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Colours Book  
Amendments
A geometry able to include mountains and clouds now exists. I put it together in 1975, 
but of course it incorporates numerous pieces that have been around for a very long time. 
Like everything in science, this new geometry has very, very deep and long roots.

Benoît B. Mandelbrot

Introduction

This enhanced and expanded edition of THE COLOURS OF INFINITY features an additional chapter on the 
money markets by the fractal master himself, Professor Benoît Mandelbrot. The DVD of the film associated 
with this book has been re-mastered especially for this edition with exquisite new fractal animations, which 
will take your breath away!

Driven by the curious enthusiasm that engulfs many fractalistas, in 1994, Nigel Lesmoir-Gordon overcame 
enormous obstacles to raise the finance for, then shoot and edit the groundbreaking TV documentary from 
which this book takes its name. The film has been transmitted on TV channels in over fifty countries around 
the world. This book is not just a celebration of the discovery of the Mandelbrot set, it also brings fractal 
geometry up to date with a gathering of the thoughts and enthusiasms of the foremost writers and researchers 
in the field.

As Ian Stewart makes clear in the opening chapter, there were antecedents for fractal geometry before 1975 
when Mandelbrot gave the subject its name and began to develop the underlying theory. It took the genius of 
Mandelbrot, allied with the computer power available to him at IBM, to realize the practicality, beauty and 
fascination in the subject, and to act as its propagator through a long and influential career.

The first chapter by Benoît Mandelbrot in this book is based on a paper delivered before a Nobel Conference 
in Stockholm called A Geometry Able to Include Mountains and Clouds. The breadth of his vision, extend-
ing from mathematics to economics, from art to language, is extraordinary. As several of the contributors 
note, once you take a fractal view of the universe, you see the evidence everywhere – in water, in clouds, in 
trees, in art (see Rood’s chapter), in the human body and in the workings of the World Wide Web (Flake and 
Pennock). Mandelbrot’s second chapter, Fractal Financial Fluctuations looks deeply into the fractal nature of 
the growth and collapse of financial prices. His radically new fractal modelling techniques cast a whole new 
light of order into the seemingly impenetrable thicket of the financial markets.

The article by Arthur C. Clarke is a special case. Its 4,000 or so words are a lucid miniature of scientific 
popularization, reflecting the excitement fractal geometry induces in so many of its converts. It also, as Nigel 



Lesmoir-Gordon explains in his account of how the film came to be made, offered a link between himself and 
Clarke, the film’s anchor, and lent its name to the film project itself.

Four of the film’s contributors (Stewart, Clarke, Mandelbrot and Barnsley) have chapters in the book. 
Rood, Flake and Pennock, as well as Nigel Lesmoir-Gordon, the film’s begetter, contribute original chapters 
specifically for this volume.

Using a metaphor of a random soccer game, Michael Barnsley with his wife Louisa, the originators of fractal 
image compression technology, present the ideas of fractal transformation and colour stealing using random 
iteration for the first time.

Will Rood takes the animation of fractals into a new area by explaining how the M-set is coloured and 
then how the strange reptiles of Dutch conceptual artist M. C. Escher (1898–1972), the ‘undisputed master 
of tessellated art’, can be mapped onto the exterior of quadratic fractals, allowing the creation of tessellation 
with fractal limits.

Gary Flake and David Pennock propose an ‘optimistic and realistic’ interpretation of the NFL (‘no free 
lunch’) theory as a key to understanding the current state of the World Wide Web and how it will evolve 
over time. Given its huge traffic and lack of central authority, the Web could have been infinitely complex, 
but it is in fact exceedingly regular; and this regularity can be exploited to make more effective algorithms for 
finding information on the Web.

The Colours of Infinity brings together all the leading names in the fractal geometry field. Between them 
the contributors have published at least 200 books under their own names, and in collaboration. You will feel 
in their articles an ease with communicating sometimes difficult abstract concepts and an urge to share the 
powerful meanings their insights into the world of fractals have for all of us. In terms of positive energy and 
commitment to the subject they are a persuasive community.

The last chapter of this collection is unusual in that it sets out the full shooting script of the film, with audio 
and spoken word alongside. This may well prove invaluable source material in, for example, the educational 
use of the film, which has gradually increased over the decade or so since the film’s release.

