. For fractal attractors, see "Fantastic Feather Fractals'1 on page 33. For 
fractal ant farms, sec "Electronic and Fractal Ant Farm.s" on page J 73. 

1.17 For Further Reading 

J. Abbott, R. (1990) Mad Mazes. Bob Adams: Ncw York. 
2. Quinn, L. D. (J 975) Challenging Mazes. Hover; JNtw York. 
3. Hull, J. (1973) Maze Craze 2. Troubador Press: Los Angeles. 
4. Schroeder, M. (J991) Fractals. Chaos, Power Laws. Freeman: New York, 
5. Shepherd, W. (1973) Big Book of Mazes and Labyrinths. Dover: New York. 
6. Mandelbrot, B. (J 982) The Fractal Geometry of Nature. Freeman; New York. 
7. Dye, D. S. (1951) The New Book of Chinese Lattice Designs. Dover; New York. 
8. Wcgncr, T.t Peterson. M. (J 991) Fractal Creations. Waile Group Press; California. 
9. Sullivan, S. (1990) Tough Mazes III. Troubador Press; Los Angeles. Also: Heimann, 

R. (1989) Amazing Mazes. Wat or mill Press: Mafnvah, NJ.; Doob, l>. R. (1990) The. 
Idea of the labyrinth from Ctuwic&l Antiquity through the Middle Ages. Cornell; 
New York. (Descrihes labyrinths in literature and art.); Russo, D. A. (1991) 'i'he 
Ultimate Maze Book. Fireside (Simon &. Sclrasccr): NY. 

JO. Hickover, C. (1990) Computer.*, Pattern. Chaos, and Beauty. St. Martin's Press: NY. 

Ill the maze below, start at the tip of the man's finger and get to the soap without crossing 
any lines. (From Shepherd, 1973.) 



Chapter 2 

Electronic Kaleidoscopes for the Mind 

"The essences are each a. separate glass, through which th# sun of being's 
light is passed - each tinted fragment sparkles in the sun: a thousand colors, 
but the light is one." J ami (15 th Century) 

For over a hundred years, kaleidoscopes have fascinated scientists, designers, 
artisLs, and children. In the late seventeenth century, small religious shrines began 
lo take advantage of multiple mirror reflections characteristic of today's kaleido-
scopes,, Inside a wooden pavilion, tiny replicas of saints were placed in front of 
angled mirrors thai gave added impact to the scene. Invented by Sir David Brew-
ster, and patented by him in 18I7, kaleidoscopes have since taken many forms.3 

Usually, they're simple tuhc instruments which produce a symmetrical image by 
the repeated reflections in a scl of plane mirrors. Often the instrument consists of 
just two flat pieces of glass mirrors which meet; their planes arc inclined to one 
another at some even submultiplc of 360 degrees such as 30 degrees (360/12) or 
22.5 degrees (360/16). 

Here's a simple method used to crcate computer-generated kaleidoscopes, 
and the concept should be easy for most personal computer users. The kaleido-
scopes are composed primarily of triangles, with a lew circles also scattered 
about."1 Start by randomly selecting 3 vertices of a triangle. I'll call the first three 
vertices (jC|, V[), (xj,>7), and yj). Draw this triangle using any computer 
graphics package you have available to you (or if you have paLiencc, draw it by 
hand1). This is the "parent" triangle. All the reflected versions arc called ^chil-
dren." You can calculate the positions of the children points rather easily. Just 
take each of the three (x.y) coordinates, and negate them, or shuffle them in all 

< An attempt was made to discount Brewster's kaleidoscope invention as being I he same as 
the multiple mirror dcviccs of Kirchcr, Harris. Bradley, Wood and others; however, none 
of these writers described the same arrangement of mirrors that produced Brewster's 
attractive symmetrical patterns. 

Rather than use triangles, yon could easily apply these principles to a collection of joints, 
if tins is easier for you. 
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J-'igurc 2.L Computer-generated kaleidoscope pattern. 

the possible ways: ( x j ) , (-*,>•), (x> - y), ( - x , - y ) , 
Cvc), ( - y>x)> (y, — x), ( — y, — *). This produces a kalei-
doscopic symmetry schematically illustrated at the left. To 
insure that- the initially selected random points of the triangle 
fall within the triangular region of the plane marked by the 
arrow in the diagram, I actually swap * and y whenever a 
randomly sclcelcd x is greater than a in an pair. The 
pseudocode shows you how to do this. That 's all there is to it. 
The same basic idea applies to the positioning of the small 

circles in the designs. You can ehooxc Colors randomly. 
I have acccss to special purpose graphics, hardware that can render many 

thousands of triangular facets in a second, but even with simpler computer 
systems, beautiful pictures can result fairly quickly, f o r additional beauty, trans-
late the pa Item described by Lhc above shufflings several limes in a checker-
board pattern, as I have done for the figures here (Figure 2.1 and Figure 2.3). 
For additional beauty, I have also interpolated color across the facet of each tri-
angle. This means thai if one vertex is randomly chosen lo he red, and the olher 
two green, then various shades between red and green will show on the facets. 

As 1 stare al the patterns moving and unfolding on the graphics screen 1 can 
only wonder what Sir David Brewster in IS17 would have thought. Would the 
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Figure 2.2. Kaleidoscope pattern. See "How to Create Kaleidoscopic Designs Without a 
Computer" on page 27 for information on how to create this pattern. 

modern-day electronic kaleidoscopes discussed in this chapter, involving no phys-
ical mirrors, be infringements on his patent? No, but like the real thing, the elec-
tronic kaleidoscope's colored pieces make a fantastic "wallpaper for the mind." 
Why don't you try designing a similar system? Try applying different kinds of 
symmetries. You might even try to design a 3-D version, where the triangles and 
circles are scattered about in three dimensions, and not limited to a plane. Finally, 
you can introduce some asymmetry into your designs by choosing not to reflect 
certain triangles. Here's an interesting example where the computer allows you to 
design a non-physical kaleidoscope which could not be created using mirrors in 
the real world. 

For those interested in learning more about traditional kaleidoscopes, con-
sider Through the Kaleidoscope and Beyond by Cozy Baker (Beechcliff Books, 
1987). The book describes handcrafted models, and contains beautiful color pho-
tographs. It also has a list of current kaleidoscope makers and shops. Another 
interesting book is Computers in Art, Design and Animation by Lansdown and 
Earnshaw (Springer, 1989). A chapter in this book discusses computer kaleido-
scopes operating on digitized images of people and scenery. Another source for 
information on kaleidoscopes is The Family Creative Workshop series of books. 
This series published in 1974 by Plenary Publications in New York has a fasci-
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Figure 2.3. Computer-generated kaleidoscope pattern. 

lulling chapter on how to create various kaleidoscopes using mirrors and acrylic 
strips. 

2 J Teleidoscopes and Polyangular Kaleidoscopes 

"The computer is dangerously close to being our motlern version of the kalei-
doscope. Ihe Mists and (urns of programs give unexpected variations of 
form that seem to be strikingly beautiful. But is it art? What is beauty?" 

Robert Mueller, 1972, Art in America 

A toy related to the kaleidoscope is the tcleidoscope. Teleidoscopes have a (ens so 
that the objcct or sccne toward which you point the tube is reflected again and 
again. Artists often work with teleidoxeopes, kaleidoscopes, and kaleidoscopic 
cfleets. Artist and educator Judith Karelitz, for example, has produced the 
Karelitz Kaleidoscope, a polarized-light sculpture in the Permanent. Design Col-
lection of the Museum of Modern Art in New York, Two of her kaleidoscopes 
are patented. Why not design your own kaleidoscopes and try to patenL ones 
which have the most unusual principles of operation? Brewster himself and 
several later inventors created some advanced versions of Lhc original instrument. 
These included: the polyangular kaleidoscope, which allows the user to vary the 
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Figure 2.4. Kaleidoscope pattern. See "How to Create Kaleidoscopic Designs Without a 
Computer" on page 27 for information on how to create this pattern. 

angle between the mirrors, the multimirror kaleidoscope, where three or four 
mirrors are used instead of the usual two, and the kaleidograph, where the pat-
terns are displayed on a screen. 

2.2 How to Create Kaleidoscopic Designs Without a Computer 

"Be sure that any eye which sees the light has seen it only by the light itself." 
Shah Nematallah Wali (1st Century) 

You may create your own kaleidoscopic designs, without a computer and without 
even any freehand drawing, simply by using sections from illustrations you find in 

books and newspapers. Start by 
selecting an interesting design. Next 
use either of the wedged-shaped 
frames illustrated here. The frame on 
the left is used for creating a four-
part circular design. The frame on 
the right is used for creating a six-
part circular design. You can enlarge 

three frames as needed. Cut out the wedge shape, thereby creating a window thor-
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A L G O R I T H M : How to C r e a t e a C o m p u t e r K a l e i d o s c o p e . 

DO FOR 1 = 1 to 40 
x1 = random; y1 = r a n d o m 
x2 = random; y2 = r a n d o m 
x3 = random; y3 = random 
/* C o n f i n e i n i t i a l p a t t e r n to lower right q u a d r a n t */ 
if ( x1 > y1 ) then (save=x1; x1=y1; y 1 = s a v e ; ) 
if ( x2 > y2 ) then (save=x2; x2=y2; y 2 = s a v e ; ) 
if ( x3 > y3 ) then (save=x3; x3=y3; y 3 = s a v e ; ) 
D r a w T r i a n g l e A t ( x 1 , y 1 , x 2 , y 2 , x 3 , y 3 ) 
/* C r e a t e 7 r e f l e c t e d images / 
DO FOR j = 1 to 7 

F l i p (x,y) P o i n t s as D e s c r i b e d in T e x t 
D r a w T r i a n g l e A t (x1,y1,x2,y2,x3,y3) 

END 
END 

Pseudocode 2.1. How to create a computer kaleidoscope. Aside from using triangles, you 
can also use dots, lines, and circles. 

ough which you can view sections of possible source illustrations. The most diffi-
cult part of this procedure is to make a mirror copy of the source illustration as 
shown at the end of the chapter. To create the mirror image, trace the original 
design using tracing paper. Turn the tracing paper over and retrace it onto 
another sheet of paper. Once you have created the mirror image you can assemble 
an amazing and endless number of kaleidoscopic designs by repeating (alter-
nating) the two patterns in a circular fashion. Figure 2.2 and Figure 2.4 show 
two kaleidoscopic designs which were made using this approach. For more exam-
ples of this non-computer method, see Norma and Leslie Finkel's book Kaleido-
scopic Designs (Dover, NY). 
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Chapter 3 

Interlude: I See Your Eyes 
At Night in Dreams 

" i 'he eyes ha ve one language e very where." G eorge Her bert 

In order lo stimulate your imagination., I have scattered various * Interlude" sec-
tions throughout the book which feature various professional artists using science 
and technology. This first Interlude shows some of my own work called "Lyex-
capes" These are symmetrical images created from a single human, or animal eye. 
To crcale the image facing this page, I first digitized One of my Own eyes using a 
video camera interfaced to a personal computer. Somewhat reminiscent of the 
ideas presented in ihc previous chapter on compuLer kaleidoscopes, I then applied 
various (software) mirror operations to create a larger composite image from the 
single eye. Below is an "Kycscapc* created using a single animal eye. Can you 
guess what the animal is? 





Chapter 4 

Fantastic 

"Things in nature such as crystals or flowers, the human body, landscapes, 
and so on, can become a meaningful pari of a work of art. Bui when nature is 
simply reflected - increasingly possible us computerized techniques advance 
- its value as art becomes problematical. The results may be impressive, but 
they lack the necessary human insight and intervention, remaining artlike 
rather than becoming art." Robert. Mueller, 1972, Art in America 

Among my favorite mathematical shapes are the Fantastic Feather Fractals 
which have an evanescent, wing-like appearance. With a computer, you can easily 
create them using dynamical systems. Dynamical systems arc models comprised 
of rules describing Lhc way some quantity undergoes a change through time. I'Or 
example, the motion of planets about the sun can be modeled as a dynamical 
system in which the planets move according to Newton's laws. The frontispiece 
diagram for this chapter represents the behavior of mathematical expressions 
called differential equations. Think of a differential equation as a machine that 
takes in values tor all the variables at an initial time and Lhen gen era Lex the new-
values at xomc later lime, .luxl ax one can track the path of a jet by the smoke 
path it leaves behind, computer graphics provides a way to follow patlis of parti-
cles whose motion is determined by simple differential equations. The practical 
side of dynamical systems is that they can be used to describe the behavior of 
real-world things such as planetary motion, fluid flow, the diffusion of drugs, the 
behavior of inter-industry relationships, and the vibration of airplane wings. Often 
the resulting graphic pal tern x resemble Smoke, swirls, Candle flames, and windy 
mists. 

The Feather Fractal shown facing this page is an example of a strange 
attractor. As background, attractors represent the behavior to which « system 
settles down or is "attracted" (for example, a point or a looping closed cycle). An 
example of a fixed point attractor is a mass at the end of a spring, wiLh friction. It 
eventually arrh'es at an equilibrium poinl and slops moving. A limit cycle is 
exemplified by a metronome. The metronome will Lick-lock back and forth — its 
mo Lion always periodic and regular. A "strange attractor" has an irregular. 
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MUrOHlVHK: HOW to Create Feather F r a c t a l s . 
BB B -0.4«J b s 0 .93i J) s S200000; c = 2.0 - 2.C-*eui; 
x 3 .0 ; y Of 
v = aa*x + c* (x*x) /H . •+• x*x) 3 
£cr in - 0; n < p ; : » n ) ! 

P.lotDotAt fx,y) ; 
Z = X ; A = V; U = K * X ; 
v; as*x + c*'.i/( 1 . + u) ; y = v-7.-

\ 

1'sou do code 4.1. Ho* to create a Feather Fractal. Examine the region between -10 and 
10 in the A- aud>: directions. (The program coded here is in the style of the C language.) 

unpredictable behavior. Its behavior can still be graphed, but the graph is much 
more complicated. With "tame* attractors, initially close points stay together as 
Lhey approach the attractor. With Strange atlractott, initially adjacent points 
eventually follow widely divergent trajectories. Like leaves in a turbulent stream, 
it is impossible to predict where the leaves will end up given their initial positions. 

Pseudocode 4.t shows you how to produce the feather pattern, a representation of a 
dynamical system. ttimpfy plot y dot at positions determined by x and y through the iter-
ation. Use double precision variables. This pattern is fractal; thai is, as you continue to 
magnify any region of the feather, additional intricate structure is revealed. 'This class nf 
fractal attractor has been described in greater detail in: Lauwerier, H. (1990) Fractals. 
Princeton University Press. (Section on Gumowski and Mira.) 

4.1 Ooss References 

See the following sections for information on fractals: "Smithson's Fraetal Anabiotic Ana 
.Sequences" on page 35, "hractal Spiders and Krame-Knbertson Bushes" on page K7, and 
"Labyrinthine Lund in Curves" on page 103. For fractal mazes, sec "Mazes for the Mind* 
on page 3. For fractal integer scqucnces and patterns, sec " Ihe Drums of I71upu" on 
page 71 and "Beauty and the RiL$B on page 79. For fractal ynt farms. Sec "Ielectronic and 
Fractal Ant Farms" on page 173. 



Chapter 5 

Smithson's Fractal Anabiotic Ana Sequences 

"He remembered exploring those other-worldly curves from one degree to 
the next, lemniscate to folium, progressing eventually to an ungraphable 
class of curve, no precise slope at any point, a tangent-defying mind marvel" 

Don DeLillo, Ratners Star 

When Mike Smithson from James Cook University first told me about "Ana" 
sequences, I first thought the name derived from 
the biological term "Anabiosis." Anabiosis is a 
state of suspended animation in organisms, such as 
rotifers, which can be induced simply by drying 
them. The minute one adds water, the creatures 
stir to life. A dry mud bed becomes a swarm of 
rapidly moving organisms in a short time. Like 
anabiotic animals, the Ana sequences described 
here also seem to come to life by suddenly growing 

and creating intricate patterns. 
As background to the wonderful Ana sequences, in Computers and the Imag-

ination I discussed a similar sequence, the likeness sequence, which yielded 
strange-looking designs when plotted as a sequence of connected lines. Because 
the sequence never seems to contain a number greater than 3, you don't need 
large computers to begin exploring. 

The likeness sequence can be denoted by ur,n, where r is the row number, and 
n the column number: 

1 
1 1 
2 1 
1 2 1 1 
1 1 1 2 2 1 
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Figure 5.1. Cantor cheese of nested circles. 

You probably can't guess the numerical entries for the next row. However, the 
answer is actually simple, when viewed in hindsight. To appreciate the answer, it 
helps to speak the entries in each row out loud. Note that row Two has two 
"ones," thereby giving the sequence 2 1 for the third row. Row Three has one 
"two" and one "one." Row Four has one "one," one "two," and two "ones." From 
this, an entire sequence ur,n can be generated. This interesting sequence was 
described in a German article, where M. Hilgemeier called the sequence "Die 
Gleichniszahlen-Reihe," which translates into English as "the likeness sequence." 
The sequence, also extensively studied by John H. Conway, grows rather rapidly. 
For example, row 15 is: 

132113213221133112132113311211131221121321131211132 
221123113112221131112311332111213211322211312113211 

After reading about this likeness sequence in my book, Mike Smithson began stu-
dying a somewhat related sequence, the Ana sequence. The rule for generating 
Ana sequences is to begin with a letter of the alphabet and to then generate the 
next row by using the indefinite articles "a" or "an" as appropriate. (This will 
probably be best understood by English-speaking readers.) The most obvious 
letter to start with is "a": 

a 
ana 
ana ann ana 
ana ann ana ana ann ann ana ann ana 
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Figure 5.2. Cantor cheese-like drawing. How many repeated levels do you see? 
("Scruting the inscrutable," from Roger Shepard's Mind Sights. © 1990 by R. Shepard. 
Reprinted with permission of W.H. Freeman and Co.) 

The first row contains an "a," giving us "ana" for the second row. How many dif-
ferent words can you generate with this method? It turns out that only the words 
"ann" and "ana" occur, but there is an interesting self-similarity cascade occur-
ring here. Mike Smithson's following diagram will help you see this fractal struc-
ture. Here "a" is represented as a dark rectangle, and "n" is represented by a 
white space with no rectangle. The result is an asymmetric Cantor dust 
(Figure 5.3). 

As background, a symmetrical Cantor set can be constructed by taking an 
interval of length 1 and removing its middle third (but leaving the end points of 
this middle third). The top two rows of Figure 5.3 show this removal. This leaves 
two smaller intervals, each one-third as long. In the symmetrical case, the middle 
thirds of these smaller segments are removed and the process is repeated. The 
symmetrical Cantor set has a "measure zero," which means that a randomly 
thrown dart would be very unlikely to hit a member. At the same time it has so 
many members that it is in fact uncountable, just like the set of all of the real 
numbers between 0 and 1. Many mathematicians, and even Cantor himself for a 
while, doubted that a crazy set with these properties could exist. As you have just 
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i i a i i 

Figure 5.3. Anabiotic Ana fractal. The letter "A" is represented by a dark bar. The letter 
"N" is represented by a gap. 

been shown, however, such a set is possible to formulate. The dimension D of this 
particular Cantor dust for an infinite number of iterations is less than one since 
D = log 2 / log 3 = 0.63. You can read more about the concept of fractional 
dimensions, and how 0.63 was derived, in Mandelbrot's The Fractal Geometry of 
Nature. Cantor dusts with other fractal dimensions can easily be created by 
removing different sizes (or numbers) of intervals from the starting interval of 
length 1. Cantor sets are highly useful mathematical models for many physical 
phenomena, from the distribution of galaxies in the universe to the fractal Can-
tor-like structure of the rings of Saturn. 

A topologically similar set starts with a circular disc. Everything except for 
two smaller discs is removed. Here we use pairs of circles rather than pairs of 
lines, and the subdivisions are repeated as with the Cantor set described in the 
previous paragraph. We retain only those points inside the circles. Figure 5.1 is a 
picture of this Cantor cheese with each circle's radius slightly less than half of the 
previous generation's radius. (The term "generation" refers to the nesting level of 
the circles; see the program code). If we consider just the line along the diameter, 
the fractal dimension for the set of points is close to 1. Smaller fractal dimensions 
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A L G O R I T H M : How to C r e a t e C a n t o r C h e e s e . 

m - a 1-D array c o n t a i n i n g the m i d p o i n t s of each c i r c l e , 
g e n - the n u m b e r of g e n e r a t i o n s . 
D r a w C i r c l e A t - draws a c i r c l e at (x,y) w i t h a g i v e n r a d i u s . 
The p i c t u r e b o u n d a r i e s go from 0 to 100 in the x and y d i r e c t i o n s . 

m ( 1 ) = 5 0 ; count=1; 
r a d i u s = 5 0 ; frac=1; 
D r a w C i r c l e A t ( m ( c o u n t ) , 5 0 , r a d i u s ) ; 
do g e n = 0 to 10; 

b o t = 2**gen; t o p = ( 2 * * ( g e n + 1 ) ) - 1 ; 
r a d i u s = r a d i u s / 2 ; l = r a d i u s ; 
do i = b o t to top; 

m ( c o u n t + 1 ) = m(i) - frac*l; 
D r a w C i r c l e A t ( m ( c o u n t + 1 ) , 5 0 , r a d i u s ) ; 
m ( c o u n t + 2 ) = m(i) + frac*l; 
D r a w C i r c l e A t ( m ( c o u n t + 2 ) , 5 0 , r a d i u s ) ; 
c o u n t = c o u n t + 2 ; 

end; 
end; 

Pseudocode 5.1. Cantor Cheese construction. 

are obtained by using circles which are further shrunken and separated so that 
they do not touch each other. 

5.1 Stop and Think 

1. What happens if you start the ana fractal sequence with a letter other than 
"a"? Is this new sequence fractal? (For more information on fractal 
sequences, see "The Drums of Ulupu" on page 71.) 

2. Are there other verbal fractals waiting to be discovered using different rules? 

3. How quickly do the rows of this ana sequence grow in size? 
4. What is the ratio of the occurrence of "a's" to "n's" in each row as the 

sequence grows? Try other starting letters. 

5. Draw a plot where "a" causes a line to be drawn in a vertical direction (up), 
and an "n" causes a line to be drawn in a vertical direction (down). As you 
proceed through the letters in a single row, move the pen one unit to the right 
for each letter encountered, creating a steplike function. What pattern do you 
get? What does this tell you about the distribution of letters in the row? 

5.2 Cross References 

See the following sections for information on fractals: "Smithson's Fractal Anabiotic Ana 
Sequences" on page 35, "Fractal Spiders and Frame-Robertson Bushes" on page 87, and 
"Labyrinthine Lundin Curves" on page 103. For fractal mazes, see "Mazes for the Mind" 
on page 3. For fractal integer sequences and patterns, see "The Drums of Ulupu" on 
page 71 and "Beauty and the Bits" on page 79. For feather fractals, see "Fantastic 
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Figure 5.4. Recursion in art. How many repeated levels do you see? ("Eggspecting," 
from Roger Shepard's Mind Sights. © 1990 by R. Shepard. Reprinted with permission of 
W.H. Freeman and Co.) 

Feather Fractals" on page 33. For fractal ant farms, see "Electronic and Fractal Ant 
Farms" on page 173. 

5,3 For Further Reading 

1. Hilgemeir, M. (1986) Die Gleichniszahlen-Reihe. Bild der Wissenschaft. 12: 
194-195. 

2. Pickover, C. (1987) DNA Vectorgrams: representation of cancer gene sequences as 
movements along a 2-D cellular lattice, IBM Journal of Research and Development. 
31: 111-119. 

3. Pickover, C., Khorasani, E. (1991) Visualization of the Gleichniszahlen-Reihe, an 
unusual number theory sequence, Math. Spectrum. 23(4): 113-115. 
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Chapter 6 

Interlude: Fractals and Feminism 

"Ellen Carey is an artist with a camera who manipulates images, making 
them larger than life. Her conversation leaps from feminist theory to fractal 
geometry." Anne Hamilton, 1991, The Hartford Courant 

"Abstract photography is almost a contradiction in terms. Photographs, 
after all, always represent some trace of physical reality, even if it is not 
immediately recognizable." Andy Grundberg, 1990, New York Times 

Many artists in the 1990's are intrigued with simple geometrical shapes and more 
complicated fractals forms. Ellen Carey, an Associate Professor of Photography 
at the University of Hartford in Connecticut, is just such an artist. Carey is a 
photographer who, in the 1980's, was chosen by the Polaroid Corporation to use 
its huge special camera that takes 20x24 one-of-a-kind pictures. The camera (ini-
tially located at the Cambridge, Massachusetts headquarters of the Polaroid Cor-
poration but now in New York City) moves on wheels, and requires two assistants 
to operate! 

Carey's use of the large format camera isn't for everyone, since there are only 
four such cameras in the world. Since Carey's work explores the proportional 
harmonies found in nature, science, and mathematics (especially fractal geom-
etry), the Polaroid 20x24 complements her fascination with geometrical order by 
offering a contact (no negative) grain-free photograph with lush hues and a soft-
edged brilliance specific to Polaroid film. 

Although the process is expensive ($1,800 per day), Carey has enjoyed 
Polaroid's support since 1983, and has published and exhibited widely in 
museums, galleries, and corporate collections nationally and internationally. 

Carey uses multiple exposures, with elaborate lighting set-ups and collaged 
patterns that find their visual sources in molecules, snowflakes, DNA, spirals, 
etc., which veil or camouflage her face. Primarily self-portraits, these images 
seem to speak of the self, as Carey says, "not only in existential terms (who am 
I?) but also on the complexity of 'selfness' in the larger context of the unknown 
and known complexities of nature, science, and mathematics." 
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Her technical breakthrough in 1984, in which designs simulate what a pro-
jector might do with pattern over a face, echo the legacy of the ancient ritual of 
body decoration taken into the 21st. century while celebrating the kinship between 
art and science, chaos and order, symmetry and asymmetry, dark and light. Imag-
ining photography as painting with light, her images are extraordinary and 
haunting, and Lhe black and white examples shown here do not. begin to do justice 
to the brilliant primary colors and intense hues of her original works. Carey-
writes: 

With the rcecnt 150th anniversary of photography's invention, the once-familiar ques-
tion "Can photography be arl?" is hardly ever asked; mosl obscrx'crs answered in the 
affirmative some lime ago. ... I view myself as a late 20th-century woman artist using 
photography as lhe artistic tool which besi reflects ray time and my nature; In fact, I 
have made a Conscious decision U>work in a medium in which a maehinc can combinc 
with imagination to r&deJ'iue taction* of truth and beauty ta 1/125 of a second. 

For more information, contact.: RlJen Carey, Hartford Art. School, University of 
Hartford, 200 Bloomfield Ave., West Hartford, CI 06117. The photograph of 
Ellen Carey sitting in the chair is courtesy of Albert Dickson, The Hartford 
Courant, Sunday Magazine, Northeast. 



Chapter 7 

Slugs Trapped in Jordan Curves 

"What does the universe look like? A balloon that's expanding? A funnel 
full of ball bearings? A double helix? A strip of paper twisted and con-
nected in a one-sided ring?" Don DeLillo, Ratner's Star 

A few years ago I wrote a short science fiction tale about a creeping, sluglike 
creature from a planet where the moist inhabitants had a peculiar fascination 
with mazes. The slug kings would often place political prisoners in maze-like 
structures. If the slug citizen succeeded in freeing itself from the maze, it would 
be allowed to live. If not, it would be forever trapped, with no food, and would 
slowly die. In order to gain its freedom, the prisoner had a second option. The 
slug could slither up the wall and look over the wall to see what was on the outside 
of the maze, but it could not climb over the top due to barbed wire. If, as a result 
of looking, the slug could correctly guess whether or not it were possible to 
escape, the slug would be set free. 

The slug prison mazes were of a peculiar type. Topologically they were 
Jordan curves, such as the ones below, which are merely circles that have been 
twisted out of shape. A circle divides any flat surface into two areas - inside and 
outside. Like a circle, Jordan curves have an inside and outside - and to get from 
one to the other, at least one line (wall) must be crossed. 

INSIDE INSIDE ? 
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Figure 7.1. Are the slugs inside or outside their curvy prisons? To determine this, use 
the method described in the text whereby a straight line is drawn from the slug to the 
outside world, and count the number of times the line intersects a wall. 

whether or not he was on the inside or the outside of the maze. The fact that such 
a prediction could be made took all of the sadistic fun away from the slug kings. 
Since that time, the penal system on slugworld has been thrown into chaos. 
Nadroj's quick way to tell whether he was inside or outside the Jordan curves was 
to count the number of times an imaginary line drawn from his body to the 
outside world crossed a wall. If the straight line crossed the curve an even number 
of times, the slug is outside the maze; if an odd number of times, the slug was 
inside. 

Back on earth, Marie Ennemond Camille Jordan (1838-1922) offered a proof of the 
same rules for determining the inside and outside of these kinds of curves. (The proof was 
corrected in 1905 by Veblen.) Jordan was a French mathematician, originally trained as 
an engineer. It is doubtful that the slug from a distant planet heard of Jordan's work. Can 
you "solve" the Jordan curves in Figure 7.1 ? Are the slugs inside or outside of each maze? 
For other mazes, see "Mazes for the Mind" on page 3. 
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Chapter 8 

Ghost Patterns and Puzzles 

"I am half inclined to think we are all ghosts... They are not actually alive 
in us; but there they are dormant, all the same, and we can never be rid of 
them. Whenever I take up a newspaper and read it, I fancy I see ghosts 
creeping between the lines. There must be ghosts all over the world. They 
must be as countless as grains of sand it seems to me. And we are so miser-
ably afraid of the light, all of us." Henrick Ibsen 

Place a piece of tracing paper, with equally spaced grid lines, over the map of any 
country in the world, or any state in any country. (Why don't you try this for 
Pennsylvania or the map of Spain pictured above.) Draw a large square on the 
tracing paper which surrounds a region containing around 100 towns. Next place 
a black dot over the largest cities or towns. If you do this for all the cities or 

towns included in the large boundary square, you 
will have what looks like a random collection of 
hundreds of dots speckled on your graph paper. 
But are they truly randomly positioned? The 
human visual system is remarkable at detecting 
subtle patterns in near-random data, but in certain 
circumstances it is difficult for us to determine if a 
collection of dots is random by eye alone. It turns 
out that the collection of cities and towns in most 

regions of the world is not random. As an example, if you count the number of 
cities (dots) on your paper in each grid square, there will usually be fewer empty 
grid squares than you would measure for a truly random scattering of points. 
Also, there will be more squares containing just one town than you will measure 
for a truly random scattering of points. The late Polish mathematician Hugo Ste-
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Figure 8.1. Ghost pattern puzzle. Is this a random collection of dots, or is there some 
structure present? 

inhaus, in his book Mathematical Snapshots, believes that this effect is due to the 
trend of towns to keep apart from one another. 

I've just described one example where the human eye finds difficulty in dis-
tinguishing random and non-random collections of dots. A few years ago I 
enjoyed creating what I call ghost patterns. Before explaining them and showing 
you how you can compute and draw these patterns, try the following exercise. 
Look at Figure 8.1 and Figure 8.2. Is there any pattern in the collection of dots 
in either of these two figures? It turns out that one of the two figures contains a 
random collection of 10 dots, while the other contains 5 dots superimposed on the 
same 5 dots which have been rotated by 60 degrees around the center of the plot. 
With this hint, can you determine which is the random one, and which is not? 
Unless you are more exceptional than most people I asked, you could not deter-
mine which is random and which is not. I like to think of this second copy of the 
same set of dots as "ghosts" or "doppelgangers." (Dictionaries define a "doppel-
ganger" as a ghostly counterpart and companion of a person, or a ghostly double 
of a live person that haunts him through life and is usually visible only to 
himself.) In fact, the position of all the dots in Figure 8.2 was determined by a 
random number generator. In Figure 8.1 five dots were superimposed upon a 
rotated copy of the same five dots. Is this hard to see? Figure 8.3 will show you 
the position of the 5 dots before and after rotation. Try this puzzle on some 
friends. I have included a few additional ghost patterns for you to solve. Can you 
guess which of the remaining figures contain randomly positioned dots and which 
do not? I leave this as an exercise to you, and you may get better with practice. 
(See "Solution Saraband" on page 419 for the solutions.) 
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-50 

Figure 8.2. Ghost pattern puzzle. Is this a random collection of dots, or is there some 
structure present? 

You could create your own 10-dot ghost patterns simply by drawing 5 dots on 
a paper, making a copy of the paper on a transparency, and then rotating the 
transparency by 60 degrees about the center of the pattern. Alternatively, on a 
personal computer, you can make an endless variety of 10-dot ghost puzzles. 
Pseudocode 8.1 shows you how. In the computer program, if you make the vari-
able a greater than 1, the new set of 5 dots will not only be rotated from the ori-
ginal dots, but the set will also undergo an expansion, as if the plane containing 
the dots were expanding like an inflating balloon. Setting a equal to 1, as I have 
done for the previous examples, makes the solution of the problems hard enough! 
Setting a somewhat greater than one makes the 10-dot puzzles impossible to solve 
by mere mortals. The computer makes experiments such as these quite easy to 
perform. 

8.1 10,000 Dots 

"Strip the veil from the eyes of world-sight. Look around thee, ahead, 
behind, up and down. Look and discover the nature of this whirling circle, 
and that which encompasses it, that which surrounds you." 

Jami (15th Century) 

Let me conclude by showing you an example of a gigantic random dot pattern 
created with 10,000 dots (Figure 8.6). Here is a pattern of 10,000 random dots 
which is superimposed on itself and rotated by a small angle and expanded. You 
can perceive spirals about the point of rotation. If the angle of rotation is 
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Figure 8.3. Ghost pattern puzzle. The 5 dots in Figure 8.1 before and after rotation. 

increased, the perceived circles gradually disappear until a totally unstructured 
dot display is seen. This effect, studied by Leon Glass in the 1970's, demonstrates 
the ability of the human visual system to detect local autocorrelations and may 
suggest a physiological basis of form perception in higher animals. Though this 
pattern was produced by a computer, similar patterns can easily be generated 
using sprinkled ink and transparencies. Matisse, in 1908, aptly wrote in Notes of 
a Painter: 

If I put a black dot on a sheet of white paper, the dot will be visible no matter how far 
I stand away from it - it is clear notation; but beside this dot I place another one, and 
then a third. Already there is confusion. 

8.2 Fact File 

Twenty-five percent of American adults, 45,600,000 persons, believe in ghosts. 
There are an estimated 100 professional ghost investigators working in America. 
Of these individuals, three make more than $100,000 annually. (Source: Tom 
Heymann's The Unofficial US Census, Fawcett Columbine: N Y (1991)). 
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Figure 8.4. Ghost pattern puzzle. Is this a random collection of dots, or is there some 
structure present? 
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Figure 8.5. Ghost pattern puzzle. Is this a random collection of dots, or is there some 
structure present? 
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Figure 8.6. Gigantic random dot-display. This figure was produced by superimposing a 
figure containing 10,000 random dots upon itself and subsequent rotation by three degrees 
and uniform expansion by a factor of 1.1. Note: if the rotation is much larger, the eye 
looses the ability to perceive the spiral patterns. 

A L G O R I T H M : How to C r e a t e G h o s t P a t t e r n s 

a= 1; /* scale factor */ 
DO F O R l = 1 to 5 

xr = r a n d o m * 1 0 0 
yr = r a n d o m * 1 0 0 
P n n t D o t A t (xr ,yr) 
/* R o t a t e dot a b o u t center p o i n t 50,50 */ 
x s a v e = a * ( ( x r - 5 0 ) * c o s ( a n g l e ) + ( y r - 5 0 ) • s i n ( a n g l e ) ) + 50 
yr = a* ( (yr-50) *cos (angle) - (xr-50) * s m (angle) ) + 50 
x r = x s a v e 
P n n t D o t A t (xr, yr) 

END 

Pseudocode 8.1. How to create Ghost Patterns. 



Chapter 9 

Is a Picture Worth 75 Words? 

"We cannot let ourselves be carried away with dazzling new scientific tech-
niques, believing that they are automatically art just because they over-
whelm our untrained artistic eyes. We must look at Leonardo before we can 
consider ourselves Leonardos." Robert Mueller, 1983, Creative Computing 

The geometric designs of Russian artist Y. Chernikov never fail to entice the eye 
and titillate the imagination. Even though they were constructed well before 
computer graphics, Chernikov patterns often remind one of the computer-drawn 
"spirographic" art so popular in the 1970's and even today. Chernikov's original 
designs, published in Leningrad in his 1930 book Ornament, often contain motifs 
stemming from the combination of primitive Russian folklore, and the Byzantine 
style, with the Christian influence brought to Russia by the Tartars between 1237 
and 1480. The first three figures in this chapter show a few of his designs. 
Chernikov's original Russian language book may be rather hard for you to obtain; 
however, you can easily obtain a reprint in the form of Gillon's 1969 book 
Geometric Design and Ornament (Dover: New York). 

In August 1991 I conducted an experiment using one of Chernikov's simplest 
designs. My goal was to test the ability of words to describe a graphic diagram. I 
started by limiting myself to a 75-word description of a Chernikov pattern. Using 
only this description, I asked people to draw the target design. Here is my 
description of the target which is shown in Figure 9.4. 

"There are four quarter-sized circles arranged so they touch. They are on top of one 
larger circle with a thick edge, and cover the circle slightly. Inside each of the four 
circles is a black dot which touches the edge of each of the circles. The four circles 
also contain six circles inside them. The six circles get smaller and smaller, but all of 
their edges touch the black dot." 

Notice that I also limited myself to nonmathemtical terms when describing 
the target picture. The survey was conducted using the electronic mail networks, 
and participants included scientists, programmers, and administrators. 

Figure 9.5 shows the several variations by Robert Guth, San Jose, California, 
whose "Variation 2" came incredibly close to the target image in Figure 9.4. The 
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Figure 9.1. Chernikov patterns. 

remaining figures show the range of results 1 received, and just a few were almost 
as close as Guth's. (1 reduced the respondents' original diagrams by a uniform 
amount to fit so many in these figures.) Each diagram represents a different 
respondent's attempt to draw the target according to my description. 

9.1 Comments from Colleagues 

A few respondents noted that my English language description was ambiguous. 
Some people asked me, "What is the diameter of the large circle?" "What does 
'cover slightly' mean?" "How big is the black dot?" "Are the groups of circles 
nested or adjacent?" I could only respond to these critical people that the 
description was the best I could do with 75 words and without resorting to math-
ematical jargon. I received many suggestions on how to improve my English in 
the pattern description. 

One Swiss respondent had difficulty with the expression "quarter-sized 
circles." He wrote, "First I translated it word by word into German and got Vier-
tel-Kreise. My first sketch (not included) was obviously wrong. Later I received 
the advice that you probably meant a circle the size of a quarter US Dollar." One 
British respondent did not know how large a US quarter was so he assumed it to 
be "the size of a British 10 pence piece." 
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Figure 9.2. Chernikov patterns. 

9.2 Stop and Think 

This Chernikov target experiment provides an infinite number of possible future 
experiments. Here's just a few ideas, and I would be interested in hearing from 
any of you who have conducted the following tests with the Chernikov target 
figure. 

1. How would different people describe, using no more than 75 words, the Cher-
nikov target figure in Figure 9.4? Perhaps some of you could construct much 
more accurate descriptions which would therefore improve your respondents' 
diagrams. 

2. Create a catalog of figures, such as in Figure 9.7 with different numbers of 
words allowed to describe the target figure. For example, what would pic-
tures look like if only a 50-word description were allowed? What would 
respondents' pictures look like if only 25 words were allowed? What would 
pictures look like if 500 words were allowed? 

3. Conduct an experiment where you take the worst representation (that is, the 
picture most different from the target), and use this as a new target for 
another experiment. Continue to propagate the error until the first target 
bears no resemblance to the new images. How many generations of selecting 
the least accurate representation would this require? 
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Figure 9.3. Chernikov patterns. 

4. Just because a picture is simple does not mean 75 words could describe it in a 
way that allows respondents to accurately reproduce the picture, particularly 

if mathematical terms are not used. 

after Maria Agnesi (1718-1799) who in 1748 discussed the curve and referred to 
it as a versiera, which in Italian means versed sine or witch. (Maria Agnesi was a 
child prodigy, author, and mathematician who lived a life of extreme piety and 
charity.) 

O 
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x 

As an experiment, use the mathemat-
ical curve called the Witch of Agnesi 
as a target picture instead of the 
Chernikov target. For your interest, 
the equation of the curve is 
Aa2(2a — y) = x2y. The distance of 
the curve's maxima from the origin is 
2a. The Witch of Agnesi is named 



Figure 9.4. The Chernikov target picture described using 75 words. 

Figure 9.5. Robert Guth's drawings of the target. The drawings were based on his 
reading of the 75-word description. The rightmost figure is amazingly similar to the target 
Chernikov picture. Skeptical readers should not consider this as evidence for extrasensory 
perception. 





Figure 9.7. A variety of drawings of the target from many different individuals. 





Chapter 10 

Siamese Fighting Fish Patterns 

As most tropical fish hobbyists know, Siamese fighting fish have been bred by 
humans for decades in order to develop brilliant coloration, very long fins, and a 
belligerent, pugnacious disposition. In fact, it's best to keep the males of the 
species in separate enclosures so that they do not tear each other to shreds.5 In 
1927, a beautifully colored variety of fighting fish (Betta splendens) was first 
brought into San Francisco from Siam. The consignee, Mr. Locke, thought he 
had a new fish species, but his brilliantly colored variants of fighting fish, which 
we see often in pet stores today, were simply another race of their pre-1927 dull-
colored cousins. 

Fighting fish have been cultivated among the Siamese for many years, and 
just as some Americans enjoy watching wrestler Hulk Hogan batter a muscular 
opponent and gambling on the outcome, Siamese have often wagered large sums 
of money on the outcome of a fighting fish match. (There are 10 licensed places 
which permit public fighting fish combats and betting.) 

Consider the following problem involving the arrangement of aggressive fish 
in different enclosures. It is the year 2000. Siamese fighting fish have been bred 
so that they will kill any other of their species with the same color, but they can 
comfortably live with members of different colors. Problem 1: You have 3 red, 3 
green, and 3 amber fighting fish. To minimize fighting, they are to be placed in a 
3x3 matrix of cells so that each row and column contains only 1 fish of a partic-
ular color. The matrix looks like a tic-tac-toe board in which you are not per-
mitted to have two fish of the same color in any row or column. Is this possible? 
(Hint: it is possible.) Below is an arrangement prior to your attempt to minimize 
conflict: 

Red Red Red 
Green Green Green 
Amber Amber Amber 

5 Male fish aggression is not limited to Siamese fish, but this is perhaps the most well 
known example. The frontispiece, and picture above, show other agressive species. 
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A L G O R I T H M : How to Scan for Latin S q u a r e s . 

/* r is y o u r Latin square array */ 
for (l = 0; l < n; i++) { 

for (j = 0; j < n; j++) { 
x = r (i) (:) ; 
/* check row */ 
for (k=j+1; k<n;k++) 

if (r(i)(k) == x) goto nogood; 
/* check column */ 
for (k=i+1; k<n;k++) 

if (r(k)(3) == x) goto nogood; 
} 

} 
p r i n f t ( " Y o u have a Latin s q u a r e \ n M ) ; e x i t ( 0 ) ; 
nogood: 
p r i n f t ( " T h i s is not a Latin s q u a r e \ n M ) ; 

Pseudocode 10.1. How to scan for Latin squares (The program coded here is in the style 
of the C language.) 

Problem 2: Next consider that you must place the fish so that each row and 
column contains exactly two colors. Is this possible? 

You can design a computer program to solve Problem 1 by representing the 
fish as red, green, and amber squares in a 3x3 checkerboard. The program uses 
three squares of each color. Have the computer randomly pick combinations, and 
display them as fast as it can, until a solution is found. The rapidly changing 
random checkerboard is fascinating to watch. There are quite a lot of different 
possible arrangements. In fact, for a 3x3 checkerboard there are 1680 distinct 
patterns. If it took your computer 1 second to compute and display each 3x3 
random pattern, how long would it take, on average, to solve the problem and 
display a winning solution? (There is more than one winning solution.) 

In case you couldn't solve it, there is way to arrange the fish so that there are 
only two of the same color in each row and column: 

Amber Green Amber 
Green Green Red 
Amber Red Red 

Try this second problem on a few friends. I've found that most people have diffi-
culty in solving this. 

10.1 Amazing Latin Squares 

The Siamese Fighting Fish problem can be though of as a special problem in the 
remarkably rich mathematical area concerned with Latin squares. Latin squares 
were first systematically developed by Swiss mathematical Leonhard Euler in 
1779. (Euler's mental powers were so great that his capacity for concentrating on 
math problems did not decline even when he became totally blind.) He defined a 
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Latin square as a square matrix with 
n2 entries of n different elements, 
none of them occurring twice or more 
within any row or column of the 
matrix. The integer n is called the 
order of the Latin square. Recently 
the subject of Latin squares has 
attracted the serious attention of 
mathematicians due to their rele-
vance to the study of combinatorics 
and error correcting codes. Here's an 

example of the occurrence of a Latin square when considering the equation 
z = (2x + y + 1) modulo 3: 

0 1 2 

0 1 2 0 
1 0 1 2 
2 2 0 1 

To understand this table, consider the case of x = 2 and y = 2 which yields 
2x + y + 1 = 7. 7 mod 3 is 1 because 7/3 has a remainder of 1. This "1" entry is 
in the last row and column of this Latin square. 

Here's an interesting example, from Denes and Keedwell (1974), of a Latin 
square of order 10 containing 2 subsquares of order 4 (consisting of elements 1, 2, 
3, and 4) and also one of order 5 (with elements 3, 4, 5, 6, 7), the intersection of 
which is a subsquare of order 2 (with elements 3, 4): 

1 9 2 8 0 16 7 4 5 31 
8 2 1 0 9 I 7 5 3 k 6 | 
2 1 0 9 8 I 5 6 7 3 M 

I 

0 8 9 11 2 I 3 k\ 6 1 
I 

51 
9 0 8 I 2 

I 
1 \k 31 

I 
5 6 71 

5 6 7 
I 
I 3 k 1 

I 
2 I 0 8 9 

6 7 5 \k 3 2 11 8 9 0 

7 k 3 5 6 0 9 1 2 8 
3 5 k 6 7 8 0 9 1 2 
b 3 6 7 5 9 8 2 0 1 

Can you create Latin squares with even greater numbers of internal subsquares 
than this? What is the world-record for the number of subsquares in an n x n 
Latin square? 
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A traversal of a Latin square of order n is a set of n cells, one in each row, 
one in each column, and such that no two of the cells contain the same symbol. 
Fascinatingly, even in cases when a Latin square has no traversals it is very often 
the case that partial traversals of (n — 1) elements occur in it. Do all Latin 
squares have a partial traversal of n — 1 elements if the squares do not contain a 
true traversal? Here is an example of a Latin square with an n — 1 traversal (I've 
marked the traversal path with a « * » ) 

1* 6 3 7 4 9 2 5 0 8 
2 0* k 6 5 8 3 1 9 7 
3 9 5* 0 1 7 k 2 8 6 
k 8 1 9* 2 6 5 3 7 0 
5 7 2 8 3* 0 1 k 6 9 
6 1 8 2 9 4* 7 0 5 3 
7 5 9 1 0 3 8* 6 k 2 
8 k 0 5 6 2 9 7* 3 1 
9 3 6 4 7 1 0 8 5 
0 2 7 3 8 5 6 9 1 k 

Let's conclude with an example of a Latin cube. You can think of it as a 
stack of file cards. Each card contains n rows, and n columns. Each number 
occurs exactly once in each row, once in each column, and once in each row and 
column in the third dimension: 

0 1 2 1 2 0 2 0 1 
1 2 0 2 0 1 0 1 2 
2 0 1 0 1 2 1 2 0 

Can you design a 4-dimensional Latin hypercube? Note that computers are much faster 
than humans in finding errors in Latin squares, cubes, and hypercubes. So, if you are not 
sure if the Latin square you've written down is correct, check each row and column with a 
computer program. (See Pseudocode 10.1.) Have your computer create 4x4 Latin squares 
by randomly selecting values for the squares and then checking if the results is a Latin 
square using the algorithm in the program code. How long does it take your computer to 
find a Latin square? Several minutes? Hours? My IBM RISC System/6000 took just 
seconds to find 3x3 Latin squares. For large squares, this random method is not very effi-
cient. 

10.2 Magic Squares, Emperor Yu, Chess Knights, Etc. 

Another matrix of integers which has preoccupied both mathematicians and lay-
people for centuries is the magic square. The first 
known example of a magic square is said to have 
been found on the back of a tortoise by Emperor 
Yu in 2200 B.C. A magic square is often defined 
as a matrix divided into N2 cells in which the inte-
gers from 1 to N2 are placed in such a manner that 

the sums of the rows, columns, and both diagonals are identical. My favorite 
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magic square, invented by the same 18th century mathematician Leonhard Euler 
who studied Latin squares, is shown in the following diagram: 

Each horizontal or vertical row totals 260. Stopping halfway on each gives 130. 
Even more exciting is that a chess Knight, starting its L-shaped moves from the 
upper left box (marked "1") can hit all 64 boxes in numerical order. (You can 
locate the "2" to find the knight's first move.) Can you trace out the path of the 
knight through the board? 

Another interesting magic square is the enigmatic 77-square invented by T. E. 
Lobeck of Minneapolis. He starts with a conventional 5 by 5 magic square and 
then substitutes the nth digit of tt for each number n in the square. This means 
that a 3 is substituted for a 1, a 1 is substituted for a 2, a 4 substituted for a 3, and 
so on. Amazingly, every column sum duplicates some row sum for the 77-square. 
For example, the top row sums to 24 as does the 4th column. 

5x5 Magic Square Pi Square 

10.3 Cross References 

For other references on chess, see "Miraculous Chess Solutions" on page 311, "Knights in 
Hell" on page 321 and "Fiendishly Difficult Eight Pawn Problem" on page 321. For spe-
cific information related to the movement of chess knights for the purpose of producing 
artistic patterns and music, see "Chess Music" on page 204. 

10.4 For Further Reading 

1. Denes, J, Keedwell, A. (1974) Latin Squares and their Application. Academic Press: 
New York. 

2. Gardner, M. (1992) Fractal Music, HyperCards, and More... Freeman: NY. 

1 48 31 50 33 16 63 18 
30 51 46 3 62 19 14 35 
47 2 49 32 15 34 17 64 
52 29 4 45 20 61 36 13 
5 44 25 56 9 40 21 60 
28 53 8 41 24 57 12 37 
43 6 55 26 39 10 59 22 
54 27 42 7 58 23 38 11 

Chess K n i g h t 
Magic Square 

17 24 1 8 15 
23 5 7 14 16 
4 6 13 20 22 
10 12 19 21 3 

1 1 18 25 2 9 

2 4 3 6 9 
6 5 2 7 3 
1 9 9 4 2 
3 8 8 6 4 
5 3 3 1 5 





C h a p t e r I ! 

Interlude: Pulsating Pumpkins, 
Helical Hedges, and Leaping Leaves 

"l would like to design forms which lift away from the pull of gravity, and 
are therefore graceful. I believe my ideas may help make computer-drawn 
images more organic in appearance." Joan Rudd, 199} 

The Lille of Ibis. "Interlude* chapter lisLs three names of mathematically-inspired 
sculptures created by Joan Rudd. When I visited her home in Seattle, Wash-
ington. yrtist Rudcl showed me how she applies plaster over reoyoled sytrofoam 
computer packing to create the forms. Sometimes she uses internal wire or 
welded armatures as needed tor support. The final surfaces are painted and ulti-
mately lacquered. Shown I)ere is "Leaping Lea f (12x3x6.3 r , facing page, turned 
90 ° so as to enlarge the image as much as possible), and "Helical Hedge" (above. 
24x14x14'). Some of her work is rerniniseenl of mathematical surfaees erealcd 
using computer aided design (CAD) tools; however. Rudd cheerfully notes: 

What t did. ol' course, was to make sculpture ivt if 1 had access to a sophisticated 
OA I) program, but I make real objects with hand pain ted "wire frame" surfaces? I am 
now hack to making figurative work, in carvcd fctyrofoam (to he cast), at least until'( 
can afford a math co-processor and Ocncric CAD. 

Not only has .loan's work been featured in various newspapers, magazines, and 
juried exhibitions, bul she also teaches numerous courses with titles such as 
"Outdoor Sculpture in Concrete." She is editor of the Cast Stone, Concrete, 
Platter Sculptor s Newsletter, and is tile advertising representative of the rnaga-
7ine Sculpture (see "Product Pa van" on page 40fc), J<™n R udd can be reached at: 
PO Box 25£03, SeaLLle, WA 98125. 
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Chapter 12 

The Drums of Ulupu 

"I like that abstract image of life as something like an efficient factory 
machine, probably because actual life, up close and personal, seems so messy 
and strange. It's nice to be able to pull away every once in awhile and say, 
'There's a pattern there after all! I'm not sure what it means, GW, / 
see it!'" Stephen King, Four Past Midnight 

Late last autumn, while enjoying the brisk New England air, I took a walk with 
Bijan, my octogenarian friend. In his usual, hushed voice, he told me about his 

buddies who once explored Ulupu in 
the Northern Maprik district of New 
Guinea. I should tell you right up 
front that I can never be certain as to 
the accuracy of Bijan's tales. During 
the past ten years his stories have 
evolved into highly embellished tales, 
composed of myth and truth, perhaps 
more of the former than the latter, 
depending on his mood. Whatever 

the case, I recount his colorful story here and let you decide about the authen-
ticity of Bijan's old recollections. 

Apparently Bijan's New Guinea explorer friends were camping on a river 
bank when they heard strange drum beats. There was a certain rhythm to the 
drums, but the drums never quite repeated themselves. A few men explored the 
surrounding bush, but even after much searching never succeeded in locating the 
source of the sounds. Sometimes the sounds seemed to come from the North, at 
other times from the East. 

The beats emanated from a two-tone drum or, perhaps, from two drums of 
different tones, one high and one low. At other times in the night, a single drum 
seemed to beat, and the sounds consisted of short-duration beats and long-dura-
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0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 0 0 1 

Figure 12.1. A Morse-Thue sequence for the 11th generation 
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Figure 12.2. Aperiodic Morse-Thue bar code Vertical lines are placed wherever a 1 
occurs in the sequence. Spaces are skipped wherever a 0 occurs. 

tion beats. One of the explorers was interested enough in this peculiar phenomena 
to record the beats in his tattered notebook. Later, Bijan had the opportunity to 
look at the notebook where the explorer used L and S to represent the long and 
short beats he heard. Luckily the drum beats were slow enough to allow the exp-
lorer to accurately record the rhythmic pattern. The first few entries were: 
SLLSLSSL. Then the drummer would pause for a minute and then start again. 
On the next line of the notebook were the letters: SLLSLSSLLSSLSLLS. The 
notebook contained several pages of these symbols. By midnight, the pages of the 
notebook were exhausted. The drum sounds were supposedly strange to hear. 

Years later, Bijan came into possession of the notebook from the man who 
had originally recorded the drumbeats. The man who recorded the patterns 
croaked, "It's the strangest thing ye ever heard. It ain't exactly irregular and it 
ain't exactly regular, either." Bijan, who has some mathematical training, spent 
many days examining the pages of S and L symbols. His conclusion was startling. 

We continued our walk in the cool night air. Suddenly, Bijan stopped dead in 
the middle of the sidewalk under an amber streetlight. He looked me in the eye. 
"You might not believe this, but that strange pattern of S and L symbols turned 
out to be a well-known but very exotic pattern of binary numbers called the 
Morse-Thue sequence - a interesting sequence generated with a string of O's and 
l's." Bijan went on to explain that the sequence is named in honor of the Norwe-
gian mathematician Axel Thue (1863-1922) (pronounced "Tew") and Marston 
Morse of Princeton (1892-1977). Thue introduced the sequence as an example of 
an aperiodic, recursively computable string of symbols. Morse did further 
research on the sequence in the 1920's. 

There are many ways to generate the Morse-Thue sequence. One way is to 
start with a zero and then repeatedly do the following replacements: 0 01 and 
1 10. In other words, whenever you see a 0 you replace it with a 01. Whenever 
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o o o 00 o 00 o o o 00 o o 0 0 

Figure 12.3. Morse-Thue Lollipop forest. To make the positions of "11" entries clear to 
the human eye, wherever two 1 's appear consecutively, they are joined together by short 
horizontal steps. 

you see a 1 you replace it with a 10. Starting with a single 0, we get the following 
successive "generations": 

0 
0 1 

0 1 1 0 
0 1 1 0 1 0 0 1 
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

You begin with 0, and replace it by 01. Now you have a sequence of length two. 
Replace the 0 by 01 and the 1 by 10. This produces the sequence 0110. The next 
binary pattern is 01101001. Notice that 0110 is symmetrical, a palindrome, but 
the next pattern 01101001 is not. But hold on! The very next pattern 
0110100110010110 is a palindrome again. Does this property continue to hold 
for alternate sequences? The mysteries of this remarkable sequence have only 
begun. 

Notice that the fourth line of the sequence can translate into the SLLSLSSL 
drum beats in Bijan's story. 

You can generate the drum sequence in another way: each generation is 
obtained from the preceding one by appending its complement. This means that if 
you see a 0 1 1 0 you append to it a 1 0 0 1. There is yet a third way to generate 
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A L G O R I T H M : How to C r e a t e U l u p u D r u m B e a t s . 

/ * * / 
N u m b e r of B e a t s = 10 
k = 0 
DO i = 1 to N u m b e r _ o f _ B e a t s 

c o u n t = 0 
num = k 
DO w h i l e num > 0 

IF ((num // 2) = 1) then do 
c o u n t = c o u n t + 1 
num = num - 1 

END 
num = num/2 

END /* w h i l e */ 
b i t = c o u n t / / 2 
P r i n t ( b i t ) 
k = k + 1 

END /* do i */ 

Pseudocode 12.1. How to create Ulupu drum beats. The " / / " denotes modular arith-
metic. Print out the value for bit (1 or 0) to generate the sequence. 

the sequence. Start with the numbers 0, 1,2, 3, ... and write them in binary nota-
tion: 

0, 1, 10, 11, 100, 101, 110, 111,... 

(Binary numbers are explained more fully in the next chapter.) Now calculate the 
sum of the digits modulo 2 for each binary number. That is, divide the number by 
2 and use the remainder. For example, the binary number 11 becomes 2 when 
the digits are summed, which is represented as 0 in the final sequence. This yields 
the sequence 

0 , 1 / 1 , 0 , 1 , 0 , 0 , 1 . . . 

which is the same sequence as yielded by the other methods! 
Let me tell you why this sequence is so fascinating. For one, it is self-similar. 

This means you can take pieces of the sequence and generate the entire infinite 
sequence! For example, retaining every other term of the infinite sequence 
reproduces the sequence. Try it. Similarly, retaining every other pair also 
reproduces the sequence. In other words, you take the first two numbers, skip the 
next two numbers, etc. Also, the sequence does not have any periodicities as would 
a sequence such as 0 0, 1 1 ,0 0 , 1 1. However, although aperiodic, the sequence 
is anything but random. It has strong short-range and long-range structures. For 
example, there can never be more than two adjacent terms that are identical. 
One method for finding patterns in a sequence, the Fourier spectrum, shows pro-
nounced peaks when used to analyze the sequence. 

The sequence grows very quickly. The following is the sequence for the 8th 
generation. 
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011010011001011010010110011010011001011001101001011010011001 
011010010110011010010110100110010110011010011001011010010110 
011010011001011001101001011010011001011001101001100101101001 
011001101001011010011001011010010110011010011001011001101001 
0110100110010110 

Figure 12.1 shows the scquencc for the 11th generation. Sometimes certain 
patterns emerge when a sequence is 
stacked up on itself in this manner. Can 
you see any patterns here? Another way to 
represent the Morse-Thue sequence is to 
redraw it as a "bar code" of sorts, as in 
Figure 12.2. Vertical lines are placed 
wherever a 1 occurs in the sequence. 
Spaces are skipped wherever a 0 occurs. 
Figure 12.3 shows a Morse-Thue Lollipop 
forest. To make the positions of 11 entries 
clear to the human eye, wherever two l 's 
appear consecutively, they are joined 

together by short horizontal steps. What would it be like to walk through this 
strangely spaced forest? 

Why would some obscure tribes in a remote New Guinea rain forest be 
beating this sequence upon their animal skin drums? I might have doubts as to 
the accuracy of Bijan's story, but the rhythm pattern is certainly strange to hear. 
You may wish to beat the sequence out on your desk, or have your computer-cont-
rolled musical instrument play the eerie rhythm. If you prefer, you can beat the 
sequence out on a table top with a finger to represent a low tone and a pencil to 
represent a high tone, rather than using short and long duration beats. Do you 
hear a pattern? It is strangely compelling, yet it never quite repeats itself in the 
way that most rhythms do. If the sequence is not random, what is it's structure? 

Not only do binary numbers provide for musical possibilities, they also can yield 
artistic patterns. Graphic patterns produced by numbers represented in binary notation 
are so interesting that I'll devote the next section entirely to this subject. Interesting infor-
mation on fractal number sequences can also be found in M. Schroeder's Fractals, Chaos, 
Power Laws (Freeman: NY). See "Curiosity Cavalcade" on page 410 for information on 
IBM PC programs allowing you to produce these strange rhythms on personal computers. 

12.1 Cross References 

For other examples of aperiodic bar codes in mathematics, see "U-Numbers and 
MU-Numbers" on page 357. For examples of unusual bar codes for product coding, see 
"Bar Codes in the 21st Century" on page 297. 







Chapter 13 

Beauty and the Bits 

The humble bits that lie at the very foundation of computing have a special 
beauty all their own. It takes just a little logical coddling to bring the beauty out. 
Who would guess, for example, that intricate fractal patterns lurk within the OR 
operation applied to the bits of ordinary numbers? 

Binary numbers consist of the digits 1 and 0. Some say they were invented by 
Leibniz while waiting to see the Pope in the Vatican with a proposal to reunify the 
Christian churches. Here are the first seven numbers represented in binary nota-
tion: 

0, 1, 10, 11, 100, 101, 110, 111,... 

The sum of the digits for each number form the sequence (in decimal notation): 

0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,... 

Notice, just like the Morse-Thue sequence, (previous chapter) this sequence is 
self-similar, if you retain every other term you still have the same infinite 
sequence! The following few paragraphs will show you how wonderful graphic 
patterns can emerge when working with binary numbers. In fact, very complex 
patterns with scaling symmetry can arise from the simplest of arithmetic oper-
ations which use logical operators such as "AND" and "OR." Figure 13.1 was 
created using an "OR" operation. For this demonstration 

Cij = i OR j (13.1) 

(1 < i < 800) (1 < j < 800). For example, if i = 6 and j = 1, c = 7 because 111 
= (110 OR 001). Just apply a logical operation one bit at a time. (For example: 1 
OR 0 is 1; 0 OR 0 is 0; and 1 OR 1 is 1.) The variables i and j are the x and y 
axes of the figures in this chapter. The value of c is represented by shades of gray. 
Figure 13.1 illustrates c modulo 255. The brightest picture element is therefore 
254 and this corresponds to bright white. 0 is represented by black. The black, 
triangular, gasket-like structure represents those (c = 255) pixels which are made 
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Figure 13,1. Pattern of bits. The pa I km was product*] by c,-j =x OR J for (1 < i < 800) 
(I < j < 800). The values of e modulo 255 arc represented by shades of gray. 

black by lhc modular arithmetic. The fractal n a Lure of the en lire pattern jr> 
evident. The black pattern Is called a Sierpinski gasket, commonly seen in cel-
lular automata applications. In fact fhc same pattern is seen when the even entries 
of Pascal's triangle arc colored black. Let us call the pattern a "Logical" Sier-
pinski gasket. 

Figure 13.1 indicates self-similarity of the gaskets for several orders of dila-
ttonal in variance, and they possess what is known as nonstandard scaling sym-
metry. also called dilation symmetry-, i.e. invariance under changes of size scale. 
Dilation symmetry is sometimes expressed by the formula (r — a r ) , Thus an 
expanded piece of lhc gasket can he moved in such away as to make il coincide 
with the entire gasket, and lliis operation can be performed in an infinite number 
of ways. 

The following discussion considers the case for (0 < i < 256) (0 < j < 256). 
This is the upper left "block" of the 9 blocks shown in Figure 13.1. Let us con-
sider the number of pixels in the image of a particular shade of gray in order to 
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Figure 13.2. Another bit pattern. Same as previous figure, except for ct 
OR (/ x./). 

better understand the resulting patterns. For example, tliere are only three pus-
si We (ij) pairs which form the Logical Sicrpinski gaskcl for c = 256, since c is 
100000000 in binary. The only three ways to make 256 with "OR* are (256,0), 
(0.256), and (256,256). However for 255, all 8 bits must be ones and there are an 
amazing 6,561 possible values which satisfy Hquation (13.1) tor c = 255, These 
6,561 values are colored black for the Logical Sterpinski gasket in Figure 12.1 To 
determine the number of equal-t'alued pixels there arc for a particular value of c, 
you can use vY** 3' where N is the number of different entries in the (?J) array 
which satisfy c = / OR j, and k is the number of I's in the binary representation 
of c. We can understand this equation by considering that tor each I in the binary 
representation of c, there are three bit-pairs (I OR 1, 0 OR 1, 1 OR 0) that 
produce a 1 under the OR operation. For each zero in the binary representation 
of c\ the corresponding bits of / and J must be both zero. 
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Notice that if we define (1,6) and (6,1) as duplicate solutions to Equation (13.1), then 
we obviously have a smaller number of pairs for a particular value of c. Let b(c) be the 
number of 1-bits in c. Then the number of unordered pairs whose OR'ed value is c can be 
written as 

For example, if c = 17, then b(c) = 2, so there are 32 — 31 — 3° = 9 — 3 — 1 = 5 sol-
utions. They are (0,17),(1,16),(1,17),(16,17),(17,17). Alternatively, one can count the 
"duplicate" members by considering that there is only one pair of identical numbers, and 
all other combinations occur twice. Therefore there are (36(c) - \ ) / 2 + 1 = (36(c> 4- l ) / 2 
unique combinations. 

Figure 13.2 is included in order to show that very complicated patterns can evolve for 
just slightly longer logical operations. Figure 13.2 is the same as Figure 13.1 except that 
dj = (i OR j) OR (i x j). The multiplication is undoubtedly responsible for the attractive 
hyperbolic contours that emerge from this beauty. 

Obviously, I have barely scratched the surface of the subject. There are endless com-
binations of logical (and arithmetic) operators to be tried on the humble binary numbers. 
In the process, some of you will discover worlds neither I nor anyone else has seen. 

13.1 Cross References 

See the following sections for information on fractals: "Smithson's Fractal Anabiotic Ana 
Sequences" on page 35, "Fractal Spiders and Frame-Robertson Bushes" on page 87, and 
"Labyrinthine Lundin Curves" on page 103. For fractal mazes, see "Mazes for the Mind" 
on page 3. For fractal integer sequences and patterns, see "The Drums of Ulupu" on 
page 71. For feather fractals, see "Fantastic Feather Fractals" on page 33. For fractal 
ant farms, see "Electronic and Fractal Ant Farms" on page 173. 

13.2 For Further Reading 

1. Schroeder, M. (1991) Fractals, Chaos, Power Laws. Freeman: New York. 
2. Mandelbrot, B. (1982) The Fractal Geometry of Nature. Freeman: New York. 
3. Pickover, C. and Lakhtakia, A. (1989) Diophantine equation graphs for x2y = c. 

Journal of Recreational Math., 21(3), 167-170; Szyszkowicz, M. (1991) Patterns 
generated by logical operators. Computers and Graphics, 15(2): 299-300. 

4. Pickover, C. (1992) Intricate patterns from logical operators. Theta. (Spring) 6(1), in 
press; Pickover, C. (1991) Computers and the Imagination. St. Martin's Press: New 
York. 

b{c) - l 

(13.2) 

Could the patterns of bits in this chapter be converted to interesting sounding music? 







Chapter 14 

Interlude: Animal Machines 

"In these animal machines, the combination of organic and technoid mate-
rials is in the foreground. Bones are combined with steel parts..." 

Michael Schulzc 

"The self-concept of our society can be inferred from its garbage." 
Rdwartl Ki.cnholy, Werke. aus den SOer Jahren 

Michael Schulze is one of my favorite modern sculptors. He is a German artist 
who, io Ills studio on Nauinannstrasse in Berlin, creates unusual art works from 
an eerie fusion trf objccts from the organic and inorganic world. Often Ills sculp-
tures contain pine cones, fur, stuffed animals, .garden implements, small motors, 
wheels, axles, cranks, or pulleys, and his works are often electrically or manually 
powered. Schulzc explains his early works as follows. "Starting witli a store-
window mannequin, artificial limbs, and other mechanical parts 1 took from a 
garbage container, I built my first series of m cell an ieal-figure objects in 1979-
1980." 

The most interesting of his sculptures are the weird and wonderful "animal 
machines" which combine bones, heads, and fur, with machinc parts from bikes 
and automobiles. In one of his sculptures, the speedometer of a V W is used as an 
eye. He uses polyurethane and polyester for binding dil'fereut parts of the 
animals to the sculpture. 

