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Science is not about control. 
It is about cultivating a perpetual 
condition of wonder in the face 
of something that forever grows 

one step richer and subtler 
than our latest theory about it. 

It is about reverence, not mastery. 

•Richard Powers, The Gold Bug Variations 





Preface 

We live on a placid island of ignorance in the midst of black seas of 
infinity, and it is not meant that we should voyage far. 

— H. P. Lovecraft 

The heavens call to you, and circle about you, displaying to you their 
eternal splendors, and your eye gazes only to earth. 

— Dante 

I could be bounded in a nutshell, and count myself a king of infinite space. 

— Hamlet 

I think we become interested in the concept of infinity early in childhood. Perhaps 
our initial fascination starts when we hear about large numbers, or outer space, or 
death, or eternity, or God. When I was a boy, I often visited my father's library to ex-
amine his large collection of old books. The one that stimulated my early thoughts 
about infinity was not a mathematics book, nor a book on philosophy, nor one on re-
ligion. It was a history book published in 1921 titled The Story of Mankind. In the 
book, Hendrik Willem Van Loon starts with a little parable next to a sketch of a 
mountain: 

High up in the North in the land called Svithjod, there stands a rock. It is a hundred miles 
high and a hundred miles wide. Once every thousand years a little bird comes to the rock 
to sharpen its beak. When the rock has thus been worn away, then a single day of eternity 
will have gone by. 

This idea of eternity—a temporal infinity—is enough to start any child wondering 
about the inexhaustible fabric of numbers, space, and time. 

A few years later, I wandered through my father's library and was rewarded 
with another book by Van Loon titled The Arts, published in 1937.1 pulled the dusty 
book from the shelf and was delighted to find the following philosophical gem, a 
conversation between a student and a wise, old teacher: 

xiii 
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"Master, will you not tell us what the highest purpose may be to which mortal man may 
aspire?" 

A strange light now came into the eyes of Lao-Kung as he lifted himself from his 
seat. His trembling feet carried him across the room to the spot where stood the one pic-
ture that he loved best. It was a blade of grass, for within itself it contained the spirit of 
every blade of grass that had ever grown since the beginning of time. 

"There," the old man said, "is my answer. I have made myself equal of the Gods, for 
I too have touched the hem of Eternity." 

Lao-Kung, like many of the ancient philosophers and writers, considered the concept 
of God to be intimately intertwined with the infinite. For example, facing this Pref-
ace is a view of Heaven from Dante's Divine Comedy showing the numbers of an-
gels increasing to infinity the higher one ascends. St. Augustine believed not only 
that God was infinite, but also that God could think infinite thoughts. According to 
Augustine, God "knows all numbers." Augustine's works, along with the simple Van 
Loon quotations, provided a seed in childhood from which my interest in infinity 
and large numbers grew, and in particular provided an early stimulus for Keys to In-
finity. 

Infinite Worlds 
The trouble with integers is that we have examined only the small ones. 
Maybe all the exciting stuff happens at really big numbers, ones we can't 
even begin to think about in any very definite way. Our brains have 
evolved to get us out of the rain, find where the berries are, and keep us 
from getting killed. Our brains did not evolve to help us grasp really large 
numbers or to look at things in a hundred thousand dimensions. 
— Ronald Graham 

Prepare yourself for a strange journey as Keys to Infinity unlocks the doors of your 
imagination with thought-provoking mysteries, puzzles, and problems on topics 
ranging from huge numbers to life itself. Each chapter is a world of paradox and 
mystery. 

My favorite chapter, "Welcome to Worm World," describes the evolution of 
huge worms on checkerboard worlds. Readers of all ages can study the behavior of 
these worms with just a pencil and paper. (Growing international interest in this 
topic has led to a recent short publication in Discover magazine.) In "Welcome to 
Worm World" you'll be among the first to learn about the Internet Superhighway 
Worm World Tournament, in which researchers around the world competed to find 
the longest evolving worms. How does the worms' behavior change as Worm World 
grows to the size of our universe? 

Consider each chapter a launchpad for thinking and experimenting. In "Ladders 
to Heaven" you are asked to imagine what it would be like to climb an incredibly 
long ladder stretching from the Earth to the moon. You can use only ropes and other 
mountain-climbing gear. Impossible, you say? Read further and find out what scien-
tists have to say about such a gargantuan task. 
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In "The Leviathan Number" you'll learn about a monstrous number so large as 
to make the number of electrons, protons, and neutrons in the universe pale in com-
parison. (It also makes a googol—1 followed by 100 zeros—look kind of small.) 
You'll learn about large numbers beyond the ability of humans to grasp or compute, 
apocalyptic numbers, superfactorial functions, apocalyptic powers . . . . What can 
we know about numbers too large to compute or imagine? 

In "Fractal Milkshakes and Infinite Archery" you'll learn about a bubbly froth 
lurking in the fabric of our number system. The foam is comprised of an infinite re-
gression of circles known as Ford circles. (A graphical representation of the froth is 
placed on page ix to whet your appetite.) 

In "Slides in Hell" you'll be asked to descend immense porous slides with zany 
mathematical properties. Want to gamble from which hole in the slide you'll fall? 
Have you ever dreamed of playing God, simulating life, or preventing cancer? Then 
the chapter "Creating Life Using the Cancer Game" is for you. Want to fly through 
immense grids of dots—as big as the universe—with startling properties? Then take 
a look at "Grid of the Gods." Hop aboard a flying saucer stealing humans from 
Earth, and compute the sex of the one-billionth abductee in "Alien Abduction Alge-
bra." 

Keys to Infinity is for anyone who has pondered the immensity of numbers, 
dreamed of daring challenges, and wondered about the infinitely small. I hope Keys 
to Infinity will stimulate creative thinking; enhance computer programming skills; 
and suggest the usefulness of simple mathematics for solving curious, practical, or 
mind-shattering problems. BASIC and C source programs are included for those of 
you who own computers. Some of the larger programs are gathered together in Ap-
pendix 2. 

My Keys 
I looked round the trees. The thin net of reality. These trees, this sun. I was 
infinitely far from home. The profoundest distances are never 
geographical. — John Fowles 

To help you on your journey, I offer various keys: 

1. Essays on all the previously mentioned topics and more, everything from vam-
pire numbers to the loom of creation. 

2. Puzzles, such as the fiendishly difficult cyclotron puzzle, with hints to remind 
you there are often more ways of looking at the world than are immediately ob-
vious. 

3. Quotations from novelists, philosophers, and famous scientists. 
4. Program codes, so you can experiment further using personal computers as an 

aid to your pencil-and-paper explorations. 
5. Fractal and other images of infinity to stimulate your imagination. (Fractals are 

intricately shaped objects that reveal infinite detail as they are continually mag-
nified.) 
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Some topics in the book may appear to be curiosities, with little practical appli-
cation or purpose. However, I have found all these experiments to be useful and edu-
cational, as have the many students, educators, and scientists who have written to me 
during the past few years. It is also important to keep in mind that throughout his-
tory, experiments, ideas, and conclusions originating in the play of the mind have 
found striking and unexpected practical applications. I urge you to explore all the 
topics in this book with this principle in mind. 

As in all my previous books, you are encouraged to pick and choose from the 
smorgasbord of topics. Many chapters are brief and give you just a flavor of an ap-
plication or method. Often, additional information can be found in the referenced 
publications. To encourage your involvement, computational hints and recipes for 
producing some of the computer-drawn figures are provided. For many of you, see-
ing pseudocode will clarify concepts in ways mere words cannot. 

I have created all the compter graphics images in Keys to Infinity and have pro-
vided a brief description of the color plates. The book chapters are arranged some-
what randomly to retain the playful spirit of the book, and to give you unexpected 
pleasures. Some of the more technical chapters are placed at the end. Throughout the 
book are suggested exercises for future experiments and thought, as well as directed 
reading lists. Some information is repeated so each chapter contains sufficient back-
ground information, and you may therefore skip chapters. The basic philosophy of 
this book is that creative thinking is learned by experimenting. 

Perhaps I should say what this book is not about. It does not contain the standard 
number-crunching problems found in scientific texts—most often these do not 
stimulate creativity, nor do they have artistic appeal. Also, the problems and topics in 
this book are not of a "linear" variety, where variables are fed into an equation and a 
succinct answer is returned. In fact, many of the exercises are of the "stop-and-
think" variety and can be explored without using a computer. 

The book is not intended for mathematicians looking for a formal mathematical 
treatise. Various books in the past have given fascinating accounts of infinity in 
mathematics, culture, and art. Eli Maors's To Infinity and Beyond and Rudy Rucker's 
Infinity and the Mind describe the history of number theory and various ideas con-
nected to the concept of infinity. Their topics include number series, prime and irra-
tional numbers, Cantor sets, and non-Euclidean geometries. They also discuss infin-
ity in the Kabbalist and Christian concepts of God, as well as astronomers' evolving 
concepts of the size and structure of the universe. Two other useful books are Stan 
Gibilisco's Reaching for Infinity and Ray Hemmings's and Dick Tahta's Images of 
Infinity. These books, and others, are included in Further Reading at the end of this 
book. 

As there have been so many excellent books on the subject of infinity, Keys to 
Infinity is intended to provide unusual views on the way the human mind makes 
sense of the world through the use of computer tools, games, puzzles, numbers, and 
mathematical relations. Many chapters touch on the concept of infinity directly, 
whereas others are meant to stimulate readers' minds in a more general sense regard-
ing the unlimited extent of time, space, or quantity. I leave more direct discussions of 
infinity in number theory and culture to my predecessors. 
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Anti-omniscience 
The universe is not only stranger than we imagine, it's stranger than we 
can imagine. — Arthur C. Clarke 

Keys to Infinity emphasizes creativity, fun, and expansion of the mind. For most 
chapters, no specialized knowledge is required. As I just mentioned, even though 
many chapters contain mathematical ideas and computer programming hints, almost 
all problems are of the "stop-and-think" variety that do not require programming or 
sophisticated mathematics to allow you to explore and imagine. 

Many questions I pose in the book are unanswered. Some may be unanswer-
able. As Stanford psychologist Roger Shepard recently noted at a Sante Fe Institute 
workshop on the limits of scientific knowledge, even if our computers and mathe-
matical tools continue to improve, we may not understand the world any better. He 
says, "We may be headed toward a situation where knowledge is too complicated to 
understand." As Princeton astrophysicist Piet Hut has pointed out, the structure of 
the physical universe may represent the ultimate limit on human knowledge. John 
Horgan (Scientific American) believes that particle physicists may never be able to 
test theories that unify gravity and the other forces of nature because the predicted 
effects become apparent beyond the range of any conceivable experiment. 

Finally, Ralph Gomory, a former director of research at IBM, and who is now 
president of the Alfred P. Sloan Foundation in New York City, believes our educa-
tional system does not place enough emphasis on what is unknown or even unknow-
able. To solve this problem, the Sloan Foundation may start a program on the limits 
of knowledge. It is hoped that Keys to Infinity will stimulate students in thinking 
about both the unknown and the unknowable. 

The Electronic Smorgasbord 
There was from the very beginning no need for a struggle between the 
finite and infinite. The peace we are so eagerly seeking has been there all 
the time. — D.T. Suzuki 

In many chapters of Keys to Infinity I quote colleagues from around the world who 
have responded to my questions, and I thank them for permission to reproduce ex-
cerpts from their comments. My questions were sent through electronic mail and 
often posted to electronic bulletin boards. Two common sources for such informa-
tion exchange were "rec.puzzles" and "sci.math," which are electronic bulletin 
boards (or "newsgroups") that are part of a large, worldwide network of intercon-
nected computers called Usenet. (The computers exchange news articles with each 
other on a voluntary basis.)1 

Some define Usenet as the set of people (not computers) who exchange puzzles, 
tips, and news articles tagged with one or more universally recognized labels signi-
fying a particular "newsgroup." There are thousands of newsgroups on topics rang-
ing from bicycles to physics to music. Usenet started out at Duke University around 
1980 as a small network of UNIX machines. Today there is no UNIX limitation, and 
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there are versions of the news-exchange programs that run on computers ranging 
from DOS PCs to mainframes. Most Usenet sites are at universities, research labs, or 
other academic and commercial institutions. The largest concentrations of Usenet 
sites outside the United States seem to be in Canada, Europe, Australia, and Japan.2 
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C H A P T E R 

Euler strode up to Diderot and proclaimed: "Monsieur, (a + b")/n = X, 
done Dieu existel" ("Sir (a + b")/n = X, therefore God exists!") 

— Michael Guillen, Bridges to Infinity 

Proof is an idol before which the mathematician tortures himself. 

— Sir Arthur Eddington 



Too Many Threes 

How many numbers contain the digit 3? This sounds like a simple enough question. 
However, when I first innocently posed this question to colleagues, some nearly 
fainted when they heard the correct answer. Others, upon hearing the answer, finally 
realized that a degree in philosophy would be quite valuable in their daily lives—be-
cause the thin fabric of reality began to tear just a bit. 

Because the answer is quite mind-boggling, some have recommended that it be 
presented only to those over the age of 18. How many numbers contain the digit 3? 
The answer is: virtually all of them. 

The best way to solve this problem is to actually do it for yourself. Let's start by 
examining the first ten numbers. In the first ten numbers, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
there is only one number that contains the digit 3. This means that 1/10, or 10 per-
cent, of the numbers have the number 3, when considering the first ten numbers. In 
the first 100 numbers the occurrence of numbers with at least one 3 seems to be 
growing. In fact there are 19 such numbers: 

3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 30, 31, 32, 34, 35, 36, 37, 38, and 39 

This means 19 percent of the digits contain the number 3 in the first 100 numbers. 
We can make a table showing the percentage of numbers with at least one 3 for 

the first x numbers: 

x Percentage of Occurrence 

10 10 
100 19 
1000 27 
10000 34 

It is astonishing to most people that the percentages rapidly increase to a mind-
numbing 100 percent, indicating that almost all numbers have a 3 in them! In fact, a 
formula describing the proportion of 3s can be written: 

1 - ( 9 / 1 0 ) " 

The proportion gets very close to 1 as n (the number of digits in a number) increases. 
I can hear some of you screaming, "How can it be that almost all the numbers 

have a 3 in them?" Brian Kendig from San Fransisco, California, wrote to me: "A 

3 
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three in every number? Preposterous!" Joan Bacurio from Ohio said, "If all numbers 
have a three in them, I'll eat my hat." 

First of all, it's true: Most numbers have a 3 in them. Why? As the numbers get 
larger, they contain more digits, increasing the probability that one of the digits 
might be a 3. In fact, the probability that a 3 will not appear in a very long number is 
very low. 

Note that the probability that a random sequence of n digits does not contain a 3 
is 0.9". (I'll explain this later.) As n goes to infinity this probability goes to zero. Seth 
Breidbart of New York notes, "Since almost all numbers have a lot of digits (there 
are only a finite number of integers with less than n digits, and infinitely many with 
greater than n) the limiting probability is 0." 

Interestingly, the percentages I show for the first few numbers with at least one 
3 also hold for other digits. Given a number with enough digits, there is essentially a 
100 percent chance of all digits 0 -9 appearing in that number. As a number grows in 
value, the number of digits in the number also increases. As the number approaches 
infinity, the number of digits in the number approaches infinity (at a slower rate). As 
the number of digits approaches infinity, the likelihood of any specific digit appear-
ing at least once approaches 100 percent. 

Dan Shoham from Massachusetts Institute of Technology notes that the se-
quences 15, 172, and 666 (and any other finite sequence) are also contained (in or-
der) within almost all numbers, for similar reasons. John Torrey from North Carolina 
notes that the probability of a number having exactly one 3 is virtually zero for large 
enough numbers. 

Finally, K. Alagarsamy from the Indian Institute of Science constructed the fol-
lowing table that emphasizes the intriguing concept that the number of numbers that 
contain 3, and the number of numbers that do not contain 3, both reach infinity as 
one scans larger and larger numbers. 

The Number of Numbers The Number of Numbers 
That Contain That Do Not Contain 

The First n Numbers the Digit 3 a(«) the Digit 3 b(n ) 

10 1 9 
100 19 81 
1000 271 729 

Both the sequences a(n) and b(n) are increasing and will reach infinity as n reaches 
infinity. 
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Try It Yourself 
Mathematicians are looking at life with a most trenchant sense—one that 
perceives things the other five senses cannot.— Michael Guillen, Bridges 
to Infinity 

The C and BASIC programs given in Appendix 1 for this chapter allow you to com-
pute the proportion of numbers, with and without the digit 3, as more numbers are 
considered. The programs make use of the formula 1 - (9/10)" as presented earlier 
in this chapter. Here, n is the number of digits in a number. Table 1.1 lists these pro-
portions for several examples. (See also Figure 1.1.) 

TABLE 1.1. Proportion of Numbers without and with the Digit 3 

D* No 3s Some 3s 

0 1.000000 0.000000 
1 0.900000 0.100000 
2 0.810000 0.190000 
3 0.729000 0.271000 
4 0.656100 0.343900 
5 0.590490 0.409510 
6 0.531441 0.468559 
7 0.478297 0.521703 
8 0.430467 0.569533 
9 0.387420 0.612580 
10 0.348678 0.651322 
11 0.313811 0.686189 
12 0.282430 0.717570 
13 0.254187 0.745813 
14 0.228768 0.771232 
15 0.205891 0.794109 
16 0.185302 0.814698 
17 0.166772 0.833228 
18 0.150095 0.849905 
19 0.135085 0.864915 
20 0.121577 0.878423 

100 0.000027 0.999973 (googol) 

*D is the number of digits in the number. 
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1.0 

Proportion with a three 
2 0 8 

Q 
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Proportion with no threes 

0.0 
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Number of Digits 

FIGURE 1.1. The proportion of numbers with and without the digit 3. 

Bob Stong from Virginia suggests we create a more interesting program that 
searches through the integers to find the first place at which the number of numbers 
containing a digit 3 exceeds the number of those without a 3 . 1 challenge readers to 
create a program to solve this mystery. 

The formula for computing these proportions is best understood as follows. The 
probability of having a 3 as a digit in a one-digit number is 1/10 and of not having a 
3 is 9/10. For a two-digit number, the probability of not having a 3 as the first digit or 
the second digit (that is, there are no 3s in the two-digit number) is simply the prod-
uct of not having a 3 for the first digit multiplied by not having a 3 for the second 
digit: (9 /10) x (9/10) = 81/100 = 0.81. The probability of having a digit 3 is 1 — 
0.81. For a three-digit number we have (9 /10) x (9/10) x (9/10) = 729/1,000 
= 0.729, and so forth. For an rc-digit number we therefore have the probability of not 
having any 3s: (9/10)". 

The Search for Super-3 Numbers 
Three is the most special of all numbers. I know it's a pretty bold statement, but con-
sider the following. Three is the only natural number that is the sum of all preceding 
numbers. It is the only number that is the sum of all the factorials of the preceding 
numbers: 3 = 1! + 2!. In religion, three reigns supreme. In ancient Babylonia there 
were three main gods: the Sun, Moon, and Venus. In Egypt there were three main 
gods: Horus, Osiris, and Isis. In Rome there were three main gods: Jupiter, Mars, and 
Quirinus. For Christians, three symbolizes the Holy Trinity: Father, Son, and Holy 
Spirit. In classical literature, there were three Fates, three Graces, and three Furies. 
In languages, there are three genders (masculine, feminine, and neutral) and three 
degrees of comparison (positive, comparative, and superlative.) 
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Note that German Chancellor Otto von Bismarck signed three peace treaties, 
served under three emperors, waged three wars, owned three estates, and had three 
children. He also organized the union of three countries. His family crest bore the 
motto in trinitate fortitudo ("In trinity, strength"). There is a German saying, A lie 
giite Dinge sind Drei ("All good things come in threes"). 

"Super-3" numbers are integers i such that, when raised to the power of 3 and 
then multiplied by 3, contain three consecutive 3s. When I first mentioned super-3 
numbers of the form 3r \ they existed only in the realm of the mind, as no one had 
actually discovered such a number. Since then, Walter Pachl from Vienna, Austria, 
discovered the first super-3. It is 261, because 3 x 2613 = 53,338,743. Are there oth-
ers? Are they distributed randomly through the integers, or is there some sort of pat-
tern? Walter Pachl used the following REXX program to find what is believed to be 
the smallest super-3 number, 261: 

/ * * / 

Parse Arg a 

If a-'' Then a-1 

Numeric Digits 1000000 

Do I - a By 1 

x - 3*(1**3) 

If i//10—0 Then Say i length(x) 

If pos('333',x) > 0 Then Do 

Say 'I found one: i-'i 

Call lineout 'super3.res',i x 

End 

As this book goes to press, Arlin Anderson from Alabama has become the 
world's most proficient super-3 hunter. He has discovered, for example, that 
3 X 4713 = 313,461,333, and he believes that every number ending in the digits 471, 
4710, or 47100 is a super-3. For example, he also discovered that 3 x l , 4 7 1 3 = 
9,549,030,333. 

What's special about the years 1923, 1926, and 1968? It turns out that these are 
all super-3 years because they are super-3 numbers. Will humanity pass through an-
other super-3 year in your lifetime? 

Regarding the presence of super-3s in our number system, Arlin Anderson 
notes: 

Numbers larger than 10500, when cubed, have at least 1,500 digits, with a high prob-
ability of 333 occurring somewhere in their string of digits. Therefore, almost all num-
bers greater than 10 will be super-3 numbers. (There will, however, be an infinite 
number of exceptions, of course! For instance, 1, 10, 100, 1,000, 10,000, . . . are never 
super-3 numbers.) 

Finally, is the following statement true or false? "There is an infinity of numbers 
that do not contain the digit 3." Does this conflict with the statement, "Almost all 
numbers contain the digit 3"? 





Ladders to Heaven 

That's the problem with eternity, there's no telling when it will end. 

— Tom Stoppard, Rosencrantz and Guildenstern Are Dead 

Imagine what it would be like to try to climb an incredibly long ladder stretching 
from the Earth to the moon. Impossible, you say? Read on to learn more about a re-
cent question I posed to a number of scientists, engineers, and computer program-
mers. For those of you who like to program computers, Appendix 1 contains some 
BASIC and C code to carry out similar (safer) experiments in the privacy of your 
own home. For those who prefer to philosophize without a computer, there is ample 
material here for lively debate and group discussion. 

Consider the following scenario. A standard ladder stretches from each country 
on the Earth upward a distance equal to the distance from the Earth to the moon. I 
asked scientists to assume the following: 

1. The ladder is made of a strong metal, such as titanium, that will not break. 
2. The ladder is inclined at a very steep angle, 70 degrees, for each country. 
3. There is a breathable atmosphere. 
4. The people (or teams of people) are allowed to use standard mountain climbing 

and camping gear (such as ropes and backpacks) but not sophisticated electrical 
mechanisms such as engines. 

5. A $1 million reward is given to whomever reaches the top of the ladder first. In 
addition, the country that reaches the top first has its national debt wiped out. 

Next, I posed a list of questions to ponder: 

1. Approximately what length of time would be required for a person (or team of 
people) to reach the top of the ladder: Days? Weeks? Years? 

2. Which country would be the first? 
3. Is there any novel method you would suggest to reach the top of the ladder? 
4. Is this task impossible to carry out? 

Before describing some slightly crazy, yet ingenious, mechanisms for carrying 
out this task, I 'd like to mention a few observations people made. For example, some 
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FIGURE 2.1. Will any humans actually see a view like this from the ladder to the moon, 
or would it be impossible to travel the necessary distance? 

said it was not clear whether the moon (Figure 2.1) were in the proposed scenario or 
whether the Earth were assumed to be alone in the universe for the sake of simplic-
ity. Spyros Potamianos of Hewlett-Packard was the first to suggest using the moon's 
gravitational field to "fall upward" once one had reached the point where the moon's 
gravity is greater than the Earth's. He also asked whether the climbers must survive 
the fall, or whether simply having a dead explorer reach the top of the ladder is suffi-
cient for a country to win the prize. 

Ken Arromdee from Johns Hopkins University suggested that the country that 
gets to the top fastest would be the one closest to the Earth's equator, where the cen-
trifugal force is the greatest. Others noted that countries with a large national debt 
have extra motivation. 

Life on Ladder World 
This section includes a variety of suggestions from colleagues. How many of these 
ideas do you think would work? 

Kenneth Tolman from the University of Utah believed that a million dollars was 
not a significant incentive for climbing a ladder 3.5 x 108 meters long. He noted that, 
for best results, there would be a large crew, some leading and some providing sup-
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port, food, and other necessities. Ropes could be arranged in a pulley system. At the 
ends of each pulley, people would attach and detach packages. Waste packages 
would be sent down from above by attaching them to the top of a particular rope pul-
ley system. At the same time, a new package would be attached at the bottom. The 
person running the pulley would compensate for any slight difference in the weight 
by pulling the presumably slightly heavier new packages upward. A possible prob-
lem with this scenario is that the strength of ropes or cables may be insufficient. In 
addition, the friction of the system will be very large. 

Kenneth estimated that a person in good physical condition could climb 10,000 
feet in a day. (He personally has climbed this distance in a single day while explor-
ing the Grand Canyon.) Kenneth also assumed that a professional climber would be 
three times as good as he, and therefore can travel 10,000 meters a day. This requires 
3.4 x 104 days for the job, or at least 93 years. Kenneth said, "We will have to have 
teams trade off, because the first teams will be dead by the time they get to the top. 
Pregnant women will have to climb along, too, to provide new climbers." 

The task of providing food and supplies is not trivial, and Kenneth considered 
this to be the major bottleneck in the operation. He calculated that if one person were 
positioned every 10 kilometers, this still required a support-staff population of 
30,000 to feed. The support staff could be drastically reduced by allowing air sup-
port to provide food. People might grow food on different levels in communities that 
then could function to pass food and needed supplies upward. 

The task of feeding 30,000 people distributed at 10-kilometer intervals over a 
thin ladder is difficult to imagine. There obviously would be a major distribution 
problem. If each person ate only 0.06 pounds in a day, a ton of food would have to 
be passed upward each day. However, it would be impossible for a single human to 
move a ton of food 10 kilometers upward in a single day. Kenneth therefore con-
cluded that the task requires communities living at different heights, collecting rain 
water and growing their own food. However, he strongly believed that the task 
would never be undertaken, even with the rewards mentioned, "unless it were a 
command from God." 

Matt Crawford also suggested some ingenious ways for completing the long 
journey. He would make use of a bicycle-like vehicle clamped to the ladder. By pull-
ing a light, strong rope on a pulley, riders could be changed fairly quickly if they 
made use of a "crew of brawny pulley-pullers." Variable-geared linkage to the rope 
would help. Matt noted, "It seems impossible for the rider to pull this ever-longer 
rope, but I think shorter segments could be lifted and linked. Or the ground crew 
could help the rider by pulling down rope from a hub of lesser diameter than the 
wheels of the vehicle." 

Matt did not believe the task is impossible to carry out. He first thought it might 
be impossible to stop the movement of the vehicle at the far end of the ladder and re-
turn, due to centrifugal acceleration, but that acceleration turns out to be only about 
5 cm/s2. 

How do we get food to the people? Matt suggested the riders change so often 
that they only need high-carbohydrate snacks and several quarts of fluid. "I think the 
brawny ground crew could pull up the next rider (with supplies and another pulley 
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and segment of rope) at an acceleration of 0.5 g or better." This would require less 
than 90 minutes for each shift-change up to the synchronous orbit level. Again, fric-
tional forces may pose the greatest problem to actually implementing this. 

Montgomery Graf from the Island Graphics Corporation suggested that one 
would be able to fashion a hot air balloon given condition 4. Also, given condition 3, 
the hot air balloon would be able to cover the entire distance. One would then only 
need to attach a sliding hookup between the ladder and the balloon, and wait. 

Jeff Woods from CompuTrac, Inc. (Texas), suggested human or animal power to 
hoist a human using one big pulley at the end of the ladder, but there would be the 
problem of how to first position the pulley at the end of the ladder. He next sug-
gested having a string of people cooperating to push each other along with some 
mechanism that could increase the distance between people as they went. For exam-
ple, climbers could push a jack on the ladder, then lift it to insert another jack, and 
repeat the process while each jack is being extended. In this way, the leading edge 
would accelerate constantly to the end of the ladder. 

Jeff considered the bicycle idea (mentioned previously) to be the best idea if it 
could be combined with a gear system. Instead of a rider pedaling and requiring a 
massive support team trying to feed itself and the rider, Jeff suggested using a vehi-
cle powered by a gear with a diameter smaller than the wheels. The cable is pulled 
from the ground by "lots of humans being paid at minimum wage." The vehicle is 
propelled with no increase of mass on the ladder. The only increase would be in the 
cable itself. He says, "Nonperishable supplies could be attached to the cable being 
fed out. Hopefully, the vehicle and cables won't wear out." Could humans build a 
sufficiently strong cable? 

Tom Rankin of Poughkeepsie said, "If my calculations are correct, the end of 
the ladder would be hurtling through space at about 60,000 miles per hour with re-
spect to the moon." (This is a typical speed for meteors traveling through space.) De-
pending on the arrangement of ladders in the scenario, this might mean that a person 
(or the ladder) would crash violently into the moon, making quite a large crater. Of 
course, people on the ladder would not feel the rotational movement of the ladder if 
the atmosphere in which they operated rotated with the Earth. Similarly, we don't 
currently feel the rush of the Earth around its axis at about 700 miles per hour. 

Dr. J. Clint Sprott, a physics professor at the University of Wisconsin, wondered 
whether a lone individual had any hope of climbing such a ladder. He says: 

If I can climb a 10,000-foot mountain in a day, my average power output is sufficient to 
overcome the gravitational potential of the Earth in about six years. Since I couldn't carry 
more than a tiny fraction of the provisions for such a journey, I concluded that it was im-
possible to escape without help. The atmosphere, and its accompanying wind resistance, 
would also be a major detriment since I would want to put most of my power output into 
kinetic rather than potential energy during the intermediate stages to cover the distance in 
only six years. To get to the moon in six years, I'd have to average almost five miles an 
hour. 

Finally, Arlin Anderson from Alabama suggests that we build X-shaped ma-
chines with a wheel on each tip. Each wheel is ratcheted so it cannot roll backward. 
The bars of the X can slide against one another so the rider uses a natural climbing or 
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sliding motion to run the machine. At distances greater than 3,000 km, gravity will 
be less than a half-g, so the rider can give a big "kick" and coast for a few seconds. 
(His last push will be at about 37,000 km. At this point he might expire, but his dead 
carcass would reach the moon, and he could therefore win the prize.) 

Arlin believes it would be reasonable to assume an average speed of 130 
km/day. If possible, he suggests making the air cold so the rider does not sweat. In 
addition, he suggests that a giant, flat water bottle with a small food cylinder be 
mounted along the main axis of the X. The food and water system would weigh 
about 50 lbs. and would offer sustenance for two weeks. Helpers would push food 
up the ladder and use a similar X-shaped go-cart. All the carts would be hooked to-
gether, and whenever the food and water in a cart were not sufficient, the person be-
hind the depleted rider would pump food and water up through tubes to the rider. Af-
ter the first day, the helpers in back are already feeling hungry and thirsty because 
they have pumped about half their load forward. However, their lighter load makes 
their job easier, and they continue to ascend. After a week, the last quarter of the 
train is falling back to Earth, the next quarter is now on half-load, and the front half 
is still happy. After the second week, the second quarter drops out and the third quar-
ter is on half-load. After the third week, the third quarter drops out, but the fourth is 
still loaded. In three more weeks, the cycle is repeated, and the train will be one-six-
teenth as long as when it started. After 18 weeks, it will be 4,095/4,096 as long. 
What is left (one cart, one rider) is fully loaded! This is made possible because the 
rider had 4,095 helpers. Because the rider will not be hungry when he hits geosyn-
chronicity, it is likely that slightly fewer than 4,095 friends would be necessary, "un-
less we demand he be alive when he splats the moon." 

Insight from Computer Programs 
BASIC and C code are provided in Appendix 1 so you can compute the weight of a 
human as he or she ascends the ladder. This gives rise to many unexpected insights, 
which I discuss shortly. In this scenario we assume the presence of both the moon 
and the Earth. 

The necessary equation to compute the ratio (W) of your weight (at a distance 
d{ from the center of the Earth) to your usual weight on Earth involves the masses of 
the Earth (Me) and moon (Mm) as well as the radius of the Earth: 

W= (Me/(d2) - Mm/(d2
2)) x {Rl)/Me 

Here, d2 is the distance of your body to the center of the moon. The lower curve in 
Figure 2.2 shows the ratio of your new weight to your normal weight as you ascend 
the ladder. Obviously, the ratio is close to one when your distance from Earth is 
small (left side of graph). (For simplicity, we are ignoring the fact that an Earth-at-
tached ladder also has centrifugal forces to consider.) 
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FIGURE 2.2. The ratio of your new weight to your normal weight as you ascend the lad-
der (bottom curve). The second curve from the bottom was computed using a hypothetical 
Earth with twice its usual mass. The next curve uses four times the mass; the next, six, and 
soon. 

Most people I 've queried intuitively thought that as a climber ascended, he or 
she would continue to gradually lose weight until some magical point between the 
Earth and the moon were reached, at which point the climber would be weightless, 
and then the climber would gain weight and start plunging into the moon. In reality, 
the weight-ratio function has a broad plateau at W ~ 0, which means that for the bulk 
of the trip, one would essentially be weightless (see lower curve in Figure 2.2). The 
effect of the moon is so tiny that only in the very, very end of the trip would the ef-
fect be measurable. This effect is indicated by the small negative blip at the right of 
the graph. (The curve goes negative because the explorer is now being pulled in an 
opposite direction.) On the moon, an explorer would weigh about one-sixth of what 
he or she does on the Earth. 

How would this curve change if the Earth were more massive than it really 
is? The other curves in Figure 2.2 indicate the effect of changing the mass of the 
Earth. The second curve from the bottom was computed using an Earth with twice its 
mass. The next curve uses four times the mass; the next, six; and so on. Even with an 
Earth 14 times its actual mass, the traveller would spend most of his or her time es-
sentially weightless. 

The Infinite Ladder 
Throughout this chapter, we have not considered whether or not such a ladder could 
be built. Most physicists and engineers suggested that the ladder would be impossi-
ble to build with current materials because the Earth's gravitational force would snap 
the ladder before it reached a height of 100 miles. Some engineers, such as Alrin An-
derson, suggested that the centrifugal force produced by the spinning Earth would 
weaken the ladder more than the force of gravity. To strengthen the ladder out in 
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space, Arlin suggests that the cross-sections of the ladder sides be doubled every 100 
or so miles for strength. One problem with this idea is that a 1 -inch-diameter ladder 
side would grow as large as Jupiter by the time the ladder were 23,000 miles high 
(the point where the Earth's centrifugal force balances gravity). In the future, 
stronger materials may make the ladder easier to build. 

Digressions 
Here are some additional questions for you to ponder. What would Figure 2.2 look 
like if the moon were replaced by the sun? You should be able to determine this us-
ing the program codes provided in Appendix 1. The necessary astronomical con-
stants are: 

1.98 x lO 3 0 Mass of sun (kg) 
696265 Radius of sun (m) 
1.49 x 1011 Mean Earth-to-sun distance (km) 

Would the journey be made more difficult with the gravitational effect of a third 
planetary body placed midway between the Earth and the moon? Where is the center 
of mass for the Earth-moon system? Arlin Anderson notes that the moon's mass is 
about 1/80 of the Earth's, and the moon is almost 240,000 miles away. Therefore, the 
center of mass of the Earth-moon system is 3,000 miles from the center of the Earth, 
or 1,000 miles below the Earth's surface! I am interested in hearing from readers 
with additional insight into how humans could efficiently climb the long ladder pos-
tulated in this problem. 

Finally, as this chapter goes to press, I 've come across the fascinating book 
What If the Moon Didn't Exist? Voyages to Earths That Might Have Been, by Neil 
Comins (HarperCollins, 1993). How would life on Earth be different today if the 
moon never existed? Comins says the Earth would rotate more than three times 
faster than it currently does. There would be recurrent gale-force winds like those on 
Jupiter, making it a challenge for "tall" beings (such as humans) to evolve. Our at-
mosphere would have taken millions of years longer to convert from one dominated 
by carbon dioxide to the oxygen-rich atmosphere of today. 
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Infinity Machines 

Infinity commonly inspires feelings of awe, futility, and fear. 

— Rudy Rucker 

I like infinity. I believe that infinity is just another name for mother nature. 
Nature provides infinite possibilities all the time. But because we have 
suffered through this world of wars and woes, we sometimes fail to get 
this. We see the world as a little stingy at times. 

— Fred Wolf, Parallel Universes 

My interest in strange mechanical devices soared to new heights when I stumbled 
across the conference proceedings from the International Tesla Society.1 The society 
generally discusses untested (and sometimes untestable) technological ideas and bi-
zarre, fascinating inventions. The Tesla Society derives its name from world-class 
inventor Nikola Tesla (1856-1943) who was born in Serbia and immigrated to the 
United States in 1884 to work with Thomas Edison. Tesla invented the induction 
motor and polyphase power transmission, both still of considerable importance to-
day. He was responsible for the first practical commercial use of alternating current 
(AC) motors (Figures 3.1 and 3.2), generators, and transmission lines. Tesla also de-
veloped a high-voltage generator known the Tesla coil, which to this day is used to 
give spectacular lightning demonstrations. (Perhaps you've seen demonstrations in 
museums where streamers of electricity shoot from a large metal ball.) 

Despite Tesla's real technological genius, he did advance a panoply of eccentric 
ideas. For example, Tesla wanted to pump electrical energy into the atmosphere of 
Earth so people would be able to run appliances without plugging them in. He also 
was working on inventions that he thought would make the atmosphere fluoresce, so 
there would be no nighttime on Earth! 

Perhaps even crazier than these ideas was his eccentric personality. Tesla had 
many fears, such as fear of germs and fear of round objects, particularly pearls on 
women's necklaces and earrings. He could not eat a meal without first counting all 
the objects on his plate. All "countable" food items, such as beans, french-fries, or 
crackers, had to come in multiples of three or he would not eat them. 
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FIGURE 3.1. Nikola Tesla's patent for an electromagnetic induction motor. 

Despite these eccentricities and sometimes dubious inventions (Figure 3.2), 
Tesla was a genius—and the International Tesla Society probably overlooks some of 
his wilder "inventions." On the other hand, the society's workshops are often con-
cerned with recent attempts at perpetual motion machines, machines that seem to 
produce more energy than they consume, and machines that seem to extract energy 
from some unknown physical realm. For example, Joseph Newman, an attendee of 
their conference, spent 14 years fighting unsuccessfully with the U.S. Patent Office 
for recognition of his "perpetual motion energy machine." You can read much more 
about the society's unusual devices in Jeff Johnson's Skeptical Inquirer article (see 
"For Further Reading" at the end of this book). 

This discussion about strange inventions and perpetual motion machines natu-
rally leads to the topic of this chapter. For many years, I have been interested in "in-
finity machines"—devices that rely on the concept of infinity for their operation. Al-
though the devices may seem fanciful, their philosophical underpinnings are 
profound. Can you detect a flaw in the principle of their operation? Would these de-
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FIGURE 3.2. Nikola Tesla's patent for transmitting electrical energy through the air. 

vices work in a theoretical sense, if we were not limited by the physical strength of 
the materials needed to build them? 

Infinity Antilock Brakes 
Human beings know a lot of things, some of which are true, and apply 
them. When we like the results, we call it wisdom. — Herbert Simon 

Many traditional automobile brakes work by converting your foot's pressure on a 
brake pedal to force applied to brake shoes that push against the inner surface of a 
brake drum attached to the car's wheel. The newer antilock brake system (ABS) 
functions similarly, except that a steady foot pressure is converted to a rapid on/off 
pushing of the brake shoes against the drum. This pulsing action reduces the possi-
bility of the shoes locking against the drum, and thereby reduces skidding of the 
wheel on slippery pavement. The pulsing rate is generally a constant 4 to 15 times 
per second depending on the manufacturer. 
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Infinity antilock brake system (IABS), designed quite recently, looks like any 
other antilock brake system. The pulsing rate of the shoes against the drum, however, 
is not constant but rather increases in speed as long as your foot is applied to the 
brake pedal. The system is guaranteed to stop any car in an efficient manner. (When 
I inquired about the IABS at my Mitshbishi 3000 dealer, I was told that this device 
was not yet available.) 

The increase in the rate of pulsing is as follows. When you apply force to the 
brake pedal, the shoes press against the drum for 1/2 second, then the shoes move 
away and release pressure for 1/4 second, then they press again for 1/8 second, then 
they are off for 1/16 second, and so on. It turns out that this infinite series (1/2 + 1/4 
+ 1/8 + . . .) adds up to 1. Therefore, at the end of 1 second, the brake shoes have 
switched an infinite number of times because 1 second = 1/2 second + 1/4 second + 
1/8 s e c o n d . . . . 

Question: Are the brake shoes on or off the drum at the end of the second? For a 
number of physical reasons, it would be difficult to actually design an infinity an-
tilock brake system, but let's discuss this in a theoretical manner for the moment. 
You seem to have all the necessary information to determine whether the brake 
shoes are pressing on the drum or not. Additionally, the shoes have to be either press-
ing or not pressing. What is your answer? 

Infinity Keyboard 
Some of you are probably arguing that the rapid pulsing required in the infinity an-
tilock brake system just described may cause an overheating of the brake drum and 
shoes, despite the use of cooling fins bonded to the outside of the brake drum to in-
crease the rate of heat transfer to the air. Vents in the wheels to increase air circula-
tion for cooling also may not reduce temperatures sufficiently. Therefore, I introduce 
a less mechanically stressed system, the infinity keyboard. 

Imagine that an extremely agile (supernatural) being alternately presses the J 
key and the H key on your personal computer (PC). The being presses the J key for 
1/2 second, then it presses the H key for 1/4 second, then the J key for 1/8 second, 
then the H key for 1/16 second, and so on. Again, this infinite series (1/2 + 1/4 + 1/8 
+ . . . ) adds up to 1. Therefore, at the end of 1 second, the keys have switched an infi-
nite number of times. 

Question: What is the last letter typed at the end of the second? You seem to 
have all the necessary information to determine whether the last letter is a J or an H. 
What is your answer? 

Infinity Program 
Finally, we can eliminate all the heavy mechanical work (if you consider pressing 
keys heavy mechanical work) by designing an infinity computer program. The fol-
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lowing program computes the same infinite series (1/2 + 1/4 + 1/8 + . . . . ) , and prints 
the first few results. 

/* Infinity C Program */ 

^include <math.h> 

^include <stdio.h> 

int i, result; 

float r - l, sum; 

main() 
{ 

i-1; s um-0; 

while (sum<l) { 

r - pow(0.5,i); sum-sum+r; 

if(i<5) printf("Result is: %d %f\n",result,sum); 

i++; if((i%2)—0) result-1; else result-0; 

} 
printfCFinal Result is: %d %f/n", resul t .sum); 

} 

With every step in the infinite series, the variable "result" is toggled between a 1 and 
a 0 value. Here are the first results: 

Result Sum 

0 .5 
1 .75 
0 .875 
1 .9375 

As we've mentioned, the sum of the series will eventually be equal to 1, at 
which point we jump out of the "while" loop and print the final result. Is the final re-
sult 1 or 0? You seem to have all the necessary information to determine whether the 
last value of the variable is 1 or 0, even without running the program. What is your 
answer? 

Some Closing History of Infinity 
The concept of infinity has challenged humans for centuries. For example, Zeno (an 
Eleatic philosopher living in the fifth century B.C.E.) posed a famous paradox involv-
ing infinity. The paradox seemed to imply that you can never leave the room you are 
in. As Zeno reasoned, to reach the door you must first travel half the distance there. 
Once you get to the halfway point, you must still traverse the remaining distance. 
You need to continue to half the remaining distance. The procedure can be repeated 
as diagrammed on the following page: 
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o Door-> 

Second -» 
jump 

3/4 7/8 " 

0.6 0.8 1.0 

If you were to jump one-half the distance, then one-quarter the distance, then 
one-eighth the distance, and so on, will you reach the door? Not in a finite number of 
jumps! In fact, if you kept jumping forever at a rate of 1 jump per second until you 
are out the door, you will jump forever. Mathematically one can represent this limit 
of an infinite sequence of actions as the sum of the series (1 /2 + 1/4 + 1 /8 + . . . ) . 
The modern tendency is to resolve Zeno's paradox by insisting that the sum of this 
infinite series 1/2 + 1/4 + 1/8 . . . is equal to 1. Because each step is done in half as 
much time, the actual time to complete the infinite series is no different from the real 
time required to leave the room. (One easy way to compute the sum of this series is 
to use the formula y = 1 - 2~", which gives the sum of the first n terms. For n = 10, y 
= 0.99902.) 

Many Greeks, however, could not accept the existence of infinity. In fact, when 
one of Pythagoras' disciples, Hippasus, found that V^ was irrational2 they killed him, 
for his colleagues could not accept this infinitely long, nonrepeating number. How-
ever, other Greek philosophers, when learning that the square root of 2 was not a ra-
tional number, celebrated the discovery by sacrificing 100 oxen. (Weren't humans 
more passionate about mathematics in those days?) 

Paradoxes Past the Speed of Light 
Various wonderful paradoxes arise with infinity machines. In this section, a few of 
these paradoxes are highlighted by a variety of readers. 

Steve Frye from North Carolina suggests that the probability of finding the 
brake engaged is 2/3. For example, the first time the shoes press against the drum 
they press for 1/2 second, then they move away and release pressure for 1/4 second. 
The brake continues to spend twice as much of the remaining time engaged as disen-
gaged. 

However, paradoxically you can also examine the terms shifted by one. When 
examined this way, does the brake also appear to spend twice as much of the remain-
ing time disengaged? Is the probability of finding the brake disengaged also 2/3? 

Next, Steve considers that if the brakes are to engage and disengage in shorter 
and shorter times, the brakes will soon "be moving at warp speed (and believe me, 
the brakes will warp), which is somewhat higher than the traditional light-speed bar-
rier." To counteract this seemingly paradoxical situation where the brakes are mov-
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ing faster than the speed of light, we can move the brake shoes closer to the drum 
with each braking action, so the distance the shoes need to travel is shorter, and the 
switching will take place at below light speed. Unfortunately, at some point, the dis-
tance that the brake shoes move must soon become a minute fraction of the radius of 
a quark. Thus, the brake will effectively (if not philosophically) be engaged and dis-
engaged and in the same state. Because this process proceeds inexorably, we must 
conclude from this discussion that the probability of ending up both engaged and 
disengaged is 1. 

Another interesting fact is that if the brakes are to arrive at a final state of en-
gaged or disengaged, there must be a final switch. But this is in direct conflict with 
the fact that infinity goes on forever; there is no last term in the series. So the brakes 
cannot be in either one or the other state; they must be in both states or neither state. 
The discussion above argues strongly for "both engaged and disengaged." 

Tom Randall from New York also had some fascinating comments on my infin-
ity machines. Many of his comments echo the concerns of Steve Frye. Tom notes 
that the brake and key-press examples involve the motion of an object having mass. 
As the distance traveled by these parts remains constant, while the time allowable 
for the motion decreases, one would encounter a series of mechanical problems re-
lating to the acceleration rates and speeds necessary to accomplish the required mo-
tion in the time allotted. Assuming one managed to overcome all these problems, 
one would eventually encounter (Einsteinian) relativity problems. In other words, 
like Steve Frye, Tom Randall suggests that the parts would need to attain a speed 
greater than the speed of light to move the required distances in the required time. 
Tom notes these infinity machines would stop running before 1 second had passed. 

Can we calculate what length of time the infinity antilock brakes or infinity key-
board would operate before this relativistic effect was seen? To answer this question, 
we would need to know the distance travelled by the brake shoes or the key, and we 
would need to assume infinite energy available to accelerate the parts. We also 
would need infinitely strong, heat-resistant materials to make the parts. 

Of course, the C program given earlier in this chapter would also have some 
problems if run on any available machine using any available compiler. The prob-
lems would involve the finite precision available for the floating point numbers 
used. Eventually the program will be trying to add a value to the sum that must be 
rounded either to zero or to a higher value, which will cause the sum to be greater 
than 1. Thus the program will stop earlier or later than the 1 -second mark, and its last 
output value will not represent conditions at exactly the 1 -second mark. 



C H A P T E R 

Maps are art with a purpose. 

— Lloyd Brown 

Give me a map; then let me see how much is left for me to conquer all the 
world. 

— Christopher Marlowe, Tamburlaine 



Infinity World 

Fifth Avenue 
One day while taking a stroll down Fifth Avenue in New York City I noticed a street 
vendor selling maps of the Earth. One colorful map was placed above the other, 
stretching up along the side of a skyscraper for about 15 feet. (The repetition of iden-
tical patterns reminded me of the works of Andy Warhol.) We will probably never 
know whether the vertical display of maps produced additional sales for the street 
vendor, but the scene stimulated me to conduct the "Infinity World" survey in May 
1994 in which I asked scientists, sociologists, cartographers, and other interested 
parties to speculate on a hypothetical Earth formed by the infinite repetition of verti-
cally placed maps. What would civilization be like on an Earth of infinite area? 
Would there be fewer wars? How would global politics be affected? Before launch-
ing into this discussion, I'd like to provide some background to the history of map-
making. 

Ancient Maps 
Not one of the lands written into your destiny will speak to you the 
language of your first atlas. — Primo Levi 

In ancient Western civilizations, the world was considered to be ridiculously small. 
The Earth was generally believed to be shaped like a flat pancake floating on the sur-
face of the infinitely deep, surrounding ocean. This disc was large enough to hold all 
the land known at that time: the shores of the Mediterranean Sea, with adjacent parts 
of Europe, Africa, and a bit of Asia (Figure 4.1). According to Aristotelian cosmol-
ogy, the entire universe was small, and space was thought to be finite and to have a 
definite edge (Figure 4.2). 

Of course, humanity's knowledge of Earth's geography gradually improved 
through time. However, even in 1544, maps of the Earth contained some striking 
anomalies. One favorite example is Battista Agnese's map of the world. Though in 
many respects accurate, it still portrayed North America as an impressionistic blur, a 
borderless figment of the cartographer's imagination. Interestingly, even as late as 
the 1740s, maps often depicted California as an island. 

2 5 
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FIGURE 4.1. The world of the ancients of Earth. The Earth was believed to be a large, flat 
disc floating on the surface of the world ocean that surrounded it. Reprinted by permission 
from One, Two, Three... Infinity, by George Gamow. (New York: Dover, 1988). 

FIGURE 4.2. Finite space. According to Aristotelian cosmology, space was finite and had 
a definite edge. This idea was accepted during medieval times on Earth. The illustration here 
is often said to be a 16th-century German woodcut, although its origin is probably much 
more recent. 
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Good maps have always accelerated the pace of civilization. For example, in the 
fifteenth century the Turks closed lucrative trade routes from the Orient to Europe. 
This motivated the development of new routes, primarily by sea, to restore mercan-
tile connections with the Orient. These new routes and avenues of trade, in turn, ac-
celerated cartographic and navigational technologies. As IBM scientist Dan Piatt has 
pointed out, these two applied sciences, one of them visual and the other analytical, 
worked hand in hand to allow humans to circumnavigate the globe for the first time. 
These sciences allowed Europeans to dominate the globe in less than a century. For 
the first time, the Earth became a global community. The power of merging visual 
and analytical technologies transformed humanity. 

Worlds without End 
Those who explore an unknown world are travelers without a map; the 
map is the result of exploration. The position of their destination is not 
known to them, and the direct path that leads to it is not yet made. 
— Hideki Yukawa 

In this chapter, I focus on the concept of Infinity Worlds: hypothetical Earths with 
infinite extent. For example, consider the geography of the Earth today, except that 
the map is infinitely repeated in the north and south directions (Figure 4.3). On In-
finity World one could fly north in a plane from Greenland and arrive at the South 
America of the adjacent map. 

How would life and geopolitics be different today if humans had evolved on 
such an infinite Earth? When I asked colleagues this question, I indicated that I was 
more interested in the sociology, psychology, religion, and politics of such a world 
than in opinions on plate tectonics, gravity, and pure biophysical effects, although all 
ideas were welcome. For the sake of discussion, colleagues were allowed to assume 
that all physical laws on our Earth are maintained on Infinity World. When respon-
dents asked for more information, I suggested that the infinite repetition of "maps" 
might be thought of as being on the surface of a cylinder. 

I also asked colleagues how their answers would be different if Infinity World 
were created by repeating today's world map along a vertical line in the Atlantic or 
Pacific ocean. (In these scenarios the world would be infinitely repeated horizontally 
rather than vertically.) If they thought it useful, respondents were told they could 
think of a repetitious map on a extremely wide cylinder or sphere. Scientists were 
asked to ignore the fact that gravity would flatten humans in a superwide Earth. 

Finally, I also asked the following questions that referred to a single Earth 
model, and not to an infinitely repetitious map: 

1. How would the world be different today, geopolitically speaking, if the ancient 
land masses had never drifted apart and, therefore, today's world consisted of a 
single supercontintent? How would biological life be affected? 

2. What would today's world be like if the land mass that formed the Greek penin-
sula never existed? Would this effect be lesser or greater than if the Italian pen-
insula never existed? 
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FIGURE 4.3. A small section of Infinity World created by an infinite repetition of Earth 
maps. (Schematic representation by JoAnn McLoughlin.) 

3. About 15,000 years ago humans crossed a land bridge that joined Asia to Alaska 
at the time. What would today's world be like if that land bridge never existed? 

4. Why do all the major peninsulas on Earth point south? Consider, for example, 
Italy; Greece; Florida; Baja; and the tips of Africa, South America, India, Nor-
way, Sweden, Greenland, and many other land masses. 

Vertical Infinity Earths 
The map is the game board upon which human destinies are played out, 
where winning or losing determines the survival of ideas, cultures, and 
sometimes entire civilizations. — Stephen Hall, Mapping the Next 
Millennium 
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The profound effects of an infinitely repetitious world are not entirely clear. Would 
wars be infrequent because territorial acquisition is unimportant in an infinite world? 
Would humanity's awesome sense of wonder in Infinity World decrease the occur-
rence of wars? In my opinion, wars would be just as frequent. Wars were quite com-
mon when our Earth was largely unexplored and the Earth had "unlimited" territory. 
Ancient civilizations were often at war. 

Would space travel evolve on Infinity World? Because there would always be 
unexplored terrestrial regions, why would the inhabitants look to the stars for adven-
ture, national prestige, or scientific advancement? 

Would ecological concerns and "green" political movements evolve on Infinity 
World? Why would inhabitants be concerned with pollution, biodiversity, or animal 
or plant extinction with unlimited land and water? No doubt there would be local 
pollution concerns, but overall interest would be diminished. 

Would an organization resembling the United Nations evolve? Would the dino-
saurs still be alive today on Infinity World? Would criminals be more difficult to 
catch? Instead of fleeing to South America, they would only have to hop a plane to 
any one of a number of "maps." On Infinity World, there are infinitely many coun-
tries in which to hide. 

In my opinion, religion would be profoundly affected because the existence of 
identical, repetitive land masses would suggest the presence of a creator as opposed 
to the random assortment of lands that we now have. (Can you imagine what effect 
the existence of a perfectly square or circular continent would have on religion and 
science?) 

Sociopolitical Impact 
In this section, I turn our attention to comments I received from other scientists and 
interested readers. Some colleagues, such as David McAuley from Trinity College 
Dublin, suggested that the term superpower would become meaningless on Infinity 
World. How could a nation capable of any significant multiworld regulation evolve? 
Given an infinite number of communities, all kinds of bizarre sociopolitical and re-
ligious organizations would evolve. Certainly some would have extremely violent 
dispositions, which would lead to anarchy in parts of Infinity World. Planet-wide 
communication, of course, would be impossible, and humans would not know the 
"full" extent of the world. 

Craig Becker from Austin, Texas, wondered whether intelligent life would de-
velop on only one of the maps, or on all of them at roughly the same time. If life 
evolved on just a few maps, the consumption of material resources would be of less 
concern. If human cultures developed independently on a few hundred maps, there 
still would not be significant movement among maps until the twentieth century be-
cause of the inhospitable polar regions. These cold boundary regions would tend to 
isolate one world from another before air flight developed. In fact, most respondents 
noted that humans would have to await the production of airplanes before they dis-
covered the worlds beyond the Antarctic barrier. Even jet travel would only be of 
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limited use. A commercial plane's unrefueled range is less than 15,000 miles. As a 
result, some respondents suggested that trans-Arctic railroads would move bulk 
goods past the Antarctic barrier between airports between worlds. 

Mike Hocker from Poughkeepsie, New York, suggested that the use of atomic 
weapons on Infinity World would be less of a concern. Mike believes that wars 
would be common as populations tried to destroy others before they were destroyed. 
Xenocide and paranoia would be the geopolitical norm. Nations would race to de-
velop interworld ballistic missiles (IWBMs) as opposed to intercontinental ballistic 
missiles (ICBMs). Vast land areas would be radioactive or devastated by horrendous 
nuclear, chemical, and biological weaponry. 

Mike Hocker echoed my own opinions when he suggested that "resource deple-
tion" would take on a new meaning, as would species extinction. For example, if Pa-
cific Ocean whales are in abundance in oceans 30 worlds away, inhabitants of one 
world can pollute their own Pacific Ocean with less concern. Of course, the humans 
living 30 worlds away may have the same view and be polluting their own Pacific 
Ocean, too. 

On Infinity World, disaffected persons can "leave" their world and go to a new 
place. This is not possible on our limited Earth at this time, and this absence of a 
safety valve permitting exodus causes stagnation and societal stratification. (Con-
sider European stagnation and persecution before the New World was discovered 
and accessible.) 

Alain Vaillancourt from Montreal, Canada, speculated on mythological and 
theological effects of a repetitious Earth. He says, "Would people postulate a stutter-
ing Christian god who created Earth on a really nervous day, repeating it ad infini-
tum?" 

Jim McLean from Boca Raton, Florida, suggested that all Earths would evolve 
identically if started from the same initial conditions. For example, if all parallel 
Earths started at a completely identical state, divergence of events would not occur, 
and every dewdrop on every blade of grass would be identical on each sub-Earth. 
Your exact twin would exist on each and every sub-Earth, but you could never meet 
your twins because for every step you take north your twin also steps north. 

Chaos theory, which suggests that imperceptibly small differences are amplified 
through time, may have no effect on Infinity World if all sub-Earths have truly iden-
tical starting points. McLean suggests we allow some uncertainty to exist in our 
starting points. Perhaps we will let electron positions be random, and then chaos will 
eventually diversify our sub-Earths. 

Even if we let small initial differences between Earths cause a divergence of 
events, your nearly identical twin would still exist, because there are infinitely many 
Earths. Note, however, that the number of sub-Earths containing your identical twin, 
though infinite, is vanishingly small next to the total number of sub-Earths where 
your twin does not exist.1 

We've all heard the cliche about an infinite number of monkeys placed in front 
of an infinite number of typewriters, with one typing the complete works of Shake-
speare by chance. Jim McLean suggests that each sub-Earth is like a very complex 
monkey in front of a vast typewriter. Every possible sequence of events, no matter 
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how unlikely, will occur in an infinitely repetitious world. This infinity effect has in-
teresting consequences. What would be the psychological implications of knowing 
you have an infinite number of twins, or of meeting your twins? Some of your twins 
would be virtually identical. Others would be slightly different, whereas others 
would have died at various ages or become mass murderers. On Infinity World, even 
unlikely possibilities become plausible. 

From a mathematical standpoint, McLean notes that there is little danger of ac-
tually running into your parallel-world doppelganger, as the number of sub-Earths 
where you are not born so vastly outweighs the ones where you are born, (Still, an 
infinite number of your equivalents exist on an Infinity World.) And, although the in-
finity effect means that some extremely bizarre sub-Earths will exist, some version 
of the central limit theorem (the statistical notion that repeated combinations of ran-
dom observations tend to cluster around a single mean) will cause Earths to cluster 
around some average behavior. 

McLean believes that wars on Infinity World would be fought between people 
far enough away to be considered "different" but close enough for logistical practi-
cality. (This pattern holds in our own historical development.) Initially there would 
be wars between clans and villages, later between countries, and then between conti-
nents. As technology advances, wars will be fought between sub-Earths, and finally 
between latitudinal sub-Earth alliances against their cross-polar neighbors. In addi-
tion, McLean believes that a large fraction of Infinity World is likely to regress cen-
turies due to ballistic nuclear confrontations across polar boundaries. As communi-
cation and transportation methods improve, important individuals (a sub-Earth's 
equivalent of Hitler or Gandhi) would affect adjacent worlds. (What would happen if 
Gandhi-1 met Gandhi-2, and they collaborated to spread their message? What if 
Hitler-1 andHitler-2 collaborated?) 

After the wars between Earths, information-age technology would begin to link 
surviving sub-Earth neighbors. Distances between sub-Earths would shrink, and the 
pace of cultural cross-fertilization among sub-Earths would increase dramatically. 
As on our own Earth, the overall pace of technological and scientific advancement 
would be set by the most advanced societies, but those societies would not necessar-
ily raise the standard of living significantly among poorer neighbors. Eventually, 
large clusters of sub-Earths would share common cultures, mores, and gene pools. 
We would all become swirls in an infinite melting pot. 

Some respondents assumed that civilization starts on only one Earth map. If this 
happened, explorers would immediately know what to expect on other Earths. They 
would know the areas to avoid because of bad climates, floods, droughts, or earth-
quakes. Once an earthquake occurred on the San Andreas fault of Map 1, explorers 
would not settle in the same place on Map 2. 

Would confusion reign on Infinity World because a sovereign nation owns dif-
ferent territories in different maps? For example, the government of Vietnam might 
occupy southeastern Asia on one world and North America on the next. 

Curtis Karnow, a partner at the San Francisco law firm of Landels, Ripley, and 
Diamond, sums up his feelings eloquently: 
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We do, of course, already live in an infinite world: the universe. But life is lived locally. 
Local politics, nearby neighbors, the restaurant around the corner, the girl next d o o r . . . . 
For all of our travelling and movement in this country, I'll bet the vast majority still live 
locally, and the rest want to. The locale may change of course, from time to time, but the 
human eye focuses best around 15 feet; the long-distance stare is sightless: It looks not 
out, but in. The stars are for the occasional sighting; we do not, really, steer by them these 
days. This is not to deny that we need that sense of limitlessness and infinite possibility, 
just there peripherally, out of the corner of the eye, as remarkable as oxygen . . . 

Physical Constraints to Infinity World 
A map of the world that does not include Utopia is not worth even 
glancing at. — Oscar Wilde 

Of course there would be various physical problems associated with Infinity World. 
David Karr from Cornell University in Ithaca, New York, wondered how such a 
huge, infinitely long object could orbit the sun. He suggested that the sun might orbit 
the Earth, and therefore Galileo could not have challenged the Church by claiming, 
"The Earth moves!" (Would there be seasons on an infinite Earth? On our Earth, 
there are seasons due to the tilt of the Earth with respect to the plane of the Earth-sun 
orbit.) 

From strictly thermal considerations, only a finite number of the Earth "maps" 
would be habitable because regions far from the sun would be too cold. There might 
exist distant sections made habitable by other orbiting stars, but these would have no 
effect on the history of our map or its near neighbors. 

If the sun's orbit were a helix with an extremely low pitch, the sun might travel 
very slowly down the helix, and all living things could follow the sun's trajectory as 
they migrated beneath the sun's warmth. (I like to imagine a double helical spiral, 
like DNA, in which dual suns could orbit the cylinder.) In a single-sun world with 
the sun in a helical orbit, very few fossils would be available for scientific studies, 
because the panorama of evolution would be spatial as well as temporal. Fossils 
would be deposited in regions of Infinity World millions of miles away from current 
life and the current position of the sun and hence would be unavailable for discovery. 
Perhaps the theory of evolution would never have emerged, and hence religious op-
position to evolution would never have occurred. 

David DeLaney from the University of Tennessee's Physics Department sug-
gested that Infinity World would not have a magnetic field, if the cylinder were hol-
low. This in turn would have extensive effects on navigation, the Van Allen belts, 
cosmic radiation, animals' navigation, auroras, and so on. 

Brian Pickrell assumed the polar regions to be stretched out into a rectangular 
map projection prior to fitting the Earths on a cylinder. If the Earth were an infinite 
tube, like a giant paper-towel roll, gravity would decrease with distance as 1 /r, 
rather than l / r 2 . Normal satellite orbits would be impossible. Pickrell suggests that 
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there could not be any planets or stars. He also believes that an infinite number of 
suns, moving in some gravity-defying pattern, would be required to illuminate the 
entire world. Because there would be no Coriolis force making winds, the weather 
would be completely different. There would be no high- and low-pressure areas, hur-
ricanes, or trade winds. Instead, large convection patterns would create winds that 
never change. 

Alain Vaillancourt from Montreal, Canada, had similar concerns. He suggested 
an infinite tubular sun illuminating the infinite Earth cylinder, or a series of suns 
spaced at regular intervals along the tube. The tube might be perfectly straight, or 
another possibility is that the universe would be comprised of an infinite number of 
spaghetti-shaped planets. Alain suggests that on Infinity World an immortal human 
(or a cruise ship bearing thousands of families) could walk from one end of the gal-
axy to another. This would be of interest to astronomers. 

On Infinity World, land animals (including most birds) would be completely cut 
off from crossing into other worlds. With millions of years of separate evolution, 
vastly different biotas would exist. 

Alaska-Asia Land Bridge 
What would today's world be like if the prehistoric land bridge that joined Alaska to 
Asia never existed? David Karr suggested that the Americas would have been popu-
lated by way of Hawaii, resulting in an aboriginal population with a different racial 
and cultural flavor. However, these North Americans would have suffered the same 
fate as the American Indians when the Europeans arrived. 

Mike Hocker believes that the absence of a prehistoric land bridge would have a 
huge effect on our world. Eohippus, a primitive horse, was present in both North 
America and Europe (54,000 years ago), but the principal development of the horse 
occurred in Europe. The absence of a prehistoric land bridge would probably imply 
that no horses would be available to Europeans. For some unknown reason, horses 
became extinct in the Americas while their European children lived on. Would there 
be any horses today without a land bridge? If no horses existed, the impact would 
be tremendous because of the role they played in human transportation and as farm 
labor. 