The Colours of Infinity, the movie, made with so much evident pleasure, is approaching cult status and now 
gains a new lease of life by being coupled with this stimulating collection, expanding the film’s concerns still 
further.

The soundtrack of the DVD, with Pink Floyd’s David Gilmour’s soaring guitar almost an aural fractal in its 
own right, is totally accessible, as are Will Rood’s beautifully coloured animations of the fractals. The music 
and the images together have become club and garage favourites, and it is easy to understand why. Is it too far 
fetched to see in this harmonious matching of sound and image a tribute to the way Stanley Kubrick handled 
them in the Stargate sequence of his science fiction masterpiece 2001: A Space Odyssey? – a powerful link 
back to Arthur C. Clarke.

One of the many strange thoughts that the M-set generates is this. In principle, it could have 
been discovered as soon as the human race learned to count. In practice, since even a low 
magnification image may involve billions of calculations, there was no way in which it could 
even be glimpsed before computers were invented. 

Sir Arthur C. Clarke
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1  The Nature  
of Fractal  
Geometry

Ian Stewart

Fractals are more than just stunning visual effects – they open 
up new ways to model nature and allow us to quantify terms like 
‘irregular’, ‘rough’ and ‘complicated’, writes mathematician Ian 
Stewart. His chapter does a service to the non-specialist reader in 
giving a largely non-technical introduction to fractal geometry in 
the context of mathematical traditions and its commercial appli-
cations. Stewart shows both how concepts like fractal dimension 
have a lengthy prehistory and also how Mandelbrot brought to 
the subject a systematic treatment, uniting theory and application. 
Mandelbrot’s most important contribution to fractal geometry, 
Stewart suggests, ‘was the realization that there was a subject’.

N. Lesmoir-Gordon (ed.), The Colours of Infinity: The Beauty and Power of Fractals,
DOI 10.1007/978-1-84996-486-9_1, © Springer-Verlag London Limited 2010
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Thirty years ago, no one had heard of fractals. 
The concept existed, but the name was not 
coined until about 1975. Today, almost eve-

ryone has heard of fractals, and probably has a mug 
or a T-shirt or a poster somewhere around the house 
with one of the remarkable, intricate computer 
images that the word brings to mind. The impor-
tance of fractals, however, goes well beyond their 
visual attractiveness. What makes them so useful in 
today’s scientific research is that they have opened 
up entirely new ways to model nature. They give 
scientists a powerful tool with which to understand 
processes and structures hitherto described merely as 
‘irregular’, ‘intermittent’, ‘rough’, or ‘complicated’.

What is a fractal? As a first, broad-brush descrip-
tion: it is a geometric form that possesses detailed 
structure on a wide range of scales. Think of the 
rocky slopes of a mountain, the proliferating fronds 
of a fern, and the fluffy outline of a cloud. These are 
physical objects: ‘fractal’ is a mathematical concept, 
and it relates to the real world in the same man-
ner that ‘sphere’ relates to the shape of the Earth 
and ‘spiral’ relates to the shape of a snail shell. A 
mathematical fractal idealizes the intricacy of rocks 
and clouds: it has detailed structure on all scales. 
However much it is magnified, it does not ‘flatten 
out’ into a simple shape like a line or a plane.

Mathematical objects are idealized models of 
certain features of the real world; they are not real 
things, and they do not correspond exactly to real 
things. The Earth is not a perfect sphere; even allow-
ing for its bulging equator, it is not a perfect ellipsoid 
either, even though many astronomy and earth sci-
ence textbooks describe it that way. It has mountain 
ranges that give it a rough surface, unlike the infinite 
smoothness of the mathematical ideal. However, this 
type of inaccuracy does not stop scientists modelling 

the Earth as a sphere. In fact, the great advantage of 
a sphere as a model, for many purposes, is that it does 
not represent the intricacies of the real planet exactly. 
If it did, it would be no more use than a map of New 
York that is the same size as New York, with every 
traffic-light, doorstep, and cat rendered in perfect 
detail. A map must be simpler than the territory.