In 1984, as a contribution to a cultural magazine, Schulzc prepared one thou-
sand dead housetlies sealed in photographic slides. Schulze is inspired by these 
fly structures and forms: 

"In ihe bodies of insects, function and technology are bound up in (he biological dctcr-
mirtaLkirt of the respective species. Join(s, anns and layering, as well as mechanical 
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processes, arc visibly comprehensive. Fragility and stability complement cach other.... 
Nature is still my best source oi' inspiration." 

Schulze's thoughts echo those of biologist Loren Eisely who wrote in his book The 
fmmerixe Journey: 

have Come lo suspeel (Imt Ihw long descent down the ladder of life, beautiful and 
instructive though it may be, will no I lead us lo disclose Ihe licu»l secret... It is only 
that somewhere among seeds. And lieeile shells arid abandoned grasshopper legs I find 
something is not accounted for in the dissections in the uliimatu virus or crystal or 
protein particle." 

Those of you who wish to sec more of his surreal and wonderfully shocking work 
should consult Schulze's article iu Leonardo. l i e can be reached at: Michael 
Schul'/fc, Naurnannstrassc 36, 1000 Berlin 62, Gcrmjany. 

141 For Further Reading 

Schulze, M. (1990) 't'he forming process of assemblages Jind objects. Leonardo. 
23(4): 371-375. 



Chapter 15 

Fractal Spiders and Frame-Robertson Bushes 

15,1 Hairy Snowmen 

In principle ... (the Mandelbrot Setj could have been discovered as soon as 
men learned to count. But even if they never grew tired, and never made a 
mistake, all the human beings who have ever existed would not have sufficed 
to do the elementary arithmetic required to produce a Mandelbrot Set of 
quite modest magnification. 

xAjrthur C. Clarke, The Ghost from the Grand Banks 

Since its discoverv around 1980, the Mandelbrot set has emerged as one of the 
universe of popular mathematics and computer art. 

The set resembles a hairy snowman, and it serves 
as an important example of bow simple mathemat-
ical operations can produce astonishingly complex 
geometrical forms. The more you magnify Lhc 
figure's border, the more complicated it gets. 
When most people talk about the Mandelbrot set, 
however, they usually mean the bushy shape 
created by repealing the following two equations 
over and over again for complex numbers: 
z = 2- + c> z = z . (Think of this as a mathemat-
ical fccdback loop where the output returns to the 

input.) Bui there irs also incredible beauty produced by other formulas, as some of 
1 he quick recipes in this; chapter demonstrate. As has been reported in many books 
and papers, you can create your own Mandelbrot set diagram by starting with 
2 = 0, and determining which values of c produce z values which explode to 
infinity. For some c values, such as (0.03,0.03) the ?. values do not explode even if 
you repeal the operation 2 = z2- + c hundreds of times. In these cases, wc say that 
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Figure 15.1. A spider fractal. Black areas correspond to points which do not explode, 
even after repeated application of the mathematical feedback loop. 

the orbits (or trajectories) of the starting point are bounded, and we color black 
the location on the screen which corresponds to c.6 

Your computer program will look something like the program outlined in 
Pseudocode 15.1. In the code, the complex function combines the real and imagi-
nary terms of C to form a complex number C. In other words, C = Creai + Cimag/. 
The magnitude is the length of the line drawn from the origin to the complex 
number, C. 

In pursuing the strange equations which follow, I will not dwell on their con-
nection with stability and chaos in dynamical systems. The connection lies in the 
closely-related Julia sets named after French mathematician Gaston Julia. You 

6 If you want a gradual programming tutorial on the Mandelbrot set, try: Pickover, C. 
(1989) Inside the Mandelbrot set. Algorithm, Nov/Dec 1(1): 9-12. (This issue can be 
ordered from Algorithm, P.O. Box 29237, Westmount Postal Outlet, 785 Wonderland 
Road S., London, Ontario Canada N6K 1M6.) 
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Figure 15.2. A spider fractal. Same as previous figure, except with contours indicating 
the rate of explosion of initial points. 

may delve into such matters by consulting the bibliography at the end of this 
chapter. 

15.2 Spider Fractals 

I always shared in my parent's (surprised) awareness that some people lived 
by and for creating new mathematics. Benoit Mandelbrot 

Here my goal is to give you a simple recipe for producing the wonderful Spider 
Fractals generated by z = z2 + c where c = c/2 + z . This means that the value 
of c changes through the iteration, even though the initial value for c controls 
where you plot your black or white dots on a computer graphics screen. The 
spider mapping yields graphically interesting dynamical behavior with beautiful 
symmetries (Figure 15.1 and Figure 15.2). Try starting the iteration with an 
initial value of z = c instead of z = 0, and observe the differences between the 
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Figure 15.3. Frame-Robertson multisegment fractal Contours indicate the rate of 
explosion of initial points. 

plots. As indicated earlier, bounded orbits, which do not explode, correspond to 
the black regions (Figure 15.1). Around the set in Figure 15.2 are contours indi-
cating the rate at which the iteration explodes (i.e., the number of iterations 
required for the magnitude of z to be exceed a threshold value). One of the hall-
marks of fractal objects is that they continue to yield incredible detail and beauty 
as their edges are magnified. Try magnifying different regions of this fractal and 
viewing the resulting pictures. 

The spider fractal in Figure 15.1 was computed for ( — 2.0 < Creai < 0.24) 
and ( — 1.2 < Cimag < 1.2). I learned about Spider Fractals from Wegner and 
Peterson's book Fractal Creations, where they attribute the function to a Lee 
Skinner. I created Figure 15.1 using a high-resolution postscript printer, and the 
resolution of the image is 4000x4000 dots.) The generating program was written 
in P L / I and ran on an IBM 3090 mainframe, but the program could easily be 
written using other languages and run on personal computers. 
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Figure 15.4. Pokorny fractal. Contours indicate lhc minimum value achieved by an 
initial point as il meanders around lhc complex plane. 

15.3 Frame-Robertson Fractals 

"Today you might say that, until fractal geometry became organized, my life 
had followed a fractal orbit" Bcnoit Mandelbrot 

Figure 15.3 shows a Frame-Robertson Fractal for the equation z = ( l /5 )z 3 

+ z2 + c. The picture boundaries are ( - 4.95 < Zltal <0 .67) and ( - 1 . 3 4 
< Zimng < 1-26). These fractals form very tall, multiscgmented sets. You can read 
more about these fascinating bushy sets in (Frame and Robertson, 1992), To 
form the set, iterate the equation until the magnitude of z exceeds 10. The black 
interior region are those points which never exceed 10. 
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Figure 15.5. Pokorny fractal. The previous diagram is modified by plotting line-contours 
which indicate the minimum value achieved by an initial point as it meanders around the 
complex plane. 

15.4 Pokorny Fractals 

"I am distressed by how little geometry there is in American high schools." 
Benoit Mandelbrot 

Figure 15.4 shows a Pokorny fractal produced by iterating z = l / ( z 2 + 
0.5 + O.lz) for complex numbers z. In order to produce the attractive detail in the 
figure, I plotted contours of the minimum value an orbit achieved during the iter-
ation. Picture boundaries are: ( — 1.5 < Zreai < 1 . 5 ) and ( — 1.5 < Zimag < 1.5). 
Figure 15.5 shows a contour line plot of the same function. 
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Ai.KOi<rrnr<; Hew tr. Crea-e . f r a c t a l s . 
DO For Cius.1 -2 Lu 2 by C.1 

IX) l-'or ?. T.O ?. by C.1 
C=C'r:ir.pl ex (C rea 1, C j.nay) 
DO i = 1 to 1f>f> 

Y. = •/,** + C 
i r (Mayuiludc oi Z) > 2 Ihou 

rn:r. of ' oop 
SHi; 
i f i 101 th t r . D r ^ r o t / i t ( c r e a l . ciinaifi 

?.wi; 
3RD 

Pseudocode 15.1. How to create fractals. "Z" and "C f arc complex numbers. 

15.5 Cornfield Phantoms 

"Benoir Mandelbrot was very pleased to hear of the theory taking root." 
.lotin GlaskeJI, reporting on tbc cornfield Mandelbrot set 

The August 25th, 1991 issue of the Sunday Telegraph (London) contained an 
article titled "Cornfield phantom has farmers foxed."" Apparently the Mandelbrot 
set's fractal shape had appeared as a beautifully executed ISO-foot design in a 
cornfield'"' south of Cambridge. Its massive and intricate structure was only-
recognizable by viewing it from above in an airplane. The main body and various 
buds were rendered very carefully. The heart shape tapered down to a single 
stalk of wheat, and every sialk in ihe main body of the scl had been flaltened lo 
one quarter of an inch above the soil. The Cambridge mathematics department 

The cornfield picture is courtesy of Gregory Sams owner of Dip shop Strange 
Attractions. His store Is dedicated exclusively LO computer ART, chaos, and fractals. 
According to Gregory, this is Britain's first shop dedicated to chaos theory. The shop 
sells mugs, posters, greeting cards, badges, teeshirts, and pu7zles. hor more information, 
contact: Strange Attractions, 204 Kensington I'ark Road, London Wll 1 NR Hnglaod. 
To order additional fractal images, you can also contact hint 1»y phone. (44) 71 229-
9646, FAX (44) 71 229-4781. This crop circlc image shown here is 19V1 by David 
Parker / Science Pholo Library. 
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denied involvement in the construction of the fractal, although others have specu-
lated that the cornfield shape might be an elaborate hoax perpetrated by the 
Cambridge University students. The article quotes Mandelbrot as saying, "I 
think it's extremely amusing. And it's certainly pleasing to be remembered in this 
way. But I can tell you, I plead not guilty. Was it a student's joke? I don't think 
it was the work of extra-terrestrials. I can't wait to see what the next one will 
look like." 

15.6 Mandelbrot Set Comics 

"Fractal geometry became organized. My way of life changed profoundly. 
You may say I have become the slave of my creation. " 

Benoit B. Mandelbrot, 1985, Mathematical People 

Comic strips are the dominant graphic mythology of the 20th century. Many 
people on earth don't have TVs, but they do have access to newspapers. Over 100 
million Americans - virtually half the population - read one or more comic strips 
regularly. It was not until 1991 that a Mandelbrot set fractal pattern first 

appeared in a comic book. The scene is one where a 
magic ritual is being performed. To symbolize that 
magic is beginning to have an effect, the background 
sky is patterned as a Mandelbrot set. (See: Chichester, 
D., and Johnson, P. (1991) Hellraiser Nightbreed -
Jihad. {Jihad Book 2 of 2.) Published by Epic Comics, 

387 Park Avenue South, New York NY, 10016. ISBN #0 - 87135 - 768 - 2.) 

15.7 Shishikura's Extraordinary Boundary 

"The Mandelbrot Set is more than a mathematical plaything. It offers one 
way of exploring the behavior of dynamical systems in which equations 
express how some quantity changes over time or varies from place to place. 
Such equations arise in calculations of the orbit of a planet, the flow of heat 
in a liquid, and countless other situations 

Ivars Peterson, 1991, Science News 

The year 1991 was a year for "firsts" in the world of fractals (see previous 
section). Mathematician Mitsuhiro Shishikura of the Tokyo Institute of Tech-
nology proved that the Mandelbrot set's intricate boundary has a "fractal dimen-
sion" of 2. This means that the edge of the set is so convoluted that it appears to 
have the same dimension as a plane, even though it is still mathematically a curve 
with zero area! 

Shishikura was born in 1960 - in Isesaki, Gumma, Japan. He received his 
Ph.D. from Kyoto University, in 1988, and the title of the thesis was Trees Asso-
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dated with the Configuration of Herman Rings. Pictured below is mathematician 
Mitsuhiro Shishikura. 

15.8 Fractal Drums and Violence 

In 1991. Bernard Sapoval and his colleagues at the Ecole Polytechnique in Paris 
Pound that (racially shaped drum heads arc very quiet when struck. Instead oP 

being round like an ordinary drum head, 
these heads resemble a jagged snowtlake. 
Sapoval Cut his fractal shape Out of a piece oP 
metal and stretched a thin membrane over it 
to make a drum. When a drummer hangs on 
an ordinary drum, the vibration spreads out 
Lo aPPeet the entire drum head. With (racial 
drums, some vibrational modes are trapped 
within a branch of the fractal pattern. Fa ye 
Flam in the December 13th, 1991 issue of 
Science (vol. 254. p. 1593} notes: "If fractals 
are he Her than olhcr shapes at damping 

vibrations, as Sapoval's results suggest, they might also be more robust. And that 
special slurdiness could explain why in nature, t.he ride is survival of the fractal,** 
Fractal shapes often occur in violent situations where powerful, turbulent forces 
need to be damped: the surf-pounded coastline, the blood vessels of the heart (a 
very violent pump), and the wind- and rain-buffeted mountain. 

15.9 Are Fractal Graphics Art? 

The general question of whether or not computer art is really art is discussed in 
"Is Computer Art Really Art?* on page 169. However, here are some specific 
remarks on fractal art. 

Roger James is a fluid dynamics programmer at Pratt and Whitney. His pro-
grams are used to predict the behavior of jet engine conibustor sections. l ie sprites 
to me; 

Art is the ercation of the mind, an idea. A painting, a piece of music, or a sculpture is 
only the embodiment of that idea. Turning an idea into a work of art is a skill. There 
musi be a direct relationship between what the observer senses and the original idea. 
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You have to see exactly what the artist saw. Choosing coloration for a Mandelbrot set 
fractal pattern is not art because the "artist" saw an equation and a set of rules, while 
the observer sees a colorful rendering of the Mandelbrot set. It may be interesting to 
look at, but it is not art. 

Tom McMillan, Editor of Resolution, writes: 
Art affects the sense of beauty, and we all know that beauty is in the eye of the 
beholder. Try as he or she might, an artist is not an artist unless his or her work 
affects someone else's sense of beauty. The so-called art world tends to discredit art 
in the computer graphics medium, making it difficult for artists even to get an audi-
ence. While [computer art] may not rank up there with Monet's paintings, it nonethe-
less does affect my sense of beauty. 

15.10 Cross References and Credits 

The quotations of Benoit Mandelbrot come from: Mathematical People published by Birk-
hauser Boston (1985). In this book, Mandelbrot is interviewed by Anthony Barcellos. 

See the following sections for information on fractals: "Smithson's Fractal Anabiotic 
Ana Sequences" on page 35 and "Labyrinthine Lundin Curves" on page 103. For fractal 
mazes, see "Mazes for the Mind" on page 3. For fractal integer sequences and patterns 
see "The Drums of Ulupu" on page 71 and "Beauty and the Bits" on page 79. For feather 
fractals, see "Fantastic Feather Fractals" on page 33. For fractal ant farms, see 
"Electronic and Fractal Ant Farms" on page 173. 

The following sections are concerned with questions regarding whether or not compu-
ter-generated art is really good art: "Is Computer Art Really Art?" on page 169, 
"Interlude: Alien Musical Scores" on page 221, and "Interlude: Marking Time" on 
page 289. 
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Chapter 16 

Mandalas, Screws, Pears, and Klein Bottles 

In the last decade, even serious mathematicians have begun to enjoy and present 
bizarre mathematical patterns in new ways - ways sometimes dictated as much 
by a sense of aesthetics as by the needs of logic. Moreover, computer graphics 
allows non-mathematicians to better appreciate the complicated and interesting 
graphical behavior of simple formulas. 

Here are some recipes for producing a beautiful graphics gallery of math-
ematical surfaces. To produce these curves, I place spheres at locations deter-
mined by formulas which are implemented as computer algorithms. Many of you 
may find difficulty in drawing shaded spheres; however, quite attractive and 
informative figures can be drawn simply by placing colored dots at these same 
locations. Alternatively, just place black dots on a white background. As you 
implement the following descriptions, change the formulas slightly to see the 
graphic and artistic results. Don't let the complicated-looking formulas scare you. 
They're very easy to implement in the computer language of your choice by fol-
lowing the computer recipes and computational hints given in the program out-
lines. 

As opposed to the curves which you may have seen in geometry books (such 
as bullet-shaped paraboloids, and saddle surfaces) which are simple functions of x 
and y, certain curves occupying three dimensions can be expressed by parametric 
equations of the form: x = /(w,v), y = g(w,v), z = h(u,v). This means that the 
position of a point in 3-D is determined by three separate formulas. Because / , g, 
and h can be anything you like, the remarkable panoply of art forms made pos-
sible by plotting these curves is quite large! Some personal favorites are listed in 
the following. For simplicity, you can plot projections of these curves in the x-y 
plane simply by plotting (x,y) as you iterate u and v in a computer program. 
Alternatively, here's a handy formula for viewing the curves at any angle: 
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Figure 16.1. Wiwianka surface. 

Xp = x cos # 4* y sin 0 
yf) = — x sin 6 sin + y cos 6 sin + z cos ^ ^ ^ 

where >,z) are ihc coordinates of the point on the curve prior to projection and 
(0. <£) are the viewing angles in spherical coordinates. 

Figure 16.1, which resembles a pear, can be computed using 

x = f(u,v) = + <T ^ sin(?ri/) sin(ffv) 

y = g{Utv) = ( l + £-~ , 0 0 " ? ) sin(Trw) cos(ixv) (16.2) 

z = h(u,v) = ( L + e 1 0 0 J / ) C O S ( * K ) 

I call this pair'I ike surface a Wiwianka surface in honor of Wyldemar Wiwi-
anka (IHM) who first drew this surface using more traditional representations. To 
produce the graphic representations, ©(.impute x, y, and z for many differeut 
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J-tgurc }6.2. Smiiibacft .W/KW. 

values of u and v. My preference is lo represent these formulas in new ways by 
"undersampling" the surfaces so Lhai they produce wiry, see-through surfaces (as 
in Figure 10.1). In addition, I enjoy plotting the curves using spheres to give 
them an interesting, artistic texture. Pseudocode 16.1 indicates that the u sample 
points go from 0 to 1 in sLeps of 0.005, and that the v sample points go from 0 lo 2 
in steps of 0.1 iti order to produce the scc-Lhrough look. 

The screw-1 ike surface in Figure 16.2, or Steinbach screw, can be computed 
from 

jXu.v) — u cos(v) 
= U sin(v) (16.3) 

h{u.v) = vcos(a) 

With a few changes to the ratifies of u and v (see the program examples), you can 
produce a very different mandala-like surface (Figure 16.3). (Mandalas are 
ornate, schematic, graphic depictions of the universe u<>ed chiefly by BuddhisLs.) 
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Kigurc 16.!?. Mvrlduia. 

Figure 16.4, which shows a wiry, artistic version of a Bauchoff Klein bottle, 
can be computed from: 

j\x.y) = C O S ( X ) 0 * > ( A / 2 ) ( s + COS<>» + ( s in (JC /2) s i n ( Y ) c o s ( Y ) » 

g(x,y) = sin(x)( co&(x/2){s + cos{y)) + ( s inU/2) s in(» cos(y)» (16.4) 
A (**>') — - sin 0 / 2 ) 0 4- cos(y)> + cos(x/2) sin(y) cos(y) 

Here s = The Banehoff Klein bottle is based on the Mtfbius band, a surface 
with only one edge. The Mobius band is an example of a nonorientable space, 
which means that it is not possible to distinguish an object on the surface from its 
reflected image in a mirror. This Klein bottle contains Mtibitis bands and can be 
built in 4-D space. Powerful graphics computers allow us lo design unusual 
objects such as these and then Investigate them by projecting them in a 2-D 
image. Some physicists and astronomers have postulated that the large-scale 
structure of Our universe may resemble a huge nonorientable space with Klein 
bottJc-like properties, permit ling right'handed objects Lo be transformed into left-
handed objects. 

If you arc a teacher, have your students design and program their own pat-
terns by modifying the paramelers in these equations, and make a large mural of 
all the student designs labeled with the relevant generating formulas. 
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ALCORIT'LM: ilW t c Create a Wivnarka paar ,Si:rfarfi 
f o r { 1: = C ; u < 1; u = r. + O.CCi . ) { 

JLo£\v = 0; v < 2} v = v 4- C.1) { 
V (1 r l ftxp( 1 3 3 . <*r. *•.})) « s i n i p i * u ) * R i r ; 
y = ( 1 . -h e x p ( - 1 U U . » u * u ) ) * a i n ( p i « u J ) ; 
2 - ( 1 , + e>:p ( - 1 0 0 . " M ) ) ( p i *n> ? 
I ph ere:: n h e r ee l AT. {>:, y , 7 ) ; 

} 
} 

Pseudocode 16-1. How (o crc.tiU: u Wtw'tanka pear surface. ('I"he program code here is in 
I he style of lhc V, language.) 

Figure 16.4. banchoff Klein bottle. 
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A L G O R I T H M : How to C r e a t e a B a n c h o f f K l e i n B o t t l e 

for(u= 0; u < 9.56; u = u + .2) { 
for(v= 0; v < 6.28; v = v + .05){ 

x= cos (u) * (cos (u/2) * (sqrt (2) +cos (v) ) + (sin (u/2) * s m (v) *cos (v) ) ) 
y= s i n ( u ) * ( c o s ( u / 2 ) * ( s q r t ( 2 ) + c o s ( v ) ) + ( s i n ( u / 2 ) * s i n ( v ) * c o s ( v ) ) ) 
z= - s i n ( u / 2 ) * ( s q r t ( 2 ) + c o s ( v ) ) + c o s ( u / 2 ) * s i n ( v ) * c o s ( v ) ; 
D r a w S p h e r e C e n t e r e d A t ( x , y , x ) 

} } 

Pseudocode 16.2. How to create a Banchoff Klein Bottle. (The program code here is in 
the style of the C language.) 

A L G O R I T H M : How to C r e a t e M a n d a l a and Screw S u r f a c e s 

for(u= -8; u < 16; u = u + 0.15) { 
for(v= 0; v < 12.56; v = v + 0 . 1 ) { 
x = u * c o s ( v ) ; 
y = u * s i n ( v ) ; 
z = v * c o s ( u ) ; 
D r a w S p h e r e C e n t e r e d A t ( x , y , z ) ; 

} } 

Pseudocode 16.3. How to create Mandala and Screw surfaces. (The program code here 
is in the style of the C language.) Note: play around with the bounds for u and v in the 
"for" loops. The screw is produced with bounds closer to — 4 < u < 4 and 0 < v < 2t7. 



Chapter 17 

Labyrinthine Lundin Curves 

"The dreamer, a soldier in repose, applied the methods of algebra to the 
structures of geometry, bone-setting the measure land, expressing his system 
in terms of constants, variables, and position coordinates, all arranged in due 
time on the scheme of crossed lines forming squares of equal size." 

Don DeLillo, Ratners Star 

There are all kinds of crazy and exotic curves inhabiting the mathematical world 
of functions. Some are easy to graph, some are more difficult. My favorites 
contain an infinite number of bumps and wiggles. These infinitely bumpy curves 
come in two flavors: fractal and nonfractal. By now, many readers are probably 
aware of fractal curves (see "Fractal Spiders and Frame-Robertson Bushes" on 
page 87). These days computer-generated fractal patterns are everywhere. From 
squiggly designs on computer art posters, to illustrations in the most serious of 
physics journals, interest continues to grow among scientists and, rather surpris-
ingly, artists and designers. Fractals are curves or patterns which exhibit 
increasing detail ("bumpiness") with increasing magnification. Many interesting 
fractals are self-similar. B. Mandelbrot informally defines fractals as "shapes that 
are equally complex in their details as in their overall form. That is, if a piece of a 
fractal is suitably magnified to become of the same size as the whole, it should 
look like the whole, either exactly, or perhaps only after slight limited deforma-
tion." 

To get a better understanding of fractal structures, I find it helpful to con-
sider some very bumpy-looking, nonfractal curves for comparison. First consider 
the following question. How can a fractal shape (like the Koch curve in 
Figure 1.8) with infinitely many bumps between bigger bumps, in a finite region 
in space, be continuous? 
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Figure 17.1. xsin(l/x). This mathematical function has the property of being everywhere 
continuous, even though it has infinitely many oscillations in the neighborhood of x = 0, 
where the size of the oscillations becomes infinitely small. The frequency near x = 0 is 
infinite and the spacing between the maxima is zero! A Koch curve (top) is superimposed 
for comparison. 

Intuitively one might imagine that this shape, which contains infinitely high fre-
quency patterns in a finite space should "break up," i.e. become discontinuous. 
Continuity for a function,/ , may be informally defined: points that are very close 
together are mapped by / into points that are very close together. This type of 
question is often difficult to deal with either on an intuitive level or by studying 
natural shapes. Instead, one may wish to study the following more simple math-
ematical function with startling properties. This prickly curve masquerades as a 
fractal until one takes a closer look. 

Consider the function x s in ( l /x ) . The graph of this function for \x\ < 1 
shows smaller yet more rapid oscillations the nearer it approaches zero. Its limit 
as x approaches zero can be expressed as: 

X 
(17.1) 

Let's now define a quite related function 

(17.2) 

Like a Koch curve, this curve has infinitely many bumps, decreasing in size, in a 
finite region of space. Is the curve generated by this formula continuous? Since 
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Jigure 17.2. Landin surface. I rendered this using custom software running on an IBM 
RISC System /(iOOO equipped with a high performance graphics card. 

sin(.v) is everywhere continuous, and 1/x is continuous tor x ^ 0 it follows that 
the composite I'unciion sin(1/A) is continuous for x jfc 0. Therefore + ( x ) is a 
simple mathematical function {Figure 17.1) that is everywhere continuous, even 
though it hy» infinitely many oscillations in the neighborhood of x = where the 
size of the oscillations becomes infinitely small. However, unlike fractals, 
for x OAs dil'fercntiable (i.e. smooth), even though the frequency near x = 0 is 
infinite and lhc spacing between the maxima is zero! 

A more interesting curve, which I think many educators and graphics special-
ists will enjoy, is tlie l.undin function named after John l.undin of the University 
of Richmond who has explored this curve in detail. The 3-D shape can be 
described by: 

x2 + y2 + (z2- I) x ((I - J ) +</cos ( l / z ) ) = 0 (17.3) 

where 0 < d < 0.5. Like the previous ^ curve, this one has a wealth of structural 
details. The l.undin curve is really a surface of revolution of a pathological 2-D 
curve. (By ''-pathological" I mean a curve that has infinitely many bumps in a 
finite area.) 

Figure 17.2 is a plot of half this surfacc. In order to create the 3-D graphics rendi-
tion, the surface was divided into thousands of tiny triangular facels which were lil and 
shaded. Coloration was also determined by the height of the function at a particular point. 
You ean rolaic the function 

x = y/({[ - z
?) v ((1 - d) + d v eos(l/z») (17.4) 
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Figure 17.3. 2-D Lurulin surf act: projection. Height in mapped to color in two different 
representations. 

around thez tuiis <0 arrive at the lull Lundin Surface. Tor graphic beauty I oornprcssed the 
snrfacc a bit along the x-axis, destroying rotational symmetry. Also many of ihe oscil-
lations near z = 0 Arc missing since some poim« were lcwl jn order 10 produce the 3-D ren-
dition without resorting to an overwhelming number of faccts. However, by representing 
the function as a 2-]) image tn Kigure 17.3, these artifacts are reduced, and you can see 
more of Ihe ripples. 

You may wish to consider values of x as you vary z. The quantity (1 - z2) must tie 
pOfjilive Or there is "0 Sol u I ion. Therefore 7. must tie between -1 ami 1, ami when \z I is 
one, x must be zero (top and bottom points of the surfacc). 

l.undin notices ihat if d = 0 the second tent) under Die rydicyl disappears, and one is 
left with a a sphere with a finite surfacc area and volume. On a globe., the 
( j z | = 1 , a = (>) points are the poles, and (z = ( > , . < = ! ) I'onns ihe equator, Next 
examine Ihe second term when d is nonzero. This varies from 1 — 2d to 1 and shrinks the 
radius of the globe at that z value. In cffcct, wc are cutting grooves around il parallel to 
llie equator. Ivach groove adds an increment of area to Ihe surface and drops the volume 
slightly. Closer to the equator, die grooves hcoome slightly deeper and hoth narrower and 
closer together. At z = 0 there is no way to rieiermine how deep to make Ihe groove (the 
surface docs not exist), there are infinitely many grooves, the area is infinitely large, and 
the \-o1ume has remained finite. 

A Lundin curve with somewhat similar properties, as yet undrawn, is 

ix - d sin( k/z))2 + (j >-d cos {k/z) )2 + z2 = 1 (17.5) 

John 1 .ijndin notes 1-hat this curve "fits in a cylinder of radius 1 + d and height 2, and 
should he even prettier than the one shown in Figure 17.2.'" 



Chapter 18 

Interlude: Cemeteries of the Future, 
And Interstellar Art 

What will technology, life, and art be like in the future? This is a question con-
tinually on the mind of artist Stephen s'Soreff, editor and publisher of AGAR 
(Avant-Garde Art Review). AGAR is an art experience in itself, and it is free to 
all who write him, as long as the subscribers state their reasons for wanting 
AGAR. All of the artists and art works in AGAR, though quite realistic looking, 
are fictional. s'Soreff is interested in what art might look like a few decades in 
the future. His artwork has made such predictions as believable as possible, with 
collaged and retouched illustrations and feasible technology. 

In the past, AGAR has covered fictional artists who have worked with genet-
ically engineered art, cloud seeding, sculptures of silence, thought-activated paint-
ings, poetry composed by the sea, sculptures produced by exponentially growing 
cells and brainwaves, and much more. Each AGAR issue is wonderfully illus-
trated with ultra-futuristic, surreal images which look so real that you want to 
reach out and touch them. Back copies of AGAR are available by writing to 
Stephen s'Soreff, 79 Mercer St. New York, NY 10012. 

AGAR is just one of many interesting ideas that s'Soreff dreams about. A 
few years ago he conceived the notion of establishing an interstellar art gallery via 
videotape that would picture art for sale on earth and then would beam it to other 
stars. Two years later, he became acquainted with a Texas millionaire who was 
interested in experimental art and who owned four television stations. As a result, 
the tape was broadcast into space in 1983. 

s'Soreff also envisions future tombstones set with computerized video simu-
lations of the deceased talking and moving in response to visitors. A person who 
wished to have this kind of tombstone would, while still alive, visit a group of psy-
chiatrists and sociologists, and he or she would be taped uttering various words. 
This data would then used by a computer program to simulate the person's replies 
to greetings or questions after his or her demise. 





Chapter 19 

Lava Lamps in the 21st Century 

"Consider the true picture. Think of myriads of liny bubbles, very sparsely 
scattered, rising through a vast bluck sea. We rule some of ihe bubbles. Of 
the waters we know nothing..." Niven and Pournelle The Mote in Cod's Eye 

The preceding quota lion from Niven and Pournelle's futuristic science-fiction 
novel describes both the vast invstery of our universe and the strangely shaped 

objects we might, one day encounter in outer spjjce. 
In the 1990's, however, we don't need a space ship 
to explore strange new worlds con si sling of bub-
ble-like forms. Ralher, all that i« required is a 
small set of mathematical algorithms running OQ a 
good graphics computer. In fact, the blob-like 
shapes which illustrate this chapter move and 
coalesce in ways which resemble t.hc mixing of oil 
and water. From a visual standpoint, Lhc moving 
shapes on the eompuler sereen remind one of lava 
lamps - ihosc decorative lights, popular in the 
1960's, which contain illuminated, moving, 
colored globules in a liquid-filled glass globe. The 
lava lamp (properly known as the "l.ava I.ite") 
was invented in the curly GO's by an Rnglishnwn 
•aracd Craven Walker. The lava in Lhe lamp is 

made of a wax substance, and the wax and surrounding liquid arc composed of 11 
secret ingredients. The specific gravities of each batch of wax and liquid must be 
individually matched, or t.tic wax will break up into tiny bubbles, erawJ up the side 
of the glass, or just float on lop of the liquid.K 

* The photographs of Lava Litcs arc courtesy of Gregory Sams, owner of Strange 
Attractions, the first store in the world devoted to chaos and Intel ate (Greg Sams. 204 
Kensington Park R<J, Lonon Wi l 1NR UK.) Lava Lite* are in arm tortured today by 
Lava-Simplex Internationale, Chicago, Illinois, 
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Figure 19.1. Two-dimensional lava. A single time frame from a time-evolving 
(2000x2000 cell) 2-D lava created by the M46789 rule described in the text. 

19.1 Making Lava in a Checkerboard World 

"The city of the future is a city of light. A realm of constantly shifting, 
ebbing and flowing colors and forms. A world that will constantly hold the 
eye and mind in a calm and meaningful movement on a level between rest 
and alertness." Alex Gross, 1969, East Village Other 

Lava Lites decorating living rooms of the future will include computerized ver-
sions where the waxy globules are simply mathematical/computer graphical enti-
ties displayed on a computer screen. In order to create the undulating lava, you 
may first wish to construct a 2-dimensional model where the forms move, 
coalesce, and break up in the infinitely thin space between two glass plates 
(Figure 19.1). The simulation involves the use of "cellular automata." Cellular 
automata (CA) are a class of simple mathematical systems which are becoming 
important as models for a variety of physical processes. CA are mathematical 
idealizations of physical systems in which space and time are discrete. Usually 
cellular automata consist of a grid of cells which can exist in two states, occupied 
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t 
Figure 19.2. MN (mm on a 50x50x50 grid uftr.r JO iteration*. As with all of Ihe 3-D 
figures, three ">i rtificial* light sources are positioned mid computed iwiog JJ computer 
graphics prograjn. 

or unoccupied. The occupancy of one cell is determined from a simple mathemat-
ical analysis of the occupancy of neighbor eel Is. One popular set or rules is set 
t'ortb in what has bccomc known as the game of "1.IHK." Though the rules gov-
erning the creation of cellular automata are simple, the patterns they produce are 
very complicated and sometimes seem almost random, like a turbulent fluid flow 
or the oulpuL of a cryptographic System. 

To create a CA, each cell of the array rnusL be in one of Lhc allowed SIJJLCS, 

The rules that determine how the states of its cells change with time are what 
determine the cellular automata's behavior. There are an infinite number of pos-
sible cellular automata, each like a checkerboard world. All ihe shapes in lhi<> 
chapter were produced by initially filling the CA array with random l's and O's. 
The rules of growth which determine the states of the cclls in subsequent gener-
ations are discussed in the next section. 
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Figure 19.3. Same as previous figure, after more iterations. 

19.2 It's a Beautiful Day in the Neighborhood 

"It moved through the otherwise dark wall in scores of separate amoeba-like 
forms that constantly flowed together and separated into new shapes; it was 
like a one-dimensional representation of the kaleidoscopic display in one of 
those old Lava lamps. The ever-changing patterns evolved on alt sides of 
them... " l>ean Koontz, 1991, Cold Fire 

The systems in this chapter evolve in discrcLc Lime according to a local law. As 
with most cellular automata, the value taken by a cell at time I + 1 is determined 
by the values assumed at time t by the neighboring sites and by the considered 
site itself: 

cjf 1 (19.1) 

where 

a ~ 4v)' 4 + IJ + 1 >' % - t J - 1 >• 4 — I:/ + 0' 

A = 4 + V - 0> 4 + 4 - 1 J> cov + !>' 4 v - 0 <19 

(The division of sites between a and h is artificial and used only for case of types-
etting.) In this equation, cij denotes the state occupied at time / by the site (Lj). 
The nine-cell tcmplaLc used in this chaptcr is referred to as the Moore ncighbor-
h(K)d (as opposed to the von Neumann neighbtrrhtxid consisting only of orthogo-
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Figure 19.4. Same as previous figure, after more iterations. 

nally adjacent neighbors). One interesting simulation simply examines the 
neighbor sites Lo determine if the majority of neigh b(»rs arc in slate one. If so, 
then Hie center site also becomes one. We can represent those cells in the on 
(one) state as black dots on a graphics screen. In other words, this rule is a voting 
rule which assigns 0 or 1 according to the "popularity of these states in the neigh-
borhood/'' and interestingly it generates behavior found in real physical systems. 
'I'his simple majority rule automata produces hundreds of coalesced, convex-
shaped black areas but does not lead to interesting graphical forms. A way to 
destabilise the interface between one and zero sirens is to modify the rules slightly 
so that a cell is on if the sum of the one-sites in the Moore neighborhood is either 
4, 0, 7, or 9, otherwise ihc site is turned off. This rule bus been studied previ-
ously (in lower resolution), a fid, since it uses a Moore neighborhood, it has been 
termed M46789 by Viehniac in 1986. Such Simula Lions have relevance to perco-
lation and surface-ten si on studies of liquids. 

19,3 Twisted 3-D Majority Rules, and Printer Dirt 

I ' i g u r c 19.1 shows an M467H9 2-D lava which has evolved after several hundred 
time steps from random initial conditions on a 2000x2000 square lattice. The tiny 
dust specks sparsely scaLLcred beLween Lhe coalescing blobs arc curt dirL left by the 
graphics printer, but rather they are stable structures such as 

** 

where cacb site has exactly 4 "onn members (out of 9) in iLs neighhorhood, and 
thus stays on. The surrounding sites that are off have at most 1 or 2 neighbors 
that are on, and thus they stay off. There arc probably quite a few other stable 
structures like this, though this rule does not seem to give rise to the zoo of stable 
objects allowed by, say, the game of l.ifc. 
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The twisted majority rule for 2-D Moore neighborhoods just described 
naturally leads to curiosity about how 3-D lava forms evolve when displayed using 
high-resolution graphics on graphics supercomputers. I have recently created 3-D 
lava simulations by extending the 2-D simulation to an M(13,15,16,17,18, 
19,20,21,22,23,24,25,26,27) simulation on 50x50x50 and 100x100x100 3-D lat-
tices. For the remainder of this chapter I will call this rule Ml4 to indicate where 
the twist, or skip, in the majority rule takes place. To create the remaining figures 
in this chapter, Ml 4 lava is allowed to evolve for 10 to several hundred gener-
ations starting from randomly filled arrays of 0's and l's. In order to visually 
decrease grid artifacts, the final site values for the cellular automata are deter-
mined by replacing the center site value with the mean value of its 27-cell Moore 
neighborhood prior to display. This effectively turns the discrete on/off collection 
of sites into a slightly smoother continuum. The final graphic form is created by 
computing an equal-valued surface, or "isosurface," at a particular value in the 
3-D data set. These equi-valued surfaces, which represent the smooth boundary 
between the l 's and 0's, are the final form the viewer actually sees. The equi-va-
lued surface sculptures in this chapter were rendered using a program which com-
putes and represents surfaces as a collection of small triangular facets. The 
triangles which make up the surface are smoothed, shaded, rotated, and lighted 
using a general purpose display program, running on a powerful graphics work-
station such as a Stellar GS2000. All numerical simulations were computed on an 
IBM RISC System/6000, using an optimized C program. 

Like a submarine pilot exploring coral formations in the Sargasso sea, modern 
graphics supercomputers, such as the Stellar GS2000, allow one to explore the strange and 
colorful Ml 4 lava caverns using a mouse. As the simulation progresses, starting from ran-
domly mixed zeros and ones, those cells in the lava (that are in the one state) move around 
randomly until they meet and join by cohesion - forming visually interesting aggregates 
due to the Ml 4 rule. 

Unlike a real Lava Lite, the globules in this simulation eventually disappear as time 
progresses. That is, the globules' mass is not conserved! In order to produce an interesting 
lava lamp one needs to repeatedly execute the simulation, each time starting with new 
random seeds. Alternatively, one can inject random new on-sites periodically. 

19.4 For Further Reading 

1. Adams, C. (1988) More of the Straight Dope Ballentine: New York 
2. Pickover, C. (1991) Virtual voltage sculptures. Leonardo. 24(5), 622-624. 
3. Toffoli, T. (1984) The CAM Celluar Automata Machine. Physica 10D: 195-204. 
4. Pickover, C. (1991) Computers and the Imagination. St Martin's Press: New York. 
5. Poundstone, W. (1985) The Recursive Universe. William Morrow and Company, 

New York. 
6. Vichniac, G. (1986) Cellular automata models of disorder and organization. In Disor-

dered Systems and Biological Organization Bienenstock., E., Soulie, F., and Weis-
buch, G., eds. Springer: New York. 







Chapter 20 

Monster Contour Art 

Contour lines have been used for decades to show bands of equal elevations in maps of 
geographic terrain. Contour lines are also often used for producing minimalist computer 
art. Instead of indicating elevation, the lines may indicate regions of equal intensity in a 
photograph. Shown here is a photograph of a clay sculpture (facing page) and its contour 
map (below). You may wish to show the contour line drawing to some friends as a test of 
the ability of the human visual system to see the original pattern using the minimalist rep-
resentation. Do your friends recognize a face in the complicated mixture of lines, or is the 
contour map too abstract to permit recognition? (I computed the contour lines using soft-
ware running on an IBM RISC System/6000. The original photograph is of a sculpture 
which I constructed with clay.)9 

9 For computer scientists: to compute the contours, I first triangulate the original image 
represented as a square arrays of intensities. Next I consider the contour value So and 
compare it to the intensity of each pair of points S2 and S\ in the triangle. If the intensi-
ties of the three points on the triangle are all greater than or all less than the contour 
value, then no line segment is drawn. Otherwise, the intersection of the line segment 
with the triangle is computed using x = x\ + [(So — S\)/(S2 — Si)] (x2 — x\). (x is a 
3-D vector locating a point in 3-space.) 





Part II 

GAMES AND SPECULATION 





Chapter 21 

My Computer Esophagus 

"I do not know what I may appear to the world; hut to myself i seem to have 
been only like a hoy playing on the seashore and diverting myself in now and 
then finding a smoother pebble, or a prettier shell than ordinary, whilst the 
great ocean of truth lay all undiscovered before me." ISEWC Newton 

7 tied a cord to the upper part of the spine, where it is firm and less flexible 
and, pulling it straight to the ceiling, fastened the end of it to a hook in the 
wall." Bernard Albinus {16M6-1770) 

My interest in human anatomy began in early childhood. I remember going into 
my father's sludy and g:iy.mg at Lhe anaiomiea! works of Bernard Siegfried 

Albums, the greatest descriptive anatomist 
of the eighteenth century. In J 725, after 

#Albinus found a fresh skeleton of a fully 
grown male "with all lhe lendons, liga-
menLs, and cartilage attached," he became 
determined to make careful drawings of 
the body and skeleton for use by both 
artists and anatomists. He preserved the 
soft parLs by soaking them in vinegar. One 
of his first drawings is shown facing this 
page. It is from my early fascination with 
human anatomy that the Computer Eso-
phagus game grew. 

The Computer Esophagus is a simple 
but unusual game I designed several years 

ago. Hopefully you will not find the game morbid but rjiibcr an interesting exer-
cise in sLralegy and compuler simulation. The game is played on a simplified 2-L> 
representation of the human body, and the object of the game is to occupy every 
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Figure 21.1. The playing board for the Computer Esophagus. 

organ system on the playing board (Figure 21.1 ).10 To increase the visual appeal 
of the game, you might consider designing a board using a figure from The Illus-
trations of the Works of Andreas Vesalius of Brussels (Dover, 1973) 
(Figure 21.2). If you like, you can think of the game as a battle between anti-
bodies and infectious agents such as viruses or cancer cells. Alternatively, some of 
my friends like to think of the game as a contest between two or three hostile gov-
ernments that have used futuristic technology to miniaturize submarine crews 
which have been placed inside the body of some important governmental official. 

The game is designed for two or three players. To play the non-computer 
version, you may want to enlarge the playing board shown here. You'll also need 
playing pieces to place on the organs systems of the board. Each player's pieces 
must be distinguishable from the others' pieces (e.g. red and black checkers, 
pennies and dimes, different colored seeds, or playing pieces from games such as 
Parker Brother's RISK). Let's call these playing pieces "cells." The board shows 
four major organ systems, or regions, each of which is subdivided into a number 
of territories. The Stomach Region consists of the esophagus, duodenum, gall 

10 After giving the game to my brother (who at the time was a medical student at New 
York University and now is a prominent gastroenterologist in Boston), I'm told the game 
was played late at night by several students in the little spare time they had. 
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Figure 21.2. A diagram from Andreas Vesalius (1514-1564). 

bladder, and pancreas. The Liver Region consists of the right lobe, inferior vena 
cava, and left lobe. The Intestine Region consists of the appendix, ascending 
colon, transverse colon, descending colon, sigmoid colon, rectum, ileum, and 
jejunum. The Bladder Region is one large territory on its own and does not 
consist of separate, individual territories. It helps to color the outlines of these 
regions using different colors to help remember which territories comprise a par-
ticular organ region. In my personal game version, I color the Stomach Region 
yellow, the Liver Region red, the Colon Region blue, and the Bladder Region 
green. Before the game starts, each player counts out a number of cells for initial 
occupation of the organ systems. The number of cells is determined by the 
number of competing players. If there are two players, each player gets 19 cells. 
If there are more than two players, each player gets 8 cells. At this point, it's 
time to fill the board with cells. Roll a die, or use a computer random number 
generator, to select who goes first. The person with the higher number goes first. 

Let's assume there are two players. The first player takes one of his 19 
allotted cells and places it on any one of the 17 organ territories of his choice. 
The second player then places one of his cells on any one of the remaining unoccu-
pied territories. Players alternate until the body has one cell on each organ terri-
tory. Each player then continues to add cells to any territories he owns. He can 
place them all on one territory or scatter them over several territories he controls. 
Once each player has 19 cells on the board, the actual play begins. At the begin-
ning of each turn, a player gets one "free" extra cell to place on any territory he 
owns. 

At each turn, a player's objective is to attack a bordering organ territory. For 
example, cells positioned on the right lobe can only attack the gall bladder, 
stomach, duodenum, and inferior vena cava - because these territories are adja-
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A L G O R I T H M : How to P l a y the C o m p u t e r E s o p h a g u s . 

1 Player(1) = 1 
2 Player(2) = 2 
3 Do for each a t t a c k 
4 O r g a n _ N u m b e r = (a n u m b e r d e s i g n a t i n g a t t a c k i n g organ) 
5 n = O r g a n ( P l a y e r ( 2 ) , O r g a n _ N u m b e r ) - 2) 
6 if (n < 0 ) Say 'Cannot a t t a c k w i t h fewer than 2 c e l l s ' 
7 r = r a n d o m 
8 f = (6-n)*(7-n) / 72 
9 O r g a n _ N u m b e r = (a n u m b e r d e s i g n a t i n g d e f e n d i n g organ) 
10 if r > f then O r g a n ( P l a y e r ( 1 ) , O r g a n _ N u m b e r ) = 
11 O r g a n ( P l a y e r ( 1 ) , O r g a n _ N u m b e r ) - 1 
12 if O r g a n ( P l a y e r ( 1 ) , O r g a n _ N u m b e r ) = 0 then 

(Attacker o c c u p i e s organ) 
13 O r g a n _ N u m b e r = (a n u m b e r d e s i g n a t i n g a t t a c k i n g organ) 
14 if r <= f then O r g a n ( P l a y e r ( 2 ) , O r g a n _ N u m b e r ) = 
15 O r g a n ( P l a y e r ( 2 ) , O r g a n _ N u m b e r ) - 1 
16 end 

Pseudocode 21.1. How to play The Computer Esophagus, using a computer 
program. (If a computer is not available, you can use dice to determine the outcome of 
cancer/antibody engagements.) 

cent. The bladder is considered adjacent to the ascending colon and sigmoid 
colon via the two thin connecting strands of mesentery. The probability of 
winning an attack is determined by the number of cells in the attacking organ. In 
order to attack, a player must have at least two cells on his organ territory. 

First I'll describe how the results of a "cancer-antibody engagement" are 
determined if you are using dice, rather than a computer program. Only two dice 
are needed for play - one for the attacker and one for the defender. First, the 
attacker declares which organ territory he is attacking. Then the players each 
rolls a die. The player with the greater number wins. However, the attacker can 
add to his die roll a number which depends on how many cells are in the attacking 
territory. Here are the three cases that can arise. Case 1: As just stated, if the 
attacker has 2 cells, and the attacker's die number is greater than the defender's 
number, he wins. Case 2: However, if the attacker has 3 cells, the attacker adds a 
one to his die result. For example, if he rolls a 3, he actually has a 4. Again, if 
the attacker's number is higher than the defender's number, he wins. Case 3: If 
the attacker has 4 or more cells, the attacker adds a two to his die result. For 
example, if he rolls a 3, he actually has a 5. If the attacker's number is higher 
than the defender's number, he wins. The defender always wins ties. Unlike the 
attacker, the defender does not receive any extra special "credit" for having a 
large number of cells on an organ. However, the defender does have a better 
chance of defending an organ territory if he has many cells on it because the 
chances of an attacker winning many separate battles is less than for winning just 
a single battle, for example. This is described in the next paragraph. 

A player may continue to attack an adjacent organ territory so long as he has 
2 or more cells. When the attacker wins, a cell is removed from the defender's 
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HUMAN ORGANS 
Distribution by 

Number Watting tor Transplant 

a 

Heart 
• Lung 
Liver 
Pancreas 
•Kidney 

1,216 

308 

472 

Figure 21.3, Organ Waiting Lists. In 1991, more than 21,000 Americans were on waiting 
lists to rcccii'c organ transplants. Here is a list of the number of people waiting for an 
organ for five major organs. (Source: Tom Hcymann's The Unofficial US Census, Fawcett 
Columbine: NY (1991)). 

territory. When the attacker loses he removes a cell from his own territory. If 
there are no longer any cells on the defender's territory, then the attacker moves 
at least one cell of his into the new territory. He may not move all of his cells into 
the new territory, because at no time during play may an organ territory be empty 
of cells. He must leave at least one cell behind on the attacking organ. The 
attacker may continue his turn for as long as he likes, or until he has run out of 
cells, at which point he passes the turn to the other player, who then becomes the 
attacker. 

At the beginning of every turn that all the territories in an organ system are 
<iccupied by a player, Lhe player is en Li tied to extra cells in accordance with the 
following table: 

L i v e r Reg ion , 2 c e l l s ; Stomach Reg ion , 4 c e l l s ; 
I n t e s t i n e Reg ion , 5 c e l l s ; B l a d d e r , 2 c e l l s . 

( These values are primed beneath large territories within each of the tour regions 
on the board.) He may place these extra cells on any organ territory he controls 
before Lhe attacking begins. Therefore it is advantageous to capture and maintain 
control over entire organ systems. The canecr or antibody wins when either occu-
pies every organ territory of the body, thereby eliminating the opponent's playing 
pieces. 
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figure 21.4. The Visible Human Project. In 1991, researchers at the University of 
Colorado Health Science Center in Denver. Colorado arc cxcitcd about their new projcct 
lo create "the ultimate digital model* ol the human anatomy. This complete, 3-D model 
will con tit in lugh-resolution images and in fori nation concerning every cubic millimeter of a 
male and female corpse. (See text for details,) 

21.1 Computer Analysis and Play 

Tbose of you who wisb to play the board game, and not concern yourselves with a 
computer implementation and mathematical analysis, may skip this section. For 
those with access to color computer graphics, it is relatively easy to draw a 
playing board. For simplicity, Lhe organ territories can be shaped like recLangles, 
and computer-drawn text eati be placed in the rectangles. Playing pieces, in tbc 
form of colored X's or Oys, can be also be drawti on tile organ territories. Instead 
of rolling dice, it is a fairly simple matter to use a raudom number generator lo 
simulate the win/lose rules discussed previously for cancer-antibody engage-
ments. One can show Lhat for Case 1, where the attacker has only 2 cells, the 
probability of winning an engagement is 15/36 • 42%, For Case 2, with 3 cells, 
the probability of winning is 21/36 = 58%. For Case 3, with 4 or more cells, the 
probability of winning is 26/36 = 72%. 

In fact, Kevin McCarty of the Rolm Corporation has computed probabilities 
for the 3 cases I outlined by counting squares in a 6x6 grid. You can best under-
stand Lhis by JixLing the results of Lhe defender's die roll down the side of ti square 
array, and the attacker's roll across the top (sec following diagram). KnLer A in 
the cell when the attacker wins, otherwise enter a D. 
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CASE 1 CASE 2 CASE 3 
A A A 
1 2 3 4 5 6 1 2 3 ^ 5 6 1 2 3 ^ 5 6 

1 D A A A A A D 1 A A A A A A D 1 A A A A A A 
2 D D A A A A 2 D A A A A A 2 A A A A A A 
3 0 D D A A A 3 D 0 A A A A 3 D A A A A A 
k D D D D A A k D D D A A A k D D A A A A 
5 D D D D D A 5 D D 0 M A 5 D 0 D A A A 
6 D D D D D D 6 D D D D D A 6 D D D D A A 

A w ins 15/36 A w ins 21 /36 A wins 26 /36 

la general, when the attacker adds » (0 < n < 6) to his die roll, the defender has 
(6 — H)(7 — n)/12 chances of winning. (You may wish to draw a Curve of this 
second degree polynomial function to see how it behaves.) Incidentally, if the 
attacker were to subtracL n (0 < « < 5) from his die roll, the attacker has 
(5 — n)(6 - n)/12 chances of winning. 

Using a computer, the 42% probability of the at.tackcr's winning for Case 1, 
for example, can be programmed as follows: 

IF N u m b e r _ A t t a c k _ C e l I s = 2 then do; 
r = random 
IF r > t h e n a t t a c k e r w i n s , 

e l s e de fender w ins 
END 

The random number generator produces numbers between 0 and J. A more 
general simulation would use lhe polynomial equation which determins lhe winner 
of an engagement. In Pseudocode 21.1, the variable "Player,* for the two-player 

version, is either 1 or 2. In the 
example in Pseudocode 21.1 Player 2 
is attacking Player 1. 

Tile variable "Organ'" is a 2-D 
array which contains the number of 
eel Is in a particular organ territory 
for a particular player. (Remember 
that since only one player can occupy 
any organ territory at a time, the 
value of "Organ* is zero for all 
players but one). In line 5 of Pseud o-
ccxlc 21.1 "Organ Numhcr" is simply 
a number from 1 to 17 which desig-
nates which of the 17 organ territo-
ries is under consideration in an 
engagement. For example, you 
might designate the esophagus as 1, 
the lefL lobe as 2, etc. Statement 5 

simply subtracts 2 from lhe number of eeJJs in an attacking organ. This is used to 
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determine the attacker's probabilistic advantage in an engagement in statement 8. 
Statements 9 to 12 subtract a cell from the defender if he loses. Statements 13 to 
15 subtract a cell from the attacker if he loses. Of course, in any program you 
write, you should check that an attacking organ is adjacent to the defending 
organ, since only territories which touch can attack one another. You can do this 
by making a connectivity table based on which organs touch. Here is just a 
portion of such a table as an example: 

Stomach Duodenum Pancreas G a l l B ladder 
Stomach 1 0 0 
Duodenum 1 - 1 1 
Pancreas 0 1 0 
G a l l B ladder 0 1 0 

1 and 0 differentiate adjacent from non-adjacent areas. Are territories with a high 
connectivity more strategic to capture than isolated territories? 

21.2 Journal of Cancer Research 

The Computer Esophagus game can provide endless hours of challenging fun and 
mental stimulation. Of course, there have been many contemporary and ancient 
war games which, like the Computer Esophagus game, involve the movements of 
pieces on a playing board. Similarly, the Computer Esophagus is interesting 
because of its simple rules of engagement which provide for an exciting and sim-
ple-to-implement game with or without a computer. You may also be intrigued to 
know that there have been recent computer programs which model the growth of 
tumor cells using a game-like simulation on a 3-D checker-board of points. These 
have been described in journals such as Journal of Cancer Research and Clinical 
Oncology and BioSystems. Although not very similar to the Computer Eso-
phagus, these are examples of simple games which yield clinically relevant results 
(see refs.). 

21.3 Liver Capture Scenario and Physiological Relevance 

It is possible to play special versions of the game that more closely resemble phys-
iological happenings within the human body. These games also have educational 
value for young students. For example, one version of the game I have played 
gives added importance to organ systems essential for human survival. In the 
"Liver-Capture" game, the object of the game is to gain control of the liver terri-
tory. The liver, because of its secretory and metabolic functions, is more impor-
tant for human survival than, say, the bladder or large intestine. Another version 
of the game allows cancer cells to metastasize to non-adjacent organs via the 
blood stream and lymphatic systems. In this version of the game two dice are 
rolled at the beginning of each turn of an attacker. If two sixes are rolled, one 
organ territory, for this turn, is permitted to attack another organ territory which 
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is not adjacent to the attacking territory. You might also like to add the following 
rule to confer additional defensive advantage on an organ which has many cells: If 
an attacking organ territory loses 2 consecutive engagements with the same 
defending territory during a turn, the attacking cells are "weakened" and may not 
attack the same organ territory again during the same turn. The attacking cells 
may, however, attack another adjacent organ territory during the turn. 

What strategies do you find useful in order to win the Esophagus game? Is 
capturing and retaining control of the easy-to-defend Bladder Region (which 
yields 2 extra cells at the beginning of each term) a better strategy than trying to 
capture the entire Intestine Region? How could you make the game a more real-
istic simulation of the disease processes in the human body? How might you sim-
ulate auto-immune diseases? My board is primarily concerned with the digestive 
system. Perhaps you can design a 3-D board which also includes the heart, lungs, 
and kidneys. Or you might concentrate your board on just a single organ such as 
the heart or brain. 

You might also have the computer start with an initial random configuration 
of cells and play itself while you watch the simulation results on the display. 

21.4 Party Version - Adjacent Esophagi Scenario 

Finally, you may want to try a "party version" of the game where several game 
boards are used, and infectious cells spread to adjacent boards, from one adjacent 
esophagus to another. I've tried this with interesting results. For a more educa-
tional game, include the endocrine system and the brain, and then model the 
effect of hormones on the survival of your enemy. You may be able to kill your 
opponent's cells from a distant organ or vessel simply by shutting down blood flow 
or appropriate hormone secretions. 

21.5 Anatomy Fact File 

21.5.1 The Visible Human Project 

Imagine pungent smelling male and female corpses being scanned for hours by 
the most modern, medical computer devices. This is not a scene from a Dean 

Koontz novel, but rather the basis for a scien-
tific study taking place in Denver, Colorado. 
Researchers at the University of Colorado 
Health Science Center in Denver are excited 
about their new project (started in 1991) to 
create "the ultimate digital model" of the 
human anatomy. This complete, 3-D model 
will contain high-resolution images and infor-
mation concerning every cubic millimeter of 

a male and a female corpse. Medical students, for example, could use this data to 
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precisely visualize the locations of blood vessels within the brain or nerves within 
the spine. Powerful graphics computers can then use this data to draw realistic 
3-D renderings, animations, and magnifications from any angle, of any part of the 
body. This Visible Human Project, as it is called, involves the capturing of image 
data from medical image scans (CT and MRI) of human cadavers, as well as 
digitization of cryosection photographic data. No doubt, in a few years, you'll be 
able to take a simulated submarine ride through the heart and aortic arch, much 
like the scientists did in the famous science fiction tale Fantastic Voyage. 

21.5.2 Implantable Brain Pancakes 

Surgeons at the Johns Hopkins School of Medicine in Baltimore, Maryland are 
implanting small, drug-filled, pancake-shaped wafers in the brain. After 

how effective the "brain pancakes" are in preventing tumor recurrence. 

21.6 For Further Reading 
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removing a tumor, they leave behind 
several wafers in the skull which 
release drugs over four weeks as the 
wafers dissolve. The surgeons hope to 
prevent tumor recurrence. Robert 
Langer, a professor of biomedical 
engineering at the Massachusetts 
Institute of Technology, created the 
wafers, and he notes that it is easy to 
control the drug dose if you know 
how fast the wafers dissolve. Another 
of Langer's wafers makes use of a 
maze of tiny tunnels within the wafer 
to allow drug molecules to slowly 
escape over months of time. Exper-
iments are underway to determine 







Chapter 22 

"Civilization begins where chaos and insecurity end." 
Will Duradt, Our Oriental Heritage, 1954 

The spread and migration of humans from their primitive beginnings in Africa is 
a source fur endless scientific study and debate. It is also the source tor tin inter-
esting computer simulation which may be educational for history, geography, and 
science sLudenLs. (iL's also quite a tun game, as you shall see.) 

Many scientists today believe that Africa was the cradle of humankind. 
Several million years ago the Ramapithecines began to run upright, on their hind 
legs in the African savanna. By three million years ago, different tribes of 
Ramapiths had evolved into three different species of homiuids, or human-like 
creaturcs; Australopithecus robusius. Homo habilis, and Australopithecus afri-
cunus. 

Cro-Magnon people, with their high foreheads, first appeared some 40,000 
years ago and quickly spread throughout the world. For instance, about 15,000 
years ago. a Lribe of Siberians or Mongolians crossed a land bridge that joined 
Asia to Alaska at the Lime. They then migrated downward through North 
America, through central America, to South America (Figure 22.1). By 11,000 
years ago, people of modern type had tilled every comer of the world. 

An amusing computer game, which I call "Cro-Magnon Conquest." can 
provide hours of Intrigue for students interested in modelling the spread of human 
civilizations. First have the computer draw a map of the world. If this is too dif-
ficult, you Can represent each of the continents by square or recLangular regions. 
Next- select a site for the origin of humans. One possible location is in East 
Africa. From this point on the map. have the computer use a random number 
generator to move your humans on the map of the world. To do Lhis, Lhc humans 
move in a random direction, for each increment of time. This is known to niathe-
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PREHISTORIC HUMANS 
—"-MIGRATION ROUTES 

• MAJOR FOSSIL SITES 

Figure 22.1. Migration routes of prehistoric humans. Dots represent major fossil sites. 
(Drawing adapted from the Hammond History Atlas (Hammond, 1987, New Jersey)). 

maticians as a "random walk." For example, if your original screen coordinates 
are at (x0> j>o)> change them by adding ± 100 miles to x and y for each time step. 
The program outline should help you understand the process. If you don't have 
access to a computer, why not use dice to control the movement of your humans 
on graph paper? 

As your humans, represented by a dot on the screen, move about, why not 
have the computer draw a line so that you can see the trail that they leave? By 

doing this, you will gradually be drawing a crinkly 
line that soon meanders about all over Africa. 
Whenever it hits the edge of a continent, simply 
reflect it back (rather than have it wander off into 
an ocean.) 

How many time increments, or "years," does 
it take for your human tribes to migrate to Egypt 
and then out of Africa into the Tigris-Euphrates 
valley? As mentioned earlier, about 15,000 years 
ago humans crossed a land bridge that joined Asia 
to Alaska at the time. How long does it take your 

humans to arrive in North America and South America, by randomly walking on 
the map of the world? 

In human history, from 4000 B.C. to A.D. 400, there was a gradual migration 
of centers of civilizations from: (1) Egypt to (2) Babylonia, Chaldea, and Persia 
to (3) the Aegean Sea, to (4) Greece, to (5) Rome. Do your humans follow this 
pattern? Some historical texts include India and China in their list of the cradles 
of civilization from 3000-1000 B.C.: (1) Egyptian Civilization (3000 B.C.), (2) 
Indus Valley Civilization (3000 B.C.) (near the Indus River in India), (3) Sume-
rian Civilization (2800 B.C.), (4) Chinese Civilization (2200 B.C.) (near the 
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A L G O R I T H M : M i g r a t i o n P a t h s for C r o - M a g n o n C o n q u e s t 

Y E A R S = 10,000 
S t e p S i z e = 100 m i l e s 
x = xO 
y = yO 
M o v e T o ( x , y ) 
DO F O R i = 1 to Y E A R S 

r = R a n d o m 
if r > 0.5 THEN sign = 1 

E L S E sign = -1 
x = x + s i g n * S t e p S i z e 
r = R a n d o m 
if r > 0.5 T H E N sign = 1 

ELSE sign = -1 
y = y + s i g n * S t e p S i z e 
IF (x,y) in o c e a n , r e f l e c t b a c k . 
D r a w T o ( x , y ) 

END 

Pseudocode 22.1. Migration paths for Cro-Magnon Conquest. (If a computer is not 
available, you can use dice to direct your humans on a sheet of graph paper.) 

Huang or "Yellow" River), (5) Minoan Civilization (2000 B.C.), and (6) Hittite 
Civilization (1700 B.C.). Do your humans follow this pattern? 

At this point, I have probably angered every historian and anthropologist 
reading my simplistic descriptions of the spread of humans through the world. 
Please consider this more of a game than a real simulation. However, in order to 
make your simulations more realistic, why not have the humans be attracted to 
rivers, which are often the sites of early civilizations. In other words, rather than 
having the humans walk in a totally random fashion, they can have a tendency to 
migrate to rivers. (If you like, you can use gravity-like equations from physics 
text books to attract the roving bands of humans.) Do you begin to see clumps 
along the Nile river or the Tigris and Euphrates Rivers? Instead of having a 
single point, or a single band of humans, wandering around the globe, you might 
send off several different tribes - all starting from the same location in East 
Africa - and see where they eventually end up. Have a contest with your friends 
to see whose humans arrive in North America first. 

22.1 Genes and Languages 

"The heat of the tropics, and the innumerable parasites that infest them, are 
hostile to civilization. Lethargy and disease, and a precocious maturity and 
decay, divert the energies from those inessentials of life that make civiliza-
tion. Nothing is left for the play of the arts and mind." 

Will Durant, Our Oriental Heritage, 1954 

Luigi Luca Cavalli-Sforza, a professor of genetics at Stanford University, has 
studied the paths by which early humans may have spread through the world by 
examining both the genes of modern humans and the various languages of the 
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world. Family trees created using linguistic and genetic methods are very similar 
and imply a series of human migrations. The biological evidence suggests a home-
land in Africa. The genetic distances between Africans and non-Africans exceed 
those found in other intercontinental comparisons. This is what one would expect 

if the African separation was the first 
and oldest in the family tree of 
humans. Archeological evidence also 
provides Cavalli-Sforza with data 
implying that Africa was the original 
homeland of hominids, and from 
there migrations proceeded from 
Africa to Asia via the isthmus of 
Suez, and later from Asia to Europe. 
The settlement of Australia and the 
Pacific Islands must have been 
accomplished only recently, after 
marine navigation was possible. It 
turns out that the distribution of 
genes in populations corresponds to 
the distribution of languages, so a 

language can serve to identify a genetic population and help to build models of the 
spread of early humans through the world. As an example, there are nearly 400 
languages in the Bantu family of central and southern Africa. These are related 
to one another and correspond closely both to tribal boundaries and genetic affil-
iation among tribes. As the early Bantu farmers expanded into central and 
southern Africa around 3,000 years ago, their languages diverged, along with the 
genes of these populations. For more information, you may wish to read Cavalli-
Sforza's paper in the November 1991 issue of Scientific American. 

22.2 Stop and Think 

1. Figure 22.1 shows a map of the world during the time of prehistoric man. 
How would the world be different today, geopolitically speaking, if the 
ancient land masses had never drifted apart and, therefore, today's world con-
sisted of a single supercontintent? 

2. What would today's world be like if the land mass which formed the Greek 
peninsula never existed? 

3. What would today's world be like if the land bridge which joined Alaska to 
Asia never existed? 

4. Why do all the major peninsulas on earth point south? See for example: Italy, 
Greece, Florida, and Baja, and the tips of Africa, South America, India, 
Norway, Sweden, Greenland, and many other landmasses. 
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5. Experiment with more sophisticated models of migration which also include 
mountains, ocean currents, and natural resources." 

6. How would the number of languages on earth today be different if the 
ancient landmasses never migrated apart and, therefore, today's world con-
sisted of a single supercontintent? 

7. If a magical being descended from outer space and offered you either of the 
following abilities, which would you prefer: a) instantaneous fluency in all the 
European languages, or b) instantaneous fluency in all the Asian languages? 
If the magical being also offered you either of the following abilities, achieved 
at the snap of its fingers, which would you prefer: 1) immediate skill of the 
10th best piano player in the world, or 2) immediate fluency in 10 languages 
of your choice? 

22.3 The Bushmen 

"Ex Africa semper aliquid novi. (There is always something new out of 
Africa)" Pliny 

In the summer of 1991, Professor Luigi Luca Cavalli-Sforza and molecular 
anthropologist Allan Wilson made an urgent plea for help and money in order to 
collect DNA samples from aboriginals populations around the world before these 

groups vanish. The basic plan is to collect 
blood samples from the Hill People of New 
Guinea, the Bushmen of southern Africa, 
and about 100 other populations. The 
October 25th, 1991 issue of Science noted 
that these populations, isolated for hun-
dreds of thousands of years, "contain in 
their genes clues to human evolution, 
migration, and diversity." As society 
encroaches upon these once-distinct popu-

lations, the opportunity to analyze their genes is rapidly vanishing. 

11 Sim Earth is a commercially available personal computer simulation enabling users to 
take charge of an entire planet from its birth until its death 10 billion years later. The 
detailed personal computer graphics enhance the rich variety of ecological parameters 
available to users. For more information, contact: MAXIS, Two Theatre Square, Suite 
230, Orinda, CA 94563-3346. 510 254-9700. Fax 510 253-3736. Tel order: 800 
33-MAXIS. Another personal computer game, Sid Meier's Civilization allows users to 
build an empire to "stand the test of time." Users control the technology available to 
their societies and view the results. Contact: Microprose, 180 Lakefront Dr., Hunt 
Valley, MD 21030. 301 771-1151. 
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22.4 Fantastic Archeology 

Sharon Begley in the Columbus Special Issue of Newsweek asked the question, 
"If humans crossed the Bering Strait 

about Fantastic Archeology: "Williams' book is a wonderful ride through Never-
Never Land where Vikings land in western Oklahoma and sail away into the 
sunsets of California deserts; where all over the continent are clues by way of 
ancient Hebrew inscriptions, Egyptian hieroglyphics, Phoenician villages, Ogam 
inscriptions, Kufic Arabic treatises, golden tablets of Moroni, Norse rune stones 
and rusted swords, and Barry Fell's sacrificial altars at North Salem, New 
Hampshire." Williams' book is listed in the "For Further Reading" section. 

