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FOREWORD

This work follows and largely replaces my 1977 Essay, FRACTALS: FORM, CHANCE AND
DIMENSION, which had followed and largely replaced my 1975 Essay in French, LES
OBJETS FRACTALS: FORME, HASARD ET DIMENSION. Each stage involved new art, a few
deletions, extensive rewriting that affected nearly every section, additions devoted to my
older work, and—most important-—extensive additions devoted to new developments.

Richard F. Voss made an essential contribution to the 1977 Essay and to this work,
especially by designing and now redesigning the fractal flakes, most landscapes, and the
planets. The programs for many striking illustrations new to this Essay are by V. Alan
Norton.

Other invaluable, close, long-term associates were Sigmund W. Handelman, then
Mark R. Laff, for computation and graphics, and H. Catharine Dietrich, then Janis T.
Riznychok, for editing and typing.

Individual acknowledgments for the programs behind the illustrations and for other
specific assistance are found after the list of references at the end of the volume.

For their backing of my research and my books, I am deeply indebted to the
Thomas J. Watson Research Center of the International Business Machines Corpora-
tion. As Group Manager, Department Director, and now Director of Research, IBM
Vice President Ralph E. Gomory imagined ways of sheltering and underwriting my work
when it was a gamble, and now of giving it all the support I could use.

My first scientific publication came out on April 30, 1951. Over the years, it had
seemed to many that each of my investigations was aimed in a different direction. But
this apparent disorder was misleading: it hid a strong unity of purpose, which the
present Essay, like its two predecessors, is intended to reveal. Against odds, most of my
works turn out to have been the birth pangs of a new scientific discipline.
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| z INTRODUCTION

1 = Theme

Why is geometry often described as “cold”
and “dry?” One reason lies in its inability to
describe the shape of a cloud, a mountain, a
coastline, or a tree. Clouds are not spheres,
mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does light-
ning travel in a straight line.

More generally, I claim that many pat-
terns of Nature are so irregular and frag-
mented, that, compared with Euclid—a term
used in this work to denote all of standard
geometry—Nature exhibits not simply a high-
er degree but an altogether different level of
complexity. The number of distinct scales of
length of natural patterns is for all practical
purposes infinite.

The existence of these patterns challenges
us to study those forms that Euclid leaves
aside as being “formless,” to investigate the
morphology of the “amorphous.” Mathemati-
cians have disdained this challenge, however,
and have increasingly chosen to flee from na-

ture by devising theories unrelated to any-
thing we can see or feel.

Responding to this challenge, I conceived
and developed a new geometry of nature and
implemented its use in a number of diverse
fields. It describes many of the irregular and
fragmented patterns around us, and leads to
full-fledged theories, by identifying a family
of shapes I call fractals. The most useful frac-
tals involve chance and both their regularities
and their irregularities are statistical. Also,
the shapes described here tend to be scaling,
implying that the degree of their irregularity
and/or fragmentation is identical at all scales.
The concept of fractal (Hausdorff) dimension
plays a central role in this work.

Some fractal sets are curves or surfaces,
others are disconnected ““dusts,” and yet oth-
ers are so oddly shaped that there are no good
terms for them in either the sciences or the
arts. The reader i1s urged to sample them now,
by browsing through the book’s illustrations.



Many of these illustrations are of shapes
that had never been considered previously, but
others represent known constructs, often for
the first time. Indeed, while fractal geometry
as such dates from 1975, many of its tools and
concepts had been previously developed, for
diverse purposes altogether different from
mine. Through old stones inserted in the new-
ly built structure, fractal geometry was able
to “borrow” exceptionally extensive rigorous
foundations, and soon led to many compelling
new questions in mathematics.

Nevertheless, this work pursues neither
abstraction nor generality for its own sake,
and is neither a textbook nor a treatise in
mathematics. Despite its length, I describe it
as a scientific Essay because it is written from
a personal point of view and without attempt-
ing completeness. Also, like many FEssays, it
tends to digressions and interruptions.

This informality should help the reader
avoid the portions lying outside his interest or
beyond his competence. There are many
mathematically ““easy’ portions throughout,
especially toward the very end. Browse and
skip, at least at first and second reading.

PRESENTATION OF GOALS

This Essay brings together a number of anal-
yses in diverse sciences, and it promotes a new
mathematical and philosophical synthesis.
Thus, it serves as both a casebook and a
manifesto. Furthermore, it reveals a totally
new world of plastic beauty.

INTRODUCTION &m&xt |

A SCIENTIFIC CASEBOOK

Physicians and lawyers use “casebook™ to de-
note a compilation concerning actual cases
linked by a common theme. This term has no
counterpart in science, and 1 suggest we ap-
propriate it. The major cases require repeated
attention, but less important cases also de-
serve comment; often, their discussion is
shortened by the availability of “precedents.”
One case study concerns the widely known
application of widely known mathematics to a
widely known natural problem: Wiener’s geo-
metric model of physical Brownian motion.
Surprisingly, we encounter no fresh direct
application of Wiener’s process, which sug-
gests that, among the phenomena of higher
complexity with which we deal, Brownian
motion is a special case, an exceptionally sim-
ple and unstructured one. Nevertheless, it is
included because many useful fractals are
careful modifications of Brownian motion.
The other case studies report primarily
upon my own work, its pre-fractal anteced-
ents, and its extensions due to scholars who
reacted to this Essay’s 1975 and 1977 prede-
cessors. Some cases relate to the highly visible
worlds of mountains and the like, thus fulfill-
ing at long last the promise of the term
geometry. But other cases concern submicro-
scopic assemblies, the prime object of physics.
The substantive topic is occasionally eso-
teric. In other instances, the topic is a famili-
ar one, but its geometric aspects had not been
attacked adequately. One is reminded on this
account of Poincaré’s remark that there are
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questions that one chooses to ask and other
questions that ask themselves. And a question
that had long asked itself without response
tends to be abandoned to children.

Due to this difficulty, my previous Essays
stressed relentlessly the fact that the fractal
approach is both effective and “natural.” Not
only should it not be resisted, but one ought to
wonder how one could have gone so long with-
out it. Also, in order to avoid needless contro-
versy, these earlier texts minimized the dis-
continuities between exposition of standard
and other published material, exposition with
a new twist, and presentation of my own ideas
and results. In the present Essay, to the con-
trary, 1 am precise in claiming credit.

Most emphatically, I do not consider the
fractal point of view as a panacea, and each
case analysis should be assessed by the crite-
ria holding in its field, that is, mostly upon
the basis of its powers of organization, expla-
nation, and prediction, and not as example of
a mathematical structure. Since each case
study must be cut short before it becomes tru-
ly technical, the reader is referred elsewhere
for detailed developments. As a result (to
echo d’Arcy Thompson 1917), this Essay is
preface from beginning to end. Any specialist
who expects more will be disappointed.

A MANIFESTO: THERE IS A FRACTAL
FACE TO THE GEOMETRY OF NATURE

Now, the reason for bringing these prefaces
together is that each helps one to understand

the others because they share a common
mathematical structure. F. J. Dyson has given
an eloquent summary of this theme of mine.

“Fractal is a word invented by Mandelbrot
to bring together under one heading a large
class of objects that have [played]...an histori-
cal role...in the development of pure mathe-
matics. A great revolution of ideas separates
the classical mathematics of the 19th century
from the modern mathematics of the 20th.
Classical mathematics had its roots in the reg-
ular geometric structures of Euclid and the
continuously evolving dynamics of Newton.
Modern mathematics began with Cantor’s set
theory and Peano’s space-filling curve. Histor-
ically, the revolution was forced by the discov-
ery of mathematical structures that did not fit
the patterns of Fuclid and Newton. These new
structures were regarded...as ‘pathological,’...
as a ‘gallery of monsters,” kin to the cubist
painting and atonal music that were upsetting
established standards of taste in the arts at
about the same time. The mathematicians
who created the monsters regarded them as
important in showing that the world of pure
mathematics contains a richness of possibili-
ties going far beyond the simple structures
that they saw in Nature. Twentieth-century
mathematics flowered in the belief that it had
transcended completely the limitations im-
posed by its natural origins.

“Now, as Mandelbrot points out,...Nature
has played a joke on the mathematicians. The
19th-century mathematicians may have been
lacking in imagination, but Nature was not.
The same pathological structures that the



mathematicians invented to break loose from
19th-century naturalism turn out to be inher-
ent in familiar objects all around us.”*

In brief, I have confirmed Blaise Pascal’s
observation that imagination tires before Na-
ture. (“L’imagination se lassera plutdt de con-
cevoir que la nature de fournir.”)

Nevertheless, fractal geometry is not a
straight “application” of 20th century mathe-
matics. It is a new branch born belatedly of
the crisis of mathematics that started when
duBois Reymond 1875 first reported on a con-
tinuous nondifferentiable function constructed
by Weierstrass (Chapters 3, 39, and 41). The
crisis lasted approximately to 1925, major
actors being Cantor, Peano, Lebesgue, and
Hausdorff. These names, and those of Besi-
covitch, Bolzano, Cesaro, Koch, Osgood,
Sierpifiski, and Urysohn, are not ordinarily
encountered in the empirical study of Nature,
but 1 claim that the impact of the work of
these giants far transcends its intended scope.

I show that behind their very wildest cre-
ations, and unknown to them and to several
generations of followers, lie worlds of interest
to all those who celebrate Nature by trying to
imitate it.

Once again, we are surprised by what se-
veral past occurrences should have led us to
expect, that “the language of mathematics
reveals itself unreasonably effective in the
natural sciences..., a wonderful gift which we
neither understand nor deserve. We should be
grateful for it and hope that it will remain

*From ““‘Characterizing Irregularity’® by Freeman Dyson,
Science, May 12, 1978, vol. 200, no. 4342, pp. 677-678.
Copyright © 1978 by the American Association for the
Advancement of Science.
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valid in future research and that it will ex-
tend, for better or for worse, to our pleasure
even though perhaps also to our bafflement, to
wide branches of learning” (Wigner 1960).

MATHEMATICS, NATURE, ESTHETICS

In addition, fractal geometry reveals that
some of the most austerely formal chapters of
mathematics had a hidden face: a world of
pure plastic beauty unsuspected till now.

"FRACTAL” AND OTHER NEOLOGISMS

There is a saying in Latin that “‘to name is to
know:” Nomen est numen. Until 1 took up
their study, the sets alluded to in the preced-
ing sections were not important enough to re-
quire a term to denote them. However, as the
classical monsters were defanged and har-
nessed through my efforts, and as many new
“monsters” began to arise, the need for a
term became increasingly apparent. It became
acute when the first predecessor of this Essay
had to be given a title.

I coined fractal from the Latin adjective
fractus. The corresponding Latin verb
frangere means “to break:” to create irregular
fragments. It is therefore sensible—and how
appropriate for our needs!-—that, in addition
to “fragmented™ (as in fraction or refraction),
fractus should also mean “irregular,” both
meanings being preserved in fragment.

The proper pronunciation is frac'tal, the
stress being placed as in frac’tion.

The combination fractal ser will be defined
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rigorously, but the combination natural
fractal will serve loosely to designate a natu-
ral pattern that is usefully representable by a
fractal set. For example, Brownian curves are
fractal sets, and physical Brownian motion is
a natural fractal.

(Since algebra derives from the Arabic
jabara = to bind together, fractal and
algebra are etymological opposites!)

More generally, in my travels through
newly opened or newly settled territory, I was
often moved to exert the right of naming its
landmarks. Usually, to coin a careful neolo-
gism seemed better than to add a new wrinkle
to an already ovérused term.

And one must remember that a word’s
common meaning is often so entrenched, that
it is not erased by any amount of redefinition.
As Voltaire noted in 1730, “if Newton had
not used the word attraction, everyone in [the
French] Academy would have opened his eyes
to the light; but unfortunately he used in Lon-
don a word to which an idea of ridicule was
attached in Paris.” And phrases like “the
probability distribution of the Schwartz distri-
bution in space relative to the distribution of
galaxies™ are dreadful.

The terms coined in this Essay avoid this
pitfall by tapping underutilized Latin or
Greek roots, like trema, and the rarely bor-
rowed robust vocabularies of the shop, the
home, and the farm. Homely names make the
monsters easier to tame! For example, I give
technical meanings to dust, curd, and whey. 1
also advocate pertiling for a thorough (= per)
form of tiling.

RESTATEMENT OF GOALS

In sum, the present Fssay describes the solu-
tions I propose to a host of concrete problems,
including very old ones, with the help of
mathematics that is, in part, likewise very old,
but that (aside from applications to Brownian
motion) had never been used in this fashion.
The cases this mathematics allows us to tack-
le, and the extensions these cases require, lay
the foundation of a new discipline.

Scientists will (I am sure) be surprised and
delighted to find that not a few shapes they
had to call grainy, hydralike, in between,
pimply, pocky, ramified, seaweedy, strange,
tangled, tortuous, wiggly, wispy, wrinkled,
and the like, can henceforth be approached in
rigorous and vigorous quantitative fashion.

Mathematicians will (I hope) be surprised
and delighted to find that sets thus far reput-
ed exceptional (Carleson 1967) should in a
sense be the rule, that constructions deemed
pathological should evolve naturally from very
concrete problems, and that the study of Na-
ture should help solve old problems and yield
SO many new ones.

Nevertheless, this Essay avoids all purely
technical difficulties. It is addressed primarily
to a mixed group of scientists. The presenta-
tion of each theme begins with concrete and
specific cases. The nature of fractals is meant
to be gradually discovered by the reader, not
revealed in a flash by the author.

And the art can be enjoyed for itself.



2 « The Irregular and Fragmented in Nature

“All pulchritude is relative.... We ought
not...to believe that the banks of the ocean are
really deformed, because they have not the
form of a regular bulwark; nor that the moun-
tains are out of shape, because they are not
exact pyramids or cones; nor that the stars are
unskillfully placed, because they are not all
situated at uniform distance. These are not
natural irregularities, but with respect to our
fancies only; nor are they incommodious to
the true uses of life and the designs of man’s
being on earth.” This opinion of the seven-
teenth century English scholar Richard Bent-
ley (echoed in the opening words of this Es-
say) shows that to bring coastline, mountain,
and sky patterns together, and to contrast
them with Euclid, is an ancient idea.

FROM THE PEN OF JEAN PERRIN

Next we tune to a voice nearer in time and
profession. To elaborate upon the irregular or
fragmented character of coastlines, Brownian
trajectories, and other patterns of Nature to
be investigated in this Essay, let me present in

free translation some excerpts from Perrin
1906. Jean Perrin’s subsequent work on
Brownian motion won him the Nobel Prize
and spurred the development of probability
theory. But here I quote from an early philo-
sophical manifesto. Although it was later par-
aphrased in the preface to Perrin 1913, this
text failed to gain attention until quoted in
this Essay’s first (French) version. It had
come to my notice too late to have a substan-
tive effect on my work, but it spurred me on
at a time of need, and its eloquence remains
unmatched.

“It is well known that, before giving a rig-
orous definition of continuity, a good teacher
shows that beginners already possess the idea
which underlies this concept. He draws a well-
defined curve and says, holding a ruler, “You
see that there is a tangent at every point.” Or
again, in order to impart the notion of the
true velocity of a moving object at a point in
its trajectory, he says, ‘You see, of course,
that the mean velocity between two neighbor-
ing points does not vary appreciably as these
points approach infinitely near to each other.’
And many minds, aware that for certain fa-
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miliar motions this view appears true enough,
do not see that it involves considerable diffi-
culties.

“Mathematicians, however, are well aware
that it is childish to try to show by drawing
curves that every continuous function has a
derivative. Though differentiable functions
are the simplest and the easiest to deal with,
they are exceptional. Using geometrical lan-
guage, curves that have no tangents are the
rule, and regular curves, such as the circle,
are interesting but quite special.

“At first sight the consideration of the
general case seems merely an intellectual ex-
ercise, ingenious but artificial, the desire for
absolute accuracy carried to a ridiculous
length. Those who hear of curves without tan-
gents, or of functions without derivatives, of-
ten think at first that Nature presents no such
complications, nor even suggests them.

“The contrary, however, is true, and the
logic of the mathematicians has kept them
nearer to reality than the practical representa-
tions employed by physicists. This assertion
may be illustrated by considering certain ex-
perimental data without preconception.

“Consider, for instance, one of the white
flakes that are obtained by salting a solution
of soap. At a distance its contour may appear
sharply defined, but as we draw nearer its
sharpness disappears. The eye can no longer
draw a tangent at any point. A line that at
first sight would seem to be satisfactory ap-
pears on close scrutiny to be perpendicular or
oblique. The use of a magnifying glass or mi-
croscope leaves us just as uncertain, for fresh

irregularities appear every time we increase
the magnification, and we never succeed in
getting a sharp, smooth impression, as given,
for example, by a steel ball. So, if we accept
the latter as illustrating the classical form of
continuity, our flake could just as logically
suggest the more general notion of a continu-
ous function without a derivative.”

An interruption is necessary to draw atten-
tion to Plates 10 and 11.

The black-and-white plates first mentioned
in a given chapter are collected on pages that
follow immediately, and are numbered as the
pages on which they occur. The color plates
form a special signature, whose captions are
written to be fairly independent of the rest of
the book.

The quote resumes.

“We must bear in mind that the uncertain-
ty as to the position of the tangent at a point
on the contour is by no means the same as the
uncertainty observed on a map of Brittany.
Although it would differ according to the
map’s scale, a tangent can always be found,
for a map is a conventional diagram. On the
contrary, an essential characteristic of our
flake and of the coast is that we suspect,
without seeing them clearly, that any scale
involves details that absolutely prohibit the
fixing of a tangent.

“We are still in the realm of experimental
reality when we observe under the microscope
the Brownian motion agitating a small parti-
cle suspended in a fluid [this Essay’s Plate
13]. The direction of the straight line joining



the positions occupied at two instants very
close in time is found to vary absolutely irreg-
ularly as the time between the two instants is
decreased. An unprejudiced observer would
therefore conclude that he is dealing with a
function without derivative, instead of a curve
to which a tangent could be drawn.

“It must be borne in mind that, although
closer observation of any object generally
leads to the discovery of a highly irregular
structure, we often can with advantage ap-
proximate its properties by continuous func-
tions. Although wood may be indefinitely po-
rous, it is useful to speak of a beam that has
been sawed and planed as having a finite
area. In other words, at certain scales and for
certain methods of investigation, many phe-
nomena may be represented by regular contin-
uous functions, somewhat in the same way
that a sheet of tinfoil may be wrapped round
a sponge without following accurately the
latter’s complicated contour.

“If, to go further, we... attribute to matter
the infinitely granular structure that is in the
spirit of atomic theory, our power to apply to
reality the rigorous mathematical concept of
continuity will greatly decrease.

“Consider, for instance, the way in which
we define the density of air at a given point
and at a given moment. We picture a sphere
of volume v centered at that point and includ-
ing the mass m. The quotient m/v is the
mean density within the sphere, and by true
density we denote some limiting value of this
quotient. This notion, however, implies that at
the given moment the mean density is practi-

INTRODUCTION =HEE |

cally constant for spheres below a certain vol-
ume. This mean density may be notably dif-
ferent for spheres containing 1,000 cubic
meters and 1 cubic centimeter respectively,
but it is expected to vary only by 1 in
1,000,000 when comparing 1 cubic
centimeter to one-thousandth of a cubic
millimeter.

“Suppose the volume becomes continually
smaller. Instead of becoming less and less im-
portant, these fluctuations come to increase.
For scales at which the Brownian motion
shows great activity, fluctuations may attain
1 part in 1,000, and they become of the order
of 1 part in 5 when the radius of the hypo-
thetical spherule becomes of the order of a
hundredth of a micron.

“One step further and our spherule be-
comes of the order of a molecule radius. In a
gas, it will generally lie in intermolecular
space, where its mean density will henceforth
vanish. At our point the true density will also
vanish. But about once in a thousand times
that point will lie within a molecule, and the
mean density will be a thousand times higher
than the value we usually take to be the true
density of the gas.

“Let our spherule grow steadily smaller.
Soon, except under exceptional circumstances,
it will become empty and remain so hence-
forth owing to the emptiness of intra-atomic
space; the true density vanishes almost every-
where, except at an infinite number of isolat-
ed points, where it reaches an infinite value.

“Analogous considerations are applicable
to properties such as velocity, pressure, or
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temperature. We find them growing more and
more irregular as we increase the magnifica-
tion of our necessarily imperfect image of the
universe. The function that represents any
physical property will form in intermaterial
space a continuum with an infinite number
of singular points.

“Infinitely discontinuous matter, a contin-
uous ether studded with minute stars, also
appears in the cosmic universe. Indeed, the
conclusion we have reached above can also be
arrived at by imagining a sphere that succes-
sively embraces planets, solar system, stars,
and nebulae....

“Allow us now a hypothesis that is arbi-
trary but not self-contradictory. One might
encounter instances where using a function
without a derivative would be simpler than
using one that can be differentiated. When
this happens, the mathematical study of irreg-
ular continua will prove its practical value.”

Then, starting a new section for emphasis.
“However, this hope is nothing but a day-
dream, as yet.”

WHEN A “GALLERY OF MONSTERS"™
BECOMES A MUSEUM OF SCIENCE

Part of this daydream, relative to Brownian
motion, did become reality in Perrin’s own
lifetime. Perrin 1909 chanced to catch the
attention of Norbert Wiener (Wiener 1956,
pp- 38-39, or 1964, pp. 2-3), who, to his own
“surprise and delight” was moved to define
and study rigorously a nondifferentiable first

model of Brownian motion.

This model remains essential, but physi-
cists stress that its nondifferentiability is
traceable to abusive idealization, namely the
neglect of inertia. In doing so, physicists turn
their back to the feature of Wiener’s model
that is most significant for the present work.

As to the other applications of mathemat-
ics to physics that Perrin foresaw, they were
not even attempted until the present work.
The collection of sets to which Perrin was al-
luding (Weierstrass curves, Cantor dusts, and
the like) continued to remain a part of “pure
mathematics.”

Some writers, for example Vilenkin 1965,
call this collection a ‘“Mathematical Art
Museum,” without suspecting (I am sure)
how accurate those words were to be proven
by the present work. We know from Chapter
1 that other writers (beginning with Henri
Poincaré) call it a “Gallery of Monsters,”
echoing the Treatise of Algebra of John Wal-
lis (1685), where the fourth dimension is de-
scribed as “a Monster in Nature, and less pos-
sible than a Chimera or Centaure.”

One of the aims of the present Essay is to
show, through relentless hammering at diverse
explicit “cases,” that the same Gallery may
also be visited as a “Museum of Science.”

Mathematicians are to be praised for hav-
ing devised the first of these sets long ago,
and scolded for having discouraged us from
using them. L



Plates 10 and 11 o ARTIFICIAL FRACTAL FLAKES

In an inspiring text quoted in Chapter 2, Jean
Perrin comments on the form of the “white
flakes that are obtained by salting a solution
of soap.” These illustrations are meant to ac-
company Perrin’s remarks.

One must hasten to state that they are nei-
ther photographs nor computer reconstitutions
of any real object, be it a soap flake, a rain
cloud, a volcanic cloud, a small asterocid, or a
piece of virgin copper.

Nor do they claim to result from a theory
embodying the diverse aspects of a real flake’s
formation—chemical, physico-chemical, and
hydrodynamical.

A fortiori, they do not claim to be directly
related to scientific principles.

They are computer-generated shapes
meant to illustrate as simply as I can manage
certain geometric characteristics that seem to
be embodied in Perrin’s description, and that

I propose to model using the notion of fractal.

These flakes exist only in a computer’s
memory. They were never made into hard
models, and the shading too was implemented
by computation.

The flakes’ uction is explained in
A=hapter 30. The obvious perceptual differ-
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ences between them are due to differences in
the value of a parameter D written next to
each. It is called fractal dimension, is basic to
the present work, and is introduced in Chap-
ter 3. The overall shapes being the same in all
3 cases is due to bias introduced by the use of
an approximation, and is discussed in the cap-
tion of Plates 266 and 267.

An ecarlier version was oddly reminiscent
of a presumed photograph of the Loch Ness
monster. Could this convergence of form be
coincidental? HE
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Plate 13 = JEAN PERRIN’S CLASSIC DRAWINGS OF PHYSICAL BROWNIAN MOTION

Physical Brownian motion is described in Per-
rin 1909 as follows: “In a fluid mass in equi-
librium, such as water in a glass, all the parts
appear completely motionless. If we put into it
an object of greater density, it falls. The fall,
it is true, is the slower the smaller the object;
but a visible object always ends at the bottom
of the vessel and does not tend again to rise.
However, it would be difficult to examine for
long a preparation of very fine particles in a
liquid without observing a perfectly irregular
motion. They go, stop, start again, mount,
descend, mount again, without in the least
tending toward immobility.”

The present plate, the only one in this
book to picture a natural phenomenon, is re-
produced from Perrin’s Atoms. We see four
separate tracings of the motion of a colloidal
particle of radius 0.53u, as seen under the
microscope. The successive positions were
marked every 30 seconds (the grid size be-
ing 3.2u), then joined by straight intervals
having no physical reality whatsoever.

To resume our free translation from Perrin
1909, “One may be tempted to define an
‘average velocity of agitation’ by following a
particle as accurately as possible. But such
evaluations are grossly wrong. The apparent
average velocity varies crazily in magnitude
and direction. This plate gives only a weak
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idea of the prodigious entanglement of the
real trajectory. If indeed this particle’s posi-
tions were marked down 100 times more fre-
quently, each interval would be replaced by a
polygon smaller than the whole drawing but
just as complicated, and so on. It is easy to
see that in practice the notion of tangent is
meaningless for such curves.”

This Essay shares Perrin’s concern, but
attacks irregularity from a different angle.
We stress the fact that when a Brownian tra-
jectory is examined increasingly closely,
Chapter 25, its length increases without
bound.

Furthermore, the trail left behind by
Brownian motion ends up by nearly filling the
whole plane. Is it not tempting to conclude
that in some sense still to be defined, this pe-
culiar curve has the same dimension as the
plane? Indeed, it does. A principal aim of this
Essay will be to show that the loose notion of
dimension splits into several distinct compo-
nents. The Brownian motion’s trail is
topologically a curve, of dimension 1. Howev-
er, being practically plane filling, it is
fractally of dimension 2. The discrepancy be-
tween these two values will, in the terminolo-
gy introduced in this Essay, qualify Brownian
motion as being a fractal. Il
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3 = Dimension, Symmetry, Divergence

A central role is played in this Essay by the
ancient notions of dimension (meaning num-
ber of dimensions or dimensionality) and of
symmetry. Furthermore, we constantly en-
counter diverse symptoms of divergence.

THE IDEA OF DIMENSION

Mathematicians recognized during their 1875-
1925 crisis that a proper understanding of
irregularity or fragmentation (as of regularity
and connectedness) cannot be satisfied with
defining dimension as a number of coordi-
nates. The first step of a rigorous analysis is
taken by Cantor in his June 20, 1877, letter to

Dedekind, the next step by Peano in 1890, -

and the final steps in the 1920’s.

Like all major intellectual developments,
the outcome of this story can be interpreted in
diverse ways. Anyone who writes a mathemat-
ical book on the theory of dimension implies
that this theory is unique. But to my mind the
main fact is that the loose notion of dimension
turns out to have many mathematical facets
that not only are conceptually distinct but

may lead to different numerical values. Just
as William of Occam says of entities, dimen-
sions must not be multiplied beyond necessity,
but a multiplicity of dimensions is absolutely
unavoidable. Euclid is limited to sets for
which all the useful dimensions coincide, so
that one may call them dimensionally
concordant sets. On the other hand, the dif-
ferent dimensions of the sets to which the
bulk of this Essay is devoted fail to coincide;
these sets are dimensionally discordant.
Moving on from the dimensions of mathe-
matical sets to the “effective” dimensions of
the physical objects modeled by these sets, we
encounter a different sort of inevitable and
concretely essential ambiguity. Both the
mathematical and the physical aspects of di-
mension are previewed in this chapter.

DEFINITION OF THE TERM FRACTAL

The present section uses undefined mathemat-
ical terms, but many readers may find it help-
ful, or at least reassuring, to scan this text,
and anybody can skip it.



3 OO DIMENSION, SYMMETRY, DIVERGENCE

This and later digressions in this Essay are
delimited by the new brackets <1 and .
The latter is very bold, so as to be readily
found by anyone who becomes lost in a digres-
sion and wants to skip ahead. But the “open
bracket” symbol avoids attracting attention,
so as to prevent digressions from receiving
excessive attention. Material discussed later
often receives advance mention in digressions.

-a The fact that the basic fractals are di-
mensionally discordant can serve to transform
the concept of fractal from an intuitive to a
mathematical one. 1 chose to focus on two
definitions, each of which assigns to every set
RF in Euclidean space, no matter how
“pathological,” a real number which on intui-
tive and formal grounds strongly deserves to
be called its dimension. The more intuitive of
the two is the topological dimension according
to Brouwer, Lebesgue, Menger, and Urysohn.
We denote it by Dy. It is described in an en-
try in Chapter 41. The second dimension was
. formulated in Hausdorff 1919 and put in final
form by Besicovitch. It is discussed in Chap-
ter 39. We denote it by D.

- Whenever (as is usually the case) we
work in the Buclidean span IRE, both Dy and
D are at least O and at most E. But the resem-
blance ends here. The dimension Dy is always
an integer, but D need not be an integer. And
the two dimensions need not coincide; they
only satisfy the Szpilrajn inequality
(Hurewicz & Wallman 1941, Chapter 4)

D=Dr.
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For all of Euclid, D=Dy. But nearly al] sets in
this Essay satisfy D>Dy. There was no term
to denote such sets, which led me to coin the
term fractal, and to define it as follows:

<1 A fractal is by definition a set for
which the Hausdorff Besicovitch dimension
strictly exceeds the topological dimension.

-a Every set with a noninteger D is a frac-
tal. For example, the original Cantor set is a
fractal because we see in Chapter 8 that

D=log 2/log 3~0.6309>0, while Dy=0.

And a Cantor set in IRF can be tailored and
generalized so that Dy=0, while D takes on
any desired value between O and E (included).

-a Furthermore, the original Koch curve is
a fractal because we see in Chapter 6 that

D=log 4/log 3~1.2618>1, while Dy=1.

-a However, a fractal may have an integer D.
For example, Chapter 25 shows that the trail
of Brownian motion is a fractal because

D=2, while Dy=1.

-a The striking fact that D need not be an
integer deserves a terminological aside. If one
uses fraction broadly, as synonymous with a
noninteger real number, several of the above-
listed values of D are fractional, and indeed
the Hausdorff Besicovitch dimension is often
called fractional dimension. But D may be an
integer (not greater than E but strictly greater
than Dy). I call D a fractal dimension. w
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FRACTALS IN HARMONIC ANALYSIS

-a Part of the study of fractals is the geome-
tric face of harmonic analysis, but this fact is
not stressed in the present work. Harmonic (=
spectral or Fourier) analysis is not known to
most readers, and many who use it effectively
are not acquainted with its basic structures.

Also, both the fractal and the spectral ap-
proach have their own strong flavor and per-
sonality, which are better appreciated by first
investigating each for its own sake. Finally,
compared to harmonic analysis, the study of
fractals is easy and intuitive. w-

OF “"NOTIONS THAT ARE NEW,... BUT”

Lebesgue made fun of certain “notions that
are new, to be sure, but of which no use can
be made after they have been defined.” This
comment never applied to D, but the use of D
remained concentrated in few areas, all of
them in pure mathematics. I was the first to
use D successfully in the description of Na-
ture. And one of the central goals of this work
is to establish D in a central position in empir-
ical science, thereby showing it to be of far
broader import than anyone imagined.

Several areas of physics accepted my claim
concerning D with exceptional promptness. In
fact, having recognized the inadequacies of
standard dimension, numerous scholars in
these areas had already been groping towards
broken, anomalous or continuous dimensions
of all kind. These approaches had remained
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mutually unrelated, however. Furthermore,
few definitions of dimension were used more
than once, none had the backing of a mathe-
matical theory, and none was developed far
enough for the lack of mathematical backing
to make a difference. For the developments to
be described here, to the contrary, the exist-
ence of a mathematical theory is vital.

A MATHEMATICAL STUDY OF FORM
MUST GO BEYOND TOPOLOGY

A mathematician, if asked which well-defined
branch of mathematics studies form, is very
likely to mention topology. This field is impor-
tant to our purposes and is referred to in the
preceding section, but the present Essay ad-
vances and defends the claim that the loose
notion of form possesses mathematical aspects
other than topological ones.

Topology, which used to be called geonie-
try of situation or analysis situs (Towos
means position, situation in Greek), considers
that all pots with two handles are of the same
form because, if both are infinitely flexible
and compressible, they can be molded into
any other continuously, without tearing any
new opening or closing up any old one. It also
teaches that all single island coastlines are of
the same form, because they are topologically
identical to a circle. And that the topological
dimension is the same for coastlines and cir-
cles: equal to 1. If one adds offshore “satellite
islands,” the cumulative coastline is topologi-
cally identical to “many” circles. Thus, topol-
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ogy fails to discriminate between different
coastlines.

By way of contrast, Chapter 5 shows that
different coastlines tend to have different
fractal dimensions. Differences in fractal di-
mension express differences in a nontopologi-
cal aspect of form, which 1 propose to call
Jractal form.

Most problems of real interest combine
fractal and topological features in increasingly
subtle fashion.

Observe that in the case of topology, the
definitions of the field itself and of Dt were
refined in parallel, while the notion of D pre-
ceded the present study of fractal form by
half a century.

Incidentally, Felix Hausdorff’s name being
given to a class of topological spaces, the
widely used contracted term for D, Hausdorff
dimension, seems to have undertones of
“dimension of a Hausdorff space,” thus sug-
gesting it is a topological concept—which em-
phatically is not the case. This is yet another
reason for preferring fractal dimension.

EFFECTIVE DIMENSION

In addition to the mathematical notions un-
derlying Dt and D, this Essay often invokes
effective dimension, a notion that should not
be defined precisely. It is an intuitive and po-
tent throwback to the Pythagoreans’ archaic
Greek geometry. A novelty of this Essay is
that it allows the value of effective dimension
to be a fraction.

17

Effective dimension concerns the relation
between mathematical sets and natural ob-
jects. Strictly speaking, physical objects such
as a veil, a thread, or a tiny ball should all be
represented by three-dimensional shapes.
However, physicists prefer to think of a veil, a
thread, or a ball—if they are fine enough—as
being “in effect” of dimensions 2, 1, and O,
respectively. For example, to describe a
thread, the theories relating to sets of dimen-
sion 1 or 3 must be modified by corrective
terms. And the better geometrical model is
determined after the fact, as involving the
smaller corrections. If luck holds, this model
continues to be helpful even when corrections
are omitted. In other words, effective dimen-
sion inevitably has a subjective basis. It is a
matter of approximation and therefore of de-
gree of resolution.

DIFFERENT EFFECTIVE DIMENSIONS
IMPLICIT IN A BALL OF THREAD

To confirm this last hunch, a ball of 10 cm
diameter made of a thick thread of 1 mm
diameter possesses (in latent fashion) several
distinct effective dimensions.-

To an observer placed far away, the ball
appears as a zero-dimensional figure: a point.
(Anyhow, it is asserted by Blaise Pascal and
by medieval philosophers that on a cosmic
scale our whole world is but a point!) As seen
from a distance of 10 cm resolution, the ball
of thread is a three-dimensional figure. At 10
mm, it is a mess of one-dimensional threads.
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At 0.1 mm, each thread becomes a column
and the whole becomes a three-dimensional
figure again. At 0.01 mm, each column dis-
solves into fibers, and the ball again becomes
one-dimensional, and so on, with the dimen-
sion crossing over repeatedly from one value
to another. When the ball is represented by a
finite number of atomlike pinpoints, it be-
comes zero-dimensional again. An analogous
sequence of dimensions and crossovers is en-
countered in a sheet of paper.

The notion that a numerical result should
depend on the relation of object to observer is
in the spirit of physics in this century and is
even an exemplary illustration of it.

Most of the objects considered in this Fs-
say are like our ball of thread: they exhibit a
succession of different effective dimensions.
But a vital new element is added: certain ill-
defined transitions between zones of well-
defined dimension are reinterpreted as being
fractal zones within which D>Dq.

SPATIAL HOMOGENEITY, SCALING,
AND SELF-SIMILARITY

Having finished with dimensions for the time
being, let us prepare for the theme of symme-
try by recalling that Euclid begins with the
simplest shapes, such as lines, planes, or
spaces. And the simplest physics arises when
some quantity such as density, temperature,
pressure, or velocity is distributed in a homo-
geneous manner.

The homogeneous distribution on a line,
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plane, or space has two very desirable proper-
ties. It is invariant under displacement, and it
is invariant under change of scale. When we
move on to fractals, either invariance must be
modified and/or restricted in its scope.
Hence, the best fractals are those that exhibit
the maximum of invariance.

Concerning displacement: different parts
of the trail of Brownian motion can never be
precisely superposed on each other—as can be
done with equal parts of a straight line. Nev-
ertheless, the parts can be made to be super-
posable in a statistical sense. Nearly all the
fractals in the present Essay are to some ex-
tent invariant under displacement.

Furthermore, most fractals in this Essay
are invariant under certain transformations of
scale. They are called scaling. A fractal invar-
iant under ordinary geometric similarity is
called self-similar.

In the compound term scaling fractals, the
adjective serves to mitigate the noun. While
the primary term fractal points to disorder
and covers cases of intractable irregularity,
the modifier scaling points to a kind of order.
Alternatively, taking scaling as the primary
term pointing to strict order, fractal is a mod-
ifier meant to exclude lines and planes.

The motivation for assuming homogeneity
and scaling must not be misinterpreted. Here
as in standard geometry of nature, no one be-
lieves that the world is strictly homogeneous
or scaling. Standard geometry investigates
straight lines as a preliminary. And mechan-
ics also views uniform rectilinear motion as
merely a first step.
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The same is true of the study of scaling
fractals, but the first step takes much longer
in this case because the straight line is re-
placed by a wealth of diverse possibilities,
which this book can merely sample. One
should not be surprised that scaling fractals
should be limited to providing first approxi-
mations of the natural shapes to be tackled.
One must rather marvel that these first ap-
proximations are so strikingly reasonable.

It is good to point out that self-similarity
is an old idea. In the case of the line, it occur-
red to Leibniz circa 1700 (see under SCALING
IN LEIBNIZ AND LAPLACE in Chapter 41). And
its generalization beyond lines and planes is
almost a hundred years old in mathematics,
though its concrete importance was not appre-
ciated until this Essay. Also, it is not new in
science, since Lewis F. Richardson postulated
in 1926 that over a wide range of scales tur-
bulence is decomposable into self-similar ed-
dies. Furthermore, striking analytical conse-
quences of this idea in mechanics are drawn
in Kolmogorov 1941. And the analytic aspects
of scaling in physics are associated with the
notion of renormalization group, Chapter 36.

However, this Essay’s 1975 predecessor
was the first to address itself to the geometric
aspects of nonstandard scaling in Nature.

“"SYMMETRIES” BEYOND SCALING

After it finishes with lines, Euclid tackles
shapes with richer properties of invariance,
usually called “symmetries.” And this Essay

19

also makes a fairly lengthy excursion into
nonscaling fractals, in Chapters 15 to 20.

Self-mapping but nonscaling fractals are
intimately linked with some of the most re-
fined and difficult areas of “hard” classical
mathematical analysis. Contrary to rumors
that analysis is a dry subject, these fractals
tend to be astoundingly beautiful.

DIVERGENCE SYNDROMES

Almost every case study we perform involves
a divergence syndrome. That is, some quantity
that is commonly expected to be positive and
finite turns out either to be infinite or to van-
ish. At first blush, such misbehavior looks
most bizarre and even terrifying, but a careful
reexamination shows it to be quite accepta-
ble..., as long as one is willing to use new me-
thods of thought.

Cases where a symmetry is accompanied
by a divergence are also a familiar fixture of
quantum physics, within which diverse diver-
gence eliminating arguments take a place of
honor. Luckily, the various fractal divergences
are much easier to handle. » [ |



4 = Variations

Now that the diverse objectives of this Essay
are outlined, we examine its manner. It too
attempts to integrate several distinct facets.

OBSCURITY IS NOT A VIRTUE

To be accessible to scholars and students not
necessarily specializing in the various subjects
tackled, many of which are esoteric, this work
incorporates much exposition.

But exposition is not its principal purpose.

Further, an attempt is made not to fright-
en away those who are not interested in math-
ematical precision, but who ought to be inter-
ested in my main conclusions. Rigorous math-
ematical backup is available throughout (and
is sounder than in much of physics), but the
book’s style is informal (though precise). All
detail is set aside to Chapter 39, to the refer-
ences, and to diverse works to come.

Since original work is not expected to show
such concerns, this Essay is to some extent a
work of popularization.

But popularization is not its
purpose.

main

and Disclaimers

ERUDITION 1S GOOD FOR THE SOUL

As exemplified in Chapter 2, this Essay in-
cludes many old and obscure references. Most
did not attract my attention until well after
my own work in related areas was essentially
complete. They did not influence my thinking.
However, during the long years when my in-
terests were not shared by anyone, I rejoiced
in discovering analogous concerns in ancient
works, however fleetingly and ineffectually
expressed, witness their failure to be devel-
oped. In this fashion, an interest in “classics,”
which the usual practice of science destroys,
was nurtured in my case.

In other words, I rejoiced in finding that
the stones I needed-—as the architect and
builder of the theory of fractals—included
many that had been considered by others. But
why continue to dwell on this fact today?
Casual footnotes would satisfy the prevailing
custom, while an excessive stress on distant
roots or origins risks fostering the absurd im-
pression that my building is largely a pile of
old stones with new names on them.

Thus, my antiquarian curiosity would re-
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quire a justification, but I shall not attempt
one. It is enough to say that, in my opinion,
an interest in the history of ideas is good for
the scientist’s soul.

However, whenever we read a great man’s
writings in a light with which he was not
blessed, we may ponder the delightful preface
Lebesgue wrote to a book by Lusin. He dis-
claimed many profound thoughts with which
said book credited him, saying he might have,
or should have, had these thoughts, but had
not, and that they originated with Lusin. A
related item is Whittaker 1953, wherein
quotes from Poincaré and Lorentz are mar-
shalled in favor of a thesis both had pointedly
disclaimed: that the physical theory of relativ-
ity was their creation and not Einstein’s.

Also, for each author jotting down years
ago an idea which we can now develop but he
did not, we run the risk of finding a second
author to declare that the idea is absurd. And
should we credit the young Henri Poincaré
with ideas he failed to develop, and the ma-
ture Henri Poincaré rejected? Stent 1972
might lead us to the conclusion that prema-
turity, being too much ahead of one’s time,
deserves nothing but compassionate oblivion.

While excessive erudition in relation to the
history of ideas is self-defeating. I do wish to
assert the echoes from the past, stressing them
further in the biographical and historical
sketches in Chapters 40 and 41.

Yet, a display of erudition is certainly not
the main purpose of this Essay.
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“TO SEE IS TO BELIEVE”

In a letter to Dedekind, at the very beginning
of the 1875-1925 crisis in mathematics, Can-
tor is overwhelmed by amazement at his own
findings, and slips from German to French to
exclaim that “to see is not to believe” (“Je le
vois, mais je ne le crois pas’). And, as if on
cue, mathematics seeks to avoid being misled
by the graven images of monsters. What a
contrast between the rococo exuberance of
pre- or counterrevolutionary geometry, and
the near-total visual barrenness of the works
of Weierstrass, Cantor, or Peano! In physics,
an analogous development threatened since
about 1800, since Laplace’s Celestial
Mechanics avoided all illustration. And it is
exemplified by the statement by P. A. M. Di-
rac (in the preface of his 1930 Quantum
Mechanics) that nature’s “fundamental laws
do not govern the world as it appears in our
mental picture in any very direct way, but
instead they control a substratum of which we
cannot form a mental picture without intro-
ducing irrelevancies.”

The wide and uncritical acceptance of this
view has become destructive. In particular, in
the theory of fractals “to see is to believe.”
Therefore, before he proceeds further, the
reader is again advised to browse through my
picture book. This Essay was designed to help
make its contents accessible in various degrees
to a wide range of readers, and to try and
convince even the purest among mathemati-
cians that the understanding of known con-
cepts and the search for new concepts and



conjectures are both helped by fine graphics.
Rarely does contemporary scientific literature
show such trust in the usefulness of graphics.

However, showing pretty pictures is not
the main purpose in this Essay; they are an
essential tool, but only a tool.

One must also recognize that any attempt
to illustrate geometry involves a basic fallacy.
For example, a straight line is unbounded and
infinitely thin and smooth, while any illustra-
tion is unavoidably of finite length, of positive
thickness, and rough edged. Nevertheless, a
rough evocative drawing of a line is felt by
many to be useful, and by some to be neces-
sary, to develop intuition and help in the
search for proof. And a rough drawing is a
more adequate geometric model of a thread
than the mathematical line itself. In other
words, it suffices for all practical purposes
that a geometric concept and its image should
fit within a certain range of characteristic
sizes, ranging between a large but finite size
to be called outer cutoff and a small but posi-
tive inner cutoff.

Today, thanks to computer-controlled
graphics, the same kind of evocative illustra-
tion is practical in the case of fractals. For
example, all self-similar fractal curves are
also unbounded and infinitely thin. Also, each
has a very specific lack of smoothness, which
makes it more complicated than anything in
Euchlid. The best representation, therefore, can
only hold within a limited range, on the prin-
ciples we have already encountered. However,
cutting off the very large and the very small
detail is not only quite acceptable but even
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eminently appropriate, because both cutoffs
are either present or suspected in Nature.
Thus the typical fractal curve can be evoked
satisfactorily by elementary strokes in large
but finite number.

The larger the number of strokes and the
greater the accuracy of the process, the more
useful the representation, because fractal con-
cepts refer to the mutual placement of strokes
in space, and it is vital in illustrating them to
keep to precise scale. Hand drawing would be
prohibitive, but computer graphics serves
beautifully. My successive Essays have been
very much influenced by the availability of
increasingly sophisticated systems—and of
increasingly sophisticated programmer-artists
to run them! Also, I am fortunate in having
access to a device that produces camera ready
illustrations. This Essay provides a sample of
its output.

Graphics is wonderful for matching models
with reality. When a chance mechanism
agrees with the data from some analytic view-
point but simulations of the model do not look
at all “real,” the analytic agreement should
be suspect. A formula can relate to only a
small aspect of the relationship between mod-
el and reality, while the eye has enormous
powers of integration and discrimination.
True, the eye sometimes sees spurious rela-
tionships which statistical analysis later nega-
tes, but this problem arises mostly in areas of
science where samples are very small. In the
areas we shall explore, samples are huge.

In addition, graphics helps find new uses
for existing models. I first experienced this
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possibility with the random walk illustration
in Feller 1950—the curve looked like a
mountain’s profile or cross section, and the
points where it intersects the time axis re-
minded me of certain records I was then in-
vestigating, relative to telephone errors. The
ensuing hunches eventually led to the theories
presented in Chapters 28 and 31, respectively.
My own computer-generated illustrations pro-
vided similar inspiration, both to me and to
others kind enough to “scout” for me in more
sciences than I knew existed.

Naturally, graphics is extended by cinema-
tography: films concerned with some classical
fractals have been provided by Max 1971.

THE STANDARD FORM, AND THE NEW
FRACTAL FORM, OF GEOMETRIC “ART"

As to this book’s endpapers and diverse pat-
terns scattered around, they were the unin-
tended result of faulty computer program-
ming. I hear and read of both the intended
and the unintended illustrations being de-
scribed as a “New Form of Art.”

Clearly, competing with artists is not at
all a purpose of this Essay. Nevertheless, one
must address this issue. The question is not
whether the illustrations are neatly drawn and
printed, and the originals being drawn by
computer is not essential either, except in
terms of economics. But we do deal with a
new form of the controversial but ancient
theme that all graphical representations of
mathematical concepts are a form of art, one

that is best when it is simplest, when (to bor-
row a painter’s term) it can be called
“minimal art.”

It is widely held that minimal art is re-
stricted to limited combinations of standard
shapes: lines, circles, spirals, and the like. But
such need not be the case. The fractals used
in scientific models are also very simple
(because science puts a premium on simplici-
ty). And I agree that many may be viewed as
a new form of minimal geometric art.

Is some of it reminiscent of M. C. Escher?
It should be, because Escher had the merit of
letting himself be inspired by the hyperbolic
tilings in Fricke & Klein 1897, which (see
Chapter 18) relate closely to shapes that are
being incorporated into the fractal realm.

The fractal ‘“new geometric art” shows
surprising kinship to Grand Masters paintings
or Beaux Arts architecture. An obvious reason
is that classical visual arts, like fractals, in-
volve very many scales of length and favor
self-similarity (Mandelbrot 19811). For all
these reasons, and also because it came in
through an effort to imitate Nature in order
to guess its laws, it may well be that fractal
art is readily accepted because it is not truly
unfamiliar. Abstract paintings vary on this
account: those I like also tend to be close to
fractal geometric art, but many are closer to
standard geometric art—too close for my own
comfort and enjoyment.

A paradox emerges here: As observed in
Dyson’s quote in Chapter 1, modern mathe-
matics, music, painting, and architecture may
seem to be related to one another. But this is
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a superficial impression, notably in the con-
text of architecture: A Mies van der Rohe
building is a scalebound throwback to Euclid,
while.a high period Beaux Arts building is
rich in fractal aspects.

POINTS OF LOGISTICS

Successive chapters take up diverse topics by
increasing complexity, in order to introduce
the basic ideas gradually. The fact that this
approach seems feasible is a great asset for
the theory of fractals. The amount of built-in
repetition is such that the reader is unlikely to
lose the main thrust of the argument if he
skips the passages he feels to be either repeti-
tious or too complicated (in particular, those
that go beyond the most elementary mathe-
matics). Much information is included in the
captions of the plates.

As already mentioned, the plates are
grouped after the chapters where they are
first examined. Also this writer feels every so
often the need to engage in private conversa-
tion, so to speak, with specific groups of read-
ers who might be overly troubled if some
point were left unmentioned or unexplained.
The digressions are left in the text but mark-
ed by the newfangled brackets <w and m,
which should make them easier to skip. Other
digressions are devoted to incidental remarks
I have no time to explore fully. But this Essay
is less digressive than the 1977 Fractals.

An attempt is made to show at a glance

- whether the discussion is concerned with theo-

INTRODUCTION ORI |

retical or empirical dimensions D. The latter
are mostly known to one or two decimals, and
are therefore written as 1.2 or 1.37. The for-
mer are written as integers, ratios of integers,
ratios of logarithms of integers, or in decimal
form to at least four decimals.

BACK TO THE BASIC THEME

Having disclaimed diverse goals that are pe-
ripheral to this Essay, let me echo Chapter 1.
This work is a manifesto and a casebook, de-
voted nearly exclusively to theories and theses
which I initiated but which often led to the
revival and the reinterpretation of diverse old
works.

None of these theories stopped growing,
and a few are still at the seed stage. Some are
published here for the first time, while others
had been described in my earlier articles. In
addition, I mention numerous developments
my earlier Essays had inspired, and which in
turn stimulated me. However, 1 do not at-
tempt to list all the fields where fractals prove
useful, for fear of destroying the style of an
Essay and the flavor of a manifesto.

Last reminder: I do not propose to develop
any case study in the full detail desired by the
specialists. But many topics are touched upon
repeatedly; don’t forget to use the index. HE
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5 = How Long Is the Coast of Britain?

To introduce a first category of fractals,
namely curves whose fractal dimension is
greater than 1, consider a stretch of coastline.
It is evident that its length is at least equal to
the distance measured along a straight line
between its beginning and its end. However,
the typical coastline is irregular and winding,
and there is no question it is much longer
than the straight line between its end points.
There are various ways of evaluating its
length more accurately, and this chapter ana-
lyzes several of them. The result is most pe-
culiar: coastline length turns out to be an elu-
sive notion that slips between the fingers of
one who wants to grasp it. All measurement
methods ultimately lead to the conclusion that
the typical coastline’s length is very large and
so ill determined that it is best considered in-
finite. Hence, if one wishes to compare differ-
ent coastlines from the viewpoint of their
“extent,” length is an inadequate concept.
This chapter seeks an improved substitute,

and in doing so finds it impossible to avoid
introducing various forms of the fractal con-
cepts of dimension, measure, and curve.

MULTIPLICITY OF ALTERNATIVE
METHODS OF MEASUREMENT

METHOD A: Set dividers to a prescribed open-
ing ¢, to be called the yardstick length, and
walk these dividers along the coastline, each
new step starting where the previous step
leaves off. The number of steps multiplied by
¢ is an approximate length L(e). As the
dividers’ opening becomes smaller and small-
er, and as we repeat the operation, we have
been taught to expect L(e) to settle rapidly to
a well-defined value called the true length.
But in fact what we expect does not happen.
In the typical case, the observed L(¢) tends to
increase without limit.

The reason for this behavior is obvious:
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When a bay or peninsula noticed on a map
scaled to 1/100,000 is reexamined on a map
at 1 /10,000, subbays and subpeninsulas be-
come visible. On a 1/1,000 scale map, sub-
subbays and sub-subpeninsulas appear, and so
forth. Each adds to the measured length.

Our procedure acknowledges that a coast-
line is too irregular to be measured directly by
reading it off in a catalog of lengths of simple
geometric curves. Therefore, METHOD A re-
places the coastline by a sequence of broken
lines made of straight intervals, which are
curves we know how to handle.

METHOD B: Such “smoothing out” can also
be accomplished in other ways. Imagine a
man walking along the coastline, taking the
shortest path that stays no farther from the
water than the prescribed distance e. Then he
resumes his walk after reducing his yardstick,
then again, after another reduction; and so on,
until e reaches, say, 50 cm. Man is too big
and clumsy to follow any finer detail. One
may further argue that this unreachable fine
detail (a) is of no direct interest to Man and
(b) varies with the seasons and the tides so
much that it is altogether meaningless. We
take up argument (a) later on in this chapter.
In the meantime, we can neutralize argument
(b) by restricting our attention to a rocky
coastline observed when the tide is low and
the waves are negligible. In principle, Man
could follow such a curve down to finer details
by harnessing a mouse, then an ant, and so
forth. Again, as our walker stays increasingly
closer to the coastline, the distance to be cov-
ered continues to increase with no limit.

THREE CLASSIC FRACTALS, TAMED &XX 1l

METHOD C: An asymmetry between land
and water is implied in METHOD B. To avoid
it, Cantor suggests, in effect, that one should
view the coastline with an out-of-focus camera
that transforms every point into a circular
blotch of radius e. In other words, Cantor con-
siders all the points of both land and water for
which the distance to the coastline is no more
than e. These points form a kind of sausage or
tape of width 2¢, as seen in a different context
on Plate 32. Measure the area of the tape and
divide it by 2e. If the coastline were straight,
the tape would be a rectangle, and the above
quotient would be the actual length. With ac-
tual coastlines, we have an estimated length
L(e). As e decreases, this estimate increases
without limit.

METHOD D: Imagine a map drawn in the
manner of pointillist painters using circular
blotches of radius e. Instead of using circles
centered on the coastline, as in METHOD C, let
us require that the blotches that cover the
entire coastline be as few in number as possi-
ble. As a result, they may well lie mostly in-
land near the capes and mostly in the sea near
the bays. Such a map’s area, divided by 2, is
an estimate of the length. This estimate also
“misbehaves.”

ARBITRARINESS OF
THE RESULTS OF MEASUREMENT

To summarize the preceding section, the main
finding is always the same. As e is made
smaller and smaller, every approximate length
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tends to increase steadily without bound.

In order to ascertain the meaning of this
result, let us perform analogous measurements
on a standard curve from Euclid. For an in-
terval of straight line, the approximate meas-
urements are essentially identical and define
the length. For a circle, the approximate
measurements increase but converge rapidly
to a limit. The curves for which a length is
thus defined are called rectifiable.

An even more interesting contrast is pro-
vided by the results of measurement on a
coastline that Man has tamed, say the coast
at Chelsea as it is today. Since very large fea-
tures are unaffected by Man, a very large
yardstick again yields results that increase as
¢ decreases.

However, there is an intermediate zone of
¢’s in which L{e) varies little. This zone may
go from 20 meters down to 20 centimeters
(but do not take these values too strictly). But
L(¢) increases again after ¢ becomes less than
20 centimeters and measurements become
affected by the irregularity of the stones.
Thus, if we trace the curves representing L(e)
as a function of e, there is little doubt that the
length exhibits, in the zone of ¢’s between
e=20 meters and =20 centimeters, a flat
portion that was not observable before the
coast was tamed.

Measurements made in this zone are obvi-
ously of great practical use. Since boundaries
between different scientific disciplines are
largely a matter of conventional division of
labor between scientists, one might restrict
geography to phenomena above Man’s reach,
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for example, on scales above 20 meters. This
restriction would yield a well-defined value of
geographical length. The Coast Guard may
well choose to use the same e for untamed
coasts, and encyclopedias and almanacs could
adopt the corresponding L{e).

However, the adoption of the same e by all
the agencies of a government is hard to imag-
ine, and its adoption by all countries is all but
inconceivable. For example, Richardson 1961,
the lengths of the common frontiers between
Spain and Portugal, or Belgium and Nether-
lands, as reported in these neighbors’ ency-
clopedias, differ by 20%. The discrepancy
must in part result from different choices of e.
An empirical finding to be discussed soon
shows that it suffices that the e differ by a
factor of 2, and one should not be surprised
that a small country (Portugal) measures its
borders more accurately than its big neighbor.

The second and more significant reason
against deciding on an arbitrary ¢ is philo-
sophical and scientific. Nature does exist
apart from Man, and anyone who gives too
much weight to any specific € and L(e) lets the
study of Nature be dominated by Man, either
through his typical yardstick size or his highly
variable technical reach. If coastlines are ever
to become an object of scientific inquiry, the
uncertainty concerning their lengths cannot be
legislated away. In one manner or another,
the concept of geographic length is not as
inoffensive as it seems. It is not entirely
“objective.”” The observer inevitably inter-
venes in its definition.
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1S THIS ARBITRARINESS GENERALLY
RECOGNIZED, AND DOES IT MATTER?

The view that coastline lengths are nonrecti-
fiable is doubtless held true by many people,
and I for one do not recall ever thinking oth-
erwise. But my search for written statements
to this effect is a near fiasco. Aside from the
Perrin quote in Chapter 2, there is the obser-
vation in Steinhaus 1954 that “the left bank
of the Vistula, when measured with increasing
precision, would furnish lengths ten, hundred
or even thousand times as great as the length
read off the school map...[A] statement nearly
approaching reality would be to call most arcs
encountered in nature nonrectifiable. This
statement is contrary to the belief that non-
rectifiable arcs are an invention of mathema-
ticians and that natural arcs are rectifiable: it
is the opposite that is true.” But neither Per-
rin nor Steinhaus follow up on this insight.
Let me also retell a story reported by C.
Fadiman. His friend Edward Kasner would
ask small tots ““to guess the length of the east-
ern coast line of the United States. After a
‘sensible’ guess had been made...he
would...point out that this figure increased
enormously if you measured the perimeter of
each bay and inlet, then that of every projec-
tion and curve of each of these, then the dis-
tance separating every small particle of coast-
line matter, each molecule, atom, etc. Obvi-
ously the coast line is as long as you want to
make it. The children understood this at once;
Kasner had more trouble with grownups.”
The story is nice, but it is not relevant here:
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Kasner’s goal was not to point out an aspect
of Nature worthy of further exploration.

Therefore, Mandelbrot 1967s and the pres-
ent Essay are effectively the first works on
this subject.

One is reminded of William James writing
in The Will to Believe that “The great field
for new discoveries...is always the unclassified
residuum. Round about the accredited and
orderly facts of every science there ever floats
a sort of dust-cloud of exceptional observa-
tions, of occurrences minute and irregular and
seldom met with, which it always proves more
easy to ignore than to attend to. The ideal of
every science is that of a closed and complet-
ed system of truth... Phenomena unclassifiable
within the system are paradoxical absurdities,
and must be held untrue...—one neglects or
denies them with the best of scientific con-
sciences... Any one will renovate his science
who will steadily look after the irregular phe-
nomena. And when the science is renewed, its
new formulas often have more of the voice of
the exception in them than of what were sup-
posed to be the rules.”

This Essay, whose ambition is indeed to
renew the Geometry of Nature, relies upon
many puzzles so unclassified that they are
only published when the censors nod. The
next section discusses a first example.

THE RICHARDSON EFFECT

The variation of the approximate length L(e)
obtained by Method A has been studied em-
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pirically in Richardson 1961, a reference that
chance (or fate) put in my way. I paid atten-
tion because (Chapter 40) I knew of Lewis
Fry Richardson as a great scientist whose
originality mixed with eccentricity. As we
shall learn in Chapter 10, we are indebted to
him for some of the most profound and most
durable ideas regarding the nature of turbu-
lence, notably the notion that turbulence in-
volves a self-similar cascade. He also con-
cerned himself with other difficult problems,
such as the nature of armed conflict between
states. His experiments were of classic sim-
plicity, but he never hesitated to use refined
concepts when he deemed them necessary.

The diagrams reproduced in Plate 33,
found among his papers after he died, were
published in a near confidential (and totally
inappropriate) Yearbook. They all lead to the
conclusion that there are two constants, which
we shall call A and D, such that-—to approxi-
mate a coastline by a broken line—one needs
roughly FeD intervals of length ¢, adding up
to the length

L(e)~Fe!~PD.

The value of the exponent D seems to depend
upon the coastline that is chosen, and differ-
ent pieces of the same coastline, if considered
separately, may produce different values of D.
To Richardson, the D in question was a simple
exponent of no particular significance. How-
ever, its value seems to be independent of the
method chosen to estimate the length of a
coastline. Thus D seems to warrant attention.
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A COASTLINE'S FRACTAL DIMENSION
(MANDELBROT 1967s)

Having unearthed Richardson’s work, I pro-
posed (Mandelbrot 1967s) that, despite the
fact that the exponent D is not an integer, it
can and should be interpreted as a dimension,
namely, as a fractal dimension. Indeed, I rec-
ognized that all the above listed methods of
measuring |L(e) correspond to nonstandard
generalized definitions of dimension already
used in pure mathematics. The definition of
length based on the coastline being covered by
the smallest number of blotches of radius e is
used in Pontrjagin & Schnirelman 1932 to
define the covering dimension. The definition
of length based on the coastline being covered
by a tape of width 2¢ implements an idea of
Cantor and Minkowski (Plate 32), and the
corresponding dimension is due to Bouligand.
Yet these two examples only hint at the many
dimensions (most of them known only to a few
specialists) that star in diverse specialized
chapters of mathematics. A certain number of
them are discussed further in Chapter 39.
Why did mathematicians introduce this
plethora of distinct definitions? Because in
some cases they yield distinct values. Luckily,
however, such cases are never encountered in
this Essay, and the list of possible alternative
dimensions can be reduced to two that I have
not yet mentioned. The older and best investi-
gated one dates back to Hausdorff and serves
to define fractal dimension; we come to it mo-
mentarily. The simpler one is similarity di-
mension: it is less general, but in many cases
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is more than adequate; it is explored in the
following chapter.

Clearly, I do not propose to present a
mathematical proof that Richardson’s D is a
dimension. No such proof is conceivable in
any natural science. The goal is merely to
convince the reader that the notion of length
poses a conceptual problem, and that D pro-
vides a manageable and convenient answer.
Now that fractal dimension is injected into
the study of coastlines, even if specific reasons
come to be challenged, I think we shall never
return to the stage when D=1 was accepted
thoughtlessly and naively. He who continues
to think that D=1 has to argue his case.

The next step, to explain the shape of the
coastlines and to deduce the value of D from
other more basic considerations, is put off un-
til Chapter 28. Suffice at this point to an-
nounce that to a first approximation D=3 /2.
This value is much too large to describe the
facts but more than sufficient to establish that
it is natural, proper, and expected for a
coastline’s dimension to exceed the standard
Euclidean value D=1.

HAUSDORFF FRACTAL DIMENSION

If we accept that various natural coasts are
really of infinite length and that the length
based on an anthropocentric value of € gives
only a partial idea of reality, how can differ-
ent coastlines be compared to each other?
Since infinity equals four times infinity, every
coastline is four times longer than each of its
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quarters, but this is not a useful conclusion.
We need a better way to express the sound
idea that the entire curve must have a
“measure’” that is four times greater than
each of its fourths.

A most ingenious method of reaching this
goal has been provided by Felix Hausdorff. It
is intuitively motivated by the fact that the
linear measure of a polygon is calculated by
adding its sides’ lengths without transforming
them in any way. One may say (the reason for
doing so will soon become apparent) that
these lengths are raised to the power D=1,
the Euclidean dimension of a straight line.
The surface measure of a closed polygon’s
interior is similarly calculated by paving it
with squares, and adding the squares’ sides
raised to the power D=2, the Euclidean di-
mension of a plane. When, on the other hand,
the “wrong” power is used, the result gives no
specific information: the area of every closed
polygon is zero, and the length of its interior
is infinite.

Let us proceed likewise for a polygonal
approximation of a coastline made up of small
intervals of length e. If their lengths are
raised to the power D, we obtain a quantity
we may call tentatively an “approximate
measure in the dimension D.” Since according
to Richardson the number of sides is N=Fe_D,
said approximate measure takes the value
FePe P=F.

Thus, the approximate measure in the di-
mension D is independent of ¢. With actual
data, we simply find that this approximate
measure varies little with e.
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In addition, the fact that the length of a
square is infinite has a simple counterpart and
generalization: a coastline’s approximate
measure evaluated in any dimension d smaller
than D tends to co as e>0. Similarly, the area
and the volume of a straight line are zero.
And when d takes any value larger than D,
the corresponding approximate measure of a
coastline tends to O as e»0. The approximate

measure behaves reasonably if and only if
d=D.

A CURVE'S FRACTAL DIMENSION
MAY EXCEED 1; FRACTAL CURVES

By design, the Hausdorff dimension preserves
the ordinary dimension’s role as exponent in
defining a measure.

But from another viewpoint, D is very odd
indeed: it is a fraction! In particular, it ex-
ceeds 1, which is the intuitive dimension of
curves and which may be shown rigorously to
be their topological dimension Dr.

1 propose that curves for which the fractal
dimension exceeds the topological dimension 1
be called fractal curves. And the present
chapter can be summarized by asserting that,
within the scales of interest to the geographer,
coastlines can be modeled by fractal curves.
Coastlines are fractal patterns. L

Plate 31 » MONKEYS TREE

At this point, the present small incidental
plate should be viewed as merely a decorative
drawing, filling a gap.

However, when the reader has finished
Chapter 14, he will find in this drawing a hint
to help unscramble the “architecture™ in Plate
146. A more sober hint resides in the follow-
ing generator.

—

D=1.8687
|




Plate 32 = AN EXAMPLE
OF MINKOWSKI SAUSAGE

When a mathematician wants to “tame” a
wildly irregular curve, one of the standard
procedures is to select a radius € and to draw
around each point of the curve a disc of radi-
us e. This procedure, dating back at least to
Hermann Minkowski and possibly to Georg
Cantor, is brutal but very effective. (As to the
term sausage, unverifiable rumor claims it is
a leftover of an application of this procedure
to the Brownian curves of Norbert Wiener.)

In the present illustration such smoothing
is not applied to an actual coastline but to a
theoretical curve that will be constructed later
(Plate 49) by continual addition of ever small-
er detail. Comparing the piece of sausage
drawn to the right with the rightmost end of
the sausage drawn above it, we see that the
construction of the curve passes a critical
stage when it begins to involve details of size
smaller than e. Later stages of construction
leave the sausage essentially unaffected. 1l
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Plate 33 n RICHARDSON’S EMPIRICAL DATA
CONCERNING THE RATE OF INCREASE OF COASTLINES’ LENGTHS-

This Figure reproduces Richardson’s
experimental measurements of length per-
formed on various curves using equal-sided
polygons of increasingly short side e. As ex-
pected, increasingly precise measurements
made on a circle stabilize very rapidly near a
well-determined value.

In the case of coastlines, on the contrary,
the approximate lengths do not stabilize at
all. As the yardstick length ¢ tends to zero,
the approximate lengths, as plotted on doubly
logarithmic paper, fall on a straight line of
negative slope. The same is true of boundaries
between countries. Richardson’s search in en-
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cyclopedias reveals notable differences in the
lengths of the common land frontiers claimed
by Spain and Portugal (987 versus 1214
km), and by the Netherlands and Belgium
(380 versus 449 km). With a slope of —0.25,
the 20% differences between these claims can
be accounted for by assuming that the €’s dif-
fer by a factor of 2, which is not unlikely.

To Richardson, his lines’ slopes had no
theoretical interpretation. The present Essay,
on the other hand, interprets coastlines as ap-
proximate fractal curves, and uses the slope of
each line as an estimate of 1-D, where D is
the fractal dimension. 1l
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In order to understand fully my interpretation
of Richardson’s D as-a fractal dimension, we
move from natural phenomena over which we
have no control, to geometric constructs we
can design at will.

SELF-SIMILARITY AND CASCADES

Until now we stressed that coastlines’ geome-
try is complicated, but there is also a great
degree of order in their structure.

Although maps drawn at different scales
differ in their specific details, they have the
same generic features. In a rough approxima-
tion, the small and large details of coastlines
are geometrically identical except for scale.

One may think of such a shape as drawn
by a sort of fireworks, with each stage creat-
ing details smaller than those of the preceding
stages. However, a better term is suggested by
our Lewis Richardson’s noted work on turbu-
lence: the generating mechanism may be
called a cascade.

When each piece of a shape is geometrical-
ly similar to the whole, both the shape and the

cascade that generate it are called
self-similar. This chapter probes self-similar-
ity using very regular figures.

The most extreme contrasts to self-similar
shapes are provided by curves that (a) have a
single scale, like the circle, or (b) have two
clearly separated scales, like a circle adorned
with “scallops.” Such shapes can be described
as scalebound.

COASTLIKE TERAGONS
AND THE TRIADIC KOCH CURVE X

To insure that an infinite number of scales of
length are present in a curve, the safest is to
put them in deliberately and separately. A
regular triangle of side 1 has a single scale,
triangles of side 3 have a smaller scale, and
triangles of side (%)X are of increasingly
small scale. And by piling these triangles on
top of each other, as in Plate 42, one is left
with a shape combining all scales below 1.

In effect, we assume that a bit of coastline
drawn to a scale of 1 /1,000,000 is a straight
interval of fength 1, to be called initiaror.
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Then we assume that the detail that becomes
visible on a map at 3/1,000,000 replaces the
earlier interval’s middle third by a promonto-
ry in the shape of an equilateral triangle. The
resulting second approximation is an broken
line formed of four intervals of equal lengths,
to be called generaror. We further assume
that the new detail that appears at
9/1,000,000 results from the replacement of
each of the generator’s four intervals by the
generator reduced in a ratio of one-third,
forming subpromontories.

Proceeding in this fashion, we break each
straight line interval, replacing the initiator
by an increasing broken curve. Since we deal
with them throughout this Essay, let me coin
for such curves the term teragon, from the
Greek 7Tepas, meaning ‘“‘monster, strange
creature,” and ywria, meaning ‘“‘corner, an-
gle.” Very appropriately, the metric system
uses tera as prefix for the factor 1012,

"And, if the same cascade process is made
to continue to infinity, our teragons converge
to a limit first considered by von Koch 1904,
Plate 45. We must be specific, and shall call
it the triadic Koch. curve and denote it by _X.

This curve’s area vanishes, as is obvious on
Plate 43. On the other hand, each stage of
construction increases its total length in a ra-
tio of 4 /3, hence the limit curve is of infinite
‘length. Furthermore, it is continuous, but it
has no definite tangent anywhere—like the
graph of a continuous function without a de-
rivative.

As a model of a coastline, K is only a sug-
gestive approximation, but not because it is
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too irregular, rather because, in comparison
with a coastline, its irregularity is far too sys-
tematic. Chapters 24 and 28 “loosen it up” to
make it fit better.

THE KOCH CURVE AS MONSTER

As introduced in the preceding section, the
Koch curve must seem the most intuitive
thing in geometry. But the conventional moti-
vation for it is totally different. So is the con-
ventional attitude towards it on the part of
mathematicians. They are all but unanimous
in proclaiming that _K is a monstrous curve!
For elaboration, let us look up The Crisis of
Intuition, Hahn 1956, which will serve us re-
peatedly. We read that “the character of [a
nonrectifiable curve or of a curve without a
tangent] entirely eludes intuition; indeed after
a few repetitions of the segmenting process
the evolving figure has grown so intricate that
intuition can scarcely follow; and it forsakes
us completely as regards the curve that is ap-
proached as a limit. Only thought, or logical
analysis, can pursue this strange object to its
final form. Thus, had we relied on intuition in
this instance, we should have remained in er-
ror, for intuition seems to force the conclusion
that there cannot be curves lacking a tangent
at any point. This first example of the failure
of intuition involves the fundamental concepts
of differentiation.”

The best one can say of these words is that
they stop short of a celebrated exclamation of
Charles Hermite, writing on May 20, 1893, to
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T. Stieltjes of “turning away in fear and hor-
ror from this lamentable plague of functions
with no derivatives.” (Hermite & Stieltjes
1905, II, p. 318.) One likes to believe that
great men are perfect, and that Hermite was
being ironic, but Lebesgue’s 1922 Notice
(Lebesgue 1972-, I) suggests otherwise. Hav-
ing written a paper concerned with surfaces
devoid of tangent planes, “thoroughly crum-
pled handkerchiefs,” Lebesgue wanted it pub-
lished by the Académie des Sciences, but
“Hermite for a moment opposed its inclusion
in the Comptes Rendus; this was about the
time when he wrote to Stieltjes....”

We recall that Perrin and Steinhaus knew
better, but the only mathematician to argue
otherwise on the basis of intuition alone
(Steinhaus argues on the basis of fact) is Paul
Leévy (Lévy 1970): “[I have] always been sur-
prised to hear it said that geometric intuition
inevitably leads one to think that all continu-
ous functions are differentiable. From my first
encounter with the notion of derivative, my
experience proved that the contrary is true.”

These voices had not been heard, however.
Not only near every book but every science
museum proclaims that nondifferentiable
curves are counter-intuitive, ‘“‘monstrous,”
“pathological,” or even “psychopathic.”

THE KOCH CURVE, TAMED.
THE DIMENSION D=log 4/log 3=1.2618

I claim that a Koch curve is a rough but vig-
orous model of a coastline. For a first quanti-
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tative test, let us investigate the length L(e) of
the triadic Koch teragon whose sides are of
length e. This lengths can be measured exact-
ly, and the result is extraordinarily satisfying:

L(e)=¢!"D.

This exact formula 1is identical with
Richardson’s empiric law relative to the coast
of Britain. For the triadic Koch curve,

D=log 4 /log 3~1.2618,

hence D lies in the range of values observed
by Richardson!
-a PROOF: Clearly, L(1)=1 and

L(e/3)=(4/3)L(e).

This equation has a solution of the form
L(e)=€!"D if D satisfies

30-1-4/3.

Hence D=log 4 /log 3, as asserted. »

Naturally, the Koch D is not an empirical
but a mathematical constant. Therefore the
argument for calling D a dimension becomes
even more persuasive in the case of the Koch
curve than in the case of coastlines.

On the other hand, the approximate Haus-
dorff measure in the dimension D (a notion
introduced in the preceding chapter) equals P
multiplied by the number of legs of length e,
that is, equals ?. ¢ P=1. This is a good indi-
cation that the Hausdorff dimension is D. Un-
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‘fortunately, the Hausdorff definition is disap-
pointingly difficult to handle rigorously.
Moreover, even if it had been easy to handle,
the generalization of dimension beyond integ-
ers is so far-reaching an idea that one should
welcome further motivation for it.

THE SIMILARITY DIMENSION

It happens that in the case of self-similar
shapes a very easy further motivation is avail-
able in the notion of similarity dimension.
One often hears mathematicians use the simi-
larity dimension to guess the Hausdorff di-
mension, and the bulk of the present Essay
encounters only cases where this guess is cor-
rect. In their context, there can be no harm in
thinking of fractal dimension as being synony-

mous with similarity dimension. <« We have

here a counterpart to the use of topological
dimension as synonymous with “intuitive”
dimension. w-

As a motivating prelude, let us examine
the standard self-similar shapes: intervals in
the line, rectangles in the plane, and the like;
see Plate 44. Because a straight line’s Eucli-
dean dimension is 1, it follows for every inte-
ger “base” b that the “whole” interval
O0<x<X may be “paved” (each point being
covered once and only once) by N=b “parts.”
These “‘parts” are the intervals
(k=1)X/bs<x<kX/b, where k goes from 1 to
b. Each part can be deduced from the whole
by a similarity of ratio r(N)=1/b=1/N.

Likewise, because a plane’s Euclidean di-
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mension is 2, it follows that whatever the val-
ue of b, the “whole” made up of a rectangle
0<x<X; 0Ly<Y can be “paved” exactly by
N=b? parts. These parts are rectangles de-
fined by the combined inequalities

(k=1)X /b<x<kX /b,
and (h—1)Y/b<y<hY /b,

wherein k and h go from 1 to b. Each part
can now be deduced from the whole by a simi-
larity of ratio r(N)=1/b=1/N".

For a rectangular parallelepiped, the same
argument gives us r(N)=1/N1/3.

And there is no problem in defining spaces
whose Euclidean dimension is E>3. (The
Euclidean—or Cartesian—dimension is denot-
ed by E in this book.) All D-dimensional par-
allelepipeds defined for D<E satisfy

r(N)=1/N1/D
Thus,
NrP=1.
Equivalent alternative expressions are

log r(N)=log (1 /N!/Py=—(log N) /D,
D=-log N/log r(N)=log N /log (1 /r).

Now let us move on to nonstandard shapes.
In order for the exponent of self-similarity to
have formal meaning, the sole requirement is
that the shape be self-similar, i.e., that the
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whole may be split up into N parts, obtainable
from it by a similarity of ratio r (followed by
displacement or by symmetry). The D ob-
tained in this fashion always satisfies

O<D<E.

In the example of the triadic Koch curve,
N=4 and r=', hence D=log 4 /log 3, identi-
cal to the Hausdorff dimension.

CURVES; TOPOLOGICAL DIMENSION

Thus far, we have been casual in calling
Koch’s _K a curve, but we must return to this
notion. Intuitively, a standard arc is a con-
nected set that becomes disconnected if any
single point is removed. And a closed standard
curve is a connected set that separates into
standard arcs if 2 points are removed. For the
same reason, Koch’s _Kis a curve.

The mathematician says that all the
shapes with the above property, e.g., X, [0,1]
or a circle, are of topological dimension
Dr=1. Thus, yet another notion of dimension
has to be considered! Being disciples of Wil-
liam of Ockham, all scientists know that
“entities must not be multiplied beyond neces-
sity.” It must therefore be confessed that our
switching back and forth between several near
equivalent forms of fractal dimension is a
matter of convenience. However, the coexist-
ence of a fractal and a topological dimension
is a matter of necessity. Readers who skipped
the digressive definition of fractal in Chapter
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3 are advised to scan it now, and everyone is
advised to read the entry devoted to
DIMENSION in Chapter 41.

INTUITIVE MEANING OF D IN THE
PRESENCE OF CUTOFFS A AND A

Cesaro 1905 begins with the motto,

The will is infinite

and the execution confined,
the desire is boundless

and the act a slave to limit.

Indeed, limits apply to scientists no less
than to Shakespeare’s Troilus and Cressida.
To obtain a Koch curve, the cascade of small-
er and smaller new promontories is pushed to
infinity, but in Nature every cascade must
stop or change character. While endless pro-
montories may exist, the notion that they are
self-similar can only apply between certain
limits. Below the lower limit, the concept of
coastline ceases to belong to geography.

It is therefore reasonable to view the real
coastline as involving two cutoff scales. Its
outer cutoff @ might be the diameter of the
smallest circle encompassing an island, or per-
haps a continent, and the inner cutoff ¢ might
be the 20 meters mentioned in Chapter 5.
Actual numerical values are hard to pinpoint,
but the need for cutoffs is unquestionable.

Yet, after the very big and the very small
details are cut off, D continues to stand for an
effective dimension as described in Chapter 3.
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Strictly speaking, the triangle, the Star of
David, and the finite Koch teragons are of
dimension 1. However, both intuitively and
from the pragmatic point of view of the sim-
plicity and naturalness of the corrective terms
required, it is reasonable to consider an ad-
vanced Koch teragon as being closer to a
curve of dimension log4/log3 than to a
curve of dimension 1.