Others also noted that the ancestral Indians and Eskimos could have come to the 
Americas by boat. In support of this position, note that people reached Australia per-
haps 35,000 years ago without a land bridge. However, if the New World were unin-
habited when Europeans arrived, the differences in the United States would be mod-
erate, but Latin America might never have been settled by the Spanish and 
Portuguese. Historically, the explorers were more interested in conquering than in 
colonizing. In such a case, Central and South America would have been settled by 
the English, French, and Dutch. 
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Peninsular Anisotropy 
Why do all the major peninsulas on Earth point south? (Consider Italy; Greece; Flor-
ida; Baja; and the tips of Africa, South America, India, Norway, Sweden, Greenland, 
and many other land masses.) 

I was surprised by the number of individuals who did not agree that most of the 
major peninsulas point south. One respondent suggested that many major peninsulas 
point north, but that these are located in inhospitable places such as Antarctica and 
are therefore overlooked. 

Ken Arromdee from Johns Hopkins University suggested that because most of 
the land on Earth is concentrated in the Northern Hemisphere there is a higher prob-
ability for peninsulas to point south than north. (Incidentally, all peninsulas on Ant-
arctica point north.) 

Simon Bradshaw suggested the splinter shape of southern continents results 
from the breakup of Gondwanaland, an ancient supercontient, centered on a "frac-
ture point" at the former junction of the southern tips of South Africa, South Amer-
ica, and India. As for the smaller (noncontinental) peninsulas, Simon believes that 
any south-pointing bias is by chance. He also remarked that the statistical bias de-
pends on how the term peninsula is defined. 

One Supercontinent 
How would the world be different today, geopolitically speaking, if the ancient land 
masses had never drifted apart and, therefore, today's world consisted of a single su-
percontintent? How would biological life be affected? 

My thoughts are that the diversity of languages would be far less in such a 
world. Linguists such as Johanna Nichols from the University of California at 
Berkeley have done extensive studies reconstructing the spread of prehistoric lan-
guages based on comparative linguistics. Languages multiply more rapidly in tropi-
cal areas along coastlines and more slowly in the drier interior of continents. The is-
land of New Guinea harbors 80 families of languages, the greatest density of 
languages found anywhere in the world. On the other hand, a much larger region 
such as Australia contains only about 30 families of languages. If the land masses of 
our world never divided, language diversity would be much less than we have today 
on our Earth. 

David McAuley suggested that because climatic conditions would be altered, 
there would be a massive desert in the center of the supercontinent that would have 
very extreme seasons. 

Steven Bradshaw from the United Kingdom suggested that most trade would be 
accomplished by inshore sailing, as there would be little motivation for "blue-water" 
voyages. Technologies driven by the need to cross oceans would be developed more 
slowly. (Consider the decreased need for long-distance sailing, navigation, steam-
ships, and undersea cables.) Sea-power empires, such as the British Empire, would 
not develop. 
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If the supercontient never broke up, there would be no totally isolated biomes. 
Therefore, disparate species such the Australian marsupials or the Old World and 
New World primates would not have evolved. 

Some readers pointed out that the world's land masses have actually rejoined 
and separated many times in the past. The supercontinent we are familiar with ex-
isted "only" 200 million years ago and was just the most recent supercontinent. 

If the continents never separated, Brian Pickrell suggested that the geological 
effects would cause unpredictable differences in the existence of oil and metal ores. 
Trade would be much more difficult and politically restricted, as most countries 
would have no seacoast and therefore wouldn't be able to send their ships out on the 
high seas. Trade barriers and tariffs would be much harder to circumvent. 

In general, there would probably be large deserts and much less fertile land due 
to the decreased coastlines. Because Antarctica would be joined with the rest of the 
world, we would live on an Earth with more accessible land. Historical progress 
would probably have been faster, due to the increased contacts among civilizations. 
There would be less diversity. Biological evolution would be slower, due to the re-
duced environmental variation and less change over geological time. 

Neil Dullaway of Stockholm, Sweden, suggested the possibility that the entire 
world would have been united by a common culture very early in its history. Indi-
viduals such as Alexander the Great could easily have conquered the entire world. 

No Greece or Italy 
Some respondents I queried suggested that the world would not be affected to a great 
extent by the removal of the Greek or the Italian peninsula. In other words, civiliza-
tions such as the Greeks and Romans would have been formed anyway, just in an-
other location. The ancient Hellenic tribes (c. 1000 B.C.E.) would have moved into 
some other area, such as Asia Minor. Presumably, they could have had a similar his-
torical effect. 

Neil Dullaway of Stockholm, Sweden, suggests that one of the main heritages 
from the Greek and Italian peninsulas has been language. Most Western languages 
are based on both Latin and Greek. If either of these languages had not existed, mod-
ern languages also would not exist in their present form. Languages would be based 
either on those of the Eastern Mediterranean cultures or on the original languages 
existing in the historical sea powers: Britain, Portugal, and Spain. 

Neil also suggests that ancient Greek math was sometimes a hindrance to the 
development of modern science. Intellects such as Newton finally broke free from 
axioms inherited from the Greeks. Therefore, Neil feels that we may actually be bet-
ter off without the Greek influence. Also, consider that Islam has been the source of 
much modern mathematics. The numerals we use in arithmetic and the concept of 
zero probably came from Islamic scholars. (There was some controversy among 
readers on this topic. Arlin Anderson suggests that the Arabic manuscript that intro-
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duced numeration to Europe was a translation of a Hindi one and that all of modern 
trigonometry is based on the Hindu angle-based functions rather than the Greek 
chord-based ones.) 

The Italians had a profound effect on religion. Christianity, for example, gained 
momentum from the Roman Empire. In Neil's opinion, without the Italian peninsula, 
we would not have Christianity. Because Islam was an early offshoot of Christianity, 
there also would be no Islam. Neil speculates, however, that monotheism has been 
an important factor in modern cultural development, so some kind of Jewish off-
shoot similar to Christianity would have developed, but this would have depended 
heavily on the political scene of the Mediterranean at the time. In Neil's opinion, the 
Italian peninsula has had a greater effect on today's civilization than the Greek pen-
insula. 

Reader Questions 
Some readers, such as Daniel Winarski from Tucson, Arizona, were prompted to ask 
many questions of their own. Would intelligent life have evolved if our atmosphere 
had been denser? Would more animals fly? If the atmosphere were less dense, would 
humans have never flown? How does the density of the atmosphere impact the so-
ciopolitics of our world? What would life be like on an Earth with half as much grav-
ity or twice as much gravity? What would life be like on an Earth with one-fifth as 
much gravity or five times as much gravity? 

Consider an Earth where certain elements (such as radium, uranium, or lead) 
were never present in the Earth's crust. Would humanity have been better or worse 
off in the long run? If our day were 200 hours long, would we nap more? What 
would we do if our day were 1 hour long? What if we had a ring instead of a moon? 
What if Earth were a "flatland"—exactly the same as our Earth, but utterly flat? 
What if there were no mountains to cause isolated areas, no impenetrable forests to 
stimulate the imagination, no seasons to keep us appreciative of change, or no night-
time because we had two suns? 

Don Webb, a science-fiction author from Texas, notes that The Girls in the 
Golden Atom (1924), by Ray Cummings, describes infinitely small universes and in-
finitely large worlds. Cummings was inspired by a Quaker Oats box that showed an 
endless series of slightly smaller labels decreasing into nothingness. 

Brian Pickrell asked why most U.S. states and most countries of the world are 
oriented east-west. Neil Dullaway of Stockholm, stimulated by my question on the 
removal of the Greek or the Italian peninsula, asked: What would be the effect on to-
day's world if the British Isles had never existed? Would we all speak French or 
Spanish? What if the Mediterranean Basin (the "cradle" of western culture) had not 
existed? What if Africa had never existed? Suppose the land bridge joining Africa to 
the rest of the world had not existed. 
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Horizontal Repetition on Infinity World 
Travel on an Infinity World made from a horizontal repetition of Earths would be 
easier than on a north-south repetition. However, based on our history, Craig Becker 
suggested that humans would not have explored beyond the first few adjacent maps 
until modern times due to difficulties in traversing the large distances during the 
eighteenth and nineteenth centuries. He believes that even with today's level of tech-
nology, there would be only a few scattered colonies on the second or third most re-
moved maps—assuming civilization evolved on just one map. 

Brian Pickrell suggested that some nomadic tribes would follow a "head east 
forever" strategy, always moving into virgin wilderness. In each generation, some 
people would stay while others moved on. The frontier people would eventually be 
overtaken when a civilization closer to the center developed airplanes and started 
moving outward. The Antarctic barrier prevents this in the north-south Infinity 
World. After humanity spread in an ever-widening frontier, Craig believes that the 
most civilized and populated area would be concentrated near the "parent world." 

Simon Bradshaw from the United Kingdom focused his response on how an ad-
vanced civilization might build a horizontal Infinity World. If one were to create a 
huge ring (similar to Ring World, created by science-fiction writer Larry Niven), 
12,000 miles pole to pole, one could squeeze 50,000 Earth maps along the inner cir-
cumference of the ring. Assuming Niven's Ring World dimensions (a 1-million-mile 
wide strip), one could wrap repetitious maps around and around in a spiral. Assum-
ing a map is 25,000 miles wide and allowing for a 25,000-mile "guard band" be-
tween Earth wraps, one could wrap worlds 20 times, yielding a strip containing 1 
million Earths. Although not infinite in length, this is certainly large and physically 
realizable, in theory. Climate would be globally uniform. 

Hemicentrism 
The reason all modern maps show the northern continents on the top is because the 
great mapmaking civilizations developed in the Northern Hemisphere. Why would 
they want to put all the world they knew at the bottom? (This bias is called ethnocen-
tric geography or hemicentrism.) If civilization in the Southern Hemisphere had ear-
lier grown in size and sophistication, and developed mapmaking skills, then today 
south would be at the top of maps, and compass needles would point south instead of 
north. Barry Evans, author of the fascinating book Everyday Wonders, further sug-
gests that the names of the constellations would be different. For example, viewed 
from Australia, Orion the Hunter is standing on his head—hardly a heroic pose. The 
direction clockwise would be opposite from how we now define it. (Our clocks ro-
tate as does the shadow on a sundial in the Northern Hemisphere. In the Southern 
Hemisphere, the sundial's shadow moves counterclockwise.) Barry Evans also 
speculates that the art of navigation would have developed more slowly in the 
Southern Hemisphere because there is no equivalent to Polaris, the North Star, in the 
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southern skies. Polaris appears to stand still, while other stars rotate around it, be-
cause it is almost exactly aligned along the celestial north pole. This property is use-
ful to navigators, as the star always lies in the direction of north. 

Artificial Earths 
For many years, I have been designing artificial Earths and pondering the results of 
such Earths on humanity's worldview. In my book Mazes for the Mind, I described 
an amusing computer game that I called Cro-Magnon Conquest. The game has since 
provided hours of intrigue for students interested in modelling the spread of human 
civilizations. First the computer draws a map of the world. If this is too difficult, you 
can represent each of the continents by square or rectangular regions. Next select a 
site for the origin of humans. One possible location is in East Africa. From this point 
on the map, have the computer use a random number generator to move your hu-
mans on the map of the world and see where they move in a random direction, for 
each increment of time. This is known to mathematicians as a random walk. For ex-
ample, if your original screen coordinates are at (xQ,yQ), change them by adding ±100 
miles to x and y for each time step. If you don't have access to a computer, why not 
use dice to control the movement of your humans on graph paper? 

As your humans, represented by a dot on the screen, move about, why not have 
the computer draw a line so you can see the trail your humans leave? By doing this, 
you will gradually be drawing a crinkly line that soon meanders all over Africa. 
Whenever it hits the edge of a continent, simply reflect the line back (rather than 
have it wander off into an ocean). 

How many time increments, or "years." does it take for your human tribes to 
migrate to Egypt and then out of Africa into the Tigris-Euphrates Valley? As men-
tioned earlier, about 15,000 years ago humans crossed a land bridge that joined Asia 
to Alaska. How long does it take your humans to arrive in North America and South 
America, by randomly walking on the map of the world? 

Spiral Earths 
For those of you interested in other strange map projections, the book Spiral Symme-
try has figures showing the Earth transformed to snail-like spirals, doughnuts, cubes, 
and dodecahedrons. My favorite, the map of the Earth warped to a spiral snail shell, 
was computed by Agnes Denes, a New York artist. She has also mapped the world to 
lemons (prolate ovoids) and hot-dog shapes. For further information, see Hargittai 
and Pickover, Spiral Symmetry.2 

Mecca Maps and Heart-Shaped Maps 
Martin Gardner, in Time Travel, and Other Mathematical Bewilderments (1988), 
also discusses unusual map projections. The "Mecca map" is designed to quickly in-
dicate to a Moslem the exact direction he must face when praying at any spot on the 
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globe. One way to draw such a map is to make a stereographic projection with 
Mecca at the plane's tangent point. A cardioid (heart-shaped) map, invented by Jo-
hann Werner, was popular during the sixteenth century. B. J. S. Cahill of Oakland, 
California, patented his butterfly map in 1913. In this representation, the world is 
projected onto eight triangular faces. 
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Grid of the Gods 

The universe: a device contrived for the perpetual astonishment of 
astronomers. 

— Arthur C. Clarke 

I thought of a labyrinth of labyrinths, of one sinuous spreading labyrinth 
that would encompass the past and the future and in some way involve the 
stars. 

— Jorge Luis Borges 

About a year ago, I wrote a science-fiction story about an astronomer named Ka-
linda. While gazing out into space using a powerful telescope, she saw the most star-
tling arrangement of stars beyond the constellation called Canis Major. She immedi-
ately picked up her phone and called her friend, a Dr. Carl Sagan, for advice and 
counsel. Both Kalinda and Sagan were stumped by the peculiar arrangement. What 
Kalinda discovered with her new, powerful telescope was a perfectly arranged array 
of stars in the shape of a cubical grid. About a hundred stars formed each edge of the 
cube. 

To confirm her initial observations, she decided to use the Hubble space tele-
scope's new wide-field camera, which more clearly resolved the star grid, some 7 
billion light years from Earth. Because peering at distant stars is like looking back in 
time, the images revealed a star grid that existed when the universe was 60 percent 
of its current age. 

A torrent of questions flooded Kalinda's mind. How could she make sure she 
would be the first to publish a research paper on this exciting phenomenon? Was this 
a problem of national security? Could such an arrangement of stars be a natural phe-
nomenon? What would the tabloid magazines do with this information, once they 
found out? Would religions be affected or be born? Would she have the opportunity 
to appear on the TV show Hard Copy with her incredible find? 

This fanciful story led me to pose the "Grid of the Gods" scenario to students 
and researchers. I asked colleagues to consider the same sort of grid as in my sci-
ence-fiction story. The exact dimensions are as follows. A grid of infinitesimal dots 
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FIGURE 5.1. One hundred randomly selected chords in a circle. 

are spaced 1 millimeter apart in a gargantuan cube having an edge equal in length to 
the diameter of the sun. For conceptual purposes, you can think of the dots as having 
unit spacing, being precisely placed at 1.00000 . . . , 2.00000 . . . , 3.00000 . . . , and 
so on. When I use the term infinitesimal, I mean to imply that the dots are not bul-
bous objects that cover a range of locations in space. They really are located exactly 
at 1.00000 . . . , 2.00000 . . . , and so on, and do not have a thickness making them 
extend to, for example, 1.010000 . . . , 2.010000 . . . , and so on. 

If you like, you can make a diagram on paper to help you carry out the next step 
of the problem. At the opening of this chapter is a schematic illustration of a piece of 
the front face of the cube. It looks like a checkerboard with a dot at each corner of 
the squares. First pick a dot, any dot, in this densely packed cube of dots. After you 
have made your selection, draw a straight line through the dot and extend it from that 
dot to the edge of the cube in both directions. 

Assuming infinitesimal dots, is it possible to draw a line starting on one of the 
dots and extending to the edge of the cube without touching another dot? Does the 
shape of the grid matter? For example, if a hexagonal grid were used would your an-
swer change? What is the probability that your line will intersect another dot in the 
fine grid of dots within the cube the size of the sun? Would your answer be different 
if the cube were the size of the solar system? 

The answer to these questions might shock you. Essentially it is certain that all 
lines through your initially selected dot will never meet another dot! (This assumes 
that you choose the direction of all the lines randomly. If, for example, the direction 
of a line were chosen precisely parallel to one of the cube's edges, then the prob-
ability of hitting another dot would be 1.) 
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FIGURE 5.2. The ratio of the number of chords shorter than the circle's radius to the total 
number of chords. As the simulation proceeds, the ratio approaches 0.33. 

Could a computer program be written to simulate this process? Most colleagues 
I asked said "no." Simple programs could never simulate infinitesimal points. On the 
other hand, even with the limited floating point precision available on most comput-
ers, you can still perform the experiment of randomly placing random lines on a 
large grid, and you'll find that virtually none will intersect the grid. With infinite 
precision placement of the points, no line would ever intersect the grid! 

Perhaps even more exciting is the following simulation involving the laying 
down of random lines. I call the simulation the "toothpick" simulation because it re-
minds me of tossing toothpicks onto the ground. About a year ago, Fermilab scientist 
Matt Crawford asked, "What is the probability that a randomly selected chord of a 
circle is shorter than the radius of that circle?" (A chord is a line joining any two 
points on the circle.) Most scientists I asked could not readily give me the answer to 
this problem, so I resorted to the BASIC and C code included in Appendix 1 to per-
form a simulation. To solve the mystery, the programs randomly select chords and 
determine how many of them are shorter than the radius of the circle. Figure 5.1 
shows 100 randomly selected chords. Figure 5.2 shows the ratio of the number of 
chords shorter than the circle's radius to the total number of chords that the program 
computed. As the simulation proceeds, the ratio seems to be converging on a value 
near 0.352 after 1,000 trials. After 100,000 trials, the ratio is around 0.33. Therefore, 
we can say that one-third of all the possible chords of a circle are less than the cir-
cle's radius. If you were a gambling person, you should not bet that a randomly se-
lected chord was smaller than the circle's radius!1 

Interestingly, Fran Asbeck from Endicott, New York, believes it is possible to 
solve the Crawford question in an analytical fashion using simple geometric dia-
grams. Here is his note to me: 
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Although the programs that perform the simulation are interesting for a number of rea-
sons, I believe it is possible to arrive at the one-third probability as follows. Consider a 
circle centered at C. Choose a point on the circle, Q. Construct chords PQ and QR such 
that they are equal in length to the radius CQ. Just to make it obvious, construct line seg-
ments CP,CQ, and CR, forming two equilateral triangles CPQmA CQR. From geometry, 
we know that these two adjacent triangles fill 120 degrees of the circle's sweep, leaving 
240 degrees of the circle remaining. Any random point on the circle, X, will enjoy a one-
third probability of falling within the 120 degrees and a two-thirds probability of falling 
without. Chord QX then has a one-third probability of being shorter than the radius. 

It turns out that one way of looking at the Grid of the Gods problem is by using 
Cantor set theory. Georg Cantor (1845-1918) was interested in the kinds of prob-
lems posed in this chapter. For example, on a quite related topic, he showed that 
there is an infinity of rational numbers (terminating or recurring decimals such as 
0.666666 . . . , 0.5, and 0.272727 . . .) and an infinity of irrational numbers (nonter-
minating, nonrepeating decimals such as n and V2). Interestingly, as discussed in 
other chapters of this book, Cantor proved that the infinity of irrationals is "infinitely 
greater" than the infinity of rationals. This gives a hint as to why we can place infi-
nitely many lines between the precisely placed grid of points. 

Paul A. Kuckein, an electrical engineer from California, writes the following, 
which may be of interest to mathematically inclined readers: 

While driving home after thinking about your chapter on Grid of the Gods, I considered 
an infinite universe made up of stars at fixed grid points. Such a universe would have a 
number of stars that could be mapped, one by one, onto the set of integers; hence, the 
number of stars would be of (what mathematicians call) Cantor's infinite order No The 
number of lines from a given star to each other star would be infinite, also of order N o 
What is interesting to contemplate is that the number of lines from all stars to all other 
stars can also be mapped onto the set of integers with the appropriate algorithm. Thus, the 
infinity of lines from one star to all others is "equal" to the infinity of all lines from all 
stars to all others. But if you consider the number of lines through a given star that do not 
pass through any other star, the number of such lines is infinite of the order N i Therefore, 
in my infinite universe, there are an infinite number of lines from all stars to all others, 
but there are more lines from each star that do not pass through any other star! 

Digressions 
God not only places dice, but He also sometimes throws the dice where 
they cannot be seen. — Stephen Hawking 

Is it possible to consider the same sorts of questions posed in the Grid of the Gods 
assuming the lines you draw have a finite thickness? Can you modify the simulation 
codes to answer the following unanswered questions? What is the probability that a 
randomly selected chord of a square is shorter than the side of the square? If you 
were a gambling person, would you bet that a randomly selected cord in a triangle is 
smaller than all the edge lengths of the triangle? What would be your answer for a 
sphere or a tesseract (a four-dimensional cube)? 
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Strahlkorper 
The kinds of problems discussed in this chapter are related to what mathematicians 
call visibility functions and what mathematician Hermann Minkowski called Strahl-
korper (ray bodies). For more on information on Strahlkorper see Schroeder, Num-
ber Theory in Science and Communication.2 
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In principle . .. [the Mandelbrot Set] could have been discovered as soon 
as men learned to count. But even if they never grew tired, and never 
made a mistake, all the human beings who have ever existed would not 
have sufficed to do the elementary arithmetic required to produce a 
Mandelbrot Set of quite modest magnification. 

— Arthur C. Clarke, The Ghost from the Grand Banks 



To the Valley of the 
Sea Horses 

If one needed data to support the truism that money cannot buy happiness, one 
would need only look to the life of Herman Poole.1 At 65, just after the end of his 
seventh marriage and the beginning of his eighth, he was worth 16 million dollars 
and could not name a single week in his life as a happy one. 

But he did try. 
He did look. 
He went to Robofest mainly looking for a new toy or, at best, a new place to 

play at being a philanthropist. When he arrived on a warm, breezy afternoon, the 
Austin Coliseum echoed with children's laughter, the whir of gears, and the bubbling 
and bellowing of strange music. Bright orange extension cords held in place by sil-
ver duct tape crisscrossed the floor. Fragrant mixtures of cotton candy, hot dogs, and 
the latest pheromone colognes filled the air. 

Herman Poole's expression was inscrutable as he gazed at all the commotion. 
Silver Mylar blimps dive-bombed the long tables, and everywhere computer screens 
flickered. A robot hand crawled by, chased by a Mylar balloon shaped like a man. A 
man in a synth suit danced, and his motions made music. Amidst all this noise, color, 
and space, Herman felt small and lost. I'm like this place, he thought, a dismembered 
part of me here, part of me there. My life is many small compartments, most of them 
unhappy. 

He wandered out of the circus noise of the main hall and into a smaller, quieter 
area. To Herman's right, a pretty, young woman in pastel shorts demonstrated the 
latest in teledildonics. He thought she was a bit too obvious with her short shorts and 
perfectly manicured hair and nails. As she talked she kicked at the disembodied ro-
bot hand, which had somehow wandered into her booth. It scurried away to the left, 
where Herman saw other booths with book vendors, robot sculptures, Internet dem-
onstrations, and virtual cars. 

Near the corner stood a slightly soiled sign marked "Fractal Tours" in bright red. 
Beneath the sign was a PC on a long, battered table usually used for city garage 
sales, and on the monitor was a beautiful image. A geometrical pattern of some kind, 
it mesmerized Herman. An excited young black man was talking about the pattern. 
Four other people sat on rusty, dented folding chairs listening to the lecture. Herman 
sat on an empty chair and began to listen. 

The young man pointed at the monitor. "That beautiful image, ladies and gentle-
men, is a Mandelbrot set." Herman noticed that the man had said the last two words 
with a certain degree of reverence, almost awe. The young man went on to explain 
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that the shape was called a fractal because of its geometric intricacy. Amazingly, it 
was produced by a very simple formula, z = z2 + c. 

The man seemed to be looking directly at Herman. "It's a mathematical feed-
back loop," the man said. He stopped, as though he were so impressed with what he 
had just said that he had to take a deep breath. "The computer sticks in one value for 
z, and the equation squares it, adds a constant, and produces a new value. This new 
value is stuck back into the equation, and the process repeated hundreds of times." 
He paused again, taking another deep breath. "When you square the usual real num-
bers, nothing interesting happens. Stick in a 2, and you get 4. Stick in the 4 and you 
get 16. Larger and larger and larger. For complex numbers, however, the story's very 
different." 

"Complex?" Herman said, surprised at himself for interrupting the man's dem-
onstration. 

The young man stopped suddenly and pointed at Poole. "Didn't they teach you 
anything in geometry class?" 

Herman was silent. The young man sighed, himself a little embarrassed at hav-
ing alienated a member of his audience. "Complex numbers," the young man said, 
"have a real and an imaginary part. When you stick complex numbers into the for-
mula, they sometimes get larger and larger as they speed off like demons to infinity. 
For other complex numbers, the iteration, or repetition, of the formula doesn't pro-
duce exploding behavior." 

"How do you get the colors?" Herman asked, pointing to the display. 
"That's the easy part," the man said. "The rates at which the numbers speed off 

to infinity are represented as colors. For example, you can use bright colors to repre-
sent the fastest points." 

Herman realized that even though he didn't quite understand the explanation, 
the mathematics somehow produced a pattern so complex that humans couldn't have 
imagined such beauty, such detail, before computers came along with their fast num-
ber-crunching abilities. The patterns reminded Herman of something Jackson Pol-
lock might have done while high on LSD. 

The other people watching the display and listening to the young man's pitch 
seemed less impressed than Herman. A barefoot young woman with dishwater 
blonde hair got up and left. As she passed by, Herman noticed she smelled faintly of 
marijuana. One of the other people, a slightly paunchy, bald businessman, inter-
rupted the demonstration to ask about what kind of computer platform it was running 
on. Could it also run on a Mac? Could you print the pattern? The questions destroyed 
the beauty of the young man's spiel. The other two people left, as did the bald guy, 
who probably asked similar questions of all the demonstrators—perhaps to show he 
felt himself clever enough to be part of this subculture. 

Herman noticed that the young man lecturing on fractals wore a laminated 
"Demonstration" card on his denim jacket. The young man's name was Malcolm 
Caswell. The letters of his name were printed in an ornate, bushy-looking font. 

Herman said, "When I walked up, you had the Mandelbrot set on display. Now 
you have all these spirals. They're pretty. What are they?" 
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"That's a close-up of the Mandelbrot set, a magnification of a tiny part of the 
original." He pointed to little black specks within the spirals. "Each of these bumpy-
warty bits would look just like the original bushy shape if we magnify them. Cur-
rently we're looking at a section magnified 1,000 times. It's called the Valley of the 
Sea Horses because the spirals resemble sea horses' tails." 

The spirals, with their organic nodes and turns, enchanted Herman. There were 
white and green spirals upon aquamarine spirals in an endless, intricate cascade. 
Here and there was a touch of crimson. The colors were so vivid as to nearly make 
Herman weep. 

The computer was like a microscope opening a portal to a vast, unexplored, and 
unpredictable universe. Who would have thought such beauty could be hidden 
within what was initially so lumpy looking? How could such a simple formula pro-
duce an inexhaustible reservoir of magnificent shapes and forms? 

Herman's face had always been sharp-featured and deeply furrowed, but right 
now when he caught a reflection of himself in the monitor, his face seemed more re-
laxed. It must have been the invigorating day he was having. 

"Let's magnify this spot a bit more," Malcolm said, pressing a button on the 
keyboard. As Malcolm continued zooming in, one of the spirals in the sea horses' 
tails seemed to unfurl and blossom, exploding outward to angular infinity. It re-
minded Herman of ocean waves. He could almost smell the surf. The space was so 
vast! Freedom was the only word that came to Herman's mind. 

For a second, Herman thought he saw a sketchy image of a young woman 
lounging on one of the fractal arms in the Valley of the Sea Horses. Her long fingers 
trailed lingeringly over one of the spirals. Preposterous, Herman thought. When he 
blinked, she was gone. The only thing that remained were her hypnotic, almond-
shaped eyes—not on the screen before him but on the mental screen within his head. 
Herman looked around, but noone else seemed to have seen the beautiful woman. 

Other people had come up, pulled by the beauty of the Valley of the Sea Horses. 
Herman was lost in the intricacy of his thoughts and didn't notice them, as Malcolm 
moved the magnification up to 5,000 times, focusing on another Mandelbrot lump. 
Herman regretted the passing of the valley, but he listened to Malcolm again. One of 
the few constant pleasures in Herman's life was learning about something new, 
something mysterious. 

"Why, yes," Malcolm said, "fractals can exist in three dimensions, or more cor-
rectly, solids can have fractal dimensions. Let me show you a view of a fractal 
solid." He touched some keys and apologized for the slowness of his machine. Using 
just a 386, he was at the bare minimum needed for recreational mathematics. While 
he waited for the display, he said that fractals were a way of thinking, once you had 
seen them. 

"What do you mean?" asked Herman. 
"Well, fractals are everywhere—in the branching of the blood vessels that feed 

your heart, in the shaping of a snowflake, in Russian dolls within dolls. Once you see 
them, you see them everywhere: tiny structures within larger ones within still larger 
ones in a self-similar cascade." 
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Herman's eyes opened wider. "Can they exist across time?" 
"You mean like patterns in the world? Stock market rises and falls? Sunspots, 

electrical patterns of the heart? I don't know. I 've heard rumors, but never thought 
much about it." 

Herman looked at the messy table beside the young man, and his eye glimpsed a 
woman's photograph on the jacket of a book. 

"Who—who is that?" Herman said. The woman in the photo had beautiful al-
mond eyes and a smile so radiant that it put a lump in Herman's throat. Her hair cas-
caded like curly fractals about her shoulders. 

The young man grabbed the book, which was very dog-eared and full of book-
marks. "That's Kirsten Munchower. A fractal prophet of sorts. Wrote many books on 
fractals. Author of Computers, Pattern, Chaos, and Beauty, a best-seller in the tech-
nical world. She was a mathematician, mystic, and artist." 

"Was?" 
"Sadly, she died in her own computer lab," Malcom said, looking down. "Heart 

attack, the doctors said. She was so young. She was my age. Makes me feel inade-
quate, I 've done so little. If we only knew more about life." 

Herman's dream began then, and he dreamed and watched the fractal demon-
stration, and watched the demonstration and dreamed, until it was time to go home. 
Malcolm, who was glad to have sparked interest in another, gave Herman his busi-
ness card. As Herman turned to walk away, he noticed that the disembodied robot 
hand was threatening to knock over the soiled "Fractal Tours" sign. He watched as 
Malcolm gently picked up the appendage and sent it scooting away in another direc-
tion. 

It was three months before Herman called Malcolm. Herman was inquiring 
about the best over-the-counter system to display fractals, and wondered whether 
Malcolm would work for him as a paid tour guide. 

Malcolm was a poor but dedicated game designer and writer. He had worked 
hard to earn the free-lance life, and he wasn't about to go back to an office. Never-
theless, he told Herman what to buy and where, and even offered to be his Virgil in 
the Inferno of computer sales. They drove to a large store, and Malcolm realized 
then just how wealthy Herman was. It was vast, real money that trifled with Mal-
colm's ambitions. 

Herman bought a computer system that was more than the round-the-world tour 
Malcolm had bought himself two years before. That kind of money made Malcolm 
silent and timid, and Herman, who believed timidity was somehow equated with 
genius, began to think Malcolm a genius. So Herman grew expansive and told Mal-
colm his dream. 

"My life has been very unhappy," Herman said. "I know it should have been 
happy. I was born rich. I went to the best business schools. My first wife was even 
richer than I, and she died, leaving me everything. I 'm very good at making money, 
although I 've never enjoyed it. I keep doing the same things: making money, making 
joyless marriages, trying hobbies, spending time with other 'winners' like myself." 

"Iterations, like fractals," Malcolm whispered. 
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For a moment Herman didn't respond, and then he nodded emphatically. "Ex-
actly. Until I heard your talk I'd been trying to figure out my life. Was it a sine wave 
of ups and downs? Or was it just a squiggle? Then I realized it was a fractal." 

Malcolm's left eyebrow raised. "I had figured that out a long time ago," he said. 
"That's why I like some of the patterns. They quiet my soul when I gaze at them. I 
figure mankind developed mandalas because we couldn't do fractals." 

"No," said Herman, "I don't want a meditation aid. I can buy meditation aids. I 
want an operative way to change my life." 

"I don't follow." 
"Well, even though my life has been largely unhappy," Herman said, gazing off 

into space, "it has had—as is inevitable in all lives—moments of happiness. I want 
to find those, emphasize them, spend all my time there." 

Malcolm scratched his head. "Predicting the future seems unlikely, sort of bio-
rhythms for the nineties." 

"I don't want to predict the future. I want to pinpoint the past." 
Malcolm listened to the rest of what Herman had to say. It dovetailed with a 

long-standing dream of his, so Malcolm abandoned his freedom and began working 
for Herman night and day on a way to chart Herman's life. 

From time to time Herman's thoughts returned to the ephemeral vision he had 
had of the young woman, the fractal beauty he had come to think of as Kirsten 
Munchower exploring the fractal world in the computer display. He remembered ex-
actly how she had sat on one of the spiral arms, and he even tried to locate the pre-
cise region of geometric space in which he had found her. He tried magnifications as 
great as a googol, which would have made an atom larger than the universe if ap-
plied to a physical system. But he never saw her again. The space was too immense 
for such a search. He told noone of his vision and soon doubted he had seen her there 
at all. 

When Herman Poole was 72 and Malcolm Caswell was 42, and purists were 
pointing out that the twenty-first century didn't begin until the next year, the charting 
mechanism had been perfected. The research years had been good for Herman. The 
dull eyes of seven years before had been replaced by sparks of enthusiasm. He 
was—to his great surprise—much more wealthy now than before. Some of the stud-
ies of quasi-chaotic systems had had unforeseen applications in real estate and fi-
nance. In fact, after he completed his quest to understand all his past moments of 
happiness (what he thought of more and more as the philosopher's stone—much 
sought but seldom found), he intended to turn over his money engine to financing 
certain universities. He had discovered the secrets of money, and there was no rea-
son why they couldn't help others make a profit. 

Just as the years had been lush for Herman, they were lean for Malcolm. Mal-
colm's goals were different from Herman's. Herman wanted to discover which emo-
tions and thoughts in his life had come before moments of happiness. He wanted to 
study the intricate boundary between misery and happiness so he could bequeath to 
the world the secret of happiness. Malcolm, on the other hand, wanted to discover 
the secret of creativity. Malcolm had written two good short stories, painted a good 
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painting, and come up with a great game. But he had a hundred mediocre, derivative, 
awful experiences as well. If only he could learn the boundary conditions . . . . If he 
could learn when to proceed with an idea—when it would be great—then his life 
wouldn't be wasted. But the work was hard. He didn't like commitment and he 
feared failure. He had avoided marriage, deep friendships, permanent jobs, and even 
projects longer than 90 days before he went to work for Herman. The fact that he 
was working on another man's idea threatened to overwhelm him with depression. 
To conquer the depression he would work harder. 

They had begun to look more and more like Laurel and Hardy. Malcolm resem-
bled an unhappy Laurel, perhaps even a starving artist. Herman looked like Hardy— 
fatter and happier, ever more sure that the real secrets of happiness were about to be 
found. The charting mechanism they had developed would collect real-time data on 
Herman's life for further analysis, and also allow them to delve into the mysteries of 
his past. 

Herman suspiciously eyed the cable of wires that led from a cap to a computer 
unit that emitted faint beeping sounds. He walked closer to the cap. "You want me to 
put that on?" 

Malcolm smiled. "You didn't come just to look at it, did you?" He motioned for 
Herman to sit in the chair. "We won't be able to study your life until we perfect all 
this and do more experiments." 

Herman settled into a comfortable leather chair. He liked the smell of new 
leather. "I look like Frankenstein," he said, tapping the cap on his head. "What do 
you call this thing?" 

"A SQUID." 
"Doesn't much look like a squid." 
"S-Q-U-I-D," Malcolm said, adjusting the wires. "Stands for superconducting 

quantum interference device. It should be sensitive to tiny magnetic fluctuations in 
your brain. We're going to hook it to an electronic signal processor that can focus on 
any selected brain frequency, so we'll be able to lift a few memories from your 
brain's electrical and magnetic traffic flow." 

They tried the machine for several hours. Occasionally Malcolm had the 
SQUID function in "reverse" mode. Instead of merely monitoring the tiny magnetic 
fields, it would periodically give Herman's hippocampus a brief burst of highly fo-
cused waves to trigger memories. It was like momentarily rewinding a tape recorder 
and listening for a few seconds as it played a song from the past. 

"I can't figure this out," Malcolm said. "It's true that the more pulses I give to 
your hippocampus, the older the memory I trigger. But it's not a simple relation-
ship." 

Herman grinned. Had he really seen the relationship before Malcolm? "Give me 
5 pulses." 

"Hmmm, you suspect something, don't you?" Malcolm said. "OK, here goes." 
He placed his finger on a computer keyboard, typed a 5, and saw Herman's eyes di-
late. 

"I 'm walking down Fifth Avenue. I see an old man carrying a bassoon and look-
ing quite sad. Maybe it's because a pigeon just crapped in his instrument. I 'm on my 
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way to my banker." Herman looked at Malcolm. "That happened four years ago. 
Now gimme 8." 

Malcolm typed 8 on the computer keyboard, hesitated for a second, and then hit 
Enter. Nothing happened. He typed 8 again and pressed Enter. Again Herman's eyes 
dilated. 

"I 'm in bed with Sharon, my last wife. I smell her perfume, full of lemon grass 
and jasmine. I feel the cool satin sheets, but she's not interested in anything physical. 
She's yelling at me for leaving all my fractal books around the bedroom." Herman 
stopped himself. "I know the exact date because we filed for divorce shortly after 
that. It was five years ago." Herman rubbed his eyes and added, embarrassed, "It had 
nothing to do with these experiments or fractals. We would've broken up anyway. 
We didn't have much in common." 

"You seem tired," Malcolm said. "Let's experiment some more tomorrow." 
"No," Herman said. "I've got the pattern. You give me 1 pulse, and I have an ex-

perience from a year ago. You give me 2 pulses, and I experience something from 
two years ago. Three pulses makes me go back three years." 

Malcolm interrupted. "Yeah, but then it gets complicated. To go back four years 
you need 5 pulses. For five years, you need 8 pulses." 

Herman nearly ripped the cap off his head. "Don't you see it? You're supposed 
to be the mathematical genius! 1, 2, 3, 5, 8, 13, 21, 34 . . . It's a Fibonacci sequence." 

Malcolm's mouth hung open. "Of course. Today you are the genius! After the 
first two, every number in the sequence equals the sum of the two previous num-
bers." He paused. "Let's see, if I give you 55 pulses, you should experience some-
thing in your life from nine years ago." 

Herman's grin stretched from ear to ear. "I suppose if you gave me enough 
pulses," he said jokingly, "we could do some experiments in past-life regression." 

"We've quite enough to work on with your present life," Malcolm said before 
he realized it was a joke. He tried a witty comeback: "My only worry is that some-
day you'll get stuck in a moment in your past and not be able to return to the pre-
sent." 

Herman's smile faded. "Is that a real worry?" With his right index finger, he 
nervously started tracing patterns in the cool leather of the chair. There were some 
bad things in his past, some places he wouldn't send his worst enemy. 

"Nah, I doubt it. A bigger worry is that I'll type the wrong number on the key-
board, something too large." He paused. "But what's the worst that could happen? 
You'd just be momentarily regressed to an embryo." 

Herman tried to laugh it off. "You had better put some limiting numbers in that 
program code of yours. This is my life you're playing with." He stopped and then 
smiled. "I wouldn't want you accidentally typing some negative numbers." 

Although on this day they had a major breakthrough, the experiment was not as 
easy going as they thought. For one thing, the Fibonacci sequence allowed them 
only to approximately locate events to the nearest year. They had to find a way to lo-
calize events more precisely in time. The larger problem, however, was that the brain 
was so noisy that Herman and Malcolm only picked up brief incidents, memories, 
occasional events that they could understand and analyze. For all their dreams to 
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reach fruition, the SQUID would have to somehow be perfected. They needed more 
data. 

It was 2010 and old men regretted that we had not lived up to Arthur C. Clarke's 
prophecy. Herman Poole was 82 and Malcolm Caswell was 52. The memory device 
had been perfected. Herman was tired. Ten years ago he had felt that the secret was 
about to be uncovered. Now he was ready for the game to end. He had managed a 
ninth marriage to one of the scientists. He had divorced her when he realized that she 
had been motivated by pity rather than greed. He would have ended the quest, but 
had no other life to go to. All he had was momentum. 

He no longer had the great fortunes of ten years ago. Most moneyed people had 
made out well in the Belize conflict of '05, but his money had been in the wrong in-
dustries. He had gambled that humankind had learned kindness, that a certain gentil-
ity had developed. But as usual the forces of cruelty and stupidity had won out. 

Malcolm had changed necessity into a sort of desperate virtue. He was close to 
abandoning all hope of finding the secret of creativity for himself, but with the en-
ergy that comes to men like a second wind in their fifth decade, he hoped the work 
that made him ragged might bring about a transpersonal good. Herman and Malcolm 
began to scan Herman's past. 

They had found that they could more easily catalog Herman's memories and 
distinguish real events from the rest of the noise in his brain by first having Herman 
produce mu waves between 8 and 13 Hz. (This took Herman a few days of practice, 
but he soon learned to generate mu waves whenever he wanted to.) These brain 
waves arose at a few frequencies within the alpha waves produced by a wakeful but 
relaxed brain. Malcolm told Herman that mu waves were the resting rhythms gener-
ated by neurons in the sensorimotor cortex, a diffuse region of the brain that lay on 
top of the head, between the ears. 

They used a neural network running on IBM's latest soda-can-sized supercom-
puter that learned to recognize the different brain patterns that occurred prior to each 
of Herman's memories. Thus they could predict, most of the time, whether a mem-
ory would be happy or sad before Herman actually had the recollection! They were 
now able to localize events in time with greater precision using their joint discovery 
of fractal Fibonacci numbers, which allowed them to probe between the integers. 

Still, dissecting the memories and emotions, and cataloging the intricate pat-
terns, wasn't easy. The information didn't seem to reside in any of the brain's well-
charted magnetic and electrical pathways. Many memories seemed to be at frequen-
cies higher than 30 Hz and were easily lost amid the rest of the brain's noisy 
electrochemical chatter. 

Herman and Malcolm agreed on one thing: The technological forecasters of the 
past few decades had been correct. To imagine what computer technology would be 
like in the 2010s, the futurists had said, one had only to assume infinite computa-
tional power for free. It turned out to be true and, as a result, Herman's computers 
were powerful enough to isolate most of the important brain signals from the noise. 
The SQUID cap was now reduced to a narrow, fabric headband holding three post-
age-stamp-size receivers that could instantly triangulate on any relevant portion of 
Herman's brain. 
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Because computer hardware was virtually free, and computer memory and com-
putational power virtually infinite, computer software was now the bottleneck in 
their operations. Luckily, reduced instruction set computing (RISC) had been re-
placed by hierarchical instruction set computing (HISC). The computing language 
C++++, now the rage, enabled Malcolm to easily make use of other program mod-
ules on other computers through the airwaves. But even with all this, even though 
they seemed so close to their dream, insufficiently complex software still held them 
back. Although they could plot all the changes in Herman's objective universe, they 
couldn't derive an equation or develop a fully functional neural net that could yield 
and interpret all the patterns. 

Malcolm scratched his head. "If only we could get our hands on the latest FISC 
programs, we might have the needed complexity . . . " 

"FISC?" Despite his age, Herman's dark eyes had the same penetrating light 
they always had. In his right hand he held a steaming cup of good Jamaican coffee to 
jump-start his heart. 

"Fractal instruction set computers," Malcolm said wistfully. "With a single 
command, I could explore levels of complexity I can only dream of now." 

"If you need more money—" 
"Money's not the problem," Malcolm said. "It's just not available to buy yet." 
"I think we're missing something very basic," Herman said in a scratchy voice. 

"We've been focusing on brain states. Maybe we've got to focus on—" He paused. 
"On something like spirit." 

"Getting religious in your old age?" Malcolm kidded. 
Herman gazed into the wisps and eddies of steam coming from his coffee cup. 

"How about hypnotic regression while using the SQUID?" he asked. 
"Let's wait a few months. The new FISC operating systems should help." 

Herman Poole didn't celebrate his 100th birthday because he had entered a 
coma the week before. One of the plasmid diseases that would cause future histori-
ans to label the 2030s the "Plague Decade" had done him in. 

Malcolm Caswell was due to receive yet another honorary doctorate on that day, 
but chose instead to spend it with his friend of nearly 40 years. The University of Be-
lize was giving 54 honorary doctorates for Statehood Day. Malcolm didn't know that 
the award praised him for his "endless creativity in finding new ways to model 
neurophysiological states," a phrase that biographers would unfailingly come to re-
peat. Instead, he watched his friend dying. The physicians told him Herman would 
die within a day. 

Malcolm shivered as he gazed at the plastic tubes in Herman's natural and hu-
manmade orifices. The tubes sustained Herman's life like a parachute slowing the 
descent of a falling body. The tubes delayed the descent into oblivion, but could not 
stop it. Herman dozed in and out of near consciousness as condensation collected on 
tubes in his nose. 

"Any chance he can recover?" Malcolm asked Dr. Yamasoto, as he shifted his 
gaze nervously from Herman to the tubes to the doctor. Malcolm was wearing a hos-
pital gown to protect Herman from any germs he carried on his clothing. On Mal-
colm's head was a plastic hospital cap. 
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"Unlikely," Dr. Yamasoto said. "All the signs suggest brain injury." Herman's 
pupils were slightly dilated and did not constrict when Yamasoto shined a light into 
them. He had no reflexes. "When we tried to take him off the respirator," Dr. Yama-
soto said, "his body made no attempt to breathe on its own." 

"What does that mean?" Malcolm asked. The antiseptic, phenolic odor of the 
hospital made him wrinkle his nose. 

"The contraction of the diaphragm is a primitive brain function orchestrated by 
cranial nerves 3, 4, and 5. The fact that he couldn't breathe on his own suggests ex-
tensive neurological problems." 

Could I have caused any brain damage with all our experiments? Malcolm 
wondered. No, Herman was old. He had to die one day. We all have to die. 

An EKG machine in the corner of the room started to show chaotic electrical ac-
tivity in Herman's heart. Malcolm tensed as he gazed at an amber bottle of fluid 
hanging from a pole by Herman's bed. It fed an IV line in Herman's right arm. 

Malcolm stayed for another half hour, and sthere were a few moments of hope. 
Herman's left eye occasionally moved from side to side, although he did not appear 
to be aware of his surroundings. His diaphragm started rhythmic contractions, so he 
was removed from the respirator. But his favorable progress did not continue. He 
drifted in a twilight world, straddling life and death like a tightrope walker. 

Malcolm gazed at Herman's blood, more brown than red, flowing through a 
flexible exsanguination tube and into a humming bypass machine. For some reason, 
the sound reminded Malcolm of the chanting of monks. 

"Hello," an Asian nurse said to Malcolm. She turned on an array of halogen 
bulbs on the ceiling to help her see more clearly. She leaned over Herman's face, ap-
plying a lubricant to his eyelids. 

"What's that for?" Malcolm asked. 
"It prevents the eyelids from sticking together." 
"Why's that a problem?" 
"Comatose patients don't blink. They also secrete fewer tears, even when their 

eyes are closed." 
A wave of sadness passed over Malcolm like a dark swell of ocean water. Dr. 

Yamasoto returned and filled a syringe with a cocktail of free radical scavengers and 
lazeroids and then injected the solution into a port in Herman's intravenous line. 

Blood, heated to 99 degrees, moved with phenyl tertiary butyl nitrone through 
the IV lines and into Herman's body through a vein in his arm. The nurse dimmed 
the lights. Before Malcolm's eyes adjusted to the reduced illumination, all he could 
see were the green and red blinking lights on the cardiac monitors. Herman Poole, 
multimillionaire, was almost invisible amidst the Christmaslike twinkling. 

"Dr. Yamasoto," Malcolm said, "I think I know something that might make his 
passage easier." The doctor listened to and agreed with Malcolm's proposal. It was 
simple enough to feed in the data. Malcolm wished he had thought of it earlier. 

Malcolm Caswell fed Herman Poole his happiest moment. A few months be-
fore, while doing a series of zooms on the complicated manifold that represented 
Herman's subjective universe, they had found the brightest and most beautiful point. 
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"I think he's reacting to it," said Dr. Yamasoto. "But without your monitor I 
don't know how he's reacting." 

"He seems to be reacting well," said Malcolm. "Look at his smile." They both 
gazed at Herman's happy face. Both his eyes were dilating. 

"What's he experiencing?" asked Dr. Yamasoto. 
"I don't know." Malcolm gazed into the red and green twinkling of the hospital 

monitors. "We know it's a happy moment, but we hadn't characterized it." 
Herman was pulling up a dented, rusty folding chair at Fractal Tours. A young 

black man was demonstrating a particularly beautiful section of the Mandelbrot set 
known as the Valley of the Sea Horses. With its strange, knotty spirals it was the 
most beautiful thing Herman had ever seen. It brought him a sudden sense of whole-
ness. 

"He is dying now," said Dr. Yamasoto. 
Herman leaned forward, and the screen dissolved, and he flowed into the beauty 

and the strangeness. Swirls upon swirls upon swirls. The lovely pounding of the surf 
was the only sound. He smiled as a pleasant ozonic smell of low tide filled his nos-
trils. There is a fractal heaven, he thought. This is my new home. 

From the corner of his eye, Herman saw the woman with curly, fractal hair and 
beautiful, almond-shaped eyes. As soon as she turned her little boat toward him, 
Herman felt a giddy excitement. It must be ecstasy to be riding on this cool, vast 
ocean in such a small craft! A slender spiral trailed its fractal tendril over her smooth 
skin, and she laughed. 

"He's gone," said Dr. Yamasoto. "It's sad you never found what you were look-
ing for." Malcolm slowly nodded. 

The infinite spiral waves split light into a million colored sparkles as the woman 
guided her craft toward Herman and waved. Herman thought her smile was radiant. 
He waved back and then looked above her head to the twinkling specks of black. 

"Freedom," he whispered, and then he smiled as fiery orange light reflected off 
spirals on tessellated water, challenging the azure of an endless fractal sky. Herman 
wanted to say something to her, something profound, something that adequately ex-
pressed his emotions. His heart seemed to beat faster, and suddenly he turned to her, 
and gently held her hand. 

"I know," she whispered, giving his hand a squeeze. Herman thought she looked 
like a goddess in the glorious explosion of rosy light. Her hand felt warm, and he 
could almost feel a cool, tender breeze. "Let's go," she said, tenderly guiding him 
into her craft. 

Together they gazed into the shining and limitless heaven. The craft turned and 
pointed toward a symmetrical collection of intertwined aquamarine spirals. They 
were moving towards open sea. 

Tears in his eyes, Malcolm began removing the equipment attached to Herman's 
body. There was a hush in the hospital room. Time to go, Malcolm thought. Turning, 
he walked down the hallway, his eyes sandy, his bones aching. His feet were still 
clad in elasticized hospital slippers, and they made a scratching sound, a sound al-
most like the surf in a faraway sea. 



C H A P T E R 

The digits ofn beyond the first few decimal places are of no practical or 
scientific value. Four decimal places are sufficient for the design of the 
finest engines; ten decimal places are sufficient to obtain the 
circumference of the earth within a fraction of an inch if the earth were a 
smooth sphere. 

— Petr Beckmann, A History of Pi 



The Million-Dollar, 
Trillion-Digit, 
Pi Sequencing Initiative 

Ants, God, and Pi 
Whenever I hear someone mention n—the ratio of the length of the circumference of 
a circle to its diameter, and the most famous mathematical constant of all time—I 
think of ants. The reason for this will become clear as you read further. 

As background, the digits of the transcendental number1 never end, and no one 
has detected an orderly pattern in their arrangement. Here are a thousand digits of n 
that I computed using the computer program at the end of this chapter: 

pi=3.141592653589793238462643383279502884197169399375105820974944 
5923078164062862089986280348253421170679821480865132823066470938 
4460955058223172535940812848111745028410270193852110555964462294 
8954930381964428810975665933446128475648233786783165271201909145 
6485669234603486104543266482133936072602491412737245870066063155 
8817488152092096282925409171536436789259036001133053054882046652 
1384146951941511609433057270365759591953092186117381932611793105 
1185480744623799627495673518857527248912279381830119491298336733 
624406566430860213949463952247371907021798609437027705 3921717629 
3176752384674818467669405132000568127145263560827785771342757789 
6091736371787214684409012249534301465495853710507922796892589235 
4201995611212902196086403441815981362977477130996051870721134999 
9998372978049951059731732816096318595024459455346908302642522308 
2533446850352619311881710100031378387528865875332083814206171776 
6914730359825349042875546873115956286388235378759375195778185778 
0532171226806613001927876611195909216420199 . . . 

If the digits were random,2 we would expect to find that, among other things, each 
digit occurs with equal frequency. And this is precisely what we find. For example, 
there seem to be about the same number of 3's as there are l 's, 2's as 4's, 0's as 9's, 
and so on. 

The quest to know n in as much detail as possible seems almost spiritual. Hu-
mans, through the ages, have passionately attempted to calculate more and more dig-
its. In 1579, Viete computed the value of n to a remarkable ten figures, and today hu-
mans know the value of n to more than 1 billion digits, thanks to modern computers. 

When I see thousands of digits of n spread out before me on a computer print-
out, I defocus my eyes for a few seconds and imagine little ants swarming over the 

5 9 
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pages, each ant with a little painted digit of n on its abdomen. The ants begin to line 
up in rows along the page as they march in mindless synchrony. If ant number 100, 
carrying the 100th digit of n, were to switch positions with ant 101, who would 
know? Who would care? As I mentioned, the digits of n appear random, and cer-
tainly no calculations we humans perform using n would be affected by such a minor 
change. If God were a geometer, would he or she care whether some of the digits of 
n were switched? Would God return ant 101 and ant 100 to their original positions 
and set them marching again in perfect order, or would God just chuckle and let 
them parade along, happily, but out of order? Do the digits of n show no more pat-
tern than would be produced by a gambling God playing a ten-digit roulette wheel 
for a long time (perhaps before our universe was created in the Big Bang)? 

I feel more comfortable about the enormous number of digits of n by thinking of 
a surreal ant colony that carries all digits of n on the ants' backs. Each ant carries a 
single digit. Again, think of the ants lined up in rows on a page. The first ant has the 
first digit of n, a 3, painted on its back. The next has a 1; the next, a 4; and so on. We 
want all the ants to fit on a single page, so some ants will have to be smaller than oth-
ers. Let's assume that the first ant with a 3 is very large—1 inch in length. If the body 
of each ant is half as long as its predecessor, the complete value of n with all its dig-
its fits on a single page of ants, but not even the most powerful electron microscope 
will reveal the last digit. (The reason all the ants can fit on a page is because the infi-
nite sum 1/2 inch + 1/4 inch + 1/8 inch + . . . is equal to 1 inch.) 

The ants can compress the infinite digits of n in another way. Let us imagine 
that the ants can speak by manipulating their crude jaws. The first ant in the long pa-
rade of ants screams out the first digit, "3." The next yells the number on its back, 
"1." The next yells "4," and so on. Further imagine that each ant speaks its digit in 
only half the time taken by the preceding ant. Each ant has a turn to speak. Only the 
most recent digit is spoken at any instant. If the first digit of n requires 30 seconds to 
speak (due to the ant's cumbersome jaws and little brain), the entire ant colony will 
speak all the digits of n in 1 minute! (Again, this is because the infinite sum 1/2 min-
ute + 1/4 minute + 1/8 minute + . . . is equal to 1 minute.) 

Astoundingly, at the end of the minute, there will be a quick-talking ant that will 
actually say the "last" digit of 7t! The geometer God, upon hearing this last digit, 
may cry, "That's impossible, because n has no last digit!" 

The Grand Pi-Sequencing Project 
Pi is not the solution to any equation built from a less than infinite series 
of whole numbers. If equations are trains threading the landscape of 
numbers, then no train stops at pi. — Richard Preston, 1992 

My fascination with n stimulated me to conduct the following survey of scientists, 
mathematicians, students, and even science-fiction writers. Before reading their an-
swers, how would you answer the following? 

1. Would you be in favor of a project to calculate 1 trillion digits of 7t? 
2. Would you like the National Science Foundation (NSF) to fund such a project at 

1 million dollars? 
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3. If, as a result of this study, the distribution of digits in n were found to be non-
random (that is, clumpy, nonuniform), would you consider this to be a profound 
finding? 

Interestingly, such a task is not beyond the realm of possibility. In 1989, the 
Chudnovsky brothers, two Columbia University mathematicians, computed more 
than 1 billion digits of n using a Cray 2 and an IBM 3090-VF computer. Their 
1,011,196,691 digits would stretch 1,580 miles if printed using this typeface. Toward 
the end of the summer of 1991, the brothers had computed n to more than two billion 
digits. 

A Rupture in Geometry 
Most numbers are "transcendental. " Very informally, this means that they 
lack a simple definition. Most numbers with names are not of this variety, 
so 2, V3~, and 7/5 are not such numbers. Indeed, most people only know 
the names of one or two transcendentals: the best known is n, the second 
is e. So many numbers are transcendental that if all the numbers were put 
in a barrel, it is good as certainty that the first number pulled out would 
be so. (In such a lottery always bet on the transcendentals.) 
— Peter Borwein, Science, 1994 

Before we look at the results of the survey, I think many of you would enjoy addi-
tional background on n to fully appreciate the respondents' answers. First, ask your-
self, what is the importance of knowing the decimal values of n? Obviously you do 
not need to know the value of n at all to draw a circle, but n does appear in many 
kinds of geometrical engineering calculations. Note that the ancient Greeks and Ital-
ians did just fine when the decimal value of n was known only to a few decimal 
places. They built perfectly stable, beautiful buildings; drew precise circles (Figure 
7.1); and made many mathematical discoveries. 

In one of his greatest books, The Measurement of the Circle, Greek mathemati-
cian Archimedes proved that the circumference of a circle is less than 3+1/2 and 
greater than 3+10/71 times its diameter. A refined value of n was obtained by the 
Chinese much earlier than in the West. For example, some scholars have suggested 
that at the time the Greeks knew n to three digits, the Chinese knew the value to two 
or three additional digits. 

Normally we think of n simply as the ratio of the circumference of a circle to its 
diameter. So did pre-seventeenth-century humanity. However, in the seventeenth 
century, n was freed from the circle. Many curves were invented and studied (such 
as various arches, hypocycloids, witches . . . ) , and it was found that their areas could 
be expressed in terms of n. Just look in any geometry handbook today. Why does n 
seem to be associated with so many curves seemingly unrelated to the circle? Do the 
measurements of the lengths and areas of all simple curved shapes involve 7t? 

The number n, having roamed far from its original association with the circle, 
finally ruptured the confines of geometry altogether. Today n relates to unaccount-
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FIGURE 7.1. Circles within circles, by Renaissance architect Jan Vredeman de Vries. 

ably many areas in number theory, probability,3 complex numbers, and simple frac-
tions, such as 7i/4 = 1 - 1/3 + 1/5 - 1/7 . . . . AS another example of how far n has 
drifted from its simple geometrical interpretation, consider the book Budget of Para-
doxes, where Augustus De Morgan explained an equation to an insurance salesman. 
The formula, which gave the chances that a particular group of people would be 
alive after a certain number of days, involved the number 71. The insurance salesman 
interrupted and exclaimed, "My dear friend, that must be a delusion. What can a cir-
cle have to do with the number of people alive at the end of a given time?" 

Three other 71 facts for you: 

1. Thirty-nine decimal places of 71 suffice for computing the circumference of a 
circle girdling the known universe with an error no greater than the radius of a 
hydrogen atom! 

2. The first six digits of 71 (314159) appear in order at least six times among the 
first 10 million decimal places of 71. 

3. In 1844, Johann Martin Zacharias Dase (1824—1861), a human computer, sup-
posedly calculated 71 correctly to 200 places in less than two months: 

7i = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 
08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 
84102 70193 85211 05559 64462 29489 54930 38196 

To compute n Johann Dase used: 71/4= a r c t a n ( l / 2 ) + arc tan( l /5) + 
arctan(l/8) . . . with a series expansion for each arctangent. Dase ran the 
arctangent job in his brain for almost two months. 
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Survey Results 
We finally discuss the results of my survey. How do your own answers compare with 
the following? Do you think most respondents supported the project to sequence 7t? 

I was startled to find that the majority of mathematicians and scientists were not 
in favor of a project to sequence the first trillion digits of n. Those against the project 
outnumbered those for the project in about a 4-to-l ratio. In addition, a larger 5-to-l 
majority was against the government funding the project at a million dollars. 

As to the question of the importance of finding nonuniformity of the first trillion 
digits—for example, finding twice as many O's as l 's—about 50 percent of the re-
spondents thought this was profound. Some mathematicians from the Massachusetts 
Institute of Technology (MIT) said they would consider it "shocking" and profound 
if the first trillion digits of n were found to have a "non-normal" frequency distribu-
tion. (A normal number is defined as a number in which every possible block of dig-
its is equally likely to occur; see previous endnote.) In other words, if there was a 
vast predominance of any one digit, or even a significant nonuniformity, they would 
consider it shocking. Many respondents suggested it was impossible to determine 
whether the digits were nonrandom because even in a trillion truly random digits, all 
sorts of patterns can appear to arise. I discuss this later. 

Those in Support of the Sequencing Project 
What follows are excerpts from some of the interesting comments I received from 
scientists, mathematicians, and science-fiction writers around the world regarding 
the 7i sequencing project. I thank them for permission to reprint excerpts of their 
comments here. First we examine the comments of those who supported such a 
grand initiative. 

Many respondents indicated the project would be of value if it were done as an 
effort to research new techniques in computing, memory storage, and related com-
puting issues. Chris Henrich wrote: 

As a computer engineer, I support the project. It would test several aspects of a computer 
system: correctness of software, reliability of hardware, reliability of storage media, and 
organization of a large-scale activity. One million dollars seems a small pricetag. If we 
keep within budget, we would compute 1 million digits per dollar. Like everyone else, I 
do not have any ideas about the distribution of digits in n. A million dollars spent upon 
getting such ideas would be a million dollars spent well. 

Bill Beaumont, from the University of South Australia, wrote: 

It seems to me that a trillion digits of n would be a valuable resource well beyond their 
generation. Checking to see whether or not they were random would produce a host of 
new techniques in statistical tests for randomness, since the sequence being tested is 
much longer than any that has been available before. It would extend spectral analysis 
techniques, for example. Checking just an ordinary random number generator for ran-
domness is already quite challenging. Exhaustively checking a trillion-digit sequence 
would be mind-boggling. 
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Don Webb, a science-fiction writer from Texas, is in favor of such an initiative 
for two reasons. He writes: 

I'm more or less a neo-Platonist. First, I think that mathematical phenomena give insight 
into the deep structure of the world of thought as well as the material world. They provide 
a place of anagogic insight. Such a basic ratio as n provides a great deal of philosophical 
fuel. Second, I've yet to see any "pure" research that didn't pay off in some interesting 
tool for daily life. This mystery of achieving something powerful and useful while seek-
ing some unmanifested intellectual concept is hard to explain but wonderful. Seek after 
the mysteries! 

I asked Don Webb whether he would like the NSF to fund such a project at 1 million 
dollars. His response was: 

Although as a taxpayer I'm sure we could get a better bid from the Chudnovsky brothers, 
I would say "yes." Of course it would be shot down in Congress. How do you sell a thing 
of romance to men of musty minds? 

Moshe Gerstein would support the project for "national pride only, to prove that 
it can be done." 

Dr. Gabriel Landini, an expert on the practical application of fractals and mem-
ber of the Oral Pathology Unit in the School of Dentistry at the University of Bir-
mingham, writes: 

Yes, I would think that computing the first trillion digits of n would be an interesting task 
to conduct. I have the impression that this type of project is something that sooner or later 
is going to be done, but is it actually possible? A million dollars for such a project appears 
quite cheap. It would be 1 x 10" 6 of a dollar per digit, or a million digits per dollar. 
However, there is a double problem: Is the problem worth studying? What else could be 
done with that money? I do not think that there will ever be a consensus on what research 
money is worth spending. What a research group considers "interesting" may be a waste 
of time and resources to somebody else. Many would argue that spending 1 million dol-
lars on a project against malaria or global warming, or to improve education, or to fight 
crime would be much better spent than on "a series of numbers" for which a group of sci-
entists has a particular interest. But what about the parallel activity that is generated in 
such a project? The "unexpected"? There is no doubt that solving problems like this pro-
motes research into new algorithms or new computer architectures, and these may be ap-
plicable in other different and probably distant problems. 

Yes, I believe in basic research. The other day, looking at a screen-saver on a col-
league's computer display made me think of all those millions of CPU cycles lost on 
"nothing" (apart from the higher electricity bill). What about a "huge" parallel computa-
tion using the entire Internet? This would be similar to finding the area of the M-set using 
the Internet, as Jay Hill and Yuval Fisher are doing. What about a change of policy on the 
use of the Internet where you must "pay" for using the 'net by allowing others to share 
your own machine's unused computing cycles? This may help in the n project. 

David Fowler, of the University of Nebraska-Lincoln, writes: 

I would like someone to fund this. One million dollars is about a dime per person from 
New York City, not that most New Yorkers would give a dime to know the value of n to 
any number of digits. I'm concerned about the attitudes toward "curiosity-driven" re-
search, for example, by Senate funding committees. To me, it is very important to main-
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tain a certain level of curiosity-driven work. A n sequencing initiative might seem frivo-
lous to many people outside mathematics and also to many mathematicians. The recent 
New Yorker article on the Chudnovsky brothers made clear the difficulty they've had get-
ting funding. I think that we should have some exploratory missions like this. Certain 
fractal explorations should also be undertaken. Also, of course, we should sequence the 
number e. 