For those of you interested in a breathtaking photographic tribute to the African Rift 
Valley, which stretches 3,500 miles along the east side of Africa, Chris Johns' Valley of 
Life: Africa's Great Rift (Thomasson-Grant, 1991, 143 p., color, $39.95) is essential 
reading. Johns is a National Geographic photographer, and he lived along the Rift for 18 
months, photographing the people, wildlife, and land. As Science News exclaims, "His 
spectacular collection of photos and his brief, personal reflections capture the mystery and 
magnificence of humankind's possible birthplace." 

Those of you interested in Africa's island neighbor Madagascar, should read Ken 
Preston-Mafham's Madagascar: A Natural History (Facts on File, 1991, 224 p., color, 
$45.00). Madagascar's separation from the African continent 65 million years ago allowed 
its animals to evolve in isolation into some of the world's most remarkable and unusual 
wildlife. 

Brian Fagan's book Kingdoms of Gold, Kingdoms of Jade: The Americas Before 
Columbus (Thames Hudson, 1991, 240 p, color, $24.95) is a fascinating account of pre-
Columbian civilizations that flourished in the Americas (Aztec, Inca, Olmec, Maya, 
Chavin, Nazca, and native North American). During this time there were spectacular 
and sophisticated cities as large as Constantinople, and powerful chiefs ruling in splendor 
in the Mississippi valley. The book contains many photographs and maps. 

Jean Guilaine's Prehistory: The World of Early Man (Facts on File, 1991, 192 p., 
color, $39.95) describes prehistoric cultures from around the world. Topics: the spread of 

12,000 years ago, then who built the 
40,000-year-old sites that are scat-
tered from the hills of Pennsylvania 
to the tip of Chile?" These are 
exactly the kinds of archeological 
hoaxes that Stephen Williams loves 
to debunk in his book Fantastic 
Archeology. Williams, a former 
director of the Peabody Museum of 
Anthropology at Harvard, concen-
trates on North American prehistory. 
William Goetzmann in the December 
6, 1991 Science says the following 

22.5 Valley of Life, and Kingdoms of Gold 
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civilization, human evolution, the appearance of writing and art, the arise of symbolic 
thought, the development of early economies, and more. 

Did you know that Amazonian tribes are disappearing at a rate of one tribe per year 
in Brazil alone? Mirella Ricciardi's Vanishing Amazon (Abrams, 1991, 240 p., $49.50) 
contains photographs and facts regarding the threatened Indian tribes in the Amazonian 
basin. Mirella lived among various tribes, and her stunning photographs reveal a beautiful 
and sad story about the end of a people. 

In 1972, archeologists discovered eight mummified women and children in the frigid lands 
of Greenland. The bodies, which have been dated to 1475, were remarkably preserved by 
the intensely cold weather and dry air. If you would like to learn more about medieval 
Inuit culture and living conditions, read The Greenland Mummies, by Jens Peder Hart 
Hansen, Jorgen Meldgaard, and Jorgen Nordqvist (Smithsonian, 1991, 192 p., color, 
$39.95). 
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Chapter 23 

Ghost Children in Our Genes 

"h'fhereal. iransparent figures crossed the large central area: a ten in business 
suits toting briefcases, women in smart travelling dresses.... He saw a ghost 
father leading two small ghost-childrcn... Then color dove into the shapes in 
a series of comet (try flickers, solidifying them, and the echoing voices 
resolved themselves into the prosaic stereo swarm of real human voices." 

SLephen King, Four Past Midnight 

If you were given the opportunity of viewing a hook Containing millions of small 
p i i o t o f all the passible offspring you and your spouse could potentially produce, 

would you view such a book? 
Assuming that you Could squeeze )00 
small photos on a page, how big 
would such a book be? 

This is noL too difficult to 
Compute. Let's assume that a 
woman's ovaries contain about 500 
eggs. Let's also assume that a man 
produces about 0 trillion 
(6-57 x If)1-) sperm in a lifetime. 
{ This figure is Computed using a 
figure of 300 million sperm per day 
multiplied by 60 years.) For ever}' 

possible sperm there are 500 different eggs, giving us 500 multiplied by 6 trillion 
possible children's photos. This is about 

3,280,000,000,000,000 (3.28 x 10,r') 

photos. At 100 photos per page, this would produce a book about 32 trillion pages 
in length. 

Of the people I surveyed, only about 50 percent would choose to gaze into the 
book of photographs. Some respondents noted that many of the children would 
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look so similar that they would prefer to look at a book which were reduced to a 
reasonable size by showing only one photo representing a class of similar appear-
ances. Many others I surveyed indicated that they would be more interested in 
their genetic possibilities with regard to personality, temperament, and talent. 
One respondent noted, "What if you glimpsed a potential child so heartbreakingly 
beautiful, or so winning and delightful, that your real children suffered by com-
parison? What if you took your disappointment out on them?" 

Others noted that they would like to peek at some amusing, impossible combi-
nations such as John Lennon and Margaret Thatcher. 

• The size of a sperm is not correlated with the size of the individual organism. The 
longest mammalian sperm, for example, is found in the Chinese hamster. The sperm mea-
sures 250 microns in length, quite easy to see with the naked eye. 

• A bull produces 800,000 sperm per cubic centimeter of semen. For comparison, a horse 
produces 600,000, and a pig 100,000. 

1. Would you like to visit, for one hour, a ghost world, where you could watch and talk 
to your ghost children? 

2. Compute the number of ghost children for simpler organisms by searching the scien-
tific literature for the number of sperms and eggs produced for an insect or a fish. 

3. The largest encyclopedia is La Enciclopedia Universal Ilustrada Europeo-America 
(J. Espasa & Sons, Madrid) totaling 105,000 pages. How much larger is the book of 
ghost children? 

23.3 Cross References and Credits 

The photo of the child with the geometrical shape is from Anton Bakker (Norfolk, VA) 
who built this scultpure based on the work of Professor Koos Verhoeff. "There is Music in 
our Genes" on page 211 describes the relationship between music and the heridtary infor-
mation in our genes. "Extraterrestrial Messages in Our Genes" on page 161 describes the 
coding of messages in genetic sequences. 

23.1 Fact File: Chinese Hamster Sperm, Bull Sperm, Etc. 

23.2 Stop and Think 



Chapter 24 

Pong Hau K'i * 
I learned about a seemingly simple board game a few years ago when speaking to 

a friend's grandfather who had been 

WHITE born in Canton, China. In China the 
game is called Pong hau k'i, while in 
Korea it is called Ou-moul-ko-no. 
You can play it with pencil and 
paper, or by designing a computer 
program, or by moving stones on a 
game board. Looking at the playing 
board, you might be deceived into 
thinking that the game is easy. But 
such is not the case! You can play the 
game using two black stones and two 
white stones. The black stones are 
placed on the bottom two circles. 
The white stones are placed on the 
upper two circles. One player, the 
owner of either the white stones or 
the black stones, moves a stone along 

a line to an adjacent empty point. The other player then moves his stone. The 
players alternately move one stone at a time along any line to an adjacent empty 
space. The aim is to block the opponent's stones so that he or she cannot move. 

24.1 Stop and Think 

1. Is it better to be black than white? 
2. How many different positions are there? 
3. Write a computer program that plays a human opponent or plays itself. Can 

you write a program which learns strategies by playing hundreds of games 
and observing its mistakes? 
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4. If you arc a teacher, why not have your students design related variants of 
Lhis game by adding a few line segments to the Pong hau k'i board, or by 
adding additional stones. 

5. Instead of starting from a set position, some players place their stones at the 
beginning of the game on any of the 5 points, or place their stones (at posi-
tions of their choice) in alternate turns of play, and then continue as 
described. 

6. Develop a multidimensional Pong hau k'i game, sueh as illustrated in the fol-
lowing diagram, where the center board position connects centcr positions on 
{adjacent boards; 

ref lections are allowed, and thjaL either player ean always force a draw. Can you 
change this outcome by adding a few line segments to the Pong hau k'i board, or 
by adding additional stones? "Hyperdimensional Sz'kwa" on p^ge 155 discusses 
another board game from China. 
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The 10 Mathematical Formulas That 
Changed The Face of the World 

"Though we can say that mathematics is not art, some mathematicians think 
of themselves as artists of pure form. It seems clear, however, that their 
elegant and near-aesthetic forms fail as art, because they are secondary 
visual ideas, the product of an intellectual set of restraints, rather than the 
cause of a felt insight realized in and through visual form." 

Robert Mueller, 1972, Art in America 

A few years ago, Nicaragua issued ten postage stamps bearing "Las 10 Formulas 
Matematicas Que Cambiaron La Faz De La Terra" (The 10 mathematical for-
mulas that changed the face of the world).12 I'm not sure how the Nicaraguan 
government determined which particular formulas should be elevated to so high a 
status for placement on the stamps. Perhaps a survey was conducted among the 
mathematicians in the country. In addition to scientific merit, perhaps such prac-
tical issues as space limitations were considered so as to avoid long formulas on 
small stamps. 

In October of 1991 I conducted my own informal survey as to which formulas 
scientists considered "The 10 Mathematical Formulas that Changed the Face of 
the World." The survey was conducted via electronic mail networks, and a 
majority of the respondents were mathematicians (professors, other professionals, 
and graduate students). Here's the answer to this question from approximately 
fifty interested individuals who gave me their opinions as to the most important 
and influential equations. The equations are ordered from most influential to 
least influential, based on the number of different people who listed the same for-
mulas when they sent their lists to me. For example, E = mc1 received the most 
votes. 

How many of the following can you identify? 

12 Isn't it admirable that a country so respects mathematics that it devotes a postage stamp 
series to a set of abstract equations? Have other countries produced a similar series? 
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25.1 The Top Ten 

Here are the ten most influential and important mathematical expressions, listed 
in order of importance: 

1. E = mc2 

2. a2 + b2 = c2 

3. e0fcE • dA =lq 
4. x = - b±yjb2 - 4ac /2a 

5. F = ma 
6. 1 + ei<n = 0 

7. c = 277T, a = 77r2 

8. F = Gmxm2/r2 

9. /(X) = lcnein-x/L 

10. e'0 = cos 0 + / sin 0 
tied with an + ft" = c", n > 2 

25.2 The Runners-Up 

Other mathematical expressions which did not score high enough to be included 
in the top 10 but which scored favorably were: 1) f(x) = f(a) + /(a)(x — a) + 
f ( a ) (x-a)2/2/..., 2) s = v* + ^ 2 / 2 , 3) V = IR, 4) z -> z2 + /z, 5) 
E = lim(l + \/ri)\ 6) c2 = a2 + b2 - 2ab cos C, 7) JA:<JL4 = 2TT x y, 8) <//</* 
jxf(i)dt = / ( X ) , 9 ) 1 / (2T70/C/(Z)/(Z - a)dz = / ( « ) , 10) RFY/RFX = lim (h - 0) 
( f ( x + /z) - f ( x ) ) / h , and 11) d^/dx2 = - [8ir2m/h2(E -

These "runners-up" are listed in no particular order. To be eligible for the run-
ners-up list, at least two mathematicians had to include the formula in their own 
top 10 list. 

25.3 Nicaragua List 

Here is a list of Nicaragua's postage stamp equations for "Las 10 Formulas 
Matematicas Que Cambiaron La Faz De La Terra." Note how many of these 
formulas agree with the "Top Ten" list based on my own informal survey. 
1. 1 + 1 = 2 
2. F=Gm\m2/r2 

3. E = mc2 

4. elnN = N 
5. a2 + b2 = c2 
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6. 5 = k log W 

7. V=Ve\nm0/m[ 

8. X = h/mv 

9. V2£ = ( K u / c 2 ) (d2E/dt2) 

10. F\X\ = F2X2 

25.4 Solutions, Tsiolkovaskii's Rocket Equation, Etc. 

Here are the solutions for the Nicaragua stamp list: 1) Basic addition formula. 2) 
Isaac Newton's law of universal gravitation. If the two masses m\ and m2 are sep-
arated by a distance, r, the force exerted by one mass on the other is F, and G is a 

constant of nature. 3) 
Einstein's formula for the con-
version of matter to energy. 4) 
John Napier's logarithm 
formula. This allows us to do 
multiplication and division 
simply by adding or sub-
tracting the logarithms of 
numbers. 5) Pythagorean 

theorem relating the lengths of sides of a right triangle. 6) Bolzmann's equation 
for the behavior of gases. 7) Konstantin Tsiolkovskii's rocket equation. It gives 
the speed of a rocket as it burns the weight of its fuel. 8) de Broglie's wave 
equation, relating the mass, velocity, and wavelength of a wave-particle, h is 
Planck's constant, de Broglie postulated that the electron has wave properties, 
and that material particles have associated with them a wavelength. 9) Equation 
relating electricity and magnetism, derived from Maxwell's equations which form 
the basis for all computations involving electromagnetic waves including radio, 
radar, light, ultraviolet waves, heat radiation and x-rays. 10) Archimedes' lever 
formula. 

Here are explanations for some of the formulas in my own lists. No. 3 is one 
of Maxwell's equation for electromagnetism. No. 4 is the quadratic formula for 
solving equations of the form ax2 + bx + c = 0. No. 5 is Newton's second law, 
relating force, mass and acceleration. No. 7 gives the circumference and area of a 
circle. No. 9 represents a Fourier series. Complicated wave disturbances may be 
represented as the sum of a group of sinusoidal-like waves. The first formula in 
No. 10 is Euler's identity relating exponential and trigonometric functions. The 
second formula represents Fermat's last theorem. No. 7 (Runners-Up) is the 
Gauss-Bonnet formula, where y is the Euler characteristic. No. 9 (Runners-Up) is 
Cauchy's integral formula in complex analysis. 
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25.5 Comments from Colleagues 

Clifford Beshers of Columbia University had some interesting remarks regarding equation 
No. 8 on my list, which was first on his list: "Gravity keeps our planet in orbit about the 
sun, keeps the moon in orbit about the Earth, makes the rain fall on our heads, and keeps 

kids' marbles (and kids, for that matter) from becoming 
comets. Sunlight, tides and weather have made life on 
this planet flourish." He also suggested adding a fixed 
loan payment formula to the top 10 for the following 
reasons. "Equations that govern industrial economies 
have had a great impact on our world. The formula for 
a fixed payment loan is a simple, well known equation, 

and I would guess that it is among the formulas most widely used today. We have always 
been able to dream of changing the world, but investing has made it possible." The fixed 
loan payment formula involves variables such as the monthly interest rate, principal, and 
duration of the loan. 

Roy Smith of the Public Health Research Institute in New York noted the following 
about c2 = a2 + b2 (the Pythagorean formula for right triangles): 

This formula is vital to any vector problem, and hence vital to most of physics. Any 
field of study using complex numbers, such as electronics, involves the conversion 
between polar and rectangular forms, and this formula has application here. This 
formula is one of the first things the Scarecrow in "The Wizard of Oz" recited when 
he got his brain. If you consider the formula's logical extension, the law of cosines for 
non-right triangles (C2 = A2 + B2 — 2AB cos(0)), then you have the basic formula 
that surveyors use to measure land. The related formulas for solving spherical trian-
gles were used for celestial navigation, which allowed people to explore the entire 
world by sea. 

25.6 Fact File 

• A few respondents suggested Fermat's last theorem be included on the list of the ten 
influential mathematical expressions because a siginficant amount of research and math-
ematics is a direct result of failed attempts to prove the theorem. This theorem by Pierre 
de Fermat (1601-1665) states that there are no whole numbers a, b and c such that 
a" + b" = cn for n > 2. In 1769, Leonard Euler stated that a related formula 

a4 + b* + c* = d* (25.1) 

had no possible integral solutions. Centuries later, Noam Elkies of Harvard University dis-
covered the first solution to Equation (25.1): a = 2,682,440, b= 15,365,639, 
c = 18,796,760, and d = 20,516,673. (For more information, see: Elkies, N. (1988) On 
a4 + b4 + c4 = d4. Mathematics of Computation. Oct. 51(184): 825-835. For Noam 
Elkies' fractal musical artwork, see Figure 37.4.) 

• Mathematicians Philip Davis and Reuben Hersh have suggested that in the year 1900 it 
would have been quite possible for an individual to know essentially the whole of math-
ematics as it existed then. Today, an individual mathematician can hardly know, in any 
deep sense, more than five percent of the mathematical corpus. 



Chapter 26 

Interlude: The Third Eye 

I M f l M f ^ 
"To paraphrase the comedian, why is it thai computer an 'don't gel no res-
pect?' Why are we feared - or at best misunderstood by the gallery world?" 

Dene Astrahan is an internalionally known computer artist Jiving in New York 
City. Her work has been featured in numerous shows and magazines, and it often 
includes mathematical concepts of fractals and recursion. My favorite piece of 
hers is titled "Third Eye," and it is shown here in a black and white reproduction 
of the Color image. To Create the artwork, llene firxL digitized a photograph of an 
eye and then enhanced the image using a paint program called Deluxe Paint 
running on her Amiga computer. Si nee Hie digital file produced a crude imjage, 
she spent several days in improving it so that it would look nice using just 32 dif-
ferent. colors. After creating the recursive eyelids, the slide was printed using a 
Polaroid Palette film reeorder. The piece required two weeks to complete. Ilene 
remarks: 

I do not try to imitate the effects of traditional painting. After all, watcrcolorists 
don't imitate oil painting. The artifacts of computer graphics such as jaggics, dith-
ering and scaD-lines arc a valid pari of the medium, as arc Ihc paint strokes, impasto, 
canvas texture, euj. of traditional media. The strength of the computer is its ability to 
do infinite variations of color ami image processing, plus being Ihc ultimate collage 
machine. One could spend a lifetime exploring 1he variations possible in jusl one 
image, learning new software or floing animation. 

For more information, contact: Ilene Astrahan, P.O. Box 6(50, Cooper Station. 
New York, NY 10276. 

Ilene Astrahan, I WO 
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Aliens, and Pieces of Pi 

"A space flight to the moon could not take place with only 3-digit-precision 
knowledge of it. " John Hesse 

"I don't like nonrepeating decimals. Pi makes me furious." 
Don DeLillo, Ratner's Star 

In the October 1991 issue of Omni magazine, Dave Jaffe quoted from his 
upcoming anthology of brainteasers titled Mathematical Games That Could Not 
be Solved by People Who Claim They Have High IQs: 

Numbers have always played an important role in mathematics. Without them such 
fields as geometry never would have progressed beyond "Fun With Squares." Yet it's 
long been known that besides zero through nine there exists an extra digit wedged 
somewhere between six and seven. Mathematicians have avoided using the mystery 
number because it is tricky to spell and has an embarrassing shape. 

As silly is this sounds, it's interesting to speculate what would happen today if 
an alien creature came down from the heavens and inserted a digit into the 
decimal expansion for it. NOW instead of it being 3.1415926535..., it would have 
an extra digit, "1," making it: 3.11415926... What effect would this have on the 
world and the fabric of reality? As a result of this new value for it, would various 
previous engineering calculations be so much in error that skyscrapers would fall 
to the ground? Would satellites fly out of orbit? How accurate a value for it do 
engineers really need for architectural construction? Obviously you don't need to 
know the value of it at all to draw a circle and many other structures, but it does 
appear in many kinds of geometrical engineering calculations. Note that the 
ancient Greeks did just fine when the decimal value of it was only known to a few 
decimal places. They built perfectly stable and beautiful buildings. In 1579, Viete 
computed the value of it to a remarkable 10 figures.13 

13 In one of his greatest books The Measurement of the Circle, Greek mathematician 
Archimedes proved that the circumference of a circle is less than 3+1/2 and greater 
than 3+ 10/71 times its diameter. For more on Archimedes, see "Strange Toilet Paper" 
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Normally we think of it simply as the ratio of the circumference of a circle to 
its diameter. So did pre-17th Century humanity. However in the 17th century, it 
was freed from the circle. Many curves were invented and studied (various 
arches, hypocycloids, witches...), and it was found that their areas could be 
expressed in terms of it. 

Finally it ruptured the confines of geometry altogether. For example, today it 

relates to unaccountably many areas in number theory, probability, complex 
numbers, and simple fractions, such as it/4 = 1 — 1/3 + 1/5 — 1/7.... As 
another example of how far it has drifted from its simple geometrical interpreta-
tion, consider the book Budget of Paradoxes, where Augustus De Morgan 
explains an equation to an insurance salesman. The formula, which gave the 
chances that a particular group of people would be alive after a certain number of 
days, involved the number it. The insurance salesman interrupted and exclaimed, 

"My dear friend, that must be a delusion. What can a circle have to do with 
the number of people alive at the end of a given time?" 

Let's return to the subject of aliens altering the decimal value of it. If the 
aliens were to change it, the problems we encounter will propagate since the value 
of other constants will also probably change due to simple relations such as 

suffice for computing the circumference of a circle girdling the known universe 
with an error no greater than the radius of a hydrogen atom! However, John 
Hesse has suggested that a flight to the moon could not take place with only 
3-digit precision knowledge of it because NASA makes a tremendous number of 
orbital mechanics calculations involving it. The iterative nature of these calcu-
lations demand the full precision provided by whatever processors are used. 

eiv = — 1. In addition, Planck's constant in 
modern physics is often used in connection with it 

in the form (h/2ir) . This would probably cause a 
lot of trouble in our universe. 

Here then is the main question for you to 
ponder. At what year in human civilization would 
this malicious, alien, decimal insertion in it have 
mattered to engineers for the sake of practical 
designs (bridge building, various construction, 
etc)? Note that thirty nine decimal places of it 

on page 179. A refined value of it was obtained by the Chinese much earlier than in the 
West. Some scholars have suggested that at the time the Greeks knew it to three digits, 
the Chinese knew the value to two or three additional digits. 
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27.1 Stop and Think 

• If you are a teacher, have the students make various computations involving it 
with this alien insertion. For example, how much does the circumference of a 
12-foot radius sphere change as a result of the inserted digit? From a historical 
perspective, what was the first structure or machine for which a value of it was 
needed? 

• These hypothetical aliens who altered it might have been more interested in 
interfering with the human ability to do mathematics rather than in altering 
mathematical constants. Dawn Friedman (Harvard University) asks the fol-
lowing: 

If it were possible to set a limit on the mathematical ability of humans by altering the 
physical structure of the brain, what would these aliens have to do, and what math-
ematical limit would they need to set, to prevent human beings from: building a cathe-
dral, a potter's wheel, a race car, a computer, or a nuclear bomb? What mathematical 
limit would they need to set to prevent human beings from doing the spectroscopic 
experiments and the calculations needed to discover the double helix? How would a 
field like medicine be affected? At what date in the history of medicine would the 
divergence from current history begin? With the microscope, perhaps, if the math-
level were set low enough? It might be interesting to determine which inventions 
depend on a particular level of math. 

• There are a few physical constants which appear to govern the properties of our 
universe, for example: the speed of light, the gravitational constant, and Planck's 
constant. If an alien decided to tinker with just one of these three constants by 
changing a digit, which of the altered constants would cause the least havoc to 
your daily life? 

• Do the measurements of the lengths and areas of all simple curved shapes 
involve TT? 

27.2 Fact File 

• The first six digits of it (314159) appear at least 6 times among the first 10 
million decimal places of it. 

• In ancient China, Ch'ang Hong (125 A.D.) gave TT = y/10 = 3.162 . . . . 

27.3 Cross Reference 

"Extraterrestrial Messages in Our Genes" on page 161 describes an alien tampering with 
the sequence of bases within DNA, and also messages contained within tt. 





Chapter 28 

Hyperdimensional Sz'kwa 

A few years ago, Bijan. my octogenarian friend, was exploring the Nen river in 
ihe valley of the Great Khingan mountain range 
in Nor I hum China. There he (earned about a 
fascinating children's game called S/.'kwa which 
was often played on y board sketched out in the 
dirt by a sharp stick (see diagram at left). One 
child holds 25 white stones in his or her hand; the 
other holds 25 black stones. At the start of the 
game, the circular board shown here would have 
no stones. Each player would take turns placing 
stones on the board, at the positions with black 

dots, if a. player's stone were completely surrounded by the opponent's stones it 
was captured. The left diagram of Figure 28.) shows the capture of a black 
piece, and the right diagram shows the capture of two white pieces. When a 
player would have no stones left to place on the circular board, or no empty sites 
on which to place a stone without it being captured, the game ended. The winner 
would be the player who held the greatest number of stones. 
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Figure 28.1. The Chinese game Sz'wa. A board configuration showing the capture of a 
black piece (left), and a board configuration showing the capture of two white pieces 
(right). (Figure adapted from the fascinating book: Bell, R., and Cornelius, M. (1988) 
Board Games Round the World. Cambridge University Press: NY.) 

28.1 Stop and Think 

1. How many different arrangements of stones on the playing board exist? 

2. Is it better to be the first player? 

3. Write a computer program that plays a human opponent or plays itself. Can 
you write a program which learns strategies by playing hundreds of games 
and observing its mistakes? 

4. If you are a teacher, have your students design a related variant of the game 
by adding a few line segments to the Sz'kwa board, or by using additional 
stones. 

5. Develop a multidimensional Sz'kwa game, such as illustrated in "Pong Hau 
K'i" on page 143, where the center site on the Sz'kwa board connects center 
sites on adjacent boards. First try a game using just two boards, and then 
three. Generalize your discoveries to N boards. 

At the beginning of this chapter is a painting on a plate by the Chinese artist Kee 
Fung Ng showing Chinese children playing Sz'kwa. If you look closely, you can 
see the stones placed at the Sz'kwa positions on the dirt. "Pong Hau K'i" on 
page 143 describes another Chinese board game. 
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Goddard, The Nile, and Claire de Lune 

"Where there is- an open mind, there ml! always be a frontier." 
Charles F. Kettering 

Imagine a future world where a computer program randomly assigns its Inhabit-
ants important goals that must be fiehicvcd in their lifetimes. When a person is 
born, the parents would be banded a computer printout with, lot us say, one-hun-
dred goals chosen at random from a huge list of goals in the computer's memory. 
Some would be difficult goals to achieve (pass a course on differential geometry 
and topology) while others would be simpler (play "Marv had a Little Lamb" on 
the piano.) As a stimulus to a nation's citizenry, if one were to achieve all 100 
goals, tbere would be ;i reward of one million dollars. What would such a world 
be like? What ;irc some goals th;it a computer should assign? What would a 
human faced with this list really achieve? 

Such an idea Is not preposterous: in fact, there is a human today who forced 
himself to achieve over 100 goals set down on paper in the early years of his life. 
The man's name is John Goddard. When John was only a teenager, lie look out a 
pencil and paper and made a long list of all the things lie wanted to achieve in life. 
He set down 127 goals. Here is a list of just some of his goals: 

1. Explore the Nile river. 
2. Play "Claire de Lunc'? on <he piano. 
fl. Rem] the- entire F.ncyclof.'Kftio Rrifnnniuj. 
4. Climh Mt. fciverest. 
5. Study primithrc tribes in the Sudan. 
6. Write <i bwfc. 
7. Kead the en tire liillle. 
S. Dive i n a <ot bma rj n c. 
9. Rim a five-minute mile. 
10. Circumnavigate the globe. 
11. Explore the Great Barrier Reef of Australia. 
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Device Feature 
Pen LED Flasher 
Clock Bell 
Key Speech Synthesis 
Mouse Light Meter 
Keyboard Touch Activated Switch 
Joystick Timer Plus Relay 
Graphics Puck Missing Pulse Detector 
Trackball Voltage-Controlled Oscillator 
Terminal Screen Frequency Meter 
Pencil Light Dimmer 
Terminal Keys Infrared Security Alarm 
On/Off Switch Analog Lightwave Transmitter 
Dial Protection Circuit 
Remote Control Adjustable Siren 
Compass LED Regulator 
Level Wrist Band Attachment 
Screw Driver LED Transmitter/Receiver 
Watch Speech Recognition 
Cursor Volume Control 
Menu Icon 1-Minute Timer 

Dual LED Flasher 
Neon Lamp Flasher 
Solar Cells 
Dark-activated LED Flasher 
Break-Beam Detection System 
Phone Activated 
Phone-Controlled 
Piezioelectric Buzzer 
Bargraph Voltmeter 

Figure 29.1. Patentable inventions. Pick a device from the first column, add the word 
"with," and then chose a feature from the second column. 

12. Climb to the very top of Cheop's Pyramid. 

Impractical? Not at all. Today John Goddard is 66 years old, and he has 
accomplished at least 104 of his original 127 goals. He's become one of the most 
famous explorers in the world. Goddard was the first man in human history to 
explore the entire length of both the Nile and Congo rivers. His remaining goals 
are not so easy. He wants to visit the moon and explore the entire Yangtze River 
in China. He still has not visited all 141 countries, but this goal is almost 
achieved. He also wishes to live to see the 21st century. 
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29.1 Stop and Think 

Several colleagues thought that the Goddard list approach should be modified. 
For example, one person remarked: 

All the things on Goddard's list are important. Accomplishing them has no doubt 
made him a happier person. Happy, satisfied, self-assured people are the ones we 
need. They are the ones who are able to provide all those great things you want 
humanity to attain. 

Another colleague responded: 
I think people should be able to pick their 100 goals from a much longer list, and not 
have a computer do it for them. Even Goddard might not have gotten very far if he 
had been given the wrong list. For example, what if he were given the following: "Live 
in the same place for 40 years; successfully cultivate the Himalayan poppy; breed a 
high-producing, pest-resistant orange tree; raise 12 children...?" My officemates sug-
gested that the prize money was absolutely necessary! 

A final response from another scientist: 
This is exactly what we should not be doing. The goals which we know how to achieve 
have already been accomplished. The ones which we do not know how to achieve 
cannot reasonably be assigned. In addition, who should try to do what depends on the 
temperament and ability of the person. These goals may be important for personal 
satisfaction, but will not help humanity one bit. None of the goals listed involve even 
the acquisition of facts previously unknown to mankind. Is running a 5-minute mile 
(one of the goals on the list) important? 

29.2 Patents and Inventions 

Those of you who are interested in computers or who are creative engineers may 
like to use the "Goddard list approach" for inventing new products and patenting 
the results. One way to stimulate your imagination is to have a computer program 

generate an invention title by randomly 
choosing from a list of devices and then also 
choosing from a list of features. If you can 
think of suitable applications for the 
invention, it is relatively easy to embellish the 
basic concept suggested by the random title 
and generate patentable ideas using this 
approach. The list in Figure 29.1 will help 
you understand this approach. Pick a device 
from the first column, add the word "with," 

and then chose a feature from the second column. For example, "Mouse with 
Infrared Security Alarm" might be the title of your invention. Think about all 
the ways this could be achieved and all the applications of the device. Have your 
friends add devices and features to your own lists for more interesting patent 
ideas. 





Chapter 30 

Extraterrestrial Messages in Our Genes 

"We feel certain that the [extraterresrial message] is a mathematical code of 
some kind. Probably a number code. Mathematics is the one language we 
might conceivably have in common with other forms of intelligent life in the 
universe. As I understand it, there is no reality more independent of our per-
ception and more true to itself than mathematical reality." 

Don DeLillo, Ratner's Star 

"When asked why he doesn't believe in astrology, the logician Raymond 
Smullyan responds that he's a Gemini, and Geminis never believe in 
astrology." John Paulos, Innumeracy 

The year is 2050. Science has progressed to the point where geneticists can 
obtain a complete printout of the hereditary material of an organism simply by 
placing a corpse of the organism in a machine and flicking a switch. From out of 
the side of the machine comes a computer diskette listing the DNA sequence for 
the organism, expressed as the standard four letter code using the symbols G, C, 
A, and T. In the same machine exists sophisticated pattern matching software 
which automatically searches for all kinds of biologically relevant information 
contained within the DNA sequence. 

On one cold December day in 2050, a researcher at the National Biomedical 
Research Foundation in Washington, DC places the corpse of a tarsier inside the 
sequencing box. A minute later a billion letters representing the animal's genetic 
sequence are in the computer's memory. (A tarsier, pictured above, is a tree-
dwelling mammal from the East Indies. Tarsiers are about the size of a small 
squirrel and have large goggle eyes.) After the computer analyzes the DNA, it 
finds something peculiar, and notifies the researcher using its computerized voice. 
The researcher looks at his computer keyboard, and then he faints, because the 
computer has determined that a large portion of the tarsier's genetic material 
codes for the decimal digits of TT (3.1415...)-

A month later, there is a ban on all trade in tarsiers, because scientists, in 
their zeal to study the tarsier in greater detail, have depleted the world population 
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of these mammals. There is also a mad rush to sequence and study other similar 
tree-dwellers such as the slender loris, a lemur from southern India. Various sci-

entific and philosophical meetings 
are convened to determine what the 
tarsier-77 message could signify? 
Various questions are asked. What is 
special about the Tarsier? Could 
some outerspace civilization have 
placed this hidden message in the 
Tarsier's gene sequence? 

It's easy to imagine a science-fic-
tion plot, such as the one just out-
lined, where scientists find some odd 
patterns in the DNA code of certain 

organisms. The DNA sequence, expressed as a four letter code using the symbols 
G, C, A, and T, could code for practically anything. It could contain the value for 
IT (3.1415...) or any other famous mathematical constant. But how many decimal 
digits of IT encoded in the DNA would impress a scientist as something special? 
After all, just a few digits in sequence could occur simply by chance. A few 
hundred digits might make a scientist gasp in shock. 

Astronomers for years have scanned the heavens for radio messages from 
alien creatures. If you were an alien creature trying to code a message using the 
four symbols (G, C, A, and T), how would you accomplish this, and what message 
would you encode? 

The idea of placing messages in genetic sequences is not entirely fanciful. Joe 
Davis at MIT hopes to place encoded messages in the DNA of a bacterium which 
could duplicate and spread through the galaxy. His collaborator, Dana Boyd, a 
geneticist from Harvard, has synthesized a short sequence of DNA consisting of 
47 base pairs with a brief coded message. When converted to a grid of binary 
digits, the message appears as a sketch of part of the human body. 100 million 
copies of this message have been stored in a vial. Of course Davis and his col-
leagues do not really plan to disperse these bacterial spores, but Davis has noted 
that this "may be the only practical way for humans to explore the cosmos." 

Using just the 4 symbols G, C, A, and T, what are some ways you can think 
of for coding messages for transmission into outerspace? (Biochemists refer to 
these symbols as "bases.") One way to encode a message using just 4 bases is to 

draw a picture using line segments, the direction of 
which are directed by the sequence. For example, G 
could cause a graphics pen to walk one unit up, C one 
unit down, A one unit left, T one unit right. Using this 
transformation, the genetic sequence can create 
detailed line drawings controlled by the sequence of 
letters. Another way to store and code information in 

C the genetic sequence uses base 4 arithmetic and 
assigns values to the bases as follows. Set G = 0, C = 1, A = 2, and T = 3. The 
number 314159 (in base 10) would be represented as 1030230233 (in base 4, 
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where no digit can be greater than 3). Therefore, CGTGATGATT would code 
for the first 6 digits of it. To understand numbers base 4, the presence of a "1" in 
a digit position of a number base 4 indicates that a corresponding power of 4 is 
used in determine the value of the number. A 0 in the number indicates that a 
corresponding power of 4 is absent from the number. The 1111, in base 4, repres-
ents (1 x 43) + (1 x 42) + (1 x 41) + (1 x 4°) in decimal notation. The number 
1000 represents 1 x 43 The decimal number 4 is therefore represented as 10 
(base 4). The decimal number 5 is represented as 11 (base 4). 

I consulted with a number of experts in information theory or genetics for 
their opinions on the subject. Dr. John Garavelli at the National Biomedical 
Research Foundation in Washington DC suggests that a certain repeating 
sequence be used to clue the observer that something interesting and non-biolog-

ical was to follow. He suggests a 5-base 
segment repeat, such as TCAGTTCAGTT-
CAGT. Garavelli notes that a biochemist 
might see the 5 base segment repeated, look 
for secondary structural indicators, and not 
seeing any assume that the repetition had 
some other significance. However, care should 
be taken to make sure that the sequence is 
neither self-complementary nor palindromic, 

since this often has biological significance. It's also important to avoid a repe-
tition of a 3-base segment since the genetic code is expressed as a triplet code for 
producing proteins, and Garavelli believes that a triplet code is highly probable 
even for extraterrestrial life. 

Phil Hanna (Poughkeepsie, NY) notes that any message we send to the stars 
must meet two criteria: 

1. The sequence must indicate that it is the product of an intelligent and technically 
advanced civilization. 

2. The sequence must be decipherable by totally alien, yet technically-advanced, civili-
zations that we know nothing about, and with whom we have nothing in common. 

If an alien culture were advanced enough to receive a D N A message and know 
how to examine it, we must assume that they have developed mathematics. 
Hanna believes elementary number theory is known to most advanced civiliza-
tions. He therefore suggests either of two types of messages: 

1. A list of the prime numbers (2, 3, 5, 7, 11, 13, 17, ...) up to some convenient limit. 
This is highly unlikely to occur in nature. 

2. A list of primitive Pythagorean triples such as (3, 4, 5), (5, 12, 13), (7, 24, 25), and 
(8, 15, 17). (These give the integer lengths of sides for certain right right triangles.) 

As I discussed previously, numbers such as these could be coded using base 4 
arithmetic (G=0, C= l , A=2, T=3), but this would require that the decoding civili-
zation understand a positional number system. Hanna suggests a simpler means. 
The civilization sending out spores should write a number n using a repeated 
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string of n G's followed by CAT as a delimiter. In this notation, the prime 
number list would be: 

GGCATGGGCATGGGGGCATGGGGGGGCAT 
GGGGGGGGGGGCATGGGGGGGGGGGGGCAT 

George Wilson has suggested the following way to encode information using 
the four bases: 

G = 00 (binary) 

C = 01 (binary) 

A = 10 (binary) 

T = 11 (b i nary) 

Michael Somos thinks that looking for decimal digits of vr is very futile. 
"Why any alien race would encode IT using base ten is beyond me unless by some 
tremendous coincidence. You might as well expect the Gettysburg Address in 
English." 

Amos Bairoch notes that any advanced civilization which launched spores a 
billion years ago for decoding by another civilization in the future would use a 
genetic message which will not change and evolve. The most stable genetic 

sequences are those that also code for impor-
tant life functions. These essential sequences 
cannot substantially change through time 
because changes would adversely effect a basic 
biological process. However, in reality, even 
the most biologically important messages in 
the genetic data (such as the codes for DNA 

replication proteins, ribosomes or other essential enzymes) change as species 
evolve. Therefore, if there ever were a coded message, it would probably be lost 
forever amidst the sands of time, or require significant archeological detective 
work to restore the original DNA. 

30.1 Stop and Think 

"One can precisely calculate the decimal expansion of ir to any finite length, 
so in this sense the expansion is not random. Viewed as a sequence of digits, 
however, IT is as ugly and disordered as any randomly generated list of 
numbers. No one has ever found a pattern..." Martin Gardner, 1992 

1. What message does the following piece of genetic material encode? 

AGTTTACTACCAACAAATGTCGAGCGAGCATAAAGGAGCTT 

2. Is the following beautiful and compact arithmetic expression true or false? 



30.2 Fact Fi Ic: J urassie Vh rk> <i 1. 11, I \tc. I 

174 + TT5 = e6 . (30.1) 

'lest thix with a pocket calculator. (<x = y 14159 . . . t e = 2.71828 . . . .) 

30.2 Fact File: Jurassic Park, SE11, Etc. 

"Mc.Dorumgh and Carl Sagan .seem to share the romantic view lhat a scien-
tifically and technologically advanced civilization is likely to be a morally 
advanced civilization, if this is the case, then perhaps they can present some 
evidence from recent human history. " 

David Savignac, (9V), Skeptical Inquirer 

* On Columbus Day 1992, after two decades of lobbying for funding, NASA sci-
entists with Lhe agency's SF.TI (search for extraterrestrial intelligence) project 
expect to activate a network of microwave receiving dishes for the most ambitious 
search for advanced life in outer space. NASA scientists sLill have some bother-
some details lo address: If they do detect a signal from an outerspace civilization, 
should the signal be answered, and what should they say? (Source; "Chatting 
wiLh H i s," Science 254: 649, 1991.) 

• It is estimated lhat around the year 2005, biologists will have obtained the exact 
sequence of all 3 billion nucleotides arrayed along the human chromosomes. How 
will Lhcy read the language of this long string of A\ G's, J's, and CY? How will 
they be able to find the genes, which account for only 5% of the genome, amidst 
the mass of extra "junk"' DNA? I.ike an airplane searching for small, lost ships on 
an uncharted ocean, a new artificial intelligence program, called GRAIL, can 
pick out Lhe coding regions of genes in the long sLretchcs of DNA. The program 
first asks seven questions of each 100-base section of DNA sequence (including: 
what is the fractal dimension of the DNA?) and Lhen feeds Lhe answer into a 
neural network which learns to pick out the coding regions. When the reachers 
(Ed Uberbacher at the Oak Ridge National Laboratory and colleagues) tested 
GRAIL on 19 human genes, iL located 90% of the coding regions. (Source: 
Roberts, L. (1991) GRAIL seeks out genes buried in DNA sequence. Science. 
Nov. p 805. L'f>r electronic information: grailmail (r^ornj.gov.) 

- Mark W. Ravera of the Department of Medical Biochemistry at the Rhone-
Poulcnc Rorcr Central Research Center L c l l s mc that some institutions hat'e sug-



166 30.0 Extraterrestrial Messages in Our Genes 166 

gested the use of plasmids (short pieces of extrachromosomal DNA) to carry 
some unique code that could be easily detected at a later date. This imprint 
would be a short D N A sequence that would code for a tiny protein which would 
name the originating institution. For example, plasmids made at the Merck 
company would all contain a short D N A stretch that would code for the small 
protein segment: 

Met-Glu-Arg-Cys-Lys 

M E R C K 

(The symbolic representation of amino acids as single letters uses a standard one-
letter naming system commonly used by biochemists today.) This DNA stretch 
could always be detected by a simple genetic technique called D N A hybridization 
at any time. 

• Carl Sagan, writing in his novel Contact, suggests that it contains a message from the 
stars. In the book, computer searches are conducted not only within decimal expansions of 
77 but also in it represented in different bases. Blocks of l's were 0's are interpreted as 
graphical dots (or lack of dots). In his novel, a graphical representation of the series of 
digits in the expansion of it base 11 produced a diagram of a circle. This circle diagram 
coded in 77, Dr. Sagan argues, could be regarded as evidence of an intelligent creator of the 
universe. 

• For trivia aficionados, the first published genetic sequence of a dinosaur occurred in 
Michael Crichton's novel Jurassic Park (1990). In his book, Crichton lists some 1000 
bases starting with: 

GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG 

Do you think Crichton chose this sequence randomly, or is there some particular reason he 
selected this sequence of bases for use in his novel? 

30.3 The Science Behind the Human Genome Project 

For those readers interested in learning more about the multimillion-dollar international 
effort to map the human genome, Chris Wills' Exons, Introns, and Talking Genes: The 
Science Behind the Human Genome Project (Basic, 1991, 369 p., $23.00) is a must 
reading. Written for laypeople, the book covers the people and politics involved in this 
gigantic project, as well as the ethical questions raised. This intriguing introduction to the 
science behind the project also includes a useful glossary of technical terms. 

30.4 Cross Reference 

"Aliens, and Pieces of Pi" on page 151 describes an alien tampering with the sequence of 
digits within it. "Ghost Children in Our Genes^on page 141 describes the number of pos-
sible children which chance combinations of sperm and egg could produce. "There is 
Music in our Genes" on page 211 describes the relationship between music and genetic 
sequences. 



C h a p t e r 31 

Computers and Near-Death Experiences 

"Some say the tunnel is a symbolic representation of the gateway to another 
world. But then why always a tunnel and not, say, a gate, doorway, or even 
the great River Styx? Why the light at the end of the tunnel? And why 
always above the body, not below it? " 

Susan Blackmore, 1991, Skeptical Enquirer 

One of the most unusual applications of computer software in the 1990's has been 
to the study of visual experiences reported by people who have almost died. Many 
people, who have "come back" from states close to death, have reported pleasant 
experiences at death's door. Some have reported seeing lights at the end of a dark 
tunnel. Susan Blackmore, a researcher with the Department of Psychology at the 
University of Bristol, along with colleague Tom Troschianko, used a computer 
program to answer the question: Why do almost-dead people see tunnels? 

Researchers in the past have shown that several patterns are likely to appear 
to people whose brains have been subject to drugs or abnormal electrical stimu-

lation as occurs in epilepsy. These 
patterns include the tunnel, the 
spiral, the lattice or grating, and the 
cobweb. Their origin has been 
thought to lie in the structure of the 
visual cortex, the part of the brain 
concerned with vision. Blackmore 
and Troscianko's computer program 
simulates what would happen when 
there is gradually increasing elec-
trical noise in the visual cortex. The 
computer program starts with thinly 
spread dots of light, with more 
towards the middle and very few at 
the edges of the pattern. (Blackmore 

notes that in the cortex there are many more cells representing the center of the 
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visual field but very few for the edges.) When the computer simulation is run, 
gradually the number of dots increases, and the center begins to look like a white 
blob. The researchers were shocked to see on their display a dark speckled tunnel 
with a white light at the end. The light grows bigger and bigger (giving the 
appearance that the observer is getting nearer and nearer) until it fills the whole 
screen. Is this the tunnel some see at the threshold of death? It may be too early 
to answer this with any certainty. Blackmore notes, "Our program and theory also 
make a prediction about near-death experiences in the blind. If they are blind 
because of problems in the eye but have a normal cortex, then they too should see 
tunnels." 

If you wish to gaze at the eerie and crepuscular death-tunnels produced by 
their computer simulations, see Blackmore's 1991 Skeptical Inquirer article. (The 
issue containing the article is available from: The Skeptical Inquirer, Box 229, 
Buffalo, NY 14215-0229. Or call toll-free 800-634-1610. $6.25 plus $1.25 
postage and handling.) 

31.1 Consciousness Explained 

For those readers interested in a provocative and entertaining treatise on human 
consciousness, see Daniel Dennett's Consciousness Explained (Little, 1991, 511 
p., $27.95). His various discussions include unusual thought experiments and 
bitter attacks on the consciousness theories of Descartes. Other topics: biology, 
artificial intelligence, cognitive psychology. 

31.2 For Further Reading 

1. Blackmore, S. (1991) Near-death experiences: in or out of the body? Skep-
tical Inquirer. Fall 16: 34-45. 

2. Blackmore, S., Troscianko, T. (1989) The physiology of the tunnel. Near-
Death Studies. 8: 15-28. 

3. Morse, J., Castillo, P., Venecia, D., Milstein, J., and Tyler, D. (1986) Child-
hood near-death experiences. American Journal of Diseases of Children. 140: 
1110-1114. 



Chapter 32 

Is Computer Art Really Art? 

"There is more to art than the fun of putting together images and being 
amazed at the serendipitous results displayed on a color monitor." 

Robert Mueller, 1983, Creative Computing 

"I would choose the painting of a monkey over anything generated electro-
nically, because / am more fascinated by the direct evidence of a mind at 
work (even if accidental or random) then / am by the output of machines." 

Gary (jlenn 

"To secure the value of my purchase, I would have to demand that the 
artist's own digital copy he erased from his or her hard disk." 

Morton Barrholdy 

If Pablo Picasso (I8fc)-!V73) were alive today, would he give up his canvas, oil 
paints, and brush for a computer terminal? What about Lenoardo da Vinci 
(1452-1519)? F.ven if they could noi obtain funding from ihc National Science 
1'oundalion or ihc National Endowment for the Arts, tlicy could - with just a per-
sonal computer - creatc, manipulate, and store fairly sophisticated art works. 
Perhaps Leonardo would spend a large amount of his time inventing entirel>- new 
computer input devices to substitute lor today's standard mouse. These devices 
would allow him to precisely emulaLe his own masterful brush strokes, the vis-
cosity and drip of wet paint, or a chisel chipping away at an imaginary chunk of 
shiny marble. 

In addition to these questions, which 1 posed in a survey to Computer 
Graphics Worldreaders, I also asked the foJlowing specific questions, all of 
which aimed to answer "Is computer art really art?" Given high-resolution com-
puter prints of the following, which could you consider as art: 

1. A table of numbers, generated at random? 
2, A black and white fractal pattern derived from pure mathematics, with no 

human intervention? 

Computet- Graphics World, One Technology Park Drive, I'O 9K7, Wcstford, MA 01&86. 
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3. A fractal derived from mathematics, with colors selected by a human? 

4. A computer picture drawn by a human using a mouse? 

5. A picture painted by a monkey using oils and paint brushes? 

6. A photograph of a pretty mountain, photographed by a robot holding a 
camera? Both the robot and camera are positioned randomly. 

Again, for the above six patterns, which could you consider spending over 500 US 
dollars for the purpose of displaying on your living room wall? 

32.1 Comments from Colleagues 

"The art of Picasso together with the collective formulations of da Vinci sug-
gests that only the media has advanced - not the artist." Donald Strauss 

"/ just don't get off on glossy intestines with eyeballs, and other wet, organic 
looking forms. Why do the mathematician-artists always insist upon a 
glossy sheen to their renderings?" Keith Rogers 

The following is a selection of intriguing responses to many of the questions I 
posed in the previous section. These responses were sent to me from artists, educa-
tors, writers, and technologists. Tom McMillan, Editor of Resolution: 

My dictionary defines art as "the conscious production or arrangement of sounds, 
colors, forms, movements, or other elements in a manner that affects the sense of 
beauty; specifically, the production of the beautiful in a graphic or plastic medium." 
There's nothing there that disqualifies the computer as a tool for producing a work of 
art. Art is art, regardless of the medium. 

Gary Glenn, an art school graduate and painter who currently works for a 
medical publisher, had the following to say: 

I do not regard computer "art" as art. Of the choices you listed, I would choose the 
monkey's painting. To be considered as art, artists who use computers will have to rec-
ognize and place themselves within art history. Computer art is devoid of sensation; 
there is no direct encounter with materials. Traditional materials do not hide what has 
been done; there are brush strokes, chisel marks, etc. The viewer can linger in front of 
a painting and attempt to follow the logic and sequence of the brushstrokes, the stra-
tegy of the painter. There is a record of the artist's gesture and presence. There is an 
absolute lack of humaneness in computer-generated art. Is there an artist who works 
solely with computers and solely for esthetic or artistic reasons? 

Richard Dube, Vice President of Celandine, Inc., noted: 

An artistic intent is not necessary for a work to be art. Andrew Wyeth's father was a 
noted illustrator for books such as Robinson Crusoe. However, during his time, the 
work that he produced was not considered to be "art." 

The primary criterion is not what created the art, but rather how much the piece 
appealed to me personally. I once photographed some shelf fungus on a decaying 
stump and entered it in a prestigious black and white photography show, and was 
elated when it was accepted. As I was very proud of this piece, I made a Christmas 
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present of it to my mother. She looked at it with some puzzlement and thanked me 
for the nice picture of "hot dogs." 

The tool and the artist make the art, the type of tool does not dictate whether 
something is art or not. Would Shakespeare have used a word processor if it were 
available? Absolutely. 

Deborah Greh teaches Communications at St. John's University and has two 
degrees in Art. In her article "Is it Art Yet," published in the September 1991 
issue of inCider/A, she stated: 

Perhaps we can say that art is an attempt to arrive at some revelation. Of course, one 
common criterion of value is a piece's timelessness - whether it has withstood the crit-
icism of the years, weathered the passing fancies and changing tastes. Witness the 
works of the masters of various eras - Michelangelo, van Gogh, Monet, Picasso, Dali. 
The newness of computer art precludes the test of time. 

Keith Rogers is a hardware design engineer of flight simulators at the Evans & 
Sutherland Computer Corp. He wrote to me: 

I ought to confess my great dislike for most computer art. First, lots of computer art 
pictures are very "cartoonish." The colors are too bold, too varied and too primary. 
The shapes are either utter chaos or simple graphic primitives. Second, many of them 
glitter like tinsel. Computer artists are too fond of reflections. 

One whole genre of computer art that amuses me is the one that contains all the 
abstract 3-D glossy sculptures. You have a couple of photos of that type in your 
article.15 While I find it amazing that many of them are the graphical manifestations 
of mathematical algorithms and formulae, I just don't get off on glossy intestines with 
eyeballs and other wet, organic looking forms. Why do the mathematician-artists still 
insist upon a glossy sheen to their renderings? 

Anthropologists have a devil of a time trying to understand aesthetics in humans. 
However, one aspect of art they tend to agree on is that most of us prefer art which 
makes us feel comfortable. And what makes us feel comfortable is what was com-
forting to Homo sapiens tens and hundreds of thousands of years ago: images of food, 
abundant lakes and streams beside rich forests, cliffs which have caves for shelters, 
the cool pastel colors of nature, and so forth. I fall in this category. 

Finally, Charles Ehlschlaeger noted: 
Only the monkey's painting has a decent chance of making big bucks in the art 
industry (meaning people buying artworks for living rooms). 

15 Pickover, C. (1991) The ultimate survey. Computer Graphics World. November. 57-64. 
Pfitzer, G. (1991) Computer laboratory horrors. Computer Graphics World. October. 
65-65. 
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T)ie questions posed in this chapter ;ire not easy Lo answer. Nor are the ques-
tions easy t(} define. Marcel Duchamp, the French Surrealist, once labeled as 
"art" a defaced poster of tbc Mona Lisa, a big battered bottle ™ck, and a mass 
produced urinal I think, most people would consider a beautifully rendered, care-
fully-colored fractal pattern more of an artwork than a urinal. On the other hand, 
computer art does have its limitations. Patrick Hanrahan of Princeton University 
once noted that. 90 to 95 irercent of the pictures you see as photographs can't even 
be simulated on a computer screen. 

Finally, some of you may be curious to find out that a majority of those who 
answered "Is Computer Art. Really Art?" by sending me electronic computer mail 
said "yes." A majority of those who wrote their answers to me using paper letters 
rrwiled Lhrough Lhe conventional mail system, said "no." 

32.2 Cross References 

Those of you interested in the specific question of whether Jmetal patterns 3 re art should 
see "Fractal Spiders and Frame-Robertson Bushes"" on page 87. "Interlude: Working 
't ime" on page 289 and "Interlude: Alien Musical Scores'" on page 221 also contain 
several interesting opinions on this subjcct by well-known computer artists. 



















Chapter 33 

Electronic and 
Fractal Ant Farms 

"The ants and their semifluid secretions teach us that pattern, pattern, 
pattern is the foundational element by which the creatures of the physical 
world reveal a perfect working model of the divine ideal. 

Don DeLillo, Ratner's Star 

As a child I once had an "Ant Farm" consisting of sand squeezed between two 
plates of glass which were separated by only a few millimeters. When ants were 
added to the enclosure they would soon tunnel into the sand creating a maze of 
intricate paths and chambers. Since the space between the glass plates was very 
thin, confining the ants to living essentially in a 2-D world, it was always easy to 
observe the ants and their constructions. Food and water could periodically be 
added to the enclosure. 

i AIR 

i SAND 
^ — GLASS 

You can build your own computerized Ant Farm16 through which ants can 
travel by defining a map of tunnels and chambers. Next have your simulated ants 
crawl through the tunnels using a random walk procedure. (Rather than describe 
and repeat the program outline necessary to accomplish this here, you can refer to 
"The Cro-Magnon Conquest Game" on page 133 for further information on 

16 I'm told that the following terms are trademarked by Uncle Milton Industries: "Ant 
Farm," "Ant Farmers," "Ant Farm Village," "Ant Way," and "Ant Port." You can pur-
chase already assembled, low-cost ant farms from: Uncle Milton Industries, Culver City, 
CA 90232. The term "Ant City" is a trademarked term of another ant enclosure man-
ufacturer: Ant City, Natural Science Industries, Far Rockaway, NY 11691. 
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Figure 33.1. An Ant Farm. After following the randomly walking ants for a few hours, 
where do you expect the ants most likely to be: in chambers A, B, or C, or on the surface 
of the soil? 

random walks). For example, start with 10 ants described by their (x,y) positions 
in the ant farm. Have the computer draw each ant as a little black circle, or as a 
triplet of circles to represent the head, thorax, and abdomen. For each increment 
in time, move the ants a random short distance. If an ant bumps into a wall, 
reflect it back into the tunnel or chamber. You can make the simulation easier to 
program on a computer by representing the chambers and tunnels as squares con-
nected by straight, thin tubes. Those of you without computers can accomplish 
this simulation using dots on a graph paper, and by throwing dice to control the 
ants's movements. 

33.1 Stop and Think 

• In the ant farm in Figure 33.1, after following the randomly walking ants for a 
few hours, where do you expect the ants most likely to be: in chambers A, B, or C, 
or on the surface of the soil? 

• Suppose you are given a fractal ant farm, where the chambers are recursively 
placed at different size scales. One can also ask the question as to where the ants 
are most likely to be, through time, during their random walks. (See 
"Labyrinthine Lundin Curves" on page 103 and "Fractal Mazes: The Most Diffi-
cult Mazes Ever Imagined" on page 10 for background information on fractals.) 
You can think of a fractal ant farm as an infinitely branching system of tunnels 
such as in the lung's bronchial trees where the tubes become smaller and smaller, 
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Figure 33.2. A 3-D fractal Artt Farm. (I computed (his image using an IBM RISC 
System/6000.) 

or like the trunk, brunches, and twigs on a tree. The figure at lef t is an example 
of a fractal ant farm37 with triangular 
chambers. Figure 33.2 shows a 3-D 
representation of this fractal ant 
farm. Dan Piatt, a physicist at IBM, 
notes that the distribution of ants in a 
fractal ant farm changes in an inter-
esting way as one examines the 
chambers higher and higher mag-
nifications. The distribution of ants 
is called a mult ifracial, requiring an 
infinite number of dimensions io 
describe the distribution of ants as 
one increasingly magnifies the ant 
farm complex. Multifractal distrib-
utions are finding increasing applica-
tion in areas such as the study of 
snow flakes, and the penetration of oil 
through porous rocks. 

This fractal triangular figure is callcd a Sierpinshi gasket, and is discusscd in detail in 
ray first book Computers, Pattern, Chaos, and Beauty (St. Martin's Press). 
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33.2 Fact File: Rats, Ants, and Mazes 

• Ants make up from 10 to 15 percent of the entire animal biomass in most ter-
restrial environments, and turn more soil than earthworms. 

• When rats and ants learn to run the same maze, they do so in different ways. 
Rats seem to learn a "map" of the maze as a whole, whereas ants appear to learn 
the maze as a series of separate problems, one at each branch point of the maze. 
As rats master a maze, their performance improves when confronted with a new 
maze, but this same maze mastery actually hinders the performance of ants in 
new mazes. In other words, when an ant solves a maze, its behavior in new mazes 
becomes less flexible.18 

33.3 Cross References 

See the following sections for information on fractals: "Smithson's Fractal Anabiotic Ana 
Sequences" on page 35, "Fractal Spiders and Frame-Robertson Bushes" on page 87, and 
"Labyrinthine Lundin Curves" on page 103. For fractal mazes, see "Mazes for the Mind" 
on page 3. For fractal integer sequences and patterns, see "The Drums of Ulupu" on 
page 71 and "Beauty and the Bits" on page 79. For feather fractals, see "Fantastic 
Feather Fractals" on page 33. 

33.4 For Further Reading 

1. Keeton, W. (1973) Elements of Biological Science. Norton: NY. (Contains informa-
tion on ants solving mazes.) 

2. Schroeder, M. (1991) Fractals, Chaos and Power Laws. Freeman: NY. (Contains 
information on multifractals.) 

3. Holldobler, B., Wilson, E. (1990) The Ants. Harvard University Press: NY. 732 p. 
(Details of anatomy, social organization, ecology, and natural history of ants by the 
world's leading myrmecologists. Many photographs. 1991 Pulitzer Prize winner for 
general nonfiction.) 

18 Sim Ant is a commercially available electronic ant colony, for personal computers, based 
on the biology and behavior of ants. The detailed graphics enhance the rich variety of 
behavioral parameters available to users. For more information, contact: MAXIS, Two 
Theatre Square, Suite 230, Orinda, CA 94563-3041. 415 254-9700. Fax 415 253-3736. 
Tel order: 800 33-MAXIS. 



Chapter 34 

Toilet Paper and the Infinite 

"We do not know now whether the man who drew the pictures on cave walls 
was the first scientist or the first artist. It may be that he was both, for 
science and art... are alike, dedicated to exploring and questioning." 

Helen Poltz, 1955, Imagination s Other Place 

34.1 The Length of a Roll of Toilet Paper 

In 1990, Don Thatcher of Leicester Polytechnic published a paper titled The 
Length of a Roll of Toilet Paper in a scientific book on mathematical modelling. 
In the paper he asks students the following: "Given a roll of paper find, without 
unwrapping it, the total length of paper on the roll." In the paper he discusses the 
necessary mathematics, which lead to the formulas: 

n = (34.1) 

and 

/ = 77 (34.2) 

where n is the number of turns, / is the total length of paper, t is the thickness of a 
sheet of paper, r{ is the distance from the center of 
the roll to the cardboard tube within the roll, and 
r2 is the distance from the center of the roll to the 
outer edge of the toilet paper. For "Izal Medicated 
Toilet Roll," the relevant figures are: rx = 18.8 
mm, r2 = 32.6 mm, and t = 0.0373 mm, giving a 
total length of 59.4 meters (or 65 yards). 
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Figure 34.1. Archimedean spiral model of a toilet roll of paper. Can you guess how long 
this line is? (The line represents the edge of the roll of paper. See "Strange Toilet Paper" 
on page 179 for information.) 

34.2 Stop and Think 

1. How large a roll of paper would be required to contain a length of paper 
equivalent to the height of Mount Everest (2.9 x 104 feet)? Could such a roll 
fit inside your house? 

2. How many turns would the paper undergo in creating a length of paper equal 
to the length of the Panama Canal (2.68 x 105 feet)? 

3. Make a 3-D graph showing the relationship between the number of turns, the 
radius r2, and the total length of paper. 

4. Some of the methods mentioned here have practical applications, for 
example, in computing the length of a spiral groove in a record. See also 
Huntley (1981) for practical applications. 
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A L G O R I T H M : How to C r e a t e A r c h i m e d e a n T o i l e t P a p e r . 

theta = 0 ; d = 0; x o l d = 0; y o l d = 0; 
ttheta = 0; a= 1.0; 
fine = 1; /* c r u d e s t s a m p l i n g */ 
fine = 0.1; /* f i n e s t s a m p l i n g */ 
DO i = 1 to 5000; 

theta = theta + fine; 
ttheta = ttheta + fine; 
if (theta > 6.2831) then theta = theta - 6.2831; 
r = a * t t h e t a ; 
x = r * c o s ( t h e t a ) ; 
y = r * s i n ( t h e t a ) ; 
if (ttheta = fine) then d = 0; else 
d = d + s q r t ( ( x - x o l d ) * * 2 + (y-yold)**2); 
x o l d = x; y o l d = y; 
M o v e L i n e T o (x , y) 

END; 
P r i n t ('Total D i s t a n c e i s 1 , d) ; 

Pseudocode 34.1. How to create Archimedean toilet paper. 

34.3 Strange Toilet Paper 

"I am not saying that computer graphics, when produced by extremely 
sophisticated software, is not art. I am saying, however, that most of it 
appears very boring to an eye trained to recognize interesting visual images." 

Robert Mueller, 1983, Creative Computing 

Toilet paper geometry, discussed in the previous sections, can be modelled by an 
Archimedean spiral of the form 

r = ax 0. (34.3) 

Here, r is the radial distance of a point on the toilet paper from the center of the 
spiral. The scale factor a controls the size, and 0 is the angle of the point as it 
revolves around the center of the roll. The Archimedean spiral was developed by 
Archimedes (287-212 B.C.), a Greek mathematician and inventor. Archimedes 
was born in Syracuse, in Sicily. He was on intimate terms with (or even related 
to) the great King of his day, Hiero II. Aside from playing with spirals, Archi-
medes also devised for Hiero II various killing machines, including burning 
instruments which terrified the Romans and lengthened a war with Rome for 
several years. In 212 B.C., while Archimedes leisurely drew a mathematical 
figure in the moist sand, a sword from a Roman soldier was driven straight 
through his aging torso. Archimedes died immediately and was soon buried, and 
in accord with Archimedes' wishes, his tomb was marked by a sphere inscribed in 
a cylinder. Archimedes considered his discovery of the relation between the 
surface and volume of a sphere and its circumscribing cylinder to be his most val-
uable achievement in life. (For more on Archimedes, see "Aliens, and Pieces of 
Pi" on page 151.) 
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Figure 34.2. Squashed Archimedean model of a hyper-toilet roll of paper. This non-
linear toilet roll can hold an amazing length of paper. Can you guess how long this line is, 
which represents the (2-D) edge of the roll of paper? 

As discussed in the previous sections, it is possible to compute the length of 
real toilet paper rolls using simple formulas. The spiral toilet paper geometry is 
also a compact way to store a surface area in a small volume. Figure 34.1 shows 
an Archimedean spiral I computed using Equation (34.3). Can you guess how 
long the line segment is? If you assume the scale in the figure to be in inches, then 
the line is an amazing 123,000 inches long. Pseudocode 34.1 shows you how to 
draw this and other figures, and to compute the total distance travelled by the 
line. 

34.4 Squashed Archimedean Model of a HyperToilet Paper 

"Most productive of the sciences in philosophical speculation, mathematics 
is as well most productive in humor." 

Helen Poltz, 1955, Imagination s Other Place 

My favorite toilet paper topologies are not the simple (but realistic) Archimedean 
kinds, but rather the squashed Archimedean variety, an example of which is 
shown in Figure 34.2. The reason they're my favorite is that they are pleasing to 
look at, and also because this nonlinear toilet roll can hold an amazing length of 
paper. Can you guess how long this line is in Figure 34.2 which represents the 
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Figure 34.3. A variation on the Archimedean spiral theme. 

(2-D) edge of the roll of hypertoilet paper? Here's the answer. If the scale in the 
figure represents inches, than the length of the line is 7,400 inches. I created the 
figure using 

Since the compression is nonlinear, your line segment can grow wildly in length 
while being constrained to a small area of the graph paper. Could an infinitely 
long toilet paper be contained in a finite, compressed hyperoll? 

The remaining figures in this chapter show toilet rolls topologies created 
using Pseudocode 34.1 at different sampling rates. This means that the Archime-
dean spiral is drawn using fewer points (skipping ones normally plotted) to create 
these choppy, intricate designs. 

1. If one were to construct a real hypertoilet paper roll, of the kind shown in 
Figure 34.2, how much space would the roll require if it were to contain an 
amount of paper equal to the height of the tallest bridge in the world? (The 
tallest bridge in the world is the Golden Gate Bridge in California. The 
towers of the suspension bridge extend 745 feet above the water.) 

2. If one were to construct a real hypertoilet paper roll, of the kind shown in 
Figure 34.2, how much space would the roll require if it were to contain an 
amount of paper equal to the length of the largest submarine river? (In 1952, 
a river beneath the surface of the Pacific ocean was discovered which flows 

r = y/af (34.4) 

34.5 Stop and Think 
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Figure 34.4. A variation on the Archimedean spiral theme. 

for 3,500 miles along the equator. Its volume is 1,000 times that of the Mis-
sissippi river.) 

3. Can you construct other ornate toilet paper spirals by altering the program in 
Pseudocode 34.1? 

34.6 Fact File: First Manufactured Toilet Paper 

The first toilet paper manufactured in the United States was a pearl-colored 
manilla hemp paper made in 1857 by a New Yorker named Joseph Gayetty. The 
paper sold for 50 cents (for 500 sheets). 

34.7 For Further Reading 

1. Thatcher, D. (1990) The length of a roll of toilet paper. In Mathematical Modelling. 
Oxford University Press: NY. (Teachers and students of mathematical modeling will 
find this book a rich source of examples ranging from insulating houses to basketball, 
and from modelling epidemics to studying the generation of windmill power.) 

2. Huntley, I. (1981) Air gap coiling of steel strips. In Case Studies in Mathematical 
Modelling, James, D. and McDonald, J., eds. Stanley Thornes (Pub): Cheltenham, 
England. 



Chapter 35 

Bertrand Russell's Twenty Favorite Words 

"This desire to communicate is basic both to science and to poetry. The sci-
entist seeks to find the order of the universe through the discipline of exper-
iment; the poet, through the discipline of language." 

Language is the primary medium with which we think and communicate ideas to 
others. When one reads language in written form, one is really decoding symbols. 
It is through the interactions of such symbols that we create new worlds, new 
images, new thoughts. Readers of my book Computers and the Imagination will 
know that for a long time, I have held a fascination with colorful symbols and 
words. Words allow us to transcend space and time, and to inspire visions. In 
Computers and the Imagination, I gave a list of interesting words to be used in 
computer- and human-generated fiction. In this chapter, I list a few of my 
favorite words as well as the twenty favorite words of Bertand Russell. 