As for a coastline, it is likely to have sev-
eral separate dimensions (remember the balls
of thread in Chapter 3). Its geographic di-
mension is Richardson’s D. But in the range
of sizes of interest in physics, the coastline
may have a different dimension—associated
with the concept of interface between water,
air, and sand.

ALTERNATIVE KOCH GENERATORS
AND SELF-AVOIDING KOCH CURVES

Let us restate the basic principle of construc-
tion of the triadic Koch curve. One begins
with two shapes, an initiator and a generator.
The latter is an oriented broken line made up
of N equal sides of length r. Thus each stage
of the construction begins with a broken line
and consists in replacing each straight interval
with a copy of the generator, reduced and dis-
placed so as to have the same end points as
those of the interval being replaced. In all
cases, D=log N /log (1 /r).

It is easy to change this construction by
modifying the generator, in particular by
combining promontories with bays, as exem-

39

plified in upcoming plates. In this way we ob-
tain Koch teragons that converge to curves
whose dimensions are between 1 and 2.

All these Koch curves are self-avoiding:
have no self-intersection. This is why their
wholes can be divided into disjoint parts with
no ambiguity, in order to define D. However,
a Koch construction using carelessly chosen
generators risks self-contact or self-intersec-
tion, or even self-overlap. When the desired D
is small, it is easy to avoid double points by
careful choice of the generator. The task be-
comes increasingly difficult as D increases,
but remains possible as long as D<2.

However, any Koch construction that at-
tempts to reach a dimension D>2 leads inevi-
tably to curves that cover the plane infinitely
many times. The case D=2 deserves a special
discussion to be provided in Chapter 7.

KOCH ARCS AND HALF LINES

In some cases, the term Koch curve must be
replaced by more precise, and pedantic, termi-
nology. The shape at the bottom of Plate 44 is
technically the Koch map of a line interval,
and can be called a.Koch arc. Thus the
boundary in Plate 45 is made of three Koch
arcs. And it is often useful to extrapolate an
arc into a Koch half line: The extrapolation
enlarges the original arc, using its left end
point as focus, in the ratio 1 /r=3, then in the
ratio 32 and so on. Each successive extrapo-
late contains the preceding one, and the limit
curve contain all the intermediate finite
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stages.

DEPENDENCE OF MEASURE ON THE
RADIUS, WHEN D IS A FRACTION

Let us now extend from Euclidean to fractal
dimensions another standard result in Euclid.
For idealized physical objects of uniform den-
sity p, the weight M(R) of a rod of length 2R,
of a disc of radius R or of a ball of radius R is
proportional to pRE. For E=1, 2, and 3, the
proportionality constants are respectively
equal to 2, 2x, and 4w /3.

The rule M(R)<RP also applies to fractals
when they are self-similar.

In the triadic Koch case, the proof is easi-
est when the origin is the end point of a Koch
half line. When a circle of radius Ro=3"
(with k=0) contains the mass M(Rg), the cir-
cle of radius R=Rp/3 contains the mass
M(R)=M(Rg) /4. Hence,

M(R)=M(Ro)(R/Ro)® = [M(Ro)RoPIRP.

Consequently, the ratio M(R)/RD is inde-
pendent of R, and can serve to define a
“density” p.

KOCH MOTION

I.magine a point moving along a Koch half
line, taking equal time to cover arcs of equal
measure. If we then invert the function giving
time as function of position, we obtain a posi-
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tion as function of time, that is, a motion. Of
course its velocity is infinite.

PREVIEW OF RANDOM COASTLINES

The Koch curve reminds us of real maps, but
has major defects one encounters almost un-
changed in the early models of every case
study in this Essay. Its parts are identical to
each other, and the self-similarity ratio r must
be part of a strict scale of the form bk,
where b is an integer, namely, %3, (‘/3)2, and
so on. Thus, a Koch curve is a very prelimi-
nary model of a coastline.

I have developed diverse ways of avoiding
both defects, but all involve probabilistic com-
plications which are better tackled after we
settle many issues concerning nonrandom
fractals. However, curious readers familiar
with probability may peek ahead to the mod-
els based on my ““squig curves” (Chapter 24),
and, more important, on level curves of frac-
tional Brown surfaces (Chapter 28).

The same method of exposition is followed
later in this Part. Numerous patterns of Na-
ture are discussed against the background of
systematic fractals that provide a very prelim-
inary model, while the random models I advo-
cate are postponed to later chapters.

REMINDER. In all cases where D is known
precisely, is not an integer, and is written in
decimal form to enable comparisons, it is car-
ried to four decimals. This number 4 is cho-
sen to make obvious that D is neither an em-
pirical value (all empirical values are known
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at present to 1 or 2 decimals), nor an incom-
pletely determined geometric value (at pres-
ent, the latter are known either to 1 or 2 deci-
mals, or to 6 decimals and more.)

COMPLEX, OR SIMPLE AND REGULAR?

Koch curves exhibit a novel and most interest-
ing combination of complexity and simplicity.
At first blush, they are enormously more com-
plicated than the standard curves of Euclid.
However, the Kolmogorov and Chaitin theory
of mathematical algorithms suggests the con-
trary conclusion, that a Koch curve is not sig-
nificantly more complicated than a circle!
This theory starts with a collection of
“letters” or ‘“atomic operations,” and takes
the length of the shortest known algorithm
that yields a desired function as an objective
upper bound to the function’s complexity.

To apply this way of thinking to the con-
struction of curves, let the letters or “‘atoms”
of the graphic process be straight “strokes.”
In this alphabet, tracing a regular polygon
requires a finite number of strokes, each de-
scribed by a finite number of lines of instruc-
tion, hence it is a task of finite complexity. By
contrast, a circle involves an ““infinite number
of infinitely short strokes,”” hence seems a
curve of infinite complexity. However, if the
construction of the circle is made to proceed
recursively, it is- seen to involve only a finite
number of instructions, hence to be also a task
of finite complexity. For example, starting
with a regular polygon of 2™ sides (m>2),

1M

one replaces each stroke of length
2 sin(wr/2™) by two strokes of length
2 sin(x/2M*1); then the loop starts again.
To construct Koch curves, the same approach
is used, but with simpler operations, since the
stroke length has simply to be multiplied by r,
and the replacement strokes’ relative positions
are the same throughout. Hence this punch-
line: When complexity is measured by the
presently best algorithm’s length in this par-
ticular alphabet, a Koch curve is actually
simpler than a circle.

This peculiar ranking of curves by relative
simplicity should not be taken seriously. Most
notably, the contrary conclusion is reached if
the alphabet is based on the compass and
ruler—meaning that the circle is relabeled as
“atomic.” Nevertheless, as long as a sensible
alphabet is used, any Koch curve is not only
of finite complexity but simpler than most
curves in Euclid.

Being fascinated with etymology, I cannot
leave this discussion without confessing that I
hate to call a Koch curve “‘irregular.” This
term is akin to ruler, and is satisfactory as
long as one keeps to the meaning of ruler as
an instrument used to trace straight lines:
Koch curves are far from straight. But when
thinking of a ruler as a king (= rex, same
Latin root), that is, as one who hands down a
set of detailed rules to be followed slavishly, I
protest silently that nothing is more “regular”
than a Koch curve. [



Plate 42 = TRIADIC KOCH ISLAND OR SNOWFLAKE _X. ORIGINAL CONSTRUCTION
BY HELGE VON KOCH (COASTLINE DIMENSION D=log 4/log 3~1.2618)

The construction begins with an “‘initiator,”
namely, a black A (equilateral triangle) with
sides of unit length. Then one pastes upon the
midthird of each side a A-shaped peninsula
with sides of length %. This second stage ends
with a star hexagon, or Star of David. The
same process of addition of peninsulas is re-
peated with the Star’s sides, and then again
and again, ad infinitum.

Each addition displaces the points in an
interval’s midthird in a perpendicular direc-
tion. The triangular initiator vertices never
move. The other 9 vertices of the Star of
David achieve their final positions after a fin-
ite number of stages. Still other points are
displaced without end, but move by decreas-
ing amounts and eventually converge to limits,
which define the coastline.

The island itself is the limit of a sequence
of domains bounded by polygons, each of
which contains the domain bounded by the
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preceding polygon. A photographic negative
of this limit is part of Plate 45.

Observe that this and many other plates in
the book represent islands or lakes rather than
coastlines, and in general represent “solid
areas” rather than their contours. This meth-
od takes fullest advantage of the fine resolu-
tion of our graphics system.

WHY A TANGENT CANNOT BE DEFINED
HERE. Take as fixed point a vertex of the orig-
inal A and draw a cord to a point on the limit
coastline. As this point converges clockwise to
the vertex, the connecting cord oscillates with-
in a 30° angle, and never tends to a limit one
could call a clockwise tangent. The counter-
clockwise tangent is not defined either. A
point where there is no tangent because clock-
wise and counterclockwise chords oscillate in
well-defined angles is called hyperbolic. The
points that _K attains asymptotically fail to
have a tangent for a different reason. HR



Plate 43 o TRIADIC KOCH ISLAND OR SNOWFLAKE _X. ALTERNATIVE CONSTRUCTION
BY ERNEST CESARO (COASTLINE DIMENSION D=log 4/log 3~1.2618)

An alternative construction of the Koch island
is given in Cesaro 1905, a work of such charm
as to make me forget the hard search for the
original (and the irritation at later finding it
reprinted in Cesaro 1964). Here is a free
translation of a few ecstatic lines. “This end-
less imbedding of this shape into itself gives
us an idea of what Tennyson describes some-
where as the inner infinity, which is after all
the only one we could conceive in Nature.
Such similarity between the whole and its
parts, even its infinitesimal parts, leads us to
consider the triadic Koch curve as truly mar-
velous. Had it been given life, it would not be
possible to do away with it without destroying
it altogether for it would rise again and again
from the depths of its triangles, as life does in
the Universe.”

Cesaro’s initiator is a regular hexagon with
sides of length v3/3. The surrounding ocean
is in gray. Increasingly small A-shaped bays
are squeezed in ad infinitum, the Koch island
being the limit of decreasing approximations.

This method of construction and Koch’s
method described in Plate 42 are carried out
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in parallel in the present plate. In this way,
the Koch coastline is squeezed between an
inner and an outer teragon that grow increas-
ingly close to each other. One can think of a
cascade process starting with three successive
rings: solid land (in black), swamp (in white),
and water (in gray). Each cascade stage
transfers chunks of swamp to either solid land
or water. At the limit the swamp exhausts
itself from a “‘surface” down to a curve.

MIDPOINT DISPLACEMENT INTERPRETATION.
It involves the following generator and next
step (the angle here is 120°)

N=2

./\- 0—/\—0 r=1,Y3

D=log 2/logv3~log 4 /log 3

When placed outside the inner kth teragon, it
yields the outer kth teragon; when placed in-
side the outer kth teragon, it yields the inner
(k+1)st teragon. This approach is useful in
Plates 64 and 65, and in Chapter 25. =l



Plate 44 = TWO KINDS OF SELF-SIMILARITY: STANDARD AND FRACTAL

The top Figures recall how, given an integer
(here, b=5), a straight interval of unit length
may be divided into N=b subintervals of
length r=1/b. Similarly, a unit square can be
divided into N=b? squares of side r=1/b. In
either case, logN/log(1/r) is the shape’s
similarity dimension—a notion school geome-
try feels no need of pinpointing, since its value
reduces to the Euclidean dimension.

The bottom Figure is a triadic Koch curve,

one-third of a Koch coastline. It too can be
decomposed into reduced-size pieces, with
N=4 and r=%. The resulting similarity di-
mension D=log N/log (1 /r) is not an integer
(its value is ~1.2618), and it corresponds to
nothing in standard geometry.

Hausdorff showed that D is of use in
mathematics, and that it is identical to the
Hausdorff, or fractal, dimension. My claim is
that D is also vital in natural science. 1R

Plate 45 = TRIADIC KOCH LAKE K (COASTLINE DIMENSION D=log 4/log 3~1.2618)

The construction described in the captions of
Plates 42 and 43 has been carried much fur-
ther, and a photographic negative taken,
yielding a lake rather than an island.

The peculiar pattern of gray “waves” that
fills this lake is not haphazard. It is explained

in Plates 68 and 69.

The coastline on this Plate is not self-sim-
ilar, because a loop cannot be decomposed
into the union of other loops. <a However,
Chapter 13 uses the notion of self-similarity
within an infinite collection of islands. w- HE
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Plates 46 and 47 = ALTERNATIVE KOCH ISLAND AND LAKE
(COASTLINE DIMENSION D=log 9/log 7~1.1291)

This variant of the Koch island is due to W.
Gosper (Gardner 1976): the initiator is a reg-
ular hexagon, and the generator is

N=3

o N\,_* 1/r=v7

D=log 3/log (v7)~1.1291

PLATE 46. In this plate, several stages of
construction of the “Gosper island” are drawn
as a bold line “wrapping.” The corresponding
thin line “filling” is explained in Plate 70.

PLATE 47. This is an advanced construction
stage of the “wrapping.” The variable thick-
ness “filling” is, again, explained in Plate 70.

Observe that, contrary to Koch’s original,
the present generator is symmetric with re-
spect to its center point. It combines peninsu-
las and bays in such a way that the island’s
area remains constant throughout the con-
struction. The same is true of the Koch curves
up to Plate 57,

TILING. The plane can be covered using
Gosper islands. This property is called riling.

PERTILING. Moreover, the present island is
self-similar, as is made obvious by using
variable-widths hatching. That is, each island
divides into seven “provinces” deducible from
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the whole by a similarity of ratio r=1/v7. 1
denote this property by the neologism
pertiling, coined with the Latin prefix per-, as
used for example in “to perfume” = “to pene-
trate thoroughly with fumes.”

Most tiles cannot be subdivided into equal
tiles similar to the whole. For example, it is a
widespread source of irritation that hexagons
put together do not quite make up a bigger
hexagon. The Gosper flake fudges the hexa-
gon just enough to allow exact subdivision
into 7. Other fractal tiles allow subdivision
into different numbers of parts.

FRANCE. A geographical outline of unusual
regularity often described as the Hexagon,
namely the outline of France, resembles a
hexagon less than it resembles Plate 47
(although Brittany is undernourished here.)

-3 REASON WHY A TANGENT CANNOT BE
DEFINED AT ANY POINT OF THESE COASTLINES.
Fix any point that the coastline attains after a
finite number of stages of construction, and
join it by a cord to a moving point on the lim-
it coastline. As the moving point approaches
the fixed point along the limit coastline, either
clockwise or counter-clockwise, the cord’s di-
rection winds without end around the fixed

point. Such a point is called loxodromic. w
-






Plate 49 = ALTERNATIVE KOCH ISLANDS AND LAKES
(COASTLINE DIMENSIONS FROM 1 TO D=log 3/logv~1.3652)

Throughout this sequence of fractal curves,
the initiator is a regular polygon with M sides,
and the generator is such that N=3 and that
the angles between the first and second and
second and third legs are both 6=2x/M.
Plates 46 and 47 had involved the special val-
ue M=6 (not repeated here), and the value
M=3 is discussed in Plate 72. The present
plate exhibits advanced teragons for the val-
ues M=4, 8, 16, and 32, in the form of nest-
ed lakes and islands. For example, M=4 cor-
responds to the generator

N\

The shading on the central island (M=4) is
explained in Plates 72 and 73.

Were this pattern extended to M=oo, it
would converge to a circle. As we move in, the
figures “shrivel,” first gradually, then by rap-
id jumps. The next stage of shriveling would
lead to M=3, but the corresponding curve is

N=3
1/r=v5
D=log 3/logv5~1.3652
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no longer self-avoiding. We meet it later, in
Plates 72 and 73.

A CRITICAL DIMENSION. When the initiator
is [0,1], the angle 8 may take any value from
180° down to 60°. There is a critical angle
Ocrit, such that the “coastline” is self-avoiding
if, and only if, 8>6,.. The corresponding
Deyrit is a critical dimension for self-intersec-
tion. The angle 8, is close to 60°.

GENERALIZATION. The constructions of
Plates 46 to 57 are casily generalized as fol-
lows. Let the generators that are shown be
called straight (S), and define the flipped gen-
erator (F) as the mirror image of the straight
generator in the line y=0. Each stage of the
construction must use the same generator
throughout, either S or F, but different stages
may select different generators. These plates,
and more which follow, use S throughout, but
other infinite sequences of S and F yield im-
mediate variants.

-a If F and S alternate, the formerly loxo-
dromic points become hyperbolic, as in the
Koch curve. w IH






Plate 51 1 A QUADRIC KOCH ISLAND
(COASTLINE DIMENSION D=3/2=1.5000)

Plates 49 to 55 show several Koch construc-
tions initiated with a square (hence the term
quadric). One advantage is that one can expe-
riment with these constructions even when the
available graphic systems are crude.
-a Another advantage is that quadric fractal
curves lead on directly to the original Peano
curve described on Plate 63. w

PLATE 51. Here, the initiator is a square,
and the generator is

Sty

As in Plates 46 to 49, the total island area
remains constant throughout the succession of
stages. Plate 51 shows two stages on a small
scale, and the next on a larger scale.

In the last stage, enlarged even further,
the detail shows as very thin and barely visi-
ble whiskers, but much would be lost percep-

N=8
r=1/b=%
D=3/2
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tually if the graphics were less excellent, forc-
ing us to omit this detail.

Both the teragons and the limit curve in-
volve no self-overlap, no self-intersection, and
no self-contact. The same is true through
Plate 55.

-a One should not forget that the fractal
in Plates 51 to 55 is the coastline; the land
and sea are conventional shapes that have pos-
itive and finite arecas. Page 144 mentions a
case in which the “sea” alone has a well-
defined area, being again the union of simple-
shaped tremas, while the land has no interior
point. w-

TILING AND PERTILING. The present island
is decomposable into 16 islands reduced by
the ratio of r=%. Each is the Koch island
built on one of the 16 squares forming the
first stage of the construction.

-a Chapters 25 and 29 show that D=3/2
is also encountered for various Brown func-
tions. Hence this value is easy to obtain with
random curves and surfaces.






Plate 53 1 A QUADRIC KOCH ISLAND
(COASTLINE DIMENSION D=log 18 /log 6~1.6131)

The initiator is again a square, and the gener-
ator is

N=18
r=1/b=6
D=log 18 /log 6~1.6131

The fact that the form of the quadric Koch
islands in the present portfolio of illustrations
depends very markedly upon D is significant.
However, their having roughly the same over-
all outline is due to the initiator’s being a
square. When the initiator is an M-sided regu-
lar polygon (M>4), the overall shape looks
smoother, increasingly so as M increases. A
genuine link between overall form and the
value of D will not enter until Chapter 28,
which deals with random coastlines that effec-
tively determine the generator and the initia-
tor at the same time.

-a MAXIMALITY. Another fact that contrib-
utes to the similarity of overall outline is that
the quadric Koch curves in Plates 49 to 55
possess an interesting property of maximality.
Consider all Koch generators that yield self-
avoiding curves are traced on a square lattice
made by straight lines parallel and perpendi-
cular to [0,1], and in addition can be used
with any initiator on the square lattice. We
denote as maximal the generators that attain
the highest possible value of N and hence of
D. One finds that Nya=b2/2 when b is
even, while Nmax=(b2+l)/2 when b is odd.

<a As the value of b increases, so does the
maximal N, and so also does the number of
alternative maximal polygons. Therefore, the
limit Koch curve becomes increasingly influ-
enced by the original generator. It also looks
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increasingly contrived, because the wish to
achieve a maximal dimension without contact
points imposes a degree of discipline that in-
creases with D. It reaches its paroxysm in the
next chapter, for the Peano limit D=2,

< LACUNARITY. Fractal curves sharing D
but with different N and r may differ qualita-
tively from each other. The resulting parame-
ter beyond D is discussed in Chapter 34. I

CAPTION OF PLATE 55, CONTINUED

<a In fact, the value of D is likely to de-
pend on the fluid’s initial energy, and on the
size of the vessel in which dispersion is con-
tained. A low initial energy would wither a_
disc-shaped blob into a curve with D close to
1 (Plate 49). A high initial energy in a small
vessel might lead to more thorough dispersion,
with planar sections more reminiscent of Plate
54 (D~1.7373) or even of the dimension
D=2 (Chapter 8). See Mandelbrot 1976c.

-a If this last inference is valid, the next
step would be to investigate the relation be-
tween initial energy and D, and to seek the
lowest energy that yields D=2 in the plane,
i.e., D=3 in space. When we examine the lim-
it case D=2 (Chapter 7), we shall see that it
differs qualitatively from D<2 because it al-
lows ink particles that start far apart to come
into asymptotic contact. <« Thus, I would not
be at all surprised if it turns out that the tur-
bulent dispersion is a single term representing
two sharply distinct phenomena.

<1 POSTSCRIPT. Well after this plate had
first appeared in the 1977 Fractals, Paul Di-
motakis photographed thin sections of a tur-
bulent jet dispersing in a laminar medium.
The resemblance with the present plate is
most gratifying. w- EN






Plates 54 and 55 1 A QUADRIC KOCH ISLANDS
(COASTLINE DIMENSIONS D=5/3~1.6667 AND D=Ilog 98/log 14~1.7373)

Now the same construction as in Plate 49 is
carried out with the following generators. In
Plate 55,

N=32
|’=l/b=1/8
D=5/3~1.6667

and in Plate 54,

N=98
r=1/b=1/14
D=log 98 /log 14~1.7373

The causeways and the channels in these
nightmarish marinas become increasingly nar-

row as one proceeds toward the peninsulas’
tips or the bays’ deepest points. In addition,
these widths tend to narrow down as the frac-
tal dimension increases, and “wasp waists”
appear around D~5/3.

<1 DIGRESSION CONCERNING TURBULENT
DISPERSION. I see an uncanny resemblance
between the sequence of approximate fractals
drawn in Plate 55, and the successive stages
of turbulent dispersion of ink in water. Actual
dispersion is of course less systematic, a fea-
ture one can mimic by invoking chance.

<1 One can almost see a Richardsonian
cascade at work. A finite pinch of energy
spreads a square ink blob around. Then the
original eddy splits into smaller scale eddies,
the effects of which are more local. The initial
energy cascades down to ever smaller typical
sizes, eventually contributing nothing but
slight fuzziness to the outline of the final ink
blob, just as in the following diagram from
Corrsin 1959b.

~a The conclusion that a Richardsonian
cascade leads to a shape bounded by a fractal
is inescapable, but the conclusion that
D=5/3 is shaky. This value of D corresponds
to planar sections of spatial surfaces with
D=8/3, which occur often in turbulence. In
the case of isosurfaces of scalars (studied in
Chapter 30), D=8/3 is reducible to the Kol-
mogorov theory. Nevertheless, numerological
analogies are not to be trusted.

THIS CAPTION CONTINUES ON PAGE 52






Plates 56 and 57 1 GENERALIZED KOCH CURVES AND SELF-SIMILARITY
WITH UNEQUAL PARTS (D~1.4490, D~1.8797, D~1+¢)

These plates are constructed in the manner of
Koch, except that the lengths of the
generators’ sides take different values ry. Un-
til now, we assume that the N “parts” into
which our “whole” is divided all involve the
same similarity ratio r. Using unequal rpy, the
Koch curve becomes less relentlessly regular.
Thus Plate 56 adds variety to the triadic Koch
curve.

Note jthat in all this series of plates, the
construction continues until it reaches details
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of a predetermined small size. When rm=r,
this goal is reached after a predetermined
number of construction stages, but here we
need a variable number of stages.

The next task is to extend the notion of
similarity dimension to this generalization of
the Koch recursion. In a search for sugges-
tions, let ordinary Euclidean shapes be paved
with parts reduced in the respective ratios rm.
When D=1, the r, must satisfy Zrm=1, and,
more generally, Euclidean shapes require
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ErmD=1. Furthermore, in the case of fractals
that can be split into equal parts, the familiar
condition NrP=1 can be rewritten as
3rmP=1. These precedents suggest forming
the dimension-generating function, namely
G(D)=ErmD, and defining D as its unique real
root of G(D)=1. It remains to investigate
whether or not said D coincides with the
Hausdorff Besicovitch dimension. In every
case | know of, it does.

57
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EXAMPLES. Plate 56 has a D above Koch’s
original log 4/log 3. The top of Plate 57 has
a D slightly below 2. As D=2, the coastline
on this Figure tends toward the Peano-Polya
curve, a variant of the Peano curves examined
in the next chapter. The resemblance between
this Figure and a row of trees is not acciden-
tal, as seen in Chapter 17. Finally, the bottom
of Plate 57 has a D slightly above 1. T8



7 = Harnessing the Peano Monster Curves

When the end of Chapter 6 tackles general-
ized Koch curves that do not self-intersect,
there is good reason for stopping short of
D=2. When D reaches D=2, a profound qual-
itative change occurs.

We shall assume that the teragons do not
self-intersect, although they may self-contact.
Then one symptom of reaching D=2 is that
points of self-contact become inevitable as-
ymptotically. The major symptom is that it is
inevitable that the limit should fill a
“domain” of the plane, that is, a set that con-
tains discs (filled in circles).

This double conclusion is rot due to a cor-
rigible lack of imagination on the part of
mathematicians. It involves a fundamental
principle, central to the 1875-1925 crisis in
mathematics.

PEANO ““CURVES,” MOTIONS, SWEEPS

The.corresponding limits, exemplified in up-
coming plates, are called Peano curves, be-
cause the first is found in Peano 1890. They
are also called plane-filling curves. For them,

the formal definition of dimension by
log N/log (1/r)=2 is justified, but for a dis-
appointing reason. From the mathematical
viewpoint, a Peano curve is merely an unusual
way of looking at a domain or piece of plane,
a set for which all the classical definitions
yield the dimension 2. In other words, the
term plane-filling curve should be avoided by
careful writers.

Fortunately, most Peano “‘curves,” includ-
ing those obtained by a recursive Koch con-
struction, are parametrized naturally by a
scalar t, which may be called “time.” In their
case, we can (with no fear of the guardians of
rigor) use the terms Peano motions, plane-
filling motions, tile sweeping motions, or tile
sweeps (tiles are discussed later in the
chapter). We shall do so when it seems appro-
priate, but Essays need not attempt full con-
sistency on any account.

THE PEANO CURVES AS MONSTERS

“Everything had come unstrung! It is difficult

to put into words the effect that [Giuseppe]
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Peano’s result had on the mathematical world.
It seemed that everything was in ruins, that
all the basic mathematical concepts had lost
their meaning” (Vilenkin 1965). ‘“[Peano
motion] cannot possibly be grasped by intui-
tion; it can only be understood by logical
analysis” (Hahn 1956). “Some mathematical
objects, like the Peano curve, are totally non-
intuitive..., extravagant” (Djeudonné 1975).

THE PEANO CURVES' TRUE NATURE

I claim that the preceding quotes merely
prove that no mathematician ever examined a
good Peano graph with care. An unkind ob-
server could say these quotes demonstrate a
lack of geometric imagination.

I assert to the contrary that, after Peano
teragons are observed attentively, letting one’s
thoughts wander about, it becomes very diffi-
cult not to associate them with diverse aspects
of Nature. This chapter takes up the self-
avoiding curves, those whose teragons avoid
self-contact. Chapter 13 takes up teragons
that self-contact moderately. Teragons that
fill a lattice (e.g., lines parallel to the axes
and having integer coordinates) must first be
processed to eliminate the self-contacts.

RIVER AND WATERSHED TREES

Examining diverse Peano teragons, I saw in
each case a set of two trees (or sets of trees)
possessing an endless variety of concrete inter-

pretations. They are particularly conspicuous
on the “snowflake sweep” Peano curve I de-
signed, Plate 69. It is, for example, easy to
visualize this Plate as a collection of bushes
rooted side by side along the bottom third of a
Koch snowflake, and creeping up a wall. Al-
ternatively, one may choose to be reminded of
the boldly emphasized outline of a collection
of rivers meandering around, and eventually
flowing into a river that follows the
snowflake’s bottom. This last interpretation
suggests immediately that the curves that sep-
arate the rivers from each other combine into
watershed trees. And of course, the labels
river and watershed can be interchanged.

This new rivers-watersheds analogy is so
obvious after the facr that it lays to rest any
notion that the Peano curve is necessarily pa-
thological. As a matter of fact if a tree made
of rivers of vanishing width is to drain an area
thoroughly, it must penetrate everywhere.
One who follows the rivers’ combined bank
performs a plane-filling motion. Ask any child
for confirmation!

Helped by the intuition garnered from
Plate 68, it would be difficult not to see ana-
logous conjugate networks in every Peano ter-
agon. Bven the crude island of Plate 63 begins
to make intuitive sense. The thin fingers of
water that penetrate it cannot be viewed as a
marina, however exaggerated, but can be
viewed as branching rivers.

When rivers give rise to a proper science,
it should be called potamology-—Maurice
Pardé’s coinage from moraumos (= river) and
Aoyos. But sober usage merges the study of
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rivers into the science of water, hydrology,
into which this Essay makes many incursions.

MULTIPLE POINTS ARE UNAVOIDABLE
IN TREES, HENCE IN PEANO MOTIONS

Suddenly many mathematical properties of
Peano curves become obvious too. To account
for double points, assume one starts on a
river’s shore in a Peano river tree, and moves
upstream or downstream, making a detour for
the slightest branch (moving ever faster as
one gets to finer branches). It is clear that one
will eventually face the point of departure
from across the river. And since the limit riv-
er is infinitely narrow, one will effectively re-
turn to the starting point. Thus, double points
in a Peano curve are inevitable, not only from
a logical but also from an intuitive viewpoint.
Furthermore, they are everywhere dense.

Also, it is inevitable that some points be
visited more than twice, because a point
where rivers join is one where at least three
points of the bank coincide. When all points
of confluence involve only two rivers, there is
no point of multiplicity above three. On the
other hand, one can do without points of mul-
tiplicity of three if one agrees to have points
of higher multiplicity.

All the assertions in the preceding para-
graphs have been proven, and, since the proofs
are delicate and led to controversy, the prop-
erties themselves seem ““technical.” But the
contrary is the case. Who would continue to
argue that a purely logical approach toward

THREE CLASSIC FRACTALS, TAMED ooz 1

them is preferable to my own intuitive one?
Typically, a Peano curve’s rivers are not
standard shapes but fractal curves. This is
fortunate for the needs of modeling, because
every argument in Chapter 5 to the effect that
geographic curves are nonrectifiable applies
equally well to river banks. In fact, the Rich-
ardson data include frontiers that follow riv-
ers or watersheds. And rivers are involved in
the quote from Steinhaus 1954. As to rivers’
drainage basins, they are surrounded by
closed curves akin to island coastlines, made
of portions of watershed. Each basin is the
juxtaposition of partial basins and is criss-
crossed by the rivers themselves, but plane-
filling curves that are bounded by fractal
curves display all the structure we need.

PEANO MOTION AND PERTILING

Taking the original Peano curve (Plate 63),
develop t in the counting base N=9, in the
form O.rj75.... Times sharing the same first
“digit” are mapped on the same ninth of the
initial square, those with the same second dig-
it on the same 9%-th, etc. Thus, the tiling of
[0,1] into 9-th maps on a tiling of the square.
Successive 9-ths of the linear tiles map on
successive planar subtiles. And the interval’s
property of being pertiling (page 46), i.e. sub-
divisible recursively and ad infinitum into
smaller tiles similar to [0,1], is mapped on
the square. Alternative Peano motions, due to
E. Cesaro, G. Polya and others, map this
property on diverse pertilings of the triangle.
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More generally, most Peano motions gen-
erate pertilings of the plane. In the simplest
case, there is a base N, and one starts with a
linear pertiling that consists of successive divi-
sions into N-th. But the snowflake sweep of
Plate 68-69 requires an irregular division of
the [0,1] interval of t, into four subintervals
of length 1/9, then four of length 1/9v3,
one of length 1/9, two of length 1/9v3, and
two of length 1 /9.

ON MEASURING DISTANCE BY AREA

Exquisite relationships, wherein length and
area interchange, are a common occurrence in
Peano motion, especially if it is isometric,
meaning that a time interval [t1, 12] maps on
an area equal to the length |t1~-tp]. (Most
Peano motions are both isometric and pertil-
ing, but these are distinct notions.) Calling
the map of the time interval [ty,tp] a planar
Peano interval implies that, instead of meas-
uring distances through a time, one may do so
through an area. But we encounter a vital
complication, because points that sit across
from each other on different banks of a river
coincide in space but are visited repeatedly.
The definition of ““Peano distance” may
involve only the order of the visits. Denoting
the instants of first and last visits of P; and
P, by t'; and t's and by t"; and t",, the left
Peano interval JL{P1, P2} is defined as the
map of [t'y, t'5] and the right Peano interval
R{P1, Py} is defined as the map of [t'{,t" ]
These intervals’ lengths define' the left

distance and the right distance as |JL{Pq,
Poil = [t'1-t'2] and [R{Py, Po}| =
|t"1—t"5]. Bach of these distances is addi-
tive, meaning for example that if three points
P1, Py, and P3 are left ordered according to
the order of first visits, one has

|L(P1,P3)|=[-L(P1,P2)|+]L(P2,P3)|.

Alternate definitions of interval and dis-
tance distinguish between river and watershed
points. Denote by t' and t" the instants of
first and last visit of P. P is a river point if
the map of [t',t"] is bounded by P and wat-
ersheds. Successive visits of P face each other
across rivers. P is a watershed point if the
map of [t', t"'] is bounded by P and rivers.

Furthermore, once a Peano curve is repre-
sented as the common shore of a river tree
and a watershed tree, the paths that link Py
and P, through rivers (resp., along wat-
ersheds) include a common minimal path. It
is reasonable to follow this path in order to
measure the distance between P; and Pj.
Save for exceptional cases, the rivers’ and
watersheds’ dimension D is strictly below 2
and strictly above 1. Hence the minimal path
can be measured neither by length nor by
area, but in typical cases it has a nontrivial
Hausdorff measure in the dimension D.

MORE. Very important additional consid-
erations on Peano motions are detailed in the
captions that follow. =



Plate 63 = A QUADRIC KOCH CONSTRUCTION OF DIMENSION D=2:
THE ORIGINAL PEANO CURVE, A SQUARE SWEEP

The Peano plane-filling curve in this plate is
the original one. Giuseppe Peano’s incredibly
terse algorithm was graphically implemented
in Moore 1900 (which receives undue credit
in my 1977 Fractals). The present plate ro-
tates Peano’s curve by 45°, and by doing so
brings it into the fold of Koch curves in the
strict sense: the generator is always placed in
the same way on the sides of the teragon ob-
tained at the preceding stage.

The initiator here is the unit square
(bounding the black box) and the generator is

Because this generator self-contacts, the re-
sulting finite Koch islands are sets of black
squares on a chunk from an infinite chess-
board. And the nth Koch teragon is a grid of
lines, a distance of #=3"" apart; they criss-
cross a square of area equal to 2 that becomes
covered increasingly tightly as k—co. It suff-
ices to show one example of this dull design
(next to the initial black box).

Three illustrations on the top of page 63
avoid ambiguity by cutting off the corners
while leaving the total area invariant.

On the same scale, the fourth stage of this
sequence would merge into 50% gray, but a
larger drawing of one-fourth of the coastline
can be followed unambiguously (at some risk
of becoming seasick). It shows graphically
what is meant by saying that the limit Koch
curve fills the plane.

It would have been nice to be able to de-
fine a limit island in analogy to the Koch is-
!ands of Chapter 6, but in the present case it
is impossible. A point chosen at random al-
most surely flips between being inland and in
the ocean, without end. Advanced teragons
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are penetrated by bays or rivers so deeply and
uniformly that a square of middling side
x—such that n<<x<<l—divides between dry
land and water in near equal proportions!

INTERPRETATION. The limit Peano curve
establishes a continuous correspondence be-
tween the straight line and the plane. The fact
that self-contacts are mathematically unavoid-
able is classical. The fact that they are valua-
ble in modeling Nature is new to this work.

LONG-RANGE ORDER. Without knowing of
the descending cascades that built our finite
Peano curves, one would be baffled by the
extraordinary long-range order that allows
these curves to avoid not only self-intersection
but also self-contact. Any lapse in discipline
would make the latter very likely.

-a And total breakdown of discipline
makes endlessly repeated self-intersection al-
most certain, since a totally undisciplined
Peano curve is Brownian motion, mentioned in
Chapter 2 and explored in Chapter 25.

-1 LIOUVILLE THEOREM AND ERGODICITY.
Mechanics represents the state of a complex
system by a single point in a “phase space.”
Under the equations of motion, every domain
in this space is known to behave as follows: its
measure (hyper-volume) remains invariant
(Liouville theorem), but its shape changes and
it disperses and fills all the space available to
it with increasing uniformity. Clearly, both of
these characteristics are echoed by the behav-
ior we impose upon the black domain in the
present Peano construction. It is interesting,
therefore, to dig deeper, by observing that in
many simplified “dynamical” systems that
allow a detailed study each domain disperses
by transforming into an increasingly long and
thin ribbon. It would be interesting to see
whether other systems’ dispersion proceeds
through Peano-like trees instead of
ribbons. » HN
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Plates 64 and 65 @ QUADRIC KOCH CONSTRUCTIONS OF DIMENSION D=2:
CESARO’S AND POLYA'S TRIANGLE SWEEPS, AND VARIANTS

The simplest generator one could imagine is
made of N=2 equal intervals making an angle
@ that satisfies 90°<0<180°. The limit case
@=180° generates a straight interval; the
case #=120° (illustrated in the caption of
Plate 43) generates the triadic Koch curve
(among others). The limit case §=90° is

This generator gives rise to an uncanny num-
ber of different Peano curves, according to the
initiator’s shape, and the rule of placement of
the generator upon the preceding teragon.
Plates 64 to 67 examine a few notable exam-
ples.

-<a In addition, Chapter 25 obtains
Brownian motion by randomizing the class of
all Peano curves with these N and r .

POLYA'S TRIANGLE SWEEP. The initiator.is
[0,1], the generator is as above, and it alter-
nates between the right and the left of the
teragon. The first position also alternates. The
early construction stages yield the following

The teragons are pieces of square graph paper
contained within a right isosceles triangle

whose side is [0,1]. The limit curve sweeps
this triangle.

PLATE 64. POLYA SWEEP OVER A RIGHT
NONISOSCELES TRIANGLE. The generator is
changed to be made of two unequal orthogo-
nal intervals. Guessing the processing chosen
to avoid self-contact is left to the reader as an
exercise.

CESARO’S TRIANGLE SWEEP. The initjator is
{1,0], the generator is again as above, and the
next two construction stages are as follows
(for the sake of clarity, the drawing refers to
6=85° instead of #=90°).

A AN

Thus, in all the odd-numbered construction
stages, the generator is positioned to the right,
yielding as téragon a grid of lines parallel to
the initiator’s diagonals. And in all the even-
numbered stages, the generator is positioned
to the left, yielding as teragon a grid of lines
parallel to the initiator’s sides. Asymptotical-
ly, this curve fills a right isosceles triangle
whose hypotenuse is [0,1].
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PLATE 65. This plate represents a square
sweep obtained by adding the Cesaro sweeps
initiated by [0,1] and [1,0]. (Again, 6=85°
instead of 90° for the sake of clarity.)

SELF-OVERLAP. Each interval in the grids
covered by the Cesdaro teragons is covered
twice. Not only the construction is self-con-
tacting, but it is self-overlapping.

“EFFICIENCY” OF PLANE FILLING. AN EXTRE-
MAL PROPERTY OF THE PEANO-CESARO
DISTANCE. The Peano curve of Plate 63 maps
[0,1] on the square of diagonal [0,1] and area
Y%. The same shape is covered by the Polya
curve. But the Cesdro curve fills a right isos-
celes triangle of hypotenuse [0,1] and area Y.
To cover the whole square, Cesaro must add
the maps of [1,0] and [0,1]. Thus, the Cesaro
curve in the less “efficient,” of the two. As a
matter of fact, it is the least efficient non-
self-intersecting Peano curve on a square lat-
tice. But this fact endows it with a redeeming
virtue: the left or right Peano distance (see p.
61) between two points Py and P is at least
equal to the square Euclidean distance:

|L(P1,P2)] = |P1P2l%; |[R(P1,P2)| 2 |P1P2)?

For other Peano curves, the difference be-
tween Peano and Euclid distance may take
either sign.

KAKUTANI-GOMORY PROBLEM. After select-
ing M points P, in the square [0,1]2, Kaku-
tani (private communication) investigates the
expression infE|Pum+1|2, where the infini-
tum is taken over all the chains that join the
Pm in sequence. He proves that inf<8, but
conjectures that this bound is not the best
one. Indeed, R. E. Gomory (private communi-
cation) obtains the improved bound inf<4.
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The proof uses the Peano-Cesaro curve, as
follows. (A) Add the square’s corners if they
are not already among the Pn,. (B) Rank the
M points P, in the order they are first visited
by the string of four Peano-Cesdro curves
drawn inside the square, along its sides. (C)
Observe that, by lengthening the chain in step
(A), we did not decrease Z|P,Pn,1/°. (D)
Observe that each addend |P.,Ppp.1]% is not
decreased if replaced by |L(Zm,Zm41)]. (E)
Observe that Z|L(Z,Zmy1)| = 4. If different
Peano curves were used, steps (B) and (D)
would be invalid. ==



Plates 66 and 67 1 A SQUARE SWEEP AND THE DRAGON SWEEP

The generator is the same here as in Plates 64
and 65, but seemingly slight changes in other
rules have lasting consequences.

A LATER SQUARE SWEEP BY PEANO. The
initiator is [0,1], but the second, fourth and
sixth construction stages are changed to

'd_,ll

|

EFFICIENCY. AN EXTREMAL PROPERTY. This
curve fills a domain of area equal to 1, while
the curves of Plates 64-65 and the dragon
curve to be below covers %2 or 2. When the
teragons lie on an orthogonal lattice, the cov-
ered area cannot exceed 1. It reaches this
maximum whenever the teragons are self-
avoiding. In other words, absence of self-con-
tact is more than a matter of esthetics, and a
self-contacting curve whose self-contacts are
rounded off, as in Plate 63, does not become
equivalent to a self-avoiding Koch curve.

By taking the odd numbered stages of the
present square sweep, then joining the mid-
points of the teragons’ successive intervals to
avoid self-contact, one falls back on a Peano
curve due to Hilbert.

PLATE 67. A CURVE SWEEPING A RIGHT
TRAPEZOID. The generator is changed to be
made of two unequal orthogonal intervals.
The processing to avoid self-contact is the
same as in the preceding plate.

THE HARTER-HEIGHTWAY DRAGON. (See
Gardner 1967, Davis & Knuth 1970.) Here
the initiator is [1,0], the generator is as
above, and it alternates between the right and
the left of the teragon. The only difference
with the Polya triangle sweep is that the first
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position is always to the right at every stage
of construction, early stages being as follows

The consequences of this change are dramat-
ic, since a mature stage looks like this

On this illustration, the curve itself has be-
come indistinct, and we see only its boundary,
called dragon curve. Thus, this Peano curve
deserves to be called dragon sweep. As any
Koch curve initiated by [0,1], the dragon is
self-similar. But in addition it is seen to be
segmented into portions, which join at wasp
waists. The sections are similar to one anoth-
er, but not to the dragon itself.

TWINDRAGON. The 1977 Fractals points
out that, with the dragon’s rules of construc-
tion, a more natural initiator is [0,1] followed
by [1,0], and terms the shape that is swept as
a result, a twindragon. This shape is encoun-
tered number representations, Knuth 1980. It
looks like this {one component dragon is in
black and the other is in gray).



TWINDRAGON RIVER. After the streams
near the source are erased (for legibility), the
river tree of a twindragon looks like this.

A twindragon can be tiled by reduced size
replicas of itself, like this.

TWINDRAGON SKIN. This is a Koch curve
with the following generator

N

The short and long intervals here are of
lengths r1=1/v2 and rp = (%)(vV2) = r,3,
respectively. Hence, the dimension generating
function is (1/v2)°+2(2v2)P = 1, showing
that the quantity 2P/2 satisfies x3—x2—2=0.

ALTERNATE DRAGONS. (Davis & Knuth
1970.) Pick any infinite sequence X, Xs...,
where each xk can be either O or 1, and use
the value of xk to determine the first position
of the generator during the k-th stage off con-
struction: when xx=1, a generator is first pos-
itioned to the right, but when x,=0 it is first
positioned to the left. Each sequence gener-
ates a different alternate dragon. Bl

~ N\

D~1.5236
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Plates 68 and 69 = THE SNOWFLAKE
SWEEPS: NEW PEANO CURVES
AND TREES (WATERSHED
AND RIVER DIMENSIONS D~1.2618)

These plates illustrate a family of Peano
curves I designed. They fill the original Koch
snowflake (Plate 45), hence two basic mon-
sters of circa 1900 are brought together.

A more important virtue is that a glance
suffices here to document a major theme of
the present Essay: Peano curves are far from
being mathematical monsters with no concrete
interpretation. If they fail to self-contact, they
involve readily visible and interpretable conju-
gate trees. These trees are good first-order
models of rivers, watersheds, botanical trees,
and human vascular systems.

As a by-product, we obtain here a method
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for tiling the snowflake with unequal snow-
flakes.

SEVEN INTERVAL GENERATOR. Let the initi-
ator be [0,1], and the generator and the sec-
ond construction stage be

D=2

More precisely, let the above generator be
denoted by S and called straight, and define
the flipped generator F as the mirror image of
S in the line x="Y%. At any stage of the con-
struction of the snowflake sweep, one can use
either the F, or the $§ generator, at will.
Hence, each infinite sequence of F and S
yields a different snowflake sweep.



ROUNDED OFF TERAGONS. Broken lines
tend to look raw, and the snowflake sweep’s
teragons are made to look isotropic and other-
wise much more “‘natural”, if each interval is
rounded off into one sixth of the circle.

PLATE 45. An advanced teragon of a seven
interval snowflake sweep, rounded off, and
later filled in, was used long ago in Plate 45
to provide a wavy background shading. Look-
ing at it again, we are reminded of a liquid’s
flow past a fractal boundary, and of the shear
lines between two roughly parallel flows of
different velocities.

THIRTEEN INTERVAL GENERATOR. Now
change the above 7 interval generator by re-
placing 5-th leg by a reduced version of the PLATE 68. This advanced teragon, shown as
whole. This version can be positioned either in ~ boundary between two fantastically intert-
the S or the F position. The latter yields the wined domains serves better than any number
following generator and second construction of words to explain whét plane-filling means.
stage PLATE 69. Let the above 13-interval gener-
: ator be rounded off, and do the same in paral-
lel to the snowflake curve. The resulting first
few stages are shown in Plate 69,

RIVER DIMENSIONS. In Peano’s original
curve, each individual river is of finite length,
hence of dimension 1. Here individual rivers
are of dimension log 4 /log 3. To achieve the
dimension D=2, all rivers have to be taken
D=2 together. I
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Plates 70 and 71 = THE PEANO-GOSPER CURVE. ITS TREES, AND
RELATED KOCH TREES (WATERSHED AND RIVER DIMENSIONS D~1.1291)

BACK TO PLATE 46. The thin broken lines on
this plate, unexplained until now, represent
the early construction stages 1 to 4 of a curve
due to Gosper (Gardner 1976). This was the
first self-avoiding Peano curve to be obtained
by the Koch method without further process-
ing.

The initiator is [0,1], and the generator is

1/r=

N=
=v
D=

N NI

By turning the generator counterclockwise
until its first link becomes horizontal, one sees
that it is drawn as a triangular lattice, on
which it occupies 7 out of 3x7 links. This
feature extends to triangular lattices a proper-
ty which page 66 discusses for square lattices.

Now we see that the present Peano curve
fills the Koch curve of Plate 46. The variable
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width hatching in Plate 46 can be explained
now: it represents the fifth stage of the pres-
ent construction. .

LEFT OF PLATE 70. The fourth teragon of
the Gosper curve is redrawn as the boundary
between a black and a white region.

RIGHT OF PLATE 70. RIVER AND WATERSHED
TREES. Rivers and watersheds are drawn along
the midlines of the white and biack “fingers”
of the figure to the left of Plate 70.

TOP OF PLATE 71. Starting with the river
and watershed trees to the right of Plate 70,
the widths of the links are redrawn according
to their relative importance in the Horton-
Strahler scheme (Leopold 1962). In this in-
stance, the river or watershed links are given
widths proportional to their lengths as the
crow flies. The rivers are in black, and the
watersheds in gray.

DIMENSIONS. Each Peano curve determines
the D of its own boundary. In Plates 63 and
64, said boundary is merely a square. In later
plates, it was a dragon’s skin, then a snow-



flake curve. Here it is a fractal curve with
D~1.1291, which is part river and part wat-
ershed. And every other river and watershed
also converges to a curve of fractal dimension
D~1.1291.

FRANCE. One who as a schoolboy often
gazed on a map showing the rivers Loire and
Garonne does not feel far from home.

BOTTOM OF PLATE 71. A RIVER TREE CON-
STRUCTED DIRECTLY BY A KOCH CASCADE.
When the generator is itself tree-shaped, it
generates a tree. For example, let the genera-
tor be

Here we have an alternative method of drain-
ing the Koch curve of Plate 46. (The last
branches near the “‘sources” have been clip-
ped off.) W&
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Plates 72 and 73 = PLANE-FILLING FRACTAL TREES, FUDGEFLAKE, AND QUARTET

The plane-filling “river” trees deduced from
some Peano curves can also be obtained by a
direct recursive construction. The key is a
generator that is itself tree shaped. A dull
example is obtained if the tree generator is
made up of 4 legs forming a + sign. One ob-
tains the river tree of the Peano Cesaro curve
(Plate 65).

FUDGEFLAKE. A better example results
from taking [0,1] as initiator, and using the
following generator

N=3
1/r=v3
D=2

We begin by observing that individual rivers
are generated by a midpoint displacement
shape like on Plate 43. Hence, every asymp-
totic river has the dimension D
log2/logv3 log 4 /log 3. This value is
very familiar from the snowflake curve, but
the curve with which we deal here is not a
snowflake, because the positioning of the gen-
erator follows a different rule.

N

al rivers can originate at the same point. But
we shall see later in this caption that river
teragons may avoid seif-contact. Due to self-
contacts, the present river teragon is an illegi-
ble chunk of hexagonal graph paper, bounded
by an approximate fractal.

TOP OF PLATE 73. The river tree is made
more transparent by erasing all river intervals
that touch a source, and using a bolder pen to
draw the principal river. The area drained by
this tree is v'3 /2~.8660.

FUDGEFLAKE SWEEP. Now draw a Peano
curve with a A shaped initiator, and a genera-
tor in the shape of a Z whose legs are equal
and make angles of 60°. This is the extreme
case for M=3 of the family of generators used
in Plates 46 and 47, but it differs profoundly
from all the other cases. It is investigated in
Davis & Knuth 1970.

One can verify that this Peano curve’s riv-
er tree is none else than the tree we just drew
directly. The initiator’s sides are of length 1,
and the corresponding Peano curve sweeps an
area equal to v3/6~.2886 (how inefficient!).

QUARTET. Next, we consider a different
Koch curve, together with three curves that
fill it: one Peano curve and two trees. These
shapes, which 1 designed, illustrate a further
theme of interest.

Take [0,1] as initiator, and take the fol-
lowing generator

In order to leave room for the rivers, the gen-
e.rator must be made to alternate between the
right and the left. Therefore, the snowflake’s
symmetry is fudged, and the domain these
rivers drain is to be called Sfudgeflake.

Now, we turn to the river tree. Its teragons
do not self-overlap, but they self-contact bad-
ly. This feature’s asymptotic variant is una-
voidable, and it is also unobjectionable, since
it expresses quite properly the fact that sever-
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N=5
1/r=v5
D=2

This curves’ boundary converges to a Koch
curve of dimension D=log 3/logv5=1.3652.
Advanced teragons of the boundary and of the
Peano curve are seen in the center of Plate 49,



which I term the quartet. Each “player,” and
the table between them, pertile.

The quartet’s interior is of course drained
by its own intrinsic river tree. But totally dis-
tinct patterns of chainage are obtained by us-
ing either of the following generators

With the generator to the left, the teragons
self-contact, as with the first example in this
caption. And the drainage area turns out to be
Y. With the generator to the right, the tera-
gons avoid self-contact. And the drainage
area is 1. An advanced teragon is shown in
the bottom figure of Plate 73, R
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8 x Fractal Events and Cantor Dusts

This chapter’s principal goal is to acquaint
the reader concretely and painlessly with yet
another mathematical object ordinarily
viewed as pathological, the Cantor dust, C.
This and related dusts we shall describe have
fractal dimensions between O and 1.

Being formed by points on a straight line,
they are easy to study. In addition, they help
introduce in simplest form several concepts
that are central to fractals but that have been
so underutilized in the past that no specific
terms were required to denote them. First, the
term dust is given a technical meaning, as an
informal equivalent to a set of topological
dimension Dt=0, just as ‘“‘curve” and
“surface” denote sets of topological dimen-
sions Dy=1 and Dt=2. Other new terms are
curd, gap, and trema, to be explained.

NOISE

For the layman, a noise is a sound that is too
§trong, has no pleasing rhythm or purpose, or
interferes with more desirable sounds. Par-
tridge 1958 proclaims that the term “derives

from the Latin nrausea (related to nautes =
sailor), the semantic link being afforded by
the noise made by an ancient shipful of pas-
sengers groaning and vomiting in bad weath-
er.” (The Oxford English Dictionary is not so
sure.) As to contemporary physics, it is less
colorful, and not nearly so precise: it uses
noise as a synonym of chance fluctuation or
error, irrespective of origin and manifestation.
This chapter introduces € through the case
study of an esoteric but simple noise.

ERRORS IN DATA TRANSMISSION LINES

A transmission channel is a physical system
capable of transmitting electricity. However,
electric current is subject to spontaneous
noise. The quality of transmission depends on
the likelihood of error due to noise distortion,
which depends, in turn, on the ratio between
the intensities of signal and noise.

This chapter is concerned with channels
that transmit computer data and involve very
strong signals. An interesting fact is that the
signal is discrete, hence the distribution of
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errors simplifies the distribution of noise to
the bone, so to speak. Noise involves a func-
tion having several possible values, while er-
rors involve a function that has only two pos-
sible values. For example, it may be the indi-
cator function, which is O when there is no
error at time t, and 1 if there is an error.

Physicists have mastered the structure of
the noises that predominate in the case of
weak signals, e.g., thermal noise. In the prob-
lem just described, however, the signal is so
strong that the classical noises are negligible.

The nonnegligible excess noises are diffi-
cult and fascinating because little is known
about them. This chapter examines an excess
noise that was, around 1962, of practical im-
portance to electrical engineers, so that di-
verse talents were called upon to investigate
it. My contribution to this effort was the first
concrete problem in which I experienced the
need to use fractals. No one remotely imag-
ined at that time that a careful study of this
apparently modest engineering difficulty
would get us so far.

BURSTS AND GAPS

Let us subject the errors to increasingly re-
fined analysis. A rough analysis reveals the
presence of periods during which no error is
encountered. Let these remission periods be
called “gaps of rank 0" if their duration ex-
ceeds one hour. By contrast, any time inter-
val flanked by gaps of rank O is singled out as
being a “burst of errors of rank 0.” As the
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analysis is made three times more accurate, it
reveals that the original burst is itself
“intermittent.” That is, shorter gaps “of rank
1,” lasting 20 minutes or more, separate cor-
respondingly shorter bursts “of rank 1.” Like-
wise, each of the latter contains several gaps
“of rank 2,” lasting 400 seconds, separating
bursts “of rank 2,” and so on, each stage be-
ing based on gaps and bursts that are three
times shorter than the previous ones. The
process is illustrated very roughly by Plate 80.
(Do not pay attention to the caption yet.)

The preceding description suggests some-
thing about the relative positions of the bursts
of rank k within a burst of rank k—1. The
probability distribution of these relative posi-
tions seems independent of k. This invariance
is obviously an example of self-similarity, and
fractal dimension cannot be far behind, but
let us not rush. This Essay’s diverse case stud-
ies are meant, among others, to elicit new
themes or refine old ones. With this in mind,
it seems best to reverse. the historical order,
and introduce a new theme through a rough
nonrandom variant of the Berger & Mandel-
brot stochastic model of errors, Chapter 31.

A ROUGH MODEL OF ERROR BURSTS:
THE CANTOR FRACTAL DUST C

The preceding section constructs the set of
errors by starting with a straight line, namely
the time axis, then cutting out shorter and
shorter error-free gaps. This procedure may
be unfamiliar in natural science, but pure
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mathematics has used it at least since Georg
Cantor (Hawkins 1970, especially p. 58).

In Cantor 1883, the initiator is the closed
interval [0,1]. The term “closed” and the use
of brackets indicate that the extreme points
are included; this notation was used in Chap-
ter 6, but there was no need until now to

"make it explicit. The first construction stage
consists in dividing [0,1] into 3 pieces, then
removing the middle open third, designated
1%, 3[. The term “open’ and the use of rev-
ersed brackets indicate that the extreme
points are excluded. Next, one removes the
open middle of each of N=2 remaining thirds.
And so on to infinity.

The remainder set C is called either
dyadic, due to the fact that N=2, or triadic
or ternary, due to the fact that [0,1] is subdi-
vided into 3 pieces.

More generally, the number of pieces,
called base, is denoted by b, the ratio between
each N-th of the set and the whole being
r=1/b. Cis also called Cantor discontinuum,
and I shall momentarily suggest the term,
Cantor fractal dust. Since a point on the time
axis marks an “event,” Cis a fractal sequence
of events.

CURDLING, TREMAS, AND WHEY

Cantor’s procedure is a cascade, to use a term
Lewis Richardson had applied to turbulence,
and we first borrowed in Chapter 6 to de-
scribe coastlines and the Koch curve. “Stuff”
that was uniformly distributed over an initia-
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tor [0,1] is subjected to a centrifugal eddy
which sweeps it into the extreme thirds.

The middle third portion cut out of [0,1]
to form a gap is henceforth denoted as trema
generator. This neologism is being coined in
this section from rpnpua meaning hole, whose
distant relative is the Latin zermes = termite.
It may be the shortest Greek word that has
not yet been put to work with a significant
scientific meaning.

In this context, tremas coincide with gaps,
but in different instances to be encountered
later they do not, which is why two different
terms are required.

While a “first-order trema” is emptied, the
total stuff is conserved and redistributed with
uniform density over the outer thirds, to be
called precurds. Then two centrifugal eddies
come in and repeat the same operation, start-
ing with the two intervals [0,%] and [%,1].
The process continues as a Richardsonian cas-
cade converging at the limit to a set to be
called curd. If a stage’s duration is propor-
tional to the eddy size, the total process is of
finite duration.

In parallel, I propose whey (a term Miss
Muffet should not mind) to denote the space
outside the curd.

It is suggested that the above terms be
used not only in a mathematical but also in a
physical meaning: curdling to denote any cas-
cade of instabilities resulting in contraction,
and curd to denote a volume within which a
physical characteristic becomes increasingly
concentrated as a result of curdling.

ETYMOLOGY. Curd derives from the old
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English crudan, ‘to press, to push hard.” This
erudition from Partridge 1958 is not necessar-
ily irrelevant, since the etymological kin of
curd doubtless include fractal kin of interest;
see Chapter 23.

Note the following free associations: curds
- cheese - milk - Milky Way - Galaxy
(vyara = milk) - galaxies. I coined curdling
while working on galaxies, and the etymologi-
cal undertones of “galactic curdling” did not
escape my notice.

OUTER CUTOFF AND
EXTRAPOLATED CANTOR DUSTS

As a prelude to the extrapolation of C, let us
recall a point of history. When Cantor intro-
duced C, he had barely left his original field,
the study of trigonometric series. Since such
series are concerned with periodic functions,
the only extrapolation they involve is endless
repetition. Now recall the self-explanatory
terms of inner and outer cutoff, which Chap-
ter 6 borrows from the study of turbulence.
These are, respectively, the sizes ¢ and @ of
the smallest and the largest feature present in
a set, and one may say that Cantor restricted
himself to @=1. The k-th construction stage
yields e=3K, but e=0 for C itself. To achieve
any other Q<co, for example the value of 2w
appropriate in a Fourier series, one enlarges
the periodic Cantor dust in the ratio Q.
However, self-similarity, which this Essay
views as valuable, is destroyed by repetition.
But it is readily saved, if the initiator is used
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only for extrapolation and if extrapolation
follows an inverse or upward cascade. The
first stage enlarges C in the ratio 1/r=3 and
positions it on [0,3]. The result is € plus a
replica translated to the right and separated
from C by a new trema of length 1. The sec-
ond stage enlarges the outcome of the first
stage in the same ratio 3 and positions it on
[0,9]. The result is C plus 3 replicas translat-
ed to the right and separated by two new tre-
mas of length 1, and one new trema of length
3. The upward cascade continues to enlarge C
in the successive ratios of the form 3.

If one prefers, one may alternate two
stages of interpolation, then a stage of extra-
polation, etc. In this fashion, each series of
three stages multiplies the outer cutoff @ by 3
and divides the inner cutoff ¢ by 3.

-<a In this extrapolated dust, the negative
axis is empty: an infinite trema, The underly-
ing notion is discussed further in Chapter 13,
where we tackle the (infinite) continent and
the infinite cluster. m

DIMENSIONS D BETWEEN 0 AND 1

The set yielded by infinite interpolation and
extrapolation is self-similar, and

D=Ilog N/log (1/r)=log 2 /log 3~0.6309,

a fraction between O and 1.

By following a different curdling rule, we
can achieve other D’s, in fact any dimension
between O and 1. If the first stage trema is of



78

length 1-2r, where 0<r<, the dimension is
log2/log (1/r).

Further variety becomes possible if N#2.
For the sets with N=3 and r=1/5, we find

D=log 3/log 5~0.6826.
For the sets with N=2 and r="%, we find
D=log2/log 4="%.

For the sets with N=3 and r=1/9, we also
find

D=log 3/log 9=%.

Although their D are equal, these last two
sets “look” very different. This observation is
taken up again and extended in Chapter 34,
and leads to the notion of lacunarity.

Observe also that there is at least one Can-
tor set for every D<1, but it follows from
Nr<1 that N<1/r, hence D is never above 1.

C1S CALLED DUST BECAUSE D1=0

While a Cantor set’s D can vary between O
and 1, from the topological viewpoint all Can-
tor sets are of dimension Dy=0, because any
point is by definition cut from the other
points, without anything having to be removed
to cut it. From this viewpoint, there is no dif-
ference between.( and finite sets of points!
The fact that Dy=0 in this last case is famili-
ar in standard geometry, and Chapter 6 uses
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it in arguing that Koch’s _K is of topological
dimension 1. But Dt=0 for all totally discon-
nected sets.

In the absence of accepted colloquial
counterparts to “curve” and “surface” (which
are connected sets with Dy=1 and Dy=2), 1
propose that sets with Dy=0 be called dusts.

GAPS’ LENGTH DISTRIBUTION

In a Cantor dust, let u be a possible value of a
gap’s length, and denote by U the length when
it is unknown, and by Nr{U>u) the number of
gaps or tremas of length U greater than u.
-a This notation is patterned after the nota-
tion Pr(U>u) of probability theory. m One
finds there is a constant prefactor F, such that
the graph of the function Nr{U>u) constantly
crosses the graph of Fu™P. Here comes dimen-
sion again. With logu and log Nr as coordi-
nates, the steps are uniform.

AVERAGE NUMBERS OF ERRORS

As in the case of a coastline, a rough idea of
the sequence of errors is obtained if Cantor
curdling stops with intervals equal to =37
The ¢ may be the length of time required to
transmit a single symbol. One must also use
Cantor’s periodic extrapolation with a large
but finite Q.

The number of errors between times O and
R, denoted by M(R), keeps time by counting
only those instants that witness something
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noteworthy. It is an example of fractal time.

When the sample begins at t=0 (which is
the only case to be considered here), the de-
rivation of M(R) proceeds as in the case of the
Koch curve. As long as R is smaller than Q,
the number of errors doubles each time R is
multiplied by 3. As a result, M(R)=<RP.

This expression is like the standard expres-
sion for the mass of a disc or ball of radius R
in D-dimensional Euclidean space. It is also
identical to the expression obtained in Chap-
ter 6 for the Koch curve.

As a corollary, the average number of er-
rors per unit length varies roughly like Rb-1
as long as R lies between the inner and the
outer cutoffs. When @ is finite, the decrease
in the average number of errors continues to
the final value of QD’I, which is reached with
R=Q. Thereafter, the density remains more or
less constant. When Q is infinite, the average
number of errors decreases to zero. Finally,
the empirical data often suggest that @ is fin-
ite and very large, but fail to determine its
value with any accuracy. If this is the case,
the average number of errors has a lower limit
that does not vanish but that is so ill-
determined as to be of no practical use.

TREMA ENDPOINTS AND THEIR LIMITS

-a The most conspicuous members of C, the
trema endpoints, do not exhaust  in fact
they constitute but a tiny portion of it. The
other points’ physical importance is discussed
in Chapter 19. m
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THE CANTOR DUSTS' TRUE NATURE

The reader who has followed thus far and/or
has heard the echo of the rapidly growing lit-
erature on Devil’s Staircases (caption of Plate
83) must find it hard to believe that, when I
started on this topic in 1962, everyone was
agreeing that Cantor dusts are at least as

. monstrous as the Koch and Peano curves.

Every self-respecting physicist was auto-
matically “turned off” by a mention of Can-
tor, ready to run a mile from anyone claiming
C to be interesting in science, and eager to
assert that such claims had been advanced,
tested, and found wanting. My sole encour-
agement came from S. Ulam’s suggestions,
tantalizing despite their failure to be either
developed or accepted, concerning the possible
role for Cantor sets in the gravitational equi-
librium of star aggregates; see Ulam 1974.

To publish on Cantor dusts, I had to erase
every mention of Cantor!

But here we were led to C by Nature’s own
peculiarities. And Chapter 19 describes a sec-
ond, very different, physical role for C. All
this must mean that the true nature of the
Cantor dust is very different.

It is undeniable that in most cases C itself
a very rough model, requiring many improve-
ments. I contend, however, that the very same
properties that cause Cantor discontinua to
be viewed as pathological are indispensable in
a model of intermittency, and must be pre-
served in more realistic substitutes for C. mm
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DIMENSION D=log 2/log 3=0.6309).
SATURN’S RINGS. CANTOR CURTAINS.

The Cantor dust uses [0,1] as initiator, and
its generator is

N=2
r="4%
D=log 2 /log 3=.6309
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PLATE 80. The Cantor dust is extraordinar-
ily difficult to illustrate, because it is thin and
§pare to the point of being invisible. To help
mtuition by giving an idea of its form, thicken
it into what may be called a Cantor bar.
=a In technical terms, this is the Cartesian
product of a Cantor dust of length 1, by an
interval of length 0.03. m
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CURDLING. The construction of the Cantor
bar results from the process I call curdling. 1t
begins with a round bar (seen in projection as
a rectangle in which width /length=0.03). It
is best to think of it as having a very low den-
sity. Then matter “curdles” out of this bar’s
middle third into the end thirds, so that the
positions of the latter remain unchanged.
Next matter curdles out of the middle third of
each end third into its end thirds, and so on
ad infinitum until one is left with an infinitely
large number of infinitely thin slugs of infi-
nitely high density. These slugs are spaced
along the line in the very specific fashion in-
duced by the generating process. In this illus-
tration, curdling (which eventually requires
hammering!) stops when both the printer’s
press and our eye cease to follow; the last line
is indistinguishable from the last but one:
each of its ultimate parts is seen as a gray
slug rather than two parallel black slugs.



CANTOR CAKE. When curdling starts with a
pancake, much less thick than it is wide, and
dough curdles into thinner pancakes (while
exuding an appropriate filling), one ends up
with an infinitely extrapolated Napoleon,
which one might call Cantor cake.

SATURN'S RINGS. Saturn was originally
believed to have a single ring around it. But
eventually a break was discovered, then two,
and now Voyager | has identified a very large
number of breaks, mostly very thin ones. Voy-
ager also established that the rings are dia-
phanous: they let sunlight through...as befits a
set we called “‘thin and spare.”

Thus, the rings’ structure (see Stone &
Minen 1981, especially the cover illustration)
is suggestive of a collection of near circles,
each with a radius corresponding to the dis-
tance from some origin to a point in Cantor
dust. -«a The technical term is Cartesian
product of a Cantor dust by a circle. Actually,
it may be that a closer picture is given by a
circle’s product with a dust with positive
measure, like those examined in Chapter
15. w» Last minute insert: The same idea is
stated independently to Avron & Simon 1981,
which relates it to Hill’s equation; their Note
6 includes many other relevant references.

SPECTRA. Harter 1979-1981 describes
some spectra of organic molecules whose re-
semblance to a Cantor dust is stunning.

PLATE 81. Here, the Cantor dust’s shape is
clarified by being placed among generalized
dusts with N=2 and variable r. The vertical
coordinate is either r itself, ranging from O to
Y2 (bottom figure), or D ranging from 0 to 1
(top figure). Both theater curtains are topped
by the full intervai [0,1]. Every horizontal cut

"~ of either figure is some Cantor dust, with the

arrows pointing out r="% and D=06309.

A FAMOUS GREEK PARADOX. Greek philoso-
phers believed that, in order to be indefinitely
subdivisible, a body had to be continuous.

They had not heard of Cantor dusts. =
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Plate 83 1 CANTOR FUNCTION, OR DEVIL'S STAIRCASE (DIMENSION D=1
THE RISERS’ ABSCISSAS ARE OF DIMENSION D~0.6309). CANTOR MOTION

The Cantor function describes the distribution
of mass along the Cantor bar of Plate 80.
Many writers refer to its graph as the Devil’s
Staircase, because it is odd indeed. Set both
the bar’s length and mass as equal to 1, and
for every value of the abscissa R define M(R)
as the mass contained between O and R. Since
there is no mass in the gaps, M(R) remains
constant along intervals that add up to the
whole length of the bar. However, since ham-
mering does not affect the total mass in the
bar, M(R) must manage to increase
somewhere from the point of coordinates
(0,0) to the point of coordinates (1,1). It in-
creases over infinitely many, infinitely small,
highly clustered jumps corresponding to the
slugs. Hille & Tamarkin 1929 describes this
function’s odd properties in detail.

REGULARIZING MAPPINGS. The Devil’s
staircase accomplishes the feat on mapping
the drastic nonuniformity of the Cantor bar
into something uniform and homogeneous.
Starting with two different intervals of the
same length on the vertical scale, the inverse
function of the Cantor staircase yields two
collections of slugs that contain the same
mass—even though they usually look very dif-
ferent from each other.

Since science thrives on uniformity, it of-
ten happens that such regularizing transfor-
mations make fractal irregularity accessible to
analysis.

FRACTAL HOMOGENEITY. It is convenient to
describe the distribution of mass in the Can-
tor bar as fractally homogeneous.

CANTOR MOTION. As in the case of the
Koch curve reinterpreted as Koch motion, or
of the Peano motipn, it is useful to reinterpret
the ordinate M(R) as a time. If so, the inverse
function R(M) gives the position of a Cantor
motion at time t. This motion is most discon-
tinuous. Chapters 31 and 32 describe a ran-
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domized linear and spatial generalizations.

FRACTAL DIMENSION. The sums of the
widths and of the heights of the steps both
equal 1, and one finds in addition that this
curve has a well-defined length equal to 2. A
curve of finite length is called rectifiable and
is of dimension D=1. This example demon-
strates that the dimension D=1 is compatible
with the presence of many irregularities, as
long as they remain sufficiently scattered.

-<a One would love to call the present
curve a fractal, but to achieve this goal we
would have to define fractals less stringently,
on the basis of notions other than D alone.

SINGULAR FUNCTIONS. The Cantor stair-
case is a nondecreasing and nonconstant func-
tion that is singular, in the sense that it is
continuous but nondifferentiable. Its deriva-
tive vanishes almost everywhere, and its con-
tinuous variation manages to occur over a set
whose length—i.e., linear measure—vanishes.

Any nondecreasing function can be written
as the sum of a singular function, of a func-
tion made of discrete jumps, and of a differ-
entiable function. The last two components
are classical in mathematics and of wide use
in physics. On the other hand, the singular
component is widely regarded in physics as
pathological and totally devoid of uses. A
principal theme of this Essay is that this last
opinion is totally devoid of merit.

DEVIL'S STAIRCASES IN STATISTICAL
PHYSICS. The publication of this plate in my
1977 Essay brought the Devil’s staircase to
the physicists’ attention, and stimuldted an
extensive literature. Diagrams analogous to
the “curtains” of Plate 81, or the Fatou cur-
tain of Plate 185, are encountered with grow-
ing frequency. See Aubry 1981. Important
earlier work (Azbel 1964, Hofstadter 1976),
which used to be isolated, merges with this
new development. HE
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9 » Fractal View of Galaxy Clusters

In Chapters 6 and 7, the Koch and Peano
fractals are introduced via geomorphology,
but the most significant uses of fractals are
rooted elsewhere. Inching toward the main-
stream of science, this chapter and the next
two tackle two issues of exceptional antiquity,
importance and difficulty.

The distribution of the stars, the galaxies,
the clusters of galaxies, and so on fascinates
the amateur as well as the specialist, yet clus-
tering remains peripheral to astronomy and to
astrophysics as a whole. The basic reason is
that no one has yet explained why the distri-
bution of matter falls into an irregular hier-
archy, at least within a certain range of
§cales. While there are allusions to clustering
In most works on the subject, serious theoreti-
cal developments hasten to sweep it under the
rug, claiming that on scales beyond some
large but unspecified threshold galaxies are
uniformly distributed.

Less fundamentally, the hesitation in deal-

ing with the irregular arises from the absence
of tools to describe it mathematically. Statis-
tics is asked to decide between two assump-
tions, only one of which is thoroughly ex-
plored (asymptotic uniformity). Is it surpris-
ing that the results are inconclusive?

The questions, however, refuse to be set
aside. In parallel with efforts to explain, 1
think it indispensable to describe clustering,
and to mimic reality by purely geometric
means. The fractal treatment of this subject,
scattered over several chapters of this Essay,
proposes to show by explicitly constructed
models that the evidence is compatible with a
degree of clustering that extends far beyond
the limits suggested by existing models.

The present introductory chapter describes
an influential theory of the formation of stars
and galaxies, due to Hoyle, the principal de-
scriptive model of their distribution, due to
Fournier d’Albe (also known as the Charlier
model), and, most important, sketches some
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empirical data. It is shown that both theories
and data can be interpreted in terms of a scal-
ing fractal dust. I argue that the distribution
of galaxies and of stars includes a zone of
self-similarity in which the fractal dimension
satisfies 0<D<3. Theoretical reasons for ex-
pecting D=1 are sketched, raising the ques-
tion of why the observed D is ~1.23.

PREVIEW. Chapter 22 uses fractal tools to
improve our understanding of what the cosmo-
logical principle means, how it can and should
be modified, and why the modification de-
mands randomness. A discussion of improved
model clusters is withheld until Chapters 22,
23, and 32 to 35.

IS THERE A GLOBAL
DENSITY OF MATTER?

Let us begin with a close examination of the
concept of global density of matter. As with
the concept of the length of a coastline, things
seem simple, but in fact go awry very quickly
and most interestingly. To define and measure
density, one starts with the mass M(R) in a
sphere of radius R centered on Earth. The
approximate density, defined as

M(R)/[(4/3)xR3],

is evaluated. After that, the value of R is
made to tend toward infinity, and the global
_density is defined as the limit toward which
the approximate density converges.

But need the global density converge to a
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positive and finite limit? If so, the speed of
convergence leaves a great deal to be desired.
Furthermore, the estimates of the limit densi-
ty had behaved very oddly in the past. As the
depth of the world perceived by telescopes
increased, the approximate density diminished
in a surprisingly systematic manner. Accord-
ing to de Vaucouleurs 1970, it has remained
«RP~3, The observed exponent D is much
smaller than 3, the best estimate, on the basis
of indirect evidence, being D=1.23.

The thesis of de Vaucouleurs is that the
behavior of the approximate density reflects
reality, meaning that M(R)ocRD. This formula
recalls the classical result that a ball of radius
R in a Euclidean space of dimension E has a
volume «=RE. In Chapter 6 we encounter the
same formula for the Koch curve, with the
major difference that the exponent is not the
Euclidean dimension E=2 but a fraction-
valued fractal dimension D. And Chapter 8
derives M(R)ocRD for the Cantor dust on the
time axis (for which E=1).

All these precedents suggest very strongly
that the de Vaucouleurs exponent D is a frac-
tal dimension.

ARE STARS IN THE SCALING RANGE?

Obviously, the scaling range in which D satis-
fies 0<D<3 must end before one reaches ob-
jects with well-defined edges, such as planets.
But does it, or does it not, include stars? Ac-
cording to data by Webbink reported in Faber
& Gallagher 1980, the mass of the Milky
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Way interior to radius R may very well be
represented as M(R)ocRD, with the D extrapo-
lated from galaxies. But we continue our dis-
cussion exclusively in terms of galaxies.

IS THERE AN UPPER CUTOFF
TO THE SCALING RANGE?

The question of how far the range in which
0<D<3 extends in the direction of very large
scales is controversial and the subject of re-
newed activity. Many authors either state or
imply that the scaling range admits of an out-
er cutoff corresponding to clusters of galaxies.
Other authors disagree. De Vaucouleurs 1970
asserts that “clustering of galaxies, and pre-
sumably of all forms of matter, is the domi-
nant characteristic of the structure of the uni-
verse on all observable scales with no indica-
tion of an approach to uniformity; the average
density of matter decreases steadily as even
larger volumes of space are considered, and
there is no observational basis for the assump-
tibn that this trend does not continue out to
much greater distances and lower densities.”

The debate between these two schools of
thought is interesting and important to
cosmology—but not for the purposes of this
Essay. Even if the range in which 0<D<3 is
cut off at both ends, its importance is suffi-
cient in itself to warrant a careful study.

In either case, the Universe (just like the
bal} of thread discussed in Chapter 3) appears
to involve a sequence of several different ef-
fective dimensions. Starting with scales of the
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order of Earth’s radius, one first encounters
the dimension 3 (due to solid bodies with
sharp edges). Then the dimension jumps to O
(matter being viewed as a collection of isolat-
ed points). Next is the range of interest, ruled
by some nontrivial dimension satisfying
0<D<3. If scaling clustering continues ad
infinitum, so does the applicability of this last
value of D. If, on the contrary, there is a fi-
nite outer cutoff, a fourth range is added on
top, in which points lose their identity and one
has a uniform fluid, meaning that the dimen-
sion again equals 3.

On the other hand, the most naive idea is
to view the galaxies as distributed near uni-
formly throughout the Universe. Under this
untenable assumption, one has the sequence
D=3, then D=0, and again D=3.

—a The general theory of relativity asserts
that in the absence of matter, the local geom-
etry of space tends to be flat and Euclidean,
with the presence of matter making it locally
Riemannian. Here we could speak of a global-
ly flat Universe of dimension 3 with local
D<3. This type of disturbance is considered in
Selety 1924, an obscure reference which fails
to refer to Koch but includes (p. 312) an ex-
ample of the construction of Chapter 6. m

THE FOURNIER UNIVERSE

It remains to construct a fractal that satisfies
M(r)<RP, and see how it agrees with accepted
views concerning the Universe. The first fully
described model of this kind is due to E. E.
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Fournier d’Albe (Chapter 40). While Fourni-
er 1907 is largely a work of fiction disguised
as science, it also contains genuinely interest-
ing considerations to which we come momen-
tarily. It is best, however, to first describe the
structure it proposes.

Its construction begins with the centered
regular octahedron whose projection is repre-
sented near the center of Plate 95. The pro-
jection reduces to the four corners of a square
whose diagonal is set to be of length 12
“units,” and to this square’s center. But the
octahedron also includes two points above and
below our plane, on the perpendicular drawn
from the center of the square, and at the same
distance of 6 units from this center.

Now, each point is replaced with a ball of
radius 1, to be viewed as “stellar aggregate of
order 0.” And the smallest ball including the
basic 7 balls is to be called a “stellar aggre-
gate of order 1. An aggregate of order 2 is
achieved by enlarging an aggregate of order 1
in the ratio 1/r=7 and by replacing each of
the resulting balls of radius 7 by a replica of
the aggregate of order 1. In the same way, an
aggregate of order 3 is achieved by enlarging
an aggregate of order 2 in the ratio 1/r=7
and by replacing each ball by a replica of the
aggregate of order 2. And so on.