David adds: 

I think that our human role on this planet should be to try to understand the complexity of 
existence. What sort of explanations would we have without mathematics? 

Those Against the Sequencing Project 
As I mentioned, most respondents were against the sequencing project. Anton Sher-
wood, Libertarian candidate for California Assembly, District 12 (San Francisco), is 
against the public funding of such a project. He says, "If you want to do it without 
the taxpayers' help, I might kick in a dollar." 

Professor Mike Frame from Union College was one of many mathematicians 
who did not support the project. He writes: 

Given the current NSF budget outlook, I can't see why a million dollars should be in-
vested to find a trillion digits of n (even though a million digits per dollar is a pretty good 
return). For most irrational numbers, I believe the digit sequence should be "random" (in 
terms of algorithmic complexity), but of course n isn't just any number. Could the geo-
metrically natural form of its definition give rise to an eventual departure from random-
ness? Since nothing unexpected has been found in the several billions of computed 
digits, this suggests that if there is a connection between geometry and digits, it is subtle 
in human terms. Carl Sagan's Contact notwithstanding, I don't see what a departure from 
randomness in the digits of n would tell us. Since I'm a geometer and not a number theo-
rist, you should apply an appropriate filter to my comments. 

Although many mathematicians were against funding the project, some com-
mented that they would support funding of the project more than they would support 
a project for studying the Mandelbrot set, a famous fractal object. Others said they 
did not favor the project but had no objection if the Chudnovsky brothers wanted to 
carry out such a task. 

John Wilson writes: 

I would find the discovery of patterns interesting, but there would be no guarantee that 
any patterns found wouldn't be broken after the trillion-and-first digit. I think the 1 mil-
lion dollars could be better spent on things such as AIDS research, genetic engineering, 
or controlled fusion. 

David Rusin, from Northern Illinois University, writes: 

One million dollars would support at least half a dozen people like me over the summer, 
and I assure you we could produce much better math. I can't imagine anyone with sway 
in the NSF putting more than a sawbuck into this project. (Funding the development of a 
good machine capable of doing this might be of some interest.) 
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Daniel Winarski from Tucson, Arizona, did not agree that n is an important 
number. He believed that n was just the sum of the infinite series n = 4 x (1 - 1/3 + 
1/5 - 1/7 + . . .). There are, of course, an infinite number of other constants derived 
from other series. He says: 

Why is 71 important? Because the Greeks related it to the diameter of the circle millenia 
ago. But now it's time for a change. 

Thomas Ward from Ohio State's Math Department writes: 

No, no, no, no. Apart from the terribly narrow interest of the project, the idea of million-
dollar math projects in a country filled with bright Ph.D.'s who cannot get $30,000 post-
docs is ridiculous. 

Hugh LaMaster from NASA writes: 

I would rather see the 1 million dollars used to support mathematical researchers, rather 
than this kind of project. Now, don't get me wrong. Sometimes, "Big Science" projects 
are the only way to get support for researchers, and basic research, so if the 1 million dol-
lars is actually going into mathematicians' salaries, then fine. It is unfortunate that it is 
much easier for politicians and the general public to understand big projects than basic 
research, and basic research is really suffering today. But, it seems to me that it would be 
very hard for the public to get excited about this project. Who needs more than five or six 
digits of 71 in their daily lives? 

As for funding of the project, Hugh LaMaster writes: 

I would not be in favor of funding this project because I think it can be accomplished "for 
free" using spare CPU cycles on existing machines, and in any case the cost seems exces-
sive to me, considering that the significance would be difficult to interpret. 

Arlin Anderson from the Intergraph Corp. in Huntsville, Alabama, writes: 

It would cost you almost the entire million dollars just to store the answer! Since the 
computation can be done, I am sure someone will eventually do it. I support research, but 
I would rather hunt for an odd perfect number, or compute 1 + 2~3 + 3~3 + . . . to about 50 
digits and see if I could find a closed-form expression for the limit. (Note: 1 + 2~4 + 3~4 + 
. . . has been done. It is tt4/90, which is why I find 1 + 2~3 + 3~3 + . . . all the more in-
triguing.) Even though it may be difficult or impossible to demonstrate that it has random 
digits, we can show that a particular pattern is "statistically significant" if it satisfies cer-
tain mathematical criteria. 

Simon Bradshaw from the United Kingdom writes: 

I would not like the NSF to fund such a project for 1 million dollars because, given the 
established trend in computer technology, such a project will cost $500,000 next year, 
and $1,000 in 2004. Unless there is a demonstrated need to know this information, its de-
termination should wait until it is cheaper. 

Randomness 
Many respondents had difficulty with the question of randomness in the digits of n. 
In fact, many said the question was meaningless. Others said it would be possible to 



THE M I L L I O N - D O L L A R , TRILLION-DIGIT , PI S E Q U E N C I N G INITIATIVE 67 

apply the same kinds of statistical tests to n as computer scientists and mathemati-
cians apply to random number generators in an attempt to see whether it would make 
a good random number generator. Still, most agreed the interpretation of any find-
ings would be very unclear. 

Tim Chow from MIT notes that there is no way a finite number of digits of K 
can prove its "nonrandomness." All kinds of patterns can appear in a trillion num-
bers, but they do not prove that the numbers are nonrandom. However, if someone 
proved that the digits of 71 were "nonrandom" in some suitably precise sense, Chow 
thinks it would be "interesting and deep, though not necessarily important." He be-
lieves the usefulness of such a proof would depend on what mathematical techniques 
were used, and whether or not they generalized to other areas of mathematics and 
human endeavor. 

Alon Drory also noted that we cannot determine whether an infinite-digit num-
ber is random. For example, he noted that random phenomena do produce dumpi-
ness as the result of statistical fluctuations. Because n is infinite, any string of digits 
has a nonzero chance of being found in it. In fact, for example, it is certain that 
strings of 11111 's of any finite length will appear in an infinite random-digit number. 
Alon writes: 

If the digits of n were found to be nonrandom, you might be able to describe them with a 
finite formula. The implications for mathematics would be certainly amazing, but I don't 
know about the world. (It would be equivalent to a proof that the axioms of the real num-
bers are inconsistent, since it would disprove that n is transcendental, which is a basic 
mathematical theorem.) 

When I asked Alon Drory what he would say if n suddenly turned to all zeros 
after the trillionth digit, his response was: 

If 71 did run out totally after some digit, n would be a rational number. This has been 
mathematically proven not to be the case. If finding a trillion zeros means that all the re-
maining digits are also zero, this is logically equivalent to assuming that tt is what it has 
been proven not to be. This in turn would mean that the real numbers are an inconsistent 
logical system. It is a theorem in logic that, in logically inconsistent systems, you can 
prove anything in this system. In particular, note that the algorithm used to actually cal-
culate the digits of tt relies on the theory of real numbers, so if this theory is logically in-
consistent, there's no reason for one to believe that the algorithm means anything. We are 
locked in a logical contradiction. 

George Schmitt of the Connection Machine Facility at the Naval Research 
Laboratory suggests that if the digits of 71 to some finite length appeared to have 
some sort of strange distribution, there might be something interesting behind it. He 
writes: 

Of course further study of the first 100 trillion digits of K would have to be done to deter-
mine what is really going on. I think this problem receives far too much attention. I sug-
gest instead that the NSF fund the exploration of the other natural constant, e. 

V. Guruprasad from IBM writes: 

If 71 ceases to be random after some trillionth digit, hardly any everyday physics would be 
directly affected. It might have a terrible impact on some QCD computation in quantum 
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physics, it might make it more chaotic, in more than one sense, but those things can't af-
fect the world "today." It would take at least a couple of decades before there was any 
real effect on mortals. 

Tom Hayes, a graduate student at the University of Chicago Mathematics De-
partment, writes: 

Even if n starts with statistically unusual digits, so what? While this might be an interest-
ing fact, a proof would be much more interesting, and even that, although perhaps beauti-
ful, would not be of much real use. 

Matthew M. Conroy writes: 

If the last "7" digit in Tt were found to occur around 10 billion digits into the sequence, 
and no more up to the next trillion, one cannot conclude much about the asymptotic den-
sity of 7's among the digits of Tt. This lack of 7's would be quite curious, and perhaps 
would lead people to try to prove that the density of 7's in the digits of n is not 1/10 (and 
hence n would be not normal), but, on its own, it would prove nothing. The evaluation of 
digits of Tt has no value whatsoever—from a mathematical point of view. How to do it 
has a lot of interest for the algorithm designer, computer scientist, etc. 

Peter T. Wang from Cal Tech writes: 

If 71 were not normal, it would be rather shocking, because there is a substantial body of 
evidence that hints that it is normal. But calculating a trillion digits doesn't accomplish 
much because it isn't a proof of anything other than the computer's ability to calculate. 
Nevertheless, a proof of the nonuniformity of digits would have a significant impact on 
mathematics, although hardly more than the actual proof of Fermat's last theorem. These 
two conjectures share one thing in common: The ideas and mathematical tools used to 
prove or disprove them is what is actually important, not their truth or falsehood. 

Thomas Ward from Ohio State's Mathematics Department writes: 

Would it really be a "finding" if we thought there was a pattern in Tt? That other fascinat-
ing transcendental number, Tom's number, 0.(1025Is) + 10_25tt, has wildly nonrandom 
behavior in its first trillion digits. I'm prepared to prove that for a mere $25. Please in-
struct NSF to send the cheque straight to me. 

Mark Das from Berkeley, California, writes: 

I think that finding true patterns in 71 would be important. Would it imply that the uni-
verse and all the numbers are not random at all, that e and '^2 may not be irrational? I'm 
not sure what that means, but it would be really interesting. 

Dr. Gabriel Landini (Oral Pathology Unit, School of Dentistry, University of 
Birmingham) writes: 

If the digits prove to be nonrandom that would be very interesting. And of course, this 
would us allow to draw nicer, more accurate circles! 

France Dacar from Computer Science Department of the Jozef Stefan Institute 
in Slovenia writes: 

Even knowing a googolplex digits would not suffice, in itself, to decide whether the dis-
tribution of the digits of Tt is even or clumpy. One would need some theorem that would 
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say something like: if the distribution of digits in n is uneven, then the first trillion digits 
have the following distinctive behavior (imagine here a description of some property). If 
the trillion digits fail to behave as in the theorem, then their distribution is uniform. Per-
haps there would be a similar theorem that would help decide the issue in favor of 
dumpiness. But without even a whiff of such theoretical background there can be noth-
ing more futile than computing all those digits. 

Whatever opinion one has about it, nothing will deter a truly dedicated group of 
people from computing the digits. What's more, I believe that computing this trillion of 
digits is one of those great unavoidables, like death or the big crunch. 

It would be quite another matter if somebody could decide whether the distribution 
of digits is uniform or not, by developing a succinct theory, preferably without using the 
computer. This could not help but give insight into lots of other things besides the num-
ber 71 and its digits. 

Simon Bradshaw from the United Kingdom writes: 

I would not find it important if the digits were found to be nonuniform. However, I know 
people who wouldn't consider the following to be important and profound: 

1. The observed dumpiness of the cosmological mass distribution. 
2. The hypothetical nonrandom content of genetic introns. 
3. The hypothetical nonrandom decay of radioactive nuclei. 

It's all a matter of your personal fields of knowledge and interest! 

Don Webb, science-fiction writer, also wondered about the significance of find-
ing patterns in n. He writes: 

This is a tough question. This is the question of what is meaning and significance and 
pattern. There are patterns without meaning—the face of Elvis on Mars—but developing 
our own philosophical and mathematical tools to determine if nonrandom events are oc-
curring would be a great achievement indeed. Of course if there were clear patterns, I 
would find it exciting and profound. I don't think I would ever look at a circle again with-
out wondering what other patterns or meaning are hidden even in the most common 
things—not to mention the shape of the sun, the turn of my DNA, the vibration of super-
strings, and the actuarial tables wherein human death is ruled by n. 

Bill Beaumont from the University of South Australia thought that a discovery 
of strange patterns in the first trillion digits of 71, or a proof that the digit arrange-
ments had structure, would be profound and important. However, he believed that 
his colleagues would have different views on the proposed project. He writes: 

Most of my colleagues in the education faculty here work from a critical theory perspec-
tive, which sees the purpose of research, not as finding out about the universe, but as re-
distributing power within society. To these people, the entire compass of science, 
mathematics, and technology is nothing but a positivist, masculinist plot to further op-
press the disadvantaged. Although these people regard themselves as highly educated, 
most of them would not know what n was. They would not understand nor support the n 
sequencing initiative. Such people, sadly, have a stranglehold on our education system. 
My colleagues, of course, use electricity, drive cars, and do their wordprocessing on 
computers. They cannot see the irony in the fact that, to express and spread their condem-
nation of science, they need to use the products of science all the time. 
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Microbes, Hermann Schubert, and Pi 
I close this chapter with a thought from more than a century ago. Hamburg mathe-
matics professor Hermann Schubert, in 1889, described how there is no practical or 
scientific value to knowing n to more than a few decimal places: 

Conceive a sphere constructed with the earth at its center, and imagine its surface to pass 
through Sirius, which is 8.8 light years distant from the earth [8.8 years x 186,000 miles 
per hour]. Then imagine this enormous sphere to be so packed with microbes that in 
every cubic millimeter millions of millions of these dimunivitve animalcula are present. 
Now conceive these microbes to be unpacked and so distributed singly along a straight 
line that every two microbes are as far distant from each other as Sirius from us, 8.8 light 
years. Conceive the long line thus fixed by all the microbes as the diameter of a circle, 
and imagine its circumference to be calculated by multiplying its diameter by n to 100 
decimal places. Then, in the case of a circle of this enormous magnitude even, the cir-
cumference so calculated would not vary from the real circumference by a millionth part 
of a millimeter. This example will suffice to show that the calculation of Jt to 100 or 500 
decimal places is wholly useless. 

Try It Yourself 
Some of you may be interested in computing many digits of n. I could recommend 
implementing an infinite series, such as n = 4 x (1 - 1 / 3 + 1 /5 - 1 /7 + . . . ) in a 
computer program; however, standard computer languages would not give you the 
large precision needed to compute hundreds of digits. Personally, I recommend 
huge-precision languages such as REXX to do initial experiments. Included here is a 
REXX program that computes n to as many digits as desired. The program is in-
spired by the work of Samuel Lu. 

C Program Code 
/* REXX program to compute many digits of pi. 

To run, simply type the program name followed by 
the number of digits desired. */ 

arg number_of_digits 
numeric digits number_of_digits+2 
interpret "error - 5E-"||(number_of_digits+1)%2 
new - 1.414 /* Initial estimate for square root */ 
call sqrt 2 

a - result: b = 0; pi - a + 2 
do count - 1 until abs(pi_init-pi) < error 

pi_init - pi 
call sqrt a; y - result 
b - y*(b + 1 )/(b + a) 
a - (y + l/y)/2 
pi - pi*b*(a + l)/(b + 1) 

end 
say 'pi-'format(pi,,number_of_digits-l) 
exit 0 
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/* Newton's method is used to find sqrt */ 
sqrt: 
arg x . 
do until abs(old-new) < error 

old - new 
new = 0.5 * (x/new + new) 

end 
return new 



C H A P T E R 

I believe that the infinity of possibilities predicted to arise in quantum 
physics is the same infinity as the number of universe-possibilities 
predicted to arise in relativistic physics when, at the beginning of time, the 
universe, our home, and all of its sisters and brothers were created. A? 
modest and troublesome as we often are, we too are nevertheless creatures 
of infinity. 

— Fred Wolf, Parallel Universes 

If chess permits a virtually infinite variety of games, the rules of nature 
surely do. Science may be immortal after all. 

— John Horgan 



Infinite Chess 

Chess is an ancient game for two players who move their pieces according to fixed 
rules across a checkerboard in an attempt to checkmate the opponent's king. Since 
its origin around the sixth century in India, the basic concepts have remained the 
same, although there have been occasional unusual variations. In my book Mazes for 
the Mind: Computers and the Unexpected, I discuss many bizarre and mind-bog-
gling chess-game variants including relativistic chess, black-hole chess, circular 
chess, gun chess, ghost chess, fairy chess, madhouse chess, Martian chess, hexago-
nal chess, crushed chess, evolution chess, and carnivore chess. 

One of my favorite chess variants is called "infinite chess," introduced to me by 
Tim Converse from the University of Chicago. In infinite chess, the game is played 
on an extremely large board or on one that extends arbitrarily in all directions. 
Queens, rooks, and bishops are permitted unlimited movement along their usual di-
rections. 

Imagine moving chess pieces on an "infinite" board, a section of which is dis-
played on a computer screen. This arbitrary-extent version of the game is well suited 
for play using a computer, because the computer can manipulate, magnify, and pan 
various regions of the board of interest. I am interested in hearing from any of you 
who have programmed such a playing board. 

Tim Converse notes that this game would be very different from standard chess. 
For one, pawns would become extremely unimportant, and probably many of the in-
itial moves would be long moves by the major pieces. When playing on a very large 
chessboard, pawns will not be converted to queens because it would be difficult for 
pawns to reach the last row. In the infinite version, pawns never reach a "last" row of 
the board. 

If the chessboard were infinite—that is, played with no borders at all—the game 
could get very sparse as the pieces quickly disperse through the board. Infinite chess 
provides an interesting problem for game-playing computer programs, as the pro-
grams not only would have to limit the number of moves they look ahead (as usual), 
but would have to limit their "spatial" horizon as well. 

Although infinite chess is fascinating to contemplate, my favorite alternate 
chess game is called Too Many Bishops, a game I invented in 1992. In this weird 
variant, each player acquires an additional bishop before each turn. The bishop is 
placed on a position determined by the opponent. The game ends when a king is cap-
tured, or when a player cannot move due to the mob of bishops on the board, or 
when a player cannot add a bishop at the start of a turn because all squares are occu-

7 3 
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pied. (In an alternate version, if a bishop cannot be added because all the squares are 
occupied, the game continues as usual, until a bishop can be placed.) For clarifica-
tion, here is how each turn starts: (1) Your new bishop is placed on the board at a po-
sition determined by your opponent; (2) next, you are free to move the new bishop or 
any of your other pieces as usual. 

A somewhat related problem requires us to determine how many bishops can be 
placed on an extremely large, empty chessboard so that no piece can capture another. 
Before considering boards consisting of billions of squares, let's consider the more 
manageable case of an ordinary 8 by 8 board. It turns out that there are 14 ways in 
which bishops can be placed on an 8 by 8 board so that no piece attacks another. 
Here is one possible arrangement: 

Convocation of Bishops (1) 

B * * * * * * B 

B * * * * * * B 

B * * * * * * B 

B * * * * * * B 

B * * * * * * B 

B * * * * * * B 

B * * * * * * * 

Here is another one: 

Convocation of Bishops (2) 
* * * * 3 * * * 

3 * * * * * * 3 
3 * * * * * * 3 

3 * * * * * * * 

* * * * * * * 3 

3 * * * * * * 3 
3 * * * * * * 3 

3 * * 3 * * * 3 

Can you find any more bishop arrangements where no bishop attacks another? 
What if I were to ask you next to consider an incredibly large chessboard, say, 1 mil-
lion by 1 million squares? Is it possible to compute the maximum number of bishops 
that can exist on such a board without attacking one another? What would such a 
convocation of bishops look like? 

Joseph Madachy, in his book Madachy's Mathematical Recreations (1966), 
gives numerous interesting facts regarding this class of problems. He points out that 
the maximum number of bishops that can be placed on an n-by-n board so that none 
attacks another is 2n - 2. The total number of ways of arranging these pieces is 2". 
Thus there are 256 ways of arranging the 8 bishops on a chessboard; however, due to 
rotations and reflections, only 36 of these solutions are distinct. 



INFINITE CHESS 75 

The number of distinct solutions for the bishops problem on an n-by-n board is 

2 ( « - 4 ) / 2 x ( 2 ( „ - 2 ) / 2 + 1 ) 

if n is even, or 

2 ( « - 3 ) / 2 x ( 2 ( „ - 3 ) / 2 + 1 ) 

if n is odd. 
What is the ratio of the total number of solutions to the number of distinct solu-

tions for infinite boards? The BASIC and C code in Appendix 1 allows you to com-
pute this ratio and other values (Table 8.1) that show various solutions to the bishop 
problem. In Table 8.1, it appears that the ratio converges to a value of 8 for an infi-
nite board. 

I am interested in seeing sample bishop-convocation patterns from readers for 
boards larger than 8-by-8. Can any readers find a pattern for a 10-by-10 board? What 
is the largest pattern you can draw on paper? 

TABLE 8.1. Crowded Convocations of Bishops 

Max. Number Total Number of Number of 
n of Bishops Solutions Distinct Solutions Ratio 

2 2 4 1 4.00 
3 4 8 2 4.00 
4 6 16 3 5.33 
5 8 32 6 5.33 
6 10 64 10 6.40 
7 12 128 20 6.40 
8 14 256 36 7.11 
9 16 512 72 7.11 
10 18 1,024 136 7.52 
11 20 2,048 272 7.52 
12 22 4,096 528 7.75 
13 24 8,192 1,056 7.75 
14 26 16,384 2,080 7.87 
15 28 32,768 4,160 7.87 
16 30 65,536 8,256 7.93 
17 32 131,072 16,512 7.93 
18 34 262,144 32,896 7.96 
19 36 524,288 65,792 7.96 
20 38 1,048,576 131,328 7.98 
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Digressions 
Many have become chess masters—no one has become the master of 
chess. — Tarrasch 

Mathematicians today have determined that a checkers game has an incredible 1020 

possible variations. In chess, some estimate the number to be 1044. The ancient Chi-
nese game of Go has a walloping 10120 positions. 

Arlin Anderson from the Intergraph Corporation in Huntsville, Alabama, re-
sponded to my bishop challenge and found an infinite number of solutions of the fol-
lowing form: 

* * . . . * * 

B * . . . * B 
B * . . . * B 
B * . . . * B 

B * . . . * B 
B * . . . * B 
B * . . . * B 

Here the " . . . " symbols indicate the board can be extended by an arbitrary number of 
squares, and still the bishops will not attack one another. 
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Recursive chess boards. Imagine chess games that are played on a fractal nesting of 
squares. Beginners play with only a few nested rectangles, while grand masters play with 
many. Computer programmers may design programs that allow the board to be magnified in 
different areas, which permits convenient playing at different size scales. 



C H A P T E R 

While we have discovered several groups of natives who have no 
conception whatsoever of religion, we have never come across a race (no 
matter how far it happened to be removed from the center of civilization) 
that was completely without some form of artistic expression. 

— Hendrik Willem Van Loon, The Arts, 1937 

We are told that the shortest line segment contains an infinity of points. 
Then even the shell of a walnut can embrace a spatial infinity as 
imponderable as intergalactic space. 

— William Poundstone 

It was all a pattern, as surely as a spiderweb is a pattern, but a pattern 
does not imply a purpose. Patterns exist everywhere, and purpose is at its 
safest when it is spontaneous and short-lived. 

— Anne Rice, The Witching Hour 



The Loom of Creation 

Computer graphics art is everywhere, from television commercials, to beautiful 
ray-traced images appearing in computer graphics magazines, to processed images 
from the edges of the known universe. However, I find that insufficient attention is 
given to computer art that students and computer hobbyists can easily produce 
given the simplest of line-plotting programs. This brief chapter is an attempt to re-
new interest in the inexhaustible reservoir of magnificent shapes made possible 
with the lowly line. 

Consider a race of spider-beings named Mygalomorphs who spend their days 
spinning webs upon circular frames. Status in their society is based on the beauty 
of their webs. To create the web patterns, the spiders string a straight piece of web 
from one point on the circle to another. Usually the patterns are dull and uninspir-
ing, and therefore most spiders are relegated to lower social classes. 

One day, a rather intelligent Mygalomorph let a straight web piece amble 
around the circumference of the circle, the front end going six times as fast the rear. 
In other words, every time the rear end of the straight web moved one space, the 
front end moved six. After a few moments' contemplation, the Mygalomorph real-
ized that by the time the fast end had completed one trip around the circle, the slow 
end had traveled just one-sixth of the way around. His web grew ever more intri-
cate as he continued weaving. His forelimbs moved back and forth with lightning 
speed. 

When he stood back and gazed at his creation, it was not some complicated, 
meaningless pattern but rather a five-lobed object that mathematicians on Earth call 
a ranunculoid (Figure 9.1). Amidst the intricate beauty of the strands, a ghost of the 
ranunculoid seemed to materialize as if out of thin air! After many experiments, the 
Mygalomorph noticed that if one end of the web strand went n times faster around 
the circumference of a circle as its other end, then the web created a curve with 
n - 1 lobes. So beautiful were his patterns that the wise Mygalomorph soon became 
king of the spiders. 

What strange shapes can you create by hand or by using the C or BASIC spider 
programs in Appendix 1 ? Both programs compute the endpoint positions v) and 
(x2, y2) °f each straight web chord on a circle. To control the programs, you can al-
ter the values for variables a and b, which allows you to create an amazing array of 
spider forms. These two parameters control the speed with which one end of the 

7 9 
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FIGURE 9.1. Ranunculoid. 
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FIGURE 9.2. Cardioid. 
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FIGURE 9.3. Nephroid. 

spider strand moves with respect to the other. Figure 9.2, for example, was created 
by having one end of the web strand go twice as fast as the other (a = 2,b = 2). This 
produces a heart (cardioid) shape amidst an intricate weave of lines. Figure 9.3 was 
created using (a = 3,b = 3). It's called a nephroid. Figure 9.4 was created using 
(,a = 100, b = 100), and, of course, this fabulously detailed shape has no common 
name. Figure 9.5 was created by using different values for a and b{a = 2,b = 3). 
Although it is quite beautiful, the points on this fishtail object do not lie on a circle. 
Can readers guess what constants were used to generate Figure 9.6? 

Of all the web shapes in this chapter, the cardioid is the most famous. The 
cardioid (meaning heart-shaped) was first studied in 1674 by astronomer Ole 
Romer, who was seeking the best shape for gear teeth. When a circle rolls around 
another circle of the same size, any point on the moving circle traces out a cardioid. 
The Greeks used this fact when attempting to describe the motions of the planets. 
Finally, the cardioid is the envelope of all circles with centers on a fixed circle, 
passing through one point on the fixed circle. 

What strange new worlds can you create using the spider programs? What hap-
pens when you use ever larger values for a and b? I am interested in hearing from 
readers who have discovered parameters that yield particularly beautiful and novel 
shapes. Two books also catalog interesting designs generated from simple algo-
rithms.1 '2 
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Slides in Hell 

Down, down to hell; and say I sent thee thither. 
— Shakespeare, Henry VI 

On a breezy April day in 1994, I was visiting a local playground, where I came 
across the most startling piece of recreational equipment. It was a metallic slide with 
a large hole punched in the chute. To this day, I cannot think of any reason it was 
there, because it seemed rather dangerous. A child usually slid from the top of the 
slide to the bottom, but it seemed as though a small child could get stuck in or even 
fall through the hole in the chute. 

The image of this strange slide stayed in my mind for several months and stimu-
lated the following mental exercise. Consider a metallic slide punched with ten large 
holes that are equally spaced from top to bottom. If we were to construct such a po-
rous slide, and if the holes were large enough, you would certainly fall through at 
least one of the holes during your descent. 

For this uncomfortable problem, let us assume that each time you encounter a 
hole you have a 50 percent chance of sliding through it and into a vile, oleaginous 
substance beneath the slide. For example, when your body passes above the first 
hole, 1 out of every 2 times you would expect to fall through the hole into the loath-
some liquid below. 

At first I asked colleagues the following question. You are offered 1 thousand 
dollars if you can correctly guess which hole a person would fall through as he or 
she descended the slide. Which hole would you choose? Soon the number of ques-
tions started escalating. Here's a summary of the most interesting ones I asked. 

1. If you were a gambling person, which hole would you bet a person would fall 
through? 

2. If you were a gambling person, how many attempts would you predict it would 
require for a person to slide from the top of the slide to the bottom without fall-
ing through a single hole? 

3. If all the people on Earth lined up to slide down a longer, more horrifying slide 
with 100 holes, at a rate of 1 person per second, when would you expect the first 

8 5 
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person to arrive at the bottom of the slide without falling through any hole? An 
hour? A day? A decade? 

In Appendix 1,1 include some exciting BASIC and C programs for simulating an in-
teresting aspect of this process. First, let us attack the problem without the simula-
tion. 

It turns out that an analysis of this problem is not too difficult. The chance of 
falling through the first hole is 50 percent. The probability of reaching and falling 
through the second hole is lower. Specifically, it is the probability that a person did 
not fall through the first hole times the probability of falling through the second hole: 
0.5x0.5 = 25 percent. For the third hole, we have 0.53 = 0.125. This also means that, 
in a large enough sample, half the people will fall through the first hole, one-quarter 
through the second, one-eighth through the third, and so on. We can create a table 
(Table 10.1) showing the percent chance of reaching and falling into each hole as a 
person descends the slide. 

Your chances of reaching and falling into the final hole are slim indeed—only 
about nine-hundredths of a percent. Therefore, most mathematicians I asked said 
that because they were limited to selecting one hole, they would place their money 
on hole 1. In other words, individuals would be most likely to fall through this hole. 
However, one respondent said he would not bet at all because the best chance is only 
a 50/50 chance. 

As for the second question about how many attempts it would take to reach the 
bottom without falling through any hole, note that the chances of reaching each suc-
ceeding hole are the same as those of reaching and falling into the previous one. This 
means the chances of passing over all the holes are the same as those of reaching and 
falling into the last hole. Therefore, the probability is .0009765625; that is, 1,024 at-
tempts would be required by a person, on average, to reach the bottom. Some people 
I queried suggested they would bet on a number less than this because the actual 
events can happen in any order. 

TABLE 10.1. Do You Dare? 

Hole No. Percent Chance of Reaching and Falling into Hole 

1 50 
2 25 
3 12.5 
4 6.25 
5 3.125 
6 1.5625 
7 0.78125 
8 0.390625 
9 0.1953125 
10 0.09765625 
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J. Theodore Schuerzinger from Dartmouth notes that because 1/2 1 0 people 
would make it all the way down the slide without falling through any of the holes 
(1/1,024), this means that 1,023 out of 1,024 people would fall through a hole. He 
notes: 

Using the formula (1,023/1,024)* = 1/2, we can determine that out of the first x people 
to go down the slide, there is a 50 percent chance that one person will make it down with-
out falling through a hole. The solution x = 709.4 satisifies the equation. Thus I would bet 
that a person would make it all the way down on one of the first 710 attempts. In other 
words, after 710 attempts, the chance of someone succeeding exceeds 1/2. 

What happens if all the people on Earth lined up to go down the 100-hole slide 
at a rate of 1 person per second? The probability of falling through the last hole is a 
minuscule 0 .5 1 0 0 = 7.88x10 ~31. The average number of tries that a single person 
must make to finally arrive at the bottom is 1/(0.5100) = 1.26xl030 , or, to be more 
precise, it would require 1,267,650,600,228,229,401,496,703,205,376 attempts, on 
average. (Your gluteus maximus muscles had better be in good shape before you at-
tempt such an experiment.) In other words, we may see one person slide down over 
all the holes every 1.26xl03 0 attempts. At 1 person per second, we can compute that 
it would require, on average, about 4x l0 2 2 years, a period much longer than the age 
of the universe. Note also that this would require many more people than the world 
population can offer. Therefore, no one will reach the bottom of the slide, or, as one 
respondent said, "They will all try and fail (assuming everyone only gets to try 
once), or die waiting in line." Using a similar logic as for the ten-hole problem, after 
(2100 - 1)/(2 I 0 0 ) attempts, the chance of someone succeeding exceeds 1/2. 

Simulation 
The program codes in Appendix 1 allow you to mercilessly simulate the process of 
launching individuals down the slide. In particular, the programs create a distribu-
tion, shown in Figure 10.1, of the number of attempts it takes a person to slide down 
the entire slide without falling through a hole. The program simply continues to 
launch people down the slide and catalogs how many attempts it takes a person to 
succeed in reaching the bottom. The distribution is at first quite unexpected consid-
ering that, on average, 1,024 attempts are required to reach the bottom without fall-
ing through a hole. There is no peak at 1,024—rather there is a gradual "radioactive" 
(Poisson) decay from low values of the number of attempts to high values. 

Steve Czarnecki from Owego, New York, was the first person to provide an in-
teresting explanation for this mystery. To understand his argument, we define a Ber-
noulli trial as a random experiment with only two possible outcomes. The person 
sliding over a hole is a Bernoulli trial; the individual will either drop or pass over 
the hole with probability p and (1 -p), respectively. Therefore, to make it all the 
way to the bottom, the person must achieve the "pass over" result of all the individ-
ual Bernoulli trials. This probability is given by P = (1 - p)10, which is 1/1,024 when 
p is 1/2. 
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Number of Attempts Required 

FIGURE 10.1. Distribution of the number of attempts it takes a person to slide down the 
entire 10-hole slide without falling through a hole. 

Czarnecki next asks us to forget about the details of the slide itself and instead 
only observe the people climbing up the ladder to the slide, and also observe whether 
or not they appear at the bottom (after an appropriate time interval). This means we 
are observing another random experiment with two possible outcomes: Either the 
person makes it or does not make it to the bottom. In other words, every time a per-
son tries the slide, it is a Bernoulli trial with outcomes "made it to the bottom" or 
"did not make it to the bottom." 

We can now interpret the slide problem as an example of a sequence of inde-
pendent, repeated Bernoulli trials with probability P of success. Here a success oc-
curs when a person makes it to the bottom of the slide. If we let the random variable 
N represent the number of unsuccessful trials (attempts) required before the first suc-
cess for that person (that is, success is achieved on trial N+\), then N has a geometric 
density defined by the equation P(N) = P( 1 - P)N. Here, P(N) is the probability that 
N unsuccessful trials occur before the successful trial. This is the "exponential de-
cay" law observed in Figure 10.1. Steve Czarnecki notes that the expected value of 
N (the average number of attempts required before the successful trial) will be 
E(N) - (1 - P)/P. For the example with 10 holes, 1,023 unsuccessful attempts are 
required, on average, before the successful attempt. Thus, our intuition that the per-
son will achieve one success out of 1,024 attempts, on the average, is correct. 

However, the geometric probability distribution has surprising implications. For 
example, Czarnecki points out that the most likely number of unsuccessful trials is 
zero—in other words, regardless of the odds, success on the first try is always the 
most probable event! This has the practical consequence that in any game of chance 
involving betting, one is better off "betting the ranch" on a single hand, rather than 
spreading one's stake over multiple hands. 
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Digressions 
Here are some additional questions for you to ponder. 

1. How would your answers differ to the three main questions asked in this chapter 
if, after falling through a hole, you had a 50 percent chance of entering a tube 
that shot you back up to the previous hole on the slide? 

2. How would your answers differ to the three main questions if the probability for 
falling through the holes decreased by 5 percent for each hole? This might cor-
respond to a slide where the holes got smaller and smaller as you slid down. 

3. After reading about my slide puzzle, Joe McCauley from Colorado suggested 
studying the popular game Chutes and Ladders, also known as Snakes and Lad-
ders. The game is played on a 10-by-10 checkerboard. The board has 20 to 25 
chutes and ladders that transport pieces from one square to another. Perhaps 
computer simulations, such as those discussed in this chapter, can answer ques-
tions such as, What is the minimum number of moves required to reach the fin-
ish? Also, what is the mean number of moves required to reach the finish? 





Alien Abduction Algebra 

Infinity is where things happen that don't. 

— S. Knight 

Nobody has ever domesticated mankind. We are thus a wild species, as 
wild as the day we first went howling across the savanna. Perhaps the 
self-taming process of becoming a civilized species did not tame us to 
visitors, but only to ourselves . . . and then not very well, given our violent 
history. 

— Whitley Strieber, Communion 

I recently posed an unusual question to colleagues after watching one of the classic 
Twilight Zone television episodes. The episode concerned an alien's attempts to ab-
scond with a group of humans to a spaceship in order to breed them for food. My 
own scenario and problem were as follows. An extraterrestrial, birdlike creature 
comes to Earth, captures one male human, and takes him to a large spaceship hover-
ing in the Earth's upper atmosphere. The creature realizes that the male is unhappy 
without a companion, so the next year the creature abducts one female. Each suc-
ceeding year the creature duplicates his removals of the preceding two years, steal-
ing the same number of humans, of the same sex, and in the same order. Thus, in the 
third year, the creature captures a male and then a female; in the fourth year, a fe-
male, a male, and then a female; and so on. The sequence goes as M, F, M F, F M F, 
and so on. 

I posed two questions to colleagues. First, is it possible to determine the sex of 
the one-billionth human taken? Second, would the captured males be satisfied with 
the ratio of females to males existing on the spaceship when the one-billionth human 
is taken? (I asked colleagues to assume that the humans do not breed for the duration 
of this experiment.) 

It turns out that the sex of the nth human is not too difficult to compute. In fact, 
in 1957, an obscure little paper was written on this class of problems, and a generat-
ing formula was discovered by T. F. Mulcrone of Loyola University. The Mulcrone 
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FIGURE 11.1. The number of male and female humans changing through time. 

formula can be adapted to my questions as follows. We denote a male by the number 
1 and a female by the number 2. The sequence of males and females then becomes 

Mn= 1,2,12,212,... 

The nth term Mn can be quickly computed from Mulcrone's formula: 

Mn = [kn]-[k(n- 1)], 

where 

k= (V5~+ l ) /2 , 

and the brackets indicate an integer truncation. In other words, [jc] is the greatest in-
teger not exceeding x. 

C and BASIC program listings are provided in Appendix 1 so you can compute 
the nth term of the sequence. You can also use these programs to compute the ratio of 
males to females by maintaining a count of their numbers through time. Figure 11.1 
shows the growth in the number of males and females through the years, computed 
using the program codes. 

Armed with these simple yet powerful programs we can now determine the sex 
of the one-billionth abductee. If the first abduction is considered to have taken place 
in year 0, then, using the Mulcrone formula, you can determine that it takes only 42 
years for the alien to accumulate 1 billion humans. (This is about one-fifth of the 
world's population and roughly the number of Chinese.) The ratio of females to 
males is 1.618 to 1, which, as one computer programmer from Boca Raton said, "is 
better than the ratio in most bars." 

If you want to use the computer programs to compute sexes for a large number 
of years, it is important to have a high-precision value for V5~, and you might want to 
check the value that is used in your particular computer language. (You do not have 
to worry about this issue if you only want to compute the sex of the first few thou-
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sand abductees.) For example, many people who tried to use the Mulcrone formula-
tion computed that a female would be the billionth person taken. This is because 
BASICA gives a value of 2.2360680103 for V J on some machines, whereas the true 
value is 2.236067977 . . . . 

Notice that the number of males and females, and the total number of humans, 
begins to follow the well-known Fibonacci sequence: 

Year 0 1 2 3 4 5 6 7 8 . . . 
Number of males 1 0 1 1 2 3 5 8 13 ... 
Number of females 0 1 1 2 3 5 8 13 21 ... 
Total 1 1 2 3 5 8 13 21 34 ... 

The Fibonacci sequence of numbers (1, 1, 2, 3, 5, 8, . . .), named after the 
wealthy Italian merchant Leonardo Fibonacci of Pisa, plays important roles in 
mathematics and nature. These numbers are such that, after the first two, every num-
ber in the sequence equals the sum of the two previous numbers, or Fn = 
Fn~l + F„~2-

Note that you can also take advantage of the following mathematical relation 
well known to Fibonacci aficionados: The sum of elements FY through F(n) is 
F(n + 2) - 1. Using this relationship, it is possible to show that the number of people 
abducted during a particular year is simply Fyear (in this case, the first abduction is 
considered to have taken place in year 1). The total number of people abducted in-
cluding the current year is Fyear + 2— 1. As to questions about the sex ratio, it is possi-
ble to show that the ratio of the number of females to males converges to 

F{n)/Fin - 1) = <p 

Here cp is known as the golden ratio and is equal to 1.61803 . . . . It appears in the 
most surprising places in nature, art, and mathematics. The symbol cp is the Greek 
letter phi, the first letter in the name Phidias, the classical Greek sculptor who used 
the golden ratio extensively in his work. 

To avoid any numerical precision problems that may arise with the Mulcrone 
formulation, R. Biyani has suggested a formulation involving only integer calcula-
tions. In particular, we can use a recursive function that computes the sex, s, of the 
xth person in the yth year using a previously generated sequence of the number of 
persons taken in each year (the Fibonacci sequence). The recursive relationship is: 

sCy, jc) = sCy - 2, x), if x < F(y - 2) 
= s(y - 1, x - F(y - 2)), if x > F(y - 2) 

where F(y) is the number of persons taken in year y and .v(v, x) is the sex of xth per-
son taken in year y. 

There are, of course, numerous fascinating observations that can be made re-
garding the abduction sequence. In fact, R. Helmink of Raleigh, North Carolina, has 
complied a huge list of them. For example, the last person taken each year is a fe-
male. The first person taken alternates: male and then female. The number of fe-
males taken in any year equals the number of people taken the previous year. The 
number of people taken in any year equals one more than the cumulative number 
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from two years prior. The cumulative number of females at the end of any year 
equals the cumulative number of people from the previous year. The cumulative 
number of males at the end of any year equals one more than the cumulative number 
of females at the end of the previous year and also equals one more than the cumula-
tive number of people two years prior. The cumulative number of people at the end 
of any year is equal to the sum of the cumulative number of people from the two pre-
ceding years. 

Digressions 
Or would we find an even greater mystery, that the whole pantheon of our 
reality was somehow contained in the wobbling mind of that creature, who 
fell down to thank her raw new gods after a panther leaped at her throat, 
and by a miracle missed devouring us all. 
— Whitley Strieber, Communion 

Here are some additional questions for you to ponder. 

1. How many years would the alien require to remove the entire population of the 
Earth (about 5.5 billion people)? 

2. Some colleagues noticed that my problem results in a recurring embedded pat-
tern, 13 characters long: M F M F F M F M F F M F F . Can you use this fact to 
determine the sex of the one-billionth person? 

3. K. Ling of Endicott, New York, has noticed a peculiar structure for each year. 
Particularly, (Year N) = (Year N- 2)(Year N- 3)(Year N - 2). For example, 

(Year 8) = (Year 6) (Year 5) (Year 6) 
(FMFMFFMFMFFMFFMFMFFMF) = 
(FMFMFFMF)(MFFMF)(FMFMFFMF) 

Can you use this fact to write a program to compute the sex of the billionth indi-
vidual without resorting to the Mulcrone formulation? 

4. How do the sex ratios change if, during the first year, you start with two people, 
such as, M M or F M? 
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Abduction of Earth's inhabitants by a Mygalomorph. (Rendition by William Rowe.) 



C H A P T E R 



The Leviathan Number 

None is so fierce that dare stir Leviathan up. 

— Job 41:10 

In my book Chaos in Wonderland, an extraterrestrial philosopher presents the fol-
lowing number to his disciples and asks them what is special about it: 

182,687,704,666,362,864,775,460,604,089,535,377,456,991,567,872 

After much discussion, one young insectile student speaks: "It is the first power 
of two that exhibits three consecutive 6's." 

The audience of philosophers applauds with delight. In fact the large number 
with 666 in its digits is equal to 21 5 7 .1 have called numbers of the form 2' that con-
tain the digits 666 "apocalyptic powers" because of the prominent role 666 plays in 
the last book of the Christian New Testament. In this book, called the Revelation (or 
Apocalypse) of John, 666 is designated by John as the Number of the Beast, the An-
tichrist—and various mystics have devoted much energy to deciphering the meaning 
of 666.' 

My fascination with apocalyptic numbers started in my book Mazes for the 
Mind, in which I began a computer search for apocalypse numbers. These are Fibon-
acci numbers with precisely 666 digits. As you may know, the sequence of numbers 
1, 1, 2, 3, 5, 8 , . . . , is called the Fibonacci sequence, and it plays important roles in 
mathematics and nature. These numbers are such that, after the first two, every num-
ber in the sequence equals the sum of the two previous numbers, or Fn= Fn __, + 
Fn_2. It turns out that the 3,184th Fibonacci number is apocalyptic, having 666 dig-
its. For those of you who are numerologists, the apocalyptic number with all its dig-
its is: 

116,724,374,081,495,541,233,435,764,579,214,184,068,974,717,443,439,437, 
236,331,282,736,262,082,452,385,312,960,682,327,210,312,278,880,768,244, 
979,876,073,455,971,975,198,631,224,699,392,309,001,139,062,569,109,651, 
074,019,651,076,081,705,393,206,023,798,479,391,897,000,377,475,124,471, 
344,025,467,950,768,706,990,550,322,971,334,370,940,093,654,442,411,815, 
206,857,904,041,043,400,568,568,081,194,379,503,001,967,669,356,633,792, 
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347,218,656,896,136,583,990,327,918,167,352,721,163,581,650,359,577,686, 
552,293,102,708,827,224,247,109,476,382,115,427,568,268,820,040,258,504, 
986,113,408,773,333,220,873,616,459,116,726,497,198,698,915,791,355,883, 
431,385,556,958,002,121,928,147,052,087,175,206,748,936,366,171,253,380, 
422,058,802,655,291,403,358,145,619,514,604,279,465,357,644,672,902,811, 
711,540,760,126,772,561,572,867,155,746,070,260,678,592,297,917,904,248, 
853,892,358,861,771,163 

Interest in these kinds of numbers peaked when I asked programmers and scien-
tists to consider the monstrous "Leviathan number," a number so large as to make 
the number of electrons, protons, and neutrons in the universe (1079) pale in com-
parison. (It also makes a googol, 10100 look kind of small). 

The Leviathan number is defined as 

(10666)! 

where the exclamation point indicates a factorial. The number derives its name from 
a huge sea animal often symbolizing evil in Christian literature, including the Old 
Testament. I first came across the Leviathan while perusing Psalm 74, in which God 
battles the Leviathan, a dragon or serpent of some kind: "Thou breakest the heads of 
Leviathan in pieces, and gavest him to be meat to the people inhabiting the wilder-
ness." In the Apocryphal Book of Enoch we read, "In that day shall be distributed for 
food two monsters; a feminine monster whose name is Leviathan, dwelling in the 
depths of the sea, above the springs of waters; and a male monster whose name is 
Behemoth . . . " The Leviathan number is also intimidating from a mathematical 
standpoint due to its probable incalculability, as we will soon see. 

Recently I asked colleagues a number of questions pertaining to the Leviathan 
number. For example: 

1. What are the first six digits of the Leviathan number? 
2. Could modern supercomputers compute the Leviathan, or will this be beyond 

the realm of humankind for the next century? 
3. Even if we cannot compute the Leviathan, how many other characteristics of 

this number can we write down? 

Michael Palmer from the United Kingdom was the first person to determine the 
first six digits of this incredibly large number. Interestingly, you do not have to com-
pute all the digits of the Leviathan to determine just the first six. The reasoning is as 
follows. 

Factorial functions can be approximated by a formula called Stirling's formula. 
It is named after James Stirling (1692-1770), a Scot who began his career in mathe-
matics amid political and religious conflicts. He was friends with Isaac Newton, but 
devoted most of his life after 1735 to industrial management. His ingenious formula 
for approximating factorial values is 

n! = J2nxe~"xnn + 1/2 
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N 

FIGURE 12.1. Percentage difference between the Stirling approximation and the actual 
factorial value as a function of n. 

In Appendix 1,1 provide BASIC and C code for computing Stirling approximations, 
actual factorial values, and the percentage difference between the two. Notice that 
this formula gives a useful approximation for n\ when n is large, such as when 
n > 10. For example, Table 12.1 lists values for the factorial function and the Stirling 
approximation so you can compare the two. The computations were carried out us-
ing ordinary floating point precision. Notice that the difference between the two ac-
tually increases as a function of n, but the percentage difference decreases with 
greater values. Figure 12.1 shows this percentage difference as a function of n. Inter-
estingly, because many modern software packages allow us to compute large factori-
als (though presumably not so large as a googol), people often forget Stirling's for-
mula. However, until a few years ago, this was the only way to approximately 
determine factorials for large numbers. 

Let us return to how we can use Stirling's formula to compute the first few dig-
its of the Leviathan without computing all the digits. Michael Palmer notes that for 
n = 10666, the term «"+1/2 in Stirling's formula is a power of ten and can be ignored 
when trying to determine the first six digits of the Leviathan. Next, let us look at the 
exponential term in Stirling's formula. Here we have e 10 , which can be rewritten 
as 10- |o666x* where k = log10^. Next, we split 1 Q666yk into its integer and fractional 
part, say m and/, giving u s e " 1 0 = 10 x 10 ~f. 

We can ignore the 10 "m part because it is a power of 0.1, and therefore the first 
six digits of 10666! are given by the first six digits of ^ 2 n x 10 Michael used 
a mathematical software package called AXIOM to compute this using a high 
number of digits (777) to ensure accuracy. Therefore, 1 Q666yk is 434294 . . . 
9,652.27174945413317 Next, using what remains of Stirling's formula, we find 
\2k x 10"0-27174945 = 1.340727397. Michael therefore concludes that the left six dig-
its of the Leviathan number are 134072. 
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TABLE 12.1. Stirling Approximations (S), Factorials (F), and Difference 

N F S 
Percent 
Difference 

1 1 0.922 0.077863 
2 2 1.919 0.040498 
3 6 5.836 0.027298 
4 24 23.5 0.020576 
5 120 118 0.016507 
6 720 710 0.013780 
7 5,040 4,980 0.011826 
8 40,320 39,902 0.010357 
9 362,880 359,536 0.009213 
10 3,628,800 3,598,695 0.008296 
11 39,916,800 39,615,624 0.007545 
12 479,001,600 475,687,488 0.006919 
13 6,227,020,800 6,187,239,424 0.006389 
14 87,178,289,152 86,660,997,120 0.005934 
15 1,307,674,279,936 1,300,430,716,928 0.005539 
16 20,922,788,478,976 20,814,114,062,336 0.005194 
17 355,687,414,628,352 353,948,321,972,224 0.004889 
18 6,402,373,530,419,200 6,372,804,291,198,976 0.004618 
19 121,645,096,004,222,980 121,112,786,347,491,330 0.004376 
20 2,432,902,023,163,674,600 2,422,786,791,066,042,400 0.004158 
21 51,090,940,837,169,725,000 50,888,617,503,519,408,000 0.003960 
22 1,124,000,724,806,013,000,000 1,119,751,437,820,100,600,000 0.003781 
23 25,852,017,444,594,486,000,000 25,758,524,968,130,088,000,000 0.003616 

Eternity 
Could modern supercomputers compute the entire Leviathan, or will this be beyond 
the realm of humankind for the next century? Many have pointed out that the num-
ber of digits is more than 10668, and this is much greater than the number of particles 
in the universe. Furthermore, even if a googol digits could be printed (or stored) per 
second, is would still require so much time that the universe would come to an end 
before the printing or storing were completed. Therefore, such a computation will al-
ways be beyond the realm of humanity. 

Interestingly, David Radcliffe of the University of Wisconsin-Milwaukee Math 
Department has determined the number of trailing zeros of the Leviathan number. To 
solve this problem, it suffices to determine the number of factors of five among all 
the numbers between 1 to 10666. For example, if a number is divisible by 5k but not 
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5*+1 then it contributes k zeros to the product. Try this yourself for some smaller 
numbers. 

The number of numbers between 1 and n that are divisible by d is [n/d], where 
the brackets represent the greatest integer function. Using this, we can compute the 
number of zeros in n! by the following incredible formula: 

k 

If we eliminate the brackets, note that this formula is a geometric series whose sum 
is n/4. In fact, n/4 is a very good estimate for the number of trailing zeros. It can be 
shown that this approximation is off by at most logn/log5 + 2. 

Thus, David Radcliffe says, 10666! ends in 2.5 x 10665 - r zeros, where r is be-
tween 1 and 1,000. He used a software package called MAPLE (University of Wa-
terloo), which supports high-precision arithmetic, to determine the exact value of r, 
and finds the number of trailing zeros to be 2.5 x 10665 - 143. 

In other words, one can compute the exact value for 

k 

in MAPLE by performing: 

sum :- 0: 

N 10A666: 

for i from 1 by 1 while N>1 do 

N :- trunc(N/5): 

sum := sum+N 

od: 

sum; 

Carrying out this sum, we find that the number of zeros in the Leviathan number is: 

24,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999, 
999,999,999,999,999,857 

which is just another way of writing 2.5 x 10665 - 143. 
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Superfactorials, Super-Leviathans, and Incomputability 
Readers of this chapter will no doubt be interested in an additional class of large 
numbers called superfactorials. In 1987, A. Berezin discussed the mathematical and 
philosophical implications of the superfactorial function, defined by the symbol $, 
where 

N$=N\m ... 

(The term N\ is repeated N\ times.) 
As we climb the integers in our quest for infinity, we eventually come to the su-

per-Leviathan 99 , which is the largest number that can be written using only three 
digits. It contains 369,693,100 digits. If typed on paper, it would require around 
2,000 miles of paper strip. Since the early 1900s, scientists have tried to determine 
some of the digits of this number. Fred Gruenberger recently calculated the last 
2,000 digits and the first 1,200 digits. 9 

Even more unimaginable is the number 99 . If typed on paper, it would require 
10369,693,094 

miles of paper strip. Joseph Madachy has noted that if the ink used in 
printing the number was a one-atom thick layer, there would not be enough total 
matter in millions of our universes to print the number. Shockingly, the last 10 digits 
of this behemoth have been computed. They are 1,045,865,289. 

Here are some other questions to ponder: 
1. Is the apocalyptic Fibonacci number shown at the beginning of this chapter the 

only apocalyptic Fibonacci number? 
2. Does there exist an apocalyptic prime number? 
3. Is there any significance to the fact that the first four digits and the last four dig-

its (1167 and 1163) of the apocalypse number at the beginning of this chapter 
are both dates during the reign of Frederick I of Germany, who intervened ex-
tensively in papal politics? 



Leviathan fractal produced by methods similar to those discussed in chapters 6 and 23. 





Welcome to Worm World 

What if our science rests on irrational impulses that we cannot measure? 
What if our mind is a ruler that cannot measure itself without always 
getting the same answer? 

— George Zebrowski 

Worm World is inhabited by large, serpent-like worms with forked tongues and coil-
ing bodies. Imagine that this species of worm becomes seriously allergic to a sub-
stance the second time it is exposed to the offending material. From a biological 
standpoint, this scenario is not such a strange idea. In fact, it is similar to real allergic 
reactions in which the immune system becomes overly sensitive to an antigen upon 
re-exposure. (This sensitivity is sometimes known as anaphylaxis.) 

In the hypothetical world described in this chapter, each worm wanders around 
while trying to avoid those allergens it has encountered previously—otherwise, it 
dies. You do not have to get dirty digging in your garden to study Worm World. 
Rather, the following simple exercises should have you wriggling with delight with-
out ever leaving your home or office. Also, you do not need a computer to investi-
gate Worm World, but BASIC and C code are provided in Appendix 1 for those of 
you interested in computer models. Although my simulations were all performed in a 
two-dimensional world, you can easily imagine experiments in three dimensions. 

The game I designed to simulate the birth, death, and avoidance process is 
called the Anaphylactic Worm Game. I presented a quick example of this game as a 
puzzle in Discover magazine, but now would like to give you more insight and pro-
gramming information. The game is really quite simple and is played on a chess-
board filled with random numbers having values from 0 to 24. These 25 possible 
values represent 25 different allergens. Worms may start on any square on the board 
as they attempt to find the longest possible path through the board. The worms move 
horizontally or vertically (not diagonally). Each number along a worm-path must be 
different, or the worm dies. 

Numerous fascinating questions arise in Worm World. For example, what is the 
longest path you can find in the three Worm Worlds in Table 13.1? After a few quick 
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TABLE 13.1. Three Worm Worlds Used in the Internet Worm World Tournament 

Worm World 1: 

0 0 2 21 2 23 15 18 
4 22 24 17 12 4 11 19 
3 3 11 15 5 12 6 8 

18 23 6 12 18 24 15 11 
9 7 19 18 16 18 14 18 
2 17 10 6 5 7 20 7 
5 24 5 24 18 0 1 3 

24 21 6 8 21 23 18 13 

Worm World 2: 

12 7 
15 24 
11 23 
23 21 

6 6 
11 10 
7 11 

20 20 

Worm World 3: 

2 13 20 9 19 8 16 12 
22 15 16 14 14 11 12 5 
13 12 3 6 4 12 8 15 
4 21 8 18 17 13 5 1 
9 14 15 19 15 4 4 2 

16 6 16 4 11 16 3 17 
3 15 15 3 15 14 8 21 

22 19 16 24 0 19 8 22 

11 4 22 
2 1 9 

15 9 17 
3 4 8 

22 16 2 
17 2 8 
24 3 13 

3 1 9 

22 17 6 
8 16 20 
6 24 4 

17 22 17 
5 8 1 

18 14 10 
10 15 7 
7 10 6 

experiments using pencil and paper, you will see that worms die quickly in Worm 
world. But what is the quickest death you can find? 

Before discussing the Worm World tournament I conducted on the computer 
networks, I would first like to tell you about simple computer programs you can 
write to explore the mysteries of Worm World. For example, the BASIC and C pro-
grams in Appendix 1 both start by filling a grid with random numbers between 0 and 
25. (I used these programs to generate the three Worm Worlds in Table 13.1, but you 
can easily design worlds by hand.) Next, the programs attempt to find the longest 
possible path for each starting square in the 8-by-8 grid. To do this, they scan the im-
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FIGURE 13.1. Distribution of worm ages for all three Worm Worlds. 

mediate neighborhood of a cell (up, down, right, and left). If the worm finds a square 
with a number it has never encountered, it enters that square. The worm then starts 
again, scanning in four directions for a potential move from its new location. The 
process continues until the worm can no longer find a "safe" square, at which point 
its meager life comes to an end. When I discussed this with colleagues, we imagined 
that a worm spends a year on each square, at which point it grows a foot in length. 
Therefore, a worm that has passed through ten squares before going into anaphylac-
tic shock and dying is ten years old and 10 feet long. 

Table 13.2 (next page) is sample output from Program 1 showing the longest 
worm found for each starting square in Worm World 1. You can see that a variety of 
worms are produced. For World 1, worms range in size from 5 feet (starting in 
square 29) to a humongous 20-foot-long monstrosity that started in square 2. Large, 
ancient worms almost as long as 20 feet occur fairly often, according to Table 13.2. 
(Note that the longest known species of earthworm is Microchaetus rappi of South 
Africa. In 1937 a giant measuring 22 feet in length was found.) 

So you can get an idea of the range of worm sizes, Figure 13.1 shows a plot of 
all the worm lengths as a function of starting square for all three Worm Worlds. The 
youngest dead worm found so far by the computer program is 3 years old. The oldest 
is 22 years old. Notice that the plots are not random—the distribution of worm ages 
(lengths) clusters in interesting ways. 

The Internet Worm World Tournament 
In the previous section we saw that the computer programs were capable of finding 
some ancient worms, but are there older worms lurking in Worm World? After all, 
the computer programs did not search for every possible path a worm could take. For 
example, once a worm found an available square, it would commit itself to moving 
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TABLE 13.2. Some Worm Paths in Worm World 1 

* 
(1 15) 0 4 22 24 17 12 5 15 11 3 23 6 19 18 16 
(2 20) 0 2 21 17 12 4 11 19 8 6 15 24 18 16 5 7 20 1 3 13 
(3 19) 2 21 17 12 4 11 19 8 6 15 24 18 16 5 7 20 1 3 13 
(4 13) 21 2 23 15 18 19 11 4 12 17 24 22 3 
(5 12) 2 23 15 18 19 11 4 12 17 24 22 3 
(6 11) 23 15 18 19 11 4 12 17 24 22 3 
(7 12) 15 18 19 11 4 12 17 24 22 3 23 6 
(8 12) 18 15 23 2 21 17 12 4 11 19 8 6 
(9 14) 4 22 24 17 12 5 15 11 3 23 6 19 18 16 
(10 17) 22 24 17 12 4 11 19 8 6 15 14 18 7 20 1 3 13 
(11 16) 24 17 12 4 11 19 8 6 15 14 18 7 20 1 3 13 
(12 17) 17 12 4 11 19 8 6 15 24 18 16 5 7 20 1 3 13 
(13 16) 12 4 11 19 8 6 15 24 18 16 5 7 20 1 3 13 
(14 16) 4 11 19 8 6 12 5 15 17 24 22 3 23 18 9 7 
(15 17) 11 19 8 6 12 5 15 17 24 22 4 3 18 23 7 9 2 
(16 10) 19 11 4 12 17 24 22 3 23 6 
(17 7) 3 18 23 6 12 15 5 
(18 9) 3 11 15 5 12 6 8 19 18 
(19 8) 11 15 5 12 6 8 19 18 
(20 15) 15 5 12 6 8 11 18 14 20 7 3 1 0 23 21 
(21 9) 5 12 6 8 11 15 24 18 16 
(22 14) 12 6 8 11 15 24 18 16 5 7 20 1 3 13 
(23 7) 6 8 11 15 24 18 12 
(24 15) 8 6 12 5 15 11 3 23 18 9 7 19 10 17 2 
(25 6) 18 23 6 12 15 5 
(26 9) 23 6 12 18 24 15 11 8 19 
(27 8) 6 12 18 24 15 11 8 19 
(28 7) 12 18 24 15 11 8 6 
(29 8) 18 24 15 11 8 6 12 5 
(30 19) 24 15 11 18 14 20 7 3 1 0 23 21 8 6 5 10 17 2 9 
(31 15) 15 11 18 14 20 7 3 1 0 23 21 8 6 5 24 
(32 13) 11 15 24 18 12 6 23 7 19 10 17 2 5 

(continued) 

in that direction without examining every possible path it could take. (This is a little 
like real life, is it not?) 

To see whether humans could beat the computer results, I held a grand Internet 
tournament in which I asked various interested colleagues on the computer networks 
to find the oldest worm in each of the three Worm Worlds. I also asked whether it is 
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TABLE 13.2. (Continued) 

(33 10) 9 7 19 18 16 5 6 10 17 2 
(34 10) 7 19 18 16 5 6 10 17 2 9 
(35 9) 19 18 16 5 7 20 1 3 13 
(36 8) 18 16 5 7 20 1 3 13 
(37 14) 16 18 14 20 7 3 1 0 23 21 8 6 5 24 
(38 13) 18 14 20 7 3 1 0 23 21 8 6 5 24 
(39 7) 14 18 7 20 1 3 13 
(40 13) 18 14 20 7 3 1 0 23 21 8 6 5 24 
(41 15) 2 17 10 6 5 7 20 1 3 13 18 23 21 8 24 
(42 14) 17 10 6 5 7 20 1 3 13 18 23 21 8 24 
(43 13) 10 6 5 7 20 1 3 13 18 23 21 8 24 
(44 12) 6 5 7 20 1 3 13 18 23 21 8 24 
(45 11) 5 7 20 1 3 13 18 23 21 8 6 
(46 12) 7 20 1 3 13 18 23 21 8 6 5 24 
(47 12) 20 7 3 1 0 18 24 5 6 8 21 23 
(48 12) 7 20 1 3 13 18 23 21 8 6 5 24 
(49 5) 5 24 21 6 8 
(50 16) 24 5 6 8 21 23 18 13 3 1 0 7 20 14 15 11 
(517) 5 24 18 0 1 3 13 
(52 6) 24 18 0 1 3 13 
(53 5) 18 0 1 3 13 
(54 11) 0 1 3 13 18 23 21 8 6 5 24 
(55 10) 1 3 13 18 23 21 8 6 5 24 
(56 10) 3 1 0 18 24 5 6 8 21 23 
(57 4) 24 21 6 8 
(58 9) 21 6 8 24 18 0 1 3 13 
(59 14) 6 8 21 23 18 13 3 1 0 7 20 14 15 11 
(60 13) 8 21 23 18 13 3 1 0 7 20 14 15 11 
(61 16) 21 23 18 13 3 1 0 7 20 14 15 11 8 6 12 5 
(62 15) 23 18 13 3 1 0 7 20 14 15 11 8 6 12 5 
(63 11) 18 13 3 1 0 23 21 8 6 5 24 
(64 8) 13 18 23 21 8 6 5 24 

*The numbers in parentheses are the starting square number and final path length for each square in 
Worm World 1. These were computed using the C program. 

possible to design a Worm World in which each starting square would yield the same 
maximum length. Many respondents used pencil and paper to investigate the worlds. 

James Wicht, a mathematics major and freshman at Case Western Reserve Uni-
versity in Cleveland, was one contestant who did a good deal of searching by hand. 
On the next page are the oldest, largest worms he could find. Squares on the worm 
path are indicated by an asterisk to the right of the number. 
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0 0 2 21* 2* 23 15 18 
4 22* 24* 17* 12* 4* 11* 19 
3 3* 11 15 5 12 6* 8 

18 23* 6 12 18 24 15* 11 
9 7* 19* 18 16 18 14* 18 
2 17 10* 6 5 7 20* 4 
5 24 5* 24 18 0 1* 3 

24 21 6 8 21 23 18* 13* 

12 7* 11* 4 22 22 17 6 
15 24* 1* 12* 9* 8* 16 20 
11 23* 15 9 17 6* 24 4 
23 21* 3* 4* 8 17* 22* 17 
6 6 22* 16* 2 5* 8 1 

11 10 17* 2 8 18* 14* 12 
7 11 24* 3* 13* 10* 15* 7 

20 20 3 1 9 7 10 6 

2 13 20 9 19 8 16 12 
22 15 116 14 14 11 12 5 
13 12 3 6 4 12* 8* 15 
4 21 8 18 17 3* 5* 1* 
9 14 15 19 15 4* 4 2* 

16 6 16 4 11 16* 3 17* 
3 15 15 3 15* 14* 8 21* 

The method James used to determine these paths is straightforward. First he lo-
cated all the squares with unique numbers and marked them. He also marked num-
bers that appeared many times, as these limited the length of possible worm paths. 
Next, he searched for a path that went through a group of unique numbers or was the 
only way through an area with many repeated numbers. He then tried to extend the 
path in both directions. In some cases, he would skip the opportunity to visit a 
unique number if it was near a corner or near frequently occurring numbers. Wicht 
required about 8 minutes of hand searching for each Worm World. He notes that ex-
tremely short worms may occur if recurring numbers surround a small group (as in 
the low 8 in Worm World 3). 