Philosopher Bertrand Russell was many things: a mathematician, a logician, 
an atheist, a champion of peace, a controversial political figure, and a recipient of 
the Nobel Prize in literature. He was born on May 18, 1872. In 1958, Bertrand 
Russell was asked to list his twenty favorite words in the English language. His 
list is as follows: 

wind, heath, golden, begrime, pilgrim, quagmire, diapason, alabaster, chryso-
prase, astrolabe, apocalyptic, ineluctable, terraqueous, inspissated, incarnadine, 
sublunary, chorasmean, alembic, fulminate, ecstacy. 

How many of these words do you like or comprehend? 

Helen Poltz, 1955, Imagination s Other Place 
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35.1 Batrachomyomachia 

"When the Cimetiere des Innocens at Paris was removed in 1786-1787, great 
masses of adipocere were found where the coffins containing the dead bodies 
had been placed very closely together." 

Adipocere Encyclopedia Britannica, 11 Ed. 

Friends familiar with my own fascination with words have asked me to list my 
own "Top Twenty" words in this book. Therefore, for the record, here are my 
twenty favorite words in the English language: 

1. agapemone - a religious community founded in 1846, which flourished for 
years at a mansion called the "abode of love." 

2. adipocere - the gruesome, soapy substance which a corpse buried in moist 
ground converts to after many days. 

3. batrachomyomachia - struggle. 
4. batrachophagous - feeding on frogs. 
5. chryselephantine - gold and ivory. 
6. demilune - a crescent. 
7. eburnian - ivory. 
8. empyreal - heavenly. 
9. enchiridion - a handbook. 
10. erubescent - reddening, reddish. 
11. ferruginous - rust-colored, rusty. 
12. gerontocracy - government by old men. 
13. hyperborean - living in the extreme north. 
14. kakistocracy - the dominance of the depraved. 
15. mamelon - a breast shaped hill. 
16. mundungus - foul-smelling tobacco 
17. ochreous - yellowish. 
18. scordatura - intentional detuning of musical instruments. 
19. Xanthian marbles - a collection of marble sculptures brought to the British 

museum from Xanthus in 1838. 
20. Yggdrasill - a mystical, mythological tree which embraces the entire universe. 
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35.2 Stop and Think 

1. What makes certain words our favorite? Is it their sound, their look, their 
meaning, or something else entirely? 

2. If you have access to a computer (on-line) dictionary, have the computer 
select twenty words at random. How many words do you know the meaning 
of? How many would be candidates for your own "Top Twenty" list? If you 
don't have an on-line dictionary, simply select twenty words at random from a 
paper dictionary. Gaze at your random list. Why are so few of the randomly 
selected words competitive candidates to the words on Russell's list in terms 
of beauty, meaning, and sound? 

3. Could a best-selling author, such as Stephen King or Carl Sagan, succeed in 
creating a best-seller if forced to use 10 randomly selected words in the first 
ten pages of a novel? 

4. How will this chapter appear when this book is translated into different lan-
guages such as German and Japanese? Will the foreign language translators 
retain the English words in the word list? 

35.3 For Further Reading 

1. Feinberg, B., Kasrils, R. (1969) Dear Bertrand Russell.... (A Selection of His 
Correspondence with the General Public 1950-1968). Houghton Mifflin: 
Boston. 

2. Dictionary of Unusual Words, Part A. (1946) The Thames Bank Publishing 
Company Limited, 1773 London Road, Leigh-On-Sea: Essex, UK. 

"Losing the collected wisdom of the rain forest tribes would be like burning 
every library in the world without bothering to look at what was on the 
shelves." Anita Roddick, Body and Soul 





Chapter 36 

Interlude: Stelarc's Third Hand 

"Technology has gready expanded our senses and made our natural abilities 
obsolete." Sid arc 

"When someone once asked Stelarc what he though of art. he plugged 
himself into an electroencephalogram, pondered on the subject for a few 
moments and gave the questioner a printout of the reading. " Tokyo Journal 

Stelarc, pictured here, is an x^ustraliau performance artist who has worked in 
Japan for many years. He is interested in forming hybrid humans composed of 
both organic and synthetic parts, and in using his body to make art and music. 
The connection of technology to the body has always fascinated Stelarc. In past 
performances, he haf> used an artificial hand atLached lo his body and acLivaLed 
by FMCj muscle signals. 

In his event called ^Amplified body, sou rid-responsive eyes, automatic arms, and Ihird 
eye," he was connected to do/ens of electronic wires that monitor his every move U> create 
visual and acoustic effecis. He uses equipment borrowed from medical companies U> 
monitor brain waves, heartbeats, blood flows, and muscle contractions to create a visual 
and acoustic performance using gestures, posture, and internal control. R'ach time the 
third hand moves its fingers, there is a horrible metal shriek. Over his facc, a steel struc-
ture supports fiber optic rods which end in front of his eyes so laser beams scan to conic 
from his eyes. Random eleelronie signals send his left (real) arm twitching up and dou-n. 
ouf of control. The artificial hand is actually quite sophisticated, having functions such as 
pinch-release, grasp-release, 270 degree wrist rotation, and a tactile feedback system for a 
"sense of touch," 

Perhaps Stelarc is most famous for his naked mid-air suspensions using IK lour-ixich 
fish hooks through his skin. Horn Stclios Arcadious in Cyprus in 1946, he was raised in 
Melbourne. He studied painting and sculpture, and in 1970 he moved to Japan and 
changed his name to Stelarc. In 1990, with a grant from the Australian Council, he was 
artist-in-residence at Ballarat College of Advanced Education, where he conducted 
research and development of a whole artificial arm. 





Part III 

MUSIC BEYOND IMAGINATION 



Can you identify Lhese I wo famous; musicians? 
(For rlie solution, see the end of the Acknowledgment section.) 



Chapter 37 

Mutcer's Marvelous Music Machines 

"There are exactly 16754582391732992668362971163786588097454851762 
877481874441051576771566153132284530189242543898624 imaginable 
melodies from which humans construct their songs." Prof. David Mutcer 

"Although we might regard musical compositions as the most abstract and 
therefore probably the most intellectual form of human artistic endeavor, 
melodies are clearly not human inventions; the songs of skylarks, canaries, 
and certain other songbirds are as pleasing to our ears as they must be to 
themselves, as well as to their prospective mates." 

Susumu and Midori Ohno, Immunogenetics 

Here's a story I wrote a few years ago describing a music generating machine 
with interesting properties. The machine is not some hypothetical or theoretical 
device beyond human construction. In fact, the machine can easily be con-
structed by anyone with some electrical engineering experience. I urge those of 
you with access to the necessary analog or digital equipment to attempt such a 
construction. Who knows, maybe it will make you rich... 

In 1975, a Professor Mutcer of the Electrical Engineering Department at 
Harvard University decided to build a musical melody generator that would con-
tinuously produce different 50-note melodic progressions. The melody machine 
would generate one melody after another, selecting for each melody a different 
combination of notes from the piano keyboard. His machine consisted of 88 oscil-
lators, each of which produced a single tone. A random number generator was 
used to select which of the 88 oscillators were playing at any particular moment. 
The machine played the 50 random notes, one at a time. 
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Figure 37.1. An early version of Mutcer's Music machine. 84 speaker horns were soon 
added to produce 88 different pitches corresponding to the 88 keys of a piano. Mutcer 
eventually abandoned this apparatus in favor of modern electronic music synthesizers. 

Other versions of his music machine generated all possible 50-note melodies 
by sequentially trying all 88 tones for the first oscillator, while keeping all the 
others constant, and then stepping each oscillator sequentially (something like an 
odometer on your car's dash board). Here are the first few melodies this version of 
the machine produced for Professor Mutcer. First it stepped through all possible 
notes for the first position in the melody, starting with the lowest note on the 
piano (A = 27.5 Hertz): 

A , B , C , D , E , F , G , ... (First Melody) 

B , B , C , D , E , F , G , ... (Second Melody) 

C , B , C , D , E , F , G , ... (Third Melody) 

D , B , C , D , E , F , G , ... (Fourth Melody) 

. . . (Etc.) 

The first song that the machine produced using this approach (top line in the 
example) was simply a melody consisting of the first 50 white notes on a piano 
keyboard played in order from low to high pitch. In the second melody, the first A 
note has switched to B, and so on. Later black notes were also included. Either of 
these versions of the music machine (i.e., random or "odometer" versions), could 
be built without much difficulty. Figure 37.1 is a drawing of Mutcer's first 
machine, which he later abandoned in favor of modern electronic music synthes-
izers. The duration of each note (quarter note, half note, eighth note, etc.) could 
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Figure 37.2. Computer-generated melody using the simple algorithm described in the 
text. This simple approach produces surprisingly nice melodies. (See Pseudocode 37.1.) 

also be selected at random. Processor Mutcer set the machine in action and began 
to listen to the endless sequence of different melodies that came from the music 
machine. Most of the melodies made no sense at all to his Western ear. They 
looked like this: 

Orlando Lap. a 6. XXXIIII. BASSO. 

Anto e quel Dal vivo fonte de la tua bontate>ch'ogni gente arrichifce in ogni etate, 

m m m 
8c ogni corpo & ogni mente pat ce, quanto in terra tra noi more e rinaf-

mm 
ce ornact ac- cende d'alta caritatei co- fa non e ch'ignud'o 

But since the music machine played all possible combinations of musical notes, 
Mutcer began to find some nice tunes among the senseless, junk melodies: 

Mutcer reasoned that a careful search would also reveal every melody written by 
Michael Jackson, Madonna, Beethoven, Bach, the Beetles, and Bananarama. It 
would also produce every melody that Madonna discarded in frustration in her 
plush and high-tech recording studios. 
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Accordion 
-Guitar 

—Timpani -
-Marimba/Xylophone 

Chimes -

-Soprano saxophone -
-Flute -

—Piccolo-

Alto saxophone-
•Tenor saxophone 

-Bass saxophone-
-Baritone saxophone 

-Soprano clarinet— 

-Bass clarinet -

-English horn-

-Contrabass sarrusophone-

I -French horn 
Alto mellophone 

Cornet Trumpet 

-Trombone/Euphonium -

-Bass tuba-

Figure 37.3. Musical notes of various instruments. The diagram relates the notes of the 
musical scale, the positions of the keys of the piano, and the frequency of the pitches in 
Hertz. If you play tones above and below the range of the piano keyboard, changes in 
frequencies don't correspond to clear musical intervals. Although the sensation of pitch 
does go up and down with frequency, these sounds don't have a useful musical pitch. 
(From John Pierce's The Science of Musical Sound. © 1983 by Scientific American 
Books. Reprinted with permission of W.H. Freeman and Co. Pierce's diagram is an adap-
tation of a drawing appearing in Donald Hall's book Musical Acoustics.) 

Mutcer's music machine would even generate every melody ever played since 
ancient humans blew on wooden flutes or on the horns of goats. Moreover the 
machine would play every popular tune in the future, every musical hit from the 
year 2200. Musical publishers having Mutcer's machine would simply have to sit 
and listen, and select the good songs from the gibberish - which they do daily 
anyway. 
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Figure 37.4. Fractal Bass Clefs. Noam Elkies, a number theorist at the Department of 
Mathematics at Harvard University, produces interesting musical designs reminiscent of 
Escher's engravings or perhaps Scott Kim's inversions. He recursively places bass clefs 
and other musical symbols on a musical staff at different size scales. © 1991 by N. Elkies. 
(Hardware used: a 300d})i PostSrcipt printer. Software used: the muSCRIBE set of 
PostScript macros for printing musical notation. At one point in his life Elkies considered 
making music his career but decided against it because it would have required him to 
neglect mathematics. For more of Elkies' work, see "Fact File" on page 148.) 

37.1 Music from Alpha Centuri 

You may occasionally encounter natural scenes that remind you of a 
painting, or episodes in life that make you think of a novel or a play. You 
will never come on anything in nature that sounds like a symphony. 

Martin Gardner, 1992 

A day after he built the music machine, Professor Mutcer proudly showed the 
device to several of his graduate students. A week later, he instructed his students 
to plug themselves into the music machine every day and to press a button, to 
record a musical score, whenever they heard a particularly interesting melody. A 
few machines were built, and students took turns listening. No machine was ever 
idle for more than a few seconds as one student replaced another at this listening 
task. Interestingly, after about an hour of listening, one student was rumored to 
hear several phrases from the beautiful Moonlight Sonata. After two weeks, 
Mutcer himself heard both the Cantata No. 96 Aria. Ach, ziehe die Seele mit 
Seilen der Liebe, by Bach and Havah Nagilah (Israeli Hora). Another student 
fainted when she heard a particularly powerful and hypnotic tune. Although she 
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more information. (Drawing © 1992 by Robert Mueller.) 

did not know it, the tune just happened to be a current best seller on a small red 
planet circling the star Alpha Centuri. Mutcer copyrighted the best of the new 
musical scores, which were soon bought by large music publishers in New York 
and Rio de Janeiro. Mutcer was a millionaire. 

37.2 All the Melodies that Could Ever be Imagined 

"We all are reluctant, with regard to music and art, to examine our sources 
of pleasure or strength. In part we fear success itself - we fear that under-
standing might spoil enjoyment. Rightly so: Art often loses power when its 
psychological roots are exposed. " 

Marvin Minsky, 1981, Computer Music Journal 

You can construct your own music "machine" using dice to select random notes, 
or by using current MIDI (musical instrument digital interface) sequencers and 
synthesizers. However it turns out you'd have to listen for a long time if you were 
waiting for the music machine to produce a particular melody such as Stairway to 
Heaven by Led Zeppelin or the finale to Let the Sun Shine In, from the rock 
musical Hair. In fact, you can calculate how long it would actually take to listen 
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Figure 37.6. Musical Americans. More than 57,000,000 Americans play a musical 
instrument. Nearly half of these people play more than one instrument, and a majority 
play regularly. (Source: Tom Heymann's The Unofficial US Census, Fawcett Columbine: 
NY (1991)). 

to all the melodies that could ever be imagined. There are 88 piano keys. Let us 
assume that, as stated for the Professor's machine, each melodic sequence is 50 
notes long. The musical score can begin with any of these notes so that we have 
88 possibilities for the first note played. For each of these 88 possibilities, there 
are 88 different possibilities for the second note, giving us a total of 88x88 = 7744 
possibilities. Altogether, for a 50-note melody, we have 8 8 50 possible melodies. 
Completely written out, this 98-digit number representing all possible melodies is: 

1675458239173299266836297116378658809745485176287748187444 
1051576771566153132284530189242543898624 

To get a feel for the immensity of this number, it is greater than the ice age 
number (1030), which is the number of snow crystals necessary to form the ice 
age, or the Coney Island number (1020), which is the number of grains of sands on 
the Coney Island beach, or the talking number (1016), which is the total number 
of words spoken by humans since the dawn of time. If Mutcer's melody machine 
were to produce a new 50-note melodic phrase every second since the beginning of 
the formation of the earth, it would not have produced every possible melody to 
this day. If you consider that the variable duration of each note adds an even 
greater number of melodic possibilities, it's virtually impossible that you will hear 
any 50-note musical piece you'll recognize. If you were to further consider a 
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Figure 37.7. One frame from a musical score in a colorful video. This is a musical repre-
sentation produced by Malinowski's Music Animation Machine. The vertical and hori-
zontal placement and the horizontal length of each bar indicates the pitch, timing, and 
duration of the note the bar represents. Some quickly played high notes are at the top of 
the score. Some bass notes are at the bottom. 

machine which produced microtonal scales with other non-Western musical spac-
ings not represented by the 88 piano keys, the number of potential human songs is 
too vast to contemplate. 

37.3 Merry Christmas 

"The full visual equivalent of music has yet to be discovered, but its exist-
ence can not be doubted - when it is discovered, it will prove to be a use of 
light and color so simple and yet so compelling that it will immediately be 
taken over into our everyday lives, on the same level as music but inde-
pendent of it." Alex Gross, 1969, East Village Other 

In the previous section, we saw how unlikely it was to generate any particular 
melody with the Professor's machine. But how well would the music machine do 
for simpler songs? For example, what if we were to consider children's songs or 
Christmas music which often utilize only the white notes near middle C on the 
piano. After all, why have the music machine select from 88 different possible 
notes when singers with even the greatest of human ranges use much less than a 
third of the piano keyboard's range (Figure 37.3). If we constrain the music 
machine to selecting from only 8 different white notes (which comprise an octave) 
and wait for it to generate a specific short sequence of notes which comprise a 
possible target melody (such as the 7 notes E, D, C, D, E, E, E, of the opening 
phrase in Mary Had a Little Lamb), could we expect to generate the target in a 
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Figure? 37.8. Transposing music into painting. The first six bars of Chopin's "Valse, op. 
69, no. 2.;* arc represented by Pierre Karinthi as paint on canvas. If you look carefully, 
you can see how the hills and valleys of the musical scorc correspond lo Ihc hills and 
valleys in the brush strokes. The rhythm of Ihc left hand (bass dclT) is visualized as ihc 
periodic brush strokes toward lheho1.Com nj'lhe figure. (For further hi Inn nation, see teat.) 

finite time? The answer is yes! The number of possibililies is H-, only ahouL 2 
million melodies. If you were Lo lisLen lo 

#one melody every second, you could hear 
all 2 million melodies in about a month. If 
you try to carry out this experiment, the 
task should probably be split between 
t'arious listeners, so thai no One person has 
to sit through all 2 million melodies. By 
doing this, you would bear snippets from 
numerous real nursery rhymes, lullabies, 
Christmas songs, cte. By having your 
music machine be a litlJe more discrimi-
nating, you could have il avoid many 
redundant melodies. For example, it could 

avoid melodies which have the same note repeated four or more times ill a row. 
This, would slightly decrease the month-long listening time. With this simpler 
music machine, you could easily produce many of the famous holiday songs you 
already know, and also Christmas songs you have never heard before. Merry 
Christmas. 
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Figure 37.9. Bacterial music. Emanuel Dimas de Melo Pimenta is a composer of exper-
imental music and has worked with graphical scores since 1978. In this score, moving E. 
coli "bacteria" were used to produce the music. Circles are food which, when eaten by a 
bacterium, produce a sound. Each time the a bacterium finds a food particle, its direction 
of motion changes. For more information, contact Emanuel at: Rua Tierno Galvan, Lote 
5B-2. C, 1200 Lisboa Portugal. 

37.4 Pink Machines 

Good music, like a persons life or the pageant of history, is a wondrous 
mixture of expectation and unanticipated turns. Martin Gardner, 1992 

Those of you knowledgeable in noise theory will appreciate IBM researcher R. 
Voss's demonstration that melodies generated using special kinds of random 
number generators can produce quite appealing and realistic musical pieces. Pro-
fessor Mutcer's random number generator is known as a white noise generator 
because it produced totally random numbers. Since no tone is related in any way 
to the sequence of notes that precedes it, the result is a totally uncorrected 
sequence. Voss's pink random number generators produce pink random numbers 
which have correlations between them. For pink numbers, a number at one posi-
tion in time is not independent of the value of a number at another position. 
These kinds of random number generators fall into the general class of random 
number generators called \ / p machines which produce progressions closest to 
"real" music when = 1 (compared with ft = 0 or ft = 2 ). Here / refers to the 
frequency. The use of larger values of ft in the l / f 3 equation produces a pattern of 
numbers with greater correlations than totally random white noise, where = 0. 
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Figure 37.10. A classical musical score represented by paint orx canvas. A musical bar is 
defined as a 45 degree angle from Lhe center of the spiral. The firsl ciglu bars form a 360 
degree angle. (Used with permission uJ' lbc arlisl, Pierre Karimlii.) 

Since one version of Mutcer s music machine used totally random numbers to 
select (.ones, so lhat all Lhe notes were uncorrelated, it Look a long time lo find a 
particularly pleasing melody. The musical, references at the end of the chapter 
should give more information on pink and other weird ways of generaiing 
human-like music. 

37,5 A Simple Way to Produce Beautiful Music 

"No one could remember all of Beethoven's Fifth Symphony from a single 
hearing, hut neither could one ever again hear those first four notes as just 
four notesf Composers do not dare use this simple, four-note motive any-
more... because an accidental hint of it can wreck another piece by uninten-
tionally distracting the listener. " 

Marvin M in sky, 1981, Computer Music. Journal 

The algorithm I like 10 use to produce correlated musical Doles 
(Pseudocode 37.1) creates musically interesting pieces by avoiding Mutcer's 
purely random approach lo select notes. Here I use a modified random walk algo-
rithm to produce the tones. The "walk" starts at middle C on a piano keyboard 
(represented as n 0 value in lhe program variable note) and thereafter lhe walk 
meanders around tlie white notes on (he keyboard. Each new note is either one or 
two steps above or below the previous one (Pseudocode 37.1). To produce even 
nicer sounding melodies, with very little added program complexity, also include a 
third condition that has the program randomly use a "step 4,* in addition to the 
"step=2 and step = already in the code. And have the computer reset note back 
to zero whenever time is a multiple of 15. that is, after every group of 15 notes is 
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A L G O R I T H M : How to C r e a t e M u s i c 

n o t e = 0 
DO t i m e = 1 to 50; 

/* r a n d o m n u m b e r s b e t w e e n 0 and 1: */ 
G e n R a n d o m N u m b e r ( r 1 ) 
G e n R a n d o m N u m b e r ( r 2 ) 
if r1 > .5 then sig = -1; e l s e sig = 1 
if r2 > .5 then step = 1; else s t e p = 2 
n o t e = n o t e + s i g * s t e p 
P r i n t o u t ( t i m e , note); 

END 

Pseudocode 37.1. How the computer can create music. 

played. This prevents the random walk from gradually drifting off the left or right 
side of the "keyboard." Try inventing algorithms for producing pleasing duration 
values for each note. Quite nice melodies often result from this ultra-simple 
method simply using random durations or introducing periodicities by giving 
every 4th note a duration longer than the other 3 notes. After your composition is 
completed, tap it out on a piano. You can compare my method in the pseudocode 
to (less musical) totally random music by multiplying the program variable rl by 
88 and converting the resulting values to 88 tones on a keyboard. This will not 
sound too much different than the music your three-year-old might produce by 
hitting keys with a single finger. Almost every listener agrees that the modified 
random walk approach is more pleasing than the totally random music. 

37.6 Fact File 

37.6.1 Ink Splattered Scores 

to. » to • 
In the December 1959 Scientific American Lejaren Hiller describes how he pro-
duced random music and interesting looking musical scores by splattering ink on 
a blank musical staff and then converting the position of the random dots of ink to 
the placement of notes in a traditional musical score. 
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37,6.2 Pigeon Music 

"A popular song has 100 measures, KHH) heats. What must the martians 
imagine we mean by those measures and beats, measures and beats! The 
words themselves reveal an awesome repetitiowness. Why isn't music 
boring? Is hearing so like seeing thai we need a hundred glances to build 
each musical image?" Marvin Minsky, 1981, Computer Music Journal 

fn 1984, Porter and Neuringer studied the ability of pigeons to discriminate 
between different melodic lines. Specifically, the researchers taught pigeons to 
discriminate between Bach flute music and Elindemith viola music. In another 
study they showed that- with further training, some pigeons could extrapolate their 
recognition success to excerpts from pieces not previously heard. For this study, 
the researchers used excerpts from a Bach organ piece and Stravinsky's Rite of 
Spring. (Source: Porter, D. and Neuringer, A. (I9K4) Music discrimination hy 
pigeons. Journal of Experimental Psychology, volume 10.) 

37.6.3 New York Skyline Music 

In 1946, Joeseph Sdiillinger translated the silhouette of the New York skyline to 
musical notation. The higher the building, the higher the note on the musical 
score. It has been reported that this system of translation was also used by other 
composers, noLahly Ocorge Gershwin in wriLing Porgy and Bess. (Source: Rei-
chardt, J. (1975) Cybernetic Serendipity. Praeger: NY.) 

37,6.4 Hailstone Music 

BiJ) Richard from Commodore notes that the hailstone nutnlter sequence can 
produce interesting melodies. This number sequence, discussed in my first book 
Computers, Pattern, Chaos and Beauty, starts with any integer x, and produces 
the uext integer in the sequence using the following rules: 
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if x is even 
then x = x J 2 
else x = 3 x -I / 

The process is repealed. For example, the hailstone sequence for 3 is: / /(3) = 
{3,10,5,16, 8, 4, 2 ,1 , 4 t . . . } . Like hailstones falling from the sky through storm 
clouds, Lhis sequence drifts down and up, sometimes in seemingly haphazard pat-
terns. *Also like hailstones, hailstone numbers always seem eventually to fall back 
down Lo lhe ground (Lhe inleger "!'"). Richard used x as a frequency and scaled it 
so that it would remain in the audio spectrum. For example, he mapped the 
number I Lo 40 H/., because 1 Hz is simply Loo low lo he musically useful. He 
notes that the hailstone numbers produces "a relatively pleasing sequence." 

37.6.5 Chess Music 

A one-time chess player, artist Ronald R. Brown from Pennsylvania composes 
music using lhe chess Knight's tour, lhe Knight's lour problem is one of the 
oldest known problems in the history of chess. In chess, the Knight can move only 
in a prescribed I.-shaped palLern. The problem is lo move a K nigh I on a chess-
board so that all 64 squares of the board are traversed only once. The number of 
distinct soliiLions lo Lhe Knight's tour problem is immense - estimates range from 
31 million U) 168!/105)63!. The exclamation poinl is lhe factorial sign: 
n! = 1 x 2 x 3 x •• • n. To create cliess music, Brown first writes a solution to the 
Knight ' s problem, such as the one below: 

5 0 11 24 5 3 14 37 2 6 3 5 Up 4 
2 3 62 51 12 2 5 34 15 3 3 Up 3 
10 4 9 6 4 21 4 0 13 3 6 2 7 Up 2 
61 22 9 5 2 3 3 2 8 3 9 16 Up 1 
4 8 7 6 0 1 2 0 41 5 4 2 9 M i d d l e C 
59 4 4 5 8 5 3 3 2 17 42 Down 1 

6 4 7 2 5 7 4 4 19 3 0 5 5 Down 2 
3 5 8 5 4 6 31 5 6 4 3 18 Down 3 

To understand lhis table of numbers, the Knight slarls al the position marked " T 
and tlien proceeds to the position marked "2" and 
so on, traversing all the squares on the chess 
board. This can be mapped lo interesting music by 
considering each Knight's position as a nole, the 
pitch of which is determined by the row it is in. 
Starting at middle C, Lhe next noLe is two white 
noies lower, the third note Ibree white noLes lower 
(from middle C), etc. By tracing various palhs 
that the Knight follows as it meanders around the 
board, Ronald Brown also produces intcrcsLing 
abstract art. A recent newspaper article quotes 
Brown describing his chess art, "Some people 
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don't approve of this because they feel art must be spontaneous. My answer is 
that this is spontaneous because I don't know what it's going to look like until I've 
done it." Shown here is his 24"x24"x8.5" "Tour de Four I," an artwork showing 
four tours on a single grid. 

37.6.6 Latvian Folk Music 

The Folklore Institute of Latvia contains 1,011,482 folksong texts in its libraries. 
It also has 28,488 melodies in its archives. (Source: Hartson, 1988.) 

37.6.7 Music Animation Machine 

Novel computer-generated musical scores are being explored by several computer 
music experts. For example, the score produced by a device called the "Music 
Animation Machine" is a colorful, new-age musical representation. Developed by 
musician Stephen Malinowski, a video tape of this score is wonderful to watch 
while listening to the accompanying music. No musical background is required to 
appreciate and learn from the pretty patterns. Let me tell you a little about the 
method. In place of conventional musical notation, this method uses a bar-graph 
notation in which each note is represented by a colored horizontal bar. The ver-
tical and horizontal placement, and the horizontal length, of each bar indicates 
the pitch, timing, and duration of the note the bar represents. In addition, color 
identifies the instrument that is playing the note. (See Figure 37.7.) As you 
watch the patterns unfold in a video tape available from Malinowski, you can see 
and hear features of music that you would have missed without the notation. For 
more information on the videotape of animated musical scores, contact: Music 
Animation Machine, c/o Stephen Malinowski, 1850 Arch Street # 5, Berkeley, 
CA 94709. 

37.6.8 Music in Paintings 

"The scale of frequencies perceived by our eyes (the colors) is 500 times 
smaller than that of sounds." Pierre Karinthi, Leonardo 

Dr. Pierre Karinthi is an artist, scientist, and inventor living in Jouy-en-Josas, 
France. He received his Ph.D. in chemical engineering and is Director of Inno-
vation at the research center of a large international chemical company. Among 
his artistic works are classical musical scores represented as paintings on canvas 
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(Figure 37.8 and Figure 37.10). Every note frequency is visualized by a given 
length on the paining. For example, the higher the frequency, the longer the 
brush stroke. A color is assigned to each note, depending on its pitch. Karinthi 
finds that musical similarities of rhythm and phrasing are often clearly visualized 
in his paintings. For specific details on how Karinthi translates musical scores to 
paintings, see: Karinthi, P. (1991) A contribution to musicalism: an attempt to 
interpret music in painting. Leonardo. 24(4): 401-405. 

37.6.9 Mozart Numbers 

"Of course, we would like to study Mozart's music the way scientists analyze 
the spectrum of a distant star." 

Marvin Minsky, 1981, Computer Music Journal 

In order to compute any Mozart symphony number S from its Kochel number K 
you can use 

S = 0.027465 + 0.157692tf + 0.000159446K2. (37.1) 

(The Kochel catalogue is a chronological list of all of Mozart's works, and any 
work of Mozart's may be referred to uniquely by its Kochel number. For example, 

the "Symphony number 40 in G minor" is K.550.) 
The formula will give an answer not more than two 
off, 85% of the time. For further details, see Hartson 
(1988). 

Mozart once wrote a waltz in which he specified 
11 different possibilities for 14 of the 16 musical bars 
of the waltz, and 2 possibilities for one of the other 
bars. This gives 2 x 1114 variations of the waltz. 
What percentage of the number of these waltzes have 

humans heard? What percentage of the waltzes could a human hear in a life-
time? 

37.6.10 Music Notation Modernization Association 

The Music Notation Modernization Association holds regular conventions. For 
more information, contact: Thomas S. Reed, Executive Director, Music Notation 
Modernization Association, PO Box 241, Kirksville, MO 63501. 
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37.6.11 Strange Musical Notation Patents 

U.S. Patent 2,232,264 - Diagram musical score 
U.S. Patent 3,698,277 - Analog system of music notation 
U.S. Patent 3,700,785 - Means for simplified rewriting of music 
U.S. Patent 1,424,718 - Musical notation 
U.S. Patent 1,515,403 - Device for teaching piano playing 
U.S. Patent 1,603,296 - Chart for piano instruction 
U.S. Patent 1,544,427 - Music in synchrony with moving pictures 
(Patents are obtainable by sending $1.50 to United States Patent and Trademark 
Office, Commissioner of Patents and Trademarks, Washington DC 20231.) 

37.6.12 Music of the Spheres 

The ancient Greeks attempted to establish relationships between numbers, 
musical scales, and the orbits of planets. The Greek's Music of the Spheres 
linked music and astronomy, although today we know that there is no scientific 
significance to their proposed relationship between planetary orbits and musical 
scales. N 

V * * * * 
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l i r nus J u p i t e r 

37.6.13 Music of the Sumerian Tablets 

Seven thousand years ago, when stone-age farmers lived in Egypt, no one lived in 
the southern plain between the Tigris and Euphrates Rivers. Around 4,500 B.C., 
some people settled there and soon found that the mud, when baked, turned hard 
like a stone - nice for making bricks, hammers, and even nails. Later the priests 
invented cuneiform writing which was scratched into clay tablets; these tablets 
have survived by the thousands to give modern humans a record of Sumerian life. 
In addition, Sumerian clay tablets have been found (in modern-day Iraq) which 
show an eight note music scale (circa 1800 B.C.), perhaps one of the earliest 
examples of written music. 

37.7 For Further Reading 

1. Clynes, M. (1989) Sentics: The Touch of Emotions. Avery Press, 350 Thorens Ave., 
Garden City Park, New York, NY 11040. (This is a fascinating work on patterns in 
music and life by an esteemed neuroscientist, concert pianist, electronics engineer, 
inventor, poet, and philosopher. Prof. Clynes has developed a method and mathemat-
ical parameters for having a computer music program give maximum satisfaction to 
the brain. He has obtained patents on his computer program and set up a company 
called Microsound International Ltd., in Sonoma, California, to refine his methods.) 
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2. Clynes, M. (1982) Music, Mind, and Brain: The Neuropsychology of Music. Plenum: 
NY. 

3. Paulos, J. (1988) Innumeracy Vintage: NY. 
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Chapter 38 

Interlude: Computer Mouths 

Rhoda Grossman of San Francisco, California has been using traditional media in 
her fine art and illustration for about. 20 years. Lately, however, she has grown 
rather fond of the computer as a vehicle for artistic expression. My favorite 
arLwork of hers are the humorous and expressive "faee scapes" which use facial 
features as the building blocks of her design. Her first big exposure to computer 
arL earne aL a eompuLcr show eallod Comdex '89. xAJ'tcr the show, she brought 
home a mouse and a primitive paint program, which she practiced using on her 
neighbor' personal computer. Grossman writes: 

In the summer of 1990, T purchased a second-hand Mac II system, and subscribed to 
Macworld and MacL'scr. In short, having quickly overcome a lifetime of fearing 
machines and an attitude that computer couldn't really produce "Art" I was hooked. 

Shown here is Iter computer artwork titled "Woodnan/Mouths." To create these 
kinds of images, Grossman scans a color photo using Adobe Photoshop {v. 1), and 
then she uses various Image processing features to create the final work. For 
further information, contact: Rhoda Grossman. 25 Franconia Street, San Fran-
cisco, CA 94110. 
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Chapter 39 

There is Music in our Genes 

Organisms which have evolved on this earth are governed by multitudes of 
periodicities. Individual genes have been duplicated often to the point of 
redundancy. This principal even appears to govern the manifestations of 
human intellect; musical compositions also rely on repetitious recurrence. 

Susumu and Midori Ohno, fmmuno generics. 

39J Ohno's DNA Music 

Dr. Susumo Ohno is an extraordinary man. Born in 192X in Seoul, Korea he 
became a naturalised U.S. citizen in 1957. His vasL career includes a mulLitude of 

awards, honors and prestigious research positions. 
Currently he holds the Ben Horowitz Chair of dis-
tinguished scientists in reproductive genetics in Lhe 
Department of TheOreticaJ Biology at The 
Beckman Research Institute of the City of Hope, 
Duarle, California. Some of his books and papers 
arc listed at the end of this chapter. 

Ur. Ohno's field of specialization is e\'olu-
tionary molecular biology, and the sjspccL of his 
work that may be of most in teres L Lo general 
readers is the musical representation of gene Lie 
sequences. DNA eon Lai ns the basic heredity 
information of living cells. Naturally occurring 

DNA sequences, symbolized by the letters G, C, A, and T, contains many pat-
terns. (The G, C, A, and T symbols represenL the building blocks of DNA and 
are also known as "bases" or "nucleotides.") One notable feature of DNA is Lhe 
frequent repetition of various short sequences through an organ isnvs genome. Kor 
example, genetic sequences which code for phosphoglyccraLe kinase (a sugar 
metabolizing enzyme), contains building blocks of AAGGC I'GCTG and its trun-
cated 6-base derivative AAGCTG. These basic segments are repealed, seemingly 
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Code Table Song 
T T TPhe T T CPhe T T ALeu T T GLeu T C TSer T C CSer T C ASer T C GSer 

T A TTyr T A CTyr T A A T A G T G TCys T G CCys T G A T G GTrp 

C T TLeu C T CLeu C T ALeu C T GLeu C C TPro C C CPro C C APro C C GPro 

Figure 39.1. Music from genetic and protein sequences. Nobuo Munakata and Kenshi 
Hayash at the National Cancer Institute in Tokyo represent biological sequence data as 
musical scores in order to find repeating patterns and differences between sequences. This 
piece is called "Codon Song." 

indiscriminately, through much of the gene. Ohno sees a striking similarity 
between this repetition of small DNA sequences and the musical songs of 
humans. He thinks of these kinds of DNA building blocks as principle melodies 
that are developed into endless variations by base substitution and truncation. 
Genes also contain tandemly recurring base sequences which are not related to 
these building blocks, and these introduce the desired complexity into musical 
compositions, which are described in the following paragraphs. 

Many of Ohno's papers discuss the translation of the genetic information into 
musical scores. In order to fill the octave scale, two consecutive positions are 
assigned to each of the four bases in ascending order of A, G, T, and C. Some of 
the details and justification for this mapping can be found in his papers. 

He finds that the phophoglcyerate kinase gene, if played on a violin, is "haunt-
ingly melancholy, as though reflecting the Weltschmerz of the gene that perse-
vered for hundreds of millions of years." Reverse conversion of music to DNA 
sequences produce equally startling results. For example, Ohno maps pieces such 
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Honeo Box Pastorale 

Figure 39.2. Music from genetic sequences. This is part of a song made from a piece of a 
protein in a nematode (worm), fruity fly, and human. The title is "Homeo Box Pastorale." 
Some of the sequences, when split into three simultaneously played melodies, produce 
"leisurely and peaceful" tunes. 

as Frederic Chopin's Nocturn, opus 55, no. 7, to musical scores and shows that 
the Nocturn sequences have remarkable similarities with DNA sequences (see the 
frontispiece for this chapter). Some of these similarities arise from the fact that 
both DNA and gene sequences contain tandemly recurring segments. Therefore, 
one way of creating interesting synthetic music is to start with DNA sequences 
and listen to the beautiful results after conversion to music. Using Ohno's rules 
and by listening to the DNA, you can readily recognize various patterns and per-
iodicities. Sometimes Ohno adds interesting chords to complement the single note 
meoldies. 

For those of you with genetics background, Ohno finds that primoridal 
coding sequences are similar to musical compositions of the early Baroque 
periods, whereas "modern coding sequences that endured for a few billion years 
are like those of the late Romantic period." Ancient bacterial sequences, such as 
those that code for sugar metabolizing enzymes like glyceraldehyde 3-phosphate 
dehydrogenase, seem to have sets of patterns different than exhibited by more 
modern bacterial sequences. These differences are made obvious in the DNA 
music. Ohno believes that the first set of prebiotic coding sequences to be trans-
lated were repeats of base oligomers (small segments). On the other hand, during 
subsequent evolution, new genes always arose from redundant copies of preex-
isting genes (large DNA sequences). This gives rise to the Baroque and Romantic 
sounds of ancient and modern DNA, respectively. 
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Figure 39.3. Music from protein sequences. ThU is generated from bacterial sequences 
played with a ] 6th note offset. 

Kelow is a segment from a composition which Susumu Ohno sent me tilled "Chicken 
lens kA crystal I in." You can read more ahout it in his hook chapter in Modem Trends in 
Human leukemia Vlll (Springer. 1989). I'he seorc below is reprinted with permission 
from Dr. Ohno. 
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39«2 Munakata/IIayaslii Geue Music. 

"... Both genes and music are made of linear and quantized information 
which represent unfathomable diversity and mystery. However, we are not 
confident about how to disentangle the intricate logic of life's composition." 

Naobuo Munakata and Kcnshi Havashi, 1991 

Nobuo Munakata (right) and Kcnshi Hayashi (left) arc researchers at the Radio-
biology Division and Oncology Division of the National Cancer Center Research 
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Institute in Tokyo.19 Like Ohno, they have also experimented with gene music, 
but they use a simpler scheme to assign tones to DNA. They explain that some 
previous musical mapping schemes have used an octave or larger intervals, which 
are "not practical for laypeople to sing, hum, or whistle while reading or typing 
sequences." Instead, they set the music interval to a fifth and choose four tones 
(re, mi, sol, la) as shown below: 

6 C T A 

re mi sol la 

Of the three possible mappings illustrated here, Munakata and Hayashi chose the 
middle one. The left mapping produces sounds which are "stable and optimistic -
favored in Western and Chinese folk music," while the right one is "lamentable 
and pessimistic, favored in Indonesian and Okinawan music." The middle four 
notes are "simple-minded and unsophisticated, as favored in Mongolian, Korean, 
and Japanese music." Once having represented the DNA sequences as musical 
scores, they use the "DNA Inspector" program on the Macintosh computer to 
play back DNA sequences according to their assignment. 

Munakata and Hayashi also have generated music from amino acid 
sequences (the basic building blocks of proteins) using the following mapping: 

r V i ii fi r f I T m J J 'i J 1 1 I 
I i i £ 

MIDI Note Dl# F l G1 Al# C2 D2 F2 G2 A2 C3 D3 E3 G3 A3 B3 D4 E4 F4# A4 B4 

Amino Acid Arg Lya Ilia Asp Glu Aan Gin Scr Thr Gly Pro Ala Cya Tyr Tip Pfo Met Leu Val Ho 

|Basic| [Acidic] | Polar | |Nonpolar| |Arcanatic| | Hydrophobic! 

They prefer the sound of music synthesizers to the Macintosh computer.20 Therefore, 
Munakata and Hayashi also use state-of-the art MIDI (musical instrument digital inter-
faces) for playing their DNA music through synthesizers, and they often play more than 
one sequence at a time so that differences between sequences will be spotted easily. A one-
beat offset may be used to stress unique repeating patterns like the leucine repeat in so-
called zipper proteins. For example, in their piece named "Song of Courtship and Clocks" 
they play sequences of fruit-fly and fungus genes using two different instruments, harp 
and clarinet. To convert genetic sequence data in text-file format (which comes from 
various genetic data bases) to MIDI-note files, they use a commercial program Hyper-
MIDI 2.0 (EarLevel Engineering) working within HyperCard on a Macintosh computer. 

19 Nobuo Munakata is head of the Radiosensitization Section and his major research area 
in the radiation genetics of bacteria and nematodes (worms). Kenshi Hayashi is the 
head of the Oncogene Product Section and is interested in the structure of genes. 

20 Nobuo Munakata writes to me "With apology to purists using traditional music instru-
ments, I must rely on Japanese gadgets (Yamaha's TX81Z, TX802, and SY77) con-
trolled by German boxes (Atari ST with Notator and Synthworks) and American 
devices (Macintosh with HyperMIDI and Vison), a rare combination of diligence, strin-
gency, and indulgence." 
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Figure 39.1, Figure 39.2 and Figure 39.3 are typical musical scores from their biological 
sequence data. 

39.3 For Further Reading on Gene Music 

"DNA was the miracle, the self-replicating molecule, the very stuff of life. 
Its intricate chemical cryptography contained all the information necessary 
to form another human being. If anything in life were sacred, he thought, 
this was it. Genetic material spanned time, approached eternity, bound past 
and present and future in an enormous evolutionary chain linking ancestry to 
posterity. To change it seemed sacrilege, an invitation to divine wrath." 

Alan Engel, Variant 

1. Engel, A. (1988) Variant, Donald Fine: NY. (An excellent fictional account of gene 
manipulation with startling consequences for several young Russian boys.) 

2. Ohno, S. (1989) Modern coding sequences are in the periodic-to-chaotic transition. 
Modern Trends in Human Leukemia VIII. Springer: New York. pp. 512-519. 
(Includes a 2-page musical score for the musical transformation of a part of the 
chicken otA crystalline coding sequence.) 

3. Ohno, S., Ohno, M. (1986) The all persuasive principle of repetitious recurrences 
governs not only coding sequence construction but also human endeavor in musical 
composition. Immunogenetics. 24:71-78. (Contains four pages of musical scores.) 

4. Ohno, S. (1988) Codon preference is but an illusion created by the construction prin-
ciple of coding sequences. Proceeding of the National Academy of Science. 85: 4378-
4328. 

5. Ohno, S. (1988) Of words, genes and music. In NATO ISI Series, Vol H32, The 
Semiotics of Cellular Communication in the Immune System. Sercarz, E., ed. 
Springer: NY. pp 131-147. 

6. Ohno, S. (1991) The grammatical rule of DNA language: messages in palindromic 
verses. In Evolution of Life, Fossils, Molecules and Culture. Springer: NY. 

7. Hayashi, K., Munakata, N. (1984) Basically musical. Nature. 310: 96. 







Chapter 40 

Bach's Impossible Violin 

Over the decades unconventional musicians have evoked strange sounds from con-
ventional instruments. For example, American composer John Cage (pictured 
here), a pupil of such musical gianLs as Schoenberg and Edgard Varose, com-

posed: random music, silent music, and works for 
a "prepared piano" with sueh foreign objects 
attached to the strings as screws, bolts, rubber 
bands, bamboo slivers and pins. Perhaps one of the 
strangest sounds a violin ever produced occurred 
on a New York- stage: the sound of y violin 
burning. This event was staged by Lamont Young 
and Charlotte Morrman. Charlotte also played an 
underwater Cello piece called The Intravenous 
Feeding of Char hue Morrman. 

J. S. Baeh also played some interesting tricks 
with violins, illustrated in his musical score {facing 
page). A violinist can play at most two simul-
taneous notes. However, the beginning of a ciac-

cona by Bach (from his "Sonata TV* tor unaccompanied violin), calls for several 
four-noLc chords! J low is this possible? It turns out that these four-note chords 
can be approximated by playing the notes very' quickly in sequence. Also note that 
starling at the 1 Olh bar (LOwards the end of Lhe second row of nOLes) three distinct 
voices are called for. This is like asking one singer to sing as three different 
people. A good violinist can simulate this by bowing cach note differenlJy in 
order LO give each a different loudness and musical texture. The human ear seems 
to perceive three different violins becausc the mcIodic lines don't have big changes 
in pilch, and because the pitches don't overlap.21 

ml 
21 (The musical score is from John Piercc's The Science of Musical Sound. © J 953 by 

Scientific American Books. Reprinted with permission of W.I I. Freeman and Co.) 





Chapter 41 

Interlude: Alien Musical Scores 

graphics into a more serious art form, to study art, history and theory, to go 
back to the simpler art forms and learn what makes them artistic. Why is a 
line drawing, made with a pencil, the most elemental of human media, 
capable of becoming art? This question is not easily answered, but in my 
opinion it requires considerable study and exposure to great works of art" 

Robert Mueller, 1983, Creative Computing 

Robert Mueller is a visual artist from Roosevelt, New Jersey who paints with oils, 
does traditional woodcuts and drawings, and sculpts in wood and clay. He also has 
theorized about electronic media and computer art for many years (see refer-
ences). My favorite artworks of his are the extremely minimal art forms which he 
calls schemas. His conviction is that significant art can be made using the most 
elementary media - a conviction confirmed by the history of art. Working within 
a set of rules, Mueller draws crow-quill black and white images, inspired in part 
by Picasso illustrations and also by mathematical coordinate plots. The reason he 
calls these new art forms "schemas" is because they remind him of schematic 
circuit diagrams. To my eye, they are reminiscent of some beautiful, alien 
musical scores. Mueller himself says that, in addition to inspiration from the sim-
plicity of Picasso's work, his schemas have musical underpinnings: 

How, then, can a simple matrix of black and white lines and dots possibly match the 
perceptual richness of a flute or violin? If one is tuned into it, a line, by itself, can 
manifest nervousness, calmness, boldness, tentativeness, and sketchiness, or even 
humor or sadness. 

Prior to studying art, Mueller studied electrical engineering at MIT. He also has 
a degree in philosophy from NYU. He remarks, "During boring or too abstruse 
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lectures in a higher mathematics class, I found myself day-dreaming over the 
wonderful plotted curves in textbook tables of functions." To make the schemas, 
Mueller observes four major constraints: 

1. Every junction must be joined with a beadlike dot. 
2. All lines must be terminated with a dot or by feathering to a point. 
3. Parallelism and repetition must be used frequently. 
4. All images must be nonrecognizable. 

So visually interesting are his simple schemas that I have scattered them about 
this book for readers to enjoy and ponder. An entire book could be devoted to the 
study and development of Mueller's schemas, so I can only touch the surface here. 
Those readers desiring to learn more should consult the first reference at the end 
of this chapter. See also Figure 37.5 and the "Preface" for additional schemas. 

41.1 For Further Reading 

1. Mueller, R. (1991) Schemas: the evolution of a minimal visual art form. Leo-
nardo. 24(3): 273-280. 

2. Mueller, R. (1983) When is computer art art? Creative Computing. January. 
136-144. 

3. Mueller, R. (1967) The Science of Art: The Cybernetics of Creative Commu-
nication. Day Publishers. 

4. Mueller, R. (1972) Idols of computer art. Art in America. May-June: 68-73. 

41.2 Cross References 

The following sections are concerned with questions regarding whether or not computer-
generated art is really good art: "Is Computer Art Really Art?" on page 169, "Are 
Fractal Graphics Art?" on page 95, and "Interlude: Marking Time" on page 289. 
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Chapter 42 

How to Stuff Ait Elephant 
Into a 24-Dimensional Sphere 

"Even the mathematician would like to nibble the forbidden fruit, to git mp.se 
what it would be like if he could slip for a moment into a fourth dimension." 

Kasncr and Newman, Mathematics and the Imagination 

"A man who devoted his life to it could perhaps succeed in picturing himself 
a fourth dimension." Henri Poincare 

f know of no subjeCL in mathematics thai has intrigued boih ihe young and old as 
much as the idea of a 4th dimension. For decades, there have been many popular 
science books and science-fiction novels on this subjcel. In the early OH's the TV 
show 7'he Outer Limits impressed viewers with a creature from the galaxy 
Andromeda who lived in a higher dimension than ours. Although the creature is 
both wise and friendly, its visit to our world causes quite a pandemonium. My 
favorite short science-fiction story on the subject is Robert HeinleLn's And He 
Built A Crooked House, first published in 1940. It tells the tale of a California 
architect wlio constructs a 4-dimensional house. He explains that a 4-diiuensional 
house would have Certain advantages: 

T i n thinking about a fourth spatiat dimension, like length, breadth, and thickness. 
For ceonomy of materials and convenicnec of arrangement you couldn't beat it. To 
say nolhing of ground space - you could pui an eight-room house on the land now 
oecupicd by v one-room house." 
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Figure 42.1. African elephants waiting to be stuffed into a 24-dimensional sphere. 

Unfortunately, once the builder takes the new owners on a tour of the house, they 
can't find their way out. Windows and doors which normally face the outside of 
the house now face inside. Needless to say some very strange things happen to the 
poor people trapped in the house. 

The fourth dimension need not remain confined to the realm of science-fic-
tion, beyond the range of exciting experiment and careful thought. The following 
exercises should be accessible to high school students, and computer programmers 
of all ages. Let me begin by considering the concept of distance in various dimen-
sions, and then gradually work my way up to more sophisticated concepts such as 
the possibility of stuffing huge African elephants into tiny 24-dimensional spheres 
(Figure 42.1). Many readers will be familiar with how to compute the distance d 
between two points (x , y) and (x, y ) on a plane: 

(You can derive this equation by drawing diagrams, and using the Pythogorean 
theorem which states that the length of the hypotenuse of a right triangle equals 
the square root of the sum of the squares of the other two sides.) This formula can 
be extended to compute distance between two points in three dimensions simply 
by adding another term 

Similarly, we may extend the previous formula to 4, 5, 6, ... or k dimensions! 
Various scholars have debated whether humans can truly grasp what a 4-dimen-
sional line and 4-D distance are. Kasner and Neuman remarked in 1940 (the 
same year that Heinlein published his science-fiction tale about the 4-dimensional 
house): 

(42.1) 

(42.2) 
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"Distance in four dimensions means nothing to the layman. Even four-dimensional 
space is wholly beyond ordinary imagination. But the mathematician is not called 
upon to struggle with the bounds of imagination, but only with the limitations of his 
logical faculties." 

In order to help visualize the fourth dimension, various graphical representa-
tions of four-dimensional figures have been attempted throughout the ages. 
Figure 42.2 shows a 4-D analogue of the 3-D cube called a hypercube or tes-
seract. Figures such as this have been drawn for at least a half a century. Today, 
mathematicians use computer graphics to visually study the geometrical proper-
ties of hypercubes and related 4-D objects. One notable mathematician involved 
with visualizing the shadowy world of the 4th dimension is Tom Banchoff of 
Brown University. Banchoff has created several computer graphics movies illus-
trating the mind-boggling properties of hypercubes and other 4-D objects as they 
are rotated or enlarged. 

42.1 Hyperspheres 

"We sail within a vast sphere, ever drifting in uncertainty, driven from end to 
end." Pascal 

Let's start considering some of the exciting experiments which you can conduct 
using a pencil and paper or calculator. My favorite 4-dimensional object is not the 
hypercube but rather its close cousin, the hyper sphere. Just as a circle of radius r 
can be define by the equation x2 + y2 = r2, and a sphere can be defined by 
x2 + y2 + z2 = r2, a hypersphere in 4 dimensions can be defined simply by adding 
a 4th term: x2 + y2 -{- z2 + w2 = r2, where w is the 4th dimension! 1 want to make 
it easy for you to experiment with the exotic properties of hyperspheres by giving 
you the equation for their volume. (You can find derivations for the formulas 
which follow in the Apostol reference.) The formulas will permit you to compute 
the volume of a sphere of any dimension, and you'll find that it's relatively easy to 
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40 
Dimension 

Figure 42.3. Volume of a radius 2 sphere as a function of dimension. 

implement this formula using a computer or hand calculator. For even dimen-
sions, k, the volume of a /c-dimensional sphere is 

k/2 k 
V= 77 / (42.3) 

(k/2)! 

The exclamation point is the mathematical symbol for factorial. For example, the 
volume of a 6-dimensional sphere of radius 1 is it3/3/ = 5.1. For odd dimensions, 
the formula is just a bit more intricate: 

(k - l)/2 ,~k+ 1 k 
V = J L m!2 r_ 

(k + 1)/ 

where m = (k + l ) / 2 . 
The formulas are really not too difficult to use. In fact, with these handy for-

mulas, you can compute the volume for a 6-dimensional sphere just as easily as 
for a 4-dimensional one. Pseudocode 42.1 lists some of the necessary steps used 
in creating a computer program to evalutate this formula. Figure 42.3 is a plot 
of the volume of a sphere with radius 2 as a function of dimension. For radius 2 
and dimension 2, the previous equations yield the value 12.56, which is the area of 
a circle. A sphere of radius 2 has a volume of 33.51. A 4-D hypersphere of radius 
2 has a volume of 78.95. Intuitively one might think that the volume should con-
tinue to rise as the number of dimensions increase. The volume, or perhaps we 
should use the term "hypervolume," does grow larger and larger until it reaches a 
maximum - at which point the radius 2 sphere is in the 24th dimension. At 
dimensions higher than 24, the volume of this sphere begins to decrease gradually 
to 0 as the value for dimension increases. An 80-dimensional sphere has a volume 
of only 0.0001. This apparent turn-around point occurs at different dimensions 
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Figure 42.4. Volume of k-dimensional spheres for radii of 1, 1.1, 1.2, 1.3, 1.4,1.5, and 
1.6. 

depending on the sphere's radius, r. Figure 42.4 illustrates this complicated 
feature by showing plots of the volume of a k-dimensional sphere for radius 1, 1.1, 
1.2, 1.3, 1.4, 1.5, and 1.6 as a function of the dimension. For all the sphere radii 

tested, the sphere begins to grown in volume to a 
point, and then it begins to decline. (Is this true 
for all radii?) For example, for r = 1, the 
maximum hypervolume occurs in the 5th dimen-
sion. For r = 1.1 the peak hypervolume occurs in 
the 7th dimension. For r = 1.2, it occurs in the 8th 
dimension. Here is a great example of how simple 
graphics, like the illustration in Figure 42.4, help 
us humans get a grasp of the very non-intuitive 

results of a hypergeometrical problem! If we examine the equations for volume 
more closely we notice that this funny behavior shouldn't surprise us too much. 
The denominator contains a factorial term which grows much more quickly than 
any power, so we get the curious result that an infinite dimensional sphere has no 
volume. (In fact, factorials (n!) grow faster than powers of 2, the Fibonacci 
numbers, n2, and the prime numbers (P„). They, however, don't grow as fast as 
coupled exponentials of the form nn.) 

Using the equations for volume given here, you'll find that an 11-dimensional 
sphere of radius 2 feet is 333,763. Considering that the volume of a brontosaurus 
is about 100,000 cubic feet, does this mean that the brontosaurus could be 
crammed into this small 11-dimensional sphere? This amusing thought is just a 
prelude to the questions which follow. 
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ALGORITHM: Compute the Volume of a 24-Dimensional Ball 
pi = 3.1415926; r = 2; k = 24 
/* If even dimension: */ 
IF ((k / / 2) = 0) then do 

ans = ((pi ** (k/2.)) * r**k)/factorial(k/2) 
END 
/* If odd dimension: */ 
IF ((k / / 2) = 1) then do 

m = (k+1)/2; fm = factorial(m); fk = factorial(k+1) 
ans = (pi**((k-1)/2.)* fm * (2**(k+1))*r**k ) / fk 

END 
say k ans 
/* A recursive procedure to compute factorial */ 
factorial: Procedure 

Arg n 
If n=0 Then Return 1 
Return factorial(n-1)*n 

Pseudocode 42.1. How To compute the volume of a 24-dimensional ball (The program 
coded here is in the style of the REXX language.) 

42.2 Stop and Think 

"She reappeared, looking back at him from her fat flat suspicious face, and 
Kevin understood the reason why she had disappeared for a moment. It was 
because the concept of 'a side view' didn't exist in a world where everything 
was perfectly flat. This is Polaroidsville, he thought with a relief which was 
strangely mingled with horror." Stephen King, Four Past Midnight 

Now the time has come for considering some really tough questions. If you are a 
teacher, why not give these to your students to answer. 

1. By examining the graph in Figure 42.3 could a 24-dimensional sphere of 
radius 2 inches contain the volume of an African elephant? 

2. Could a 1000-dimensional sphere of radius 2 inches contain the volume of an 
African elephant, considering that the sphere's hypervolume is very, very 
close to 0 (Figure 42.3)? 

3. Could a circus animal trainer fit an African elephant into an 8-dimensional 
sphere (of radius 1 inch) as its aperture intersected with our 3-D world? 

4. The number of atoms in a human's breath is about 1021. If each atom in the 
breath were enlarged to the size of a marble, what percentage of a human's 
breath could fit into a 16-dimensional hypersphere of radius 1.1 inches? 

5. What is the value of the 24-dimensional hypervolume of an elephant? To 
compute this, assume the height of a large African elephant, at the shoulder, 
is 11.5 feet. 

6. What is the one-millionth dimensional hypervolume of the earth? Assume the 
earth to have a diameter of 4.18 x 107 feet. Also, very roughly approximate 
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the 4-dimensional hypervolume of Albert Einstein's brain. (The brain of an 
average adult male weighs 3 lbs 2.2 oz., decreasing gradually to 3 lbs 1.1 oz 
with advancing age.) The largest synagogue in the world is Temple Emanu-El 
on Fifth Avenue in New York City. Estimate its hypervolume. (This temple 
has a frontage of 150 feet on Fifth Avenue and 253 feet on 65th Street. 
When all its facilities are in use, more than 6000 people can be accommo-
dated.) 

42.3 The Hypervolume of Temple Emanu-El and Related 

"Particles that fall into a black hole may pass through a thin tube, or worm-
hole, and come out somewhere else in the universe. But wormholes occur 

The answers to the previous six questions are: yes, yes, no, 100%, zero, and zero 
(for all parts of Question 6). To help understand these answers, consider the act of 
stuffing circular regions of a plane into a sphere. The circular discs are 2-dimen-
sional, and hence have no thickness or volume. Therefore, in theory, you could fit 
an infinite number of these circles into a sphere - provided that the sphere's 
radius is slightly bigger than the circle's radius. If the sphere's radius were 
smaller, even one circle could not fit within the enclosed volume since it would 
poke out of the volume. Therefore, in answer to question one, the volume of an 
elephant could reside comfortably in a 24-dimensional sphere of radius 2 inches. 
In fact, an infinite number of elephant volumes could fit in a 24-dimensional 
sphere. Likewise, in answer to question 2, a 1000-dimensional sphere of radius 2 
inches could contain a volume equivalent to that of an elephant. However, you 
could not physically stuff an elephant into either of these spheres because the ele-
phant has a minimum length which will not permit it to fit. (Consider the 
example I gave of stuffing a large circle into a small sphere.) An elephant's 
volume equivalent could be contained within the sphere, but to do so would 
require the elephant to be first put through a meat-grinder which produces pieces 
no larger than the diameter of the sphere. This therefore answers question 3. 
Similarly, for question 4, you could fit an infinite number of 3-D marbles into the 
16-dimensional sphere mentioned. Finally, just as a circular plate in 2 dimensions 
has zero thickness, and hence no volume, the elephant, the earth, Temple Eman-
u-El, and Einstein's brain have no "hypervolume" in higher dimensions. 

only in imaginary time. Stephen Hawking, 1990, Playboy 
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42.4 Squeezing Einstein's Brain into a 4-Dimensional Sphere 

"A sphere, which is as many spheres, solid as a crystal, yet through all its 
mass flow, as through empty space, music and light... Sphere within sphere; 
and every space between, peopled with unimaginable shapes, such as ghost 
dream, dwell in the lampless deep." 

Percy Bysshe Shelley, Prometheis Unbound 

As you will be able to understand from the last section, Einstein's brain should be 
able to fit into a 4-dimensional sphere with even the most tiny of radii because an 
infinite volume of 3-D objects can fit into a 4-D hypervolume. However, if the 

diameter of the sphere were smaller 
than the brain's maximum length, as 
with the African elephant, the brain 
would have to be put through a meat 
grinder first and fed gradually, sliver 
by sliver, into the sphere. While on 
the topic of brains, you may be 
curious to know that the mammalian 
brain is an example of an object 
which seeks to expand its dimension 
to fulfill its biological purpose. The 
huge 2-D surface of the brain is intri-

cately folded to fill a 3-D volume in order to increase its surface area. Science 
fiction writers may wish to ponder the idea of a human whose 3-D brain folds 
itself in the 4-th dimension to increase its capacity. 

For your interest, the heaviest brain ever recorded was that of a 50-year-old 
man. It weighed 4 lbs. 8.29 oz., more than 1 lb. 7 ozs. heavier than average. 
Until 1991, serious scientists had believed that there was no correlation between 
intelligence and human brain size. Now there is evidence of some correlation.22 

Here is another interesting fact: Over the last 100 years, brains have been 
growing in size! If you examine postmortem records, you'll find that the average 
male brain weight has increased from 3 lbs. 0.4 oz. in 1860 to 3 lbs. 2.2 oz. today. 
Similarly with women, a growth from 2 lbs. 11.8 oz. to 2 lbs. 12.6 oz. has 
occurred, and in recent years women's brains have been growing almost as fast as 
men's. If brains continued to grow at this rate through the decades, in what year 
would a man's brain weigh more than 5 lbs? 

22 A recent study using magnetic resonance imaging has determined that there may be a 
size correlation between intelligence and brain size in humans. This first study to 
address this issue by examining the brains of normal, living subjects, was conducted in 
1991. Previous answers have been ambiguous because researchers did postmortem 
studies of brains which shrink with age. Lee Willerman of the University of Texas at 
Austin has found that High-IQ college students have bigger brains. For more informa-
tion, see the December 13, 1991 issue of Science, volume 254, page 1584, "Brains. Is 
Bigger Better?" 
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42.5 Marbles and Worms 

This section lists some questions which only the most imaginative of readers will 
wish to consider. For example, if you were to slam and crack a 24-dimensional 
marble with your 3-D hammer, will the broken pieces all be 24-dimensional? 
Could you, in fact, break a 24-dimensional marble with a 3-D hammer? 

A 3-D earthworm is burrowing thought the soil and encounters a 5-dimen-
sional hypersphere, and sticks its head into it. Half its body is inside the sphere, 
and half its body is outside. Will this cause any disruption to the skin of the 
worm's body. Will the worm feel a difference? 

You and your 3-D friend are in a 4-D sphere. Your friend's body is displaced 
from you along the 4th dimension. Is there any way you could see her or hear her 
speak? If you are a teacher, have your students dream up imaginative uses for a 
4-D sphere, such as its use as an efficient waste disposal unit. 

42.6 Student Exercises: Fractal Hyperspheres and More 

Now that your mind has been stretched to its limit, I leave you with some more 
down-to-earth (yet interesting) graphics exercises. 

1. A good student exercise is to draw a graph of y = an/n! for a fixed a. You'll 
see the same kind of increase in y followed by a decrease as you do for hyper-
spheres. 

2. Draw a 3-D plot showing the relationship between sphere hypervolume, 
dimension, and radius. 

3. Plot the ratio of the volume of a /c-dimensional hypersphere to the volume of 
a /c-dimensional cube which encloses it, as a function of k. (Note that a box 
with an 2-inch long edge will contain a ball of radius 1 inch. Therefore, for 
this case, the box's hypervolume is simply 2k.) 

4. Plot the ratio of the volumes of the (/c+l)-th dimensional sphere to the kth 
dimensional sphere for a given radius, r. 

5. For more technical readers, compute the hypervolume of a fractal hyper-
sphere of dimension 4.5. To compute factorials for non-integers, you'll have to 
use a mathematical function called the "gamma function." The even and odd 
formulas given in this chapter yield the same results by interpreting 
k! = T(k + 1). 

6. The surface area of an /c-dimensional sphere is given by: 
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~ k/2 k 2ir r 
(k/2)! 

(42.5) 

(For odd values of k, you must use the gamma function as in the previous 
question.) How does surface area change as you increase the dimension kl 

42.7 Other Dimensions and Superstrings 

Scientists and philosophers still debate about the possibility that there really 
exists an observable 4th spatial dimension. In the same way that the two-dimen-

sional surface of the Earth is finite but unbounded 
(because it is bent in 3-D into the shape of a 
sphere), many have imagined the 3-D space of our 
universe as being bent, in some 4-D space, into the 
shape of a hypersphere. In the past, however, there 
has been much skepticism on this subject. Martin 

Gardner, in his book Mathematical Carnival, stoically remarked: 
Is it possible for the human brain to visualize four-dimensional structures? The 
19th-century German physicist Hermann von Helmotz argued that it is, provided the 
brain is given the proper input data. Unfortunately our experience is confined to 
three-space and there is not the slightest scientific evidence that four-space actually 
exists. 

Since the time Gardner wrote this statement, there has been considerable 
research by Edward Witten, and others, in superstring theory which suggests that 
all physical phenomena arise from infinitesimal strings wriggling in no fewer than 
10 dimensions. 

As techically advanced as superstring theory sounds, superstring theory could 
have been developed a long time ago. This is according to Witten, a 40-year old 
theoretical physicist at the Institute for Advanced Study in Princeton. For 
example, he indicates that it is quite likely that other civilizations in the universe 
discovered superstring theory, and then later they derived Einstein-like formu-
lations (which in our world predate string theory by more than half a century). 
Unfortunately for experimentalists, superstrings are so small that they are not 
likely be to be ever detectable by humans. If you consider the ratio of the size of a 
proton to the size of the solar system, this is the same ratio that describes the rela-
tive size of a superstring to a proton. 

John Horgan, an editor at Scientific American wrote an article describing 
what other researchers have said of Witten and superstrings in 10 dimensions. For 
example, one researcher exclaimed that in sheer mathematical mind power, 
Witten exceeds Einstein and has no rival since Newton. When a Nobel Prize-
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wining physicist was asked to comment on the importance of Witten's work, he 
said that he could not understand Witten's recent papers; therefore, he could not 
ascertain how brilliant Witten is. 

42.8 Sparticles and 26-D Superstrings 

"What we've learned in the 20th century is that the great ideas in physics 
have geometric foundations." Edward Witten, 1991 Scientific American 

I'll leave you with some other higher dimensional ideas which modern physicists 
have considered in the past, or are currently considering in the 1990s: 

• Recent Kaluza-Klein theory (named after two European scientists) sug-
gests the existence of additional dimensions that are rolled up or "compactified" 
in such a way that they are undetectable at macroscopic levels. 

• Gabriele Veneziano, in the late 1960s, worked on string theories. However, 
interest in his particular version of the theory faded when other physicists showed 
they would only work in 26 dimensions! 

• Some researchers believe that all known elementary particles have unseen 
symmetric twins called sparticles. 

42.9 Fact File 

42.9.1 Hyperbeings Look in Our Intestines 

"What can hyperbeings do, and why do their acts initially seem so alien to 
us?" Theoni Pappas, More Joy of Mathematics 

Theoni Pappas in More Joy of Mathematics discusses hyperbeings who can dem-
onstrate the kinds of phenomena that occur in hyperspace. For example, a 

hyperbeing can effortlessly remove things before our 
very eyes, giving us the impression that the objects 
simply disappeared. This is like a 3-D creature's 
ability to remove a piece of dirt inside a circle drawn 
on a page without cutting the circle. The hyperbeing 
can also see inside any 3-D object or life form, and if 
necessary remove anything from inside. The being 
can look inside our intestines, or remove a tumor from 
our brain without ever cutting through the skin. A 

pair of gloves can be easily transformed into two left or two right gloves. And 3-D 
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knots fall apart in the hands of a hyperbeing, much as a 2-D knot (a loop of string 
lying on a plane) can easily be undone by a 3-D being simply by lifting the end of 
the loop up into the third dimension. 