In sum, between two successive orders of
aggregation, the number of points and the
radius are enlarged in the ratio 1 /r=7. Con-
sequently, whenever R is the radius of some
aggregate, the function Mg(R) expressing the
number of points contained in a ball of radius
R is Mg(R)=R. For intermediate values of R,
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Mo(R) is smaller (reaching down to R/7), but
the overall trend is Mg(R)«<R.

Starting from aggregates of order O, it is
also possible to interpolate by successive
stages to aggregates of orders —1, -2, and so
on. The first stage replaces each aggregate of
order O with an image of the aggregate of
order 1, reduced in the ratio 1/7, and so
forth. If one does so, the validity of the rela-
tionship Mg(R)«<R is extended to ever smaller
values of R. After infinite extra- and interpo-
lation, we have a self-similar set with
D=log7/log7=1.

We may also note that an object in
3-space for which D=1 need not be a straight
line nor any other rectifiable curve. It need
not even be connected. Each D is compatible
with any lesser or equal value of the topologi-
cal dimension. In particular, since the doubly
infinite Fournier universe is a totally discon-
nected ““dust,” its topological dimension is O.

DISTRIBUTION OF MASS;
FRACTAL HOMOGENEITY

The step from geometry to the distribution of
mass is obvious. If each stellar aggregate of
order O is loaded with a unit mass, the mass
M(R) within a ball of radius R>1 is identical
to Mo(R), hence «R. Furthermore, to generate
aggregates of order —1 from aggregates of
order O amounts to breaking up a ball that
had been viewed as uniform, and finding it to
be made of seven smaller ones. This stage ex-
tends the rule M(R)«<R below R=1.
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When viewed over the whole 3-space, the
resulting mass distribution is grossly inhomo-
geneous, but over the Fournier fractal it is as
homogeneous as can be. (Recall Plate 80.) In
particular, any two geometrically identical
portions of the Fournier universe carry identi-
cal masses. | propose that such a distribution
of mass be called fractally homogeneous.

-a The preceding definition is phrased in
terms of scaling fractals, but the concept of
fractal homogeneity is more general. It ap-
plies to any fractal for which the Hausdorff
measure for the dimension D is positive and
finite. Fractal homogeneity requires the mass
carried by a set to be proportional to the set’s
Hausdorff measure. w

FOURNIER UNIVERSE VIEWED AS
CANTOR DUST. EXTENSION TO D#1

I trust the reader was not distracted by the
casual use of fractal terminology in the open-
ing sections of this chapter. It is obvious that,
without being aware of the fact, Fournier was
traveling along a track parallel to that of
Cantor, his contemporary. The main differ-
ence is that the Fournier construction is im-
bedded in space instead of the line. To further
improve the resemblance, it suffices to change
Fournier’s aggregates from being balls to be-
ing bricks (filled-in cubes). Now, each aggre-
gate of order O is a brick of side 1, and it in-
cludes 7 aggregates of side 1/7: one of them
has the same center as the initial cube, and
the other six touch the central subsquares of
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the faces of the original cube.

Later we will examine how Fournier ob-
tains the value D=1 from basic physical phe-
nomena, and how Hoyle obtains this same
value. Geometrically, however, D=1 is a spe-
cial case, even if one preserves the overall oc-
tahedron and the value N=7. Since the balls
do not overlap, 1/r can take any value be-
tween 3 and infinity, yielding M(R)«<RP, with
D=log 7 /log (1 /r) anywhere between O and
log7/log3=1.7712.

Further, given any D satisfying D<3, it is
easy by changing N to construct variants of
Fournier’s model having this dimension.

THE CHARLIER MODEL AND
OTHER FRACTAL UNIVERSES

The above constructs share every one of the
characteristic defects of first fractal models.
Most conspicuously, just like the Koch curve
model in Chapter 6 and the Cantor dust mod-
el in Chapter 8, the Fournier model is so reg-
ular as to be grotesque. As a corrective, Char-
lier 1908, 1922 suggests that one allow N and
r to vary from one hierarchical level to anoth-
er, taking on the values N, and rp,.

The scientific eminence of Charlier was
such that, despite the praise he lavished on
Fournier, writing in the leading scientific lan-
guages of the day, even the simple model soon
became credited to its famous expositor in-
stead of its unknown author. It was much dis-
cussed in its time, in particular in Selety
1922, 1923a, 1923b, 1924. Furthermore, the
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model attracted the attention of the very in-
fluential Emile Borel, whose comments in Bo-
rel 1922, while dry, were perceptive. But from
then on, aside from fitful revivals, the model
fell into neglect (for not very convincing rea-
sons noted in North 1965, pp. 20-22 and
408-409). Nevertheless, it refuses to die. The
basic idea was independently reinvented many
times to this day, notably in Lévy 1930. (See
the LEVY entry in Chapter 40.) Most impor-
tant, the fractal core notion of the Fournier
universe is implicit in the considerations about
turbulence and galaxies in von Weizsdcker
1950 (see Chapter 10), and in the model of
the genesis of the galaxies due to Hoyle 1953,
which will be discussed momentarily.

The basic fractal ingredient is also present
in my models, Chapters 32 to 35.

In this light, the question arises of whether
a model of galaxy distribution can fail to be a
fractal with one or two cutoffs. I think not. If
one agrees that the distribution must be scal-
ing (for reasons to be elaborated in Chapter
11) and that the set on which matter concen-
trates is not a standard scaling set, it must be
a fractal set.

Granted the importance of scaling,
Charlier’s nonscaling generalization of the
Fournier model is ill-inspired. <o Incidentally,
it allows log N /log (1 /1) to vary with m
between two bounds; Dmin>0 and Dpax<3.
We have here yet another theme: effective
dimension need not have a single value, and
may drift between an upper and a lower limit.
This theme is picked up again in Chapter
15, m
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FOURNIER'S REASON TO EXPECT D=1

We now describe the impressive argument
that leads Fournier 1907, p. 103, to conclude
that D must be equal to 1. This argument is a
strong reason for not forgetting its author.

Consider a galactic aggregate of arbitrary
order with mass M and radius R. Using with-
out misgivings a formula applicable to objects
with spherical symmetry, assome that the gra-
vitational potential on the surface is GM/R
(G being the gravitational constant). A star
falling on this universe impacts with the ve-
locity V equal to (2GM/R)”.

To paraphrase Fournier, an important con-
clusion may be drawn from the observation
that no stellar velocity exceeds 1 /300 of the
velocity of light. It is that the mass comprised
within a world ball increases as its radius, and
not as its volume, or in other words, that the
density within a world ball varies inversely as
the surface of the ball... To make this clearer,
the potential at the surface would be always
the same, being proportional to the mass and
inversely proportional to the distance. And as
a consequence, stellar velocities approaching
the velocity of light would not prevail in any
part of the universe.

HOYLE CURDLING; THE JEANS
CRITERION ALSO YIELDS D=1

A hierarchical distribution also arises in a
theory advanced in Hoyle 1953, according to
which galaxies and stars form by a cascade
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process starting with a uniform gas.

Consider a gas cloud of temperature T and
mass Mg, distributed with a uniform density
throughout a ball of radius R. As shown by
Jeans a ‘‘critical” situation prevails when
Mo/ Ro=JKRT/G. (Here, K is the Boltzmann
constant and J a numerical coefficient.) In
this critical case, the primordial gaseous cloud
is unstable and must inevitably contract.

Hoyle postulates (a) that Mg/Rgp takes on
this critical value at some initial stage, (b)
that the resulting contraction stops when the
volume of the gas cloud drops to 1/25-th,
and (c) that each cloud then splits into five
clouds of equal size, mass M;=Mg/5, and
equal radius R{=Rg/5. Thus the process ends
as it started: in an unstable situation followed
by a second stage of contraction and subdivi-
sion, then a third, and so on. But curdling
stops as clouds become so opaque that the
heat due to gas collapse can no longer escape.

As in the diverse other fields where the
same cascade process is encountered, I pro-
pose that the five clouds be called curds, and
that the cascade process be called curdling.
As said when 1 introduced this last term, 1
could not resist its juxtaposition with galactic.

Fournier injects N=7 to facilitate the
graphical illustration, but Hoyle claims that
N=5 has a physical basis. In another cofitrast
with Fournier, whose geometrical illustration
is detailed beyond what is reasonable or need-
ed, Hoyle is vague about the curds’ spatial
scatter. An explicit implementation has to
wait until we describe random curdling in
Chapter 23. But these discrepancies do not
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matter: the main fact is that r=1/N, so that
D=1 must be part of the design if curdling is
to end as it began, in Jeans instability.

Further, if the duration of the first stage is
taken to be 1, gas dynamics shows that the
mth stage’s duration is 5™, It follows that
the same process could continue to infinity
within a total time of 1.2500.

EQUIVALENCE OF THE FOURNIER
AND HOYLE DERIVATIONS OF D=1

At the edge of an unstable gas cloud satisfy-
ing the Jeans criterion, the velocity and the
temperature are linked by V2/2=JkT, be-
cause GM/R is equal to V2 /2 (Fournier) and
to JKT (Jeans). Now recall that in statistical
thermodynamics the temperature of a gas is
proportional to the mean square velocity of its
molecules. Hence the combination of the
Fournier and Jeans criteria suggests that at
the edge of a cloud the velocity of the fall of a
macroscopic object is proportional to the aver-
age velocity of its molecules. A careful analy-
sis of the role of temperature in the Jeans cri-
terion is bound to show the two criteria to be
equivalent. <o Most likely, the analogy ex-
tends to the M(R)=<R relationship within gal-
axies, reported in Wallenquist 1957, w=

WHY D=1.23 AND NOT D=1?
They disagreement between the empirical
D=1.23 and the Fournier and Hoyle theoreti-
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cal D=1 raises an important issue. P. J. E.
Peebles tackled it in 1974 by relativity theory.
See Peebles 1980, a full treatment of the
physics and of the statistics (but not of the
geometry) of this topic.

THE SKY’'S FRACTAL DIMENSION

The sky is a projection of a universe, in which
every point is first described by its spherical
coordinates p, 8, and ¢ and then replaced by
the point of spherical coordinates 1, 6, and ¢.
When the universe is a fractal of dimension D,
and the origin of the frame of references be-
longs to the universe (see Chapter 22), the
“structure of this projection is “‘typically”
ruled by the following alternative: D>2 im-
plies that the projection covers a nonzero pro-
portion of the sky, while D<2 implies that the
projection is itself of dimension D. <a As ex-
emplified in Plates 95 and 96, typical allows
for exceptions, due to the structure of the
fractal and/or the choice of origin. It often
means “true with probability 1.” m

ASIDE ON THE BLAZING SKY EFFECT
(WRONGLY CALLED OLBERS PARADOX)

The rule in the preceding section bears direct-
ly upon the motivation that led diverse writers
(including Fournier) to variants of a fractal
Universe, They recognized that such universes
“exorcise” geometrically the Blazing Sky
Effect, often (but wrongly) called Olbers

N

paradox. Under the assumption that the dis-
tribution of celestial bodies is uniform, mean-
ing that D=3 for all scales, the sky is lit near
uniformly, during the night and during the
day, to the brighness of the solar disc.

This paradox is no longer of interest to
physicists, having been eliminated by relativi-
ty theory and the theory of the expansion of
the Universe, and other arguments. But its
demise left a peculiar by-product: numerous
commentators invoke their preferred explana-
tion of the Blazing Sky Effect as an excuse
for neglecting clustering, and even as an argu-
ment for denying its reality. This is a truly
odd viewpoint: even if galaxies need not be
clustered to avoid the Blazing Sky Effect,
they are clustered, and this characteristic de-
mands careful study. Furthermore, as seen in
Chapter 32, the expansion of the Universe is
compatible not only with standard homogenei-
ty but also with fractal homogeneity.

The Blazing Sky argument is simplicity
itself. When the light emitted by a star is pro-
portional to its surface area, the amount of
light reaching an observer at a distance of
R<l/R?, but the star’s apparent surface is
itself cc]./Rz. Thus, the apparent ratio of
light to spherical angle is independent of R.
Also, when the distribution of stars in the
Universe is uniform, almost any direction in
the sky sooner or later intersects some star.
Therefore, the sky is uniformly bright, and
seems ablaze. (The Moon’s disc would form
an exceptional dark domain, at least, in the
absence of atmospheric diffusion.)

On the other hand, the assumption that the
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universe is fractal with D<2 resolves the para-
dox. In that case, the universe’s projection on
the sky is a fractal with the same D, hence a
set of zero area. Even if the stars are given a
nonzero radius, a large proportion of direc-
tions go to infinity without encountering any
star. Along these directions, the night sky is
black. When the range in which D<3 is fol-
lowed by a range in which D=3, the sky’s
background is not strictly black but illuminat-
ed extremely faintly.

The Blazing Sky Effect was noticed by
Kepler shortly after Galileo’s Sidereal
Message had commented favorably on the
notion that the Universe is unbounded. In his
1610  Conversation with the Sidereal
Messenger, Kepler rejoined: “You do not hesi-
tate to declare that there are visible over
10,000 stars... If this is true, and if [the stars
have] the same nature as our sun, why do not
these suns collectively outdistance our sun in
brilliance?... But maybe the intervening ether
obscures them? Not in the least... It is quite
clear that...this world of ours does not belong
to an undifferentiated swarm of countless oth-
ers.” (Rosen 1965, pp. 34-35.)

This conclusion remained controversial,
but the argument was not forgotten, witness
the comment by Edmund Halley, in 1720,
that: “Another Argument I have heard urged,
that if the number of Fixt Stars were more
than finite, the whole superficies of their ap-
parent Sphere would be luminous.” Later, this
conclusion was discussed by De Chéseaux and
J. H. Lambert, but came to be credited to
Gauss’s great friend, Olbers. The term
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“Olbers paradox” that became attached to it
is scandalous but symptomatic. Observations
that had been rejected into the “unclassified
residuum” (page 28) become all too often
credited to the first Establishment figure who
decorates them by a classifiable wrapping,
however transient. Historical discussions are
found in Gamow 1954, Munitz 1957, North
1965, Dickson 1968, Wilson 1965, Jaki 1969,
Clayton 1975, and Harrison 1981.

ASIDE ON NEWTONIAN GRAVITATION

The Rev. Bentley kept pestering Newton with
an observation closely related to the Blazing
Sky Effect: if the stars’ distribution is homo-
geneous, the force they exert on one among
them is infinite. One may add that their gra-
vitational potential is infinite. And that any
distribution wherein M(R)<RP for large R
yields an infinite potential unless D<1. The
modern theory of potentials (Frostman theo-
ry) confirms that there is a privileged link
between Newton’s gravitation and the value
D=1. The Fournier and Hoyle derivations of
D=1 cannot fail to be related to this link.
-a Fournier’s theme of ““the gravitational po-
tential at the surface being always the same”
is central to modern potential theory. m

ASIDE ON RELATIVITY THEORY

< To paraphrase de Vaucouleurs 1970:
“Relativity theory led us to believe that to be
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optically observable, no stationary material
ball can have a radius R less than the
Schwarzchild limit Ry=2GM/c2, where ¢ is
the velocity of light. In a plot of the mean
density p and the characteristic radius R of
various cosmical systems, py = 302/81rG Rum?
defines an upper limit. The ratio p/py may be
called the Schwarzchild filling factor. For
most common astronomical bodies (stars) or
systems (galaxies), the filling factor is very
small, on the order of 107% to 1075 The
square of the velocity ratio postulated by
Fournier is (300)_2~10_5, precisely in the
range middle of the above. w

AN AGGLUTINATED FRACTAL UNIVERSE?

Many authors think one may explain the gen-
esis of stars and other celestial objects by an
ascending cascade (i.e., the agglutination of
greatly dispersed dust particles into increas-
ingly bigger pieces) rather than by a
descending cascade 4 la Hoyle (i.e., the frag-
mentation of very large and diffuse masses
into smaller and smaller pieces).

An analogous alternative arises in connec-
tion with the cascades postulated in the study
of turbulence, Chapter 10. Richardson’s cas-
cade descends toward ever smaller eddies, but
ascending cascades may also be present; see
Chapter 40, under RICHARDSON. Thus it may
be hoped that the interrelations between de-

scending and ascending cascades will be clari-
fied soon.
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FRACTAL TELESCOPE ARRAYS

To wind up this discussion, nothing can be
more appropriate than a comment about the
tools used to observe the galaxies. Dyson 1977
suggests that it may be advantageous to re-
place one piece telescopes by arrays of small
telescopes. The diameter of each would be
about 0.1 m, equal to the patch size of the
smallest optically significant atmospheric dis-
turbance, their centers would form a fractally
hierarchical pattern, and they would be linked
by Currie interferometers. A rough analysis
leads to the conclusion that a suitable value
for the dimension would be %;. Dyson’s con-
clusion: “A 3-kilometer array of 1024 ten-
centimeter telescopes connected by 1023
interferometers is not a practical proposition
today. [It is offered] as a theoretical ideal, to
show what can be done in principle.”

SURVEY OF RANDOM FRACTAL
MODELS OF GALAXY CLUSTERS

If one grants the claim that the distribution of
galaxies is described usefully by unknowingly
fractal models of limited subtlety and versatil-
ity, one should not be surprised that knowing-
ly fractal random models provide even more
useful descriptions. To begin with, our under-
standing of Hoyle curdling improves when it
is set in its proper context: random fractals
(Chapter 23). Of greater significance, I think,
are the random models I developed and dis-
cuss in Chapters 32 to 35. One reason for
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dwelling on several models is that improve-
ment in the quality of description is *‘paid
for”” by increased complication. A second rea-
son is that each model involves a fractal dust
that deserves attention. Let me survey these
models here, out of logical order.

Around 1965, my ambition was to imple-
ment the relationship M(R)«<RP with D<3
with a model in which there is no ‘“‘center of
the universe.” I first achieved this goal by the
random walk model] described in Chapter 32.
Then, as an alternative, 1 developed a trema
model, which consists in cutting out from
space a collection of mutually independent
randomly placed tremas of random radius,
ranging up to an upper cutoff L that may be
either finite or infinite.

Since both models had been selected solely
on the basis of formal simplicity, it was de-
lightfully surprising to discover they have pre-
dictive value. My theoretical correlation func-
tions (Mandelbrot 1975u) agree with the
curve-fitted ones reported in Peebles 1980
(see pp. 243-249). <a More precisely, my two
approaches agree on the 2-point correlation,
my random walk yields a good 3-point corre-
lation and a bad 4-point correlation, and my
spherical tremas model is very good for all
known correlations. m-

Unfortunately, the appearance of samples
generated by either model is quite unrealistic.
Using a notion that T developed for this very
purpose and describe in Chapter 35, they have
unacceptable lacunarity properties. For the
trema model this defect is corrected by intro-
ducing more elaborate trema shapes. For the
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random walk model, T use a less lacunar
“subordinator.”

Thus, the study of galaxy clusters has
greatly stimulated the development of fractal
geometry. And today the uses of fractal geom-
etry in the study of galaxy clusters go well
beyond the tasks of streamlining and house-
cleaning accomplished in the present chapter.

CUT DIAMONDS LOOK LIKE STARS

And the distribution of raw diamonds in the
Earth’s crust resembles the distribution of
stars and galaxies in the sky. Consider a large
world map on which each diamond mine or
diamond rich site—past or present—is repre-
sented by a pin. Where examined from far
away, these pins’ density is extraordinarily
uneven. A few are isolated here and there, but

.most concentrate in a few blessed (or ac-

cursed) areas. However, the Earth’s surface in
these areas is not uniformly paved with dia-
monds. When examined more closely, any of
these areas turns out itself to be mostly blank,
with scattered subareas of much greater dia-
mond concentration. The process continues
over several orders of magnitude.

Is it not irresistible to inject curdling in
this context? Indeed, an unknowingly fractal
model has been advanced by de Wijs, as seen
under NONLACUNAR FRACTALS in Chapter 39.

|

-



Plate 95 = PROJECTION OF FOURNIER'S MULTIUNIVERSE (DIMENSION D~0.8270)

This plate represents to scale both the projec-
tion and the “equatorial” section of a Uni-
verse of dimension D=1 described in the text.
See also Plate 96.

To paraphrase the caption in Fournier
1907: “A multiuniverse constructed upon a
cruciform or octahedral principle is not the
plan of the world but is useful in showing that
an infinite series of similar successive univers-
¢s may exist without producing a ‘blazing
sky.” The matter in each world sphere is pro-
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portional to its radius. This is the condition
required for fulfilling the laws of gravitation
and radiation. In some directions the sky
would appear quite black, although there is an
infinite succession of universes. The ‘world
ratio’ in this case is N=7 instead of 1022, as
in reality.”

In the sense described in Chapter 34, a
universe with D=1 and N=1022 is of very
low lacunarity, but extraordinarily stratified.

|



Plate 96 1 A FLAT FOURNIER UNIVERSE WITH D=1

Plate 95, being drawn to exact scale, is not
onlly hard to print and to see, but potentially
m1slegding. Indeed, it is not 2 universe of di-
mension D=1 but its planar projection, whose
dimension is D=log 5/log 7~0.8270<1.
Therefore, in order to avoid leaving the wrong
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impression, we hasten to exhibit a regular
Fournier-like planar pattern of dimension
D=1. The -construction, which involves
1/r=5 instead of 1/r=7, is carried one step
further than is possible in Plate 95. 1
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The study of turbulence is one of the oldest,
hardest, and most frustrating chapters of
physics. Common experience suffices to show
that under certain circumstances the flow of a
gas or a liquid is smooth, the technical term
being ‘“laminar,” while under different cir-
cumstances it is not smooth at all. But where
should we draw a line? Should the term
“turbulence” denote all unsmooth flows, in-
cluding much of meteorology and oceanogra-
phy? Or is it better to reserve it for a narrow
class, and, if so, for which one? Each scholar
seems to answer these questions differently.

This disagreement does not matter here,
because we focus on unquestionably turbulent
flows, whose most conspicuous characteristic
resides in the absence of a well-defined scale
of length: they all involve coexistent “eddies”
of all sizes. This feature can already be recog-
nized in Leonardo’s and Hokusai’s drawings.
It demonstrates that turbulence is necessarily
foreign to the spirit of the “old” physics that
focused upon phenomena having well-defined
scales. But this same reason makes the study
of turbulence of direct interest to us.

As some readers know, practically all in-

vestigations of turbulence concentrate upon
the analytic study of fluid flow, and leave the
geometry aside. 1 like to think that this lack
of balance does not reflect a perceived lack of
importance. In fact, many geometric shapes
involved in turbulence are easily seen or made
visible and cry out for a proper description.
But they could not receive the attention they
deserve until the development of fractal geom-
etry. Indeed, as 1 immediately surmised, tur-
bulence involves many fractal facets, of which
I describe a few in this and later chapters.

Two disclaimers are necessary. First of all,
we leave aside the problem of the onset of tur-
bulence in a laminar fluid. There is strong
reason to believe that this onset has fractal
aspects of great importance, but they have not
been clarified enough to be discussed here.
Secondly, such periodic structures as Bénard
cells and Karman streets do not concern us
here.

This chapter begins with pleas for a more
geometric approach to turbulence and for the
use of fractals. These pleas are numerous but
each is brief, because they involve suggestions
with few hard results as yet.
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After that, we focus on the problem of in-
termittency, which I have investigated active-
ly. My most important conclusion is that the
region of dissipation, namely the spatial set on
which turbulent dissipation is concentrated,
can be modeled by a fractal. Measurements
done for different purposes suggest that this
region’s D lies around 2.5 to 2.6, but proba-
bly below 2.66.

Unfortunately, the model cannot be pin-
pointed accurately, until we determine the
topological properties of the region of dissipa-
tion. In particular, is it a dust, or a wiggly
and branched curve (vortex tube), or a wiggly
and layered surface (vortex sheet)? The first
conjecture is unlikely, while the second and
third suggest models akin to the ramified
fractals of Chapter 14. But we are in no posi-
tion to decide. Progress on the new fractal
front does not help the old topological front at
ail. Our knowledge of the geometry of turbu-
lence remains primitive indeed.

The bulk of this chapter requires no exper-
tise. —<a But the specialist will observe that
part of fractal analysis of turbulence is the
geometric counterpart of the analytic analysis
of correlations and spectra. The relationship
between turbulence and probability theory is
an old story. Indeed, G. I. Taylor’s earliest
work was, after Perrin’s Brownian motion, the
second major influence on Norbert Wicner’s
creation of a mathematical theory of stochas-
tic processes. Spectral analysis has long since
“paid back” (with accrued interest) what it
once borrowed from the study of turbulence
and now it is time for the theory of turbulence
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to take advantage of the development of a
sophisticated stochastic geometry. In particu-
lar, the Kolmogorov spectrum has a geometric
counterpart examined in Chapter 30. m

CLOUDS, WAKES, JETS, ETC.

A generic problem in the geometry of turbu-
lence concerns the shape of the boundary of
thesregion where some characteristic of the
fluid is encountered. Striking examples are
the billows upon billows which one finds in
the ordinary (water) clouds, as well as in the
clouds provoked by volcanic eruptions and in
nuclear mushrooms. At this stage of this Es-
say, it is indeed difficult to escape the impres-
sion that, insofar as there is a range of scales
wherein a cloud can be said to have a well-
defined boundary, cloud boundaries must be
fractal surfaces. The same remark applies to
the patterns of rain squalls seen on radar
screens. (For a first confirmation of this
hunch, see Chapter 12.)

But I prefer to deal with simpler shapes.
Turbulence may be restricted to a portion of
an otherwise laminar fluid, say a wake or a
jet. In the roughest approximation, each is a
rod. If, however, the boundary is examined in
detail, it reveals a hierarchy of indentations,
whose depth increases with the value of the
classic measure of hydrodynamic scale, called
Reynolds number. This very visible and com-
plex “local” structure does not evoke a rod as
much as a rope with many loosely attached
strings floating around. Its typical cross sec-
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tion is not at all circular, but closer in shape
to a Koch curve, and even closer to the most
rugged among the coastlines with islands in-
vestigated in Chapters 5 and 28. In any event,
a jet’s boundary seems fractal. When vortex
rings are present, their topology is of interest,
but does not exhaust the structure.

The next comment requires the reader to
have a mental picture of a wake, say, the love-
ly shape of a disabled tanker’s oil spill. The
“rod” that describes such a wake in the
roughest approximation has a great deal of
structure: it is not at all a cylinder, since its
cross section broadens rapidly away from the
ship, and its “axis’” is not at all straight but
shows meanders whose typical size again in-
creases away from the ship.

Analogous features are found in the turbu-
lence due to the shear between fluids masses
rubbing past each other, as shown in Browand
1966 and Brown & Roshko 1974. The result-
ing coherent structures (‘‘animals™) attract
wide attention, today. Fractals do not concern
their overall form, but I think it is equally
clear that the hierarchy of fine features that
“ride” on the meanders is strikingly fractal in
its structure.

Jupiter’s celebrated red eye may also be an
example of this sort.

Related but different problems arise when
studying the Gulf Stream. It is not a single
well-defined sea current but divides into mul-
tiple wiggly branches, and these branches
themselves subdivide and ramify. An overall
specification of its propensity to branch would
be useful, and will doubtless involve fractals.

ISOTHERMS, DISPERSION ETC.

Similarly, it is interesting to study the shape
of the surfaces of constant temperature or the
isosurfaces of any other scalar characteristic
of the flow. The isotherms may be delineated
by the surface surrounding proliferating
plankton that lives only in water at T>45°,
and fills all the volume available to it. The
boundary of such a blob is extremely convo-
luted; in the specific model in Chapter 30, it
is demonstrably fractal.

A broad class of geometric problems oc-
curs when a medium is completely filled by
turbulence, but parts are marked by some
“passive” or inert characteristic that does not
affect the flow. The best example is when tur-
bulence disperses a blob of color. Branches of
all kinds shoot off in all directions, endlessly,
but existing analyses and standard geometry
are of little help in describing the resulting
shapes. Plate 55 and Mandelbrot 1976c argue
that these shapes must be fractals.

OTHER GEOMETRIC QUESTIONS

CLEAR-AIR TURBULENCE. Some scattered evi-
dence T examined suggests that the set carry-
ing this phenomenon is a fractal.

FLOW PAST A FRACTAL BOUNDARY. This is
another typical case where fluid mechanics is
bound to involve fractals (Plates 45 and 68).

VORTEX STRETCHING. Fluid motion forces
vortices to stretch, and a stretching vortex
must fold to accommodate an increasing
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length in a fixed volume. To the extent that
the flow is scaling, I conjecture the vortex
tends toward a fractal.

THE TRAJECTORY OF A FLUID PARTICLE. In a
crude approximation, inspired by the Ptolema-
ic model of planetary motion, let our particle
be carried up vertically by an overall current
of unit velocity, while it is perturbed by a hi-
erarchy of eddies, each of which is a circular
motion in a horizontal plane. The resulting
functions x(t)—x(0) and y(t)-y(0) are sums
of cosine and of sine functions. When the high
frequency terms are very weak, the trajectory
is continuous and differentiable, hence it is
rectifiable and D=1. When, however, the high
frequency terms are strong and continue down
to O, the trajectory is a fractal, with D>1.
Assuming that eddies are self-similar, said
trajectory happens to be identical to a famous
counterexample of analysis: the Weierstrass
function (Chapters 2, 39, and 41). This leads
one to wonder whether or not the transition of
all the fluid to being turbulent can be associ-
ated with the circumstances under which the
trajectory is a fractal.

THE INTERMITTENCY OF TURBULENCE

Turbulence eventually ends in dissipation: due
to the fluid’s viscosity, the energy of visible
motion transforms into heat. Early theories
assume that the dissipation is uniform in
space. But the hope that “homogeneous
turbulence” would be a sensible model was
dashed by Landau & Lifshitz 1953-1959,
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which notes that some regions are marked by
very high dissipation, while other regions
seem by contrast nearly free of dissipation.
This means that the well-known property of
wind, that it comes in gusts, is also
reflected—in more consistent fashion—on
smaller scales.

This phenomenon, intermittency, was first
studied in Batchelor & Townsend 1949, p.
253. Sce also Batchelor 1953, Section 8.3, and
Monin & Yaglom 1963, 1971, 1975. Intermit-
tency is particularly clear-cut when the Rey-
nolds number is very large, meaning that the
outer cutoff of turbulence is large relative to
its inner cutoff: in the stars, the ocean, and
the atmosphere.

The regions in which dissipation concen-
trates are conveniently described as carrying
or supporting it.

The fact that this Essay brings together
the intermittency of turbulence and the distri-
bution of galaxies is natural and not new. A
while ago, physicists (von Weizdcker 1950)
attempted to explain the genesis of the galax-
ies by turbulence. Recognizing that homoge-
neous turbulence cannot account for stellar
intermittency, von Weizicker sketched some
amendments that are in the spirit of the Four-
nier (“Charlier”’) model (Chapter 9), hence of
the theory presented here. If von Weizsicker’s
unifying efforts are taken up again, they may
establish a physical link between two kinds of
intermittency and the corresponding self-sim-
ilar fractals.

One goal of such a unifying effect would
be to relate the dimension of the distribution
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of galaxies, which we know to be D~1.23,
with the dimensions involved in turbulence,
which we noted lies around 2.5 to 2.7.

A DEFINITION OF TURBULENCE

We noted that, odd as it may seem, the same
term, turbulence, is applied to several differ-
ent phenomena. This continuing lack of a def-
inition becomes easy to understand if, as I
claim and propose to demonstrate, a proper
definition requires fractals.

The customary mental image of turbulence
is nearly ““frozen” in the terms first isolated
by Reynolds, about one hundred years ago,
for fluid flow in a pipe: when the upstream
pressure is weak, the motion is regular and
“laminar”’; when the pressure is increased suf-
ficiently, everything suddenly becomes irregu-
lar. In this prototype case, the support of tur-
bulent dissipation is either “empty,” nonexis-
tent, or is the entire tube. In either case there
is not only no geometry to study, but also no
imperative reason to define turbulence.

In wakes, things become more complicat-
ed. There is a boundary between the turbulent
zone and the surrounding sea, and one ought
to study its geometry. However, this boundary
is again so clear that an “objective” criterion
to define turbulence is not really necessary.

In fully developed turbulence in a wind
tunnel, matters are again simple, the whole
appearing turbulent like the Reynolds pipe.
Nevertheless, the procedures used to achieve
this goal are sometimes curious, if we are to

believe certain stubbornly held stories. It is
rumored that wind tunnels when first “blown”
are unfit for the study of turbulence. Far from
filling up the volume offered to it, turbulence
itself seems ‘‘turbulent,” presenting itself in
irregular gusts. Only gradual efforts manage
to stabilize the whole thing, after the fashion
of the Reynolds pipe. Because of this fact, I
am among those who wonder to what extent
the nonintermittent “laboratory turbulence”
in wind tunnels can be regarded as the same
physical phenomenon as the intermittent
“natural turbulence” in the atmosphere.
Hence we must define the terms.

We approach this task indirectly, starting
from an ill-defined concept of what is turbu-
lent and examining the one-dimensional re-
cords of the velocity at a point. The motions
of the center of gravity of a large airplane
illustrate a rough analysis of such records.
Every so often, the airplane is shaken about,
which shows that certain regions of the atmos-
phere are strongly dissipative. A smaller air-
plane acts as a more sensitive probe: it “feels”
turbulent gusts that leave the large airplane
undisturbed, and it experiences each shock
received by the large airplane as a burst of
weaker shocks. Thus, when a strongly dissipa-
tive piece of the cross section is examined in
detail, laminar inserts become apparent. And
further smaller inserts are seen when the
analysis is refined further.

Each stage demands a redefinition of what
is turbulent. The notion of a turbulent minute
of record becomes meaningful if interpreted
as “minute of record that is not completely
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free of turbulence.” On the other hand, the
more demanding notion of a solidly turbulent
minute of record seems devoid of observable
significance. Proceeding to successive stages
of analysis, turbulence becomes increasingly
sharp over an increasingly small fraction of
the total record length. The volume of the
support of dissipation secems to decrease. Our
next task is to model this support.

ROLE OF SELF-SIMILAR FRACTALS

As already said, it is not surprising, in my
view, that very few geometric aspects of tur-
bulence have actually been investigated, be-
cause the only available techniques have been
Euclidean. To escape their limitations, many
pre-Euclidean terms are used. For example,
papers on intermittency make an uncommonly
heavy use of terms such as spotty and lumpy,
and Batchelor & Townsend 1949 envisions
“only four possible categories of shapes: blobs,
rods, slabs, and ribbons.” Some lecturers (but
few writers) also use the terms beans,
spaghetti, and lettuce, an imaginative termi-
nology that does not attempt to hide the pov-
erty of the underlying geometry.

By contrast, the investigations I carried
out since 1964, and first presented at the 1966
Kyoto Symposium (Mandelbrot 1967k), aug-
ment the classical geometric toolbox by the
addition of self-similar fractals.

To advocate the use of fractals is a radical

new step, but to restrict the fractals of turbu-
lence to be self-similar is orthodox, because
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the very notion of self-similarity was first con-
ceived to describe turbulence. The pioneer was
the Lewis Fry Richardson whom we first en-
counter in Chapter 5. Richardson 1926 intro-
duced the concept of a hierarchy of eddies
linked by a cascade. (See Chapter 40.)

It is also in the context of turbulence that
the theory of cascades and of self-similarity
achieved its triumphs of prediction between
1941 and 1948. The main contributors were
Kolmogorov, Obukhov, Onsager, and von
Weizsicker, but tradition denotes the develop-
ments of the period by Kolmogorov’s name.
However, a subtle change occurred between
Richardson and Kolmogorov.

While self-similarity is suggested by the
consideration of visually perceived eddies, the
Kolmogorov theory is purely analytic. Frac-
tals, on the other hand, make it possible to
apply the technique of self-similarity to the
geometry of turbulence.

The fractal approach should be contrasted
with the peculiar fact that the blobs, rods,
slabs, and ribbons involved in yesterday’s
four-way choice fail to be self-similar. This
may be why Kuo & Corrsin 1972 admit that
this choice is “primitive” and that one needs
in-between patterns.

A number of possible ad hoc changes in
the standard patterns come to mind. For ex-
ample, one might split rods into ropes sur-
rounded with loose strands (remember the
analogous situation with wakes or jets) and
slice slabs into sheets surrounded with loose
layers. Somehow those strands and layers
might be made self-similar.
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However, an ad hoc injection of self-simi-
larity has never been implemented, and I find
it both unpromising and unpalatable. I prefer
to follow an entirely different tack, allowing
the overall shapes and the details of strand
and layer to be generated by the same proc-
ess. Since the basic self-similar fractals are
devoid of privileged direction, our study leaves
aside (for now) all the interesting geometric
questions that combine turbulence with strong
overall motion.

—a Obukhov 1962 and Kolmogorov 1962
are the first analytic studies of intermittency.
In immediate influence, they nearly matched
the 1941 papers of the same authors, but they
are seriously flawed, and their long run influ-
ence promises to be small. See Mandelbrot
1972j, 1974f, 19760; Kraichnan 1974. m

INNER AND OUTER CUTOFFS

Due to viscosity, the inner cutoff of turbu-
lence is positive. And wakes, jets, and analo-
gous flows clearly show a finite outer cutoff
©. But the widespread current belief in the
finiteness of of @ should be subjected to criti-
cism. Richardson 1926 claims that
“observation shows that the numerical values
[presumed to converge for samples of size
about Q] would depend entirely upon how
long a volume was included in the mean.
Defant’s researches show that no limit is at-
tained within the atmosphere.” The meteorol-
ogists have discounted, then forgotten, this
assertion, far too hastily to my mind. New

data in Chapter 11 and the study of lacunari-
ty in Chapter 34 add to my conviction that
the matter is not yet closed. '

CURDLING AND FRACTALLY
HOMOGENEOUS TURBULENCE

In a rough preliminary stage, we may repre-
sent the support of turbulence by one of the
self-similar fractals which the preceding
chapters obtain through curdling. This cur-
dling is a crude “de-randomized” form of the
Novikov & Stewart model of Chapter 23. Af-
ter a finite number m of stages of a curdling
cascade, dissipation is distributed uniformly
over N=r"0 out of r3™ mth-order non-
overlapping subeddies, whose positions are
specified by a generator. After a cascade has
continued without end, the limit distribution
of dissipation spreads uniformly over a fractal
of dimension D<3. I propose that the limit be
called fractally homogeneous turbulence.

G. 1. Taylor’s homogeneous turbulence is
obtained for D-3. The salient fact is that
curdling does not exclude D=3, but it allows
the novel possibility D<3.

DIRECT EXPERIMENTAL EVIDENCE
THAT INTERMITTENCY SATISFIES D>2

From the viewpoint of linear sections, wide
classes of unbounded fractals behave very
simply: the section is almost surely empty
when D<2 and is nonempty with positive
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probability when D>2. (Chapter 23 proves
this result for a simple class of fractals.)

Had the set that supports turbulent dissi-
pation satisfied D<2, the preceding statement
should imply that nearly all experimental
probes would slip between turbulent regions.
The fact that such is not the case suggests
that in reality D>2. This inference is extraor-
dinarily strong, because it relies upon an ex-
periment that is repeated constantly, and for
which the possible outcomes are reduced to an
alternative between “never” and “‘often.”

A tentative topological counterpart Dr>2,
Mandelbrot 19760, is tempting, but too spe-
cial to be recounted here.

GALAXIES & TURBULENCE COMPARED

The inequality D>2 for the set that supports
turbulent dissipation, and the opposite ine-
quality D<2 for the distribution of mass in
the cosmos, Chapter 9, spring from the closely
related effects of the sign of D—2 on the typi-
cal section of a fractal and on its typical pro-
Jection on a plane or the sky. For the phenom-
enon studied in the present chapter, the sec-
tion has to be nonempty. In Chapter 9, on the
contrary, the Blazing Sky Effect is
“exorcised” if the majority of straight lines
drawn from the Earth never meet a star. This
requires the stars’ projection on the sky to be
of vanishing area.

The contrast between the signs of D-2 in*

these two problems must have a vital bearing
on a constrast between their structures.
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(IN)EQUALITIES BETWEEN EXPONENTS
(MANDELBROT 1967k, 19760)

Many useful characteristics of fractally homo-
geneous turbulence depend solely upon D.
This topic is studied in Mandelbrot 19760,
where intermittent turbulence is characterized
by a series of conceptually distinct exponents
linked by (in)equalities. -«a The situation is
reminiscent of critical point phenomena. »

SPECTRUM (INJEQUALITIES. The (in)equality
first stated in Mandelbrot 1967k (which uses
the notation #=D-2), is ordinarily expressed
in terms of the spectrum of the turbulent ve-
locity, but is here stated in terms of variance.
In fractally homogeneous turbulence, the ve-
locity v at point X satisfies

([V()—v(x+1)]2)=|r|**B,

where B=(3-D)/3.

In Taylor homogeneous turbulence, D=3,
and B vanishes, leaving the classic Kolmogo-
rov exponent %, which we meet again in
Chapter 30.

Mandelbrot 19760 also shows that the
more general mode! of weighted curdling, as
described in Mandelbrot 1974f, involves the
inequality B<(3-D)/3.

THE 8 MODEL. Frisch, Nelkin & Sulem
1978 grafts a pseudo dynamic vocabulary
upon the geometry of fractally homogeneous
turbulence, as described in Mandelbrot 19760.
The interpretation has proven helpful, but the
mathematical arguments and the conclusions
are identical to mine. The term *“g-model”
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given to their interpretation has gained some
currency, and is often identified with fractal
homogeneity.

THE TOPOLOGY OF TURBULENCE
REMAINS AN OPEN ISSUE

The preceding chapters make it abundantly
clear that the same value of D can be encoun-
tered in sets that differ in terms of topological
connectedness. The topological dimension Dt
yields a lower bound to the fractal dimension
D, but this bound is frequently exceeded by
such a wide margin as to be of no use. A
shape with a fractal dimension D between 2
and 3 may be either “sheetlike,” “linelike,”
or “dustlike,” and can achieve configurations
in such variety as to make it hard to coin or
find names for them all. For example, even in
fractal shapes that are most nearly ropelike,
the “strands” can be so heavy that the result
is really ““more” than ropelike. Similarly,
fractal near sheets are “more” than sheetlike.
Also, it is possible to mix sheetlike and rope-
like features at will. Intuitively, one might
have hoped that some closer relationship
should exist between fractal dimension and
degree of connectedness, but this is a hope
mathematicians lost between 1875 and 1925.
We turn to a special problem of this kind in
Chapter 23, but it may be said that the actual
loose relationship between these structures is
essentially unexplored territory.

The question of ramification, raised in
Chapter 14, is also vital, but its impact on the

study of turbulence is as yet unexplored.
KURTOSIS INEQUALITIES. Using a measure
of intermittency called kurtosis, the issue of
connectedness is tackled in Corrsin 1962, Ten-
nekes 1968, and Saffman 1968. Ostensibly,
those models deal with shapes that share the
topological dimension of the plane (sheets) or
the straight line (rods). However, they test
the topology indirectly, through the exponent
of a predicted power law relationship between
the kurtosis and a Reynolds number. Unfortu-
nately, this attempt fails because the kurtosis
exponent is in fact dominated by diverse addi-
tional assumptions, and ultimately depends
solely on the fractal dimension D of the shape
generated by the model. Corrsin 1962 predicts
a value of D equal to the topological dimen-
sion it postulates, Dyr=2. The prediction is
incorrect, expressing the fact that the data
involve fractals, but this model does not. On
the other hand, Tennckes 1968 postulates
D=1 but yields the fractional value D=2.6,
hence does involve an approximate fractal.
Nevertheless, the attempted inference from
the kurtosis to a combination of intuitive
“shape” and topological dimension is unwar-
ranted. |



11 = Fractal Singularities of Differential Equations

The present chapter concerns a first connec-
tion between the fractal geometry of Nature
and the mainstream of mathematical physics.
The topic is so vital that it deserves a separate
chapter. Readers whose interests lie elsewhere
should forge ahead.

A SPLIT IN TURBULENCE THEORY

A major defect of the current theoretical
study of turbulence is that it separates into at
least two disconnected parts. One part in-
cludes the successful phenomenology put forth
in Kolmogorov 1941 (examined in greater de-
tail in Chapter 30). And the other part in-
cludes the differential equations of hydrody-
namics, due to Euler for nonviscous fluids,
and to Navier (and Stokes) for viscous fluids.
These two parts remain unrelated: If
“explained” and “‘understood’” mean “reduced
to basic equations,” the Kolmogorov theory is
not yet explained or understood. And Kolmo-
gorov has not helped solve the equations of
fluid motion.

My assertion in Chapter 10, that turbulent
dissipation is not homogeneous over the whole
space, only over a fractal subset, may seem at
first sight to make the gap even greater. But I
contended that the opposite is the case. And
there is increasing evidence in my favor.

THE IMPORTANCE OF SINGULARITIES

Let us review the procedure that allows an
equation of mathematical physics to be solved
successfully. Typically, one draws up a list
that combines solutions obtained by solving
the equation under special conditions, and
solutions guessed on the basis of physical ob-
servation. Next, neglecting details of the solu-
tions, one draws a list of elementary
“singularities” characteristic of the problem.
From then on, more complex instances of the
equation can often be solved in the first ap-
proximation by identifying the appropriate
singularities and stringing them together as
required. This is how the student of calculus
draws the graph of a rational function. Of
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course, the standard singularities are standard
Euclidean sets: points, curves, and surfaces.

CONJECTURE: THE SINGULARITIES
OF FLUID MOTION ARE FRACTAL SETS
(MANDELBROT 1976c)

In this perspective, I interpret the difficulties
experienced in deriving turbulence from the
Euler and Navier-Stokes solutions as implying
that no standard singularity accounts for what
we perceive intuitively to be the characteristic
features of turbulence.

I contend instead (Mandelbrot 1976c¢) that
the turbulent solutions of the basic equations
involve singularities or “near singularities” of
an entirely new kind. The singularities are
locally scaling fractal sets, and the near sin-
gularities are approximations thereto.

An unspecific motivation for this conten-
tion is that, standard sets having proven inad-
equate, one may as well try the next best
known sets. But more specific motivation is
available.

NONVISCOUS (EULER) FLUIDS

FIRST SPECIFIC CONJECTURE. Part of my con-
tention is that the singularities of the solu-
tions of the Euler equations are fractal sets.
MOTIVATION. This belief relies on the very
old notion that the symmetries and other in-
variances present in an equation “ought” to
be reflected in the equation’s solution. (For a

self-standing, careful and elogquent descrip-
tion, see Chapter IV of Birkhoff 1960.) Of
course, preservation of symmetries is by no
means a general principle of Nature, hence
one cannot exclude the possibility of “broken
symmetry” here. I propose, however, that one
try the consequences of symmetry preserva-
tion. Since the Euler equations are scale-free,
the equations’ typical solutions should also be
scale-free, and the same should hold of any
singularities they may possess. If the failure
of past efforts is taken as evidence that the
singularities are not standard points or lines
or surfaces, they must be fractals.

It may of course happen that a scale is
imposed by the boundary’s shape and the ini-
tial velocities. It is, however, likely that the
solutions’ local behavior is ruled by a
“principle of not feeling the boundary.”
Hence the solutions should be locally scale-
less.

ALEXANDRE CHORIN'S WORK. Chorin 1981
provides strong support for my contention, by
applying a vortex method to the analysis of
the inertial range in fully developed turbu-
lence. The finding is that the highly stretched
vorticity collects itself into a body of decreas-
ing volume, and of dimension D~2.5 compati-
ble with the conclusions in Chapter 10. The
correction to the Kolmogorov exponents,
B=.17+0.03, is compatible with experimen-
tal data. The calculations suggest that the
solutions of Euler’s equations in three dimen-
sions blow up in a finite time.

Unpublished work of Chorin comes even
closer to experiment: 2.5<D<2.6.
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VISCOUS (NAVIER-STOKES) FLUIDS

SECOND SPECIFIC CONJECTURE. Furthermore, I
contended that the singularities of the solu-
tions of the Navier-Stokes equations can only
be fractals.

DIMENSION INEQUALITIES. Furthermore, we
have the intuitive feeling that the solutions of
the Navier-Stokes equations are necessarily
smoother, hence less singular, than those of
the Euler equations. Hence the further conjec-
ture that the dimension is larger in the Euler
than in the Navier-Stokes case. The passage
to zero viscosity is doubtless singular.

NEAR SINGULARITIES. A final conjecture in
the implementation of my overall contention
concerns the peaks of dissipation involved in
the notion of intermittency: they are Euler
singularities smoothed out by viscosity.

V. SCHEFFER'S WORK. The examination of
my conjectures for the viscous case was pio-
neered by V. Scheffer, recently joined by oth-
ers in studying in this light a finite or infinite
fluid subject to the Navier-Stokes equations
with a finite kinetic energy at t=0.

Assuming that singularities are indeed
present, Scheffer 1976 shows that they neces-
sarily satisfy the following theorems. First,
their projection over the time axis has at most
the fractal dimension %. Second, their projec-
tion on the space coordinates is at most a
fractal of dimension equal to 1.

It turns out, after the fact, that the first of
the above results is a corollary of a remark in
an old and famous paper Leray 1934 ends
abruptly after a formal inequality of which

4
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Scheffer’s first theorem is a corollary, in fact
merely a restatement. But is it fair to say
“merely”’? Restating a result in more elegant
terminology is (for sound reasons) rarely
viewed as a scientific advance, but I think
that the present instance is different. The ine-
quality in Leray’s theorem was nearly useless
until the Mandelbrot-Scheffer corollary
placed it in proper perspective.

The almost routine uses of Hausdorff Besi-
covitch dimension in recent studies of the
Navier-Stokes equations can all be traced
back to my conjecture.

SINGULARITIES OF OTHER
NONLINEAR EQUATIONS OF PHYSICS

The other phenomena which this Essay claims
involve scaling fractals have nothing to do
with either Euler or Navier and Stokes. For
example, the distribution of galaxies is ruled
by the equations of gravitation. But the sym-
metry preservation argument applies to all
scaling equations. As a matter of fact, an ob-
scure remark by Laplace (see the entry SCAL-
ING IN LEIBNIZ AND LAPLACE, Chapter 41) can
now be construed (with 20/20 hindsight!) as
pointing toward the theme of Chapter 9.

More generally, the singularities’ fractal
character is likely to be traceable to generic
features shared by many different equations
of mathematical physics. Can it be some very
broad kind of nonlinearity? The issue is joined
again, in different terms, in Chapter 20. =
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12 = Length-Area-Volume Relations

Chapters 12 and 13 extend the properties of
fractal dimension through numerous mini case
studies of varying importance and increasing
difficulty, and Chapter 14 shows that fractal
geometry necessarily involves concepts beyond
the fractal dimension.

The present chapter describes, and applies
to diverse concrete cases, the fractal counter-
parts I developed for certain standard results
of Euclidean geometry. They can be viewed as
parallel to the fractal relations of the form
M(R) « RP obtained in Chapters 6, 8, and 9.

STANDARD DIMENSIONAL ANALYSIS
From the facts that the circumferential length
of a circle of radius R is equal to 2«R, and
the area of the disc bounded by the circle is

wR2, it follows that

(length)=27"(area)".

Among squares, the corresponding relation is
(Iength)=4(area)1/2.

More generally, within each family of stand-
ard planar shapes that are geometrically simi-
lar and have different linear extents, the ratio
(Iength)/(area)v2 is a number entirely deter-
mined by the common shape.

In space (E=3), length, (area)”, and
(volume)” provide alternative evaluations of
the linear extent of the shape, and the ratio of
any two of them is a shape parameter inde-
pendent of the units of measurement.

The equivalence of different linear extents
is very useful in many applications. And its
extension when time and mass are added lead
to a powerful technique, known to physicists
as ‘“‘dimensional analysis.” (Birkhoff 1960 is a
recommended exposition of its basic features.)
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PARADOXICAL DIMENSIONAL FINDINGS

However, in increasingly numerous instances,
the equivalence between alternative linear
extents proves distressingly elusive. For exam-
ple, mammalian brains satisfy

(volume)%oc(area)l/D,

with D~3, far above the anticipated value of
2. In river drainage basins, Hack 1957 meas-
ures length along the main river, and finds

(area)” « (length)1/P,

with D definitely above the anticipated value
of 1. Early writers interpret this last result as
implying that river basins fail to be self-simi-
lar, large ones being elongated and small ones
being chubby. Unfortunately, this interpreta-
tion conflicts with the evidence.

The present chapter describes how 1 ex-
plain these and related findings in more con-
vincing fashion. My tool is a new, fractal,
length-area-volume relation.

FRACTAL LENGTH-AREA RELATION

To pinpoint the argument, consider a collec-
tion of geometrically similar islands with frac-
tal coastlines of dimension D>1. The standard
ratio (Ieng’ch)/(area)l/2 is infinite in this con-
text, but I propose to show it has a usefu)
fractal counterpart. We denote as G-length
the coast length measured with a yardstick
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length of G, and as G-area the island area
measured in units of G2, Knowing the depend-
ence of G-length upon G to be nonstandard,
while the dependence of G-area is standard,
we form the generalized ratio

(G-Iength)l/D/(G—area)l/Z.

I claim that this ratio takes the same value
for our geometrically similar islands.

As a result, there are two different ways of
evaluating the linear extent of each island in
units of G: the standard expression (G-area)”
but also the nonstandard (G-length)1/P.

The novel feature is that if G is replaced
by a different yardstick length G’ the ratio of
the alternative linear extents is replaced by

(G’-Iength)l/D/(G’-area)l/z,

which differs from the original one by a factor
of (G'/G)/D-1, '

As for the ratio of linear extents, it varies
between one family of mutually similar
bounded shapes and another, whether they are
fractal or standard. Hence it quantifies one
facet of the shapes’ form.

Note that the length-area relation may be
used to estimate the dimension of a fractal
curve that bounds a standard domain.

PROOF OF THE RELATION. The first step is
to measure each coastline length with the in-
trinsic area-dependent yardstick

G*=(G-area)” /1000.
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When we approximate cach of our island
coastlines by a polygon of side G*, these poly-
gons are also mutually similar, and their
lengths are proportional to the standard linear
extents (G—area)l/z.

Next replace G* by the prescribed yard-
stick G. We know from Chapter 6 that the
measured length changes in the ratio
(G/G*)!7P. Hence,

(G-length) o (G-area)l/Z(G/G*)l—D
= (G-area)*(1-D)G1-P1000P-1
= (G-area)”*PG1-P1000P 1,

Finally, by raising each side to the power
1/D, we obtain the relation I claimed.

HOW WINDING IS THE MISSOURI RIVER?

The preceding arguments also throw light on
the measured river lengths. To define a length
for the leading river of a drainage basin, we
approximate the river’s course by a wiggly
self-similar line of dimension D>1 going from
a point called source to a point called mouth.
If all rivers as well as their basins are mutual-
ly similar, the fractal length-area argument
predicts that

(river’s G—Iength)l/D is proportional to
(basin's G-area)”.

Moreover, standard reasons predict that
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(basin's G-area)” is proportional to
(straight distance from source to mouth).

Combining the two results, we conclude that

(river’s G-Iength)l/D is proportional to
(straight distance from source to mouth).

Most remarkably, as already mentioned,
Hack 1957 finds empirically that the ratio

(river's G-length) /(basin’s G—area)'6

is indeed common to all rivers. This indirect
estimate of D/2=.6 yields D=1.2, reminis-
cent of the values inferred from coastline
lengths. If one measures the degree of irregu-
larity by D, the degrees of irregularity of local
wiggles of the banks and of enormously global
bends turn out to be identical!

However, for basins of area> 10% km? and
correspondingly long rivers, J. E. Mueller ob-
serves that the value of D goes down to 1. The
two different values of D suggest that if one
maps all basins on sheets of paper of the same
size, maps of short rivers look about the same
as maps of long rivers, but maps of extremely
long rivers are more nearly straight. It may
be that nonstandard self-similarity breaks
around an outer cutoff € whose value is of the
order of 100 km.

CUMULATIVE LENGTH OF A RIVER TREE. The
preceding argument also predicts that the cu-
mulative length of all the rivers in a drainage
basin should be proportional to that basin’s
area. I am told this prediction is correct, but I
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have no reference.

BACK TO GEOMETRY. For the rivers and
watersheds relative to the “snowflake sweep”
curve of Plates 68 and 69, D~1.2618, some-
what above the observed value. The corre-
sponding dimensions in Plates 70 and 71 are
D~1.1291, on the low side.

The Peano curves of Plates 63 and 64 are
well off the mark, since D=1.

Note that the identity between the dimen-
sions of the rivers and of the watersheds is not
a logical necessity, only a feature of certain
specific recursive models. By way of contrast,
a river network linked with the arrowhead
curve (Plate 141) and described in Mandel-
brot 1975m involves rivers of dimension D=1,
which is too small, and watersheds of dimen-
sion D~1.5849, which is too large.

GEOMETRY OF RAIN AND OF CLOUDS

Pages 1, 10, 11, and 94 mention the possible
use of fractals to model clouds. This hunch
has now been confirmed by Lovejoy 1982, via
the fractal area-perimeter graph in Plate 115.
Very few graphs in meteorology involve all
the available data over an enormous range of
sizes, and are nearly as straight as this one.
The data combine radar observations from
tropical Atlantic rain areas (with rainrate
above .2 mm /hr), with geostationary satel-
lite infrared observations of cloud areas over
the Indian Ocean (= areas where the top of
the cloud temperature is below -10°0C). The
areas range from 1 to over 1,000,000 km?2.
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The dimension of the perimeter, fitted over at
least six orders of magnitude, is 4/3. The
pleasure of providing a physical explanation is
left to Dr. Lovejoy.

The largest cloud extended from central
Africa to South India, a distance well above
the thickness of the atmosphere, to which the
outer cutoff L of atmospheric turbulence is all
too often assimilated. Richardson’s quote on
p. 103 may prove prophetic.

THE AREA-VOLUME RELATION.
CONDENSATION BY MICRO-DROPLETS

The derivation of the length area relationship
generalizes easily to spatial domains bounded
by fractal surfaces, and leads to the relation

(G-area)l/D o (G-volume)%.

To illustrate this relation, consider the
condensation of vapor into liquid. This is a
very familiar physical phenomenon, yet its
theory is a recent development. To paraphrase
Fisher 1967, the following geometric picture
was put forward apparently quite independ-
ently by J. Frenkel, W. Band, and A. Bjjl in
the late 1930°s. A gas consists of isolated mol-
ecules well separated from one another, ex-
cept for occasional clusters which are bound
together more-or-less tightly by the attractive
forces. Clusters of different sizes are in mutu-
al statistical equilibrium, associating and di-
sassociating, but even fairly large clusters re-
sembling “‘droplets” of liquid have a small
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chance of occurring. For a large enough clus-
ter (which is not too “drawn out,” like a piece
of seaweed for example!), the surface area is
fairly well defined. The surface of a cluster
gives it stability. If the temperature now is
lowered, it becomes advantageous for clusters
to combine to form droplets and for droplets
to amalgamate, thereby reducing the total
surface area and hence lowering the total en-
ergy. If conditions are favorable, the droplets
grow rapidly. A macroscopic droplet’s pres-
ence indicates that condensation has taken
place!

Building on this picture, M. E. Fisher pro-
poses that a condensing droplet’s area and
volume are related by a formula equivalent to
areal/P = volume!/3. Fisher cvaluates D
analytically without concern for its geometric
meaning, but it is unavoidable that one should
now conjecture that the underlying droplet
surfaces are fractals of dimension D.

MAMMALIAN BRAIN FOLDS

To illustrate the area-volume relation in the
important limit case D=3, and at the same
time to buttress the exorcism of Peano shapes
presented in Chapter 7, let us interpret a fa-
mous problem of comparative anatomy in
terms of near-space-filling surfaces.
Mammalian brain volumes vary from 0.3
to 3000 ml, small animals’ cortex being rela-
tively or completely smooth, while large
animals’ cortex tends to be visibly convoluted,
irrespective of the animals’ positions on the
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scale of evolution. Zoologists argue that the
proportion of white matter (formed by the
neuron axons) to gray matter (where neurons
terminate) is approximately the same for all
mammals, and that in order to maintain this
ratio a large brain’s cortex must necessarily
become folded. Knowing that the extent of
folding is of purely geometric origin relieves
Man from feeling threatened by Dolphin or
Whale: they are bigger than us but need not
be more highly evolved.

A quantitative study of such folding is be-
yond standard geometry but fits beautifully in
fractal geometry. The gray matter’s volume is
roughly equal to its thickness multiplied by
the area of the brain’s surface membrane,
called “pia.” If the thickness ¢ were the same
in all species, the pia area would be propor-
tional not only to the gray matter volume but
also to the white matter volume, hence to the
total volume V. Therefore, the area-volume
relationship would yield D=3, and the pia
would be a surface that comes within e of fill-
ing the space.

The empirical area-volume relation is bet-
ter fitted by A o« VP/3 with D/3~0.91 to
0.93 (Jerison, private communication, based
on the data of Elias & Schwartz, Brodman,
and others). The most immediate interpreta-
tion is that the pia is only partly space filling,
with D in the range between 2.79 and 2.73.
A more sophisticated argument is sketched
when we resume this topic in Chapter 17.
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ALVEOLAR AND CELL MEMBRANES

Will a biologist kindly stand up and proclaim
that the preceding section brings no hard re-
sult and no unexpected notion? I delight at
hearing this objection because it buttresses
further the argument with which Chapter 7
begins. Despite the fact that a biologist would
run a mile from a Peano surface as adorned
by mathematicians, I claim that the basic idea
is indeed quite familiar to the good theoretical
minds in this field.

Thus, the main novelty of the preceding
sections lies with surfaces of D<3, which (as
we saw) are required for a good fit. Let us
pursue their novel application to biology by
sketching how they help unscramble the de-
tailed structure of several living membranes.

First, a paragraph to summarize Weibel
1979, section 4.3.7. Estimates of the human
lung’s alveolar area are conflicting: light mi-
croscopy yields 80 m?, while electron micros-
copy claims 140 m?2. Does this discrepancy
matter? The fine details to which it is due
play no role with respect to gas exchange, be-
ing smoothed by a fluid lining layer (resulting
in an even smaller functional area), but they
are important with respect to solute ex-
changes. Measurements (triggered by my
Coast of Britain paper) indicate in the first
approximation that over a wide range of
scales the membrane dimension is D=2.17.

Paumgartner & Weibel 1979 examine
subcellular membranes in liver cells. Again,
the sharp past disagreement between different
estimates of area per volume disappear by
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postulating that D=2.09 for the outer mito-
chondrial membrane (which wraps the cell,
and departs only slightly from the smoothness
characteristic of membranes with minimal
area/volume ratio). On the other hand,
D=2.53 for inner mitochondrial membranes,
and D=1.72 for the endoplasmic reticulum.

Also let it be noted that many animals’
nasal bone structure is of extraordinary com-
plication, allowing the “skin” that covers this
bone to have a very large area in a small vol-
ume. In Deer and Arctic Fox, this membrane
may serve the sense of smell, but (Schmidt-
Nielsen 1981) the goal of an analogous shape
in Camel is to husband scarce water.

MODULAR COMPUTER GEOMETRY

To illustrate the area-volume relationship fur-
ther, let us tackle a facet of computers. Com-
puters are not natural systems, but this should
not stop us. This and a few other case studies
help demonstrate that, in the final analysis,
fractal methods can serve to analyze any
“system,” whether natural or artificial, that
decomposes into “parts” articulated in a self-
similar fashion, and such that the properties
of the parts are less important than the rules
of articulation.

Complex computer circuits are always sub-
divided into numerous modules. Each contains
a large number C of components and is con-
nected with its environment by a large num-
ber T of terminals. Within an error of a few
percent, one finds that T'/P<Cl/E The way
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the exponent is written will be justified in a
moment. Within IBM, the above rule is cred-
ited to E. Rent; see Landman & Russo 1971.

The earliest raw data suggested D/E=7%,
a value that Keyes 1981 extrapolates to huge
“circuits” in the nervous system (optic nerve
and corpus callosum). However, the ratio
D/E increases with the circuit’s performance.
Performance, in turn, reflects the degree of
parallelism that is present in the design. In
particular, the designs with extreme charac-
teristics lead to extreme values of D. In a shift
register, the modules form a chain and T=2,
independently of C, hence D=0. With integral
parallelism, each component requiring its own
terminal, T=C, hence D=E.

To account for D/E=%, R.W. Keyes no-
ted that components are typically arranged
within the volume of the modules, while the
connections go through their surfaces. To
show that this observation demands Rent’s
rule, it suffices to assume that all the compo-
nents have roughly the same volume v and
surface . Since C is the total volume of the
module divided by v, C* is roughly propor-
tional to the radius of the module. On the oth-
er hand, T is the total surface of the
module divided by o, thus T% is also roughly
proportional to the radius of the module.
Rent’s rule simply expresses the equivalence
of two different measuyres of the radius in a
standard spatial shape. E=3 is the Euclidean
dimension of the circuit and D=2 is the di-
mension of a standard surface.

Note that the concept of the module is am-
biguous and almost indefinite, but Rent’s rule
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is quite compatible with this characteristic,
insofar as any module’s submodules are inter-
connected by their surfaces.

It is just as easy to interpret the extreme
cases mentioned above. In a standard linear
structure, E=1 and the boundary reduces to
two points, hence D=O0. In a standard planar
structure, E=2 and D=1.

However, when the ratio E/D is neither
3/2, nor 2/1, nor 1/0, standard Euclidean
geometry does not make it possible to inter-
pret C as an expression of volume and T as an
expression of surface. Yet such interpretations
are very useful, and in fractal geometry they
are easy. In a spatial circuit in contact with
the outside by its whole surface, E=3, and D
is anywhere between 2 and 3. In a plane cir-
cuit in contact with the outside by its whole
bounding curve, E=2 and D is anywhere be-
tween 1 and 2. The case of integral parallel-
ism, D=E, corresponds to Peano boundaries.
Furthermore, if the boundary is utilized in-
completely, the “effective boundary” may be
any surface with D between O and E. -

LOG (AREA) FOR CLOUDS (o)
.| AND RAIN AREAS (®)

10

From Lovejoy 1982
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Plate 115 = LOG (PERIMETER) VERSUS




13 = Islands, Clusters, and Percolation:
Diameter-Number Relations

This chapter is devoted to fractal o-curves,
that is, to fractals that decompose into an in-
finity of disjoint fragments, each of them a
connected curve. The concrete cases range
from the coastlines of islands in an archipela-
g0 to an important problem of physics: perco-
lation. The material in the first few sections
was new to the 1977 Fractals, and the bulk of
the chapter’s remainder is new.

To begin, let us echo “How Long Is the
Coast of Britain” and ask how many islands
surround Britain’s coast? Surely, their num-
ber is both very large and very ill-determined.
As increasingly small rock piles become listed
as islands, the overall list lengthens, and the
total number of islands is practically infinite.

Since earth’s relief is finely “corrugated,”
there is no doubt that, just like a coastline’s
length, an island’s total area is geographically
infinite. But the domains surrounded by coast-
lines have well defined “map areas.” And the
way in which a total map area is shared
among the different islands is an important
geographic characteristic. One might even

argue that this “area-number relation” con-
tributes more to geographic form than do the
shapes of the individual coastlines. For exam-
ple, it is difficult to think of the Aegean Sea’s
shores without also including those of the
Greek islands. The issue clearly deserves a
quantitative study, and this chapter provides
one, by generalizing the Koch curves.

Next, this chapter examines diverse other
fragmented shapes obtained by generalizing
the familiar fractal-generating processes: ei-
ther the Koch procedure or curdling. The re-
sulting shapes are called contact clusters here,
and the diameter-number distribution is
shown to be the same for them as for islands.

Special interest attaches to the plane-
filling contact clusters, in particular those
clusters generated by certain Peano curves,
whose teragons do not self-intersect but have
carefully controlled points of self-contact. The
saga of the taming of Peano monsters is there-
by enriched by a new scene!

Last but not least, this chapter includes
the first part of a case study of the geometry
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of percolation, a very important physical phe-
nomenon also studied in Chapter 14.

KORCAK EMPIRICAL LAW, GENERALIZED

List all the islands of a region by decreasing
size. The total number of islands of size above
a is to be written as Nr(A>a) «a patterned
after the notation Pr(A>a) of probability
theory. m Here, a is a possible value for an
island map’s area, and A denotes the area
when it is of unknown value.

B and F' being two positive constants, to
be called exponent and prefactor, one finds
the following striking area-number relation:

Nr(A>a)=F'a™®

Kortak 1938 (the name is pronounced
Kor'chak) comes close to deserving credit for
this rule, except that it claims that B = %,
which I found incredible, and which the data
showed is unfounded. In fact, B varies be-
tween regions and is always >%. Let me now
-show that the above generalized law is the
counterpart of the distribution Chapter 8 ob-
tains for the gap lengths in a Cantor dust.

KOCH CONTINENT AND ISLANDS,
AND THEIR DIVERSE DIMENSIONS

To create a Koch counterpart to the Cantor
gaps, I let the generator split into disconnect-
ed portions. To insure that the limit fractal

remains interpretable in terms of coastlines,
the generator includes a connected broken line
of N <N links, joining the end points of the
interval [0,1]. This portion will be called the
coastline generator, because it determines
how an initially straight coastline becomes
transformed into a fractal coastline. The re-
maining N—N. links form a closed loop that
“seeds” new islands and will be called island
generator. Here is an example:

1 I Sy

oselleeece T D=4/3

In later stages, the sub-island always stays to
the left of the coastline generator (going from
0 to 1), and of the island generator (going
clockwise).

A first novelty is that the limit fractal now
involves two distinct dimensions. Lumping all
the islands’ coastlines together, D =
log N/log (1 /r), but for the coastline of each
individual island D = log Nc/log (1 /1), with
the inequalities

1<Dc<D.

The cumulative coastline, not being con-
nected, is not itself a curve but an infinite
sum (=, sigma) of loops. I propose for it the
term sigma-loop, shortened into ¢-loop.

Note that modeling of the observed rela-
tion between D and D¢ in actual islands re-
quires additional assumptions, unless it can be
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derived from a theory, as in Chapter 29.

THE DIAMETER-NUMBER RELATION

The proof that the KorCak law holds for last
section’s islands is simplest when the genera-
- tor involves a single island, and teragons are
self-avoiding. (Recall that the teragons are
the approximating broken lines). Then the
first stage of construction creates 1 island; let
its “diameter,” defined by va, be Ag. The sec-
ond stage creates N islands of diameter rkg,
and the mth stage creates N™ islands of di-
ameter A=r"\g. Altogether, as X is multiplied
byr, Nr(A>)\) is multiplied by N. Hence the
distribution of A (for all values of X of the
form r™\g) takes the form

Nr(A>\)=F\D,

in which the crucial exponent is the coastline’s
fractal dimension! As a corollary

Nr(A>a) = F'a B, with B=1D,

we have thus derived the Kor¢ak law. For oth-
er values of X or a, one has the staircase curve
familiar from the distribution of Cantor gaps’
lengths, Chapter 8.

This result is independent of N¢ and De. It
extends to the case when the generator in-
volves two or more islands. We note that the
empirical B regarding the whole Earth is of
the order of 0.6, very close to one half of D
measured from the coastline lengths.
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GENERALIZATION TO E>2

In the same construction extended to space, it
continues to be true that the E dimensional
diameter, defined as volumel/E, is ruled by a
hyperbolic expression of the form
Nr(vo!umel/E>)\) = FA P, wherein the cru-
cial exponent is D.

The exponent D also rules the special case
of Cantor dusts for E=1, but there is a major
difference. The length outside the Cantor
gaps vanishes, while the area outside the
“Koch” islands can be, and in general is, posi-
tive. We return to this topic in Chapter 15.

FRACTAL DIMENSION MAY BE SOLELY
A MEASURE OF FRAGMENTATION

The preceding construction also allows the
following generator

o N=16
D j—
oLy e

The overall D is unchanged, but the coastline
D, takes the smallest allowable value, Do=1.
In the present model, island coastlines are
allowed to be rectifiable! When such is the
case, the overall D is not a measure of irregu-
larity, but solely of fragmentation. Instead of
the wiggliness of individual curves, D meas-
ures the number-area relationship for an infi-
nite family of rectangular islands.
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It is still true that, when the length is
measured with a yardstick of e, the result
tends to infinity as e—>0, but there is a new
reason for this. A yardstick of length € can
only measure islands with a diameter of at
least e. However, the number of such islands
increases as e>0, and the measured length
behaves like €' P, exactly as in the absence of
islands.

In the general case where D.>1, the value
of D, measures irregularity alone, while the
value of D measures irregularity and fragmen-
tation in combination.

A FRAGMENTED FRACTAL CURVE MAY HAVE
TANGENTS EVERYWHERE. By rounding off the
islands’ corners, one may make every coastline
have a tangent at every point, while the areas,
hence the overall D, are unaffected. Thus,
being a fractal ¢-curve and being without tan-
gent are not identical properties.

THE INFINITY OF ISLANDS

AN INNOCUOUS DIVERGENCE. As a-0,
Nr(A>a) = Fa~® tends to infinity. Hence,
the Korlak law agrees with our initial obser-
vation that islands are practically infinite in
numbers.

LARGEST ISLAND'S RELATIVE AREA. This
last fact is mathematically acceptable because
the cumulative area of the very small islands
is finite and negligible. <o All islands of area
below € have a total area that behaves like the
integral of a(Ba"B_1)=Ba_B from O to e
Since B<1, this integral converges, and its
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value B(1-B)"!e! B tends to O with e. »

Consequently, the largest island’s relative
contribution to all the islands’ cumulative
area tends to a positive limit as the islands
increase in numbers. It is not asymptotically
negligible.

LONGEST COASTLINE'S RELATIVE LENGTH.
On the other hand, assuming D¢=1, the
coastline lengths have a hyperbolic distribu-
tion with the exponent D>1. Hence the cumu-
lative coastline length of small islands is infi-
nite. And, as the construction advances and
the number of islands increases, the coastline
length of the largest island becomes relatively
negligible.

RELATIVELY NEGLIGIBLE SETS. More gener-
ally, the inequality D.<D expresses that the
curve drawn using the coastline generator
alone is negligible in comparison to the whole
coastline. In the same way, a straight line
(D=1) is negligible in comparison to a plane
(D=2). Just as a point chosen at random in
the plane almost never falls on the x-axis, a
point chosen at random on the coastline of a
“core” island surrounded with sub-islands
almost never falls on the core island’s coast-
line.

SEARCH FOR THE INFINITE CONTINENT

In a scaling universe, the distinction between
the islands and the continent cannot be based
on tradition or “relative size.” The only sensi-
ble approach is to define the continent as a
special island with an infinite diameter. Let
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me now show that the constructions at the
beginning of this chapter practically never
generate a continent. <a For those who know
probability: the probability of a continent be-
ing generated is zero. m
In a sensible search for a continent, we
must no longer choose the initiator and the
generator separately. From now on, the same
generator must be made to serve both for in-
terpolation and for extrapolation. The process
runs by successive stages, each subdivided
into steps. It strongly resembles the extrapola-
tion of the Cantor set in Chapter 8, but de-
serves to be described even more thoroughly.
The first step upsizes our chosen generator
in the ratio of 1/r. The second step puts a
“mark’ on one of the links of the upsized gen-
erator. The third step displaces the upsized
generator, to make its marked link coincide
with [0,1]. The fourth and last step interpo-
lates the upsized generator’s remaining links.
The same process is repeated ad infinitum,
its progress and outcome being determined by
the sequence of positions of the “marked”
links. This sequence can take diverse forms.
The first form requires the coastline gener-
ator to include a positive number N.—2 of
“nonextreme” links, defined as belonging to
the coastline generator but not ending on ei-
ther O or 1. If the mark is consistently put on
a nonextreme link, each stage of extrapolation
expands the original bit of coastline, and
eventually causes it to be incorporated into a
frac_tal coastline of infinite extent in both di-
rections. This proves that it is indeed possible
to obtain a continental coastline in this setup.
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Secondly, always mark an extreme link of
the coastline generator, each possibility being
chosen an infinite number of times. Then our
bit of coastline again expands without end. If
we always choose the same link, the coastline
expands in only one direction.

Thirdly, always mark a link that belongs
to the island generator. Then the biggest is-
land before extrapolation is made to lie off a
bigger island’s shore, then off-off a still bigger
island’s, and so on ad infinitum. No continent
is ever actually reached.

The next comment involves a bit of
“probabilistic common sense,” which must be
familiar to every reader. We suppose that the
marks fall according to the throws of an’
N-sided die. In order for the extrapolation to
generate a continent, it is obviously necessary
that all the marks beyond a finite (kth) stage
be placed upon one of N.—2 nonextreme links
of the coastline generator. Call them
“winning” links. To know one has reached a
continent after k stages, one must know that
thereafter every throw of our die, with not one
exception, will win. Such luck is not impossi-
ble, but it is of vanishing probability.

ISLAND, LAKE AND TREE COMBINATION

The Koch islands being mutually similar,
their diameter A can be redefined as the dis-
tance between any two specified points, best
chosen on the coastline. Next, we observe that
the derivation of the diameter-number rela-
tion makes specific use of the assumption that
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the generator includes a coastline generator.
But the assumption that the generator’s re-
maining links form islands, or are self-
avoiding, is never actually used. Thus, the
relation

Nr(A>N\)=FAP

is of very wide validity. <s One can even re-
lease the condition the teragons initiated by
two intervals must not intersect. m Let us
now show by examples how the configuration
of the original N—N. links can affect the re-
sulting fractal’s topology.

COMBINATION OF ISLANDS AND LAKES. Re-
lieve the generator from the requirement of
being placed to the left, going clockwise.
When it is placed to the right, it forms lakes
instead of islands. Alternatively, one may in-
clude both lakes and islands in the same gen-
erator. Either way, the final fractal is a ¢-loop
whose component loops are nested in each
other. For example, consider the generator

1

N=13
@o—o0—0—0—0-o-@ r=]_/6
I:I D~1.6131

When initiated by ‘a square, this generator
yields the following advanced teragon

THE ELUSIVE CONTINENT. In the above dia-
gram, the length of the initiator’s side injects
a nonintrinsic outer cutoff. A more consistent
approach is to extrapolate it as we did for is-
lands without lakes. Again, it is almost sure
that no continent is ever reached, and that the
nesting of islands within lakes within islands
continues without bound.

AREA-NUMBER RELATION. In order to de-
fine the area of an island (or lake), one may
at will take either the total area, or the area
of land (or water), within its coastline. The
two differ by a fixed numerical factor, hence
affect Nr(A>a) through its prefactor F', not
its exponent ¥%2D.

COMBINATION OF INTERVALS AND TREES.
Now assume that the N-N_ links form either a
broken line with two free ends, or a tree. In
either case, the fractal splits into an infinite
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number of disconnected pieces, each of them a
curve. This g-curve is no longer a o-loop; it is
either a o-tree or a o-interval.

THE NOTION OF CONTACT CLUSTER

The generator may also combine loops,
branches and diverse other topological config-
urations. If so, the limit fractals’ connected
portions recall the clusters of percolation the-
ory (as seen later in this chapter) and of
many other areas of physics. To us, this usage
is terribly unfortunate, due to the alternative
meaning of cluster in the study of dusts
(Chapter 9). We need therefore a more spe-
cific and cumbersome term. I settled on
“contact cluster.” Luckily, the term o-cluster
is not ambiguous. ,

(It may be observed that contact cluster
has a unique and natural mathematical defini-
tion, while the notion of clustering in a dust is
diffuse and intuitive, and is at best defined via
arguable statistical rules.)

PLANE-FILLING CONTACT CLUSTERS. As D
reaches its maximum D=2, the arguments in
the preceding section remain valid, but addi-
tional comments become necessary. Each indi-
vidual cluster tends to a limit, which may be a
straight line, but in most cases is a fractal
curve. On the other hand, all the clusters to-
gether form a g-curve, whose strands fill the
plane increasingly tightly. The limit of this
g-curve behaves as in Chapter 7: it is no long-
€r a g-curve, but a domain of the plane.

THE ELUSIVE INFINITE CLUSTER. No actual-
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ly infinite cluster is involved in the present
approach. It is easy to arrange the generator’s
topology so that any given bounded domain is
almost surely surrounded by a contact cluster.
This cluster is in turn almost surely surround-
ed by a larger cluster, etc. There is no upper
bound to cluster size. More generally, when a
cluster seems infinite because it spans a very
large area, the consideration of an even larger
area will almost surely show it to be finite.