Scott Purdy, a Pomona College freshman, writes, "I believe that the longest pos-
sible path for Worm World 1 is 24 spaces, omitting only the solitary 16." Starting at 
the lower right, the path he found is 13, 18, 1,20, 14, 15, 6 , 8 , 9 , 11,4 12, 17,21,2, 
0, 22, 3, 23,7, 19, 10, 5, 24. He says, "Any method I can see for connecting the soli-
tary 13 to the solitary 16 prevents me from getting to the solitary 22. As you might 
have guessed, I began with the singletons and tried to connect as many as possible. 
All those 18's near the center of the board and around the 16 told me I was in trouble 
there." For Worm World 1, Scott believes that the square containing the 16 would 
produce the shortest paths because of the number of 18's around it. 
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The most rigorous treatment of the problem came from Stephen Tavener of the 
United Kingdom. Stephen is a 26-year-old computer programmer/team leader for 
Logica Company with a degree in pure mathematics from Queen Mary College, 
London University. He spent an hour creating a recursive C program (see Appendix 
2) that required about a minute per square to determine the longest and shortest 
paths. (A recursive program is one that calls itself, and a recursive function is on that 
is defined in terms of itself.) 

When Stephen used his recursive program to perform an exhaustive search for 
longest paths in Worm World 1, he found a range of path lengths as follows 
(R=right, L=left, U=up, D=down): 

Minimum: 18, maximum: 24 
Longest sequence from (0, 1) is RDRRDLDLLDRRDRDRRURUULL 

(length: 24) 
Longest sequence from (4,4) is RRDDLDLLULULLURRURULLUL 

(length: 24) 

Longest sequence from (0, 7) is RRUULLURRRUULLULU (length: 18) 

Notice that there are two length-24 paths. The paths for Worm World 2 are: 

Minimum: 18, maximum: 23 
Longest sequence from (0, 0) is RRDLDDDRRURRDDRDLLDLLL 

(length: 23) 
Longest sequence from (6,0) is RDLLLULDLLULDDRDR (length: 18) 
Longest sequence from (1,7) is RRRURRULUULLDLLUUURULL 

(length: 23) 
The paths for Worm World 3 are: 

Minimum: 17, maximum: 21 
Longest sequence from (2,0) is RDDRRDRRDDDDLLLLURUR (length: 21) 
Longest sequence from (3, 0) is LDRDRRDRRDDDDLLLLURU (length: 21) 
Longest sequence from (6,0) is LLLLLLDRDRRDRUUR (length: 17) 
Longest sequence from (2, 1) is URDDRRDRRDDDDLLLLURU (length: 21) 
Longest sequence from (4, 5) is DLDRRRRUUUULLULLULUR (length: 21) 
Longest sequence from (5, 5) is LDLDRRRRUUUULLULLUUL (length: 21) 

Stephen Tavener also designed two "extreme" worlds. The first one has a maxi-
mum path length of 25 from all starting points! 

0 1 2 3 4 5 6 7 
15 14 13 12 11 10 9 8 
16 17 18 19 20 21 22 23 
6 5 4 3 2 1 0 24 
7 8 9 10 11 12 13 14 

22 21 20 19 18 17 16 15 
23 24 0 1 2 3 4 5 
13 12 11 10 9 8 7 6 
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The following board has a maximum length of 1 from all starting points: 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

He also constructed a Worm World where the maximum length was less than 
or equal to 2 from all points and the world contains as many distinct numbers as pos-
sible: 

1 
0 
0 
0 
8 
0 
0 

11 

0 
0 
5 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

10 
0 
0 

2 
0 
0 
6 

0 
0 
0 

12 

0 
0 
0 
0 
0 
0 
0 
0 

0 
4 
0 
0 
9 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

3 
0 
0 
7 
0 
0 
0 

13 

Abkhasian Areas 
Abkhasia, a remote mountain region near southern Russia, seems to produce humans 
of extreme longevity. In fact, Abkhasians have a distinct word for great-great-great-
grandparents that is applied only to the living. Are there Abkhasian areas in Worm 
World? Do certain starting squares in the chessboard have a higher probability of 
yielding older worms? For example, do interior squares generally yield longer possi-
ble worm paths than border squares because they have more neighbors? All these 
questions are as yet unanswered, though it would seem possible to empirically find 
such regions by having the computer simulate thousands of Worm Worlds and then 
coloring those squares that produce older worms red. Regions with young dead 
worms might be blue. Do any correlated regions of color arise after many simula-
tions? 

James Wicht believes that border and near-border squares are fertile breeding 
grounds for long worms. He suggests that worms going through the center of the 
world develop restrictions on their path because there are so many more ways to 
"bump into" repeated allergens. "Certainly," he says, "at least the ends of the paths 
should be near corners." 

Similarly, Stephen Tavener believes that at least one end of any path should be 
near or on the edge of the board. He says, "If you go snaking off across the middle of 
the board, you're probably reducing the reachable squares. Optimum paths are likely 
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to be more-or-less spirals from the middle which go out to the edge, or squiggles 
working out from the vicinity of a corner." 

The Czech Logical Labyrinth 
About a month after I posed the Anaphylactic Worm Game to colleagues, I came 
across a very similar looking game from the Czech Republic. It was called a logical 
labyrinth. For an entire week, the city of Brno hosted 52 competitors from 13 coun-
tries in the 2nd World Puzzle Championship. The logical labyrinth (below) was just 
one of many puzzles the participants had to solve. 

1 2 7 16 5 19 7 8 
10 17 23 9 21 13 6 23 
15 4 22 17 20 4 18 22 
19 17 11 24 3 17 8 19 
12 9 7 14 23 18 12 6 
6 5 23 14 10 5 2 23 
8 20 10 11 19 18 1 17 
2 24 15 22 13 4 4 25 

The goal is to find a path from the 1 (upper left) to the 25 (lower right) such that 
the path contains exactly 25 squares. As in my Worm Worlds, the moves are up, 
down, right, and left, and the path may not repeat any numbers. In the Czech tourna-
ment, contestants had only 15 minutes to solve the problem, and computers were not 
allowed. Can you find the path? Incidentally, the countries' scores in the tournament 
were, from highest to lowest: Czech Republic, United States, Canada, Poland, Japan, 
Turkey, Hungary, Slovakia, Argentina, Croatia, Netherlands, Slovenia, and Ger-
many. 

Hyperworms in Abkhasia 
Worm World has just begun to be explored, and there is fertile ground for future in-
vestigations. I am interested in hearing from readers who have explored some of the 
areas in the following list. 

1. Extend the simulation to three-dimensional (3-D) worlds where worms tunnel 
through a cube of "Swiss cheese." Use computer graphics to display the longest 
paths as the computer finds them. 

2. Explore large Worm Worlds. To this date, only 8-by-8 worlds have been ex-
plored. Why not try something incredibly challenging, such as a 20-by-20 
world? Stephen Tavener notes that larger worlds will require so much computer 
resources that his recursive program will probably crash when trying to solve 
boards larger than 15-by-15 with their correspondingly greater range of num-
bers. He says that "larger worlds would have forced me to do some real think-
ing." He also suggests a game in which the sequence of numbers along a worm 
path must always be increasing. 
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3. Work with multiple worms all competing for space. Challenge your friends to 
compete with you on the same world. 

4. If you were given a single dose of antihistamine so the worm could, at one time 
during its life, go through a cell with a repeated allergen, how would this affect 
your simulations? 

5. Search for Abkhasian areas in 3-D simulations. Use hyperworms in four-dimen-
sional (4-D) simulations, and search for hyperdimensional Abkhasian areas 
there as well. 

6. Given Worm Worlds constructed randomly as in this chapter, what is the aver-
age largest worm path you would expect to find? Chris Lusena from Ontario, 
Canada, ran 100 simulations with even probability for each allergen in the grid 
and found that the average longest path is around 21 squares. The average short-
est path is around 17 squares. How do these averages scale with the size of the 
board? 

7. How would you expect the game to change if it were to be played on worlds the 
size of our Earth or solar system? 

In closing, I give the answer to the Czech logical labyrinth: 1, 10, 15, 4, 22, 11, 
7, 14, 24, 3, 20, 21, 9, 16, 5, 19, 13, 6, 18, 8, 12, 2, 23, 17, 25. 



Worm World constructed with rings. Insert numbers on the various rings and see how far 
your worms can travel using the rules in this chapter. 
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Consider the true picture. Think of myriads of tiny bubbles, very sparsely 
scattered, rising through a vast black sea. We rule some of the bubbles. Of 
the waters we know nothing .. . 

— Larry Niven and Jerry Pournelle, The Mote in God's Eye 

Hiding between all the ordinary numbers was an infinity of transcendental 
numbers whose presence you would never have guessed until you looked 
deeply into mathematics. 

— Carl Sagan, Contact 



Fractal 
Infinite 

Milkshakes and 
Archery 

Imagine a frothy milkshake with an infinite number of bubbles. As you stare into the 
cosmological milkshake, you notice bubbles of all sizes, touching one another but 
not interpenetrating. In this hypothetical foam, the bubbles become smaller and 
smaller, always filling in the cracks and spaces between larger bubbles. If you were 
to magnify the foam, tiny bubbles would always be interspersed with larger ones, 
but the overall structures would look the same at different magnifications. In other 
words, the froth would be called a fractal because it displays self-similar structures 
at different scale sizes. 

Such thoughts of an infinite froth need not be confined to mere armchair specu-
lation. In fact, we can construct and explore such a froth that inhabits the realm of 
abstract geometry. Moreover, the froth we will make is not simply an artistic design 
created from some arbitrary mathematical recipe, but rather it comes about naturally 
from the study of the little-known Ford circles, named after L. R. Ford, who pub-
lished on this topic in 1938. Ford circles provide an infinite treasure chest to explore, 
and the circles are among the most mind-numbing mathematical constructs to con-
template. In fact, it turns out that they describe the very fabric of our "rational" num-
ber system in an elegant way.1 

Recall that rational numbers are numbers that can be expressed as fractions. For 
example, 1/2, 1/3, and 2/3 are all rational numbers. As you might expect, an infinite 
number of such numbers inhabits our mathematical universe. 

What follows is a mathematical recipe for creating a Ford froth that charac-
terizes the location of rational numbers in our number system. You can use a com-
pass and some graph paper to get started. No complicated mathematics is required 
for your journey. Let us begin by choosing any two integers, h and k. Draw a circle 
with radius 1/2A2 and centered at (h/k,\/2k2). For example, if you select h = 1 and 
k = 2, you draw a circle centered at (0.5, 0.125) and with radius 0.125. Note that the 
larger the denominator of the fraction h/k, the smaller the radius of its Ford circle. 
Choose another two values for h and k, and draw another circle. Continue placing 
circles as many times as you like. 

As your picture becomes more dense, you will notice something quite peculiar. 
None of your circles will intersect, although some will be tangent to one another 
(just kissing one another). Figure 14.1 is a computer graphics rendition of the froth 
where I plotted 225 circles corresponding to 225 different fractions. In particular I 
let h and k assume values 1 through 15. (The program code in Appendix 1 gives you 
additional details.) Even if we place infinitely many Ford circles, none will overlap, 
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FIGURE 14.1. Fractal Ford froth. 

and each will be tangential to the x-axis. We can get a visual confirmation of this by 
magnifying the froth. Figure 14.2 is a magnification of the left-most tip of the froth, 
further revealing its fractal structure. Would this image look very different if I had 
increased the number of different fractions represented on the graph? 

Ford circles remind me of some of the surreal drawings by Dore, specifically 
those drawings of infinite collections of angelic circular rings illustrating Dante's 
Divine Comedy (Figure 14.3). I first learned about Ford circles from the late Hans 
Rademacher (1892-1969), who lectured on them at Stanford University in 1947 and 
whose lecture material is reprinted in his 1983 book Higher Mathematics from an 
Elementary Point of View. Unfortunately there were no computer graphics back in 
1947. 

When I showed colleagues my computer graphics of Ford-circle froth, they 
were at first confused by the occasional instances of circles within circles. (In fact, 
the only other clear diagrams I had seen of Ford circles were in Rademacher's 
mathematics text, and the figures were hand-drawn diagrams containing only about 
13 circles.) These anomalous interior circles, which I call Chrysler circles, arise from 
the fact that my computer programs produce various h/k values that are equivalent, 
such as 1 / 2 , 2 / 4 , 4 / 8 , . . . . This, in turn, produces circles with different radii but hav-
ing the same jc coordinate. In addition, I also plot circles at (h/k, -1/2A2) to increase 
the symmetry of the representation and heighten its aesthetic appeal. 
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FIGURE 14.2. Fractal Ford froth, magnification of Figure 14.1. 

How many neighbor circles touch an individual circle? For the mathematically 
inclined reader, note that two fractions are called adjacent if their Ford circles are 
tangent. Any fraction has, in this sense, an infinitude of adjacents. Any circle has an 
infinitude of circles that kiss it. 

Archery in the Great Beyond 
God is an intelligible sphere whose center is everywhere and whose 
circumference is nowhere. — Hermes Trismegistus 

Do you recall the scene in the Robin Hood story where Robin Hood's aim is so pre-
cise he is able to shoot his arrow right through the center of another arrow that is 
lodged in a tree? For a moment, let us pretend we are all are as good as Robin 
Hood—or perhaps a bit better. 

Consider a godlike archer who launches an arrow at the Ford froth. Depending 
on where the archer aims, the outcome has very exciting and different outcomes. To 
understand this, place your virtual archer high up; that is, select a position above the 
Ford froth with an appropriately large y value. To simulate the shooting of the arrow, 
next draw a vertical line from the location of your archer (for example, at jc = a). 
Trace the arrow's straight-line trajectory as gravity pulls it down to the x-axis. It 
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FIGURE 14.3. Infinite circlular rings comprised of angels illustrating Dante's Divine 
Comedy. 

turns out that if the archer's position is at a rational point (a is rational), the line must 
pierce some Ford circle and hit the x-axis exactly at the circle's point of tangency. 
However, when the archer's position is at an irrational number (a nonrepeating, end-
less decimal value such as n = 3.1415 . . .), the arrow cannot pass directly to the x-
axis from a Ford circle. In other words, the arrow must leave every circle it enters. 
However, as I mentioned previously, every circle it leaves is completely surrounded 
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FIGURE 14.4. 3-D representation of the froth. The color of the spheres is related to their 
radii. If desired, transparency can be used to visualize some of the internal Chrysler spheres 
with equivalent h/k ratios. 

by a chain of adjacents. Therefore the archer's arrow travelling along x = a must en-
ter another circle! This is true for all the Ford circles the arrow pierces. Therefore, 
when the godlike archer is located at an irrational point, the archer's arrow must pass 
through an infinity of circles! 

This all relates to the fact that even though there are an infinite number of ra-
tional and irrational numbers, the infinite number of irrationals is in some sense 
greater than the infinite number of rationals. To denote this difference, mathemati-
cians refer to the infinity of rationals as N0 and the infinity of irrationals as C, which 
stands for continuum. There is a simple relationship between C and N0. It is C =2No. 
The continuum hypothesis states that C = S[ | however, the question of whether or 
not C truly equals N , is considered undecidable. In other words, great mathemati-
cians such as Kurt Godel proved that the hypothesis was a consistent assumption in 
one branch of mathematics. However, mathematician Paul Cohen proved that it was 
also consistent to assume the continuum hypothesis is false! 

Interestingly, the number of rational numbers is the same as the number of inte-
gers. The number of irrationals is the same as the number of real numbers. (Real 
mathematicians usually use the term cardinality when talking about the "number" of 
infinite numbers. For example, true mathematicians would say that the cardinality of 
the irrationals is known as the continuum.) 

In Figures 14.4, 14.5, and 14.6,1 have represented the Ford circles as spheres 
and displayed them from different viewpoints and magnifications. By using trans-
parency, we can gaze into some of the spheres and see the internal spheres produced 
by identical h/k ratios for different values of h and k. Color is used to indicate 
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FIGURE 14.5. Magnification of Figure 14.4. 

changes in the values of the circles' radii. You can think of the two-dimensional (2-
D) figures as cross-sections of the 3-D figures. Is it possible to use three integers, 
h, k and /, to expand the 3-D plot further into the z direction? 

Figure 14.7 shows another way to characterize the distribution of rational num-
bers, which I have not seen presented before. Each circle is located at (h/k,k/h) with 

FIGURE 14.6. A different view of Figure 14.5. 
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FIGURE 14.7. An (h/k,k/h) plot. 

radius 1/2ft2. What happens if we take a journey along the y-axis? What structures 
will we find higher up along the graph? Figure 14.8 is a magnification of Figure 
14.7. 

Ford froth is endless. With appropriate computer programs, students, artists, and 
mathematicians can "swim" through the froth like a fish through the surf. What 

FIGURE 14.8. Magnification of Figure 14.7. 
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strange oceanic worlds will you find as you explore different regions of the fractal 
Ford froth? 

Further Exploration 
Gary Adamson from California suggests that we do not plot Ford circles for "every" 
possible rational number, but rather that we can confine ourselves to a specific sub-
set of fractions. As one example, consider the sequence of fractions that eventually 
converge to the golden ratio, 

cp = (V5~+ l ) / 2 

These fractions are: 

J_ 2 3 5 8 V5~+1 
1 '2 '2 '3 '5 ' " • 2 

(Note that denominators and numerators are formed from the Fibonacci sequence, in 
which each term is the sum of the previous two terms.) 

What would golden ratio Ford circles look like? How many tangent neighbors 
does each circle have? How many circles (fraction terms of the sequence) can you 
represent before the smallest is too small to be seen without further magnifying your 
picture? 

A Musical Tribute 
When Kevin D. Quitt from NASA's Jet Propulsion Laboratory heard of my interest 
in the different orders of infinity, he posted the following lyrics to a mathematical 
newsgroup. I couldn't resist reprinting it here, with his permission: 

N0 bottles of beer on the wall, 

N0 bottles of beer. 

Take one down, 
Pass it around, 

S 0 bottles of beer. 

Postscript 
Some technical readers may like to see a proof that the Ford circles representing any 
two different fractions cannot overlap. (In the extreme case, they may be tangent.) 
The mathematical argument follows that of Rademacher. 

Let us consider two Ford circles represented by different fractions h/k and 
H/K. If d is the distance between their two centers, we have 

<fi = (H/K - h/k)1 + (\/2K2 - \/2k2)2 



FRACTAL M I L K S H A K E S AND INFINITE ARCHERY 125 

(It helps to see this if you draw a diagram showing the two circles.) The sum of the 
two circles' radii is s = rl + r2 = 1 /2k 1 + 1/2K 2 . Next, it is helpful to compare <fi 
with the square of the sum of the radii, s2. With some algebraic manipulation we find 

( f - s 2 = (CHk - hK)2 - 1 )/k2K2 

We also find that Hk - hK*Q because h/k and H/K are different fractions. 
It turns out that {Hk - Kh)2 > 1, so that (Hk - Kh)2 - 1 > 0, or & - s2 > 0. This 

means that the distance between the centers of circles h/k and H/K is greater than 
or, at minimum, equal to the sum of the radii, in which case the circles are tangent. 
The two circles will be tangent provided I Hk - Kh\ = 1. If you wish to compute all 
the adjacent circles H/K to a particular h/k circle, use the following formula: 

Hn/Kn = (H+ nh)/(K + nk) 

where n = 0,±1,±2,. . . . 
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"These are the main simulation computers," Copernick said. "Each of 
these can simulate the entire life-cycle of an organism. With a 
fifty-gigahertz clock, I can take a human being from a fertilized cell to an 
octogenarian in eleven hours. They are our most important single tool we 
use in bioengineering." 

— Leo A. Frankowski, Copernick's Rebellion 



Creating Life Using 
the Cancer Game 

Creation 
Since its discovery around 1869, deoxyribonucleic acid (DNA) has emerged as the 
most scintillating star in the universe of biological molecules. DNA contains the ba-
sic genetic information of all living cells. Today we know that its information is 
coded by a sequence of bases symbolized by A, C, G, and T, standing for adenine, 
cytosine, guanine, and thymine. The bases code information concerning protein syn-
thesis as well as a variety of regulatory signals. 

DNA is a large molecule supported by a twisting sugar-phosphate backbone, 
and it contains millions of such bases. The DNA strings in a single cell would meas-
ure up to 6 feet in length if stretched out, but an elaborate packing scheme coils the 
strings to fit within a cell only 1/2,500 of an inch across. Special enzymes copy the 
genetic information. Additional enzymes check to make sure the copying process is 
correct. You might think of these enzymes as zealous police inspectors, and as a re-
sult of their meticulous patrol, the genetic data processing makes only about one er-
ror in a billion copy steps. 

Interestingly, ribonucleic acid (RNA), a molecule very similar to DNA, is 
thought by some to be the most primitive "life" that first evolved: The strands con-
taining the sequences spontaneously fold into complex two-dimensional structures, 
and reproduce given the right conditions. (Like DNA, RNA uses four bases, except 
that the base U (uracil) replaces T.) 

You may be interested in studying a simulation that is a very simple artificial 
genetics model. I call this game the Cancer Game because the simple genetic rules 
can produce both stable behavior and uncontrolled growth of the DNA segments. 
You can also think of the simulation as a Creation Game as you watch ever-larger 
and complicated sequences arise from two tiny progenitor sequences. The simulator 
program uses the letters G, C, A, and T to represent the four chemical bases, or nu-
cleotides, that make up DNA. The period of chemical evolution on Earth, whereby 
organic compounds gradually accumulated in the primitive seas, probably began 
about 4,000 million years ago. Our experiments will be much quicker. 

The Game 
Consider the following Cancer Game, which makes use of a computer enzyme to 
create complicated genetic sequences. Amazing complexity arises in just a few gen-
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erations. Try the BASIC or C simulator programs in Appendix 1, and make modifi-
cations to grow your own genetic sequences. 

To start the game, a "polymerase enzyme" is used to create a new sequence 
from old ones. The enzyme has two regions: a copy part (called COP) and a mutant 
part (called MUT). COP's job is to make a copy of all the bases in the previous gen-
eration. MUT's job is to make a copy of all the bases in the second-to-last genera-
tion, but mutate them so that G and A are switched and C and T are switched when-
ever they occur. The whole enzyme then links all the nucleotides together. 

Here is an example. Start with a G for the first generation and a C for the sec-
ond. Now add the polymerase enzyme. COP copies the C and places it as the last 
base in generation 3. MUT takes the G, converts it to an A, and then attaches it to the 
C, producing AC. So far we have: 

Generation Nucleotide Sequence 

1 G 
2 C 
3 AC 

Next, the enzyme continues to make a longer strand. It "examines" generations 2 and 
3, producing: 

4 TAC 

And so on: 

5 GTTAC 

Up to this point I have not mentioned the process of sequence cleavage because 
it did not apply. We now must consider the splitting enzyme, CLEAVE. Whenever 
two T's occur in a row, CLEAVE splits the sequence, and the generating process 
continues in the left branch as before. (This splitting is a metaphor for enzymatic 
cleavage at a particular recognition pattern.) The dash indicates a splitting has oc-
curred: 

5 GT-TAC (split at TT) 

(The TAC fragment is split off and floats around in the soup. It does not contribute to 
any further growth process.) 

6 CGTGT (combining MUT(4) and the 
GT from 5) 

7 ACCGTGT (combining MUT(5) and the 
CGTGT from 6) 

The process continues for as long as you like. 
I asked colleagues a number of interesting questions concerning the game, and I 

am sure you can think of many more. 
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1. What is the longest genetic strand produced by this process in 1,000 genera-
tions? 

2. Does the system grow out of control and rapidly produce superlarge chunks 
(cancer), or does it limit itself to small chunks? 

3. Is it possible for the strands to grow larger and larger for a few generations and 
then to disintegrate into strands of only one or two bases? 

4. What is the smallest sequence floating in the soup? 
5. Will an isolated triplet of three identical nucleotides ever evolve in the fragment 

soup, such as GGG or CCC? 
6. Will a triplet of three identical nucleotides ever evolve in any sequence? 

One of the easiest ways to study the system is to generate the sequences using a 
computer program. To start you on the task, and to provide the seed for more in-
volved scenarios, I have provided both C and BASIC code in Appendix 1. Table 15.1 
shows the lengths and sequences for the first 19 generations. The behavior of this se-
quence is quite interesting. The lengths start slowly growing in size until a sequence 
of length 19 is achieved in generation 9. After this, the sequences seem to undergo a 
high-frequency warble. In other words, there seems to be an oscillation of strand 
lengths. The beginning of the warble is clearly seen in Figure 15.1. Does the warble 
continue? The sequences do get pretty bizarre looking. For example, the 52nd gen-
eration is: 

TACACACACACACACACACACACACACACCGTGTGTGTGTGTGTGT-
GTGTGTGTGT 

It is possible to make a number of interesting observations on the sequences. 
For example, the largest string found after searching the first 1,000 generations con-
tains 1,507 bases. Also, if we remove the cleavage enzyme so the sequences never 
split, the length of successive sequences follows the Fibonacci sequence. The Fibon-
acci sequence of numbers (1, 1, 2, 3, 5, 8, ...) plays important roles in mathematics 
and nature. These numbers are such that, after the first two, every number in the se-
quence equals the sum of the two previous numbers, or Fn = Fn _ j + Fn _ 2. If 
CLEAVE is used, another observation is that every sequence after generation 5 ter-
minates with a T. Also, after thousands of generations, the smallest fragment found 
floating in the soup is TAC. 

Various researchers have studied the Cancer Game, including David Epstein, a 
member of the Department of Information and Computer Science at the University 
of California, Irvine. He notes that the starting character repeats every four genera-
tions. He also believes that the "after-split" sequence lengths, starting in generation 
6, can be described by the recurrences 

L(4i) = L(4i - 1) + L(4i - 2) - L(4i - 2) = L(4i - 1) 
L(4i + 1) = L(4i) + L(4i - 1) 
L(4i + 2) = L(4i + 1) + L(4i) 
L(4i + 3) = L(4i + 2) + L(4i + 1) 
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TABLE 15.1. The First 19 Sequences 

Length Sequence 

1 G 
1 C 
2 AC 
3 TAC 
5 GTTAC 
5 CGTGT 
7 ACCGTGT 
12 TACACACCGTGT 
19 GTTACACTACACACCGTGT 
14 CGTGTGTTACACGT 
9 ACCGTGTGT 
16 TACACACACCGTGTGT 
25 GTTACACACTACACACACCGTGTGT 
18 CGTGTGTGTTACACACGT 
11 ACCGTGTGTGT 
20 TACACACACACCGTGTGTGT 
31 GTTACACACACTACACACACACCGTGTGTGT 
22 CGTGTGTGTGTTACACACACGT 
13 ACCGTGTGTGTGT 

FIGURE 15.1. The beginning of the high-frequency warble in genetic strand lengths. 
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with initial conditions L(5) = 2 and L(6) = 5. This recurrence defines a modified Fi-
bonacci sequence where every fourth position repeats the previous one. Finally, 
David discovered that there will never be triplet of identical bases, such as CCC or 
AAA. 

Dean Hickerson from the University of California, Davis, notes that generation 
4n can be symbolically represented as T(AC) n + 1 C(GT) n, where the superscripts 
indicate that the small sequences in parentheses repeat a specified number of times. 
He also finds that generation An+ 2 can be represented as C(GT) n + 1 and that gen-
eration 4n + 3 can be represented as A C C ( G T ) " 4 ( T h e s e observations do not ap-
ply to the first four generations.) 

Genetics, Programs, and Evolution 
Our genetic code is similar to a large computer program. About 6 billion bits are 
used to describe a human, in contrast to tens of millions of bits in very complicated 
computer programs. Using the rules given in this chapter, how much time would it 
take a computer program to generate a genetic sequence as large as a human's? What 
is the relative frequency of all the different species floating in the primordial soup 
after many generations? Are there dominant sequences? Would other seed sequences 
lead to more interesting behavior? 

You may wish to modify the Cancer Game so it becomes more of an Evolution 
Game in which the different segments of genetic material may interact or combine in 
interesting manners. In addition, a graphics interface whereby the genetic pieces ac-
tually code for computer graphics representations of distinct primitive organisms 
may allow researchers to look at the primordial soup to determine how the evolution 
process is progressing. I hope you share my pleasure in studying a number of these 
systems starting with different sequences and introducing different mutation rules. 

A 40-Day Flood 
While pondering the mysteries of living systems and their growth and reproduction, 
I asked a number of colleagues the following questions: 

1. Given a large container enclosing two individuals of every animal species in the 
world, what would be the approximate total weight of all the organisms? Would 
this weight be more than the weight of the Empire State Building in New York 
City? How would your answer differ if you included every plant, bacterial, and 
fungal organism? 

2. Assume that all other organisms on Earth were dead except for those pairs in the 
container in question 1, and assume that the animals were released 1,000 years 
ago. What would you expect to be surviving today? (Assume that, where appli-
cable, a male and female were used for each species.) 



132 KEYS TO INFINITY 

3. Assume that today it started to rain for 40 days, and the rain covered all the land 
on the Earth. Further assume that the flood waters receded to preflood days 
within several months. What would be the geopolitical changes as a result of the 
temporary flood? What would be the ecological changes? 

I received a number of fascinating replies from scientists. Biologist Ralf 
Stephan estimated the weight of animals in the container to be 1,000 tons. He used a 
value of 10 million for the number of species and assumed an average mass of 100 
grams. (Insects decrease his figure for average mass because of the huge number of 
insect species.) He also says there would be no significant increase in mass as a re-
sult of including bacteria or fungi, but there would be some increase if plants were 
used. (How would this change if extinct species were included?) Other scientists in-
vestigated the weight problem by working in units of blue whales, the "champions in 
the weight department." Lou Bjostad from Fort Collins, Colorado, estimated the 
weight of all the animal pairs in the enclosure to be about ten whales' worth. 

Surprisingly, most biologists said that no animals would be alive after 1,000 
years because approximately 50 individuals of a single species are needed to sustain 
genetic health. There is also the additional problem of making sure that both male 
and female offspring are surviving. Today, species are considered endangered well 
before their numbers drop below 50. 

Ralf Stephan also asked for clarification of my phrase "rain covered all the 
land." If the phrase means that all the land including the Himalayas is covered 
evenly, this would require a depth of 9,000 meters in most regions. Further, he asked 
how fast will the water rise, and whether there is time to put people and food into 
boats. He indicated that most people do not have access to a boat and that most air-
planes could not land, although some might float. The most important variable for 
immediate survivability depends on the distribution of floating objects, because if 
people must swim 500 to 1,000 meters in cold water to reach a floating object, most 
will drown. 

One scientist indicated that such an inundation would probably also kill most of 
the plant life on Earth. Even if the waters were to recede, the resultant salt deposits 
would prevent plants from growing for many years. The scientist suggested that, dur-
ing these years, many of the seeds and plants that could live through the flood itself 
would die out. 

Other scientists wondered about the ecological effect of the numerous dead car-
casses caused by the initial flood. Some biologists indicated that the initial health of 
each pair of organisms should be defined in the original question. Another variable 
to consider is whether the animals are all released in one place as opposed to being 
spread evenly over the planet. 

One colleague noted that all the pairs of animals require food. "If one animal of 
species A eats one of species B, then B becomes automatically extinct (unless the 
male was eaten, and the pair had already initiated reproduction)." 
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Andy Symes wrote that he did not know what geopolitical changes would take 
place as a result of the rain, but that it was "a safe bet that the Netherlands wouldn't 
get flooded," He said, "We've been keeping the sea out for hundreds of years, so 
we've more experience at this problem than anyone else." 
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One thing I know and that is that I know nothing, 

— Socrates 



No Zeros Allowed 

What is special about 1 decillion? For one thing, 1 decillion is a very large number: 
10 raised to the power of 33, or 1 followed by 33 zeros: 

1,000,000,000,000,000,000,000,000,000,000,000 

Aside from its obvious enormity, there is something unbelievably special about a de-
cillion (which we can write more succinctly as 1033). Before revealing the strange 
answer, let us get an idea about how large 1 decillion is. It is greater than the number 
of atoms in a human breath (1021). However, it's smaller than the number of elec-
trons, protons, and neutrons in the universe (1079). 

What I find most interesting is that 1033 is the largest power of 10 known to hu-
mans that can be represented as the product of two numbers that themselves contain 
no zero digits: 

1033 = 233 x 533 = (8,5 89,934,592) x (116,4 1 5,321,826,934,8 1 4,453,125) 

For a variety of technical reasons, some mathematicians believe that no one will 
ever be able to find a larger power of 10 that can be represented as the product of 
two numbers that themselves contain no zero digits. 

Do you think humanity will ever find such a number? My opinion is that the an-
swer is "no." 

Scott Bales from North Carolina notes that any possible solution must be of the 
form 2X x 5* = 10*. If this is not true, one of the multiplicands' terms will have both 2 
and 5 as factors, and the last digit of this term will be zero. The problem therefore is 
to find a power of 2 and a power of 5 that do not have zeros in them. Scott has writ-
ten a Turbo Pascal program (running on a 486DX) to check 5X for all values of x less 
than 60,000 (see program code in the next section). The only power of 5 that his pro-
gram found that was greater than 533 and also contained no zeros was 558. However, 
the power of 2 for x = 58 yielded a number with at least one zero. 

Scott says, "Do I think such a number exists? I don't know—early evidence 
doesn't look good. If it exists, do I think humanity will find it? Yes." 

Try It Yourself 
Listed below is the source code Scott Bales used to check 2X for huge x (up to 
425,000). He could not find a value of x greater than 100 for which 2X contained no 
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zeros. This search required almost 30 hours on a 486DX33. The program is written 
in Turbo Pascal 3.0 (Borland). 

program search; 
const 

multiplier - 2; /* This is the number we are checking powers of */ 
maxsize - 32000; /* This is how big our array can get */ 
base - 10000; /* This is the max size of each element of the 

array */ 

var 
number 

temp, 

loopl, 
1oop2, 
result, 
carry, 

numtop, 
power2 : 
endflag, 
winner : 
power : 

array [0..maxsize] of integer; 
/* This is the array that holds the current 

result */ 
/* Temporary variable, used in zero 

determination */ 
/* Loop variable, used in for loop */ 
/* Loop variable, used in for loop */ 
/* Used in array multiplication process */ 
/* When one array element "overflows" into the 

next */ 
/* Points to current top of the array */ 

integer; /* Counts iterations between updates */ 
/* Set just before we blow the top of the array */ 

boolean; /* Set if the current number contains no zeros */ 
real; /* Current power we are checking - must be real, 

as we're checking well beyond maxint */ 

begin 

/* Initialize */ 

number[0] :- multiplier; 
power :- 1; 
power2 :- power2; 
numtop :- 0; 
carry 0; 
endflag :- false; 
writeln('Powers of ', multiplier, ' that don't contain a 0:'); 
wri tel n( '1'); 

/* Main loop - continue while not overflow condition */ 

repeat 
power :- power + 1; 
power2 :- power2 + 1; 

/* Write out progress report every 10,000 iterations */ 

if power2 >- 10000 then begin 
power2 :- power2 - 10000; 
writeln('Currently processing 2 to the ', power) 

end: 
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/* Find the next power */ 

for loopl 0 to numtop do begin 
result :- (multiplier * numberfloopl]) + carry; 
numberfloopl] result mod base; 
carry result div base 

end; 
if (carry > 0) then begin 

if (numtop - maxsize - 1) then endflag true; 
numtop numtop + 1; 
numberfnumtop] carry; 
carry 0 

end; 

/* Check to see if this is a winner - i.e., no zeros in the 
expansion */ 

winner true; 
for loop2 0 to numtop do begin 

temp number[loop2]; 
winner (winner and ((temp mod 10) >0)); 
if (temp > 9) or (loop2 <> numtop) then begin 
temp :- temp div 10; 
winner (winner and ((temp mod 10) > 0)); 
if (temp > 9) or (loop2 <> numtop) then begin 

temp temp div 10; 
winner (winner and ((temp mod 10) > 0)); 
if (loop2 <> numtop) then 
winner (winner and ((temp div 10) > 0)) 

end 
end 

end; 

if winner then writeln(power) 

/* If we haven't run out of room in the array, do it again */ 

until endflag; 

/* How far did we get? */ 

writelnC'Last power checked: power) 

end. 
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The history of proportion in art and architecture has been a search for the 
key to beauty. 

— Jay Kappraff 

Sketching with her slender pointed foot, some figure like a wizard 
pentagram, on garden gravel.... 

— Alfred, Lord Tennyson 



Infinite Star Chambers 

Since prehistoric times, human emotions have been dominated by both fear and 
hope with respect to the invisible powers behind life's unpredictable events. Often 
humans have attributed these powers to demons or to good spirits, and interestingly, 
humans have invented various geometrical symbols to fight or appease such impal-
pable forces. One such magical symbol is the five-pointed star (Figure 17.1), or pen-
tagram, used in various forms of witchcraft, magic, religion, and mysticism. The 
pentagram was even sometimes carved on babies' cribs or animals' stalls to protect 
against evil. 

FIGURE 17.1. Symbolic representation of man as microcosmos (Agrippa). 
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FIGURE 17.2. Stars within stars. 

As you may know, five-sided stars produced by drawing a continuous line with 
your pencil can nest inside one another (Figure 17.2). For example, a smaller star 
can sit inside the pentagon formed by the intersecting lines of a larger star. If you re-
peat the process over and over, enclosing one start within another, attractive nested 
stars result. (I used the set of C program codes given in Appendix 1 for this chapter 
to draw Figure 17.2.) 

Historically, this pentagram (also known as the pentalpha, pentacle, or pentan-
gle), formed by connecting nonconsecutive vertices of a regular pentagon, played 
many important roles. For example, it was the chosen symbol and seal of the Order 
of Pythagoreans, a secret society of ancient Greek mathematicians in the sixth cen-
tury B.C.E. These Greeks also believed that nature could be explained by numerical 
relationships. 

With this brief introduction to nested five-pointed stars, it is now time to boggle 
the mind. To do some quick experiments, draw a five-sided star formed with five line 
segments, each segment 1 inch long. Draw a larger star that encompasses this origi-
nal star as suggested in Figure 17.2. We will call this star 2. As you continually nest 
stars, creating star 3, star 4, and so on, the assembly of stars grows larger at a fairly 
rapid rate. 

I asked colleagues two questions, and most were astounded by the answers: 

1. How many nestings N are required to make star N have an edge length at least 
equal to the diameter of the sun (4.567xl09 feet, or 5.48xl010 inches). 

2. How many nestings N are required to make the cumulative length of all the lines 
of all the nested stars equal to the diameter of the sun? 
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Take a quick guess before reading further. Do you think 100 nested stars would 
produce a five-pointed star as large as our sun, or would it take 1,000, or 10,000? 

To answer this question, we need the value for the ratio of sizes between succes-
sive stars. It turns out that the ratio between side lengths of successive pentagrams is 

r = (3 + V 5 ) / 2 = 1 +cp = 2.618 . . . 

where cp is the famous golden ratio. To understand this, it helps to draw a "chord" 
connecting two nonconsecutive vertices of a regular polygon. The ratio of the 
chord's length to the length of one of the pentagon's sides is the golden ratio, 

(1 + V5)/2. 

From this, it is possible to derive the length of the "chord" (the segment length) of 
the next bigger star compared to the length of the "chord" of its inscribed star. This 
ratio is the square of the golden ratio, which, interestingly, is the same value as the 
golden ratio plus 1. 

Using this ratio, one can determine that the smallest N for which rN> 
5.48xl01 0inches is N=26, with r26 = 7.37xl010. Therefore, it requires a mere 26 
nested stars to make a final star slightly bigger than our own star, the sun! After only 
7 nestings, the star is a big as a brontosaurus. In 15 nestings, it is as long as the Pan-
ama Canal. In 65 nestings, it will fill our entire universe. (See Table 17.1 for the 
growth rate.) 

Next consider the second question about how many nestings N are required to 
make the cumulative length of all the lines of all the nested stars equal to the diame-
ter of the sun. (Many colleagues thought the answer to this question would be far 
smaller than for the first question.) To solve this, one first notes that this is the sum 
of a geometric sequence with the ratio being the golden ratio squared (or the golden 
ratio plus 1). (A geometric sequence is a sequence for which the ratio of a term to its 
predecessor is the same for all terms, such as s, sr, sr2, sr3,. . . . ) Therefore, in our 
case, 

^ 0 = l a n d ^ = ^ _ 1 ( ( l + V5)/2)2. 

The smallest N for which 

5 x [ r ( A , + - 1 ] / ( r - 1) > 5.48xl010 

is 24, with 

5x(r25 - l ) / ( r - 1) = 8.70xl010 

(The formula gives the sum of the geometric series. The 5 value is used because each 
star had five edges, which we need to include in the sum.) Therefore, we would need 
the cumulative edges of 24 nested stars to form a line as big as the diameter of the 
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TABLE 17.1. Star Chamber Growth 

N* Edge Length (inches) 

0 
1 

1 
2.61803 

2 6.8541 
3 17.9443 
4 46.9787 
5 122.992 Height of large African elephant at shoulder 
6 321.997 
7 842.999 Length of brontosaurus 
8 2207 Height of Statue of Liberty 
9 5778 Height of Washington Monument 
10 15127 Length of S.S. Queen Mary 
11 39603 Length of channel span, Golden Gate Suspension Bridge 
12 103682 
13 271443 Height of Mt. McKinley 
14 710647 
15 1.86050e+06 Length of Panama Canal 
16 4.87084e+06 Length of Suez Canal 
17 1.27520e+07 
18 3.33853e+07 
19 8.74037e+07 
20 2.28826e+08 Air distance: New York City to Los Angeles 
21 5.99074e+08 Diameter of Earth 
22 1.56840e+09 Circumference of Earth 
23 4.10611e+09 
24 1.07499e+10 Mean distance: Earth to moon 
25 2.81437e+10 Diameter of sun 
26 7.36812e+10 
27 1.92900e+ll 
28 5.05019e+ll 
29 1.32216e+12 
30 3.46145e+12 Mean distance: Earth to sun 
31 9.06219e+12 
32 2.37251e+13 Length of longest observed comet 

(continued) 
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N* Edge Length (inches) 

33 6.21132e+13 Diameter of supergiant stars 
34 1.62614e+14 
35 4.25730e+14 
36 1.11458e+15 
37 2.91800e+15 
38 7.6394 le+15 
39 2.00002e+16 
40 5.23613e+16 
41 1.37084e+17 
42 3.58890e+17 One light year 
43 9.39586e+17 
44 2.45987e+18 Distance to nearest star beyond the sun 
45 6.4400 le+18 
46 1.68602e+19 
47 4.41405e+19 Distance of 20 brightest stars in sky 
48 1.15561e+20 
49 3.02544e+20 
50 7.92069e+20 
51 2.07366e+21 
52 5.42892e+21 
53 1.4213 le+22 Distance of sun to center of galaxy 
54 3.72104e+22 Diameter of Milky Way 
55 9.7418 le+22 
56 2.55044e+23 Distances of extragalactic nebulae 
57 6.67713e+23 
58 1.74810e+24 
59 4.57657e+24 
60 1.19816e+25 
61 3.13683e+25 
62 8.21233e+25 
63 2.15002e+26 
64 5.62881e+26 
65 1.47364e+27 Radius of universe according to Einstein's cosmology 

*N is the number of star nestings. 
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FIGURE 17.3. Twelve-sided star chamber. This strange object seems to be growing at a 
slower rate than the star chamber in Figure 17.2. How many stars are required to make an 
edge of this object as long as the diameter of our sun? 

sun. This result is only slightly less than the number of nestings needed to generate a 
single star's edge that is as big as the diameter of the sun! 

A final problem to ponder is posed in Figure 17.3. 
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In this chapter we have been discussing unimaginably large objects. In contrast, how many 
smaller nestings are required to make the star as small as some of the subatomic particles 
that physicists have detected by observing trails in cloud and bubble chambers (above)? (For 
example, the radius of a hydrogen atom is 1.74 x l(T10 feet.) (Photo courtesy of NASA.) 
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Infinitely Exploding Circles 

Math is a perfection in expression, like ballet or shaolin martial art. 

— Venkata Guruprasad 

Some scientists are bothered by infinities, which seem to crop up at 
embarrassing places in our theories of the universe. A black hole has an 
infinity at its very center. 

— Fred Wolf, Parallel Universes 

Draw a circle, with a radius equal to 1 inch. Next, circumscribe (that is, surround) 
the circle with an equilateral triangle. Next, circumscribe the triangle with another 
circle. Then circumscribe this second circle with a square. 

Continue with a third circle, circumscribing the square. Circumscribe the circle 
with a regular pentagon. Continue this procedure indefinitely, each time increasing 
the number of sides of the regular polygon by one. Every other shape used is a circle 
that grows continually as it encloses the assembly of predecessors (Figure 18.1). If 
you were to repeat this process, always adding larger circles at the rate of a circle a 
minute, how long would it take for the largest circle to have a radius equal to the ra-
dius of our universe, 1026 feet? 

By continually surrounding the shapes with circles, it would seem that the radii 
should grow larger and larger, becoming infinite as we continue the process. With a 
simple computer program, you can in fact show that the radius of a circle is always 
larger than its predecessor. (After all, the predecessor shapes are enclosed by the 
most recently added circles.) How much time is required for the circles to grow 
larger than our universe? The answer is that the assembly of nested polygons and cir-
cles will never grow as large as the universe, never grow as large as the Earth, never 
grow even as large as a basketball. 

Although the circles initially grow very quickly in size, the rate of growth 
gradually slows, and the radii of the resulting circles approach a limiting value given 
by the infinite product: 

R = l /[(cosJt/3) x (cosn/4) x (cosn/5) . . . ] [ 1 ] 
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FIGURE 18.1. Exploding circles and polygons. 

This can be written more succinctly with the appropriately impressive mathematical 
symbols: 

* = n 
n = 3 

cos — 
n 

v 

- i 

[2] 

To better understand the process, you might like to think of the circle-growth 
process in terms of the circular cross-section of a balloon. An infinitely patient bal-
loon blower gradually loses his wind as the balloons get ever larger, while approach-
ing a limit radius R. Figure 18.2 shows circles with a radius determined by the pre-
vious infinite product formulas. To produce the figure, I plotted the circles for n = 3, 
6, 9 , . . . , 99. 

This in itself is fascinating; however, this little assembly of circles and polygons 
has many other mind-numbing properties. Perhaps most intriguing is the controversy 
over the limiting value of R. It seems simple enough to compute. In fact, I have in-
cluded programs in Appendix 1 to do just that. According to Kasner and Newman1, 
who first reported a value in the 1940s, R is approximately equal to 12. A value of 12 
is also mentioned in a German article published in 19642. 

Now the fun begins. Hearing of my interest in unusual mathematical constants, 
C. J. Bouwkamp sent me his intriguing paper, published in 1965, that reports the true 
value of R (R= 8.7000).3 I find it fascinating that, until 1965, mathematicians still 
assumed that the correct value of R was 12. 
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FIGURE 18.2. An infinitely patient balloon blower gradually loses his wind as the balloon 
gets ever larger, while approaching a limit radius R. 

Does this limiting radius (8.7000) really terminate so nicely in a continual 
stream of zeros? Alas, the answer turns out to be no. The correct value of R to 16 
digits is: 

R= 8.7000366252081945 . . . 

As far as I know, to this day no one has computed a more accurate value for this infi-
nite product. 

What makes the problem even more fascinating is that it may be difficult for 
you to arrive at this value, even with a modern PC. The reason is that the infinite 
product in equation 1 or 2 is very slow to converge. Here are some values I obtained 
using the included program codes in Appendix 1 for a few sample iterations. 

Iteration Radius 

100 8.28314 
1,000 8.657231 
10,000 8.695745 

Although the value is getting closer to the reported accurate value of 8.7000 . . . , it is 
approaching awfully slowly. A related problem is posed in Figure 18.3. 
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FIGURE 18.3. Exploding hexagons, an example of a nested set of polygons that diverges 
to infinity. Do nested hexagons explode faster than nested pentagons? 

Not for the Meek 
We are in the position of a little child entering a huge library whose walls 
are covered to the ceiling with books in many different tongues. . . . The 
child does not understand the languages in which they are written. He 
notes a definite plan in the arrangment of books, a mysterious order which 
he does not comprehend, but only dimly suspects. — Albert Einstein 

For those of you who would not run from monstrous looking formulas, C. J. Bouw-
kamp has come up with the following esoteric transformation of the infinite product, 
which gives a very accurate value of R with far fewer iterations—because the refor-
mulated infinite product converges much more quickly. For example, by using only 
100 terms of the Bouwkamp formula, I find R is approximately equal to 8.700035.1 
wonder how many iterations would be required to achieve a similarly accurate value 
for R using the simpler iteration in the previous section (method 1)? 

To compute approximations to R using the superaccurate method 2, use: 

(1 - n2/2 +'rc4/24) x (1 - rc2/8 +'rcV384) x w4//2T 
sin(7t2/V6 + 2 x V3~) x s in (7 t 2 /V6-2x V3~) 
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fi = T-r 1 - n2/(2 x n2) + 7fV(24 x n4) 
^ cos(7l/n) n - 3 

R = AB„ 

Courageous readers may consult Bouwkamp's article for a derivation.4 
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It is known that there are an infinite number of worlds, simply because 
there is an infinite amount of space for them to be in. However, not every 
one of them is inhabited. Therefore, there must be a finite number of 
inhabited worlds. Any finite number divided by infinity is as near to 
nothing as makes no odds, so the average population of all planets in the 
Universe can be said to be zero. From this it follows that the population of 
the whole Universe is also zero, and that any people you may meet from 
time to time are merely the products of a deranged imagination. 

— Douglas Adams, The Restaurant at the End of the Universe 

The will is infinite and the execution confined. The desire is boundless and 
the act a slave to limit. 

— Shakespeare, Troilus and Cressida 



The Infinity Worms 
of Callisto 

If God were infinity, then divergent series would be God's angels flying higher and 
higher to reach Him or Her. Some angels fly faster than others, but given an eternity, 
all will return to their Creator in the Celestial Palace. 

Let me explain with an example. Consider the following infinite series: 

1 + 2 + 3 + 4 + . . . . 

If we add one term of the series each year, in four years the sum will be 10. 
Eventually, after an infinite number of years, the sum will reach infinity. Mathemati-
cians call such series divergent series because they explode to infinity given enough 
terms. In the following tale, we are interested in series that diverge much mors-. 
slowly than the previous example. We are interested in more magical series—angels, 
perhaps, with weaker wings. 

On Callisto, a cold, icy moon of Jupiter, lives a race of intelligent worms called 
infinity worms. The number of years they are permitted to live is based on mathe-
matical formulas that they are free to select early in their lives. (The government 
uses this approach to prevent overpopulation.) 

The worms are particularly fascinated with divergent series that are simple to ex-
press. For example, 

, 1 1 1 
1 + - + - + - + . . . 

2 3 4 

is an infinite series that grows in size as more and more terms are added. Of course, 
it explodes more slowly than 1 + 2 + 3 + . . . , but it does grow to infinity. If desired, 
the series may be written compactly as 

I 1 ^ n 
n= 1 
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Some exploding series produce larger and larger values quickly, with just a few 
terms. Others grow very slowly, but all divergent series eventually reach infinity as 
more terms are added. 

Once an infinity worm selects a particular series, it is permitted to live a number 
of years equal to the number of terms required to make the sum greater than 10. In 
other words, a very slowly growing series is desirable because it allows a worm to 
live many years. It turns out, as we shall soon see, that it takes a very large number of 
terms before 

, 1 1 1 1 + - + I + - + . . . 

gets as large as 10. Naturally, the desire to discover slowly growing series gives the 
worm citizenry an incentive to become proficient at mathematics, and therefore a 
highly intelligent society has evolved over the years. 

On one particularly frigid day, six colorful worms went to a burrow to meet their 
executioner.1 The executioner worm stared down at a green worm. "What equation 
have you selected?" the executioner asked. The green worm responded with some 
trepidation in his voice: 

' ' . Green Worm 
loglog3 loglog4 

"This is indeed a very slowly growing series," said the executioner. "It will 
eventually reach infinity, but—" 

The green worm interrupted. "Sir, I have computed that the sum is not greater 
than 100 until 116 terms are used." 

"I am sorry," the executioner said. "We are interested in the number of terms re-
quired to make the sum greater than 10. You will therefore live one more year." The 
executioner etched the following table in the icy soil to show the green worm the 
number of terms required to make the sum greater than 3, 5, 10, 100, 1,000, and 1 
million. 

Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 

(The E in 2.6E6 is simply a convenient way of indicating 2.6X106.) 
Next, a blue worm came up to the executioner and presented her equation: 

1 • + + . . . Blue Worm 
log2 log3 

"You are doing better than your slower brother," the executioner said upon see-
ing the blue worm's series. "You will live 20 more years": 
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Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 
Blue 3 7 20 440 7,600 1.5E7 

A violet worm was next, with: 

1 + — + — + . . . Violet Worm 
V2 V3" 

The executioner sighed. "That is a little better." He turned to the violet worm. 
"You will live 33 more years. Don't any of you wish to strive for immortality?" 

Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 
Blue 3 7 20 440 7,600 1.5E7 
Violet 5 10 33 2,500 2.5E6 2.5E11 

A bright crimson worm puffed up his chest and grinned. His equation was: 

1 + ~ + ~ + . . . Crimson Worm 
2 3 

The executioner open his eyes wider. "Say, you truly are a great worm. You will 
live for 12,390 more years." 

Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 
Blue 3 7 20 440 7,600 1.5E7 
Violet 5 10 33 2,500 2.5E6 2.5E11 
Crimson 11 82 12,390 10E43 10E43,000 10E43,000,000 

"That is nothing!" cried a worm as black as the night. He pushed aside the crim-
son worm and screamed out: 

1 1 Black Worm 
21og2 3 log 3 ' ' ' 

The executioner started gagging as he simultaneously tried to take a deep 
breath. "Mon Dieuf" he yelled as his tail twitched and his five hearts began beating 
at twice their normal rate. Even the green and blue worms began to cheer. "You will 
live," said the executioner, "another lO4'300 years!" 
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Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 
Blue 3 7 20 440 7,600 1.5E7 
Violet 5 10 33 2,500 2.5E6 2.5E11 
Crimson 11 82 12,390 10E43 10E43,000 10E43,000,000 
Black 8,690 1.3E29 10E4,300 10E(5E42) 

A hush fell over the burrow, and a few curious worms from adjacent tunnels 
came closer to hear what the last worm in the group would say. 

A small, transparent worm with emerald internal organs and infinity in his eyes 
came up to the executioner. He slowly scanned his friends in the burrow with his 
clear eyes, and then he spoke in a quiet voice: 

" — 7 7 — , — - + y.—77—,—7 + . . . Transparent Worm 
31og31oglog3 41og41oglog4 

The black worm started to gag. "That's impossible—" he shouted, but his cries 
were drowned out by the merry screams of others with wide grins on their lumbri-
coid faces. Some cheered madly. Others exuberantly slapped the icy ground with 
their tails. 

The infinity worms' screams of jubilant exaltation rose to a fever pitch. The exe-
cutioner trembled, and said, "Y-your sequence does not reach 10 for—" He paused, 
trying to gather his thoughts. "You will live for 1010 years, a googolplex years." 

Series Number of Terms Required to Make the Sum Greater Than: 

3 5 10 100 1,000 1,000,000 
Green 1 1 1 116 1,800 2.6E6 
Blue 3 7 20 440 7,600 1.5E7 
Violet 5 10 33 2,500 2.5E6 2.5E11 
Crimson 11 82 12,390 10E43 10E43.000 10E43,000,000 
Black 8,690 1.3E29 10E4,300 10E(5E42) 
Transparent 1 60-70 10E(10E100) 

After hearing the executioner's pronouncement of the transparent worm's near-
immortality, the infinity worms lifted the transparent worm up and paraded him 
around Callisto. There were bands playing. An icy equivalent of champagne was 
poured in every household, and the worm king declared a national holiday. 
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Digression 
To protect my sanity, I had to believe that infinity was a comprehensible 
thing. — Clarke Punkford 

Arlin Anderson from Huntsville, Alabama, is an infinity-worm aficionado. (He notes 
that I should be careful to explain that "log" denotes the natural log, sometimes writ-
ten as "In.") Arlin did various experiments with the crimson-worm formula to find 
values more accurate than the ones I reported. Because he obtained different values 
using different precision arithmetic in a computer program, he was careful to use 
high precision. The series to term 12,366 has a value of 9.999962147, and 1/12,367 
makes it 10.00004300. Therefore, the crimson worm lives exactly 12,367 years. 
Note that if the crimson worm were to have dropped the first term in the series, mak-
ing it (1/2 + 1/3 + . . . ) , he would live almost three times as long! This series to term 
33,616 is 9.9999879, and 1/33,617 makes it 10.000017. 

Lorenz Beyeler, from IBM Switzerland, wrote to me with other worm sugges-
tions. He suggested I add the following: 

A gray worm emerges from the crowd, bows in front of the executioner, and says: "Sir, I 
have found a way to live forever." 

102 103 

(Is this a divergent series?) Lorenz also suggests a golden worm formula: 
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Such as say that things infinite are past God's knowledge may just as well 
leap headlong into this pit of impiety, and say that God knows not all 
numbers . . . What madman would say so? .. . What are we mean wretches 
that dare presume to limit His knowledge? 

— St. Augustine 



The Undulation 
of the Monks 

The number 69,696 is a remarkable number and certainly my favorite of all the inte-
gers. Aside from being almost exactly equal to the average velocity in miles per hour 
of the Earth in orbit, it is also the surface temperature of some of the hottest stars, in 
degrees Fahrenheit. More important are its fascinating mathematical properties. 

It is written (right here) that a Tibetan monk once presented this number to a 
student and said: "What do you find significant about 69,696?" 

The student thought for a few seconds, and replied, "That is too easy, Master. It 
is the largest undulating square known to humanity." The teacher pondered this an-
swer, and himself started to undulate in a mixture of excitement and perhaps even 
terror. 

To understand the monk's passionate response, we must digress to some simple 
mathematics. Undulating numbers are of the form ababababab . . . . For example, 
171,717 and 28,282 are undulating numbers. A square number is of the form y = x2. 
For example, 25 is a square number. So is 16. An undulating square is simply a 
square number that undulates. 
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When I conceived the idea of undulating squares a few years ago, it was not 
known whether any such numbers existed. It turns out that 69,696 = 2642 is indeed 
the largest undulating square known to humanity, and most mathematicians believe 
we will never find a larger one. 

Dr. Noam D. Elkies from the Harvard Mathematics Department wrote to me 
about the probabilities of finding undulating squares. The chance that a "random" 
number around x is a perfect square is about 1/^Ix. More generally, the probability is 
x( - l + i/d) f o r a p e r f e c t j u , p 0 w e r . As there are (for any k) only 81 /c-digit undulants, 
one would expect to find very few undulants that are also perfect powers, and none 
that is very large. Dr. Elkies believes that listing all cases may be impossible using 
present-day methods for treating exponential Diophantine (integer) equations. 

Bob Murphy used the software Maple V to search for undulating squares, and 
he discovered some computational tricks for speeding the search. He began by ex-
amining the last 4 digits of perfect squares (that is, he computed squares mod 
10,000). Interestingly, he found that the only possible digit endings for squares that 
undulate are 0404, 1616, 2121, 2929, 3636, 6161, 6464, 6969, 8484, and 9696. By 
examining squares mod 100,000, then mod 1,000,000, then mod 10,000,000, and so 
on, he found that no perfect square ends in 40404, 6161616, 63636, 464646464, or 
969696, thereby allowing him to speed further the search process. Searching all pos-
sible endings, he asserts that, if there is an undulating square, it must have more than 
1,000 digits. 

Dr. Helmut Richter from Germany is the world's most famous undulation 
hunter, and he has indicated to me that it is not necessary to restrict the "mod 
searches" to powers of ten, and that arbitrary primes work very well. He has 
searched for undulating squares with 1 million digits or fewer, using a Control Data 
Cyber 2000. No undulating squares greater than 69,696 have been found. 

Other Undulants 
Randy Tobias of the SAS Institute in North Carolina notes that there are larger undu-
lating squares in other number bases. For example, 2922 = 85,264 = 41,414 base 12. 
And 121 is an undulating square in any base. (121 base n is (n + l)2). 

Interestingly, we find that there are very few undulating powers of any kind in 
base 10. For example, a three-digit undulating cube is 73 = 343. However, Randy To-
bias conducted a search for other undulating powers and found that 343 is the only 
undulant he could find that is formed by raising a number to a power p. He has 
checked this for 3 <p < 31 and for all undulants less than 10100. Undulating powers 
are indeed rare! 

Undulating prime numbers, on the other hand, are more common. For example, 
Randy has discovered the following huge undulating prime: 

7 + 720 x (10049 - 1 ) /99 = 
727272727272727272727272727272727272727272727272727272727272 
727272727272727272727272727272727272727 
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(It has 99 digits.) To find this monstrosity, he also used the software program called 
Maple. The program scanned numbers using two lines: 

( a * 1 0 + b ) * ( 1 0 * * ( 2 * ( k + l ) ) - l ) / 9 9 
a + 1 0 * ( a * 1 0 + b ) * ( 1 0 * * ( 2 * ( k + l ) ) - l ) / 9 9 

for (0 < k < 50, 1 < a < n - 1, and 0 < b < n - 1). The Maple "isprimeO" function 
was used to check whether a number is prime. Maple makes it possible to work with 
very large integers. 

There are many other undulating primes with many digits. However, there does 
not seem to be any undulating prime with an even number of digits. (Considering 
that ababab ... ab = abx 10101 . . . 01, we should not expect to find any even-digit 
undulating primes.) I am interested in hearing from readers who have searched for 
undulating primes with larger periods of undulation, such as found in the prime 
number 5,995,995,995 (which does not finish its last cycle of undulation). 

Binary Undulants beyond Imagination 
Finally, binary undulants are powers of 2 that alternate the adjacent digits 1 and 0 
somewhere in their decimal expansion. For example, the "highest quality" binary 
undulant I have found is 2949. It has the undulating binary sequence 101010 in it, 
which I have placed in parentheses in the following: 

2949 = 

4758454107128905800953799994079681792420032645310062268978469949 
81(101010)2913293995344538606387700321887355916128617513761454672 
7857436982649306578595276628025055066894318715966165965114697527 
5798476542650352459905941679586200921628210271660911570586563854 
4337453260521036049116206989312 

Here 949 is called an undulation seed of order 6, because it gives rise to a six-digit 
undulation pattern of adjacent l 's and 0's. When I challenged mathematicians and 
programmers around the world to produce a higher-order binary undulant, many 
took up the challenge. The highest-quality binary undulant so far known to humanity 
was discovered by Arlin Anderson of Alabama. He was the first to find that 21'802 

contains an eight-digit binary undulation. After much hard work he also found that 
27,694,891 s t a r t s w i t h t h e d i g i t s 10101010173 . . . , and a week later he discovered that 
2i,748,219 g j v e s r j s e t 0 a ten-digit undulant! Because Arlin only checked the last 240 
digits of each number, he feels it is almost certain that there is a bigger binary undu-
lation somewhere in the first million powers of 2. Considering that 21,000,000 contains 
around 300,000 digits, the chance of finding a 10101010101 or 01010101010 is 
large. (Arlin uses a custom C program for large integer computation. The program 
runs on an Intergraph 6040 UNIX workstation and on a 486 PC. Searching 240 dig-
its in 2 million powers of 2 required 15 hours.) 

How do binary undulants vary with the base b? For example, for the case of 
b = 2, there are many binary undulants. Is it possible that as b increases, the quality 
of the best known cases decreases? 



c h a p t e r 



The Fractal Golden 
Curlicue Is Cool 

I soon saw, by the way in which the white man's track doubled and 
redoubled again, that the fellow could not be cutting such curlicues for 
nothing. 

— C. F. Hoffman, Greyslaer 

How the hell can a mathematical curve have a temperature? 

— Anonymous graduate student 

Curlicues are fantastic spirals or twists that seem to be everywhere we look. When 
we think of examples of curlicues, both the mundane and exotic easily come to 
mind, such as: the gentle curl of a fern tendril, the shape of an octopus's retracted 
arm, the death-form assumed by a centipede, the spiral intestine of a giraffe, the 
shape of a butterfly's tongue, the spiral cross-section of a scroll, the shape of the yel-
low brick road in Munchkinland in the film classic The Wizard of Oz, and even the 
characters of several written languages such as Farsi and Tamil. 

In this chapter I am interested in the mathematical curlicues, and in particular 
will explore infinite, recursively spiralling patterns. This class of curlicues is quite 
fascinating to geometers not only because of their beauty and complexity but also 
because of their renormalization symmetries and various fascinating mathematical 
properties. ("For Further Reading," at the end of this book, offers some interesting 
technical papers for the mathematically inclined reader.) 

There are many different ways of generating various curlicues in the mathemati-
cal literature. My favorite method, developed by John Sharp and others, is quite easy 
to implement. If you want to draw these curlicues, you start by placing a dot on a 
piece of paper. Next you draw a line at a particular angle to the horizontal. From 
your new point at the end of the line, you draw another line of the same length but at 
a new angle. The process is continued until an intricate curve is drawn. What hap-
pens if you were to draw an infinite number of little line segments? What would the 
resulting diagram look like? 