42.9.2 Hyperdimensional Knights 

Chess is essentially a 2-D game where pieces slide along the surface of the check-
erboard plane. They usually can't jump up into the third dimension to get around 
one another. The Knight, however, is a hyperdimensional being (see previous par-
agraph) because it can leave the playing board plane to jump over other pieces in 
its way. Are there other hyperdimensional chess pieces? I once played a truly 2-D 

mvm yfjmt/A y j game where Knights could not leave the plane to 
i fwL / f c j I f i ^ W get over other pieces. Try it. How does this affect 

' M ,„ the game? Could a world chess master constrained 
y ' / - ' / , t 0 u s*n8 knights defeat a good player using 
j f p ^ j I p j ^ M standard hyperdimenional Knights? What would 

' - have been the outcome for the game played 
between chess champions Herman Steiner and George Treysman in Chicago, 
1937, if Steiner had a hyperdimensional Rook that could jump over other pieces? 
(See "Miraculous Chess Solutions" on page 311 and "Knights in Hell" on 
page 321 for more information on odd chess technologies and puzzles. See "Chess 
Music" on page 204 for music from chess.) 

42.9.3 Where are Einstein's Children? 

Have you ever wondered if Albert Einstein had children, and if so, what became 
of them? I was able to track down specific information regarding one of his sons 
from a book published in 1991. Hans Albert Einstein (1904-1973) was the first of 
Albert Eintstein's two sons. He was educated in Zurich, became a hydraulic engi-
neer, and joined the faculty of the University of California at Berkeley in 1947. In 
1959 he married his second wife, neurochemist Elizabeth Roboz. (Source: 
Roboz-Einstein, E. (1991) Hans Albert Einstein: Reminiscences of His Life and 
Our Life Together. Iowa Institute of Hydraulic Research: University of Iowa: 
Iowa City. 112 pp., $12.50.) 

42.9.4 Rubik's Tesseract! 

Many of you will be familiar with Erno Rubik's ingenious cubical puzzle and its 
variations which include a 4x4x4x4 cube and puzzles shaped like tetrahedra. One 
natural variation that never appeared on toy store shelves is the 4-D version of 
Rubik's cube - Rubik's tesseract. Dan Velleman (Amherst College) discusses the 
3x3x3x3 Rubik's tesseract in the February 1992 issue (v. 65(1): 27) of Math-
ematics Magazine. Many of his findings were discovered with the aid of a colorful 
simulation on a Macintosh computer. Velleman remarks, "Of course, the tesseract 
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is somewhat harder to work with than the cube, since we can't build a physical 
model and experiment with it." Those of you interested in pursuing the details of 
this mind-shattering tesseract should consult his paper. 

42.10 For Further Reading 

1. Apostol, T. (1969) Calculus, Volume II, 2nd. Edition Wiley, New York. 
2. Pappas, T. (1990) More Joy of Mathematics. Wide World Publishing/Tetra, P.O. 

Box 476, San Carlos, CA 94070. 
3. Kasner, E., Newman, R. (1989) Mathematics and the Imagination. Tempus: New 

York. (A reprint of the 1940 edition.) 
4. Gardner, M. (1965) Mathematical Carnival. Vintage: NY. 
5. Heinlein, R. (1940) And he built a crooked house. In Fantasia Mathematica, 

Fadiman, C. ed. Simon & Schuster, NY (1958). 
6. Cramer, J. (1989) Twistor. William Morrow: New York. (Cramer is a Professor of 

Physics at the University of Washington. The protagonists in the book, a male postdoc 
and a female graduate student working in the University of Washington Physics 
Department, are conducting an experiment which uses a rather peculiar configuration 
of electromagnetic fields that rotates normal matter into shadow matter (predicted by 
string theory), and vice versa, rather like rotating a stage where one set is replaced by 
another. The first time this happens, a spherical volume containing a lot of expensive 
equipment disappears. Subsequently, the postdoc and two small children are 
"rotated" to a shadow-matter Earth and trapped inside a huge tree, and an enormous 
sphere replaces them in the middle of their laboratory in Seattle.) 

7. Lowry, E. (1963) The clock paradox. American Journal of Physics. 31: 59. 
8. Banchoff, T. (1990) Beyond the Third Dimension: Geometry and Computer Graphics 

and Higher Dimensions. Freeman, NY (Answers questions such as: where is the 
fourth dimension? Does it exist? How do we get there? What does an object in the 
fourth dimension look like?) 

9. Horgan, J. (1991) The Pied Piper of superstrings. Scientific American. Nov 265(5): 
42-44. 

10. Dewdney, A. (1984) The Planiverse: Computer Contact with a Two-Dimensional 
World. Poseidon: NY. 

42.11 Credit 

The twisted bottle at the beginning of this chapter is courtesy of artists/writer Paul Ryan 
of the Earth Environmental Group. For more details on this shape, see: Ryan, P. (1991) 
The earthscore notational system for orchestrating perceptual consensus about the natural 
world. Leonardo. 24(4): 457-465 (Pergamon Press). The drawing was done by Gary 
Allen. The bottle object is called a relational circuit. 





Chapter 43 

Interlude: Tortured Surfaces 
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In the 1990s, there are several internationally famous sculptors inspired by pure 
mathematics. One notable example is German mathematician Benno Artmann 
who creates mathematically inspired plaster sculptures as a way of conveying the 
beauty of intricate geometrical surfaces. The surfaces he chooses for his sculp-
tures are not the simple saddles and parabaloids you may have seen in introduc-
tory geometry books, but rather the tortured, twisted (yet beautiful) surfaces 
lurking in the field of geometrical topology. 

Artmann studied physics and mathematics at the universities of Tubingen, 
Gottingen, and Glessen where he received his Ph.D. in 1965. Today he is a Pro-
fessor at the Technical University of Darmstadt. His interests include: 
"Hjelmslev's natural geometry, mathematical education, and the history of Greek 
mathematics." One of my favorite scholarly papers of Artmann's is his "Math-
ematical Motifs on Greek Coins," published in 1990. In this article Artmann 
attempts to fill in some of the gaps in our knowledge of the history of pre-Euclid 
Greek mathematics by presenting readers with discussions of mathematical 
images on ancient Greek coins. 

Presented facing this page are photographs of three of Artmann's plaster models. His 
sculptures usually have rather long names, for example: "Heegaard-Zerlegung der 
3-Sphare in zwei Vollbrezeln." Artmann may be reached at: Prof. Dr. B. Artmann, Tech-
nische Hochschule Darmstadt, Fachbereich Mathematik, 6100 Darmstadt, Schlossgar-
tenstr. 7, Germany. 

43.1 For Further Reading 

1. Artmann, B. (1990) Mathematical motifs on Greek coins. The Mathematical Intelli-
gencer. 12(4): 43. 

2. Pinkall, U., and Sterling, I. (1987) Willmore surfaces. The Mathematical Intelli-
gencer. 9(2): 38. (Contains many unusual computer graphics diagrams of geometrical 
surfaces.) 





Chapter 44 

Caged Siphonaptera (Fleas) in Hyperspace 

"He showed me a little thing, the quantity of a hazelnut, in the palm of my 
hand, and it was round as a ball I looked thereupon with the eye of my 
understanding and thought: What may this be? And it was answered gener-
ally thus: It is all that is made ." Julian of Norwich, 14th C 

Many of you have probably seen simple-looking geometrical puzzles which 
require you to estimate the number of overlapping triangles within a diagram 
such as the one below: 

This figure contains 87 triangles. Can you count the number of triangles in the 
following, more difficult diagram? 

enigmas which follow. Why not give these two triangle puzzles to a friend to 
ponder? 
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15 20 25 30 
Cage Size 

Figure 44.1. Fleas. Shown here is the number of fleas containable by a lattice cage 
assembly of "size" n in 2-D, 3-D, and 4-D. 

My favorite puzzles are of a similar geometrical variety, and I call them "flea 
cages" or "insect cages" for reasons you will soon understand. I enjoy these flea 
cages because they are simpler to analyze than the triangle figures. Also, since 
the figures consist of a network of perpendicular lines, they are much easier for 
you (or your computer program) to draw. Consider a lattice of 4 squares which 
form one large square: 

I 1 I 2 I 

3 I k I 

How many rectangles and squares are in this picture? Think about this for a 
minute. There are the 4 small squares marked "1," "2," "3," and "4," plus 2 hori-
zontal rectangles containing "1 and 2" and "3 and 4," plus 2 vertical rectangles, 
plus the 1 large surrounding border square. Altogether, therefore, there are nine 
4-sided overlapping areas. The lattice number for a 2x2 lattice is therefore 9, or 
L(2) = 9. What is L(3), L(4), L(5), and L(n)7 It turns out that these lattice 
numbers grow very quickly, but you might be surprised to realize just how 
quickly... The formula describing this growth is fairly simple for an n x n lattice: 
L(n) = n\n + l ) 2 / 4 . The sequence goes 1, 9, 36, 100, 225, 441 ... For a long 
time, I've liked to think of the squares and rectangles (quadrilaterals) as little 
containers or cages in order to make interesting analogies about how the sequence 
grows. For example, if each quadrilateral were considered a cage which contained 
a tiny flea, how big a lattice would be needed to cage one representative for each 
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Figure 44.2. Pattern of lines. Is this a random jumble of lines? What patterns do you 
see? See text for details. 

different variety of flea (Siphonaptera) on earth? To solve this, consider that 
_ _ _ _ _ _ _ _ _ _ Siphonapterologists recognize 1,830 varieties of 
~ ~ ~ ~ ~ ~ ~ ~ ~ fleas. Using the equation I have just given you, 

you can compute that a small 9x9 lattice (at left) 
~ ~ ~ ~ ~ ~ ~ ~ ~ could contain 2025 different varieties, easily large 

enough to contain all varieties of fleas. (For Sipho-
I I I I I I I I I naptera lovers, the largest known flea was found in 
————————— the nest of a mountain beaver in Washington in 

1913. Its scientific name is Hystirchopsylla schefferi, and it measures up to 0.31 
inches in length, about the diameter of a pencil). 

It is possible to compute the number of cage assemblies for 3-D cage assem-
blies as well. The formula is: L(n) = ((n3)(n + 1 ) 3 ) /8 . The first few cage 
numbers for this sequence are: 1, 27, 216, 1000, 3375. Tim Greer of Endicott 
New York has generalized the formula to hyperspace cages of any dimension, m, 
as L(n) = ((nm)(n + l ) m ) / (2 m ) . Let's spend some time examining 3-D cages 
before moving on to the cages in higher dimensions. 

44.1 Various Zoos 

How large a 3-D cage assembly would you need to contain all the species of 
insects on earth today? (To solve this, consider that there may be as many as 30 
million species of insect, which is more than all other phyla and classes put 
together). Think of this as a zoo where one member of each insect species is 
placed in each 3-D quadrilateral. It turns out that all you need is a 25x25x25 
(n = 25) lattice to create this insect zoo for 30 million species. 

In order to contain the approximately 5 billion people on earth today, you 
would need a 59x59x59 cage zoo (see Figure 44.3). You would only need a 
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Figure 44.3. A cage containing all humanity. In order to contain the approximately 5 
billion people on earth today, you would need a 59x59x59 cage zoo, the front face of which 
is shown here. You would only need a 40x40x40 (n = 40) zoo to contain the 460 million 
humans on earth in the year 1500. 

40x40x40 (n = 40) zoo to contain the 460 million humans on earth in the year 
1500. 

Here is a table listing the size of the cages needed to contain various large 
numbers, assuming that each quadrilateral contains a single unit of whatever is 
listed (e.g pills, objects, stars, or colors): 

1. Largest number of objects found in a person's stomach: 
2,533 (5x5x5 cage)23 

2. Number of different colors distinguishable by the human eye: 
10 million (21x21x21 cage) 

3. Number of Stars in the Milky Way galaxy: 
1012 (141x141x141 cage) 

44.2 4-Dimensional Cages 

Let's conclude by examining the cage assemblies for fleas in higher dimensions. 
I've all ready given you the formula for doing this, and it stretches the mind to 
consider just how many caged fleas a hypercage could contain, with one flea resi-
dent in each hypercube or hypertangle. 

The following are the sizes of hypercages needed to house the 1,830 flea vari-
eties I mentioned earlier in different dimensions: 

23 This number comes from a case involving an insane female who at the age of 42 swal-
lowed 2,533 objects including 947 bent pins. 
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Figure 44.4. Stars within stars. How many triangles do you count? See text for details. 

This means that a small n — 2, 7-dimensional lattice (2x2x2x2x2x2x2) can hold 
the 1,830 varieties of fleas! An n — 9 hyperlattice in the 50th dimension can hold 
each electron, proton, and neutron in the universe (each particle in its own cage). 
Figure 44.1 shows the number of fleas containable by a lattice cage assembly of 
"size" n in 2-D, 3-D, and 4-D. For example, the lower right most point indicates a 
little more than 2 x 105 fleas can be contained in a 30x30 lattice. 

44.3 Stop and Think: Coney Island, The Ice Age, Etc. 

1. If each cage region were to contain a single snow crystal, what size lattice 
would you need to hold the number of snow crystals necessary to form the ice 
age, which has been estimated to be 1030 crystals? If you were to draw this 
lattice, how big a piece of paper would you need? Provide answers to this 
question for 2- and 3-dimensional figures. 

2. If each cage region contained a single grain of sand, what size lattice would 
you need to hold the number of sand grains contained on the Coney Island 
beach, which has been estimated to be 1020 grains? If you were to draw this 
lattice, how big a piece of paper would you need? Also provide answers to 
this question for a hyperlattice in the 4th dimension. 

Dimension (m) Size of Lattice (n) 

2 
3 
k 
5 
6 
7 

9 
5 
k 
3 
3 
2 
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3. A. Lakhtakia has noted that the lattice numbers L(n) can be computed from 
triangular numbers (Tn)m . Why should the number of cage assemblies be 
related to triangular numbers?24 

4. The puzzle diagrammed in Figure 44.2 may first appear to be just a random 
jumble of lines, but if you look closely there are some interesting symmetries. 
I made this figure by placing 4 equilateral triangles of the largest possible 
size within the square with one point in each of the square's corners. (Can 
you have your computer draw this?) For the following two questions consider 
the lower left hand corner and upper right hand corner to be located at (0,0) 
and (1,1), respectively. What are the coordinates of the vertices where the tri-
angles intersect the square? Can you draw the 3-D analog of this figure using 
triangular pyramids within a cube? Where would the coordinates of the trian-
gular vertices in the 3-D model be located? (Can you have your computer 
draw this?) 

5. In order to create the puzzle in Figure 44.4 I have divided a hexagon into 
nested stars. (Can you have your computer draw this?) This figure shows two 
nested stars. Therefore the nesting level, n, is 2. Hard as it may be to believe, 
there are 69 different overlapping triangles in this figure. Is it possible to 
develop a formula that gives the number of triangles as a function of the 
nesting level, nl 

44.4 The Ways of Coprophiles 

As mentioned earlier in this chapter, Siphonapterologists recognize 1,830 variety 
of fleas. How does this compare with other insects? Incredible as it may seem, 
there are around 300,000 species of beetles, making beetles one of the most 
diverse groups of organisms on earth. When biologist J.B.S. Haldane was asked 
by a religious person what message the Lord conveyed through His creations, he 
responded, "An inordinate fondness for beetles." 

One of the most interesting books on beetles is Dung Beetle Ecology which 
was favorably reviewed in the November 8th issue of Science Magazine. Here 
are some intriguing facts about dung beetles from this review: 

• A large number (about 7000 species) of the 300,000 species of beetles live 
off animal dung. 

• Animal dung is often fiercely contested. On the African savanna up to 4000 
beetles have been observed to converge on 500 grams of fresh elephant dung 
within 15 minutes after it is deposited. 

• Some dung beetles fashion dung into balls and roll it away for burial. The 
dung-ball rollers (genus Sisyphus) were held sacred and immortalized by the 

24 The numbers 1, 3, 6, 10, ... are called triangular numbers because they are the number 
of dots employed in making successive triangular arrays of dots. The process is started 
with one dot, and successive rows of dots are placed beneath the first dot. Each row has 
one more dot than the preceding one. 
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ancient Egyptians. For these beetles, the completed dung ball is waved around as 
a sexual display and courtship attractor. 

• Kleptoparastic beetle is the scientific term for a dung beetle which steals 
dung from others. 

• African dung beetles bury one metric ton of dung per hectare per year. 
• Dozens of species have been imported to Australia to handle the dung of 

cattle which could not be effectively handled by the native species. 
• Insect dung communities involve hundreds of complex ecological inter-

actions between coprophagous flies and their parasites, insects, mites, and nema-
todes. 

• In South Africa, more than 100 species of dung beetle occur together in a 
single cow pat. One gigantic species, Heliocopris dilloni, resides exclusively in 
elephant dung. A few species of beetles are so specialized that they live close to 
the source of dung, in the hairs near an animal's anus. 

44.5 For Further Reading 

1. Heinrich, B. (1991) The ways of coprophiles. Science. 254(5033): 878-879. 
2. Hanski, I., Cambefort, Y. (1991) Dung Beetle Ecology. Princeton University 

Press: NJ. 481 pp., illus. $60.00. 





Chapter 45 

Squashed Worlds That Pack 
Infinity into a Cube 

"Such as say that things infinite are past God's knowledge may just as well 
leap headlong into this- pit of impiety, and say thai Cod knows not all 
numbers. ... What are we man wretches that dare presume 10 limit His 
K now!edge." St.Augustine 

"There was from the very beginning no need for a struggle between the finite 
and infinite. The peace we are so eagerly seeking has been there all the 
time.'' D. T. Suzuki 

The concept of infinity has challenged humans for centuries. Hor example, Zcno 
(an Rleatic philosopher living in the 5tb Century B.C.) posed a famous paradox 
involving infinity. The paradox seemed to imply that you can never leave the room 
you are in. As Zeno reasoned, In order to reach the door you must first travel half 
the dislance there. Once you get to Lhe half-way point, you must still traverse the 
remaining distance. You need to continue to half tile remaining distance. The 
procedure can he repealed as diagrammed below: 

1/2 3/4 % 
If you were lo jump ! /2 the distance, then 1/4 the distance, then an 1/8 of the 
distance, and so on, will you reach the door? Not in a finite number of jumps! in 
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1.414213562373095048801688724209698078569671875376948073176679737990732478462 
10703885038753432764157273501384623091229702492483605585073721264412149709993 
58314132226659275055927557999505011527820605714701095599716059702745345968620 
14728517418640889198609552329230484308714321450839762603627995251407989687253 
39654633180882964062061525835239505474575028775996172983557522033753185701135 
43746034084988471603868999706990048150305440277903164542478230684929369186215 
80578463111596668713013015618568987237235288509264861249497715421833420428568 
60601468247207714358548741556570696776537202264854470158588016207584749226572 
26002085584466521458398893944370926591800311388246468157082630100594858704003 
18648034219489727829064104507263688131373985525611732204024509122770022694112 
75736272804957381089675040183698683684507257993647290607629969413804756548237 
28997180326802474420629269124859052181004459842150591120249441341728531478105 
80360337107730918286931471017111168391658172688941975871658215212822951848847 

Figure 45.1. W/ẑ  Hippasus died. 

fact, if you kept jumping forever at a rate of 1 jump per second until you are out 
the door, you will jump forever. Mathematically one can represent this limit of an 
infinite sequence of actions as the sum of the series (1 /2 + 1 /4 + 1/8 + ...) The 
modern tendency is to resolve Zeno's paradox by insisting that the sum of this 
infinite series 1 /2 + 1 /4 + 1/8 is equal to 1. Since each step is done in half as 
much time, the actual time to complete the infinite series is no different than the 
real time required to leave the room.25 Many Greeks, however, could not accept 
the existence of infinity. In fact, when one of Pythagoras' disciples, Hippasus, 
found that y / l was irrational26 (Figure 44.1), they killed him, for his colleagues 
could not accept this infinitely long, non-repeating number. However, other Greek 

philosophers, when learning that the 
square root of 2 was not a rational 
number celebrated the discovery by 
sacrificing 100 oxen. (Weren't 
humans more passionate about math-
ematics in those days?) 

In the October 1991 issue of 
Omni, Dave Jaffe wrote on Zeno's 

paradox, and I thought you would like to hear his amusing solution to the 
paradox, excerpted from his upcoming anthology of brainteasers titled Math-
ematical Games That Could Not be Solved by People Who Claim They Have 
High IQs: 

25 One easy way to compute the sum of this series is to use the formula y = 1 — 2~ which 
gives the sum of the first n terms. For n = 10, y = 0.99902. 

26 An irrational number cannot be expressed as a ratio of two integers. Transcendental 
numbers like e = 2.718... and it = 3.1415... and all surds (e.g. y /2 , cube roots, etc.) are 
irrational. 



4 5 . 0 S q u a s h e d W o r l d s T h a t P a c k I n f i n i t y i n t o a C u b e 2 5 1 

Figure 45.2. In Zenograms, diagonal parallel planes warp and meet at infinity. 
zontal planes remain flat. 

Hori-

Aristotle challenged Achilles to run a footrace with a tortoise. The tortoise would start 
the race at a point half the distance to the finish line. By the time Achilles reached 
that point the tortoise would have covered another half distance to the finish. And so 
it would go, Aristotle smirked, with Achilles forever closing on the tortoise but never 
catching it. 

Achilles thought long and hard, then asked the philosopher, "Uh, what if I stab 
it? ... I got a sharp spear. Cuts through turtle shell easy." 

With this short introduction to infinity during the time of the Greeks, let's 
move on to an interesting graphical way of drawing infinitely growing mathemat-
ical formulas with the method outlined in the following. You can compress all of 
mathematical space from — oo to + oo into a cube bounded by -1 and +1. One 
way to do this makes use of the hyperbolic tangent function 

tanh x = ~ (45.1) 
e + e 

At left is a diagram representing the behavior of this function. I call the resulting 
^ representation a Zenogram, after the ancient phi-

losopher who studied various properties of infinity. 
y My graphics program, called Zenospace, allows 
_ ^ ^ ^ explore this strange squashed world using 
jr advanced computer graphics. No matter how 

0 x large your numbers are, the tanh function can only 
return a maximum value of positive 1 (or a 

- i minimum value of minus 1). Here are some obser-
vations on this weird space. In the Zenogram, 

infinite diagonal parallel planes begin to curve, and meet at infinity (the sides of 
the box in Figure 45.2). Horizontal or vertical planes perpendicular to the x, y or 
z, axes will not curve. Paraboloids (z = xn + yn, n = 2) become squashed in inter-
esting ways as they near the side of the box (Figure 45.3). (What happens as you 
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Kgurc 45.3. in a Zenogram. a squaahed paraboloid rises to infinity. 

increase *?) Spheres deform in interesting ways as they grow larger or are pushed 
towards the sides of the bounding hex. As you push the sphere up, it flattens like 
a pancakc. As you increase Lhc radius of the sphere il begins to look cuhe-like. 
What would happen to a model of a human body as it walked around in zenos-
pace? What would you see il' you flew in an airplane in zenospace? If you are 
interested in other approaches to squashing coordinate systems for 2-D worlds, sec 
Oihilisccfs Reaching for Infinity {1990, ' fab Books, PA). 

"! looked round the trees. The thin net of reality. These trees, this sun. I was infinitely 
far from home. The proloundcst distances arc never geographical." - John Fowles, The 
Magus 

AV.60RTTOM: How he Compute Sqrfc(Z) ho Many Decimal R ISCRS 

/* accuracy is Lhc i:ui:ibcr oS digily */ 
a racy = 100 
x = 2 
cpylloa - x/'0E'aC<ĵ at.-y 
g'.maa = 1 
do ecunl=l by 1 i.;:Lj.l(abs (sjld-yuc:sy)»><= cptilcn) 

ol rl <711 ess 
guess = .b * {x/guess + guess) 
end 

Krinh "The square root cf x is" guess. 

Pseudocode 45.1. How to compute r,qrt(2) to many decimal places. (The program codcd 
here is in the style of the REXX language.) 



Chapter 46 

Bacon, the Mini-Oos 

"The pi machine prints the digits of pi in a surreal typeface where every digit 
is half as wide as its predecessor. The complete printout fits on an index 
card, but not even the most powerful electron microscope will reveal the last 
digit." William Poundstone, 1988, Labyrinths of Reason 

The following fictional story is included to stimulate your imagination regarding 
infinite geometric progressions and spaces. The story deals with rapidly multi-
plying creatures confined within a small glass dish. A few tables of numbers and 
program outlines will permit some of you to experiment with the behavior of these 
societies of organisms using a computer or pocket calculator, although you can 
just as easily appreciate the paradoxical and weird history of the tiny civilization 
that evolved in a laboratory dish without any computations. 

Professor David Mutcer grinned as he gazed into the glass petri dish which 
rested on the wooden desk in his dimly lit bedroom. He had developed intelligent 
lifeforms, each about the size of a thumbnail, named Oos. (The term "Oos" is 
both the singular and plural form of the noun, and it rhymes with the word 
"moose.") These emerald-colored Oos exhibited a variety of shapes, and subsisted 
quite well on the limited amount of thick nutrient gel which lined the bottom of 
their glass enclosure. The two original Oos, named Dakota and Dextrose (at least 
that was as close as Dr. Mutcer could come to pronouncing their names) begat 
two smaller Oos named Dirigible and Dirk. Dirk and Dextrose begat Deli, 
Doornob, and Data. Data and Dirk begat Dante, Deer, Demeter, Diphenyl and 
Deliquesent. Dr. Mutcer faithfully recorded the genealogy of Oos in a large 
bound book he kept on the shelf in his private laboratory. Since the petri dish 
enclosed only a limited amount of space, each generation tended to become 
smaller and smaller in body size - an interesting example of the inheritance of 
acquired characteristics. On this particular day, the newest and tiniest Oos, son 
of Dante and Doobie, was born. His name was Bacon. Bacon was a cheerful 
chap, about the size of a dust speck. 



2 5 4 4 6 B a c o n , t h e M i n i - O o s 

Individual Length Total Length 

0.5 
0.25 
0.125 
0.0625 
0.03125 
0.015625 
0.0078125 
0.00390625 
0.001953125 
0.0009765625 
0.00048828125 
0.000244140625 
0.0000305175783 

0.5 
0.75 
0.875 
0.9375 
0.96875 
0.984375 
0.9921875 
0.99609375 
0.998046875 
0.999023438 
0.999511719 
0.999755860 
0.999969483 

Figure 46.1. Oos miniaturization through time. Assuming that a progenitor Oos were 
about 0.5 inches in length, and that a child's length were half of the parent's, this table 
gives a feel for the length of a child in each successive generation (Column 1), and the 
total (summed) length of Oos lined up in a row as a function of generation (Column 2). 
(For simplicity, Column 2 assumes that one child is produced in each generation.) What is 
the size of an Oos in the 5th generation if each child's length were three-fourths the 
parent's, rather than one-half? 

46.1 Intergenerational Incest 

Dr. Mutcer observed many characteristics of Oos society which were interesting 
to his visitors and friends. As one example, Dr. Mutcer frequently asked inquisi-
tive guests to speculate on a society where your great-great-great grandmother 
still lived but was about a hundred times your size. 

The Oos society was of necessity incestuous, particularly during the auspi-
cious reign of the two thumbnail-sized progenitors, Dakota and Dextrose. As the 
number of Oos in each succeeding generation increased geometrically, mating 
between more distant cousins became possible, and, as in human cultures, was 
encouraged over brother-sister matings. Intergenerational incest, however, was 
rare because of size discrepancies. The only factor that limited a romantic ren-
dezvous was in fact body size, since, as Dr. Mutcer was quick to point out, it was 
a little difficult to mate in a physically satisfying way with someone fifty times 
your size. Mutcer also often pondered: wouldn't there tend to develop some sort of 
hierarchy, either religious or governmental, based solely on size? Would society 
be responsible for the well being of its members which it could not see? Would 
such a question be meaningless since there might be no way to protect invisible 
members? And what about war? Could war exist in such a heterogeneous 
society? 

Would different subsets of the population, because of size, develop their own 
separate societies, religion, and laws? Would little Bacon even believe that indi-
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Individual Area 
0.25 
0.015625 
0.00006103515625 
0.000000000931322574615478515625 
0.000000000000000000216840434497 
1.17549435082228750796873653722E-38 
3.45446742203777785015454074511E-77 
2.98333629248008269731638612618E-154 
2.22507385850720138309023271732E-308 
1.23773841895303131019207334797E-616 
3.82999098438087414317869240480E-1233 
3.66720773510969433124282478388E-2466 
3.36210314311209350626267781692E-4932 
2.82593438623105457711096087447E-9864 
1.99647628882077178626362299075E-19728 

Total Area 
0.25 
0.265625 
0.26568603515625 
0.265686036087572574615478515 
0.265686036087572574832318950 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 
0.265686036087572574832318950122 

Figure 46.2. Ooy miniaturization through time. This is the same as the previous table of 
numbers, except showing the araz (Column 1) and total summed area (Column 2) of the 
Oos. Area is computed on the assumption that an Oos has a shape of a square. The "E" 
indicates scientific notation. Notice that in this simplified scenario, the area of all the Oos 
bodies in the petri dish reaches a constant, and therefore the Oos will not overflow their 
limited environment. What is the area of an Oos in the 5th generation if each child's 
length were three-fourths the parent's, rather than one-half? 

viduals such as Dakota or Dextrose existed, or would they be relegated to the 
realm of mythological creatures, like the superhuman gods of ancient human soci-
eties? 

46.2 Intergenerational Oos Communication 

"We are told that the shortest line segment contains an infinity of points. 
Then even the shell of a walnut can embrace a spatial infinity as imponder-
able as intergalactic space." 

William Poundstone, 1988, Labyrinths of Reason 

The Oos world was a continuum. This means that even though individuals like 
Dakota and Dextrose could not see all their children, they could send them a 
message via a chain of Oos who would relay the message from one Oos to another 
in an ever-diminishing progression of messenger Oos. Of course, it was hard to be 
sure if someone too-small-to-be-seen really was there at all. When a message was 
received, it would probably be distorted, and it might be hard for a Mini-Oos to 
accept the fact that it had received a message from a creature it could not see but 
with whom it shared the same world. Any reply from the Mini-Oos, distorted in 
its turn by the reverse chain of ever larger messenger Oos, might seem to come 
from nowhere (and maybe, sometimes, it did). 
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A L G O R I T H M : How to C o m p u t e Oos s i z e , 

sum = 1 
do i = 1 to 15 /* 15 g e n e r a t i o n s */ 

sum = sum * 0.5 
P r i n t sum 

end 

Pseudocode 46.1. How to compute Oos size. Try size attenuations other than 0.5, for 
example, 0.75, or 0.9. Modify the program to compute the area of the dish covered by all 
the Oos bodies. 

Yes, Dr. David Mutcer had many questions concerning Oos society, and he 
devoted a good deal of his waking hours to the study of Oos culture in an attempt 
to find the answers. 

46.3 A Memory from Bacon's Early Childhood 

"Scales and magnitudes are part of the stuff that scientists love. Cosmology 
and megascales on the one hand, and atoms (or subatomic particles) and 
microscales on the other, give us a sense of how grand nature is and how con-
sistent our physical pictures are" John I. Brauman, 1991, Science 

Bacon, the dust speck sized Mini-Oos, lived in a small community of Oos about a 
half-inch from the glass side wall of the petri dish. Today his family was planning 
a trip to the great wall, something roughly equivalent to a resident of Atlanta 
going to the ocean. 

"Mom, I can't wait until we see the wall!" Bacon squeaked with exponentially 
growing anticipation. 

"Bacon, I know you will appreciate this vacation," Doobie, his mother, 
warmly replied. "After all, most of the Oos live so far away from the wall they 
can never even hope to touch its shiny surface." 

Distance is a function of one's own size and one's ability to traverse it. What 
Dr. Mutcer could easily pick up with one hand and place in his lunch bag was as 
big as the British Isles to a microscopic Oos. There were many Oos, much smaller 
than Bacon, whose entire village could exist on a plain of nutrient gel no bigger 
than the size of Bacon's body. They could never hope to travel the distances 
required to see the great wall. 

After about half an hour, Bacon and his family reached the wall.27 Near the 
wall was a three-mile crescent of white nutrient gel called agar. Some moisture 
had collected, forming a miniature ocean. Bacon's mom parked her Paramecium 
in the shade of a mound of gel that fringed the beach, and took out box lunches. 

27 Terms like "hour" and "mile" are used to give you a feel for time and distance as experi-
enced in the Oos frame of reference. 
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Figure 46.3. The Oos World. Length attenuation according to generation. 

Bacon let out a squeal of joy and awe. The wall was immense, stretching for as 
far as his eye could see. Oos of all sizes, some smaller than Bacon by a factor of 
fifty, others three times his size, were gathered at the wall. Many Oos children 
were sliding down its surface, while adults could be seen surfing and sailing 
higher up on the glistening quartz ledges. Bacon ran until he was exhausted, and 
then he threw himself down on the gel and gleefully rolled to the water's edge. 

During these early days of Oos evolution, the atmosphere in their enclosure 
was dense and rich in carbon dioxide. Various fungi grew along the shoreline. 
There were no fish in this waters, but there were various microscopic protozoa. 

46.4 Love and War 

"What am I, Life? A thing of watery salt, held in cohesion by unresting cells, 
which work they know not why, which never halt, myself unwitting where 
their Master dwells." John Masefield, What am I, Life? 

During Bacon's life a quasi-religious government which reeked of oligarchic col-
lectivism came to power. Dakota had come to be considered a god. (Most Oos 
couldn't see him anyway.) At this time in history all Oos were required to append 
to their name a numerical designation. For example, Bacon was now called 
Bacon 150 - the 150 designated that he was 150 times smaller than Dakota or 
Dextrose. The members of a village usually had designations which varied by 
plus or minus 5 size units; however, a size restriction for members of a village was 
not officially mandated by law. Unfortunately for Bacon 150, he fell in love with 
Diphone 200, an aquamarine beauty, but because of a new ruling, only Oos within 
25 "points" of each others size could marry! This size restriction on marriage was 
enforced by the revolutionary guard of a new dictator, Death 50, who had come to 
power as a result of a popular uprising of the less educated classes against the 
license of the former regime. 
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Figure 46.4. A typical Oos-lizard construct formed from billions of microscopic 
Oos. First the Oos construct the skeletal framework using roughly 1 x 108 Oos, and then 
add the various organ systems and pigment cells for external coloration. (See "Oos-Lizards 
Battle the World" on page 265 for details.) 

These and other cruel mandates put forth by Death 50 precipitated an 
uprising from the more educated classes of Oos. Confined to their glass enclosure 
from which they could not emigrate, they were left only with the choice of sub-
mission or revolt. It was decided by the community at large that the Oos would 
try to oust Death 50, their vituperative king, and an open rebellion shortly ensued. 

War raged on for generations. Death 50 still ruled the land, demanding abso-
lute obedience from his subjects. Bacon 150 was one of the soldiers who began to 
march on the king's castle. This was a war for all Oos, and brave brethren fought 
together no matter what their size or religious persuasion. At Bacon's side was 
Dendrite 100 and a large number of "small folk," the 200 to 500 series. In addi-
tion to the small folk were some one hundred ultra-small folk upon their backs. 
One of them, Deeee 5000, would turn out to be the courageous Oos who won the 
war. 

The heterogeneous group of Oos reached the castle wall and were quickly sur-
rounded by the revolutionary guard. These were big fat brutes ranging from des-
ignations 55 through 75, and they were enough to drive Bacon's bivouac batty. 
With almost no effort the gregarious guards simply walked in circles in order to 
decimate Bacon's legions beneath their feet. At the revolutionary guards' sides 
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f igure 46.5. Oos infiltration of an adult male hitman. In order k> commanded a body, 
microscopic Oos travel ihe 3J pairs of nerves springing from the spiral chord, and then 
enter the nerves ol the tongue and iIs vicinity. They were not always successfal at this 
task. (See "Oos-Lizards J*aUle the World" on page 2 65 for details.) 

stood the king's roving whores. And behind the revolutionary guard stood Death 
50 in all his horror and glory. He gazed upon the battle scene and then suddenly 
cut loose xviLh a hideous, stentorian roar (which to tlie small folk sounded like a 
dull pu(sc). 

A s already mentioned, some of Lhe Oos were so small as to be nearly invisible 
to other Oos. Dccc 5000 slipped by the guards, being so small that , even when 
stepped on, he found protection within the thin wrinkles in the guard ' s fleshy feel. 
Luckily for Bacon, Deeee 5000 had the mental perspicacity to J cap into Death 
50's throat . Deeee 5000 crawled to the esophagus where he began to release a 
potent neurotoxin. Deeee then penetrated Dea th ' s pyloric sphincter vvhere he 
secreted addit ional egregious exudate. Within minutes, the king was dead. 

46.5 The End of an Era, and Horseradish 

Dr. Mutcer had difficulty imagining Oos time. While an apple turned brown in 
just a few minuies in his world, many months might have elapsed in the Oos 
world. By now, decades had passed for the Oos culture. Kxolic forms of govern-
ment and religion died, as new forms quickly took their place. Cycles of war and 
peace continued (with peace the more common). Oos breathed and bled, crashed 
and died, smiled and cried, as the years rolled on. Baton's glaucous grave stone 
stood on a lonely hill in the countryside near his village. 
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Through the months, Dr. David Mutcer grew weary of observing his ener-
getic Oos. He needed something new to amuse himself. One day he plopped a 
teaspoon of purple beet horseradish in the center of the petri dish to see what 
would happen. 

Horrible as it was, the Oos persevered. The horseradish redirected their evo-
lution, and the Oos folk went through both physical and cultural changes. Their 
bodies had manifested a purple hue, and some of the generations had developed 
strange growths and diseases because of the putrid, nearly-liquid mass in the 
center of their world. Yet they did adapt. Whatever the suffering to individual 
Oos, as a species, Oos survived. 

David Mutcer was fascinated. In his home laboratory notebook, he recorded 
the new forms of law and religion that evolved as a result of the horseradish. 
Many of the Oos had made use of the enzymes in the mucilaginous mess to create 
new industries. Dr. Mutcer grew concerned that they might find a way to dissolve 
regions of their glass enclosure with the potent chemicals. 

46.6 Further Experimentation (with Purple Oos) 

Even the cataclysmic events precipitated by the horseradish in the Oos enclosure 
failed to amuse Mutcer for long. As the days passed, he again became weary with 
the Oos. He needed even more excitement. One day he decided to place a beetle 

inside the glass dish with the purple Oos to 
see what would transpire. The beetle 
destroyed a few villages but then, after a 
few seconds, it became rigid. The Oos 
began to infiltrate the beetle's circulatory 
system and nervous system, thereby 
keeping the insect in a state of dormancy 
where it could do no damage to their 
world. The purple Oos gradually colon-
ized the beetle's body, and at times would 
use some of the new organic chemicals 

provided by the insect's body tissues for the benefit of their civilization. Tiny 
eburnian pieces of the chitinous material in the beetle's exoskeleton became a 
much-traded commodity. 

Dagwood 10000, great-great-great-great-grand child of Bacon 150, spent his 
childhood years in a commune lodged near the tip of the beetle's right antenna. A 
religion similar to present day Judaism was practiced in most of the beetle's head 
and thorax. One day while Dagwood 10000 was at temple, he was told of the 
great land outside the Beetle. Dagwood could scarcely believe what he was 
hearing. He and his friends shivered in amazement and stupefaction. Dagwood 
and his celadon cenobites vowed that they would travel to this strange new land. 

In the meantime, they would take a trip to a commune lodged in the beetle's 
pituitary gland. 
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Life outside the beetle progressed smoothly. A large industrial civilization 
grew at the site where the horseradish had been. In a real sense, Dr. Mutcer's 
cruel experiments had actually enriched the life of the Oos, due to the remarkable 
panoply of new raw materials which allowed their technology to progress at rates 
never dreamed of in the pre-purple days. 

46.7 Destruction 

A month later, Dr. Mutcer was in a bored, depressed mood. His wife had left him 
for a more handsome man and also because of the inordinate amount of time Dr. 
Mutcer spent observing his tiny fecund fellows. 

Dr. Mutcer craved some new spicy action, and over the course of the next few 
days he tried several sadistic experiments. He spat into the petri dish. He sprayed 
a little hairspray in it. He held a match under it. A good 50% of the purple Oos 
civilization was destroyed, yet because of Oos resilience, the remainder adapted 
and survived. What new creatures had evolved? What was life like in the glass 
petri dish, in a world which had suffered so much anguish and sorrow, where life 
had become a travesty, and contentment a mere mockery of living in the shallow 
meaningless void? 

46.8 Harsh Experiments with Beetle Oos and Purple Oos 

Little did Dr. Mutcer realize that by subjecting his creatures to such harsh condi-
tions he was causing them, as a result of natural selection, to become almost 
impervious to deadly stimuli. 

Eventually, he became determined to put an end to all the Oos lifeforms. He 
sprayed insecticide on them. He put two copper leads into the thick nutrient agar, 
and then plugged the culture into a wall outlet. He poured nitric acid on them. 
But always there remained a few survivors to perpetuate the race. Finally he 
wrapped aluminum foil around the dish to exclude all light, and put them in the 
his kitchen freezer. He left them in the freezer for several weeks. 

One Saturday night, while entertaining a young blonde named Tricia in his 
apartment, Dr. Mutcer heard a strange hissing noise coming from the freezer in 
his kitchen. He hesitantly walked to the kitchen, and then he screamed in the 
madness of extreme agony. 

On the floor was what looked like a large, disembodied, purple dog's snout. 
"Good evening," it croaked. "And who is the young lady?" the Snout-Oos 

leered, focussing its blood-shot eyes on Tricia. 
"What do you want?! What are you?" gasped Mutcher. 
"Dave, I am the result of eons of Oos labor. They have constructed me so 

that I may be their spokesman. Trillions of Oos line my nasal cavity." Dr. Mutcer 
was speechless, as was Tricia who nervously darted her eyes about the room. 
Only a few days ago Mutcer had met Tricia while shopping at the local grocery 
store, and her pleasant personality did much to lift his spirts since the acrimonious 
departure of his wife. 



2 6 2 4 6 B a c o n , t h e M i n i - O o s 

"Dave, I would like you to meet my two associates, Mr. Woo and Roxie." 
From one of the kitchen cabinets, oozed a slimy squid-like creature. This evi-
dently was Mr. Woo. And Roxie, looking something like a ball of twine, fell from 
the ceiling. Dave Mutcer and Tricia let out a low moan. 

"The only thing we request of you," continued the Snout-Oos, "is that you 
allow us live here in your apartment with you. We will try not to get in each 
other's ways." 

"And if we refuse?" Mutcer yelled. 
In response to Mutcer's question, Mr. Woo leaped into Tricia's mouth, lodged 

himself beneath her tongue, and began to secrete a green milky fluid. The 
pungent fluid smelled like absinthe and creosol. Tricia began to cough. Mr. Woo 
extended himself into her ear. 

"For God's sake stop!" Dr. Mutcer cried. Mr. Woo withdrew from Tricia. 
"That is what will happen if you refuse. This time the fluid was harmless; 

however, Mr. Woo has the capability of secreting millions of Mini-Oos with the 
fluid. Had he done that, a colony would have been seeded within her body, and 
within hours, they would be directing her body actions." 

"So you see," Roxie's twine body quivered, "you have no choice in the 
matter." 

"And what is your purpose?" asked Dr. Mutcer incredulously. 
The Snout-Oos just grinned. 

46.9 What Transpired in the Oos Civilization Prior to the Snout 

As the Oos generations became smaller and smaller, there came a time when Oos 
bodies approached subatomic dimensions. Even though Oos did not die, except as 
a result of physical injuries, overpopulation was never really a problem because of 
Oos size attenuation. However, the Oos scientists became increasingly alarmed 
when they had surmised that the ordinary laws of physics would break down 
below atomic dimensions. In an attempt to avoid this potentially dangerous con-
dition, a mating restriction was placed on the atomic folk. They alone in the entire 
Oos culture were forbidden to interbreed. Such a restriction on social behavior 
had not been instituted since the kakistocracy of Death 50. 

As one would expect from any passionate society, the mating restriction did 
not last long, and soon a new generation of sub-atomic Oos, named Roobles, came 
into being. Roobles were a very strange folk. Most were very shy, unassertive 
creatures. Their memories were poor, and they were often uncertain of the sim-
plest of things, such as their names or addresses. The more reliable of them were 
used primarily as messengers since they could traverse the petri dish in an instant 
due to peculiar quantum physical laws. In fact, it was rumored that some 
Roobles had currently attempted to tunnel through the glass wall of the petri dish 
and were exploring an exciting, totally new world unsupervised. When Oos scien-
tists got wind of this, they nearly dropped their teeth. Within days the scientists 
began to use Roobles as probes. Some were sent out never to return. Others did 
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finally make it back, and with them they brought tales of an enigmatic, wondrous 
land. 

One of those who came back, a Rooble sometimes named db, would turn out 
to be inst rumental in the Snout construction project and also would one day make 
indirect contact with Dr. David Mutcer . (This rooble proudly named himself db 
to indicate tha t he was a direct descendent of Beetle-Oos Dagwood 10000 and 
also had some of his ancestors in the Bacon line.) As could be imagined, family 
trees had become a big business. 

46.10 Contact 

"If you'll just follow me to the back of the kitchen, we have a surprise for you," said the 
Snout-Oos to Dr. Mutcer and Tricia. 

As they arrived at the back of the kitchen, David Mutcer saw a sight that made him 
gasp. Covering the rectangular kitchen table was a thin coating of purple dust. The Oos 
had arranged themselves, in order of decreasing size along the table top. Through the dust 
poked flags of all sizes and colors designating various civilizations, kingdoms, governments, 
and guilds. Flags near the front of the table were often supported by one or two Oos, but 
Dr. Mutcer could imagine that flags further back along the table were supported by hun-
dreds and thousands of microscopic Oos making concerted efforts to hold up their flag. 
Such an effort was probably far greater than the efforts made by the ancient Egyptians in 
their construction of the Great Pyramid at Giza. 

The beetle of the Beetle-Oos was also present on the table, and protruding from its 
mouth was a green flag with a beetle insignia. Even though the farthest third of the 

kitchen table appeared free of the purple dust, there 
were probably millions of Oos sitting there beneath the 
limit of human visual perception. Near the end of the 
table was marked an "x" about the size of a typewritten 
character. Dr. Mutcer stepped over to the table for a 
closer look. Nearest to him, on a stone throne and wrin-

kled by age, sat thumb-nail sized Dakota! For the next ten minutes, the Snout-Oos briefed 
Dr. Mutcer on the Roobles. 

"This is the scenario," the Snout-Oos barked in a businesslike voice, "db, a Rooble, 
wishes to talk to you. He is stationed at the very center of the V near the end of the table. 
He will send his messages via a preselected chain of Oos chosen for their reliability. When 
the message reaches Dakota, he will signal me. I will then relay the message to you. The 
process will take about one minute. Is what I said understood, Dr. Mutcer?" Dr. Mutcer 
looked at Tricia and then back at the Snout. He hesitated and then spoke. 

"Understood." 

46.11 More on Roobles 

Roobles are hatched from tiny, mottled purple eggs. These eggs do not require warmth to 
develop, as do bird's eggs; however, singing is required to facilitate hatching. 

All the Rooble eggs, no matter where they may be located in the petri dish, hatch in 
synchrony. Oos scientists postulated that an electromagnetic or optical-galvanic field 
would allow the eggs to somehow be in communication with one another. This hypothesis 
was soon abandoned when Oos scientists found evidence suggesting that all Roobles were 
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actually just one Rooble individual delocalized in space. Since Roobles could move instan-
taneously to any part of the petri dish, it was possible for a Rooble to be at more than one 
place at once. The "One Rooble Hypothesis" explained the synchronous hatching phe-
nomenon, since in effect, only one egg was hatching. Months later, when db's family, at 
the request of Oos scientists, asked db about this possibility, db could give no conclusive 
answer. 

After a few years, Oos scientists proved that db, and three dozen brothers and sisters, 
were in actuality all Roobles. For example, by displacing himself in time and space, db 
could form as many copies of himself as he desired. This made db a very important indi-
vidual. Unscrupulous leaders often accosted db in an attempt to win him over to their par-
ticular political cause; however, db was a docile soul and also had no interest in the perils 
of politics. 

In addition to moving through time, Roobles could partition time, which made them 
particularly good workers, artists, and musicians. They 
could make one second become an hour for themselves, and 
therefore could accomplish tasks in seemingly very short 
times. Again, certain Oos began to take advantage of this 
talent and actually enslaved a portion of the Rooble popu-
lation. Roobles were forced to work at the docks, in the 
mills, and at all forms of menial labor. This lasted for only 
a short time, because the Roobles revolted against their 
cruel task masters and obtained their freedom. 

Not only could Roobles move through time and space but they could move through 
another dimension which other Oos could not understand. The Roobles called it E-space, 
and the closest thing to a coherent explanation of it was a dimension which had something 
to do with emotion. 

It is interesting to point out, at the same time as the first Rooble hatching, scientists 
in Dr. Mutcer's world were first hypothesizing sub-atomic particles called quarks. 

46.12 What db said to Dr. Mutcer 

Through the chain of Oos starting with db and ending with Dakota, the message was 
relayed across the kitchen table. After Dakota received the message, he hobbled off his 
stone throne toward the Snout. The Snout then relayed the message to Dr. Mutcer. 

"Since I am capable of traveling in space and reproducing myself ad infinitum, I am 
capable of forming any material object in your world. I am the be all, the end all, the 
power and the light, the judgement and the will. " The last line was thrown in by the 
Snout, db would never have been so arrogant. 

"That's impossible! What about conservation of matter?" Dr. Mutcer exclaimed. 
"What about it," the Snout-Oos mocked. Suddenly a huge, brown cigar appeared in 

the Snout's mouth. The Snout began puffing on it. Tricia gasped: her bright blue eyes 
twinkled with a mixture of fascination and revulsion. With the nepheligenous cigar dan-
gling from the corner of its mouth, the Snout continued. 

"And if that is not enough evidence for you Mutcer, perhaps Tricia has a thing or two 
to tell you." Tricia looked nervously around the room and remained silent. She placed one 
of her hands on Mutcer's hand. Mutcer gave it a reassuring squeeze and tried to comfort 
her with a smile. 

"If she wont talk, I will," the Snout snorted. "Ever notice anything strange while you 
were with her late last night? Eh, Mr. Mutcer? Why don't you ask your dear Tricia?" 

Tricia could not meet Dr. Mutcer's gaze. "Please Mr. Snout," she implored. 
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"What are you talking about, Snout? Tricia, what is going on?" Mutcer yelled. The 
three of them were motionless and silent for several seconds. 

"Cat's got your tongue, Tricia?" said the Snout. With those words, Tricia's purple 
digestive tract evaginated from her oral cavity, and at the same time her hair turned 
purple, wriggled off her head, and quickly scurried under a nearby couch. Her esophagus 
danced. 

"Yes Dr. Mutcer, Tricia was a Rooble aggregate," croaked the Snout. Mutcer 
screamed and dropped to the floor, as wave upon wave of sadness and shock overwhelmed 
him. 

46.13 Dr. Mutcer's Apartment 

"What do you want from me, Snout?" asked Dr. Mutcer, obviously shaken by the entire 
situation. His fists clenched in a confusing amalgam of fear, horror, and rage. 

"All we want is to be able to use your apartment for the next few months without 
being disturbed. We need more space to live in, and the remainder of your apartment will 
do just fine." Dr. Mutcer had no choice. He agreed to the atrabilious Snout's request. 

Within the next few days, a fine film of purple dust began to cover the walls and ceil-
ings of the rooms in Dr. Mutcer's apartment. After a week, Dr. Mutcer's bedroom, and a 
thin path to the front door, were all that remained Oos-free. Meanwhile, Mr. Mutcer 
began dating a new woman named Melissa. He explained to her the situation with the Oos 
so that she would be prepared when he took her back to his apartment. As Dr. Mutcer 
and Melissa opened the front door to his apartment, they were inundated by polychro-
matic Oos which fell out by the shovel-full into the adjacent hallway. Mutcer cursed. 
There was no way they would or could enter the apartment now. The Oos continued to 
pour out into the hallway. Mutcer thought he smelled a meringue pie. The landlady for the 
apartment building, a Mrs. Carrington, stepped into the hallway and saw the colorful, 
sand-like material spilling out of the room and into a nearby elevator shaft. Mrs. Car-
rington cursed. She walked up to Dr. Mutcer and Melissa. "Mutcer, what is this mess? 
This is the last straw. I will now begin eviction proceedings against you!" 

"Wait Mrs. Carrington. Maybe I can get it cleaned up," Mutcer begged. "May I 
borrow a vacuum cleaner?." 

"No way Mutcer. You're out." Just then, the Snout snaked his way out of a conical 
mound of Oos which protruded from the plush hallway carpeting. He was still puffing on 
his brown, putrid cigar. 

"Mutcer, let me handle this. Mrs. Carrington, your usefulness is over." With those 
words, Mrs. Carrington experienced ataxy, turned purple, and exploded. Dr. Mutcer said 
nervously, "Rooble-aggregates certainly come in handy, don't they Snout?" 

"Yes they do," laughed the Snout. With those words, Mutcer's new girl friend, 
Melissa, shattered. For a few minutes her disconnected larynx and attached carotid 
arteries continued to emit a screeching noise, and then at last the ineffective appendages 
were silent. 

46.14 Oos-Lizards Battle the World 

"For a mammal like man, there was something indescribably alien about the 
way reptiles hunted their prey. No wonder men hated reptiles. The stillness, 
the coldness, the pace was all wrong." 

Michael Crichton, 1990, Jurassic Park 



2 6 6 4 6 B a c o n , t h e M i n i - O o s 

Months passed, and the Oos began to implement their plan for eventual domination of the 
northeast United States of America, and perhaps later, of the entire world. Oh, there were 
many pacifists among the Oos, especially among descendants of the Bacon and Beetle-line, 
but the increasing number of bellicose politicians made the voice of the little-Oos-on-the-
street difficult to hear. Eventually, dictators and despots again came to power, and the Oos 
civilization returned to a pre-dynastic situation similar to the time of the much-hated ruler 
Death 50. When will history teach lessons which societies will learn? 

At first, the Oos began the process of world-domination with the construction of 
human Oos-aggregates. A line of Tricia-series, Melissa-series, and Mrs. Carrington-series 

were popular for a while; however, this method 
seemed to have only limited effectiveness because 
of the difficulty in maintaining proper neural 
activity in parts of the newly-invaded brain. After 
several weeks, coordination of several voluntary 
muscle groups in the arm and neck became 
impossible, and the Oos-aggregate had to be 
abandoned. The same limitation applied to the 
bodies of most other higher species that Oos tried 

to control, particularly dirhinous mammals and birds. In fact, of all the organisms tested, 
they found that a variant of the lowly lizard proved best for their purposes. For one thing, 
the lizard had a simple nervous system with auxiliary ganglia organized in a small nerve 
net. The lizard was easy to control and easy to hide. Also, lizards seemed to strike feel-
ings of terror and loathing in the hearts of humans, and this induced fear provided a psy-
chological advantage to the Oos in their war against humanity. The final Oos-lizard 
model, decided upon by the upper-echelon commanders, had a purple hue to its body, and 
contained two extra anterior nerve centers to control a venom created specially for the 
lizard by Oos scientists operating from a laboratory in the corner of Mutcer's living room, 
near his sofa. To further enhance the Oos-lizard's destructive arsenal, small amber 
"death-trumpets" protruded from their oral cavities. These sound-producing appendages 
allowed the Oos-lizards to communicate with one another, and if required, they could emit 
several formants, or vocal-tract resonances, at specific frequencies which would shatter 
building materials, much as a skilled soprano can shatter a wine glass. The Oos-lizards 
smelled like bacon and horseradish burned in a brick kiln. 

We need not detail all the battles fought between the Oos hordes and the courageous 
humans. But as an aid to future historians, a description of the very first encounter 
between the horrible Oos-lizards and humanity will be described. 

46.15 The Oos-Lizards Meet Tammy and Burt 

It was 12:02 in the night, and Tammy, a 16-year-old blue-eyed Caucasian female, and 
Burt, an 18-year-old Jewish male, were behind the Grand Union Store in Peekskill, New 
York. They were discussing their future together in Burt's father's '79 Oldsmobile. A cool 
breeze blew through the moist summer air, and occasionally an owl cried a lonely call into 
the pale moon-lit night. Katydids and cicadas buzzed. For a while the young couple gazed 
up into the incredible lamp of stars. Tammy mouthed a few trite platitudes, and Burt 
responded in kind. 

"I love you Burt," Tammy whispered as she huddled closer to Burt and gazed into his 
azure eyes. Just then Tammy began to smell burnt bacon. 

"Burt, do you smell something strange?" 
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"Yeah, it smells awful." The lizards began to slither along the new radial tires and 
gradually made their way up to the partially open windows. 

"Burt, the smell's getting stronger!" Several hundred acerebral lizards traveled on the 
hood toward the young, and now, not-too-passionate couple. The equivalent of a 4-Star 
General sat atop the car's antenna to direct the troops. Burt was first to see them. 

"Tammy, close your window!" By now the car was surrounded. Burt reached for his 
car keys. The chameleon general gazed at Burt, as its leathery skin changed color from 
burgundy to brown to purple. The windows were crawling with the purplish lizard bodies. 
All at once, as if on cue, the Oos-lizards withdrew their death-trumpets, and began to emit 
sound. It took only 5 seconds for the safety glass to shatter, and in another 2 seconds the 
young couple met their maker. Within the next hour, the surrounding forest grew quiet 
and the owl was terminated mid-hoot. In the distance a fire engine siren screamed like a 
dying woman, but was cut off quickly. A sick odor filled the air. 

46.16 A World Turns Purple 

Now there are no sounds, no cicadas to sing their sad tunes in the barren forests on a dying 
planet. One by one cities crumbled. Large mammals and batrachophagous animals were 
the first to be destroyed. And then, smaller marsupials, followed swiftly by birds and rep-
tiles. A few alliaceous arthropods lived out their meager lives for a while amidst the 
purple mists and growths. Last to go, of course, were the crustaceans in the ocean and 
various lower forms of phyto and zooplankton. A marshy sea, mother of life, now stands 
choked with fungoid growths and galactophagous goo. On the last untouched island far 
from the once-teaming wharves and the chaotic realm of men, a solitary sea organism 
slithers along purple, shiny surfaces of rock, and with a last spasm of terror, fades into 
fetid chasms of empty air. Please whisper to us in our graves. 

46.17 The Oos-King Reigns 

Imagine a world with no shadows, no bright twinkling stars, no sun. Across the bleak 
purple landscapes walks a terrible, huge purple man. An Oos-construct the size of a sky-
scraper steps on violet extensions of rock, breaking them with each footfall. His breath is 
thunder. Overhead, vague perpetual clouds float. Tiny skeletons line the bleak hillsides. 
Through the dense air, violet twisted, winged creatures fly crying shrill sounds. The Violet 
King has wandered aimlessly across the earth several times. In a world filled with dust, he 
is alone. The Oos King sits heavily on a mountain, and at night looks upward through the 
scintillating purple mists at the stars. 
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Chapter 47 

Time in a Bottle 

"/ just can't seem to grasp the fact that time passes and the hands of the 
clock go round. Sometimes ... when the leaves whirl in the wind, I wish I 
could live again as before and run with them ... so that time would pass 
again. But there I stop and I do not care... I just bump into time." 

One day I placed a beautiful blue marble in a large glass bottle which had a small 
opening at its top. Later I began to shake the bottle to see if I could pop the 

Even after violently shaking the bottle for 5 minutes, the marble did not leave the 
bottle through the tiny aperture. I grew curious. How long would it take for the 
marble to leave the bottle if I were to continue shaking? My arm grew weary 
with these experiments, and I finally decided to rig a machine to shake the bottle 
until the marble finally popped out of the opening. After about 1 hour of constant 
bouncing around in the bottle, the marble popped out! 

What would happen if I were to place a series of bottles together so that only 
a small opening connected the bottles. Bottle 1 would have just one opening, just 
as my bottle did. Bottle 2, however, would have 2 openings, one which connected 
it to Bottle 1, and the other which connected it to Bottle 3, and so on. 

Schizophrenic patient, Time 

marble out of the upper opening. OPENING 
- MARBLE 

BOTTLE 

1 2 3 
OUTSIDE WORLD 

Let's assume that it takes one hour for the marble to find an opening, as it did in 
my experiment. How long would it take for the marble to leave Bottle 2 and jump 
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Figure 47.1. The winged hourglass and the scythe. This symbolizes the flight of time and 
the certainty of death. (Rosicrucian emblem book, circa 1650) 

into Bottle 3? How long would it take for the marble to find its way to Bottle 4? 
How long would it take for the marble to exit Bottle nl Remember that in each of 
the intermediate bottles, the marble has just as likely a chance of moving into a 
previous bottle as it does moving forward. (Assume this is an ideal system. It has 
no friction, gravity, etc.) 

It turns out that the average time to get from Bottle 1 to the nth bottle's 
opening to the outside world is approximately n(n -h 1) /2 times the average time 
to find an opening. (For a large number of bottles, you can approximate28 this 
equation by n2.) For example, it will take 55 hours for the marble to leave the 
10th bottle pictured below: 

O O O O O O O O O O ^ -
How would you picture 5000 hours in a diagram which resembled the previous 
picture of bottles chained together? It turns out that 5000 hours is represented by 
a picture of 100 bottles. This means that it will take you a good part of a year to 
shake the marble out of a connected series of 100 bottles! 

What happens if we now provide two openings between each bottle? One 
opening is free-flowing, and the other has a one-way valve allowing the marble 
only to travel in a backward direction - a direction away from the opening of 
final egress. The average time for the marble to get out of the nth bottle in the 

28 This formula can be derived using concepts relating to random walk and diffusion prob-
lems. Depending upon whether or not you assume a continuous space or discrete space 
the answers are slightly different when the assemblage contains just a few bottles. An 
additional complication is that the first bottle is different from the rest. However, as 
stated, if a large number of bottles are considered, the time is proportional to n2. 
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case of one forward opening and M backward openings can be approximated by 
2 x (M + ly/M2. This equation, which may be used for M > 1, was derived in 
1991 by Dr. Shriram Biyani using statistical arguments.29 

As you should expect, the addition of one-way backward valves between the 
connected bottles increases the time for the marble to exit the chain of bottles 
because the marble has a better chance of going backward than forward. In order 
to facilitate our discussion of the incredible characteristics of this bottle chain, 
I've invented some nomenclature. Rather than say, "3 bottles with two backward 
openings and one forward openings between them," I'll simply use the symbol 
B(3,2). In all of the following discussions and examples there is always one 
forward connector and M backward connectors between the bottles. For example, 
here is a picture of a B(9,2) system. Each connector is represented by a line: 

Can you guess, or calculate, how long it will take a marble to leave the last 
bottle of Z?(9,2)? It turns out that it will take over a year of shaking to get the 
marble out of the bottle chain. 

Here are some other "time-in-a-bottle" diagrams for you to ponder. The fol-
lowing B(9,5) collection represents the life of a human being: 

6 CONNECTIONS 

OUT 

£(15,5) represents roughly 1.6 million years, or the number of years ago that 

Homo erectus (upright man) is thought to be the direct ancestor of humans 
{Homo sapiens), and a Homo erectus skeleton was discovered in Kenya in 1985 
and dated to 1.6 million year ago. Thus, we may call £(15,5) the "Homo Erectus 
number." If this ancient human began shaking the 15 bottles and handed this 

29 A derivation of this formula is available from me upon request. It turns out that the 
average bottle number reached in a given time approaches a constant. The formulas 
here give the average time until the first time the nth. bottle is exited. 
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arduous, al though mindless, task down from generation to generation, only today 
would the marb le finally pop out of the last bottle. 

The earliest and most primitive known dinosaur is the Herrerasaurus discov-
ered in 1989 at the foot of the Andes in Argent ina . It is believed to be about 230 
million years old. T h e # (15 ,7 ) assemblage below can represent this span of time: 

The # (15 ,10) assemblage below represents more than twice the age of the Ear th 
(4.5 billion years): 

OUT 
47.1 Stop and Think: Old Wine and Cocky the Cockatoo 

"We still cannot say what time is; we cannot agree whether there is one time 
or many times, cannot even agree whether time is an essential ingredient of 
the universe or whether it is the grand illusion of the human intellect." 

Davis and Hersh, 1986, Descartes' Dream 

As we've just seen, various bottle collections can be used to represent different spans of 
time. Why not try to draw time-in-a-bottle diagrams for the following ages? If you are a 
teacher, have the students draw each time span in three different ways by varying the 
number of backward connectors or the total number of bottles. Look for various represen-
tations of time in historical texts, such as the illustration in Figure 47.1. 

1. The oldest datable wine ever found was in two bottles in Xinyang, Hunan, China 
from a tomb dated to 1300 B.C. Given only five time-bottles, how many backward 
connections would you have to use to represent the age of the wine? 

2. The age of the universe is thought by some astronomers to be about 143 eons or 
gigayears old (an eon or gigayear is 1 billion years). Represent this by time-in-a bottle 
diagrams. 

3. The longest irrefutable age reported for any bird is 80 years, for a male cockatoo 
named Cocky who died in a London Zoo. Represent this by time-in-a bottle diagrams. 

4. Which is larger, the number of possible chess games, which some have reported to be 
around 

1010 (47.1) 

or £(15,20)? 
5. Draw diagrams for the following (all times given in years from present): 

a) Beginning of life on earth (3.25 x 109), 
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b) Age of fishes (3 x 10*), 
e) Agcol 'mammab (7.5 x JO7), 
d) Age ol"rriHTCimollis (106), timl 
c) \»*«C Newton (3 X U)2), 

47.2 fly per time and fcternity Grams 

"The dog hears .some sound from the farmer's house and thinks of the 
shotgun with its wide black holes Ukt a figure eight rolled onto its side. The 
dog knows nothing of figure eights, but even a dog may recognize the dim 
shape of eternity if its instincts are honed sharp enough." 

Stephen King, Four Past Midnight 

Thomas Aquinas helieved God to be outside of lime and thus capable of seeing all of Lhe 
universe's objects:, past and future in one blinding instant, [f an outside observer existed in 
hypertimc, it could see the i^ast and future all at once. To better understand this, draw a 
picturc callcd an "EtcrnityCiram" of two (2-D) disks rolling toward each oilier, colliding, 
and rebounding. This diagram, adapted from Dcwdncy's flanixerse, shows 2 spatial 
dimensions along with the additional dimension of time. You can think of succcssivc 
instants in time as stacks of movie frames which form a 3-D picture in hypertimc in the 
Eternity Gram. CkrnilyGrams are timeless. Hypcrbcings would see past, present and 
future all a I once. 

5ES 
Below is anolher CternityOrajn, showing a ball moving through space and lime. The facl 
lh»l. ibe ball comes hack on itself indicates Hint il has 1 raveled backward in lime. (I corn-
paled til is image on an IHM RISC System /60(H).) 

47.3 Fact Hie: ChronotLS, Mastodon Feces, Etc, 

"it's as if time were a rubber hand, and you were on an end stretched out 
tight. If you pull the medallion o f f we snap back to the future." 

Hjirljan Hill son, "Demon With a Glass Hand," The Outer Limits 

» Nobel priiic winning physicist Richard Fcynman once suggested an approach lo 
<|uanium mechanics in which anlipiirliclcs arc viewed as par tides momentarily traveling 
backward in lime. 
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• The fundamental unit of quantized time is called the "chronon." 

• Time is frequently the subject of science fiction movies, books, and TV shows. In an 
episode of Star Trek - The Next Generation called Time Squared the starship Enterprise 
enters a time zone shaped like a Mobius strip. The characters were doomed to repeat the 
same sequence of events over and over again. 

• In 1990, the clock which maintained the primary time standard is callled the "cesium 
NBS-6." The machine is 6 meters long. When operated as a clock the device keeps time 
with an error of about 3 millionths of a second per year. In 1992, Hewlett-Packard Co. 
unveiled a new atomic clock that will remain reliable to the second for the next 1.6 million 
years. The $54,000 device is the size of a desktop computer. 

• In 1991, the oldest living bacteria ever found were discovered beneath a golf course in 
Newark, Ohio. Their home for 11,999 years was a 23-inch-long, reddish brown tube-

shaped mass embedded in black peat moss. Its con-
voluted shape, and its pungent odor, led 
paleontologists to believe that they had found the 
remains of a mastodon's intestinal contents. Gerald 
Goldstein, a microbiologist at Ohio Wesleyan Uni-
versity, brought "five bags of the s tuff ' back to his 
laboratory where he determined that the bacteria in 
the fertile feces were alive. These are the oldest 

living organisms ever found. By comparing these ancient microbes with their contempo-
rary counterparts, researchers may learn more about genetics and evolution. (Source: 
Folger, T. (1992) Oldest living bacterial tell all. Discover. January. 30-31.) 

• In April, 1990, Playboy magazine printed an interview with world-famous physicist, 
Stephen Hawking. In the interview, Hawking speaks of another kind of "time" called 
"imaginary time." Here are some excerpts, to push your imagination beyond its breaking 
point: 

Imaginary time is another direction of time, one that is at right angles to ordinary, 
real time. We could get away from this one-dimensional, linelike behavior of time... 
Ordinary time would be a derived concept we invent for psychological reasons. We 
invent ordinary time so that we can describe the universe as a succession of events in 
time, rather than as a static picture, like a surface map of the earth... Time is just like 
another direction in space. 

47.4 For Further Reading 

"Mathematics is the one subject in which time is irrelevant." 
Davis and Hersh, 1986, Descartes' Dream 

1. Grabiner, J. (1974) Is mathematical truth time-dependent? American Mathematics 
Monthly. 81: 354-365. 

2. Gardner, M. (1992) Fractal Music, HyperCards, and More... Freeman: NY. 
3. Dewdney, A. (1988) The Planiverse. Poseidon: NY. 
4. Goudsmit, S., Claiborne, R. (1978) Time. Time-Life Books: NY. 