MASS-NUMBER AND WEIGHTED
DIAMETER-NUMBER RELATIONS.
THE EXPONENTS D-D. AND D/D..

Now let us reformulate the function Nr(A>\)
in two ways: first by replacing a cluster’s di-
ameter A by its mass u, then by giving in-
creased weight to large contact clusters.

Here, a cluster’s mass is simply the num-
ber of links of length b™* in the clusters itself
(do not count the links within a looping clus-
ter!). In effect, Chapters 6 and 12, we create
a modified Minkowski sausage (Plate 33), by
centering a square of side b~k on each vertex,
and adding half a square at each end-point.

The mass of a cluster of diameter A being
the area of its modified sausage,
Moc(A /bK)Pe(bk)2 APe/(6%)Pe=?, Since
Dc<2, M>0 as k—>oo. The mass of all the
contact clusters taken together is oc(bk)D_z; if
D<2, it too -0. And the relative mass of any
individual contact cluster is «(b¥)PeD; it
tends to O at a rate that increases with D—De.

MASS-NUMBER RELATION. Clearly,
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Nr(M >u) o« (bk)~D+2D/DCu—D/DC.

DISTRIBUTION OF DIAMETER WEIGHTED BY
MASS. Observe that Nr(A>X) counts the num-
ber of lines above line A in a list that starts
with the largest contact cluster, continues
with the next largest, etc. But we shall mo-
mentarily have to attribute to each contact
cluster a number of lines equal to its mass.
The resulting relation is easily seen to be

Wnr(A>\) o« XD+Dc,

THE MASS EXPONENT Q=2D.-D

Denote by I a fractal of dimension D, con-
structed recursively with [O,A] as initiator,
and take its total mass to be AP. When T is a
Cantor dust, Chapter 8 shows that the mass
in a disc of radius R<A centered at O is M(R)
« RP. < The quantity log[M(R)R™P] is a
periodic function of logy (A/R), but we shall
not dwell on these complications because they
vanish when the fractal is modified so that all
r>0 are admissible self-similarity ratios. m

We know that M(R) « RP also applies to
the Koch curve of Chapter 6. Furthermore,
this formula extends to the recursive islands
and clusters of this chapter, with D replaced
by D¢. In all cases, the mass in a disc of radi-
us R centered at O takes the form

M(R,A) = RPe¢(R/A),

with ¢ a function deducible from the shape of
. In particular,

M(R,A)<RP¢ when R<<A,
and M(R,A)cAPe when R>> A.

Now consider the weighted average of M(R),
to be denoted by (M(R)), corresponding to the
case when A is variable with the widely
spread-out hyperbolic distribution Wnr(A>X\)
« ANP*+DPc We know that 1<D.<D<2. Ex-
cluding the combination of D=2 and D.=1,
0<D-D.<D.. It follows that

(M(R)) « RQ with Q=2D.~D>0.

When the disc’s center is a point of 5 other
than O, the factor of proportionality changes,
but its exponent is unchanged. It also remains
unchanged by averaging over all positions of
the center in 3, and by the replacement of
[0,1] by a different initiator. <a Usually, an
arc of random size A is also of random shape.
But the above formulas for M(R,A) apply to
(M(R,A)) averaged over all shapes. The final
result is unchanged. w~

REMARK. The preceding derivation does not
refer to the clusters’ topology: they can be
loops, intervals, trees, or anything else.

CONCLUSION. The formula (M(R))«RQ
shows that, when A is hyperbolically distrib-
uted, hence of very wide scatter, one of the
essential roles of dimension is taken up by an
exponent other than D. The most natural ex-
ponent is 2D.—D, but different weighting
function give different Q’s.
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WARNING: NOT EVERY MASS EXPONENT IS
A DIMENSION. The combined quantity Q is
important. And, since it is a mass exponent, it
is tempting to call it a dimension, but this
temptation has no merit. Mixing many clus-
ters with identical D, but varying A leaves D,
unchanged, because dimension is not a prop-
erty of a mixed population of sets, but a prop-
erty of an individual set. Both D and D, are
fractal dimensions, but Q is not.

More generally, many areas of physics in-
volve relations of the form (M(R)) « RC, but
such a formula does not by itself guarantee
that Q is a fractal dimension. And calling Q
an effective dimension, as some authors pro-
pose, is an empty gesture because Q does not
possess any of the other properties that char-
acterize D (for example, sums or products of
D’s have a meaning with no counterpart in the
case of Q). Moreover, this empty gesture has
proven a source of potential confusion.

NONLUMPED CURDLING CLUSTERS

We now proceed to describe two additional
methods for generating contact clusters. One
is based on curdling and applies for D<2,
while the other is based on Peano curves and
applies for D=2. The reader interested in per-
colation may skip this section and the next.
First, let us replace the Koch construction
by the natural generalization of Cantor cur-
dling to the plane. As illustration, consider
the following five generators, with the next
construction stage drawn underneath
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In all these cases, the limit fractal is of
zero area and contains no interior point. Its
topology can take diverse forms, determined
by the generator.

With generator A, the precurd of every
stage k is connected, and the limit fractal is a
curve, an example of the very important
Sierpinski carpet examined in Chapter 14.

With generator F, the precurd splits into
disconnected portions, whose maximum linear
scale steadily decreases as k—-oo. And the
limit fractal is a dust, akin to the Fournier
model of Chapter 9.

The generators B, C and E are more inter-
esting: in their case, the precurd splits into
pieces to be called preclusters. Each stage can
be said to transform every “old” precluster by
making it thinner and wigglier, and to give
birth to “new” preclusters. Nevertheless, by
deliberate choice of generators, each newborn
precluster is entirely contained in a single
smallest cell in the lattice prevailing before its
birth. By contrast with the “cross lumped
clusters” of the next section, the present ones
are to be called “nonlumped.” It follows that
the limit contact clusters have a dimension of
the form log N./log b, where N¢ is an integer
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at most equal to the number of cells in the
generator’s largest component. This maximum
is attained for generators B and C, for which
the contact clusters are, respectively, intervals
with Dc=1 and fractal trees with
D.=log 7 /log 4. But the fractal based on the
generator E does not attain this maximum: in
its case, the F-shaped preclusters keep split-
ting into parts, and the limit, again, is made
of straight intervals with Dc=1.

Replacing the pseudo- M1nk0wsk1 sausage
by the collection of cells of side b~ intersect-
ed by a contact cluster, the diameter-number
relation and the other results of the preceding
sections extend unchanged.

CROSS LUMPED CURDLING CLUSTERS

Next, let the generator of plane curdling takes
either of the following shapes, with the next
construction stages drawn to the side

ﬂl' I

Both cases exhibit massive ‘“‘cross lumping,”
meaning that each newborn precluster com-
bines contributions. coming from several
smallest lattice cells prevailing before its
birth.

In the Koch context, an analogous situa-
tion prevails when the teragons are allowed to
self-contact, resulting in the merger of small

y L=

-

cluster teragons. In either case, the analysis is
cumbersome, and we cannot dwell on it. But
Nr(A>A)ecA"P remains a valid relation for
small A.

-a However, if one attempts to estimate D
from this relation, without excluding the large
N’s, the estimate is systematically biased and
smaller than the true value. w

Novel features arise concerning the quanti-
ty bPe: it need not be an integer deducible
from the generator by simple inspection, but
it may be a fraction. The reason is that every
contact cluster combines: (a) an integer num-
ber of versions of itself, downsized in the ratio
1/b, and (b) many downsized versions due to
lumping, which involve smaller ratios of the
form rpm=b""(M). The dimension-determining
equation =r,P=1 of page 56, when rewritten
in terms of x=b"P, takes the form Zam,xM=1.
Cases where 1 /x is an integer can only occur
as exceptions.

KNOTTED PEANO MONSTERS, TAMED

A plane-filling collection of clusters (D=2)
cannot be created by curdling, but I found an
alternative approach, using Peano curves be-
yond those we saw being tamed in Chapter 7.
As the reader must recall, Peano curves with
self-avoiding teragons create river and wat-
ershed trees. But some other Peano curve ter-
agons (for example the teragons in Plate 63,
assuming that the corners are not rounded
off) are simply chunks of lattice. As the con-
struction proceeds, the open lattice cells sepa-
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rated by such curves “‘converge” to an every-
where dense dust, e.g., to the points for which
neither x nor y is a multiple of bk,

Between these extremes stands a new in-
teresting class of Peano curves. Their genera-
tors are exemplified by the following, shown
together with the next step

This class of Peano curves is now ready to be
tamed. We observe that each point of self-
contact “knots off”” an open precluster, which
may acquire branches and self-contacts, sees
chunks of itself “knotted away,” and eventu-
ally thins down to a highly ramified curve
that defines a contact cluster. A cluster’s di-
ameter A, defined as in previous sections of
this chapter, is fixed from the moment of
birth: roughly equal to the side of the square
that “seeded” this cluster. Its distribution is
ruled by the familiar relation Nr(A>X)eA"2.

Observe in passing that, while Koch con-
tact clusters are limits of recursively con-
structed curves, the present clusters are limits
(in a peculiar sense) of the open components
of the complement of a curve.
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BERNOULLI PERCOLATION CLUSTERS

Whichever method is used to generate fractal
contact clusters with D=E and D <D, they
provide a geometric model that had been lack-
ing in a very important problem of physics:
Bernoulli percolation through lattices. J. M.
Hammersley, who posed and first investigated
this problem, did not inject Bernoulli’s name
in this context, but the fractal percolation we
encounter in Chapter 23 makes the full term
unavoidable here. (It is independently adopted
by Smythe & Wiermann 1975.)

LITERATURE. Bernoulli percolation is sur-
veyed in Shante & Kirkpatrick 1971, Domb
& Green 1972-, especially a chapter by J. W.
Essam, Kirkpatrick 1973, deGennes 1976,
Stauffer 1979, and Essam 1980.

DEFINITIONS. Percolation involves probabil-
istic notions, hence would not be discussed at
this stage if we were entirely consistent. But
an occasional lack of consistency has its re-
wards. The simplest percolation problem for
E=2 is bond percolation on a square lattice.
To illustrate it in homely fashion, imagine we
construct a large square lattice with sticks
made either of insulating vinyl or of conduct-
ing copper. A Bernoulli lattice obtains if each
stick is selected at random, independently of
the other sticks, the probability of choosing a
conducting stick being p. Maximal collections
of connected copper or vinyl sticks are called
copper or vinyl clusters. When the lattice in-
cludes at least one uninterrupted string of
copper sticks, the current can flow through
from one side of the lattice to the other, and
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the lattice is said to percolate. (In Latin, per
= through, and colare = to flow.) The sticks
in uninterrupted electric contact with the top
and bottom sides of the lattice form a
“percolating cluster,” and the sticks actually
active in conducting form the percolating
cluster’s “backbone.”

The generalization to other lattices, and to
E>2, is immediate.

CRITICAL PROBABILITY. Hammersley’s most
remarkable finding concerns the special role
played by a certain threshold probability: the
critical probability pcrit. This quantity enters
in when the Bernoulli lattice’s size (measured
in numbers of sticks) tends to infinity. One
finds that, when p>pcrit, the probability that
there exists a percolating cluster increases
with lattice size, and tends to 1. When
P<Pecrit, to the contrary, the probability of
percolation tends to O.

Bond percolation on square lattices being
such that either copper or vinyl must perco-
late, perit = 2.

ANALYTICAL SCALING PROPERTY. The study
of percolation long devoted itself to the search
for analytic expressions to relate the standard
quantities of physics. All these quantities were
found to be scaling, in the sense that the rela-
tions between them are given by power laws.
For p#pcit, scaling extends up to an outer
cutoff dependent on p-perit and denoted by &.
As p—=>pgrit, the cutoff satisfies £-»co. Physi-
cists postulate (see Stauffer 1979, p. 21) that
(M(R,A)) follows the rule obtained on p. 123.

THE CLUSTERS’ FRACTAL GEOMETRY

THE CLUSTERS' SHAPE. Let p=pcit, and let
individual sticks decrease in size while the
total lattice size remains constant. The clus-
ters become increasingly thin (“‘all skin and
no flesh’), increasingly convoluted, and in-
creasingly rich in branches and detours
(“ramified and stringy”). Specifically, Leath
1976, the number of sticks situated outside of
the cluster, but next to a stick within the clus-
ter, is roughly proportional to the number of
sticks within the cluster.

HYPOTHESIS THAT CLUSTERS ARE FRACTALS.
It is natural to conjecture that the property of
scaling extends from analytic properties to the
clusters’ geometry. But this idea could not be
implemented in standard geometry, because
the clusters are not straight lines, Fractal ge-
ometry is of course designed to eliminate such
difficulties: thus, I conjectured that clusters
are representable by fractal e-curves satisfy-
ing D=2 and 1<D.<D. This claim has been
accepted, and found to be fruitful. It is elabo-
rated upon in Chapter 36.

-a To be precise, scaling fractals are taken
to represent the clusters that are not truncat-
ed by the boundary of the original lattice.
This excludes the percolating cluster itself.
(The term cluster has a gift for generating
confusion!) To explain the difficulty, start
with an extremely large lattice, pick a cluster
on it, and a smaller square that is spanned by
this cluster. By definition, the intersection of
this cluster and the smaller square includes a
smaller percolating cluster, but in addition it
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includes a “residue” that connects with the
smaller percolating cluster through links
outside the square. Note that neglect of this
residue creates a downward bias in the esti-
mation of D¢. »

VERY ROUGH BUT SPECIFIC NONRANDOM
FRACTAL MODELS. To be valid, the claim that
any given natural phenomenon is fractal must
be accompanied by the description of a specif-
ic fractal set, to serve as first approximation
model, or at least as mental picture. My Koch
curve model of coastlines, and the Fournier
model of galaxy clusters, demonstrate that
rough nonrandom picture may be very useful.
Similarly, T expect recursively constructed
contact clusters (like those introduced in this
chapter) to provide useful fractal models of
the ill-known natural phenomena that are cus-
tomarily modeled by Bernoulli clusters.

However, the Bernoulli clusters themselves
are fully known (at least in principle), hence
modeling them via explicit recursive fractals
is a different task. The Koch contact clusters
I studied are not suitable, due to dissymetry
between vinyl and copper, even when there
are equal numbers of sticks of both kinds.
Next examine the knotted Peano curve clus-
ters. Take an advanced teragon, and cover the
cells to the Jeft of the curve with copper, and
the other cells with vinyl. The result involves
a form of percolation applied to lattice cells
.(or to their centers, called sites). The problem
18 symmetric. But it differs from the Bernoullj
PfOl{lem, because the configuration of copper
or vinyl cells are not the same as in the case
of independence: for example, 9 cells forming
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a supersquare can all be of copper or vinyl in
the Bernoulli case, but not in the knotted
Peano curve case. (On the other hand, both
models allow groups of 4 cells forming a su-
persquare to take any of the possible configu-
rations.) This difference has far-reaching con-
sequences: for example, neither copper nor
vinyl percolate in the Bernoulli site problem
with p=%, while both percolate in knotted
Peano clusters, implying that % is a critical
probability.

The list of variants of Bernoulli bond per-
colation is already long, and can easily be
lengthened further. And I have already exam-
ined many variants of recursively constructed
fractal contact clusters. The detailed compari-
son of these lists is unfortunately complicated,
and I shall not dwell on it here.

Let me therefore be satisfied with stating
the loose conclusion that significant fractal
essentials of the Bernoulli percolation problem
seem to be illustrated by nonrandom space-
filling o-clusters defined earlier in this chap-
ter. This model’s principal weakness is that it
is completely indeterminate beyond what has
been said. It can accommodate any observed
degree of irregularity and fragmentation. On
the matter of topology, see Chapter 14.

MODEL OF CRITICAL CLUSTERS. Specifical-
ly, consider the critical clusters, defined as
the clusters for p=pcrit. To represent them, a
recursive o-cluster is extrapolated as indicated
in earlier sections of this chapter. Then it is
truncated by stopping the interpolation so that
the positive inner cutoff is the cell size in the
original lattice.
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MODELS OF NONCRITICAL CLUSTERS. To
extend this geometric picture to noncritical
clusters, that is, to clusters for p#pcrit, We
seek fractals with a positive inner cutoff and a
finite outer cutoff. Analysis calls for the larg-
est copper cluster’s extent to be of the order
of &€ when p<pcrit, and to be infinite when
p>Perit- Either outcome is readily implement-
ed. For example, one can start with the same
generator as in the preceding subsection. But,
instead of extrapolating it naturally, one initi-
ates it with either of the following shapes

oo
o
o

SUBCRITICAL CLUSTERS. The initiator to
the left, which is geared towards p<pcrit, 18
made of squares of side %&. Now let the cho-
sen generator be positioned in through each
initiator’s left side, and out through the other
sides. The initiator square will transform into
an atypical cluster of length &, surrounded by
many typical clusters of length <§&.

SUPERCRITICAL CLUSTERS. The initiator to
the right, which is geared towards p>pcrit, 18
made of those lines of the initial square lat-
tice, whose x or y coordinates are even integ-
ers. Four links radiate from each node whose
coordinates are even integers; the chosen gen-
erator is always positioned to the left. In the
special case when the coastline generator in-
volves no loops nor dangling links, the result-

ing picture is a de-randomized and systema-
tized variant of a crude model of clusters
based solely on “nodes and links.”

Observe that the fractal geometric picture
deduces the noncritical clusters from the crit-
ical ones, while physicists prefer to consider
the critical clusters as limits of the noncritical
clusters for £-oo.

CRITICAL BERNOULLI CLUSTERS' D,

The value of D, is immediately inferred from
either the exponent D/D.=E/D. in the for-
mula for Nr(M>u), or the exponent
Q=2D¢~D=2D_~E in the formula for {(M(R)).
Using the Greek letters 7, 6 and n with the
meanings customary in this context, we find
that E/Dc=7-1 and 2D.~E = 2—y. Hence,

De = E/(r-1) = E/(1+571),
and Do=1+(E-n)/2.

Due to relations that physicists established
between 7, 8 and 7, the above formulas for D,
are equivalent. Conversely, their equivalence
does not reside in physics alone, because it
follows from geometry.

Independently of each other, Harrison,
Bishop & Quinn 1978, Kirkpatrick 1978, and
Stauffer 1979 obtain the same D.. They start
from the properties of clusters for p>perit,
hence express their result in terms of different
critical exponents (8, v, v and ¢). These de-
rivations do not involve a specific underlying
fractal picture. The dangers inherent in this
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approach, against which we warned earlier in
this chapter, are exemplified by the fact that
it misled Stanley 1977 into advancing Q and
D, are equally legitimate dimensions.

For E=2, the numerical value is D,=1.89.
It is compatible with the empirical evidence,
as obtained by a procedure familiar in other
guises. Pick r, which need not be of the form
1/b (b an integer). Then take a big eddy,
which is simply a square or cubic lattice of
side set to 1. Pave it with subeddies of side r,
count the number N of the squares or cubes
that intersect the cluster, and evaluate
logN/log (1/r). Then repeat the process
with each nonempty subeddy of side r by
forming subsubeddies of side r?. Continue as
far as feasible. The most meaningful results
obtain when r is close to 1. Some early simu-
lations gave the biased estimate Dt~1.77
(Mandelbrot 1978h, Halley & Mai 1979), but
large simulations (Stauffer 1980) confirm D.

<a The biased experimental D* is very
close to Q, hence briefly seemed to confirm
the theoretical arguments in Stanley, Birge-
nau, Reynolds & Nicoll 1976 and Mandelbrot
1978h, which were both in error in claiming
that the dimension is Q. The error was
brought to my attention by S. Kirkpatrick. A
different and even earlier incorrect estimate
of D is found in Leath 1976. m-

THE CYPRESS TREES OF OKEFENOKEE

W'hen a forest that is not “managed” system-
atically is observed from an airplane, its
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boundary is reminiscent of an island’s coast-
line. Individual tree patches’ outlines are ex-
tremely ragged or scalloped, and each large
patch is trailed by satellite patches of varying
area. My hunch that these shapes may follow
the Richardson and/or Korcak laws, is indeed
confirmed by an unpublished study of the Ok-
efenokee swamp (Kelly 1951) by H. M. Hast-
ings, R. Monticciolo & D. VunKannon. The
patchiness of cypress is great, with D~1.6;
the patchiness of broadleaf and mixed broad-
leaf trees is much less pronounced, with D
near 1. My informants comment on the pres-
ence of an impressive variety of scales both on
personal inspection and on examination of
vegetation maps. There is an inner cutoff of
about 40 acres, probably a consequence of
aerial photography. |
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Chapter 6 investigates planar Koch curves
that satisfy D<2 and are devoid of double
points, hence can be called self-avoiding or
nonramified. And Chapter 7 investigates
Peano curves, for which everywhere dense
double points are unavoidable in the limit,
The present chapter takes the next step, and
investigates examples of deliberately ramified
self-similar shapes: planar curves with
1<D<2, spatial curves with 1<D<3, and sur-
faces with 2<D<3. In a ramified self-similar
curve, the number of double points is infinite.
This chapter’s mathematics is old (though
known to very few specialists), but my appli-
cations to the description of Nature are new.

THE SIERPINSKI GASKET AS MONSTER

Sierpinski gasket is the term I propose to de-
note the shape in Plate 141. An extension to
space is shown in Plate 143. The constructions
are described in the captions.

Hahn 1956 comments that “A point on a
Curve is called a branch point if the boundary
of any arbitrarily small neighborhcod has

more than two points in common with the
curve... Intuition seems to indicate that it is
impossible for a curve to be made up of noth-
ing but... branch points. This intuitive convic-
tion had been refuted [by the] Sierpinski...
curve, all of whose points are branch points.”

THE EIFFEL TOWER: STRONG AND AIRY

Again, Hahn’s view is totally without merit,
and his uncharacteristic “‘seems to indicate” is
a wise choice of words. My first counter-
argument is borrowed from engineering. (As
argued before we tackled computers at the
end of Chapter 12, there is nothing illogical
about including articulated engineering sys-
tems in this work concerned with Nature.)

My claim is that (well before Koch, Peano,
and Sierpinski) the tower that Gustave Eiffe]
built in Paris deliberately incorporates the
idea of a fractal curve full of branch points.

In a first approximation, the Eiffel Tower
is made of four A-shaped structures. Legend
has it that Eiffel chose A to express Amour
for his work. All four A’s share the same apex
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and any two neighbors share an ascender.
Also, a straight tower stands on top.

However, the A’s and the tower are not
made up of solid beams, but of colossal truss-
es. A truss is a rigid assemblage of intercon-
nected submembers, which one cannot deform
without deforming at least one submember.
Trusses can be made enormously lighter than
cylindrical beams of identical strength. And
Eiffel knew that trusses whose “members™ are
themselves subtrusses are even lighter.

The fact that the key to strength lies in
branch points, popularized by Buckminster
Fuller, was already known to the sophisticated
designers of Gothic cathedrals. The farther we
go in applying this principle, the closer we get
to a Sierpinski ideal! An infinite extrapolation
of the Eiffel Tower design is described in Dy-
son 1966, p. 646, wherein a former student of
Besicovitch seeks strong interplanetary struc-
tures of low weight.

CRITICAL PERCOLATION CLUSTERS

Let us now return to nature, or more precisely
to an image of nature provided by statistical
physics. I think the kin of the Sierpifski gask-
et is demanded by the study of percolation
through lattices. Chapter 13, which began our
case study of this topic, claims that percola-
tion clusters are fractals. Now 1 add the fur-
.ther claim that the Sierpinski gasket’s branch-
Ing structure is a promising model of the
structure of cluster backbones.

The physicists will mostly judge this model
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on the fact that it rapidly fulfilled its promise:
Gefen, Aharony, Mandelbrot & Kirkpatrick
1981 shows the model allows usual calcula-
tions to be carried out exactly. But the details
are much too technical to be included in this
Essay, and the original reasons for my claim
remain of interest. It arose from a resem-
blance I perceived between the gasket and the
cluster backbones, as shown in this diagram:

The most conspicuous feature resides in the
tremas left vacant by the elimination of dan-
gling bonds (when a cluster was reduced to its
backbone), and of clusters contained entirely
within the cluster of interest. Second, the fact
that the branching is self-similar in a
Sierpinski gasket is shown in Chapter 13 to be
an eminently desirable property in a geome-
tric model of the percolation cluster. Finally,
the dimensions fit to a degree that can hardly
be coincidental! S. Kirkpatrick estimates that



14 T RAMIFICATION AND FRACTAL LATTICES

in the plane D~1.6, astonishingly close to the
D of the Sierpinski gasket! And in space,
D~2.00, astonishingly close to the D of the
fractal skewed web in Plate 143. Furthermore,
Gefen, Aharony, Mandelbrot & Kirkpatrick
1981 observes that the identity between the D
of the backbone and that of the generalized
gasket persists in R*. An additional argument
in favor of the gasket model is mentioned lat-
er, as a last application of ramification.

THE TRIADIC SIERPINSKI CARPET

Let us now switch from triangular to orthogo-
nal lattices. They allow great versatility in
design, yielding curves in the plane or in
space, or surfaces in space. And the curves
they yield, despite a superficial resemblance
to the Sierpinski gasket, are very different
from the fundamental viewpoint of ramifica-
tion, to which we turn after defining them.

The literal planar extension of Cantor’s
method of deleting mid-thirds initiates with a
square, and is described in the caption on
page 142. The fractal obtained by continuing
ad infinitum is widely known by the homely
term triadic Sierpifiski carpet. Tts dimension
is D=log 8/log 3=1.8927.

NONTRIADIC FRACTAL CARPETS
Given an integer b>3, and writing r=1/b as

usual, a “large centered medallion” carpet is
obtained by taking as initiator a square, as
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trema a square of side 1-2r, with the same
center, and as generator a thin ring of 4(b—1)
squares of side r. The dimensions are
D=log [4(b—1)]/logb. Given an odd integer
b>3, a “small centered medallion” carpet is
obtained by taking as trema a single sub-
square of side r, with the same center as the
initiator, and as generator a thick ring of
b3-1 small squares. The dimensions are
D=log (b3—1)/|og b. Thus, any D between 1
and 2 can be approximated arbitrarily closely
in a centered carpet.

Noncentered carpets can be defined for
b>2. For example, when b=2 and N=3, a
trema made of one subsquare can be posi-
tioned in the subsquare on the top right. The
corresponding limit set turns out to be the
Sierpifiski gasket built with the triangle form-
ing the bottom left half of the square.

TRIADIC FRACTAL FOAM

The literal spatial extension of the triadic car-
pet consists in removing a cube’s mid 27-th
subcube as trema, leaving a shell of 26 sub-
cubes. The resulting fractal is to be called
triadic fractal foam. Its dimension is
D=log 26 /log 3=2.9656.

Here, every trema is entirely enclosed by
an uninterrupted boundary split into infinitely
many, infinitely thin layers of infinite density.
In order to join two points situated in differ-
ent tremas, it is necessary to cross an infinite
number of layers. One is reminded, but this is
a topic I do not master thoroughly enoug}}-’to
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attempt to account for it here, of the “space-
time foam’ which characterizes the finest
structure of matter according to J. A. Wheel-
er and G. W. Hawking.

MENGER'’'S TRIADIC FRACTAL SPONGE

Karl Menger selects a different trema, shaped
like a cross with spikes front and back, con-
sisting of N=20 subcubes of side Y4, connect-
ed to one another. Among them, 12 form
“rods” or ropes, and the remaining 8 are
knots, connectors, or ties. The limit (Plate
145) satisfies D=log20/log 3=2.7268. 1
call it a sponge, because both the curd and
the whey are connected sets. One can conceive
of water flowing between any two points in
the whey.

To obtain a mixture of ropes and sheets,
let the trema be a triadic cross continued by a
single spike in front. By changing the direc-
tion of the spike every so often, one may end
up with punctured sheets. It may be worth
mentioning that I thought of all these shapes
before reading Menger, while looking for
models of turbulent intermittency.

NONTRIADIC SPONGES AND FOAMS

Given a nontriadic base b>3, generalized
Menger Sponges are obtained when the trema
is the union of three square based cylinders:
thg axis of each coincides with an axis of the
unit cube, its length is 1, and its base has
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sides parallel to the other axes. The sponge is
called “light” when the bases’ sides are as
large as possible. For E=3, they are of length
1-2/b, leaving as generator a collection of
12b—16 cubes of side r=1/b. Hence the di-
mension is D=log (12b-16)/log b. Similarly,
a “‘heavy sponge” is obtained, but only in case
b is odd, when the cylinder bases’ sides are of
length 1 /b. For E=3, they leave as generator
a collection of b3-3b+2 cubes of side
r=1/b. Now D=log (b3-3b+2)/logb.

Fractal foams generalize in analogous
fashion. For E=3, ‘“thick wall” foams yield
D=log (b3~1)/logb, and “thin wall” foams
yield D=log (6b°~12b+8)/logb. With big
holes and D near 2, the foam resembles an
overly airy Emmenthaler. With small holes
and D near 3, it resembles a different cheese
delicacy, Appenzeller.

GAPS’ SIZE DISTRIBUTIONS

The sponges’ tremas merge together but
carpets’ and foams’ tremas remain as gaps
analogous to those of the Cantor dust
(Chapter 8). The distribution of their linear
scale A satisfies

Nr(A>N)cFA D,
where F is a constant. We know this rule well

from the gaps of a Cantor dust, and the is-
lands and clusters of Chapter 13.
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THE NOTION OF FRACTAL NET, LATTICE

The lattices of standard geometry are formed
by parallel lines bounding equal squares or
triangles, and analogous regular designs. The
same term seems applicable to regular frac-
tals in which any two points can be linked by
at least two paths that do not otherwise over-
lap. When the graph is not regular, for exam-
ple is random, I replace lattice by net.

However, a closer comparison of standard
and fractal lattices reveals considerable differ-
ences. The first difference is that the standard
lattices are invariant by translation but not by
scaling, while for the fractal lattices the con-
trary is true. A second difference is that any
standard lattice, if downsized, converges to
the whole plane. Also, several standard lattic-
es in the plane can be interpolated by adding
lines halfway between existing parallel lines,
and repeating ad infinitum. Again, the result
converges towards the whole plane. Similarly,
when a standard spatial lattice can be interpo-
lated, its limit is the whole space. Thus, the
limit is not a lattice. In the fractal context, to
the contrary, the limit of an approximate
fractal lattice is a fractal lattice.

The term, ramified fractal lattices can
also be applied to the fractal foams.

THE SECTIONS’ FRACTAL DIMENSIONS

A BASIC RULE. In many studies of fractals, it is
important to know the dimensions of the line-
ar and planar sections. The basic fact (used in
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Chapter 10 to show that D>2 for turbulence)
concerns the section of a planar fractal shape
by an interval “‘independent of the fractal.”
One finds that if the section is nonempty, it is
“almost sure” that its dimension is D—1.

The corresponding value in space is D—-2.

EXCEPTIONS. Unfortunately, this result is
hard to illustrate in the case of nonrandom
fractals that have axes of symmetry. The in-
tervals that impose themselves upon our con-
sideration are parallel to these axes, hence
atypical, and nearly every simple section by
an interval belongs to the exceptional set
wherein the general rule fails to apply.

For example, take the Sierpinski carpet,
the triadic Menger sponge and the triadic
foam. D—1, which is the almost sure dimen-
sion of sections by intervals, is, respectively

log (8/3)/log 3,
log (20/9)/log 3, and log (26 /9)/log 3,

On the other hand, let X be the abscissa of
an interval parallel to the y-axis of the
Sierpinski carpet. When X, written in counting
base 3, ends up by an uninterrupted infinite
string of O’s or 2’s, the sections are them-
selves intervals, hence D=1, larger than ex-
pected. When x ends up by an uninterrupted
infinite string of 1’s, to the contrary, the sec-
tions are Cantor dusts, hence D=log 2 /log 3
is too small. And when X terminates by a peri-
odic pattern of period M, including pM times
1 and (1-p)M times O or 2, the sections are
of dimension p(iog2/log 3)+(1—p). The ex-
pected D prevails for p~.29. The, same
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holds if the digits of x are random. m Thus,
three dimensions are involved here: the larg-
est, the smallest and the average.

Closely analogous results apply in space.

As to the Sierpinski gasket, the almost
sure D is log (3/2)/log 2, but the D’s rela-
tive to “natural” cuts range from 1 to O. For
example, a short interval through the mid-
point of one of the gasket’s sides, if close
enough to the perpendicular, intersects the
gasket on a single point, with D=0.

In part, the variability of these special sec-
tions is traceable to the regularity of the orig-
inal shapes. But in another part, it is inevita-
ble: the most economical section (not neces-
sarily by a straight line) is the basis of the
notions of topological dimension and of order
of ramification, to which we proceed now.

THE RAMIFIED FRACTALS VIEWED
AS CURVES OR SURFACES

As often stated, curve is used in this Essay as
a synonym of “connected shape of topological
dimension Dy=1." Actually, this phrase is not
fully satisfactory to the mathematicians, and
the precise restatements are delicate. Luckily,
Chapter 6 could be content with a simple rea-
son why any Koch curve with [0,1] as initia-
tor deserves to be called a curve: like [0,1]
itself, it is connected, but becomes disconnect-
ed if any point other than O or 1 is removed.
And a snowflake boundary is like a circle: it is

connec‘ted, but becomes disconnected if any
two points are removed.
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Restated more pedantically, as is now nec-
essary, the topological dimension is defined
recursively. For the empty set, Dy=—1. For
any other set .S, the value of Dy is 1 higher
than the smallest D1 relative to a “cutset”
that disconnects .S, Finite sets and Cantor
dusts satisfy Dt = 1-1 = 0, because nothing
(the empty set) need be removed to disconnect
them. And the following connected sets are all
disconnected by the removal of a cutset that
satisfies D1=0: circle, [0,1], snowflake
boundary, Sierpinski gasket, Sierpinski car-
pets, Menger sponges. (In the last three cases,
it suffices to avoid the special intersections
that include intervals.) Hence, all these sets
are of dimension Dy=1.

By the same token, a fractal foam is a sur-
face, with Dr=2.

Here is an alternative proof that D=1 for
the gasket, all carpets, and all sponges with
D<2. Since Dt is an integer <D, the fact that
D<2 means that Dt is either O or 1. But the
sets in question are connected, hence Dy is no
less than 1. The only solution is Dy=1.

A CURVE'S ORDER OF RAMIFICATION

Topological dimension, and the corresponding
notions of dust, curve, and surface, yield only
a first level classification. Indeed, two finite
sets containing M' and M" points, respective-
ly, have the same D1=0, but they differ topo-
logically. And Cantor dust differs from all
finite dusts.

Let us now see how a parallel distinction
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based on the number of points in a set -a its
“cardinality” w- carries on to curves, leading
to the topological notion of order of
ramification, defined by Paul Urysohn and
Karl Menger in the early 1920’s. This notion
is mentioned in few mathematics books other
than the pioneers’, but is becoming indispen-
sable in physics, hence becoming better known
after being tamed than in the wild. It shows
that the reasons for discussing first a gasket,
then a carpet, go beyond esthetics and the
search for completeness.

The order of ramification involves the cut-
set containing the smallest number of points,
that must be removed in order to disconnect
the set S And it involves separately the
neighborhood of every point P in S.

THE CIRCLE. As background from standard
geometry, begin by taking for S a circle of
radius 1. A circle & centered on P cuts Sin
R=2 points, except if 4 has a radius exceed-
ing 2, in which case R=0. The disc bounded
by £ is called a neighborhood of P. Thus, any
point P lies in arbitrarily small neighborhoods
whose boundaries intersect .S at R=2 points.
This is the best one can do: when & is the
boundary of a general neighborhood of P, not
necessarily circular but “not too large,” R is
at least 2. The terms “not too large” in the
preceding sentence are a complication, but are
unfortunately unavoidable. R=2 is called the
order of ramification of the circle. We note
that it is the same at all points of the circle.

THE GASKET. Next, let .S be a Sierpinski
gasket, constructed via tremas. Here R is no
longer the same for every P. Let me show af-
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ter Sierpifiski that, excluding the initiator’s
vertices, R can be either 3=Rpmjn or 4=Rmax-

The value R=4 applies to the vertices of
any finite approximation of S by triangles. A
vertex in an approximation of order hxk is
the common vertex P of two triangles of side
27k, Again, circles of center P and radius 27k
with h>k, intersect .S in 4 points, and bound
arbitrarily small neighborhoods of P. And if &
bounds a “sufficiently small” neighborhood of
P (in the new sense that the initiator’s vertic-
es lie outside #4), one can show that £ inter-
sects S'in at least 4 points.

The value R=3 applies for every point of
S that is the limit of an infinite sequence of
triangles, each contained in its predecessor
and having vertices distinct from its
predecessor’s. Circles circumscribed to these
triangles intersect .S in 3 points, and bound
arbitrarily small neighborhoods of P. Also if
£ bounds a sufficiently small neighborhood of
P (again, the initiator’s vertices must lie out-
side), one can show that & intersects S at 3
points at least.

THE CARPETS. When Sis a Sierpifski car-
pet, the result is radically different. Any
neighborhood’s boundary, if sufficiently small,
intersects .S in a nondenumerably infinite cut-
set, regardless of the parameters N, r, or D.

COMMENT. In this finite versus infinite di-
chotomy, the gasket does not differ from the
standard curves, while the carpets do not dif-
fer from the whole plane.

HOMOGENEITY. UNICITY. Denoting by Rmin
and Rmax the smallest and the largest R at-
tained on a point of .S, Urysohn prdves that
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Rmax22Rmin—2. The ramification is called
homogeneous when the equality Rmax=Rmin
holds; this is the case when R=2, as in simple
closed curves, and when R=co.

For other lattices with Ryax = 2Rmin—2, I
propose the term quasi-homogeneous. One
simple and famous example, the Sierpifski
gasket, is self-similar. The other nonrandom
examples are part of a collection set up by
Urysohn 1927, and are not self-similar. Thus,
the conditions, of being quasi-homogeneous
and self-similar, have only one known solu-
tion, the Sierpifski gasket. Could this seeming
unicity be confirmed rigorously?

STANDARD LATTICES. Here the order of
ramification ranges from a minimum of 2 for
all points off the lattice sites, to a variable
finite maximum attained on the lattice sites: 4
(squares), 6 (triangles or cubes) or 3
(hexagons). However, as a standard lattice of
any kind is downsized, it transforms from a
curve into a plane domain, and its ramifica-
tion becomes R=co.

This last fact is made more obvious by ex-
changing the infinitely small and the infinite-
ly large, holding to a lattice of fixed cell size,
and observing that in order to isolate an in-
creasingly large portion of lattice, one must
cut points whose number has no finite bound.

FORMAL DEFINITION. <a See Menger 1932
and p. 442 of Blumenthal & Menger 1970.

APPLICATIONS OF RAMIFICATION

Let us now face a familjar question. Whatever
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interest the Sierpifiski and Menger shapes,
and their kin, may have for the mathemati-
cian, is it not obvious that the order of ramifi-
cation can be of no interest to the student of
Nature? The response is as familiar—to
us!—as the question. The order of ramifica-
tion is already meaningful in the “real world”
of the finite approximations which obtain
when the interpolation leading to a fractal is
stopped at some positive inner cutoff, e.

Indeed, given an approximate Sierpifski
gasket made of filled triangles of side ¢, a do-
main whose linear scale is above ¢ can be dis-
connected by removing 3 or 4 points, each of
which belongs to 2 neighboring gaps’ bounda-
ries. This number (3 or 4) does not change as
this approximation is refined. Hence, from the
viewpoint of ramification, all approximate
gaskets are curve-like.

To the contrary, all carpets have the prop-
erty that the boundaries of any two gaps fail
to overlap. To disconnect a finite approxima-
tion of such a shape, in which the gaps of di-
ameter <e are disregarded, it is necessary to
remove whole intervals. And these intervals’
number increases as e=»0. Whyburn 1958
shows that all the fractal curves that possess
this property are topologically identical
«a homeomorphic m, and are characterized
by the fact they contain no part that can be
disconnected by the removal of a single point.

Due to the preceding comments, it is not
surprising that the finiteness of ramification
acquires clearcut implications when fractal
geometry is called to determine in detail how
much a plane fractal curve partakes of its two
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standard limits: the straight line and the
whole plane. In general, knowing the fractal
dimension does not suffice. For example, Ge-
fen, Mandelbrot & Aharony 1980 examines
critical phenomena for Ising models on a frac-
tal lattice, and finds that the most important
issue <a whether the critical temperature is O
or positive m depends on the finiteness of R.

We are now in a position to give an expla-
nation we had postponed. The reason why a
cluster backbone in critical Bernoulli percola-
tion seems better modeled by a gasket than by
a carpet lies in this finding reported in Kirk-
patrick 1977, Even on extremely large lattic-
es, a critical backbone can be cut by removing
an essentially unvarying small number of
bonds, of the order of 2. Even allowing for
certain biases I could think of, this points out
very strongly toward R<oco.

ALTERNATIVE FORM OF RAMIFICATION

Two variants of the Koch snowflake achieve
ramification t/hrough branches without loops.
The first is' a plane curve obtained when the
initiator is a square and the generator is

N=5
r=1%
D~1.4649

The resulting shape is totally different
from the snowflake, as shown overleaf.

The next example is a surface of zero vol-
ume, infinite area, and a dimension equal to
log6/log 2=2.58497. The initiator is a reg-
ular tetrahedron. On the mid-quarter of each
face (= the triangle having as vertices the
sides’ midpoints), one attaches a tetrahedron
reduced in the ratio %. One repeats the proce-
dure with each face of the resulting regular
(skew and nonconvex) 24-hedron, and so on
ad infinitum. From the second stage on, the
added tetrahedrons self-contact along lines,
without self-intersecting. And eventually they
swarm all over the initiator. Let each fourth
of this shape, growing on a face of the initia-
tor, be called a Koch pyramid.

SECRETS OF THE KOCH PYRAMID

A Koch pyramid is a wondrous shape—plain
when seen from above, but with a wealth of
hidden chambers to defy the imagination.

Seen from above, it is a tetrahedron whose
base is a equilateral triangle, but whose three
other faces are right isosceles triangles joined
at their 90° vertices. Three Koch pyramids, if
put together on the sides of a regular tetrahe-
dron, add to a plain cubic box.

Now lift such a pyramid from the floor of
the desert. From a distance, we seg, its base
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subdivides into four equal regular triangles.
But in place of the middle triangle there is a
hole opening up on a “chamber of order 1,”
shaped like a regular tetrahedron whose
fourth vertex coincides with the pyramid’s top
vertex. Next, as we approach and perceive
finer detail, we find that the regular triangles
that form the peripheral fourths of the base
and the top faces of the chamber of order 1
are not smooth either. Each is broken by a
tetrahedral chamber of order 2. Similarly, as
we explore the chambers of order 2, each of
their triangular walls reveals a chamber of
order 3 in its middle portion. And increasing-
ly tiny chambers appear without end.

All the chambers together add up precisely
to the Koch pyramid’s volume. On the other
hand, if the chambers are viewed as including
their bases but not their three other faces,
they do mot overlap. Were our pyramid to be
dug from a mound, the chamber diggers
would have to scoop out all its volume, leaving
a mere shell. The curve along which this sur-
face rests on the base’s plane, and the cham-
ber “walls,” are Sierpinski gaskets.

SPHERICAL TREMAS AND LATTICES

Lieb & Lebowitz 1972 makes an unwitting
cogtri‘t')ution to fractal geometry, by packing
R Wltkh balls whose radii are of the form
pPk=por", with r<1; the per-unit-volume num-
ber of kballs of radius py is of the form
Nk=ngr", where v is apn integer and is of form
v=(1-r)r F, which strongly restricts r. Thus,
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the exponent of the distribution of gap sizes is

D=logv/log(1/r)=E-log (1-r)/logr.

First, one centers big spheres of radius p; on a
lattice of side 2p;. The vertices of a lattice of
side 2po that lie outside of the big spheres are
numerous enough to serve as centers for the
next smaller spheres, and so on. The construc-
tion involves these upper bounds on r:

for E=1,r<1/3;
for E=3, r<1 /27,

for E=2, r<1/10;
as E-»oo, r=0.

Packing of R3 by nonoverlapping balls can
proceed more rapidly. For example, on the
line, the maximum r is Y5, corresponding to
the triadic dust of Cantor! The existence of
Cantor dusts with r>'% demonstrates that
one-dimensional packing can leave a remain-
der of arbitrarily low dimension. However, a
tighter packing involves richer structure.

PREVIEW OF LACUNARITY

Even after the order of ramification R is add-
ed to the dimensions Dt and D, a fractal re-
mains incompletely specified for many purpos-
es. Of special importance is the additional
notion of lacunarity that I developed. A very
lacunar fractal’s gaps are very large, and con-
versely. The basic definitions could have been
described here, but it is more expedient to
wait until Chapter 34, |
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Plate 141, OVERLEAF X SIERPINSKI ARROWHEAD (BOUNDARY DIMENSION D~1.5849)

In Sierpifski 1915, the initiator is [0,1], and
the generator and second teragon are
N=3

D=log 3/log 2~1.5849

This construction’s next two stages are

o f A

And an advanced stage is shown as the
“coastline” of the upper portion of Plate 141
(above the largest solid black triangle).

SELF-CONTACTS. Finite construction stages
are free of points of self-contact, as in Chap-
ter 6, but the limit curve does self-contact
infinitely often.

TILING ARROWHEADS. The arrowhead in
Plate 141 (turned sideways, it becomes a trop-
ical fish) is defined as a piece of the
Sierpinski curve contained between two suc-

cessive returns to a point of self-contact,
namely the midpoint of [0,1]. Arrowheads tile
the plane, with neighboring tiles being linked
together by a nightmarish extrapolation of
Velcro. (To mix metaphors, one fish’s fins fit
exactly those of two other fish). Furthermore,
by fusing together four appropriately chosen
neighboring tiles, one gets a tile increased in
the ratio of 2.

THE SIERPINSKI GASKET'S TREMAS. I call
Sierpinski’s curve a gasket, because of an al-
ternative construction that relies upon cutting
out ‘“‘tremas,” a method used extensively in
Chapters 8 and 31 to 35. The Sierpinski gask-
et is obtained if the initiator, the generator,
and next two stages are these closed sets:

AL LS8

This trema generator includes the above stick
generator as a proper subset.

WATERSHED. I first encountered the arrow-
head curve without being aware of Sierpinski,
while studying a certain watershed in Mandel-
brot 1975m. ==

Plate 143 = A FRACTAL SKEWED WEB
(DIMENSION D=2)

This web obtains recursively, with N=4 and
r="%, using a closed tetrahedron as initiator
and a collection of tetrahedrons as generator.
Its dimension is D=2. Let us project it
along a direction joining the midpoints of ei-
ther couple of opposite sides. The initiator

tetrahedron projects on a square, to be called
initial. Each second-generation tetrahedron
projects on a subsquare, namely (Y%)th of the
initial square, etc. Thus, the web projects on
the initial square. The subsquares’ boundaries
overlap. 1l
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Plate 145 = THE SIERPINSKI CARPET (DIMENSION D~1.8928),
AND THE MENGER SPONGE (DIMENSION D~2.7268)

SIERPINSKI CARPET. In Sierpinski 1916, the
initiator is a filled square, while the generator
and the next two steps are

N=8, r=%, D~1.8928.

This carpet’s area vanishes, while the total
perimeter of its holes is infinite.

PLATE 145. THE MENGER SPONGE. The prin-
ciple of the construction is evident. Continued
without end, it leaves a remainder to be called
a Menger sponge. I regret having credited it
wrongfully in earlier Essays, to Sierpinski.
(Reproduced from Studies in Geometry, by
Leonard M. Blumenthal and Karl Menger, by
permission of the publishers, W. H. Freeman
and Company, copyright 1970.) The intersec-
tions of the sponge with medians or diagonals
of the initial cube are triadic Cantor sets.

FUSED ISLANDS. The carpet, as well as the
gasket in Plate 143, may also be obtained by
yet another generalization of the Koch recur-
sion, wherein self-overlap is allowed, but over-
lapping portions count only once.

To obtain a gasket, the initiator is a regu-
lar triangle, and we take the generator to the
left. To obtain a carpet, the initiator is a
square, and we take the generator to the right

/. B
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Two phenomena familiar from Chapter 13 are
encountered again: each island’s coastline is
rectifiable and therefore of dimension 1, and
the dimension of the gasket or the carpet ex-
presses the degree of fragmentation of land
into islands rather than the degree of irregu-
larity of the islands’ coastlines.

Otherwise, the result is unfamiliar: in
Chapter 13 the sea is connected, which seems
to be a proper topological interpretation of
nautical openness. It is also open in the set
topological sense of not including its bounda-
ry. The novelty brought in by the present con-
struction is that it is possible for the Koch
islands to “fuse” asymprotically into a solid
superisland; there is no continent, and the
coastlines combine into a lattice.

-«a Topologically, every Sierpinski carpet
is a plane universal curve, and the Menger
sponge is a spatial universal curve. That is,
see Blumenthal & Menger 1970, pp. 433 and
501, these shapes are respectively the most
complicated curve in the plane, and the most
complicated curve in any higher dimensional
space. » HH
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Plate 146 1 SPLIT SNOWFLAKE HALLS Elders draw a line to divide the Halls between
(DIMENSION D~1.8687) the contenders from the North and the South.
RIDDLES OF THE mMAzE. Who controls the
Long ago and far away, the Great Ruler and Great Hall, and how is it reached from out-
his retinue had sat their power in the splendid  side? Why do some Halls fail to be oriented
Snowflake Halls. A schism occurs, a war fol-  toward ecither of the cardinal points? For
lows, ending in stalemate, and finally Wise hints, see the Monkeys Tree on Plate 31. I
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V o NONSCALING FRACTALS

15 » Surfaces with Positive Volume, and Flesh

The fractal curves, surfaces, and dusts which
the present Part describes and tames for the
purposes of science, are only scaling in an as-
ymptotic or otherwise limited sense.

This first chapter centers on surfaces with
a positive (nonvanishing!) volume. What a
mad combination of contradictory features!
Have we not finally come to mathematical
monsters without conceivable utility to the
natural philosopher? Again, the answer is em-
phatically to the negative. While believing
they were fleeing Nature, two famous pure
mathematicians unknowingly prepared the
precise tool I need to grasp (among others)
the geometry of...flesh.

CANTOR DUSTS OF POSITIVE MEASURE

A preliminary step is to review Cantor’s con-
struction of the triadic set C. Its being of zero
length (more pedantically, of zero linear

measure) follows from the fact that the
lengths of the mid third tremas add to

1/3+2/3%.. 42k/3k+1 =1,

But the fact that C is totally disconnected,
hence of topological dimension Dy=0, is inde-
pendent of the trema lengths. It comes from
the basic fact that each construction stage
bisects every interval created in the preceding
stage, by removing a trema centered on the
“host” interval’s midpoint. Denoting the ratio
of the trema and host lengths by Ay, the cu-
mulative length of the intervals that remain
after K stages is IIoK(l—)\k). It decreases as
K—>oo to a limit denoted by P. In Cantor’s
original construction, Ax=%, hence P=0. But
P>0 whenever Zg®Ak<oco. In that case, the
remainder set C, has the positive length 1-P.
This set is not self-similar, hence has no simi-
larity dimension, but the Hausdorff Besicov-
itch definition, Chapter 5, concludes that



148

D=1. It follows from D>Dr that C, is a frac-
tal set. Since D and Dy are both independent
of the trema lengths Ay, their values describe
C, very superficially.

The construction is even more perspicuous
in the plane. Cut out from the unit square a
cross of area Aj, leaving four square tiles.
Next cut out from each a cross of relative
area Ao. This cascade generates a dust, Dy=0,
having the area IIo®(1-Ak). When this area
does not vanish, D=2.

In E-dimensional space, one can similarly
achieve a dust with positive volume, satisfy-
ing Dr=0 and D=E.

1

SLOWLY DRIFTING log N /log (1 /1)

-<a Although the Cantor dusts with positive
length, area or volume have no similarity di-
mension, it is useful to set rk=(1-Ak)/2, and
to investigate the formal dimensions defined
as Dy=log N /log (1 /ry).

<a When Dy drifts slowly, it embodies the
idea of effective dimension discussed in Chap-
ter 3 when describing a ball of thread. On the
line, the dimension D=1 of the limit set C, is
the limit of log2/log(1/ry). Furthermore,
the conclusion D=1 does not require T\, <oo,
only the weaker condition Ax—~0. Consequent-
ly there are three classes of linear Cantor
dusts: (a) 0<D<1 and length=0, (b) D=1
and length=0, and (¢c) D=1 and length>0.

-a The counterpart of the above category
(¢) can occur for Koch curves. It suffices to
change the generator at each construction
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stage and to let its D tend to 2. For example,
take r="k and adopt for Ny, hence for Dy,
the maximal value discussed in the caption of
Plate 53. The limit has a remarkable combi-
nation of properties: its fractal dimension
D=2 is nonstandard for a curve; but its topo-
logical dimension is standard: it is Dt=1, and
its area is standard: it vanishes.

-a The same properties coexist in Brown-
ian motion, Chapter 25, but here they are
achieved while avoiding double points.

<a The formal dimension may also drift
away from D=2. For example, k stages of a
plane filling tree construction may be finished
off by stages with D<2. The result may be of
use in modeling certain river trees that seem
plane filling on scales above the inner cutoff 5
but crisscross finer scale domains less thor-
oughly. This 5 would be very big in deserts,
and very small in soaked jungles, possibly
equal to 0. Such rivers’ effective dimension
would be D=2 for scales above 5, and D<2
for scales below 7. m

CURVES WITH POSITIVE AREA

Our intuition of dusts being imperfect, it is
not bothered by dusts of positive length or
volume. But curves of positive area are truly
hard to swallow. Thus, after Lebesgue 1903
and Osgood 1903 showed that swallow them
we must, they came to supersede the Peano
curve as supreme monsters. After describing
an example, I show that the thought is worse
than the reality: in the most textual sense,
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surfaces with positive volume are very close to
Man’s heart.

The idea is to generalize the midpoint dis-
placement construction of Plate 43. We hold
on to bays and promontories, each a triangle
that juts through a triangle of marshland,
with its base centered on the midpoint of the
marshland’s base. The new element is that the
relative widths A of bays and promontories
are no longer constant, but tend to O as k in-
creases, in such a way that IIg®(1-Xy) > O.
Now, the area covered by marshland fails to
tend to O, hence the limit of the marshland
satisfies D=2. On the other hand, it is totally
different from any standard set of dimension
2. Not only has it no interior points, but it is
a curve with Dt=1, because any point’s
neighborhood can be separated from the set’s
remainder by removing only two points.

The preceding construction follows Osgood
1903, simplifying his fanciful way of making
a contrived construction easier to follow. But
the usefulness of a discovery must not be
judged on the reasons for introducing it.

GEOMETRY OF ARTERIES AND VEINS

To quote from Harvey 1628, “The blood’s
motion we may be allowed to call circular, in
the same way as Aristotle says that the air
and the rain emulate the circular motion of
the superior bodies... And similarly in the
body, through the motion of the blood,... the
various parts are nourished, cherished, quick-
ened by the warmer, more perfect, vaporous,

spirituous, and alimentive blood; which, on
the other hand, owing to its contact with these
parts, becomes cooled, coagulated, and so to
speak effete.”

Harvey led to a view of the circulation of
blood which asserts that both an artery and a
vein are found within a small distance of
nearly every point of the body. (See also The
Merchant of Venice.) This view excludes the
capillaries, but to a first approximation it is
best to demand that there should be both an
artery and a vein infinitely near every
point—except of course that points within an -
artery (or a vein) are prevented from being
very close to a vein (or an artery).

Stated differently (but this restatement
makes the result sound much odder!): every
point in nonvascular tissue should lie on the
boundary between the two blood networks.

A second design factor is that blood is ex-
pensive. Hence the volume of all the arteries
and veins must be a small percentage of the
body volume, leaving the bulk to tissue.

LEBESGUE-OSGOOD MONSTERS ARE
THE VERY SUBSTANCE OF OUR FLESH!

From a FEuclidean viewpoint, our criteria in-
volve an exquisite anomaly. A shape must be
topologically two-dimensional, because it
forms the common boundary of two shapes
that are topologically t/lifee-dimensional, but
it is required to have a‘volume that not only is
nonnegligible compared to the volumes of the
shapes it bounds, but is much larger!
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A virtue of the fractal approach to anato-
my is that it shows the above requirements to
be perfectly compatible. A spatial variant of
the Osgood construction described in the sec-
tion before last fulfills all the requirements we
impose upon the design of a vascular system.

In this construct, veins and arteries are
standard domains, since small balls (the blood
cells!) can be drawn entirely within them. On
the other hand, vessels occupy only a small
percent of the overall volume. Tissue is very
different; it contains no piece, however small,
that is not crisscrossed by both artery and
vein. It is a fractal surface: its topological di-
mension is 2, and its fractal dimension is 3.

As restated, these properties cease to
sound extravagant. No one cares that they
first arose in a contrived mathematical flight
from common sense. I have shown that they
are intuitively unavoidable, that Lebesgue-
Osgood fractal monsters are the very sub-
stance of our flesh!

OF INTUITION, OLD AND NEW

The combination of a lung’s pipes and its vas-
culature also proves to be a very interesting
construct, wherein three sets—arteries, veins,
and bronchioles—have a common boundary.
The first example of such a set is due to Brou-
wer. When introduced in this way, Brouwer’s
construct agrees perfectly with intuition. But
to put it in historical perspective, we must

rc.:turn .to our spokesman for the conventional
viewpoint, Hans Hahn.
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“Intuition seems to indicate that three-
country corners occur only at isolated points...
Intuition cannot comprehend the Brouwer
pattern, although logical analysis requires us
to accept it. Once more [we find] that in sim-
ple and elementary geometric questions, intui-
tion is a wholly unreliable guide. It is impossi-
ble to [let it] serve as the starting point or
basis of a mathematical discipline. The space
of geometry is... a logical construct...

“[However, if] we become more and more
accustomed to dealing with these logical con-
structs; if they penetrate into the curriculum
of the schools; if we, so to speak, learn them
at our mother’s knee, as we now learn three-
dimensional Euclidean geometry—then no-
body will think of saying that these geome-
tries are contrary to intuition.”

This Essay demonstrates that Hahn is
dead wrong. To tame his own examples, I find
it necessary to train our present intuition to
perform new tasks, but it does not suffer any
discontinuous change of character. Hahn
draws a mistaken diagnosis, and suggests a
lethal treatment.

Geometric intuition acknowledged long ago
that it needs the assistance of logic, with its
strange and tortuous methods. Why should
logic keep trying to flee from intuition?

In any event, the typical mathematician’s
view of what is intuitive is wholly unreliable;
it is impossible to permit it to serve as guide
in model making; mathematics is too impor-
tant to be abandoned to fanatic logicians. Wl
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The present chapter discusses filiform fractal
trees and other fractals that are almost scal-
ing, that is, are scaling except for a residue
that is fractally negligible. It is observed that
these fractals are nonuniform, in the sense
that D and/or Dt take different values for
different parts of these sets. By contrast, a
look back shows that all the fractals discussed
until now can be characterized as uniform.

THE NOTION OF SCALING RESIDUE SET

STANDARD INTERVALS. The semi-open interval
10, 1], including its right but not its left end-
point, is scaling since it is the union of N=2
reduced replicas ]0, %] and ]'%, 1]. By con-
trast, the open interval 10, 1] fails to be scal-
ing, since in addition to the N=2 reduced
scale replicas, }0, %[ and ]'%, 1[, it includes
the midpoint x=%. I propose that this mid-
point be called a scaling residue. For the cal-
culation of D, and for many other purposes, it
is negligible. A physicist would say it is of
smaller physical order of magnitude than the
whole and the parts.

The preceding example tempts one to view
all residue terms as pedantic complications
that do not affect the consequences of scaling.
But in analogous examples relative to fractals,
which I call nonuniform fractals, the residue
may be surprisingly significant. A nonuniform
fractal is the sum (or the difference) of parts
of varying fractal and topological dimensions.
None of these parts can be disregarded com-
pletely, even if it is both fractally and topo-
logically negligible. These two viewpoints of-
ten clash, with important and interesting ef-
fects.

CANTOR DUSTS AND ISOLATED POINTS.
-a Construct a Cantor dust by dividing [0,1]
into b=4 parts, and preserving [0,%] and
[3,1]. The alternative construction that eras-
es |Va,%[ and ]'2,%[ yields the same dust,
plus the residue point x=7"2. This isolated res-
idue is not a fractal, since both Dt and D
equal O.

In the spatial generalization to IRE, the
Cantor dust satisfies Dy=0 and D>0, while
the nonfractal residue set satisfies
DT=D=E—1. The residue may well dominate
the dust topologically and/or fractally. m-
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FRACTAL TREE SKELETONS WHOSE
RESIDUE TERMS ARE INTERVALS

Plate 155 shows examples of umbrella trees
with infinitely thin stems. They are not capa-
ble of life, and their adequacy as models of
plants is improved upon in Chapter 17. Yet,
tree skeletons are of great interest to many
chapters of mathematics. The topologist sees
them as identical, because he views any tree
as made of infinitely elastic threads, and our
trees can be stretched, or pulled back, onto
one another. However, these trees differ from
each other intuitively, and as fractals.

BRANCH TIPS. A tree is the sum of two
parts, branch tips and branches, whose dimen-
sions clash in very interesting fashion. The
part easier to study is the set of the branch
tips. It is a fractal dust, analogous to many we
know well. It is scaling with N=2, and a value
of r between 1/v2 and 0. Hence D can range
from 2 to O, though the plate’s figures are
limited to D between 1 and 2. The inter-
branch angle takes the same value 8 at every
fork; it can be varied over a wide range with-
out affecting r and D. Hence the same D al-
lows for a variety of tree shapes.

When 1<D<2, these trees self-overlap
when 6<0.., hence self-avoidance narrows
the choice of . The trees in Plate 155 satisfy
0=0crit, but we shall first argue as if they sat-
isfied 0=0Crit+f~
_ TREES. The whole trees also seem self-sim-
ilar at first blink, because every branch plus
the branches it carries is a reduced scale ver-
sion of the whole. But in fact, the two branch-
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es above the main fork do not add up to the
whole, unless one adds a residue: a trunk. In-
tuitively, this residue is by no means negligi-
ble. As a matter of fact, one tends to give
more importance to a tree’s trunks and
branches than to its branch tips. Intuitively
the branches “dominate” the branch tips.

Also, irrespectively of the value of D, the
branch tips of a self-avoiding tree form a dust
with Dy=0, but the branches form a curve
with Dy=1, whether or not their tips are in-
cluded. Hence, the branches dominate topo-
logically. < Indeed, to disconnect a point P
and its neighborhood, one needs to erase ei-
ther 1 point (if P is a branch tip) or 2 points
(if P lies in the interior of a branch) or 3
points (if P is a point of branching). m

Now to the fractal viewpoint. The dimen-
sion of the branch tips is D, and the dimension
of each branch is 1. As to the whole, it is not
scaling, but its fractal dimension defined by
the Hausdorff Besicovitch formula cannot be
less than either D or 1, and it turns out to be
the larger of the two. Let us restate the re-
sulting two possibilities separately.

FRACTAL TREES. When D>1, the whole
tree’s fractal dimension is also D. Even though
the branches predominate intuitively and to-
pologically, they are fractally negligible!
Since D>Dr, the tree is a fractal set in which
D measures the abundance of branching.
Thus, we encounter yet another facet of frac-
tal dimension, to be added to its roles as
measure of irregularity and fragmentation.
When, in Chapter 17, we move to nonfiliform
trees, we find that a surface that is smooth
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but involves enough localized sharp “pimples”
may become “more” than a standard surface.
SUBFRACTAL TREES. When 0<D<1, to the
contrary, the whole tree’s linear measure
(cumulative length) is finite and positive, so
its fractal dimension is necessarily 1. Thus,
D=D, meaning that the tree is not a fractal.
In fact, if we choose the units so that the
trunk is of length 1-2r, the branches (viewed
as open intervals) can be repositioned along
the gaps of a linear Cantor dust C that lies on
[0, 1] and has the same N=2 and r as the
branch tips. And similarly, the branch tips
can be repositioned on €. We see that the in-
terval [0, 1] is entirely filled by maps of
points on our tree. The only points that fail to
be mapped are those which hold the branches
together. They form a denumerable residue.
We are reminded of the comment about
Plate 83, that the Devil’s Staircase curve is
peculiar but not fractal. If such shapes’ im-
portance increases, they may need a carefully
chosen name. For now, subfractals will do.
For a last comment, replace the rectilinear
branches by fractal curves of dimension
D*>1. When D<D*, the tree’s fractal proper-
ties are dominated by the branches, and the
tree is a fractal of dimension D*. But when
D>D*, the tree is a fractal of dimension D.

NONUNIFORM FRACTALS, ETC.

We are now ready for a new definition. A
fractal I is to be called uniform if any set
obtained as the intersections of I with a disc

163

(or ball) centered on I have identical values
of Dy and of D>Dr.

We see that Koch curves, Cantor dusts,
ramified curves, etc., are uniform fractals.
But the preceding section’s tree skeletons for
D>1 are nonuniform fractals.

As a matter of fact, trees may be called
fractal in part: their intersection with a small
enough disc centered on a branch is not a
fractal but is made of one or a few intervals.

FRACTAL CANOPIES

Thus far, Plate 155 has been viewed as illus-
trating trees that are barely self-avoiding. But
in reality these trees’ tips self-contact asymp-
totically. As a result, the set of branch tips
ceases to be a dust with Dy=0, and becomes
instead a curve with Dy=1, with no change in
its fractal dimension. For this new class of
fractal curves, I propose the term extended
fractal canopies. Observe that their vertical
shadow’s length increases with D.

The curve that bounds the open region out-
side the resulting shape is to be called
“fractal canopy.” Due to the elimination of
the “folds” of the extended canopy, the
canopy’s dimension falls short of D, by an
amount that increases with D.

Since light is a vital consideration for
trees, branches ending on the folds of the ex-
tended fractal canopy can be expected to
wither away. A tree designer may either allow
some branches to grow, then wither for lack
of sunshine, or write a more complicated pro-
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gram that instructs these branches never to
grow. I would choose the simpler program.

When D<1, the merger of a dust of dimen-
sion D into a curve is inconceivable. When one
seeks self-contact by diminishing the inter-
branch angle 6, the goal is not reached until
this angle becomes O, and the tree collapses
into an interval. Alternatively, if one keeps
the tree’s vertical shadow to the fixed length
1, and seeks self-contact by lengthening the
branches, the goal is never reached: the tree
tends to a linear Cantor dust C, plus half lines
hanging down from each point of C.

TREES WITHOUT RESIDUE TERM

Fractal trees are not limited to those con-
structed in the preceding sections. For exam-
ple, recall the construction on page 140. Al-
ternatively, take as Koch generator a cross
with branches of length ri(top), rp(bottom),
and rg(sides), such that rt2+rb2+2r52<1. In
the resulting fractal tree, every branch, how-
ever short, is crowded with subbranches. If
the root point is excluded, such trees are scal-
ing without residue.

HIGH ENERGY PHYSICS: JETS

.Feynm.an 1979 reports that fractal trees made
it possible for him to visualize and model the
Jjets” that arise when particles collide head

on at very high energy. The idea is explored
in CERN reports by G. Veneziano.
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Plate 155 = FRACTAL UMBRELLA
TREES AND FRACTAL CANOPIES

The trees on this plate have infinitely thin
stems, and the same angle @ between the
branches throughout. D ranges from 1 to 2,
and for each D, 6 takes the smallest value that
is compatible with self-avoidance.

For D barely above 1 (top left), the result
is whisk-like, then broom-like. As D increases,
the branches open up, and the outline or
“canopy” extends into folds hidden from the
sunshine. One is reminded of the flowers in
several varieties of the species Brassica
oleracea: cauliflower (B. o. botrytis) and
broceoli (B. o. italica). Could it be significant
that part of the geometric difference between
cauliflower and broccoli is quantified by a
fractal dimension?

For larger D (bottom left), a Frenchman is
reminded of the fortifications by Vauban. The
values D=2 and @=w yields a plane-filling
tree. To allow for 6>n (bottom right), one
must again decrease D, all pretense of um-
brella being replaced by a contorted pattern
worthy of classical dance sculptures of India.

In one of the best known figures in On
Growth and Form, Thompson 1917, the skulls
of different species of fish are mapped onto
each other by continuous and smooth transfor-
mations in the spirit of Euclid. The transfor-
mations that map the present trees on each
other partake of the same inspiration, but in
very different spirit. 1






17 = Trees and the Diameter Exponent

The present chapter investigates the gcomcetri-
cally imbedded thick stemmed ‘‘trees” in-
volved in lungs, vasculatures, botanical trees,
river nctworks, and the like.

These natural objects are extremely famili-
ar, in fact, no other object illustrates as sim-
ply as they do the idca of a shape having a
large number of different elements of lincar
scale. Unfortunately, trees are less simple
than they seem. They were not tackled earlier
becausc of a complication encountered in the
prcceding chapter: trees cannot be self-simi-
lar. The best onc can hope is that self-simi-
larity holds for the branch tips, as will be as-
sumed in this chapter. In addition to the tips’
fractal dimension D, trecs involve a parameter
to be called the diameter exponent, A. When
the tree is sclf-similar with a residue, as in
Chapter 16, A coincides with the D of the
branch tips. Otherwise, A and D arc separate
characteristics, and we deal with an instance
of the phenomenon biologists  call

“allometry.” We encounter examples of both
A=D and A<D.

THE DIAMETER EXPONENT A

Leonardo da Vinci claims in his Notebooks,
note No. 394, that “All the branches of a tree
at cvery stage of its height when put together
arc cqual in thickness to the trunk (below
them).” The formal cxpression is that a bo-
tanical tree’s branch diamecters before and
after a bifurcation, d, dy, and do,

~ d
~

la |

~N
. d

satisfy the relation
d® = di® + do,
the exponent being A=2. The implication is

this: if branches’ thickness is taken into ac-
count, botanical trees are rot self-similar with
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near space-filling bark. Indecd, self-similarity
requires A=D, and ncar space-filling rcquires
D to be near E=3.

In other words, whenever the above rela-
tion is satisfied, A is a ncw parameter to be
added to D; it will be called diameter
exponent. It has been considercd by many
people, often unawarc of cach other, witncss
the references in Thompson 1917 1942- 1961.
This chapter shows that for bronchi, A~3.
For arterics, A~2.7. Botanical trees are close
to Leonardo’s A=2. And A=2 for the rivers’
widths. This chapter also cxplores a few phys-
ical, physiological, and gcomectric consc-
quences of the value of A.

~a PARADIMENSION. The 1977 Fractals call A
a paradimension (from wapa = besides), but
I no longer advocate this term. The awkward
role of A - somectimes a dimension and other
times not—is shared by the exponent in Besi-
covitch & Taylor 1954; Sec Chapter 39. »

THE LUNG'S BRONCHIAL TREE

As a first example, the subdivision of the
lung’s air pipes is for all practical purposcs
sclf-similar, with A=D, and D~E=3.

The inner shape of the lung is not well
known, hence it would be instructive to insert
an actual photograph at this point (examples
arc found in Weibel 1963 and Comroe 1966).
However, this Essay’s policy (this may be the
only occasion for regretting it) is to keep to
simulations. Therefore, a bricf verbal descrip-
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tion must suffice. After the lung’s air is re-
placed by noncured plastic, then the plastic
cured and the tissue dissolved, one is left with
an cxtremely heavily branched tree that fills
the outline of the lung with a degree of tight-
ness, uniformity, and visual impenctrability
that botanical trces never achieve. Between
the first two bifurcations, which are beyond
our concern, and the last three, which lead to
alveoli (discussed in Chapter 12), there are
15 successive bifurcations of striking regulari-
ty.

From the data in Weibel 1963, the pipe
intervals arc in a first approximation similar
to cach other, and A~3. The airflow is a con-
crete quantity divided between bifurcating
branches, and since airflow equals pipe
cross-sectional area times air velomty, we
see that the velocity varies like dA=2: air
slows down as it moves toward thinner bron-
chi.

The precise valuc A=3 is important. A
first interpretation involves an argument by
Murray 1927, thus presented by Thompson
1942, p. 954, or 1961, p. 129: “[T]he increas-
ing surfacc of the branches soon mecans in-
creased friction, and a slower pace of the
[fluid] traveling through; and therefore the
branches must be more capacious than at first
appears. It bccomes a question not of capacity
but of resistance; and in gencral terms thc
answer is that the ratio of resistance to cross
section shall be equal in every part of the sys-
tem, before and after bifurcation, as a condi-
tion of lecast possible resistance in thc whole
system; the total cross scction of the branches,
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therefore, must be greater than that of the
trunk in proportion to the increased resist-
ance. An approximate result, familiar to stu-
dents of hydrodynamics {for a modern treat-
ment, see Hersfield & Cummings 1967, Wil-
son 1967], is that the resistance is a mini-
mum, and the condition an optimum,” when
the branching ratio is 2%~1.26 throughout.
Hence A=3 is the best value that either a
goal-oriented design or selective evolution
could strive to achieve. Of course, Murray’s
optimality criterion is purely local, and the
designer can never be sure whether locally
optimal pieces can be made to fit together.

PACKING 3-SPACE WITH BRONCHI

My alternative fractal argument for A=3 is
very different: it invokes the effect of
nonwillful geometric constraints upon the
lung’s prenatal growth and upon its pipes’ ful-
ly grown shape. An obvious advantage is that
here the branching ratio of 21/4 ~ 2% peed
not be part of the genetic code (as should be
the case in the Murray approach).

The basic datum is that a lung’s prenatal
growth starts with a bud, which grows into a
pipe, which forms two buds, each of which
behaves as above. Furthermore, this growth is
self-similar (with the trunk constituting a res-
idue!). To account for self-similarity, we need
not argue that it is best, only that it is sim-
plest: the growth-governing program is shor-
test when each step repeats the previous one
on smaller scale, or on the same scale after
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the previous stage had grown. If so, the out-
come of growth is determined fully by the
branches’ width/length ratio and the diameter
exponent. And one needs in addition a rule
that indicates when growth is to stop.

Now, depending on the value of A (the
width/length ratio being held fixed), growth
according to these rules achieves one of three
outcomes: (a) after a finite number of stages,
branches run out of space in which to grow;
{b) branches never fill more than a part of the
available space; or (¢) they find the available
space to be precisely what they need. When
one wishes the limit to be a space-filling tree,
no detailed instructions need be incorporated
into the growth program, because competition
for space leaves little room for indeterminacy.
A two-dimensional reduction of the process is
illustrated on Plates 164 and 165, where we
see that, as the branches’ width/length ratio
decreases toward O, the plane-filling branch-
ing ratio increases toward 2%, yielding
A=E=2. Similarly, the space-filling branch-
ing ratio corresponding to infinitely thin
branches is 27, yielding A=E=3.

Since A=3 corresponds to the limit of infi-
nitely thin pipes, it cannot be actually imple-
mented. What a pity, since a tree made of
infinitely thin bifurcations continuing to zero
has a space-filling “‘skin.” This last property
could have been given a teleological interpre-
tation to rival Murray’s: it would be best from
the viewpoint of allowing the largest possible
surface for the purpose of chemical exchanges
between air and blood.

But actual pipes are not infinitely thin, so
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the best one can achieve is a value of D and A
a bit below 3, quite compatible with the em-
pirical evidence. This involves the same de-
gree of imperfection at all branch points—but
this property is obtained as a side consequence
of self-similarity with a residue, and need not
be set up as a goal.

DIMENSION. The branches add up to a
standard set: topologically and fractally of
dimension E. When each branch’s skin is
smooth, the whole skin is of dimension A.

ALVEOLAR INNER CUTOFF

As usual, the interpolation to increasingly
thin bronchi is interrupted by a cutoff. The
cutoff is gradual after the 15th bifurcation,
and I find it to be of excellent geometric de-
sign.

A basic remark is that, while infinite self-
similar bifurcation would eventually fill all
the available space, it proceeds slowly, so that
the lung’s first 15 bifurcation stages fill only
a small proportion of the lung’s box. To fill
the remaining space in few stages, the pipes
must be made markedly larger than suggested
by self-similar extrapolation. Indeed, Weibel
1963, pp. 123-124, can be interpreted as indi-
cating that, in stages beyond the 15th, pipe
width ceases to decrease -(A is no longer de-
fined). And that pipe lengths are longer than
suggested by similarity, the ultimate multipli-
er being 2. Since Plate 165 suggests that
self-similar branches enter about half way
into the nearest available gap, a multiplier
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equal to 2 is eminently sensible, and suggests
again that much of the program for the lung’s
design is imposed by the properties of space
and need not be separately encoded.

MORE ABOUT VASCULAR GEOMETRY

Let us now return to the high point of Chap-
ter 15, where I proclaim that Lebesgue-
Osgood fractal monsters are the very sub-
stance of our flesh. Granted that a branching
domain _4 (arteries) has a volume of about
3% of the volume of a domain £ (body), but
is supposed to come infinitely close to every
point of &, I argue that the branches of &
must thin out more rapidly than in self-simi-
lar trees. Now that we have established that
in some cases the rate of thinning is measura-
ble by A, we can inquire whether or not A is
defined for arteries.

Not only A is indeed defined in a wide
subrange of the 8 to 30 bifurcations one ob-
serves between the heart and the capillaries,
but the fact has been known for nearly a cen-
tury. Indeed, Thoma 1901 and Groat 1948
summarized their experimental findings by
asserting that A=2.7. Their estimate is re-
markably well confirmed by Suwa & Tak-
ahashi 1971.

BOTANICAL TREES

After playing with objects to which the term
tree is applied figuratively, we return to the
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trees that botanists study. The “normal” val-
ues the analysis will suggest are D=3 and
A=2. They are hardly universal, however:
given the astounding diversity of botanical
shape, specific deviations may be more inter-
esting than the “norm.” A consequence of
A=2 is that, seen next to the near self-similar
branches of lung casts, plant branches are
extremely sparse; one cannot see through a
lung cast, but one can see through a leafless
tree.

The reason behind the fact that D and A
take up the integer Euclidean dimensions of
solids and surfaces, is that, in the words of
D’Arcy Thompson, “a tree is governed by the
simple physical rules which determine relative
changes in volume and area.” In more specific
terms, Hallé, Oldeman & Tomlinson 1978,
“The problem of energy interchange in trees
can be simplified by considering the tree as a
system in which as large [an area] as possible
must be irrigated with the minimum pro-
duction of volume while at the same time
guaranteeing the evacuation of absorbed ener-
gy.” Since volumes and areas are incommen-
surable within the framework of Euclid, the
geometric problem of the architecture of trees
18 intrinsically a fractal problem. When D
and/or A cease to be integers, the problem’s
fractal character is even more obvious.

BOTANICAL TREES' D AND A

THE VALUE D=3. The reader knows well that
the largest possible leaf area is implemented
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by a space filling surface—as approximated
by those bushes whose leaves or needles come
very close to every point within a certain out-
line (except perhaps for a dead core we over-
look). A very small 3-D suffices to allow sun-
light and wind to enter.

UMBRELLAS. However, diverse additional
constraints imposed upon tree architecture
may prevent D=3 from being implementable.
The only standard alternative is a standard
surface of dimension D=2, for example the
surface of a spherical “‘umbrella” hiding a
core empty of leaves but crisscrossed by
branches. This is why Horn 1971, which lim-
its itself to standard geometry, allows for ei-
ther D=3 or D=2. However, there is no clear
advantage to D=2; in fact, in order to termi-
nate on a spherical umbrella, the branches
have to follow very peculiar rules.

On the other hand, the freedom of design
of the “tree architect” is immensely increased
by fractals. First of all, the repeatedly scal-
loped surfaces of many large trees can be rep-
resented by scaling fractals of dimension D
between 2 and 3, and can be distinguished by
the value of D. Broccoli and cauliflower also
come to mind, but they raise a different issue,
to which we turn in a moment. And one can
conceive of sparse climbing plants of dimen-
sion below 2 (and conjecture that bonzai trees
well contrived to be “harmonious” are also
fractal with D<3))

THE VALUE A=2, The Leonardo da Vinci
quote at the beginning of this chapter is inval-
id for lungs (A=3) and for arteries (A=2.7).
But plant anatomy differs from human anato-
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my. The value A=2 rests on the mental image
of trees as bundles of nonbranching vessels of
fixed diameter, connecting roots to the leaves
and occupying a fixed proportion of each
branch’s cross section. Zimmermann tells us
that this image is called the “pipe model” by
Japanese workers.