Let me begin by describing the mathematical recipe. Readers not interested in 
implementing the formulas can still appreciate the figures derived from a very sim-
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FIGURE 21.1. The golden curlicue and its convex hull. 

pie generating method. Let us first consider the angles and lines. The angle of each 
line segment is defined by multiplying a complete rotation (2n) by the constant s. To 
generate these curlicues with a computer program, the angle 0 of each line segment 
in the plane is determined by 0„ + , = (8„ + s)mod27t as n is incremented from 0 to 
10,000, and s is a transcendental or irrational constant multiplied by 2K. The length 
of each line segment is constant. (0 is with respect to the previous line, not the hori-
zontal.) The program code should clarify the algorithm. Generally, the resultant 
curves are fractal, exhibiting similar structures at different size scales. 

A variety of curves can be generated with this approach for different constants, 
and the curves can be studied using thermodynamics (see examples in Figures 21.1 
and 21.2). Traditionally, thermodynamics deals with the statistical properties of 
gases and involves quantities such as temperature, pressure, volume, and entropy. 
Who would guess that quantities such as temperature have recently been used by 
several authors to describe mathematical curves instead of gases? 

I do not derive the following formula, because the references (see "For Further 
Reading") provide sufficient information for the mathematical reader. Of all the ther-
modynamic parameters one can study, I find a curve's temperature the most fascinat-
ing. The temperature T of curves can be computed from 
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FIGURE 21.2. The Euler curlicue and its convex hull. 

T= 1 

\n[2l/(2l - h)] 

where I is the length of 1~ and h is the length of a surrounding polygon known as its 
"convex hull." Specifically, the convex hull is the length of the perimeter of the 
smallest convex polygon that contains the curlicue. One easy way to understand a 
convex hull is to think of it as a rubber band placed around a set of points and con-
tracted as far as possible. The temperature of a curve is zero if and only if the curve 
is a straight line. The hotter a curve becomes, the more wiggly it can be. (Similarly, 
the entropy, volume, and pressure of curves can be computed.) 

I tested a range of famous transcendental and irrational constants that control 
the angle that each step takes in the curlicue. After 10,000 iterations (steps), the 
golden curlicue, defined by the golden ratio 

s = ( 4 5 + l ) /2 , 

seems to have the lowest temperature. I am interested in hearing from readers who 
have tried other famous transcendental or irrational constants and found a cooler 
curlicue than the golden one. Below is a list of the temperatures measured at itera-
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Iteration 
Temperatures for Various Curlicues 

FIGURE 21.3. Temperature vs. iteration for various curlicues: F, the Feigenbaum number 
(4.669201); tc; y, Euler's constant (0.5772156); e\ V2; ln2; and, <p, the golden ratio 
(1.618034). The temperature is sampled at 2,000, 4,000, 6,000, 8,000, and 10,000 iterations. 

tion 10,000 for a number of important constants. Figure 21.3 shows the temperatures 
of various curlicues changing as they grow. 

Curlicue Constant Temperature 

Golden ratio = 1.618034 46 degrees 
ln(2) = 0.693147 51 degrees 
e = 2.718282 58 degrees 
Sqrt(2) = 1.414214 58 degrees 
Euler's number = 0.577215 63 degrees 
Pi = 3.141592 90 degrees 
Feigenbaum constant = 4.669201 92 degrees 
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The fact that the golden curlicue (Figure 21.1) is quite cool will no doubt cap-
ture the imagination of aficionados of this constant—individuals often curious about 
the role the golden section (also called the golden mean or the divine proportion) 
plays in mathematics, art, architecture, literature, and esthetics. I thank Rajan Vadak-
kedath for assistance with hull computation and John Sharp for bringing fractal cur-
licues to my attention in a newsletter called The Fractal Report. 

Curlicues and the Infinite 
From a theoretical standpoint, the curves in this chapter are infinite. In other words, 
as they are generated by taking more and more steps on a plane, their lengths grows 
to infinity. I have computed the temperatures for the curves up to 10,000 steps. 
Would the temperature trends change if I were to use 1 million steps? Does the be-
havior at 10,000 steps reflect the limiting behavior near infinity? How does the finite 
precision of computers affect our ability to accurately draw curlicues? 

Postscript 
Mathematically inclined readers may be interested in other recursively spiralling 
patterns T created in the complex plane. One such curlicue can be generated using 

L 

r L( x ) = X exp(mxn2) 
n - 1 

Here the terms (steps) are regarded as unit vectors, and L is made to increase indefi-
nitely with the parameter x held fixed. The resultant patterns are intricate superposi-
tions of spiral structures whose scalings are sensitive to the value of x. 

More recently, experiments have been described that use a sequence of real 
numbers sn that determine a unique direction in the plane, forming an angle 2nsn ra-
dians with respect to the horizontal. The numbers sn between 0 and 1 provide all pos-
sible directions so that direction depends only on the fractional part of sn (that is, 
snmodl). Graphically speaking, one draws a line of fixed length in the direction cor-
responding to ,v0. With this new starting point, a line is drawn of the same length in a 
direction corresponding to s t . In a computer program, this is implemented as 
xn +1 = xn + cos(2jts„), yn + j = yn + Sin(2jty„). 
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The brain is a three pound mass you can hold in your hand that can 
conceive of a universe a hundred-billion light-years across. 

— Marian Diamond 

Number is the bond of the eternal continuance of things. 

— Plato 



The Loneliness 
of the Factorions 

Factorions are numbers that are the sum of the factorial values for each of their dig-
its.1 For example, 145 is a factorion because it can be expressed as 

145= 1! + 4 ! + 5 ! 

Two tiny factorions are 

1 = 1! and 2 = 2! 

The largest known factorion is 40,585; it can be written as 

40,585 = 4 ! + 0 ! + 5 ! + 8!+ 5! 

(The factorion 40,585 was discovered in 1964 by R. Dougherty using a computer 
search.) Can you end the loneliness of the factorions? Do any others exist? 

Various proofs have been advanced indicating that 40,585 is the largest possible 
factorion, and that humans will never be able to find a greater factorion. In fact, 
these four factorions are the only factorions known to humanity. How can this be? 

A more fruitful avenue of research may be the search for factorions "of the sec-
ond kind," which are formed by the product of the factorial values for each of their 
digits. Additionally, hypothetical factorions "of the third kind" are formed by group-
ing digits. For example, a factorion of the third kind might have the form 

abcdef= (ab)\ + c\ + d\ + (ef)\ 

where each letter represents a digit. (Any groupings of digits are allowed for facto-
rions of the third kind.) To date, I am unaware of the existence of factorions of the 
second or third kind, and I am interested in hearing from readers who can find any.2 

Digression: Narcissistic Numbers 

Dik T. Winter from Amsterdam is an expert on a somewhat related class of numbers 
that are the sums of powers of their digits. In other words, these /(-digit numbers are 
equal to the sum of the nth powers of their digits. For example, 153 = l 3 + 53 + 33. 
Variously called narcissistic numbers, "numbers in love with themselves," Arm-
strong numbers, or perfect digital variants, these kinds of numbers have fascinated 
number theorists for decades. The English mathematician Godfrey Hardy (1877— 
1947) noted that, "There are just four numbers, after unity, which are the sums of the 

169 



170 KEYS TO INFINITY 

TABLE 22.1. 

Base Total Dig Largest Narcissistic Number (number of digits) 

2 1 (1) 1 
3 5 (3) 122 
4 11 (4) 3303 
5 17 (14) 14421440424444 
6 30 (18) 105144341423554535 
7 59 (23) 12616604301406016036306 
8 62 (29) 11254613377540170731271074472 
9 58 (30) 104836124432728001478001038311 

10 88 (39) 115132219018763992565095597973971522401 
11 134 (45) 12344AA12 A721803422912A8 AA4963568083A268456A4 
12 87 (51) 15079346A6B3B14BB56B395898B96629A8B01515344B4B0714B 

cubes of their digits . . . . These are odd facts, very suitable for puzzle columns and 
likely to amuse amateurs, but there is nothing in them which appeals to the mathe-
matician." I gave 153 as an example of such a number. Can you find the other three? 
(The second program for this chapter in Appendix 1 will help you search for these 
numbers.) 

The largest narcissistic number discovered to date is the incredible 39-digit 
number 

115132219018763992565095597973971522401 

(Each digit is raised to the 39th power.) Can you beat this world record? What would 
Godfrey Hardy have thought of this multidigit monstrosity? 

The frequency of occurrence of narcissistic numbers varies according to the 
base of the number system in which one conducts a search. For example, in our 
standard (base 10) system are 88 known numbers of this type, whereas in base 4 
there are only 11. Table 22.1 lists numbers from Dik T. Winter. The number of digits 
for the largest narcissistic number known is in parentheses. 

As one searches for larger and larger narcissistic numbers, will they eventually 
run out, as in the case of the lonely factorions? If they are proved to die out in one 
number system, does this mean they are finite in another? (Martin Gardner wrote to 
me recently and indicated that the number of narcissistic numbers has been proved 
finite. They cannot have more than 58 digits in our standard base 10 number sys-
tem.) 

Finally, Kevin S. Brown writes that he knows of only three occurrences of 
n\ + l=m2, namely 25 = 4! + 1 = 52, 121 = 5! + 1 = l l 2 , and 5,041 = 7! + 1 = 712. 
We do not know whether there are any others. Perhaps these "Brown numbers" will 
be as lonely as the factorions. The prolific mathematician Paul Erdos long ago con-
jectured that there are only three such numbers. Erdos offers a cash prize for a proof 
of this! 



THE L O N E L I N E S S OF THE FACTORIONS 171 

Proof 

Several colleagues have pointed out that an /(-digit factorion cannot exceed n x 9! 
(because each digit has a maximum value of 9). One can use this fact in conducting 
computer searches for factorions. 

Matthew M. Conroy from Colorado has given me permission to include his 
proof that only four factorions of the first kind exist. The basic idea of his proof is as 
follows. Let k(n) be the function that gives the sum of the factorial of each digit of a 
positive integer n (in decimal notation, base 10). For example, k(32) = 3! + 2! = 
6 + 2 = 8, and /t(145) = 1! + 4! + 5! = 1 + 24 + 120 = 145. For factorions, we sup-
pose k(n)=n. 

Next let d be the number of digits in integer n. Then 10(d" " < n < 1 ()''. (For ex-
ample, if n has three digits, then 100 < n < 1,000.) Now, because n has d digits and 9 
is the largest possible digit, we can conclude that k(n) <9 Ixd. Hence, 10"1 1' < n = 
k{ri)< 9! x d . In other words, 10 <(9! x d)n/(cl~ l ,). The right side is a decreasing 
function of d (for d > 1 at least); when d = 7, (9 \d ) x / { d ~ ] ) is approximately 11.68, and 
when d = 8 it is approximately 8.38. From this we can conclude that d < 7. Thus we 
have n - k(n) = 9! x 7 = 2,540,160. With a computer, we can check all positive inte-
gers less than 2,540,160 to see whether they have the property k(n) = n. If we do this, 
we find that only 1, 2, 145, and 40,585 have this property. 
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Beauty is the first test: there is no permanent place in the world for ugly 
mathematics. 

—G. H. Hardy 

Mathematics, rightly viewed, possess not only truth, but supreme 
beauty—a beauty cold and austere, like that of sculpture. 

—Bertrand Russell 



Escape from Fractalia 

I first came across the beautiful graphic work of Dr. J. Clint Sprott when he submit-
ted a paper titled "Automatic Generation of Strange Attractors" to Computers and 
Graphics, a journal for which I am the associate editor. I accepted his paper without 
hesitation and was delighted to see a more thorough exposition in his popular 
Strange Attractors: Creating Patterns in Chaos (1993). We soon grew to be good 
friends, often communicating on the Internet, and we naturally could not resist a col-
laboration dealing with our mutual interests. This chapter is a result of that collabo-
ration. As I mention later, Dr. Sprott generated numbers on his personal computer in 
Wisconsin and electronically sent them to me in New York, at which point my pro-
grams read them and rendered them using a graphics supercomputer. (Do not let this 
scare you—the patterns are easily generated on a personal computer.) What you see 
here is also the result of our collaborative writing. 

An infinite number of monkeys with an infinite number of typewriters (word 
processors, nowadays) will eventually reproduce every work of Shakespeare. The 
problem is that someone has to sort through all the gibberish to find the occasional 
gem. On the other hand, the criteria for visual art are much less constrained than for 
literary composition. A monkey with a paintbrush has a reasonable chance of pro-
ducing a pattern that someone would consider artistic. 

Dr. Sprott and I have been experimenting with replacing the monkey by a com-
puter and having it generate a collection of visually interesting patterns.1 Unlike the 
monkey, the computer can be trained to select those images that are likely to appeal 
to humans. The procedure is to take some simple equations with adjustable coeffi-
cients chosen at random, solve the equations with the computer, and display those 
that meet criteria that we have found to be strong indicators of artistic quality. 

One approach is to use equations with chaotic solutions. Such solutions are un-
predictable over the long term yet exhibit interesting structures as they move about 
on a strange attractor, a fractal object with noninteger dimension. Our books show 
many examples of computer art produced by these and related methods.2'3 In this 
chapter, we propose another simple method for producing fractal art. 

Simple Equations Make Interesting Patterns 

Some people can read a musical score and in their minds hear the music. 
. . . Others can see, in their mind's eye, great beauty and structure in 
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certain mathematical functions. .. . Lesser folk, like me, need to hear 
music played and see numbers rendered to appreciate their structures. 
— Peter B. Schroeder 

Traditionally when physicists or mathematicians saw complicated results, they often 
looked for complicated causes. In contrast, many of the shapes that follow describe 
the fantastically complicated behavior of the simplest of formulas (Figures 23.1 and 
23.2). The results should be of interest to artists and nonmathematicians, and anyone 
with imagination and a little computer programming skill. 

One lesson of chaos theory is that simple, nonlinear equations can have compli-
cated solutions. The solutions are most interesting if they involve at least two vari-
ables, x and y, that can be used to represent horizontal and vertical positions, and if 
the variables are advanced step by step in an iterative process. The simplest non-
linearities are quadratic (x2 orxy). The most general two-dimensional quadratic iter-
ated map is: 

xnew = a + bx + cx2 + dxy + ey +fy2 

ynew = g + hx + ix2 + jxy + ky + /y2 

FIGURE 23.1. Escape-time fractal for parameters EHPLWTDJRCAP. (See text for expla-
nation of parameter code. Also see color plates 3 - 6 and 10-12 for additional examples.) 



1 Three-dimensional representation of Fort) frolh. The color ol the spheres is related U> their 
radii. Transparency is used to visualize some of ihe internal Chrysler spheres. See "Fractal 
Milkshakes and Infinite Archery" (chapter 14) for more information 

2 DemagniAculion <»f color plate I. 

3 Escape time fractal for parameters JLLGJTKDCRWl See "Escape from Fractal ia" 
(chapter 23) for more information. 



4 

4 Escape hi*} fractal lor parameters lil 11*1 WTDJRCAI3 See "Escape Irom IracUilkf 
(diapltr 23) tor more information. 



5 Mount I-ractalia. a three-dimensional representation of the previous color plate. 



# I'ITC fractal curtain, an escapc-ti.ne fractal lor pun.mclcrs WBMI NRQMNKAA. See 
"Escape faw I raclafa" tehaptcr 23) for more inlurm;:lion. 



7 Artificial terrain synthesized lis;ng Jbe logii inw).sform;ilion el [)n- Jogislic variahie. See 
"Computers. Randomness. Mind, and Infinity" (chapter 31) for more information. 

K Noise-sphere computed from a had random number generator with correlations between 
digits. To give u better lee] for the global structure produced, spheres are larger than used for 
the other noise-sphere figures and interpenetrate to a greater degree. See "Computers. 
Randomness. Mind, and Infinity" (chapter 31) for more information 

9 Coral-like form produced using recursive programming methods. See "Recursive Woilds" 
(chapter 27) for more information. 



1 i Escape-lime fractal for parameters KUONOVSVFLAR See "Escape from hactalia 
(chapter 2J) for more information 
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12 kscape- iime fractal for parameters LMXIXPQMM I'WRJ See "Escape from fractalia* 
(chapter 23) for more information. 
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where a through I are constants chosen at random but held the same throughout the 
calculation. Think of this as a mathematical feedback loop in which new values for 
x and y are used again in the next round of iteration by setting x = xnew and 
y = ynew. The constants can be considered as settings of a combination lock, each 
revealing a different pattern for you to admire. They open doorways to an infinite 
reservoir of magnificent shapes and forms. 

There are many ways to display the solution to our general maps. One way is to 
plot successive values of x and y as dots on the screen. Many solutions will move to-
ward a point and remain there. Others will settle into a periodic orbit or will move 
off toward infinity. The interesting cases are the chaotic ones that remain confined to 
a limited region but whose orbits produce a strange attractor with intricate fractal 
structure. You can choose the starting values of x and y arbitrarily within the basin of 
attraction, but you should discard the first few iterates because they probably lie off 
the attractor. 

Another way you can display the solution is to solve the equations with many 
different starting values and count the number of iterations required for the solution 
to wander outside some region in the xy-plane. You can use the final number of itera-
tions to determine the color for that point in the plane of initial xy-values. Plots pro-
duced in this way are called escape-time fractals because the color contours indicate 
the time required for the orbit to escape from the region. Some initial values may 
have orbits that never escape, and so you need to have a "bailout condition" beyond 
which your program stops iterating and moves on to test the next initial condition. 

Some of the most artistic examples of escape-time fractals explored in the past 
have been Julia sets, fractal representations describing the behavior of the map 
znew = z2 + c, where - and c are complex numbers.4 In terms of x and y this map is 

xnew = x2 -y2 + a 
ynew = 2xy + b 

and the test escape region is normally taken as a circle of radius of 2 centered on the 
origin. These traditional Julia sets are a special case of the more general maps we 
propose in this chapter. 

Computer Art Critic 

There is no excellent beauty that hath not some strangeness in the 
proportion. — Francis Bacon 

Visually interesting escape-time fractals are those for which the orbits escape slowly. 
We have found that escape times between about 100 and 1,000 produce the most fas-
cinating maps. We start by choosing the 12 coefficients randomly over the range 
-1 .2 to 1.2 in increments of 0.1, and then we iterate the equations for our generalized 
quadratic map with initial conditions of x = y = 0. If we find a group of coefficients 
that result in the initial point escaping beyond a circle of radius 1,000 centered at the 
origin within 100 to 1,000 iterations, then we save the parameter set and compute an 
escape-time fractal for a particular region of the xy-plane. The choice of 1.2 for the 
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FIGURE 23.2. Mount Fractalia, a 3-D representation of Figure 23.1. 

coefficient range is about optimal for speeding the search, and it allows the coeffi-
cients to be compactly represented as letters of the alphabet (A = -1.2, B = -1.1, 
through Y = 1.2) for easy reference and replication. 

The BASIC program in Appendix 1 produces an endless succession of escape-
time fractals by this method. It should run without modification under QBASIC, 
QuickBASIC, VisualBASIC for MS-DOS, or PowerBASIC on the IBM PC. It as-
sumes VGA graphics (640-by-480 pixels with 16 colors). When run on a 486DX33 
under PowerBASIC 3.0, the program takes on average about 10 seconds to find each 
interesting case and about a minute to plot it. In the process of searching for what we 
call "beautiful parameters," it discards about 300 sets for every 1 it saves for plot-
ting. This still leaves about 200 trillion cases, nearly all of which are different. If you 
view them at the rate of one per second, it would take more than 6 million years to 
see them all, and thus it is very unlikely that any of the patterns you produce will 
ever have been seen before. We often run the program overnight and capture the 
screens to graphics files, which can be rapidly examined the next morning. 

Sample Artwork 

The job of an artist is always to deepen the mystery. — Francis Bacon 

Although the programs and methods we have described work well with personal 
computers and produce good-quality patterns within VGA screen limits, we became 
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curious as to how our approach could be extended to higher resolutions. Naturally, 
high-resolution, high-iteration computations would take longer to perform. To over-
come these problems and push our method to the limit, we made use of IBM's 
Power Visualization System, a graphics supercomputer that can compute our general 
quadratic iterated map in parallel using up to 32 Intel i860XP processors. This means 
the computer can simultaneously work on different portions of the artwork and 
therefore greatly reduces the time needed to explore a large number of images to 
find interesting structures. With our software and special hardware we can compute 
and view images at VGA resolution in less than a second. The images in this chapter 
and in some of the color plates for this book were computed at a resolution of 1,600-
by-2,400 pixels using 1,000 iterations for each pixel. Computation and display re-
quired less than a minute for each high-resolution image. The final step in esthetic 
presentation involves the mapping of escape times to colors. Although beautiful im-
ages result from simple color mappings, such as the one used in the BASIC code in 
Appendix 1, we used custom software that permits the algorithmic or mouse selec-
tion of colors from a palate of 224 colors in a convenient fashion. It is also possible 
for us to render the maps in three dimensions, representing escape time as height. 
The Power Visualization System enables us to "fly by" the 3-D maps in real time, 
permitting us to make videotape animations characterizing the intricate behavior of 
these functions. 

In the future, high-end methods such as these will be accessible to everyone as 
PC power increases, cost decreases, and Internet collaborations such as ours become 
commonplace. In our own collaboration, input parameters were generated on a per-
sonal computer in Wisconsin, electronically sent over the Internet to New York, and 
then read by the Power Visualization System and rendered. 

To artists and computer graphics programmers, the automated generation of our 
generalized quadratic-map representations has great appeal because the speed allows 
the human analyst the freedom to experiment with many parameters. Students and 
teachers will enjoy such an approach as they explore and demonstrate the complex-
ity and chaos associated with simple formulas. Mathematicians may find the ap-
proach useful because the sheer number of different structures they can generate has 
the potential for making complex behaviors apparent that might have been over-
looked using traditional approaches. 

Further Suggestions 

The method we have described is simple and effective, but we do not claim it is the 
final word on automated computer art. You can explore other criteria for selecting 
the patterns and other ways to display them. We chose a generalized two-dimen-
sional quadratic map to emphasize the complexity and variety that arises from sim-
ple equations. You can easily extend the technique to other mathematical functions 
and to higher dimensions. The same ideas can be used for automatic generation and 
evaluation of computer music. We hope that we have introduced you to a new use 
for your computer, and we would like to hear of any interesting results you obtain. 
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When I consider the small span of my life absorbed in the eternity of all 
time, or the small part of space which I can touch or see engulfed by the 
infinite immensity of spaces that I know not and that know me not, I am 
frightened and astonished.... 

— Blaise Pascal 



Are Infinite 
Carotid-Kundalini 
Functions Fractal? 

The humble sine waves that lie at the very foundation of trigonometry have a special 
beauty all their own. It takes just a little coddling to bring the beauty out. But who 
would guess, for example, that intricate fractal patterns lurk within the cosine opera-
tion applied to real numbers? 

Consider the union of the infinite set of curves produced by Carotid-Kundalini 
(C-K) functions defined by: 

y = cos(n x x x acos (x)) 

where ( -1 < x < 1, n = 1, 2, 3 , . . . ) , and acos designates the arccosine function. The 
set of superimposed curves is very simple to plot—most computer hobbyists could 
easily program and plot them on a personal computer—but the curves have an ex-
tremely complicated and beautiful structure (Figure 24.1). For example, for x < 0 
there appears to be an exotic fractal structure with gaps repeated at different size 
scales and with progressively increasing spacing as x becomes smaller. This behav-
ior is also illustrated in Figure 24.2, a magnification of Figure 24.1. For x > 0 there is 
an intricate oscillating web. Centered around x = 0 are a series of bell-shaped curves. 

You can compute the union of the first 25 curves using the following logic (a 
more complete program listing is provided in Appendix 1): 

fo r (n-1; n<-25; n-n+1) { 
fo r (x- -1 ; x<- l ; x-x+.Ol) { 

y - cos( ( f1oa t )n*x*acos(x) ) ; 
if ( x — 1 ) MovePenTo(x.y); 

e l se DrawTo(x,y); 
} 

) 

If you have the ability to display these curves, make a plot from - 1 < x < 1 and 
-1 <y<l. 

For the most graphical beauty, and for your eye to detect the most structure, 
scale the plot so the j-axis is much smaller than the x-axis, creating a thin strip. Try 
magnifying Fractal Valley (my personal favorite, to the left of zero), Oscillation 
Land (to the right of zero), and Gaussian Mountain Range (in the center). What hap-
pens as n approaches infinity? What do we know about the spacing of gaps in Fractal 
Land? 
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Fractal Valley Oscillation Land 
1.0 

0.5 

5- 0.0 

-0 .5 

-1 .0 

FIGURE 24.1. Carotid-Kundalini functions. Fractal Valley extends from - I < x < 0 . Oscil-
lation Land extends from 0 < x < 1. The term Gaussian Mountain Range refers to the central 
series of bell-shaped curves. The curves were plotted for 1 < n < 25. 

FIGURE 24.2. Magnification of left side of Figure 24.1. 

Even though to my knowledge these curves have not been well characterized, 
we can be certain of several things. For example, they are bounded by y = ±1. Also, 
because acos(l) = 0 and cos(0) = 1, the infinite number of C-K curves contain the 
point (1, 1). This means that all curves must meet at the upper right section of Figure 
24.1. It is almost as if some geometrical god has come down and placed a pin at (1, 
1) to tie the majestic, unruly curves together. 

The curves intersect the line y = 1 whenever any of the following conditions are 
met: n = 0, x = 0, or acos (x) = 0. This accounts for the tip of the bell-shaped curves 
in Gaussian Mountain Range. The bells are centered at the origin at x = 0. Zero 
crossings satisfy %/2 = n x acos (x). 

The Magical Fractal Gaps 

Dr. V. T. Rajan from IBM was the first person to quantify the exact placement of the 
mysterious repetitive gaps that occur in the plots for - 1 < x < 0. The center of the 
gaps occurs whenever x arccos(x) = 2n(p/q) where p and q are integers and have no 
common factors. When these conditions are met then the C-K functions all assume 
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only ceiling((g+1 )/2) distinct values. The term ceiling means to round the value up 
to the nearest integer. (Notice in Figure 24.2 only a few distinct values are assumed 
by the superimposed curves while in the gaps.) The distinct values that all the curves 
assume are COS(2JTr/q), r = 0, 1, . . . , floor (q/2). The term floor means to round the 
value down to the nearest integer. 

As more C-K functions are superimposed, the graph becomes denser (blacker). 
However, if we were to magnify the dense "fabric," we would see gaps satisfying the 
Rajan conditions. Can you write a graphics program permitting the search for gaps? 

A Programming Tip for Some BASIC Users 

Some forms of BASIC may not have an arccosine (ACOS) function, even though 
they all have an arctangent function, ATAN or ATN. Perhaps this omission has come 
about because arccosine (and arcsine) can be expressed in terms of arctan. In fact, 
some BASIC manuals give the explicit formulas for computing arccosine and 
arcsine. 

William Rudge from California suggests that implementation of ACOS and 
ASIN may have been omitted to save memory, particularly in the past when comput-
ers had little memory. Perhaps certain trigonometric functions were considered to be 
used very seldom. Most other computer languages have the ACOS function. 

To compute ACOS from ATN, one can use: 

ACOS(y) = ATN(SQRT(1 - y*y) /y ) 

If y is close to zero, numerical errors will be large, so it may be useful to check the values 
of y, as in the QuickBASIC program provided by William Rudge in Appendix 1. 

Details 

Mathematically inclined readers may be interested in the work of Robert Israel from 
the Department of Mathematics at the University of British Columbia. Others will 
want to skip this section. To better understand the C-K functions, Robert finds it use-
ful to create a new variable, t. Let t(x) =x x acos (x), and study the graph of t as a 
function of x. There is one maximum at (according to Maple Software) x = .65218 
and t = .56109. Moreover, r ( - l ) = - n and r(l) = 0. We have _y = 0 when n x t is an 
odd multiple of j t /2 . There are n - 1 odd integers between - 2 n and 0, and floor 
(,17860xn + .5) between 0 and 2 n x . 5 6 1 0 9 / j r (where floor(x) = greatest integer 
<x). Therefore, the function crosses the y-axis n - 1 times for - 1 < x < 0, and floor 
(0 .17860xn + .5) times for 0 < x < 0 . 6 5 2 1 8 , and another f l oo r (0 .17860xn + .5) 
times for 0.65218 < x < 1. Robert assumes that 0.561096 is actually an irrational 
multiple of n, which is almost certainly true. 

There will be a maximum whenever cos(nr) = 1, that is, when nt is a multiple of 
2n. There will be a minimum whenever cos (nt) = - 1, that is, when nt is an odd mul-
tiple of n. Moreover, there will be a maximum or minimum at x = 0.65218 where t 
has its maximum. 
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The rationality of our universe is best suggested by the fact that we can 
discover more about it from any starting point, as if it were a fabric that 
will unravel from any thread. 

— George Zebrowski, 1994 



The Crying of Fractal 
Batrachion 1,489 

Batrachions are a class of bizarre and infinite mathematical curves that hop like 
frogs from one "lilypad" to the next as they parade along the number system. These 
little-known curves derive their name from batrachian, which means "froglike." (To 
pronounce the word, note that the "ch" has a "k" sound.) 

A batrachian preparing to hop. 

In addition to hopping in a strange manner from integer to integer, batrachions 
also have other interesting properties. For example, they are often fractal, exhibiting 
an intricate self-similar structure when examined at different size scales. Also, they 
evolve from very simple-looking recursive formulas involving integers. 

As background, perhaps the most common example of recursion in program-
ming and in mathematics is one that defines the Fibonacci numbers. This sequence 
of numbers, called the Fibonacci sequence, plays important roles in mathematics and 
nature. These numbers are such that, after the first two, every number in the se-
quence equals the sum of the two previous numbers: 

FN = FN_l+FN_2 f o r N > 2 , F0 = Ft = \ N •<ro 

This defines the sequence 1, 1, 2, 3, 5, 8, 13, 2 1 , . . . 
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With this brief background to recursion, consider my favorite batrachion, pro-
duced by the simple yet weird recursive formula 

a(n) = a{a(n - 1)) + a(n - a(n - 1)) 

The formula for the batrachion is reminiscent of the Fibonacci formula in that 
each new value is a sum of two previous values—but not of the immediately pre-
vious two values. The sequence starts with a( 1) = 1 and a(2) = 1. The "future" values 
at higher values of n depend on past values in intricate recursive ways. Can you de-
termine the third member of the sequence? At first, this may seem a little compli-
cated to evaluate by hand, but you can begin slowly by inserting values for n, as in 
the following: 

a(3) = a(a(2)) + a(3 - a(2)) 
a(3) = a(l) + a(3 - 1) 
a( 3) = 1 + 1 = 2 

Therefore, the third value of the sequence, a(3), is 2. 
The sequence a(n) seems simple enough: 1, 1, 2, 2, 3 , 4 , 4 , 4 , 5 , . . . . Try com-

puting a few additional numbers. Can you find any interesting patterns? The prolific 
mathematician John H. Conway presented this recursive sequence at a talk he gave 
at AT&T Bell Labs entitled "Some Crazy Sequences."1 He noticed that the value 
a(n)/n approaches 1/2 as the sequence grows, and n becomes larger. Table 25.1 lists 
the first 32 terms of the batrachion and the ratio a{n)/n. 

I first became interested in this sequence after reading Schroeder's delightful 
book Fractals, Chaos, Power Laws2 but, alas, there were no graphics included to 
help readers gain insight into the behavior of the batrachion. It turns out that this se-
quence has an incredible amount of hidden structure. Figure 25.1 is a plot of a(n)/n 
for values of n between 0 and 200. Notice how the curve hops from one value of 0.5 
to the next along very intricate paths. Each hump of the curve appears to be slightly 

0.70 

0.50 
0 50 100 150 200 

n 

FIGURE 25.3. Batrachion a(n)/n for 0 < n < 10,000. 
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TABLE 25.1. First 32 Terms of the Batrachion 

n a(n) a(n)/n n a («) a(n)/rt 

1 1 1.0 17 9 .5294 

2 1 1.0 18 10 .5555 

3 2 .666 19 11 .5789 

4 2 .5 20 12 .6 

5 3 .6 21 12 .5714 

6 4 .666 22 13 .5909 

7 4 .5714 23 14 .6086 

8 4 .5 24 14 .5833 

9 5 .5555 25 15 .6 

10 6 .6 26 15 .5769 

11 7 .6363 27 15 .5555 
12 7 .5833 28 16 .5714 

13 8 .6153 29 16 .5517 
14 8 .5714 30 16 .5333 

15 8 .5333 31 16 .5161 
16 8 .5 32 16 .5 

lower than the previous, as though a virtual frog were tiring as it explored higher and 
higher numbers. As the frog nears infinity, will it stop its hopping and lie dormant at 
a{n)/n = 0.5? Figure 25.2 is a plot for the first 1,000 values of the sequence. Notice 
that it is very similar to Figure 25.1. More and more humps evolve with an intricate 
self-similar arrangement of tiny jiggles along the path. 

n 

FIGURE 25.2. Batrachion a(n)/n for 0 < n < 1,000. 
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$10,000 Cash Award 

Let us consider how quickly the frog approaches its 0.5 destination at infinity. For 
example, can you find a value of n beyond which the value of a(n)/n is so tiny that it 
is forever within 0.05 from the value 1/2? (In other words, Ia{n)/n - 1/21 < 0.05. 
The bars indicate absolute value.) 

A difficult problem? John Conway, the prolific British mathematician, offered 
$10,000 to the person to find the first value of n such that the frog's path is always 
less than 0.55 for higher values of n. A month after Conway made the offer, Colin 
Mallows of AT&T solved the $10,000 question: n = 1,489.3 Figure 25.3 shows this 
value on a plot for 0 < n < 10,000. (For a variety of minor technical reasons, a less 
accurate number is published in Schroeder's book.) As I write this, no one on the 
planet has found a value for the smallest n such that a(n)/n is always within 0.001 of 
the value 1/2, that is (Ia{n)/n - 1/21 < 0.001). (No one even knows whether such a 
value exists.) 

Looking at the curves, we can see the following. The frog hits the pond peri-
odically. In fact, a{n)/n "hits" 0.5 at values corresponding to powers of 2, such as at 
2k, k = 1, 2, 3 , . . . . Does each hump reach its maximum at a value of n halfway be-
tween the 2k and 2k + 1 endpoints? 

Tal Kubo from the Mathematics Department at Harvard University is one of the 
world's leading experts on this batrachion. He notes that the sequence is subtly con-
nected with a range of seemingly unrelated topics in mathematics: variants of Pas-
cal's triangle, the Gaussian distribution, combinatorial operations on finite sets, and 
Catalan numbers. Tal Kubo and Ravi Vakil have developed algorithms to compute 
the behavior of the batrachion as it nears infinity. Indeed, they have found that the 

FIGURE 25.3. Batrachion a(n)/n for 0 < n < 10,000. 



THE CRYING OF FRACTAL BATRACHION 1,489 187 

TABLE 25.2. The Infinite Frog 

e Last n Such That Ia(n)/n -1/21 > e 

1/20 
1/30 
1/40 
1/50 
1/60 
1/70 
1/80 
1/90 

1,489 (found by Mallows in 1988) 
758,765 

6,083,008,742 (found by Mallows in 1988) 
809,308,036,481,621 

1,684,539,346,496,977,501,739 
55,738,373,698,123,373,661,810,220,400 

15,088,841,875,190,938,484,828,948,428,612,052,839 
127,565,909,103,887,972,767,169,084,026,274,554,426,122,918,035 

1/100 8,826,608,001,127,077,619,581,589,939,550,531,021,943,059,906,967,127,007,025 

frog tires rather slowly! For example, the frog's jumps are not always less than 0.52 
until it has jumped 809,308,036,481,621 times! Table 25.2 lists values for different 
frog jump heights. These values were found by Tal Kubo and Ravi Vakil using a 
Mathematica program running on a Sun 4 computer. 

Colin Mallows, the statistician who conducted the first in-depth study of this 
class of curves, notes that no finite amount of computations will suffice to prove that 
the regularities we see in the curve persist indefinitely. He does note that the differ-
ences between successive values are either 0 or 1. Is this true indefinitely? 

I have found that Figures 25.1 through 25.3 give students and researchers an intui-
tive feel for the batrachion, its self-similar structure, and Conway's contest. How 
might we apply other simple graphical tools to better display the behavior of the ba-
trachions? I was particularly interested in how we can best illustrate the fractal (self-
similar) structure of the various humps. One way is to renormalize each hump by 
shifting them on the x-axis each time a 2k value is reached. In addition, the x-values 
can be scaled between 0 and 1 by multiplying by 1/2*. (This effectively normalizes 
the curves so the range 2k to 2k ' 1 is squeezed into the range of 0 to 1.) Figure 25.4 
illustrates my visualization and shows the beautiful but intricate relationships be-
tween successive humps. This plot was computed for the first 2,048 points in the ba-
trachion, and I placed dots at the vertices of the first few humps. As the frog hops 
closer and closer to infinity, these curves become more squat and begin to hug the 
y = 0.5 line. 

Interestingly, it is not clear how one hump in the batrachion is generated from 
the previous hump. As Colin Mallows of AT&T has pointed out, a(100), which is lo-
cated in the sixth hump, is computed as a(a(99)) + a(100 - a(99)) = a(56) + a(44) = 
31 + 26 = 57. This shows that a point in hump 6 is generated from two points in 

Visualizing Infinity 
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FIGURE 25.4. Renormalized batrachion to show fractal structure. (See text and program 
code in Appendix 1 for more information.) 

hump 5 that are far apart. I have chosen one way to represent the complex relation-
ship between the two terms by plotting a(a(n - 1)) (the first term of the batrachion 
formula) and a(n - a(n - 1)) (the second term) as x and y in an x-y plot (Figure 25.5). 
(The terms are normalized by dividing by n prior to plotting.) Notice the unusual 
clustering of points toward the bottom of the plot corresponding to the decay of the 
batrachion as it jumps to infinity. 

Other Batrachions 

When I first became interested in this class of curves, I thought there surely would be 
other famous batrachions. I was right. Figure 25.6 shows a batrachion computed 
from a very similar looking, recursive integer sequence: 

Q(n) = Q(n - Q(n - 1)) + Q(n - Q(n - 2)) 
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FIGURE 25.5. First and second terms of the batrachion as x and y. 

This sequence was mentioned in Hofstadter's famous Godel, Escher, Bach, but no 
figure was given to show its magnificent and bizarre behavior.4 (The sequence of 
numbers produced by this formula is sometimes called Q-numbers.) The first few 
hundred values show striking regularity, but I do not know whether the regularities 
persist. There is obviously some subtle pattern that is difficult to define. The behav-
ior of this function as it approaches infinity is not known. Does a(n)/n eventually 
converge to 0.5? The virtual frog seems to be rather nervous, or perhaps high on 
LSD. There are periodic bursts that noisily decay to around 0.5 until another rapid 
hop starts again. How could such a simple integer formula give such complexity? 

Finally, another batrachion, Mallows's batrachion, is defined by: 

a(n) = a(a(n - 2)) + a(n - a(n - 2)) 

This also has an intricate humped structure. No one knows whether a(n)/n tends to 
some limit for this batrachion. 



190 KEYS TO INFINITY 

0.7 

0.6 

.c 

i s 0.5 
O 

0.4 

0.3 0 500 1000 1500 2000 
n 

FIGURE 25.6. Visual representation of Hofstadter's batrachion. 

The Crying of Fractal Batrachions 

Various authors, such as Manfred Schroeder, have discussed how mathematical 
waveforms sound when converted to time waveforms and played as an audio signal. 
For example, Weierstrass curves (which are continuous but quite jagged) are a rich 
mine of paradoxes. They are produced by: 

w(t) = ^AkcosBkt 
k= 1 

where AB > 1 + 3n/2. If Weierstrass curves are recorded on a musical tape and re-
played at twice the recording speed, the human ear will unexpectedly hear a sound 
with a lower pitch. Other fractal waveforms do not change pitch at all when the tape 
speed is changed. It is rumored (but I have not confirmed) that the first batrachion 
described in this chapter produces a windy, crying sound when converted to an audio 
waveform. I am interested in hearing from readers who have conducted such audio 
experiments on any of the batrachions. For other musical mappings of number se-
quences and genetic sequences to sound, see my book Mazes for the Mind: Comput-
ers and the Unexpected.5 The BASIC and C programs in Appendix 1 are a launchpad 
for future exploration. 





C H A P T E R 

In a perfect universe, infinities turn back on themselves. 

— George Zebrowski 



Ramanujan, Infinity, and 
the Majesty of the 
Quattuordecillion 

I have always been fascinated by the mathematical concept of nested roots. As back-
ground, most readers will probably be familiar with the commonplace square root 
symbol in mathematics: 

Nested roots are certainly more fascinating (and typographically attractive) to look 
at. Here is an example: 

VVT= 1.414 . . . 

If mathematics were a beauty contest, then nested roots would win the prize. 
They are simply square roots of roots of roots in an infinite cascade. Here is an ex-
ample of an infinitely nested root: 

A few years ago I asked colleagues whether it were possible for humanity to de-
termine the solution to the following nested set of square roots: 

Here, Q indicates a quattuordecillion, or 1 followed by 45 zeros: 

Q = 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 

(Yes, quattuordecillion is the official name for this number in the United States. It 
comes from the Latin root quattuordecim. Check it out in your Webster's Un-
abridged Dictionary.) To get a feel for the size of a quattuordecillion, consider that it 
is much larger than the number of molecules in a pint of water (1.5xl025) but less 
than the number of electrons, protons, and neutrons in the universe (1079). 

When I first became enamored by the number quattuordecillion I searched the 
world for other large number comparisons so I could adequately convey to students 
the majesty of the quattuordecillion. Here are some other comparisons. The Ice Age 
number (1030) is the number of snow crystals necessary to form the Ice Age. The 
Coney Island number (1020) is the number of grains of sands on the Coney Island 
beach. The talking number (1016) is the number of words spoken by humans since 
the dawn of time. This last includes all baby talk, love songs, and congressional de-
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bates. This number is roughly the same as the number of words printed since 
the Gutenberg Bible appeared. The amount of money in circulation in Germany 
at the peak of inflation was 496,585,346,000,000,000,000. This number is approxi-
mately equal to the number of grains of sand on the Coney Island beach. The num-
ber of oxygen atoms contained in the average thimble is a good deal larger: 
1,000,000,000,000,000,000,000,000,000. The number of electrons that pass through 
a filament of an ordinary light bulb in a minute equals the number of drops of water 
that flow over Niagara Falls in a century. The number of electrons in a single leaf is 
much larger than the number of pores of all the leaves of all the trees in the world. 
The number of atoms in this book is less than a googol. The chance that this book 
will jump from the table into your hand is not 0—in fact, using the laws of statistical 
mechanics, it will almost certainly happen sometime in less than a googolplex of 
years. 

I had read the mythical and mystic works, and it surprised me that I would 
be amazed when I finally reached down into the deepest part of my soul 
and found infinity. — Clark Punkford 

When I asked colleagues to determine a value for the infinite set of nested roots in 
equation 1,1 surely felt that no human could arrive at a solution. After all, a quattuor-
decillion is larger than most computers could assimilate. The behavior of the nested 
root also makes it particularly difficult to decipher. The continued roots seem to 
make the values smaller, while the Q multipliers continue to make the values larger. 
Think of two sumo wrestlers competing for domination on a numerical wrestling 
mat. How could we ever arrive at an amicable solution? 

It turns out that it was not too difficult to compute the value for the mysterious 
nested root. The solution is so simple that it astonished most colleagues who ex-
pected a noninteger solution. The value of the nested Q system in equation 1 is sim-
ply (2+1, and this could have been solved decades ago without computers. 

In 1911, a 23-year-old Indian clerk named Srinivasa Ramanujan posed the fol-
lowing question (#298) in a new mathematical journal called the Journal of the In-
dian Mathematical Society: 

Many months went by, and not a single reader could determine a solution. The 
difficulty was the infinite nesting of roots. Ramanujan finally threw up his hands and 
gave the answer, 3. It turns out that he had generated the problem years before in the 
form of a more general theorem: 

Numerical Sumo Wrestlers 
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Plug in any value you like forx, and the solution is x+1. Plug in Q, and the solu-
tion is (2+1. Try other values and impress your friends. 

Absolute Reality 

Ramanujan himself constructed a theory of reality using zero and infinity. (Most of 
Ramanujan's contemporaries in England could not understand what he was trying to 
say when he presented this arcane, mystical concept—can you?) To Ramanujan, 
zero represented "absolute reality." Infinity was the myriad manifestations of that re-
ality. What happens if you multiply them together: 

O X o o 

To Ramanujan, the product 0 x °o was not a single number, but all numbers, each of 
which corresponded to an "act of creation." What could Ramanujan have meant by 
this? 
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He watched her for a long time and she knew that he was watching her 
and he knew that she knew he was watching her, and he knew that she 
knew that he knew; in a kind of regression of images that you get when 
two mirrors face each other and the images go on and on and on in some 
kind of infinity. 

— Robert Pirsig, Lila, 1992 



Recursive Worlds 

Recursion 

"Whatever can be done once can always be repeated," begins Louise B. Young in 
The Mystery of Matter when describing the shapes and structures of nature. From the 
branching of rivers and blood vessels to the highly convoluted surface of brains and 
bark, the physical world contains intricate patterns formed from simple shapes 
through the recursive application of dynamic procedures. Questions about the funda-
mental rules underlying the variety of nature have led to the search to identify, meas-
ure, and define these patterns in precise scientific terms. 

Recursion is a fundamental concept in computer science, mathematics, biology, 
art (Figure 27.1), and even linguistics. For example, recursive definitions exist 
whenever something is defined in terms of itself. Consider the following scenario. 
You page through a dictionary to find the definition of recursion. Imagine you find it 
just below the word recuperate, as follows: 

recumbent — lying down. 
recuperate — to recover health. 
recursion — look up the definition of recursion. 

Here the word recursion is defined in terms of itself in a recursive definition. (Note 
that the term recursion is distinct from iteration, which is exemplified by turning the 
pages of the dictionary to find a particular word, which could be expressed in a com-
puter program as: NextPage = CurrentPage + 1.) Here are some other linguistic re-
cursive definitions: 

A wolf pack is two wolves or is a wolf pack together with a wolf. 

Even more simple constructs such as "Art is art," or "A dog is a dog," or "A dog 
is not a dog" might be considered primitive examples of recursive definitions. Some-
times the term self-referential is used when referring to these constructs. 

The related concept of "quining" is discussed in Douglas Hofstadter's Godel, 
Escher, Bach. Quining is a process of taking a group of words and forming a self-ref-
erential sentence by preceding the original group with the same group enclosed in 
quotation marks. Here is a concrete example: 

"Is a sentence fragment of seven words" is a sentence fragment of seven words. 

197 
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FIGURE 27.1. Recursion in art. How many repeated levels do you see? ("Scruting the in-
scrutable," from Roger Shepard's Mind Sights. © 1990 by R. Shepard. Reprinted with per-
mission of W. H. Freeman and Co.) 

Let me give a few interesting examples of recursion in different settings. Per-
haps the most striking application of recursion occurs in the biological world, where 
growth starts with a bud, which grows into a pipe, which then branches into two 
buds, with each of these two buds branching in a recursive growth process. Iteration, 
or repeated application, of these simple rules results in a self-similar oak tree, or ar-
terial blood system, or the bronchial system of lungs. The branching patterns are 
thought to be the result of the simplest of growth algorithms: The steps repeat the 
previous ones on smaller and smaller scales. Figure 27.2 shows a coral-like form I 
computed using simple recursive branching rules at smaller and smaller size scales 
(see program code in Appendix 1). 

In geometry, one of the most interesting consequences of recursive processes is 
self-similarity. A self-similar object looks roughly the same after increasing or 
shrinking its size. Like a collection of nested Russian dolls, self-similar objects con-
tain within themselves miniature copies of themselves. Look inside a turbulent 
stream of water: The largest eddies contain smaller ones, and these contain smaller 
ones still. The beautiful consequences of self-similarity are intricate, fine-grained 
patterns, now generally called fractals. The term fractals was coined in 1975 by 
Benoit Mandelbrot to encompass many of the detailed and convoluted shapes found 
in nature and produced by recursion in both the mathematical and natural worlds.1 

One of my earliest and most interesting introductions to recursion and self-simi-
larity came in the form of a cartoon by Don Martin in Mad magazine. In the first 
frame of the cartoon, a man lies anesthetized on a hospital operating table. Under the 
halogen lamps, the stainless-steel surfaces of the table glisten like diamonds. Blood 
moves through a clear, plastic IV line and into the patient's body through a vein in 
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F I G U R E 27.2. Coral-like form generated from recursive program. 

his thigh. One of the nurses bends close to the patient's face, checking his dilated pu-
pils for signs of increased cranial pressure caused from excess fluid. 

In the second frame of the cartoon, a brain surgeon uses a small circular saw to 
create an opening, a thin crack, all along the circumference of the man's head. The 
patient is pale and motionless. The doctor hands the medical saw to an assistant, 
opens the patient's cranial cavity by removing the skull cap, and then places this up-
per hemisphere of the skull in a bath of warm saline solution. 

Inside the head, the surgeon does not find a brain, but rather another head, iden-
tical to the original and fully formed, but slightly smaller. The brain surgeon, slightly 
shocked, quickly removes this smaller head from the patient's skull cavity and be-
gins to remove the skull cap of the smaller head. Inside the smaller head is yet an-
other smaller head. He continues to find smaller and smaller heads until the last 
head, a few inches in length, sits in the palm of his hand. He opens this final head 
only to find a slip of paper about the size of a fortune in a Chinese fortune cookie. 
He holds the paper up. It reads, "Inspected by number 47." 

An anthropological example of recursion occurs in the Ulupu tribe in New 
Guinea, where it is said that a musical ritual must be performed whenever a sad tune 
is played on a musical instrument. The musical ritual consists of three things: paint-
ing the face with certain botanical dyes, taking a deep breath, and playing a sad tune 
on a bamboo instrument. One can see why sad tunes are usually avoided. 

A common visual analogy for recursion involves a video camera and a televi-
sion (TV) monitor. Consider the following nomenclature: Camera(Cliff) means 
"Camera looking at Cliff Pickover," and TV(Cliff) means "TV shows a picture of 
Cliff Pickover." When operated in the usual manner, the camera produces an image 
of the subject as: 
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Camera(Cliff) TV(Cliff) 

But if the camera is pointed at the TV, then, for a start, 

Camera(TV) TV(TV) 

However, the camera sees not just the TV, but the "TV showing a TV." Therefore, 

Camera(TV(TV)) TV(TV(TV)) 

And now it sees "TV showing TV showing TV": 

Camera(TV(TV(TV))) TV(TV(TV(TV))) 

The feedback loop continues almost at the speed of light in a recursive process. 
In computer programming, recursion is often used when referring to the struc-

ture and functioning of programs. The common definition is that a recursive program 
is one that calls itself, and a recursive function is one that is defined in terms of itself. 
Interestingly, recursion can be removed from any recursive program using iteration, 
as I shall show below. 

Perhaps the most common example of recursion in programming and in mathe-
matics (where recursion is called a recurrence relation) is the factorial function: 

X] =Xx(X- 1)! f o r X > 1, 0! = 1 

where X is an integer. 
The factorial funciton can be accomplished with a simple recursive program: 

1 Factorial(X); 

2 IF X-0 then Factori al-1 

3 ELSE Factori al=X*Factori al(X-l) 

4 END 

Notice that the program calls itself in line 3. 
Another common example of a recurrence relation is one that defines the Fibon-

acci numbers. This sequence of numbers, called the Fibonacci sequence after the 
wealthy Italian merchant Leonardo Fibonacci of Pisa, plays important roles in 
mathematics and nature. These numbers are such that, after the first two, every num-
ber in the sequence equals the sum of the two previous numbers: 

J W w - i + ^ - 2 fo rN>2,FQ = F1= 1 

This defines the sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 . . . . As with the factorial 
function, a simple recursive program can be written to generate the Fibonacci se-
quence: 

1 Fibonacci(X) 

2 IF N<-1 then Fibonacci-1 

3 ELSE Fibonacci=Fibonacci(N-l)+Fibonacci(N-2) 

4 END 
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In actuality, as with many recurrence relations, it is very easy to compute FN us-
ing arrays in a nonrecursive program: 

Fi bonacci 

F[0]-1: F[l]-1: 

For i-2 to 30 

F[i]~F[i-1]+F[i-2] 

END 

END 

This program computes the first 30 Fibonacci numbers, using an array size of 30. 
This method of using arrays to store previous results is usually the preferred method 
for evaluating recurrence relations, because it allows even complex expressions to 
be processed in a uniform and efficient manner. Of course, in this example, the pro-
grammer can even avoid the array by retaining the last two values in two variables. 

Recursive Lattices 

Answer this question with "yes" or "no." Will your next word be "no"? 
— Barry Evans, Everyday Wonders 

The goal of the remainder of this chapter is to give examples of recursion for a par-
ticular class of self-similar objects I call recursive lattices, because they can easily be 
constructed using checkerboards of different sizes. The concept of repeatedly replac-
ing copies of a pattern at different size scales for producing interesting patterns dates 
back to the 1890s, including the work of mathematicians Koch, Hilbert,2 and 
Peano.3 More recently work has been done by Mandelbrot and Lindenmeyer. Artists 
such as Escher, Vasereli, Shepard4 and Kim have also experimented with recursive 
patterns. The designs in this chapter are so intriguing and simple to compute using a 
personal computer that I will give some computational recipes for readers who are 
computer programmers. 

To create the intricate forms, start with a collection of squares called the initia-
tor lattice or array. You can see what these look like in the magnification of the upper 
left corner in each lattice figure. The initial collection of squares represents one size 
scale. At each filled (black) square in the initial array I place a small copy of the 
filled array. This is the second size scale. At each point in this new array, I place an-
other copy of the initial pattern. This is the third size scale. In practice I only use 
three size scales for computational speed and because a fourth size scale does not 
add much to the beauty of the final pattern. 

In mathematical terms, begin with an S-by-S square array (A) containing all 0's 
to which 1 's, representing filled squares or sites, are added at random locations. Here 
is an example: 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 
0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 
0 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

Just how many patterns can you create by randomly selecting array locations and 
filling them with 1 's? To answer this question, I like to think of the process of filling 
array locations in terms of cherries and wine glasses. Consider an S'-by-.S' grid of 
beautiful, crystal wine glasses. Throw M cherries at the grid. A glass is considered 
occupied if it contains at least one cherry. With each throw a cherry goes into one of 
the glasses. How many different patterns of occupied glasses can you make? (A glass 
with more than one cherry is considered the same as a glass with one cherry in the 
pattern.) 

It turns out that for an S'-by-.S' array and M cherries, the number of different pat-
terns is 

~ (Sz - n)\n\ n = 1 ' 

As an example of how large the number of potential patterns is, consider that 32 
cherries thrown at a 9-by-9 grid creates a more than 1022 different patterns. This is 
far greater than the number of stars in the Milky Way galaxy (1012) and greater than 
the number of atoms in a person's breath (lOxlO21). In fact, it is about equal to the 
estimated number of stars in the universe (1022). For the patterns in this chapter, I use 
S = 7. Smaller arrays would lead to fewer potential patterns (particularly with the 
added induced symmetry, discussed later), and greater values of S lead to diffuse pat-
terns with the scaling used. 

In the C programming language, the process of filling the initial array can be 
coded as: 

1 S-7: Sz-S-1; M-20; 

2 for (h—1; h<-M; h++) { 

3 /* rand returns a value between 0 and 32767 */ 

4 v - ((float)rand()/32767.)*S; 

5 w - ((float)rand()/32767.)*S; 

6 a[v][w]-l; 

7 a[Sz-v][w]-l: 

8 a[Sz-v][Sz-w]-l: 

9 a[v][Sz-w]-l; 

10 } 
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Notice that lines 6-9 introduce a four-fold symmetrical pattern that leads to an over-
all symmetry in the design at several size scales. Because each of the "cherries" is 
symmetrically placed in each of the four quadrants of the initial array, each pattern is 
really defined by the smaller quadrant subpattern. This symmetrization decreases the 
number of possible patterns to a mere 

M/4 

£ ( ( ( £ + D / 2 ) 2 ) ! / ( ( ( S + l ) / 2 ) 2 - n ) ! 
n = 1 

For even values of S, use floor((S+l )/2), where floor(x) returns the largest integer 
value not greater than the x parameter. I find that inducing the symmetry of the origi-
nal pattern produces more esthetically appealing designs than those produced by a 
random initial array. Later in this chapter, I will mention other kinds of symmetry 
that can be explored. 

For convenience, a computer program may store the values of the A array in two 
one-dimensional arrays, x and y, whose values are centered at the origin. The final 
value of N is the number of filled points in the symmetrical array: 

N-0; Sz-S-1; 

for (i-0; i<-S; i++) 

for (j-0; j<-S; j++) 

if (a[i ][ j ]—1) 

{N++; x[h]=i-Sz/2; y[h]-j-Sz/2;} 

The major computational step begins with the generation of the three size scales 
from these x and y arrays. The values of these arrays store the positions of the sites 
"filled" with 1 s in the original structural motif. To determine the final positions of all 
the black squares in the final design, a scale factor a is applied to each position and 
the resulting terms summed: 

3 

i=i 
3 

;= l 

For the patterns in this chapter, o^ = 1, CX2 = S, and a 3 = S2. In a computer program, 
this can be accomplished by: 

for (i-1; i<-N; i++) { 

for (j-1; j<-N; j++) { 

for (k-1; k<-N; k++) { 

X - alpha[l]*x[h] + a 1pha[2]*x[h] + alpha[3]*x[h] 

Y - alpha[l]*y[h] + alpha[2]*y[h] + alpha[3]*y[h] 

PlotSquareAt(X.Y) 

} 
} 

} 
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Beauty and the Bits 

Several numerical measures of the patterns can be computed and displayed in an ef-
fort to quantify the structure of the patterns. If these parameters are found to corre-
late with the "beauty" of certain patterns, computer programs can then examine 
these parameters and automatically generate classes of patterns of aesthetic value. 
Imagine sitting back and letting your computer scan an "infinite" universe of forms 
and display only those you will find attractive. 

Perhaps the most obvious parameter to compute is the fractal dimension D, 
which characterizes the size-scaling behavior of the pattern. This value gives an indi-
cation of the degree to which the pattern fills the plane, or how the pattern "behaves" 
through different magnifications. Luckily for computer programmers, the D-value 
for these recursive lattice patterns is easy to compute. In general, N = SD where N is 
the number of filled sites in the original symmetrical array of squares and S is the 
magnification factor used, in this case the same as the size of an edge of the original 
array, 7. Notice as the number of filled (black) sites, N, in the initial array increases, 
the dimension D increases. In one sense, D quantifies the degree to which the porous 
patterns fill the plane in which they reside. If all the sites in the initial array are filled, 
N is 49 and therefore D is 2. This makes intuitive sense: If the entire plane is filled, 
the dimension of the object should be 2. In a computer program, D is calculated from 

D - log(N)/log(7) 

In recursive words, dimensions are tangled up like a ball of twine, and all the pat-
terns are neither one nor two dimensions but somewhere in between. 

Another quantitative measure of the patterns' spatial characteristics is the length 
distribution function, p(r). The function indicates the distribution of all the interpoint 
distances, ry, in the pattern. Mathematically speaking, this new function p(r) is de-
fined by 

r.. = r 
'] 

where N is the number of points in the pattern. The sums are over i and j, and what is 
being summed is 8(ry,r) = 1 if rV; = r and 0 if r^r. In simple English, to compute 
p(r), first select a point in the pattern and compute the distances from that point to 
every other point in the pattern. Do this for each point in the pattern, and create a 
graph showing the number of different lengths as a function of each length. When 
you interpret these graphs, the right-most point in the p(r) graph is the maximum dis-
tance found in the structure, and the left-most point is the minimum. The most com-
mon distance is the highest point of the curve. 

In a computer program, I use a Monte Carlo approach to compute p(r), because 
actually computing all the interpoint distances is computationally expensive. In-
stead, one can randomly select pairs of points in the structure and produce the final 
p(r) curve after 500,000 pairs are cataloged. In the C programming language, the 
Monte Carlo process looks like: 
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/* initialize p array to zero */ 

for (i-0; i <900; i++) p[1]-0; 

total=500000; 

/* catalog 500000 vector lengths */ 

for (i-0; i<total; i++) { 

rndl - ((float)rand()/32767.)*Npts; 

rnd2 - ((float)rand()/32767.)*Npts; 

xterm - corx[rndl]-corx[rnd2]; 

yterm - cory[rndl]-cory[rnd2]; 

dist = sqrt(xterm*xterm+yterm*yterm); 

d i s t = d i s t+. 5; 

p[(int)dist]++; 

} 

Rrmx, the longest vector in the structure, or maximum linear dimension, can also be 
estimated by examining the last nonzero value of p(r). The variable Npts is the num-
ber of points in the final recursive lattice pattern. Obviously there is some noise in 
the Monte Carlo process, and I use a simple, nearest-neighbor smoother to reduce 
the noise so the eye can concentrate on the global structures of the curve: 

for (1-1; i <900; 1++) { 

ps[i] = ,25*(float)p[i-1] + ,5*(float)p[i] + .25*(float)p[i+l]; 

} 

If you run the Monte Carlo process twice using different random numbers, the 
graphics look almost identical. 

Another parameter, the radius of gyration, Rg, can be computed from the 
unsmoothed length distribution function p(r) by 

R„ 
rp(r)dr 

2 fp(r)dr 

The radius of gyration quantifies the spatial extent of the structure in the plane. 
Small, compact patterns have small values of Rg. Large, extended patterns have large 
values of Rg. To get an intuitive feeling for this parameter, consider this: If all the 
squares in the final pattern were to lie on the edge of a circle of radius R, then 
Rg = R. If the circle were stretched in one direction to form an ellipse, the Rg value 
would increase because the "mass" of the pattern is further from the center of mass 
of the entire pattern. In the C language, the R computation looks like: 
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sum=0; summ=0; 

for (i =0; i<900; i++) { 

s umm—s umm+p[1]; 

s u m - s u m + p [ i ] * i * i ; 

} 
Rg=sqrt(sum/((f1 oat)summ*2)); 

After examining hundreds of recursive lattice patterns, such as the full-page ex-
amples at the end of this chapter, I find that viewers often prefer high values of the 
fractal dimension of around 1.8, which is close to the average D for all the patterns in 
this chapter. The p(r) curves for the preferred structures usually do not exhibit global 
features (bumps and valleys). To date, I have not been able to determine a correlation 
between perceived beauty and the R parameter. Readers may wish to compute the 
lattice patterns and also look for correlations between perceived beauty and the frac-
tal dimension. 

Higher Symmetry 

As indicated earlier in this chapter, most people seem to prefer patterns with a sym-
metrical structure over those with purely random structures. I prefer patterns with 
four-fold symmetry; however, I have also experimented with patterns with inversion 
symmetry, bilateral symmetry, and random-walk symmetry. For example, at the end 
of this chapter you will see a few bilaterally symmetric patterns produced by making 
the left and right sides contain the same patterns: 

Aij= 1 

In C this is: 

Sz=S-l; 

for (h=l; h<=40; h++) { 

v = ((float)rand()/32767.)*S; 

w - ((float)rand()/32767.)*S; 

ar[v ] [ w]-l ; 
ar[Sz-v][w]=l; 

} 

Inversion symmetry can be computed by = I, A y _ , _ i S , j = 1, or in a C 
program by: 

Sz-S-1: 

for (h=l; h<-30; h++) { 

v = ((float)rand()/32767.)*S; 

w = ((float)rand()/32767.)*S; 

ar[v] [w]-l ; 
ar[Sz-v][Sz-w]«l; 

} 
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A few figures with inversion symmetry are also included. In addition, random walks 
can be used to force greater correlation between points in the initial array. Rather 
than selecting each site randomly, with random-walk symmetry the position of each 
new site is related to the previous site. For example, select a point and continually 
subtract 1 from or add 1 to the initial site's x- and y-coordinates. Other symmetries, 
such as the six-fold symmetry of a snowflake, can also be used. 

Not all individuals to whom I showed the recursive patterns found them of es-
thetic interest. After seeing the 7-by-7 recursive lattice designs, Dr. Michael Frame 
of Yale University commented: 

As far as the aesthetics goes, I 've been looking at fractal pictures for so long that these 
are too familiar to be very interesting. Berlyne elucidated a theory of perceptual arousal 
requiring two components: familiarity and novelty. When you've looked at self-similar 
patterns for a long time, the layers-upon-layers no longer hold any novelty. A less experi-
enced audience might be of more use to you. 

Digressions 

Student: "What is the best possible question, and what's the best answer to it?" 
Socrates: "You've just asked the best possible question, and I'm giving the 
best possible answer." 

Readers are invited to experiment in several interesting areas: 

1. Do the patterns you consider beautiful cluster around a single fractal dimension 
or radius of gyration value? 

2. Are patterns with a bumpy p(r) curve preferred to those with featureless curves? 
3. Are patterns with larger starting arrays and greater size scales more aesthetically 

pleasing than those produced with the 1-by-1 arrays here? 
4. Extrapolate the algorithm here to 3-D structures and higher-dimensional struc-

tures. How many different patterns can you produce in a 9-by-9-by-9 3-D initial 
array? 

5. Perform a statistical test of correlation between aesthetic appeal and dimension 
or radius of gyration. 

6. Generalize the recursive lattice program to nonsquare grids. For example, Fig-
ure 27.3 shows several patterns produced by Ken Shirriff of Oakland, Califor-
nia. He extrapolated the method to triangular grids. 

7. Vincent Kruskal of New York sent me the following lyrics from the Shari Lewis 
show (Lamb Chop's Play-Along) as an example of recursion. He remarks, "One 
can see why sad tunes are usually avoided. Wisely she starts singing it at the end 
of her TV show." 

This is the Song that Doesn't End 
Yes, it goes on and on my friend 
Some people started singing it 
Not knowing what it was 
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F I G U R E 27.3. Recursive lattice designs on a triangular lattice (see text). 

And they'll continue singing it forever 
Just because . . . 
This is the Song, etc. etc. 