Chapter 48 

Interlude: Art Beyond Space and Time 

Paul Har t a l is an artist whose ideas, like his artwork, seems to span space and 
time. No t only is he a painter and poet, and an inventor of "lyrical conceptual ism" 
(a new element in the periodic table of ar t ) , but Dr . Har t a l is also the director of 
the Center for Ar t , Science, and Technology, in Montrea l . The Center facili tates 
the exchange of ideas between the various domains of human knowledge. H a r t a l 
notes: 

The present human condition calls for the rise of a new, inclusive form of culture in 
which art should play a most prominent role. We need the imagination, the intuition, 
the insight, the lateral reasoning faculty, as well as human values, that are excluded 
from the rigid methodology of science, but are intrinsic to art. 

Har ta l ' s interests are wide ranging: f rom space, to time, to perceptual ambigui-
ties, to aeronautical and astronomical artworks. H e r e is a r emark he once made 
about space: 

Artistic space was non-Euclidean long before Einstein... In ancient Egypt or in 
Byzantium, for example, artists created murals in which the subject matter was ren-
dered without taking into account the empirical laws of visual perception. 

In the modern era the rise of non-Euclidean geometry and the concept of the 
fourth dimension affected the studio artist. They made a significant impact on the 
development of cubism, surrealism, and other movements of modern art. 

On time, he notes: 

Existence is bound up with time. To contemplate the latter is to add to the enigma of 
the first. Is time the cosmic matrix of existence, or is generated by it? Does time 
stand still, or does it flow? If it is in a state of flux, what is its speed? And since we 
measure speed by the ratio of traveling distance to the periodic motion of the clock, 
how are we supposed to measure the velocity of time? By time itself? 



4X Interlude: Art Seyimtf Space unil Time 

I've scattered some of Hartal's diagrams throughout this chapter to give 
readers a flavor for his style. Shown facing this page is a picture from his scries 
"The Eightfold Way.'* Below is his painting "How to Make a Torus Out of a 
Painting." It shows the topological transformation of a rectangular plane into an 
anchor ring with a self-repetitive image (oil on canvas, 18nx24"). Hartal can be 
reached at- the Center tor Art, Science, and Technology, P.O. Box 1012, St, 
Laurent, Montreal (Quebec) Canada H4L 4W3. 
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Chapter 49 

Time-Skulls, Bouncing Bones, 
And Building Your own Time Machine 

H i 

m J E j g r 

"What then is time? If someone asks me, I know. If I wish to explain it to 
someone who asks, I know not." 

Aurelius Augustinus, Bishop of Hippo in North Africa 

"Many animals can react to time. A rat can learn to press a lever that will, 
after a delay of some 25 seconds, reward it with a bit of food. But if the 
delay stretches beyond 30 seconds, the animal is stumped." 

Goudsmit and Claiborne, Time 

The human skull has intrigued and frightened humans since the dawn of human 
kind (Figure 49.1). Skulls also have had monetary value. For example, in 1977, 
the skull of Swedish philosopher Emanuel Swedenborg (1688-1772) was bought 
by the Royal Swedish Academy of Sciences for 5,500 pounds, making it the most 
expensive skull in the world. (It now resides in the Session Room of the 
Academy.) The largest animal skull ever found belongs to the long-frilled cera-
topsid dinosaurs whose skulls measure up to 9' 10" in length and weigh 2.2 tons. 

Skulls have been used for many purposes throughout time. Figure 49.1 
shows some of these. For example in the 1500s many skulls were used as mon-
strances (vessels in which the consecrated Host is displayed for adoration of the 
faithful). Below is skull-watch from the 1400s: 

I was once told of a primitive tribe that used the cranial cavity of human skulls to 
store valuables, such as bits of gold. After hearing about such customs, it wasn't 
too hard for me to imagine an interesting scenario involving skulls, bones, and 
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Figure 49.1. Skulls. (Top) Symbol of death, with the motto "My glass runneth quickly." 
(Joost Hartgers, Amsterdam, 1651). (Bottom) Relic monstrance in the shape of a skull 
and thighbone. (A monstrance is a vessel in which the consecrated Host is displayed for 
adoration of the faithful.) (Amsterdam, 1648) 

time. Consider the following. A native in the secluded rain forest takes a human 
skull and places 10 knucklebones inside it. He turns the skull so that the 10 bones 
sit on the front part of the skull near the frontal bone. Covering the opening to 
the spinal cord with his hand, the man then shakes the skull so that the 10 bones 
bounce around the skull in random directions. As they bounce off one another 
and off the sides of the skull, some will remain in the front part of the skull - but 
others will cross the cornonal suture (which roughly divides the skull cavity into 2 
halves, front and back) and bounce into the back part of the crainal cavity (see 
frontispiece) In the course of time, the distribution of knucklebones in the two 
halves will inevitably become more uniform - that is, the entropy of the system 
will increase. After a few seconds the skull will approach a state of maximum 
entropy, with nearly equal numbers of knucklebones on each side of the coronal 
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Figure 49.2. Results of time machine experiments (500 minutes). 

suture. The process is not time-symmetrical because the reverse process, in which 
all the bones end up on one side of the suture, will never occur. 

In actuality, I should not use the word "never" to describe the chances that 
the bones will at some point all again be on the same half of the skull cavity. 
There is a small probability that all the bones will end up on either one of the two 
sides of the skull. Let's imagine that you place the skull on a shaking machine 
and take an X-ray of the skull every minute to see where the knucklebones are 
located. With just one knucklebone, the odds on a state of low entropy are one in 
one. The knucklebone must be on one side or the other, so every observation you 
make will surely indicate that "all the bones" are on one side. With three bones, 
the odds that you will see all the bones on one side drops to 1 in 4. This means, on 
average, you will see this happen one time in every 4 times you examine the skull. 
If you look every minute, you'll have to wait, on average, 4 minutes until you see 
this happen. With 10 balls, you'll have to wait, on average, 512 minutes! You 
can calculate the odds of finding all the bones on one side of the skull using 
P = 2n ~1 where n is the number of bones. The following are some time-skulls 
showing you how long you will have to wait to see all the bones on one side of the 
skull for different numbers of bones. 

Twenty knuckle bones in the skull represent a year. That is, if you look at the 
skull with an X-ray machine once a minute, you will have to wait a year before 
seeing all the bones in one half of the skull. 
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Figure 49.3. Results of time machine experiments (1000 minutes). 

1000 

Below is a skull representing the life of a human. (27 bones gives 127 years.) 

The oldest known mummy is dated to about 4,500 years ago. Here is a time-skull 
representing this period of time with 32 bones: 

The longest measure of time is the kalpa in Hindu chronology. It is equivalent to 
4,320 million years - roughly 52 knuckle bones: 
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CLOCKS OF ALL AGES 
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Figure 49.4. Clocks of all ages. Clocks have become more accurate through the centu-
ries. Early mechanical clocks, such as the Dover Castle, varied by several minutes each 
day. In the I980's, cesium atom clocks lost less than a second in 3,000 years. In 1992, 
Hewlett-Packard Co. unveiled a new atomic clock that will remain reliable to the second 
for the next 1.6 million years. The $54,000 device is the size of a desktop computer. 

Below is twice the age of the earth (4.5 billion years) (53 bones). 

All this helps to prove that, while it is possible that entropy (and therefore, in a 
certain sense, time) will reverse itself by chance, it is highly unlikely so long as the 
system involved contains more than a few elements. Let me explain. Most scien-
tists believe that the second law of thermodynamics expresses the one-way nature 
of time for large macroscopic systems. The entropy of a system, which is related 
to a gain or loss of organization, must always increase as a result of the second 
law of thermodynamics. You are an entropy-losing machine, since you maintain 
a complex organization of atoms in your body. However you achieve this entropy 
loss by disorganizing the atoms in food. (Much of the food energy is lost as body 
heat which dissipates into the air.) The entire system of you and your sur-
roundings gains entropy. This one-way direction for entropy carries with it a 
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A L G O R I T H M : How to C r e a t e a T i m e M a c h i n e . 

/* P l a c e all b a l l s in b o x 2 */ 
/* b(l) = 2 m e a n s b a l l is in b o x 2 */ 
/* b(i) = 3 m e a n s b a l l is m b o x 3 */ 
Do i = 1 to 100; /* 100 b a l l s */ 

b ( i ) = 2; 
End; 
DO j = 1 to 1000 /* 1000 m i n u t e s */ 

G e n R a n d o m ( r ) 
r = r * 100 + 1 
if b(r) = 2 then b(r) = 3 ; else b(r)=2 

/* P r i n t n u m b e r of balls in b o x 2 */ 
sum = 0; 
do i = 1 to 100; 

if b(i) = 2 then sum = sum + 1 
end; 
P r i n t ( j , s u m ) 

END 

Pseudocode 49.1. Now to create a time machine. 

one-way direction for time. Ice cubes melt, but do not spontaneously reform from 
liquid water. Even though elementary interactions can be symmetrical with 
respect to time, in our full-scale world, time, like an arrow, moves in only one 
direction. 

A few scientists speculate that time will end. Austrian physicist Ludwig 
Boltzman long ago predicted the end of the universe as an attainment of 
maximum entropy. In this burned-out universe with no stars and no life, there 
will be no change by which time can be measured or observed. Some scientists 
have guessed that time will end on A.D. 1022 (10,000 billion years from now). 

49.1 Build Your Own Time Machine 

"We could imagine a world in which causality does not lead to a consistent 
order of earlier and later. In such a world the past and the future would not 
be irrevocably separated, but could come together in the same present, and 
we could meet our former selves of several years ago and talk to them. 
However, it is an empirical fact that our world is not of this type. Time 
order reflects the causal order of the universe." 

Hans Reichenbach, 1951, The Rise of Scientific Philosophy 

Here's a quick experiment which helps to demonstrate why time goes forward on 
a macroscopic scale. Take three small boxes. In Box 1 place 100 white slips of 
paper, numbered 1 through 100. In Box 2 place 100 slips of green paper, num-
bered 1 through 100. The third box, Box 3, is empty. Randomly choose white slips 
of paper from Box 1. The number you pick will indicate to you which slip of green 
paper to move. If you pick a white paper with the number 7 on it, then move the 
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green slip of paper from Box 2 to Box 3. Replace the white paper in Box 1, and 
repeat the process. 

WHITE PAPERS GREEN PAPERS EMPTY 

BOX 1 BOX 2 BOX 3 

Each time, the number on a white piece of paper tells you that a particular green 
piece of paper is moved either from box 2 to box 3 or vice versa. (If it is in Box 2 
move it to Box 3. If it is in Box 3, move it to Box 2). Can you guess what will 
happen after repeating this process 100 times? After some time has past, Box 2 
and Box 3 will hold about equal quantities of green pieces of paper. You can 
think of the green pieces of paper as heat energy being homogenously distributed 
through space. On a macroscopic scale, energy flow and time flow proceed 
together - the direction of time. Entropy, which seems to give direction to time's 
arrow on a macroscopic scale, offers a preferred direction. While it's possible that 
the green slips of paper can all go back to Box 2, it is very unlikely. 

You can build your own entropy time machine using your personal computer. The 
simulation with the white and green pieces of paper is outlined in the program code Pseu-
docode 49.1. I like to think of the process as a cosmic hand (representing the laws of 
chance) moving balls of energy around the universe. Imagine that the cosmic hand moves 
the balls of energy once a minute. Figure 49.2 and Figure 49.3 show you the number of 
these balls of energy (or green slips of paper) which reside in one of the boxes as a function 
of time. We soon achieve a maximum state of disorder where about 50 percent of the balls 
are in each box. 

49.2 Stop and Think 

"In relativity theory, in the subtle fusion of time and space known as Min-
kowskian space-time, the space dimensions seem to lord it over the time 
dimensions, and the whole structure exists as a frozen manifold outside of 
time." Davis and Hersh, 1986, Descartes' Dream 

What effect would the use of different numbers of balls (or green slips of paper) have on 
the graphs in Figure 49.2 and Figure 49.3? 

Figure 49.4 shows how timekeeping accuracy has changed through the centuries. 
What scientific and sociological effect would there be on our world today if clocks were no 
more accurate than the Dover Castle Clock (Figure 49.4)? You might be intrigued to 
know that the first clocks had no minute hands. In fact, the minute hand only gained 
importance during the Industrial Revolution. Imagine a modern world with clocks lacking 
minute hands. 
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Paae f rom an Egyptian papyrus Book of the Dead, which was placed 
Page t r o m a ^ B J ^ J ^ a $ a g u j d e f o r t h e s o u | s of the departed 

into the tomb 



Chapter 50 

Interlude: Marking Time 

"Space-time has no beginning and no em1 If has no door where anything can 
enter. How break and enter what mil only bend?" 

Archibald MacLeish, Reply to Mr. Wordsworth 

Karen Guzak is a Seattle, Washington artist whose computer art has been shown 
in Lhc New Museum and the Brooklyn Museum in New York, in the San 1'ran-
cisco Museum of Modern xÂ rt, and in the Davidson Galleries in Seattle. She also 
has had work included in a touring show of twelve Northwest artists in h'rancc. 
She writes: 

Tt is only in the last few years that a few adventurous artists, surrounded by the smell 
of linseed oil and the dirty smudges of charcoal, have overcome their resistance to 
electronic media, and have taken on the computer as an art-making Iwl. Artists have 
been resistant to new tools before - lor example, the printing press and lhe camera -
as machines noi fil 10 (he expressive necessities or (he human heart and human hand. 
However, there are some artists who welcome the vast varieties of line, shape, texture, 
space, value, and color available through computers. 

To create her pieces of art, Karen uses a paint software program and a digitizing 
tablet with an electronic stylus, or Light pen. She then makes choices about colors, 
shapes, and line quality. Her works require four to eight hours to complete. When 
ready, she keys instructions to an ink-jet printer that produces color by mixing 
four dyes of squirted ink: red, yellow, blue, and black. The technical process from 
ink-jet printout to lithograph plate involves programming the computer to print 
out a black and white version for each color of the image, eliminating all other 
colors, in effect creating printouts which correspond to color separations. Karen 
then manipulates the black and white printouts with an opaque white solution, 
pen and pencil. Her themes arc big landscapes, relationships (particularly the 
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relationship between two sorts of e lementary shapes), qua r t z and jewels, the con-
trast between ihc macroscopic and microscopic, and the sense of t ime passing. 

Shown at the beginning of this chapter is a photograph of her piece titled 
" M a r k i n g Time** (22x29 inches, 29 colors). The image a l the end of the ehaptcr is 
called '"quartz dance'" (22x29 inches. 25 colors). Karen remarks: 

There is still some belief oot Lhere, that if it's made hy >J machine, then k "ain'1 Art." 
However, there are some of us who combine the ancient and honorable picture 
making traditions with the new and powerful electronic technologies. I-or me, ihe 
computer has facilitated integration of the old with the new, and has allowed me to 
experiment., to explore, to play, and to speak my \-isual language in terms consistent 
with this time in history and with this place in the world. 

Karen Guzak can be reached Studio 5A, 707 South Snoqualmie, Seat t le , Wash-
ington 98108, 

50.1 Cross References 

The following sections arc concerned with questions regarding whether or not computcr-
generaled arl is really good art: Computer Arl- Really Arl?" on page 169, "Interlude: 
Alien Musical Scores" on page 221, And '"Are 1 racial Graphics Art?" On page 95. 
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STRANGE TECHNOLOGY 





Chapter 51 

Robot Checkers-Players, 
Surgeons, and Chefs 

51.1 Checkers Enchiridion 

"If automobile technology had advanced at the same fate as computer tech-
nology, a Rolls-Royce would travel at supersonic speeds and cost less than a 
dollar" William Pound stone, 1988, Labyrinths of Reason 

"The computer, insofar as it solves the equations of mathematical physics, 
insofar as it is an instrument of oracularity and purports to tell us today 
what will happen tomorrow, collapses time by making the future appear 
now." Davis and Hersh, 19H6, Descartes' Dream 

About A.LX 1100 an unknown individual, probably living in the south of France, 
invented a war game played out on a board containing black and white squares. 
Each player had twelve pieces which could move one square diagonally in any 
direction. A piece made a capture by jumping diagonally over the enemy piece lo 
land on an empty square immediately beyond. The game later became known as 
draughts in Rngland, and the early xAmerican settlers took the English game to 
North America where it is known as checkers. Mathematicians today have deter-
mined that a checkers game has an incredible I02*1 possible variations, (in chess, 
some estimate the number to be lO*4. The ancient Chinese game of Go has a wal-
loping 10120 positions.) 

Imagine a robot arm moving checkers pieces around a playing board as 
quiekly as it can. Let's assume that it can grasp a checker, pick it up from one 
square, and move it to another at the rate of one move per second. For how long 
would the robot arm be working? Longer than the life of a man? Longer than 
the period of rotation of the Milky Way? The answer is "yes" to both questions. 
Jn fact there are more checkers positions than there arc stars in the Milky Way 
galaxy. 'I'he lota I distance travc((al by the robot arm in the mindless movement 
exercise would be greater than the distance from the earth to ihc moon. In fact 
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Figure 51.1. Rochester checkers playing robot. (Photo eourtcsy of James Montanus and 
the University of Rochester. Photo by Chris Brown.) 

t.he distance travelled would be about, tbe distance of t.hc center of our galaxy 
from the sun. 

While the idea of a robot moving checkers around a board to demonstrate 
every possible move may seem futuristic or even a little silly, checker-playing 
robots are already in operation today. In the past, several computers have been 
programmed to calculate checkers moves; however, Rochester Robot at the Uni-
versity of Rochester, New York is the first computer-driven robot to not only 
think through tbe strategy but to actually see the pieces ;ind move them 
(I igtire 51.1). The robot looks a little funny with its four-inch yellow foam nose. 
Tt uses its "nose" to move the checkers, taking jumps when necessary and sliding 
checkers off the board. The Rochester robot uses J 2 processors for vision, rea-
soning, and motion tasks. The robot computes each of iLS moves in about a 
second. If you try to cheat it, or tuake an illegal move, the robot's voice synthes-
izer admonishes you with the words, "You cannot do thatf* The robot integrates 
several different styles of parallel computing in one operating system.'" 

30 Some readers may be interested in more technical details of the robot's operation. The 
vision systems consist of a binocular head containing movable cameras for visual input, a 
robot arm (haI supports and moves the head, a checker pushing lool (referred to as the 
robot's nose), a special-purpose parallel processor for high-bund width low-level vision 
processing, and a general-purpose MIMI) parallel processor lor high-level vision and 
planning. This Hatter fly Plus Parallel Processor has 24 nodes, each consisting of an 
MC68020 processor with hardware floating point and memory managing units, and 4 
MBytes of memory. Various different board representations are used to help the proces-
sors play chcckers, including a digiti7ed image of the board from the TV camera 
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Figure 51.2. Robot dog surgeons. A 250-pound robot named Robodoc is the first robot 
to perform surgery on a human. Currently Robodoc routinely operates on arthritic dogs. 
Robodoc carves out the cavity in the bone where an implant will be inserted. Perhaps by 
the end of the decade Robodoc will aid orthopedic surgeons who already do 160,000 hip 
replacements in the United States each year. (See text for details.) 

51.1.1 Fact File 

• One fairly difficult checkers puzzle to solve is called The 8 Checkers Puzzle. Place eight 
checkers on a checkerboard so that no two checkers lie in the same column, row, or diag-
onal. 

• There are over 4,000,000 ways that 8 pieces can be placed on a 64-square checkerboard. 

51.2 Pizzabot 

"Huge enterprises like IBM, Bell Telephone, and General Electric maintain 
grassy research centers — called 'funny farms' by the disrespectful — where 
whole platoons of mathematicians are paid to do little else but think." 

David Bergammini, 1963 Mathematics 

(512x512x8 bits), and a quantitative description of the (X,Y,Z) locations of the cen-
troids of the pieces on the board and their color. The strategy portion of the robot's brain 
was written, in part, by Michael Scott. Brian Marsh and his colleagues are using 
checkers play to investigate ways of integrating computer programs written in different 
languages. For more information, consult: Marsh, B., Brown, C. LeBlanc, T., Scott, M., 
Becker, T., Das, P., Karlsson, J. and Quiroz, C. (1991) The Rochester Checkers Player: 
multi-model parallel programming for animate vision. Technical Report 347, University 
of Rochester, Computer Science Dept., Rochester, NY 14627. 
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"The test is not going to be whether we do good science or not. The test is: 
Is the company [AT&TPX going to be healthy or not. To say that we'll ever 
be totally happy, that I'm going to bring the 1950s back - sorry I can't." 

Arnold Penzias, 1991 Scientific American 

Robots of the future will not only play checkers but also serve us food. Pizzabot, 
the world's first pizza-making robot, was developed by engineers at Carnegie-

Mellon to help disabled people become more inde-
pendent and even manage pizza restaurants. The 
robot arm is placed in front of a semicircular 
counter, with ingredients such as cheese, mush-
rooms, and sauce within easy reach. A voice-re-
cognition system permits one to select one of two 
possible pizza sizes and 12 condiments. PizzaBot 
spreads the sauces with an S-shaped swirl, and 

then applies the mozzarella by shaking a scoop. When first tested, PizzaBot 
made 50 delicious pizzas in a row without any errors. 

51.3 Robot Surgeons 

"The name of Leonardo da Vinci will be invoked by artists to prove that only 
a great artist can be a great technician. The name of Leonardo da Vinci will 
be invoked by technicians to prove that only a great technician can be a great 
artist." Alex Gross, 1968, East Village Other 

Robot surgeons are also already operating in the 1990's. A 250-pound robot 
named Robodoc is the first robot to perform surgery on a human. Currently 
Robodoc routinely operates on arthritic dogs at the veterinary clinic of Hap Paul, 
head of Robodoc development at Integrated Surgical Systems in Sacramento, 
California. Robodoc carves out the cavity in the bone where an implant will be 
inserted. Robodoc is about 10 times as accurate as a human holding a drill. 
Sensors monitoring pressure on the drill bit will stop Robodoc if it were to start 
cutting into soft tissue! Perhaps Robodoc will aid orthopedic surgeons by the end 
of the decade who already do 160,000 hip replacements in the United States each 
year. 

31 Arno Penzias is the Vice President of research at AT&T Bell Labs. He is also a Nobel 
Laureate. His quotes are from: Corcoran, E. (1991) Rethinking Research: Bell Labs 
seeks a new model for industrial research. December, Scientific American, pp. 136-139. 
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Bar Codes in the 21st Century 

Most Americans have become familiar with printed bar codes on the cans, pack-
ages, and covers of all kinds of consumer goods - from sardines, to Steven King 
novels, to Ninja Turtle toys. Introduced almost twenty years ago, bar code infor-
mation is encoded in the varied widths of the spaces and bars printed on the 
paper. A cashier scans across the row of bars with a laser. This row of bars 
represents a number which can be associated with specific information, such as 
the price of the object, in the cash register's computer or in a central database. 
One reason these bar codes work so well is that there is a redundancy of informa-
tion over the height of the bar code symbol. 

The current bar codes can be thought of as one-dimensional codes since they 
only carry information in one direction. Bar codes of the future, however, will be 
two and three dimensional. At left is an example of a 2-D bar code which contains 

Lincoln's Gettysburg Address in a 
two inch square! 

This kind of bar code (called 
PDF417) was developed by Symbol 
Technologies (Bohemia, NY) and is 
scannable by linear scans, such as 
produced when using a laser scanner. 
PDF stands for "portable data file," 
because these postage stamp sized 
patterns really can contain an entire 
file of information. To enable the 
scanner to detect any kind of barcode 
problems (for example, mud, hair, or 
dandruff on the bar code), each row 

of a PDF417 symbol contains what is called a "row checksum." In addition, each 
tiny individual symbol contains two error detection code words to ensure that all 
data has been recovered accurately. In fact, PDF417 allows users to choose one of 
nine security levels which allows users to sacrifice barcode space for better error 
recovery, as needed. Curious readers, who want to learn more about PDF tech-
nology, should see the April 1990 issue of the IEEE Computer Magazine. 
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I'ignrc 52.1. Har codes are used lo track (he activities of honeybees. Pollination is esti-
m a t e to be worth $20 hiJlion per year to American agriculture. (Photo courtcsy of 
iN'l £RM£C.) 

xA.notlier kind of 2-D barcode stacks several rows of 17 spaces and 13 bars on 
top of one another, with start and stop codcs at ouch end. Shown below is such a 
bar code from the INTER MEC Corporation in Everett, Washington. 

Aside from these futuristic bar codes, more standard bar 
codes are being increasingly used in novel situations, l or 
example, in the last few years, bar codes have been used to 
truck live honeybees tor pollination research {Figure 52,1). 
Tiny bar codes are placed on the hacks of bees. The labels, 

which don't interfere with normal bee activity, code for bec identification 
numbers which are automatically scanned each time a bee enters or leaves a hive. 

H T l f i n i T l f 
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Chapter 53 

Cyberspace and Nomadology 

53.1 Sentient Trees in Multiperson Spaces 

Computers of the future will allows us to enter lifelike, computer-generated reali-
ties. Strap on a pair of goggles and you can gaze into a three-dimensional world 
limited only by the speed with which your computer can change the images in 
response to your eye and head motions. Some call this sense of actually being 
present within a new reality a "virtual reality" or cyberspace (Figure 53.1 and 
Figure 53.2). The degree to which cyberspace becomes undifferentiated from 
reality depends partly on the development of new ways for humans to physically 
interact with the computer's reality (such as 3-D goggles and gloves). New 6-di-
mensional trackers which monitor a physical object's spatial position and orien-
tation, along with speech recognition devices, will help the process. Randal 
Walser, a cyberspace researcher at Autodesk Incorporated, notes that "multi-
person" spaces, where several people interact, are especially important because 
they promise to be far more lively than spaces in which you interact only with a 
computer. He further comments: 

In a multiperson space, there will always be a possibility that the virtual objects you 
encounter are directed by human intelligence... Sometimes you will be surprised to 
find that objects, like trees and refrigerators, that you assumed were unintelligent, are 
in fact full of sophisticated abilities. This will bring cyberspace alive, giving it a 
magical and delightful (if spooky) quality. 

53.2 Nomadic Research Labs 

A field of technology related to virtual reality and cyberspace is nomadology. 
Nomads are human/bicycle hybrids that travel around the country, and which 
allow the human user to be immersed in the ebb and flow of global information. 
The most famous of nomads is Steven K. Roberts of the Nomadic Research Labs 
at Sun Microsystems in California. His bicycle accommodates a computer, a citi-



304.1 53 Oyhcmpacc and Nomadulogy 

figure 53-1. Virtual racquet-ball. Interactivity in cypcrspace includes such actions as 
moving, grasping, releasing, and throwing. (Photo courtesy of Autodesk, Inc.) 

zens band radio, a ham radio, solar panels for power, and much more. He 
installed four buttons on each handlebar and built in a computer over the front 
wheel. Amazingly, he can ride while at the same time entering information into 

the computer using the handlebar buttons. 
To prepare for the future, Roberts is cur-
rently working on a more sophisticated 
nomad bike with 105 gears. In low gear 
Roberts has to pedal at 60 revolutions a 
minute to go 1.2 miles an hour. The solar 

cells dump 72 watts of solar energy into the batteries which supply the computers, 
refrigerators, and other devices. The console contains Lhrce screens run by sepa-
rate computers. He can link to other computers using the on-bi*ard phone, use Lhe 
speech recognition device for providing input, and use the satellite navigation 
system for guidance. For more information, you might consult his Journal of 
High- Tech Noniadtiess, available from Nomadic Research Labs, PO Box 2185, 
El Scgundo, CA 90245. 

53,3 Time Traveler 

A recent video game called Time Traveler (Sega Hntcrpriscs, San .lose) subjects a 
viewer to a three-dimensional illusion without resorting to fancy goggles or holo-
grams. The unit has a video monitor which actually points away from the player 
and towards a spherical concave mirror. Images from the monitor reflect off the 
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Figure 53.2. Virtual bicycle ride. (Photo courtcsy of Autodesk, Inc.) 

mirror and project onto a darkened area. 

o f rfexoft-

Ttittt^C 

If you like, you can thrust your ha ad 
into these lifelike miniaturized char-
acters {actors, not animated cartoon 
figures) which appear to be in J'rcc 
space. At left is a diagram of the 
video and concave mirror set up. The 
game begins with an appeal from a 
scantily clad princess who begs the 
player to help her. A 16-bit. Intel 
KOI8ft dedicated controller processes 
the player's selections which control 
a videodisc. 

53,4 Virtual Reality, AI Gore, and Jerry Garcia 

Figure 53.3, Figure .53.4. and Figure 53.5 show additional examples of futuristic 
technology which enable humans to interact with computers in innovative ways. 
You may be interested to know that the term "virtual reality" was coined by 
Jaron I anicr, Founder and (>!() of VPI, Inc., to describe interactive 3-1) 
imaging. Today, you can pul on a ^DataGlove" (Figure 53.4) and a stereoscopic 
headset (Figure 53.3 and Figure 53.5) to transport, yourself in tn virtual worlds 
that, are used by physicians for simulated surgery or by NASA for space explora-
tion. Lanier has demonstrated virtual reality methods to such interested people as 
Steven Spielberg, Jerry Garcia of the Grateful Dead, and Presidential Candidate 



302 (".'yherapace arid NomadoUigy 

Figure 533 . A Data Suit and EyePhone. These allow the user to fly through and interact 
with a virtual world generated by computer. (Courtesy of VPL Research, Inc, Redwood 
City, CA.) 

Al Gore. Lanier ba^ also noted tha t "'virtual reality has the potential to crcatc a 
bridge between people wlio heretofore have been separated due to disabilities.'" 

53.5 Fact Hie 

* The following advanced computer laboratories, among others, arc pursuing active 
research projects in virtual reality: NASA Ames, Nx^Sx^ Goddard, lhe National Center 
lor Supercomputing Appliwilions, the Electronic Visualization Laboratory at lhe Univer-
sity of Illinois at Chicago, the M l T Media Lab, and the University of North Carolina. 
These labs arc currently using virtual reality hardware to study biomolceules, engineering 
designs, mathematical functions, plasma physics, cosmology, and general reactivity. 
(Source: Smarr, L. (1991) Visualization capiurcs the imaitinaiion ol" physics. Computers 
in Physics. Nov/Dee 5(6); 564.) 

• Steve Bryson and Crcon Levit have developed a Virtual Windtumel at NASA x^mes. 
This virtual reality hardware immerses a rcsearehcr in a computer simulation ol' air flow 
around airplanes and space shuttles. Users of Hie virtual tunnel sec computer graphics in 
"3-D head-tracked wide-Held slereo," using a device called a Hake Space hoc in, and they 
control the position of streamlines (indicating airflow) using a V'PL Dataglove. (Source: 
Smarr, L. (1991) Visualization captures the imagination of physics. Computers in 
Physics. Nov/Dcc 5(6): 564.) 
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Figure 53.4. A DataCHove which conveys finger positions to the computer. Devices such 
as these can control robot hands. Within the next few years, musicians, dancers, artists, 
film-makers, sports enthusiasts, surgeons, and masseuses will have acccss to these devices. 
(Courtesy ol" VPL Research, Inc, Redwood City, CA.) 

Figure 53.5. An KyePkone for swing into virtual worlds. (Courtesy of VIM. Research, 
fnc, Redwood City, CA.) 





Chapter 54 

M 

A fiberoptic faceplate is an array of millions of optical-fiber tubes packed into a 
thin cylindrical pipe. The composite tube acts as an image-plane transfer device. 
This means that an image entering one surface exits the other surface as an undis-
torted digitized image, regardless of the shape of the optical tube. You can use 
these tubes as a kind of periscope by bending them in order to see around a 
corner. 

Recently, one fiberoptic researcher, Lee Cook at the Gallileo Electro-Optics 
Corporation in Sturbridge, Massachusetts, was interested in preparing arrays of 
optical waveguides which were perfect as possible. Analysis of certain recursive 
tilings led Cook and his colleagues to conclude that the edges of optically useful 
tilings were fractal in nature. This led to the development of assembly techniques 
and fractal array structures which allowed the Gallileo researchers to prepare 
highly ordered fiber arrays. One patent has already been granted on these tech-
niques. 

Many believe that fractal fiberoptics (a trademarked term) are the first engi-
neered fractal materials with 
optically useful properties. A fractal 
fiber-array, which consists of fibers 
of fibers (called multi-multifibers) 
results in an extremely high degree of 
internal order and an optically useful 
packing in the fiberoptic, evidenced 
in Figure 54.1. This increased order 
produces a markedly improved image 
contrast. The perimeters of these 
new multi-multifibers are exactly 
analogous to the fractal object, called 
a Gosper snowflake, shown here. (To 

create a Gosper snowflake, recursively transform each face of an equilateral 
hexagon into three segments of equal length so as to preserve the original area of 
the solid.) In the image at the end of this chapter, three "pipes" sitting atop a 
Gosper snowflake fractal, which itself illustrates the interlocking structure of 

Practical Fractals 
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l-igurc 54.1. A practical fracial. I his is a photograph of the first frac tally organized 
fiberoptic facc plate for practical applications. You can sec repeated clusters of the seven-
element rnultifibcr if you look closely. This leads to a very highly ordered array with useful 
optical properties. (Photo courtesy of Lee Cook/Galileo Elcctro-Optics Corp.) 

f ractal fiberoptics. If you look closely, you can see how the pipe effectively trans-
mits the image on the bottom plane to the lop. For more information, consult; 
Cook. L., Pat terson, S. (1991) Fiberoptics for displays. Informal ion Display. 
J u n e 7(6): 14-17. 

The frontispiece for Ibis chapter shows a Gopalsamy function which I computed using an 
IBM RISC System/6000. See "Dcscriplions of Color Plates" on page 412 for formulas. 



r n 
Fractal Eyes jj -



This raicrogripper, mcide l>y C.-J. Kim, A. P. PisEino Eind R. S. Mullcr of Berkeley 
Sensor & AcLualor Center, holds an Luglena (a single cell proiozoa, 7x40 //tn), pre-
served by K. D. Lee. The SEM picture lias been taken with the help of V. Gutnik. 
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Interlude: Embracing Euglenas 
With Invisible Pliers 

Facing this page is what appears to be a pair of massive tweezers gripping a huge 
s,ausagc-shapcd creature. However, this is an image taken through a scanning 
electron microscope. The tweezer amis are bits of silicon about 400 microns long, 
smaller than a flea. In fact Lhe "mierogripper" - as il is called by Chang* J in Kim 
(below), Richard M idler. and Albert Pisano of the University of California. 
Berkeley — is not visible Lo Lhe naked eye. And Lhe sausage shape is really a singe-
eel tad protozoan called a euglena! 

Microgrippers may have applications in biomedical and micro-teierohotics. 
This means that they could serve as miniature robot hands which position a cell 
under a microscope or coultl simplify the most del tea tc of surgeries. Will micro-
surgeons of Lhe future use microgrippers LO enter minute vessels, and lo explore 
the intricate caverns of the brain? 

So potentially important is this technology that, in 1991, Lhe Japanese gov* 
eminent approved $160 million for a multiyear national effort in micromachine 
technology. Kcnsall Wise of Lhe University of Michigan notes that "The potential 
impact will exceed anything that lias come along since microprocessors." 

For further reading, see: Amoto, 1. (1991) The small wonders of microengi-
nccring, Science July 26, 253: 3K7-3HB. Also sec; Kim, C.-J., Pisano, A,, Muller, 
R., Lim, M. (1990) PolystIcons microgripper. 'technical Digest. ililLE Solid-
Si ate Sensor and Actuator Workshop, Hilton Head Island. South Carolina. 
June, pp. 48-51. The SLiM photo was taken with the help of V. Gulnik. 





Chapter 56 

Miraculous Chess Solutions 

"Many have become chess masters - no one has become the master of chess." 
Tarrasch 

Although Gary Kasparov, chess champion of the world, has vowed that no 
machine shall ever defeat him, many researchers suggest that chess playing com-
puters will soon defeat the best human players in the world. Chess playing hard-
ware has become progressively faster over the last few years. As an example, 
Figure 56.1 shows the hardware heart of one of my favorite recent inventions in 
the field of computer chess. The fully configured 24-processor machine can 
search around 10 million chess positions per second! 

Over the last few centuries, chess masters have claimed that a win cannot be 
forced in certain pawnless endgames, such as the one shown here in this schematic 
representation of a chess board.32 
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Chess experts previously thought that the best play must lead to a draw in an 
endgame such as this. However, a recently designed chess program which ran for 
more than four hours on a massively parallel computer (Thinking Machines 

32 The chess diagram is from: "Endless Engames" by Phillip E. Ross. © 1991 by Scientific 
American, Inc. Picture by J. Johnson. All rights reserved. 
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Figure 56.1. Hardware heart of a chess computer. When fully configured this computer 
is capable of searching 10 million positions per second. As a comparison, Cray Blitz 
searches al I /40th the speed, or 250.000 positions per sccond, when running on a "top of 
the line* ^-processor Cray YMP general-purp<*>c supercomputer. (Cray Rlitz is lhe name 
of lhe program that won the 4th and 5th World Computer Chess Championship in (he 
early to middle 1980s.) Figure courtesy of Feng-Hsiung Hsu, a developer of this hardwire, 
IBM Watson Research Center. 

Corp.), has found a way to win. The program was written by Lewis Stiller (a 25-
year-old graduate student at Johns Hopkins University), and the winning 
sequence consisLs of a walloping 223 moves, by far lhe longest chcss sequence in 
the centuries' long history of chess. Stiller has. opened the door tor analysis of a 
problem consider eel too tough for even the fastest computers. By performing one 
of the largest computer searches ever conducted, Stiller proved for the first time 
that a king, a rook, and a bishop can defeat a King and two KtrighLs." 

Philip Ross, an editor for Scientific American, notes thsat for the first 200 
moves of Lhe endgame *thc picccs seem to dance about aimlessly, conforming to 
no rules that a human master might rceognize and follow. Matters become clear 
only near the end, when the Black King's back is against lhe wall and its 
attendant Knights can no longer protect one another." AfLer 222 moves, the white 
King moves iriLo square f5, forcing Lhe win of a KnighL. 

SJ The computer program is 10.000 lines long, and it solved the chess problem in live hours 
alter considering 100 billion moves by retrograde analysis working backward from a 
winning position. The program ean solve a fivc-piecc endgame in about a minute and a 
six-piece endgame in lo«Jr 10 six hours 
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Figure 56.2. Byzantine circular chess. This medieval form of chess is played on a circular 
board with 64 spaces and 4 "citadels." There is no pawn promotion, and if two players' 
pawns are played around the board and meet face to face blocking each other, the oppo-
nent removes them both and then make his own move. If a player's King is forced to enter 
his opponent's citadel, he is considered to have reached a sanctuary and the game ends in a 
draw. (Figure from R.C. Bell's Board and Table Games from Many Civilizations, Dover 
NY.) 

Other researchers have proved that King and Queen win against a King and 
two bishops. This is an endgame that previous chess manuals had concluded 
would end in a draw! As a result of computer solutions such as these, the Interna-
tional Chess Federation had to amend its rule on how long a game can go on 
before it must be declared a draw. (Previously, players had to force a win within 
50 moves af ter the last capture of a piece or move of a pawn.) 

56.1 Fact File 

"In the opening of a game, the master should play like a book, in the 
midgame he should play like a magician, in the ending he should play like a 
machine." Speilmann 

• In 1991, the world's strongest commercially available chess computer is the 
Mephisto Lyon 32 Bit.34 This computer relies on expert programming rather than 

34 In the early 1990's there were many commercially available chess software packages for 
personal computers. They include great graphics and run on a variety of machines. 
Here are just a few: Checkmate (Interplay Productions, 3710 S. Susan, Suite 100, Santa 
Ana, CA 92704; 714-549-2411), Chessmaster 2000 (The Software Toolworks, 19808 
Nordhoff PL, Chatsworth, CA 91311; 818 885-9000), Chessmaster 3000 (The Software 
Toolworks, 60 Leveroni Court, Novata, CA 94949; 415 883-5157, 415 883-3000), and 
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Figure 56.3. Very difficult endgames. Can you solve these endgame puzzles? In each 
puzzle, white mates in three moves. Can your chess computer solve these baffling beau-
ties? 

processing power, and it is the winner of the 1991 World Microcomptuer Chess 
Championship held in Vancouver, B.C. Its cost is around 2,000 dollars. For more 
information: Fidelity Electronics International Inc., 13900 N.W. 58th Ct., 
Miami, FL 33014. 

• There are 1,840 different moves which can be made on a chessboard. Each 
move is represented as a line segment in the graph below (adapted from Gardner, 
1992): 

World Class Chess, (Valueware, Melody Hall Publishing Corp., Northbrook, IL 
69965). 
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56.2 Superqueens, Amazons, and Pegasus Pieces 

"Of chess it has been said that life is not long enough for it - but that is the 
fault of life, not chess. " Napier 

Some of you may be interested in the fascinating and powerful chess piece for-
mally known as a Superqueen or Amazon. This is a special chess piece that com-

bines the moves of a Queen and a Knight. Gardner (1992) notes 
that it is not possible to place n superqueens on an n by n board so 
that they do not attack one another when n is less than 10. Try this. 

You may also wish to play a game of traditional chess, replacing your Queens and 
your opponent's Queens with Superqueens. Finally, you should try playing a 
chess game with all four Knights replaced with (what I call) Pegasus pieces. 
These pieces combine the moves of a Knight with that of a bishop. If your two 
Knights are replaced by two Pegasus pieces, and your opponent's Queen is 
replaced by a superQueen, who will win? 

56.3 International Computer-Chess Championships 

"A win by an unsound combination, however showy, fills me with artistic 
horror." Steinitz 

Each year there is a world computer-chess tournament sponsored by the Associ-
ation for Computing Machinery. In November 1991, IBM's computer-chess 
system called Deep Thought II won the 22nd International Computer-Chess 
Championship at the Supercomputing '91 conference in Albuquerque, New 
Mexico. There were a number of tough competitors. Deep Thought II (running 
on an IBM RISC computer equipped with 24 custom processors) competed 
against and defeated Zarkov (HP workstation), M Chess (80486), HiTech (Sun, 
special hardware), Cray Blitz (Cray, 8 processors), and The Chess Machine 
(RISC PC adapter). M Chess came in second. Also competing were Mephisto 
(68030), LaChex (CRAY uniprocessor), Bebe (custom processor), Socrates 
(80486), BP (80486), and Delicate Brute (Sun). 

56.4 Relativistic Chess 

Kevin Whyte of the Department of Mathematics at the University of Chicago has 
described a chess variant called "relativistic chess." He invented this form with 
Lee Corbin. In brief, squares which are attacked by your opponent do not exist for 
you. This means that you pass "through" them as if they were not there. A few 
examples will help clarify this. If a rook were to face a pawn, all the squares 
between the pawn and the rook do not exist for the pawn - it's as if the rook were 
sitting on the square directly in front of the pawn; thus the pawn cannot move. 
Similarly, if a bishop attacks a pawn, then the bishop is considered one square 
away diagonally and can be taken by the pawn. All intermediate squares do not 
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exist, as far as the pawn is concerned. Kings are non-relativistic, and move nor-
mally. The reason for this exclusionary rule is that the Kings would be virtually 
impossible to checkmate if relativistic, since they could skip over any attacked 
squares - as if the squares did not exist. 

56.5 Infinite Chess 

Tim Converse from the University of Chicago has studied a chess variant where 
the game is played on an extremely large board or on one that extends arbitrarily 
in all directions. Queens, rooks, and bishops are permitted unlimited movement 
in the directions they are allowed to move. The arbitrary-extent version of the 
game would be well suited for play using a computer. Converse notes that this 
game would be very different from standard chess. For one, pawns would become 
extremely unimportant, and probably a lot of the initial moves would be long 
moves by the major pieces. Of course, if there were no borders at all, the game 
could get very sparse as the pieces quickly dispersed through the board. Infinite 
Chess is an interesting problem for game-playing computer programs, since the 
programs would not only have to limit the number of moves they look ahead (as 
usual), but they would also have to limit their "spatial" horizon as well. 

56.6 Black Hole Chess 

A year ago, I developed a variant of chess called "Black Hole Chess" where two 
"black holes" are placed on the board, as indicated in the following diagram. Any 
pieces forced across these holes are removed from the board. Needless to say, if a 
King is forced into a hole the game is over. 

56.7 Gun Chess, Ghost Chess, Fairy Chess, and Other Variants 

"Fairy Chess offers an infinite field for the expression of Man's scientific 
and artistic imagination, and adds new glory to his intellectual 
achievement." T. R. Dawson, Rex Multiplex 

Philippe Schnoebelen of Grenoble, France, has brought several other variants of 
chess to my attention. In "Gun Chess," the capture of pieces is different from 
standard chess in that the capturing piece does not move. It's as if the capturing 
piece shoots the opponent's piece from a distance (and the enemy piece is then 
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removed, as in standard chess). This makes it almost obligatory to respond to 
checks by moving the King. 

Another strange chess variant was played by Schnoebelen in high school. The 
game is the same as standard chess except that the first player to "check" (not to 
checkmate) the other King wins. Schnoebelen writes: 

On the surface, this minor change in chess rules may not seem very strange, but 
White has a very quick forced win by playing: 1. Nc3 (threatening 2. Nd5 or 2. Nb5, 
and 3. Nf6+ or Nc7+). A complete winning strategy can be described with a few 
nested if-then-else statements; therefore, I was able to write a pocket-calculator 
program to play it perfectly. 

Fairy chess utilizes "fairy" pieces and was invented and popularized by T.R. 
Dawson. These games often use freak pieces such as the "Princess," combining 
the powers of a Knight and Bishop. A well-known problem magazine called Feen-
schach35 is exclusively devoted to "fairy/heterodox" chess problems. These prob-
lems also include the use of multiple kings which must be checkmated all at once 
and ghost men that can be passed through by other pieces. Another version uses a 
partition which is placed on the board, and the players put down their pieces (sec-
retly) on whatever squares they wish. 

56.8 Madhouse Chess, and Martian Chess 

Madhouse chess has the following simple rule: instead of capturing the opponent's 
piece, the piece is simply moved to a square of the "captor's" choice. In this 
game, pieces are conserved in the same way that there is conservation of mass in 
chemical reactions. Yet another variant called Martian Chess uses a 10x10 board. 

56.9 Hexagonal Chess 

Marc R. Roussel of the University of Toronto has studied hexagonal chess. The 
game is similar to standard chess, except that the squares are hexagons, and the 
moves of the different pieces are appropriately modified. Roussel writes: 

There are three colors of squares instead of the usual two; this is to satisfy the con-
straint that no two nearest-neighbor squares can be the same color. The Bishops are 
confined to a single color as in ordinary chess so each side gets three Bishops to start 
with. The Rooks move along straight lines (of which there are now three instead of 
two emanating from any given square) and the Queen's move is still a combination of 
a Rook's and a Bishop's; this makes the Queen unusually mobile. 

35 For information on the fairy chess magazine Feenschach (Zeitschrift fur Marchenschach), 
contact: Bernd Ellinghoven, Konigstr. 3, D-5100 Aachen, Germany. For information on 
another strange, fairy chess magazine called Rex Multiplex (Revue Trimestrielle Con-
sacree Aux Echecs Feeriques): 150 Francs par an (5 numeros) a l'ordre de D. Blon-
del-Rex Multiplex, No de Compte Cheque Postal: 20 567-47 A Paris. Directeur: Denis 
Blondel, 22 Allee des Bouleaux, 94510 La Queue en Brie, France. 
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56.10 5x5 Chess 

Mart in Gardner in his book Further Mathematical Diversions describes a game 
called Mini-Chess which is played on a 5x5 board. Each player has 5 pawns and 
only one each of the remaining pieces. The playing strategy is interesting since the 
opening move is guaranteed to be attacking. 

56.11 Crushed Chess 

Here's a game I loved to play. Every 10 moves, the board becomes smaller. You start with 
the standard 8x8 board. 10 moves later, the board becomes 6x6, thus eliminating all the 
squares which form the square border frame of the original board. Think of this as an 
ever-diminishing square board centered within a square board within a square board, and 
so on. If a piece is caught on a row or column which is eliminated, the piece itself is elimi-
nated. The player who retains the King the longest is the winner. 

56.12 Evolution Chess, Carnivore Chess, and Others 

Here are some other mind-bending variations which will be of interest to some of you. I 
would be interested in hearing from any who have tried these games. 

1. Carnivore Chess - A roving (additional) piece devours any chess piece it encounters as 
the game proceeds. Before each move in a standard chess game, the carnivore piece is 
moved one square in any direction on the board, executing a random walk on the 
playing board. The piece is initially positioned near the center of the board, as 
diagrammed below. The game is played as standard chess except for the addition of 
this dangerous carnivore piece. Whenever the carnivore piece moves onto a square 
already occupied by a chess piece, the piece on the square is eliminated. 

2. Evolution Chess - In this version, pieces evolve into more powerful pieces as the game 
proceeds, or as a piece moves onto certain designated positions on the board. 

3. Fossil Chess - After a Pawn's first move it becomes a fossil, and can no longer move 
for the rest of the game. An attacking piece may capture a fossil, but the attacking 
piece is immobilized as a result. 

4. Too Many Bishops - In this version, each player acquires an additional Bishop before 
each turn. The Bishop is placed on a position determined by the opponent. The game 
ends when a King is captured, or a player cannot move due to the mob of Bishops on 
the board, or when a player cannot add a Bishop at the start of a turn because all 
squares are occupied. For clarification, here is how each turn starts: 1) Your new 
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Bishop is placed on die board at a position determined by your opponent. 2) Next, you 
are free to move the new Bishop or any other of your pieces as usual. 

5. Double C.hess - Iwo hoards arc placcd along side one another. Picccs travel freely 
hetween lx>ards as diagrammed below. 
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6. Crowded Cheat: - This is a real fun one. fn front of the usual row of Fawns, cacli 
player has an extra row of Fawns. Since each player has two rows of Pawns, the 
playing hoard becomcs very crowded. 

7. A'Vd /'awn Chess - This is the same as the standard game, except that fewer for no) 
pawns arc used. 
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56.13 Fibonacci Chess 

This game involves the use of the Fibonacci Sequence 10 determine the number of moves a 
player is permitted during his or her turn, (J>ec *Apocnl5'pse Ntimbers" on page 337 for 
background to the Fihonacci sequence: 3, 3, 2, 1, 5, K, ... .) To play Filwnacci chess, you 
make one move, and then your opponent makes a move. You make 2 moves. Your oppo-
nent makes 3 moves. You make 5 moves, and so on. David Bradley, one of the inventors of 
this chess variant, remarks, "The fun part is the fact that you must inflict a lot of damage 
while you can, bceause the next player gets so many more moves than you had." 

56.14 For Further Reading 

1. Gardner, M. (1992) fractal Music. HyperCards, and More... Freeman: NY. 
2. Fraekel, A., Lichen teste) n, D. (l9P>t) Computing a perfect strategy for NxN chess 

requires time exponential in N. Journal of Combinatorial Theory, Series A 31: 
199-214. 

56.15 Cross References 

Sec "Hypcrdimcnsional Knights" on page 236 for a description of 1-D Knights and hyper-
dimensional rooks. See "Knights in Hei r on page 321 for a puzzle involving Knights. 
See "Chess Music" on page 204 for music from ehess. See MMagic Squares. Emperor Yu, 
Chess Knighls. Etc.* on page 66 lor a chess Knighl magic Square, 





Chapter 57 

Knights in Hell, 
And Other Chess Charivari 

57.1 Knights in Hell 

"Some Knights don't leap - they limp. " Chessmaster Tartakover 

"Get a Knight firmly posted at King 6 and you may go to sleep. Your game 
will then play itself." Chessmaster Tartakover 

Having just finished a chapter on unusual chess technology, you may be inter-
ested in my favorite chess puzzle called the Knight's Gambit (facing this page). 
Your move is that of a chess Knight, except that instead of moving two squares 
ahead and one to the right or left, you should move three squares ahead and one 
to the right or left. The four beginning points (arrows at top) have dotted lines to 
get you started! You may only pause to rest on a square marked with an "X." 
Your goal is to get a Knight to an exit at one of the bottom arrows. How would 
you design a computer program to solve this puzzle? (Note: this problem is 
extremely difficult.) 

57.2 Fiendishly Difficult Eight Pawn Problem 

"There have been times in my life when I came very near thinking that I 
could not lose even a single game. Then I would be beaten, and the lost 
game would bring me back from dreamland to earth. Nothing is so healthy 
as a thrashing at the proper time, and from few won games have I learned as 
much as I have from most of my defeats. " Chessmaster Capablanca 

While growing up near Asbury Park, New Jersey, I would often be presented by 
my father with strange chess problems to ponder. I suppose today, children (and 
adults) will resort to commercially available chess machines to help solve prob-
lems, much like calculators are used instead of slide rules and pencil and paper. 
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One of my favorite problems is diagramed at the end of this chapter, and I recall 
it most vividly because of the strange diagonal row of six black pawns. I believe 
the problem was actually formulated in the late 1800's. It is white's turn to play 
and force a win. Can you solve this fiendishly difficult problem? Can most com-
mercially available chess machines solve this? If you own a chess computer, try 
this on it. 

57.3 Cross References 

See "Hyperdimensional Knights" on page 236 for a description of 1-D Knights and hyper-
dimensional rooks. See "Miraculous Chess Solutions" on page 311 for chess technology 
and other curiosities. See "Chess Music" on page 204 for music from chess. 

57.4 For Further Reading 

Quinn, L. D. (1975) Challenging Mazes. Dover: New York. (Lee Daniel Quinn 
designed this Knight maze.) 
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Interlude: Prehistoric Insect Sculptures 

Like some gargantuan prehistoric insect, Bruce Beasley's sculpture "Dorion* has 
come to rest on three legs outside a well known American building. The sculpture 
consist* of steel polyhedra and soars 20 feet into the air. The stainless steel body 
scintillates in the sunlight. Transporting his two-ton insect sculptures is possible 
because they consist of four elements which can be bolted together. Ihese works 
are extremely stable because the pointed legs are located far apart at the vertices 
of a triangle. 

Beasley's past work includes huge acrylic pieces, other large inscct sculptures, 
prehistoric birdlikc sculptures displayed in airports, and sculptures molded from 
scraps taken from the Cypress section of freeway that crushed 42 people when it 
collapsed during the October i7th l.oma Preita earthquake. After the tragedy, he 
asked Llic construction workers tearing apart the freeway for a small piece of the 
metal. About his sculpture crcaLcd from the metal part of the freeway, Beasley 
notes, "I wanted to express the sense of recovery and rebirth - the idea that 
something comes out of the ruins." 

Beaslcy has pieces in the permanent collections at the Oakland Museum, the 
Museum of Modern Art in New York, the Guggenheim Museum, and the Musee 
d'Arle Moderns, in Paris. He can be reached at: 322 Lewis Street, Oakland, CA 
94607. 
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Chapter 59 

Bicycles from Hell 

w 

"I'm one of those people who believe that life is a series of cycles - wheels 
within wheels, some meshing with others, some spinning alone, but all of 
them performing some finite, repeating function." 

A few years ago, while attempting to stimulate some young math students, I 
recounted a mythological tale about a demon bicyclist riding through the burning 
depths of hell. My story was as follows. In the crimson caves of Hell rides a bicy-
clist. He rides by the lost human souls, and allows them to view his bicycle wheels 
for one minute. Surprisingly, each of his wheels has a mathematical formula that 
can be written out by starting at the correct number and following around the 
wheel's circular tire in a clockwise or counterclockwise direction until the formula 
is determined. For example, the following bicycle wheel contains the formula 
5 x 3 = 1 5 . (You start at the "5" and proceed clockwise, inserting the appro-
priate mathematical symbols as needed.) 

If the you are not able to determine the correct formula within one minute, you 
are relegated to the Stygian depths for all eternity. However, if you can correctly 
identify the formula before the bicyclist rides on, then you enter the empyrean 
realm of paradise. 

The following are three other bicycle wheels from hell. Can you identify the 
formulas they contain? Only the symbols + , — , x , / , = , and exponentiation 
are permitted. You may use each of these symbols, at most, two times in your 
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Figure 59.1. The eternal bicyclist. Can you'solve these wheels? 

formulation. For example, 1 x 2 x 3 x 4 would not be permitted because the 
multiplication symbol is used three times. Concatenation of digits to form multi-
digit numbers is allowed as often as needed. (You must proceed around the wheel 
back to the starting point, or beyond the starting point as in the 5 x 3 = 1 5 
example). Can you solve my wheels in Figure 59.1 ? 

Note that if I did not constrain the number of times you could use the opera-
tion symbols, it would be possible to formulate various cycles with 1 in them (but 
not zeros) simply using a repeated exponential such as Vs = 1. The first wheel 
falls into this category. Similarly, any cycle with one and only one "0" in it can 
likewise be solved by using all exponentials: 0'j = 0. The third wheel falls into 
this category. Jim McLean of Boca Raton, Florida was the first person to notice 
this and solve these puzzles without the constraint of the number of operation 
symbols permitted. 

59.1 Solutions and Future Experiments 

My solution for the left-most hell wheel in Figure 59.1 is 22 x 2 / 4 = 11. The 
other two wheels are left as exercises for you. When I presented these wheels to 
other researchers, I was stunned by just how many solutions my wheels have. 
Here are some other possible solutions to the first wheel: 2{X — 4 + 2 + 2 = 2, or 
1 x 2 + 2 + 2 x 4 /1 = 12, or 2 x 2 = 4 = 1 + 1 + 2, or 1 + 1 x 2 / 2 + 2 = 4, 
or ((( l1)2) x 2) x 2 = 4, or 2 + 2 - 4 + 1 + 1 = 2, or 4 - 1 = 1 + 2 x 2 /2 , or 
1 x 12 x 2 = 24, or 224112 = 224112. A few respondents challenged me with 
wheels of their own devising (Figure 59.2). 
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Figure 59.2. More wheels. Can you solve these wheels? After seeing my wheels, a few 
colleagues sent me their own. These were submitted to me by Davode Crippa, Stephen 
Kay, and Geoff Bailey. 

59.2 Bicycles Wheels From Purgatory 

Since there are often many solutions for a single wheel, a much tougher problem 
is to devise wheels for which there are no solutions. Can you do it? Of course, as 
Bill Mayne (Florida State University) has pointed out to me, for any string of 
digits around the wheel a ... z there are always solutions involving multiple revo-
lutions of the wheel: a...z = a...z, a ... za ... z = a ... za ... z, etc. (For 
example, 12345 = 12345 is a case of a trivial wheel revolution solution.) At a 
minimum we must either limit the number of cycles to less than two or rule out 
such solutions as a special case. 

59.3 Fact File 

• More than 90 million Americans ride bicycles. 
• The longest tandem bicycle ever made is approximately 67 feet long (for 35 
riders) and was built by Pedalstompers Westmalle of Belgium. 





Chapter 60 

Shruludidi Spheres Between Uranus and Pluto 

The thing looked like a grotesque beachball with a trunk, a beachball 
covered with fine hair which wavered like tendrils of seaweed in a running 
tide. Its proboscis swelled like a firehose which had been tied in a knot. 
Sam watched, frozen in horror and fascination, as the thing which called 
itself Ardelia Lortz strangled on its own fuming guts. 

During my years in graduate school I wrote a number of science fiction tales 
dealing with strange creatures who were fascinated by mathematics. The story I 
recall most vividly described a sentient race of nearly spherical creatures named 
the Shruludidi, who lived far out in interplanetary space, somewhere between 
Uranus and Pluto. 

A few of the Shruludidi bore vestigial fins and flippers, evolutionary remnants of 
their aquatic days centuries ago, prior to their migration into interplanetary 
space. From the body of many creatures protruded several retractable stalks, each 
bearing a single, unwinking eye. The number of eyes varied from individual to 
individual. Interestingly, the number of eyes on an individual Shruludidi occurred 
in direct proportion to its status in the Shruludidi society. 

The density of creatures in space had remained nearly constant for the last 
century - around 1000 Shruludidi per cubic mile of space. Except for the presi-
dent and science advisor, who were sterile, the other Shruludidi had no means 
with which they could direct their motions; these 1-foot balls flew through space 
in random directions, and sometimes bounced off one another. (The oleaginous 
Shruludidi could change their appearance somewhat to suit their aesthetic tastes 
by altering their body shapes, but they always had to maintain a nearly spherical 
appearance in order to maintain structural integrity.) When one Shruludidi 

Stephen King, Four Past Midnight 
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bounced off another, a mating process was consummated and a child was born. 
An invisible force field confined the Shruludidi to the area of space near Pluto 
and Uranus, so their density was fairly constant. 

On one frigid day, the science advisor to the Shruludidi president was asked 
by the president to solve a particularly vexing problem. Due to the fading sunlight 
this area of space was receiving, the Shruludidi lived shorter lives. In fact, they 
could only travel about 1000 miles before dying of old age. The science advisor 
was asked if this 1000-mile limitation was too short to enable sufficient chance 
encounters between the Shruludidi to allow mating and continuation of the 
species. The president looked into the 101 eyes of his science advisor, and with a 
deep, stentorian voice, asked: 

"What is the average distance moved by Shruludidi spheres between colli-
sions with one another?" 

Obviously, if the distance moved by the creatures was not great enough, too 
few children would be born. The science advisor worked long and hard and, when 
finished with the computation, he presented the solution to the president on a tat-
tered piece of paper. The president looked at the paper with his 1,597 quivering 
eye stalks, took out a knife, and killed the science advisor. 

It turned out that the species would not survive because the average distance 
the spheres would have had to travel before having a chance encounter was 1,575 
miles - far too long to allow enough breeding before a Shruludidi died of old age. 

How difficult was the Shruludidi science advisor's computation to make con-
sidering that no computer was available to him in 
interplanetary space? How would the average dis-
tance travelled between chance encounters have 
changed as a function of the density of Shruludidi 
organisms or the size of the Shruludidi? It's pos-
sible to compute this average distance (known as 
the mean free path to physicists) using the fol-
lowing formula: L= 1/(4 t t^/2 ab1). Here, L is 
the average distance travelled before hitting 
another sphere, a is the density of sphere-crea-
tures, and b is the radius of a sphere. From the 
equation, you can see that as the radius of the 
spheres increase, or the density of the spheres 
increase, the distance travelled before hitting 
another sphere (as you might expect) decreases. 

The Shruludidi science advisor simply used a = 1000 spheres / cubic mile, and 
b = 0.000189 miles (1 foot). 
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60.1 Stop and Think 

It 's possible to explore some amazing problems simply by using the equation for 
mean free path and trying different values for the sphere radius and sphere 
density in space. 

1. For example, what is the distance a Shruludidi would have to travel before 
bouncing off another Shruludidi if their radii were only an inch? (When you 
apply the equation, make sure you use the two input variables in the same 
units of measurement . One inch is 0.0000157 miles.) 

2. If you had placed two blow-fish in a 30-gallon fish tank, what is the average 
distance they would have to travel before bouncing off one another, assuming 
their movements were random? 

3. Draw a 3-D graph of L versus a versus b to better understand the relationship 
between these three variables. 

4. If you were given a box the size of a house with 10 marbles shaking inside it ran-
domly, what is the average distance travelled by a marble before hitting into another 
marble? Is the distance close to 1 mile? Or 100 miles? Or is it closer to the distance 
Magellan ships' travelled as they circumnavigated the globe? Or the distance from 
the earth to the moon? 

5. Given a box with bacteria of standard size (radius = 0.00001 feet) with a density of 
1000 per cubic foot, the average distance a bacterium will have to travel before 
bouncing into another bacterium is about five times the height of the Empire State 
building in New York City. What density of bacteria would be required to produce a 
mean free path equivalent to the length of the Suez Canal (5.44 x 105 feet)? What 
density of bacteria would be required to produce a mean free path equivalent to the 
average distance of the earth to the sun (4.9 x 1011 feet)? 

6. The frequency of collisions of Shruludidi citizens per second is given by 
f = 4t7\/2 ab2v. Here, v is the velocity of the spheres. How many collisions would 
occur per second, in the president's original depressing scenario, for different veloci-
ties? 

"The universe is mostly vacuum. In the remote regions between galaxies, 
you would be lucky to find a single atom in a space the size of the Loui-
siana Superdome." Hans Christian von Baeyer, 1992, Discover 
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Interlude: Explosion Art (Detonography) 

"The ground shook; I was a bit sturwed." 
Richard Wolkinir, 1987, Smithsonian Magazine 

"Our first explosions produced jus I rubble and shrapnel. My husband 
thought this was crazy." lively n Rosenberg, 19X7, Smithsonain Magazine 

For several years artist Fvelyn Rosenberg has been visiting a firing range strewn 
with bio wn-a part jet fighters in the arid hills above Socorro, New Mexico. Rosen-
berg has pioneered a novel art form, which she and her husband have dubbed 
"detonography." To produce her art, she detonates "detasheets" to create beau-
tiful and intricate metal sculptures expressing the imnienseness of geological time, 
and the universality of myth. The bJast of an explosion forces metal into a mold 
and leaves the metal imprinted with the mold's image in bas-relief. To dean Lhc 
soot away from Lhc metal, she use acetone and a wire brush. Next she brushes the 
metal with exotic chemicals such as liver of sulfur which produce beautiful 
patches of color an the surface. Copper nitrate and a blowtorch are used to put on 
the finishing touches. 

Rosenberg's studio is behind her house in Albuquerque, New Mexico, which 
she shares with her husband Gary, chairman of the neurology department at the 
University of New Mexico School of Medicine. Her work has been featured in 
numerous international exhibitions, and on many television shows. More than 
fifty newspaper articles and reviews have appeared on her work since her first 
one-person show in 1970. 

Rosenberg mentioned to me that dctouography is a way to make large scale 
work at a fraction of the cast of bron/c casting and with a look which can be 
achieved in no other way. On the next page is a photograph of a detail of "Evolu-
tionary Geoscape II" (4 feet x 21 feet, from the New Mexico Museum of Natural 
History). It is made of copper, brass, and aluminum. The entire award-winning 
pieee traces a time-line from ferns and insects progressing through fish, rep Li I es, 
birds, mammals, and humans, Fach panel bas a prehistoric animal and its 
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modem day counterpart. In this section, you can see a prehistoric bird and <1 
modern day eagle. 

Those of you interested in reading more about. Rosenberg may consult: Wol-
komir, R. (1987) She's an artist whose explosives make a lasting impression. 
Smithsonian Magazine. December, pp. 1{i7-l7f, Rosenberg can be reached at 
4X12 Madison Court, M , Albuquerque, NM 87110. 
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Apocalypse Numbers 

"Never dismiss the intuition of the ancients, who believed that number is the 
essence of all things. Number is the secret source of entire cultures, and men 
have been killed for their heresies and seductive credos. The whole history of 
mathematics is subterranean, taking place beneath history itself a shadow-
world scarcely perceived even by the learned." Don DeLillo, Ratner's Star 

The book called the Revelation (or Apocalypse) of John is the last book of the 
New Testament (with the exception of the Syriac-speaking church, which has 
never accepted it). Various mystics have devoted much energy to deciphering the 
number 666, said by John the Apostle to designate the Number of the Beast, the 
Antichrist.36 About a year ago, I began a computer search for apocalypse 
numbers. These are Fibonacci numbers with precisely 666 digits. As described in 
other chapters, the sequence of numbers (1, 1, 2, 3, 5, 8, ...), is called the Fibo-
nacci sequence after the wealthy Italian merchant Leonardo Fibonacci of Pisa, 
and it plays important roles in mathematics and nature. These numbers are such 
that, after the first two, every number in the sequence equals the sum of the two 
previous numbers Fn = Fn_ i + F/7_2. (See Pseudocode 64.2 for hints on how to 
program Fibonacci numbers.) It turns out that the 3,184th Fibonacci number is 
apocalyptic, having 666 digits. For numerologist readers, the apocalyptic number 
is: 

11672437408149554123343576457921418406897471744343943723633128273 
62620824523853129606823272103122788807682449798760734559719751986 
31224699392309001139062569109651074019651076081705393206023798479 
39189700037747512447134402546795076870699055032297133437094009365 
44424118152068579040410434005685680811943795030019676693566337923 
47218656896136583990327918167352721163581650359577686552293102708 
82722424710947638211542756826882004025850498611340877333322087361 
64591167264971986989157913558834313855569580021219281470520871752 

36 More recently, mystical individuals of the extreme fundamentalist right have noted that 
each word in the name Ronald Wilson Reagan has six letters. 
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06748936366171253380422058802655291403358145619514604279465357644 
67290281171154076012677256157286715574607026067859229791790424885 
3892358861771163 

62.1 Stop and Think 

"There is but one master [painter] who has taken notice of the neglected 
upper sky. He has followed its passions, and its changes, and he has brought 
down and laid open to the world another apocalypse of Heaven." 

Ruskin, Modern Painters (1843-1860) 

1. Is the number shown here the only apocalyptic Fibonacci number? 
2. Does there exist an apocalyptic prime number? 
3. Is there any significance to the fact that the first four digits and last four 

digits (1167 and 1163) of the apocalypse number are both dates during the 
reign of Frederick I of Germany who intervened extensively in papal politics? 