MEASUREMENT OF A. The empirical evi-
dence turns out to be astonishingly scant and
indirect. Murray 1927, quoted in Thompson
1917, finds empirically that branch weight is
proportional to (branch diameter)™, with M
~2.5, but I would say his M is larger than
that. And he claims that M=A, but my own
analysis yields M=24+A/D. For D=3,
Leonardo’s value of A=2 would correspond to
M~2.66, while M~2.5 would yield A=1.5.
Recently, the data concerning 3 “McMahon’s
trees” used in writing McMahon & Kronauer
1976 were kindly communicated to me by
Prof. McMahon, and they have been ana-
lyzed. Denoting d;/d by x, and dp/d by vy,
we sought a value of A such that X=x? and
Y=y2 fall along the line X+Y=1. Unfortu-
nately, the empirical scatter is extremely
large for every A, and the estimate of A is
necessarily unreliable. Again, the value A=2
is not disproved, but a slightly smaller A is
suggested. The safe conclusion at present is
that A=2 is a reasonable rough value, but
that tree architecture is on the conservative
side, with daughter branches thinner than
strictly necessary.

COROLLARIES OF D=3 AND A=2. A first
corollary is that a branch’s leaf area is pro-
portional both to the volume of the branch’s
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outline, and to the cross-sectional area of the
branch. This inference is indeed empirically
correct, having been made by Huber in 1928.

Another corollary is that the ratio (tree
height)3/(trunk diameter)? is constant for
each species, and that it is equal to the ratio
(linear scale of a branch’s drainage
volume)3/(branch’s diameter)Z. One may
also expect this ratio to vary comparatively
little between species. Observe that the force
the wind exerts on a bare (respectively, leaf-
carrying) tree is roughly proportional to the
branch (respectively, branch and leaf) area,
and proportional to (height)3 in this model.
And the trunk’s counterresistance is propor-
tional to (diameter)Z. This suggests that the
ratio of these quantities is a factor of safety.

In an umbrella shaped tree with A=2 and
D=2, the ratio (height)?/(trunk diameter)?
is constant, so is more generally the ratio
(height)P/ (trunk diameter)a.

DIGRESSION ON HINDLEG BONES. The rela-
tion between height and diameter that is char-
acteristic of botanical trees with D=3 and
A=2 also applies to animal skeletons, with d
the diameter of the main supporting bone.

GREENHILL'S ELASTIC SCALING

While pulmonary and vascular trees are sup-
ported from the outside, most plants support
themselves. Greenhill (quoted in Thompson
1961) injects at this point the notion of elastic
as opposed to geometric similarity. The idea
of static elastic similarity is that a tree must
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limit its overall height to a fixed percent of
the critical buckling height of a uniform cyl-
inder of the same base diameter loaded under
its own weight. This requirement yields pre-
cisely the same results as fractals with D=3
and A=2. Thus, a “pipe model” tree with
space-filling leaves will not buckle.

McMahon & Kronauer 1976 elaborate on
Greenhill’s idea: they inject dynamic elastic
similarity, and again obtain the same result.

PLANTS WITH D=A<3

In some plants, wood is not specialized to bear
weight and carry sap, but also serves to store
nutrients. If so, and even when the vascula-
ture obeys the “‘pipe model,” the value of
A=2 need not apply.

An example wherein the branch tips form
a nonstandard “‘umbrella” with D<3, and
A=D, is illustrated (in plane reduction show-
ing D—1 and A-1) in Plate 163. One observes
that the geometric cauliflower shape has emp-
ty occlusions..., just like the botanical cauli-
flowers. Is this a mere coincidence? Charac-
teristics preordained by geometry need not
burden the genetic code.

MORE ABOUT THE BRAIN'S GEOMETRY

When discussing the brain’s surface in Chap-
ter 12, we did not consider the network of ax-
ons that join different parts together. In the
case of the cerebellum, the axons join the sur-
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face to the outside, and one deals with a gray
matter surface that envelops a white matter
tree. I revised the argument of Chapter 12 to
take account of this tree, and found that the
resulting corrective terms in the volume-area
relation yield an improved fit to the data. But
the story is too long to be told here.

NEURON BRANCHING. The Purkinje cells in
mammalian cerebellum are practically flat,
and their dendrites form a plane-filling maze.
From mammals to pigeon, alligator, frog, and
fish, the degree of filling decreases (Llinas
1969). It would be nice if this corresponded to
a decrease in D, but the notion that neurons
are fractals remains conjectural.

THE RALL LAW. Rall 1959 observes that
neuronal trees which preserve the quantity d®
with A=1.5 are electrically equivalent to cyl-
inders, hence especially convenient to study.
Further detail is provided by Jack et al. 1975.

HOW WIDE IS THE MISSOURI RIVER?

Now let us turn to rivers. Despite its concep-
tual importance, my “Peano” model of Chap-
ter 7 can only be a first approximation. In
particular it implies that river widths vanish,
while in fact they are of positive width.

An important empirical question is wheth-
er or not the rivers’ bifurcations have the
same diameter exponent A throughout. If A is
indeed defined, the next question is whether
2-A is =0 or >0. No direct test is known to
me, but the discharge through a river, Q, is
preserved in bifurcation, hence could stand in
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for d®. Maddock (see Leopold 1962) finds
that dNQl/z, hence A=2. Furthermore, a
river’s depth is proportional to Q04 and its
velocity is proportional to Qo'l. The exponents
duly add to 0.54+0.4+0.1=1.

G. Lacey observed in the 1930’s that A=2
also holds for stabilized irrigation channels in
India, which pose a well-defined problem of
hydraulics. One may therefore hope for a
fluid mechanics explanation playing the role
that Murray’s argument plays for the lung.

A=2 has an interesting implication: if riv-
ers are drawn on a map as ribbons of correct
relative width, guessing a map’s scale from
the shape of the river tree is impossible. (This
is also impossible for river meanders, but that
is a totally different story.)

Those who believe that Leonardo knew
everything will read the value A=2 in the
continuation of the quote with which this
chapter begins: ““All the branches of a water
(stream) at every stage of its course, if they
are of equal rapidity, are equal to the body of
the main stream.” |

Plate 163 © FLATTENED FRACTAL MODELS OF PLANT FLOWERS

Select one of the umbrella trees of Plate 155,
with @<, and replace each stick by an isos-
celes triangle of which said stick is a side, the
angles at this stick’s ends being %80 (root end)
and 7w—8. Since # is the smallest value that
avoids self-overlap of the tree, the triangular
thickened stems do not overlap either, and
they fill in the umbrella’s ““insides.” To make
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the figures more transparent, the triangles in
one of them are trimmed slightly on one side.

Observe that the branches thin out rapidly
as D approaches either 1 or 2, that is, as the
spatial D approaches 2 or 3. Do actually ob-
served D’s correspond to the thickest possible
branches? 1
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Plates 164 and 165 = PLANE-FILLING RECURSIVE BRONCHI

PLATE 165. In Koch recursion, every straight
interval in a finite approximation is eventually
broken up into shorter pieces. In many appli-
cations, it is useful to generalize this proce-
dure by allowing certain intervals to be
“infertile,” so that in later stages they remain
untouched.

Here, this generalized procedure is used to
grow a “tree.” One starts with a trunk having
barren sides and a fertile ““bud.” The bud
generates two ‘“‘branches,” on which again
only two terminal “buds™ are fertile. And so
on ad infinitum. The growth is asymmetric to
insure that the tree fills a roughly rectangular
portion of the plane with no gap and no over-
lap. However, asymptotic self-contact is not
avoided, and indeed every point on the “bark”
line can also be obtained as a limit branch tip.

The “‘subtrees” constructed starting with
the main leaders are similar to the whole tree
in two different similarity ratios, r; and ro.
The whole tree is not self-similar because in

addition to the subtrees it includes a trunk.
On the other hand, the set of asymptotic
branch tips is self-similar. From the legend of
Plates 56-57, the similarity dimension is the D
that satisfies the equation r1D+r2D=1. In the
top Figure of Plate 165, the tips are nearly
plane-filling and 2—D is small; in the bottom
Figure of Plate 165, D is much below 2.

Incidentally, the diameter/length ratio
having been set, the codimension 3-D of a
full spatial picture is smaller than the codi-
mension 2—-D of this planar reduction.

PLATE 164. This composite Figure results
from a Koch tree construction in which the
generator is changed at each stage, so that the
ratio of width to length decreases to 0. On the
left side of the composite Figure, this ratio
decreases even faster than on the right side.
The result is that the branch tips are no long-
er self-similar. However, the tips can achieve
the dimension D=2. This is a new way of
achieving the same goal as in Chapter 15. 1l
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VI nx SELF-MAPPING FRACTALS

18 = Self-Inverse Fractals, Apollonian Nets,and Soap

The bulk of this Essay is devoted to fractals
that are either fully invariant under simili-
tudes or, at least, “nearly” self-similar. As a
result, the reader may have formed the im-
pression that the notion of fractal is wedded
to self-similarity. Such is emphatically rot the
case, but fractal geometry must begin by
dealing with the fractal counterparts of
straight lines... call them “linear fractals.”

Chapters 18 and 19 take the next step.
They sketch the properties of fractals that
are, respectively, the smallest sets to be invar-
tant under geometric inversion, and the
boundaries of the largest bounded sets to be
invariant under a form of squaring.

Both families differ fundamentally from
the self-similar fractals. Appropriate linear
transformations leave scaling fractals invari-
ant, but in order to generate them, one must
specify a generator and diverse other rules.
On the other hand, the fact that a fractal is
“generated” by a nonlinear transformation,

often suffices to determine, hence generate, its
shape. Furthermore, many nonlinear fractals
are bounded, i.e., have a built-in finite outer
cutoff @<co. Those who find =00 objection-
able ought to be enchanted by its demise.

The first self-inverse fractals were intro-
duced in the 1880’s by Henri Poincaré and
Felix Klein, not long after the discovery by
Weierstrass of a continuous but not differenti-
able function, roughly at the same time as the
Cantor sets, and well before the Peano and
Koch curves and their scaling kin. The irony
is that scaling fractals found a durable niche
as material for well-known counterexamples
and mathematical games, while self-inverse
fractals became a special topic of the theory
of automorphic functions. This theory was
neglected for a while, then revived in a very
abstract form. One reason why the self-in-
verse fractals were half-forgotten is that their
actual shape has remained unexplored until
the present chapter, wherein an effective new
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construction is exhibited.

The chapter’s last section tackles a prob-
lem of physics, whose star happens to be the
simplest self-inverse fractal.

BIOLOGICAL FORM AND “SIMPLICITY"

As will be seen, many nonlinear fractals “look
organic,” hence the present aside concerned
with biology. Biological form being often very
complicated, it may seem that the programs
that encode this form must be very lengthy.
When the complication seems to serve no pur-
pose (as is often the case in fairly simple crea-
tures), the fact that the generating programs
were not rubbed off to leave room for useful
instructions is paradoxical.

However, the complications in question are
often highly repetitive in their structure. We
may recall from the end of Chapter 6 that a
Koch curve must not be viewed as either ir-
regular or complicated, because its generating
rule is systematic and simple. The key is that
the rule is applied again and again, in succes-
sive loops. Chapter 17 extends this thought to
the pre-coding of the lung’s structure.

In Chapters 18 and 19 we go much further
and find that some fractals generated using
nonlinear rules recall either insects or cephal-
opods, while others recall plants. The paradox
vanishes, leaving an incredibly hard task of
actual implementation.

STANDARD GEOMETRIC INVERSION

After the line, the next simplest shape in Eu-
clid is the circle. And the property of being a
circle is not only preserved under similitude,
but also under inversion. Many scholars have
never heard of inversion since their early
teens, hence the basic facts bear being restat-
ed. Given a circle C of origin O and radius R,
inversion with respect to C transforms the
point P into P' such that P and P' lie on the
same half line from O, and the lengths |OP|
and |OP'| satisfy |OP|OP'| = R“. Circles
containing O invert into straight lines not con-
taining O, and conversely (see below). Circles
not containing O invert into circles (third fig-
ure below). Circles orthogonal to C, and
straight lines passing through O, are invariant
under inversion in C (fourth figure).

o

v
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Now consider jointly the three circles Cj,
Co, and C3. Ordinarily, for example when the
open bounded discs surrounded by the Cp, are
nonoverlapping, there exists a circle I' orthog-
onal to every Cp, see above. When T exists, it
is jointly self-inverse with respect to the Cp,.

The preceding bland results nearly exhaust
what standard geometry has to say about
self-inverse sets. Other self-inverse sets are
fractals, and most are anything but bland.

GENERATOR. SELF-INVERSE SETS. As usual,
we begin with a gemerator, which is in the
present case made up of any number M of
circles Cn,. The transformations made of a
succession of inversions with respect to these
circles form what algebraists call the group
generated by these inversions; call it g The
formal term for “self-inverse set” is “a set
EY’ariant under the operations of the group

SEEDS AND CLANS. Take any set .S (call it
a seed), and add to it the transforms of .S by
all the operations of (. The result, to be
called here the clan of S is self-inverse. But
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it need not deserve attention. For example, if
S'is the extended plane IR* (the plane R plus
the point at infinity), the clan of S is identi-
cal to R*=S.

CHAOTIC INVERSION GROUPS. Furthermore,
given a group § based upon inversions, it may
happen that the clan of every domain .S cov-
ers the whole plane. If so, the self-inverse set
must be the whole plane. For reasons that
transpire in Chapter 20, 1 propose that such
groups be called chaotic. The nonchaotic
groups are due to Poincaré, but are called
Kleinian: Poincaré had credited some other
work of Klein’s to L. Fuchs, Klein protested,
Poincaré promised to label his next great dis-
covery after Klein—and he did!

Keeping to nonchaotic groups, we discuss
three self-inverse sets singled out by Poincaré,
then a fourth set of uncertain history, and a
fifth set whose importance I discovered.

HYPERBOLIC TESSELLATION OR TILING

Few of Maurits Escher’s admirers know that
this celebrated draftsman’s inspiration often
came straight from “unknown” mathemati-
cians and physicists (Coxeter 1979). In many
cases, BEscher added decorations to self-inverse
tessellations known to Poincaré and illustrated
extensively in Fricke & Klein 1897.

These sets, to be denoted by J, are ob-
tained by merging the clans of the circles Cy
themselves.

<a (§ being assumed nonchaotic, the com-
plement of the merged clans of the Cn, is a



18 O SELF-INVERSE FRACTALS, APOLLONIAN NETS AND SOAP 169

collection of circular polygons called “‘open
tiles.” Any open tile (or its closure) can be
transformed into any other open (closed) tile
by a sequence of inversions belonging to §. In
other words, the clan of any closed tile is IR*.
More important, the clan of any open tile is
the complement of . And 7 is, so to speak,
the “grout line” of these tiles. R* is self-in-
verse. 7 and the complement of 7 are self-
inverse and involve a “hyperbolic tiling” or
“tessellation” of IR*. (The root is the Latin
tessera = a square, from the Greek recoapes
= four, but tiles can have any number of cor-
ners greater than 2.) In Escher’s drawings,
each tile bears a fanciful picture. s

AN INVERSION GROUP'S LIMIT SET

The most interesting self-inverse set is the
smallest one. It is called the limit set, and
denoted by £, because it is also the set of lim-
it points of the transforms of any initial point
under operations of the group §. It belongs to
the clan of any seed .S. To make a technical
point clearer: it is the set of those limit points
that cannot also be attained by a finite num-
ber of inversions. Intuitively, it is the region
where infinitesimal children concentrate.

oL may reduce to a point or a circle, but in
general it is a fragmented and/or irregular
fractal set.

—<a L stands out in a tessellation, as the
“set of infinitesimally small tiles.”” It plays,
with respect to the finite parts of the tessella-
tion, the role the branch tips (Chapter 16)

play with respect to the branches. But the sit-
uation is simpler here: like £, the tesselation
T is self-inverse without residue. »=

APOLLONIAN NETS AND GASKETS

A set L is to be called Apollonian if it is
made of an infinity of circles plus their limit
points. In this case, its being fractal is solely
the result of fragmentation. This case was
understood (though in diffuse fashion) at an
early point of the history of the subject.

First we construct a basic example, then
show it is self-inverse. Apollonius of Perga
was a Greek mathematician of the Alexand-
rine school circa 200 B.C. and close follower of
Euclid, who discovered an algorithm to draw
the five circles tangent to three given circles.
When the given circles are mutually tangent,
the number of Apollonian circles is two. As
will be seen momentarily, there is no loss of
generality in assuming that two of the given
circles are exterior to each other but con-
tained within the third, as follows:
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These three circles define two circular trian-
gles with angles of 0°. And the two Apolloni-
an circles are the largest circles inscribed in
these triangles, as follows:

The Apollonian construction concludes
with five circles, three given and two Apollo-
nian, which together define six circular trian-
gles. Repeating the same procedure, we draw
the largest inscribed circle in each triangle.
Infinite further repetition is called Apollonian
packing. To the resulting infinite collection of
circles one adds its limit points, and one ob-
tains a set [ call Apollonian net. A portion of
net within a circular triangle, as exemplified
to the right, is to be called Apollonian gasket.

If one of the first generation Apollonian
circles is exchanged for either of the inner
given circles, the limit set is unchanged. <a If
said Apollonian circle is made to replace the
outer given circle, the construction starts with
three given circles exterior to each other, and
one of the first stage Apollonian circles is the
smal}est circle circumscribed to the three giv-
en circles. After this atypical stage, the con-
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struction proceeds as above, proving that our
figures involve no loss of generalities m.

LEIBNIZ PACKING. Apollonian packing re-
calls a construction I call Leibniz packing of a
circle, because Leibniz described it in a letter
to de Brosses: ‘“Imagine a circle; inscribe
within it three other circles congruent to each
other and of maximum radius; proceed simi-
larly within each of these circles and within
each interval between them, and imagine that
the process continues to infinity....”
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APOLLONIAN NETS ARE SELF-INVERSE

Let us now return to the starting point of the
construction of Apollonian net: three circles
tangent to each other. Add either one of the
corresponding Apollonian circles, and call the
resulting 4 circles I' circles. Here they are
shown by bold curves.

There are 4 combinations of the I' circles
3 by 3, to be called triplets, and to each cor-
responds a circle orthogonal to each circle in
the triplet. We take these new circles as our
generator, and we-label them as C;, Cp, Cg,
and C4, (the diagram below shows them as
thin curves). And the T circle orthogonal to
Ci, Cj, and Cy will be labeled as Tjj. .

Having set these tedious labels, here is the
payoff: Simple inspection shows that the
smallest (closed) self-inverse set with respect
to the 4 generating circles C,, is the Apolloni-
an net constructed on the 4 circles I'. Curi-
ously, this observation is nowhere explicit in
the literature, but it must be widely known.

A more careful inspection shows that each
circle in the net transforms into one of the T
circles through a unique sequence of inver-
sions with respect to the C circles. In this
way, the circles in the Apollonian net can be
sorted out into 4 clans; the clan descending
from Tjj will be denoted as G Tijk-

NET KNITTING WITH A SINGLE THREAD

The Apollonian gasket and the Sierpifski
gasket of Plate 141 share an imporant feature:
the complement of the Sierpifiski gasket is a
union of triangles, a o-triangle, and the com-
plement of an Apollonian net or gasket is a
union of discs, a a-disc.
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But we also know that the Sierpinski gas-
ket admits of an alternative Koch construc-
tion, in which finite approximations are tera-
gons (broken lines) without self-contact, and
double points do not come in until one goes to
the limit. This shows that the Sierpinski gask-
et can be drawn without ever lifting the pen;
the line will go twice over certain points but
will never go twice over any interval of line.

To change metaphors, the Sierpinski gask-
et can be knitted with a single loop of thread!

The same is true of the Apollonian net.

NON-SELF-SIMILAR CASCADES, AND
THE EVALUATION OF THE DIMENSION

The circular triangles of Apollonian packing
are not similar to each other, hence the Apol-
lonian cascade is not self-similar, and the
Apollonian net is not a scaling set. One must
resort to the Hausdorff Besicovitch definition
of D (as exponent used to define measure),
which applies to every set, but the derivation
of D proves surprisingly difficult. Thus far
(Boyd 1973a,b), the best one can say is that

1.300197<D<1.314534,

but Boyd’s latest (unpublished) numerical
experiments yield D~1.3058.

In any event, since D is a fraction while
Dr=1, the Apollonian gasket and net are
fractal curves. In the present context, D is a
measure of fragmentation. When, for exam-
ple, the discs of radius smaller than ¢ are ““cut
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off,” the remaining interstices have a perime-
ter proportional to ¢ P and a surface propor-
tional to €2 0.

L IN NON-FUCHSIAN POINCARE CHAINS

Inversions with respect to less special configu-
ration of the generating circles Cp,, lead to
self-inverse fractals that are less simple than
any Apollonian net. A workable construction
of mine, to be presented momentarily, charac-
terizes o[ suitably in most cases. It is a great
improvement over the previous method, due to
Poincaré and Klein, which is cumbersome and
converges slowly.

But the older method remains important,
so let us go through it in a special case. Let
the Cn, form a configuration one may call
Poincare chain, namely a collection of M cir-
cles Cn, numbered cyclically, so that Cy, is
tangent to Cp_1 and to Cy1 (modulo M),
and intersects no other circle in the chain. In
that case, £ is a curve that separates the
plane into an inside and an outside. (As hom-
age to Camille Jordan, who first saw that it is
not obvious that the plane can thus be subdi-
vided by a single loop, such loops are called
Jordan curves.)

When all the C,, are orthogonal to the
same circle T, £ is identical to T. This case,
called Fuchsian, is excluded in this chapter.

POINCARE'S CONSTRUCTION OF L. The cus-
tomary construction of £ and my alternative
will be fully described in the case of the fol-
lowing special chain with M=4:
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Co

To obtain £, Poincaré and Fricke & Klein
1897 replace the original chain, in stages, by
chains made of an increasing number of in-
creasingly small links. The first stage replaces
every link C;j by the inverses in C; of the links
Cm other than C,;, thus creating M(M-1) =
12 smalier links. They are shown in the fac-
ing column, superimposed on a (gray) photo-
graphic negative of the original links. And
each stage takes the chain with which it start-
ed and inverts it in each of the original Cp,.
Here several stages are shown in black, each
being superposed on the preceding one, shown
in white on gray background. Ultimately, the
chain thins out to its thread, which is .

Unfortunately, some links remain of sub-
stantial size after large numbers of stages,
and even fairly advanced approximate chains
give a poor idea of of L. This difficulty is ex-
emplified in horrid fashion in Plate 179.
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THE NOTION OF FRACTAL OSCULATION

My alternative construction of £ involves a
new fractal notion of osculation that extends
an obvious facet of the Apollonian case.

STANDARD OSCULATION. This notion is
linked to the concept of curvature. To the first
order, a standard curve near a regular point P
is approximated by the tangent straight line.
To the second order, it is approximated by the
circle, called osculating, that has the same
tangent and the same curvature.

To index the circles tangent to the curve at
P, a convenient parameter, u, is the inverse of
the (arbitrarily oriented) distance from P to
the circle’s center. Write the index of the os-
culating circle as ug. If u<ug, a small portion
of curve centered at P lies entirely on one side
of the tangent circle, while if u>ug it lies en-
tirely on the other side.

This ug is what physicists call a critical
value and mathematicians call a cut. And [ug|
defines the local “curvature.”

GLOBAL FRACTAL OSCULATION. For the
Apollonian net, the definition of osculation
through the curvature is meaningless. Howev-
er, at every point of the net where two pack-
ing circles are tangent to each other, they ob-
viously “embrace” the rest of . between
them. It is tempting to call both of them
osculating.

To extend this notion to a non-Apollonian
sets o[, we take a point where £ has a tan-
gent, ar'ld start with the definition of ordinary
osculation based on criticality (= cut). The
novelty is that, as u varies from —oo to + 00,
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the single critical ug is replaced by two dis-
tinct values, u' and u">u', defined as follows:
For all u<u', . lies entirely to one side of our
circle, while for all u<u", £ lies entirely to
the other side, and for u'<u<u", parts of £
are found on both sides of the circle. [ suggest
that the circles of parameters u' and u" both
be called fractally osculating.

Any circle bounds two open discs (one in-
cludes the circle’s center, and the other in-
cludes the point at infinity). The open discs
bounded by the osculating circles and lying
outside £ will be called osculating discs.

It may happen that one or two osculating
circles degenerate to a point.

LOCAL VERSUS GLOBAL NOTIONS. Return-
ing to standard osculation, we observe that it
is a local concept, since its definition is inde-
pendent of the curve’s shape away from P. In
other words, the curve, its tangent, and its
osculating circle may intersect at any number
of points in addition to P. By contrast, the
preceding definition of fractal osculation is
global, but this distinction is not vital. Fractal
osculation may be redefined locally, with a
corresponding split of “‘curvature” into 2
numbers. However, in the application at hand,
global and local osculations coincide.

OSCULATING TRIANGLES. —a Global fractal
osculation has a counterpart in a familiar con-
text. To define the interior of our old friend
the Koch snowflake curve K as a sigma-
triangle (o-triangle), it suffices that the trian-
gles laid at each new stage of Plate 42 be
lengthened as much as is feasible without in-
tersecting the snowflake curve. m
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o-DISCS THAT OSCULATE ./

Osculating discs and o-discs are the key of my
new construction of ., which is free from the
drawbacks listed on p. 173. This construction
is illustrated here for the first time (though it
was previewed in 1980, in The 1981 Springer
Mathematical Calendar!). The key is to take
the inverses, not of the C,, themselves, but of
some of circles T'jjx, which (as defined on page
171) are orthogonal to triplets C;, Cj, and Cy.
Again, we assume that the Tjjk are not all
identical to a single T.

RESTRICTION TO M=4. The assumption
M=4 insures that, for every triplet i,j,k, either
one or the other of the two open discs bound-
ed by T'jjx—namely, either its inside or its
outside—contains none of the points Ymp
which we define on page 173. We shall denote
this y-free disc by Ajjk.

My construction of £ is rooted in the fol-
lowing observations: every y-free Ajjk oscu-
lates £} so do their inverses and repeated in-
verses in the circles C,; and the clans built
using the Ajy as seeds cover the whole plane
except for the curve L.

Plate 177 uses the same Poincaré chain as
already used on page 173, but is drawn on
larger scale. As is true in most cases, the first
stage outlines £ quite accurately. Later stages
add detail very “efficiently,” and after few
stages the mind can interpolate the curve -/
without the temptation of error present in the
Poincaré approach.

GENERALIZATIONS

CHAINS WITH FIVE OR MORE LINKS. When the
number of original links in a Poincaré chain is
M>4, my new construction of £ involves an
additional step: it begins by sorting the T' cir-
cles into 2 bins. Some T circles are such that
each of the open discs bounded by T' contains
at least one point ¥, as a result, Ajjk is not
defined. Such T circles intersect - instead of
osculating it. But they are not needed to con-
struct L.

The remaining circles Tjjx define osculat-
ing discs Ay that fall into two classes. Add-
ing up the clans of the Aj in the first class,
one represents the interior of £, and adding
up the clans of the Ajj in the second class,
one represents the exterior of £\

The same is true in many (but not all) cas-
es when the C, fail to form a Poincaré chain.

OVERLAPPING AND/OR DISASSEMBLED
CHAINS. When C,, and C,, have two intersec-
tion points ¥'n and ¥"mp, these points joint-
ly replace v. When C,, and C,, are disjoint, y
is replaced by the two mutually inverse points
Y'mn and "' mn. The criterion for identifying
Ajjx becomes cumbersome to state, but the
basic idea is unchanged.

RAMIFIED SELF-INVERSE FRACTALS. £ may
borrow features from both a crumpled loop
(Jordan curve), and an Apollonian net, yield-
ing a fractally ramified curve akin to those
examined in Chapter 14, but often much more
baroque in appearance, as in Plate C7.

SELF-INVERSE DUSTS. It may also happen
that £ is a fractal dust.
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THE APOLLONIAN MODEL OF SMECTICS

This section outlines the part that Apollonian
packing and fractal dimension play in the de-
scription of a category of “liquid crystals.” In
doing so, we cast a glance toward one of the
most active areas of physics, the theory of
critical points. An example is the “point” on
a temperature-pressure diagram that describes
the physical conditions under which solid, lig-
uid, and gaseous phases can coexist at equilib-
rium in a single physical system. The analytic
characteristics of a physical system in the
neighborhood of a critical point are scaling,
therefore governed by power laws, and speci-
fied by critical exponents (Chapter 36). Many
of them turn out to be fractal dimensions; the
first example is encountered here.

Since liquid crystals are little known, we
describe them by paraphrasing Bragg 1934.
These beautiful and mysterious substances are
liquid in their mobility and crystalline in their
optical behavior. Their molecules are relative-
ly complicated structures, lengthy and chain-
like. Some liquid crystal phases are called
smectic, from the Greek ounyma signifying
soap, because they constitute a model of a
soaplike organic system. A smectic liquid
crystal is made of molecules that are arranged
side by side like corn in a field, the thickness
of the layer being the molecules’ length. The
‘resulting layers or sheets are very flexible and
very strong and tend to straighten out when
bent and then released. At low temperatures,
they pile regularly, like the leaves of a book,
and form a solid crystal. When temperatures
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rise, however, the sheets become able to slide
easily on each other. Each layer constitutes a
two-dimensional liquid.

Of special interest is the focal conics struc-
ture. A block of liquid crystal separates into
two sets of pyramids, half of which have their
bases on one of two opposite faces and vertic-
es on the other. Within each pyramid, liquid
crystal layers fold to form very pointed cones.
All the cones have the same peak and are ap-
proximately perpendicular to the plane. As a
result, their bases are discs bounded by cir-
cles. Their minimum radius ¢ is the thickness
of the liquid crystal’s layers. Within a spatial
domain such as a square-based pyramid, the
discs that constitute the bases of the cones are
distributed over the pyramid’s base. To obtain
an equilibrium distribution, one begins by
placing in the base a disc of maximum radius.
Then another disc with as large a radius as
possible is placed within each of the four re-
maining pieces, and so on and so forth. If it
were possible to proceed without end, we
would achieve exact Apollonian packing.

The physical properties of of this model of
soap depend upon the surface and perimeter
of the sum of interstices. The link is affected
through the fractal dimension D of a kind of
photographic “negative,” the gasket that the
molecules of soap fail to penetrate. Details of
the physics are in Bidaux, Boccara, Sarma,
Séze, de Gennes & Parodi 1973. [



PLATE 177 = A SELF-INVERSE FRACTAL
(MANDELBROT CONSTRUCTION)

This Plate illustrates page 175.

TOP FIGURE. In Poincaré chains with M=4,
at least one of the discs Ajj is always un-
bounded, call it Ajo3, and it intersects the
disc Azg;. (Here, A34; is also unbounded, but
in other cases it is not.) The union of Ajo3
and A3zg1, shown in gray, provides a first ap-
proximation of the outside of £ It is analo-
gous to the approximation of the outside of
Koch’s _K by the regular convex hexagon in
Plate 43.

The discs Ao34 and Ag1p intersect, and
their union, shown in black, provides a first
approximation of the inside of -£. It is analo-
gous to the approximation of the inside of _K
by the two triangles that form the regular star
hexagon in Plate 43.

MIDDLE FIGURE. A second approximation of
the outside of - is achieved by adding to
Ajp3 and Agzg4i their inverses in C4 and Co,
respectively. The result, shown in gray, is ana-
logous to the second approximation of the out-
side of _K'in Plate 43.

The corresponding second approximation
of the inside of £ is achieved by adding to
Apzs and Agpo their inverses in C; and Cg,
respectively. The result, shown in black, is
analogous to the second approximation of the
inside of _K in Plate 43.

BOTTOM FIGURE. The outside of £, shown
in gray, is the union of the clans of A}z and
A3z41. And the inside of £, shown in black, is
the union of the clans of Ap34 and Agqp. The
fine structure of the inside of ./ is seen in the
bottom Plate 179, using a different Poincaré
chain. Together, the black and gray open re-
gions cover the whole plane, minys ./ 1l
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Plate 178 = SELF-HOMOGRAPHIC FRACTAL, NEAR THE PEANO LIMIT

To the mathematician, the main interest of
groups based upon inversions resides in their
relation with certain groups of homographies.
An homography (also called Mébius, or frac-
tional linear transformation) maps the z-plane
by z—(az+b)/(cz+d), where ad—bc=1. The
most general homography can be written as
the product of an inversion, a symmetry with
respect to a line (which is a degenerate inver-
sion), and a rotation. This is why, in the ab-
sence of rotation, the study of homographies
learns much from the study of groups based

on invers‘ions. But it is obvious that allowing
the rotations brings in new riches.

Here is an example of limit set £ for a
group of homographies. David Mumford de-
vised it (in the course of investigations in-
spired by the new results reported in this
chapter), and kindly allowed its publication
here. This shape is almost plane-filling, and
shows uncanny analogies and differences with
the almost plane-filling shape in Plate 191.

The fact that the limit set of a group of
homographies is a fractal has been proven
under wide conditions by T. Akaza, A. F.
Beardon, R. Bowen, S. J. Patterson, and D.
Sullivan. See Sullivan 1979. 1R
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Plate 179 1 A CELEBRATED
SELF-INVERSE FRACTAL, CORRECTED
(MANDELBROT CONSTRUCTION)

The top left reproduces Figure 156 of Fricke
& Klein 1897, which claims (in my terminolo-
gy) to represent the self-inverse fractal whose
generator is made of the 5 circles that bound
the blackened central region. This Figure has
been reproduced very widely.

The outline of the black shape on the top
right shows the actual shape of this fractal, as
given by my osculating o-disc construction.
The discrepancy is horrid. Fricke knew that ./
incorporates circles, and he instructed his
draftsman to include them. But otherwise
Fricke did not know what sort of very irregu-
lar shape he should expect.

The actual L includes the boundary £* of
the shape drawn on the bottom right using my
algorithm. This £* is the self-inverse fractal
corresponding to the four among the generat-
ing circles that form a Poincaré chain. Trans-
forms of £* by other inversions are clearly
seen to belong to L. Mandelbrot 1982 elabo-
rates upon this plate. 8
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19 = Cantor and Fatou Dusts;
Self-Squared Dragons

This chapter takes up two very simple families
of nonlinear transformations (mappings) and
investigates certain fractal sets which these
transformations leave invariant, and for which
they can serve as generators.

First, a broken line transformation of the
real line deepens our understanding of an old
acquaintance, the Cantor dust. These remarks
could have been squeezed into Chapter 8, but
they are better appreciated at this point.

In particular, they help appreciate the ef-
fect of the real and complex quadratic trans-
forms, of the form x—f*(x) = x2—~u, where x
and p are real numbers, or z-f*(z) = zz—u,
where z=x+iy and g are complex numbers.

The elementary case u=0 is geometrically
dull, but other values of g involve extraordi-
nary fractal riches, many of them first re-
vealed in Mandelbrot 1980n.

The invariant shapes in question are best
o'btained as a by-product of the study of itera-
tion, that is, of the repeated application of one
of the above transformations. The initial val-
ues will be denoted by xq or zg, and the k
times iterated transforms by f* will be denot-

ed by xy or zk.

Iteration was studied in three rough stages.
The first, concerned with complex z, was
dominated by Pierre Fatou (1878-1929) and
by Gaston Julia (1893-1978). Their publica-
tions are masterpieces of classic complex anal-
ysis, greatly admired by the mathematicians,
but exceedingly difficult to build upon. In my
work, of which this chapter is a very concise
sketch, some of their basic findings are made
intuitive by combining analysis with physics
and detailed drawing. And innumerable new
facts emerge.

The resulting revival makes the properties
of iteration essential to the theory of fractals.
The fact that the Fatou-Julia findings did noft
develop to become the source of this theory
suggests that even classical analysis the needs
intuition to develop, and can be helped by the
computer.

The intermediate stage includes P. J.
Myrberg’s studies of iterates of real quadratic
mappings of R (e.g., Myrberg 1962), Stein &
Ulam 1964, and Brolin 1965.

The current stage largely ignores the past,
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and concentrates on self-mappings of {0,1], as
surveyed in Gurel & Rdssler 1979, Helleman
1980, Collet & Eckman 1980, Feigenbaum
1981, and Hofstadter 1981. This chapter’s
last section concerns the exponent § due to
Grossmann & Thomae 1977 and Feigenbaum
1978: the existence of & is proven to follow
from a more perspicuous (fractal) property of
iteration in the complex plane.

THE CANTOR DUST CAN BE GENERATED
BY A NONLINEAR TRANSFORMATION

We know from Chapter 8 that the triadic
Cantor dust C is invariant by similitudes
whose ratio is of the form 37K. This self-simi-
larity is a vital property, but it does not suf-
fice to specify €. In sharp contrast, C is
entirely determined as the largest bounded set
that is invariant under the following nonlinear
“inverted V> transformation:

X>f(x) = {Ya—|x="2|} /r, with r=14.

More precisely, we apply this self-mapping of
the real axis repeatedly, with xg spread out
over the x-axis, and the final values reduce to
the point x=-co, plus the Cantor dust €. The
fixed points x=0 and x=% belong to C.
SKETCH OF A PROOF OF THE INVARIANCE OF
C. Since f(x)=3x when x<0, the iterates of all
the points xg<0 converge to —co directly, that
is, without ceasing to satisfy x,<0. For the
points Xp>1, direct convergence is preceded
by one preliminary step, since x,<0O for all

kz1. For the points in the gap Ys<xp<%,
there are 2 preliminary steps, since X3 >0 but
Xk <0 for all k=2, For the points in the gaps
1/9<x0<2/9 or 7/9<xp<8/9, there are 3
preliminary steps. More generally, if an inter-
val is bounded by a gap that is sent to —co
after k preliminary steps, this interval’s
(open) mid third will proceed directly to —~co
after the (k+1)st step. But all the points of €
are found to fail to converge to —co.

FINITENESS OF THE OUTER CUTOFF

To extend these results to the general Cantor
dust with N=2 and r between O and ', it
suffices to plug in the desired r in
f(x)={%—|x=%|} /r. To obtain any other
Cantor dust, the graph of f(x) must be an ap-
propriate zigzag curve.

However, no comparable method is availa-
ble for the Cantor dust extrapolated to the
whole real axis. This is a special case of a
very general feature: Typically, a nonlinear
f(x) carries within itself a finite outer cutoff
Q. To the contrary, as we know well, all linear
transformations (similarities and affinities)
are characterized by @=co, and a finite @ (if
one is required) must be imposed artificially.

ANATOMY OF THE CANTOR DUST

We know from Chapter 7 that C is a very
“thin” set, yet the behavior of the iterates of
f(x) leads to a better understanding of fine
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distinctions between its points.

Everyone must be tempted, at first ac-
quaintance, to believe that € reduces to the
end points of the open gaps. But this is very
far from being the case, because C includes by
definition all the limits of sequences of gap
end points.

This fact is not reputed intuitive. With
many fellow students, I would have agreed if
our battered acquaintance Hans Hahn had
listed these limit points among the concepts
whose existence must be imposed by cold log-
ic. But the present discussion yields intuitive
proof that these limit points have strong and
diverse personalities.

For example, the point x=%, which f(x)
leaves unchanged, lies neither within any mid
third interval, nor on its boundary. Points of
the form x=(%)/3¥ have iterates that con-
verge to x=%. In addition, there is an infinity
of limit cycles, each made up of a finite num-
ber of points. And C also contains points
whose transforms run endlessly around C.

THE SQUARING GENERATOR

The inverted V generating function f(x) used
in the preceding sections was chosen to yield a
familiar result. But it makes the Cantor dust
seem contrived. Now we replace it by

X=>f(X)=Ax(1-x),

those une?<pected wealth of properties was
first noted in Fatou 1906, Changing the origin
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and the scale of the x, and writing
p=A?/4-\/2, this function can be written as

X—=f*(x) = x°—p.

Convenience is served by using sometimes
f(x), and sometimes f*(x).

It is nice to call f(x) or f*(x) the squaring
generator. Squaring is, of course, an algebraic
operation, but it is given a geometric interpre-
tation here, so that the sets it leaves invariant
can be called self-squared. Strict squaring
replaces the point of abscissa x by the point of
abscissa x2. Thus, the self-squared points on
the line reduce to x=00, x=0, and x=1. The
addition of —p may seem totally innocuous,
but in fact it introduces totally unexpected
possibilities we now consider.

FATOU'S REAL SELF-SQUARED DUSTS

Having yielded a familiar end product, the
Cantor dust, the V transformation makes an
extraordinary but never widely known discov-
ery of Pierre Fatou easier to state. Fatou 1906
assumes that A is real and satisfies A>4, and
he investigates the largest of the bounded sets
on IR, that are left invariant under f(x). This
is a close relative to the Cantor dust, which
call real Fatou dust. 1t requires no further
explanation, and is illustrated in Plate 192.

In the complex plane, the largest bounded
self-squared set, for the above A’s, remains the
real Fatou dust.
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SELF-SQUARED JULIA CURVES
IN THE PLANE (MANDELBROT 1980n)

The simplest self-squared curve is obtained
for u=0: it is the circle |z|=1. By the trans-
formation z—z2, a belt wound once around
the circle stretches into a belt wound twice,
the ‘“‘buckle” at z=1 remaining fixed. The
corresponding largest bounded self-squared
domain is the disc |z|£1.

However, introducing a real u#0 (Plates
186 and 187), then a complex u (Plates 190
and 191), opens Pandora’s boxes of possibili-
ties, the Julia fractal curves. They satisfy the
eye no less than they satisfy the mind.

THE SEPARATOR .S. The topology of the
largest bounded self-squared set depends on
where p lies with respect to a ramified curve
S, which I discovered and now call separator.
It is the connected boundary of the black
shape in bottom Plate 188 ; it is a “limit
lemniscate,”” namely the limit for n—>oco of the
algebraic curves called lemniscates, defined
by |f:(0)|=R for some large R. See Plate 189
for the structure of S.

THE ATOMS. The open domain within S
splits into an infinity of maximal connected
sets I now propose to call “atoms.” Two
atoms’ boundaries either fail to overlap, or
have in common one point, to be called
“bond,” that belongs to .S..

TOPOLOGICAL DIMENSION. When u lies out-
side S, the largest bounded self-squared set is
a (Fatou) dust. When u lies within S, or is a
bond, the largest such set is a domain bound-
ed by a self-squared curve. At least some u on

Syield a tree-like curve. -

SELF-SQUARED FRACTALS. These dusts and
curves being fractal when p#0 is rumored to
have been proven fully in some further cases
by Dennis Sullivan, and I harbor no doubt it
will be proven in all cases.

The shape of a self-squared dust or curve
varies continuously with g, hence D is bound
to be a smooth function of y.

RAMIFICATION. When A lies in one of the
open empty discs of top Plate 189, the self-
squared curve is a closed simple curve (not
ramified, a loop), as in Plates 186 and 187.

When A lies on the circles |A]=1 or
[A-2|=1, or in the surrounding open connect-
ed region, the self-squared curve is a ramified
net, with tremas bounded by fractal loops, like
the dragons in Plate 191.

When A lies in the very important island
molecules, which will soon prove to be regions
of nonconfluence to 1, the self-squared curve
is either a o-loop, or a g-dragon, as in bottom
Plate 190. The ¢ introduces no new loop.

p-ATOMS AND p-MOLECULES

To dissect the parameter map further is easier
when the parameter is g. A p-atom may be
heart-shaped, in which case it is the “seed” to
which an infinity of oval-shaped atoms bind
either directly or through intermediate atoms.
Mutually bound atoms, plus their bonds, form
a “molecule.” A seed’s cusp is never a bond.
To each atom is attached an integer w, its
“period.” When p lies in an atom of period w,
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the iterates f:(z) converge to oo or to a stable
limit cycle containi}ul'g w points. Within an
atom of period w, |f_(z,)[<1, where z, is any
point of the limit cycle S9rresponding to pﬁ‘.'On
the atom’s boundary, |f\';,(zu)| = 1, with f\;(zu)
= 1 characterizing a cusp or a ‘“‘root.”” Each
atom contains a point to be called “nucleus,”
satisfying f.(z,) = 0 and f(0) = 0.

The nuclei on the real axis were introduced
by Myrberg (see Myrberg 1962), and redis-
covered in Metropolis, Stein & Stein 1973,
The corresponding maps are often called
“superstable” (Collet & Eckman 1980).

Viewed as algebraic equation in g, f:}(O) =
0 is of order 2¥~1. Hence, there could be at
most 2¥~1 atoms of period w, but there are
fewer, except for w=1. For w=2, f;(O) =0
has 2 roots, but one of them is already the
nucleus of an “old” atom of period 1. More
generallyh all the roots of f:;(O) = 0 are also
roots of f,_(0) = O where k is an integer > 1.
Next, observe that each rational boundary
point on the boundary of an atom of period w,
defined as satisfying fi(z,) = exp(2xim/n),
where m/n is an irreducible rational number
<1, carries a “‘receptor bond” ready to con-
nect to an atom of period nw. As a result,
some new atoms bind to existing receptor
bends. But not all new atoms are thereby ex-
hausted, and the remaining ones have no
choice but to seed new molecules. The mole-
cules are therefore infinite in number.

When p varies continuously in a molecule,
egch outbound traversal of a bond leads to
‘blfurca'tion: W is multiplied by n. Example:
mcreasing a real-valued p leads to Myrberg’s
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period doubling. The inverse of bifurcation,
which Mandelbrot 1980n investigates and
calls confluence, must stop at the period of
the molecule’s seed. The continent molecule is
the region of confluence to c=1, and each
island molecule is a region of confluence to
c>1. The dragon’s or sub-dragon’s shape is
ruled by the values of f::,'(zu) and w/c.

THE SEPARATOR IS A FRACTAL CURVE;
FEIGENBAUM'S 6§ AS A COROLLARY

I conjecture =a via a ‘‘renormalization”
argument m that atoms increasingly removed
from their molecule’s seed come increasingly
close to being identical in shape.

A corollary is that the boundary of each
molecule is locally self-similar. Since it is not
smooth on small scales, it is a fractal curve.

This local self-similarity generalizes a fact
concerning Myrberg Dbifurcation, due to
Grossmann & Thomae and to Feigenbaum.
The widths of increasingly small sprouts’ in-
tercepts by the real axis of A or u, converge to
a geometrically decreasing sequence, of ratio
6=4.66920... (Collet & Eckman 1980). In its
original form, the existence of § seems a tech-
nical analytic result. Now it proves to be an
aspect of a broader property of fractal scaling.

Each bifurcation into m>2 introduces an
additional basic ratio. |



Plate 185 = SELF-SQUARED FRACTAL CURVES FOR REAL X

The shapes in Plates 185 t6 192 are presented
here for the first time, except for a few that
are reproduced from Mandelbrot 1980n.

The left side of this plate represents the
maximal bounded self-squared domains for A
=1,1.5,2.0, 2.5 and 3.0. The central black
shape spans the segment [0,1].

A=1: SCALLOP SHELL.

A=3: SAN MARCO DRAGON CURVE. This is

185

a mathematician’s wild extrapolation of the
skyline of the Basilica in Venice, together
with its reflection in a flooded Piazza; T nick-
named it the San Marco dragon.

The right side of this plate is relative to
A=3.3260680. This is the nuclear A (as de-
fined on p. 184) corresponding to w=2. The
corresponding self-squared shape is turned by
90° to make it fit in. Wl



CAPTION CONTINUED FROM P. 188

ToP PLATE 188. This is part of the inverse
of the A-map with respect to A=1. Examining
on the A-map the sprouts whose roots are of
the form A=exp(2wi/n), one gains the im-
pression that “corresponding points” lie on
circles. The present plate provides confirma-
tion. Other perceived circles are confirmed by
different inversions.

ISLAND MOLECULES. Many of the *‘spots”
around the maps are genuine “island
molecules,” first reported in Mandelbrot
1980n. They are shaped like the whole ¢ map,
except for a nonlinear distortion.

SEPARATOR, SPINES AND TREES. The
boundary of the filled-in black domain in the
A- or g map is a connected curve I discovered
and call separator S. The set within .S de-
composes into open atoms (see text). When
the atom’s period is w, let us define its spine
as the curve where f:;'(z“) is real.

The spines lying on the real axis are known
in the theory of self-mapping as [0,1], and
their closure is known to be [-2,4].

I discovered more generally that the clo-
sure of the other atom spines decomposes into
a collection of trees, each rooted on a receptor
bond. The list of orders of ramification at dif-
ferent points of such a tree is made up of 1
for the branch tips, plus the orders of bifurca-
tion leading to the tree’s root. Furthermore,
when the tree is rooted on an island atom, one
must add the orders of bifurcation leading
from [A\-2|<1 or [A|<1 to this atom.

BOTTOM LEFT PLATE 189. This is a detailed
A map near A=2-exp(~2mi/3). The set with-
in S is the limit of domains of the form
Ifn(¥2)|<R, whose boundaries are algebraic
curves called lemniscates. A few such domains
are shown here in superposition. For large n,
these domains seem disconnected, and so does
the A map, but in fact they connect outside
the grid used in the computation.

BOTTOM RIGHT PLATE 189. This is a de-
tailed A map near A=2—-exp(-2xi/100). This
hundred-fold branching trec shares striking
features with the z map in plate 191. ™.

Plate 187 =
COMPOSITE OF SELF-SQUARED
FRACTAL CURVES FOR REAL )

This draped “sculpture” was made within a
computer’s memory, by a process that
amounts to whittling away all points in an
initial cube, whose iterates by z—-Az(l-2)
converge to infinity. The parameter A is a real
number ranging from 1 to 4. The A axis runs
vertically along the sculpture’s side. And x
and y form the complex number z=x+iy.

Each horizontal section is a maximal
bounded self-squared shape of parameter u.

For the special value A=2, this section’s
boundary is a circle: the drape’s “belt.”

For all other values of A, the self-squared
shape’s boundaries are fractal curves, includ-
ing those shown in Plate 185. One perceives
striking “pleats” whose position varies contin-
uously with A; they are pressed in below the
belt, and pressed out above the belt.

Of special interest are the blobs on the
wall holding the drape. This sculpture cannot
possibly do justice to the complication of the
top of the drape. A) For every value of A, the
drape includes, as “backbone,” a fractal tree
formed by the iterated pre-images of the
x-interval [0,1]. For all small, and some high
values of A<3, this tree’s branches are com-
pletely “covered by flesh.” For other high val-
ues of A, however, there is no flesh. The
branches along either x=1% or y=0 are visible
here, but the graphic process unavoidably
misses the rest. B) Certain horizontal stripes
of the wall behind the drape are entirely cov-
ered with tiny “‘hills” or “‘corrugations,” but
only a few of the largest ones can be seen.
These stripes and hills concern the “island
molecules” (Plates 188 and 189) intersected
by the real axis. Observations A) and B) gen-
eralize the Myrberg-Feigenbaum theory. HS
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Plates 188 and 189 x THE SEPARATORS OF z—»\z(1-z) AND OF z->z%—y

BOTTOM PLATE 188. u-MAP.The u in the closed
black area (bounded by a fractal curve) are
such that the iterates of zg=0 under z>2°—p
fail to converge to co. The large cusp is
u=—Ya, and the right-most point is u=2.

TOP PLATE 189. A-MAP. The A in the closed
black area, plus the empty disc, satisfy
ReA>1 and are such that the iterates of
Zo="Y under z->Az(1-2z) fail to converge to
co. The full A map is symmetric with respect
to the line Rex=1.

THE DISC JA—2|<1, AND THE DISC |A|L1
LESS A=0. The X in these domains are such
that the iterates of zp=Y% converge to a
bounded limit point.

CORONA AND SPROUTS. The A-map outside
the empty discs forms a “‘corona.” It splits
into “‘sprouts,” whose “roots” are “receptor
bonds” defined as the points of the form
A=exp(2rim/n) or A=2-exp(2wim/n),
with m/n an irreducible rational number <1.

o

CAPTION
CONTINUES
ON P. 186






Plates 190 and 191 o SELF-SQUARED DRAGONS; APPROACH TO THE “PEANO’’ LIMIT

Each self-squared curve is attractive in its
own way. And the most attractive ones to me
are the ‘“dragons” shown in the present fig-
ures and in Plate CS5.

DRACONIC MOLTING. To watch a dragon in
the process of self-squaring would be a fasci-
nating sight! A monstrous “molting™ detaches
the skins of a dragon’s belly and back from
their innumerable folds. Then, it stretches
each skin to twice its length, which of course

remains infinite all along! Next, it folds each
skin around the back as well as the belly. And
finally, it re-attaches all the folds neatly in
their new positions.

FRACTAL HERALDRY. The self-squared drag-
ons must not be confused with the self-similar
one of Harter & Heightway, Plates 66 and
67. The reader may find it amusing to detail
the similarities and the many differences.

CAPTION CONTINUES ON P. 192







CAPTION CONTINUED FROM P. 190

SUCCESSIVE BIFURCATIONS. The best self-
squared dragons obtain where A lies in a
sprout of Plate 189 that corresponds to
0/2x=m/n, with small integers n and m.
Given the bifurcation order n, the number of
dragon heads or tails (or whatever these do-
mains should be called) around each articula-
tion point is n. A second bifurcation of order
m'/n' splits each of these domains into n'
“sausage links,” and thins them down.

Dragons with a nice heft, neither obese nor
skinny, obtain when A lies within a sprout, at
some distance away from the root. Dragons
with a nice twist obtain when A lies near one
of the 2 subsprouts corresponding to an order
of bifurcation of 4 to 10: one subsprout yields
a leftward, the other a rightward, twist.

RIGHT TOP OF PLATE 190. “STARVED
DRAGON.” A dragon subjected to infinitely
many bifurcations loses all flesh and collapses
into a skeletal branched curve.

The topological dimension of the set that
fails to go to co is O for the Fatou dusts, 1 for
starved dragons, and 2 for other dragons.

BOTTOM OF PLATE 190. o-DRAGON. This
shape is connected; its A lies in the large
“offshore island” in bottom right Plate 189.

PLATE 191. THE SINGULAR LIMIT A=1.
PEANC DRAGONS. Let A lie in an island off-
shore of the bond at #=2x/n. As n-co,
00, hence A tends to 1. The corresponding
dragon must necessarily converge to the scal-
lop shape at the base of the drape in Plate
187. But a qualitative difference separates
N=co from n large but finite.

As n->co, the dragon’s arms grow in num-
b.er, ’Ehe skin crumples, and the skin’s dimen-
$10n Increases. The whole really attempts to
converge to a “hermit-dragon” that would fill
the sh'ell of a A=1 scallop to the brim, i.e., to
the dimension D=2, A self-squared Peano
curve? Yes, but we know from Chapter 7 that
Peano curves are not curves: as it attains

D=2, our dragon curve dies as a curve to be-
come a plane domain. ==

Plate 192 o REAL SELF-SQUARED FATOU
DUSTS ON [0,1]

Fatou 1906 is a masterpiece of an odd literary
genre: the Comptes Rendus Notes of the Paris
Academy of Sciences. In many cases, the pur-
pose is to reveal little, but to squirrel evidence
that the author had thought of everything.

Among other marvelous remarks best un-
derstood after long self-study, Fatou 1906
points out the following. When X is real and
either A>4 or A<—2, the largest bounded set
that the transformation x—f(x) = Ax(1—x)
leaves invariant is a dust contained in [O,1].
This plate illustrates this dust’s shape for
A>4. Along the vertical coordinate, —4 /X var-
jes from —1 to O. The black intervals mark
the end points of the tremas of order 1 to 5.
The end points x; and xp of the mid trema
are solutions of the equation Ax(1—-x)=1; they
draw a parabola. Second-order tremas end at
the points Xj , X1 2, X2 1, and X2 2, such that
AXm,n(1=Xm n) = Xm, etc.

The remarkable relation between Cantor-
like dusts and one of the most elementary
among all functions deserves to be known be-
yond the circle of specialists. H
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20 x Fractal Attractors
and Fractal (""Chaotic’’) Evolutions

This chapter seeks to acquaint the reader with
a theory that evolved independently of frac-
tals, but is being penetrated by them. Its most
common name is “‘theory of strange attractors
and of chaotic {(or stochastic) evolution,” but
reasons for giving it the new name in the title
will, T hope, emerge in this chapter.

Its involvement with fractals would suffice
to justify mentioning this theory in this Essay,
and I see reasons for devoting a full chapter
to it. A practical reason is that little special
exposition is required, because several major
themes can be presented by merely reinter-
preting the results of Chapters 18 and 19.

Secondly, several features of the fractal
geometry of nature become clarified when
contrasted with the theory of fractal attrac-
tors. Indeed, my work is concerned primarily
with shapes in the real space one can see, at
least through the microscope, while the theory
of attractors is ultimately concerned with the
temporal evolution in time of points situated
in an invisible, abstract, representative space.

This contrast is especially striking in the
context of turbulence: turbulent intermittency

was the first major problem I attacked
(starting in 1964) using early forms of fractal
techniques, and (quite independently) the the-
ory of strange attractors took off for earnest
with the study of turbulence in Ruelle & Tak-
ens 1971. Thus far, the two approaches have
not met, but they are bound to meet soon.

Those interested in the sociology of science
will savor the fact that, while my case studies
that linked the mathematical monsters to real
physical shapes encountered resistance, the
abstract attractors’ being monstrous shapes
was accepted with equanimity.

A third reason for mentioning fractal at-
tractors is suggested by the fact that the cor-
responding evolutions look “chaotic” or
“stochastic.” As seen in Chapters 21 and 22,
many scholars question the use of randomness
in science; now the hope has arisen that it will
be justified via fractal attractors.

Finally, those who have accepted many
chapters ago (or one or two Essays ago) my
contention that many facets of nature can
only be described with the help of certain sets
previously reputed pathological may be impa-
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tient to move from “how’’ to ““why.” Exposito-
ry accounts have demonstrated in several cas-
es that it is not difficult to sugar-coat the geo-
metric frames in previous chapters, making
them more immediately palatable. But a taste
for fractals is one I wanted the reader to ac-
quire, however bitter it may first seem to most
grown scientists. Furthermore, pseudo-
explanation via sugar-coating is never compel-
ling, in my opinion, as explained in Chapter
42. Therefore, explanation was downplayed,
except when a compelling one is available, as
in Chapter 11. In addition, I suspect that
many further genuine explanations will come
forth when fractal attractors become a foun-
dation of the fractal geometry of visible natu-
ral shapes.

Since the transforms that have attractors
are nonlinear, the visible fractals are likely
not to be self-similar. This is fine: there was a
paradox in my use of the fractal counterpart
of the straight line to handle phenomena ruled
by nonlinear equations. The scaling fractals
that account well for a natural phenomenon
would be local approximations to nonlinear
fractals.

THE NOTION OF ATTRACTOR

The present chapter centers around a long
neglected observation due to Henri Poincaré:
The ““orbits” of nonlinear dynamical systems
may be “attracted” to odd sets that I identify
as nonlinear fractals.

Let us first examine the simplest attractor:
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a point. The “orbit” followed by the motion of
a small ball put inside a funnel begins with
wiggles that depend on its initial position and
velocity, but converges eventually to the
funnel’s tip; if the ball is bigger than the fun-
nel aperture, it comes to rest at the tip. The
tip is a stable equilibrium point, or stable fix-
ed point, for the ball. In a nice alternative
descriptive terminology (which one must be
careful not to interpret in anthropocentric
terms), the funnel’s tip is called an attractor
point.

A physical system may also have a stable
attracting circle or ellipse. For example, it is
believed (and fervently hoped, though no one
will live long enough to care) that the solar
system is stable, meaning that Earth’s orbit, if
perturbed, would eventually be ‘‘attracted
back” into its present rut.

More generally, a dynamical system is cus-
tomarily defined as follows: Its state at time t
is a point o(t) on the line, in the plane, or in
some higher dimensional Euclidean “‘phase
space”’ ]RE, and its evolution between the
times t and t+At is determined by rules in
which the value of t does not enter explicitly.
Each point in phase space can be taken as the
initial state ¢(0) at t=0, and it is followed by
an orbit defined by the a(t) for all t>0.

The major distinction between such sys-
tems concerns the geometric distribution of
o(t) for large t’s. A dynamical system is said
to have an attractor if there exists a proper
subset 4 of the phase space RE, such that for
almost all starting points ¢(0), and t large
enough, o(t) is close to some point of _4.
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THE NOTION OF REPELLER

On the other hand, a ball can be poised in
unstable equilibrium on a pencil’s point.
When the initial position is near this equilibri-
um, the ball seems to be pushed away, before
converging to stable equilibrium elsewhere.

The set of all unstable equilibrium states,
plus their limit points, is called repeller.

In many cases, the repellers and attractors
exchange roles by turning the equations
around. When the force is gravitation, it suf-
fices to invert the direction of gravity. For
example, consider a largely horizontal sheet
with a dip in both directions. When a ball is
positioned on the sheet’s upper side and gravi-
ty points down, let A denote the attractor dip
and R the repeller dip. When the ball is repo-
sitioned on the sheet’s lower side and gravity
points up, A and R exchange roles. Such ex-
changes play a central role in this chapter.

FRACTAL ATTRACTORS. "CHAOS"”

Much of textbook mechanics concerns dynam-
ical systems whose attractors are points, near-
circles, or other shapes from Euclid. But these
are rare exceptions, and the behavior of most
dynamic systems is incomparably more com-
plicated: their attractors or repellers tend to
be fractals. The next few sections describe
examples where time is discrete, with At=1.
AN ATTRACTOR THAT IS A DUST. THE a OF
FEIGENBAUM. The simplest example is ob-
tained through squaring (Chapter 19). As

prelude, consider yet another representation
of the Cantor dust € with N=2 and r<%,
spanning [—r/(1-r), r/(1-r)]. This C is the
limit of C,, defined as the set of points of the
form +r+r?+... +r". Asn>n+1, each point
of C, bifurcates into 2, and C is the outcome
of an infinity of bifurcations.

Interpreting P. Grassberger (preprint), the
attractor _4\ of x—>Ax(l-x) for real XA is
analogous. to C,,, but with 2 distinct ratios of
similarity, one of which is Feigenbaum’s
1/a~.3995... (Feigenbaum 1981). After an
infinity of bifurcations, this attractor is a
fractal dust _4 with D ~ .538.

“CHAOS". No point of _4 is visited twice in
finite time, Many authors describe evolutions
on fractal attractors as “chaotic.”

~a SELF-AFFINE TREES. Juxtaposing the _4)
in the (x,A\) plane, one obtains a tree. Since
0~4.6692 # q, this tree is asymptotically
self-affine with a residue. »

COMMENT. The theory should ideally fo-
cus upon intrinsically interesting and realistic
(but simple) dynamical systems, whose attrac-
tors are fully understood fractals. The strange
attractors literature—though extremely
important—is far from this ideal: its fractals
are usually incompletely understood, few are
intrinsically compelling, and most fail to be
solutions to well-motivated problems.

I was therefore led to devise “dynamical
systems” that amount to seeking new ques-
tions to obtain old and pleasant answers. That
is, I contrived problems so that their solutions
are familiar fractals. Somewhat surprisingly,
these systems are of interest.
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SELF-INVERSE ATTRACTORS

Chapter 18 describes the L sets of Poincaré
chains as being both the smallest self-inverse
sets and limit sets. To restate this last proper-
ty: given an arbitrary starting point Pg, every
point of £ is approached arbitrarily closely by
transforms of Py by sequences of inversions.
Now suppose that this sequence of inversions
is selected by a separate process, independent
from the present and past positions of P. Un-
der wide conditions, the resulting sequences of
P’s can always be expected, and is often actu-
ally shown, to be attracted by <£. In this fash-
ion, the enormous literature concerning the
groups based upon inversions is interpreted in
terms of dynamical systems.

“TIME” REVERSAL

My search for further systems with interest-
ing fractal attractors moved on to the trove of
known systems with geometrically standard
attractors but interesting repellers. To invert
the roles of these two sets, thus making time
run backward, is possible as long as the opera-
tions of the dynamical systems have inverses
(orbits never join or cross) so that knowledge
of o(t) determines all a(t') for t'<t. However,
the specific systems in which we want to re-
verse time, are different. Their orbits are like
rivers: the path is uniquely determined in the
downhill direction, but in the uphill direction
each fork involves a special decision.

For example, let us try and invert the
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V-transformation f(x) that gives the Cantor
dust in Chapter 19. Two different inverse
functions are defined for x>1.5, and one may
agree to transform all x>1.5 into x=%. Simi-
larly, x-=Ax(1—x) has two possible inverses. In
either case, a meaningful inversion requires
choosing between two functions. In other ex-
amples, the number of possibilities is even
larger. Again, we want them to be selected by
a separate process. These thoughts point to
generalized dynamical systems, to be intro-
duced and described in the following section.

DECOMPOSABLE DYNAMIC SYSTEMS
(MANDELBROT 1980n)

We demand that one of the coordinates of the
state o(t)—call it determining index, and de-
note it by aT(t)—evolves independently of the
state of the other E-~1 coordinates—call it
o *(t)—while the transformation from ¢*(t) to
o*(t+1) is determined by both ¢*(t) and
aT(t). In the examples I studied most, the
transformation ¢*(t)>o*(t+1) is chosen in a
finite collection of G different possibilities J5,
which may be selected according to the value
of some integer-valued function g(t) =
7[0T(t)]. Thus, T studied dynamics in the
product of the ¢*-space by a finite index set.
In fact, in the examples that motivate this
generalization, the sequence g(t) either is ran-
dom or behaves as if it were. This Essay does
not tackle randomness until the next chapter,
but I doubt this is a serious difficulty. More
serious is the fact that dynamical systems are
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the very model of fully deterministic behavior,
hence are forbidden to accommodate random-
ness! However, one can inject its effects with-
out actually postulating it, by taking for g(t)
the value of a sufficiently mixing ergodic
process. For example, one can take an irra-
tional number B, and make g(t) the integer
part of af(t) = ,BtaT(O). The necessary state-
ments, being easy in principle but cumber-
some, will not be written here.

THE ROLE OF "STRANGE"™ ATTRACTORS

Students of “strange” attractors advance the
following two-part argument: A) Granted that
dynamic systems with standard attractors
cannot explain turbulence, perhaps it can be
explained by fopologically “stranger” attrac-
tors. (This recalls my independent argument,
Chapter 11, that when a differential equation
has no standard singularities, one ought to try
fractal singularities.) B) The attractors of
absurdly simple systems, such as z-Az(1-z)
for real X and z in [0,1], are strange and in
many ways characteristic of more complex
and more realistic systems. Therefore, there
can be no doubt that topologically strange
attractors are the rule.

THE TERMS ""FRACTAL" VS. “STRANGF’

EVERY KNOWN “STRANGE" ATTRACTOR IS A
FRACTAL. D has been evaluated for many
“strange” attractors. In all cases, D>Dr.

Hence, these attractors are fractal sets. For
many strange attractor fractals, D is not a
measure of irregularity but of the way smooth
curves or surfaces pile upon each other—a
variant of fragmentation (Chapter 13).

A famous attractor, called solenoid, was
introduced in two stages by S. Smale. The
original definition was purely topological,
leaving D undefined, but a revision was made
metric (Smale 1977, p. 57). For this revision,
D was evaluated in Mandelbrot 1978b which
injected D into the study of strange attractors.
For the Saltzman-Lorenz attractor with
v=40, ¢=16, and b=4, the value D=2.06
was obtained independently by M. G. Velarde
and Ya. G. Sinai, (private conversations).
This D is above 2, but not by much, meaning
that this attractor is definitely not a standard
surface, but that it is not far from being one.
Mori & Fujisaka 1980 confirms my D for the
Smale attractor and the D for the Saltzman-
Lorenz attractor. For the Hénon mapping.
with a=1.4 and b=0.3, they find D=1.26.
Many other articles to the same effect are on
the way.

CONVERSE. Whether or not all fractal at-
tractors are strange is a matter of semantics.
Increasing numbers of authors agree with me
that for most purposes an attractor is strange
when it is a fractal. This is a healthy attitude,
if “strange” is taken to be a synonym to
“monstrous,” ‘“pathological,” and other epi-
thets once applied to individual fractals.

But “strange” is sometimes given a techni-
cal sense, =a one so exclusive that the
Saltzman-Lorenz attractor is not “strange,”
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but “strange-strange.” m In this light, an
attractor’s “strangeness’ involves nonstandard
topological  properties, with nonstandard
fractal properties coming along as an
“gyerhead.” A closed curve without double
points is not “strange’ in this sense, however
crumpled it may be; hence, many fractal at-
tractors I examined are not strange.

With this definition of ‘“‘strange,” the ar-
gument in the preceding section ceases to be
compelling. But it becomes compelling again
if strangeness is modified from being a topo-
logical to being a fractal notion. Thus, I think
that those who define “strange” as ““fractal”
deserve to win. Since indeed they are winning,
there is little reason to preserve a term whose
motivation vanished when I showed that frac-
tals are no stranger than coastlines or moun-
tains. Anyhow, I cannot conceal a personal
dislike for the term “strange.” -

LRl
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Plates 198 and 199 =
ATTRACTION TO FRACTALS

These two shapes illustrate long orbits of suc-
cessive positions of two decomposable dynami-
cal systems. The Pharaoh’s Breastplate in
Plate 199 is self-inverse (Chapter 18), being
based upon 4 inversions selected to insure that
the limit set " is a collection of circles. The
San Marco dragon in Plate 198 is self-
squared (Chapter 19), being based upon the
two inverses of x-3x(1—x).

The determining index is chosen among 4,
respectively 2, possibilities, using a pseudo-
random algorithm repeated 64,000 times.
The first few positions are not plotted.

Regions in the neighborhoods of cusps and
self-intersections are very slow to fill, M






VIl = RANDOMNESS

21 = Chance as a Tool in Model Making

Although the basic fractal themes involve ex-
clusively deterministic constructions, the full
meaning and practical relevance of these
themes are not apparent until one tackles ran-
dom fractals. And conversely, the study of
fractals seems, at least to this writer, to in-
crease one’s understanding of randomness.

A first reason to inject chance is familiar
to every scientist, yet deserves comment in
this chapter, among less generally familiar
remarks of a general nature. The following
chapter opens new vistas and shows that
chance is also needed for reasons specific to
the study of fractals.

{(X) DENOTES AN EXPECTATION; THE
ABBREVIATION FOR PROBABILITY IS Pr

Each discipline seems to denote the expecta-
tion of the random variable X differently. The
physicists’ notation (X) is adopted in this Es-

say, because it has the virtue of including its
own portative parentheses.

Given a function B(t), and its AB(t) =
B(t+At)—-B(t), I call (AB(t)) the delta mean,
and ([AB(t)~(AB(1))]?) the delta variance.

RANDOM MODELS" STANDARD ROLE

Let us go back to the question “How long is
the coast of Britain?” Much as it reminds us
of real maps, the Koch curve has major de-
fects which we encounter almost unchanged in
early models of every other phenomenon stud-
ied in this Essay. Its parts are identical to
each other, and the self-similarity ratio r must
be part of a scale of the form b™¥, where b is
an integer, namely, %, (1/3)2, and so on.

One might improve the model by invoking
more complicated deterministic algorithms.
However, this approach would be not only
tedious, but doomed to failure, because each
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coastline is molded throughout the ages by
multiple influences that are not recorded and
cannot be reconstituted in any detail. The
goal of achieving a full description is hopeless,
and should not even be entertained.

In physics, for example in the theory of
Brownian motion, the key out of this difficul-
ty lies in statistics. In geomorphology, statis-
tics is even harder to avoid. Indeed, while the
laws of mechanics affect molecular motion
directly, they affect geomorphological pat-
terns through many ill-explored intermediates.
Hence, even more than the physicist, the geo-
morphologist is compelled to forsake a precise
description of reality and to use statistics. In
other fields which we shall explore, the cur-
rent knowledge of local interactions lies some-
where between physics and geomorphology.

SEARCH FOR THE RIGHT
AMOUNT OF CHANCE IRREGULARITY

Can chance bring about the strong degree of
irregularity encountered, say, in coastlines?
Not only does it, ‘but in many cases it goes
beyond the desired goal. In other words, the
power of chance is widely underestimated.
The physicists’ concept of randomness is
shaped by theories in which chance is essen-
tial at the microscopic level, while at the ma-
croscopic level it is insignificant. Quite to the
contrary, in the case of the scaling random
fractals that concern us, the importance of
chance remains constant on all levels, includ-
ing the macroscopic one.
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A PRAGMATIC USE OF CHANCE

The relationship between statistical unpredict-
ability and determinism raises fascinating
questions, but this Essay has little to say
about them. It makes the expression “at
random’ revert to its intuitive connotation at
the time when medieval English borrowed it
from French. The phrase “un cheval a
randor” is reputed to have been unconcerned
with either mathematical axiomatics or equine
psychology, and merely denoted irregular
motion the horseman could not predict.

Thus, while chance evokes all kinds of
quasi-metaphysical anxieties, this Essay is
determined to be little concerned with wheth-
er or not, in Einstein’s words, “the Lord plays
with dice.” The theory of probability is the
only mathematical tool available to help map
the unknown and the uncontrollable. It is for-
tunate that this tool, while tricky, is extraor-
dinarily powerful and convenient.

FROM RECURSIVITY TO RANDOMNESS

Furthermore, probability theory can be intro-
duced to fit smoothly within the recursive me-
thods that predominate in this Essay. In other
words, this Essay’s second half follows the
first half without discontinuity. We shall con-
tinue to concentrate on cases where both the
mathematical definition and the graphics al-
gorithm can be written in the form of a
“processor program’ with an internal loop,
and each run around the loop adds fresh de-
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tail to what has been drawn on previous runs.

The familiar loop that generates the triad-
ic Koch curve reduces to this processor pro-
gram. But other nonrandom fractals involve in
addition a “control program,” which we must
now emphasize, and whose functions evolve
interestingly but progressively toward in-
creased generality. In a first step, the caption
of Plate 46 observes that certain Koch genera-
tors can be used either in straight (S) or flip-
ped (F) variants, hence their processor needs a
controller to tell it before each loop whether
to use S or F. In general, different control
sequences yield different fractals. Hence, for
each choice of M and of the corresponding D,
the fractal loop of Plate 46 is not really one
curve but an infinite (denumerable) family of
curves, one for each control sequence. The
controller may either read his sequence from
a tape, or interpret a compact instruction of
the form “alternate S and F,” or “let the k-th
stage use S (or F) whenever the k-th decimal
of 7 is even (or odd).”

RANDOMNESS/PSEUDORANDOMNESS

Many random fractals involve precisely the
same pattern: an interpreting controller fol-
lowed by a processor. This fact is often hidden
(sometimes to make things look harder), but
is clearcut in the desirable cases whose defini-
tion is explicitly recursive. .

The very simplest controller is called
“sequence of throws of a fair coin,” but I
have never used one. In today’s computer en-
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vironment, the controller is a “random num-
ber generator.” Its input, called seed, is an
integer with a prescribed number M of binary
digits. (M is determined by the equipment;
when fewer than M digits are typed in, the
front is filled in with zeros.) The controller’s
output is a sequence of O and 1. In simula-
tions of a Bernoulli game, each digit stands
for the result of the toss of a fair coin. And a
game of 1,000 coin tosses is really a sequence
of 1,000 individual pseudo-random digits.

But one can also imagine that there exists
somewhere a big book of 21000 pages, in
which each possible outcome of 1,000 coin
tosses is recorded on a separate page. Thus,
any game of 1,000 tosses can be specified by
selecting a page in this book. The parameter
of chance is simply the page number, i.e., the
seed.

More generally, the controller’s output is
often sliced into chunks of A integers. Then,
by adding a decimal point in front, each
chunk is made into a fraction U, and this
fraction is called “random variable uniformly
distributed between O and 1.”

The output of a practical random set gen-
erator is not a single function or shape, but a
virtual “grand portfolio” of 2* pages, each
devoted to a single shape. Again, the page
numbers are the seeds.

The botanical analogy implies of course
that the seeds are all of the same species and
variety. One allows for “defective seeds’ that
produce very atypical plants, but one expects
the overwhelming majority of plants to differ
in detail but be the same on essentials.
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The random number generator is the hinge
of any simulation. Upstream are operations
that involve in every case the same interface
between number theory and probability theo-
ry, and are independent of the program’s
goals. They are exemplary of deterministic
transformations that mimic randomness as
described by the theory of probability. Down-
stream lie steps which vary according to the
simulation’s objective.

The move from this practical environment
to full-fledged recursive probability is a natu-
ral one. The main change is that fractions
with a finite number of digits are replaced by
real numbers. The seeds become the mysteri-
ous “elementary events” which mathematical
probabilists denote by the letter w. =a To
“interpret” w into an infinite sequence of real
control variables, Paley & Wiener 1934 sug-
gests converse Cantor diagonalization. m

EMPTY INVOCATION OF CHANCE
VERSUS ACTUAL DESCRIPTION

The preceding section argues that the theory
of chance is not really difficult. Unfortunate-
ly, it is not really easy. One is tempted to say
that, to achieve a model of coastlines free of
the defects of the Koch curve but preserving
its assets, it suffices to deform the different
portions of the curve and to modify their
sizes, all at random, then string them together
in random order.

Such an invocation of chance is allowable
in preliminary investigations, and our early
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chapters indulge in it freely. It is not sinful,
unless it is hidden from the reader or is not
recognized by the writer. And in some cases it
can be implemented. In other cases, merely to
invoke chance is an empty gesture. Indeed,
rules that generate acceptable random curves
are very hard to describe, because geometric
sets are imbedded in a space. By merely vary-
ing at random the shapes, the sizes, and the
order of a coastline’s parts, one tends to be
left with pieces that will not fit together.

NONCONSTRAINED
AND SELF-CONSTRAINED CHANCE

Thus we hit immediately upon an informal
distinction of great practical impact. Some-
times our controller followed by a processor
may go through their loops without having to
inspect the earlier loops” effects, because there
is no fear of a resulting mismatch. One can
say such models involve a nonconstrained
form of chance. Otherwise, late stages of the
construction are constrained by the outcome
of earlier stages, and/or chance is strongly
self-constrained by the geometry of space.

To exemplify the contrast, the 2n-sided
polygons on a lattice, including the self-inter-
secting ones, raise an easy problem of combi-
natorics. And one can generate such a polygon
by nonconstrained chance. But coastlines must
not self-intersect, and counting the numbers
of polygonal approximations of coastlines is a
problem of strongly self-constrained chance,
that continues to elude the best minds.
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Since the problems involving self-con-
strained chance are hard ones, they are avoid-
ed except in Chapter 36.

HYPERBOLIC RANDOM VARIABLES

A nonuniform random variable X is simply a
monotone nondecreasing function X=F_1(u).
The inverse function U=F(x) is called the
probability Pr(X<x). (Discontinuities in F(x)
or F_l(u) require careful wording.)

The expression Nr(U>u)<>cu“D stars in
Chapters 6, 13, and 14. Its probabilistic
counterpart, Pr(U>u)ccu_D, is called hyper-
bolic distribution and stars in many of this
Essay’s remaining chapters. The property that
Pr(U>0)=c0 is curious but must not provoke
panic. It turns out to be just as desirable and
manageable as Nr(U>0)=co was in Chapter
13. It will have to be handled carefully, but
the technicalities can and will be avoided.

A RANDOM SET'S TYPICAL D AND Dy

When a set is random, the notions of dimen-
sion demand elaboration. In our “grand
portfolio” that brings together a population of
random sets, each page is a set, hence has val-
ues of D and Dy attached to it, as in earlier
chapters. These values vary between samples
(= pages), but in all the cases we. encounter
their distribution is simple.

There is a batch of aberrant samples
(““defective seeds”) for which D takes all
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kinds of values, but this batch has a vanishing
overall probability. All other samples are
characterized by some common D called
“almost sure value.”

I believe the same holds for Dy and hope
that the topic will draw the attention of the
mathematicians.

The almost sure values are in every way
“typical” of the population. For example, the
expected value of D is identical to the almost
sure value.

On the other hand, one should avoid even
thinking of the dimension of the ““average
set.” For example, assuming the reader has a
mental picture of a symmetric random walk,
let us try to define the average walk. If it is a
process whose positions are the averages of all
the walks in a population, then the average
does not walk but sits: it never leaves its ini-
tial position, hence D=0, «a while for almost
every walk, Chapter 25 implies that D=2. m
The only average set that is “safe” for pur-
poses of handling dimensions is the set char-
acterized by the average D; this definition is
safe because it is circular.