Legal scholars generally agree that very limited excerpting from source material is 
not grounds for legal action. What does limited excerpting mean when applied to in-
finite recursive songs? 
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D = 1.654175 
Rg = 144.0249 
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• • • • D = 1.812191 
Rg = 145.1174 
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D = 1.796849 
Rg = 124.4391 

W J B B w W M W M U M 
• T C - T E - T E - _ • T C - T C - T C * 

D = 1.841564 
Rg = 140.6512 
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D = 1.841564 

Rg = 147.8130 

D = 1.882698 
Rg = 146.2500 

1.0 

OS 
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D = 1.712414 
Rg = 132.4023 

225 450 
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D = 1.674330 
Rg = 128.0688 
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Macrozamia spiralis produced by methods similar to those discussed in chapters 6 and 23. 
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If the doors of perception were cleansed, every thing would appear to man 
as it is, infinite. For man has closed himself up, till he sees all things 
through narrow chinks of his cavern. 

— William Blake, Marriage of Heaven and Hell 



Chaos in Ontario 

During a recent trip to the Ontario Science Center in Toronto, Canada, I came across 
an interesting puzzle. For those not familiar with the Science Center, it is located 
minutes from downtown Toronto. This vast playground of science has hundreds of 
exhibits inviting you to touch, try, test, and titillate your curiosity. The puzzle I saw 
there can be stated as follows. In the ten boxes below, write a ten-digit number. The 
digit in the first box indicates the total number of zeros in the entire number. The box 
marked 1 indicates the total number of 1 's in the number. The box marked 2 indi-
cates the total number of 2's in the number, and so on. For example, the 3 in the box 
labeled 0 would indicate that there must be exactly three O's in the ten-digit number. 

0 1 2 3 4 5 6 7 8 9 

3 

Row 1 

Row 2 

I watched a man and woman nearly have a fist fight as they argued about this 
problem while at the Ontario Science Center. The man said there was no possible so-
lution. The woman screamed at him that he was wrong, that she had found a solu-
tion, and if he insisted on being so pig-headed about his ideas, she would leave him 
and take a cab from the Science Center. I left the couple behind, and never found out 
whether the woman left the man for more enjoyable company. 

Who was right? Is there a solution to this problem? Are there many solutions to 
this problem? Before giving you the answers, I should first tell you that Daniel Sho-
ham from MIT made some curious observations about the characteristics of row 2. 
He notes that because there are ten different digits in row 1, the sum of the digits in 
row 2 must be 10. He also derived a value for the maximum possible value for each 
digit of row 2. His logic is as follows. If digit x appears under digit y there must be x 
appearances of y, hence x X y < 10. Therefore, the maximum number that can appear 
under each number is: 

0 1 2 3 4 5 6 7 8 9 

9 9 4 3 2 1 1 1 1 1 

217 
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It turns out that that the woman in Ontario was right. There is a valid solution: 

0 1 2 3 4 5 6 7 8 9 

6 2 1 0 0 0 1 0 0 0 

Notice that this number contains six O's, two 1 's, one 2, and so on. (Martin Gardner 
has written to me that 6210001000, which he calls the self-descriptive number, is the 
only solution.) 

A more advanced problem, which I recently designed, continues this process to 
generate a sequence in a recursive fashion. In this variation, each row becomes a 
"starting point" for the next. For example, start with the usual 0 through 9 digits in 
row 1: 

Row 1:0 1 2 3 4 5 6 7 8 9 

As I've just mentioned, 6210001000 is the solution to the puzzle: 

Row 1: 0 1 2 3 4 5 6 7 8 9 R1 
Row 2: 6 2 1 0 0 0 1 0 0 0 R2 
Row 3: R3 

Now use row 2 as the starting point, and your next task is to form row 3, row 4, and 
so on, using the same rules. For example, a digit in the first space of row 3 would in-
dicate how many 6's there are in row 3's ten-digit number. The second entry in row 3 
tells how many 2's to expect in Row 3, and so forth. Can you find a row 3 or row 4? 
Is it even possible to generate a row 3 or row 4? 

Digressions and Contest 

It turns out that row 3 and row 4 slip into an infinite cycle. In other words, using the 
values of 0123456789 for row 1, we get the following sequence: R l , R2, R3, R4, R5, 
R4, R5 . . . . As a contest, I asked colleagues to find the longest sequence of R's be-
fore they started repeating and entering a cycle. I also asked colleagues to start from 
an Rl of their choice! 

The Portuguese Maneuver 

Tomas Oliveira e Silva from Portugal found the solution to the first part of the puzzle 
(6210001000) using a C program running for 0.2 seconds on a DEC Alpha 3000 400 
(see Appendix 2). A full solution is: 

Rl =0123456789 
R2 = 6210001000 
R3 = 0004440444 
R4 = 6660006000 
R5 = 0004440444 
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In an attempt to find the longest sequence of R's before they start cyclically re-
peating, Tomas examined all permutations of first-row entries. (This gives rise to so-
lutions of the problem that are themselves permutations of the original solutions.) 
Therefore, to enumerate all essentially different cases he only had to generate one in-
stance of each permutation of ten digits (it turned out that there are 92,378 different 
cases). An exhaustive solution was therefore within reach. 

For each of these 92,378 cases, Tomas computed all solutions of the generalized 
problem and constructed a directed graph connecting the different cases. This proj-
ect required about 4 hours on a DEC Alpha. Then, starting on each node, Tomas gen-
erated all possible paths ending in a loop. The longest of these paths before hitting a 
loop is: 

Rl = 0000122245 
R2 = 2222044430 (there are 3 other solutions) 
R3 = 1111300023 (there is 1 other solution) 
R4 = 3333411104 (there is 1 other solution) 
R5 = 0000122241 (there is 1 other solution) 
R6 = 2222044440 (there are 2 other solutions) 
R7 = 0000800008 
R8 = 2222022220 
R9 = 0000800008 = R7 (loop begins again) 

We currently do not know whether there are other paths of the same length. The 
longest length loop found is: 

Rl =0000111244 
R2 = 1111444033 (there is 1 other solution) 
R3 = 2222000311 (there is 1 other solution) 
R4 = 0000111244 (there is 1 other solution) 
R5 = 0000111244 (there is 1 other solution) 

We currently do not know whether there are other paths of the same length. The 
longest path not leading to a loop, but rather to a dead-end, is: 

R l = 1223334444 
R2 = 4223331111 (there are 42 other solutions) 
R3 = 0332220000 (there are 4 other solutions) 
R4 = 3550003333 (there are 2 other solutions) 
R5 = 0555550000 (there is 1 other solution, leading to a loop) 
R6 = No solutions (dead-end) 
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Mathematics is not a science—it is not capable of proving or disproving 
the existence of things. A mathematician's ultimate concern is that his or 
her inventions be logical, not realistic. 

— Michael Guillen, Bridges to Infinity 

To see the world in a grain of sand, and a heaven in a wild flower. Hold 
infinity in the palm of your hand, and eternity in an hour. 

— William Blake, Auguries of Innocence 



Cyclotron Puzzles 

Cyclotron puzzles are fiendishly difficult, but, like many problems in mathematics 
and science, the rules of the game are really quite simple. In fact, you can study them 
using just a pencil and paper. These puzzles derive their name from the apparatus 
used for accelerating charged atomic particles as they revolve round and round in a 
circular orbit. 

My interest in these kinds of puzzles that could be generated by computers, but 
solved using a pencil and paper, has continued since the publication of my book 
Mazes for the Mind: Computers and the Unexpected. Cyclotron puzzles are entirely 
new, and played on an annular board filled with random numbers from 0 to 100. Fig-
ures 29.1, 29.2, and 29.3 show typical examples. Each "site" on the board contains a 
single-digit number or a two-digit number. The code in Appendix 1 shows how you 
can generate an infinite number of boards using a C program. 

A cyclotron particle may start on any number on the board, and your job is to 
find longest possible path through the board by moving horizontally or vertically 
(not diagonally) through adjacent squares. This means the particle takes a single step 
(up, down, right, or left) during each movement. There are two additional constraints 
as follows: 

2 3 1 1 84 10 92 63 7 2 19 9 1 9 8 6 8 5 1 1 6 4 6 77 14 12 4 6 63 
2 3 5 1 2 6 34 7 3 94 27 49 7 3 9 8 60 44 36 3 1 7 9 7 3 67 7 2 5 6 7 4 
1 1 7 1 40 2 5 22 3 1 83 3 1 20 9 6 2 3 9 6 7 4 3 6 1 3 97 87 2 5 3 3 
87 92 7 3 7 9 50 3 
4 5 57 6 1 33 5 5 8 1 
2 3 4 8 4 3 8 5 50 2 8 
7 3 42 2 9 39 97 92 
56 3 1 6 1 C y c l o t r o n 1 17 2 3 19 
8 8 40 52 1 3 32 7 1 
54 7 9 1 1 5 1 5 6 49 

9 60 4 3 1 1 99 47 
9 9 13 20 34 12 32 
12 4 8 2 6 67 37 34 4 9 56 9 9 32 39 94 1 1 2 3 9 29 4 5 5 6 62 6 5 
90 7 0 7 0 1 5 2 5 6 44 77 8 6 6 14 54 9 3 3 7 8 9 5 99 99 1 8 69 
1 3 2 0 62 5 3 6 1 6 82 5 5 4 3 7 9 9 8 37 4 6 2 6 97 66 4 3 49 2 5 64 

FIGURE 29.1. 
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2 6 32 7 5 62 99 82 10 83 27 9 62 8 69 62 15 3 1 1 47 7 3 67 
80 6 1 7 47 2 5 9 27 53 18 70 83 64 22 5 1 3 1 9 15 23 74 93 
29 54 13 1 1 1 1 47 16 92 64 94 42 9 17 5 1 22 80 7 1 50 4 1 7 
55 5 1 27 60 4 5 22 
99 40 72 96 16 9 
59 65 99 54 82 38 
89 29 84 63 56 18 

3 9 1 49 C y c l o t r o n 2 92 34 9 
97 1 8 17 5 1 20 2 1 
87 63 6 1 60 19 87 
97 50 49 4 8 26 17 
69 24 55 77 65 7 
52 4 8 37 19 7 1 1 1 29 94 79 3 8 9 1 79 85 2 5 65 63 12 33 80 37 
27 23 42 34 97 32 64 85 7 5 60 35 4 5 24 1 1 7 1 82 6 1 7 8 4 8 16 
2 5 82 60 88 69 86 9 4 5 62 85 60 2 8 14 7 3 66 42 0 2 5 12 9 8 

FIGURE 29.2. 

1. Each number along the particle's path must be different; that is, you can use 
each number only once along a particle's path. 

2. Your particle may only travel in an all-clockwise or ail-counterclockwise direc-
tion. In other words, the particle must go round and round in one direction, but it 
can orthogonally switch between the three tracks as useful. 

Heiner Marxen from Berlin has found what he thinks are the longest path solu-
tions, and I have included these in the "Solutions" section in this chapter. No one 
knows the shortest path length for any of these puzzles. (By path length, I mean the 
number of sites through which a path travels.) I am interested in any attempts by 
readers at finding long or short paths. Feel free to try to find such paths using only a 
pencil and paper. Challenge a group of friends to search for the longest path they can 
find within 15 minutes! 

4 8 29 44 18 90 9 1 69 2 5 62 9 8 1 1 4 39 33 64 8 1 46 95 62 38 
68 24 96 18 94 87 14 17 32 69 89 69 27 2 5 8 8 67 1 1 2 1 32 6 
44 42 69 1 1 35 74 59 43 29 4 5 99 13 53 42 63 30 8 1 80 13 7 
3 8 3 1 43 1 62 42 2 8 
77 67 86 C y c l o t r o n 3 2 " L e a k y 90 33 7 8 

2 38 0 3 C y c l o t r o n " 57 9 90 
7 88 72 4 20 8 1 34 
92 24 47 10 1 1 12 13 14 15 5 16 17 18 19 20 2 1 22 38 82 5 
90 1 1 53 6 89 85 94 
13 4 5 7 5 7 49 22 0 
6 1 2 5 34 8 68 35 93 
42 35 68 9 24 64 89 
54 37 46 83 30 33 4 83 87 1 8 96 53 45 1 8 50 64 6 1 9 8 18 44 
68 89 35 74 36 60 36 9 5 4 1 3 1 92 4 22 80 16 1 1 20 43 19 2 8 
66 3 46 50 29 52 8 1 32 76 4 5 57 89 56 20 47 34 7 8 94 82 88 

FIGURE 29.3 
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I have included three different boards in this book. Board 3, which I have called 
a "leaky cyclotron," has a slight modification, because you can use the central tracks 
as needed when finding either the longest or shortest path. (In other words, while in 
the central channels, you can travel in either direction, but the constraint of having 
each number along a particle's path be unique persists.) 

Some colleagues have noted that the definition of clockwise or counterclock-
wise movement is difficult to understand when a particle is travelling through the 
corners of the board. As a clarification, the following diagram shows permissible 
moves from a starting position, marked with a capital letter, to various neighbor po-
sitions, marked by a corresponding lowercase letter. These moves would all be con-
sidered valid if you were to restrict the particle to clockwise motion. 

-A - a c - d - -
- - -b c - c D -a 
-b - B -b c - a - -

Some v a l i a m o v e s 
f o r " c l o c k w i s e " 
m o t i o n 

- - - e 
- e - E - - - - - - - f - F - - - - - - - -

e f g 
g -G 

Heiner Marxen notes that this permits cycles of the following kind in the corners: 

5 6 7 
4 - - 8 
3 2 1 

Of course, the rules that do not permit reuse of grids would make these cycles of 
very limited use when searching for long paths. They may have some value at the 
start or finish of a path. 
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Cyclotrons to Infinity 
Consider the following questions involving the cyclotron puzzle: 

1. Can you solve this class of problems using pencil and paper? 
2. Can you solve this class of problems using a computer program? 
3. How many different unique particle tracks would you expect to find in cyclo-

tron boards of the size in this chapter? 
4. Extend the puzzle to 3-D worlds where particles tunnel through doughnut-like 

structures. Use computer graphics to display the longest paths as the computer 
finds them. 

5. Explore huge cyclotron worlds containing thousands of locations. 
6. How would the kinds of solutions (and difficulty of finding solutions) change as 

the board sizes approach infinity? 
7. Given a set of cyclotron worlds constructed randomly as in this chapter, what is 

the average largest cyclotron path you would expect to find? 
8. Is it better to start your path at a particular place in the board? In other words, do 

certain regions give rise to longer paths than others? 
9. In true cyclotrons, the orbit of a particle cannot decrease in diameter. For the 

puzzles here, this additional constraint would imply that a particle cannot jump 
to a channel of smaller diameter as it travels. It could only travel in its current 
channel or go to an outer one. How would this alter your answers to the other 
questions? 

Solutions 
Since I originally designed and presented these puzzles, Heiner Marxen from Berlin 
has become the world's foremost cyclotron puzzle solver. (See Appendix 2 for Hein-
er's program code.) Although you do not need a computer to solve these problems, 
Heiner used a program that required around three hours to solve each cyclotron run-
ning on an HP9000/710 workstation. His solutions are schematically illustrated in 
this section. We believe these are the best solutions for each cyclotron. Can you find 
longer solutions? To arrive at these "longest" solutions Heiner's program performed 
what we believe is an exhaustive search, but we do not know whether there are other 
solutions of the same length. We also do not know the shortest path for each puzzle. 

The maximal path length for cyclotron 1 is 70. In the schematic illustration of 
the path, the first position of the sequence is marked 1; the second 2; and so on. The 
last position is marked 70. Assuming the upper-left corner to be (1, 1) and the lower 
right to be (20, 15), then this sequence starts at (6, 14) and ends at (20, 15). The first 
few numbers on the path are 6 - 34 - 37 - 25 - 15 - 70 - 26 - 20 - 43 - 60 - 9 - 54 - . . . . 
Because 54 is the 12th number in this sequence, its position, (1, 10), is marked 12 in 
the solution diagram. 
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- - 2 6 2 7 2 8 2 9 - - 3 3 34 3 5 3 6 3 7 3 8 - - 4 4 4 5 4 6 4 7 - - - - - -

- - 2 5 - - - - 30 3 1 32 - - - - - - - - 3 9 4 2 4 3 - - - - 4 8 - - - - - -

- - 2 4 - - - - - - - - - - - - - - - - - - 4 0 4 1 - - - - - - 4 9 5 0 - - - -

- - 2 3 - - 5 1 - - - -

2 1 2 2 - - 5 2 5 3 5 4 

2 0 1 9 - - 5 7 5 6 5 5 

- - 1 8 1 7 C y c l o t r o n 1 5 8 - - - -

- - — 1 6 s o l u t i o n 5 9 - - — 

1 3 1 4 1 5 60 6 1 -

1 2 - - - - - - 62 6 3 

1 1 1 0 9 - - 6 5 64 

- - - - 8 - - 66 - -
__ 7 - - 3 2 - - - - - - - - - - - - - - - - - - - - - - - - 6 7 6 8 

- - - - 6 5 4 1 - - - - - - - - - - - - - - - - - - - - - - 69 

__ . . __ . . . . __ . . __ __ . . . . __ . . 70 

C y c l o t r o n 2 : P a t h l e n g t h 7 3 

__ . . . . __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i 2 3 4 5 6 7 - - - -

__ . . __ __ __ . . __ __ . . __ __ . . __ 8 9 io 
- - 7 3 7 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 

- - - - 7 1 ~ - - 1 2 

6 8 6 9 7 0 - - - - 1 3 

6 7 - - - - - - 1 5 1 4 

6 6 6 5 64 C y c l o t r o n 2 - - 1 6 - -

6 1 62 6 3 s o l u t i o n 1 8 1 7 -

60 5 9 - - 1 9 2 0 2 1 

- - 5 8 - - - - - - 2 2 

- - 5 7 - - - - 2 4 2 3 

- - 5 6 5 5 2 6 2 5 - -

- - - - 5 4 5 3 5 2 5 1 - - 4 7 4 6 - - - - - - - - - - - - - - - - 2 7 2 8 - -

- - - - - 5 0 4 9 4 8 4 5 4 4 4 3 4 2 - - - - - - - - 3 5 34 2 9 30 

__ . . __ __ __ __ __ 4 1 4 0 3 9 38 3 7 36 3 3 3 2 3 1 

C y c l o t r o n 3 : P a t h l e n g t h 7 1 

__ __ - - __ - - __ __ - - __ - - __ - - - - __ i __ 
- - - - 5 2 5 3 5 4 5 5 - - - - - - - - - - - - - - - - - - - - - - - - 2 3 

4 9 5 0 5 1 - - - - 5 6 5 7 5 8 5 9 60 - - - - - - - - - - - - - - - - - - 4 

4 8 - - - - 6 1 - - - - 5 

4 7 4 6 4 5 62 " L e a k y c y c l o t r o n " - - - - 6 

- - - - 4 4 6 3 s o l u t i o n - - 8 7 

- - - - 4 3 64 - - 9 - -

- - - - 4 2 7 1 7 0 69 6 8 6 7 6 6 6 5 - - - - - - - - - - - - - - - - 1 0 - -
__ - - 41 __ __ 11 
- - - - 4 0 - - 1 3 1 2 - -

- - 38 3 9 - - 1 4 - - - -

3 7 - - - - 1 5 - - - -

- - 3 6 3 5 34 3 3 32 - - - - - - - - 1 9 1 8 1 7 1 6 - - - -

__ __ - - - - 3 1 30 2 9 2 8 2 7 2 6 - - - - 2 1 2 0 - - - - - - - - - -

__ - - - _ __ - - __ __ 2 5 2 4 2 3 2 2 - - - - - - - - - - - -
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Vampire Numbers 

The natural numbers came from God and all else was man made. 

— Leopold Kronecker 

Anne Rice 
If we are to believe best-selling novelist Anne Rice, vampires resemble humans in 
many respects, but live secret lives hidden among us mortals. Consider a numerical 
metaphor for vampires. I call numbers such as 2,187 "vampire numbers" because 
they are formed when two progenitor numbers, 27 and 81, are multiplied together 
(27 x 81 = 2,187). Note that the vampire, 2,187, contains the same digits as both par-
ents, except that these digits are subtly hidden, scrambled in some fashion. Similarly, 
1,435 is a vampire number because it contains the digits of its progenitors, 35 and 
41, (35 x 41 = 1,435). These vampire numbers secretly inhabit our number system, 
but most have been undetected so far. When I first considered vampire numbers, I 
believed there were only six, four-digit vampires in existence and had no idea 
whether there were any larger vampire numbers. 

True Vampires versus Pseudovampires 
"True" vampires, such as in the two previous examples, have an even number of dig-
its, and each one of the multiplicands has half the number of digits of the vampire. 
Of most interest to me are true vampires that are not created by simply adding O's to 
the ends of numbers, as in: 270,000 x 810,000 = 218,700,000,000. 

On April 29, 1994,1 challenged computer scientists and mathematicians around 
the world to submit the largest vampire number they could find. It turns out that 
there are certain situations in which arbitrarily large, "pseudovampire" numbers can 
be found. Pseudovampires are numbers that have the same properties as vampires, 
but the two multiplicands have a different number of digits. After reading my chal-
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lenge, Dean Hickerson from California found that one could place any number of ze-
ros in certain numbers to construct huge pseudovampire numbers. Below is one ex-
ample: 

2 x 600000031578947368421 = 1200000063157894736842 

In other instances one can place an arbitrary number of 9's: 

3 x 499999997931 = 1499999993793 

Amazingly, one can also continually increase the lengths of the contiguous runs of 
3's and 6's by the same amount or increase the lengths of the blocks of l 's , 2's, 4's, 
5's, 7's, and 8's by the same amount in: 

14 x 9008887777666655554433322221111 
=126124428887333177762066511095554 

Dean used the software Mathematica to perform the multiplications and count the 
digits. 

James Allen notes that if x x y = z is a pseudovampire, then so is jeO * VO = z00. 
Using a C program running on a Sparc machine, he also found the three largest 
pseudovampires less than 232. They are 4496x955286 =4294965856, 9489 x 
452625 = 4294958625, and 43365 x 99042 = 4294956330. 

Upon hearing of my interest in vampire numbers, Tony Davie from Scotland 
found other four-digit pseudovampires. He wrote the following Gofer program to 
perform the search: 

vamps - [(x,y,z) | x <- [l..[, sx-show x, y <- [l..x[, 

z = x*y, sort(show z)— sort(sx++show y)[ 

(See Appendix 2 of this book for an interpretation of this little Gofer program and for 
more information on Gofer.) Using this approach, Tony found other four-digit 
pseudovampires: 1,435, 1,530, 1,260, 2,187, 6,880, 1,827, 1,395, 1,206, 1,255. Of 
these, the following are true four-digit vamps: 21 x 6 0 = 1,260, 1 5 x 9 3 = 1,395, 
3 5 x 4 1 = 1,435, 3 0 x 5 1 = 1,530, 21 x 8 7 = 1,827, 2 7 x 8 1 = 2,187, and 
8 0 x 8 6 = 6,880. 

Dick Adams from Maryland suggests that we refer to the largest vampire num-
ber as "vampire omega." 

Steve Frye found 155 six-digit true vampires using the programming language 
REXX (see Appendix 2 at end of book). It required about 20 minutes using a 486DX 
33MHz PS/2 running OS/2 2.1. The largest six-digit vampire is: 896 x 926 = 
829,696. 

Finally, Dean Hickerson notes that if we allow researchers to add zeros to the in-
terior of numbers, large vampires can be created, as in: 

1100000001110879 x 9100000000000001 
=10010000010109000000000001110879 

In general, Dean uses Mathematica to search for vampire numbers. Below is a chunk 
of a Mathematica program: 
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dc[n_]:-Block[{ct-{0,0,0,0,0,0,0,0,0,0},k-n}, 

Whi1e[k>0, 

ct[[Mod[k.lO]+l]]++; 

k-Floor[k/10] ]; 

ct] 

m[a_,b_]:-Block[{}, 

Print[dc[a b]-dc[a]-dc[b]]; 

Print[a b]; 

If[dc[a]+dc[b]—dc[a b], 

P ri nt["*************************************"]] 

] 

In this code, dc[n] returns a vector showing how many of each digit are in n. The 
variable m[a,b] prints the excesses (which may be negative) of each digit in the 
product ab with respect to those in a and b, the product itself, and a line of asterisks 
if the product is vampiric. 

Cliff Reiter from Lafayette College's Mathematics Department is one of the 
world's foremost vampire number experts, and he has made some additional discov-
eries regarding the vampires. To perform the search, he used the programming lan-
guage J, which uses ASCII symbols, sometimes with a dot or colon as a suffix, to 
designate common mathematical functions.1 Similar to what I discussed previously, 
he also found that vampire numbers can be extended by adding a trailing 0. For ex-
ample, starting with 27 x 81 = 2,187 we can create 27 x 810 = 21,870, thus it would 
seem there are vampire numbers of all sizes. He also found other ways of adding ze-
ros to the interior of numbers, as in 251 x4,001 = 1,004,251, 251x40,001 = 
10,040,251, and 251 x 4,000,001 = 1,004,000,251. Cliff was the first to find the true 
vampires 231 x 534 = 123,354; 231 x 543 = 125,433; 231 x 588 = 135,828; 231 x 
750 = 173,250; and 231 x 759 = 175,329. 

Most important, Cliff has the distinction as having found the largest true vam-
pire number to date, excluding those that can be formed by adding more and more 
zeros to the interior of numbers: 

1234554321 x 9162361086= 11311432469283552606 

He also found another, nearly identical, 20-digit vampire: 

1234554321 x 9162291363 = 11311346392452629523 

Notice that this number has a shared vampire factor with the previous and does not 
contain any zeros. Can you beat these 20-digit monstrosities? They required a few 
hours of computation on a 486 PS/2. 

Cliff also found other very large vampires: 

1234569x9116655 = 11255139646695 
12345678 x 94919814 = 1171849459463892 
123456789 x 916494741 = 113147497859246649 
12381 x 90768= 1123798608 
123452 x 914837 = 112938457324 
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123453 x 912051 = 112595432103 
1234569 x 9116277 = 11254672979613 

Steve Frye found other 12-digit vampires: 

100151 x 998609 = 100011689959 
100211 x 999872 = 100198172992 
100211 x 998063 = 100016891293 

Cliff has also found some small triple pseudovampires, such as 28 x 71 x 
9 = 17,892. The largest triplet, with no zeros, is 29 x 75 x 91 = 197,925. Interest-
ingly, Dean Hickerson has found a six-digit vampire (125,460 = 2 0 4 x 6 1 5 = 
246 x 510) and 18 eight-digit vampires that have two pairs of factors each. Three 
eight-digit vampires have one vampire as a factor: 

10081260 = 8001 x 1260 = 8001 x 21 x 60 
17429580 = 9540 x 1827 = 9540 x 21 x 87 
17988642 = 9846 x 1827 = 9846 x 21 x 87 

None are the product of two vampires. 
For those readers curious about the "look and feel" of the programming lan-

guage Cliff used, here is an example session from J. 

dig=.#&10@>.@(10&-,. )@>: #: [ NB. gives the digits as vector 

dig 2345 

2 3 4 5 

vampq-./:~@dig@* -: /:~@,&dig NB. Vampire query 

27 vampq 81 NB. Vampire pair? Yes 

1 
26 vampq 81 NB. Vampire pair? No 

0 
NB. vampa looks for vampire associates of numbers on left 

NB. from the list on right 

vampa-.(*@{.@}.@|:#[)©:(([,vampq"0 #[)"0 1) 

27 vampa i.100 

27 81 

27 vampa i .1000 

27 81 810 

NB. only associate of 27 among 0-99 

NB. only associates of 27 among 0-999 

(i .100) vampa i.100 

Vampires and the Infinite 
One must say then that the mass of seeming irrationalities, anomalies, 
contradictions, and proliferating infinities may be the most important 
parts of any science. They drive the accumulation of knowledge. 
— George Zebrowski 
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As the numbers get larger and larger, how often do you expect to find vampires? Do 
they become more secretive (sparser) or more outgoing (frequent) as one searches 
for vampires up to a googol? 

James Allen has studied such questions for pseudovampires. In fact, using a C 
program running on a Sparc machine, he has found 1,064 pseudovampires among 
the 12.5 million i n t e g e r s x x y where (5,000 <x<y< 9,999). This corresponds to 17 
pseudovampires per 200,000 numbers. Next he generated 200,000 random 4-tuples 
(x,yjc',y') for the same range and checked for vampireness using the "test" product 
x x y^x' x 10,000 + / . He found 17 of these "test" vampires. Thus he conjectures 
that vampireness occurs at roughly the same rate one would expect if the digits of a 
product behaved like uniform random variables. 

Glenn S. Knickerbocker from New York discovered a property of vampires that 
speeds computer searches for these numbers. It turns out that the sum and product of 
the digits are equal, modulo 9. Because this is only true for (0, 0), (2, 2), (3, 6), and 
(5, 8), only 6 out of every 81 pairs are possible vampires. His search program, run-
ning on an IBM VM operating system, found the four-digit and six-digit vampires in 
less than a minute. Using his REXX program (see Appendix 2 at end of book), he 
finds that there are: 

7 four-digit vampires 

155 six-digit vampires 

3382 eight-digit vampires 

Even though there are more vampires in each log range, vampires are actually be-
coming less dense in each range. (Is this strange considering that large numbers have 
more factors than smaller ones?) 

Similarly, Stephen H. Landrum from California suggests that the ratio Vn/n 
(where Vn is the number of vampire numbers up to n) will in general decrease as n 
gets larger, but the ratio Vn/log(n) will increase as n gets larger. 

Dean Hickerson suggests a simple heuristic argument for determining how se-
cretive the vampires become through the number system. If we multiply two random 
numbers with a total of n digits, their product will have the same number of 0-digits, 
1-digits . . . , and 9-digits as the factors with probability C/n 9 7 2 for some constant 
C. This suggests they should become more secretive (sparser) as one climbs the lad-
der of the integers toward a googol. With enough work, one could probably deter-
mine the exact value of C, but Dean thinks that proving that vampires are increas-
ingly secretive would be nearly impossible. 

Digressions 
What is the largest true vampire number you can find lurking out there in the world 
of integers? Glenn S. Knickerbocker from New York notes that no vampires or 
pseudovampires are products of two vampires or pseudovampires with six or fewer 
digits. 

Dean Hickerson asks: What's the smallest vampiric product of the form 
NxN = N21 In other words, which N2 has twice as many of each digit as /V? (Heuris-
tically, there should be infinitely many such N.) 
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Sequences of truly patternless, unpredictable digits are a valuable 
commodity. 

— Ivars Peterson 

Anyone who considers arithmetical methods of producing random digits 
is, of course, in a state of sin. 

— John von Neumann 



Computers, Randomness, 
Mind, and Infinity 

Humans Cannot Produce Random Numbers 
Sit down at a computer keyboard, or a typewriter, and randomly press the 1 and 0 
keys. Try to make the string of numbers as "patternless" as possible. In other words, 
try to generate random numbers. Here is my first attempt, typing 1 with my left hand 
and 0 with my right hand: 

10111000111000101011010010100101001010001010011101011000111010100 

01110101010111011101010110101010100010101110111001010101000101000 

10101110101011101110101010010101010010101011101001001000100010010 

00100101010001001010110001010110010100111010001000111101010101010 

10101110101011110110101010111001010101001000101010010101010101010 

10111010100100100001010101110101011 

Before reading further, try this experiment on yourself and friends. I have tested 
dozens of supposedly random sequences typed by colleagues, and found out that it is 
curiously difficult for humans to type patternless sequences. To start with, we would 
expect about a 50 percent occurrence of each digit, and I did amazingly well. The 
above example had 49.3 percent l ' s and 50.7 percent 0's. Next, we would expect 25 
percent occurrences of the following pairs: 00, 11, 01, 10. In fact, doing my best to 
make a random sequence, I produced 15 percent, 13 percent, 36 percent, and 36 per-
cent occurrences, respectively. Apparently my fingers preferred to oscillate rather 
than producing doublets such as 00 and 11. Perhaps I was trying to avoid dumpiness 
of digits, when in fact strings of identical digits should exist in a truly random se-
quence. I strongly suspect that if I were to analyze all possible triplets of digits, my 
fingers (and medulla oblongata) also did not behave very randomly. 

Do left-handed and right-handed people produce different kinds of sequences? 
As one tires of typing, does the randomness increase or decrease? Could the statis-
tics for different individuals be used to diagnose any psychological or neurological 
diseases? Do the percentages tend to characterize, or "fingerprint," a particular indi-
vidual? These are all unanswered questions. 

On a similar topic, Manfred Schroeder (Fractals, Chaos, Power Laws, 1991) 
discusses a machine called "Shannon's outguessing machine" that analyzes the ran-
dom head-tails choices of a human contender. In this gambling game, a player se-
lects a head or tail, and a computer attempts to guess the player's selection. If the 
computer guesses correctly, the human loses money; otherwise, the human wins 
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money. Does a player change after losing a throw? Does the player keep on choosing 
tails if tails has brought two previous wins? Or does the gambler get nervous and se-
lect heads next? For humans, such strategies are mostly subconscious, but the ma-
chine can uncover the hidden correlations in people's selections and will beat any 
human after playing many games. Humans simply are not capable of producing ran-
dom heads or tails, O's or 1 's. Our minds abhor long strings of like outcomes—as 
would occur naturally in truly random sequences. 

The Lure of Random Numbers 
In modern science and computer art, random number generators have proven invalu-
able. The generation of random numbers has a long history. Since antiquity, societies 
have had a need to generate and use "chance" events in a variety of settings. 
Archeologists know that prehistoric humans used dice much like ours, played dice 
games similar to our own, and cheated opponents by using loaded dice! Before dice 
became useful in games, cubes with numbers were used as magical aids for divining 
the future. (Astragalomancy is the practice of divination by means of dice.) Primitive 
humans probably used cubical knucklebones or the anklebones of sheep as dice-like 
game pieces. 

In modern science, random number generators are useful in simulating natural 
phenomena and in sampling data (see various sources in "For Further Reading"). 
They are used by scientists for tackling a wide variety of problems, such as develop-
ing secret codes, modelling the movement of atoms, and conducting accurate sur-
veys. 

How difficult is it to build a random number generator using a super-simple 
computer program? How can we diagnose the quality of the random number gener-
ator with simple graphical tools? My goal in this chapter is to stimulate and encour-
age programmers, students, and teachers to explore a few simple techniques. You 
can also consider the colorful representations solely as art objects, providing an ex-
ample of the link between mathematics and art (as do other chapters in this book). 

Randomness 
In a sense, randomness, like beauty, is in the eye of the beholder. 
— S. Park and K. Miller, 1988 

The prevailing view of researchers working with computers is that it is very difficult 
to casually create a good random number generator (RNG) using a simple algorithm 
in a computer program. In fact, if you were to tell colleagues that the first function 
that came to your head would make a fine RNG for most applications, surely they 
would shake their heads with disbelief at such heresy. Many papers and books pas-
sionately warn of the complexities of creating random numbers. (For an excellent re-
view, see Park's and Miller's article "Random Number Generators: Good Ones are 
Hard to Find," in "For Further Reading.") I have found that wise caution has some-
times led to an almost mystical, exaggerated sense of difficulty in this area. 
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As I alluded to in the previous section, many years of experience have demon-
strated the usefulness of RNGs in computer programming, numerical analysis, sam-
pling, simulation, recreation, and decision making. There has also been considerable 
interest in the area of computer graphics, where random numbers are used to con-
struct complex and natural textures, terrains, and various special effects. 

I begin our discussion by defining what I mean by a "good" random number 
generator. (Rather than simply producing l 's and O's as in our previous typing test, 
these generators produce a range of numbers between 0 and 1.) First, I require that 
the RNG produces a few million numbers that are statistically independent and uni-
formly distributed between 0 and 1. Second, I have the interesting requirement that 
the generating formula and parameters be easy to remember. By far the most popular 
RNGs today make use of the linear congruential method and generally have the 
form: 

Xn + j = (aXn + c) mod m, n > 0. 

Here, a is the multiplier, m the modulus, c the increment, and X0 the starting value. 
(In modular arithmetic, if the number is greater than n - 1 it is divided by n and the 
remainder used in place of the ordinary result.) Usually, specific, multidigit numbers 
are required for these variables, and I have not found (even among the most sea-
soned computer scientists) a single person who actually could write down the pa-
rameters for one of these RNGs without consulting textbooks. Many pages have 
been written on the theoretical reasons for using this number or that for the modulus, 
multiplier, and so on. Fascinating folklores have even evolved regarding some initial 
seeds that are better than others. I recall, along with many colleagues, being told to 
use a seed with at least five digits, with the last digit being odd. This folklore is con-
firmed by Park and Miller, who note, "For some generators this type of witchcraft is 
necessary." 

Because many computer scientists and students will never have more than an 
occasional need to use a random number generator, and on most occasions superlong 
periods and statistical perfection are not of paramount importance, I would like to 
begin with an anecdote regarding an easily remembered RNG with interesting prop-
erties. There are many areas in which "good" RNGs (by my definition) are quite use-
ful, and I am also interested in their use in computer graphics. 

The Cliff RNG 
On February 1, 1994, I posted the following RNG to various computer bulletin 
boards. I called it the "Cliff ' RNG, and wanted to impress researchers with how easy 
it is to create a good RNG. (It was the first function that popped into my head.) 

Consider the iteration 

X„+ 1 = 1100 log(X„) mod II, n = 0, 1, 2, 3 , . . . 

where x 0 = 0.1. By "mod 1," I mean that only the digits to the right of the decimal 
point are used. The log function is the natural log. The Cliff algorithm is easily im-
plemented in C using double precision numbers: 



236 KEYS TO INFINITY 

long num, n; 

double x , xi; 

x - 0.1 /* seed */ 

num - le6; 

for (n-0; n<num; n++) { 

x - 100*1og(x); /* natural log */ 

xi - trunc(x); 

x - fabs(x-xi); /* absolute value */ 

printf("Random number is: %.16f\n",x); 

} 

(If desired, you may add a test to check that the value for x never becomes 0 .1 did 
not find this necessary in my applications.) 

In a good RNG, we would like the numbers produced to be spread evenly over 
the range of 0 to 1. For example, it would not be useful if many more numbers were 
produced between 0 and 0.5 as between 0.5 and 1. Figure 31.1 suggests that Xn are 
sufficiently uniformly distributed on the interval (0, 1) to be useful for a wide variety 
of applications. The Cliff RNG also has a theoretically infinite period; however, in 
practice the period is finite due to limited machine precision. I find that we can eas-
ily generate a million uniformly distributed numbers on an IBM RISC System/6000 
in about 4 seconds, with no cycling of numbers. Obviously my goal here is not to 
create the most efficient RNG or one with a superlong period—but simply one that is 
easy to remember and adequate for many purposes. 

To assess possible correlations between neighbor values in Xn, I used a highly 
sensitive graphical approach called the noise-sphere, which I first described in my 
book Computers and the Imagination. (In harmony with the general objectives of 
this chapter, my goal here is also to present simple, easy-to-remember, and easy-to-
program approaches.) The noise-sphere is computed by mapping random number 
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FIGURE 31.1. Histogram with 100 intervals computed from 1 million iterates and 10 mil-
lion iterates of the Cliff random number generator XN, as described in the text for Xq =0.1. 
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FIGURE 31.2. Noise-sphere for the Cliff RNG. No particular unwanted correlations are 
evident. 

triplets to the position of little balls in a spherical coordinate system, as described in 
the next section. High-quality RNGs do not show any particular features in the 
noise-sphere; low-quality ones yield tendrils and various forms of nonhomogeneity. 
Not only do all good RNGs I have tested pass the noise-sphere test, but also all fa-
mous bad generators with correlations fail it. 

Figure 31.2 (discussed in more detail in the next section) indicates that the Cliff 
RNG produces essentially uncorrected numbers, because no particular features are 
evident in the collection of little spheres. As a counterexample, examine the noise-
sphere in Figure 31.3, which omits the 100 from the expression 100 x log(x) for the 
Cliff RNG. The nonindependence of the numbers is clearly seen. In the next section, 

FIGURE 31.3. Noise-sphere for a bad random number generator. 
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I describe the noise-sphere and further suggest its usefulness as a simple way to 
check the quality of random number generators. 

Noise-Spheres 
A sensitive graphical representation called a noise-sphere can be used to detect many 
"bad" random number generators with little training on the part of the observer. (Bad 
random number generators often show various tendrils when displayed using the 
noise-sphere representations.) As suggested twice before in this chapter, in modern 
science, random number generators have proven invaluable in simulating natural 
phenomena and in sampling data. It is therefore useful to build easy-to-use graphic 
tools that, at a glance, help to determine whether a random number generator being 
used is "bad" (that is, nonuniform and/or with nonindependence between various 
digits). Although a graphics supercomputer facilitates the particular representation 
described in the following, a simpler version would be easy to implement on a per-
sonal computer. I want to stimulate and encourage programmers, students, and 
teachers to explore this technique in a classroom setting. 

To produce the noise-sphere figures, simply map the output of an RNG to the 
position of spheres in a spherical coordinate system. This is easily achieved with a 
computer program using random numbers {Xn, n = 0, 1, 2, 3 , . . . , N (0 <Xn < 1)}, 
where Xn,Xn+l, and Xn + 2 are converted to 0, cp, and r, respectively. For each 
Cartesian triplet, an (r, 0, cp) is generated, and these coordinates position the individ-
ual spheres. The data points may be scaled to obtain the full range in spherical coor-
dinates: 

2nX„->Q 
uXn + 1 ->cp 

The square root for Xn + 2 serves to spread the ball density though the spherical space 
and to suppress the tight packing for small r. (As a reminder, to convert from 0, cp, r 
to x, y, z use a spherical transformation: x = r sin 0 cos cp, y=r sin 0 sin cp, 
z=r cos 0.) Each successive triplet overlaps, so that each point has the opportunity 

to become an r, 0, or cp. (The advantage over a Cartesian system is discussed later in 
this chapter.) 

The resultant pictures can be used to represent different kinds of noise distribu-
tions or experimental data. As already mentioned, no particular correlations in the 
ball positions are visually evident with good random number generators. For surpris-
ing results when this approach is applied to a BASIC random number generator, see 
my book Computers and the Imagination. In particular, the method has been effec-
tive in showing that random number generators prior to release 3.0 of BASIC have 
subtle problems. 

Although such representations are fairly effective in black and white, I have 
found it useful to map the random number triplet values to a mixture of red, green, 
and blue intensities to help the eye see correlated structures. (In other words, for a 
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particular sphere, a value of red, green, and blue from 0 to 1 is determined by the 
value of XnJ(n+l, and Xn + 2.) I use an IBM Power Visualization System to render 
and rotate the noise-spheres; however, interested users without access to graphics 
supercomputers can render their data simply by plotting a scattering of dots and pro-
jecting them on a plane. Most important, I have found that the spherical coordinate 
transformation used to create the noise-sphere allows the user to see trends much 
easier, and with much fewer trial rotations, than an analogous representation that 
maps the random number triplets to three orthogonal coordinates. Because the noise-
sphere approach is sensitive to small deviations from randomness, it may have value 
in helping researchers find patterns in complicated data such as genetic sequences 
and acoustical waveforms. 

Some readers may wonder why I should consider the noise-sphere approach 
over traditional brute force statistical calculations. One reason is that this graphic de-
scription requires little training on the part of users, and the software is simple 
enough to allow users to quickly implement the basic idea on a personal computer. 
The graphics description provides a qualitative awareness of complex data trends 
and may subsequently guide the researcher in applying more traditional statistical 
calculations. Also, fairly detailed comparisons between sets of "random" data are 
useful and can be achieved by a variety of brute force computations, but sometimes 
at a cost of the loss of an intuitive feeling for the structures. When we just look at a 
page of numbers, differences between the data's statistics may obscure the similari-
ties. The approach described here provides a way of simply summarizing compari-
sons between random data sets and capitalizes on the feature integration abilities of 
the human visual system to see trends. 

Explore Extraterrestrial Lands 
In this section, I extend our discussion of simple RNGs to new functions and intro-
duce readers to a fascinating, nonperiodic, near-Gaussian random number generator 
that was studied in the past by Dr. James Collins (Boston University) and colleagues. 
(A Gaussian distribution is a bell-shaped curve, symmetrical about the average 
value.) I find that this near-Gaussian RNG is useful for a variety of purposes, includ-
ing the graphical generation of extraterrestrial terrain (Figure 31.4), and I am inter-
ested in hearing from readers who use these methods for other applications. The de-
scribed approach may be utilized in laboratory and classroom demonstrations, and 
has the potential for producing a wide range of fanciful terrain structures for movie 
special effects houses. 

The Bizarre Logistic Equation 
To produce Figure 31.4,1 have used an approach based on the famous logistic equa-
tion that is easily implemented by beginning programmers and computer graphics 
aficionados. The logistic equation or map is given by the expression 

x„ + 1 = 4Ax„(l -x„) 
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FIGURE 31.4. Terrain generated using the radialized logit transform on the logistic vari-
able. 

where 0 < 1. This equation was introduced in 1845 by the Belgian sociologist 
and mathematician Pierre-Francois Verhulst to model the growth of populations lim-
ited by finite resources. The equation has since been used to model such diverse phe-
nomena as fluid turbulence and the fluctuation of economic prices.1 As the parame-
ter X is increased, the iterates xn exhibit a cascade of period-doubling bifurcations 
followed by chaos. 

If we use X = 1, then xn are "random" numbers on the interval (0, 1) with a U-
shaped probability distribution PX given by:2'3'4 

* tWjc(1 - x ) 

Figure 31.5 shows a histogram with the expected clustering near x = 0 and x = 1 for 
x0 = 0.1. 

In 1964, Ulam and von Neumann defined a new variable yn as 

yn = (2/n)sin-\^) 

This "Ulamized" variable yn has potential as a random number generator because the 
numbers produced are uniformly distributed on the interval (0, 1) (see Figure 31.5). 

Note that although the Ulamized variables are distributed uniformly on the in-
terval (0,1), unfortunately the variables do have correlations. This is also true for the 
logistic variables, as evidenced by the noise-spheres in Figures 31.6 and 31.7. There-
fore, users of this approach will have to sample the generated variables at some suit-
ably large interval to eliminate correlations. I recommend users skip iterates, taking 
every tenth iterate, at which point no correlations are visually apparent (Figure 31.8). 
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FIGURE 31.5. Histogram with 100 intervals computed from 1 million iterates of the logis-
tic equation x„, and the Ulamized logistic equation yn, for xo = 0.1. 

Interestingly, the noise-spheres are more useful than traditional correlation 
functions when applied to many kinds of random data. For example, Grossman and 
Thomae have computed correlation functions for the logistic formula, and the func-
tions appear to indicate vanishingly small (close to 0) correlations for lags greater 
than l . 5 1 have confirmed this (see Figures 31.9 and 31.10) by computing the same 
kind of autocorrelation function for the logistic variables (and for other RNGs): 

n-p 

= ~ X W P P = 0, l , 2 , . . . , m 
P <7=1 

where n is the number data points. 

FIGURE 31.6. Noise-sphere for logistic variables, lag = 1. Here no points are skipped. By 
skipping points (see Figures 31.7 and 31.8), correlations are reduced. 



242 KEYS TO INFINITY 

* % ' J : A "it **. 

. - -- » ; 
• • visV^'f t* 

• * ' ^"V.?* i-
• ' 

FIGURE 31.7. Noise-sphere for logistic variables, lag = 5. (Every fifth point is used. The 
others are discarded.) 

The autocorrelation function for random data describes the general dependen-
cies of the values of the data at one point in the sequence on the values at another 
place. It is a measure of the predictability of a fluctuating function x{t). If the value 
of the function x(t + x) can be predicted with a good expectation of success when the 
value of x(t) is known, then the product x(t)x(t + x) does not become zero when aver-
aged over t. Grossman and Thomae examine such autocorrelation functions for the 
logistic formula, note the immediate drop to zero, and say that for X = 1 "all the iter-
ates are ergodic, that is [the logistic formula] generates pure chaos." I have found 
that many graphics specialists have taken this to suggest that the logistic formula 

FIGURE 31.8. Noise-sphere for logistic variables, lag = 10. 
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FIGURE 31.9. Autocorrelation function for a sine wave (the rippling function), and for the 
logistic, Cliff, and C-language random number generator (all which immediately drop to val-
ues close to zero). 

produces uncorrected values. (Note that the noise-sphere allows humans to perceive 
correlations even beyond a lag of 5.) In other words, individuals sometimes confuse 
the concept of ergodic orbits of dynamical systems with the concept of an inde-
pendent, identically distributed sequence of numbers that ideally is produced by an 
RNG. Sequences of numbers produced by function iteration (Xn + i =f(Xn)) can al-
most never be independent, identically distributed sequences, and often are highly 
correlated as evidenced in this chapter. One standard way of revealing this correla-
tion is simply to plot Xn versus Xn +1 (see, for example the article by T. Richards).6 

The noise-spheres do a similar job but show correlations among three successive 
values. 

Figure 31.9 shows the autocorrelation function for a sine wave (the rippling 
function), and for the logistic, Cliff, and C-language random number generator (all 

0.010 

0.005 

£ 0.000 

-0.005 

-0.010 
0 5 10 15 20 25 

P 

FIGURE 31.10. Magnification of Figure 31.9. 
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which immediately drop to values close to zero). As can be seen, except for the sine 
wave, the others all have a vanishingly small correlation value for lags greater than 
1. Even when the autocorrelation functions for the various random number gener-
ators are greatly magnified (Figure 31.10), not much useful information can be 
gleaned from the noisy plots. The noise-spheres are a much better way to detect cor-
relations within noisy data sets. For a sampling of brute force statistical tests that are 
sensitive to correlations, see The Art of Computer Programming.1 

The Logit Transformation 
For terrain generation, student experiments, and possible inclusion in statistical soft-
ware packages, I have found the transformation given by 

/ 

z = ln 
x 

1 — x 
\ J 

[1] 

to be quite useful. (In statistics this is known as the logit.) The logit transform may 
operate directly on the logistic variable, and Collins et al. (refer to note 2) have 
shown that this transformation generates a sequence of random numbers with a near-
Gaussian distribution: 

P. 1 
/ v/-> A 

z 7t 

^x/2 

l + e* 
V 

1 
n(e<n + e~x/1) 

(Students are urged to compare this to a Gaussian distribution and observe the re-
markable similarity.) Figure 31.11 shows an experimentally derived histogram for 
the logit transform of the logistic variable. 

If readers are interested in using the preceding for 3-D extraterrestrial terrain 
generation, convert the zn distribution to a radial one in polar coordinates, and use 
the Ulamized variables yn as angles: 

v = z„asin(27tyn) + cx 
w = znacos(2nyn) + cy [2] 

For each d(v, w) pair generated, a two-dimensional P(v, w) array is incremented 
by 1 at location (v, w). (Care should be taken to iterate the logistic formula a few 
times before using it to compute both yn and zn, to eliminate unwanted correlations.) 
The resultant P(v, w) distribution, after many iterations, resembles a circular ridge 
centered at (cx, cy) with a near-Gaussian cross-section. The variable a controls the 
diameter of the crater. The landscape in this chapter was created by computing a 
512-by-512 P(v, w) array for 50 Ulamized values of a , cx, and cy. In other words, a 
random (a, cx, cy) triple is selected using Ulamized logistic numbers, and then equa-
tion 2 is iterated N times (N < 106) and a P(v, w) histogram is created. A new triple is 
chosen, and the process is repeated—each time "laying down" a radial, near-Gauss-
ian function as numbers accumulate in the P(v, w) histogram. For more examples of 
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Distribution of Zn 

FIGURE 31.11. Histogram with 100 intervals computed from 1 million iterates of the logit 
transform of the logistic variable for xr> = 0.1. 

terrain produced by this method, more computational details, and further analysis, 
see my IEEE article.8 

In recent years, the generation of both realistic and fanciful terrain has been of 
substantial interest to computer graphics specialists, motion picture and special ef-
fects artists, geologists, and even mathematicians. I enjoy the logit method because it 
produces a wealth of lunar-like structures not produced by standard fractal methods, 
and also the method is conceptually simple when compared to Fourier transform and 
midpoint displacement methods. It is easily implemented and understood by stu-
dents and programmers. There are no Fourier transforms, no erosion models, no con-
volutions, no complicated vertex bookkeeping. From a pedagogical standpoint, it 
therefore makes a wonderful demonstration of not only how to build complex ter-
rains but also how the relationships among random number generators, probability 
theory, and chaotic dynamics are intimately intertwined. From a practical standpoint, 
the logit transform operating on the logistic variables produces a distribution with a 
slightly more gradual decay to zero than does a Gaussian. This may be useful in cer-
tain applications; for example, for the terrain it means that the crater meets the 
ground in a more gradual way, which I find aesthetically pleasing. 

Pretty Good Random Numbers 
Obviously there are areas in physics and numerical analysis where "pretty good" 
RNGs will not be suitable, and various past papers will point readers to more sophis-
ticated algorithms. On the other hand, I feel there is a need for simple, easy-to-re-
member RNGs such as the ones I have presented for various applied and pedagogi-
cal applications. Certainly the myth suggesting that adequate, simple RNGs are very 
difficult to create is one to explore. Interestingly, some researchers have suggested 
that RNGs should be able to give the same random numbers when run on different 
computers and when implemented in different languages. Unfortunately, as pointed 
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out by Colonna, rounding errors often make this quite difficult, especially for gener-
ators based on function iterations of the form Xn+x= f ( X j 9 

Despite the strong correlations between successive numbers—when numbers 
are not skipped—there are several interesting advantages of the logit approach to 
producing near-Gaussian "random" numbers. First, these near-Gaussian numbers are 
easily incorporated into software for stochastic modelling. Second, like the Cliff 
RNG, the logistic-based number generators theoretically have an infinite period—al-
though in practice the period is finite due to the limited precision of computers. This 
limitation can be easily overcome by restarting the generator with a new x0 every bil-
lion or so iterations. (Would it help to change X very slightly every billion or so itera-
tions?) For the terrain in this chapter, x0 and X were fixed at constant values. 

James Collins and colleagues have explored the use of the logit transform for a 
variety of statistical purposes, and they point out an interesting theoretical advantage 
that the nth number generated by the logistic equation can be determined directly 
without iteration: 

xn = sin2[2"sin H ^ o ) ] 

where x0 is some initial value. The values of xn generated in this manner can then be 
transformed by the logit given in equation 1. 

Interest in random number generators continues to grow as evidenced by a re-
cent explosion of papers on exciting new random generators that are not based on the 
extensively studied multiplicative congruential types. For example, much longer 
"defect-free" sequences have been proposed that are based on chaotic dynamical 
systems. (See, for example, the RANLUX (luxury random numbers) algorithm, de-
scribed in an article by F. James, which has an amazing period of lO170.)10 Various 
references to these new kinds of RNGs are included in "For Further Reading" at the 
end of this book. 

A chapter such as this can only be viewed as introductory; however, it is hoped 
that the discussion will stimulate future interest in the graphic representation of sim-
ple random number generators. In laboratory exercises for courses such as statistical 
mechanics, thermodynamics, and even computer programming, it is unlikely that 
undergraduate students will be required to write their own RNGs, but I feel examples 
such as the ones given in this chapter will be of great instructional value to many stu-
dents and scientists involved with computers. For information on other graphical 
methods for detecting patterns in random numbers, such as the use of computer-gen-
erated cartoon faces and Truchet tiles, see my previous books. For a fanciful treat-
ment of RNGs in an alien society, see Chaos in Wonderland. For additional informa-
tion and methods, including applications to cryptography, see Schroeder. 

Flipping a Quantum Mechanical Coin 
Physicists have always considered the processes by which light is emitted from an 
excited atom to be random. For example, we cannot predict when an electron will 
fall from an excited state to a lower energy state thereby causing a photon of light to 
be ejected from an atom. Thomas Erber of the Illinois Institute of Technology re-
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cently tested the randomness of such a process by examining light emitted by a sin-
gle mercury ion. Applying a number of different techniques used both to assess the 
quality of random number generators and to search for patterns in encrypted data, 
Erber and co-workers found no patterns in 20,000 numbers representing the time in-
tervals between light emission. In the July 16, 1994, Science News, Ivars Peterson 
notes that the light emission of a single ion may provide an infinite source of "cryp-
tographically invulnerable" random numbers. Would the noise-spheres discussed in 
this chapter be useful for studying random numbers produced by electron transi-
tions? 

Randomness and Infinity 
Is it possible for a computer algorithm to generate an infinite string of random num-
bers? Could the infinite digits of 7t be used as a very good source of random (that is, 
"normal") numbers for simulations? (A normal number is defined as a number in 
which every possible block of digits is equally likley to occur.) If so, why are they 
not used to generate a normal sequence of numbers? One advantage of using 7t is 
that researchers and statisticians could easily repeat one another's computational ex-
periments. A disadvantage is the difficulty of computing or storing the digits of 7t. 
(As mentioned in other chapters, tables already exist for more than 2 billion digits 
of 7t.) 



"And seize the tiptoe lightnings, ere they f ly . . . ." (E. Darwin, 1789) 
This lightning fractal was produced by methods similar to those discussed in chapters 6 and 
23. Could the tendrils be used to create a random number generator? 
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Program Code 

Chapter 1 Too Many Threes 

C Code 

/* Compute Proportion of Numbers That Contain the Digit 3 */ 

/* See text for a challenge to create a related, more 

interesting program. */ 

#include <matb.h> 

#include <stdio.h> 

i nt n: 

float proportion; 

main() { 
for (n—0: n < - 100: n++) { 

proportion - pow((9.0/10.0),n); 

printf("%d %f %f n".n.proportion.1.-proportion); 

} 

} 

BASIC Code 
10 REM Compute Proportion of Numbers That Contain the Digit 3 

15 REM See text for a challenge to create a related, more 

17 REM interesting program. 

20 FOR N-0 TO 100 

25 REM Some BASIC languages use -, instead of ** 

30 P - (9 .0/10.0)**N 

40 PRINT N. P, 1-P 

50 NEXT N 

60 END 

Chapter 2 Ladders to Heaven 

C Code 

/* Approximate the ratio of weight in space to weight on Earth 

#include <math.h> 
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#include <stdio.h> 

main() 

{ 

float step, Rm, W . Me. Mm. Re, D, dl. d2; 

Me - 5.97e24; /* Mass of Earth kg */ 

Mm - 7.35e22; /* Mass of moon kg */ 

Re - 6371; /* Mean radius of Earth km */ 

D - 384401; /* Mean Earth-moon distance km */ 

Rm - 1738; /* Mean radius of moon km */ 

step - (D - (Re+Rm))/100.; /* sample graph using 100 points */ 

/* dl is distance from center of Earth to point out in space */ 

for (dl - Re; dl <- (D-Rm); dl - dl + step) { 

d2 - D - dl: 

W - (Me/(dl*dl) - Mm/(d2*d2)) * (Re*Re)/Me; 

printf("Ratio is: %f, Distance is: %f n",W,dl); 

} 
} 

BASIC Code 

100 REM APPROXIMATE THE RATIO OF WEIGHT IN SPACE TO WEIGHT ON EARTH 

110 REM MASS OF EARTH, KG 

120 E - 5.97E24 

130 REM MASS OF MOON. KG 

140 M - 7.35E22 

150 REM MEAN RADIUS OF EARTH. KM 

160 R - 6371 

170 REM MEAN EARTH-MOON DISTANCE, KM 

180 D - 384401 

190 REM MEAN RADIUS OF MOON, KM 

200 T - 1738 

210 REM SAMPLE GRAPH USING 100 DISTANCE POINTS 

220 S - (D - (R+T))/100 

230 G IS DISTANCE FROM CENTER OF EARTH TO POINT OUT IN SPACE 

330 FOR G - R TO (D-T) STEP S 

340 F - D - G 

350 W - (E/(G*G) - M/(F*F)) * (R*R)/E 

360 PRINT "RATIO IS "; W; "DISTANCE IS"; G 

370 NEXT G 

380 END 

Chapter 5 Grid of the Gods 

C Code 

/* Compute chords of circle */ 

#inc1ude <math.h> 

#include <stdio.h> 

int i,countl,count2; 

float pi ,dist,theta,r,x,y,x2,y2,ratio; 

FILE *fp,*fp2; 
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main() 
{ 

r - 1; pi - 3.1415926; 

fp - fopen("gridl.out'V'w"); 

fp2 - fopen("grid2.out","w"); 

srand(1234567); /* random number seed */ 

countl=0; count2-0; 

for (i=0: i<1000; i++) { 

/* select random point on circle */ 

theta = 2*pi*((float)rand()/32767.); 

x = r*cos(theta); 

y = r*sin(theta); 

/* select another random point on circle */ 

theta = 2*pi*((float)rand()/32767.); 

x2 = r*cos(theta); 

y2 = r*sin(theta); 

dist - sqrt((x-x2)*(x-x2) + (y-y2)*(y-y2)): 

if (dist<r) countl++: 

count2++; 

ratio=(fl oat)countl/(float)count2; 

if ((i%10)—0) fprintf(fp,"%d %f\n".i.ratio); 

if ((i%10)—0) pri ntf("%d %f\n",i,ratio); 

if (i<100) fprintf(fp2,"%f %f\n",x.y); 

if (i<100) fprintf(fp2,"%f %f\n",x2,y2); 

} 
printfC'Final : %d %d %f\n", countl, count2, ratio); 

} 

BASIC Code 

10 REM Compute chords of circle 

20 R - 1.0 

30 P = 3.1415926 

40 CI - 0 

50 C2 - 0 

60 FOR 1=0 TO 100 

70 REM select random point on circle 

80 T = 2.0*P*RND 

90 X - R*C0S(T) 

100 Y = R*SIN(T) 

110 REM select another random point on circle 

120 T - 2 . 0*P*RND 

130 X2 - R*C0S(T) 

140 Y2 = R*SIN(T) 

150 D - SQR((X-X2)*(X-X2) + (Y-Y2)*(Y-Y2)) 

160 IF D<R THEN Cl-Cl+1 

170 C2 - C2+1 

190 REM Compute Ratio 

200 S=C1/C2 

210 PRINT "Points on Circle: "; X;Y;X2;Y2 

220 PRINT 

230 PRINT I; D; "Ratio: "; S 

240 NEXT I 

250 END 
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Chapter 8 Infinite Chess 

C Code 

/* Solve bishop problem by printing values in the table */ 

#include <math.h> 

#include <stdio.h> 

int n , maxbishop, totbishop, distinct; 

float ratio; 

FILE *fp; 

main() { 
for (n-2; n<-20; n++) { 

maxbishop - 2*n-2; 

totbishop - pow(2,n); 

if ((n%2)—0) distinct - pow(2. (n-4)/2)*(pow(2,(n-2)/2)+l); 

else distinct - pow(2,(n-3)/2)*(pow(2,(n-3)/2)+l); 

ratio - (float)totbishop/(float)distinct; 

printf("%d %d %d %d %f\n",n,maxbishop,totbishop,distinet,ratio); 

} 
} 

BASIC Code 

10 REM Solve bishop problem by printing values in table 

20 FOR N-2 TO 20 STEP 2 

30 REM M is maximum number of nonattacking bishops 

40 M - 2*N-2 

50 REM T is total number of bishop arrangements 

60 T-2**N 

70 REM D is the number of distinct positions 

80 D - 2**((N-4)/2)*(2**((N-2)/2)+l) 

90 REM Insert next statement for odd numbers: 

100 REM D - 2**((N-3)/2)*(2**((N-3)/2)+l) 

110 REM Ratio: 

120 R - T/D 

130 PRINT N;M;T;D;R 

140 NEXT N 

150 END 

Chapter 9 The Loom of Creation 

C Code 

/* Compute chords of circle */ 

#include <math.h> 

^include <stdio.h> 

i nt i ; 

float pi,theta,r,x,y,x2,y2; 

FILE *fp; 

main() { 
r - 1; pi - 3.1415926: 
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/* create ranunculoid */ 

a = 6; b - 6; 

/* create cardioid */ 

a - 2; b = 2; 

/* create nephroid */ 

a = 3; b - 3; 

/* create amazingoid */ 

a - 100; b - 100; 

/* create fishtailoid */ 

a - 2; b - 3; 

for (i-0; i<=360; i-i+1) { 

theta = ( f l o a t ) i * p i / 1 8 0 . ; 
x = r*cos(theta); 

y - r*sin(theta); 

/* Select another point on circle */ 

x2 = r*cos(a*theta); 

y2 = r*sin(b*theta); 

/* Print endpoints of each line */ 

pri ntf("%f %f\n",x,y); 

pri ntf("%f %f\n",x2,y2); 

} 
} 

BASIC Code 

10 REM Compute ranunculoids 

20 R - 1 

25 REM Ranunucloid parameters: 

26 A - 6 

27 B - 6 

30 P - 3.1415926 

40 FOR I - 0 TO 360 

50 T - I*P/180 .0 

60 X - R*C0S(T) 

70 Y = R*SIN(T) 

80 REM select another point on circle 

90 X2 = R*C0S(A*T) 

100 Y2 = R*SIN(B*T) 

110 PRINT "Chord on Circle: X ; Y ; " TO ";X2;Y2 

120 NEXT I 

130 END 

Chapter 10 Slides in Hell 

C Code 

/* Simulate launching people down slide */ 

#include <math.h> 

#include <stdi o . h> 

int i, j, flag, bin{20000}, count; 

float x; 

FILE *fp; 

ma i n () 
{ 
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/* i nti alize bins */ 

for (i-0; i <20000; i++) bin{i}=0; 

srand(123456789); /* random number gen seed */ 

count-0; i-0; 

while (count<10000) { 

i++; /* launch person down slide */ 

flag-0; 

for (j-0; j<10; j++) { 

/* generate random number between 0 and 1 */ 

x - ((float)rand()/32767.); 

if (x>0.5) (flag-1; break;} /* person fell through hole */ 

} 
/* Include the following line if you want print to the screen */ 

/* if (flag—0) {printf("Made it in %d tries\n",i); } */ 

if (flag—0) { 

/* person has made it down the slide */ 

count++; 

bi n{i}=bi n{i}+l; 

i-0; /* reset */ 

if ( ( c o u n t % 1 0 0 0 ) ~ 0 ) printf("%d\n",count); 

} 
} /*whi1e */ 

/* Dump output file showing distribution */ 

fp - fopenC'sl ide.out", "w"); 

for (j-0; j<4000; j++) { 

fprintf(fp,"%d %d\n". j,bin{j}); 

} 
} 

BASIC Code 

10 REM Simulate launching people down slide 

20 DIM B(20000) 

30 REM Initialize bins for histogram 

40 FOR 1-1 TO 20000 

50 B(I)-0 

60 NEXT I 

70 C-0 

80 1=0 

110 REM Launch person down slide 

120 1=1+1 
130 F-0 

140 FOR J-l TO 10 

150 REM Generate random number between 0 and 1 

160 X-RND 

170 REM X>0.5 means person fell through a hole 

190 IF X>0.5 THEN GOTO 110 

200 NEXT J 

210 REM Include the following line if you want print to the screen 

220 PRINT "Made it in •*; I; "tries . " 

240 REM Person has made it down the slide 

250 C-C+l 

260 B(I)=B(I)+l 

270 REM RESET 

280 1-0 
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290 IF C-1001 THEN PRINT "More than 1000 people have made it down. 