4. Is it just a coincidence that the keys of a piano appear to exhibit a segment of 
the Fibonacci sequence 1, 2, 3, 5, 8, ... ? There are 2 black notes, followed by 
3 black notes. There are 5 black keys in an octave and 8 white keys in an 
octave! 

62.2 Fact File: 666 in Beards and in Britain 

• On July 10, 1991, Procter & Gamble announced that it was redesigning its 
moon-and-stars company logo. The company said it is eliminating the curly hairs 
in the man-in-the-moon's beard that to some looked like 6s. The Fall 1991 issue of 
the Skeptical Inquirer notes that "the number 666 is linked to Satan in the Book 
of Revelations, and this helped fuel the false rumors fostered by fundamentalists." 
A federal judge in Topeka, Kansas, has approved settlements in the last of a 
dozen lawsuits filed by Procter & Gamble Co. to halt rumors associating the 
company with Satanism. 

• On May 1, 1991, the British vehicle licensing office stopped issuing license 
plates bearing the numbers "666." The Winter 1992 issue of the Skeptical 
Inquirer reports two reasons given for the decision: cars with 666 plates were 
involved in too many accidents, and there were "complaints from the public." 



Chapter 63 

Interlude: Large-Scale Holosculptures 

"i'he world of mathematics and physics, like the world of imagination, is far 
removed .from the tangible and visible; and yet, to fhe mathematician, as to 
the poet, this world of pure form has an enduring reality." 

Helen Poltz, 1955, Imagination's Other Place 

Holosculptures are hybrid artworks integrating holograms and fiberoptics with 
both sculptures and electroacoustic music. In his huge outdoor hoi ©sculpture 
called Homage to the Vital Forces of Quebec, Georges Dyens (a sculptor, hoJog-
rapher, and educator in Quebec, Canada) provides viewers with a masterpiece of 
form and shape as they stroll along the St. Lawrence river in Montreal. The illus-
tration here is just a small detail of the entire piece which represents a cube at the 
instant right after an explosion. In tact, this is just one piece of the shattered 
cube! A large "20x40 incli rainbow transmission" hologram is built into a column 
in the work (not visible in this view). The hologram displays an image of the cube 
at tile exact moment of explosion. 

You can read more about Dyens' work in: Dyens, G. (1989) lloloscuptures: 
holography and Sculpture, spirit and matter. Leonardo. 22(3/4): 3X3-3X8. 





Chapter 64 

1597 Problem 

There can be no dull numbers, because if there were, the first of them would 
be interesting on account of its dullness. Martin Gardner, 1992 

1,597 is an interesting number. It is both a prime number37 and a Fibonacci 
number,38 and it is also the year in which the Edict of Nantes was drafted, which 
gave French Protestants (Huguenots) a degree of freedom, opening public offices 
to them and permitting them to hold public worship in certain cities. 
(Pseudocode 64.1 will show you how to search for all prime numbers that are also 
Fibonacci numbers.) 

Moreover, 1597 is fascinating because it is an "emirp," a prime number that 
turns into a different prime number when its digits are reversed (7951). 

"1597" is also the basis for a number problem I posed in 1991 for which a 
solution seemed unlikely. Consider the formula x = y/(\591y1 + 1) . 

Is x ever an integer for any integer y greater than 0? You may wish to first 
compute a few values of x in order to get the feel for the formula: 

Y x 
1 39.97 
2 79.93 
3 119.89 

You can see that for y = 1,2, or 3, x is not an integer. Is it ever an integer? The 
first method you might use to answer this question is to write a short computer 

37 A prime is a positive integer that cannot be written as the product of two smaller inte-
gers. The number 6 is equal to 2 times 3, but 7 cannot be written as a product of 
factors; therefore, 7 is called a prime number or prime. Here are the first few prime 
numbers 2, 3, 5, 7, 1 1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59. 

38 See "Apocalypse Numbers" on page 337 for background to this sequence of numbers 
(1, 1, 2, 3, 5, 8, ...), called the Fibonacci sequence. See "Fibonacci Chess" on page 319 
for Fibonacci chess games. How much money would you be willing to gamble that the 
number of people in the frontispiece's photo is neither a prime number nor a Fibonacci 
number? 
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A L G O R I T H M : How to C o m p u t e P r i m e F i b o n a c c i N u m b e r s 

n = 100; g = 1; h = 1 ; 
/* F i r s t g e n e r a t e a F i b o n a c c i N u m b e r */ 
DO l = 3 to n; 

f = g + h; b=1; 
/* now check if it is p r i m e */ 
ff = f * 0.5; 
DO j = 2 to ff; 

IF (f//j) = 0 then DO; 
/* if f is n o t e v e n l y d i v i s i b l e 

by j then it is not p r i m e */ 
b = 0; 
LEAVE; 

END; 
END; /*j*/ 

/* P r i n t f if it is a P r i m e F i b o n a c c i N u m b e r */ 
IF (b = 1) then P r i n t f 
h = g; g = f; 

END; /* l */ 

Pseudocode 64.1. How to compute prime Fibonacci numbers. (The program coded here 
is in the style of the REXX language.) 

program that would simply try thousands of values of y, starting at y = 1. The 
program would continually increment y while testing x - for as long as your 
patience and machine time allowed. The program could check each x value to see 
if it were an integer. Unfortunately, your program would run for weeks, and prob-
ably months, and you would finally toss up your hands and exclaim that there is 
no solution. However, it turns out there is an infinite number of solutions, and the 
first individual to solve the 1597 problem was Noam D. Elkies of the Math-
ematics Department of Harvard University. The reason it would take your com-
puter so long to find these infinite number of solutions is the fact that the smallest 
integer value for x is: 

x = 519711527755463096224266385375638449943026746249 (64.1) 

for a y value of 

y = 13004986088790772250309504643908671520836229100. (64.2) 

Dr. Elkies, however, did not solve this through the super CPU-intensive search 
method for finding integer solutions that I just outlined. In fact, it has been 
known at least since the time of French mathematician Fermat (1601-1665) that 
for any positive integer D which is not a square, there are infinitely many integers 
x, y such that x2 = Dy2 + 1. Since I gave you the number 1597, which is a prime 
number and hence cannot be a square, one knows immediately that there is a sol-
ution. Furthermore there is a known algorithm which can be used to solve prob-
lems such as these. These methods involve the use of a continued fraction 
representation for y/ZT in order to find the smallest solution. These algorithms 
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A L G O R I T H M : P r i n t 30 F i b o n a c c i N u m b e r s 

D i m e n s i o n Fib(30) 
F i b ( 1 ) = 1 
Fib(2)=1 
For n = 1 to 28 

F i b ( n + 2 ) = Fib(n+1) + Fib(n) 
N e x t n 
For x — 1 to 30 

P r i n t Fib(x) 
end 

Pseudocode 64.2. How to compute Fibonacci numbers. 

are now implemented on several commercially available symbolic computation 
software packages, which is what Elkies used to solve the 1597 problem. 

64.1 Stop and Think 

1. 1597 is an "emirp," a prime number that turns into a different prime number 
when its digits are reversed. Can you find any other emirps? How rare are 
emirps? What is the largest emirp ever computed? Can you find any Icca-
nobif numbers? These are Fibonacci numbers that turn into different Fibo-
nacci numbers when their digits are reversed. Is it possible that Iccanobif 
numbers do not exist? 

2. Here are some variations to the equation I gave, some of which may be more 
easy than others to find integer solutions. Can you find an integer solution to 
any of the following: 

(64.3) 

(64.4) 

(64.5) 

(64.6) 

or 

(64.7) 

Hint: only two of these five equations have integer solutions. 
3. Here are the first few prime Fibonacci numbers: 2, 3, 5, 13, 89, 233, 1597, 

28657. How large a prime Fibonacci number can you compute? 





Chapter 65 

Terrible Brahmagupta Numbers 
In the Seventh Century 

"A person who can within a year solve x2 — 92y2 = 1 is a mathematician." 
Brahmagupta 

"As in our Middle Ages, the scientists of India, for better and for worse, were 
her priests." Will Durant, 1954 Our Oriental Heritage 

Brahmagupta, a great Indian mathematician of the 7th century, was interested in 
huge numbers. Problems, such as the one he posed in the quotation above, have 
always made me wonder about the history of large number problems. How long 
ago were the first huge number problems posed, solved, or even considered solv-
able by humans? As an example of a large number problem here we will consider 
an interesting question recently posed by Chris Long of Rutgers University. I call 
these kinds of numbers Brahmagupta numbers after this Hindu mathematician 
and astronomer who was so intrigued by huge number solutions to simple-looking 
problems. 

Brahmagupta (558 - 660 A.D.) (not to be confused with Brahmaputra,39 a 
great river of Tibet, India, and Bangladesh, or Brahmacharia)40 wrote a book in 
verse form called the Brahma-sphuta-siddhanta,41 two chapters of which were 
devoted to mathematics. The chapters include arithmetical progression, quadratic 

39 Many have said that the Brahmaputra ranks among the most important rivers of the 
world. It is 250 miles longer than the Ganges and is a highway of commerce through 
the fertile valley of Assam. The nature of its upper course was long an unsolved mystery 
to explorers due to the fact that exploration was barred by the hostility of mountain 
tribes. 

40 Brahmacharia is a vow of chastity taken by the ascetic student - a vow of absolute 
abstention from all sexual desire. 

41 The only translations I could find of his mathematical work were Colebrooke's book 
Algebra, with Arithmetic and Mensuration, from the Sanskrit of Brahmagupta and 
Bhascara, Preceded by a Dissertation on the State of Science as Known to the Hindus 
(1817) and another book, Sengupta's The Khandakhadyaka, an Astronomical Treatise 
by Brahmagupta (1934). 
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equations, and proofs of various geometrical theorems on the right-angled tri-
angle, on surfaces and volumes, and on areas of triangles. Brahmagupta, among 
other ancient mathematicians, was responsible for the following major operations 
with zero: 

a — a = 0 (65.1) 

a ± 0 = a (65.2) 

x 0 = 0 (65.3) 

0 x 0 = 0 (65.4) 

and 

±a/0= Kha-chedaoo. (65.5) 

(The last operation is also attributed to Bhaskara II.)42 Brahmagupta also pro-
posed interesting ways of solving equations of the form: nx2±c = y2 

Let's turn our attention to Brahmagupta numbers. Please don't expect to 
solve the following problem with pencil and paper! The solutions involve the ratio 
of numbers so large that if you were to place a dot on a paper every second until 
you had a number of dots equal to the Brahmagupta numbers, our Milky Way 
galaxy will have rotated many times.43 

The problem deals with rational numbers. A rational number is a number 
that can be expressed as a ratio of two integers. Here are some fine examples: 
1/2, 4/3, 7/1, 8. All common fractions and all terminating (or repeating) 
decimal fractions are rational. Certain trigonometric ratios of certain angles are 
even rational, for example cos 60° = 1/2. (This is in contrast to irrational 
numbers like e and tt, - called transcendental numbers - and all surds such as 
v/27"-) 

The problem can be stated as follows. Find the smallest rational number x 
(smallest in the sense of smallest numerator and denominator) such that there 
exist rational numbers y and z and 

x2 — 157 = y2, x2 + 157 = z 2 (65.6) 

Jim Buddenhagen of Southwestern Bell Advanced Technology Laboratory gave a 
behemoth solution: 

x — a/b where a — 

5024018299533803698113775431229403099313501746688966758472881649 
2946182669894640083390462472702407772686242505697440870727011829 
51626039427524418350855334186472965460410399610068678034313761 

42 The symbol 0 (for zero) first appeared in Hindu writings around 870 A.D. 
43 (Did you know that the Milky Way galaxy's period of rotation is 6 x 1015 seconds?) 



65.0 Terrible Brahmagupta Numbers in the Seventh Century 347 

and 

b = 

5520712785907625818387556946134269736778624039810826514720257922 
6331920116659466022175218717871386078381699548684974799036529476 
971927068616591606845144977158476992422410434693821197457720 

y = a/b 

where 

a = 

4976168309082615289459776489008494215611077198547772938690741953 
8978932445636040315578821358685390299974609232140115116898760462 
42577636636913029860052304292613303022945165470508311968736639 

and 

b = 

5520712785907625818387556946134269736778624039810826514720257922 
6331920116659466022175218717871386078381699548684974799036529476 
971927068616591606845144977158476992422410434693821197457720 

z = a/b 

where 

a = 

5071416834355358956136783482025900435467719016638071727211251468 
8668416204079391389484275484099986283966106884999373466605448507 
26462041214489884598731864517189496456476576826531843826804161 

and 

b = 

5520712785907625818387556946134269736778624039810826514720257922 
6331920116659466022175218717871386078381699548684974799036529476 
971927068616591606845144977158476992422410434693821197457720 

Buddenhagan solved this using theory provided by Don Zagier in a book titled 
Introduction to Elliptic Curves and Modular Forms (page 5) by Neal Koblitz -
and by using a large-integer computer software program called "Maple" (Univer-
sity of Waterloo). 
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If you substitute these huge numbers into the previous equations, you'd find 
that x2 — y2 = 157 and also that x2 — z2 = — 157, which are good solutions to the 
problem. But are these the smallest solutions? Not quite! But even the smallest 
solution contains unimaginably large numbers. For example, it turns out that the 
absolute smallest value for x, is 

224403517704336969924557513090674863160948472041 
17824664537857719176051070357934327140032961660 C ' ) 

For more information on these type of problems you can consult Mazur's 
paper titled "Arithmetic on Curves" which appeared in the Bulletin of the AMS 
(14(2): 255, 1986). 

65.1 Stop and Think 

1. Considering that the Brahmagupta numbers (x2 — 157 = y2, x2 + 157 = z2) 
contain so many digits, what would have mathematicians in earlier centuries 
thought about a problem such of this? 

2. Historically speaking, how long ago was a solution to this problem even pos-
sible to arrive at? 

3. Could someone have solved the Brahmagupta problem, for example, in 1940 
or 1950? What problems considered unsolvable today will be solvable in 50 
years? 

4. Can you find any 7th-century Brahmagupta numbers for the original integer 
problem: x2 — 92y2 = 1 given in the quotation at the beginning of this 
chapter? Hint: some solutions to this should be easy to discover using a per-
sonal computer. 

5. One can generalize the 7th-century formula to x2 — Ny2 = 1. Are there any 
numbers, TV, for which there is no solution to this problem? For example, 
Lew Mammel, Jr. of AT&T Bell laboratories could not find a solution for 
TV = 53 when doing a computer search for all integers y less than 6365. 

65.2 Wild India 

Those of you interested in the natural history of the Indian subcontinent should 
not miss Gerald Cubitt and Guy Mountfort's photographic celebration Wild 
India: The Wildlife and Scenery of India and Nepal (MIT Press, 1991, 208 p, 
color, $39.95). The text describes the area's natural resources as well as the pres-
sures imposed by population growth. More than 400 color photographs capture 
the exquisite natural environment. 



Chapter 66 

Incredibly Difficult Number Sequences 

"The ratio of the height of the Sears Building in Chicago to the height of the 
Woolworth Building in New York is the same to four significant digits 
(1.816 vs. 1816) as the ratio of the mass of a proton to the mass of an elec-
tron. " John Paulos, Innumeracy 

Can you supply the missing number in the following sequence? 

10, 11, 12, 13, 20, ?, 1000 (66.1) 

If not, don't be disappointed. Roughly 90 percent of my colleagues with Ph.D.'s 
could not solve this, even after considering the sequence for a long time. 

Perhaps looking at another sequence generated by the same rules might help: 

10, 11, 12, 13, 14, 20, 22, ?, 1010 (66.2) 

Not yet? Perhaps an even longer sequence, generated using the same rules, will 
finally clue you in: 

10, 11, 12, 13, 14, 15, 16, 17, 18,21,23,25,32, 101, ?, 10001 (66.3) 

For the first two sequences, the missing numbers are 22, and 101 respectively. To 
create the first sequence, I represented the number "8" in different bases, from 
base 8 to base 2. For those of you not familiar with numbers represented in bases 
other than 10 (which is the standard way of representing numbers) consider how 
to represent any number in base 2. Numbers in base 2 are called binary numbers. 
The presence of a " 1" in a digit position of a number base 2 indicates that a corre-
sponding power of 2 is used in determine the value of the binary number. A 0 in 
the number indicates that a corresponding power of 2 is absent from the binary 
number. The binary number 1111 represents (1 x 23) + (1 x 22) + (1 x 21) + 
(1 x 2°) = 15. The binary number 1000 represents 1 x 23 = 8. Can you now 
solve the third sequence? 

Here are some other difficult sequences. Can you supply the missing number 
in the following sequences? 
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10, ?, 1111110010, 1000010001110100011000101111010, ? (66.4) 

or 

11, 1011, 1111110011, 1000010001110100011000101111011,? (66.5) 

101, 1100101, 100001100100101000101, ? (66.6) 

These sequences seem to be growing very large rather quickly. How many digits 
would the 20th entry in these sequences contain? 

66.1 Crazy Sequences 

The following are fascinating number sequence problems sent to me by readers. 
Those who submitted sequences were asked to rate the difficulty of solving their 
sequences on a 4-point difficulty scale: 1) Easy, 2) Difficult, 3) Extremely Diffi-
cult, and 4) Nearly impossible to solve by mere mortals. Keep in mind that these 
ratings are determined by mathematicians and therefore may not reflect the diffi-
culty of the problem for non-mathematically trained individuals! 

66.1.1 Schoenleber Number Sequence Problem 

Can you supply this missing number? 
77, 49, 36, 18, ? 
Difficulty rating: 2. (Contributed by Claus Schoenleber, Germany) 

66.1.2 Diep Number Sequence 

Can you supply this missing number? 
2,71,828, ?,... 

Difficulty rating: 2. (Contributed by Thanh Diep, Stanford University) 

66.1.2.1 Silverman Number Sequence 
3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 
4723, 5387, ? ... 
Difficulty rating: 4. (Contributed by Bob Silverman, The MITRE Corp.) 

66.1.3 Somos Number Sequence Problem 

1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 5047, 41783, ? ... 
Difficulty rating: 4. (Contributed by Michael Somos) 
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66.1.4 Chernoff Number Sequence 

360 is the 3rd term of the mystical sequence: 
2, 12, 360, ?, 174636000, ... 
What is the 4th term? Difficulty rating: 4. (Contributed by Paul Chernoff, California) 

66.1.5 Trice Number Sequence 

21 ,36 ,55 , 60,67, 68,92, ?, 125 
Difficulty rating: 4. (Contributed by Greg Trice, Ontario. He learned about this sequence 
25 years ago and claims that few people ever can solve it. It was once posed as a question 
on the "University Challenge" TV program.) 

66.1.6 Balden Number Sequence 

11, 121, 1001, 11011, 121121, ... 

or 
1, 10.01, 100.01, 101.01, 1000.1001, 1010.0001, 10000.0001, 10001.0001, ... 

What is the next number in these sequences? Difficulty rating: 4. (Contributed by Bruce 
Balden, British Columbia.) 

66.1.7 Some Solutions 

To solve the class of sequences exemplified by Equation (66.5), continue to convert 
between decimal and binary representations. For example, 11 (decimal) is 1011 (binary). 
1011 (decimal) is 1111110011 (binary). And so on. 

The solution to the Schoenleber sequence is 8. To solve this, place a multiply operator 
between two digits: 7 x 7 = 49, 4 x 9 = 36, 3 x 6 = 18, 1 x 8 = 8. (There is no following 
number). 

The solution to the Diep sequence is 1828. The ith term of the sequence is the next z 
digits ofe(e = 2.7182818284...). 

The Silverman sequence lists the indices of the prime Fibonacci numbers. For 
example, the third, fourth, and fifth Fibonacci numbers (F3, F4, F5) are primes. (See 
"1597 Problem" on page 341 for background on prime Fibonacci numbers.) He notes that 
one could also construct extremely difficult problems using the Lucas primes: 0, 2, 4, 5, 7, 
8, 1 1, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 1 13, 313, 353, 503, 613, 617, 863, ... 
For example, L863 is prime. (The Lucas sequence is 2, 1, 3, 4, 7, 11, 18, 29, 47, ...). 

The solution to the Somos sequence involves the formula: a(n) = 
(a(n — \)a(n — 5) + a(n — 2)a(n — 4) + a(n — 3)a(n — 3))/a(n — 6). This has been 
published in the journal Mathematical Intelligencer vol. 13, no. 1, page 40. 

A few other solutions are found in "Solution Saraband" on page 419. 
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Interlude: Catching Criminals 

Imagine that it is midnight in New York City. The night is damp and dark, and 
your daughter has just been assaulted. At the police station, she is asked to help 
draw the face of the criminal. Normally this is a somewhat difficult task, even 
with the aid of a police sketch artist. However, in the 1990's, a computer program 
may help her render a more dependable likeness of criminal than ever before 
thought possible. 

The new program called "FacePrints" assembles twenty faces selected at 
random from over 34 billion possible combinations. A victim simply rates each 
face on its similarity to the criminal's face. How the victim numerically rates 
each face on its similarity with the criminal will determine which 20 new candi-
date mug shots the computer next displays. After several iterations of the 
program, the victim has "bred" a composite likeness of the criminal, with no 
artistic skill or talent required on the victim's part. According to Craig Caldwell, 
a New Mexico State University graduate student developing the software, the 
final drawing can be striking similar to the image of the criminal. The illustration 
shown here shows the target criminal (left) and the composite image (right) pro-
duced after 10 generations. 

FacePrints' algorithm is based on Darwin's theory of natural selection and 
the principles of genetic evolution. The ratings of witnesses determine which 
faces are the "fittest" and which will be reproduced when creating the next gener-
ation of 20 faces. 

Victor Johnson of the Psychology Department of New Mexico State Univer-
sity (Las Cruces, New Mexico) created the prototype for FacePrints program in 
1988. The development of FacePrints was financed by the Department of Justice, 
although it may have many other applications. For example, it may help psychol-
ogists characterize facial beauty by having subjects breed their ideal face using 
the program. One may wonder if the program could be used by science-fiction 
film directors to breed fantastic looking alien faces which will be the most fright-
ening to the majority of people. The possibilities are endless. 

For further reading, see: Travis, J. (1991) Gotcha! Science News. Aug 17, 
140(7): 109. 
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The Arabian Nights Factorial 

"/ love to count. Counting has given me special pleasure down through the 
years. I can think of innumerable occasions when I stopped what I was doing 
and did a little counting for the sheer intellectual pleasure of it." 

Don DeLillo, Ratner's Star 

With the exception of the Koran, no other work of Arabic literature has been bet-
ter-known and more influential in the west than the Thousand and One Arabian 
Nights. This collection of stories is grouped around a central story involving a 
Sultan and his lovers. Upon discovering that his wife has been unfaithful to him, 
the Sultan vows to take a bride every day and have her executed at dawn. When 
Scheherazade was chosen to be his new wife, each evening she told a story to the 
Sultan but did not finish it, promising to do so ther following night if she survived. 
This continued for a thousand and one nights, until the Sultan grew deeply in love 
with Scheherazade and gave up his cruel plan altogether. 

With this introduction, we turn now to a special number called the Arabian 
Nights factorial. This number is defined as the number x such that x! has 1001 
digits. (The exclamation point is the factorial sign: n! = 1 x 2 x 3 x 4 x •••«). 
Factorials grow rather quickly: 5! = 120, 101=3,628,800, and 15! = 
1,307,674,368,000. 

The question "What is the Arabian Nights factorial?" is just one question in 
a collection of thousands compiled by Chris Cole, the editor of "Rec.Puzzles Fre-
quently Asked Questions List."44 "Rec.Puzzles" is an electronic bulletin board 
which is part of a large worldwide network of interconnected computers called 
Usenet. The computers exchange news articles with each other on a voluntary 

44 The puzzle collection editor, Chris Cole, can be reached at chris @ peregrine.com, or at 
P. O. Box 9545 Newport Beach, CA 92658. Cole is a founder, and Vice President and 
Chief Technical Officer of Peregrine Systems, and he holds a master's degree in physics 
from Harvard University. 
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basis.45 Some define "Usenet" as the set of people (not computers) who exchange 
puzzles, tips, and news articles tagged with one or more universally-recognized 
labels, called "newsgroups." Group topics range from bicycles, to physics, to 
music. Usenet started out at Duke University around 1980 as a small network of 
UNIX machines. Today there is no UNIX limitation; there are versions of the 
news-exchange programs which run on computers ranging from DOS PCs to 
mainframes. Most Usenet sites are at universities, research labs, and other aca-
demic and commercial institutions. The largest concentrations of Usenet sites 
outside the U.S. seem to be in Canada, Europe, Australia and Japan. 

With this digression, let's return to the original question: what is the Arabian 
Nights factorial? The answer is 450! (450 factorial). In his puzzle collection, Cole 
notes that determining the number of zeroes at the end of x! is not too difficult 
once you realize that each such zero comes from a factor of 10 in the product 
1 x 2 x 3 x ... x x. Each factor of 10, in turn, comes from a factor of 5 and a 
factor of 2. Since there are many more factors of 2 than factors of 5, the number 
of 5's determines the number of zeroes at the end of the factorial. The number of 
5's in the set of numbers {l...x} (and therefore the number of zeroes at the end of 
x!) is: z(x) = int(x/5) + int(x/25) + int(x/125) + int(x/625) + ... This series 
terminates when the powers of 5 in the denominator exceed x. Can you program 
this? 

43 To get a feel for the number of articles and different Usenet bulletin boards, consider 
that. 137,682 articles, totaling 274.400175 Mbytes (336.293781 including headers), 
were submitted from 14389 different Usenet sites by 36719 different users to 1740 dif-
ferent newsgroups for an average of 19.600012 Mbytes (24.020984 including headers) 
per day! 



Chapter 69 

U-Numbers and MU-Numbers 

7 As a teenagerj I thought that if it's ax all possible, or practical, to become 
a mathematician, / would want to be one. Of course, from a practical point 
of view, it was very difficult to decide on studying mathematics ... at the uni-
versity because ...to moke a living in mathematics was very, very difficult." 

Stan i si aw Ilium, Mathematical People 

Mathematician Stanisjlaw IJ lam i> probably host known for his theoretical calcu-
lations which were useful for building the Hydrogen bomb. However he also 
worked on a range of fascinating topics in his lifetime including iteration, strange 
attractors, Monte Carlo methods, the human brain, random number generators, 
number theory, and genetics. One of my favorite number sequenecs, called 
"L1-Numbers" by mathematicians in his honor, is computed as follows. Start with 
any two positive integers, for example 1 and 2. Next continue with those numbers 
(taken from the positive integers in increasing order) which can be expressed in 
just one way as the sum of two distinct earlier members of the sequence. Here arc 
the first few U-numbers starring with 1 and 2. I ' l l designate this sequence as 

1 2 3 4 6 8 11 13 16 18 26 28 36 38 47 48 53 57 62 69 72 77 82 87 97 99 102 106 
J14 126 131 138 145 14S 155 1.75 177 180 182 189 197 206 209 219 

For example, 5 is not a U-numbcr because there is more tbnn one way to form 5 
from summing previous sequence members, for example, 5=3+2 and 3=4+1. On 
the other hand, 6 is a U-nuinber because it can only be formed by 6=4-2. 

I've made some interesting-looking plots by doing 

DO For a l l Ularn Numbers, U 
MovePenTofU s 0) ; DrawTo(U ,U) ; 

END 

This looks like a series of unequally spaced vertical lines which gradually rise 
(Figure 69.1). The spacing is what \ like tbe best. It's very erratic, displaying 
miscellaneous gaps where no IJ lam numbers exist. Many times ihcrc arc visually 
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/I IIII I 

Figure 69.1. Visualization of U-numbers. 

interesting clumps and pairs. If you prefer, in your computer program, just 
DrawTo(U,C), where C is the vertical most (y) coordinate of your graphics 
screen. This will give the plot a bar-code appearance. Looking at these kinds of 
graphs, can one determine if there are arbitrarily large gaps in the sequence of 
U-numbers? 

Notice that on the U-number graph there are pairs of consecutive-U-numbers 
corresponding to (1,2) (2,3) (3,4) and (47,48). Are there infinitely many consec-
utive pairs? P. Muller, in his masters' thesis at the University of Buffalo in 1966, 
calculated 20,000 terms and found no further examples! On the other hand, more 
than 60% of these U-number terms differed from another by exactly 2. 

What are U-numbers like for other starting integers? Here are a few terms I 
calculated with starting numbers 1 and 9: 

1 9 10 11 12 13 14 15 16 17 18 20 36 38 39 40 41 42 43 44 46 66 67 68 69 70 71 
72 73 92 101 121 122 123 124 125 126 127 146 155 174 182 201 211 229 230 237 
256 284 285 286 287 288 289 290 291 311 348 365 368 369 370 

Here are a few terms with starting numbers 1 and 3: 

1 3 4 5 6 8 10 12 17 21 23 28 32 34 39 43 48 52 54 59 63 68 72 74 79 83 98 99 
101 110 114 121 125 132 136 139 143 145 152 161 165 172 176 187 192 196 201 
205 212 216 223 227 232 234 236 243 247 252 256 258 274 278 

Notice how these t/1>3 numbers have many terms separated by 2. Finally, the fol-
lowing is a long U-number sequence computed for the starting numbers 100 and 
101. (I computed this massive sequence using a computer program designed for 
me by Michael Clarke of the United Kingdom). 
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100 101 201 301 302 401 403 501 504 601 603 605 701 706 801 803 805 807 901 908 
1001 1003 1005 1007 1009 1101 1110 1201 1203 1205 1207 1209 1211 1301 1312 1401 
1403 1405 1407 1409 1411 1413 1501 1514 1601 1603 1605 1607 1609 1611 1613 1615 
1701 1716 1801 1803 1805 1807 1809 1811 1813 1815 1817 1901 1918 2001 2003 2005 
2007 2009 2011 2013 2015 2017 2019 2101 2120 2201 2203 2205 2207 2209 2211 2213 
2215 2217 2219 2221 2301 2322 2401 2403 2405 2407 2409 2411 2413 2415 2417 2419 
2421 2423 2501 2524 2601 2603 2605 2607 2609 2611 2613 2615 2617 2619 2621 2623 
2625 2701 2726 2801 2803 2805 2807 2809 2811 2813 2815 2817 2819 2821 2823 2825 
2827 2901 2928 3001 3003 3005 3007 3009 3011 3013 3015 3017 3019 3021 3023 3025 
3027 3029 3101 3130 3201 3203 3205 3207 3209 3211 3213 3215 3217 3219 3221 3223 
3225 3227 3229 3231 3301 3332 3401 3403 3405 3407 3409 3411 3413 3415 3417 3419 
3421 3423 3425 3427 3429 3431 3433 3501 3534 3601 3603 3605 3607 3609 3611 3613 
3615 3617 3619 3621 3623 3625 

L. Kerry Mitchell, an aerospace engineer at the NASA Langley Research 
Center in Hampton, Virginia suggested to me the concept of modified U-num-
bers, or "MU-numbers." For these cases, addition is replaced by multiplication in 
the definition of U-numbers. Starting with 2 numbers greater than 1, continue 
the sequence with those numbers that can be written only in one way as the 
product of 2 previous elements. For initiators of 2 and 3, here are the first 20 
MU-numbers: 

2 3 6 12 18 24 48 54 96 162 192 216 384 486 768 864 1458 1536 1944 3072 

24 is on the list since it can be written only as 2 x 12, but 36 is not since it can be 
written as 2 x 18 or 3 x 12. Notice that MU2,3 are all even after "3." Why? Are 
all MU numbers even? 

69.1 For Further Reading 

1. Cooper, N. (1989) From Cardinals to Chaos. Cambridge University Press: 
New York. (Topics: Stan Ulam, iteration, strange attractors, Monte Carlo 
methods, the human brain, random number generators, number theory, and 
genetics.) 

2. Guy, R. (1981) Unsolved Problems in Number Theory. Springer: New York. 
3. Recamoan, B. (1973) Questions on a sequence of Ulam. American Math-

ematics Monthly. 80: 919-920. 
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Chapter 70 

Phi in Four 4's 

"Mathematics is the wrong discipline for people doomed to nongreatness." 
Don DeLillo, Ratner's Star 

The number 1.61803..., called the golden ratio, appears in the most surprising 
places, and because it has unique properties, mathematicians have given it a 
special name, <j>. This symbol is the Greek letter Phi, the first letter in the name 
Phidias, the classical Greek sculptor who used the golden ratio extensively in his 
work. A golden rectangle has a ratio of the length of its sides equal to 1: <f>. Many 
have reported that the golden rectangle is the most visually pleasing of all rectan-
gles, being neither too squat nor too thin. Various artistic works are said to 
contain examples of golden ratios, for example: the Greek Parthenon, Leonardo 
da Vinci's Mona Lisa, Salvador Dali's The Sacrament of the Last Supper, and 
much of M.C. Escher's work. The smaller bricks in the wall (shown in the frontis-
piece photo) have a width/heigth ratio equal to <j>. 

Since <j> = (1 + y/5 ) /2 , it has some rather amazing mathematical proper-
ties. For example, 

<P — i = ~t~j <M>' = - i; <t> + <t>f = 1; + = / + 2 (70.1) 
<t> 

where </>' = ( 1 — y/5~)/2. Both and <j>' are the roots of x2 — x — 1 = 0. 

In September of 1991 I conducted the following contest regarding <f>\ 
Arrange four 4's, and any of the ordinary mathematical symbols, to give as good an 
approximation to the famous mathematical constant known as the golden ratio, phi 
(cf) = 1.61803), as you can find. Allow yourself the symbols: ), (, +, -, x, / , the usual 
notations for roots, powers, factorials, and the decimal point. Factorials are to be of 
integers only. Concatenation of 4's is allowed (e.g. 44). 

1. Contest 1. Use as many mathematical symbols as you wish. 
2. Contest 2. Limit yourself to using, at most, 4 of each mathematical symbol. For 

example, you can only use the multiply symbol 4 times. 

Phil Hanna from New York had some excellent approximations, including: 
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y / y / y j 44/ (4 /4) = 1.6048394 (70.2) 

and 

= 1.6 (70.3) 

For Contest 2, he found: 

4 + ^ / / 4 x ~ 4 x 4 - 1.61651660, (70.4) 

which differs from by 1.517 x 10"3. 
Leopold Travis from Brandeis University wrote to me: "Let iy(x) denote the 

square root of x, and let 

/ = s(s(s(4m x j(J(J(J(J(J(J(J(J(J(J(J(4**(4/))))))))))))) (70.5) 

where ** denotes exponentiation." Then / = 1.61792833086266 ... and — / = 
0.00010565788722 ... 

70.1 Closer and Closer 

Ken Shirriff, from California, noted that for Contest 1, one can obtain results 
arbitrarily close to <j>, since infinitely repeated square roots yield numbers 
approaching 1: 

v V / . . . ( 4 ) . . . - 1 . (70.6) 

Therefore <j> = (1 + \/4 + 1 ) /^/(4) exactly, where 1 can be approximated as 
closely as desired with a single 4 and many square roots. For contest 2, the best he 
could do was: 

1.618644 = (70.7) 
(.4 x 4/)-

with an error of .000611 
Similarly, the following, from Paul Leyland of the UK can be used to 

compute <{> to arbitrarily close precision: 

\ A / 4 / .4 + < / / / . . ( 4 ) . . . 
<t> = = (70.8) 

A 
To see this, note that 

' ^ ^ (70.9) v / 4 V i 
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and the limit of 4 l / 2 " = 1 as n goes to infinity. David G. Caraba l lo of Princeton 
discovered: (0.4 + 4 - 4 ) x 4. This equals 1.615625..., and so it d i f fers f r o m the 
golden rat io by around 0.00240. 

The u l t imate winner of the contest, however, is Brian Boutel, of the Victoria 
Universi ty of Wellington, New Zealand , who was the first person to find an exact 
solution: 

v / (4 ) + y j 4 / - 4 
<!> = - j (70.10) 

since <j>, as noted previously, is defined as 1 + y /5 / 2 . 
When I extended the contest to computing <j> using five 5's, six 6's, etc., David G. Car-

aballo from Princeton, New Jersey noticed that exact solutions can be computed using five 
5's and seven 6's: 

5 + 5 x J ( S ) 
(70.11) 

5 + 5 

and 

6 + 6 x J 6 - 6 /6 
— (70.12) 

6 + 6 

He proposes a general solution involving the integer k. We need at most (2k — 5) k's 
to give an exact value using only k's and the operations previously described. Can you 
prove this? 

Other very imaginative answers for 5 five's are: 

4> = (5 /5 + y / J ) x y/0.5 x .5 (70.13) 

from Jaroslaw Tomasz Wroblewski, and 

(5/5) + y / T 

l o g A ( 5 ) 
(70.14) 

from Seth Breidbart of Morgan Stanley & Co., New York. 
Phil Hanna gave the following exact solutions for <j> in eight 8's and nine 9's: 

8 + 8 x v / i / 8 + 8 + 8 /8 
$ = ^ — (70.15) 

9 + 9 x y /y /9 + 9 /9 + 9 /9 
0 = ^ (70.16) 

Peter Ta-chen Chang asked the following: 1) What is the smallest positive integer 
that can't be expressed using only 4 fours? 2) What is the smallest number of fours (or 
some other integer) that will generate all positive numbers? 3) What is the smallest col-
lection of operations that will work with question 2)? 

My <j> contest described in this short chapter was stimulated by another short paper 
published in 1962 where Conway and Guy asked a similar question for constructing IT. 
(Conway, J., Guy, M. (1962) Pi in four 4's. Eureka. 25: 18-19.) 





Chapter 71 

Interlude: Microscapes 

Michael Davidson, a research scientist at the Institute of Molecular Biophysics at 
the Florida State University in Tallahassee, creates photomicrographs resembling 
unusual alien landscapes. He calls these photomicrographs "microscapes," and he 
has created a collection of a thousand beautiful and surreal scenes based on 
microscopic chemical compounds. 

Photomicrography has been used for years for recording scientific data in a 
spectrum of disciplines. Davidson notes that the introduction of new films with 
improved emulsions, coupled to the progress made in optical coatings technology 
and computer-assisted exposure monitors, has enabled researchers to acquire high 
quality photomicrographs which are deeply color-saturated and high in contrast. 
The growing interest in photomicrography as an art form is evidenced by 
numerous photomicrography contest sponsored by companies such as Nikon, 
Polaroid, Olympus, and the Bethesda Research Lab. 

Davidson's work often focuses on the use of multiple exposure color photomi-
crography using crystals grown from chemicals and biological macromolecules. 
Two to nine exposures are realized on 35-mm transparency film. The basic con-
struction involves the use of brightfield and darkfield illumination, cross polariza-
tion, differential interference contrast, and Rheinberg illumination assisted by 
color filters. 

Shown facing this page is "Wheatland," a multiple (4) exposure of ascorbic acid (the 
"wheat" in the foreground), stretched polyethylene (the morning sky), polybenzyl-l-glutu-
mate (the stars), and the field diagram defocused (the morning sun). 

71.1 For Further Reading 

1. Strzelecka, T., Davidson, M., Rill, R. (1988) Multiple ligquid crystal phases of DNA 
at high concentrations. Nature. 331: 457-460. 

2. Davidson, M., Page, M., French, M. (1991) Drugs for bugs. American Laboratory. 
August, pp. 34-38. 

3. Davidson, M. (1990) Fabrication of unusual art forms with multiple exposure color 
photomicrography. The Microscope. 38(4): 357-365. 





Chapter 72 

On Mountain Climbing and a Strange Series 

"To live for some future goal is shallow. It's the sides of the mountain which 
sustain life, not the top. Here's where things grow. 

Robert Pirsig, Zen and the Art of Motorcycle Maintainance 

The word "series" in mathematics usually refers to the sum of a finite or infinite 
sequence of terms. I like to think of a series from a mountain climber's perspec-
tive. Like a mathematical series, some mountains may eventually level off to a 
grassy plateau, while others shoot up into the clouds beyond our vision. This 
analogy should become clearer as you read further. An infinite series, for 
example, can be written in the form 

a{ + a2 + + ••• an + (72.1) 

or more compactly as Here are some examples of infinite series: 

1 - 1/2 + 1/3 - 1/4 + 1/5 ... (72.2) 

and 

1 - 2 + 3 - 4 + ••• (72.3) 

Equation (72.2) is an example of an oscillating convergent series since the terms 
are alternately greater and less than the limiting value 0.6914. The fact that this 
series has this limiting value, towards which it tends, implies convergence (Pseu-
docode 72.2 shows you how to create the graph of this series which is shown in 
Figure 72.1.) Many convergent series are less wobbly; that is, they converge in a 
non-oscillating fashion where the values simply rise (or fall) monotonically to a 
limit. Think of this limit as the mountain climber's plateau or valley. In contrast 
to these convergent series, Equation (72.3) is an example of a divergent series 
since it does not tend to some finite value. 

Often a graph can be used to show the value to which a series converges. 
Figure 72.1 shows this for Equation (72.2). The values gradually converge to 
0.6914. However one must be wary of this graphical approach as evidenced by the 
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Figure 72.1. An oscillating convergent series. 

fascinating series brought to my attention by Ross McPhedran of the Department 
of Theoretical Physics at Australia's University of Sydney. Consider the infinite 
series 

TV 

S(N)= V 1 (72.4) 
n s i n n 

The 2 indicates summation, for example 

4 
2 ^ = 1 + 2 + 3 + 4 (72.5) 

n = 1 

If you plot the sum S(N) as a function of n, it appears to converge nicely for the 
first 354 terms. Figure 72.3 shows a small table of values, starting at TV = 22, so 
that you can see the rise, and smooth leveling off, to a value near 4.8. (I computed 
this using Pseudocode 72.1). Seems pretty tame at this point. In fact, I would 
have guessed that the series was converging to 4.8. However, at TV = 355, the 
series' values suddenly jump up to 29.4! This is fine example for students on the 
danger of looking at graphs and tables of numbers in order to assess convergence. 
Why does the seemingly well-mannered behavior suddenly skyrocket at N = 355? 
The reason is simple when viewed in hindsight. First, recall that sin(7V x tt) = 0. 
Since 355 is almost a multiple of tt, the values for S(N) jump at this point! In 
fact, because 355/113 = 3.14159 is such a good approximation to a multiple of tt 
the series jumps very abruptly. Further jumps might occur later, whenever an 
excellent rational approximation to TT is encountered. Can you find other jumps? I 
have examined the first hundred thousand terms and do not find a large jump 
other than at N = 355. What would an infinitely patient mountain climber find as 
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n Figure 72.2. Close approximations to Pi. 

he "walked" along this series for an infinite number of miles? Mathematicians 
have worked on the frequency of rational approximations to tt, but their know-
ledge is not yet sufficient to answer whether this series converges or not. 
Figure 72.2 shows a plot of those values of TV between 0 and 10,000 which are 
almost multiples of tt. Stated more mathematically, Figure 72.2 is a plot of TV for 

I - t - - * t | < £ (72.6) 
k 

where e is 0.0001. The points at e ~ 0 are located at multiples of 355. (They 
appear to be on the zero axis due to the resolution of the graph.) Pseudocode 72.2 
shows you how to compute this graph. 

72.1 Credit 

1 thank Ross McPhedran, Department of Theoretical Physics, The University of 
Sydney, Sydney NSW 2006 Australia, for useful comments and for bringing the 
series in Equation (72.4) to my attention. Ross attributes this equation to the 
French physicist Professor Roger Petit, Laboratoire d'Optique Electromagne-
tique, Faculte des Sciences et techniques de St. Jerome, Marseille 13397, France. 
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Apparent convergence for the first few hundred terms. 
N S 

22.00000 4.75410 
23.00000 4.75422 
24.00000 4.75430 
25.00000 4.75796 
26.00000 4 75806 
27.00000 4.75811 
28.00000 4.75873 

307.00000 4.80686 
308.00000 4.80686 
309.00000 4.80686 
310.00000 4.80686 
311.00000 4.80697 
312.00000 4.80697 
313.00000 4.80697 
314.00000 4 80697 

Figure 72.3. Apparent convergence of the first few hundred terms for the strange 
series. ( I t seems tha t the series converges to a value close to 4 .80697.) 

A L G O R I T H M : How to C o m p u t e S t r a n g e Series 

s=0 
DO n = 1 to 400 

olds=s 
s = s + 1./(n**3 * ( s m ( n ) ) * * 2 ) 
P r i n t V a l u e F o r ( n , s) 
if ((s-olds) > 3) then P r i n t ( " I h a v e found a jump") 

END 

Pseudocode 72.1. How to compute the strange series. 
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A L G O R I T H M : How to C o m p u t e O s c i l l a t i n g Sign Series 

s=0 
DO 1 = 1 to 60 

if ((i m o d 2) = 0) then t = -1; else t = 1 
v = (t / i) 
S = S + V 
P r i n t V a l u e F o r ( i , s ) 

END 

Pseudocode 72.2. How to compute oscillating sign series. (See Equat ion (72.2) .) 

S] W>S] f W ^ l (W 
mmmm 
OVV 4 

A L G O R I T H M : How to Create the p i d o t m a p . 

p i = 3 . 1 4 1 5 9 2 6 
DO k = 1 to 10000 
DO n = k to 10000 

ratio = n/k 
diff = abs( ratio - p i ) 
if (diff < .0001) then P l o t P o i n t A t ( n , d i f f ) 

END 
END 

Pseudocode 72.3. How to create the pi dot map figure. (See Figure 72.2.) 





Chapter 73 

The Terrible Twos Problem 

'No definition of science is complete without a reference to terror." 
Don DeLillo, Ratner's Star 

On one cool April day a few years ago in New York City, I approached a 
street vendor in order to purchase a pretzel. While waiting, I observed the fol-
lowing enigmatic encryption written in chalk on the dirty street: 5 = 22 + 1. We 
will probably never know who wrote this and why it was written, but the equation 
stimulated me to conduct the "Terrible Twos" contest in August of 1991. In this 
contest, participants were to construct numbers using just ones and twos, and any 
number of + , — , and x signs. People were also allowed exponentiation. As an 
example, let's first consider the problem where only the digit one is allowed. The 
number 80 could be written: 

80 = (1 + 1 + 1 + 1 + 1) x (1 + 1 + 1 + 1) x (1 + 1 + 1 + 1) (73.1) 

If we let / («) be the least number of digits that can be used to represent then 
we see that / (80) < 13. A contest which allows only ones for forming small 
numbers turns out not to be very interesting. However, once the digit 2 is also 
allowed, the problem becomes fascinating. Here is an example: 

Here/(81) < 5. Is this the best you can do? 
The explicit goal of The Terrible Twos Contest was to represent the numbers 

20, 120, and 567 with as few digits as possible. I received hundreds of responses, 
and wish that I could report all of the observations and entries in this chapter. 
Here are some examples. The first triplet of answers came from R. Lankinen of 
Helsinki, Finland: 

(73.2) 

/(20) < 5 , for 20 = 22 + 2 + 2 + 2 (73.3) 
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500 1000 1500 
Number 

Figure 73.1. Minimal integer solutions. These solutions f(n) were found for the first 
1500 numbers. Concatenation of integers is not allowed. 

/ (120) < 6, for 120 = ((2 + l ) 2 + 2)2 - 1 (73.4) 

/ (567) < 9, for 567 = 2 x 2 x ((2 x (2 x 2 + 2))2 - 2) - 1 (73.5) 

But is this the best one can do for the three numbers? It turns out that 567 can be 
constructed with just 8 digits. In fact, the contest winner, who first computed the 
minimum values for all three numbers, is Dan Hoey of Washington DC. Here are 
his minimal answers (which, I believe, use the smallest possible number of digits): 

/ (20) < 5 for 20 = (1 + 2 + 2) x (2 + 2) (73.6) 

/ (120) < 6 for (2 + (1 + 2)2)2 - 1 (73.7) 

/ (567) < 8 for (22 + 2 + 2 - 1) x (2 + l ) 2 (73.8) 

The contest becomes more interesting if we allow concatenation of digits 
(thus permitting multidigit numbers such as 11, 12, 121, etc.) For this case, the 
winning entries come from Mark McKinzie of the University of Wisconsin's 
Mathematics Department. Here are Mark's answers: 

/ (20) < 3 for 20 = 22 - 2 (73.9) 

/ (120) < 4 for 1 2 0 = l l 2 - 1 (73.10) 

/ (567) < 6 for 567 = (2 + l ) 2 + 1 x 21 (73.11) 
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12 

#o 

0 500 1000 1500 
Number 

Figure 73.2. Minimal integer solutions with concatenation. The solutions / (« ) were 
found for the first 1500 numbers. Concatenation of integers is allowed (that is, multidigit 
numbers such as 12 and 121 are permitted). 

Another equally successful set of answers comes from Ya-xiang, Beijing, 
China: 

/ (20) < 3 for 20 = 21 - 1 (73.12) 

/ (120) < 4 for 120 = 121 - 1 (73.13) 

/ (567) < 6 for 21 x (2 + l ) 2 + 1 (73.14) 

Other minimal answers were submitted, and I must confess that the winners 
of the contest were sometimes determined as much by the speeds of our electronic 
communication networks as by intellectual prowess. 

I collaborated with Ken Shirriff of the University of California for much of 
the analysis of this problem. Ken wrote a computer program in C which not only 
searches for the minimal solution for the first 1500 integers but also searches for 
the number of minimal ways to construct a number. For example, without 
allowing concatenation (multidigit numbers), he finds that there are 208 different 
ways to write the number 20, and 1128 different ways to write the number 21! 
Even more exciting is the fact that these 208 and 1128 different ways to write 
minimal solutions change to just 2 ways and 1 way if concatenation is allowed. 
(After all, there is just one way to minimally write 21 by concatenating 2 and 1.) 

The program finds solutions by using dynamic programming techniques. It 
starts with the one digit base cases, and combines these numbers to generate all 
numbers that have shortest solution of two digits. The one and two digit results 
are combined to yield all numbers with three digit shortest solutions. This process 
continues until all the desired numbers have been found. In order to keep the 
computations from growing too quickly, Ken Shirriff prunes the results by dis-
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Without Multidigit Expressions With multidigit expressions 

Digits Hard Number Digits Hard Number 
2 3 2 3 
3 2 3 5 
4 7 4 7 
5 13 5 29 
6 21 6 51 
7 41 7 151 
8 91 8 601 
9 269 9 1631 
10 419 10 7159 
11 921 11 19145 
12 2983 12 71515 
13 8519 13 378701 
14 18859 
15 5361 1 
16 136631 
17 436341 

Figure 73.3. Hard numbers. 

carding any results over 10000. He also limits results to integers by only using 
positive exponents. While the first limit probably has no effect on the results, 
there are a handful of shorter solutions that are only obtained by using negative 
exponents. 

Figure 73.1 and Figure 73.2 show plots of our computed values of f(n) vs. n 
for both non-concatenation and concatenation contests. Interestingly, minimal 
solutions comprised of less than 12 digits can be found for all numbers tested (on 
average, one needs about 7 digits to minimally construct n, 1 < n < 1500). 

73.1 Hard Numbers 

"He could find how numbers behaved, but he could not explain why. It was 
his pleasure to hack his way through the arithmetical jungle, and sometimes 
he discovered wonders that more skillful explorers had missed." 

Arthur C. Clarke, 1956, The City and The Stars 

Let us also define the concept of "hard numbers" fh(n) which are the smallest 
numbers requiring / (« ) digits. For example, 921 is the smallest number which 
requires a walloping 11 digits for its expression. Running his program on the 
integers up to one million, Shirriff found the hard numbers listed in Figure 73.3. 
Plots of n vs.fh(n) seem to increase exponentially. 
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73.2 Unusual Solutions 

The contest winner, Dan Hoey, also wrote a Lisp program to confirm his hand 
calculations, and as with Sh i r r i f f s C program, he did not initially check for nega-
tive exponents. However, he later extended his program to negative exponents, 
and discovered they sometimes result in shorter solutions. For instance, Hoey 
notes tha t if negative exponents are not checked, one might conclude tha t 
/ ( 6 4 0 ) = 8. However, look at Hoey's amazing solution / ( 6 4 0 ) = 7 found when 
using negative exponents: 

Nevertheless, he believes tha t 20, 120, and 567 do not benefi t f rom the use of neg-
ative exponents unless some subexpression has a denominator or numera tor 
exceeding 1012. H e found an interesting solution with negative exponents for 567: 

He further wonders whether future searches should consider using irrational numbers. 
Hoey writes, "In the same way that negative exponents imply fractions, fractional expo-
nents imply irrational numbers, and then irrational exponents imply transcendental 
numbers. In fact, one could obtain complex numbers, too, but I don't think that is any 
help, and you have problems with branch cuts there." One question is whether there are 
any "integers" that benefit (in the sense of requiring fewer ones and twos) by considering 
and using irrational numbers, or rational numbers formed with fractional exponents. Is 
there any integer that benefits from using irrational exponents? I think this is a fertile 
ground for significant future research. 

In closing, I do not know for certain whether all of the f(n) values listed here are truly 
the minimal values. In most cases, they were arrived at through computation and not 
through any mathematical theory. I look forward to hearing from readers who may be 
able to find even smaller values than the ones listed here. Finally, you may be interested 
in another contest conducted in 1989 called the "Very-large-number Contest," where par-
ticipants were asked to construct an expression for a very large number using only the 
digits 1, 2, 3, and 4, and the symbols: "(," ")," decimal point, and the minus sign. Each 
digit could be used only once. The names of people who sent the 10 largest numbers were 
published in (Pickover, 1990, 1991). 

Much of the participation and discussions for my Terrible Twos Problem occurred in 
the mathematics discussion group "sci.math" on the Usenet computer network, where this 
contest took place. 

73.3 References 

1. Pickover, C. (1990) Results of the very-large-number contest, J. Recreational Math. 
22(4): 249-252. Also: Pickover, C. (1991) Computers and the Imagination. St. 
Martin's Press, New York 

2. Guy, R. (1981) Unsolved Problems in Number Theory Springer: New York. 

640 = ( 2 ( ( 2 + 1 ) 2 ) ) x (1 + 2 ~ 2 ) . (73.15) 

567 = (22* + 2 ) 2 x (2 - 2 " 2) (73.16) 





Chapter 74 

AIDS 

This short chapter contains a contemporary lesson demonstrating the power of 
simple computer programs and graphics in understanding the spread of diseases. 
If you are a teacher, why not compute and graph the numbers discussed here and 
show them to your students as an illustration of the likelihood of contracting 
AIDS (Acquired Immune Deficiency Syndrome) in various situations? The 
AIDS virus46 was first reported in 1981. By April 1990 the total number of U.S. 
deaths due to the virus was 78,341. 

In 1988, John Paulos47 noted that the chance of contracting AIDS in a single 
unprotected heterosexual episode from a partner known to have the disease is 
about one in five hundred. (Paulos reported that this is the average value from a 
number of studies.) Therefore, the probability of not getting AIDS from a single 
such encounter is 499/500. Let's assume that an individual has one encounter 
every day. The chances of not contracting AIDS after two days is (499/500)2. 
The probability of not contracting AIDS after n days is P = (499/500)". Using 
the program code in Pseudocode 74.1 it's easy to compute and graph the chances 
of acquiring AIDS after a year. It turns out that an individual has about a 50 
percent chance of not contracting AIDS after a year in the scenario just 
described. After two years (near the rightmost point in the graph of Figure 74.1) 
the chance of not getting AIDS is 23%. Paulos noted that using a condom, the 
risk of being infected with someone who has the disease is 1/5000. If the 
partner's disease status is not known, but he or she is not a member of any known 

46 The frontispiece figure for this chapter is by Michael Davidson (see "Interlude: 
Microscapes" on page 365). It shows a photomicrograph of AZT (3,-azidothymidine) 
which is one of the most effective anti-AIDS medication developed to date. 

47 The specific AIDS statistics and analysis comes from the national bestseller: Paulos, J. 
(1988) Innumeracy, Vintage: NY. These figures are average estimates which are likely 
to change with geographic location, with further research, and with time. They are also 
highly dependent on the gender of the infected individual. I do not suggest any behav-
ioral actions on the part of readers, but simply wish to illustrate the use of simple com-
puter graphics for dealing with a perplexing contemporary dilemma. 
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Figure 74.1. The spread of AIDS. Using the program code in this chapter, the chance of 
not getting AIDS is shown for an individual having unsafe heterosexual intercourse every 
day with someone who has the disease (diamonds). The triangles indicate the chances 
when using a condom. Symbols are spaced at 30-day intervals. The circles indicate the 
chances with unprotected sex, with someone whose disease status is unknown (but he or 
she is not a member of any known risk group). A curve was also plotted which indicates 
the chances with protected sex, with someone who's disease status is unknown (but he or 
she is not a member of any known risk group); however, the curve could not be visually 
distinguished from the curves (with circles), at the graph's resolution. 

high risk group, the chances per episode of contracting AIDS is 1/5,000,000 
(unprotected) and 1 /50,000,000 (protected). 

I was surprised at the difficulty I had in confirming the "1/500" and related 
values that Paulos suggested for contracting AIDS. In fact, various other proba-
bilities for contracting AIDS have been reported which differ significantly from 
those suggested by Paulos. For example, some biologists in 1991 have reported to 
me that men have 1 in 10 odds of contracting AIDS from heterosexual contact 
with an infected partner, and women have 1 in 5 odds of contracting AIDS from 
an infected male partner. Using these figures, we can draw charts similar to 
Figure 74.1. Figure 74.3 shows graphs using these more ominous odds. The 
obvious discrepancies between the two figures suggest that this chapter be consid-
ered more as a general lesson in how to compute the chances of avoiding a disease 
as a function of the number of contacts with a carrier. In fact, you can embellish 
the program in this chapter to create your own science-fiction Andromeda Strain 
simulation in order to model the spread of a disease through a population. 
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figure 74.2. A computer graphics rcprtMntaiion of HIV ptute.use. More specifically, 
this is a graphic of the Human Immunodeficiency Virus (HIV) 'l'ypc I Protease 
(Fitzgerald et al., 1990). which I computed using graphics software running on an IBM 
RISC System/tiOOt). The coordinates eomc from the Protein Data Bank at Brookhaven 
National Laboratory. This enzyme is responsible for making the AIDS virus functional. 

74.1 Comments from Colleagues 

The following a re comments from researchers who became aware of m y interest 
in computing these A I D S probabilities. I think you will find some of their opin-
ions of interest.. For example, one researcher remarked; 

Whal's surprising lo nic is him- liUlc one hears about the odds of in fee lion. Maybe 
(his is because medieal/eduealion experts feel the numbers would appear 1o be reas-
suring lo the largely inn urn era le public. 

The 1/500 figure reported by Paulos sounds way (oo high. If you use 1his in your 
simulation I'd wager the overall infection rate will be much higher than in real life. 
But if you eonsidcr the high degree of promiscuity in the teenage population, 1/500 
odds should hav'c led to the infection of a large percentage of teenagers. 

Another researcher noted: 

The problem with using probabilities of getting AIDS is that they result from what 
here in Switzerland would be callcd a Milchniacdchenreehnung - a calculation made 
by a dairy maid. Kpidemilogical models do not fit well with a constant probability of 
transmission per unprotected (or protected) intercourse. There are differences in 
iransmissibilily between individuals, maybe because of ihe presence Or Mbsence of 
other venereal diseases, maybe because of large differences in the concentration of 
viruses in bodily fluids. 

A researcher f rom the University of New Mexico: 
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Figure 74.3. The spread of AIDS. This chart differs from the previous in that different 
probability factors are used, which are discussed in the text. Circles indicate the chances 
for a man not contracting AIDS after having daily heterosexual contact with an infected 
partner. Diamonds indicate the chances for a woman not contracting AIDS from an 
infected male partner. 

There is an assumption here of linear risk per exposure that is very likely to be incor-
rect. Studies of transmission have shown that there is no relationship between length 
of a relationship and likelihood of transmission. This argues that factors specific to a 
particular couple (genital ulcers, viral load?) are more important than number of 
sexual episodes. Thus, if you're going to get it, you get it right at the start. 

A final sobering statement from a biologist: 

The odds of contracting AIDS from an accidental jab with a needle having infected 
blood has been reported in the scientific literature: one in four hundred. Anyone who 
can give you statistics on the probability of contracting AIDS from any random sexual 
encounter is doing it off the top of his head, and has no scientific basis for it. There is 
an excellent article in Nature (volume 352, 15 Aug. 91) regarding the heterosexual 
epidemic in Africa. Among the really scary stats quoted there (such as that pregnant 
women are now considered a risk group, in some cities having an infection rate of 
30%) is the comment that it is impossible to accurately determine the probability of 
contracting AIDS from any given encounter, because people neither accurately 
remember nor willingly recount how many times they had sex with any given partner. 
Men have 1 in 10 odds of contracting AIDS from heterosexual contact with an 
infected partner, and women have 1 in 5 odds of contracting AIDS from an infected 
male partner. The second statistic is believed to be due to the high frequency of 
untreated minor yeast and bacterial infections in women, which is true world-wide. If 
either partner has an additional sexually transmitted disease such as herpes, gonno-
rhea, chlamydia or syphilis, the probability increases drastically, due to the presence 
of immune cells at the site (ready targets.) 
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A L G O R I T H M : How to c o m p u t e c h a n c e s of not c o n t r a c t i n g A I D S . 
/* */ 

a = 499/500 /* h e t e r o s e x s u a l */ 
b = 4 9 9 9 / 5 0 0 0 /* condom */ 
c = 4 9 9 9 9 9 9 9 / 5 0 0 0 0 0 0 0 
d = 4/5 
e = 9/10 

odds = a 
DO d a y s = 1 to 730 by 30 

c h a n c e = o d d s * * d a y s 
P r i n t V a l u e ( d a y s , c h a n c e ) 

END 

Pseudocode 74.1. How to compute your chances of not contracting AIDS. (The variables 
a, b, c, d, e are different probabilities, which are discussed in the text. Simply try different 
values for the variable "odds.") 

74.2 Fact File 

• In 1991, in the world as a whole, at least 70% of the people infected with the 
AIDS virus are believed to have caught it from heterosexual encounters.48 

• In 1990, 4,890 teenage and adult women were diagnosed with AIDS, and at 
least 100,000 more are feared to be carrying the virus. 

• Heterosexual sex surpassed gay sex for the last two years as a way of spreading 
the infection. Among adult men and women, cases of heterosexually transmitted 
AIDS rose from 1,631 in 1989 to 2,289 in 1990. 

74.3 Mystery Dance 

For readers interested in our sexual heritage, see Lynn Margulis and Dorion 
Sagan's Mystery Dance: On the Evolution of Human Sexuality (Summit Books, 
1991, 224 p., $19.95). The book argues that virtually all our ancestors have left 
their mark on contemporary sexual behavior. The authors track sexuality 
through a long line of nonhuman ancestors, from monkeys to promiscuous bac-
teria. 

48 The source for the AIDS "Fact File" is: Radetsky, P. (1991) Straight sex and AIDS 
vaccines. Discover. January. 52-53. 
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74,4 For Further Reading 
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2. James, G. ; Sleek, N. (1951) Epidemics and lhc spread oJ' disease. In Mathematical 
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la basketball, and from modelling epidemics to studying the generation of windmill 
power.) 

3. H'itzgerlad, J'., McKeever, K., van Middles worth, J., Springer, .1., H d m bach,.)., Leu, 
C.'.-T., Her her, W., Dixon, R., Darke. I*. (1V90) Crystal lograp hie analysis of a 
cornplcx between Human Immunodeficiency Virus Type 1 Protease and acetyl-pep-
statin at 2.0-angstroms resolution. Journal of Biologiat Chemistry. 265: 14209. 

4. For information on the Protein Data Bank which contained the atomic coordinates of 
the molecular model in this chapter, see; Bernstein, F. C'., T. F. Koclzlc, G. J. B. Wil-
liams, E. F. Meyer, Jr., M . D. Brice, J. R. Rodjrers, O. Kennard, T. Shiraanouehi, M. 
Tasumi (1977) The PrOkin Data ftimk: A torn puter-based archival file lor macromo-
Iceuhir structures. Journal of Molecular R'tology. 112: 535-542; 

Below is another view of the 11IV protease molecule. 



Chapter 75 

Musings on Large Robbins Numbers 

"Jesearc sat motionless within a whirlpool of numbers. He was fascinated by 
the way in which the numbers he was studying were scattered, apparently 
according to no laws, across the spectrum of integers." 

Arthur C. Clarke, 1956, The City and The Stars 

In 1991, David P. Robbins published an article in The Mathematical Intelli-
gencer with the unusual title "The Story of 1, 2, 7, 42, 429, 7436, ... The paper 
deals with an interesting sequence of integers starting with 1 - but very quickly its 
members include behemoth numbers with 100's of digits. The sequence can be 
represented by R\, R2, R3, . . . , and it can be computed using the following 
formula: 

Rn = 

n - 1 n 
/ = 0 

( 3 / + 1)/ 

(n + i)! 
(75.1) 

The n symbol indicates a repeated product. For example, 

3 

Y\i= 1 x 2 x 3 = 6. 
/ = 1 

(75.2) 

The exclamation point is the factorial sign: n! = 1 x 2 x 3 x ••• n. Using 
Equation (75.1) it is not too difficult to determine the seventh and eighth terms of 
the series: 

218347, 10850216 

and I've included a list of the first 25 numbers in Figure 75.1. The 31st number 
(the largest I've computed) is: 

74579016453753125458469433644602010245009336198117193425944 
48739658061730204945465190362255297438758806424576 
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n 
1 
2 
J 
4 42 
^ 42X 
6 7430 
7 21$347 
a 10850216 
9 91 § X.354fi0 
to 129534272700 
11 31095744B52375 
12 l26ltillBS%77499 
1? $639.3».lri 1X29 765 2500 
14 9995 5413 5 544316743 2000 
IS 195 29076234661277104S97199 
16 6442 718 5 70354 25689 J Sti*9(i 743 840 
17 35K X692019161.17M11447486156417 296 
IS 33743606 3925375 05622695144|J 15 2*925455 
19 S3 5 80J50BJ39843 4BS 3 8378646149709092313 243 
20 14J60J489M71553820091315S6826370SI20437632721 1 
21 64971294999X11X427K 95H479043K05 241 43 5.18 858 5 5143 7 757 
22 49620078 38 3178 03727469503296608093 2313 ?70942177997 31,104 
21 63 967S6003487969 3S6007824036634SS4B S3 9 316206020S454197694123 
24 1 m 951305lXKJ28'Jl 112195 Si 7 84308097 5227 860f. 7722*1224640157476731J 27 
25 51125173829571287017224567391 'J 19414 H 47905W35 3 3.M f. 1H95 3.1 (, 1764795 X9.131155 

Figure 75.1. Robbinx Numbers. 

Before going further and offering a challenge, let mc tell you a bit a html Dr. 
Robbing himself (picturc al left) and ihc problem he was working on. Robbins is a 

mathematician at the Communications Research 
Division of the Institute for Defense Analysis in 
Princeton, New Jersey. He received his formal 
mathematics education at Harvard and MIT. 
Robbins refuses lo Male any mathematical spe-
ciality, insisting thai he is "interested in any math-
ematical problem as long as iLs statement is easily 
understood and surprising." 1 was interested to 
learn that he lias enjoyed computers since child-
hood, beginning with a peculiar fascination with 
his father's Friden calculator. {I had never heard 

of a "Friden calculator,'" but quickly found out after consulting colleagues. More 
abouL Friden calculators later in Lhis chapter....) 

Robbins exclaims that the sequence in Liquation (75.1) has the mathematical 
community all in a quandary. In the last few years the sequence lias arisen in 
three separate and distinct, problems dealing with the analysis of combinations, 
and no one on earth has been able lo explain why. The details of the branch of 
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A L G O R I T H M : How to C o m p u t e R o b b i n s N u m b e r s . 

/* The u s e r types m the v a l u e of n w h e n the p r o g r a m s t a r t s . */ 
A R G n 
R = 1 ; 
DO i = 0 to n-1 

n u m e r = f a c t o r i a l ( 3 * i + 1 ) ; 
d e n o m = f a c t o r i a l ( n + i ) 
R = R * (numer/denom) 

END; 
/* Now w r i t e out the v a l u e */ 
SAY R 
EXIT 

/* B e l o w is a r e c u r s i v e p r o c e d u r e for c o m p u t i n g f a c t o r i a l */ 
factorial: P R O C E D U R E 

A r g n 
IF n=0 Then R e t u r n 1 
R e t u r n f a c t o r i a l ( n - 1 ) * n 

Pseudocode 75.1. How to Compute Robbins Numbers. (The program coded here is in 
the style of the REXX language.) This computes values for the first equation in this 
chapter. 

mathematics called combinatorics are beyond the scope of this book but the next 
section should whet your appetite by discussing one application. 

75.1 Alternating Sign Matrices 

Where does Rn have significance? For one thing, it seems to have relevance to the 
number of ways numbers in special kinds of matrices can be arranged. As most of 
you probably know, a matrix is an array of numbers organized in rows and 
columns. Here is an example of a matrix with 5 rows and 5 columns: 

0 1 0 0 0 
1 - 1 0 1 0 
0 1 0 - 1 1 
0 0 0 1 0 
0 0 1 0 0 

(75.3) 

This is a square NxN matrix where N = 5. Its entries are all 0's, l's, and -l 's, and 
its rows and columns have sum 1. Also notice that, upon omitting the zeros, the 
l 's and - l ' s alternate in every row and column. Such matrices are called alter-
nating sign matrices. For N = 1 there is one alternating sign matrix, and for 
N = 2 there exist 2 alternating sign matrices. For TV = 3, there are 7 matrices 
including 

0 1 0 
1 -1 1 
0 1 0 

(75.4) 
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Notice that the number of different TVxTV alternating sign matrices appears to be 
following the sequence in Equation 1: 1, 2, 7, .... We might be tempted to conjec-
ture that R \ gives the number of alternating sign matrices with TV rows and TV 
columns. In fact Robbins has checked, by computer, that this conjecture holds for 
all TV up to TV = 16. However, it's never been proved that this conjecture holds in 
general. 