Any method applicable to nonrandom frac-
tals can serve to evaluate D. But recall a
warning made in Chapter 13: when the por-
tion of a fractal set contained within a ball of
radius R centered on the set tends to have a
measure (“mass”) satisfying M(R) « RC, the
exponent Q need not be a dimension. -
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Cosmographic Principles

The preceding chapter’s retelling of the usual
reasons for favoring randomness does not dis-
tinguish between the standard and the fractal
models. In the former context, randomization
brings considerable improvements, but non-
random models remain acceptable for many
purposes. Let us now show that in the fractal
context, randomness is necessary for a model
to be really acceptable.

TRANSLATION INVARIANCE, SYMMETRY

The argument involves the old philosophical
notion of symmetry. It is not understood here
as in “bilateral” symmetry with respect to a
line, but in a combination of the original
meaning of svuperpia in Greek, as “‘resulting
from the commensuration of the various con-
stituent parts with the whole” (Weyl 1952),
and of the physicists’ current use, which
makes symmetry a synonym of invariance.
The nonrandom fractals’ essential failing is
that they are not symmetric enough. A first
failing, stated in the vocabularies of different

sciences, is that it is inconceivable for a non-
random fractal to be translationally invariant,
or stationary, and that it cannot satisfy the
cosmological principle.

Second, a nonrandom fractal cannot be
uniformly scaling, in the sense that it only
allows for a discrete scale of similarity ratios
of the form rK.

The problem of galaxy clusters is so impor-
tant that the present discussion will center
around it, making this chapter the second
stage of this Essay’s contribution to astrono-
my.

THE COSMOLOGIC PRINCIPLE

The postulate that time and our position on
Earth are neither special nor central, that the
laws of Nature must everywhere and always
be the same, is called cosmologic principle.

This assertion, formalized by Einstein and
E.A. Milne (North 1965, p. 157), is discussed
at length in Bondi 1952.
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STRONG COSMOGRAPHIC PRINCIPLE

A brutal application of the cosmologic princi-
ple demands that the distribution of matter
follow precisely the same laws regardless of
the system of reference (origin and axes) used
to examine it. In other words, the distribution
must be translationally invariant.

One must be careful in selecting a term to
denote this corollary. Since it does not deal
with theory (Aovyos), but with description
(vpadn), and since we shall momentarily pro-
pose series of a weakened versions, it is best to
speak of the strong cosmographic principle.

The underlying idea can already be read
into the doctrine of “learned ignorance” of
Nicholas of Cusa (1401-1464): “Wherever
one is, one thinks is the center;” “The world
has its center everywhere, and thus nowhere,
and its circumference is nowhere.”

COSMOGRAPHIC PRINCIPLE

However, the distribution of matter is not
strictly homogeneous.

The most obvious weakening of the princi-
ple is to introduce chance, in the standard
framework described in the preceding chapter.
The resulting assertion is called statistical
stationarity by probabilists, but for the sake
of consistency we shall call it uniform statisti-
cal cosmographic principle: The distribution
of matter follows the same statistical laws
regardless of the system of references.
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A QUANDARY

The application of the above principle to ga-
lactic clustering poses hard problems. The
Fournier universe of Chapter 9 is of course
grossly nonhomogeneous, but one may have
hoped to be able to randomize it in order to
satisfy the uniform statistical cosmographic
principle. To preserve the model’s spirit, how-
ever, the randomization must preserve the
property that the approximate density
M(R)R_3 in a sphere of radius R tends toward
O when R tends toward infinity. Unfortunate-
ly, this last feature and the uniform statistical
cosmographic principle are incompatible.

It is tempting to attach less weight to mere
data than to a general principle, and to con-
clude that hierarchical clustering must end at
a finite upper cutoff, so that all fluctuations
are local in extent, and the overall density of
matter is nonzero, after all.

To implement this idea, one may for exam-
ple take infinitely many Fournier universes,
and scatter them around in statistically uni-
form fashion. A variant proposed by R. M.
Soneira is discussed in Peebles 1980.

CONDITIONAL STATIONARITY

However, I believe that the uniform statistical
cosmographic principle goes beyond what is
reasonable and desirable, and that it should
be replaced by a weaker form, to be called
conditional, which does not refer to all ob-
servers, only to material ones. Astronomers
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should find this weaker form acceptable, and
might have studied it long ago had they
known it had the slightest substantive interest.
And indeed it does: the conditional form im-
plies no assumption concerning the global
density, and it allows M(R) RD-3,

To restate my point less assertively, it is
either difficult or impossible to reconcile the
strong cosmographic principle with the notion
that the actual galaxies’ distribution is ex-
tremely far from uniform. On the one hand, if
the global density of matter é in the Universe
vanishes, the strong cosmographic principle
must be wrong. On the other hand, if § is
small but positive, the strong cosmographic
principle holds asymptotically, but for the
scales in which we are interested it is of no
use. One may like to keep it in the back-
ground, if it is reassuring. One may prefer to
avoid it as being potentially misleading. Final-
ly, one may settle on replacing it with a state-
ment that is meaningful for all scales, and is
independent of whether 6=0 or 8>0. This last
approach amounts to subdividing the strong
cosmographic principle into two parts.

THE CONDITIONAL
COSMOGRAPHIC PRINCIPLE

CONDITIONAL DISTRIBUTION. When the frame
of reference satisfies the condition that its
origin is itself a material point, the probabili-
ty distribution of mass is called conditional.
PRIMARY COSMOGRAPHIC ASSUMPTION.
The conditional distribution of mass is the

same for all conditioned frames of reference.
In particular, the mass M(R) contained within
a ball of radius R is a random variable inde-
pendent of the frame of reference.

The statement of the conditional cosmo-
graphic principle involves precisely the same
words regardless of whether 6>0 or 6=0. This
is esthetically pleasing and has the philosophi-
cal advantage of satisfying the spirit of con-
temporary physics. By subdividing the strong
caosmographic principle into two parts, we can
highlight a statement that concerns everything
that is observable, and we downgrade a state-
ment that constitutes an act of faith or a
working hypothesis.

THE AUXILIARY ASSUMPTION OF
POSITIVE OVERALL MATTER DENSITY

AUXILIARY COSMOGRAPHIC ASSUMPTION. The
quantities

lim R M(R)R3 and lim R o (M(R))R™3

exist, are almost certainly equal, and are posi-
tive and finite.

THE STANDARD CASE WHERE 6>0

The statistical laws of distribution of matter
can be stated in different ways. One can use
the absolute probability distribution, which is
relative to an arbitrary frame of reference.
Alternatively, one can use the conditional
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probability distribution relative to a frame
centered on a material point. In case the
above auxiliary assumption is verified, the
conditional probability distribution derives
from the absolute distribution by the usual
Bayes rule. And the absolute probability de-
rives from the conditional probability by tak-
ing the average relative to origins that are
uniformly distributed over space.

«a The uniform distribution of origins in-
tegrated over the whole space results in an
infinite mass. The nonconditional distribution
may be re-normalized to add up to 1, if, and
only if, the global density be positive. See
Mandelbrot 1967b. »

THE NONSTANDARD CASE WHERE §=0

Suppose to the contrary that the auxiliary
assumption is rot valid, more precisely, that
lim R oM(R)R™3 vanishes. If so, the absolute
probability distribution merely states that a
ball with a finite radius R chosen at random is
almost certain to be empty. Hence, one who
could peek around from a point selected at
random would almost surely see nothing.
However, Man is only interested in the proba-
bility distribution of mass in the case of the
actual Universe, where it is known that mass
does not vanish in Man’s neighborhood. After
an event has occurred, its absolute probability
of occurrence is of limited interest.-

‘ Th'e very fact that the nonconditional dis-
'.mbutlon automatically disregards such cases
implies it is grossly inadequate when 6=0.
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Not only is it compatible with mass carried by
any fractal satisfying D<3, but tells absolute-
ly nothing beyond é=0.

The conditional probability distribution, on
the contrary, distinguishes among fractals
having different fractal dimensions, among
fractals that are or are not scaling, and
among other alternative assumptions.

NONSTANDARD “"NEGLIGIBLE EVENTS"”

The nonstandard case 8=0 faces the physicist
with an almost sure event which can be disre-
garded, and an event of zero probability
which not only cannot be disregarded but
must be analyzed into finer subevents.

This contrast is precisely inverse of the one
to which one is accustomed. The average
number of heads in an increasing sequence of
tosses of a fair coin may fail to converge to %,
but the cases of nonconvergence are of zero
probability and therefore devoid of interest.
When a statistical mechanics conclusion (such
as the principle of the increase of entropy)
holds almost surely, the opposite conclusion
has a vanishing probability and is therefore
negligible. Clearly, the therefore in the pre-
ceding two sentences yields the precise oppo-
site of what I propose in cosmography.

AVOIDANCE OF STRATIFICATION

A second form of symmetry concerns scaling.
When the reduction ratios of the parts of a
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nonrandom fractal all equal r, the admissible
scaling ratios are of the form rk. When the
parts’ reduction ratios are ry, ra..., the admis-
sible overall ratios are less restricted, but still
cannot be chosen freely.

In other words, nonrandom fractals em-
body a strong hierarchical structure or, as I
prefer to say, are strongly stratified. Some
stratified models look good to the physicists,
because they are very manageable computa-
tionally. Nevertheless, this characteristic is
philosophically unpalatable, and in the case of
galaxies there is no direct evidence of the
clusters’ reality. This is why the call is heard,
notably in de Vaucouleurs 1970, for “the ex-
tension of Charlier’s work to quasi-continuous
models of density fluctuations that would re-
place the original oversimplified discrete hier-
archical model.”

This desire cannot be fulfilled by a non-
random fractal, but random ones can fulfill it,
as I shall show.

NONSTRATIFIED CONDITIONALLY
COSMOGRAPHIC FRACTAL WORLDS

As previously indicated, astronomers are un-
likely to object a priori to the idea of condi-
tioning, and this idea would be commonplace,
were it acknowledged as having consequences
worthy of attention. I propose to prove that it
is indeed an authentic generalization, and not
merely a formal refinement with this goal in
mind, Chapters 32 to 35 describe explicit con-
structions with the following properties:

» They induce a zero global density.

« They satisfy the conditional statistical
cosmographic principle.

» They fail to satisfy any other form of the
cosmographic principle.

« They are scaling with respect to every r.

o They are not stratified by design, but
instead induce an apparent hierarchical struc-
ture as a corollary of a dimension <2.

« Finally, they fit the quantitative data.

All these properties but the last are satis-
fied by every one of my models. As to the
quantitative fit, it improves from Chapter 32
to Chapter 35. Thus, it suffices to order my
models naturally by increasing complication,
to achieve increasingly perfect fit to the best
analyses of the data.

PREVIEW

Having hailed the splendid vistas opened by
thoroughly random fractals, we cannot rush to
contemplate those models, because they exhib-
it mathematical complications that are best
postponed. Chapters 23 to 30 keep to compar-
atively familiar probabilistic ground. -



VIl =z STRATIFIED RANDOM FRACTALS

23 = Random Curds:
Contact Clusters and Fractal Percolation

This group of chapters shows that diverse de-
vices of almost ridiculous simplicity lead to
effective random fractals. Chapter 23 ran-
domizes curdling, a procedure used to rough
out a Cantor model of noise (Chapter 8), a
spatial Cantor dust model of galaxies
(Chapter 9), one of turbulent intermittency
(Chapter 10), etc. Chapter 24 is primarily
meant to introduce my squigs, a new random-
ized form of Koch curve. Chapter 25 concerns
Brownian motion and Chapter 26 defines oth-
er “random midpoint displacement” fractals.
The term “‘stratified” in the title of this
group of chapters expresses that in all these
case studies we deal with fractals constructed
by a superposition of layers (= strata in Lat-
in), each involving finer detail. In many cases,
the strata are hierarchical. Without saying so,
all the earlier chapters deal exclusively with
stratified fractals. But later chapters establish
that random fractals need not be stratified.

The fractals in this chapter involve a grid
or lattice, made of intervals, squares, or
cubes, each divided into bE subintervals, sub-
squares, or subcubes; b is the lattice base.

RANDOMIZED LINEAR DUSTS

The simplest random dust on the line, which
may improve upon the Cantorian model of
errors of Chapter 8, starts as the simplest
form of Cantor curdling: with a lattice of in-
tervals of base b and an integer N<b. But,
instead of a specific generator, one is given
the list of all possible Cantor generators, that
is, of all the distinct rows of N full and b—-N
empty boxes. Each time, one chooses one of
these generators at random, with equal proba-
bilities.

Any point P of the curd is defined by a
sequence of imbedded “precurd” intervals of
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lengths Rk=b_k. If the total initial mass is 1,
each precurd contains the same mass RkD.
The mass in the interval of length 2Ry, cen-
tered as P, is RkD multiplied by a random var-
iable lying between 1 and 2, independent of k.
Observe that D is bound to the sequence
log (b—1)/logb, log(b—-2)/logb, .... This
restriction is often inconvenient. More impor-
tant, the above definition of curdling is awk-
ward to implement on the computer and to
manipulate analytically. Since the main virtue
of curdling resides in its simplicity, an alter-
native definition given in the next sections
should be preferred. To distinguish this
section’s definition, let us call it constrained.
(Mandelbrot 1974f calls it microcanonical.)

CURDLED RANDOM LINEAR DUSTS

A better definition of curdling, found in Man-
delbrot 1974f, which calls it canonical, is ob-
tainable by a sequence of binary random
choices, each of them ruled by mere coin toss-
ing. By throws of a coin, the first stage of a
cascade decides the later fate of each of b
subintervals. When the coin falls on heads, an
event of probability p<1, the subinterval
“survives” as part of a precurd; otherwise, it
dies off. After each stage, the isolated points
left between two dead subintervals of any
length are erased. They are only a small nui-
sance, but their plane or spatial counterparts,
(isolated lines, etc.), would introduce spurious
connections in the set. The expected number
of surviving subintervals is <N>=pb=p/r.

Then the process resumes with each subinter-
val, independently of all others.

BIRTH PROCESS FORMALISM. Calling the
subintervals ‘‘children,” and the whole cas-
cade a “family,” shows that the distribution
of the number of children is ruled by the well-
known birth and death process (Harris 1963).

The fundamental result is the existence of
a critical value for (N): this fact was discov-
ered by Irénée Bienaymé in 1845 (see Heyde
& Seneta 1977), and deserves to be called the
Bienaymé Effect.

The value (N)=1 is critical in the sense
that the number N(m) of offspring present
after the mth generation is ruled by the fol-
lowing alternative. When (N)<1, it is almost
certain that the family line eventually dies
out, meaning in the present interpretation that
the cascade yields an empty set. When (N)>1,
to the contrary, the family line of each curd
has a nonzero probability of extending to an
infinite number of generations. In this case,
random curdling yields a random dust on the
line.

MEANING OF SIMILARITY DIMENSION. The
ratio log N(m)/log (1 /r) being random here,
similarity dimension requires fresh thinking.
The almost sure relation,

M m-colog N(m) /log (1 /r™)
=log (N)/log (1 /1),

suggests a generalized similarity dimension

D*=log (N)/log(l/r)=E—logp/logr.
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With this D*, the condition for the exist-
ence of a nonempty limit set, {(N}>1, takes a
very sensible form: D*>0. When D*>0, one
has D=D%*. Formally applied when (N)<1,
this formula would yield D<O, but in fact the
empty set is always of dimension D=0.

IMBEDDED CURDS OF DECREASING D

Let us construct a series of random curds of
decreasing dimension D, each imbedded in the
preceding one.

A preliminary step is independent of D: it
attaches to each eddy of any order a random
number U between O and 1. We know
(Chapter 21) that all these numbers taken

together are equivalent to a single number

that measures the contribution of chance.
Next, D is selected, and the last written for-
mula uses it to yield a probability threshold p.
Finally, curdling involves the following
“fractal decimation process.” Whenever U>p,
the eddy ““dies off” as whey, taking along all
its subeddies. When U<p, the eddy survives,
to curdle again.

This method makes it possible to follow all
the characteristics of curd, whey, and all oth-
cr sets of interest as functions of a continu-
ously varying dimension. It suffices to hold all
the random numbers U fixed, while p decreas-
es from 1 to 0, and D decreases from 3 to O.

Given the curds Q; and Q> corresponding
to the probabilities p; and po<pi and having
the dimensions Dy and D,<Dj, the transfor-
mation from Q) to QrcQq can be called
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“relative fractal decimation” of relative prob-
ability po/p1 and relative dimension Dy—Dj.
To perform relative decimation directly, one
seeks the eddies of side 1/b that belong to
@1, and one lets them live on with the new
probability po/pj. Then one proceeds like-
wise with the surviving eddies of side l/b2
etc. If the sequence Qp, Qy...., Qg is obtained
by successive decimations, the relative proba-
bilities multiply, and the relative dimensions
add...until their sum falls below O, and @ be-
comes empty.

HOYLE CURDLING OF GALAXIES

Constrained curdling has a spatial counterpart
that can serve to implement the Hoyle cur-
dling model of galaxy distribution, Plates 218
and 219.

NOVIKOV-STEWART TURBULENT
DISSIPATION INVOLVES CURDLING

Spatial random curdling also arises unwitting-
ly in a very early model of the intermittency
of turbulence. Novikov & Stewart 1964 as-
sume that the spatial distribution of dissipa-
tion is generated by a cascade; each stage
takes the precurd of the preceding stage and
curdles it further into N pieces smaller in the
ratio r. See Plates 220 through 223.

This is a very crude model, even cruder
than the model that Berger & Mandelbrot
1963 give for certain excess noises (Chapter 8
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and 31). It attracted little favorable attention,
and failed to be pursued and developed. But
the scorn directed toward it turns out to be
unwarranted. My investigations reveal that
many features of refined but complicated
models are already present in curdling.

CHEESE. The image incorporated in the
term curdling, and in the term whey to denote
its complement, should not be taken literally,
but the formation of real cheese may result
from biochemical instability in the same way
Novikov & Stewart curdling is presumed to
result from hydrodynamical instability. How-
ever, | have no data to tell whether or not any
edible cheese is also a fractal cheese.

CONSEQUENCES OF RANDOM CURDS’
BEING “IN-BETWEEN" SHAPES

The standard shapes in space for which D<3
(points, lines, and surfaces) are known to have
a vanishing volume. The same is true for ran-
dom curds.

The area of the precurds also behaves very
simply. When D>2, it tends to infinity. When
D<2, it tends to zero. When D=2, curdling
leaves it essentially constant.

Similarly, when m-oco, the cumulative
length of the edges of the precurds tends to
infinity when D>1, and to zero when D<1.

These volume and area properties confirm
that curds with a fractal dimension satisfying
2<D<3 lie somewhere between an ordinary
surface and a volume.

<1 PROOFS. They are simplest when cur-

dling is constrained. The volume of the mth
precurd is L3r3™N™ = L3(r3DYyM which -0
with the inner scale n=r™. For the area, the
case D<2 is settled on the basis of an upper
bound. The area of the mth order precurd at
most equals the sum of the areas of the con-
tributing eddies, because the latter sum also
includes subeddy sides that neutralize each
other by being common to adjacent curds. The
area of each mth order eddy being 6L2r2™,
the total area is at most 6L°r°TN™
6L%(r2P)™ When D<2, the upper bound
tends to O with m-oco, which proves our as-
sertion. In the case D>2, a lower bound is
obtained by noting that the surface of the un-
ion of mth order eddies contained in the mth
order precurd includes at least one square of
side r™ and area r°™ that is contained in said
(m-1)th order precurd and cannot possibly be
erased. Hence the total area is at least
L2r2mNm-1_ (12 /Ny(r?P)M which oo
with m. Finally, when D=2, both bounds are
finite and positive. »

THE D’'S OF FRACTALS" SECTIONS:
RULE THAT THE CODIMENSIONS ADD

Our next topic is mentioned in several earlier
chapters. Now we are ready to tackle it ex-
plicitly and fully in a special case.

As background, recall that it is a standard
property of Euclidean plane geometry that, if
a shape’s dimension D satisfies D21, its sec-
tion by a line, if nonempty, is “typically” of
dimension D-1. For example, a nonempty lin-
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ear section of a square (D=2) is an interval,
of dimension 1=D-1. And the linear section
of a line (D=1) is a point, of dimension
0=1-1, except when the two lines coincide.

More generally, the standard geometric
rules concerning the behavior of dimension
under intersection are summarized as follows:
If the sum of the codimensions C=E-D is
smaller than E, this sum is the codimension of
the typical intersection; otherwise, the inter-
section is typically empty. (The reader is en-
couraged to check this claim for diverse con-
figurations of planes and lines in space.)

It is fortunate that this rule extends to
fractal dimensions. Thanks to it, many argu-
ments about fractals are far simpler than one
may have feared. The numerous exceptions
must, however, be kept in mind. In particular
we saw in Chapter 14 that when a nonrandom
fractal 5 is cut by a specially positioned line
or plane, the section’s dimension cannot al-
ways be deduced from the dimension of .
But random fractals are simpler from this
viewpoint.

THE D'S OF RANDOM CURDS’ SECTIONS

To prove the basic rule in the case of fractal
curds, consider the traces (squares and inter-
va.ls) that the eddies and subeddies of the cur-
dling cascade leave upon either a face or an
edge of the original eddy of side L. Each cas-
czjlde stage replaces a piece of precurd by
pieces whose number is determined by a birth
and death process. Denote by Ni(m) the num-
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ber of mth generation offspring aligned along
an edge of the original eddy. Classical results,
already used earlier in this chapter, show that
Ni(m) is ruled by the following alternative.
When (N;)=Nr2<1, that is, D<2, it is almost
certain that the family eventually dies out,
meaning that the edge eventually becomes
empty, hence of zero dimension. When
{N1)>1, that is, D>2, the family line of each
edge has, to the contrary, a nonzero probabili-
ty of extending to an infinite number of gen-
erations. And the similarity dimension is D—-2,
due to the almost sure relation

lim m. olog Ny(m)/log (1 /r™)
=log (N1)/log (1 /r)=D-2.

Two-dimensional eddy traces obey the
same argument, after replacement of Ny by a
random Ny such that (N5)=Nr. When
{N2)<1, that is, D<1, each eddy face eventu-
ally becomes empty. When (N»)>1, that is,
D>1, the similarity dimension is D-1, due to
the almost sure relation

lim m e log No(m) /log (1 /r™)
=log (N>)/log (1 /r)=D-1.

Constrained curdling yields identical conclu-
sions.

As a further confirmation that fractal di-
mension behaves under intersection in the
same way as Euclidean dimension, the inter-
section of several curdled fractals of respec-
tive dimensions Dy, carried by the same grid,
satisfies E-D=2(E-D

m)-
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THE CURDS’ TOPOLOGY: CLUSTERS

Although this disclaimer may become tire-
some, the basic inequalities D<2 for galaxies
(Chapter 9) and D>2 for turbulence (Chapter
10) are not topological but fractal.

In nonrandom curdling, for E22, Chapters
13 and 14, the designer also controls the to-
pology. Connected plane curds include the
Sierpinski carpets (D>Dy=1), and connected
spatial curds include the sponges (D>Dyt=1)
and foams (D>Dt=2). Other curds are
og-clusters or dusts. Thus, when E=3 and
D>2, which is the case of interest in the study
of turbulence, a nonrandom cascade can yield
either Dy=0 (dust) or Dy=1 (curves or
g-curves) or Dy=2 (surfaces or g-surfaces).
When E=3 and D<2, which is the case of
interest in astronomy, Dt can be O or 1.

A random curdling cascade, to the contra-
ry, amounts to a statistically mixed generator
that almost surely imposes a certain deter-
mined teopology (end of Chapter 21). By its
very crudeness, curdling is so simple that it is
essential to examine its predictions on this
account. The present knowledge combines
proven facts with inferences from circumstan-
tial evidence.

CRITICAL DIMENSIONS. The curd’s Dt
changes discontinuously as D crosses certain
critical thresholds, to be denoted by Dcyit.
Docrity--+r D(g-1)crit- In other words, mixed
curds that split into portions with different
values of Dt are almost never encountered.

The most important threshold is Dt It
is, at the same time, an upper bound for the

D’s such that the curd is almost surely a dust,
and a lower bound for the D’s such that the
curd almost surely separates into an infinite
collection of disjoint pieces, each a connected
set. For reasons explained in Chapter 13,
these pieces are called contact clusters.

The next threshold, Dogit, separates the
D’s where the curd is a o-curve from those
where it is a o-surface, etc. If and when the
whey’s topology becomes of interest, it too
may lead to new critical thresholds.

CLUSTERS' DIMENSION. When D> D, the
contact clusters have a fractal dimension
Dc<D. As D decreases from E to Deyit, D de-
creases from E to Demin> 1, then crashes to O.

SIZE NUMBER DISTRIBUTIONS. Pr(A>)\),
Pr(A>a), etc. obtain by replacing Nr by Pr in
the formulas in Chapter 13.

BOUNDS ON D¢yt AND Dogrit. Obviously,
Derit21 and Dogrit22. And it is proven in the
next section that D+ has an upper bound less
than E, showing that the above definitions
have actual content.

In addition, tighter lower bounds apply
regardless of b. It is shown momentarily that
a sufficient condition for D=0 is
D<%(E+1). Hence D¢rit>Y%(E4+1)>1. And a
sufficient condition for Dt to be either O or 1
is D<%E+1. Hence, Dogyit> 2E+1>2,

For E=3, we find D<¥%(E+1)=2, which is
satisfied (with room to spare) by the Fourier-
Hoyle value D=1, and by the empirical gal-
axy value of D~1.23. Thus, a random curd
with either D is a dust, as we want it to be.

The condition D<2E+1 vyields D<2.5
when E=3. This threshold value also happens
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to be the estimated dimension of the carrier of
turbulent intermittency. Past experience with
sufficient conditions obtained by crude means
suggests that they are rarely optimal. So, it
would follow that the curdling model carrier
of turbulence is less than sheetlike.

DERIVATION OF THE LOWER BOUNDS. Their
background resides in the fact stressed in
Chapter 13, that curd contact clusters arise
where the content of neighboring cells be-
comes lumped together. Consider therefore
the intersection of the curd with a plane per-
pendicular to an axis, with a coordinate of the
form ab™®, where a and @8 are integers. We
know that, if D>1, this intersection has a pos-
itive probability of being nonempty. However,
lumping demands an overlap between the par-
tial contributions to the intersection coming
from opposite sides of a side of length b™#. If
nonempty, these contributions are statistically
independent, hence their overlap is formally
of dimension D* = E-1-2(E-D) = 2D-E-1.

When D*<0, i.e., when D<%(E+1), the
contributions fail to overlap. Hence, the curd
cannot possibly contain a continuous curve
crossing our plane, and Dy<1.

When D*<1, i.e. when D<1E+1, the ov-
erlap, if there is one, cannot contain a curve.
Hence, the curd cannot contain a continuous
surface crossing our plane, and Dy<2.

When D*<F, with F>1, ie., when
D<2(E+1+F), the same argument excludes
an hypersurface of dimension Dy=F.

Granted these results, the remainder of the
proof of the above inequalities is straightfor-
ward: when the curd contains a curve (or sur-
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face), any point P on this curve (or surface) is
contained in a box of side of the form b,
which the curve (or surface) intersects at
some point (or curve). One ascertains that it
is almost sure no such point (or curve) exists
when D<%(E+1) (or D<%2E+1).

PERCOLATING FRACTAL CLUSTERS

The discussion of topology is best continued
using percolation vocabulary. According to
the definition in Chapter 13, a shape drawn
on a square or a cube is said to percolate if it
includes a connected curve joining opposite
sides of the square or cube. Percolation is or-
dinarily tackled in the Bernoulli context dis-
cussed in Chapters 13 and 14. But the same
problem arises in the context of random frac-
tal. Here we tackle it for random curds.

The basic fact is that, when a shape is a
a-cluster, it percolates if and only if one of its
contact clusters percolates. When the contact
clusters are fractals and their lengths follow a
scaleless hyperbolic distribution, the probabil-
ity of percolation is independent of the
square’s side, and does not degenerate to ei-
ther O or 1. In Bernoulli percolation, the
“when” in the preceding sentence is satisfied
under the narrow condition p=pcrt. In perco-
lation through fractal curds, the condition
broadens to D>D,t. This is a considerable
difference. Nevertheless, to understand Ber-
noulli percolation helps us understand curds’
percolation, and vice versa.

AN UPPER BOUND ON Dg,jt- Let me argue
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that, if b>3, Dyit satisfies bPerit> bE 4 15pE-1,
More precisely, when N is fixed (constrained
curdling), this condition makes percolation
almost certain. In nonconstrained curdling,
this condition insures that failure to percolate
has a positive but small probability.

First of all, consider the case of nonran-
dom N. Under the stronger condition
bE-N21bE-1_1, there is no way that any
given face between two precurd cells can fail
to survive. Even if the worst happens, and all
the nonsurviving subeddies crowd along said
face, these eddies are so insufficient in num-
bers that it is sure (not almost, but absolute-
ly) that no path becomes disconnected. Under
the weaker condition bE—Nzl/zbE_l, the same
result is not absolutely, but almost, certain.
The resulting curd is made of sheets sur-
rounding separate gaps filled with whey. Two
points of the whey can be linked only when
they are in the same gap. The topology is al-
most surely that of Sierpifiski carpet, or of
foam; Chapter 14.

With the same condition applied to uncon-
strained curdling, failure to percolate is no
longer an impossibility, but an unlikely event.

Let us examine numerical examples for
E=2. When b=3, the weaker and more useful
of the above conditions become N>7.5, which
has only one solution N=8 (its value for the
Sierpinski carpet)! As b->oo, the above upper
bound on Dt gets increasingly closer to 2.

LOWER BOUND TO Dgt. When b>>1,
Derit>E+log pperit, Where peit is the critical
probability in Bernoulli percolation. The
background to this bound is that the first

stage of random fractal curdling amounts to
building a Bernoulli floor with a tile having
the probability bPF of being conducting. If
this probability is less than pg,it, a floor’s be-
ing conductive is an event of small probabili-
ty. And, if it does occur, it is likely to be due
to a single string of conductive tiles. The sec-
ond stage of random fractal curdling builds a
Bernoulli floor with the same probability b®—E
on each conductive first stage tile. This step is
very likely to destroy the percolating link.

As b-»oo, the new bound tends to E, and
in its domain of validity (b>>1), it exceeds
the bound %2(E+1). Thus, D¢jt—~E. |
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Plates 218 and 219 =« IMPLEMENTATION OF HOYLE’S MODEL
(DIMENSION D=1) USING RANDOM CURDLING IN A GRID

In Hoyle’s model (Chapter 9), a very low den-
sity gas cloud collapses repeatedly to form
clusters of galaxies, then galaxies, and so on.
Hoyle’s description, however, is extremely
schematic, and actual geometric implementa-
tion requires specific assumptions. Those
plates show a plane projection of the simplest
implementation.

PLATE 219. An initiator cube of side 1 is
subdivided into 53=125 subcubes of side 571,
and so on successively into 125 subcubes of
the kth order, each of side 57 In the kth cas-
cade stage, the matter contained in a (k—=1)th
order subcube collapses into a set of 5 sub-
cubes of the kth order, to be called k-precurd.
Hoyle curdling always reduces the dimension
from D=3 down to D=1,

In this plate, the first three stages are il-
lustrated in superposition, using increasingly
dark sha.des of gray to represent increasing
gas density. Compared to Hoyle 1975, p. 286,
this plate may seem crude. But it is carefully

drawn to scale, because questions relative to
dimension demand accuracy.

Because we present a plane projection of a
curd, it is not rare that two contributing cubes
should project on the same square. In the lim-
it, however, the projections of two points al-
most never coincide. The dust is so sparse as
to leave space essentially transparent.

PLATE 218. Here, the fourth stage of curd-
ling (with a different seed) is represented
alone. There is little evidence of the underly-
ing grid, which is fortunate, because there is
no evidence of such grids in nature (Chapter
27). The top part of the eddy, which is cut by
the edge of the page, is empty in this instance.

-<a CONTROL OF LACUNARITY. The notion of
lacunarity, presented in Chapter 34, applies
directly to random curdling on the line and to
Hoyle curdling. If Hoyle’s N=5 is replaced by
Fournier’s “real” value of N=1072 (Plate
95), a random curd’s lacunarity becomes very
small indeed. s HE
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Plates 220 through 223 1 NOVIKOV-STEWART RANDOM CURDS IN A
PLANE GRID (DIMENSIONS D=1.5936 TO D=1.9973) FOLLOWED BY PERCOLATION

The Novikov-Stewart cascade provides a useful general idea of how turbulent dissipation in a
fluid curdles into a small relative volume. Conceptually, it is very similar to the Hoyle cascade
illustrated in the preceding plates, but the values of the fractal dimension D are very different.
For galaxies, D~1, while in turbulence D>2, and D~2.5 to 2.6 is a good guess. The present
plates illustrate several different values of dimension, for the sake of a general understanding of
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the process of curdling. Throughout, r=1/5, and
N=5%24, N=5x22, N=5x19, N=5x16, and N=5x13,
respectively. Hence the dimensions take the values
D=1+log 24 /log 5=2.9973, D=2.9426, D=2.8505, D=2.7227, and D=2.5936.

The whey is represented in gray, while the curd is drawn in either black or white. The white
portion is a percolating contact cluster, namely, the connected portions touching both the upper
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and the lower sides of the graph. The black portion combines all the other contact clusters.
Because turbulence satisfies D>2, these curds are essentially opaque, and (contrary to Hoyle
curds) these plates illustrate their plane cross sections, whose dimensions are
D=1.9973, D=1.9426, D=1.8505, D=1.7227, and D=1.5936.

In Plate 220, the lower-right corner illustrates D~1.9973, a case barren of interesting detail,
and the remainder illustrates D~1.9426.




The generating program and the seed are the same throughout, and one can follow the
progressive disappearance of the grays. One began by stacking at random the 25 subeddies of
each eddy Then for successive integer values of 5P=N, the top 25—N subeddies in the stack
were ‘“‘grayed away.”

For the two smaller dimensions, there is no percolation. For N=19, there is a bit of black
and much of white. A few seeds percolate already for N=18. But the numbers of stages in this
illustration is to small for reliable estimation of D¢j;. 1
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24 » Random Chains and Squigs

The preceding chapter shows that curdling
can be randomized without disturbing the un-
derlying spatial grid of base b. In random
curdling, the “stuff” present in a lattice cell
at stage k remains within it forever, while its
distribution becomes less and less uniform.
This process is very simple, because the evolu-
tion of each cell is independent from what
happens in other cells. However, the resulting
fractals’ topology must be allowed to be deter-
mined by chance and the properties of space.

The present chapter shows how curdling
can be constrained to force the resulting frac-
tal to have specified connectedness properties.
For example, a “self-avoiding” curve is need-
ed when the goal is to model a coastline, or
river’s course. A different example arises in
the totally different field of polymer science:
an immensely long molecule floating in a good
solvent wanders around but is obviously pre-
vented from occupying the same portion of
space more than once.

In the recursive methods that insure that
the set created by curdling is connected and
self-avoiding, the initiator continues to be a
plane domain, Say a square, and the generator

continues to be a collection of smaller do-
mains contained in the initiator. In Chapter
23, the only condition on these smaller do-
mains is that they must not overlap, except
that common vertices or sides are permissible.
In the present chapter, to the contrary, the
presence of common vertices or sides is
imposed.

Common vertices, which are examined
first, involve “‘random chains” that yijeld a
direct generalization of certain Koch or Peano
curves.

Common sides turn out to yield a much
more attractive and interesting family of frac-
tals, introduced in Mandelbrot 1978r, 1979c.
Some are self-avoiding and nonbranching
“simple curves”, others are loops or trees; and
the process extends to surfaces. From now on,
I propose to call these new shapes squigs.

The main reason for preferring them to
random chains is that their being less versa-
tile seems to reflect a basic property of space.

Linear squigs are rough models of linear
polymers and river courses, looped squigs
model coastlines, and tree squigs model river
trees.
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RANDOM CHAINS AND CHAIN CURVES

The white domains in Plate 43 can be viewed
as forming a chain of triangles joined by ver-
tices. The next construction stage replaces
every triangle by a substring entirely con-
tained within it and yields a chain made of
smaller triangles joined by single points. This
sequence of imbedded chains converges to the
Koch curve. (The procedure recalls the
Poincaré chains of Chapter 18.)

Many other Koch curves can be construct-
ed in this fashion, for example the Sierpinski
gasket, Plate 141, whose chain is the shape
obtained after removal of the central triangu-
lar tremas.

This method of construction is readily ran-
domized, for example a triangle can be re-
placed either by two triangles with r=1/v3,
as in Plate 43, or by three triangles with
r="%.

SIMPLEST SQUIGS (MANDELBROT 1978r)

The simplest “squig curve” is a random frac-
tal curve designed in Mandelbrot 1978r,
1979¢, and studied further in Peyriére 1978,
1979, 1981. It is a model of a river’s course,
patterned after the well-known pictures in
geology or geography that show the successive
stages of a river that burrows into its valley,
defining its course with increasing precision.
Before the kth stage of burrowing, the riv-
er flows within a “pre-squig” valley made of
cells in a regular triangular lattice of side

225

2% Of course, no lattice cell can be visited
more than once, and each link in the valley
must be in contact with 2 neighbors, through
a shared side, while the third side is “locked.”
The k-th stage of burrowing replaces this
pre-squig by a finer one, drawn on an interpo-
lated lattice of side 27K71, Clearly, the pre-
squig of order (k+1) necessarily incorporates
one half of every side shared between two
neighboring links of order k. And a strong
converse holds, namely: the position of the
shared (unlocked) halves determines the pre-
squig of order (k+1) without ambiguity.
SYMMETRICALLY RANDOM SQUIGS. Pick the
half side to be locked at random, the alterna-
tives having equal probabilities. The number
of links of order k+1 within a link of order k
is 1 with a probability of Y4, and 3 with a
probability of 3. The average number is 2.5.
The valley narrows down at every stage,
and it converges asymptotically to a fractal
curve. Naturally, I conjectured that the limit
is of dimension D=log2.5/log2=1.3219.
The proof (which is delicate) is provided in
Peyriére 1978.
ASYMMETRICALLY RANDOM SQUIGS. After
a side has been split into 2 halves, let p#Y2 be
the probability that the subvalley crosses the
“half to the left.” One can define this notion
with respect to either an observer looking
downstream, or an observer standing at the
center of the triangle being subdivided. In the
first case, D = log [3—92—(1—92)]/|08 2,
which ranges from 1 to log 2.5 /log 2. And in
the second case, D = log [3-2p(1-p)]/log 2,
which ranges from log2.5/log2 to
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log 3/log 2. Altogether, all the D’s for 1 to
log 3/log 2 are attainable.

ALTERNATIVE LATTICES AND SQUIGS

Alternative squig curves are obtained by using
different interpolated lattices. The generaliza-
tion is straightforward whenever knowing the
intervals where a pre-squig of order (k+1)
crosses the sides between the cells of order k
suffices to identify the pre-squig of order
(k+1). An example is the rectangular lattice
wherein the ratio of the long to the short sides
is of the form vb, and cells interpolate into b
cells placed across.

But such is not the case for triangular lat-
tices whose cells interpolate into b%29 trian-
gles, or for square lattices whose cells interpo-
late into b%>4 squares. In either case, the
interpolation of the pre-squigs requires addi-
tional steps.

When b=3 in the case of triangles, or
b=2 in the case of squares, one very natural
extra step suffices. Consider indeed the 4
“rays” that radiate from a square’s center and
divide it into 4, or the 6 rays that help divide
a triangle into 9. As soon as one of these rays
is locked, the subvalley becomes fully deter-
mined. In my definition of the squigs, the ray
to be locked is chosen at random, with equal
prqbabilities. The D~1.3347 for the triangles
split into 9, and D~1.2886 for the squares
spllt into 4. Recalling that the simplest squigs
yield D~1.3219, we see that a squig’s D is
near universal: in the neighborhood of 4/ 3.
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When a triangle is divided into b? parts,
with b>3, or a square is divided into b? parts,
with b>2, further decisions are needed to
specify the subvalley, and the construction
becomes increasingly arbitrary. In the spirit
of the next section’s discussion, the merits of
the squig construction becomes lost.

CHAIN AND SQUIG CURVES, COMPARED

Let us stop to recall that, when a fractal
curve is obtained by either the chain method
of Cesaro or the original method of Koch, the
error committed by truncating the process is
very nonuniform along the curve. The fact
that certain points are attained with infinite
precision after a finite number of stages may
be advantageous. For example, it helped in
Koch’s search for the simplest curve devoid of
tangent at all points. But the essential mean-
ing of the notion of curve becomes far clearer
when the curve is the limit of a strip of
uniform width. My squig curves satisfy this
desideratum.

Another element of comparison involves
the number of arbitrary decisions each ap-
proach demands from its ‘“designer.” The
Koch approach to nonrandom or random frac-
tals is very powerful (in particular, achieves
any D one may wish, by a simple curve), but
it involves on the part of the designer a large
number of specific choices for which there is
no independent motivation. The base b is es-
pecially nonintrinsic.

Science having long suffered from Euclid’s
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barrenness in models for the unsmooth pat-
terns of nature, the fact that fractals release
us from unquestionable inappropriateness was
reason to rejoice. But at the present stage of
the theory, we must sober up and do with few-
er arbitrary decisions.

In this light, the fact that the squig con-
struction is very much constrained by the ge-
ometry of the plane (meaning that it is less
versatile than the chain model) is a virtue.

THE DIMENSION D~4/3

In particular, the squigs’ dimension D~4/3
must be kept in mind. The fact that this value
is also encountered in Chapter 25 (Plate 243)
and Chapter 36 cannot be coincidental, and
may eventually lead to basic insights about
the geometric structure of the plane.

BRANCHING SQUIG CURVES

Let us return to the construction of a river’s
course. After a triangular interval of a valley
has been replaced by a bit of subvalley made
of either 1 or 3 subtriangles, imagine that the
remaining 3 or 1 subtriangles drain into the
new subvalley. Their pattern of drainage is
fully determined. The points where the subri-
vers cross the divides between triangles are
selected by the same system as for the main
river. The resulting construction converges to
a tree that fills a triangle at random, as seen
in the facing column.
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TWO LIGHTNING CASE STUDIES

It is interesting and possibly significant that a
model as crude as my linear squig curves
should suffice to account—albeit only
roughly—for rivers’ observed dimensions.

And it also yields the dimension of the
usual model of highly diluted linear polymers,
the self-avoiding random walk on a lattice
(SARW) (Chapter 36).

The reason why the constraints due to the
geometry of the plane are far easier to man-
age for the squig curves than for SARW
clearly resides in that squigs are constructed
by interpolation.

SQUIG SURFACES

They are defined on a cube subdivided into b3
subcubes, 1 identified appropriate “locking”
procedures to determine uniquely a kind of
comforter of constant but decreasing thick-
ness. The algorithm is unfortunately too

lengthy to be given here. |
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Plate 228 = RANDOM KOCH
COASTLINE (DIMENSION D=1.6131)

In many instances, a Koch curve with pre-
§cribed D and no self-contact can be achieved
In several different ways by using the same
pverall grid, and the same initiator. Suppose
in addition that at least two different genera-
tors cian.fit within the same overall outline.
Then it is easy to randomize the construction
by selecting among said generators by chance.

For e)fample, one can alternate between the
following generators

The result is shown above.

The overall form of a random Koch island
constructed in this fashion is very dependent
on the initial shape. In particular, all the ini-
tial symmetries remain visible throughout. For
this reason, and other reasons described in
Chapter 24, random shuffling of the parts of a
Koch curve is a method of limited scope.
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Plate 229 = RANDOM
PEANO CURVE (DIMENSION D=2)

The following generator, acting on the initia-
tor [0,1], yields a way of sweeping a triangle

/L.

The generator’s position depends on the parity
of the teragon interval. On odd-numbered in-

AL
<
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tervals, the above (straight) generator is posi-
tioned to the right. On even numbered inter-
vals, its flipped form (Plate 68) is positioned
to the left. The method of randomization used
here consists in selecting these focal points at
random. In this instance, the distributijon is
symmetric with respect to the midpoint. Each
subtriangle is later subdivided into four, inde-
pendently of its neighbors, ad infinitum.

To make the teragon easier to follow, each
contributing interval is replaced by two, the
added end point being the center of this
interval’s shelter.



Plate 230 & TRIANGLE & SQUIG CURVE

The simplest squig construction is illustrated  begins with the triangle drawn in light gray,
here by a superposition of several diagrams, and stops with a curve in black. The scale is
each shade of gray being viewed as continuing  larger for stages 6 to 10 than for stages O to
under those of darker hue. The illustration 5. The steps are described in the text.
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Plate 231 o A HEXA-SQUIG COASTLINE

This plate strings six squigs together into a
self-avoiding loop. The dimension is very close
to D=4/3. This value also occurs in numer-
ous other instances of self-avoidance, for ex-
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ample in the boundary of the Brownian hull of
Plate 243, whose resemblance to a hexa-squig
is particularly worth of notice. HR



25 = Brownian Motion and Brown Fractals

The position of the present chapter in this
Essay is the child of compromise. 1t would
belong more obviously in the following Part,
but some of it is a prerequisite to Chapter 26.

THE ROLES OF BROWNIAN MOTION

As seen in Chapter 2, Jean Perrin had the
brilliant idea of comparing physical Brownian
motion with continuous nondifferentiable
curves. He thus inspired the young Norbert
Wiener, around 1920, to define and study a
mathematical implementation often called
Wiener process. Much later, it became known
that the same process had been considered in
detail, though without rigor, in Bachelier
1900 (Chapters 37 and 39).

Oddly, given its extraordinary importance
elsewhere, Brownian motion itself finds no
new application in this Essay. On occasion, it
helps rough out a problem, but even in those
cases the next stage of Investigation must su-
persede it by a different process. However,
oneé can go surprisingly far in many cases
modifying Brownian motion, while making

sure the modifications remain scaling.

For this and other reasons, other random
fractals cannot be appreciated without a thor-
ough understanding of the concrete properties
of this prototype. However, the millions of
pages devoted to this topic either slight or
neglect the issues to be tackled in this chap-
ter. If the reader finds the going becomes
rough, he should—as usual—forge ahead to
the next section or the next chapter.

BROWN FRACTALS: FUNCTION & TRAIL

Unfortunately, the term Brownian motion is
ambiguous. It can, first of all, designate the
graph of B(1) as function of t. When B(t) is
the ordinate of a point in the plane, the graph
is a plane curve like in Plate 241. When B(t)
is a point in E-space, the graph is a curve in a
(1+E)-space (the time coordinate being added
to the E coordinates of B). In many instances,
however, one is only interested in the curve in
E-space, which a motion leaves behind as its
trail. When the trail bends at uniformly
spaced instants of time, the function and the
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trail deduce from each other. However, in a
continuous Brownian motion, the two aspects
are not equivalent, and to designate both by
the same term is confusing.

When ambiguity threatens, 1 use either
Brown function or Brown trail. The same am-
biguity exists for Koch curves, but it is more
apparent here because of the term ““motion.”

In addition, the variable of the Brown
functions of Chapters 28 to 30 is multidimen-
sional. For example, one of the models of
Earth’s relief in Chapter 28 assumes that the
altitude is a Brown function of latitude and
longitude. Therefore, further specification of
the terminology is often required. When nec-
essary, we speak of Brown line-to-line, or line-
to-space, or space-to-line, or line-to-E-space,
etc., functions or trails.

BROWN “FIELDS.” A “random field” is not
a randomized (algebraic) field, but a fashion-
able synonym (e.g., Adler 1981) for “random
function of several variables.”” This term can-
not be justified, and ought to be banished be-
fore it becomes entrenched. It seems an in-
competent translation from the Russian, < as
automodel (whose spread 1 stopped in time)
was an incompetent translation from the Rus-
sian word for self-similar. m

PLANAR BROWN TRAIL, CONSTRUCTED
AS RANDOM PEANO CURVE WITH N=2

The Brown trail casts fresh light on the Peano
curves, of which it turns out to be a random-
ized variant, This construction was not identi-

fied as such by a haphazard group of scholars
that I polled, nor is it mentioned as such in a
haphazard pile of books on the subject that I
scanned. Anyhow, mathematicians shun this
approach, because its basic ingredient (a hier-
archy of strata with increasingly fine detail,
controlled by a dyadic time grid) is not intrin-
sic to the construction’s outcome. Hence, this
approach is called artificial by mathemati-
cians, but for this very same reason it fits
beautifully in this Essay.

The procedure starts with any Peano curve
with N=2 and r=1/v2. The trick is to re-
lease various constraints in successive steps.

The intermediate fractals, “Peano-Brown
hybrids,” deserve to be studied in their own
right on more suitable occasions.

TRANSVERSAL MIDPOINT DISPLACEMENT. In
the Plates 64 to 67, the (k+1)st stage trans-
forms the kth teragon by displacing each
side’s midpoint transversally by 1AM| =
v27K=1 {0 the left or the right, according to
specific rules, e.g., the parity of k.

Now let a Peano curve’s displacements
over a time span At=t"% and over its two
halves At and Ayt, be denoted by AP, AP,
and A,P. We have the Pythagorean identity

IAP|2 = |A1P|?+|AsP)%.

ISOTROPIC DISPLACEMENT DIRECTIONS. In a
first deparature from any Peano curve’s rules,
we randomize the displacement directions.
One approach is to go left or right with equal
probabilities, leading to a “random flip-flop
curve.” A different approach consists in



234

throwing a point at random (with uniform
density) on a circle graduated in degrees, and
reading off an angle. This procedure defines
the displacements as being isotropic.

Either form of randomization preserves the
Pythagorean identity: the isotropic motion’s
increments over dyadic subintervals of a dyad-
ic interval are geometrically orthogonal.

RANDOM DISPLACEMENT LENGTHS. Our
second departure from the nonrandom rules is
to allow the displacement length to be ran-
dom: from now on, 27k=1 ill not be the
square of a nonrandom | AM|, but the mean
square of a random | AM|. The resulting dis-
placements AP* satisfy

(|A1P*12)=(|AP*|?)= Ya(|AP*|%)+(|AM|?)
(|ALP*)24]A2P*2) =1 (|AP*|?) 427K

RANDOM INITIATOR. The next step is to
take the initiator itself to be random of mean
square length equal to 1. It follows necessari-
ly that (|AP*|%) = 271 and we have the
mean Pythagorean identity

(|A1P*|2+|AP*2-|AP*|?) = O

‘ In other words, geometrically orthogonal
sides are replaced by sides that probabilists
call statistically orthogonal, or uncorrelated.

_ INDEPENDENT INCREMENTS. The midpoint
displacements are made statistically. independ-
ent, both within and between the stages.

GAUSSIAN INCREMENTS. The randomized
Peano curve becomes the Brown trail B(t)
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when the midpoints’ displacements are made
to follow an isotropic Gaussian distribution.
—=a In the plane, this variable’s square modu-
lus is exponentially distributed. Hence a di-
rect construction picks U uniformly on [0,1]
and draws |[AM] = [-2 log (U] »

GENERALIZATION TO SPACE. The final con-
struction remains meaningful when E>2.

THE DIMENSION D=2. The mean Pythago-
rean identity is a gencralized definition of
similarity dimension. It is suitable for the
Brown trail, because the Hausdorff Besicov-
itch dimension is also equal to 2. Its suitabili-
ty in case the midpoint displacement is not
Gaussian remains to be studied.

BROWN FRACTAL NETS (LATTICES)

MULTIPLE POINTS. Even if randomization stops
after the first stage described in the last sec-
tion, it results in the utter destruction of the
exquisite long and short range orders that
make the Peano curves avoid self-intersection.
The randomized teragons self-intersect after
few steps, and the limit trail almost surely
self-intersects ceaselessly.

BROWN GAPS. It is widely known that a
Brown trail extrapolated for all t’s from —co
to 400 covers the plane densely. This property
will be rederived momentarily. However, a
trail drawn during a unit time span has its
own most peculiar geometry-——which I do not
recall seeing described anywhere.

In apparent compensation for points that
are covered repeatedly when te[0,1], B(t)
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leaves other points uncovered. The uncovered
points form an open set that splits into an ex-
terior set containing the point at infinity, and
an infinite number of disjoint Brown gaps.
The exterior set and each gap are bounded by
fractal curves which are subsets of the trail.
The Brown trail is therefore a fractal net. Ex-
amples are shown in Plates 242 and 243.

«a Chapter 14 describes nets of dimension
D, for which the number of gags with area U
exceeding U is Nr(U>u) o« u” /E In a ran-
dom context with D=E=2, a formal extension
is P(u)y = Pr(U>u) « u~l, However, this
would not do, because fSP(U>u)du must con-
verge. Hence I conjecture that Pr(U>u) o
u_lL(u), where L(u) is a slowly varying func-
tion that decreases fast enough for the above
integral to converge. Because of the need for a
nonconstant L(u), the dimension D=2 is not
achievable in a self-similar ramified net, just
as Chapter 15 shows D=2 is not achievable in
a self-similar simple curve.

THE BROWN NET'S AREA VANISHES. Despite
the value of its dimension, D=2, a Brown net
has a vanishing area. The same must be true
of the Peano-Brown hybrids.

THE UNBOUNDED TRAIL IS DENSE IN THE
PLANE. This property hinges on the fact, to be
established in a later section concerned with
zerosets, that the unbounded trail “‘recurs”
infinitely often into any prescribed plane do-
main D, such as a disc. By making 3 arbi-
trarily small and centered on any point P, we
see that the unbounded trail comes infinitely
often arbitrarily close to every point in the
plane.

However, as we shall also see when we ex-
amine the zerosets, the probability that an
individual trail hits a prescribed point exactly
is zero, hence a prescribed point is almost
surely not hit by the unbounded trail.

The portion of an unbounded trail within a
domain D can be mentally approximated by a
denumerable infinity of independent bounded
nets suitably thrown upon . The result re-
calls a denumerable infinity of points thrown
at random upon [O,1], independently of one
another. As is well-known, the resulting set is
everywhere dense, but its length vanishes.

DEPENDENCE OF MASS ON RADIUS

Scaling by v't is characteristic of most aspects
of Brownian motion. For example, the dis-
tance it covers in time t, measured as the
crow flies, is a random multiple of v't. Also,
the total time spent in a circle of radius R
around B(0)=0 is a random multiple of R?.

Weighting the different pieces of a Brown
trail by “masses” proportional to the time it
takes to run through them, one finds that, in
the plane or in the space (E22), the total
mass in a circle of radius R is M(R) « R?.

Formally, this relationship is precisely the
same as in the case of the Koch curve exam-
ined in Chapter 6 and the Cantor dust exam-
ined in Chapter 8. It is a fortiori the same as
in the classical cases of an interval, disc, or
sphere of uniform density.
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THE BROWN TRAIL IS “"CREASELESS,”
HAS STATIONARY INCREMENTS

As the result of what may be described as a
windfall, randomizing the Peano curve
achieves more than has been bargained for.
As a preliminary comment, observe that the
nonrandom Koch and Peano curves exhibit
permanent ‘‘creases” at the time instants of
the form N7K. For example, if we break one-
third of the snowflake boundary into quarters,
the angle between quarters 1 and 2 differs
from the angle between quarters 2 and 3.
Hence the left half cannot be mistaken for the
mid half.

But the Brown trail is “creaseless.” Given
an interval corresponding to the time span t,
one cannot tell this span’s position along the
time axis. Probabilists say that Brown trail
has “‘stationary increments.”

This property is noteworthy because a) it
is the foundation stone of the alternative grid-
free definition described later in this chapter,
and b) it has no counterpart among the analo-
gous randomized forms of simple fractal
curves or surfaces.

THE BROWN TRAIL IS SELF-SIMILAR

A corollary of creaselessness is a strong form
of statistica] self-similarity. Setting B(0)=0
and picking two positive numbers h and h', a
chapter of probability called theory of weak
C‘il}/Vergence shows that the functions
h™”B(ht) and h'™%B(h't) are statistically
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identical. Also, setting T<co and h<1, and
varying t from O to T, we find that h_l/zB(ht)
is a rescaled form of a portion of B(t). This
portion’s being statistically identical to the
whole is a form of self-similarity.

Self-similarity as applied to random sets is
less demanding than the notion introduced in
Chapter 5, since the parts need no longer be
precisely similar to the whole. It suffices that
the parts and the whole reduced by similarity
should have identical distributions.

Observe that the Koch curves require simi-
larity ratios of the form r=b7¥ where b is the
base, a positive integer, but any r is accepta-
ble for Brown trail. This feature is valuable.

THE BROWN ZEROSET IS SELF-SIMILAR

Of special importance to the study of Brown
functions are the sets of constancy, or isosets,
of its coordinate functions X(t) and Y(t). For
example, the zeroset is defined as those in-
stants t for which X(t)=0.

The isosets are self-similar, and the obvi-
ous fact that they are extremely sparse is con-
firmed by their having the fractal dimension
D=%. They are a special case of the Lévy
dusts to be investigated in Chapter 32.

BROWN ZEROSETS’ GAP DISTRIBUTION, The
lengths of a Brown zeroset’s gaps satisfy
Pr(U>u)=u" with D=1%. This is the count-
erpart of the relation Nr(U>u)=u"? we know
to be applicable to Cantor gaps. However, Nr
is replaced by Pr, and the stairs are eliminat-
ed due to randomization.
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THE BROWN FUNCTION IS SELF-AFFINE

By contrast, the graphs of X(t) and Y(t), and
of the vector function B(t), are not self-simi-
lar, merely self-affine. That is, the curve from
t=0 to t=4 can be paved by M=4 portions
obtained if the space coordinate(s) continue to
be reduced in the ratio r=%, while the time
coordinate is reduced in the different ratio
r?=1/M. Hence, similarity dimension is not
defined for the graphs of either X(t), Y(t), or
B(t).

Furthermore, affine spaces are such that
distances along t and X or Y cannot be com-
pared to each other, hence discs cannot be
defined. As a result, the formula M(R)ocRD
has no counterpart that could serve to define
D for the Brown functions.

On the other hand, the Hausdorff Besicov-
itch definition does extend to them. This ex-
ample agrees with the assertion in Chapters 5
and 6 that the Hausdorff Besicovitch dimen-
sion is the most general way of catching the
intuitive content of fractal dimension (and the
most unwieldy!). The value of D is 3/2 for
X(1), and 2 for B(t).

~a ROUGH PROOF. During a time span Af,
max X(t)—min X(t) is of the order of vAt.
Covering this subgraph of X(t) by squares of
side At requires on the order of 1/vAt
squares. Therefore, covering the graph from
t=0 to t=1 requires on the order of (At)~3/2
squares. This number being (At)™P (Chapter
5), it follows heuristically that D=3 /2.

THE SECTIONS’ FRACTAL DIMENSIONS

The zeroset of the Brown line-to-line function
is a horizontal section of a Brown function
X(t). Applying again a rule stated in Chapter
23, the zeroset’s dimension is expected to be
3/2-1=1/2, as we know is the case. Other
applications of this rule are also of extraordi-
nary heuristic value, as we now proceed to
show. This rule suffers exceptions, however,
especially for fractals that are not isotropic.
For example, the section of the Brown line-to-
line function by a vertical line is simply a
point.

Similarly, a linear section of a Brown line-
to-plane trail should have the dimension
2—-1=1, and such is indeed the case.

More generally stated, the standard rule is
this: excluding special configurations, the co-
dimensions E—-D add under intersection.
Hence, the codimension of the intersection of
k planar Brown trails is k.0=0. In particular,
a Brown trail’s self-intersections are expected
to, and do, form a set of dimension 2.
(However, just like the Brown trail itself, the
trail’s multiple points fail to fill the plane.)

The rule of addition of codimensions can
be used to argue that (as asserted earlier)
Brownian motion almost surely does not re-
turn to its point of departure B(0)=0, but
almost surely returns infinitely often to the
neighborhood of O. To add generality to these
arguments, and make them usable again with-
out change in Chapter 27, the dimension of
the Brown zeroset will be written as H.

The time instants where B(t) returns to O
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are those when X(t)=0 and Y(t)=0 simulta-
neously. Hence, they belong to the intersec-
tion of the zerosets of X(t) and Y(t), which
are independent sets. The intersection’s codi-
mension is 1—2H, with H=Y%, hence their di-
mension is D=0. Hence, the strong hint (but
a full proof is more involved!) that B(t) al-
most surely fails to return to B(0)=0.

On the other hand, consider the set of in-
stants when B(t) returns to the horizontal
square of side 2¢ centered on O. This is ap-
proximately the intersection of the sets where
t is within the distance of ¢!/" from a point
in the zeroset of X(t), resp., of Y(t). For each
of these sets, the mass in the time span [0,1]
is ocel/Mt1=H and the probability of this
span’s containing the instant t is «el/Ht=H,
Hence, the probability of t being contained in
these sets’ intersection is oce?/ Pt 2H. Since
H='%, we have foot_ZHdt=oo; hence a theo-
rem due to Borel and Cantelli concludes that
the number of returns to the square around O
is almost surely infinite. But one may call it
“barely” infinite. As a result, the gaps in
bounded Brownian nets become filled slowly
and with seeming reluctance.

DOWNSIZED LATTICE RANDOM WALKS

One can also generate Brownian motion
tbrough a random walk on a lattice. We men-
tion this approach here, but diverse complica-
tions postpone a discussion to Chapter 36.

A point P(t)={X(t), Y(t)} in R? performs
a lattice random walk if, at successive instants
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of time separated by the interval At, it moves
by steps of fixed length |AP| in randomly
selected directions restricted to a lattice.

When the lattice is made of the points in
the plane whose coordinates are integers, the
quantities (X+Y)/v2 and (X-Y)/v2 both
change by +1 at every step. Each is said to
perform a random walk on the line; an exam-
ple is shown as Plate 241. On rough scale,
that is, when At is small and AP=vAt, the
walk is indistinguishable from a Brownian
motion.

GRID-FREE DIRECT DEFINITIONS OF B(t)

The preceding definitions of Brownian motion
begin with either a time grid or with time and
space lattices, but these “props” are absent
from the final result. And it is possible to
characterize the final result without them.

The direct characterization in Bachelier
1900 postulates that, over an arbitrary succes-
sion of equal time increments At, the dis-
placement vectors AB(t) are independent, iso-
tropic, and random, with a Gaussian probabil-
ity distribution. Thus,

(AB(1))=0 and ([AB(1)]?)=| At].

Hence the root mean square of AB is v/|At].
This definition is independent of the coordi-
nate system, but the projection of AB(t) on
any axis is a Gaussian scalar random variable,
with zero mean and a variance equal to
L5]At).
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The definition favored by mathematicians
goes further and dispenses with the division of
time into equal steps. It requires isotropy for
the motions between any pair of instants t and
to>t. It requires independence of future mo-
tion with respect to the past position. Finally,
it requires the vector from B(t) to B(tp), di-
vided by v|tg—t|, to have the reduced Gaus-
sian probability density for all t and tq.

DRIFT AND THE CROSSOVER TO D=1

The motion of a colloid particle in a uniform-
ly flowing river, or of an electron in a con-
ducting copper wire, can be represented as
B(t)+4t. This function’s trail is indistinguish-
able from that of B(t) when t<<1/62, and
from that of &t when t>>1/8° Thus, the
trail’s dimension crosses over from D=2 to
D=1 for texl /82 and recl /8. <a In the ter-
minology of critical phenomena, § is the dis-
tance from a critical point, and the exponents
in the formulas for t. and rg are critical
exponents. m

ALTERNATIVE RANDOM PEANO CURVES

~a The randomizing of Peano curves through
midpoint displacement benefits from excep-
tional circumstances. Analogous constructions
starting with a Peano curve for which N>2
are much more complicated. Also, a closer
parallelism with nonrandom scaling is
achieved if the midpoint’s displacement fol-

lows a Gaussian distribution of root mean
square equal to %2|AB|, implying that ry and
rp are Gaussian and independent with the
more familiar relation (r12+r22 —1) = 0. The
resulting process is very interesting. But it is
not Brownian motion. It is not creaseless. m

DIMENSION OF PARTICLE PATHS
IN QUANTUM MECHANICS

This discussion can close by mentioning a new
fractal wrinkle to the presentation of quantum
mechanics. Feynman & Hibbs 1965 notes that
the typical path of a quantum mechanical
particle is continuous and nondifferentiable,
and many authors observe similarities be-
tween Brownian and quantum-mechanical
motions (see, for example, Nelson 1966 and
references herein). Inspired by these parallels
and by my early Essays, Abbot & Wise 1980
shows that the observed path of a particle in
quantum mechanics is a fractal curve with
D=2. The analogy is interesting, at least
pedagogically. L



Plate 241 = A SAMPLE RANDOM WALK, APPROXIMATING A BROWN LINE-TO-LINE
FUNCTION (DIMENSION D=3/2) AND ITS ZEROSET (DIMENSION D=1/2)

The longest running (and least demanding!) of
all games of chance started around 1700,
when the Bernoulli family was ruling over
probability theory. When an eternally fair
coin comes up heads, Henry wins a penny;
when it comes up tails, Thomas wins. (They
used to be called Peter and Paul, but I never
remembered which one bets on heads.)

Some time ago, William Feller came by to
observe this game, and he reported Henry’s
cumulative wins on the upper Figure of this
plate, which is from Feller 1950. (Reproduced
from An Introduction to Probability Theory
and Its Applications, Volume I, by William
Feller, by kind permission of the publishers, J.
Wiley and Sons, copyright 1950.)

The middle and bottom Figures represent
Henry’s cumulative winnings during a longer
game, using data at intervals of 200 tosses.

When increasingly long sets of data are
reported on increasingly fine graph paper, one
obtains asymptotically a sample of values of a
Brown line-to-line function.

Feller has confided in a lecture that these
Figures are “atypical,” and were selected in
preference to several others that looked too
wild to be believable. Be that as it may, seem-
ingly endless contemplation of these Figures
played a decisive part in elaborating two theo-
ries incorporated into this Essay.

WHOLE GRAPH. Mandelbrot 1963e observes
that the whole graph’s shape is reminiscent of
a mountain’s silhouette or of a vertical section
O'f Earth’s relief. Through several generaliza-
tions, this observation led to the successive

models described in Chapter 28.

GRAPH'S ZEROSET. The graph’s zeroset is
the set of moments when Henry’s and
Thomas’ fortunes come back to what they
were when we started reporting them. By con-
struction, the time intervals between the zeros
are mutually independent. However, it is clear
that the positions of the zeros are far from
independent. They are very distinctly
clustered. For example, when the second
curve is examined in the same detail as the
first curve, almost every zero is replaced by a
whole cluster of points. When dealing with
mathematical Brownian motion, one can sub-
divide these clusters in a hierarchical manner,
ad infinitum.

When asked to help model the distribution
of telephone errors, 1 was fortunate to think
of Feller’s diagram. Although such errors
were known to be grouped in bursts (this be-
ing the gist of the practical problem being
raised), I suggested that the intervals between
the errors might be independent. A detailed
empirical study did confirm this conjecture
and led to the models discussed in Chapters 8
and 31.

-a The Brownian zeroset constitutes the
simplest Lévy dust, namely, a random Cantor
dust of dimension D=%2. Any other D between
0 and 1 may likewise be obtained through the
zeros of other random functions. Through this
model it is possible to define the fractal di-
mension of a telephone channel. Actual D’s
depend on the precise characteristics of the
underlying physical process. »
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Plate 242 and 243 1 BROWN HULLS/ISLANDS; SELF-AVOIDING BROWNIAN MOTION

BROWN LOOP. By this term, I denote a trail
that is covered in a finite time At, by a planar
Brownian motion that returns to its point of
departure. This is a random Peano curve
whose initiator is of zero length.

PLATE 243. BROWN HULL. Being (almost
certainly) bounded, a Brown loop separates
the plane into two parts: an exterior which
can be reached from 2 distant point without
intersecting the loop, and an interior which I
propose to call Brown hull or Brown island.

PLATE 242. This plate represents the hull of
a nonlooping Brown trail.

COMMENT. I am not aware of any investi-
gation of the Brown hull, but I think it very
much deserves attention. The samples shown
to the right involve 200,000 Brownian steps,
each drawn on a raster of (1,200)%.

By construction, Brown hulls correspond-
ing to different values of At are statistically
identical, except for scale. And there is every
reason (short of actual proof) to believe that
the fine details of the hull’s boundary are as-
ymptotically self-similar. The boundary can-
not be strictly scaling, because a loop cannot
be subdivided into pieces having the same
structure, but small subpieces become increas-
ingly close to scaling.

SELF-AVOIDING BROWNIAN MOTION. For
reasons detailed in Chapter 36, when we ex-
amine the self-avoiding random walk, I pro-
pose for the Brown hull’s boundary the term
self-avoiding Brownian motion.
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THE DIMENSION OF SELF-AVOIDING BROW-
NIAN MOTION. Having interpreted certain
known relationships (to be quoted in Chapter
36) as implying that a self-avoiding random
walk is of dimension 4/3, I conjecture that
the same is true of self-avoiding Brownian
motion.

An empirical test of this conjecture pro-
vides an excellent opportunity to test also the
length-area relation of Chapter 12. The plate
is covered by increasingly tight square lattic-
es, and we count the numbers of squares of
side G intersected by a) the hull, standing for
G-area, and b) its boundary, standing for
G-length. Graphs relating G-length to G-area,
using doubly logarithmic coordinates, were
found to be remarkably straight, with a slope
indistinguishable from D/2=(4/3)/2=2/3.

The resemblance between the curves in
Plates 243 and 231, and their dimensions, is
worth stressing.
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NOTE. In Plate 243, the maximal open do-
mains that B(t) does not visit are seen in
gray. They can be viewed as tremas bounded
by fractals, hence the loop is a net in the
sense of Chapter 14.

«<a The question arises, of whether the
loop is a gasket or a carpet from the viewpoint
of the order of ramification. I conjectured
that the latter is the case, meaning that
Brown nets satisfy the Whyburn property, as
described on p. 133. This conjecture has been
confirmed in Kakutani & Tongling
(unpublished). It follows that the Brown trail
is a universal curve in the sense defined on
page 144. »- W0



26 = Random Midpoint Displacement Curves

This chapter’s logical thread starts back in
the middle of Chapter 25, after the section
where Brownian motion is generated by ran-
domizing a Peano curve.

Recall that the kth teragon of a Brownian
B(t) is linear between successive instants of
the form h2 K. And that the (k+1)st teragon
is obtained by displacing at random the mid-
points of the kth teragon’s sides. The same
words apply to the teragons Xy(t) and Yy (1) of
the coordinate processes X(t) and Y(t) of B(t).

The midpoint displacement procedure be-
ing completely successful for D=2, one can
hardly wait to adapt it to the original snow-
flake and to other Koch curves with N=2 and
then to use it to construct surfaces. This is
what we now proceed to do.

The same general approach has been taken
by numerous authors of computer generated
films and graphics who attempted to duplicate
and improve the graphics in the 1977
Fractals, and in addition sought a more direct
and less costly procedure. These authors
fa.iled to recognize that the method of random
midpoint displacement yields a result substan-
tially different from the goal they were seek-

ing. It has the advantage of simplicity, but
also many undesirable features.

SPATIALLY UNCONSTRAINED RANDOM
KOCH CURVES WITH TIME GRID

Recall that one can construct the Koch snow-
flake curve in the base N=2, using a genera-
tor made of two intervals of length 1/v3. In
this case, and more generally whenever the
generator is made up of two intervals of
length 2_1/D, with D<2, the construction tells
whether to displace the midpoint of the kth
teragon’s sides to the left or to the right. The
displacement is always orthogonal to the side
and its length squared is given by

2=2(k+1)/D_p-2(k/D+1)

The randomization of this construction pro-
ceeds as the transformation of a Peano curve
into a Brownian motion. The displacement’s
direction is made random and isotropic, inde-
pendently of anything that came before, the
displacement length’s distribution is made
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Gaussian, and the above formula is made to
apply to the mean square displacement. Noth-
ing is done to prevent self-intersection, and
the limit fractal curve is rife with self-inter-
sections. We denote it as B*p(t), using the
notation H=1/D, which will be justified mo-
mentarily.

As a result, the relation between the dis-
placement AB*y over the time space 27% and
the two interpolated displacements A;B*y
and AoB*y now takes the form

(|A1B*h|® + |A2B*P—jaB*yP) = 0,

with an arbitrarily prescribed D<2.

A corollary is that when the time interval
[t't"] is dyadic, that is, if t'=h27K and
t"=(h+1)27, we have

(|AB*h?) = At2/P = |AY2H.

We selected H as parameter because it is the
exponent of the root mean square displace-
ment.

It can also be shown that, if B*4(0)=0,
the function B*Q(t) is statistically self-similar
with respect to reduction ratios of the form
27K This is a desirable generalization of what
we know for D=2.

NONSTATIONARY INCREMENTS

We must not rejoice too hard, however. Ex-
cept in the Peano-Brown case D=2, when it
reduces to B(t), B*n(t) is nor statistically

self-similar with respect to reduction ratios
other than 27,

A more serious problem develops whenever
the interval [t', t"] is nondyadic though of the
same length At=2"% for example, if it is the
interval from t' = (h-0.5)27K to t" =
(h+0.5)27%. Over such intervals, the incre-
ment AB*y has a different and smaller vari-
ance, dependent on k. A lower bound to this
variance is 2172HAt?". Morcover, if one
knows At but not t, the distribution of the
corresponding AB*y is not Gaussian, but is a
random mixture of different Gaussian.

As a result, the creases that characterize
the dyadic points of the approximating tera-
gon remain forever. With D barely below 2,
hence H barely above %2, the creases are
slight. However, with H nearly 1 (Chapter 28
shows that modeling of Earth’s relief involves
H~.8 to .9), the creases are very important
and can be seen on the sample functions. The
only way to avoid them is to give up the re-
cursive midpoint displacement scheme, as we
do in the next section and in Chapter 27.

RANDOMLY POSITIONED STRATA

< To trace the reason for the nonstationarity
of the midpoint displacement curves and sur-
faces, consider the coordinate function X(t) of
a curve B*y(t). Each stage contributes a bro-
ken line function AgX(t) = Xy (t)-Xy_1(t)
whose zeroset a) is periodic of period 27K, and
b) includes the zeroset of Ay_iX(t). Thus,
each contribution can be said to be in
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synchrony with all the following ones.

- The fact that the zerosets are periodic
and synchronous (“hierarchical”) prevents the
increments from being stationary. Conversely,
one may seek stationarity by destroying these
features.

-a One approach is to construct the
broken-line function ABKT(t) as follows. Se-
lect a Poisson sequence of time instants .0,
with an average number of points per unit
time equal to 2, then let the ABy (t,() be
independent and identically distributed ran-
dom values, and finally interpolate linearly
between the tn(k). The infinite sum BHT(t) of
such contributions is a stationary random
function, pioneered in the Ph.D. dissertation
of the hydrologist O. Ditlevsen (1969). See
Mejia, Rodriguez-Iturbe & Dawdy 1972 and
Mandelbrot 1972w.

-a Looking back, we see that this general-
ization no longer requires the average number
of zeros per unit time to be 2K. It may be of
the form b*, with b any real base >1.

<a The admissible reduction ratios of the
corresponding fractal are given by the discrete
sequence r=b7%. As b1, this sequence be-
comes increasingly tight, and asymptotically it
becomes, in effect, as good as continuous.
Thus, By¥(t) becomes increasingly acceptable
to those who seek stationarity and a wide
choice of scaling ratios. But in the process
BuT(t) loses its specificity. The argument in
Mandelbrot 1972w implies that Byf(t) con-

verges to the random function By(t) studied
1n next chapter. |

STRATIFIED RANDOM FRACTALS HHX VI

Plate 246 = THE COMPUTER ‘“BUG"
AS ARTIST, OPUS 1

This plate can be credited in part to faulty
computer programming. The “bug” was
promptly identified and corrected (but only
after its output had be recorded, of course!),
and the final outcome was Plates 306 to 309.

The change that had been wrought by a
single tiny bug in a critical place had gone
well beyond anything we had expected.

It is clear that a very strict order had been
designed into the correct plates. Here, this
order is hidden, and no other order is appar-
ent.

The fact that, at least at first blush, this
plate could pass for High Art, cannot be an
accident. My thoughts on this account are
sketched in Mandelbrot 19811, and are to be
presented fully in the near future.



IX =z FRACTIONAL BROWN FRACTALS

27 = River Discharges; Scaling Nets and Noises

Moving on to the fractional Brown fractals
marks a major turning point of this Essay.
Until now, we have kept to fractals that in-
volve grids of time and/or space, with result-
ing restrictions on a fractal’s invariance prop-
erties, i.e., on the admissible translations and
similarities that map this fractal upon itself.

Such restrictions contradict the second
reason for randomizing fractals, as expounded
in Chapter 22. Moreover, in most cases of
interest they have no physical reality. Chap-
ters 27 to 35, to the contrary, move on to
fractals whose translational and scaling invar-
iances are both unrestricted.

This chapter investigates a generalized
Brownian motion, to be denoted By(t), which
Mandelbrot & VanNess 1968 calls fractional
Brownian motion (fBm for short). The moti-
vation resides in annual river discharges, but
scaling nets and scaling (“1/f”) noises are
also mentioned. And Chapters 28 to 30 inves-
tigate related surfaces.

THE IMPORTANCE OF BEING GAUSSIAN

A first feature shared by Chapters 27 to 30, is
that they all involve Gaussian processes exclu-
sively. To statisticians, being Gaussian is
something extraordinarily special, but I have
long ceased to share this view. (See my com-
ments in Chapter 42 on this account.) Never-
theless, Gaussian processes remain a bench-
mark, and demand to be investigated with
great care before one steps beyond them.

NONRECURSIVE DEFINITIONS

Chapters 27 to 30 also share a feature that is
not present anywhere else in this Essay.

All the other chapters’ constructions,
whether random or not, proceed recursively,
by adding increasing detail to less detailed
shapes obtained earlier in the construction.
The resulting fractals’ properties are derived



248

from the generating rules.

Now, to the contrary, we begin by declar-
ing certain properties to be desirable, and only
after that do we seek generating rules that
fulfill our desires. Unfortunately, while the
desirable properties are easy to state and /ook
simple, the implementing rules are not recur-
sive, in fact are rather disagreeable.

If so, why should we insist upon these
properties? The answer is that they include
self-similarity and creaselessness, that is, sta-
tionarity, which lie at the very heart of sci-
ence, and also of the theory of fractals.

The relative cost of the ‘“‘axiomatic” ap-
proach in this chapter is especially apparent
when its outcome is paralleled by a fractal
obtained recursively. For example, anyone
investigating a concrete case that calls for a
plane fractal curve of dimension D between 1
and 2 may hesitate between a midpoint dis-
placement process from Chapter 26 and a
process to be described in this chapter. The
former is not creaseless, which is a drawback
the latter avoids. And the sequence of discrete
stages that makes recursive constructions so
attractive is in most cases reflected in strata
that are meaningless and undesirable.

JOSEPH AND NOAH EFFECTS

The claim made in Chapter 1, that many un-
smoo’th patterns of Nature have long attracted
Man’s attention, is in many cases difficult to

document precisely. But the Bible offers two
marvelous exceptions:
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...were all the fountains of the great
deep broken up, and the windows of
heaven were opened. And the rain was
upon the earth forty days and forty
nights. Genesis, 6: 11-12.

...there came seven years of great
plenty throughout the land of Egypt.
And there shall arise after them seven
vears of famine. Genesis, 41: 29-30.

It is hard not to view the story of Noah as
a parable about the unevenness of Middle
Eastern precipitation, and the story of Joseph
as a parable about the tendency of wet and of
dry years to cluster into wet periods and
droughts. In lectures on New Forms of
Chance in the Sciences (not published, but
sketched in part in Mandelbrot & Wallis
1968 and Mandelbrot 1973f), I pinned upon
these stories the terms Noah Effect and Jo-
seph Effect.

As controllable data confirm, the Biblical
“seven and seven” is a poetic oversimplifica-
tion of reality, and (not so obvious) any ap-
pearance of periodicity in actual Nile records
is an illusion. On the other hand, it is a well-
established fact that successive yearly dis-
charges and flood levels of the Nile and many
other rivers are extraordinarily persistent.

This persistence is as fascinating to diverse
scholars as it is vital to those involved in the
design of dams. For a long time, however, it
remained beyond the scope of measurement,
hence of analysis. Like every field taking its
first step into statistics, hydrology first as-
sumed that every river’s successive discharges
are independent, identically distributed Gaus-
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sian variables, a white Gaussian noise. The
traditional second step assumed Markov de-
pendence. Both models, however, are grossly
unrealistic. A breakthrough occurred with
Mandelbrot 1965h, based upon empirical re-
sults in Hurst 1951, 1955. (Hurst’s story is
told in Chapter 40.)