300 IF C<10000 THEN GOTO 110 

310 REM Print distribution 

320 FOR J-l TO 4000 

330 PRINT J; B(J) 

340 NEXT J 

350 END 

Chapter 11 Alien Abduction Algebra 

C Code 

/* Compute number and sex of humans */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

int i, j. countone, counttwo; 

double k, ratio; 

FILE *fp; 

fp-fopen("output.file","w"); 

countone-0; counttwo-0; 

k-(sqrt(5.0)+1.0)/2.0; 

for (i-1; i<—10; i++) { 

j-trunc(k*i)-trunc(k*(i-1)); 

pri ntf("Term %d is %d\n",i,j); 

if (j—1) countone++; 

if (j—2) counttwo++; 

if (i>1) { 

rati o-(f1 oat)countone/(float)counttwo; 

printf("Cumulative number of males %d n",countone); 

printf("Cumulative number of males %d n".counttwo); 

p r i n t f C T h e ratio is %f n",ratio); 

} 
fprintf(fp,"%d %d %d\n",i.countone,counttwo); 

/* for graph */ 

} /* for */ 
} 

BASIC Code 

100 REM Compute number and sex of humans 

110 M-0 

120 F-0 

121 REM S5 is a high-precision value for SQR(5) 

122 S5-2.23606797749978969640917 

125 K-(S5+1.0)/2.0 

126 PRINT K 

130 FOR 1-1 TO 50 

140 J—I NT(K*I) - INT(K*(I-1)) 

150 PRINT "TERM"; I; " IS "; J; 

155 PRINT " " 

160 IF J-l THEN M-M+l 
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170 IF J-2 THEN F-F+l 

180 IF I>1 THEN GOSUB 300 

190 NEXT I 

200 STOP 

300 R-M/F 

310 PRINT "Cumulative number of males "; M 

320 PRINT "Cumulative number of females "; F 

330 PRINT "The ratio is R 

340 RETURN 

500 END 

Chapter 12 The Levianthan Number 

C Code 

/* Compare Stirling with standard factorial values */ 

#include <math.h> 

#include <stdio.h> 

int i, n; 

float pi-3.1415926.fact,f[100],s[100],diff; 

main() 
{ 

/* Compute Stirling values */ 

for (n-0; n<30; n++) { 

s[n]-sqrt(2.*pi)*exp(-n)*pow(n,n+0.5); 

} 
/* compute factorial */ 

f[l]-l; 

for (n—1; n<30; n++) { 

f[n+l]-n*f[n]; 

} 
/* Compute percentage difference */ 

for (n-1; n<30;n++) { 

di ff-(f[n+1]-s[n])/f[n+1]; 

printf("%d %f %f %f\n",n,f[n+1],s[n],diff); 
} 

} 

BASIC Code 

10 REM Compute Stirling and factorial values 

20 DIM F(100), S(100) 

30 P-3.1415926 

35 REM Compute factorial using Stirling's formula 

37 FOR N-1 TO 30 

40 S(N)-SQR(2.*P)*EXP(-N)*N**(N+0.5) 

50 NEXT N 

55 REM Compute factorial 

60 F(1)-l 

70 FOR N-1 TO 30 

80 F(N+1)—N * F(N) 

90 NEXT N 
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95 REM Compute factorial 

100 FOR N-l TO 30 

110 D-(F(N+1)-S(N))/F(N+l) 

120 PRINT N;F(N+l);S(N);D; 

130 PRINT 

140 NEXT N 

150 END 

Chapter 13 Welcome to Worm World 

C Code 

/* Generate and explore Worm Worlds */ 

#include <math.h> 

#include <stdio.h> 

int 1, p[200], i cur, jcur, m, n, i, j, k, x[100][100]; 

int flag, path_len; 

main() 
{ 

/* random number gen seed */ 

srand(131313131); 

/* generate array of numbers */ 

k-0; 

for (i-0; i<8; i++) { 

for (j-0; j<8; j++) { 

k++; 

/* generate random numbers (0 - 24) */ 

x[i ][j] - ((float)rand()/32767.)*25.; 

pri ntf("%2d ",x[i][j]); 

if (((k)%8)—0) pri ntf(" n"); 

} /* for */ 

} /* for */ 

/* for each cell, scan array for longest path */ 

printfC'Paths: n"); 

1 - 0 ; 
for (i-0; i<8; i++) { 

for (j-0; j<8; j++) { 

1++; 
path_len - 1; 

for (k-0; k<100; k++) p[k]-0; 

p[0]-x[i][j]; /* first point in path */ 

icur-i; jcur-j; 

for (n-0; n<64; n++) { 

/* check neighborhood */ 

jcur-jcur+1; scan_path(); 

if (flag—1) {jcur-jcur-2; scan_path(); 

if (flag—1) {icur-icur+1; jcur-jcur+1; scan_path(); 

if(flag—1) {icur-icur-2; scan_path(); 

if(flag—1) {write_path(); n-100; /* break out */ 

} } } } /* if's */ 

} /* for n */ 

} /* for j */ 
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} /* for i */ 

} /* main */ 

/* scan path for "reused" numbers */ 
scan_path() 
{ 

/* flag-1 means unsuccessful */ 

flag-0; 

if((icur<0) || (jcur<0) || (icur>7) || (jcur>7)) flag-1; 

for (k-0; k<path_len; k++) { 

if(x[icur][jcur]—p[k]) flag-1; 

} 
if(flag—0) {p[path_len]-x[icur][jcur]; path_len++;} 

} 
/* Write out "longest" path for each starting cell */ 

wri te_path() 

{printf("(%d %d) ", 1 , p a t h j e n ) ; 

for (k-0; k<path_len; k++) printf("%d ",p[k]) ; printf("\n"); } 

BASIC Code 

100 REM /* Generate and explore Worm Worlds */ 

200 DIM P(100), X(100,100) 

300 REM Generate array of numbers 

400 K-0 

500 FOR 1-1 TO 8 

600 FOR J-l TO 8 

700 REM Generate random numbers (1 - 25) 

800 X(I,J)-INT(RND*25) 

900 NEXT J 

1000 REM Print board 

1200 PRINT X (1,1); X(I,2);X(I,3);X(I,4);X(I,5); X(1,6); X(I,7); 
X(I,8) 

1300 NEXT I 

1400 REM For each cell, scan array for longest path 

1500 PRINT "PATHS:" 

1600 L-0 

1700 FOR 1-1 TO 8 

1800 FOR J-l TO 8 

1900 L-L+l 

2000 REM PI is path length 

2100 Pl-1 

2200 FOR K-l TO 100 

2300 P(K) - 0 

3400 NEXT K 

3500 REM First Point in Path 

3600 P(1)-X(I,J) 

3700 I1—I 

3800 Jl-J 

3900 FOR N-1 TO 65 

4000 REM Check neighborhood 

4100 Jl-Jl+1 

4200 GOSUB 10000 

4300 IF F-l THEN Jl-Jl-2 
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4600 

4700 

4800 

4900 

5000 

5100 

5200 

5300 

5400 

5500 

5600 
NEXT N 

NEXT J 

IF F-l THEN GOSUB 10000 

IF F-l THEN Il-Il+l 

IF F-l THEN Jl-Jl+1 

IF F-l THEN GOSUB 10000 

IF F-l THEN I1-I1-2 

IF F-l THEN GOSUB 10000 

IF F-l THEN GOSUB 20000 

REM Now break out of For Loop 

IF F-l THEN GOTO 5600 

5700 NEXT I 

5800 STOP 

10000 REM Scan path for "reused" numbers 

10100 REM FLAG-1 means unsuccessful 

10200 F-0 

10300 IF I K l THEN F-l 

10400 IF J K l THEN F-l 

10500 IF I1>8 THEN F-l 

10600 IF Jl>8 THEN F-l 

10650 IF F-l THEN GOTO 11200 

10700 FOR K-l TO PI 

10800 IF X(I1,J1)-P(K) THEN F-l 

10900 NEXT K 

11000 IF F-0 THEN Pl-Pl+1 

11100 IF F-0 THEN P(PI)-X(II,J1) 

11200 RETURN 

20000 REM Write out "longest" path for each starting cell 

20100 PRINT "CELL, PATH LENGTH";L:PI 

20200 FOR K-l TO PI 

20300 PRINT P(K) 

20400 NEXT K 

20500 RETURN 

20600 END 

Chapter 14 Fractal Milkshakes and Infinite Archery 

C Code 

/* Compute Ford froth */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

float rad, cx, cy, s, x , y , z, k, h; 

/* Scan 15 values for h and k */ 

for (h-1; h<—15; h-h+1) { 

for ( k - l ; k<-15; k-k+1) { 

rad-1./(2.*k*k); 

cx-h/k; 

cy-rad; 

/* Print out points suitable for drawing each circle */ 

/* The step size of .1 controls the circle resolution */ 
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for (s-0; s<-6.28; s-s+.l){ 

x-rad*cos(s)+cx; 

y-rad*sin(s)+cy; 

printf("%f %f\n",x,y); 

} 
/* Next compute another circle */ 

} 
} 

} 

BASIC Code 

10 REM Compute Ford froth */ 

20 REM Scan 15 values for h and k 

30 FOR H-l TO 15 

40 FOR K-l TO 15 

50 R-l./(2.*K*K) 

60 Cl-H/K 

70 C2-R 

90 REM Dump points for drawing each circle 

90 REM The step value controls the circle fineness 

100 FOR S-0 TO 6.28 STEP .1 

110 X-R*C0S(S)+C1 

120 Y—R*SIN(S)+C2 

130 PRINT X,Y 

140 NEXT S 

150 REM Next compute another circle 

160 NEXT K 

170 NEXT H 

180 END 

Chapter 15 Creating Life Using the Cancer Game 

C Code 

/* Compute Cancer Game Sequence */ 

#include <math.h> 

#include <stdio.h> 

#define max(a,b) ((a)>(b)?(a): (b)) 

main() { 
/* last, 2nd to last, and current string */ 

int 11[5000], 12[5000], cur[5000]; 

/* size of last, 2nd to last, current */ 

int sll, sl2, scur; 

int i, j, temp, gen, numgen, maxlen; 

/* G-l, C-2, A-3, T-4 */ 

/* initial two seeds */ 

12[0]-l; si 1-1; /* G; length 1 */ 

11[0]-2; si 2-1; /* C; length 1 */ 

numgen-7; /* how many generations */ 
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maxlen-0; 

pri ntf("G nC n"); 

for (gen-0; gen<numgen; gen++) { 

/* MUT Enzyme reads second-to-last generation */ 

j-0; /* counter for string length */ 

for (i-0; i<sl2; i++) { 

cur[j]-l2[i]; 

/* Mutate: */ 

if(cur[j]—1) temp-3; 

if(cur[j]—2) temp-4; 

if(cur[j]—3) temp-1; 

if(cur[j]—4) temp-2; 

cur[j]-temp; 

j++; 

} 

/* COP Enzyme reads last generation */ 

for (i-0; i<sll; i++) { 

cur[j]-l1[i]; 

j++; 

} /* endfor */ 

/* Print current line */ 

for (i-0; i<j; i++) { 

if(cur[i]—1) printfC'G"); 

if(cur[i]—2) printfC'C"); 

if(cur[1]—3) printf("A"); 

1f(cur[1]—4) printf("T"); 
} 

p r i n t f C Length: %d\n",j); 

maxlen-max(j,maxlen); 

/* Compute Cancer Game Sequence (CONTINUED) */ 

/* CLEAV splits sequence at T-T */ 

scur-j; 

for (i-0; i<scur; i++) { 

i f((cur[i]—4)&&(cur[i+1]—4)) 
{ 

scur-i+1; /* new length */ 

printf("CIeavage has occurred n"); 

for (i-0; i<scur; i++) { 

i f (cur[i ]—1) printfC'G"); 

1f(cur[i ]—2) printfC'C"); 

if(cur[i ]—3) printfC'A"); 

i f (cur[i ]—4) printfC'T"); 

} 
printf("\n"); 

} /* endif */ 

} /* endfor */ 

/* Update by swapping generations*/ 

for (i-0; i<sll; i++) 12[i]-l1[i]; 

s i 2 - s l 1 ; 
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for (i-0; i<scur; i++) 11[i]-cur[1]; 

si1-scur; 

} /* end For generations */ 

printfC'Maximum string length found is: %d\n",maxlen); 

} /* end program */ 

BASIC Code 

100 REM Compute Cancer Game Sequence 

200 REM Last, 2nd to last, and current string 

300 DIM L(5000), M(5000), C(5000) 

400 REM Size of last, 2nd to last, Current 

500 REM SI, S2, S3 

600 REM G-l, C-2, A-3, T-4 

700 REM Initial two seeds: 

750 REM G, length 1 

800 M(1)-l 

850 Sl-1 

860 REM C, length 1 

900 L(l)-2 

950 S2-1 

1000 REM How many generations 

1100 N-7 

1200 REM Maximum length 

1300 P-0 

1400 PRINT "G" 

1500 PRINT "C" 

1600 FOR G-0 TO N 

1700 REM MUT Enzyme reads second-to-last generation 

1800 REM Counter for string length 

1900 J-l 

2000 FOR 1-1 TO S2 

2100 C(J)-M(I) 

2200 REM Mutate 

2300 IF C(J)-1 THEN T-3 

2400 IF C(J)-2 THEN T-4 

2500 IF C(J )-3 THEN T-l 

2600 IF C(J)-4 THEN T-2 

2700 C(J)-T 

2800 J-J+l 

2900 NEXT I 

3000 REM COP Enzyme reads last generation 

3100 FOR 1-1 TO SI 

3200 C(J)-L(I) 

3300 J-J+l 

3400 NEXT I 

3500 REM Print current line 

3600 FOR 1-1 TO J 

3700 IF C(I)-1 THEN PRINT "G" 

3800 IF C(I)-2 THEN PRINT "C" 

3900 IF C(I)-3 THEN PRINT "A" 

4000 IF C(I)-4 THEN PRINT "T" 

4100 NEXT I 

4150 J-J-l 

4200 PRINT " Length: J 
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4300 IF J>P THEN P-J 

4400 REM CLEAV splits sequence at T-T 

4500 S3-J 

4600 FOR 1-1 TO S3 

4700 IF C(I)-4 THEN 4750 

4720 GOTO 4800 

4750 IF C(1+1)-4 THEN GOSUB 9000 

4800 NEXT I 

4900 REM CONTINUED 

5000 REM BASIC Cancer Game Program (CONTINUED) 

6800 REM Update by swapping generations 

6900 FOR 1-1 TO SI 

7000 M(I)-L(I) 

7100 NEXT I 

7200 S2-S1 

7300 FOR 1-1 TO S3 

7400 L(I)-C(I) 

7500 S1-S3 

7550 NEXT I 

7600 NEXT G 

7700 PRINT "Maximum string length found is "; P 

7800 STOP 

9000 REM New length because of cleavage 

9100 S3-I 

9200 PRINT "Cleavage has occurred" 

9300 FOR 1-1 TO S3 

9400 IF C(I)-1 THEN PRINT "G" 

9500 IF C(I)-2 THEN PRINT "C" 

9600 IF C(I)-3 THEN PRINT "A" 

9700 IF C(I)-4 THEN PRINT "T" 

9800 NEXT I 

9900 PRINT 

9990 RETURN 

9999 END 

Chapter 17 Infinite Star Chambers 

C Code 

/* Compute Coordinates of Stars within Stars */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

float r,pi,x[10],y[10],theta[10]; 

int i , j ; 

pi-3.1415; r-1; 

theta[l]-pi/2; 

/* Print 3 nestings of stars */ 

for (j-l; j<-3; j++) { 

/* Compute coordinates of stars */ 

for (i-1; i<-7; i++) { 

x[i]-r*cos(theta[i]); 

y[i]-r*si n(theta[i]); 
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theta{i+l}-theta{i}+(72*pi/180.0); 

} 
for (i-1; i<-5; 1++) { 

/* Print coordinates of each line segment */ 

pri ntf("%f %f\n", x[1],y[i]); 

pri ntf("%f %f\n", x[i+2],y[1+2]); 

} 
r-r/2.618; 
theta[1]-theta[1]+(36*pi/180.0); 

} 
} 

BASIC Code 

10 REM Compute Coordinates of Stars within Stars 

20 DIM X(10), Y(10), T(10) 

30 P-3.1415 

40 R-l 

60 T(1)-P/2 

70 REM Print 3 nestings of stars 

80 FOR J-l TO 3 

90 REM Compute coordinates of stars 

100 FOR 1-1 TO 7 

110 X(I)-R*C0S(T(I)) 

120 Y(I)-R*SIN(T(I)) 

130 T(I+1)-T(I)+(72*P/180.0) 

140 NEXT I 

150 FOR 1-1 TO 5 

160 REM Print coordinates of each line segment 

180 PRINT X(I),Y(I) 

190 PRINT X(1+2),Y(1+2) 

200 NEXT I 

210 R-R/2.618 

220 T(1)-T(1)+(36*P/180.0) 

230 NEXT J 

240 END 

C Code 

/* Compute Length of Stars */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

float Length, r; 

int i; 

i—(3.0 + sqrt(5.0))/2.0; 

/* Compute length of star's edge */ 

for (i-0; i<—65; i++) { 

Length-pow(r,i); 

pri ntf("%d %g %g\n",1,Length,Length/12.); 

} 
/* Compute cumulative length of all star edges */ 
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printf("**************\n"); 

for (i-0; i<-65; i++) { 

Length-5*(pow(r,i)-1)/(r-1); 

printf("%d %g %g\n",i.Length,Length/12.); 

} 
} 

BASIC Code 

10 REM Compute Star Lengths 

20 R-(3.0+SQR(5.0))/2.0 

30 REM Compute length of star's edge 

50 FOR 1-0 TO 65 

60 L-R**I 

70 PRINT I, L 

80 NEXT I 

90 REM Compute cumulative length of all star edges 

100 PRINT "**************" 

110 FOR 1-0 TO 65 

120 L-5*((R**I)-1)/(R-1) 

130 PRINT I, L 

140 NEXT I 

150 END 

Chapter 18 Infinitely Exploding Grdes 

C Code 
/* Exploding Ci rcles */ 

#include <math.h> 

#include <stdio.h> 

#define SQR(x) ((x)*(x)) 

#def1ne QUAD(x) ((x)*(x)*(x)*(x)) 

int n; 

double pi—M_PI, prod, pi2, pi4, A; 

main() 
{ 

/* Compute limiting radius using simple method 1 */ 

prod-1; 

for (n-3; n<100; n++) { 

prod-prod*(1.0/cos(pi/n)); 

/* print out radius values as circles expand */ 

i f((n%10)—0) pri ntf("%d %f\n", n-2,prod); 

} 
pri ntf("Final Result, Method 1, is: %d %f\n", n-2,prod); 

/* Compute limiting radius using method 2 */ 

pi2-pi*pi; 

pi 4—pi 2*pi 2; 

A-((l-pi2/2+pi4/24)*(l-pi 2/8+pi4/384)*pi4/sqrt(24))/ 

(sin(pi2/sqrt(6+2*sqrt(3)))*sin(pi2/sqrt(6-2*sqrt(3)))); 

pri ntf("A is: %f\n",A); 
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prod-1; 

for (n-3; n<100; n++) { 

prod-prod*((l-pi2/(2*SQR(n)) + 

pi4/(24*QUAD(n)))/cos(pi/n)) ; 

} 
prod-A*prod; 

p r i n t f C F i n a l Result, Method 2, is: %d %f\n",n-2,prod); 

} 

BASIC Code 

10 REM Exploding Circles 

20 P-3.1415926535 

30 REM Compute limiting radius using simple method 1 

40 Q-1.0 

50 FOR N-3 TO 100 

60 Q-Q*(1.0/C0S(P/N)) 

70 REM Print out radius values as circles expand 

80 PRINT N-2,Q 

85 NEXT N 

90 PRINT "Final Result, Method 1, is:",N-2,Q 

100 REM Compute limiting radius using method 2 

110 P2-P*P 

120 P4-P2*P2 

130 X-((1 -P2/2+P4/24)*(1-P2/8+P4/384)*P4/SQR(24)) 

140 Y-(SIN(P2/SQR(6+2*SQR(3)))*SIN(P2/SQR(6-2*SQR(3)))) 

150 A-X/Y 

160 PRINT "A is:",A 

170 Q-1.0 

180 FOR N-3 TO 100 

190 Q-Q*((1-P2/(2*N*N)+P4/(24*N**4))/C0S(P/N)) 

200 NEXT N 

210 Q-A*Q 

220 PRINT "Final Result, Method 2, is:", N-2,Q 

230 END 

Chapter 19 The Infinity Worms of Callisto 

C Code 

The following code allows you to compute the first ten values for the various infin-
ity-worm series. 

/* Compute Infinity Worm Series */ 

#include <math.h> 

#include <stdio.h> 

mai n() 
{ 

float suml, sum2, sum3, sum4, sum5, sum6; 

int i; 

suml-0; sum2-0; sum3-0; 

sum4-0; sum5-0; sum6-0; 
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/* Compute f i r s t ten terms */ 

for (i=l; i<-10; i++) { 

/* Green worm */ 

suml=suml+l/(1og(1og(i+2))); 

pri ntf("Green Worm: %d %f\n",i,suml); 

/* B1ue worm */ 

sum2=sum2+l/(1og(i+1)); 

pri ntf("B1ue Worm: %d %f\n", i,sum2); 

/* Violet worm */ 
sum3=sum3+l/sqrt(i); 

pri ntf("Violet Worm: %d %f\n",i,sum3); 

/* Crimson worm */ 

sum4=sum4+l/(float)i; 

printfC'Crimson Worm: %d %f\n", i ,sum4); 
/* Black worm */ 

sum5=sum5+l/((i+1)*1og(i+1)); 

pri ntf("B1ack Worm: %d %f\n",i,sum5); 

/* Transparent worm*/ 

s um6=sum6+l/((l+2)*1og(i +2)*1og(1og(i +2))); 

printfC'Transparent Worm: %d %f\n", i ,sum6); 

} 
} /* end program */ 

BASIC Code 

10 REM Compute first Ten Terms of Worm Series 

20 Sl-0 

30 S2-0 

40 S3-0 

50 S4-0 

60 S5-0 

70 S6-0 

80 REM Compute first 10 terms 

90 FOR 1=1 TO 10 

100 REM Green worm 

110 Sl-Sl+1/(L0G(L0G(1+2))) 

120 PRINT "Green Worm: ",I,S1 

130 REM Blue worm 

140 S2=S2+1/(L0G(1+1)) 

150 PRINT "Blue Worm: ",I,S2 

160 REM Violet worm 

170 S3=S3+1/SQR(I) 

180 PRINT "Violet Worm: ",I,S3 

190 REM Crimson worm 

200 S4-S4+1/I 

210 PRINT "Crimson Worm: ",I,S4 

220 REM Black worm 

230 S5-S5+1/((1+1)*L0G(1+1)) 

240 PRINT "Black Worm: ",I,S5 

250 REM Transparent worm 

260 S6-S6+1/((I+2)*L0G(I+2)*L0G(L0G(1+2))) 

270 PRINT "Transparent Worm: ",I,S6 

280 NEXT I 

290 END 
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Chapter 21 The Fractal Golden Curlicue Is Cool 

C Code 

/* Generate Curlicues */ 

#include <math.h> 

#def ine SGN(x) U x K O ? -1 : (x)>0 ? 1 : 0) 

float x[2000], y[2000]; 

float pi, pi2, cons, angl, step, ang2, ang3; 

int i ; 

main() 
{ 

pi-3.14159; pi 2-2.0*pi; 

/* Golden section, as an example constant */ 

cons-(sqrt(5.0)+l.0)/2.0: 

angl-pi2*cons; /* primary angle */ 

step-1; /* step size */ 

ang3-0; ang2-0; 

x[0]-y[0]-0; 

for (i-0; i<-1000: i++) { 

ang2-ang2+angl; 

/* Prevent angle from growing huge: */ 

whi1e(ang2>pi2) ang2-ang2-pi2; 

ang3-ang3+ang2; 

while(fabs(ang3)>pi2) 

ang3-ang3-SGN(ang3)*pi2; 

x[i+l]-x[i]+step*cos(ang3); 

y[i+l]-y[i]+step*sin(ang3); 

/* Write out coordinates of line segments */ 

printf("%f %f\n",x[i+1],y[1+1]); 

} /* i */ 

} 

BASIC Code 

10 REM Compute Coordinates of Curlicues 

20 Pl-3.14159 

30 P2-2.0*P1 

40 REM Golden section, as an example constant 

50 C-(SQR(5.0)+1.0)/2.0 

55 REM Primary angle 

60 A1-P2*C 

70 REM Step size 

80 S-l 

90 A3-0 

100 A2-0 

105 X-0 

107 Y-0 

110 FOR I - 0 TO 1000 

120 A2-A2+A1 

130 REM Prevent angle from growing huge: 

140 FOR J-l TO 100 

150 IF A2<-P2 GOTO 180 
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160 A2-A2-P2 

170 NEXT J 

180 A3-A3+A2 

190 FOR J-l TO 100 

200 IF A B S ( A 3 X - P 2 GOTO 230 

210 A3-A3-SGN(A3)*P2 

220 NEXT J 

230 X-X+S*C0S(A3) 

240 Y-Y+S*SIN(A3) 

250 REM Write out coordinates of line segments 

260 PRINT X, Y 

270 NEXT I 

280 END 

Chapter 22 The Loneliness of the Factorions 

C Code 

Youry Vymenets of St. Petersburg University, Russia, says, "I 'm afraid your facto-
rions will be lonely forever. This is sad, but a lot of people rest alone throughout 
their entire life without even a single companion. . . . " He goes on to prove this state-
ment (about factorions, not about life), and has given me permission to reproduce his 
C code for brute force search of factorions. The C program searches all numbers less 
than 108. 

/* Loneliness of the Factorions (vymenets) */ 

#include <stdio.h> 

^include <math.h> 

1ong i,j,n,m,s; 

long a[9+1][1+1]; 

long b[7+l]; 

1 ong c[7+l]; 

main() 

m-10000000; 

a [0 ] [1 ] -1 ; 
a [1 ] [1 ] -1 ; 
a[2][l]-2; 

a[3][l]-6; 

a[4][l]-24; 

a[5][1]-120; 

a[6][l]=720; 

a[7][l]-5040; 

a[8][l]-40320; 

a[9][l]-362880; 

for (i-0; i<-7; i++) 
{ 

b[i]-0; 

c[i]-0; 

} 
for (i-0; i<-9: i++) 

a [ i ] [ 0 ] - 0 ; 
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for (j-l; j<-m; j++) 

{b[0]++; c[0]-l; 

f(b[0] —10) (b[0] -0; b[l]++; c[l]-
f(b[l] —10) (b[l] -0: b[2]++; c[2]-

f(b[2] —10) (b[2] -0; b[3]++; c[3]-

f(b[3] —10) {b[3] -0: b[4]++; c[4]-
f(b[4] —10) {b[4] -0: b[5]++: c[5]-

f(b[5] —10) {b[5] -0: b[6]++; c[6]-

f(b[6] —10) (b[6] -0: b[7]++; c[7]-

} } } } } } } 
s-0; 

for (i-0; i<-7; i++) 

s-s+a[b[i]][c[i]]; 

i f(s—j ) printf ("%1 d," .j ); 
} 

} 

The program works for several minutes and yields only the two known multidigit 
factorions. 

Herve Bronnimann from Princeton University has also conducted research in 
the existence of factorions. The following is his C code for searching for such num-
bers. 

/* Loneliness of the Factorions */ 

/* Herve Bronnimann */ 

#include <stdio.h> 

#define Base 10 

main() 
{ 

long Functorial[Base], MaxFunctorial ; 

long MaxDigits, PowBase; 

1ong j, k, 1; 

/* Modify these for other functorions */ 

Functori al[0]-l; 

for (j-l; j<Base; j++) 

Functorial[j]-j*Functorial[j-l]; 

MaxFunctori al-Functori al [Base-1]; 

/* Compute the maximum number of digits */ 

MaxDigits-1; PowBase-Base; 

whi1e(MaxFunctori al*MaxDigits>PowBase) { 

MaxDigits++; 

PowBase-PowBase*Base; 

} 
/* Compute the factorions */ 

printf("MaxDigits - %ld\n",MaxDigits); 

printf("PowBase - %1d\n",PowBase); 

printf("MaxFunct - %1d\n".MaxFunctorial); 

for (j-0; j<PowBase; j++) { 

for (k-j, 1-0: k>0; k/-Base) 

1 +- Functorial[k%Base]; 

if C j—1) 

printf("Found a factorion (written in base 10): %ld\n",j); 

} 
} 
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BASIC Code 

The following allows you to search for narcissistic numbers, as described in the text. 

10 REM Search for Cubical Narcissistic Numbers 

15 REM Search all 3-digit integers 

20 FOR 1-100 TO 999 

30 A—INT(1/100) 

40 B—I NT(I/10)-10*A 

50 C-I-100*A-10*B 

55 IF IOA**3+B**3+C**3 THEN 90 

60 PRINT "Narcissistic Number";I 

70 PRINT "Equals";A**3;"+";B**3;"+";C**3 

80 PRINT 

90 NEXT I 

100 END 

Chapter 23 Escape from Fractalia 

BASIC Code 

This program, ESCAPE.BAS, automatically produces an unlimited number of es-
cape-time fractals similar to those shown in Chapter 23. 

REM Program ESCAPE.BAS by J. C. Sprott 

DIM a(12) 'Array of coefficients 

RANDOMIZE TIMER 'Reseed random numbers 

SCREEN 12 'Assume VGA graphics 

n% - 0 

WHILE INKEYS - "" 'Loop until a key is pressed 

IF n% - 0 THEN CALL setparams(x, y ) 

CALL advancexy(x, y , n%) 

CALL testsoln(x, y . n%) 

IF n% - 1000 THEN CALL display: n% - 0 

WEND 

END 

SUB advancexy (x, y , n%) 'Advance (x, 

SHARED a() 

xnew - a(1) + x * (a(2) + a(3) * x + a(4) * y) + 

* y) 

y - a(7) + x * (a(8) + a(9) * x + a(10) * y) + y 

* y) 

x - xnew 

n% - n% + 1 

END SUB 

SUB display () 'Plot escape-time contours 

FOR i% - 0 TO 639 

FOR j% - 0 TO 479 

x - -5 + i% / 64 

y - 5 - j% / 48 

n% - 0 

WHILE n% < 128 AND x * x + y * y < 1000000 

y) at step n% 

y * (a(5) + a(6) 

* (a(11) + a( 12) 
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CALL advancexy(x, y , n%) 

MEND 

PSET (i%, j%). n% MOD 16 

NEXT j% 

NEXT i% 

END SUB 

SUB setparams (x, y) 'Set a() and Initialize (x,y) 

SHARED a() 

x - 0: y - 0 

FOR i% - 1 TO 12: a(i%) - (INT(25 * RND) - 12) / 10: NEXT i% 

END SUB 

SUB testsoln (x, y , n%) 'Test the solution 

IF n% - 1000 THEN n% - 0 'Solution is bounded 

I F x * x + y * y > 1000000 THEN "Solution escaped 

IF n% > 100 THEN n% - 1000 ELSE n% - 0 

END IF 

END SUB 

Chapter 24 Are Infinite Carotid-Kundalini Functions Fractal? 

C Code 
/* Compute Carotld-Kundalin1 Curves */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

float x,y; 

int n: 

/* Superimpose 25 curves */ 

for (n-1; n<-25; n-n+1) { 

for (x—1; x<-l: x-x+.Ol) { 

y-cos((float)n*x*acos(x)); 

/* Write out x, y points for plotting */ 

pri ntf("%f %f n",x,y); 

} 
} 

} 

BASIC Code 

10 REM Compute Carotid-Kundalini Curves 

20 REM Superimpose 25 curves 

30 FOR N-1 TO 25 

40 FOR X—1 TO 1 STEP 0.01 

50 Y-COS(N*X*AC0S(X)) 

60 REM Write out x. y points for plotting 

70 PRINT X, Y 
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80 NEXT X 

90 NEXT N 

100 END 

BASIC Code for ACOS 

As noted earlier in this chapter, some versions of BASIC do not have an ACOS func-
tion. Included here is a program by William Rudge that computes this function. It 
should work in QBASIC or QuickBASIC. 

' Main program to test the AC0S# function 

' On my computer with QBASIC, it's accurate to six digits. 

DECLARE FUNCTION AC0S# (y AS DOUBLE) 

COMMON HALF.PI#, PI# 

HALF.PI - 2# * ATN(l) 

PI - 4# * ATN(l) 

PRINT 

PRINT 

PRINT "pi/2 - "; HALF.PI, "p1 - "; PI 

INPUT a$ 

i# - 0 

WHILE 1# <- PI 

v# - AC0S#(C0S(1#)) 

actual computed difference 

P R I N T U S I N G - m . m m m . m m +#.mmr-, a-. v#: I# - v# 

i# - i# + .01 

WEND 

END 

' Note that y A 2 is same as y * y. 

FUNCTION AC0S# (y AS DOUBLE) STATIC 

SHARED HALF.PI, PI 

IF ABS(y) < .5 THEN 

v# - HALF.PI - ATN(y / SQR(1 - y A 2)) 

ELSE 

v# - ATN(SQR(1 - y A 2) / y) 

IF y < 0 THEN v# - PI + v# 

END IF 

AC0S# - v# 

END FUNCTION 

Chapter 25 The Crying of Fractal Batrachion 1,489 

C Code 

/* Compute Batrachions */ 

#include <math.h> 

#include <stdio.h> 

main() 
{ 

int curvename, renorm, i, n, a[20000], look[21]; 
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f1 oat x , ratio, s ; 

curvename-1; renorm-0; x-0 

/* Generate lookup table for renormalization */ 

i f(renorm—1) 

for (1-1; i <20; i++) 1ook[i]-pow(2.i); 

/* Initial seeds */ 

a[1]—1; a[2]-l; 

for (n-3; n<2048; n++) { 

/* Conway's batrachion */ 

i f (curvename—1) 

a[n]-a[a[n-l]]+a[n-a[n-l]]; 

/* Hofstadter's */ 

i f (curvename—2) 

a[n]-a[n-a[n-l]]+a[n-a[n-2]]; 

/* Mallows' */ 

if (curvename—3) 

a[n]-a[a[n-2]]+a[n-a[n-2]]; 

/* Compute renormalization scale factor for plot */ 

if(renorm—1) { 

x++; 

for (i-1; i<20; i++) 

i f(n—1ook[i]) {x-0; s-1./pow(2.i);} 

} 
ratio-(float)a[n]/(float)n; 

/* Generate data points for plot */ 

if(renorm—0) pr1ntf("%d %f\n",n,ratio); 

/* Generate data points for renormalization plot */ 

if(renorm—1) printf("%f %f\n",x*s,ratio); 

} /* for */ 

} /* end program */ 

BASIC Code 

10 REM Compute Batrachions 

20 DIM A(3000), L(21) 

30 C-l 

40 R-0 

45 X-0 

50 REM Generate lookup table for renormalization 

60 IF R-0 THEN GOTO 100 

70 FOR 1-1 TO 20 

80 L(I)-2**I 

90 NEXT I 

100 REM Initial seeds 

110 A(1)-l 

120 A(2)-l 

130 FOR N-3 TO 2048 

140 REM Conway's batrachion 

150 IF C-l THEN A(N)-A(A(N-1))+A(N-A(N-1)) 

160 REM Hofstadter's 

170 IF C-2 THEN A(N)-A(N-A(N-1))+A(N-A(N-2)) 

180 REM Mallows' 

190 IF C-3 THEN A(N)-A(A(N-2))+A(N-A(N-2)) 
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200 REM Compute renormalizat1on scale factor for plot 

210 IF R-0 THEN GOTO 300 

220 X-X+l 

230 FOR 1-1 TO 20 

240 IF N-L(I) THEN X-0 

250 S-l/(2**1) 
260 NEXT I 

300 R1-A(N)/N 

310 REM Generate data points for plot 

320 IF R-0 THEN PRINT N, Rl 

330 REM Generate data points for renormalization plot 

340 IF R-l THEN PRINT X*S, Rl 

350 NEXT N 

360 END 

Chapter 27 Recursive Worlds 

C Code 

The C code for this chapter allowed me to compute the structure for the coral-like 
form. To achieve the bumpy effect, I used a separate graphics program to draw 
spheres at coordinates determined by the algorithm implemented in C. 

/* Compute Coral Form */ 

#include <device.h> 

#include <math.h> 

#include <stdio.h> 

#define pi 3.1415927 

int ang_control .seed; 

float depth,z,red,green,blue,radius; 

mai n() 
{ 

int n; 

srand(12345); /* set random number seed */ 

/* Angle controls branch pattern */ 

printf("Enter angle in degrees (0<angle<45) n"); 

scanf("%d", &ang_control); 

p r i n t f C G i v e recursion depth, n n"); 

scanf("%d",&n); depth-(f1oat)n; 

branch(n,0..0..1..0.); 

} 
branch(n,xinit,yinit,a,theta) 

int n; float xinit.yinit.a.theta; 
{ 

float x[5],y[5],xx[5],yy[5].ctheta,stheta,cl,c2,b,c, 

float angle,cangle.sangle; 

int i.fuzziness; /* theta and angle in radians */ 

if(n—0) return; /* ang_control in degrees */ 

/* Use random numbers to control natural growth */ 

fuzzi ness-rand()%(2*ang_control+l)-ang_control; 

angle-(45+fuzzi ness)*pi/180.; 

x[0]-x[3]-xinit; x[l]-x[2]-xinit+a; 
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y[0]-y[l]-yinit; y[2]-y[3]-yinit+a; 

cangle-cos(angle); sangle-sin(angle); 

c-a*angle; b-a*sangle; 

x[4]-x[3]+c*cangle; y[4]-y[3]+c*sangle; 

/* Rotate about xinit, yinit through angle theta */ 

ctheta-cos(theta); stheta-si n(theta); 

cl-xinit-xinit*ctheta+yinit*stheta; 

c2-yinit-xinit*stheta-yinit*ctheta; 

/* Compute color for each ball */ 

red-l-(float)n/depth; blue-(f1 oat)n/depth; green-1; 

z-0; 

for (1-0; 1<5; i++) { 

xx[i]-x[i]*ctheta-y[i]*stheta+cl; 

yy[i]-x[i]*stheta+y[i]*ctheta+c2; 

} /* endfor */ 

for (1-0; i<5; i++) { 

/* Compute radius for each ball */ 

radi us-fabs((xx[3]-xx[2]))/1.2; 

/* For each ball, dump radius and color */ 

printf("%f %f %f %f %f %f %f\n", 

xx[i],yy[i],z,radius,red.green.blue); 

} 
/* Now you must find a graphics program that will 

use this data to draw spheres or circles. */ 

/* Recursive calls */ 

branch(n-l,xx[3],yy[3],c,theta+angle); 

branch(n-l,xx[4],yy[4],b,theta+angle-0.5*pi); 

Chapter 29 Cyclotron Puzzles 

C Code 

This short piece of code generates the puzzle. 

/* Generate Cyclotron Puzzle */ 

#include <math.h> 

#include <stdio.h> 

int x[100][100], i. j. k; 

mai n() 
{ 

srand(123456789); /* random number gen seed */ 

/* generate array of numbers */ 

k-0; 

for (i-0; i<15; i++) { 

for (j-0; j<20; j++) { 

k++; 

/* generate random numbers (0 - 100) */ 

x[i][j]-((float)rand()/32767.)*100.; 

/* create hole in middle */ 
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i f((j>2) && (j<17) && (i>2) && (i<12)) printf(" "); 

else pri ntf("%2d ",x[i][j]); 

if (((k)%20)—0) pri ntf (" n"); 

} /* for */ 

} /* for */ 

} 



A P P E N D I X 

For Further Exploration 

2 

Included in this appendix are listings of longer computer programs for various topics 
discussed in this book. 

Recursive C Program to Explore Worm World 

* * WORM WORLD EXPLORER PROGRAM 

** by Stephen Tavener 
* * 

** usage: worm inflle outfile x y 
** 

** infile is a list of HEIGHT rows of WIDTH numbers (default: stdin) 

** outfile is the results file (default: stdio) 

** x.y are the start coordinates if you don't want to check 

** every position 
* / 

#include <std1o.h> 

#include <string.h> 

#define WIDTH 8 

#defi ne HEIGHT 8 

#def1ne MAX_VALS 25 

long SeqLen - 0; 

char StoredPath[MAX_VALS]; 

char Path[MAX_VALS]; 

FILE *InFi 1 e; 

FILE *0utFi 1 e; 

int SquareValues[HEIGHT][WIDTH]; 

char ValuesGone[MAX_VALS] - {0,0,0.0.0. 

0,0,0,0,0, 

0,0,0,0,0, 

0,0.0.0,0. 

0.0.0.0.0}; 

void Recurse (long Depth, long X, long Y) 
{ 

/* Can we go here ? */ 

if (ValuesGone[SquareValues[Y][X]]) return; 

/* Set up... */ 

ValuesGone[SquareValues[Y][X]] - 1; 

Depth++; 

278 
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if (Depth > SeqLen) 
{ 

SeqLen - Depth; 

memcpy (StoredPath, Path, sizeof (Path)); 

} 
/* Recurse... */ 

if (X-l >- 0) { Path[Depth-l] - 'L'; Recurse (Depth, X-l, Y); } 

if (X+l < WIDTH) { Path[Depth-l] - 'R'; Recurse (Depth, X+l, Y); } 

1f (Y-l >- 0) { Path[Depth-l] - 'U'; Recurse (Depth. X, Y-l); } 

if (Y+l < HEIGHT) { Path[Depth-l] - 'D'; Recurse (Depth, X, Y+l); } 

/* Clean up... */ 

ValuesGone[SquareValues[Y][X]] - 0; 

} 
/* Continued */ 

/* ...CONTINUED */ int main (int argc, char *argv[]) 
{ 

long StartX - -1; 

long StartY - -1; 

long HtLoop, WdLoop; 

char Li neBuf[255]; 

InFi 1 e - stdin; 

OutFile - stdout; 

if (argc > 4) sscanf (argv[4], "%d", &StartY); 

if (argc > 3) sscanf (argv[3], "%d". &StartX); 

if (argc > 2) OutFile - fopen (argv[2], "w"); 

if (argc > 1) InFile - fopen (argv[l], "r"); 

for (HtLoop - 0; HtLoop < HEIGHT; HtLoop++) 

for (WdLoop - 0; WdLoop < WIDTH; WdLoop++) 

fscanf (InFile. "%d". &SquareValues[HtLoop][WdLoop]); 

1f (StartY < 0 || StartX < 0) 
{ 

for (StartY - 0; StartY < HEIGHT; StartY++) 
{ 

for (StartX - 0; StartX < WIDTH; StartX++) 
{ 

SeqLen - 0; 

Recurse (0, StartX. StartY); 

fprintf (OutFile. 

"Longest Sequence from (%0d, %0d) is %*.*s 

(length: %0d) n", 

StartX. StartY. SeqLen-1, SeqLen-1, StoredPath. 

SeqLen); 

} 
} 

} 
el se 
{ 

Recurse (0. StartX, StartY); 

fprintf (OutFile, 

"Longest Sequence from (%0d, %0d) is %*.*s (length: 

%0d) n", 

StartX, StartY, SeqLen-1, SeqLen-1, StoredPath, 

SeqLen); 
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} 

return 0; 

} 

Gofer Program to Search for Vampire Numbers 
Tony Davie of St. Andrews University's Department of Mathematical and Computa-
tional Sciences used Gofer to conduct research on the vampire numbers. He men-
tioned to me that Gofer is a functional programming language, not to be confused 
with Gopher, an international network hyperprogramming navigation system. Gofer 
is veiy powerful because of its so-called "laziness," which is the feature that allows 
the use of infinite objects.1 

Let us look at Tony's Gofer program for finding vampires: 

vamps - [(x.y.z) | x <- [l..[, sx-show x , y <- [l..x[, 

z - x * y , sort(show z )— sort(sx++show y)[ 

You can interpret this program as follows: "vamps" is the (infinite) list of triples (x, 
y, z) such that x is drawn from ("<-") the infinite list of positive integers "[l..[." The 
term sx is the string (list) of characters representing x in decimal "show x." The term 
y is drawn from ("<-") the list of integers from 1 up to x. The term z is the product of 
x and y. Finally, there is a condition that filters all these possibilities, retaining only 
the ones where the sorted digits of z, the product (sort(show z)), are the same as (= =) 
the sorted digits of x appended to (++) those of y (sort(sx++show y)). The "= =" is 
used for testing equality whereas the "=" is used for definitional equality. 

Tony says readers may think of this in much the same way as a group of "for" 
loops in a more conventional computer language, though the idea of infinite lists 
probably has no parallel : 

for x-1 to infinity do 

begin 

let sx-show(x); 

for y-1 to x do 

begin 

let z-x*y 

if sort(show(z))—sort(sx++show(y)) then 

(x,y,z) is a candidate 

end 

end 

Tony gives another example for Pythagorean triples: 

pyth - [(x,y,z) | x <- [l..[. y <- [l..x[, z <- [l..y[. x*x 

— y*y + z*z[ 

which is a good specification as well as a working program, but a more efficient one 
would be: 

pyth' - [(m*m+n*n, 2*m*n, m*m-n*n) | m <- [2..[, n <- [1..m-1[ [ 
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and readers might like to add a filtering condition so there is no common factor in 
the triple. 

Here is another example from Tony showing off the "laziness" feature of Gofer 
that allows the use of infinite objects. This computes an infinite list of powers of 2: 

powers 1 

where powers n - n : powers (2*n) 

This can be "expanded" as follows: 

powers 1 - 1 : powers 2 

- 1 : 2 : powers 4 

- 1 : 2 : 4 : powers 8 

The ":" operator joins a single new element onto a list of elements of the same type. 
It is right-associative. Tony notes that there is a very good introduction to laziness 
and its uses in J. Hughes, "Why Functional Programming Matters," Computer Jour-
nal, 32(2) (1989). 

As additional research in vampire numbers, Tony left (a slightly modified) ver-
sion of his Gofer program running for a long time on his computer: 

vamps - [(x.y.z) | x <- [l..[, sx-show x, y <- [l..x[, 

z - x*y, sort(show z)— sort(sx++show y)[ 

lineout (x:xs) - show3 x ++ ' n':lineout xs 

show3 (x.y.z) - show x ++ '*':show y ++ '-': show z 

Using this program, the largest true vampire he found was: 

986 x 953 = 939,658 

The largest pseudovampire he found was: 

2,573 x 986 = 2,536,978 

REXX Program to Search for Vampire Numbers 
Steve Frye from North Carolina used the following REXX program on a VM system 
to search for vampire numbers. 

/* Searching for Vampire Numbers */ 

outfi1e-"vampire numbers al" /* output file name */ 

Progresslnterval-10 /* How often to print a 

progress indicator */ 

say "Search for Vampires!" 

say "Starting at: " 

pull starting 
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say "Ending at: " 
pull ending 

if starting-'' then starting-1000 

if ending-'' then endlng-9999 

1f endingClOOO then 

do 

say "There are no vampires under 1000" 

goto EndOfProgram 

end 

M1nVamplreD1g1ts-length(starting) 

if MinVarnplreDig1ts//2 - 1 then MinVarnplreDigits-MinVampireDig1ts+1 

MaxVampi reDi gits-1ength(ending) 

if MaxVampireDig1ts//2-l then MaxVampiredigits-MaxVampireDigits-1 

line-"Searching for vampires greater than " 

1ine-1ine||starting||" and less than "|lending 

'execio 1 diskw ' outfile '( VAR LINE )' 

Vampi reCount-0 

numeric digits MaxVampireDig1ts+2 

do VampireDigits-MinVampireDigits to MaxVampiredigits by 2 

TargetRangeMin-10**(Vampi reDigi ts-1) 

if TargetRangeMin < starting then TargetRangeMin-starting 

TargetRangeMax-10*TargetRangeMin - 1 

if TargetRangeMax > ending then TargetRangeMax-ending 

BiggestFactor-(10**(Vampi reDigits/2))-1 

Initi alFi rstFactor-TargetRangeMin%BiggestFactor 

line-" " 

'execio 1 diskw ' outfile '( VAR LINE )' 

line-"Looking in the range" TargetRangeMin "to" TargetRangeMax 

'execio 1 diskw ' outfile '( VAR LINE )' 

line-" " 

'execio 1 diskw ' outfile '( VAR LINE )' 

say "Looking in the range" TargetRangeMin "to" TargetRangeMax 

say "First Factor will range from" InitialFirstFactor "to" Biggest-

Factor 

do i-InitialFirstFactor to BiggestFactor 

if i//Progresslnterval-O then say i 

do j-i to BlggestFactor 

product-i *j 

if product < TargetRangeMin then iterate 

1f product > TargetRangeMax then leave 

call VampireCheck 

if vampire-"no" then iterate 

call DuplicateCheck 

line-i ||" x "||j||" - "||product 

if duplicate-"yes" then line-line||" duplicate" 

'execio 1 diskw ' outfile '( VAR LINE )' 

1ine-insert(" "," ",1.VampireDigits/2+2," ")||line 

say line 

end 
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end 

end 

say " " 

say "There were" VampireCount "distinct vampire numbers found." 

EndOfProgram: 

finis outfile 

exi t 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j 

Vampi reCheck: 

testnum-product 

vampire-"yes" 

do FactorDigit-1 to length(i) 

ptr-pos(substr(i,FactorDigit,1), testnum) 

if ptr-0 then 

do 

vampi re-'no' 

1 eave 

end 

el se 

do 

testnum-overlay(" ",testnum.ptr) 

end 

ptr-pos(sjJbstr( j , FactorDig11,1) .testnum) 

if ptr-0 then 

do 

vampi re-'no' 

1 eave 

end 

el se 

do 

testnum-overlay(" ",testnum.ptr) 

end 

end 

return 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j 

Dupli cateCheck: 

dupli cate-"no" 

if vampires.product-1 then 

do 

dupl1cate-"yes" 

end 

el se 

do 

VampireCount-Vampi reCount+1 

vampires.product-1 

end 

return 
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REXX Program to Search for Vampire Numbers (OS/2) 
Steve Frye from North Carolina also used the following REXX program on an OS/2 
system to search for vampire numbers. 

/* Searching for Vampire Numbers */ 

outfile-"d: vampire.num" /* output file name */ 

Progresslnterval-10 /* How often to print a 

progress indicator */ 

say "Search for Vampires!" 

say "Starting at: " 

pull starting 

say "Ending at: " 

pull ending 

if s t a r t i n g - " then starting-1000 

if ending-'* then ending-9999 

if ending<1000 then 

do 

say "There are no vampires under 1000" 

goto EndOfProgram 

end 

MinVampi reDigits-1ength(starting) 

if MinVampireDig1ts//2 - 1 then MinVampireDigits-MinVampireDigits+1 

MaxVampireDigits-length(ending) 

if MaxVamp1reDig1ts//2-l then MaxVampiredigits-MaxVamp1reDigits-1 

call lineout outfi1e,"Searching for vampires greater than" starting 

"and less than" ending 

Vampi reCount-0 

numeric digits MaxVampireDigits+2 

do VampireDigits-MinVampireDigits to MaxVampiredigits by 2 

TargetRangeMin-10**(Vampi reDigits-1) 

if TargetRangeMin < starting then TargetRangeMin-starting 

TargetRangeMax-10*TargetRangeMin - 1 

if TargetRangeMax > ending then TargetRangeMax-ending 

BiggestFactor-(10**(Vampi reDIgits/2))-1 

Initial FtrstFactor-TargetRangeMin%BiggestFactor 

call lineout outfile," " 

call lineout outfile,"Looking in the range" TargetRangeMin "to" 

TargetRangeMax 

call lineout outfile," " 

say "Looking in the range" TargetRangeMin "to" TargetRangeMax 

say "First Factor will range from" Initial FirstFactor "to" 

Bi ggestFactor 

do i-InitialFirstFactor to BiggestFactor 

if 1//Progresslnterval-O then say i 

do j-i to BiggestFactor 

product-i*j 

if product < TargetRangeMin then iterate 

if product > TargetRangeMax then leave 
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call VampireCheck 

if vampire-"no" then iterate 

call DuplicateCheck 

line-i||" x "||j||" - "||product 

if duplicate-"yes" then line-line||" duplicate" 

call lineout outfile,line 

1ine-insert(" "," ",1,VampireDigits/2+2," ")||line 

say line 

end 

end 

end 

say " " 

say "There were" VampireCount "distinct vampire numbers found." 

EndOfProgram: 

exit 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j 

Vampi reCheck: 

testnum-product 

vampi re-"yes" 

do FactorDigit-1 to length(i) 

ptr-pos(substr(i,FactorDigit,l).testnum) 

1f ptr-0 then 

do 

vampire-'no' 

1 eave 

end 

el se 

do 

testnum-overlay(" ".testnum,ptr) 

end 

ptr-pos(substr(j,FactorDiglt.l).testnum) 

1f ptr-0 then 

do 

vampire-'no' 

1 eave 

end 

el se 

do 

testnum-overlay(" ".testnum,ptr) 

end 

end 

return 

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j 

Dupli cateCheck: 

dupli cate-"no" 

if vampires.product-1 then 

do 

duplicate-"yes" 

1 eave 

end 

el se 

do 

Vampi reCount-Vampi reCount+1 
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vampi res.product-1 

end 

return 

Another REXX Program to Search for Vampire Numbers 
Glenn S. Knickerbocker from New York used the following REXX program running 
on IBM VM to search for vampire numbers. 

/* Glenn S. Knickerbocker, GSKNICK at FSHVMFK1, 2 May 1994 */ 

/* Find Cliff's "vampire" numbers */ 

Arg start max m1n '(' exact 

If min - " then min - start 

start - start - start//9 

max - max + max//9 

min - min - min//9 

exact - Abbrev('EXACT', exact, 1) 

Do i - start to max by 9 

Do j - min to 1 by 9 

Call vampi re i j 
Call vampi re i+2, j+2 

Call vampi re 1+3, j+6 
Call vampi re 1+5, j+8 
Call vampi re 1+6, j+3 
Call vampire 1+8, j+5 

End 

End 

Exit 

Vampire: Procedure Expose exact 

Parse Arg x, y 

If exact then If length(x) -7- length(y) then Return 

c - x | | y 

p - x * y 

If length(c) -.- length(p) then Return 

f. - 0 

Do i - 1 to length(c) 

d - substr(c,i,1) 

f.d - f.d + 1 

End 

Do i - 1 to length(p) 

d - substr(p,i,1) 

If f.d 0 then Return 

f.d - f.d - 1 

End 

Do i - 0 to 9 

If f.i 0 then Return 

End 

'output' x y p 

Return 
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C Program to Search for Vampire Numbers 
James Allen from Mountain View, California, searched for vampires using a C pro-
gram. 

/ * 
* It's hard to do arithmetic bigger than "long" with C; 

* let's just look for the largest vampire that fits in a long, 

* by printing successively better candidates. 

*/ 

typedef unsigned long u_long; 

main() 
{ 

u_long a, b; 

u_long bound- Oxffffffff; 

u_long best - 4200000000; 

for (a - Oxffff; a > 0; a-) 

for (b - bound / a; b >- a && b >- best / a; b-) 

if (1svamp1re(a , b)) 

printf("%51u %51u %71u n", 

a, b, best - a * b); 

exit(0); 

} 

fsvampfre(a, b) 

u_long a, b; 

{ 
u_long t; 

char table[ll]; 

strcpy(table, " "); 

for (t - a; t; t /- 10) 

++table[t % 10]; 

for (t - b; t; t /- 10) 

++table[t % 10]; 

for (t-a*b; t; t /- 10) 

-table[t % 10]; 

return !strcmp(table, " "); 

BASIC Program to Search for Vampires 
' vampire- vampire number search... 

PRINT "Begin; vampire..." 

size - 3 ' 2 three-digit numbers 

yup - 1 

nope - -1 

OPEN "a:six" FOR OUTPUT ACCESS WRITE AS #1 

' The -i symbol means exponentiation 

FOR i - 10 (size - 1) TO (10 size - 1) ' first number 
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FOR j - 1 TO 10 size - 1' second number 

mult - 1 * j 

ich - i 

jch - j 

FOR k - 1 TO size * 2 ' set up search array... 

search(k) - mult MOD 10 

mult - (mult - (mult MOD 10)) / 10 

NEXT 

FOR k - size * 2 TO 1 STEP -1' fix leading zeros... 

IF search(k) - 0 THEN search(k) - 99 ELSE k - -99 

NEXT 

FOR m - 1 TO size * search array for first digits... 

check - ich MOD 10 

ich - (ich - (ich MOD 10)) / 10 

FOR k - 1 TO size * 2 ' find only first number match... 

IF check - search(k) THEN 

search(k) - -1 

k - 100 

END IF 

NEXT 

NEXT 

FOR m - 1 TO size ' search array for second digits... 

check - jch MOD 10 

jch - (jch - (jch MOD 10)) / 10 

FOR k - 1 TO size * 2 ' 

IF check - search(k) THEN 

search(k) - -1 

k - 100 

END IF 

NEXT 

NEXT 

match - yup 

FOR m - 1 TO size * 2 

IF search(m) >- 0 THEN 

match - nope 

m - 100 

END IF 

NEXT 

IF match - yup THEN 

count - count + 1 

PRINT count; i; j; 1 * j; 

PRINT #1. count; i; j; i * j 

END IF 

NEXT 

NEXT 

CLOSE 

C Program to Search for Vampire Numbers 
/* version 1.0 

* code generates numbers like 80*86-6880 called vampire numbers. 

* / 
/* Bugs: Truncation error in vamp_s1ze(argument entered) calculations 

* where the argument is odd, gives a few extra vampires. It will 
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* calculate the six-digit vamps before moving on to seven, etc. 

This is 

* an unfortunate behavior that I don't wish to fix at this time. 
* 

* This code ignores vampires whose components do not equal 1n size. 

* For example, 3 * 510 - 1503 is not considered a vampire by this 

* method. I am not sure whether these are true vampires or not, but 

* I don't wish to find them here. 

*/ 

/* Written by John A . Cairns for C. Pickover */ 

/* Feature test switches */ 

#define _P0SIX_S0URCE 1 /* It's POSIX, but it should compile 

* on most ANSI C compilers also. 

*/ 

/* System headers */ 

#include <stdio.h> 

#include <stdlib.h> 

#include <errno.h> 

#include <string.h> 

#1nclude <math.h> 

#include <1 imlts.h> 

/* Structures and unions */ 

typedef struct /* struct containing the pertinent data */ 
{ 

/* huge struct, with numbers of digits contained in 

* the number we are exploring. 

*/ 

unsigned int zero; 

unsigned int one; 

unsigned int two; 

unsigned int three; /* number of times this number occurs */ 

unsigned 1nt four; 

unsigned int five; 

unsigned 1nt six; 

unsigned int seven; 

unsigned int eight; 

unsigned int nine; 

char * intstring; /* a string containing 'value' */ 

unsigned int value; /* the number with info above */ 

} decimal; 

/* Functions */ 

/* declaration */ 

char * itos(unsigned int n); 

/* take n and store it in a string */ 

void countdigit(decimal * number); 
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/* count the digits */ 

decimal * mult_count(decimal * x , decimal * y); 

/* multiply x and y and return the 

* value. Also counts digits. 

*/ 

char * 1tos(unsigned int n) 
{ 

/* return a pointer to a string */ 

static char * sint; /* string int */ 

unsigned int size; /* compute the size here */ 

size - (unsigned 1nt)logl0(n) + 2; /* the size of the string 

+ NULL */ 

sint - (char *)mal1oc(sizeof(char) * size); 

if (sprintf(sint, "%-u", n) !- (size - 1)) 
{ 

p e r r o r C U n a b l e to fit number in string "); 

/* can't do anytlng 1f this doesn't work */ 

abort(); 

} 

return sint; 

} 

void countdig1t(dec1mal * number) 
{ 

/* count the number of each digit and place appropriately */ 

1nt 1; 

number->intstr1ng - 1tos(number->value); 

number->n1ne - number->eight - number->seven - number->six -

number->f1ve - number->four - number->three - number->two 

number->one - number->zero - 0; 

/* all equal zero at start! */ 

for (i-0; Kstrlen(number->intstring); i++) 

{ 
switch (number->intstrlng[i]) 

{ 
case '0' 

case '1' 

case '2' 

case '3' 

case '4' 

case '5' 

case '6' 

case '7' 

case '8' 

case '9' 

number-

number-

number-

number-

number-

number-

number-

number-

number-

number-

>zero++; 

>one++; 

>two++; 

>three++; 

>four++; 

>five++; 

>six++; 

>seven++; 

>eight++; 

>nine++; 
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/* free memory used by the string */ 

(void)free(number->intstring); 

return; 

} 

decimal * mult_count(decimal * x , decimal * y) 
{ 

/* multiply the numbers and compute their digits */ 

static decimal ans; 

ans.value - x->value * y->value; 

countdlglt(x); 

countdiglt(y); 

countdigit(&ans) ; 

return &ans; /* return a pointer to the answer */ 

} 

/* Main */ 

int m a i n d n t argc, char *argv[]) 

/* expects a vampire size 

* compute the product and test for a vampire number. 

*/ 

unsigned 1nt vamp_s1ze, top, bottom, 1, j; /* place holders */ 

decimal * product; /* result of mult_count */ 

decimal multipiicandl, multipiicand2; /* the values of interest 

if (argc — 2) 
{ 

(vold)sscanf(argv[l], "%u", &vamp_size); 

if (vamp_size — 1 || vamp_s1ze — 0) vamp_size - 2; 

/* allow these values, but 

* do not allow vamp_size 

* to equal one or zero. 

* 0, 1, and 2 don't yield 

* vampires anyway. 

* / 
if (vamp_size > (unsigned int)loglO(UINT_MAX)) 

{ 
fprintf(stderr, " nllsage: %s <size of vampires> n" 

"Size must be less than %u and more than 0. n n", 

argv[0], (unsigned int)loglO(UINT_MAX) + 1); 

exit(0); 
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} ; } 
el se 

{ 

fprintf(stderr, " nllsage: %s <size of vampfres> n n" 

argv[0]); 

exit(O); 

} ; 

top - (unsigned int)pow(10.0, (double)vamp_size/2.0); 

/* maximum to multiply by 

* where the result is 

* the desired number of 

* digits. 

*/ 

b o t t o m - (unsigned int)(pow(10.0, (double)vamp_size/2.0)/10.0); 

/* minimum to multiply by 

* where the result is 

* the desired number of 

* digits. 

*/ 

/* two nested for loops to find all the numbers */ 

for (i-bottom; i<—top; i++) 
{ 

for (j-i; jC-top; j++) 

{ 
/* go to town */ 

multipiicandl.value - i; 

mul tipi icand2.value - j; 

product - mult_count(&multiplicandl, &multiplicand2); 

/* the test for a vampire is serious, but here it is. */ 

if ( 

(product->zero — multiplicandl.zero + multiplicand2.zero) && 

(product->one — multipiicandl.one + multipiicand2.one) && 

(product->two — multiplicandl.two + multiplicand2.two) && 

(product->three — multipiicandl.three + multipi 1cand2. 

three) && 

(product->four — multipiicandl.four + multiplicand2.four) && 

(product->five — multiplicandl.five + multipiicand2.five) && 

(product->six — multipi 1candl.six + multipiicand2.six) && 

(product->seven — multipl1candl.seven + multipiicand2. 

seven) && 

(product->eight — multipiicandl.eight + multiplicand2. 

eight) && 

(product->nine — multipiicandl.nine + multipiicand2.nine)) 

{ 
(void)printf("%-4u x %4u - %8u\n", multipiicandl.value, 

multi pii cand2.value, product->value); 
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} 
} } 

exit(O); 

} 

QuickBASIC Program to Search for Vampire Numbers 
Steve Frye from North Carolina used the following BAISC program (BASICA or 
QuickBASIC) to search for vampire numbers. 