75.2 Some Challenges 

Let us return our attention to Equation (75.1). It is not obvious from Equation 
(75.1) that the values of R„ are even integers! Might there not be a value for n 
such that the denominator doesn't divide the numerator evenly? You need not 
wonder about this too long. Robbins says that all values of Rn are indeed integers. 
Why not test this for yourself by listing out a few numerator and denominator 
terms? Even if you do not have access to a computer, a pocket calculator should 
suffice for the first few terms. 

Can you compute more than the six terms in the title of Robbins' article? 
Could the 31st term given in this chapter be the largest Robbins number ever 
computed. Can you break this record? I wrote a short program in IBM's pro-
gramming language REXX which allows one to work with super-large integers 
(Pseudocode 75.1). Perhaps this will give you a hint as to how to program the 
formula (Equation (75.1)) in the programming language available to you. Alter-
natively, there are many simple software packages used to compute large integers, 
such as Mathematica (Wolfram Research). Other notable examples are the large-
integer programs of Harry Smith. Harry J. Smith, best known for his massive 
45,391-digit, record-breaking "Juggler" number (Pickover, 1991) uses his own 
software package to perform multiple precision integer arithmetic. He tells me 
that his package is written in the object-oriented programming language Turbo 
Pascal 5.5 by Borland International, Inc. Smith's super-precision calculator soft-
ware also computes transcendental functions to thousands of decimal places. You 
may want to write to him to ask how you can program your own large-integer 
program. His address is Harry J. Smith, 19628 Via Monte Drive, Saratoga, CA 
95070. Another alternative, for example, is the large-integer program Matlab 
(Mathworks, South Natick, MA). 

75.3 Stop and Think 

I call a Robbins number Rn Robbinmorphic if it terminates with n. For example, some 
one-digit Robbinmorphic numbers are R^ = 7436 and R7 = 218347. (For more on other 
morphic numbers, including: undulating undecamorphic and undulating pseudofarey-
morphic integers, centered hexamorphic numbers, and cakemorphic numbers, see (Pick-
over, 1991).) If n were a 2-digit number, the last 2 digits of the Robbins number would be 
considered when checking morphicity. And so on. 

In this chapter, the reader is invited to ponder the question: Does there exist a Rob-
binmorphic number for n > 7? I have searched for such an integer for all decimal integers 
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n (1 < n < 31) and have found no such integer, and one might conjecture that no such 
number exists. Of course, sparse numerical evidence such as this provides no real answer to 
the question, and it would be interesting if it were possible to prove the conjecture that 
there is no Robbinmorphic integer, or to find such a number. It is also interesting to specu-
late whether there is anything special about the arrangement of digits within any of the 
Robbins numbers. Certain Robbins numbers, such as the 14th Robbins number which 
starts with 999 and ends with 000, do not seem perfectly random. Are the arrangement of 
digits random? 

75.4 What is a Friden Calculator? 

In the beginning of this chapter I told you about David Robbin 's childhood fasci-
nation with Friden calculators. No t knowing what these machines were myself, I 
asked a few fr iends to tell me about this calculator relic of the past. It seems my 
query elicited quite a few childhood memories of these late 1950s electromechan-
ical machines. Coincidentally, C. Hassell of Tucson, Arizona, like Robbins, had 
very emotional memories of his fa ther ' s Friden calculator. The text of his letter to 
me is as follows: 

"The Friden calculator conjures up some of the strongest images I can recall 
from my childhood. My dad was a mechanical engineer and occasionally on Satur-
days he would bring me to his office in downtown Chicago where he would assign me 
to some vitally important drafting task while he was busy at his desk. The highlight 
of my day came when he allowed me to enter some problems into his Friden calcu-
lator. 

It was a desktop electromechanical calculator about the size of a PC, and it was a 
true marvel to watch in action. The keyboard consisted of probably 1 5 - 2 0 columns 
of ten digits each with an area off to the right for entering math operators after 
loading the numeric operand field. There was a huge carriage (similar to a 
typewriter's) at the top of the machine containing tiny windows, one for each column, 
each containing a small mechanical number wheel which served as the calculator's 
display. 

I used to ponder the complexity of the cams, levers, shafts and reduction gears 
that powered the beast as I sat and watched it gyrate through a computation. The 
carriage would slide back and forth several times while the mechanics issued all kinds 
of incredible whirring and clattering sounds. Finally it would screech to a halt and lo 
and behold, the answer would be awaiting in the little windows atop the carriage. 

Well, if you've endured my trip down memory lane up to this point, thanks. My 
dad passed away six years ago and it still just takes a small stimulus to induce a flood 
of nostalgia on my part." 
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Finally, W. Huyck of Raleigh, North Carolina, notes, "As I recall, they once 
cost about the same as a new car. With the square root function it would have 
been a nice new car." 

75.5 XiXiXiXi 

As indicated earlier in this chapter, II is the symbol for product in mathematics. For 
example, 

4 

Y\i= 1 x 2 x 3 x 4 . (75.5) 
/= l 

The symbol for summation in mathematics is 2, for example: 
4 

^ / = 1 + 2 + 3 + 4. (75.6) 
/= l 

Is there a math symbol for repeated exponentiation? I haven't come across any in the 
mathematical literature, so suggest you make your own symbol for exponentiation. One 
colleague suggested the Greek capital xi (for Xponentiation). 

~ 23 

/ = i 

Since exponentiation is neither commutative nor associative, you should be very careful 
about how you define this operation - no matter what symbol you choose to represent it. 
For example, you should interpret abC to mean a^bC\ The E operator produces very large 
numbers very quickly. (Can you make a graph showing the rate at which these numbers 
grow?) The operator also makes for some very attractive and impressive looking notations: 

3 4 5 . 
hH M M I M H M 

I " ^ (75.8) 

i T i jT\ J + k 

75.6 For Further Reading 

1. Robbins, D. (1991) The story of 1, 2, 7, 42, 429, 7436, .... The Mathematical Intelli-
gencer. 13(2): 12-18. 

2. Pickover, C. (1991) Juggler Geometry, In Computers and the Imagination. St. 
Martin's Press, New York. 

Facing this page is a Callistemma brachiatum (scabious) seed said to have been found in 
the gears of a Friden calculator. The seed is enlarged 27 times. (Photo by K. Blossfeldt.) 
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Interlude: Electric Sculptures 
With Swelled Heads 

For years I 've been admiring the work of J im Pallas, an artist f rom Grosse Pointe 
Park , Michigan, who creates zany and inventive mechanized sculptures which are 
sometimes computer-controlled. His works embody an interesting mix of humor 
and the profound, and always represent a fusion of art and technology. They 
beep, they move, they shiver and shake. Shown at left is his "Por t ra i t of the 
Artist. . . ." When applauded to, a sensor, at the base of the piece, blows hot air 
into the plastic bag, causing the head to swell. 

Another sculpture for which Pallas has grown famous is the Nose Wazoo, a five-foot-
tall electronic creature which responds to the environment (above). The sculpture consists 
of several parts, the tripod base which holds the compressor and electronics, the vertical 
gimbal which pivots on the base, and the torso and head which contain two pneumatic cyl-
inders for nose thrusts and neck flexes. There's also an airtank, and a sensory apparatus. 
The neck flexes, and the nose extends. The Nose Wazoo see his surroundings through four 
lenses with photocells. These eyes are very sensitive to changes in light levels. Its infra-red 
motion detector senses human body heat from as far away as thirty feet. It senses his own 
orientation with five internal mercury switches. Information from these sensors is gath-
ered in a 6502 microprocessor located in his foot. The creature responds in life-like, intelli-
gent ways to visitors in the room. 

Below is one of Pallas1 custom-designed printed circuit board patterns to control all 
the functions of a work that responds to viewers. The border is a 236 binary counter. 





Chapter 77 

Parasites on Parade 

"He dove his thumb into the soft glob of red licorice he held, making it a 
little bigger than the parasite which lay on Sarah's neck... He bent forward 
toward the blistery growth. It was covered in a spiderweb skein of cris-
scrossing white threads, but he could see it beneath, a lump of pinkish jelly 
that throbbed and pulsed with the beat of her heart." 

Stephen King, Four Past Midnight 

Parasites have plagued and weakened humans since the dawn of time. Parasites 
are organisms which live on or in another organism, and they derive their nutri-
ents from that organism. Often parasites are small, but the hagfish, which sucks 
out the flesh of other fish, might either be classified as a predator or as a parasite. 
The tapeworm, often yards long, is indisputably a parasite. In the 1990's, para-
sitic infestations affect a great number of people. For example, infestation of 
pinworm (Enterobius vermicularis) approaches 100 percent in some tropical 
areas of the world. Parasites often exhibit peculiar biological behaviors. For 
example, ribbon worms absorb themselves when food is scarce. One specimen, in 
captivity, was known to have digested' 95 percent of its own body in a few months 
without suffering any ill effects. Its weight returned to normal after food was 
offered. 

With this admittedly unwholesome introduction, I'm sure I have turned a 
number of readers away. However, for those strong few who have remained, the 
following kinds of parasites can be studied without resorting to macabre biological 
experiments; instead we use the clean, dry, and sterile computer or pocket calcu-
lator to probe for numerical parasites. 

The number 102,564 is a remarkable number I discovered one day during my 
late evening computer explorations. I call this number a "parasite number," for 
reasons which will soon become clear. In order to multiply 102,564 by 4 simply 
take the 4 off the right end and move it to the front to get the answer. In other 
words, the solution is the same as the multiplicand except that the number 4 on 
the right side is moved to the left end: 
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102,564 x 4 = 410,256. 

Isn't this an incredible number? How many numbers with this quality exist 
within the fabric of our universe of numbers? These kinds of numbers remind me 

^ of a biological organism which contains a parasite 

numbers generated by different 1-digit multipliers, you'll find that they are 
exceedingly rare. It seems that the only parasite number less than one million is 
the 4-parasite 102,564. (The term "4-parasite" indicates that the number 4 is the 
multiplier.) 

Do the other digits give rise to any parasite numbers? Are there multipliers 
for which no parasite number exists? How much computer time will be spent on 
this, now that I have asked this question? 

There do exist occasional "pseudoparasites" lurking within the integers less 
than a million. These are numbers like 128,205 which when multiplied by 4 also 
move the last digits to the first: 

128,205 x 4 = 512,820 

(I call these "pseudoparasites" only because the last migrating digit is not the 
same as the multiplier.) Here are some other 4-pseudoparasites: 

153846 x 4 = 615384 

179487 x 4 = 717948 

205128 x 4 = 820512 

230769 x 4 = 923076 

Here is a 5-pseudoparasite: 142857 x 5 = 714285 
Both parasites and pseudoparasites are exceedingly rare. As I search during 

the late night hours, with my computer programs, for more examples, I challenge 
you to beat me in my search using the computer of your choice. 

(digit) which roams around the body of the host 
organism (the multidigit number in which the par-
asite resides) as it gains energy by feeding (the 
multiplication operation). I've written several pro-
grams which run a long time on an IBM main-
frame in order to search for parasite-containing 
numbers, such as 102,564. (From here on I'll call 
parasite-containing numbers parasite numbers for 
brevity.) If you search for all potential parasite 
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77.1 Behemoth Parasites 

After showing my single 4-parasite number to several colleagues, Keith Ramsay 
of the University of British Columbia came up with an amazing formula to gen-

Suppose I'd like to find a large parasite for 2. Let's divide 2 by 19 to get 2/19 = 
0.105263157894736842. The "105263157894736842" portion repeats over and 
over, and is a 2-parasite because 

This number, by the way, is larger than the number of stars in the Milky Way 
galaxy. Here's an incredible-sized 6-parasite: 

6/59=. 1016949152542372881355932203389830508474576271 186440677966... 

1016949152542372881355932203389830508474576271186440677966 x 6 = 
6101694915254237288135593220338983050847457627118644067796 

See how the 6 migrates from the right end to the front after multiplication? 
Knowing Ramsay's formula, you can amaze your friends with multidigit parasites 
containing hundreds of digits. 

Mike Dederian of Harvey Mudd College in California found something 
unusual about a 5-parasite 

102040816326530612244897959183655 (77.2) 

which can be written as: 1 (02) (04) (08) (16) ... to emphasize the doubling of 
digits. The reason for this initial pattern is not obvious to us. 

49 Every fraction, when expressed as a decimal, either "comes out even" as in 1 /8=0.125, 
or it repeats as in 1 /3=0.33333 where a single digits occurs over and over again, or it has 
group-repeats as in 1 /7 = 0.142857 142857 .... 

erate parasite numbers. It turns 
out that my brute-force compu-
tational searches would have 
taken far too long to find larger 
parasite numbers. Suppose we 
start with a multiplier digit d 
and wish to find some d-para-
site. All we have to do is use the 
formula d/(\0d— 1), and use 
the unique segment of digits 
before the cluster repeats.49 Let 
me explain with an example. 

2 x 105,263,157,894,736,842 = 210,526,315,789,473,684. (77.1) 
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77.2 Fact File 

After seeing my parasite numbers, Joseph S. Madachy, editor of the Journal of 
Recreational Mathematics sent me a paper he wrote in 1968 which appeared in The 
Fibonacci Quarterly (6(6): 385-389). In the paper are recipes for "instant division" 
which resembles what we might call (using my terminology) "reverse pseudopara-
sites." If you wish to divide 717,948 by 4 merely move the initial 7 to the right, 
obtaining 179,487. Madachy also gives another example: 

9,130,434,782,608,695,652,173 (77.3) 

can be divided by 7 by transposing the initial 9 to the end, obtaining 

1,304,347,826,086,956,521,739 (77.4) 

Interestingly, all of Madachy's computations were done on a Friden calculator 
(see "Musings on Large Robbins Numbers and Friden Calculators" on 
page 385). 

Stop and Think 

1. What is special about the fraction 137174210/1111111111? Try computing 
this to find out. You'll be amazed when you gaze upon its decimal represen-
tation. 

2. Make a list of all pseudoparasites less than one million. 
3. Do there exist "ultraparasites" which multiply by swapping both the left- and 

right-most digits? 

Males with No Digestive Tracts 
During the height of my interest in biology, I became fascinated by exotic examples 

of parasitism in animal species. My favorite examples are those which show the effect of 
environment on sex determinism. The sea worm Bonnelia is an intriguing example. If the 
free-swimming Bonnelia larvae settle on the sea bottom, they develop into females, each 
with a long proboscis (flexible tube). On the other hand, larvae that land on the female 
proboscis develop into tiny males that lack digestive organs and exist in parasitic fashion in 
the genital ducts of the female. (When I once lectured about this creature, one male 
chauvinist in the audience remarked that this was the ultimate example of women's liber-
ation in the animal kingdom.) Why not try to model population growth of Bonnelia using 
your computer? Use an array to represent 50 unoccupied sites on the ocean floor. Each 
time a larvae lands on an empty site, the array element changes from 0 to "F" (for 
female). Each time a larvae lands on a site containing an F, the array element changes 
from F to "M" (for male/female combination). How many parasitic males exist after 100 
larvae have dropped? (If you like, you can have an organism die after a certain number of 
iterations, in which case the array element returns to the value of "0"). 
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Pyramids of Blood 

What is the volume of human blood on earth today? In other words, if all approx-
imately 5.4 billion people from every country on earth were drained of their blood 
by some terrible vampire machine, what size container would the machine require 
to store the blood? The answer to this is quite surprising. Think about it befor 
reading further. 

The average adult male has about six quarts of blood. Considering that a 
large part of the earth's human population are women and children, let's assume 
that each person has an average of one gallon of blood. This gives 5.4 billion 
gallons of blood in the world. Considering that there are 7.4805185 gallons per 
cubic foot, this gives us 7.22 x 108 cubic feet of human blood in the world. The 
cube root of this value indicates that all the blood in the world will fit in a cube 
about 897 feet on a side. To give you a feel for this figure, the length of one of the 
sides of the Great Pyramid in Egypt is 755 feet. The length of the S.S. Queen 
Mary is 1000 feet. The height of the Empire State Building is 1,400 feet. This 
means that a box with a side as long as the S.S. Queen Mary could contain the 
blood of every man, woman, and child living on earth today. 

John Paulos in his remarkable book Innumeracy discusses blood volumes as 
well as other interesting liquid volumes, such as the volume of water rained down 
upon the earth during the Flood in the book of Genesis. Considering the biblical 
statement "All the high hills that were under the whole heaven were covered," 
Paulos computes that half a billion cubic miles of liquid had to have covered the 
earth. Since it rained for forty days and forty nights (960 hours), the rain must 
have fallen at a rate of at least fifteen feet per hour. Paulos remarks that this is 
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"certainly enough to sink any aircraft carrier, much less an ark with thousands of 
animals on board." 

Stop and Think 
1. Compute the volume of body fluid for an average fish. What size container 

would be needed to contain all the blood of all the fishes in the world? Today, 
is there more monkey blood in the world or more human blood? One thou-
sand years ago was there more monkey blood in the world or more human 
blood? 

2. Today, is there more insect blood in the world or more human blood? What 
size container is required to store all the insect blood in the world? 

Fact File: Schizophrenic Spider Blood 
In 1959, N. A. Bercel fed the blood of schizophrenic patients to spiders. In order 

to accomplish this feeding, Bercel first 
squirted the blood into an amputated fly 
abdomen, which was then placed on the 
spider web. The spider ate the fly, and, as 
a result, increased its frequency of cre-
ating simple webs with just a few strands. 
Such webs are often seen from spiders 
prior to molting. (Source: Bercel, N. 
(1959) The effect of schizophrenic blood 
on the behavior of spiders. In Neruo-psy-
chopharmacology. Bradley, Deniker, and 

Raduouco-Thomas, eds. Elsevier.) 

Pictured below is a battle between a scorpion and a common barrel spider. 



"A man is a small thing, 
and the night is very large 

and full of wonders 

Lord Dunsany 
The Laughter of the Gods 
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Appendix A 

Philobiblic Potpourri 

A.l Literature for Lacubration 

- a listing or unusual references. 

1. Bar wise, J., Moss, L. (199i) Hyper sets. The Mathematical/ Intelligencer* 13(4): 31. 
{Answers the question, "What arc liypcrscts?" One author remarks, "Confronted by 
such mi expressioxi years earlier, I exj>eriexiced the same sexise of vertigo experienced 
on my first encounter with continued Tractions, but without the corresponding 
uplifting feeling given by the solution of tlic continued fraction.") 

2. Sizer, W. (1991) Mathematical notions in prcliterate societies. ihe Mathematical 
InleHigeruxr. 13(4); .53-41. (Answers questions such as, "What level of mathematical 
development WHS obtained before societies developed written languages? How much 
of early recorded mathematics is a recording of what was known long previously?") 

3. Frazicr, K. (1991) The Hundredth Monkey: And Other Faradigtm of the i'ura-
mrtnut, Prometheus Books, 400 p, $17.95. (In 1976, the Committee for the Scientific 
Investigation of Claims of the Paranormal (C81COP) was established. They're goal i.s 
to provide accurate, sebxitil'iii Lu forma tioxi about bizarre paranormal claims. This col-
lection gives .scientific explanations for alien-abduction experiences and .spontaneous 
human combustion deaths, among other phenomena.) 

4. Meyer, A. (1991) Dangerous curves ahead, MicroCwl Are*vy. November, 58-63. 
(Describes the mathematics of various strange curves, particularly those used in 
desigxiixig Lripie overpass rOads frtr highways.) 

5. Plot?.. I[. (1988) /rtlagitlo(ion\v Other /'luce: I'vems of Silence and Mothe.maficy, 
Thomas Crowell: NY. (Poems about chemistry, biology, medicine, astronomy, 
geography, and physics. Poems about scientists like Kiostein, Euclid, and others.) 

6. Ciclcrtncr, IX (1991) Mirror Worlds: Or the Day $of(\rure Puts the Universe in u 
Shvebox ... How it Wiff Happen and What it WiIf Mean.. Oxford University Press, 
237 p., $24.95. {Descrihes the future of computer technology.) 

7. Kcenan. D. (J 991) To disscet a mockingbird: a graphical notation for the lambda cal-
culus with a xi i ma ted reduction. (A paper oxi uxi usual represejiiatioxjs of birds' songs 
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available from: David Keenan, 116 Bowman Parade, Bardon QLD 4065 Australia. 
Here is a quote from his erudite paper: 

"It is a wonderfully bizarre fact that each song of a combinatory bird is not 
merely the name of another bird but is actually a complete description of the 
internal plumbing of that other bird. That is, each song is actually a brain map 
of some bird. Since a song is a complete description of how some bird will 
respond when it hears another bird, and the only important thing about a combi-
natory bird is how it responds when it hears another bird, we see that songs and 
singers are interchangeable. So we can say that the birds sing birds to each 
other, or we can equally say that what we have is a bunch of songs that sing songs 
to each other. Their language has no distinction between verbs and nouns. A 
description of action can equally well be a name. To emphasize this, in the 
future we call our diagrams song maps" 

Below is a typical diagram from Keenan's paper: 

8. Pappas, T. (1990) More Joy of Mathematics. Wide World Publishing/Tetra, P.O. 
Box 476, San Carlos, CA 94070. 

9. Philip, A.G.D., Frame, M., Philip, K. (1991) Volume 1, Midgets on the Spike. L. 
Davis Press: NY. (Contains a number of images of the Mandelbrot set with extreme 
magnifications of midgets and spikes, up to 1.4 x 10359. Contact: L. A Davis Press, 
1125 Oxford Place, Schenectady, NY 12308 for ordering information.) 

10. Symmetry: Culture and Science, a quarterly journal on all aspects of symmetry in 
art, science, and culture. Contact: ISIS-Symmetry, PO Box 4, Budapest H-1361 
Hungary. 

11. Chernev, I. (1960) Chessboard Magic! Dover: NY. 
12. Chernev, I. (1965) The Bright Side of Chess. Dover: NY. 
13. Toole, B. (1992) Ada, the Enchantress of Numbers: A Selection from the Letters of 

Lord Byron's Daughter and Her Description of the First Computer. Strawberry 
Press: CA. (For further information, contact: Critical Connection, PO Box 452, Sau-
salito, CA 94966. This book answers questions such as: Was the software language 
Ada properly named? Was she mad or a visionary? Did she predict the impact of 
today's computer revolution?) 

14. Zagier, D. (1989) The dilogarithm function in geometry and number theory. In 
Number Theory and Related Topics. Oxford University Press, NY. (This paper, pre-
sented at the Ramanujan Colloquium in Bombay in 1988, discusses the behavior of 
the "dilogarithm function" defined by 

e 

Xc.c((A,ab.b(aab))(A.ab.b(aab))c) 
Theta bird 

n = 1 
(A A) 



Philobiblic Potpourri 407 

15. 

16. 

Barbeau, E. (1979) Euler subdues a very obstreperous series. American Mathematics 
Monthly. 86: 356-371. 

Cherfas, J. (1991) Disappearing mushrooms: another mass extinction? Science 254: 
1458. (As fungi vanish from Europe, scientists search for causes - and possible effects 
on forest ecology.) 

17. O'Brien, S.J. et al. (1991) Molecular biology and evolutionary theory: The giant 
panda's closest relatives. In New Perspectives in Evolution. Warren and Koprowski, 
eds. Wiley-Liss. 

18. Bowcock, A.M. et al. (1991) Drift, admixture, and selection in human evolution: a 
study with DNA polymorphisms. Proceedings of the National Academy of Science. 
88: 839-843. 

19. Ohno, S., Yomo, T. (1991) The grammatical rule for all DNA: junk and coding 
sequences. Electrophoreses. 12: 103-108. 

20. Davis, P., Hersh, R. (1986) Descartes' Dream. Harcourt Brace Jovanovich: NY. 

21. Costello, M. (1988) The Greatest Puzzles of All Time. Prentice-Hall: New York. 

22. Albert, E. (1992) Crosswords by computer, or 1,000 nine-letter words for fun and 
profit. Games Febr. 16(1): 10-14. 

23. Williams, A. (1992) Jigsaw Puzzles: An Illustrated History. Wallace-Homestead 
Book Co. 362 pp., paper, $24.95. (Anne Williams is one of the world's foremost 
experts on jigsaw puzzles, and is a Professor of economics at Bates College in Lew-
siton, Maine.) 

24. Roach, J., Tatum, J. (1988) Using domain knowledge in low-level visual processing to 
interpret handwritten music: an experiment. Pattern Recognition 21(1): 333-344. 

25. Chess, D., Peevers, A., Pickover, C., Reed, A. (1989) Car radio scanner differen-
tiating music from speech. IBM Technical Disclosure Bulletin. October 32(5B): 
12-13. 

26. Fagarazzi, B. (1988) Self-similar hierarchical processes for formal and timbral 
control in composition. Interface (Netherlands) 17(1): 45-61. 

27. Pickover books. Spiral Symmetry, Visions of the Future, The Pattern Book, The 
Visual Display of Biological Information, Computers and the Imagination, and 
more. For information: PO Box 549, Millwood, NY 10546-0549 USA. 

28. Markovsky, G. (1992) Misconceptions about the Golden Ratio. College Mathematics 
Journal. 23(1). (A fascinating paper debunking various myths associated with the 
golden ratio and its place in art and nature. Highly recommended. Reprints available 
from: Prof. George Markovsky, Computer Science Dept., University of Maine, Orono, 
ME 04469.) 
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A.2 Product Pavan 

- A short section on innovative software, artwork, and related curiosities to simulate your 
imagination. 

1. Imagicians Artware Inc., Box 1005, Manotick, Ontario, Canada K4M 1E9. (Innova-
tive and beautiful art derived from mathematics. Postcards.) 

2. The Newtonian Sandbox, an MS-DOS program by Judah Schwartz of MIT. Educa-
tional software for demonstrating: velocity-dependent frictional forces, oscillatory 
motion, etc. Contact: Prof. Judah Schwartz, School of Engineering, 20C-215, Massa-
chusetts Institute of Technology, Cambridge, MA 02139; judah @hugsel.bitnet. 

3. Electronic checkers machine. Contact: Saitek Ltd., 12/F Chung Nam Center, 414 
Kwun Tong Road, Hong Kong. 

4. Vexahedron. A puzzle made of 8 blocks of wood, each with a magnet embedded in the 
center of one side. Contact: Tensegrity Systems Corp., 1632 Rte 9, Tivoli, NY 12538. 

5. Chaotic Dynamics Workbench, by Roger Rollins of Ohio University. Nonlinear 
systems, pendulums, oscillators. Contact: Prof. Roger Rollins, Dept. of Physics and 
Astronomy, Clippinger Labs, Ohio University, Athens, OH 45701-2979; rollins @ 
cgruni.phy.ohiou.edu. 

6. Civilizaiton. Strategy game where 2-4 players build a civilization through trade, agri-
culture, technology, and law. Avalon Hill, 4517 Hartford Road, Baltimore MD 
21214. 

7. Mapper, for IBM-compatible computers, developed by James Harold. Fractals, Lya-
punov exponents, Poincare sections. Clear manual. Contact: James Harold, Dept. of 
Physics, University of Maryland, College Park, MD 20742; harold@ lpe.umd.edu. 

8. Variance. Strategy game. Get your pawns from your home base to your opponent's. 
Certain sections of the board slide. Dash, Box 13344, San Antonio, TX 78213. 

9. WaveMaker (a Macintosh program by Freeman Deutsch of the Harvard-Smithso-
nian Center for Astrophysics), an interactive computer simulation depicting the oscil-
lation of beads connected by elastic strings. Contact: Prof. Freeman Deutsch, Project 
Insight, Harvard College Observatory, 60 Garden St. MS 71, Cambridge, MA. 
02138; fsd@ cfa.harvard.edu.bitnet. 

10. EM Field, a program that runs on both Macintosh and MS-DOS computers, by 
David Trowbridge of Microsoft Corporation. The program shows students the effect 
of electric fields associated with a small number of charged particles. Contact: David 
Trowbridge, Multimedia Publications, One Microsoft Way, Microsoft Corporation, 
Redmond, WA 98052-6399; microslft!davidtro @ uunet.uu.net. 

11. New World. Strategy game. 2-6 players colonize Europe during the 15th and 16th 
centuries. Avalon Hill, 4517 Hartford Road, Baltimore MD 21214. 

12. Spreadsheet Physics Worksheets (an MS-DOS program by Charles Misner of the 
University of Maryland), a spreadsheet program allowing students to use numerical 
analysis to solve physical problems. Contact: Prof. Charles Misner, Dept. of Physics, 
University of Maryland, College Park, MD 20742-4111; misner® umdhep.bitnet. 

13. Fractal Postcards. The Mathematical Association, 259 L Leichester, LE2 3BE UK. 

14. Mathematical calendars, t-shirts, and optical illusion slide shows. T. Pappas, c /o 
Wide World Publishing/Tetra, P.O. Box 476, San Carlos, CA 94070. 
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15. Set. A puzzle game invented by mathematician and computer programmer Marsha J. 
Falco. A game of logic and perception for one or more players. Set, 301 Cowley, E. 
Lansing, MI 48823. Fax (517) 351-4341. 

16. Dragons 4, an IBM PC compatible computer program for fractals. Contact: Larry 
Cobb, By House, Dean Down Drove, Littleton, Winchester, Hants, S022 6PP 
England. 

17. Fractal Report, a newsletter on fractals. Published by J. de Rivaz, Reeves Telecom-
munications Lab. West Towan House, Porthtowan, Cornwall TR4 8AX, United 
Kingdom. 

18. AMYGDALA, a fascinating newsletter on fractals. Write to AMYGDALA, Box 219, 
San Cristobal, New Mexico 87564 for more information. 

19. Crossword puzzle software. Mel Rosen, 11718 Nicklaus Circle, Tampa, FL 33624. 
Also: Crossword Construction Set, for the Macintosh. Uses a 250,000 entry database 
to fill grid selections of up to 25 words. Contact: Alan Richter, 340 Riverside Drive, 
Apt 3-D, New York, NY 10025. 

20. Algorithm - Recreational Programming Magazine. P.O. Box 29237, Westmount 
Postal Outlet, 785 Wonderland Road S., London, Ontario, Canada, N6K, 1M6. 
($19.95). Topics include: fractals, artificial life, iterative system, computer art, cel-
lular automata, special games, screen-saver programs, robotics and artificial intelli-
gence, neural and genetic computing, music, viruses, programming advice, and much 
more. 

21. Fractal Calendar. Address inquiries to J. Loyless, 5185 Ashford Court, Lilburn, 
Georgia 30247. 

22. The Best of Journal of Chaos and Graphics, Three volumes in one wild and informal 
paperback book. Topics: fractals, computer art, devil's curves, music, and much 
more. Published by: Media Magic, PO Box 507, Nicasio, CA 94946 USA (Toll free: 
1-800-882-8284. $10.00, plus $2.00 postage and handling, US orders; $4.00 postage 
and handling non-US orders.) 

23. YLEM - Artists using science and technology. This newsletter is published by an 
organization of artists who work with video, ionized gases, computers, lasers, holo-
grams, robotics, and other nontraditional media. It also includes artists who use tra-
ditional media but who are inspired by images of electromagnetic phenomena, 
biological self-replication, and fractals. Contact: YLEM, Box 749, Orinda, CA 94563. 

24. Recreational and Educational Computing Newsletter. Dr. Michael Ecker, 909 Violet 
Terrace, Clarks Summit, PA 18411. 

25. Strange Attractions. A store devoted to chaos and fractals (fractal art work, cards, 
shirts, puzzles, and books). For more information, contact: Strange Attractions, 204 
Kensington Park Road, London W11 1NR England. 

26. Pickover Software Sampler, Bourbaki, PO. Box 2867, Boise, Idaho 83701. (Software 
for drawing and exploring many of the images in Computers, Pattern, Chaos and 
Beauty, St. Martin's Press: NY). 

27. Illuminations, visible music by Ken Jenkins. The images are complex, graceful, and 
mesmerizing. The soundtrack includes three new pieces of New Age/Space music. 
Contact: Willow Tree, PO Box 1439, San Rafael, CA 94915. 

28. MEDIA MAGIC: The Fractal Universe Catalog, PO Box 507, Nicasio, California 
94946. This fine company distributes books, videos, prints, and calendars. 
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29. ART MATRIX, creator of beautiful postcards and videotapes of exciting mathemat-
ical shapes. Write to ART MATRIX, PO Box 880, Ithaca, New York 14851 for more 
information. 

30. Sculpture magazine is published bimonthly by the International Sculpture Center, 
1050 Potomac Street, N.W., Washington D.C. 20007. The ISC is an organization 
devoted to the advancement of contemporary sculpture. Actives include the Sculp-
ture Source, a computerized artists' registry and referral service. Typical topics 
covered by the magazine: interactive art, sky art, holographic installations, art and 
technology. 

31. Hargittai, I., Pickover, C. (1992) Spiral Symmetry World Scientific Publishing, 687 
Hartwell Street, Teaneck, New Jersey 07666-5309. Phone: 201 837-8858 Hard-
cover, $48.00, 650 pages. ISBN 981-02-0615-1. Spirals in nature, art, and math-
ematics. Fractal spirals, plant spirals, artists' spirals, the spiral in myth and 
literature... 

32. Booklet and newsletter on various topics in recreational math, fractals, number 
theory, and the golden ratio. Send self-addressed envelope with two stamps to Gary 
Adamson, PO Box 16329, San Diego, CA 92176-0329. 

33. Millenium Magazine 2000. Topics: fractals, nanotechnology, the big bang, time 
spirals, peace. Peter Sorensen, 1431 Ocean Ave., Suite 516, Santa Monica, CA 
90401. 

34. Children's Math Calendar. Charles Babbage and early computers. Fibonacci and 
unexpected squares. QED Books, 1 Straylands Grove, York Y 0 3 0EB England. 

A.3 Curiosity Cavalcade 

- a section for curious readers on unusual applications of computers and technology. 

• Perhaps one of the most unusual applications of computers has been to the study of 
spider amputees. Reed, Witt and Jones, in 1965, used a 
computer to analyze the effect of leg removal on spider 
web formation. Legless spiders were found to produce 
webs with fewer radii, and with fewer spiral turns, than 
normal spiders. No differences were found between 
chopping off the left or right leg. (Source: Reed, C., 
Witt, P, Jones, R. (1965) The measuring function of 
the first legs of Araneus diadematus CI. Behavior. 25: 

98-119.) 

• In 1934, Rowley showed that goldfish can distinguish between circles whose diameters 
differ by as little as 3 millimeters. Can you distinguish such circles? Have your computer 
draw a series of circles and compare your visual acuity to that of a goldfish. (Source: 
Rowley, J. (1934) Discrimination limens of pattern and size in the goldfish. Carassius 
auratus. Genet. Psychol Monogr. 15: 245-302.) 
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• In 1991, Walter Stewart and Ned Feder of the National Institute of Health used a com-
puter program called a Plagiarism Detector to determine if a book can legally be called a 
plagiarism of another book. They are planning a court appearance of the technique, if they 
are permitted to testify as expert witnesses in a trial over disputed rights to a textbook on 
plastic surgery. Using his computer program, Stewart calculated the percentage of 
30-letter strings that are identical between the two books in question. In two introductory 
chapters, he found a 57% match between books. 

• The Numerical Arrow Puzzle. Place the digits 0 through 9 in each of the circles of the 
arrow pictured below according to the following rule: Each pair of digits connected by a 
line must make a two-digit number that is evenly divisible by either 13 or 7. For example, 
8 and 7 connected by a line would be appropriate because the number 78 is divisible by 13. 
(You can consider the two digits in one order or the other.) Do not use a digit more than 
once. I've placed the number 5 in the tail of the arrow to get you started. Is there a sol-
ution? Try this simple-looking (although difficult) problem on a few friends. 

• "Robot Checkers-Players, Surgeons, and Chefs" on page 293 discussed several unusual 
examples of robotics technology. In 1992, an automated cow-milking system, the "Robo 
Milkmaid," was under study at the Maryland Agricultural Experiment Station. The 
device is novel in that it hooks itself up to the cow. The system opens a gate, scrubs the 
cow's udder, and attaches the milker. It also feeds the cow. 

• "There is Music in our Genes" on page 211 discussed musical scores from genetic 
sequences. In 1992, an electronic sheet-music system became available which allows sheet-
music purchasers to customize a musical score before purchasing it. For example, users 
may use the electronic touch screen to change the music's key. This interactive "NoteSta-
tion" then allows the buyer to print the final selection when satisfied. NoteStation is avail-
able in nine California music stores. For further information, contact: MusicWriter, 170 
Knowles Dr., Suite 203, Los Gatos, CA 95030. 

i i n i i i t i . n H I 
• "Bertrand Russell's Twenty Favorite Words" on page 183 discussed unusual words. One 
odd word frequently used by biologists in 1992 is "extremeophile." Extremeophiles are 
microorganisms living in extreme environments, such as bacteria that flourish in concen-
trated organic solvents, at pH 12, or in boiling water, or at extreme pressures. One notable 
extremeophile explorer is Japanese scientist Koki Horikoshi who recently completed a 
5-year, $15-million study of these strange creatures. 
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• Here's an interesting question which appeared in the February 1992 issue of Games 
magazine. "What is the number of countries bordering the country whose name differs by 
only one letter from the name of a U.S. capital whose name differs only in its two final 
letters from the name of another U.S. state capital?" 

• "Is Computer Art Really Art?" on page 169 discussed various issues in computer art. 
Cas Strachelberg, gallery assistant at the Paula Cooper Gallery in New York's SoHo dis-
trict has commented: "Pieces that look as if they are computer generated are having a 
hard time." One of the tricks for having computer art accepted to galleries, and even to 
computer graphics art shows, is to produce art that does not look as if it were created on a 
computer. This excludes most fractals derived from mathematics. (Source: Computer Pic-
tures, Jan/Feb 1992, pg 24.) 

• "The Drums of Ulupu" on page 71 described unusual rhythms produced by the Morse-
Thue sequence. Harry J. Smith, after reading this chapter, produced several IBM PC pro-
grams allowing you to hear the rhythms on a personal computer. He remarks, "The 
rhythms are memorable, recognizable, definitely not random, and all the versions remind 
you of the others." His programs are in MS-DOS 5.0 QBasic. For information, contact: H. 
Smith, 19628 Via Monte Dr., Saratoga, CA 95070. 

A.4 Descriptions of Color Plates 

To produce the color plates for 2-D patterns, I used an IBM 3090 mainframe computer. 
To produce the 3-D representations, I used an IBM RISC System/6000. Resolution varied 
between 600x600 and 1500x1500 pixels per picture. The programming language was 
either PL/1 or C. 

Cover image: The "brain" was simulated by tracing the trajectory of an irregularly 
oscillating conical pendulum. For each instant in time, the pendulum leaves behind a 
sphere at its current position. Over time, the collection of sphere traces out the irregular, 
bumpy, brain-like pattern. The sphere collection is turned upside down for artistic effect. 
(You can also achieve similar effects by executing a random walk on a hemisphere.) The 
background is constructed using randomly positioned spheres superimposed on an image of 
the moon, taken through a Celestron telescope, centering on the moon's Mare Crisium. 
The moon photo is image-processed so that it resembles a gaseous cloud. The graphics 
computation was executed on an IBM RISC System/6000. I find that images such as 
these, which combine physics, astronomy, and mathematics in a fanciful setting, do much 
to stimulate young peoples' interest in studying physics and astronomy! 
1. Lava-like form produced by the 3-D algorithm described in "Lava Lamps in the 21st 

Century" on page 109. 

2. Lava-like form produced by the 3-D algorithm described in "Lava Lamps in the 21st 
Century" on page 109. 

3. Lava-like form produced by the 3-D algorithm described in "Lava Lamps in the 21st 
Century" on page 109. 
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4. Bachnoff Klein Bottle surface. (See "Mandalas, Screws, Pears, and Klein Bottles" on 
page 97.) 

5. Mandala surface. (See "Mandalas, Screws, Pears, and Klein Bottles" on page 97.) 
6. Pear surface. (See "Mandalas, Screws, Pears, and Klein Bottles" on page 97.) 
7. Screw surface. (See "Mandalas, Screws, Pears, and Klein Bottles" on page 97.) 
8. Gopalsamy mapping for x — 2xy + C\, y — (x2 — y1) + c2. (ci = c2 = — 0.19). 
9. Lundin 2-D map. (See "Labyrinthine Lundin Curves" on page 103) 
10. Worm sculpture produced by mathematical equations. Backround eyes are described 

in "Interlude: I See Your Eyes at Night in Dreams" on page 31. 

11. Eyescape, described in "Interlude: I See Your Eyes at Night in Dreams" on page 31. 

12. Lava-like form produced by the 3-D algorithm described in "Lava Lamps in the 21st 
Century" on page 109. 

13. Halley fractal map. The recipe for this form is given in my book Computers, Pattern, 
Chaos, and Beauty (St. Martin's Press, NY, 1990). See "Fractal Spiders and Frame-
Robertson Bushes" on page 87 for similar patterns. 

14. Kaleidoscope design produced using methods described in "Electronic Kaleidoscopes 
for the Mind" on page 23. 

15. Kaleidoscope design produced using methods described in "Electronic Kaleidoscopes 
for the Mind" on page 23. 

16. Kaleidoscope design produced using methods described in "Electronic Kaleidoscopes 
for the Mind" on page 23. 

17. Colored froth and bubbles characterizing the behavior of the iteration of the com-
plex-valued function: 

1 
A*)' (Xz - \/z) -

(Xz - X/zf 
(A. 2) 

(X plane map, with z0 = 0.5.) 

18. Image processed froth. (See previous.) 

19. Modified Pokorny function computed for the iteration of z = l / ( z 2 + (0.5,0.1)) 
(See "Pokorny Fractals" on page 92). 

20. Glynn function computed for the iteration of z z 1 5 — 0.2 where z is complex. 
21. Glynn function (see previous). 
22. Computer-simulated leaf vein pattern (see Credits for more information). 

A.5 Acknowledgments and Credits 

All mathematically related computer graphics, and all of the color plates, were created by 
the author. 

The copyright for artwork produced by artists featured in the "Interlude" sections, 
remains with the artists, and I thank them for permission to reproduce their works in this 
book. I owe a special debt of gratitude to Akhlesh Lakhtakia, Robert Stong, Dawn 
Friedman, Mike Frame, and Martin Gardner for various helpful suggestions regarding the 
book. The computer-generated kaleidoscope images represent collaborative research with 
Prof. Larry Rudolph, Department of Computer Science, Givat Ram Campus, Hebrew 
University, Jerusalem 91904 Israel. The Terrible Twos analysis is a collaboration with 
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Ken Shirriff (University of California). Holly Roth drew the bar and pie charts for three 
figures in this book using Freelance 3.01 running on a PS/2 Model 70. She also imported 
two clip art diagrams from CorelDraw 2.0 for use in these figures. Stephen Malinowski 
provided the list of interesting musical patents. Much of the innovating software specif-
ically for physics education (included in "Product Pavan") was listed in: Donnelly, D. 
(1991) CIP announces winners of second annual software contest. Computers in Physics. 
Nov/Dec 5(6): 636. Quotations at the beginning of several chapters come from Don 
DeLillo's Ratner's Star (Vintage Books: NY, 1980). The several "schema" diagrams are 
©1992 by Robert E. Mueller (see "Interlude: Alien Musical Scores" on page 221). I 
thank Dr. Bruce Boghosian (Thinking Machines Corporation) for encouragement and 
helpful observations regarding some of the structures seen in the lava. John Mclntyre 
(Physics/Astronomy Dept., Michigan State University) reported the comic book M-set 
information to me. Philippe Schnoebelen of Grenoble, France, brought the various fairy 
chess magazines to my attention. 

The photograph of two people looking at a stick figure in "Squashed Worlds That 
Pack Infinity into a Cube" on page 249 is from Norman Kinzie. Art Appel photographed 
the moon which I used, after image processing, for the background in the cover. 

The Farsi script at the beginning of the book (for the ancient Persian proverb, "The 
seeker is a finder") was written by Jalil A. Taghizadeh of Sherman Oaks, CA. There are 
various beautiful and exotic styles of writing this same phrase with Farsi characters. Mr. 
Taghizadeh also sent me an additional representations for the same phrase: 

* * * 
Below is an ornate Arabic script for the seal and signature of Abdul-Medjid Ibn 

Mahamud, Sultan of Turkey (1822-
1861). The chaotic pattern at the end of 
this section was sent to me by Arthur C. 
Clarke. To produce the pattern, Cherene 
(12 years old) and Tamara (6 years old) 
used a "secret" ingredient: wax crayons. 
They have given me permission to reveal 
the entire recipe here. Place a pan into an 
oven (300 degrees F). After 30 minutes, 
remove the pan, using a glove. Turn the 
pan upside down. Place a foil on it. Draw 
a shape on the foil with a crayon. Place a 
paper onto the wax and smooth it. 
Remove the paper. The photograph of 
the computer and broken television 
screen in the technology chapter is © 

1990 by artist Wayne Draznin, Cleveland, Ohio. His artwork generally takes the form of 
multi-media installations and is concerned with issues of communication and represen-
tation. 

Chopin's musical score (Nocturne) is from Nocturnes and Polonaises (Dover, NY). 
Many of the antique artworks in this book come from the Dover Pictorial Archive. 
Authors for archive books include: R. Huber, E. Gillon, J. Harter, W. Rowe, E. Lehrner, 
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S. Appclbaum. W. Harlow, and S. Horcrnis. The various old machinery pictures come 
from: Rove, W. (19S0) Machinery and Mechanical Devices. Dover: NY. The crowd scene 
photos arc from Jim Kalett/Photo Researchers. Others old digrams and maps arc from a 
reprint of an 1851 txwk: Heck, J. (1979) The Complete Encyclopedia of Illustration. Park 
Lane: NY. The photograph of I he children playing the Chinese game S'/'kwa comes from; 
Hell, R-, >jnd ( Cornelius, M. (1988) Hoard 0'arne.s Round the World. Cambridge University 
Press: NY. (Jopalsaniy n utn he i-s. » re courtesy of Ci. fiopalsamy, India. 

The maze on page 1 is from: Quinn. W. (1975) Challenging Mazes. Dover: NY. The 
frontispiece for "Interlude: Animal Machines'1 on page S5 is titled "Moped Vcrwandlung" 
{"Moped Metamorphosis") © MichacI Schulzc (from the collcction of Ed and Nancy 
KicnhoJz, Idaho; photo by Martin Spccht). The cndpiccc photo for the Schulzc chapter is 
titled "Copulation.* TheStelarc images arc © Stclarc, and the photographers include P. 
Fcrnuik and S. Hunier. The piano keyboard in Appendix A.3 is from Nicholas Muchcrino. 
I compuJed the leal'vein pattern using Ken Shirril'Ps theory and data on generating [rac-
ial s from Vpronoi diagrams. Civen » of poinls, (he Voronoi polygon ground each point 
is the region of the plane closer in the selected point than to any other. 

The "Voyager 111" score at the beginning of the music part of the book is from D»vid 
McCutchcn and Jeff Grccnwald. Here they have translated the art in the top figure into a 
score. The drawing is animated with the music. Contact McCutchcn, 931 N. Gardner St., 
W. Hollywood, CA 90046. 

The frontispiece for "Mutccr's Man-clous Music Machines" on page 191 shows 
Swiss-American composer Ernest Bloch (1380 - 1959) with his eminent pupil Roger Ses-
sions (born 1896) in 1923. American compter Sessions' Symphony in B Minor was pre-
miered by the Host on Symphony in 1927. Much wrote a notable opera Mw-be-th (1910) 
and several work9 based on Jewish culture. 

A.6 Additional Mental Machicolation 

- included in this section arc additional books, videos, and related to stimulate your imag-
ination.50 

Virtual Reality Bcmks 

1. Virtual Reality, by J. Rheingold. 384 pgs, Hb, 1991. 
2. Virtual Reality: Adventures in CyherXfXicc, by F. Hamit and W. Thomas, 256 pgs, 

color, 1991. 

3. ArtificialFeutily, by M. Krueger, 300 pgs, color, I lb, 1991, 

so As a special servicc for readers of this hook who may find difficulty in locating sonic of 
these mind-stimulators, Media Magic has agreed to distribute all items in this section. 
Write to Media Magic, PO Box 507, Nicasio, C'A 94946 for price and order informa-
tion. 
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Visualization Books 
1. Visualization in Teaching and Learning Mathematics, by W. Zimmermann and S. 

Cunningham, eds.. 223 pgs, color, Pb, 1991. 
2. Envisioning Information, by E. R. Tufte. 126 pgs, 400 illus., color, Hb, 1990. 

3. Visualization: The Second Computer Revolution, by R. Friedhoff and W. Benzon. 
216 pgs, 200 illus, color, Pb, 1991. 

Fractal Books 
1. From Newton to Mandelbrot: A Primer in Theoretical Physics, by D. Stauffer and 

H. E. Stanley. 188 pgs, color, Pb, 1990. 

2. Fractals in Your Future, by R. Lewis. 265 pgs, 250 illus, 1991. 

3. Fractal Forms, by E. Guyon and H. E. Stanley. 60 pgs, color, Pb, 1991. 
Chaos Books 
1. Chaos and Order in the Capital Markets: A New View of Cycles, Prices & Market 

Volatility, by E. Peters, 228 pgs, 50 illus, Hb, 1991. 

2. From Clocks to Chaos: The Rhythms of Life, by L. Glass and M. Mackey. 256 pgs, 
99 illus, Pb, 1988. 

3. An Albumn of Fluid Motion, by M. Van Dyke. 176 pgs, 200 photos, Pb, 1982. 
Artificial Life Books 
1. The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowldege, 

by W. Poundstone. 245 pgs, illus, Pb, 1985. 

2. Artificial Life / / , by D. Farmer, C. Langton, S. Rasumussen, and C. Taylor. 840 pgs, 
color, Pb, 1991. 

3. Cellular Automata: Theory and Experiment, by H. Gutowitz. 250 pgs, illus, Hb, 
1991. 

Mathematical Thought Books 
1. Exploring the Geometry of Nature, by E. Rietman. 194 pgs, illus Pb, 1989. 

2. Islands of Truth: A Mathematical Mystery Crusie, by I. Peterson. 314 pgs, color, Pb, 
1990. 

3. Alternate Realities: Mathematical Modles of Nature and Man, by J. Casti. 485 pgs, 
illus, Hb, 1989. 

Dimension, Form, and Geometry Books 
1. To Infinity and Beyond: A Cultural History of the Infinite, by E. Maor. 294 pgs, 

color, Pb, 1991. 
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2. The Fourth Dimension Toward a Geometry of Higher Reality, by R. Ruckcr. 200 
pgs. illus, Pb, 19S4, 

Pattern Books 
1. Universal Patterns - The Golden Relationship: Art, Math, and Nature, by M. Roles 

and R. Newman. 272 pgs, illus, Pb, 1991. 
2. Visions of Symmetry: Notebooks, Drawings, and Related Works of MA'.. Eschar, by 

D. Schattsclmcidcr. 345 pgs, color, Hb, 1990. 
Computer Artist Videos 

J. The Conquest of form, by W. Latham. 60 min, 1990. 
2. Moon Drum: Dream Songs Colored by Memories of Prehistory, by J. Whitney. 60 

men. 1991, 
Fractal Animation Videos 
1. Mandelbrot and Julia Sets, by Art Matrix. 2 hours, 1990. 

2. Chaos Made to Order, by Hoorhatri. 30 mm, 1991. 
Fractal Educational Videos 
1. The Beauty and Complexity of the Mandelbrot Set, by J. Hubbard. 73 mill, 19K9. 

2. Simulation/Stimulation: Over the Edge, by the Students. Faculty and Staff of the 
Electronic Visualization Lab. Univ. of Illinois, Chicago. 90 min, 1991. 

Chaos Educational Videos 
1. Chaos: A Video Demonstration, by R. Rueker. 30 mill., 1990. 
2. Chaos and Rarubtnnes.y, by C. Sprot 1. 60 min, 1991. 
Virtual Reality Videos 
1. Senate Hearings on Virtual Reality. 50 mill, I9V1. 

2. Cyberspace. Power, and Culture, from Media Magic. 1 20 min, 1991. 
Mathematical Thought Videos 
1. Not Knot. from the Geometry Center of the University of Minnesota. 20 min, 1991. 

2. Geometrical Metaphors of Life, by S. Tcncn. 108 rnin, 1989. (Topics: meditation, 
Hebrew alphabet, self-organization.) 

3. Natural Minimal Surfaces via Theory and Computation, by D. Hoffman. 80 min. 
1990. 

Journals 
1. i.eonardo: 'Phe Journal of the International Society for the Arts, Science, and Tech-

nology 

2. Cyheredge Journal: The World's Premier Newsletter of Virtual Reality. 
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Solution Saraband 

The solution to the computer-generated maze in Figure 1.6 spells out the name 
"Pickovcr." The solu I ion lor the text maze described in ''Ail Impossible Maze?" on 
page 13 starts at the "T* in the lower lel't Section and spells out "This is impoNSihle," 

T h e a n i m a l eye in " I n t e r l u d e : ( S e e Y o u r Hyes a t N i g h t in l-Jreanis" on p a g e 31 is 
f r o m >J m o n k e y . 

All remaining ghost patterns in "Ghost Patterns and Puzzles" on page 49 arc non-
random. 

In Figure 33.1 the ants are most likely to be in the region with Ihc greatest area. Jn 
general, the number of ants in a chamber is proportional lo the area. Does the inlerconnec-
livity of lunnels affect ihis? 
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The solution to the chess puzzle in Figure 56.3 is as follows. For the left diagram, 1 
R-KKtl!, KxKt, 2 R-Rl , K-K5, 3 Q-QKtl mate. Other possible first moves can also to 
lead to mate. For the right diagram, 1 Kt-K8!, K-Q5, 2 K-B3, K-K4 (or Q4), 3 Q-K4 
mate. Other first moves can also lead to mate. 

The solution to the chess puzzle in "Fiendishly Difficult Eight Pawn Problem" on 
page 321 is: 
1 P - B3ch K - B 4 
2 Kt - R4ch K - Kt4 
3 P - B4ch K - R 3 
4 B - B 6 B - Kt8 
5 K - B 2 B - B 7 
6 K - Q l B - Kt8 
7 K - K 2 B - B 7 
8 K - B l ! B - Kt8 
9 K - Kt2 B - B 7 
1 0 K - R 3 
The King proceeds (Kt4, B5, K6, Q7) to QB8, and then plays B-Kt7 mate! 

The solution to the Knight maze in "Knights in Hell" on page 321 is diagrammed 
below (rotated 90 degress to save space): 

The solution to the Chernoff sequence ("Incredibly Difficult Number Sequences" on 
page 349) can be understood by examining the following table designed by Stuart Finkel-
stein (Pennsylvania): 

2 = 2 1 

12 = 2 2 x 31 

360 = 2 3 x 32 x 51 

75600 = l k x 33 x 5 2 x 71 

174636000 = 2 5 x 3 4 x 5 3 x 7 2 x 1 11 

The 4th term is 75600. The solution for the Balden sequences can be arrived at as follows, 
according to Bruce Balden. To create the first sequence, you must consider powers of the 
polynomial x + 1 with coefficients modulo 3. Let me clarify. You can compute this with 
the binomial theorem: just consider the ordinary coefficients modulo 3. Therefore, x + 1 
is represented as 11. (x + l )2 = x2 + 2x + 1 is represented as 121. (x + l)3 = 
x3 + 3x2 + 3x + 1 is represented as 1331 which is reduced to 1001 since the coefficients 
are expressed modulo 3. (x + l)4 = x4 + 4x3 + 6x2 + 4x + 1 is represented as 14641 
which is reduced to 11011 when expressed modulo 3. For the second sequence, Balden says 
"use arithmetic base the golden ratio." 
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Index 

Achilles 250 
Africa 133,138,247 
After Dark 17 
AGAR 107 
AIDS 379 
Albinus, B. 121 
Aliens, genes 162 
Aliens, pi 151 
Alternating sign matrices 387 
Ana sequences 35 
Anabiosis 35 
Anatomy 121 
Animal machines 85 
Ant farms 173 
Apolcalpyse numbers 337 
Arabian Nights factorial 355 
Archeology 138 
Aristotle 250 
Art 

Are fractals art? 95 
Genes 161 
Interstellar 107 
Is computer art art? 169, 222 

Art and science ix 
Artmann, B. 239 
Asimov, I. ix 
Astrahan, I. 149 
Attractors 33 

Bach's violin 219 
Bacon 253 
Bacteria, oldest 276 
Banchoff Klein bottles 97 
Banchoff, T. 227 
Bar Codes 

Morse Thue 71 

Product 297 
U-numbers 357 

Batrachomyomachia 184 
Beasley, B. 323 
Beauty and the Bits 79 
Beetles 246 
Bicycles from hell 327 
Bijan 71, 155 
Bikes 299 
Bits 79 
Blood, pyramids 399 
Blood, spider 400 
Book of children 142 
Bottle, time 271 
Brahmagupta numbers 345 
Brain pancakes 130 
Brewster, D. 23 
Brief History of Time ix 
Bushmen 137 

Caged Fleas 241 
Cage, J. 219 
Caldwell, C. 353 
Cancer 128 
Cantor cheese 38 
Cantor set 37 
Carey, E. 43 
Carlson, S. ix 
Cavali-Sforza, L. 135 
Cellular automata 109 
Cemeteries of the future 107 
Checkers 293 
Chernikov patterns 55 
Chess 

Black hole 316 
Carnivore 318 
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Circular 313 
Computers 312 
Crowded 318 
Crushed 318 
Eight Pawn Problem 321 
Endgames 311 
Evolution 318 
Fairy 317 
Fibonacci 319 
Fossil 318 
Games 313 
Hexagonal 317 
Hyperdimensional Knights 236 
Infinite 316 
Knight art 204 
Knight magic square 66 
Knights in Hell 321 
Madhouse 317 
Martian 317 
Music 204 
Relativistic 315 
Too many bishops 318 
5x5 318 

Chi-shang, Y. 6 
Children 141 
China 153 
Chinese games 143,155 
Chinese lattice designs 6, 7, 8 
Chinese lattice mazes 9 
Circular chess 313 
Civilization 135 
Clarke, A. ix, 12,385,414 
Clocks 276,285 
Clynes, M. 207 
Cole, C. 355 
Color plates 412 
Comic strip 94 
Computer Esophagus 121 
Convergence 367 
Conway, J. 36 
Cook, L. 305 
Coprophiles 246 
Cornfields 93 
Criminals 353 
Cro-Magnon game 133 
Crop circles 93 
Cyberspace 299 

da Vinci, L. 14,169 
Davidson, M. 365 
Death tunnels 167 
DeLillo, D. 414 
Detonography 335 
Differential equations 33 
Dimensions 227 
DNA, aboriginals 137 
DN A, music 212 
Dot patterns 49 
Draznin, W. 414 
Drum heads 95 
Drums of Ulupu 71 
Dung beetles 246 
Dung, bacteria 276 
Dyens, G. 339 
Dye, D. 6, 9 
Dynamical systems 33 

Earthquakes 323 
Earthscore notation 237 
Eight Pawn Problem 3 21 
Einstein's brain 232 
Einstein's children 236 
Einstein, A. vii 
Eisley, L. 86 
Elephants in spheres 230 
Elkies, N. 148, 195,342 
Emirp numbers 343 
Emperor's New Mind ix 
Endgames 311 
Esophagus, Computer 121 
EternityGrams 275 
Euglenas 309 
Explosion 339 
Explosives 335 
Exponential notation 390 
Extraterestrial messages 161 
Eye 149 
Eyescapes 31 

Faces 353 
Facescapes 209 
Factorial, Arabian Nights 355 
Family trees 135 
Fantastic Archeology 138 
Farsi script 414 
Feather fractals 33 
Feminism 43 
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Fermat's theorem 148 
Fiberoptics 305 
Fibonacci chess 319 
Fibonacci numbers 337, 341, 343 
Fighting fish 63 
Flea Cages 241 
Fourth dimension 225 
Fowles, J. 252 
Fractal dimension 12,38,94 
Fractal fiberoptics 305 
Fractals 10 

Ana sequence 35 
Ant farms 174 
Are fractals art? 95 
Bits 79 
Cantor cheese 38 
Cantor set 37 
Comic strip 94 
Cornfields 93 
Dimension 12,38 
Drum heads 95 
Feather 33 
Feminism 43 
Fiberoptics 305 
Frame-Robertson bushes 87 
Hilbert curves 12 
Likeness sequence 35 
Lundin curves 103 
Mandelbrot set 11, 87 
Mandelbrot set dimension 94 
Mandelbrot, B. 10, 87, 103 
Mazes 10, 12 
Multifractals 175 
Music scores 195 
Pokorny 87 
Self-similarity 103 
Shishikura, M. 94 
Sierpinski gasket 80,174 
Snowflakes 12 
Spider 87 

Frame-Robertson bushes 87 
Friden calculators 389 

Games 
China 155 
Civilization 137 
Cro-Magnon game 133 
My Computer Esophagus 121 
Pong Hau K'i 143 
Sim Ant 176 

Sim Earth 137 
Sz'wa 155 
Time travel 300 

Gardner, M. ix, 195, 234 
Genes 

Art 161 
Children 141 
Human cultures 135 
Human genome project 166 
Messages 161 
Music 211 

Genesis 399 
Ghost children 141 
Ghost patterns 49 
Goals, lists 157 
Goddard lists 157 
Golden ratio 361 
Goldfish 410 
Gosper snowflakes 305 
Greek coins 239 
Greeks 361 

Greenland Mummies 139 
Grossman. R. 209 
Gross, A. 198 
Guzak, K. 289 

Hailstone music 203 
Haldane, J. 246 
Hand, artificial 187 
Hard numbers 376 
Hartal, P. 277 
Hawking, S. ix, 276 
Hayashi, K. 214 
Heads, swelled 393 
Heart, circuit 393 
Heinlein, R. 225 
Hesse, J. 152 
Hilbert curves 12 
Hilbert mazes 12 
Hilgemeir, M. 36 
Hippasus 250 
Holosculptures 339 
Human body 121 
Human genome project 166 
Hyperbeings 235 
Hyperspheres 228 
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II Labirinto 7 
Immense Journey 86 
India 345, 348 
Infinity 346 
Infinte spaces 249 
Ink-splattered scores 202 
Insect sculpture 323 
Interstellar art 107 
Invention, lists 157 
IQ viii 
Irrational numbers 250 

Jaffee, D. 151 
Jaffe, D. viii, 250 
James, R. 95 
Japanese 309 
Jordan curves 45 

Kaleidoscopes 23, 31 
Karelitz, J. 26 
Karinthi, P. 199, 205 
Kim, C.-J. 309 
King, S. 185 
Klein bottle 237 
Knight magic square 66 
Knights in Hell 321 
Koch curve 12 

Laburnum 21 
Labyrinth fish 17 
Labyrinth parasites 17 
Labyrinthistis 21 
Labyrinthodontia 17 
Labyrinths 17 

See also Mazes 
Labyrinthula 21 
Languages 137 
Latin squares 63 
Lattice cages 242 
Lattice designs 6, 7, 8 
Latvian music 205 
Lava Lamps 109 
Light pipes 305 
Likeness sequence 35 
Limit cycle 33 
Lists, Goddard 157 
Louis XIV 16 
Lundin curves 103 

Magic square 66 
Malinowski, S. 205 
Mandalas 97 
Mandelbrot set 11 

Cornfields 93 
Dimension 94 
Mazes 11 
Spider fractals 87 

Mandelbrot, B. 10, 87, 103 
Marbles 233 
Markovsky, G. 361 
Mathematical formulas 145 
Mathematical knowledge 148 
Matrices, alternating sign 387 
Mazes 3-22 

After Dark 17 
British 8 
Butterfly 19 
Chinese lattice 9 
Church 4, 13 
Computer 7 ,9 
da Vinci 14 
Diagonal 15 
Discus Thrower 20 
Egyptian 6 
Fractal 10 
Hampton Court 16 
Henry VIII 16 
Hilbert curve 12 
Italian 7 
Jordan curves 45 
Koch curve 12 
Laburnum 21 
Labyrinth fish 17 
Labyrinth parasites 17 
Labyrinthistis 21 
Labyrinthula 21 
Largest 6 
Louis XIV 16 
Mandelbrot set 11 
Minoan 4 
Mobius 3, 21 
Movies 5 
New Harmony 16 
Octagonal 4 
Stairway 3, 21 
Tamil women 16 
Text 13 
The Ultimate Maze Book 13 
Truchet 14, 17 
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McCarty, K. 126 
McMillan, T. 96 
Mean free path 332 
Merck 166 
Messages in genes 161 
Microgrippers 309 
Microscapes 365 
Minotaur 4 
Minsky, M. 201,203 
Mobius maze 21 
Moore neighborhood 113 
Morse-Thue sequence 71 
Mountain climbing 367 
Mouths 209 
Mozart numbers 206 
Mueller, R. ix, 145, 221 
Multifractals 175 
Mummies, Greenland 139 
Munakata, N. 214 
Music 191-222 

Animation machine 205 
Bach's violin 219 
Chess 204 
Christmas 199 
Genes 211 
Hailstone 203 
Ink-splattered 202 
Instrument range 194 
Latvian 205 
Mozart numbers 206 
Painting 199,205 
Patents 207 
Pigeon 203 
Pink 200 
Random 202 
Score representation 198 
Skyline 203 
Spheres 207 
Sumerian tablets 207 
3n + 1 203 

Music Notation Association 206 
Musical Americans 197 
Musical instruments 197 
Mutcer, D. 191,253 

NASA 152 
Near-Death Experiences 167 
Nicaragua stamps 145 
Noah's Ark 399 
Nomads 299 
Number sequences 349 

Ohno, S. 191,211 
OMNI viii 
Oos 253 
Organ waiting lists 125 

Painting, music 199, 205 
Pallas, J. 393 
Panama Canal 178 
Pappas, T. 235 
Parasite numbers 395 
Parasites 398 
Patents, music 207 
Paulos, J. 161,349,379,399 
Pears 97 
Penrose, R. ix 
Persian proverb x 
Persian script 414 
Peterson, I. 94 
Peterson, M. 90 
Phi 361 
Phidias 361 
Photography 44 
Photomicrographs 365 
Pi magic square 67 
Picasso, P. 169 
Pigeon music 203 
Pink random music 200 
Pipes 305 
Pizza, robots 296 
Pi, aliens 151 
Pi, genes 161 
Plagarism 411 
Pokorny fractals 87 
Polaroid Corporation 43 
Poltz, H. 177 
Pong Hau K'i 143 
Procter & Gamble 338 
Product listing 408 
Pullen, W. 7 
Pulsating Pumpkins 69 
Pyramids of blood 399 

Randi, J. ix 
Random Music 202 
Random walks 134, 173 
Rational numbers 346 
Robbins numbers 385 
Robot checkers player 293 
Robot surgeons 296 
Robots, pizza 296 
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Rosenberg, E. 335 
Rudd, J. 69 
Rudolph, L. 413 
Russell, B. 183 
Russo, D. 13,15,16 

Sagan, C. 166,185 
Sams, G. 93 
Schemas 221 
Schulze, M. 85 
Science-fiction 253 
Screen saver 17 
Sculpture 69, 85, 97, 323, 339, 393 
Sculpture Magazine 410 
Scultpure 239 
Self-similarity 10, 103 
Seventy-five words 56 
Sexuality 383 
Shadow-matter 237 
Shepard, R. 40 
Shirriff, K. 375 
Shishikura, M. 94 
Shruludidi spheres 331 
Siamese fighting fish 63 
Sierpinski gasket 80,174 
Sim Ant 176 
sin(x)/x 103 
Skulls 281 
Skyline music 203 
Slugs 45 
Smithson, M. 35 
Snowflake curve 12 
Snowflakes 95, 305 
Solutions 419 
s'Soreff, S. 107 
Space 225-267 
Sparticles 235 
Sperm 142 
Spider blood 400 
Spider fractals 87 
Spiders 410 
Spirals 177,180 
Square-roots 250 
Stairway maze 21 
Stamps, Nicaragua 145 
Stelarc 187 
Stomach, objects in 244 
Store, chaos 93 

Strange Attractions store 
Strange attractors 33 
Strange series 367 
Sumerian tablets 207 
Superstrings 234 
Swelled heads 393 
Symmetry 26,31 
Sz'wa 155 

Taghizadeh, J. 414 
Tamil women 16 
Tarsier 161 
Technology 293-319 
Teleidoscopes 26 
Temple Emanu-El 231 
Terrible Twos problem : 
Time 271-290 
Time in a bottle 271 
Time machines 287 
Toilet paper 177, 179 
Topology 45 
Triangle puzzles 241 
Truchet mazes 14 
Truchet tiles 14 
Tunnels at death 167 
Tunnels for drugs 130 

U-numbers 357 
Ulam, S. 357 
Usenet 355 

Virtual reality 299 
Visible Human Project 1 
Voss, R. 200 

Wafers 130 
Wegner, T. 90 
Witten, E. 234 
Woolworth building 349 
Word lists 183 

Xi notation 390 

Zeno 249 
Zenograms 249 

1597 problem 341 
666 338 
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