HURST PHENOMENON. H EXPONENT

Denote by X*(t) a river’s cumulated discharge
between the beginning of year O and the end
of year t. Adjust by subtracting the sample
average discharge between the years O and d,
and define R(d) as the difference between the
maximum and the minimum of the adjusted
X*(t) as t ranges from O to d. After the fact,
R(d) is the capacity one should have attribut-
ed to a reservoir to insure ideal performance
over the d years in question. A reservoir per-
forms ideally if it ends as full as it begins,
never empties and never overruns, and prod-
uces a uniform outflow. This ideal is obviously
unattainable, but R(d) is the basis of a me-
thod of reservoir design, due to Rippl, which
was to be used for the Aswan High Dam.
Hurst realized that one can use R(d) as a tool
to investigate the actual behavior of river dis-
charge records. For reasons of convenience, he
divided R(d) by a scaling factor S(d) and ex-
amined the dependence of R(d)/S(d) upon d.

Under the assumption that the annual dis-
charges follow a white Gaussian noise, the
factor S is not significant, and a known theo-
rem shows that the cumulated discharge X*(t)

is approximately a line-to-line Brown function
B(t). Hence R(d) is proportional to the root
mean square of X*(d), which is «vd. This
argument yields R/Sevd (Feller 1951). The
same result holds if the yearly discharges are
dependent but Markovian -a with a finite
variance »-, or if their dependence takes any
of the forms described in elementary books of
probability or statistics.

However, the evidence led Hurst to the
sharply different and totally unexpected con-
clusion that R/SocdH, with H nearly always
above Y. The annual discharges of the Nile,
being furthest from independent, show
H=0.9. For the rivers Saint Lawrence, Colo-
rado, and Loire, H is between 0.9 and %. The
Rhine is an exceptional river, with no Joseph
legend and no Hurst phenomenon, and for it
H='% within experimental error. Diverse data
are collected in Mandelbrot & Wallis 1969b.

HURST NOISE AS A SCALING NOISE

When a fluctuation or noise X(t) is such that
R/SedM, I propose that X(t) be called a
Hurst noise. Mandelbrot 1975w shows that
one must have O<H<1.

Challenged by H. A. Thomas Jr. to ac-
count for the Hurst phenomenon, I conjec-
tured it is a symptom of scaling. To define a
scaling noise in intuitive fashion, let us recall
that any natural fluctuation can be processed
to be heard—as implied by the term noise.
Tape it, and listen to it through a speaker that
reproduces faithfully between, say, 40 Hz to
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14,000 Hz. Then play the same tape faster
or slower than normal. In general, one expects
the character of what is heard to change con-
siderably. A violin, for example, no longer
sounds like a violin. And a whale’s song, if
played fast enough, changes from inaudible to
audible. There is a special class of sounds,
however, that behave quite differently. After
the tape speed is changed, it suffices to adjust
the volume to make the speaker output
“sound the same” as before. I propose that
such sounds or noises be called scaling.

White Gaussian noise remains the same
dull hum under these transformations, hence
it is scaling. But other scaling noises can be
made available for model making.

FRACTIONAL DELTA VARIANCE

Chapter 21 defines a random function’s delta
variance as the variance of the function’s in-
crement during the time increment At. The
ordinary Brown function’s delta variance is
[At] (Chapter 25). To account for Hurst’s
R(d)/S(d)ocdH, with any desired H, Mandel-
brot 1965h observes that it would suffice that
the cumulative process X* be Gaussian with a
vanishing delta exgectation and a delta vari-
ance equal to |At| H These conditions deter-
mine a unique scaling Gaussian random proc-
ess. And, the exponent 2H being a fraction,
this unique process is entitled to be termed
(reduced)  fractional Brown line-to-line
Sunction. For detail and illustrations, see
Mandelbrot & Van Ness 1968, Mandelbrot &

FRACTIONAL BROWN FRACTALS HmHOX X

Wallis 1968, 1969abc.

Moving from a line-to-line to a line-to-
plane Bp(t), an alternative definition by way
of desiderata is this: Among the curves of di-
mension D=1/H parametrized by time, the
trail of By(t) is the only one whose incre-
ments are Gaussian, stationary with respect to
any translation, hence “creaseless,” and scal-
ing with respect to any ratio r>0.

The value H=%, hence D=2, yields the
ordinary Brownian motion, which we know is
a process without persistence (independent
increments). The remaining fBm’s fall into
two sharply distinct subfamilies. The values
Y2<H<1 correspond to persistent fBm, whose
trails are curves of dimension D=1/H lying
between 1 and 2. The values O<H<Y% corre-
spond to antipersistent fBm.

FRACTIONAL INTEGRODIFFERENTIATION

Having pinpointed a desirable delta variance,
it remains to implement it. If one starts with
Brownian motion, one must inject persistence.
A standard method is to integrate, but it in-
jects more persistence than is needed. By luck,
there is a way of achieving only a fraction of
the standard effects of integration. When
O<H<'%, the same applies to differentiation.
The idea hides in one of the many “classical
but obscure” corners of mathematics. It harks
back to Leibniz (Chapter 41), and was imple-
mented by Riemann, Liouville and H. Weyl.
As background, recall from calculus that,
m being an integer >0, one transforms the
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function x” into x”2~™ by m repeated differ-
entiations, and into x”2*™ by m repeated inte-
grations (followed in each case by multiplica-
tion by a constant). The Riemann-Liouville-
Weyl algorithm generalizes this transforma-
tion to the case where m is not an integer.
And fractional integrodifferentiation of order
1/D-% applied to Brownian motion yields
fBm. Thus, the usual Brownian formula,
displacement «vtime, is replaced by the
generalization displacement o« (time)l/D,
with 1 /D#%. Our goal is reached!

The relevant formulas are given in Man-
delbrot & VanNess 1968, and (honest) ap-
proximations are described in Mandelbrot and
Wallis 1969¢ and Mandelbrot 1972f.

«a Here is yet another complication and
potential pitfall. The Riemann-Liouville-Weyl
algorithm involves a convolution, hence it is
tempting to implement it through fast Fourier
techniques (fFt). This approach yields a peri-
odic function, hence a function adjusted to
have no systematic trend. In investigations of
standard time series, detrending hardly mat-
ters, because dependence is limited to the
short term. In the case of fBm, on the contra-
ry, detrending does matter, to an extent that
increases with |H—'%|, and may be very signif-
icant. This effect is illustrated, in an expand-
ed context, by comparing diverse pictures of
mountains in the next chapter. Plates 264 and
265, being obtained by fFt, show no overall
trend, hence mimic mountain tops, while Plate
268, being obtained without shortcuts, shows
a clearcut overall trend.

-a Given the favorable economics of fFt, it

is often best to use them anyhow, but one
must take a period much longer than the de-
sired sample size, and allow wastage that in-
creases as H->1. m

H>%: LONG (= INFINITE) TERM
PERSISTENCE & NONPERIODIC CYCLES

In the case H>'%, the vital property of the
function By(t) is that its increments’ persist-
ence takes a very special form: it extends
forever. Therefore, the link between fBm and
the Hurst phenomenon suggests that the per-
sistence encountered in river discharge records
is not limited to short time spans (like the
term in office of Pharaoh’s ministers), but
extends over centuries (some arc wet, others
are dry) and even millennia. The strength of |
persistence is measured by the parameter H.

Persistence manifests itself very clearly on
graphs of increments of By(t), and of the
yearly river discharges that these increments
model. Nearly every sample looks like a
“random noise” superposed upon a back-
ground that performs several cycles, whichev-
er the sample’s duration. However, these cy-
cles are not periodic, that is, cannot be extra-
polated as the sample lengthens. In addition,
one often sees an underlying trend that need
not continue in the extrapolate.

The interest of these observations is ex-
panded by the fact that analogous behavior is
often observed in economics, where econo-
mists like to decompose any set of data into a
trend, a few cycles, and noise. The decomposi-
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tion purports to help understand the underly-
ing mechanism, but the example of fBm dem-
onstrates that the trend and the cycles may be
due to a noise that signifies nothing.

- INTERPOLATION. When the ordinary
Brown B(t) is known at the instants ty, tp,...,
not necessarily equidistant ones, the expected
values of B(t) between these instants are ob-
tained by linear interpolation. In particular,
the interpolate on [tj, tj+1] depends solely on
the values of By at the instants t; and tj+3.
Quite to the contrary, in all cases H#%, the
interpolate of By(t) is nonlinear, and it de-
pends on all the t, and all the Bu(tn). As
tm—t; increases, the influence of By(tm) de-
creases, but slowly. Therefore, the interpola-
tion of By can be described as being global.
The random midpoint displacement curves
investigated in Chapter 26 behave very differ-
ently, since their interpolates are linear over
certain time intervals. This is the crux of the
difference between these two processes. m

THE FUNCTION'S & THE ZEROSET'S D

The persistence in the increments is synony-
mous with a graph of By(t) being less irregu-
lar at all scales than the ordinary Brown
graph B(t). This is expressed by its dimension
being 2—H. Its zeroset’s dimension is 1—H.

H>%: FRACTIONAL BROWN TRAILS

When we move on to two-dimensional vector-
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valued By(t), we seek motions whose direction
tends to persist at all scales. Persistence in-
cludes an appropriately intense tendency, but
not an obligation, to avoid self-intersection.
Since we also want to preserve self-similarity
in the present Essay, we assume that the coor-
dinate functions Xp(t) and Yy(t) are two frac-
tional Brown line-to-line functions of time,
statistically independent with the same par-
ameter H. In this way, one obtains a fraction-
al Brown line-to-plane trail. (Plate 255).

Its fractal dimension is D=1/H; it is at
least 1 /1=1, as must be the case for a curve,
and at most 1/(%)=2. This last result sug-
gests that the trail of By(t) fills the plane less
“densely” than the ordinary Brown trail. To
confirm this suggestion, we examine bounded
and unbounded trails separately.

The effect of H on bounded trails is one of
degree. For H>% just as for H='%, a bounded
Brown trail is a fractal net pierced by an infi-
nite number of gaps. Strong heuristic consid-
erations suggest that the gaps’ areas satisfy
Pr(U>u)ecu™P/E-y1/2H

Furthermore, I investigated empirically the
boundaries of bounded trails of varying D,
looking for departure from the value of 4/3
which plate’ 242 reports is observed in the
Brownian case. No clearcut departure was
found!

On the other hand, the unbounded trails
are affected by H qualitatively. When a trail
starts at O at time O, its expected number of
returns to a small box around O was found to
be infinite for the Brown prototype, but it is
finite when H>'. < The reason is that the
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integral [1°t72Hdt, derived in the last but
one section of Chapter 25, diverges when
H="1, but converges when H>%. m» When a
finite number of fractal nets are superposed
upon a box, it becomes covered in less lacunar
fashion, but dense covering is almost surely
not achieved. The number of superposed lat-
tices is small when H is near 1 and grows to
infinity for H=%.

H<'%. ANTIPERSISTENT
FRACTIONAL BROWNIAN MOTIONS

The fractional Brownian motions with
O<H<%% yield antipersistent functions and
trails. To be antipersistent is to tend to turn
back constantly toward the point one came
from, hence to diffuse more slowly than the
Brown counterparts.

The formula D=1/H is valid only if
E>1/H. When E<1/H, (in particular, in the
case of the plane, E=2), the fractal dimension
attains its greatest conceivable value, D=E.
We are reminded that the highest possible
dimension for a Brown trail is D=2, and that
this maximum can only be implemented when
Ex22. When squeezed into a real line with
E=1, a Brown trail must accommodate itself
to D=1. When H=1%, the fBm trail barely
fills the ordinary 3-space.

Returning to the plane, E=2, dimensional
analysis shows that the unbounded trail with
H<Y% almost surely visits any prescribed point
infinitely often. Thus, contrary to B(t), which
fails to measure up to what is expected from

D=2, and fills the plane densely but not com-
pletely, any excess of 1/H over 2 achieves
complete filling. To prove that By(t) almost
surely returns infinitely often to its point of
departure, recall from Chapter 25 that the
dimension of the instants of return is 1-2H,
hence is positive when H<'%. The argument
extends to points other than O. Thus, the in-
tersection of an unbounded fractional Brown
trail for H<' with a box of side 1 is of unit
area.

A bounded trail is a net with gaps, but has
a positive area (shades of Chapter 15!).

FRACTIONAL BROWNIAN MODEL
OF RIVER DISCHARGE, “MOTIVATED”

Again, the initial motivation for introducing
By had resided in this geometer’s personal
experience of which mathematical and graphi-
cal tricks are likely to work. I am prepared to
argue that a lack of serious motivation in a
model that fits and works well is much prefer-
able to a lack of fit in a model that seems well
motivated, but scientists are greedy for both.
Unfortunately, present ‘“‘explanations” are
contrived, in my opinion, and carry less con-
viction than the fact to be explained.

To understand why successive yearly dis-
charges of rivers are interdependent, one be-
gins by taking into account the water which
natural reservoirs carry over from one season
to the next. However, natural storage yields
short-term smoothing of the records, and can
at best introduce short-term persistence. From
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the long-term viewpoint, the graph of the cu-
mulative discharge continues in “‘effect” (as
defined in Chapter 3) to be of dimension
equal to 3/2.

To go further, many writers are more pre-
pared than 1 am to invoke a whole hierarchy
of processes, each with its own different scale.
In the simplest case, the contributions are ad-
ditive. The first component takes account of
natural reservoirs, the second takes account of
microclimatic changes, the third of climatic
changes, and so forth.

Unfortunately, an infinite range of persist-
ence demands an infinite number of compo-
nents, and the model ends up with infinitely
many parameters. It remains necessary to ex-
plain why the sum of various contributions is
scaling.

At one point of the discussion, a function
(the correlation) is written as an infinite sum
of exponentials. I spent endless hours pointing
out that showing this sum to be hyperbolic is
no easier than explaining why the original
curve is hyperbolic, and arguing that an invo-
cation of possible causes can only be if magi-
cal (not scientific) value, as long as it remains
empty. What a pleasure it was, therefore, to
discover that T had been working alongside
James Clerk Maxwell; see the entry SCALING:
DURABLE ANCIENT PANACEAS in Chapter 41.

. Of course, the practicing hydrological en-
gineer can impose on every process a finite
outer cutoff of the order of magnitude of the
horizon of the longest engineering project.
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OTHER SCALING NOISES. 1/f NOISES

FORMAL DEFINITION. A noise X(t) is to be
called scaling if X itself or its integral or de-
rivative (repeated, if need arises) is
self-affine. That is, if X(1) is statistically
identical to its transform by contraction in
time followed by a corresponding change in
intensity. Thus, there must exist an exponent
a>0 such that for every h>0, X(t) is statisti-
cally identical to h™*X(ht). More generally,
and especially in case t is discrete, X(t) is to
be called asymptotically scaling if there exists
a slowly varying function L(h) such that
h=@L~1(h)X(ht) tends to a limit as h—> co.

This definition requires that one check ev-
ery mathematical characteristic of X(t) and
h™*X(ht). Thus, scaling can never be proved
in empirical science, and in most instances the
scaling property is inferred from a single test
that is only concerned with one facet of same-
ness, for example the distribution of gap
lengths (Chapter 8) or Hurst’s R/S.

-a The most widely used test of scaling is
based on spectra. A noise is spectrally scaling
if its measured spectral density at the fre-
quency f is of the form 1 /% with 8 a positive
exponent. When 8 is close enough to 1 to jus-
tify 1/f% being abbreviated into 1/f, one
deals with a “1 /f noise.” »

Many scaling noises have remarkable im-
plications in their fields, and their ubiquitous
nature is a remarkable generic fact. -



Plate 255 = FRACTIONAL BROWN TRAILS (DIMENSIONS D~1.1111, D~1.4285)

The Figure on the left constitutes an example
of a statistically self-similar fractal curve with
D=1,/0.9000~1.1111. Its coordinate func-
tions are independent fractional Brown func-
tions of exponent H=0.9000, which accounts
for the Joseph Effect for the Nile. The fact
that H is close to 1 does not suffice to prevent
self-intersections, but greatly discourages
them by forcing the curve’s “trend” to persist
in any direction upon which it has embarked.
Thinking of complicated curves as the super-
impositions of large, medium, and small con-

volutions, it may be said that in the case of
high persistence and dimension close to 1,
small convolutions are barely visible.

The Figure to the right uses the same com-
puter program with D~1/0.7000~1.4285.
The pseudo-random seed is not changed,
hence the overall shape is recognizable. But
the increase in the value of D increases the
relative importance of the small convolutions,
and to a lesser extent, of the medium ones.
Previously invisible details become very ap-
parent. R
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28 = Relief and Coastlines

This chapter, whose prime exhibits reside in
thoroughly artificial pictures that mimic maps
and photographs of mountains and islands,
proposes to show that mountains like the Alps
are usefully modeled in a first approximation
by appropriately selected fractal surfaces
ruled by Brownian chance. And we encounter,
at last, a sensible model of the natural pat-
terns with which this Essay begins, but which
have so far eluded us: coastlines.

The point of departure is the notion that
mountains’ surfaces are scaling shapes. Is this
a new idea? Certainly not! It had failed to be
stated and explored scientifically, but it is a
literary commonplace. For an example to add
to the quote that opens Chapter 2, we read on
p. 88 of Edward Whymper’s Scrambles
Amongst the Alps in 1860-1869 that “It is
worthy of remark that...fragments of...rock...
often present the characteristic forms of the
cliffs from which they have been broken...
Why should it not be so if the mountain’s
mass is more or less homogeneous? The same
causes which produce the small forms fashion
the large ones: the same influences are at
work—the same frost and rain give shape to

the mass as well as to its parts.”

One need not take Whymper’s poetic view
literally to agree that it is worthwhile to ex-
plore its consequences. In this chapter, I do so
within the most manageable mathematical
environment I can think of: Brownian and
fractional Brownian surfaces.

Even with my first simulations of fraction-
al Brownian mountains (Plates 70 and 71),
“to see is to believe.” As the quality of the
graphics began to improve, so did the quality
of belief. But eventually discrepancies be-
tween the model and our experience became
very clear, and a new model had to be intro-
duced, as is seen in the following chapter.

BROWN RELIEF ON A FLAT EARTH
(MANDELBROT 1975w)

We approach the relief by way of the vertical
sections. As already indicated in Chapter 4
and Plate 241, one of the sources of this Essay
was a feeling reported in Mandelbrot 1963e
that a scalar random walk is a rough first ap-
proximation of a mountain’s cross section.
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Hence, I searched for a random surface whose
vertical sections are Brown line-to-line func-
tions. The tool box of the builder of statistical
models contained no such surface, but a some-
what obscure candidate turned up for adop-
tion.

It is the Brown plane-to-line function of a
point, B(P), as defined in Lévy 1948. In order
to become familiar with it on short acquain-
tance and to apply it concretely, there is no
substitute for a careful examination of the
actual simulation in Plate 264. The Brown
imaginary landscape is of fractal dimension
D=5/2, and it is definitely rougher than
most of Earth’s relief.

Therefore, it is a crude model, begging to
be returned to the bench. But is it not a beau-
tiful long jump forward!

WARNING. DO NOT BE CONFUSED BY THE
BROWNIAN SHEET. The proliferation of vari-
ants of Brownian motion is endless, and termi-
nology is casual. The Brown plane-to-line
function used here must not be confused with
the Brownian sheet. The latter is an entirely
different process that vanishes along the coor-
dinate axes and is strongly isotropic. See
Adler 1981, especially the illustrations found
on pp. 185 and 186.

A BROWN RELIEF'S COASTLINES

Let us stop and check for progress in the
study of ocean coastlines, defined as zerosets:
points located at ocean level, inclusive of
points situated on offshore islands. The Brown
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coastline included in Plate 270 was the first
example | encountered of a curve that (a) is
devoid of self-intersections, (b) is practically
devoid of self-contacts, (¢) has a fractal di-
mension clearly greater than 1, and (d) is iso-
tropic. A more recent variant is included in
Plate 267.

More precisely, the dimension is 3/2. This
value being higher than most of Richardson’s
values from Plate 33, a Brown coastline is of
limited applicability. It does recall northern
Canada, Indonesia, perhaps western Scotland
and the Aegean, and is applicable to many
other examples, but certainly not to all. Be-
cause of the Richardson data, it would, any-
how, be foolish to expect any single D to apply
universally.

GENERATING A BROWN RELIEF
(MANDELBROT 1975c)

It is a pity that the simple Brown relief of
dimension D=5/2 and coastlines of dimen-
sion D=3/2 do not suffice, because they
would be easy to account for. Indeed, the
Brown function is an excellent approximation
to the “Poisson” relief that is created by su-
perimposing independent rectilinear faults. A
horizontal plateau is broken along a straight
line chosen at random. Then the difference
between the levels on the two sides of the re-
sulting cliff is also chosen at random: for ex-
ample +1 with equal probabilities, or Gaus-
sian. Then we start all over again, and follow
the kth stage by division by vk (thus making
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each individual cliff become negligible in size,
compared to the cumulative sum of the other
cliffs).

The result obtained by continuing ad infi-
nitum generalizes the usual Poisson process in
time. With no need for mathematical or phys-
ical details, we can see that the argument
seizes at least one aspect of tectonic evolution.

Because of the simplicity of this mecha-
nism, it would be comforting to believe that in
some early and especially “‘normal” state of
affairs, Earth had a Brownian relief with
D=5/2 throughout. But this topic must be
withheld for a later section.

GLOBAL EFFECTS IN BROWN RELIEF

Lévy found that the Brown space-to-line func-
tion has a property that surprises at first
blush and has very direct practical implica-
tions. Loosely stated, this property asserts
that the different parts of a Brown relief are
Jar from being statistically independent. Thus,
in order to imbed the Brown line-to-line func-
tion in a Brown plane-to-line function, it is
necessary to give up one aspect that until now
had been the characteristic virtue of Brownian
chance: independence of the parts.

Consider two points located, respectively,
east and west of a meridian section of the re-
1¥ef. Along the meridian, relief is a Brown
hne-tojline function, hence “slopes” at differ-
ent points are independent. Furthermore, one
may expect our meridian to act as screen, in
such a way that knowledge of the relief at the
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eastern point does not affect the relief’s distri-
bution at the western point. <a If such were
the case, the relief would be Markovian. m
In fact, the west does affect the east, meaning
that the generative process involves inevitably
a strong overall dependence.

This dependence implies that a Brown sur-
face is much harder to construct than a
Brown line-to-line function. The random mid-
point displacement process of Chapter 235,
whose failure to extend to the fractional
Brown line-to-line function is documented in
Chapters 26 and 27, also fails to extend to the
ordinary Brown plane-to-line function. That
is, one cannot proceed by first pinning this
function down on a rough grid, and then fill-
ing in its values within each cell, independent-
ly of the other celis. It is also impossible to
construct it layer by layer: first for x=0, then
for x=¢ without regard for its values for x<O,
then for x=2¢ without regard for the values
for x<e, etc.

More generally, every algorithm that
promises an easy step-by-step generalization
of the Brown line-to-line function to
“multidimensional time” inevitably turns out
to lead to a function that differs systematical-
ly from what was intended.

As mentioned in this chapter’s last section,
the simulations in which I had a part rephrase
the unmanageable theoretical definitions in
ways that involve successive approximations
with known error terms. But I cannot vouch
for those who, stimulated by reading my earli-
er Essays, have joined us in this game.
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BROWN RELIEF ON A SPHERE

Next, let the base surface of Earth’s relief be
a sphere. Fortunately, the corresponding
Brown sphere-to-line function Bo(P) has also
been provided by my mentor; see Lévy 1959.
It is easy to describe, it is fun, and it may
even be significant. But we shall see that it is
not realistic either, because it too predicts
coastlines with D=3/2, a serious drawback.
The simplest definition of Bo(P) uses noise
theory terms, which we cannot stop to define,
but which are familiar to many readers. One
lays on the sphere a blanket of white Gaus-
sian noise, and Bo(P) is the integral of this
white noise over the hemisphere centered at P.
Within angular distances less than 60°,
Bo(P) looks very much like a Brown plane-to-
line function. Globally, however, it does not.
For example, Bo(P) has the striking prop-
erty that, when P and P' are antipodal points
on the sphere, the sum Bg(P) + Bo(P') is
independent of P and P'. Indeed, this sum is
simply the integral taken over the whole
sphere of the white noise used to build Bo(P).
Thus, a big hill at the point P corresponds
to every big hole at the antipodal point P'.
Such a distribution has a center of gravity
distinct from the center of the base surface,
and it could hardly be in a stable equilibrium.
But we need not worry: it is saved from static
instability-—hence from early dismissal as a
model—thanks to the theory of isostasy. This
theory claims that Earth’s near-solid crust is
very thin at the ocean’s deepest points and
very thick below the highest mountains, in
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such a way that a sphere concentric to Earth
and drawn a bit below the Ocean’s deepest
point nearly bisects the crust. After it is
agreed that a mountain’s visible crest must
always be considered in conjunction with its
invisible root under the reference sphere, the
constancy of Bo(P)+Bg(P') does not cease to
surprise, but does not necessarily imply gross
static unbalance.

BROWN PANGAEA AND PANTHALASSIA

How well does the above variant of Brown
relief fit the evidence? On the basis of today’s
continents and oceans, D is wrong, hence the
fit is poor.

On the other hand, plate tectonics (the
theory of continental split and drift) suggests
that the test of adequacy be carried out on the
primeval Earth as it appeared 200 million
years ago. The evidence being flimsier, the
test is less certain to fail in this case. Wegen-
er told us, and his account has become accept-
ed (for example, see Wilson 1972), that once
upon a time the continents were linked within
a Pangaea, while the oceans formed a super-
ocean, Panthalassia.

Like Pangaea, the relief in Plate 269 is a
blob of land, dented here and there by broad
sinuses. But this first-glance resemblance is
misleading. It tends to over-emphasize the
very large-scale detail due to the combination
of the geometry of the sphere and the fact
that on the sphere the Brownian rules of de-
pendence involve a strong positive correlation
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for angles below 60°, and a strong negative
correlation between antipodal points. Under a
more attentive second glance focused on less
global features, the fit deteriorates; for angles
below 30° (say), a Brown coastline on the
sphere becomes indistinguishable from a
Brown coastline on the plane. All the defects
of the latter float back to the surface.

A fractal flake in which the altitude func-
tion is the same as in the above Pangaea, but
with a scale of the order of magnitude of half
the radius looks like one of the irregular
moons of the outer planets. In contrast to
Plates 10 and 11, it is not accompanied by
flotsam or jetsam, hence its D is a measure of
irregularity alone and not of fragmentation.

FRACTIONAL BROWN RELIEF ON A
FLAT EARTH (MANDELBROT 1975w)

The trouble with either of the above two
Brownian models of the relief is that D=3/2
is too high for coastlines. As a consequence,
our search for a more widely applicable model
acquires an unexpected flavor. Long ago,
Chapters 5 and 6 determined that D>1, and
we started looking for ways to force D to rise
above 1. Now we must squeeze D below 3/2.
To obtain less unsmooth coasts, we must have
a less unsmooth relief and less unsmooth ver-
tical sections.

Fortunately, the preceding chapter pre-
pargd us well. To achieve a model of vertical
sections, I replaced the Brown line-to-line
function by its fractional variant. Random
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plane-to-line functions By(P) possessing such
sections do indeed exist. The D of their sur-
faces is 3—H (Adler 1981), and the D of their
level lines and vertical sections is 2—H.

Therefore, there is no longer any difficulty
in modeling and simulating any dimension
that the empirical data may require.

DETERMINATION OF D. Richardson’s data
(Chapter 5) makes us expect coastline dimen-
sions to be “typically” around 1.2, and relief
dimensions to be around 2.2. We can there-
fore go a long way with H=0.8—a value that
justifies Plate 265. However, other values are
needed to account for specific areas of Earth.
Values of D~2.05 or so account for relief
dominated by very slowly varying components.
When this component is a big slope, the relief
is an inclined uneven table and the coastline
differs from a straight line by no more than
mild irregularities. Near a summit, the relief
is an uneven cone and the coastline a mildly
irregular oval.

Reliefs with a D near to 3 are also poten-
tially useful but hard to illustrate in reward-
ing fashion. It suffices to observe that in Plate
270, the coastline with D near 3 is reminis-
cent of a flooded alluvial plain. Therefore, all
values of H will find a place in the tool box of
the builder of statistical models.

COSMOGRAPHIC PRINCIPLES

The cosmographic principles of Chapter 21
can be rephrased in terms of relief. The strong
cosmographic principle combines the probabil-
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istic notions of stationarity and isotropy.
Hence the relief Z(x,y) on the flat Earth may
be said to be strongly cosmographic, if the
rules generating relief are the same in every
frame of reference in which the origin
(x0.Y0:20) satisfies zo=0 and the z-axis is
vertical. In particular, said rules must be left
invariant by change in xg and yg and by rota-
tion of the horizontal axes. My Brown relief
on a flat Earth, and its fractional version,
both fail to satisfy this principle.

But they satisfy a ““conditional” version, in
which the origin is conditioned to satisfy zg =
B(xo,Yo) so that it lies upon Earth’s surface.

Attempts to fit the relief by a stationary
process have been made. They cover the z=0
plane with a regular lattice, and take altitudes
within distinct lattice cells to be independent
random variables. Such models cannot ac-
count for any of the scaling laws examined
throughout this chapter.

Brown relief on a spherical Earth fulfills
the cosmographic principle in its strong form,
which deals usefully with large portions of the
Earth, the strong form is the more useful one.
A fortiori, the conditional form holds, and it
is preferable when dealing with local effects.

THE HORIZON

For an observer sited at a finite distance
above Earth’s surface, the horizon is made up
of the nonhidden points of greatest apparent
height, along every direction of the compass.
When the relief is a perturbation upon a
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spherical Earth, the horizon is obviously at a
finite distance from the observer.

When the relief is a Brownian or fractional
Brownian perturbation upon a flat horizontal
plane, the horizon’s existence is not obvious:
each mountain might be backed at a distance
by a higher mountain, and so forth ad infini-
tum. In fact, a mountain located at the dis-
tance R from an observer has a relative height
of the order of R, so the tangent of its appar-
ent height in degrees above the horizontal
plane is about RH~1, and tends to 0 as R co.
Hence, the horizon is again defined.

To gain further insight, divide the distance
from observer to the horizon by its average.
On a flat Earth, this function is statistically
independent of the observer’s height. On a
round Earth, to the contrary, the horizon
tends to a circle as the observer grows taller.
Also, a flat Earth’s horizon lies above a plane
passing through the observer, independent of
the observer’s height. But a round Earth hori-
zon falls below such a plane if the observer is
tall enough. In summary, the observed proper-
ties of the horizon confirm that Earth is
round. The opposite conclusion would have
been devastating.

FRACTIONAL BROWNIAN MODEL
OF EARTH’S RELIEF, "MOTIVATED"

As usual, one wonders why models selected on
their virtues of simplicity prove so attractively
applicable. 1 have suggestions, but cannot
claim they are convincing (Chapter 42).
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«a First of all, one can construct By(P) as
was done for B(P), by superimposition of rec-
tilinear faults (Mandelbrot 1975f). However,
the faults’ profile must no longer be a sharp
cliff; its slope must increase as one approaches
the fault. Sadly, the appropriate profile is
contrived, so this is not a good approach.

«a [t seems preferable to begin with a
Brownian model, and then to try and decrease
the dimension as Chapter 27 did for rivers.
Exclusively local smoothing transforms a sur-
face whose area is infinite into a surface
whose area is finite. On the other hand, it
leaves large features completely unaffected.
Therefore, local smoothing replaces an object
having the same well-defined dimension on all
scales by an object that exhibits a global ef-
fective dimension of 5/2, and a local effec-
tive dimension of 2.

-a More generally, K distinct smoothings
having different fundamental scales end up
with K+1 zones of distinct dimensions con-
nected by transition zones. However, the
whole may become indistinguishable from a
fractal of intermediate dimension. In other
words, a superposition of phenomena with
well-defined scales may mimic scaling.

-<a On the other hand, a scaling phenome-
non is often spontaneously analyzed by the
mind into a hierarchy in which each level has
a scale. For example, the galaxy clusters of
Chapter 9 need not be real, as will be shown
in Chapters 32 to 35. Therefore, one must not
hasten to follow Descartes’s recommendation
and begin to subdivide every difficulty into
parts. While our mind spontaneously analyzes
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geomorphological configurations into superpo-
sitions of features having sharply distinct
scales, these features need not be real.

-a Fortunately, Earth’s relief has an in-
trinsic finite outer cutoff, because its base
surface is round. Therefore, it is safe to as-
sume that the various planings undergone
throughout geological history involve spatial
scales that stop at the order of magnitude of
the continents. The realistic assumption that
H varies from place to place allows this plan-
ing to vary in relative intensity. m-

BROKEN STONES, AIRPORT STRIPS,
AND TRIBOLOGY

As mentioned long ago, in Chapter 1, I coined
fractal from the Latin fractus, which de-
scribes the appearance of a broken stone: ir-
regular and fragmented. Etymology cannot
force an actual stone’s surface to be fractal,
but it is surely not a standard surface, and it
should be a fractal if it is scaling.

The argument for scaling is that stone is
made of grains stuck together into domains
organized hierarchically, bigger domains
sticking less strongly together than their
smaller components. The energy generated
when a stone is hit would dissipate itself easi-
est by separating big domains, but there is no
reason to expect such separation to be allowa-
ble geometrically, therefore the break is likely
to combine portions belonging to interdomain
walls of diverse hierarchical levels.

The science of wear and of friction styles
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itself tribology, from the Greek tpifw = to
rub, to grind. The evidence in Sayles &
Thomas 1978 (after correction of a flawed
analysis; see Berry & Hannay 1978) supports
the belief that fractional Brown surfaces pro-
vide first approximation representations for
airport strips, and for many natural rough
surfaces. The empirical values of D (deduced
from a plot of 7-2D in Sayles & Thomas,
Figure 1) range from 2 to 3.

SPATIAL DISTRIBUTION OF OIL
AND OTHER NATURAL RESOURCES

Now that my “‘principle” that the relief is
scaling has been tested in various ways, let us
examine a corollary. As shown in Chapter 38,
we may expect every quantity associated with
the relief to follow a hyperbolic probability
distribution (“‘Zipf law”, “Pareto law”). Such
is indeed often the case. As a matter of fact,
my study of coastlines (Chapter 5), which
suggested that the relief is scaling, had been
preceded by Mandelbrot 1962n, which found
the distributions related to oil and other natu-
ral resources to be hyperbolic. This finding
disagrees with the dominant opinion, that the
quantities in question are lognormally distrib-
uted. The difference is extremely significant,
the reserves being much higher under the hy-
perbolic than under the lognormal law. My
conclusion did not get much hearing in 1962,
but I shall try again.

Minerals are discussed again in Chapter
39, in the entry on NONLACUNAR FRACTALS.
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SHORTCUTS: PERIODIC SURFACES AND
MIDPOINT DISPLACEMENT SURFACES

Since my Brown or fractional Brown reliefs
are based on involved algorithms, approxima-
tions or shortcuts are needed. Thus, Plates
268, 270 and 271 involve a Poisson approxi-
mation to our Gaussian process. And Plates
264 to 267, and C5 to C13 replace a nonpe-
riodic function of X and y by a periodic func-
tion computed by fast Fourier methods, then
“cropped” to keep to a central portion unaf-
fected by periodicity.

In addition, I used midpoint displacement,
as in Chapter 26, to generate fractal surfaces
to be denoted by B*p(x,y). Such a surface is
most easily implemented using as initiator an
equilateral triangle 5. The values of B¥*(x,y)
being prescribed at the vertices of 7, the first
stage interpolates this function separately on
the 3 midpoints of the sides of ZJ, using the
same process as for the coordinate functions
of B*4(t). The next stage interpolates at 9
second-order midpoints. And so on.

The outcome is more realistic, to be sure,
than any nonfractal surface, or most nonran-
dom fractal surfaces. But is it stationary?
AB* = B*j(x,y)-B*p(x+Ax,y+Ay) should
depend only on the distance between the
points (X,y) and (x+Ay, Y+Ay). In fact, the
present AB*y depend explicitly on x, y, Ax,
and Ay. Thus, B¥y is nof stationary, even if
H="'%.

I have also examined and compared a doz-
en shortcuts that are stationary, and some day
1 hope to publish the comparison.



Plates 264 and 265 = BROWN LAKE LANDSCAPES, ORDINARY AND FRACTIONAL
(DIMENSIONS D~2.1 TO D=5/2, PROCEEDING CLOCKWISE)

The figure on top of Plate 265 is an example of fractional Brown relief of dimension fairly close
to 2, which is my model of Earth’s landscape. The other Figures extrapolate this model to higher
D’s, ending on top of Plate 264, with an ordinary plane-to-line Brown relief. The latter has as
defining characteristic that every vertical cut is an ordinary Brown line-to-line function, as in
Piate 241. A Brownian relief is a poor model of Earth because it is conspicuously too irregular in




its detail. The poor fit is quantified by the fact that its surface dimension D=5/2 and its
coastline dimension D=3 /2 are too large.

For each landscape the attitude is computed for latitudes and longitudes forming a square
grid. The computer is programmed to simulate lighting from a source located 60° over the left,
while the viewer is located 25° over the base level. For further details, see the captions of the
color illustrations. S
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Plates 266 and 267 = BROWN COASTLINES, AND ISLAND “STRINGS”’

These plates are primarily meant to underline an important, newly discovered effect. When the
relief D reaches and exceeds 2.5, there is a strong and increasing tendency for the ocean to split
into roundish separate “seas.” These seas intercommunicate, nevertheless each has a sharp
individuality. On the other hand, the islands seem to come in “strings.” The same effect is also
vis(iible (but not quite so clearly) in the ridges present in all the “landscapes™: Plates 264, 265,
and 271,

This lack of isotropy in the samples is entirely compatible with the fact that the generating
mechanism is isotropic.

These plates are equivalent (except for the seed) to planar sections of the flakes in Plates 10
and 11 (which are explained at the end of Chapter 29). Here, as in Plates 10 and 11, we use a
trimmed version of one period of a periodic varant of the desired process. This diminishes the
overall shape’s dependence upon D. The actual Brownian coastlines’ overall shapes differ more
than shown on these plates.

An effect related to the present strings is discussed in Chapters 34 and 35. ==

266
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Plate 268 1 CONTOUR LINES IN FRACTIONAL BROWN LANDSCAPES

Both the figures in this plate combine two or
three contour lines (the bold lines being coast-
lines) for fractional Brown functions. The fig-
ures involve different dimensions but the same
program and seed: the top figure uses
D~1.3333, and the bottom figure uses
D~1.1667. By inspection, both dimensions
are credijble from the viewpoint of geography,
but one is on the high and the other on the
low side.

These curves seem much less “‘rugged”
than those in Plate 2¢7 having the same D.

The reason is that in the earlier plates each
section exhibits a very strong maximum; there
is little systematic slope there. Here, by con-
trast, we see the side of a huge mountain,
with a strong overall slope. This plate is close
in its “generic” appearance to a blown-up ver-
sion of some particularly rugged small piece
of Plate 267.

By comparing these different contour lines,
we become better aware of the wide margin
left for the interplay between irregularity and
fragmentation even after D is fixed. HE
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Plates 269 and C9 (top) - BROWNIAN PANGAEA (COASTLINE DIMENSION D=3/2)

The “distant planet” in Plate C9 represents a
fictitious fractal Pangaea seen from far away
in space. Its relief was generated by imple-
menting on the computer (to the best of my
knowledge, for the first time) a random sur-
face due to Paul Lévy: a Brown function from
the points of a sphere (the latitude and the
longitude) to scalars (the altitude). Sea level
was adjusted so that three-quarters of the to-
tal area is underwater. The coastline was ob-
tained by interpolation.

This plate shows the same Pangaea on a
Hammer map-—a projection favored by stu-
dents of Wegener’s theory of continental drift.

How closely does this model Pangaca re-
semble the ““real” one? The specific local de-
tail is not expected to be right, only the de-
grees of wiggliness, both local and global. The
resemblance is imperfect, as expected. Indeed
this model Pangaea’s coastline satisfies

269

D=3/2, while the imaginative drawings in
books of geology attribute to the real Pangaea
the same D as observed for today’s continents,
D~1.2. If new evidence turns out to be com-
patible with D=3/2, one could account for
the geometry of Pangaea with the help of
rather elementary tectonic assumptions.

FRACTALS IN NON-EUCLIDEAN SPACE. In
Riemann’s non-Euclidean geometry, the role
of the plane is played by the sphere. Thus, the
non-Euclidean geometries go half way: they
study Euclidean shapes in a non-Euclidean
substratum. The bulk of this Essay also goes
half way, since it studies non-Euclidean
shapes in a Euclidean substratum. The pres-
ent Pangaea unites both departures: it is an
example of non-Euclidean shape in a non-
Euclidean substratum. HE



Plate 270 = THE FIRST KNOWN
EXAMPLES OF BROWN COASTLINES
(ORDINARY AND FRACTIONAL)

My claim that appropriately selected fraction-
al Brown functions are reasonable models of
Earth’s relief was originally founded upon
these four model coastlines. They are, like
Plate 269, a sentimental carry-over from my
1975 French Essay, except that the black
areas were filled in more carefully, thus ex-
tracting more detail from the original.

When D is near 1, top Figure, the coast-
line is too straight to be realistic.

On the other hand, the coastline corre-
sponding to D=1.3000, second Figure from
the top, strongly reminds us of the real Atlas.
We see unmistakable echos of Africa (big is-
land to the left), of South America (big island
to the left, as seen in mirror image), and of
Greenland (big island to the right, after the
top of the page is turned from twelve o’clock
to nine o’clock). Finally, if the page is turned
to three o’clock, both islands together simu-
late a slightly undernourished New Zealand,
together with a double Bounty Island.

When D rises to 3/2, third Figure from
the top, the Atlas guessing game is harder to
play.

When D increases again, closer to 2, bot-
tom Figure, the geographic game becomes
even more difficult, or at least more specializ-
ed (Minnesota? Finland?). Eventually it be-
comes impossible.

Other seeds yield the same result. Howev-
er, the same tests based on finer graphics fa-
vor D~1.2000. ==



Plate 271 1 THE FIRST KNOWN
EXAMPLES OF FRACTIONAL BROWN
ISLANDS (DIMENSION D=2.3000)

Including this plate may involve sentimental
overkill, because it does not say anything that
is not better expressed by other plates. But
these views of an island with varying sea level
were featured in Mandelbrot 1975w and in
my 1975 Essay, and I am fond of them. They
were part of a more complete sequence of
fractional Brown islands of varying D and var-
ying sea levels, the first such islands to be
drawn anywhere. (In 1976, we made a film of
this special island emerging from the sea; in
1981, the film looks ridiculously primitive, but
it may acquire antiquarian value.)

Constantly, I lapse into wondering during
which trip I actually saw the bottom vista,
with its small islands scattered like seeds at
the tip of a narrow peninsula.

The original illustration had been photo-
graphed from a cathode ray tube that lacked
sharpness; the data have therefore been repro-
cessed. Here (as opposed to Plates 264 and
265, and C9 through C15), no deliberate sim-
ulation of side-lighting is required. As luck
will have it, the ancient graphic process cre-
ates the impression that the sea shimmers to-
ward the horizon.

The reader will observe that, compared
with the most recent landscapes, this plate
involves a surprisingly high dimension. The
reason is that early graphic techniques were
incapable of representing small details, hence
the early landscapes’ dimension seemed small-
er than the D that had been fed into the gen-
erating programs. To compensate, we in-
creased D beyond the range suggested by the
bulk of the evidence. As graphics improved,
however, the bias became conspicuous, hence
counter-productive. Today, we are at the point
where the D’s suggested by Richardson’s data
yield perfectly acceptable landscapes.
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29 x The Areas of Islands, Lakes, and Cups

We further explore my Brownian model of the
relief, as advanced in the preceding chapter.
The consequences concerning island areas
prove acceptable, but the consequences con-
cerning lakes and cups are not acceptable. To
correct this discrepancy, an improved model is
put forward.

PROJECTIVE ISLAND AREAS

As pointed out in Chapter 13, the variability
of the projective areas A of ocean islands is an
obvious characteristic of maps, often more
striking than the shape of coastlines. We re-
port that Korcak 1938 gives the distribution
of A as hyperbolic: Pr(A>a)=Fa~B. (We are
now in a position to replace Fr by Pr.) Final-
ly, we show that this empirical result holds
yvhen the coastline is self-similar. We are now
in a position to add that it is a fortiori suffi-
clent to assume that the relief is self-similar.
There can be no doubt that the relation-
ship 2'B=D extends from the nonrandom Koch
coastlines examined in Chapter 13 fractional
Brown zerosets. But the argument is still part-

ly heuristic as of now. The distribution corre-
sponding to the fractional Brown relief with
H=0.800 comes really very close to the em-
pirical data regarding all of Earth.

The dimension D, of each fractional
Brown island taken by itself is not known yet.

PROJECTIVE LAKE AREAS

The areas of lakes also are claimed to follow
the hyperbolic distribution, hence one might
be tempted to dismiss lakes as involving no
new element. At second thought, however, the
definitions of lakes and ocean islands are by
no means symmetric,

A special analysis sketched in this chapter
clarifies many issues concerning two lake sur-
rogates, ““deadvalleys” and ‘‘cups.” And it
makes us face the fact that river and wat-
ershed trees are asymmetric in Nature, but in
none of my Brown models. Hence it leads to a
suggested improvement of the latter.

But the distribution of lake areas remains
mysterious. Perhaps its being hyperbolic is
merely due to the “robustness’ of the hyper-
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bolic distribution under diverse forms of tor-
ture (Mandelbrot 1963e, and Chapter 38).
For example, the product of a hyperbolic ran-
dom multiplicand and a largely arbitrary mul-
tiplier is itself hyperbolic. The multiplicand
may be due to a primeval state in which the
relief and everything about it is hyperbolic.
And the multiplier may be due to the thou-
sand geological and tectonic factors that af-
fect lake shapes. But this “‘explanation” is
really nothing more than hand waving.

THE NOTION OF DEADVALLEY

The concept symmetrical to an ocean island is
an area, enclosed by a continent, whose alti-
tude is below the level of the ocean. We shall
denote such areas by the seif-explanatory mix-
ed term deadvalleys. Some contain
water—ordinarily at a level below that of the
ocean, e.g., the areas centered upon the Dead
Sea (filled to —1280 ft.), the Caspian Sea
(-=92 ft.), and the Salton Sea (-235 ft.).
Other deadvalleys are dry, like Death Valley
(bottoming at —282 ft.) or the Qattara De-
pression (—436 ft.). There is also the border-
line case of the Lowlands.

Information concerning the projective are-
as within deadvalleys’ contour lines at the
ocean level is not available to me. But inspec-
tion of maps suggests that deadvalleys are
fewer in number than islands. In the context
of the model that assumes Earth to be flat
except for an added Brown plane-to-line re-
lief, this asymmetry is to be expected. The

fact that the distributions of islands and dead-
valleys have the same exponent means that
the 10th largest island or lake areas are in
about the same ratio to the 20th largest is-
land or lake areas. But Korcak’s law also in-
volves a “prefactor” F that sets the absolute
value of the 10th largest island or lake area.
A comparative inspection of the various plates
clearly shows that in the case of a continent
surrounded by an ocean (and conversely) the
prefactor is greater for islands than for dead-
valleys (and conversely). And within the
Brown sphere-to-line model, the lesser area
(Pangaea) is more cut up in pieces than the
greater one (Panthalassia).

However, the preceding argument tells us
nothing about lakes: save for rare and irrele-
vant exceptions (such as areas near the sea-
shore filled by salt water seepage), deadval-
leys and lakes are distinct notions. The alti-
tude of a lake’s bottom need not satisfy z<0,
and the altitude of its surface need not be
z=0. Further complications: most lakes fill to
just above the brim, which is a saddle point,
but this rule suffers exceptions (e.g., Great
Salt Lake and the lakes that cover the dead-
valley bottoms listed in the preceding section).

THE NOTION OF CUP

Now we examine a second lake surrogate, to
be denoted by the neutral geometric term cup.

To define this notion, think of an imperme-
able landscape, in which every dip is filled
exactly to the brim. In order to move out of a
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dip, a drop of water has to move up, then
down. But a drop added upon this landscape
can conceivably escape along a path that nev-
er goes up, but proceeds either horizontally or
down. Each dip has a positive area, hence the
number of dips is either finite or infinite but
denumerable. It is safe to assume that the
different outlets have different altitudes. At
the precise altitude of an outlet, the relief’s
contour line is made of a certain number of
self-avoiding loops, plus a loop having a point
of self-contact. At slightly higher altitudes,
this self-contact vanishes. And at slightly low-
er altitudes, the loop divides into 2 loops nest-
ed within each other.

Once filled, the dips according to the
above contruction will be called cups.

THE DEVIL'S TERRACES

Now assume that the relief is Brownian with
O<H<1. Because of self-similarity, individual
cups’ areas are doubtless hyperbolically dis-
tributed. When D is not much above 2, the
exponent of the distribution of areas is doub-
tless close to 1.

More specifically, I conjecture that a drop
of water falling at random is almost certain to
fall within a cup. If this conjecture is correct,
the cups’ surfaces are a wild extrapolate of
the terraced fields in southeast Asia. I call
them Devil’s terraces. The points which fail to
fall within cups form the cups’ cumulative
coastline, and add up to a ramified net, a ran-
dom form of the Sierpifiski gasket. If I am
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wrong and the cups’ cumulative coastline is in
fact of positive rather than zero area (Chapter
15), my faliback conjecture is that there is a
cup arbitrarily close to every point that does
not lie in a cup.

ERODED BROWN MODEL:
MIXTURE OF RIDGES AND FLAT PLAINS

One is now irresistibly drawn to modify my
Brownian models by imagining that every cup
of a Brown mainland By is filled with dirt
and made into a flat plain. We need not illus-
trate the resulting function B*y graphically,
because, in the interesting cases when D is not
much above 2, filling the small cups makes
little visible difference.

To obtain the dirt with which it will fill
the cups, erosion must wear off the hills; but
we shall see that (if D is not much above 2)
one does not need an overwhelming quantity
of dirt, hence it is useful to assume that the
hills’ shape is little changed. The fact that
erosion wears off the saddle points by which
cups empty cannot be handled here.

From this Essay’s viewpoint, a major vir-
tue of the proposed modification is that if
ocean level is chosen appropriately, the eroded
Brown relief on a flat Earth continues to be
scaling. What about the effect of such an ero-
sion upon dimension? There is evidence that
the dimension of B*y lies between 2 and the
dimension 3—H of By.

Let us now argue that the relative amount
of dirt needed to fill in all the cups is not
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large when D=2+¢. Mainland’s volume is of
the order of magnitude of (maintand
projection’s  typical length)?+tH  «
(mainland area)!*"/2 and a cup’s volume
relative to mainland’s is (cup’s relative
area)1+H/2. Since relative area is hyperboli-
cally distributed with an exponent near 1 and
Z(relative area) = 1, it follows that
S(relative area)!tH/2 is fairly small. The
exceptions concern cases where the largest
cup is extremely large; such cups need not be
filled, as in the case of Great Salt Lake.

RIVERS AND WATERSHEDS

In a first approximation that plays a central
role in Chapter 7, I suggest that rivers and
watersheds form conjugate plane-filling trees.
Actually, this characterization may only apply
to maps; as soon as altitude is introduced, the
beautiful symmetry between the river and
watershed trees is destroyed. Indeed, neglect-
ing lakes, the points on a watershed tree are
always either local maxima (hills) or saddle
points (passes), while the points on a river
tree are never either local minima or saddle
points. The fact that Brownian and fractional
Brownian models do have local minima im-
plies they do not have river trees. This is a
fresh strike against my Brownian models.
After the cups are filled, there are no riv-
ers as such, only branching strings of
(infinitely shallow) lakes, reminiscent of cacti
with disc-shaped branches. The watersheds
form a tree; 1 believe it is a branching curve

with D<2, but it may be a curve of positive
area, hence of dimension D=2. Diverse fur-
ther variants impose themselves, but are bet-
ter reserved for a more suitable occasion.

PROPERTIES OF THE CUPS

To put in perspective the claims made in an
earlier section, we first examine the one-
dimensional reduction, namely a line-to-line
fractional Brown function By(x). Here, an
island is merely an interval [x',x"] wherein
BH(X)>0 when x'<x<x", while By(x') =
Bu(x") = 0. Denote by x=xg the point
where B reaches its maximum (cases where
there are several maxima xg are of zero prob-
ability), and define B*(x) as follows:

for X in [x' Xo], B*H(x) = Maxx' cu<xBH(X)
for x in [xg,x"], B¥H(X) = Maxy<yu<x"BH(X).

It is clear that z>B*(x), is the necessary and
sufficient condition for a droplet starting at
the point (x,z) to find its way to the ocean
along a nonascending path. Droplets that sat-
isfy BR(X) < z < B*p(x) remain trapped for-
ever, and z = B¥Q{(X) is the water level at-
tained when all the cups have been filled. This
function B* is simply a Lévy Devil’s staircase
(Plates 286 and 287), going up from X' to xg,
followed by a staircase going down from xg to
x'"". It is continuous but not differentiable and
varies over a set of length zero. Any drop of
water added near mainland’s highest point
will rejoin the ocean through flat regions al-



276

ternating with “white water” regions.

The droplets that cannot escape fill the
domain By(x)<z<B*y(x). This domain is dis-
connected, since it contains no point for which
B*y = By, and its connected portions are
the mainland’s cups. A cup’s length is the dis-
tance between consecutive zeros of B*y — By.
Its distribution is hyperbolic because of scal-
ing; its exponent is known to be %2 when
H=%, and I am convinced it is always H. The
longest cup’s length, divided by [t'-t"|, is
largest when H is close to O, and is smallest
when H is close to 1.

Now we return to a Brownian mainland
By(x,y) on a flat Earth, the function
B*H(x,y) is again defined by the condition
that a water droplet that starts at a height
z>B*y(x,y) can escape to the ocean following
a nonascending path that keeps above main-
land. As before, the spatial domain in which
Bu(x,y)<z<B*y(x,y) decomposes into con-
nected open domains that define the cups.

Now compare these cups to those of a very
thin slice of mainland, retained by parallel
walls at y=0 and y=¢. We apply to them the
preceding notations By(x) and B*y(x). The
definition of B*(x) restricts water escape to
paths lying between the above walls, while the
definition of B*x(x,0) allows a much wider
chvoice of escape paths. It follows that
B¥H(x,0)<B*(x) for almost every x. Hence
the function B*14(x,0), and any other vertical
cut of B*(x,y), are much more interesting
than B*y(x). They are devilishly terraced sin-
gular function with (an infinity of) peaked
local maxima and flat local minima. If my
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strongest conjecture is valid, the latter cover
almost every point of mainland.

Since the cup areas’ sum is at most equal
to mainland’s area, the cups can be ranked by
decreasing area, hence are denumerable. A
consequence is that the coastline of By that
corresponds to a random value of zg is almost
surely without double point.

The cumulative boundary of all the cups
can therefore be obtained as follows. Take a
denumerable set of values z,,—which will al-
most surely fail to include a value for which
the coastline involves a loop. Censor the coast-
lines by erasing the deadvalley coastlines from
all zo=2zy. Take the union of the censored
coastlines, and add its limit points.

For any M>2, the generalization to Brown
function of M-dimensional Xx={Xj...xm} Is
straightforward. Given By(x), the argument
already used for M=2 shows that the differ-
ence between B*y and By decreases as M in-
creases. In the limit case where M=co and By
is a Brown function in Hilbert space, it fol-
lows from classical results of Paul Lévy that
B*y—By=0. Does this identity hold for all
M>Mgpit with Mg,it<co? L



7¢)
-
<L
[
. Q
<
o
F.
=]
=
<
7]
L
>
=T
=
7]
Ll
-
Q
o
(&)
72
Ll
=
<T
Ll
o
o
(]
)
o
Ll
o
Ll
L




Plates C1, C3, and C16 1 THREE GREAT ARTISTS OF THE PAST ILLUSTRATE NATURE,
AND THEREBY BRING THE READER TO THE THRESHOLD OF FRACTALS

This signature is a book-within-the-book and
is dedicated to the proposition that if *“to see
is to believe,” then to see in color may lead to
an even higher intensity of belief, however
awkward our first efforts in this medium. Of
course, the reader is supposed to open this
book on page 1, not on page C1, nevertheless
the captions in this signature are somewhat
independent of the rest.

The Fractal Geometry of Nature was first
set forth by this author. This geometry com-
bines the mathematics and the science neces-
sary to tackle a certain broad and widespread
class of natural shapes.

Many of these shapes are very familiar,
but the problems they raise had been rarely
mentioned by writers of the past. On the other
hand, Plates C1, C3, and C16 are ready ex-
amples of old works of art that exemplify the
issues tackled by fractal geometry.

PLATE C1. THE FRONTISPIECE OF A BIBLE
MORALISEE. The period of Western European
history centered at 1200, while stagnant in
science and philosophy, was exuberantly ac-
tive in engineering. In the age that built the
Gothic cathedrals, to be a master mason was
a very high -calling. Thus, the “Bibles
Moralisées illustrées” of that time (“‘comic
strip” Bibles) often represent the Lord hold-
ing mason’s dividers (Friedman 1974).

~ Plate C1 is an example. It is the frontis-
piece of a famous Bible Moralisée, written

between 1220 and 1250, in the Eastern Cham-
pagne dialect of French. It now resides in the
Austrian National Library in Vienna (codex
2554), and is reproduced with the Library’s
kind permission. The legend reads:

ICI CRIE DEX CIEL ET TERRE
SOLEIL ET LUNE ET TOZ ELEMENZ.

(HERE CREATES GOD SKY AND EARTH
SUN AND MOON AND ALL ELEMENTS.)

We perceive three different kinds of form in
this newly created world: circles, waves, and
“wiggles.” The studies of circles and- waves
benefited from colossal investments of effort
by man, and they form the very foundation of
science. In comparison, “wiggles’ have been
left almost totally untouched.

The goal of the present Essay is to face the
challenge of building a Natural Geometry of
certain “wiggles,” to be called “fractals.”

A most attractive feature of this plate is
that it begs the scientist to “take the measure
of the universe.” To apply dividers to circles
and waves had long proven an easy task. But
what if we apply dividers to the wiggles on
this plate,...or to coastlines on Earth? The
result is unexpected; it is discussed in Chapter
5, and later chapters explore its consequences,
and thereby guide the reader along a path one
may describe as science-filling.

FROM THE FRACT AL GEOMETRY OF NATURE, BY BENOIT B. MANDELBROT
Published by W. H. Freeman and Company. Copyright © 1982 by Benoit B. Mandelbrot



PLATE C3. THE DELUGE BY LEONARDO DA
VINCI. (From the Windsor Castle Collections.
Reproduced by gracious permission of Her
Majesty the Queen.)

This is one of many drawings in which
Leonardo represented water flow as the super-
position of eddies of many diverse sizes.
Awareness of this eddy structure entered sci-
ence belatedly, becoming partly formalized by
Lewis F. Richardson in the 1920’s into the

“scaling” view of the nature of turbulence.
However, this view promptly drifted into a
search for formulas, losing all geometric fla-
vor, and also (this may not be a coincidence!)
proving of limited effectiveness.

The theory expounded in this book allows
a return of geometry into the study of turbu-
lence, and shows that many other fields of
science are very analogous geometrically and
can be handled by related techniques.

LEGEND CONTINUES ON PAGE C16
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Flamboyant this design may be, but its black
background must be viewed as an example of
extreme minimal art. Indeed, the formula

{z:limn_,oo|fn(z)l=oo, where f(z)=Az(1-2)},

is all that is needed to duplicate the back-
ground in question with complete accuracy.
Let me explain this formula: having chosen
the complex number X determining the
“generating function” f(z), we construct
fo(z)=f(f(z)), then f3=f(f2(z)), that is,
f3(z)=1(f(f(z))), and so on ad infinitum.

The complex number A yielding this plate
is ~1.644.96i. Clearly, it was not hit by ran-
dom fire. The dragon’s shape is very sensitive
to A\, but a special theory I developed (and
sketch in Chapter 19) allows one to choose A
so as to obtain the dragon one wishes among
many very varied possibilities.

THE “STONES.” As to the design that
stands out from the black background, it is
made of 25 kinds of ““stones,” each defined by

{z: limp ., oofosn(z) =261,

where the 25 complex numbers z; are roots of
the equation fo5(z) = z, and in addition satis-
fy [(d/d2)tas(2)/<1.

Looking carefully, one sees 5 different
reds, 5 different blues, etc. This coloring
scheme is chosen because 25 values of zg fall
into 5 “‘genera,” each made up of 5 “species.”
We attach a color to each genus, and a hue or
intensity to each species. For example, all 5
species of gold are strung along the dragon’s
golden main body, and they come together at
this body’s wasp’s waists.

A PREVIOUSLY HIDDEN FACE OF CLASSICAL
MATHEMATICS. The formula for f(z) is so
short, and looks so uninteresting (because it
comes from an elementary chapter of calcu-
lus), that little was expected from it. Thus,
previewing this kind of design on the comput-

er screen provoked surprise as well as a deep
esthetic shock.

C4

Classical mathematical analysis (which is
the most advanced form of calculus) had
played a joke on all those who either loved or
hated it. It is now revealed that analysis has
two very different faces. The face it had been
showing us for centuries, and which became
its pride (or its curse), was unremittingly aus-
tere. But 1 show that analysis also has a hid-
den face that is often strikingly attractive and
playful.

Respect and admiration for the Great
Masters of austere analysis make one hasten
to say that the extreme complication of the
outline of this black velvet was not a surprise
to the handful of mathematicians (of whom I
had the good fortune of being one) aware of
“ancient” (mostly circa 1920) works by Pierre
Fatou and Gaston Julia. But such shapes’
complication had contributed to enhancing the
starkness of analysis, and nothing had made
us expect that so many witnesses would per-
ceive this complication as beautiful.

ALGORITHMS THAT INCLUDE A LOOP.
Fatou’s and Julia’s discoveries confirm, in
effect, that a very complex artifact can be
made with a very simple tool (think of it as a
sculptor’s chisel), as long as the tool can be
applied repeatedly. Here, the tool is the func-
tion f(z) from which one generates the func-
tions f(z).

Therefore, one does not deal here with an
operation that is performed once, then stops
when completed, but with an operation that is
performed, then repeated, etc. Such iterated
functions are examples of treadmills or loops,
each turn of which can deal with a fresh task.

The simplest loop programs are linear,
which means that they add detail that merely
echoes the overall shape on a smaller scale.
The resulting shapes are called self-similar.

In this instance, to the contrary, the detail
becomes deformed as it becomes smaller, be-
cause the function f(z) is not linear. This
function being quadratic, the boundary of the
velvet background is denoted in Chapter 19
by the term, self-squared. ™™






Plate C7 = SELF-INVERSE FRACTAL PATCHWORK.

This ‘hanging is patched of six different kinds
of transparent cloth. A multitude of open
discs (that is, of interiors of circles) are cut
from cloth of 6 different colors, and sewn
upon a transparent scrim, either singly or in
superposition. Most of these discs are too far
away or too small to be seen.

This shape is a more intricate variant of
one discussed in Chapter 18. Its construction
begins by selecting a generator, which in this
instance is a collection of 4 circles and 4
straight lines, arranged as follows

N

N

first period is bounded by our rectangle, and
the others are obtained by translation along
either axis.

The problem of determining the structure
of Lis an old and famous one, to which I give
the workable solution illustrated here. This
new solution shows that £ is made up of the
points where disc-shaped cloth patches are in
contact along the circles that bound them.
Points within a disc never count as part of £
even when they are on the boundary of a dif-
ferent disc of the same or a different color.

Now to the explanation of how these disc-
shaped patches are selected. Starting with the
generating shape, one draws 6 circles, call
them T'-circles, each of which is orthogonal to
3 of the 8 generating shapes. There are many
other circles orthogonal to 3 of the
generator’s 8 shapes, but only the present 6
are needed as I'-circles.

N

For many reasons explained in Chapter 18,
a great deal of interest is attached to the
shape o/ that is the smallest shape to remain
completely unchanged if one performs a sym-
metry with respect to any of the generating
straight lines, or an inversion with respect to
any of the generating circles.

In theory, the difference between the no-
tions of line and circle is not basic here; in-
deed, if the above lines and circles are sub-
jected to geometric inversion with respect to a
point that lies on none of them, they trans-
form into 8 circles. Therefore, instead of call-
ing L' “self-inverse and self-symmetric,” it
suffices to call it “self-inverse.”

But the fact that this figure involves 4
symmetries, across lines that form a rectan-
gle, is advantageous, and was built-in to in-
sure that the present set [ is periodic. The

Cé6
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Each T'-circle bounds a disc associated with a
different color of cloth, then the same color is
also used in every disc obtained by transform-
ing one of the T-discs by inversion in the 4
circles, or by symmetry in the 6 lines in the
generator. The discs in the central
“medallion” overlap with each other, but nei-
ther overlaps with any of its inverses. The cor-
ner discs, to the contrary, overlap with certain
of their inverses. 1l







Plate C9 = PLANETRISE OVER LABELGRAPH HILL
(SOUVENIR FROM A SPACE MISSION THAT NEVER WAS)

Plates C9 to C15 may look “‘realistic.” And,
in their own way, some are works of art. How-
ever, these plates are not photographs and
were not intended to be artistic. Furthermore,
they are not examples of the popular fake
landscapes one can obtain by processing actu-
al landscapes, in the same way as one synthe-
sizes a chemical by transforming other chemi-
cals. The present plates are exactly as
artificial as Plates C5 and C7. They are the
fractal equivalent of the “complete” synthesis
* of hemoglobin from the component atoms and
(a great deal of) time and energy.

Plate C9 combines the implementations of
two of my theories of the surfaces of planets,
first 'advanced in Mandelbrot 1975w on the
- basis of Plates 270 and 271, and explored in
" Chapters 28 and 29 of this Essay. Various
features of the present plate fail to fit reality,
but the chapters in question show how some of
these defects can be improved.

A planet on which water concentrates in
oceans and snow (e.g., in polar caps), while
the sky remains completely cloudless, is—to
put it mildly—a rough approximation. Color
is added after the fact to the best of our pres-
ent abilities, and the color selection is com-
pletely independent of my theories. A first
stage algorithm showed altitude using the
same colors as The Times Atlas. Then it be-
came clear that a slight refinement in the col-
oring scheme would yield considerably better

results, without requiring a multiplicity of
separate decisions.

This art cannot claim to be as minimal as
that in Plates C5 and C7, because the defini-
tions of the two “planets” cannot reduce to a
single line without undue artificiality.

A second reason this art cannot be called
minimal is that implementing the shadows
involves great ingenuity; one would need
tomes to explain every detail. In addition, the
algorithm is very much influenced by the
available tools, hence to duplicate this work
one would have to use exactly the same com-
puter equipment.

Since an earlier version of this
“Planetrise” appeared on the back jacket, and
other fractal landscapes appeared in the
Plates of the 1977 Fractals, they have been
honored by innumerable imitations. The low
relative quality of the imitations is further
proof of the nonminimality of this art.

Nevertheless, the main feature of either

-planet can be characterized uniquely by a

very small number of very basic properties of
continuity and invariance, to be explored in
the following captions.

DEDICATION. Labelgraph Hill is named in
memory of “lblgraph,” an independent-
minded and often very ill-mannered heap of
graphics programs that originated in work by
Alex Hurwitz and Jack Wright of IBM Los
Angeles. It graced the T. J. Watson Research
Center from 1974 to 1981, responded when
treated with consideration, and (with its lively
successor, “‘yogi”’) made it possible to illus-
trate my Essays. R.[.P. =
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Plate C11 = GAUSSIAN HILLS THAT NEVER WERE

The name of Carl Friedrich Gauss (1777-
1855) appears in nearly every chapter of
mathematics and of physics, making him the
first (princeps) among the mathematicians
(including the physicists) of his time. But
these imaginary hills being called Gaussian is
motivated by a probability distribution for
which Gauss receives undeserved credit. It is
the distribution whose graph is the famous
“bell-shaped curve” or “Galton ogive.” On
Plates C9 to C15, this distribution rules the
difference in altitude between any two pre-
scribed points on the map, at least after a
suitable transformation.

Many scholars resort to the Gaussian
probability distribution in their disquisitions,
without feeling that this choice has to be jus-
tified. Either it is the only distribution they
know intimately and trust, or they believe it
accounts for the distribution of every random
quantity in Nature, from conscripts’ heights
to astronomers’ errors of measurement.

Actually, this last belief is quite without
foundation. This Essay includes many exam-
ples that show the world to be full of grossly
non-Gaussian phenomena. Therefore, the re-
sort to the Gaussian distribution requires a
different and less controversial justification.
To me, the only sound justifications are based
on the fact that the Gaussian is the only dis-
tribution that possesses certain properties of
scale invariance, yet leads to continuously var-
ying reliefs. The conclusion is that the sim-
plest possible reliefs are ruled by a “Brown
funption,” or at least by a variant thereof
which I called “fractional Brown function.”

The only parameter that these desiderata
leave indeterminate, so that it remains to be
selected on independent grounds, is called

fbractal dimension of the relief, and is denoted
y D.

When D attains its minimum value of
D=2, the relief is extremely smooth. As D
increases, the relief becomes increasingly
“corrugated,” and begins to resemble high
Earth mountains. Eventually, it becomes too
corrugated to be mountain-like, and ultimate-
ly it becomes near space-filling.

A Brown function’s defining characteristic
is that every vertical cut is an ordinary Brown
line-to-line function.

For every landscape other than the distant
planet in Plate C9, the attitude is computed
for latitudes and longitudes forming a square
grid. Then a semblance of roundness is inject-
ed by rolling this relief’s flat base surface
around a cylinder whose axis runs from left to
right. The computer is programmed to simu-
late lighting from a source located 60° over
the left.

Oddly enough, several observers, after
commenting briefly that a characterization of
relief based solely on invariance and continui-
ty criteria is ingenious and effective, proceed
to criticize this approach at length, because
its criteria are too abstract and fail to be de-
duced from explicit “models” or generating
mechanisms, either before or after the fact.

I am reluctant to reply (heavy-handedly)
by criticizing the concrete “mainstream” the-
ories of relief for failure to come forth with
fake landscapes anywhere close in realism to
those due to my ““abstract” theories. It seems
better to point out that many among the finest
theories of science did start with exquisite
combinations of pistons, strings, and pulleys,
only to end (several generations later) with
bare-bones invariance principles. From this
viewpoint, the work that led to the present
illustrations, and other case studies in this
Essay, start at the finish line. Is this sufficient
reason for unhappiness? .

Cc10






Plate C13 1 NON-GAUSSIAN HILLS THAT NEVER WERE

The bottoms of all the Gaussian landscapes in
this Essay, including those in Chapter 28, are
flattened to form an arbitrarily set reference
level. This procedure was first used to gener-
ate islands. And in mountain landscapes, it
was originally meant to help the eye distin-
guish between different surfaces.

Let me elaborate. When preparing my
1975 Essay, we did not want to waste any
data and we plotted all we had, but the result
was distressing: Our eyes found it surprisingly
hard to discriminate between landscapes we
knew to be characterized by significantly dif-
ferent values of D. Then the desire to repre-
sent island coastlines together with the relief
led us to introduce a flat reference surface
into the same picture, and suddenly the differ-
ences in D became extremely conspicuous. We
should have remembered that, in order to as-
sess motion, one needs a standard to be called
rest. The same is true of roughness.

Now we find that, when the same proce-
dure was applied to valleys as well as to
mountains, it also had a second effect, an un-
planned but most fortunate one. Creating the
flats (reminiscent of lakes or banks of snow or
alluvia) hides the valley bottoms, hence forces
us to concentrate on high mountains, where
the model proves powerful beyond expecta-
tion. Had we looked too soon at the whole re-
lief, we would have been sorely disappointed,
because in the Gaussian models the valley
bottoms are as “‘unsmooth” as the mountain
tops, while real valleys are much smoother.

At present, there is no way I like for account-
ing for this difference.

But there are ways of ““fixing” the Gaus-
sian model of mountains to account better for
the valleys. The simplest fix assumes’ that the

_sole differences between the various portions

of the relief concern vertical scale, the value
of D being the same throughout. To justify
this assumption, let us reduce the vertical
scale of the Gaussian Sierras in Plate C11.
Amazingly, they turn into rolling terrain!
Conversely, consider almost any near-flat sur-
face, like that of an airport strip, and magnify
its asperities. In a first approximation, the
result turns out to be very often like the
Gaussian Hills of Plate C11, with a dimension
that depends upon detailed circumstances.
There is no reason that I know for thinking
that this result fails to apply to valley bot-
toms. Hence, one cannot help being curious of
the consequences of assuming that the D valid
for the mountain tops also applies in a first
approximation to the valley bottoms.

A more specific idea is to restrict scaling
to apply in small domains, with the same di-
mension throughout, while the vertical scale
increases with the altitude above the valley’s
bottom. To achieve this goal in the top of this
plate, and in the Labelgraph Hill of Plate C9,
the altitudes above either lake level or valley
bottom are raised to the third power.

When, to the contrary, the vertical scale is
made to decrease with the altitude above the
bottom (by raising the altitude to a power
below 1), one obtains the mesa and canyon at
the bottom of the present plate.

The trick may be crude, but it is astonish-
ingly effective. W
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Plate C15 = FRACTAL ISLANDS THAT
NEVER WERE, SEEN FROM THE ZENITH

The algorithm used in the bottom of Plate C9,
and in Plates C11 to C13, is based on numeri-
cal Fourier methods, hence yields a periodic
smooth surface, whereas a fractal surface is
by definition extremely rough. One can imag-
ine, however, that we inspect our mountains
using light whose wavelength is the width of
the cells in the grid. Under such light, all the
finer details remain totally invisible.

In order to obtain islands we center the
relief around a maximum, and omit to plot
the altitudes below a certain reference level
taken as O.

The top archipelago corresponds to an or-
dinary Brown relief. This is a poor model of
Earth, because it is clearly too irregular in its
detail. The fit is poor because a surface frac-
tal dimension of D=5/2 and a coastline di-
mension of D=3/2 are too large.

In the bottom archipelago, the ordinary
Brownian function is replaced by a persistent
fractional Brownian function of dimension
D=2.200, and the coastline takes the sensible
dimension D=1.200. The clearcut ridges in
the Figure are entirely compatible with the
fact that it was generated by an isotropic
mechanism.

The resemblance with Hawaii is better
than deserved, because there is no reason why
the model should be valid for volcanic archi-
pelagoes.

The coastlines® perceived form is much
influenced by how tightly they fill the picture.
This facet of form is not totally determined by
D: because Plates C11 and C15 relate to a
region near a minimum or a maximum, the
reference level plays a central role.

c14






LEGEND FROM PAGE C3, CONT'D

PLATE C16. THE GREAT WAVE BY HOKUSAI.
Katsushika Hokusai (1760-1849) was a paint-
er and engraver of extraordinary power and
versatility, a giant by any standard. He was
fascinated by eddies and whorls of every kind,
as exemplified by one engraving that reached
such fame that a stamp-size reproduction will
suffice.

THE NOTION OF FRACTAL. I put together
certain geometric shapes whose form is very
irregular and very fragmented, and coined the
term fractal to denote them. Fractals are
characterized by the coexistence of distinctive
features of every conceivable linear size, rang-
ing between zero and a maximum that allows
for two cases. When a fractal is bounded, the
maximal feature size is of the order of magni-
tude of the fractal’s overall size. When a por-
tion of an unbounded fractal is drawn within
a box of side @, the picture has a maximal
feature size of the order of Q. Examples of
mathematically constructed fractals are found
in Plates C5 to C15.

Fractals star in two distinct stories, sepa-
rated in time by nearly a century, between
which they underwent a total role reversal.

In the first stage, some fractals (not those
illustrated in this signature) were deliberately
designed from 1875 to 1925 to eat away at
the foundations of the prevailing mathemat-
ics. Everyone viewed these sets as “‘monsters.”

While the rest of mathematics was regard-
ed as a potentially promising hunting ground
for physicists in need of new tools, everyone
agreed that the monsters could safely be as-
sumed to be totally irrelevant to the descrip-
tion of Nature. Hardly any variant of these
monsters was created for fifty years.

The role reversal started as I began to find
in my research work that one of these mon-
sters after another could serve as the central
conceptual tool to answer some old question
that Man had been asking about the shape of
his world. This led to the emergence of many
new examples and to the formulation of frac-
tal geometry, in my Essays on this topic.

THE ROLE OF GRAPHICS. Computer graphics
played a central role in the acceptance of
fractal geometry, but a peripheral role in its
genesis. That is, granted the fascination that
fractals now hold for the computer practition-
ers, one is tempted to credit the emergence of
the new geometry to the availability of this
new tool. Actually, I formulated the theory of
fractals when computer graphics was in its
infancy. However, I let its development be
biased toward topics that lend themselves to
intuition-building illustrations.

CLASSICAL PICTORIAL COMPOSITION. Now
examine Plates C1 and C3 again. Here, as in
almost any other classically ““composed” pic-
ture, it is strikingly easy to identify at least
one “feature” for nearly every scale between
the total picture size and an inner cutoff be-
low which details become invisible. Thus, the
property of scaling that characterizes fractals
is not only present in Nature, but in some of
Man’s most carefully crafted creations.
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30 = Isothermal Surfaces
of Homogeneous Turbulence

The present chapter culminates in an explana-
tion of Plates 10 and 11. The text is primarily
devoted to fractional Brown functions of 3
variables with an antipersistent exponent
H<%. The case H='% receives special empha-
sis, with H=1% serving again as point of de-
parture.

TURBULENT SCALARS’ ISOSURFACES

When a fluid is turbulent, the isothermal sur-
face where the temperature is exactly 45°F is
topologically a collection of spheres. However,
it is intuitively obvious that this surface is by
far more irregular than a sphere or the bound-
ary of any solid described in Euclid.

It reminds us of Perrin’s quote in Chapter
2 that describes the form of a colloid flake
obtained by salting a soap solution. The re-
semblance may extend beyond mere geometric
analogy. It may be that a flake fills the zone
in which the soap concentration exceeds some
threshold, and that in addition this concentra-
tion acts as an inert marker of very mature

turbulence.

Anyhow, the analogy with colloid flakes
suggests that the isothermal surfaces are ap-
proximate fractals. We wish to know whether
or not this is the case, and if it is, to evaluate
the fractal dimension. To do so, we need to
know the distribution of temperature changes
in a fluid. Corrsin 1959d, among others, re-
duces this question to a classical one, which
Kolmogorov and others had faced in the
1940s. In part, these early authors had tri-
umphed to an extraordinary extent; in part,
they had failed. A review of these classical
results is inserted here for the sake of the
nonspecialist.

BURGERS DELTA VARIANCE

The delta variance of X is defined in Chapter
21 as the variance of an increment of X. J.M.
Burgers assumed that the delta variance of
velocity between two given points P and
Po=P+AP is proportional to |AP|. This crude

but simple postulate defines Burgers
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turbulence.

A precise mathematical model of a Burg-
ers function is the Poisson function which re-
sults from an infinjte collection of steps with
directions, locations, and intensities given by
three infinite sequences of mutually independ-
ent random variables. This description should
ring a bell. Except for the addition of the var-
jable z to x and y, and the replacement of the
altitude (which is one-dimensional) by a ve-
locity (which is three-dimensional), a Gaus-
sian Burgers function served in my ordinary
Brownian model of Earth’s surface described
in Chapter 28.

KOLMOGOROV DELTA VARIANCE

As a model of turbulence, the Burgers delta
variance suffers from deadly defects, the
worst being that it is incorrect from the view-
point of standard dimensional analysis. A cor-
rect dimensional argument, advanced by Kol-
mogorov and simultaneously by Obukhov, On-
sager, and von Weiszidcker, shows that only
two possibilities exist for the delta variance.
Either it is universal, that is, the same regard-
less of the conditions of experiment, or it is an
unholy mess. To be universal, the delta vari-
ance must be proportional to |AP|2/3. Deriva-
tions are found in many books; the geometric
nature of the result is underlined in Birkhoff
1960.

After initial doubts, it was established that
the Kolmogorov delta variance accounts sur-
prisingly well for turbulence in the ocean, the

FRACTIONAL BROWN FRACTALS HHX IX

atmosphere, and all large vessels. (See Grant,
Stewart & Moillet 1959.) This verification
constitutes a striking triumph of abstract a
priori thought over the messiness of raw data.
It deserves (despite numerous qualifications,
to which Chapter 10 adds fresh ones) to be
known outside of the circle of specialists.