1 '/* Searching for Vampire numbers */ 

5 outfile$ - "d: vampire.num" 'Output file name 

10 MaxNbrOfVampires% - 1000 'Size of array to hold vampires 

15 ProgressInterval% - 10 'How often to print a progress 

1ndi cator 

500 DEFDBL A-Z 

520 DIM vampi res(MaxNbrOfVampi res%) 

570 VampireCount - 0 

1000 CLS 

1001 PRINT "Search for Vampires!" 

1002 INPUT ; "Starting at: ", starting 

1003 PRINT " " 

1005 IF starting - 0 THEN starting - 1000 

1010 INPUT ; "Ending at: ", ending 

1011 PRINT " " 

1015 IF ending - 0 THEN ending - starting * 100 - 1 

1020 IF ending >- 1000 THEN GOTO 1025 

1022 PRINT "There are no vampires under 1000" 

1023 GOTO 1399 

1025 MinVampi redi gits% - LEN(STR$(starting)) - 1 

1030 IF MinVampi redigi ts% MOD 2 - 1 THEN MinVampiredig1ts% -

MinVampiredigits% + 1 

1033 MaxVampi reDig1ts% - LEN(STR$(ending)) - 1 

1035 IF MaxVampireDig1ts% MOD 2 - 1 THEN MaxVamp1reDig1ts% -

MaxVampireDigits% - 1 

1040 OPEN outfile$ FOR OUTPUT AS #1 

1045 PRINT #1, "Searching for vampires greater than "; starting; 

" and less than or equal to "; ending 

1050 FOR VampireDigits% - MinVampiredigits% TO MaxVampireDigits% 

STEP 2 

1052 'Next line uses exponentiation 

1055 TargetRangeMin - 10 A (VampireDigits% - 1) 

1060 IF TargetRangeMin < starting THEN TargetRangeMin - starting 

1065 TargetRangeMax - 10 * TargetRangeMin - 1 

1070 IF TargetRangeMax > ending THEN TargetRangeMax - ending 

1073 'Next line uses exponentiation 

1075 BiggestFactor - (10 A (VampireDigits% / 2)) - 1 

1080 InitialFirstFactor - int(TargetRangeMin / BiggestFactor) 

1085 FinalFirstFactor - BiggestFactor 

1100 PRINT #1, "Looking in the range "; TargetRangeMin; " to "; 

TargetRangeMax 
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1105 

1110 

1115 

1117 

1120 
1125 

1130 

1135 

1140 

1145 

1147 

1155 

1160 

1165 

1170 

1175 

1177 

1180 
1185 

1190 

1195 

1200 
1300 

1305 

1395 

1399 

5000 

5001 

5002 

5004 

5005 

5006 

5007 

5008 

5010 

5015 

5020 

5025 

5030 

5035 

5040 

5060 

5070 

5100 

5999 

6000 

6001 
6002 

KEYS TO INFINITY 

PRINT "Looking in the range "; TargetRangeMin; " to "; 

TargetRangeMax 

PRINT "First factor will range from "; InitialFirstFactor; 

" to "; Final FtrstFactor 

FOR II - InltialFirstFactor TO FinalFirstFactor 

IF i! MOD ProgressInterval% - 0 THEN PRINT 1! 

FOR j! - i! TO BiggestFactor 

product - 1! * j! 

IF product < TargetRangeMin THEN GOTO 1190 

IF product > TargetRangeMax THEN GOTO 1195 

GOSUB 5000 'see if product is a vampire 

IF vampire$ - "no" THEN GOTO 1190 

GOSUB 6000 'see if the vampire is a duplicate, ie, 

more than one factorization 

PRINT #1, II; " x "; j!; " - "; product; 

PRINT SPACE$(VampireDigits% / 2 + 2); iI; " x "; j I ; 

" - "; product; 

IF duplicates - "yes" THEN GOTO 1180 

PRINT #1, " " 

PRINT " " 

GOTO 1190 

PRINT #1, " duplicate" 

PRINT " duplicate" 

NEXT j! 

NEXT i! 

NEXT VampireDigits% 

PRINT " " 

PRINT "There were "; VampireCount; " distinct vampire numbers 

found." 

CLOSE #1 

END 

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'* test for vampireness * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

teststringS - RIGHT$(STR$(product), VampireDigits%) 

FactorLength% - VampireDigits% / 2 

firsts - RIGHT$(STR$(i!), FactorLength%) 

second! - RIGHT$(STR$(j!), FactorLength%) 

vampireS - "yes" 

FOR i i% - 1 TO FactorLength% 

ptr% - INSTR(1, teststringS, MIDS(firstS, 11%, 1)) 

IF ptr% - 0 THEN GOTO 5100 

MIDS(teststringS, ptr%, 1) - " " 

ptr% - INSTR(1, teststringS. MIDS(secondS, 11%, 1)) 

IF ptr% - 0 THEN GOTO 5100 

MIDS(teststringS, ptr%, 1) - " " 

NEXT ii% 

GOTO 5999 

vampireS - "no" 

RETURN 

• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

'* test for duplicate vampires * 
> * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
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6003 duplicate! - "no" 

6005 FOR ii! - 1 TO VampireCount 

6010 IF vampi res(i i!) - product THEN GOTO 6700 

6200 NEXT ii! 

6210 VampireCount - VampireCount + 1 

6220 vampires(VampireCount) - product 

6300 GOTO 6999 

6700 duplicates - "yes" 

6999 RETURN 

All Six-Digit Vampires 
The following is a list of all six-digit vampire numbers. 

201 X 510 = 102,510 260 X 401 = 104,260 210 X 501 = 105,210 
204 X 516 = 105,264 150 X 705 = 105,750 135 X 801 = 108,135 
158 X 701 = 110,758 152 X 761 = 115,672 161 X 725 = 116,725 
167 X 701 = 117,067 141 X 840 = 118,440 201 X 600 = 120,600 
231 X 534 = 123,354 281 X 443 = 124,483 152 X 824 = 125,248 
231 X 543 = 125,433 204 X 615 = 125,460 246 X 510 = 125,460 
251 X 500 = 125,500 210 X 600 = 126,000 201 X 627 = 126,027 
261 X 486 = 126,846 140 X 926 = 129,640 179 X 725 = 129,775 
311 X 422 = 131,242 323 X 410 = 132,430 315 X 423 = 133,245 
317 X 425 = 134,725 231 X 588 = 135,828 351 X 387 = 135,837 
215 X 635 = 136,525 146 X 938 = 136,948 150 X 930 = 139,500 
350 X 401 = 140,350 350 X 410 = 143,500 351 X 414 = 145,314 
317 X 461 = 146,137 156 X 942 = 146,952 300 X 501 = 150,300 
251 X 608 = 152,608 261 X 585 = 152,685 300 X 510 = 153,000 
356 X 431 = 153,436 240 X 651 = 156,240 269 X 581 = 156,289 
165 X 951 = 156,915 176 X 926 = 162,976 396 X 414 = 163,944 
221 X 782 = 172,822 231 X 750 = 173,250 371 X 470 = 174,370 
231 X 759 = 175,329 225 X 801 = 180,225 201 X 897 = 180,297 
225 X 810 = 182,250 281 X 650 = 182,650 210 X 870 = 182,700 
216 X 864 = 186,624 210 X 906 = 190,260 210 X 915 = 192,150 
327 X 591 = 193,257 395 X 491 = 193,945 275 X 719 = 197,725 
252 X 801 = 201,852 255 X 807 = 205,785 216 X 981 = 211,896 
341 X 626 = 213,466 251 X 860 = 215,860 323 X 671 = 216,733 
321 X 678 = 217,638 248 X 881 = 218,488 270 X 810 = 218,700 
269 X 842 = 226,498 276 X 822 = 226,872 248 X 926 = 229,648 
338 X 692 = 233,896 461 X 524 = 241,564 422 X 581 = 245,182 
296 X 851 = 251,896 350 X 725 = 253,750 470 X 542 = 254,740 
323 X 806 = 260,338 284 X 926 = 262,984 437 X 602 = 263,074 
489 X 582 = 284,598 420 X 678 = 284,760 468 X 612 = 286,416 
320 X 926 = 296,320 431 X 707 = 304,717 431 X 725 = 312,475 
321 X 975 = 312,975 534 X 591 = 315,594 351 X 900 = 315,900 
351 X 909 = 319,059 336 X 951 = 319,536 524 X 623 = 326,452 
342 X 963 = 329,346 356 X 926 = 329,656 530 X 635 = 336,550 
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360 X 936 = 336,960 
366 X 948 = 346,968 
533 X 686 = 365,638 
383 X 971 = 371,893 
435 X 870 = 378,450 
593 X 662 = 392,566 
641 X 650 = 416,650 
464 X 926 = 429,664 
650 X 704 = 457,600 
624 X 780 = 486,720 
590 X 845 = 498,550 
563 X 953 = 536,539 
657 X 864 = 567,648 
650 X 983 = 638,950 
800 X 860 = 688,000 
843 X 876 = 738,468 
825 X 957 = 789,525 
891 X 909 = 809,919 
896 X 926 = 829,696 

392 X 863 = 338,296 
369 X 981 = 361,989 
585 X 630 = 368,550 
473 X 800 = 378,400 
432 X 891 = 384,912 
446 X 908 = 404,968 
468 X 891 = 416,988 
476 X 941 = 447,916 
546 X 840 = 458,640 
549 X 891 = 489,159 
681 X 759 = 516,879 
630 X 855 = 538,650 
650 X 875 = 568,750 
720 X 936 = 673,920 
788 X 926 = 729,688 
776 X 992 = 769,792 
855 X 927 = 792,585 
894 X 906 = 809,964 
891 X 945 = 841,995 

533 X 641 = 341,653 
392 X 926 = 362,992 
381 X 969 = 369,189 
431 X 878 = 378,418 
465 X 831 = 386,415 
491 X 845 = 414,895 
482 X 890 = 428,980 
540 X 846 = 456,840 
570 X 834 = 475,380 
545 X 899 = 489,955 
572 X 926 = 529,672 
588 X 951 = 559,188 
680 X 926 = 629,680 
750 X 906 = 679,500 
765 X 963 = 736,695 
875 X 902 = 789,250 
807 X 984 = 794,088 
858 X 951 = 815,958 
953 X 986 = 939,658 

C Program to Solve Ontario Puzzle 
Tomas Oliveira e Silva from Portugal wrote the following C code to solve the On-
tario puzzle. 

/ * 
** Let the digits, not necessarily all different, of the first row be 

** Row 1: p[0],p[l] p[N-1 ]. Let Row 2: q[0] q[N-l] be one 

solution 

** of the problem stated above. Then one solution of the problem 

** Row 1: P[p[0] p[N-l]], where P[] represents a permutation of 

its 

** arguments, is Row 2: P[q[0] q[N-l]]. Therefore, to generate all 

** interesting cases without duplications one has to consider only 

the cases 

** where p[0] <- p[l] <- ... <- p[N-l]. It turns out that there are 

only 

** 92378 such cases for N-10 (compare with 10 A10 in a more naive 

approach to 

** this problem). An exhaustive search is therefore possible. ** 

** To solve the contest we generate all solutions for all 92378 

cases, sort 

** the solutions in increasing order (i.e., such that q[0] <- ... 

<- q[N-l]), 

** and construct a directed graph connecting two nodes only if the 

second is 

** a solution for the row represented by the first. This requires 

about 4 
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** hours on a DEC Alpha 3000 400 and about 7M bytes of memory. 

Finally, we 

** examine the graph looking for large "paths" and, why not, large 

1 oops. 

* / 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#1fndef N 

# define N 10 

#endi f 

#i f N — 10 

# define nNodes 92378 

#el se 

# define nNodes 10000 

#endi f 

#define maxSol 100 

#define maxPath 100 

typedef struct node 
{ 

char p[N]; /* Pattern */ 

int nSol ; /* Number of solutions */ 

struct node **sol; /* List of solutions */ 

} 
node; 

static node nodes[nNodes]; 

static int findSolutions(int *p,int **sol) 
{ 

/ * 
** z[i] contains the number of times the digit i occurs 

** y[] contains the number of times each digit occurs is z[] 

** p[] contains the "pattern" of digits of the "key" 

*/ 

int z[N],y[N + 1]; 

int i,j ,nSol ; 

/*** Initialization ***/ 

z[0] - N; 

for(j - 1;j < N;j++) 

z[j] - 0; 

i - 0 ; 

nSol - 0; 

/*** Exhaustive search ***/ 

for(;;) 
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{ /*** The number of times this loop is executed 1s nNodes ***/ 

/*** Test current number ***/ 

for(j - 0;j <- N;j++) 

y[j] - 0; 

for(j - 0;j < N;J++) 

y[z[p[j]]]++; 

for(j - 0;j < N 8.8. z[j] — y[j];j++) 

if (j — N) 
{ /*** Bingo! ***/ 

1f(nSol — maxSol) 
{ 

fprintf(stderr,"Increase maxSol n"); 

exit(l); 

} 
for(j - 0;j < N;j++) 

sol[nSol][j] - z[p[j]]; 

nSol++; 

} 

/*** Find next possible number ***/ 

i f (i — N - 1 ) 

{ /*** Go back ***/ 

j - z [ i ]; 

z[i] - 0; 

whi 1 e(-i >- 0 8.8. z[i] — 0) 

if(i < 0) 

break; /*** Exhaustive search is finished ***/ 

z[i]-; 

z[++i] - j + 1; } 
el se 

{ /*** Go forward ***/ 

z[i]-; 

z[++i] - 1; 
} 

} 
return(nSol); 

} 

static void initializeNodes(void) 
{ 

int z[N]; 

int i,n; 

/*** Nodes generated in lexicographic order ***/ 

n - 0; 

for(i - 0;i < N;i++) 

z[i] - 0; 
for( ;;) 
{ 

/*** Save current node ***/ 
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if(n >- nNodes) 
{ 

fprintf(stderr,"Increase nNodes n"); 

exit(l); 

} 
f o r d - 0;i < N;i++) 

nodes[n].p[i] - (char)z[1]; 

nodes[n].nSol - 0; 

n++; 
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * 

for(i - 0;i < N;i++) 
pri ntf("%d",z[i]); 

printf(" n"); 
•••••••••••••••••••••••••it* j 

/*** Find next node ***/ 

f o r d - N - 1;i >- 0 8.8. z[i] — N - 1;-1) 

if(i < 0) 

break; 

z[1]++; 

whi1e(++i < N) 

z[1] - z[i - 1]; 

} 
if(n < nNodes) 
{ 

fprintf(stderr,"Set nNodes to %d n",n); 

exit(l); 

} 
} 

static 1nt compareNodes(node *nl,node *n2) 

{ /*** This code could be replaced by strncmp ***/ 

i nt i; 

f o r d - 0; i < N 8.8. nl->p[i] — n2->p[i ]; i++) 

if(i — N) 

return(O); 

return(nl->p[i] < n2->p[1] ? -1 : 1); 

} 

static node *findNode(int *p) 
{ 

1nt i,j,k; 

node n; 

/*** Sort p[] ***/ 

for(j - N - 1;j > 0;-j) 

f o r d - 0;i < j;i++) 

if(p[i] > p[i + 1]) 
{ 

k - p[i]; 

p[i] - p[i + 1]; 
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p[1 + 1] - k; 

} 

/*** Search for the node having this p[] ***/ 

f o r d - 0; i < N;i++) 

n.p[i] - (char)p[i]; 

return((node *)bsearch(&n.nodes.nNodes,sizeof(node), 

compareNodes)); 

} 
static void findAl1 Solutions(void) 
{ 

int i,J,n,p[N],*sol[maxSol],solData[maxSol][N]; 

for(i - 0;i < maxSol;i++) 

sol[i] - solData[i]; 

for(i - 0;1 < nNodes;1++) 
{ 

for(j - 0;j < N;J++) 

p[J] - (int)nodes[i] ,p[j]; 

n - findSolutions(p,sol ); 

nodes[i].nSol - n; 
ff(n > 0) 
{ 

nodes[i].sol - (node **)malloc(n * sizeof(node *)); 

if(nodes[i].sol — NULL) 
{ 

fprintf(stderr,"0ut of memory n"); 

exit(l); 

} 
for(j - 0;j < n;j++) 
{ 

nodes[i].sol[j] - findNode(sol [j]); 

if(nodes[i].sol[j] — NULL) 
{ 

fprintf(stderr,"Impossible n"); 

exit(l); 

} 
} 

} 
} 

} 

static int nLoop; 

static node *1Loop[maxPath]; 

static int pLoopSize,1LoopSize; 

static node *bestPath[maxPath]; 

static int bestPathSize.bestPathHeaderSize; 

static void registerLoop(node **path,int pSize.int ISize) 
{ 
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Int f; 

nLoop++; 

ff(path[0] — path[pSfze - 1] && ISfze > lLoopSfze) 
{ 

pLoopSfze - pSfze; 

for(f - 0;f < pSfze;f++) 

1Loop[f] - path[f]; 

1LoopSize - ISfze; 

ff(pSfze - ISfze > bestPathHeaderSfze) 
{ 

bestPathSfze - pSfze; 

for(f - 0;f < pSfze;f++) 

bestPath[f] - path[f]; 

bestPathHeaderSfze - pSfze - ISfze; 

} 
} 

statfc fnt nsPath; 

statfc node *sPath[maxPath]; 

statfc fnt sPathSfze; 

statfc vofd regfsterPath(node **path,fnt pSfze) 
{ 

f nt f; 

nsPath++; 

ff(pSfze > sPathSfze) 
{ 

sPathSfze - pSfze; 

f o r d - 0;i < pSfze;i++) 

sPath[1] - path[f]; 

} 

statfc vofd fol1owPath(node **path,fnt pSfze) 
{ 

fnt 1,j,k; 

node *n; 

ff(pSfze — maxPath) 
{ 

fprintf(stderr,"Increase maxPath n"); 

exft(l); 

} 
k - path[pSize - l]->nSol; 

i f(k — 0) 

registerPath(path, pSfze); 

el se 
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for(1 - 0;1 < k;i ++) 
{ 

n - path[pSize - l]->sol[1]; 

path[pSize] - n; 

for(j - pS1 ze - 1;j >- 0 && path[j] !- n.—J) 

i f (j < 0) 

fol1owPath(path,pSize + 1); 

el se 

registerLoop(path,pSize + l.pSize - j); 

} 
} 

static void pr1ntPath(char *header,node **path,int pS1ze) 
{ 

1nt 1,j; 

f o r d - 0;i < pSize;1++) 
{ 

printf("%s",header); 

for(j - 0;j < N;j++) 

printf("%d",path[i]->p[J]) ; 

printf("\n"); 

} 
} 

static void generateAl1Paths(void) 
{ 

node *path[maxPath]; 

int 1,j; 

nLoop - 0; 

1LoopSize - 0; 

bestPathHeaderSize - 0; 

nsPath - 0; 

sPathSIze - 0;; 

f o r d - 0;i < nNodes;1++) 
{ 

path[0] - nodes + i; 

followPath(path.l); 

} 

printf("\n/*\n** Program output for N - %d\n**\n**\n",N); 

printf("** Paths with loops: %d\n** n",nLoop); 

printfC'** Largest loop: %d\n",l LoopSIze); 

printPathC'** ",1 Loop,pLoopSize); 

printfC'** n** \"Best\" path: %d\n",bestPathS1ze); 

printPathC'** ".bestPath.bestPathSize); 

printf("**\n**\n** Paths without loops: %d\n**\n",nsPath); 

printfC'** Longest path: %d n",sPathSIze); 

printPathC'** ".sPath.sPathSize); 

i - 0 ; 
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for(j - 1;j < nNodes;j++) 

if(nodes[j].nSol > nodes[i ] .nSol) 

i - j; 

printf("**\n** Highest number of solutions: %d\n",nodes[i].nSol) 

path[0] - nodes + 1; 

printPath("** ",path,l); 

printPath("** ".nodes[i].sol.nodes[i].nSol); 

printf("*/\n"); 

static void solveCase(char *pattern) 
{ 

int 1.J,n.p[N],*sol[maxSol],solData[maxSol][N]; 

for(j - 0;j < N;j++) 

{ 
p[j] - pattern[j] - '0'; 

if(p[j] < 0 || p[j] >= N) 

ex1t(l); 

} 

for(j = 0;j < N;j++) 

pri ntf("%d" ,p[j]); 

pri ntf("\n"); 

for(j - 0;j < N;j ++) 

printfC'-"); 

pri ntf("\n"); 

for(i - 0;i < maxSol;i++) 

sol[i ] - solData[i]; 

n - findSolut1ons(p,sol); 

f o r d - 0;i < n;i ++) 
{ 

for(j - 0;j < N;j ++) 

pri ntf("%d",sol[i][j]); 

printf("\n"); 

} 
printf("\n"); 

int main(int argc,char **argv) 
{ 

if(argc — 1) 
{ 

initializeNodes(); 

fi ndAl1 Solutions(); 

generateAl1Paths(); 

} 
else if(argc > 2) 
{ 

fprintf(stderr,"Usage: %s [pattern]", argv[0]); 

return(1); 
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el se 

s o l v e C a s e ( a r g v [ l ] ) ; 

r e t u r n ( O ) ; 

** Program o u t p u t for N = 10 
** 

* * 

** Paths with loops: 125502 
** 

** Largest loop: 4 

** 0 0 0 0 1 1 1 2 4 4 0 1 1 1 1 3 3 4 4 4 0 0 0 1 1 2 2 2 2 3 0 0 2 2 2 3 3 3 3 4 0 0 0 0 1 1 1 2 4 4 

** "Best" path: 9 

** 0 0 0 0 1 2 2 2 4 5 0 0 2 2 2 2 3 4 4 4 0 0 0 1 1 1 1 2 3 3 0 1 1 1 3 3 3 3 4 4 

** 0 0 2 2 2 2 4 4 4 4 0 0 0 0 0 0 0 0 8 8 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 8 8 
** 

** Paths w i t h o u t loops: 91450 
** 

** Longest path: 5 

** 1223334444 1111223334 0 0 0 0 0 2 2 2 3 3 0003333355 

0 0 0 0 1 1 2 2 2 4 

0000055555 

** Highest 

1 2 2 3 3 3 4 4 4 4 

0 0 0 0 0 0 0 3 3 3 

0 0 0 0 0 2 2 2 3 3 

0 0 0 0 2 2 2 2 4 4 

0 0 0 3 3 3 3 4 4 4 

0 2 2 2 2 3 3 3 4 4 

1 1 1 2 2 2 2 3 4 4 

1 2 2 3 3 3 3 4 4 4 

*/ 

number of 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 1 1 3 

0000022333 

0 0 0 0 2 2 4 4 4 4 

0 0 0 3 3 3 4 4 4 4 

0 2 2 2 3 3 4 4 4 4 

1 1 1 2 2 3 4 4 4 4 

1223334444 

soluti ons: 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 3 3 3 

0 0 0 0 1 1 1 2 2 3 

0 0 0 1 1 1 1 2 2 4 

0 0 1 1 1 1 3 3 3 4 

0 2 2 3 3 3 3 4 4 4 

1123333444 

43 

0000000022 
0 0 0 0 0 0 4 4 4 4 

0 0 0 0 1 1 2 3 3 3 

0 0 0 1 1 2 4 4 4 4 

0 0 1 1 1 3 4 4 4 4 

0 2 2 3 3 3 4 4 4 4 

1 1 2 3 3 3 4 4 4 4 

0 0 0 0 0 0 0 1 1 2 
0 0 0 0 0 1 1 1 1 4 

0000122233 

0 0 0 1 2 2 2 2 4 4 

0 0 1 3 3 3 3 4 4 4 

1111222334 

1222233344 

0000000122 
0 0 0 0 0 1 4 4 4 4 

0 0 0 0 1 2 2 3 3 3 

0 0 0 1 2 2 4 4 4 4 

0 0 1 3 3 3 4 4 4 4 

1 1 1 1 2 2 3 3 3 4 

1222334444 

C Program to Solve Cyclotron Puzzles 

The following C code by Heiner Marxen solves the various cyclotron puzzles. 

/* 
* Solve Cyclotron P u z z l e , 

* A u t h o r : Heiner Marxen 

*/ 

# i n c l u d e < s t d i o . h > 

# i n c l u d e < s t d l i b . h > 

# 1 n c l u d e < s t r i n g . h > 

# d e f i n e NX 20 /* 

#defi ne NY 15 /* 

#defi ne MX (NX+2) 

# d e f i n e MY (NY+2) 

#defi ne MXY (MX*MY) 

#defi ne MAXV 101 

#1f 0 /* 

t y p e d e f char Val; /* 

as posed by Cliff Pickover 

/* m e m s e t , strspn */ 

logical horizontal length */ 

logical vertical length */ 

/* physical horizontal length */ 

/* physical vertical length */ 

/* physical size */ 

CHECK for y o u r m a c h i n e */ 

must hold -MAXV..+MAXV */ 
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#el se 

typedef short Val; /* must hold -MAXV..+MAXV */ 

#endi f 

typedef unsigned long Counter; 

#def1ne PERC(part, tot) ( (tot) \ 

? (100.0 * (((double) (part)) / ((double)(tot)))) \ 

= 0.0 \ 

) 
#def 1 ne F0R(v,mx) for( (v)-0 ; ( v X ( m x ) ; ++(v) ) 

static int 

static int 

static int 

static int 

static int 

static int 

optv - 0 

optt - 0 

optb - 0 

opts - 0 

opti[2] 

optC - 0 

/* verbose level */ 

/* trace level */ 

/* better show level */ 

/* stats level */ 

0, 0 }; /* y , x */ 

/* cut level */ 

static void 

show_val( v ) 

int v; 

{ 
if( v ) { 

i f( v <- -100 ) { 

printf("-%02d", v+100); 

}else { 

printf("%3d", v); 

} 
}else { 

printf("%3s", ""); 

} 

static void 

show_maze_path( maze, npath, xpath, ypath ) 

Val maze [MY][MX]; 

Val xpath[MAXV]; 

Val ypath[MAXV]; 

{ 
Val path [MY][MX]; 

int y,x,v; 

FOR(y.MY) F0R(x,MX) path[y][x] - 0; 

F0R(v,npath) path[ypath[v]][xpath[v]] - v+1; 

FOR(y.MY) { 

FOR(x.MX) { 

v - maze[y][x]; 

if( v && path[y][x] ) v - -v; 

show_val(v); 
} 
printf("\n"); 
} 

FOR(y.MY) { 

F0R(x,MX) { 
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v - maze[y][x]; 

if( v ) { 

if( path[y][x] ) { 

pri ntf("%3d", path[y][x]) ; 

}else { 

printf("%3s", "-"); 

} 
}else { 

pri ntf("%3s", ""); 

} 
} 
printf("\n"); 
} 

static void 

show_maze( maze ) 

Val maze[MY][MX]; 

{ 
int y,x; 

FOR(y.MY) { 

FOR(x.MX) show_val((1nt) maze[y][x]) ; 

printf("\n") ; 
} 

} 

static int vfreq[MAXV]; 

static int vocc; 

static int vtot; 

static void 

check_maze( maze ) 

Val maze[MY][MX]; 

{ 
int y,x,v; 

FOR(y.MY) { 

FOR(x.MX) { 

v - maze[y][x]; 

if( (v < 0) || (v >- MAXV) ) { 

fprintf(stderr, "maze[%d][%d] - %d out of range\n", y , x , v); 

exit(l); 

} 
i f ( v ) { 

if( x—0 || x—(MX-1) || y—0 || y—(MY-1) ) { 

fprintf(stderr, "maze[%d][%d] - %d not border\n", 

y , x , v); 

exit(l); 

} 
} 

} } 
vocc - 0; vtot - 0; 

FOR(v.MAXV) vfreq[v] - 0; 

FOR(y.MY) FOR(x.MX) vfreq[maze[y][x]] +- 1; 

FOR(v.MAXV) vocc +- !! vfreq[v]; 

FOR(v.MAXV) vtot +- vfreq[v]; 
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vocc — !! vfreq[0]; 

vtot — vfreq[0]; 

if( optv > 1 ) { 

FOR(v.MAXV) { 

pri ntf("val %3d: %5d times\n", v, vfreq[v]); 

} } 
printf("Total nonzero values: %3d\n", vtot); 

printf ("D1fferent nonzero values: %3d\n", vocc); 

#define DIRS 

static short 

static short 

static char 

static Val 

static Val 

static int 

statfc fnt 

statfc fnt 

statfc Val 

statfc Val 

statfc Counter 

xstep[DIRS] 

ystep[DIRS] -{ 

vbad[MAXV]; 

xpath[MAXV]; 

ypath[MAXV]; 

npath; 

b_npath; 

b_valid; 

b_xpath[MAXV]; 

b _ypath[MAXV]; 

b_optfm; 

-{ 1, 0, 
0 , 1 , 

- 1 , 

0, 
0 }; 

-1 ); 

static Counter 

statfc Counter 

statfc Counter 

statfc Counter 

cntdep[MAXV]; 

cntcut[MAXV]; 

cntcan[MAXV]; 

cntuse[MAXV]; 

/* [dep] */ 

/* [reach] */ 

/* [reach] */ 

statfc vofd 

show_poss( maze ) 

Val maze[MY][MX]; 

{ 
Val poss[MY][MX]; 

fnt x , y , v; 

FOR(y.MY) F0R(x,MX) poss[y][x] - maze[y][x]; 

F0R(v,npath) { 

x - xpath[v]; 

y - ypath[v]; 

poss[y][x] - - poss[y][x]; 
} 

F0R(y,MY) F0R(x,MX) { 

v - poss[y][x]; 

ff( (v > 0) && vbad[v] ) { 

poss[y][x] - 0; 

} } 
show_maze(poss); 

static void 

better_maze( maze ) 

Val maze[MY][MX]; 

{ 
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int v; 

if( b_npath >- vocc ) { 

b_optim +- 1; 
} 

i f( optb > 0 ) { 

printf("Better maze path length %3d\n", npath); 
} 

if( optb > 1 ) { 

show_maze_path(maze, npath, xpath, ypath); 

i f( optv > 0 ) { 

F0R(v,npath) { 

printf("[%2d/%2d]", ypath[v], xpath[v]); 

if( (v+1)%10 — 0 ) printf("\n"); 

} 
if( v%10 !- 0 ) printf("\n"); 

} } 
i f( optb > 2 ) { 

show_poss(maze); 
} 

1f( optb > 0 ) { (void) fflush(stdout) ; } 

F0R(v,npath) { 

b_xpath[v] - xpath[v]; 

b_ypath[v] - ypath[v]; 
} 

b_npath - npath; b_valid - 1; 

static void 

tell_rec( y , x, v, c ) 

int y,x,v,c; 

{ 
int n; 

n - npath; 

pri ntf("%3d ", n); 

for( ; n > 10 ; n—10 ) { 
printf("X"); 
} 

for( ; n > 0 ; n—1 ) { 

printf("%c", c); 
} 

printf("\t%2d/%2d - %2d", y , x , v); 

printf("\n"); 

(void) fflush(stdout); 

static int /* maximum possible path extension */ 

cnt_reach( maze, geo, y O , xO, rlim ) 

Val maze[MY][MX]; 

Val geo [MY][MX]; 

int y O , xO; 

int rlim; /* larger results are not better */ 

{ 
char vdid[MAXV]; 



FOR FURTHER EXPLORATION 309 

char xx[MXY]; 

char yy[MXY]; 

int x , y , v, cnt, lo, hi, g, d, nx, ny; 

cnt - 0; 

v - maze[y0][xO]; 

if( (v > 0) && !vbad[v] ) { 

cnt +- 1; 

if( cnt >- rlim ) goto out; 

lo - 0; 

hi - 0; 

g - geo[y0][x0]; 

FOR(d.DIRS) { 

if( g & ( l « d ) ) { 

x - xO + xstep[d]; 

y - yO + ystep[d]; 

v - maze[y][x]; 

1f( (v > 0) && !vbad[v] ) { 

xx[h1] - x; yy[hi] - y; 

hi +- 1; 

} 
} 

} 
1 f( hi ) { 

#if 0 

FOR(v.MAXV) vd1d[v] - 0; 

#el se 

memset((vo1d*)vd1d, 0, sizeof(vdid)); 

#end1f 

v - maze[y0][xO]; 

maze[y0][x0] - -v; 

vdid[v] - 1; 

for( lo-O ; lo<h1 ; ++1 o ) { 

x - xx[lo]; y - yy[lo]; 

v - maze[y][x]; 

maze[y][x] - -v; /* entered */ 

1f( ! vdid[v] ) { 

vdid[v] - 1; cnt +- 1; 

} 
} 
if( cnt >- rlim ) goto back; 

for( lo-O ; lo<hi ; ) { 

x = xx[lo]; y - yy[1o]; 

++1 o ; 
g - geo[y][x]; 

FOR(d.DIRS) { 

if( g & ( l « d ) ) { 

nx - x + xstep[d]; ny = y + ystep[d]; 

v - maze[ny][nx]; 

if( (v > 0) && !vbad[v] ) { 

if( ! vdid[v] ) { 

vdid[v] - 1; cnt +- 1; 

1f( cnt >- rlim ) goto back; 

} 
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maze[ny][nx] - -v; /* entered */ 

xx[hi] - nx; yy[hi] - ny; 

hi +- 1; 

} 
} 

} 
} 

back: ; 

for( 1o-hi ; -lo >- 0 ; ) { 

x - xx[1o]; 

y - yy[lo]; 

maze[y][x] - - maze[y][x]; 

} 
maze[yO][xO] - - maze[yO][xO]; 

#1f 0 

{ 
char mimax[2]; 

char mimay[2]; 

lo - 0; 

mimax[0] - m1max[l] - xO; 

mimay[0] - mimay[l] - yO; 

whi1e( lo < hi ) { 

x - xx[lo]; 

y - yy[io]; 

++1 o ; 
1f( x < mimax[0] ) mimax[0] - x;else 

1f( x > mimax[l] ) mimax[l] - x; 

if( y < mimay[0] ) mimay[0] - y;else 

if( y > mimay[l] ) mimay[l] - y; 

} 
printf("mima %2d-%2d * %2d-%2d - %3d [%3d]\n" t 

mimax[0], mimax[l], mimay[0], mimay[l], 

(mimax[l]-mimax[0]+l)* (mimay[l]-mimay[0]+l). 

cnt 

) ; 
} 

#endif 
} 

} 
out: ; 

cntcan[cnt] +- 1; 

return cnt; 

static void 

scan_maze( maze. geo. y , x ) 

Val maze[MY][MX]; 

Val geo [MY][MX]; 

int y , x; 

{ 
int d. v. g. nv; 

if( b_optim ) return; 

cntdep[npath] +- 1; /* recursion depth accounting */ 

v - maze[y][x]; 

if( v—0 || vbad[v] ) { 
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return; 
} 

ypath[npath] - y; 

xpath[npath] - x; 

npath +- 1; 

vbad[v] - 1; 
{ 

if( npath <- optt ) tell_rec(y,x,v, '>'); 

if( npath > b_npath ) better_maze(maze); 

g - geo[y][x]; 

FOR(d.DIRS) { 

1f( g & ( l « d ) ) { 

nv - maze[y+ystep[d]][x+xstep[d]]; 

1f( vbad[nv] ) { 

g &- ~ ( l « d ) ; 

} 
} 

} 
if( g ) { 

FOR(d.DIRS) { 

if( g & ( l « d ) ) { 

1nt rent; 

1f( (npath <- b_npath) && (g & (g-1)) ) { 

rent - cnt_reach(maze, geo, 

y+ystep[d], x+xstep[d], 

b_npath + 1 - npath); 

}else { 

rent - MAXV; 

} 
if( (npath + rent) > b_npath ) { 

scan_maze(maze. geo. y+ystep[d], x+xstep[d]); 

}else { 

cntcut[npath] +- 1; 

cntuse[rcnt ] +- 1; 
} 

} 
} 

} 
if( npath <- optt ) tell_rec(y,x,v, '<'); 
} 

vbad[v] - 0; 

npath — 1; 

static void 

start_maze( maze, geo, y , x ) 

Val maze[MY][MX]; 

Val geo [MY][MX]; 

int y.x; 

{ 
int v; 

if( (optv > 0) || (optt > 0) ) { 

pri ntf("START maze at [%2d][%2d]\n", y , x); 

(void) fflush(stdout); 
} 
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FOR(v.MAXV) vbad[v] - 0; 

vbad[0] = 1; 

npath - 0; 

scan_maze(maze, geo, y , x); 

{ /* sanity checks */ 

int errs; 

errs = 0; 

if( npath ) { 

fprintf(stderr, "Left npath - %d\n", npath); 

++errs; 

} 

FOR(v.MAXV) { 

if( vbad[v] !-= (v—0) ) { 

fprintf(stderr. "Left vbad[%d] - %d\n", v. vbad[v]); 

++errs; 

} 
} 
if( errs ) { 

exit(l); 

} } 
} 

static void 

def_geo( maze, geo ) 

Val maze[MY][MX]; /* checked, has border */ 

Val geo [MY][MX]; 

{ 
Val ring[MY][MX]; 

int x,y,d,nx,ny; 

FOR(y.MY) FOR(x.MX) { 

ring[y][x] - 0; 
geo [y][x] = 0; 
} 

#define SETRING(r) if(maze[y][x]&&!r1ng[y ] [x]) ring[y][x] - (r); 

for( d=l ; d<4 ; ++d ) { 

y = d ; FOR(x.MX) SETRING(d); 

y = MY-l-d; FOR(x.MX) SETRING(d); 

x - d ; FOR(y.MY) SETRING(d); 

x = MX-l-d; FOR(y.MY) SETRING(d); 
} 

FOR(y.MY) FOR(x.MX) { 

SETRING(9); 
} 

#undef SETRING 
1f( optv > 0 ) { 

show_maze(ring); 
} 

FOR(y.MY) FOR(x.MX) { 

if( ! maze[y][x] ) continue; 

FOR(d.DIRS) { 

nx = x + xstep[d]; 

ny - y + ystep[d]; 

if( ! maze[ny][nx] ) continue; 
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1f( ring[y][x] < 9 ) { 

if( ring[y][x] — ring[ny][nx] ) { 

if( (ny > y) && (x < MX/2) ) continue; 

if( (ny < y) && (x > MX/2) ) continue; 

1f( (nx < x) && (y < MY/2) ) continue; 

if( (nx > x) && (y > MY/2) ) continue; 

} 
} 
geo[y][x] |- l<<d; 

} } 
1f( optv > 0 ) { 
show_maze(geo); 
} 

} 

static void 

search_maze( maze, geo ) 

Val maze[MY][MX]; 

Val geo [MY][MX]; 

{ 
int x. y; 

b_npath - 0; 

b_optim - 0; 

b_valid - 0; 

FOR(x.MAXV) cntdep[x] - 0; 

FOR(x.MAXV) cntcut[x] - 0; 

FOR(x.MAXV) cntcan[x] - 0; 

FOR(x.MAXV) cntuse[x] - 0; 

i f( optC ) { 

b_npath - optC; 
} 

if( opti[0] || opti[1] ) { 

start_maze(maze. geo, opt1[0], opti[1]); 

}else { 

FOR(y.MY) FOR(x.MX) { 

1f( maze[y][x] ) { 

start_maze(maze. geo, y , x); 

} 
} } 
pri ntf("BEST maze path length %3d\n", b_npath); 

1f( b_v a1i d ) { 
show_maze_path(maze, b_npath, b_xpath, b_ypath); 
} 

if( opts > 0 ) { 

Counter tot; 

Counter sum; 

Counter last; 

Counter curr; 

tot - 0; 

F0R(x,MAXV) tot +- cntdep[x]; 

if( tot ) { 

last - 1; 

F0R(x,MAXV) { 
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curr - cntdep[x]; 

if( curr || cntcut[x] ) { 

pri ntf ("dep %3d: %101u [%6.2f%%] %7.3f %101u\n". 

x . 

(unsigned long) curr. 

PERC(curr, tot), 

last ? (double)curr / (double)last : (double)curr, 

(unsigned long) cntcut[x] 

) ; 
} 
last - curr; 

} 
} 
tot - 0; 

FOR(x.MAXV) tot +- cntcan[x]; 

if( tot ) { 

sum - 0; 

FOR(x.MAXV) { 

curr - cntcan[x]; 

if( curr || cntuse[x] ) { 

sum +- curr; 

printf("can %3d: %101u [%6.2f%%] [%6.2f%%] %101u\n". 

x. 

(unsigned long) curr. 

PERC(curr. tot). PERC(sum . tot). 

(unsigned long) cntuse[x] 

) ; 
} 

} 
} } 
(void) fflush(stdout); 

} 

static void 

do_maze( maze ) 

Val maze[MY][MX]; 

{ 
Val geo [MY][MX]; 

show_maze(maze); check_maze(maze); 

def_geo(maze. geo); search_maze(maze, geo); 

static void 

do_fi1e( fp ) 

FILE* fp; 

{ 
static char 1buf[100+1]; 

int y . x. i; 

Val maze[MY][MX]; 

FOR(y.MY) FOR(x.MX) maze[y][x] - 0; 

FOR(y.NY) { 

FOR(i.lOO) lbuf[i] - 0; 

if( ! fgets(1buf. 100. fp) ) { 
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fprintf(stderr, "Cannot read line %d\n", y); 

exit(l); 

} 
FOR(x.NX) { 

char nbuf[4]; 

F0R(1.3) nbuf[i] - lbuf[i+3*x] ; 

nbuf[3] - 0; 

if( nbuf[strspn(nbuf, " ")] ) { /* has non-blank */ 

maze[y+l][x+l] - 1 + atoi(nbuf); 

} 
} } 
do_maze(maze); 

} 

static void 

do_name( fname ) 

char* fname; 

{ 
FILE* fp; 

fp - fopen(fname, "r"); 

if( ! fp ) { 

fprintf(stderr. "Cannot open '%s' for reading\n". fname): 

exit(l); 
} 

do_f11e(fp); 

(void) fclose(fp); 

} 

main( argc, argv ) 

int argc; 

char** argv; 

{ 
int ac; 

ac - 0; 

++ac; 
whi1e( (ac < argc) && (argv[ac][0] — '-') ) { 

register char* opt - argv[ac++]; 

while( *++opt ) switch( *opt ) { 

case 'v': optv+- 1; continue; 

case 's': opts+- 1; continue; 

case 't': optt+- 1; continue; 

case 'T': optt+- 10; continue; 

case 'b': optb+- 1; continue; 

case 'C': 

if( ac < argc ) { 

optC - atoi(argv[ac++]); 

} 
conti nue; 

case 'i': 

opti[0] - opti[1] - 0; 

if( ac < argc ) { 

opti[0] - atoi(argv[ac++]); 

} 
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if( ac < argc ) { 

opti[1] - atoi(argv[ac++]); 

} 
continue; 

default: 

fprintf(stderr, "Unknown option '%c'\n", *opt); 

exit(l); 

} } 
if( ac < argc ) { 

do_name(argv[ac++]); 

}else { 

do_fi1e(stdin); 
} 

exit(O); 

return 1; /* paranoia */ 



Notes 

Preface 
1. To get a feel for Usenet's popularity, consider that around 40,000 messages are sent each 

day to 2,000 newsgroups in Usenet. The most popular newsgroup, news.an-
nounce.newusers, has approximately 800,000 readers. A newsgroup called "alt.fan.cliff-
pickover" has been started for discussions on topics and problems discussed in my 
books. 

2. Interestingly, the Internet (a major computer network linking millions of machines 
around the world) is growing at a phenomenal rate. Between January 1993 and January 
1994, the number of connected machines grew from 1,313,000 to 2,217,000. More than 
70 countries have full Internet connectivity, and about 150 have at least some electronic 
mail services. As I write this, there are about 20 to 25 million users of the Internet (Good-
man et al., "The Global Diffusion of the Internet," Communications of the ACM, 
37[8][1994]: 27). 

Chapter 3 Infinity Machines 
1. International Tesla Society, P.O. Box 5636, Colorado Springs, CO 80931. 
2. An irrational number cannot be expressed as a ratio of two integers. Transcendental 

numbers such as e = 2.718 . . . and n = 3.1415 . . . and all surds (e.g., v'2, cube roots, etc.) 
are irrational. 

Chapter 4 Infinity World 
1. Mathematicians are comfortable with the notion of different levels of infinities. For ex-

ample, there are an infinity of rational numbers (fractions), but there is an even greater 
infinity of irrational numbers (nonrepeating, nonterminating decimals such as n). In fact, 
between any two infinitely close fractions dwells an infinity of irrational numbers. 

2. C. Hargittai and C. Pickover, Spiral Symmetry (River Edge, NJ: World Scientific, 1992). 

Chapter 5 Grid of the Gods 
1. Various researchers have pointed out that the process of randomly selecting chords on a 

circle to solve this problem leads to some famous paradoxes. The term random chord is 
ambiguous unless the exact procedure for producing it is defined, as in my program code 

317 



318 KEYS TO INFINITY 

(Appendix 1). Would our results be different if we were to randomly choose chords that 
were all parallel to a given direction? 

2. M. Schroeder, Number Theory in Science and Communication, 2nd enlarged edition, 
107-108 (Berlin and New York: Springer, 1990). 

Chapter 6 To the Valley of the Sea Horses 
1. I came across Don Webb's name in a list of members for YLEM, an organization consist-

ing primarily of artists who use science and technology. In the listing, Don gave his oc-
cupation as "science-fiction writer and critic." I could not resist writing to him, and we 
soon tossed around the idea of collaborating on a short science-fiction tale about a rich 
man who becomes infatuated with fractals and infinity. This chapter is the result of our 
collaboration. 

Don is a reviewer for the American Book Review and for the New York Review of Science 
Fiction. His work has appeared in more than 200 large and small magazines around the 
world, including all major science-fiction magazines. His story "Jesse Revenged" was 
selected to appear in the "Hundred Best" list in American Short Stories 1987. He has 
written several books, including Uncle Ovid's Exercise Book, which won the 1988 Illi-
nois State University/Fiction Collective fiction contest. His story "Walk on the Farside" 
was chosen by Gardner Dozios for The Year's Best Science Fiction XI. 

Chapter 7 The Million-Dollar, Trillion-Digit Pi Sequencing Initiative 
1. The digits of transcendental numbers seem to go on forever without any rhyme, reason, 

or repetition. For the mathematically inclined, note that transcendental numbers cannot 
be expressed as the root of any algebraic equation with rational coefficients. This means 
that ti could not exactly satisfy equations of the type n2 = 10 or 9n4 - 240n2 

+ 1,492 = 0. These are equations involving simple integers with powers of n. The num-
ber ti can be expressed as an endless continued fraction or as the limit of an infinite se-
ries. The remarkable fraction 355/113 expresses n to six decimal places. 

2. When I use the word random to describe the digits of 7t, I really mean that they are "nor-
mal." (A normal number is defined as a number in which every possible block of digits is 
equally likely to occur.) The digits of % are clearly not random in the strict sense of the 
word because if you were to ask for the nth digit, you can always find it with absolute 
certainly by a well-defined procedure. In other words, the "next" digit of it is completely 
determined, so it is not a random sequence of digits in the strict mathematical sense. 
Even the term patternless is vague, because % obviously has a pattern defined by the for-
mula for it. 

3. The probability that any two randomly chosen integers do not have a common divisor is 
6 divided by 7t2. For example, 4 and 9 do not have a common divisor, but 6 and 9 do 
(they are both divisible by 3). Why on Earth does % unexpectedly crop up here? 

Chapter 9 The Loom of Creation 
1. J. Madachy, Madachy's Mathematical Recreations (New York: Dover, 1979). 
2. C. Pickover, Chaos in Wonderland: Visual Adventures in a Fractal World (New York: St. 

Martin's, 1994). 
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Chapter 12 The Leviathan Number 
1. More recently, mystical individuals of the extreme fundamentalist Right have noted that 

each word in the name Ronald Wilson Reagan has six letters. Interestingly, the book 
called The Revelation of St. John the Divine (King James version) has never been ac-
cepted in the Syriac-speaking church. 

Chapter 14 Fractal Milkshakes and Infinite Archery 
1. L. R. Ford was quite modest when he first published on this fascinating geometrical con-

struction. In fact, he begins his article with, "Perhaps the author owes an apology to the 
reader for asking him to lend his attention to so elementary a subject, for the fractions to 
be discussed in this paper are, for the most part, the halves, quarters, and thirds of arith-
metic." 

Chapter 18 Infinitely Exploding Circles 
1. E. Kasner and J. Newman, Mathematics and the Imagination (Redmond, WA: Tempus 

Books 1989); (reprint of 1948 book). 
2. H. Haber, "Das mathematische Kabinett," Bild der Wissenshaft, 2 (April 1964): 73. 
3. C. Bouwkamp, "An Infinite Product," Koninkl. Nederl. Akademi van Wetenschappen— 

Amsterdam (1965). Reprint from Proceedings, Series A, 68(1), and Indag. Math., 27(1). 
4. Ibid. 

Chapter 19 The Infinity Worms of Callisto 
1. The various worms' log equations come from a tattered pamphlet I found in a garage 

sale. The pamphlet, published in 1910 by Cambridge University Press, was titled Orders 
of Infinity: The Infinitarcalciil of Paul du Bois-Reymond. The author was G. H. Hardy. 

Chapter 22 The Loneliness of the Factorions 
1. For a positive integer n, the product of all the positive integers less than or equal to n is 

called "n factorial," usually denoted as "«!". For example, 3! = 3 x 2 x 1. 
2. Parenthetically I should point out that Herve Bronnimann from Princeton University has 

recently found some magnificent factorions in other bases, most notably 519,326,767 
which in base 13 is written as 8.3.7.9.0.12.5.11 and is equal to 8! + 3! + 7! + 9! + 0! + 12! 
+ 5! + 11! (You can interpret this base 13 number as 8 x 137 + 3 x 136 + 7 x 135 + 
9 x 134 + 0 X 133 + 12 X 132 + 5 x 131 + 11 x 13°. Some write this number as 
83,790C5fi13). For those of you not familiar with numbers represented in bases other 
than 10 (which is the standard way of representing numbers), consider how to represent 
any number in base 2. Numbers in base 2 are called binary numbers. The presence of a 1 
in a digit position of a number in base 2 indicates that a corresponding power of 2 is used 
to determine the value of the binary number. A 0 in the number indicates that a corre-
sponding power of 2 is absent from the binary number. The binary number 1111 repre-
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sents (1 x 23) + (1 x 22) + (1 x 21) + (1 x 2°) = 15. The binary number 1000 represents 
1 x 23 =8. 

Chapter 23 Escape from Fractalia 
1. I think of Dr. Sprott as the guru of strange attractors—intricate mathematical shapes that 

represent the chaotic behavior of physical and mathematical systems. When I asked Dr. 
Sprott to describe himself, he told me the following. "I'm sure I have the world's largest 
collection of strange attractors. I estimate about a million. I've looked at maybe 5 percent 
of them. The others sit in a compact code on my disk. I'm busily doing statistical studies 
on them. Who am I? B.S. in physics from MIT in 1964, Ph.D. in physics from University 
of Wisconsin-Madison in 1969. Worked at Oak Ridge National Lab before returning to a 
faculty position in the Physics Department at the University of Wisconsin-Madison in 
1973, where I've been ever since. My training and research have mostly been in experi-
mental plasma physics. I have been heavily involved in physics popularization through a 
program called 'The Wonders of Physics' that involves public presentations of dramatic 
demonstrations of physical phenomena, production of videotapes, and development of 
physics educational software. I'm technical editor of Physics Academic Software. I've 
written books such as Introduction to Modern Electronics (Wiley, 1979) and Numerical 
Recipes and Examples in BASIC (Cambridge University Press, 1991). I became a chaos 
enthusiast in 1989." 

2. J. C. Sprott, Strange Attractors: Creating Patterns in Chaos (New York: M&T Books, 
1993). 

3. C. A. Pickover, Mazes for the Mind: Computers and the Unexpected (New York: St. 
Martin's, 1992). 

4. H. O. Peitgen and P. H. Richter, The Beauty of Fractals: Images of Complex Dynamical 
Systems (New York: Springer-Verlag, 1986). 

Chapter 25 The Crying of Fractal Batrachion 1,489 
1. J. Conway, "Some Crazy Sequences," videotaped talk at AT&T Bell Labs, July 15, 1988. 
2. M. Schroeder, Fractals, Chaos, Power Laws (New York: Freeman, 1991). 
3. C. Mallows, "Conway's Challenge Sequence," American Mathematics Monthly (January 

1991): 5-20. 
4. D. Hofstadter, Godel, Escher, Bach (New York: Vintage Books, 1980). 
5. C. Pickover, "The Drums of Ulupu," in Mazes for the Mind: Computers and the Unex-

pected (New York: St. Martin's, 1993). 

Chapter 27 Recursive Worlds 
1. B. Mandelbrot, The Fractal Geometry of Nature (New York: Freeman, 1982). 
2. D. Hilbert, "Uber die stetige Abbildung einer Linie auf ein Flachenstuck," Mathematis-

che Annalen, 38 (1891): 4 5 9 ^ 6 0 . 
3. G. Peano, "Sur une courbe, gui remplit une aire palne," Mathematische Annalen, 36 

(1890): 157-160. 
4. R. Shepard, Mind Sights (New York: Freeman, 1991). 
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Chapter 30 Vampire Numbers 
1. Versions of J for OS/2, Apple, Next, PC, Windows, Spare, and many other platforms are 

available via anonymous ftp from watservl.uwaterloo.ca in languages/apl/j/exec. C 
source code is also available. See also K. Iverson, J: Introduction and Dictionary 
(Toronto: Iverson Software, 1993). The publisher's address is 33 Major Street, Toronto, 
Ontario M5S 2K9 Canada. 

Chapter 31 Computers, Randomness, Mind, and Infinity 
1. M. Schroeder, Fractals, Chaos, Power Laws (New York: Freeman, 1991). 
2. J. Collins, M. Fancilulli, R. Hohlfeld, D. Finch, G. Sandri, and E. Shtatland, "A Random 

Number Generator Based on the Logit Transform of the Logistic Variable," Computers 
in Physics, 6(6) (1992): 630-632. 

3. S. Ulam and J. von Neumann, "On Combination of Stochastic and Deterministic Proc-
esses." Bulletin of the American Mathematical Society, 53 (1947): 1120. 

4. P. Stein and S. Ulam, "Nonlinear Transformation Studies on Electronic Computers." 
Rozprawy matematyczne, 39 (1964): 1. 

5. S. Grossman and S. Thomae, "Invariant Distributions and Stationary Correlation Func-
tions," Zeitsuhriftfur Naturforschung, 32a (1977): 1353. 

6. T. Richards, "Graphical Representation of Pseudorandom Sequences," Computers and 
Graphics, 13(2) (1989): 261-262. 

7. D. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed. (Reading, MA: Addison-
Wesley, 1981). 

8. C. Pickover, "Synthesizing Extraterrestrial Terrain," IEEE Computer Graphics and Ap-
plications, 15(2) (March, 1995): 18-21. 

9. J. Colonna, "The Subjectivity of Computers." Communications of the ACM, 36(8) (July 
1994): 15-18. 

10. F. James, "RANLUX: A Fortran Implementation of the High-Quality Pseudorandom 
Number Generator of Luscher," Computer Physics Communications, 79(1) (February 
1994): 111-114. 

Appendix 2 For Further Exploration 
1. Gofer, designed by Mark Jones of Yale, is a very near relation to Haskell (see A. Davie, 

An Introduction to Functional Programming Systems Using Haskell, 1992). In particu-
lar, Gofer supports lazy evaluation, higher-order functions, polymorphic typing, pattern 
matching, support for overloading, etc. (ftp: nebula.cs.yale.edu, directory: pub/haskell/ 
gofer). Gofer runs on a wide range of machines including PCs, Ataris, Amigas, etc., as 
well as larger UNIX-based systems. A version for the Apple Macintosh has been pro-
duced and is available by anonymous ftp from ftp.dcs.glasgow.ac.uk in a subdirectory of 
pub/haskell/gofer. 

ftp://ftp.dcs.glasgow.ac.uk
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Escape from Fractalia BASIC code, 271-272 
Escape-time fractals, 175-176 
Eternity, xi, xii, 100-101 
Evans, Barry, 37 
Evolution probabilities, 131-133 
Extensive decimal places, 59-60 

Factorials 
functions, 98 
second kind, 169 
third kind, 169 

Factorions 
defined, 169 
proof, 171 

Fibonacci sequence, 93-94, 97, 183-185 
Finite 

infinite number relations, 119-124 
space, 26 

Fishtailoid shape, 82 
Ford Circles, 117-118, 124 
Fowler, David, 64-65 
Fractal 

art, 173-175, 179-180 
batrachions, 183-190 
dimension D, 204 
escape-time, 175-176 
formula, 48-50 
gaps, 180-181 
word coined, 198 

Fractal Golden Curlicue is Cool 
BASIC code, 268-269 
C code, 268 

Fractal Milkshakes and Infinite Archery 
BASIC code, 260 
C code, 259-260 

Frame, Mike, 65 
Froth 

infinite, 117 
rational numbers, 117 

Frye, Steve, 22, 293 

Games 
Anaphylactic Worm Game, 105-107 
Cancer, 127 

Czech Logical Labyrinth, 113 
longest possible worm path, 110 
Too Many Bishops, 73-74 
worm sizes, 107 
Worm World, 110, 112-114 

Gardner, Martin, 170 
Gaussian distribution, 239 
Genetics probabilities, 131-133 
Geometric 

probability distribution, 88 
rupture, 61-62 
series, 101 

Gofer Program 
description, 321 
vampire numbers search, 280-281 

Graf, Montgomery, 12 
Gravitational field implications, 10 
Grid dots, intersections, 42 
Grid of the Gods 

BASIC code, 251 
C code, 250-251 
digressions, 44 

Grossman and Thomae, 242 
Guruprasad, V., 67-68 

Hardy, Godfrey, 169-170 
Hayes, Tom, 68 
Heart-Shaped maps, 38-39 
Hemicentrism, 37-38 
Henrich, Chris, 63 
Hickerson, Dean, 131, 228-229 
High-frequency warble, 129-130 
High-resolution art, 176-177 
Hippasus, 22 
History of infinity, 21-22 
Hocker, Mike, 30 
Hyperworms in Abkhasia, 113-114 

Incomputability, 102 
Infinite 

Carotid-Kundalini Functions Fractals, 
272-273 

curlicues, 167 
finite number relations, 119-124 
froth, 117 
mathematical curves, 183-188 
vampires, 230-231 

Infinite Chess, 73-76 
BASIC code, 252 
C code, 252 Creation, 127-132 
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Infinite Chess (cont'd) 
digressions, 76 

Infinite Star Chambers 
BASIC code, 264 
C code, 263-265 

Infinitely Exploding Circles 
BASIC code, 266-267 
C code, 265-267 

Infinitesimal 
dots in grid, 42 
points, computer programs for, 43 

Infinity 
antilock brakes application, 19-20 
concept challenge, 21 
earths, 28-29 
history, 21-22 
keyboard application, 20 
levels of, 317 
machines defined, 18 
paradox, 21 
program application, 20-21 
randomness, 247 
visualizing, 187-188 
zero multiplied by, 195 

Infinity Worlds 
civilizations, 35-36 
development of intelligent life, 29 
Greece, 35-36 
hemicentrism, 37-38 
horizontal repetition, 37 
hypothetical Earths, 27 
Italy, 35-36 
magnetic fields, 32-33 
map making differences, 37 
navigation development, 37-38 
physical constraints, 32-33 
population distribution, 33 
religion, 30 

sociopolitical impact, 29-32 
sun rotation, 32-33 
Supercontinent, 34-35 
superpower, 29 
survey, 25 
war, 30-31 

Infinity Worms of Callisto, digression, 
157 

Internet value, 317 
Irrational number, 317 
Irrational two, 22 
Israel, Robert, 181 

Julia sets, 175 

Karnow, Curtis, 31-32 
Karr, David, 32 
Keyboard infinity application, 20 
Knickerbocker, Glenn S., 231, 286 
Kuckein, Paul A., 44 

Ladder parameters, 9 
Ladders to Heaven 

BASIC code, 250 
C code, 249-250 

LaMaster, Hugh, 66 
Landini, Gabriel, 64, 68 
Landrum, Stephen H., 231 
Levels of infinity, 317 
Levianthan Number 

BASIC code, 256-257 
C code, 256 

Leviathan 
number defined, 98 
super, 102 

Light, speed of, 22-23 
Ling, K„ 94 

Logistic equation, 239-240 
Logit, 244-246 
Loneliness of the Factorions 

BASIC code, 271 
C code, 269-270 

Loom of Creation 
BASIC code, 253 
C code, 252-253 

Machines, infinity type defined, 18 
Madachy, Joseph, 74, 102 
Mallows, Colin, 186-187 
Mandelbrot set, 47-50 
Maps, unusual projections, 38-39 
Marxen, Heiner, 222-224, 304 
Mathematical art, 173-177 
Mathematical curves, infinite, 183-188 
McAuley, David, 29, 34 
McCauley, Joe, 89 
McLean, Jim, 30 
Mecca maps, 38-39 
Memory stimulations, 52, 54 
Monte Carlo approach, 204-205 
Moon ladder, 10-15 
Mulcrone formulation, 93 
Murphy, Bob, 160 
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Music, computer, 177 
Musical tribute, 124 

Narcissistic numbers, 169-171 
Near-Gaussian 

numbers, 246 
random number generators, 239 

Nephroid shape, 81 
Nested roots, 193-195 
Noise-spheres, 238-239 
Normal number, 318 
Numbers 

Armstrong, 169 
exploding series, 154 
infinities, 4 
irrational, 317 
narcissistic, 169-171 
near-Gaussian, 246 
normal, 318 
progenitor, 227 
random, 233-234, 245-246 
random generators, 234-235 
real, directions of, 167 
series growing rates, 153-155 
square, 159 
transcendental, 317 
unique, 135 
vampire, 227 

Numeric repetition, longest sequence, 218 

Oliveira e Silva, Tomas, 218-219 
One decillion, 135 
Ontario puzzle C program, 296-304 

Palmer, Michael, 99 
Paradoxes, 21-23 
Patternless, 318 
Peninsular Anisotropy, 34 
Pentagram, 139-144 
Pi 

C program code, 70-71 
examined, 59 
history, 61 
nonrandom, 67 
randomness, 66-67 
rounding consequences, 70 
sequencing initiative, 59-60 
sequencing project, 60-61, 65-66 
survey results, 63 
trivia, 62 

Pickrell, Brian, 35, 37 
Poole, Herman story, 47-57 
Portuguese maneuver, 218-219 
Probability calculating, 85-87 
Probability distribution, geometric, 88 
Progenitor numbers, 227 
Program infinity application, 20-21 
Programs. See BASIC code; C code 
Pseudovampire numbers, 227-228 
Purdy, Scott, 110 
Puzzle 

cyclotron, 221-223 
observations, 217 

Quadratic iterated map, two-dimensional, 
174 

Quattuordecillion, 193 
QuickBASIC program, vampire numbers 

search, 293-295 
Quitt, Kevin D„ 124 

R, computation of, 148-150 
Radcliffe, David, 100-101 
Rajan, V.T., 180-181 
Ramanujan, Srinivasa, 194-196 
Randall, Tom, 23 
Random 

chord, 317-318 
number, 233-234, 245-246 
number generators, 234-239 
processes, 246-247 
term usage, 318 

Randomness 
and infinity, 247 
with digits in Pi, 66-67 

Rankin, Tom, 12 
Ranunculoid, 79 
Rational number system basic component, 

117 
Ray bodies, 45 
Real numbers directions, 167 
Recurrence relation example, 200 
Recursion 

defined, 197 
examples, 201-215 

Recursive 
C program to explore Worm World, 

278-279 
examples, 198-199 
formulas, 183 
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Recursive (cont'd) 
lattices, 201-203 
patterns, 206-207 
processes, 198 

Recursive Worlds 
C code, 275-276 
digressions, 207 

Reiter, Cliff, 229 
REXX program 

vampire numbers (OS/2) search, 
284-286 

vampire numbers search, 281-283, 286 
Richter, Helmut, 160 
Rudge, William, 181, 273 
Rusin, David, 65 

Schmitt, George, 67 
Schroeder, Manfred, 190, 233-234 
Schubert, Hermann, 70 
Series 

divergent, 153 
numbers in exploding series, 154 

Sharp, John, 163 
Shoham, Daniel, 217 
Slide 

example problem calculations, 85 
occurrence distributions, 88 
simulations of launching, 87-88 

Slides in Hell 
BASIC code, 254-255 
C code, 253-254 
digressions, 89 

Sociopolitical impact to infinite worlds, 
29-32 

Speed of light paradoxes, 22-23 
Spider web. See also Loom of Creation 

program manipulations, 79-81 
Spiral earths, 38 
Sprott, J. Clint, 12, 173, 320 
Square numbers, 159-160 
SQUID defined, 52 
Stars 

chamber, 144 
within stars, 140 

Stephan, Ralf, 132 
Stirling's formula, 98 
Strahlkrper, 45 
Strange attractor defined, 173 
Super three, defined, 7 
Super-Leviathans, 102 

Supercontinent, 34-36 
Superfactorials, 102 
Superpower effects on infinity Worlds, 29 
Symes, Andy, 133 
Symmetrical structure, 206-207 

Tavener, Stephen, 112-113 
Temporal infinity, xiii 
Terrain generation, 244-245 
Tesla, Nikola, 17 
Thomae and Grossman, 242 
Three 

percentage of occurrence, 3 
proportion of numbers, 5 
speciality of the number, 6-7 
super defined, 7 

Tobias, Randy, 160 
Tolman, Kenneth, 10-11 
Too Many Bishops game, 73-74 
Too Many Threes 

BASIC code, 249 
C code, 249 

Toothpick simulation, 43 
Transcendental numbers, 61, 317 

defined, 59 
Transform logit, 246 
Two 

irrational, 22 
square root of, 22 

Two-dimensional quadratic iterated map, 
174 

Ulamized variables, 240 
Undulants 

Binary, 161 
in other bases, 160-161 
numbers, 159 
prime numbers, 160-161 
squares, 160 

Vaillancourt, Alain, 33 
Vampire numbers 

All six-digit, 295-296 
BASIC program, 287-288 
C program, 287-292 
defined, 227 
digressions, 231 
frequency, 231 
Gofer Program, 280-281 
infinite, 230-231 
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omega, 228 
QuickBASIC program, 293-295 
REXX (OS/2) program, 284-286 
REXX program, 281-283, 286 
true, 228, 231 

Verhulst, Pierre-Francois, 240 
Vertical infinity earths, 28-29 
Vymenets, Youry, 269 

Wang, Peter T„ 68 
Warble, high-frequency, 129-130 
Ward, Thomas, 66, 68 
Webb, Don, 36, 64, 69, 318 
Weierstrass curves, 190 
Welcome to Worm World 

BASIC code, 258-259 
C code, 257-258 

Wicht, James, 109-110, 112 
Winarski, Daniel, 66 
Winter, DikT., 169 
Woods, Jeff, 12 
Worlds without end, 27 
Worm sizes for game, 107 
Worm World 

longest path, 110, 112-114 
Recursive C program to explore, 

278-279 
tournament, 107-112 

Zeno, 21 
Zero 

multiplied by infinity, 195 
numbers from multiples excluding zero, 

135-137 
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