The Gaussian function with the Kolmogo-
rov delta variance also rings a bell. In the
present context, concerned with a scalar (one-
dimensional) temperature, this Gaussian func-
tion is a fractional Brown 3-space-to-line
function, with H=%. Thus the Kolmogorov
field involves antipersistence, while Earth’s
relief favors persistence. A more basic differ-
ence is that, while the H required to represent
Earth’s data is purely phenomenological so
far, the Kolmogorov H=% is rooted in the
geometry of space.

IN HOMOGENEOUS TURBULENCE,
THE ISOSURFACES ARE FRACTALS
(MANDELBROT 1975f)

Despite its triumph in predicting that H=1%,
the Kolmogorov approach has a major short-
coming: the distribution of the differences of
velocity or of temperature in a fluid remains
unknown, except that it cannot be Gaussian.
Such negative results are awkward, but
rarely force a convenient assumption to be
abandoned. At most, the students of turbu-
lence must be cautious when investigating a
Gaussian model: if and when a calculation
yields a logical impossibility, they abandon
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the model. Otherwise, they forge ahead.

In particular—and now we return to
temperature— Mandelbrot 1975f combines
the Gaussian assumption with the Burgers
and the Kolmogorov delta variances. One can
hope that the conclusions would remain cor-
rect without the Gaussian assumption, be-
cause they use little more than continuity and
self-similarity.

In the 4-dimensional space of coordinates
x,¥,z,T, the temperature T defines a function
T=T(x,y,z). The graph of a fractional Brown
function is a fractal of dimension 4—H, and
many of its lower-dimensional sections are the
following fractals we know well.

LINEAR SECTIONS. The isotherm for fixed
Yo, Zo, and Tg is made of the points along a
spatial axis where a certain value of T is ob-
served. They form a fractional Brown zeroset,
and their fractal dimension is 1-H.

PLANAR SECTIONS. For fixed yg and zg, the
curve representing the variation of tempera-
ture along the x axis is a fractional Brown
line-to-line function, and its dimension is
2—H. For fixed zg and Tg, the implicit equa-
tion T(zg,x,y)=Tq defines isotherm in a plane.
These isotherms are of dimension 2—H. Ex-
cept for the value of D, they are identical to
the coastlines studied in Chapter 28.

SPATIAL SECTIONS. For fixed zg, the sec-
tion is the graph of T(X,y,zg), a fractal of di-
mension 3—H. For H=, it is identical in def-
inition to the Brownian relief in the plates of
Chapter 28. For H=%, it is a fractional
Brown relief in the same plates.

EXPLANATION OF PLATES 10-11

For fixed Tgq, the isosurface defined by the
implicit equation T(x,y,z)=Tg is a three-
dimensional generalization of a coastline and
introduces us to a new kind of fractal with
D=3-H. Thus, D=3-% in Gauss Burgers
nonpersistent turbulence and D=3-% in
Gauss Kolmogorov antipersistent turbulence.
Such surfaces are illustrated on Plate 11,
whose origin can at long last be explained.
For the sake of contrast, Plate 10 adds the
isosurface of a persistent function T(x, y, 2),
with H=.75. Due to the cost of this huge
computation, the surfaces had to be smoothed
out to excess. The fact that differences due to
D affect the overall form less drastically than
expected is explained on page 267. -
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The structure of this group of chapters is a bit
involved. The two themes of random trema
and texture do not converge until Chapter 35,
when it is shown how texture can be con-
trolled. And Chapter 34 introduces texture
without much reference to tremas; it describes
facts that might have been scattered over se-
veral earlier chapters but are better collected
together to provide a unified treatment.

As to Chapters 31 to 33, they do not in-
volve texture but use the notion of trema to
construct random fractals, many of them new.
Like those of the preceding (Brown) chapters,
the new fractals are free from time and/or
space grids.

This chapter describes random dusts con-
strained to the line, applies them to the noise
problem first tackled in Chapter 8, and
grooms them to become the basis of two dis-
tinct extensions to the plane and to space de-
scribed, respectively, in Chapters 32 and 33.

The primary concrete goal of Chapters 32,

33, and 35 is to help model the galaxy clus-
ters, a challenge first described in Chapter 9.

CONDITIONALLY STATIONARY ERRORS
(BERGER & MANDELBROT 1963)

We were exhilarated in Chapter 8 to find in
Cantor dust a reasonable first model of the
principal features of certain excess noises. But
we did not even attempt an actual fit of the
model to the data. The reason is, obviously,
that the fit is expected to be terrible. Cantor
dusts are much too regular to be precise mod-
els of any irregular natural phenomenon I can
think of. In particular, their self-similarity
ratios are restricted to values of the form rk.
Furthermore, a Cantor dust’s origin plays a
privileged role that cannot be justified but has
a most unfortunate effect: the set fails to be
superposable upon itself by translation; in
technical terms, it is not translation invariant.



31 HHX INTERVAL TREMAS; LINEAR LEVY DUSTS

Irregularity is easy to inject—through ran-
domness. As to invariance by translation, our
hoped-for substitute for the Cantor dust will
only be required to match up with its transla-
tion in a statistical sense. In probabilistic ter-
minology, this means that a set has to be sta-
tionary, or at least satisfy a suitably weakened
condition of stationarity.

A simple means of accomplishing part of
this goal is proposed in Chapter 23. The pres-
ent chapter takes three further steps forward.

The first step is involved in the earliest
realistic random model of intermittency. Ber-
ger & Mandelbrot 1963 starts out from a fin-
ite approximation of the Cantor dust, with
scales satisfying ¢>0 and Q<co, and shuffles
its gaps at random to make them statistically
independent of one another. The intervals of
length e between successive gaps are left un-
touched. Chapter 8 shows that in a Cantor
dust the relative number of gaps of length
exceeding u is given by a near hyperbolic
stairlike function. Randomization reinterprets
this function as a tail probability distribution
Pr(U>u).

This yields a randomized Cantor dust, with
¢>0. Unfortunately, the stairs of Pr(U>u)
bear the trace of the original values of N and
r. This is why Berger & Mandelbrot 1963
smoothes these stairs out: the successive gaps
measured in units of e are taken to be statisti-
cally independent integers 21, the distribu-
tion of their lengths being

Pr(U>u)=uP.
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The model’s fit is surprisingly good: the
German Federal telephones yield D~0.3, and
follow-up studies of different channels by var-
ious authors find D’s from 0.2 to nearly 1.

In the Berger & Mandelbrot model, the
durations of successive gaps are independent,
hence errors constitute what probabilists call
a ‘“‘renewal” or ‘“‘recurrent” process (Feller
1950). Each error is a point of recurrence,
where the past and the future are statistically
independent of each other and follow the same
rules as from other errors.

LINEAR LEVY DUSTS

Unfortunately, the set obtained by shuffling
the gaps of the truncated Cantor dust (and
smoothing their distribution) remains defec-
tive in several ways: (a) the fit of the formula
to the data on excess noises remains imperfect
in details, (b) the restriction to ¢>0 may be
acceptable to the physicist but is annoying
from the esthetic point of view, (c) the con-
struction is awkward and arbitrary, and (d) it
is too far removed in spirit from Cantor’s
original construction.

Mandelbrot 1965¢ uses a set due to Paul
Lévy to construct a more refined model that
avoids defects (a) and (b). Let me call this set
the Lévy dust. Once D is prescribed, the Lévy
dust is the only set that combines two desira-
ble properties. As in the randomized truncat-
ed Cantor dust, the past and the future are
independent if seen from a point in this set.
Like the Cantor dust, it is a self-similar frac-
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tal. Better than the Cantor dust, this Lévy
dust is statistically identical to itself reduced
in an arbitrary ratio r between O and 1.

The zeroset of Brownian motion, Chapter
25, turns out to be the Lévy dust with D=%.

Unfortunately, the method Lévy uses to
introduce this set preserves defects (¢) and (d)
listed above. And it is technically delicate:
Instead of constraining u to be an integer =1,
one must let it be a positive real number with
Pr(U>u)=u"P extended down to u=0. Be-
cause O_D=oo, the total “probability” is infi-
nite. The method used to exorcise this seem-
ingly ridiculous implication is important and
interesting, but of no other use in this work.

Fortunately, these difficulties vanish if one
adopts a more natural ““trema’ construction
proposed in Mandetbrot 1972z.

ACTIVE AND VIRTUAL TREMAS

As a preliminary, [ claim it is useful to de-
scribe the original Cantor dust by means of a
combination of “active” and “virtual” tremas.
Again, one starts from [0,1] and cuts out its
open mid-third ]%,%[. From then on, the
construction’s substance remains the same but
the formal description changes. One makes
believe that the second stage cuts out the mid-
thirds of each third of [0,1]. While cutting
out the mid-third of the already vanished mid-
third has no perceivable effect, virtual tremas
will momentarily prove convenient. In the
same way, one cuts out the mid-third of each
ninth of [0,1], of each 27th, and so on. Note
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that the distribution of the number of tremas
of length exceeding u is now given by a step
function, whose overall behavior is proportion-
al to u™!, instead of u™®. The same depend-
ence upon u holds with different rules of cur-
dling, except that the positions of the steps
and the factor of proportionality both depend
on the method of construction.

INTERVAL TREMAS & THE RESULTING
GAPS (MANDELBROT 19722)

Next, Mandelbrot 1972z randomizes the Can-
tor construction by smoothing the steps of the
distribution, and selecting the lengths and
positions of the tremas at random, independ-
ently of one another. Finally, to implement
the proportionality to u™l, it is assumed that
the number of tremas which are centered in
an interval of length At and have a length
above U has an expectation equal to
(1-D,)At/u and a Poisson distribution. The
reason for the notation 1-D, will soon be-
come clear.

Being independent, the tremas are allowed
to intersect, and they do so with gusto: the
probability of a trema’s being intersected by
no other trema js zero. In other words, the
notions of trema and of gap cease to coincide:
the term gap will be reserved for the intervals
created by overlapping tremas. And the ques-
tion arises of whether all the tremas eventual-
ly coalesce into one huge gap, or leave some
points uncovered. We state the answer, then
the next section justifies it by an intuitive
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birth process argument, and shows that the
uncovered points form unforced clusters.

Consider an interval that fails to be wholly
covered by tremas of length above ¢g, then
introduce smaller tremas above a moving
threshold e that decreases from ¢g to 0. When
D, <0, letting e~0 makes it almost certain
(the probability tends to 1) that no point is
left uncovered. When 0<D, <1, the same out-
come may also happen, but it ceases to be
almost certain. With some positive probabili-
ty, there is an uncovered “trema fractal” even
at the limit. Mandelbrot 1972z proves that it
is a Lévy dust of dimension D=D,,.

In summary, D=max(D,, 0).

A BIRTH PROCESS AND UNFORCED
CLUSTERING IN LEVY DUSTS

By the construction of Chapter 8, Cantor er-
rors come in hierarchical bursts or “clusters,”
the intensity of clustering being measured by
the exponent D. This property is preserved
when the gaps are shuffled at random, but the
proof is neither perspicuous nor illuminating.

The proof of the same result for the ran-
dom trema dust is, to the contrary, simple and
of intrinsic interest.

The key, again, is to begin with tremas of
length above a threshold e, then to multiply e
repeatedly by some r<1, say r=%, so that its
value tends to 0. We start with a trema-free
intergap interval bounded by two “‘e-gaps.”
Adding tremas of length between ¢/3 and e
occasionally has the devastating effect of eras-
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ing everything. But there is a good probability
of seeing a much milder effect: (a) the bound-
ing e-gaps extend into longer (e/3)-gaps, and
(b) small additional (e/3)-gaps appear within
our intergap. The newly redefined intergaps
are unavoidably perceived as clustered. And
in the same fashion, subclusters are generated
by replacing ¢/3 by ¢/9,...37",...

These clusters’ evolution as h—oo 1s ruled
by a novel birth and death process. As in the
classical theory used in Chapter 23, clusters
die or multiply independently of other clusters
with the same n, and of their family histories.
A long intergap has a smaller probability of
being erased than a short one, and generates
more children on the average. When 1-D,
increases, the intervals between e-gaps become
shorter. And in addition some intervals be-
tween (¢/3)-gaps disappear completely.
Therefore, the expected number of offspring
decreases in two ways. The value D=0 is a
critical value in the sense that for D,<0 the
family line almost surely dies off, while for
D, >0 there is a positive probability of seeing
the family line survive forever.

MEAN NUMBERS OF ERRORS IN THE
BERGER & MANDELBROT MODEL

-1 This technical digression proposes to show
that the main results relative to the numbers
of errors in the Cantor dust model remain
valid after randomization. In fact the argu-
ments and conclusions are considerably sim-
plified, particularly if @=co. The topic exem-
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plifies the uses of conditional expectation in
self-similar processes.

1 Suppose that there is at least one error
in the interval [0,R], the value of R being in
the range where R>>n and R<<Q. This condi-
tion reads M(R)>0. The reason why the Ber-
ger & Mandelbrot model is called condition-
ally stationary is this: if [t,t+d] is entirely
within [O,R], the conditioned number of er-
rors, denoted by {M(t+d)-M(t) | M(R)>04%,
has a distribution independent of t. Hence it
suffices to study it for t=0. Also, given that
expectations are additive, conditional statio-
narity alone implies

(M(d) M(R)>0) = (d/R)(M(R) | M(R)>0).
As to self-similarity, it implies that
Pr{M(d)>0 | M(R)>0}=(d/R)! """,

where D* is some constant to be determined
by the process under study. To prove this as-
sertion, it suffices to introduce an intermedi-
ate d' satisfying d<d'<R, and to decompose
our conditional Pr as

Pr{M(d)>0 | M(d")>0}Pr{M(d')>0 | M(R)>0}.
Combining the last two equalities, we see that

(M(d) | M(d)>0)=(d /R)P*(M(R) | M(R) >0).

Therefore., combining conditional stationarity
and self-similarity suffices to show that
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(M(d) | M(d)>0)d"P* =constant.

The specific model under study determines
the exponent as being D*=D. Furthermore,
self-similarity alone implies that the ratios

finstant of first error | M(R)>0} /R,
and {M(R) | M(R)>0}/(M(R) | M(R)>0)

are random variables that depend on D but
are independent of R and of Q.

-a By contrast with the conditional proba-
bilities, the absolute probability of the condi-
tioning event M(R)>0 depends strongly on Q.
However, if the truncation to Q<co is done
properly, one finds that

PriM(R)>0}=(R/Q)}D.

Since this last expression can be deduced from
an expression in the preceding paragraph by
replacing R by L and d by R, the event
“M(R)>0 knowing that L<co” can be treated
like the event “M(R)>0 knowing that
M(L)>0.” In the limit Q- co, the probability
that [0, R] falls completely within a very long
gap converges to 1, so that the probability of
observing an error becomes infinitely small.
But the previously derived conditional proba-
bility of the number of errors is unaffected.

<1 The preceding argument adds to the
discussion of the conditional cosmographic
principle in Chapter 22. » -
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Plate 285 = RANDOM PATTERN OF STREETS

As long as the remaining blocks of houses
have a dimension D>1, their intersection by

As noted in Chapter 8, it is regrettable that

an arbitrary line is a Lévy dust of dimension

D-1. On the other hand, if D<1, the intersec-
tion is almost certainly empty. This result is,

1zed indi-

]

the Cantor dust should be so hard to illustrate
rectly as the intersection of the triadic Koch
curve with its base. And in the same way the

directly. However, it can be visua

not very apparent here because the

construction could not be carried far enough.

however,

ack street-like stripes are placed
and in particular their directions

are isotropic. Their widths foll

]

Lévy dust can be imagined indirectly. On this

plate, the b

Chapter 33 provides a better illustration.
When the tremas subtracted from the plane

at random,

ow a hyperbolic

distribution and rapidly become so thin that

they cannot be drawn.

the trema fractals’ intersections with

are random discs as exemplified by Plates 306
straight lines are Lévy dusts. mm

to 309

s

Asymptotically, the

white remainder set (the “blocks of houses™)
is of zero area and of dimension D less than 2.

285



Plates 286 and 287 = PAUL LEVY’S
DEVILISH STAIRCASES (DIMENSION 1;
THE RISERS’ ABSCISSAS HAVE
THE DIMENSIONS D=9/10, D=3/10,
AND D=.6309, RESPECTIVELY)

These graphs are randomized analogs of the
Cantor function, or Devil’s Staircase, in Plate
83. In the largest of these Lévy staircases, the
dimension is the same as in the Cantor origi-
nal, and in the two small ones it is either
much smaller or much larger.

To draw a Lévy staircase, one evaluates
the abscissa as function of the ordinate. In a
first stage, whenever the ordinate increases by
an amount Ay (in these instances, Ay=.002),
the abscissa increases by a random amount
having the distribution Pr(AX>u)=u"P. In a
second stage, the abscissa is rescaled so that
the staircase terminates at the point of coordi-
nates (1,1). The small staircase for D=.3
seems reduced to a small number of steps, due
to the overwhelming clustering of the risers’
abscissas. 1

286



D=.6309




32 = Subordination; Spatial Lévy Dusts;
Ordered Galaxies

The central concern of this chapter and the
next is with galaxy clusters, a topic already
touched in Chapters 9, 22, and 23. The under-
lying techniques generalize last chapter’s
dusts to the plane and the space. This chapter
is primarily concerned with the spatial Lévy
dusts. Following Bochner, we introduce these
fractals by “processing” Brownian motion by
the method of ‘“subordination.” Under the
Lévy dust, one encounters the Lévy flight, a
nonstandard random walk. The chapter begins
with an informal preview of random walk
clusters. Then subordination is explained and
justified, by being extended to a nonrandom
context. The claims made in the preview are
justified in the final section.

PREVIEW: RANDOM WALK CLUSTERS

The goal of my carly model of galaxy clusters
was to exhibit a distribution of mass with the
following features. (a) The mass M(R) in a
sphere centered on the distribution satisfies

M(R)<RP with D<2. (b) The distribution sat-
isfies the conditional cosmographic principle
in its statistical form.

RAYLEIGH FLIGHT STOPOVERS. A prelimi-
nary is provided by a construct that has nei-
ther the fractal nor the topological dimension
of galaxy clusters. Starting from a point II(0)
in space, a Rayleigh flight rocket jumps in an
isotropic random direction. The duration of
each jump is At=1, and the distance U to the
next stopover II(1) is random Gaussian with
((M(1)-I1(0)]1%)=1. The rocket then jumps
off to II(2), such that

Up = I(1)-TI(0) and U, = I(2)-TI(1)

are independent and identically distributed
vectors. And so on.

In order to view the rocket as going on
forever, we add its previous stopovers II(-1),
I1(~2).... But a change in the direction of
time does not affect a random walk, hence it
is sufficient to draw two independent trajecto-
ries starting from II(0).
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Our rocket’s trail (including the
“contrails” it leaves as it jumps) is a random
set. So is the collection of its stopovers consid-
ered without taking into account the order in
which they were reached. Both sets follow
exactly the same distribution when examined
from any of the points II(t). In the terms in-
troduced in Chapter 22, both sets satisfy the
conditional cosmographic principle in its prop-
er statistical form.

LOADING. Identically distributed and sta-
tistically independent masses are assigned at
random to each stopover of a Rayleigh flight,
extending conditional stationarity to mass.

THE DIMENSION D=2. As is widely known,
the distance the flight covers in K jumps in-
creases like VK. A consequence is that in a
ball with radius R and center II(t) the num-
ber of stopovers is M(R)<R?. The exponent in
the last formula conforms to the idea that the
dimension of the set of stopovers II(t) is D=2.
In particular, the global density vanishes.

BROWNIAN MOTION. By interpolating the
Rayleigh flight in continuous time, one ob-
tains a Brown trail, which (Chapter 25) is a
continuous curve with D=2. Thus the Ray-
leigh flight model is essentially a fractal curve
(D=1 and D=2) satisfying the conditional,
but not the strong, cosmographic principle.
The last conclusion is satisfactory, but the
values of Dy and D are unacceptable.

GENERALIZED DENSITY. If we load a Brown
trail between the points II(tp) and II(t) by
the mass 8/tg—t|, the mass M(R) becomes the
time spent in the ball of radius R, multiplied
by the uniform generalized density 8.

EXPANSION OF THE UNIVERSE. In standard
discussions, the initial distribution has a uni-
form density 6. As the Universe expands uni-
formly, & decreases, but the distribution re-
mains uniform. On the other hand, it is gener-
ally believed that every other distribution
changes by expansion. The uniformly loaded
Brown trail shows constructively that this con-
clusion is incorrect: again, & changes with ex-
pansion, but it remains defined and uniform.

Therefore Rayleigh stopovers are neutral
with respect to the question of whether our
Universe does or does not expand. This prop-
erty is preserved when D is decreased through
the use of the Lévy flight, to be surveyed now.

LEVY FLIGHT STOPOVERS; NONINTEGER DI-
MENSIONS <2. My random walk model of the
distribution of galaxies implements any de-
sired fractal dimension D<2 using a dust, i.e.,
a set of correct topological dimension Dy=0.
To achieve this goal, I use a random walk
wherein the mathematical expectation (Uz(t))
is infinite, because U is a hyperbolic random
variable, with an inner cutoff at u=1. Thus,
for us<l, Pr(u>u)=1, while for u>1,
Pr(U>u)eu™P, with 0<D<2.

A major consequence is that (M(R))<RP
when R>>1. This is the relationship we had
set out to implement. It allows any dimension
likely to be suggested by fact or theory.

-a ASIDE ON LEVY STABILITY. As t—>co, the
mass carried over a time span t (properly
scaled) converges to a random variable inde-
pendent of t, first investigated by Paul Lévy
and best called “Lévy stable” (Chapter 39).
Hence the term “Lévy flight” proposed for
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the process underlying my model.

- Due to {(U%)=co, the standard central
limit theorem ceases to be valid, and a special
central limit theorem must be used instead.
This replacement has considerable conse-
quences. The standard theorem is “universal,”
in the sense that the limit depends only on the
quantities (U) and (U?%). The nonstandard
theorem is not universal. Through D, the dis-
tribution of M(R) depends explicitly upon the
distribution of the jumps. »

The remainder of this chapter constructs a
dust that plays relative to the Lévy flight the
same role as Brownian motion plays relative
to Rayleigh flight. A direct interpolation is
tediously technical, because it must give a
meaning to the distribution Pr(U>u)=u"D
applied down to u=0, where it diverges. An
indirect approach, to the contrary, can be
made both simple and precise, through the use
of the process of subordination. This process
is of independent interest and opens up nu-
merous obvious generalizations.

CAUCHY FLIGHT AND D=1

We introduce subordination through an exam-
ple. To generate a dimension equal to D=1
starting with the Brown trail of dimension
D=2, we must seck to decrease D by 1. In the
case of classical shapes from Euclid, such a
decrease is easy to achieve. In the plane, it
suffices to take the section by a line; in
3-space, it suffices to take the section by a
plane; and in 4-space, to take a section by a
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3-space. We also saw in Chapter 23 that the
same rule holds for random fractal curds, and
in Chapter 25 that the Brown line-to-line
function has the dimension 3/2, while its
zeroset and all sections that are not perpendi-
cular to the t-axis have the dimension Y%.

Extended by formal analogy, this method
for subtracting 1 from D leads us to suspect
that appropriately selected sections of a
Brown trail are typically of dimension
2-1=1. This hunch is indeed verified (Feller,
1971, p. 348). Moreover, it should extend to
plane sections of a trail in the ordinary
3-space and to 3-dimensional sections of a
trail in 4-space, in which the coordinates are
X, Y, z, and humor.

Starting from a line-to-4-space Brownian
trail, consider the points where humor=0.
These “humorless” sites can be viewed as gen-
erated in the order in which they are visited
by the underlying Brownian motion, and the
distances between such visits are independent
and isotropic. As a result, the humorless sites
can be viewed as the stopovers of a random
flight whose steps follow rules very different
from those of Brownian motion. This walk
will be called Cauchy motion or flight. Given
two time instants O and t, one finds that the
probability density of the vector from II(O) to
TI(t) is a numerical multiple of

tE[1+ | T(0)-11(0) |2t 2] E/2.
The formal hunch that D=1 is confirmed

in S. J. Taylor 1966, 1967. The Cauchy flight
is illustrated in one of the views of Plate 298.
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THE IDEA OF SUBORDINATION

Let us ponder the preceding construction. A
line-to-E-space Brownian motion hits the hu-
morless points at the times when one of its
line-to-line coordinate functions vanishes. But
each of the coordinates is a one-dimensional
Brownian motion. Not only (Chapter 25) do
this function’s zerosets form a set of dimen-
sion D=2, but the fact that interzero inter-
vals are mutually independent implies that
this zeroset is a linear Lévy dust. In summary,
the Cauchy motion is the map on a Brownian
motion of a linear Lévy dust. Recalling that
decimation was the Romans’ charming way of
punishing a hostile group by killing every
tenth member, we see that Cauchy motion is
obtained by a fractal form of decimation. It
was pioneered in Bochner 1955, who called it
subordination. (Feller 1971 includes scattered
nonelementary comments on this notion.)
For future reference, let us note that

Dcauchy trail = DBrown traiXDBrown zeroset-

SUBORDINATION CAN BE EXTENDED
BACK TO NONRANDOM FRACTALS

To elaborate on the nature of fractal subordi-
nation, we apply it to some Koch and Peano
fractal curves. (Oddly enough, the present
discussion seems to be the first mention of
subordination in a nonrandom context.)

The idea is that one can modify these

curves by leaving the initiator unchanged but
replacing the generator by a subset of the
original. This replaces the limit fractal set, to
be called the subordinand, by a subordinate
subset. First we describe examples, then we
introduce the important rule of multiplication
of dimensions.

EXAMPLE WITH D<2. Take the four-legged
generator of the triadic Koch curve, as used in
Plate 42. Erasing the second and third legs
yields the classic generator of the triadic Can-
tor dust, Plate 78. Thus, the Cantor dust is
subordinate to a third of a snowflake. A dif-
ferent subordinate dust, not restricted to the
line, results if one erases the first and third of
the N=4 sides of the Koch generator. In ei-
ther case, subordination changes the dimen-
sion from log4 /log3 to log2/log3. If only
one leg of the generator is erased, the subordi-
nate dust is not a subset of the line, although
it is of dimension log3 /log3=1.

EXAMPLE WITH D=2. Take the four-legged
second stage of the Peano-Cesdaro curve of
Plate 64, and erase the second and third leg.
The new generator is the interval [0,1] itself!
Thus, the straight interval is a (most trivial!)
subordinate of the Peano-Cesaro curve. Eras-
ing a different set of two legs yields a fractal
dust with D=1. Erasing one leg leaves a set of
dimension log3/log2.

MULTIPLICATION OF DIMENSIONS

Recall from Chapters 6 and 7 that the Koch
and Peano curves can be viewed as the trails
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of ““motions” whose time parameter t lies in
[0,1]. This time is defined in such a way that,
to take an example, a snowflake generator’s
four legs are covered during the instants
whose expansion in the base 4 begin respec-
tively with O, 1, 2, and 3. For example, the
second fourth of the third fourth is covered
during the instants whose expansion in the
base 4 begins with 0.21. Viewed as motions,
our Koch or Peano curves arc themselves
“fractal maps” of the interval [O,1]. In this
framework, the effect of the first mentioned
decimation of generator legs is to eliminate
the values of t that include the digits 1 or 2
(or O and 3), thus limiting t to belong to a
certain Cantor dust of [0,1].

We can therefore describe our subordinate
subsets of the Koch or Peano curves as fractal
maps of a fractal subset of time. This subset
is clearly a Cantor dust, and it is called
subordinator. Its dimension is logN/logN' =
log2/logd = %. More generally, we find the
self-explanatory relation

Dsubordinate=DsubordinandXDsubordinator-

This generalizes the relation we saw char-
acterizes Cauchy motion. As we know, sums
of dimensions occur in the study of sections
and intersections. Now we discover a lovely
“calculus,” giving a meaning to products of
dimensions as well as to sums.

Of course, this rule suffers exceptions, an-

alogous t'o those applicable to the rule that
codimensions add under intersection.

RANDOM TREMAS; TEXTURE oo X

LINEAR LEVY DUST AS SUBORDINATOR

The linear Lévy dust of Chapter 31 is the first
subordinate used by Bochner, and it continues
to be so widely used as subordinator by pure
mathematicians that the related Lévy stair-
case is often called the stable subordinator
function. To obtain self-similar subordinate
sets, one uses a self-similar subordinand, e.g.,
Brownian or fractional Brownian motion.

Observe that, while Brownian motion’s
intrinsic dimension is 2, Brownian motion re-
stricted to the line is of dimension 1. There-
fore, last section’s rule is replaced by

Dsubordinate = MIN{E, 2XDgypordinator } -

More generally, a fractional Brownian
motion’s intrinsic dimension is 1 /H, but

Dsubordinate = min{E, Dsubordinator/H}'

Thus, the largest space that the subordinate
set can fill to the hilt corresponds to
E=integer part of 1 /H.

BROWNIAN MOTION AS SUBORDINAND. The
most important subordinand is the Brown
trail. The Brownian map of time instants re-
stricted to a linear Lévy dust of dimension
D/2 between O and 1 is a spatial dust with
arbitrary dimension D between O and 2. It
deserves to be called spatial Lévy dust.

Granted that the subordinator dust’s gaps
and the subordinand’s increments are both
statistically independent, the subordinate
process also has statistically independent in-
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crements. Granted that the subordinator’s gap
lengths satisfy Pr(W>W)=W_D/2, and that
during a gap of duration w the Brownian mot-
jon moves by an amount of the order of
u=v'w, the spatial dust’s gaps seem to satisfy
Pr(U>u) = Pr(W>u?®) = u™P It can be
shown that such is indeed the case.

ORDERED GALAXY CLUSTERS

The formula Pr(U>u)=u"D shows that the
subordinate dust implements the process pre-
viewed at the beginning of this chapter.

DIMENSIONS. The dust itself is of dimen-
sion D. If the maps of each linear gap’s end-
points are joined by intervals, one obtains a
Lévy trail; its dimension is max(l,D)—as in
the study of trees in Chapter 16.

CORRELATIONS. A Lévy trail induces a lin-
ear ordering among the galaxies it generates,
implying that each galaxy only interacts with
its immediate neighbors. And each couple of
neighbors interacts independently of the other
couples. In this sense, a Lévy flight is equiva-
lent to the unjustified replacement of an un-
solvable N-body problem by a manageable
combination of many two-body problems. The
result might have been atrociously unrealistic,
but is not. Mandelbrot 1975u (described fully
in Peebles 1980, pp. 243-249) shows that Lévy
flight leads to two- and three-point correla-
tions on the celestial sphere that are identical
to those that P. J. E. Peebles and Groth ob-
tained in 1975 by curve fitting; see Peebles
1980. ==
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Plate 293 o THE COMPUTER “BUG”
AS ARTIST, OPUS 2

This plate can be credited in part to faulty
computer programming. The ‘“bug” was
promptly identified and corrected (but only
after its output had been recorded, of
course!), and the final outcome was Plate 69.

The change that had been wrought by a
single tiny bug in a critical place had gone
well beyond anything we had expected.

It is clear that a very strict order is de-
signed into Plate 69. Here, this order is hid-
den, and no other order is apparent.

The fact that, at least at first blush, this
plate could pass for High Art, cannot be an
accident. My thoughts on this account are
sketched in Mandelbrot 19811, and are to be
presented fully in the near future, =m



Plates 296 and 297, AFTER PLATE 295 = MANDELBROT EARLY MODEL CLUSTERS
OF DIMENSION D=1.2600. LEVY FLIGHT AND ITS STOPOVERS

A Lévy flight is roughly a sequence of jumps
separated by stopovers. Only the latter are of
direct interest in this chapter, but jumps are a
necessary part of the construction.

Therefore, the top (black on white) figures
in these plates include, as part of the motion’s
trail, the ‘““contrails” created during actual
flights. The trail in three-dimensional space is
shown through its projections on two perpen-
dicular planes. The original can be visualized
by holding the book half open.

To proceed to the bottom (white on black)
figures, one wipes away the intervals that rep-
resent the jumps. Then one takes a photo-
graphic negative. Each stopover is a star, a
galaxy, or a more general blob of matter.

More precisely, the straight intervals of
the black-on-white top figures have the fol-
lowing characteristics. Their direction in
space is random and isotropic (that is, parallel
to the vector joining the origin of space to a
point chosen at random on a sphere). The dif-
ferent intervals are statistically independent,
and their lengths follow the probability distri-
bution Pr(U>u) = u™ except that P(U>u)
= 1 when u<1. The value of D=1.2600 is
close to the D~1.23 found for actual galaxies.

The overwhelming majority of the intervals
are too small to be perceived. In fact, we lined

the plane with a uniform grid and marked the
cells containing one or more stopovers. In oth-
er words, each point stands for a whole mini-
cluster.

In addition, regardless of D, the miniclus-
ters are themselves clustered. They exhibit
such clear-cut hierarchical levels that it is
hard to believe that the model involves no ex-
plicit hierarchy, only a built-in self-similarity.

Let us elaborate by mentioning that all the
plates in the present portfolio represent the
beginning of two distinct flights, forward and
reverse, and such flights are nothing but two
statistically independent replicas of the same
process. Clearly, if the origin is displaced to
some other stopover, the two halves are again
independent. Hence, every stopover has pre-
cisely the same claim to be called the Center
of the World. This feature is the essence of
the conditional cosmographic principle 1 pro-
pound in this Essay.

The present method does not claim to ac-
count for the way the galaxies had actually
been generated, but it brings home my theme
that the conditional cosmographic principle is
compatible with ostensible multilevel cluster-
ing. A great variety of such configurations
may be present even when none has been in-
serted “to measure.” HE
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Plate 295 1 NONRANDOM SUBORDINATION: CLUSTERED FRACTAL DUST,
OF DIMENSION D=1, SUBORDINATE TO A KOCH CURVE OF DIMENSION D=1.5

One can modify the method of recursion basic
to the Koch construction so that it breaks a
line systematically and leads to a dust that
has the same dimension D=1 as the line, but
is entirely different in topology and appear-
ance.

Imagine that a rubber band, initially laid
along [0,1], is extended to follow the Koch
generator that is used in Plate 49 to yield a
fractal curve of dimension 3 /2. Then the cor-
ners are pinned down permanently, and each
of the 8 straight intervals of the band is cut in
its middle, leaving 16 picces that snap back to
their original lengths 1 /16. These pieces’ free
ends are then pinned down, and the process is
repeated. The end result is a self-similar hier-
archically clustered dust with r=1/16 and
N=16, hence D=1.

This construction amounts to allowing us

to mark a generator’s side so it is erased at
the next stage of the Koch construction. This
process is called subordination in the text.
The only points we keep are the positions of a
Koch motion when time belongs to a subset of
fractal dimension logl6 /log64 = 4/6. And
the fact that (4/6)x(3/2) = 1 is a special
case of the rule of multiplication of dimen-
sions discussed in the text.

Note that all the points on this plate are
ordered intrinsically by the Koch curve of
which the generator is a subset. Furthermore,
it is easy to derive the frequency distribution
of the snap-back distances between successive
pinned-down points. Roughly, the number of
distances =u is proportional to u™° with D=1,
Plates 296 and 297 use the same frequency
distribution differently. 1
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Plate 298 = DECREASE OF D BY SUBORDINATION.
MAKING THE LEVY CLUSTERS BECOME INCREASINGLY SEPARATE

A planar Lévy dust’s degree of clustering depends upon its D. Here, this
cffect is illustrated by processing a planar Brownian trail, with D=2, using
successive linear l.évy subordinations, cach riding on its predecessor.
Throughout, Dgypordinator = 2~ 1/® = .89, hence the subordinate dusts have
the dimensions: 1.78 (= 2x.89), 1.59, 1.41, 1.26, 1.12, 1, and .89. The
Lévy staircases next to most dusts show how time was decimated to gencrate
this dust from the dust with D=1.78. A “ghost” of the subordinand, a
continuous Brown trail, i1s perceived clearly for D close to 2, but becomes
increasingly faint as D decrcases (see Chapter 35). Increasing clustering is
not provoked by the concentration of all points around a few of them but by

the disappearance of most points, leading to an increasing number of appar-
cnt hicrarchic levels. 1

D=1.41

D=1.26
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Plate 299 = ZOOMING TOWARD
A LEVY DUST WITH D=1.2600

The first figure on the top left represents a
cluster of 12,500,000 positions of a Lévy
motion, as seen through the square window
from a far away spaceship. Between each view
and the view that follows in clockwise direc-
tion, the distance from the spaceship to the
center of the cluster and the field of vision are
divided by b=3. The structure seen through
the window changes in detail, but remains

unchanged in broad lines. This is expected, i
due to the fact that the set is self-similar. 4
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Plates 300 =
CIRCUMNAVIGATION OF LEVY S
CLUSTERS OF DIMENSION D=1.3000 w3
& W
The shape of clusters generated as sites of a
Lévy flight in the plane is highly sample de-
pendent, meaning that if one simulates clus-
ters again and again while keeping the same W ¥ o
dimension, one must expect to obtain a great ",’ w
variety of different shapes. S
are ¥
The same is true of a small isolated spatial L 'j"*' *
Lévy cluster when viewed from many different . ?ff".‘;;
directions—by following the present “strip” IO y
clockwise from the top of this plate. Wl e
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33 = Disc and Sphere Tremas:
Moon Craters and Galaxies

Having introduced the linear Lévy dust as a
trema fractal, via interval shaped random tre-
mas (Chapter 31), we promptly sidetracked in
Chapter 32: we generalized this dust to the
plane and the space via the process of subor-
dination. In this chapter and the next, we gen-
eralize the random tremas directly.

In this chapter, the planar and spatial tre-
mas are discs and balls, hence the generaliza-
tion bears directly upon the shapes of Moon
craters and of meteorites. But the spatial
tremas’ most important application is a differ-
ent and less obvious one. When D is close to
1, a trema fractal is a dust, hence a candidate
to replace Lévy flight stopovers in modeling
the galaxy clusters. The main novelty, com-
pared with the random walks model, is that
here galaxies are not ordered along a trail.
Hence a gain in a priori verisimilitude, a re-
sulting loss in computational convenience, and
an ultimate gain in quality of fit: the predict-
ed covariance properties are even closer to the
empirical evidence. The nonspherical tremas
in Chapter 35 improve the fit further.

PLANAR AND SPATIAL TREMAS

As background for the random and overlap-
ping tremas, let planar curdling in a grid,
Chapters 13 and 14, be restated in terms of
virtual tremas. The first cascade stage con-
sists in marking N out of b2 squares, and
keeping them as curds. Alternatlvely, one may
say that the first stage cuts out b°—N square
tremas. The next stage cuts out second-order
square tremas numbering b2(b2 N), 1nclud1ng
N(b2 N) genumely new tremas and (b N)

tremas that are ‘virtual”: they eliminate
again something that had already been elimi-
nated in the first stage. And so on.

Counting both genuine and virtual tremas,
we find that the number of tremas with an
area in excess of s is proportional to 1 /s. The
corresponding result relative to curdling in
3-space is that the number of tremas with a
volume in excess of v is proportional to 1 /v.

Similarly, the bulk of this chapter and of
Chapter 35 concerns the case in which the
numbers of independent tremas centered in a
box of sides dx and dy, or dx, dy, and dz, is a
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Poisson random variable of expectation

(Nr(area>a)) = (C/2a)dx dy,
(Nr{volume>v)) = (C/3v)dx dy dz.

The corresponding expectation in RE is
(C/Ev)dxy...dxg.

The fractal properties of the resulting tre-
ma set are as simple as in the linear case
tackled in Chapter 31. When C<1, these
properties can be derived from those of the
linear case, and the predecessor Essays con-
jectured they held for all C. This was con-
firmed by El Hélou 1978.

When C>E, the trema set is almost surely
empty. When C<E, it is a fractal of dimension
D=e-C.

As to the trema fractals’ topology, general
principles show that a trema set with D<1 is
a dust with Dy=0. When D>1, on the other
hand, general principles do not suffice, the
topology being determined by the trema’s
shape. The problem of percolation arises here,
in yet another fractal context.

LUNAR CRATERS AND DISC TREMAS

We begin with a side issue that provides an
casier two-dimensional preparation and is
amusing: the geometric nature of the set that
lunar craters leave uncovered. While the
Greek kparnp denotes a bowl or drinking ves-
sel, almost all of Earth’s craters are of volcan-
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ic origin. But it is generally believed that the
craters observed on Earth’s Moon, Mars, the
Jovian satellite Callisto, and other planets and
their satellites, are overwhelmingly due to the
impact of meteorites.

The larger the meteorite, the larger and
deeper the crater resulting from its impact.
Furthermore, a large crater due to the late
impact of a heavy meteorite may wipe out
several previously formed small craters, while
a small crater due to the late impact of a light
meteorite may “dent” the rim of a large older
crater. As for the sizes, there is solid empiri-
cal evidence that at the moment of meteorite
impact the crater areas follow a hyperbolic
distribution: the number of craters with an
area exceeding s km? and such that their cen-
ters are located within a square of 1 km? can
be written as C/s, with C a constant. This
evidence is discussed in Marcus 1964, Arthur
1954, and Hartmann 1977.

To simplify the argument (with no change
in the main result), we approximate the lunar
surface by a plane, and the lunar craters by
disc-shaped tremas. If the Moon went on per-
petually scooping up meteorites from a statis-
tically invariant environment, every point of
its surface would obviously be covered again
and again ad infinitum. However, it may be
that craters are wiped clean every so often,
say by volcanic lava, in which case the trema
set they fail to cover at a given moment may
be nontrivial. Alternatively, it may be that the
solar system evolved in such a fashion that
our Moon was only bombarded during a finite
period of time. The parameter C may measure
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either the time since the last attrition of cra-
ters or the total duration of the bombardment.

To assess its effect upon the trema
fractal’s shape, let us keep the seed invariant,
and vary C. As C increases from O to 2, the
Moon’s surface becomes increasingly saturat-
ed, and the result stated in the preceding sec-
tion shows that D decreases and reaches O for
C22. The trema fractal’s dependence upon D
is illustrated by Plates 306 through 309.

APPENZELLER AND EMMENTHALER. When C
is very small, other lovers of Swiss cheese may
join me in thinking that the shape we deal
with resembles a slice of cheese that is almost
entirely pierced by very small pin holes. It is a
wild extrapolation of the structure of Appen-
zeller. When C increases, we turn pro-
gressively to a wildly extrapolated Emmen-
thaler, with large overlapping holes.

(Thus, the English nursery rhyme about
the Moon being made of green cheese proves
correct, except for color.)

TOPOLOGY. CRITICAL D'S. Either of the
above extrapolations of cheese must be called
“wild,” because the trema fractal ‘“cheese
slices” are of vanishing area. I conjecture the
following. As long as C is small enough, the
trema fractal is a o-cluster, each contact clus-
ter being a web of connected filaments and
having the topological dimension Dy=1.
When D reaches a certain critical dimension,
D¢rit, the value of Dt drops to 0, and the
o-web collapses into dust.

The next critical dimension is D=0. When
C>2, the Moon’s surface is oversaturated,
every point being almost certainly covered by

at least one crater. In particular, such would
be the case if the Moon’s surface were never
wiped clean and continued scooping up me-
teorites endlessly.

NONSCALING CRATERS. Some planets other
than Earth’s Moon are characterized by a
density of craters of the form Ws™ with v#1.
The problem these craters raise is tackled in
the appendix to this chapter.

GALAXIES AND INTERGALACTIC VOIDS
GENERATED VIA SPHERICAL TREMAS

While the Moon’s tremas have an independ-
ently recognized existence as craters, ball-
shaped tremas with a scaling distribution be-
gan as a natural extension of the same geome-
tric device to space. I thought they may yield
an alternative to the galaxy model of Chapter
32. Thus, I postulated the existence of inter-
galactic voids that combine many tremas, and
may range up to very large size. The good fit
of the resulting model was a very pleasant
surprise, and demands further theory
(Chapter 35) and experiment.

COVARIANCES. Because the statisticians
and the physicists trust correlations and spec-
tra, the first test of the trema fractals as mod-
els of galaxy clusters relies upon their correla-
tion properties. The covariance between two
points in space is the same as in my random
walk model, as it should be, since the latter
fitted the data well. The same is true, as it
should be, of the covariance between two di-
rections in the sky. The predicted covariances
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between three and four directions fit better
than those predicted by the random walk
model, but the improvements are technical
and are better discussed elsewhere. Basically,
once D is known, the various models give the
same correlations.

Now recall that Gaussian phenomena, in-
cluding Brown or fractional Brown fractals,
are fully characterized by the covariance
properties. When they are scaling, they are
fully characterized by D. Given the influence
of the Gaussian phenomena on the
statisticians’ thinking, one may be tempted to
stop at the covariances. But fractal dusts are
not Gaussian phenomena, and their D fails to
specify many important facts about them.

CRITICAL DIMENSIONS. More basic than the
correlation is the question of whether the tre-
ma fractals have the right topology. To check,
it is best, as in the preceding section, to keep
a fixed seed and let C increase from O to 3.
As long as C is small, D=2, and our fractal
is made of ramified veils. When D traverses a
certain value Docjt, called upper critical di-
mension, the veils split into filaments, with
Dt=1. And when D traverses a smaller value
Derit called lower critical dimension, the fila-
ments collapse into dust, with Dy=0. Since
the modeling of galaxy clusters requires dusts,
it is important to verify that Derit exceeds the
observed D~1.23. My computer simulations
confirm this inequality.

PERCOLATION. The hope that the world is
not more complicated than need be makes me
b.el.leve that D>Dgyit is the necessary and suf-
ficient condition for the trema fractal to per-
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colate, in the sense described in Chapter 13.

METEORITES

The mass distribution of Earth impacting me-
teorites has been studied carefully, for exam-
ple in Hawkins 1964. Mid-size meteorites are
made of stone, and 1 km?3 in space contains
roughly P(V)=10_25/v meteorites of volume
exceeding v km?3.

This claim is ordinarily expressed differ-
ently, using the following very mixed units.
During each year, each km? of Earth’s sur-
face is on the average host to 0.186/m me-
teorites of mass above m grams. Their aver-
age density being 3.4 g cm™3, this relation
boils down, in more consistent units, to 5.4
10_17/V meteorites of volume exceeding v
km3. Moreover, Earth moves on by roughly 1
km during 1072 years—the inverse of the or-
der of magnitude of Earth’s trajectory around
the Sun in km. Hence, using consistent units,
and keeping to orders of magnitude so that
5.4 becomes 10, we find that while Earth
moves on by 1 km in space, each km? of
Earth’s surface is host to 1072 /v meteorites
of volume exceeding v km3. Assuming that
the meteorites impacting Earth as it sweeps
through space are a representative sample of
the meteorites’ distribution in space, we ob-
tain the result that has been asserted.

This 10725 /v law is formally identical to
the C/s law for lunar craters, but there is a
difference: craters can overlap, while meteor-
ites cannot.
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Nevertheless, it is fun to see what would
happen if P(v)=10_25/v held down to v=0
and—wild thought!—if meteorites could over-
lap. Adding the innocuous assumption that
meteorites are spherical, the trema set can be
investigated directly (with no need of the re-
sults in El Hélou 1978). The sections of me-
teorites by straight lines randomly thrown in
space are rectilinear tremas, and it can be
shown that the number of such intervals cen-
tered within 1 km and of length exceeding u
km is C'1072% /u. (C' is a numerical factor of
the order of magnitude of 1, unimportant in
this context.) Hence a result in Chapter 32
shows that the dimension of the trema set’s
Jinear section is 1-10725, Adding 2 when we
go back from the linear sections to the full
shape, we find 3-D=10"25.

This result is inane, since it implies in par-
ticular that meteorites nearly fill space, even
after one allows for overlap. Nevertheless, the
codimension 3-D=1072% deserves just anoth-
er glance. Let us assume in a first approxima-
tion that the 10_25/v relationship holds down
to a positive cutoff >0 and that there is no
meteorite of smaller size. The argument we
have sketched asserts that if one could actual-
ly pass to the limit >0, the set outside of all
meteorites would converge to a trema set of
dimension D=3-10725, Fortunately, this lim-
it set would be attained so extraordinarily
slowly that in the observable range allowing
meteorite overlap can pose no problem. Unfor-
tunately, the value of D can have no practical
importance whatsoever.

APPENDIX: NONSCALING CRATERS

The Moon’s crater distribution is best written
for the present purpose as Pr(A>a)=Fa™?,
with y=1. The same % seems to hold for
Mars, but for Jovian satellites one finds dif-
ferent values of v (Soderblom 1980). Similar-
ly, ¥<1 for small volume meteorites. The re-
sulting trema sets are not scaling.

THE CASE WHEN v>1. In this first non-
scaling case, any given point of planetary sur-
face, regardless of the value of W, almost
surely falls into an infinity of craters. The
surface texture is overwhelmingly dominated
by small craters. The Jovian satellite Callisto
has such a texture, and indeed it is character-
ized by v>1. When discussed in predecessors
to this Essay, before the Voyager mission,
v>1 was merely a theoretical possibility.

THE CASE WHEN y<1 AND CRATER AREAS
ARE BOUNDED. Denoting this bound by 1, the
probability for a point to remain outside all
craters is positive -=a because the integral
JolPr(A>a)da converges m, but it decreases
as W increases. The resulting pocked surface
is (even more than in the scaling case) remi-
niscent of a slice of Swiss cheese. The greater
the value of 7, the smaller the number of
small holes, and the more ‘“‘chunky” the re-
sulting cheese. However, regardless of the val-
ue of v, the slice is of positive area, hence it is
a (non-self-similar) set of dimension 2. On the
other hand, I have no doubt that its topologi-
cal dimension is 1, meaning it is a fractal.

In space (meteorites) this trema fractal’s
dimensions are D=3 and Dy=2,



Plates 306 and 307 = SMALLISH ROUND TREMAS, IN WHITE,
AND RANDOM SLICES OF “SWISS CHEESE” (DIMENSIONS D=1.9900 AND D=1.9000)

The tremas are white circular discs. Their centers are distributed at random on the plane. For
the disc of rank p, the area is K(2-D)/p, the numerical constant then being chosen suitably to
fit the trema model described in the text. Plate 306 shows a sort of Appenzeller wherein the

black portion is of dimension D=1.9900, and Plate 307 a sort of Emmenthaler with a black
portion of dimension D=1.9000. ==
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Plates 308 and 309 = LARGER ROUND TREMAS, IN BLACK, AND
RANDOM FORKED WHITE THREADS (DIMENSIONS D=1.7500 AND D=1.5000)

The C.OHSt,ruCtion proceeds as in Plates 307 and 308, but the tremas are bigger, so hardly
anything is left out, and they are represented in black. The D’s are the dimensions of the
remaining white fracta] mm

308






34 = Texture:
Gaps and Lacunarity; Cirri and Succolarity

Texture is an elusive notion which mathema-
ticians and scientists tend to avoid because
they cannot grasp it. Engineers and artists
cannot avoid it, but mostly fail to handle it to
their satisfaction. There are many indications,
however, that several individual facets of tex-
ture are about to be mastered quantitatively.

In fact, much of fractal geometry could
pass as an implicit study of texture. In this
and the next chapter, two specific facets are
approached explicitly, with stress on galaxy
clusters. Remarks on texture could have been
scattered between earlier chapters, beginning
with Chapters 8 and 9, but it seemed prefera-
ble (at the cost of interrupting the discussion
of tremas!) to collect all my comments on tex-
ture in one place.

As stated repeatedly, my search for models
of galaxy clusters proceeded by stages. Early
ones, described in Chapters 32 and 33, fit the
desired D while preserving the conditional
cosmographic principle. Later ones, described
in Chapter 35, also fit texture.

This chapter’s several introductory sections
present the basic observations about galaxies

that led me to distinguish two aspects of tex-
ture, calling them lacunarity and succolarity.
Lacuna (related to lake) is Latin for gap,
hence a fractal is to be called /acunar if its
gaps tend to be large, in the sense that they
include large intervals (discs, or balls). And a
succolating fractal is one that “nearly” in-
cludes the filaments that would have allowed
percolation; since percolare means “to flow
through” in Latin (Chapter 13), succolare
(sub-colare) seems the proper neo-Latin for
“to almost flow through.”

The remainder of this chapter introduces
several measures of lacunarity, but measures
of succolarity are beyond the present elemen-
tary discussion.

Chapter 35 proceeds to show how lacunari-
ty and succolarity can both be controlled
through tremas.

Up to now, a predominant role in measur-
ing fractals was given to the topological and
fractal dimensions. Chapter 14 was an excep-
tion (without follow up), since the order of
ramification injects finer distinctions between
fractals that share the same values of DT and
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of D. We encountered many different expres-
sions of the form

prefactor x (quantity)exponent,

but so far we only considered the exponent.
The study of texture forces us to extend our
attention to the prefactor. Since it could not
be neglected forever, we cannot be surprised
that neither Nature (science) nor human
thought (mathematics) are simple!

GALAXIES" “CIRRIFORM" FILAMENTS

A mysterious empirical finding was brought
to my attention in Paris, in 1974, after my
first lecture on the model described in Chap-
ter 32. My sole purpose had been to achieve
the desired value of D in a fractal (actually, I
had not yet coined the term fractal). But an
unidentified astronomer pointed out during
the discussion that there was a further, unex-
pected, element of verisimilitude: on the sam-
ples generated by my model, the points often
seem to fall along nearly straight lines, and
more generally seem scattered along narrow
“near-streams” or “near-filaments.” The uni-
dentified astronomer informed me that the
galaxies shared this property in even clearer
form and that a “near-stream” of galaxies
observed more closely decomposes into thinner
“near-streams.” The astronomer stressed that
Streams was a very poor term, the structures
in question being disconnected.

To avoid being confused by terminology, I

recalled that filmy fleecy clouds are called
cirri by meteorologists, and filed away the
information that galaxies have a cirriform
structure, and that it would be desirable to
improve the model to make the cirri even
more apparent.

Actual references came forth much later:
Tombaugh had observed ““cirri” in 1937, in
the Perseus Supergalaxy, and de Vaucouleurs
had confirmed them in the 1950’s, in the
Local and Southern Supergalaxies. Further
confirmation came from Peterson 1974
(concerning the Zwicky catalog), from
Jo&veer, Einasto & Tago 1978, and from So-
neira and Peebles in 1978 (concerning the
Lick Observatory catalog of Shane and Wir-
tanen; see Peebles 1980).

CIRRIFORM FRACTALS

Clearly, a cirriform structure can, but need
not, be present in a nonrandom fractal dust. It
is absent from the Fournier model in Chapter
9, which generates a collection of “lumps.” By
contrast, cirri are readily created by taking a
Sierpinski carpet of Chapter 14 and discon-
necting its generator without brutality. Since
the resulting fractal’s dimension can take es-
sentially any value, we have made the impor-
tant point that being cirriform is not a matter
of dimension. Nevertheless, specifically built-
in nonrandom cirri are too artificial to war-
rant attention.

This is why it was noteworthy that an
unintended but unquestionable cirriform



312

structure should be present in a random mod-
el for D close enough to 2.

This led me to a careful examination of
other families of random fractals. Particularly
immediate and interesting configurations are
observed in the plates of Chapter 28 and in
Plate C15, wherein the archipelagoes, into
which many of the islands seem to coalesce,
are more often atoll-shaped than clump-
shaped.

CIRRI ARE EXPECTED IN FRACTALS
THAT “NEARLY"" PERCOLATE

Plates 308 to 309 reveal that an accentuated
cirriform structure is present in fractals con-
structed as in Chapter 33, by removing ran-
dom disc-shaped tremas. It suffices that the
dimension be close to, but “slightly below,”
the critical percolation dimension, D¢yit. The
reason for the cirriform structure is obvious in
this case. Let D decrease through Deyit, as we
go through a sequence of fractals, each im-
bedded in its predecessors. We know that to-
pological dimension crashes discontinuously
from 1 to O, but this discontinuity is excep-
tional: most facets of form vary continuously.
For example, the out-of-focus picture obtained
by replacing each point by a ball of radius p
varies continuously. This out-of-focus picture
1s streamlike, not only when D>D,,j but also
when Dcit—D is positive but small.

Qbserve that D¢t can also be said to be
defined for the fractals of Chapter 32, but its
value is degenerate, equal to max D=2.
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GALAXIES" OBSERVED LACUNARITY

A second skeleton rattles in the closets of
most models of the distribution of galaxies. To
avoid invidious (even when justified) criticism
of others, consider either of my own early
models, as analyzed in Chapters 32 and 33.
When D is matched to experiment (D~1.23),
the limited portions of space shown in my
plates look reasonable at first glance. But
overall sky maps are completely wrong. Their
gaps include immense domains (one-tenth of
the sky or more) that are totally empty of gal-
axies within any prescribed distance. In dev-
astating contrast, actual maps (e.g., the proc-
essed Lick Observatory map, Peebles 1980)
seem fairly homogenous or isotropic, except
on rather fine scales. I say that the sky is of
low, and the models are of high, lacunarity.
APPARENT COSMOLOGICAL IMPLICATION.
This last circumstance tempted me, circa
1970, to interpret the sky’s appearance wrong-
ly, as due to a D much larger than the value
D~1.2 suggested by de Vaucouleurs 1970. As
to cosmologists, we know they are enamored
of a homogeneous Universe, and expect homo-
geneity, with D=3, to prevail above a small
outer cutoff. They might hasten to interpret
the above discrepancy as supporting the no-
tion that fractals with D~1.23 (more general-
ly, with D<3) are only applicable to the de-
scription of a small region of the universe.
LACUNARITY IS A PARAMETER DISTINCT
FROM D. Actually, I am about to show that it
is often possible to preserve a fractal’s D,
while modifying the perceived lacunarity. The
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main idea is illustrated in Plate 318, by two
different Sierpifnski carpets of identical D but
very different appearance. The one to the left
has the bigger gaps, and it is the more lacu-
nar one, both intuitively and according to the
measures I shall propose.

COSMOLOGICAL IMPLICATION. The custom-
ary inference, that the perceived low lacunari-
ty implies a “small” outer cutoff €, may be
overly hasty. The Devil’s Advocate is prepar-
ed to argue that the small scale evidence in
favor of D~1.23 and the large scale evidence
in favor of near isotropy are not incompatible
with a properly designed fractal model in
which @=co. To win this argument is not to
disprove that Q<co, but merely to demon-
strate that the determination of @ requires
additional care and data.

THE LACUNARITY OF TURBULENCE

The issue of whether the outer cutoff @ is
small or large also affects the study of turbu-
lence. As mentioned in Chapter 10, Richard-
son 1926 proclaims that @ is extremely large
in the atmosphere, while most meteorologists
think it is small. Therefore most of the com-
ments in the preceding section have their tur-
bulence counterpart.

There being few vocal living proponents of
Q=o00, the issue is less acute for turbulence
than for galaxies, and is better discussed in
the tatter context.

A CANTOR DUST'S LACUNARITY

The notion of lacunarity (contrary to the no-
tion of succolarity) makes sense on the line,
hence previous sections’ claims are most read-
ily justified for linear dusts. We recall from
Chapter 8 that a Cantor dust € on [0,1] may
achieve any given D between O and 1 (limits
excluded) in many different ways, and that
the results need not look alike.

This is the case even if € decomposes into
a prescribed number N of equal parts. Indeed,
D and N determine r=N_1/D, the parts’ com-
mon length, but not the parts’ positions within
[0,1]. As a result, the same values of D and N
(hence of r) are compatible with markedly
different distributions for the parts.

At one extreme, one may collect the parts
into two clumps terminating near O and near
1, respectively. This leaves in the middle a big
gap, whose relative length 1-Nr = 1-N1-1/D
is very close to 1. An example is seen in the
horizontal mid section of the Sierpinski gasket
to the left in Plate 318. Essentially the same
effect is achieved by placing a single big
clump anywhere between O and 1.

At the other extreme, one may separate
the N parts by N-1 gaps of the same length
(1-Nr)/(N-1). An example is seen in the
horizontal mid section of the Sierpinski gasket
to the right in Plate 318. When curdling is
random, as in Chapter 23, the gaps are nearly
of the same length.

When N>>1, the outcome of the first ex-
treme construction looks like a few points,
hence “mimics” the dimension D=0, while
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the outcome of the second extreme construc-
tion looks like a “full” interval, hence mimics
the dimension D=1. And of course, one can
mimic any D between O and 1, by choosing
for the N—1 gaps an appropriate collection of
intervals, whose relative lengths add to 1-Nr.

The contrast between the extremes in-
creases with N, 1/r, and b, The fractal di-
mension is hard to guess from the appearance
of a minimally lacunar fractal with large N.
However, it is clear-cut for small N. There-
fore, the game of guessing D by just looking
at a fractal has limitations. It is not an idle
game (and we are correct in dwelling upon it
in earlier chapters), but for galaxies it is mis-
leading.

-a This issue is clarified by a topic which
necessity “exiled” into Chapter 39. The in-
spection of a nonlacunar fractal reveals its
similarity dimension, which we shall see is 1,
and not its Hausdorff dimension. In this case,
the two dimensions differ, and the latter is the
more suitable embodiment of fractal
dimension. s

GAPS VERSUS CIRRI FOR N>>1 AND D>1

When N>>1 and D>1, a judicious choice of
the generator can yield either of four out-
comes: lacunarity can be either high or low,
and cirri can either be arbitrarily close to per-
colation or absent. Thus, our two aspects of

texture can in principle vary independently of
each other.
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ALTERNATIVE LACUNARITY MEASURES

In the short time since I started examining
lacunarity, several distinct approaches proved
worthy of examination. Unfortunately, one
must not expect the resulting alternative
measures to be monotone functions of one an-
other. They are real numbers chosen to sum-
marize the shape of a curve, hence they par-
ticipate of the notions of “average man” and
of “typical value of a chance variable.” The
fact is sad but unchangeable (notwithstanding
many statisticians’ willingness to risk every-
thing in defense of their favorite) that typical
values are by nature indeterminate.

THE GAP DISTRIBUTION’'S PREFACTOR

One is tempted to measure a Cantor dust’s
degree of lacunarity by the largest gap’s rela-
tive length. Alternatively, in plane shapes as
those in Plate 318, lacunarity tends to vary
inversely with the ratio between the trema’s
perimeter and the square root of its area. But
a more promising measurement is deduced
from the distribution of gap sizes.

From Chapter 8, a Cantor dust’s gap
lengths satisfy Nr(U>u)ocFu”D, in the sense
that log Nr(U>u) viewed as function of log u
has a regular stair-shaped graph. The present
discussion changes nothing to this last result,
but the prefactor F, which was not significant
till now, comes to the fore.

We must face the fact that the definition
of F is somewhat arbitrary. For example F
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may be taken as relative to the line joining
either the left, or the right endpoints of the
stair’s risers, or their midpoints. Fortunately
such detail does not matter. As lacunarity
goes up, one observes that any sensibly de-
fined prefactor goes down. The same result
holds for the volume or area scale factors rel-
ative to the Sierpinski carpets and the fractal
foams. In all cases, lacunarity increase is due
to the collapse of many gaps into a single big-
ger one. This makes the graph of the stairs
slide toward 4:30 o’clock, a direction that is
steeper than the stairs’ own overall slope of
-D/E, provoking the decrease in F that is
claimed above.

Thus, we see that, within the broad never-
theless special class of fractals that include
the Cantor dusts and Sierpinski carpets, lacu-
narity can be measured, hence defined, by F.

But this is a definition of limited validity.
It already ceases to be compelling when a
carpet’s large central medallion is interrupted
in its midst by a smaller carpet. Hence we
need alternative definitions. The best is to
substitute for F the more broadly valid prefac-
tor of the relation M(R)«<RP.

LACUNARITY AS 2ND ORDER EFFECT
CONCERNING THE MASS PREFACTOR

When a fractal is not constructed recursively
(e.g., when it is random) lacunarity stand-ins
are needed. Those described in this and the
following sections are statistical averages,
even in the case of the Cantor dust, which is

nonrandom.

First, ponder the Cantor dusts obtained as
horizontal mid sections of the two figures in
Plate 318. Take the total mass of either dust
to be 1, and consider the mass in diverse sub-
intervals of lengths 2R=2/7. In the more
lacunar example to the left, this mass ranges
widely, from O to %, while in the less lacunar
example to the right, it ranges only a little
around its mean value. Unfortunately, the
precise distribution of mass is complicated in
the Cantor dust case, and it is best to switch
to the simpler case of a fully random Cantor
dust, .

We take it that 2D intersects [0,1], and we
denote the expected mass in this interval as
(W) (the reason for this notation will transpire
in a moment). When a small interval
[t,t+2R] is chosen in [0Q,1], the expected
mass in it is 2R(W), as it should be. But if one
excludes the uninteresting cases where the
mass vanishes, the expected mass increases to
(2R)P (W). Its value depends on D—but noth-
ing else. (This shows that our dust’s probabili-
ty of intersecting [0,1] is (2R)}7P.) In other
words, the mass itself comes out as W(2R)P,
where W is a random variable: sometimes
large and in other cases small, but on the av-
erage equal to (W), irrespective of lacunarity.

Now let us dig deeper, and seek how far
the actual values of W/{W)-1 differ from O.
The conventional measure of discrepancy is
the expected value of the second order expres-
sion (W/(W)-1)2, denoted ((W/(W)-1)2).
This second order lacunarity is small when
lacunarity is intuitively viewed as low, and
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large when lacunarity is 1ntu1t1vely viewed as
high. Therefore ((W/{(W)- 1) ) is a candidate
to define lacunarity. Alternatives such as
(IW/(W)-1|) are tempting, but they are far
harder to evaluate than the mean square.

To summarize, we have moved beyond the
relation “mass « RP” to give individual atten-
tion to the prefactor of proportionality of
mass to RP. Observe that the notion of lacu-
narity has nothing to do with topology, and
that it concerns comparisons at given Dj; its
possible use for inter-D comparisons remains
unexplored.

LACUNARITY AS 1ST ORDER EFFECT
CONCERNING THE MASS PREFACTOR

An alternative approach to lacunarity involves
the distribution of the mass in [t,t+2R] when
its midpoint t+R is conditioned to belong to
D. This condition implies that [t, t+2R] in-
tersects <D, but the converse need not be true:
if [t,t+2R] intersects D, the midpoint t+R
need not be in D. The tighter conditioning we
are now imposing on [t,t+2R] has a greater
tendency to eliminate the cases where the
mass is well below the average, therefore re-
sults in an increased expected mass. In other
words, W is replaced by W#* satisfying
(W*)>(W). And the ratio (W*)/(W) is large
for very lacunar 2, and small for less lacunar
ones. Hence we find an alternative candidate

to define and measure of lacunarity:
(W*)/(W).
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CROSSOVER AT CUTOFF, & LACUNARITY

The approaches to lacunarity discussed up to
this point are intrinsic, that is, do not involve
any external point of comparison. We know,
however, that many physical systems involve a
finite outer cutoff Q. These systems allow yet
another approach to lacunarity, of slightly
decreased generality than the two preceding
ones but of very much greater convenience.

Let us indeed replace our fractal set D,
for which Q=c0, by a fractal set &g which is
“like 2 on scales below Q and near homoge-
neous on scales above Q. An example of Q is
the crossover radius where the galaxies’ distri-
bution changes from D<E=3 to D=3. This
crossover could be left without precise defini-
tion until now, but no longer. The idea is that
an observer who sits on a point of 2 views @
as the size of the smallest chunk he must in-
vestigate to obtain a fair idea of the whole. To
an inhabitant, the less lacunar world should
seem to become homogeneous very rapidly,
and the more lacunar world should seem to
become homogeneous very slowly.

A first impulse is to write

(M(R)) = aRP for R<<Q
and (M(R)) = BRE for R>>Q,

and to argue that the crossover occurs when
aRP = BRE, ie., QFD = a/g8. Hence

(M(R)) = aQP-ERE for R>>Q.

A minor variant picks the point where the
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two formulas have equal derivatives, hence
Q*ED — Da/EBS. When lacunarity (i.e., @)
increases but 8 and D remain fixed, @ and A*
both increase. Both are fresh candidates to
define and measure lacunarity.

IMPROVED TRANSLATION INVARIANCE

The fact that a straight line can slide upon
itself is expressed by saying it is translation
invariant. By contrast, Chapter 22 stressed
that Cantor dusts have the eminently
undesirable property that they are not transla-
tion invariant. For example, the original triad-
ic dust € and its translate by 1 /3 do not even
intersect. On the other hand, € and its trans-
late by 2 /3 have one-half of € in common.

In the case of maximally lacunar Cantor
dusts with N>>1, the only admissible transla-
tions yielding a significant overlap are of
length close to 1 or close to 0. In the mini-
mally lacunar case, on the other hand, the
admissible translation length may be
(approximately) any multiple of 1/N.

In other words, translation invariance must
be weakened in order to apply to Cantor
dusts, but one gets away with lesser weaken-
ing when the lacunarity is low.

The conclusion of Chapter 22 was that one
can extend translation invariance and the cos-
mologic principle to fractals, by making them
random and recasting the invariances in
“conditional” form. This recasting provides a
major reason for introducing random fractals.

FROM STRATIFIED TO
NONSTRATIFIED TEXTURE

The process used in this chapter to vary the
succolarity in a Sierpinski carpet, and the la-
cunarity in a Cantor dust and a Sierpinski
carpet involves a return to the strata charac-
teristic of the nonrandom and the early ran-
dom fractals. This method is powerful but
artificial. In particular, the restriction of the
scaling ratios to the form r* buys lacunarity
by narrowing the scope of self-similarity.
With a high value of N (e.g., N=10%2, see the
caption of Plate 114), and a correspondingly
low r, the stratification is pronounced and
conspicuous.

This way of controlling succolarity and
lacunarity is obviously undesirable. Therefore,
it is fortunate that I found one can do much
better by extending the method of tremas:
replacing intervals, discs, and balls by the
more general shapes discussed in the chapter
that follows.

NONLACUNAR FRACTALS

A fractal may be of vanishing lacunarity, as
shown in an entry in Chapter 39. =



Plate 318 = CARPETS’' LACUNARITY

Consider the following Sierpinski carpets con-

structed using the generators

|_

Both generators satisfy b=1/r=7 and
N=40, hence D~1.8957. The fact that
N=40 may not be obvious, but it becomes
obvious by inspection of the next stages, as
shown above on 7 times larger scale.

318

Clearly, D being the same in both cases is
not obvious. This is overwhelmed by the fact
that the carpet to the left gives the impression
of having definitely larger gaps, that is, of
being much more lacunar (lacuna hole,
gap). Chapter 34 advances several alternative
methods to pin this impression down.

This dimension D~1.8957 is remarkably
close to that of Bernoulli percolation (end of
Chapter 13), but the resemblance is mislead-
ing, because the topologies are very different
in these two cases. Nl
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In agreement with this Essay’s method, Chap-
ters 31 and 33 introduced the trema fractals
through the simplest examples, based upon
intervals, discs, and balls. The results were
gratifyingly varied, but the use of more gener-
al tremas brings in even greater riches.

It is true that El Hélou (1978) shows that
a trema fractal’s dimension is solely deter-
mined by the distribution of the trema length
(area or volume). But the days when D was
the sole numerical parameter of a fractal end-
ed when Chapter 34 introduced succolarity
and lacunarity. The present chapter shows
how these characteristics are affected by the
trema shape. Again, the demand from the
case studies and the supply from geometry are
uncannily matched.

From the viewpoint of succolarity, the
tremas’ shape affects D¢, hence for a given
D, it affects the sign and magnitude of the
difference D—De¢rit-

From the viewpoint of lacunarity, the sim-
plest improvements upon earlier chapters are
achieved as follows. In the case of linear tre-
ma fractals (Chapter 31), the Lévy dusts are
the most lacunar, and any lesser degree of

lacunarity can be achieved most simply and
naturally by taking as trema the union of
many intervals. In the case of spatial trema
fractals obtained directly (Chapter 33), the
simplest is to take each trema to be other
than a disc or ball. In the case of spatial tre-
ma fractals subordinated to Brownian or frac-
tional Brownian motion (Chapter 32), the
simplest is to take as subordinator a fractal
dust less lacunar than Lévy dust.
Unfortunately, deadlines are closing in
(this being the last chapter of this Essay to be
written), and the arguments concerning trema
fractals would take much reworking to make
them suitable for inclusion in this Essay.
Therefore, the chapter must be a mere sketch.

TREMA GENERATORS; ISOTROPY

The term trema shape used in the preceding
introductory section involves the notion of tre-
ma generator. Of course, the term generator
is already used in several early chapters. We
remember that the stick generators of the
Cantor or Koch shapes, and the trema genera-
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tor of the Sierpinski shapes, determine both a
fractal’s shape and its D. Here, to the contra-
ry, the trema generator determines everything
except D.

NONRANDOM TREMA GENERATOR. This is
an open set within which an arbitrary point is
singled out as the center, and whose length
(respectively, area or volume) is equal to 2
(respectively, w or 4w /3). The tremas are
rescaled versions of this generator. Their posi-
tions and sizes are random, with the same dis-
tribution as in Chapters 31 and 33.

For example, in the case E=1, the number
of tremas having a length above 7 and cen-
tered in an interval of length At continues to
be a Poisson random variable of expectation
(E-D,)At/7. And the familiar formula for
the dimension, D=max(D,, 0), is shown in El
Hélou 1978 to apply under mild restrictive
assumptions about the trema generator’s
shape. (The question of whether these restric-
tive assumptions are intrinsic or due to the
method of proof deserves investigation.)

BOUNDEDNESS OF THE GENERATOR. Since
the philosophical goal of the trema construc-
tion is to create global structures from local
interaction, it is sensible to include the as-
sumption that the tremas are local, that is,
bounded. But unbounded tremas may bring
interesting surprises. A further generalized
trema model is embodied in Plate 285.

DEF.INITION OF GAPS. A gap is no longer
the union of tremas, but the union of maximal
open components of tremas.

NO.NRANDOM ISOTROPY. For the generator
to be isotropic, one must be able to choose the

RANDOM TREMAS; TEXTURE HHx X

origin so that the generator is the set of points
whose distance from the origin falls within
some set of the positive real line (usually, a
collection of prescribed intervals). The iso-
tropic case is the simplest and most thorough-
ly investigated.

However, nonisotropy is not excluded. In
particular, we see that a fractal dust can be
made asymmetric with respect to the past and
the future.

RANDOM TREMA GENERATOR. This is a
partly or fully random set of length (area or
volume) equal to 1. A careful check of the
applicability of the theorem in El Hélou 1978
would be welcome.

The least level of randomness consists in
picking a single sample from a process that
generates random sets, and in making all the
tremas identical to this sample (up to dis-
placement and size). The next useful level of
randomness adds a random rotation, chosen
independently for each trema. Even more gen-
erally, the tremas may be obtained by taking
independent samples from a process that gen-
erates random sets. The sample sets need not
all have the same volume, because volume is
pinned down during resizing. Then the resized
samples are rotated. Nonindependent rota-
tions or samples are conceivable, but I have
not used them thus far.

RANDOM ISOTROPY. In the first of the
above alternatives, isotropy requires the sam-
ple to be rotation invariant. In the second al-
ternative, the rotation sample must be distrib-
uted uniformly. In the third alternative, only
the process must be rotation invariant.
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STRATIFICATION. The preceding definitions
would allow the trema length (area, volume)
to be stratified, i.e., restricted to values of the
form r*. But this would confuse the distinct
effects of stratification and of general trema
shapes, there is no stratification.

CONTROL OF SUCCOLARITY THROUGH
THE Dt OF GENERAL TREMA FRACTALS

A section of Chapter 34 shows that a cirri-
form structure is expected if a fractal
“nearly” percolates, that is, if it belongs to a
family with a well-defined D, and if its D is
“only a little” below Dt In other words, D
and the intensity of cirriform structure can be
fitted jointly if the model involves both D and
Dcrit as parameters.

In a trema fractal, the parameters are the
real number D and a function that specifies
the trema generator. Let me show that Dyt is
a function of this last functional parameter: it
can be brought arbitrarily close to E, and if
E>2, D¢rit can be made arbitrarily close to 1.

A CASE WHERE Dy¢,it 1S ARBITRARILY CLOSE
TO E. It suffices to take as generator an arbi-
trarily thin needle or flat pancake with fixed
shape but isotropically oriented axes (Plate
323). To prove this assertion in the plane
(E=2) observe that, given an arbitrary D<2,
the trema centers, sizes, and direction can be
selected inspective of the generator’s flatness
ratio. Next, consider a square of side L, and
subdivide the tremas into 3 ranges: a mid
range with areas below «L2/10 and above

7r112, a high range, and a low range. When D
is much above the D¢yt relative to disc shaped
tremas, and the tremas are barely flattened
discs, the situation is as in Chapter 33: the
mid range tremas mostly form separate holes
surrounded by a highly connected set. But if
the tremas nearly flatten into lines, they al-
most surely cut up our square into small dis-
connected polygons. The added effect of flat-
tened low range tremas can only be to cut
these polygons further. Adding high range
tremas can erase our square, or dissect it into
pieces, or leave it alone. When it is left alone,
it can no longer percolate. In other words, I
showed that flattening the tremas can force
D¢rit to become larger than any prescribed
D<2.

The generalization to E>2 is obvious.

The same effect is achieved for E>2, and
also extends to E=1, by taking as trema gen-
erator the domain contained between a ball
(or sphere) of radius well above 1, and a suit-
ably smaller ball (or sphere).

A CASE WHERE Dt IS ARBITRARILY CLOSE
TOo 1. A heuristic argument suggests that
when E>3 and the tremas are nearly needle
shaped, Deit is arbitrarily close to 1.

CONTROL OF LACUNARITY THROUGH
THE L OF GENERAL TREMA FRACTALS

A section in Chapter 34 shows how one can
control lacunarity where the trema lengths are
stratified. Now let us put into the record
(without detail) the fact that the same goal
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can be achieved via the trema generator. We
focus on the measure of lacunarity that is
mentioned last in Chapter 34, and involves an
outer cutoff Q.

As a matter of fact, we first go a step fur-
ther and perform a double cutoff by con-
straining the linear scale of the trema to lie
between ¢>0 and A<co.

It is easy to see that an arbitrarily picked
point continues to have the probability
(e/A)E_D of belonging to the resulting trun-
cated trema fractal. Next spread mass on this
set with the density ¢P~FE. We find that the
prefactor B=aQPF of Chapter 34 becomes
AP-E, Performing the passage to e—>0 proper-
ly, this expression continues to hold for e=O.
Hence, Q=Aal/E-D)

(If @ is defined through the variant defin-
tion, @=Aa!/(E-D) (D /E)1/(E-D) )

It remains to evaluate «. One finds that it
depends on the trema generator’s whole shape.
It is largest when the generator is an interval
(disc, ball) and can take arbitrarily low val-
ues. The threshold © is correspondingly low.

When the trema is contained between con-
centric spheres of radii «>>1 and 8>>1, the
result is very simple: Q1 /c.

Thus, it is possible to arrange for (M(R)),
hence, for the covariance of the distribution of
mass, to go over arbitrarily fast to its behavior
in the asymptotic region, meaning that the
densities at two points separated by more than
Q become effectively independent.

It is odd that a decrease in lacunarity,
through a decrease in a, should be accom-
plished by spreading out the generator. We
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would rather expect an increasingly spread
generator to lead to an increase in the size of
the pre-asymptotic region. This fact under-
lines again that the behavior of (M(R)), hence
of the relative covariance of a distribution of
mass, gives but a partial view of a set’s struc-
ture. Higher moments of M(R) carry much
additional information, but we cannot dwell
on this issue.

CONTROL OF LACUNARITY IN DUSTS
SUBORDINATED TO BROWN TRAILS

Once we control a linear dust’s lacunarity, we
can map the result into space, via the process
of subordination examined in Chapter 32.
Working in the plane, and using as subordi-
nand a Brown net as in Plate 243, one can
achieve a dust that is arbitrarily close to
seeming itself to be net-like, and to having an
infinite order of ramification. Starting with
E=2, let the subordinand be a fractional
Brown net with H>% whose gaps are smaller
than for H=Y. When, in addition, the
subordinator’s dimension satisfies D/H<E=2,
and the subordinator is of low lacunarity, the
subordinate can be made to seem arbitrarily
close to plane-filling. When E=3 and H=l4,
the subordinand is a space-filling curve. When
D/H<E, and the subordinator is of low lacu-
narity, the subordinate dust can be made to
fill space to as low a degree of lacunarity as
one wishes, irrespective of D. -



Plate 323 = EFFECT OF THE TREMA GENERATOR
UPON THE LACUNARITY OF A TREMA FRACTAL

These two illustrations ought to give an idea of the effect of the trema gener