Models are tailored to suit particular objectives. 
If the objective is to understand mountain-building, 
then it is pointless to assume that the Earth is a 
smooth sphere. But if the objective is the long-term 
behaviour of the solar system, then a sphere is entirely 
acceptable, and a ‘point mass’ – even further from 
physical reality, since it assumes the Earth’s diam-
eter is zero – may well be better. In the same way, a 
mathematical fractal has detailed structure on scales 
so fine that they subdivide atoms – indeed, on scales 
finer than the Planck Length, at which level the uni-
verse becomes lumpy instead of smooth and ‘distance’ 
makes no sense. This discrepancy with the real world 
does not make fractals useless or irrelevant. As with 
the sphere and the map, what matters is the extent to 
which the model illuminates reality, not the extent 
to which it copies reality.

Fractals make it possible to quantify terms like 
‘irregular’, ‘intermittent’, ‘rough’, and ‘complicated’. 
How rough? 1.59 rough or 2.71 rough? Fractal geom-
etry gives such statements a meaning, and makes it 
possible to test them in experiments. Mathematics 
provides a number, associated with each frac-
tal, called its fractal dimension. The dimension 
reflects, among other things, the scaling properties 
of the fractal – how its structure changes when it is 
magnified. Unlike the traditional smooth curves and 
surfaces of much mathematical physics and applied 
mathematics, the dimension of a fractal need not be 
a whole number. It can, for example, be 1.59 or 2.71. 

The universe is full of fractals.  Indeed it may even be one.
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The term ‘fractal’ was introduced by Mandelbrot, but many of the subject’s
oncepts – notably fractal dimension – have a lengthy prehistory.
Mandelbrot’s contributions to the subject have been many, but the most
important was the realization that there was a subject.

In fact, the difference between the fractal dimension 
of a geometric shape and its dimension in the usual 
‘topological’ sense of mathematics provides a quanti-
tative measure of just how rough the fractal is.

The notion of a fractal was brought to scien-
tific prominence by Benoît Mandelbrot in 1975, and 
promoted in his book Fractals: Form, Chance, and 
Dimension of 1977. A revised edition appeared in 
1982 under the title The Fractal Geometry of Nature. 
The term ‘fractal’ was introduced by Mandelbrot, 
but many of the subject’s concepts – notably fractal 
dimension – have a lengthy prehistory. Mandelbrot’s 
contributions to the subject have been many, but 
the most important was the realization that there 
was a subject. Mathematicians had studied spaces of 
non-integer dimension long before Mandelbrot; sci-
entists had observed scaling laws and self-similarities 
in natural phenomena. But a systematic treatment, 
uniting theory and application, was lacking.

Now, some thirty years later, the theory that was 
stimulated by Mandelbrot’s insight is thriving. A 
glance through the leading scientific journals, such 
as Nature and Science, will make it clear that fractals 
have become a standard technique of scientific mod-
elling in a wide variety of areas. The mere existence 
of fractal structures immediately suggests a wide range 
of physical and mathematical questions, by directing 
our attention away from the classical obsession with 
smooth curves and surfaces. What happens to light 
waves passing through a medium whose refractive 
index is fractally distributed? Reflected in a fractal 
mirror? What sounds will a drum make if it has a 

fractal boundary? Traditional methods have little to 
say about such questions.

The importance of fractals

Are they important? Undoubtedly. Turbulence in 
the atmosphere makes it difficult for Earth-based 
telescopes to produce accurate images of stars; a 
turbulent atmosphere is well modelled by a fractal 
distribution of the refractive index. Light bounc-
ing off the ocean, with its myriad waves on many 
scales, closely resembles reflection from a fractal 
mirror. And the way trees absorb energy from the 
wind is closely related to the ‘vibrational modes’ of a 
fractal – and it is such modes that create the sound 
of a drum. The natural world provides an inexhaust-
ible supply of important problems in fractal physics. 
Already, technological and commercial advances 
have stemmed from such questions – for example, 
a compact antenna for mobile phones, new ways 
to analyse the movements of the stock market, and 
efficient methods to compress the data in computer 
images, squeezing more pictures onto a CD.

Once our eyes have been opened to the fact that 
fractal objects possess a distinctive character and 
structure, and are not just irregular or random, it 
becomes obvious that the universe is full of fractals. 
Indeed, it may even be one. Fractals teach us not to 
confuse complexity with irregularity, and they open 
our eyes to new possibilities. Fractals represent an 
entire new regime of mathematical modelling, which 
science is just beginning to explore.



6 The Colour of Infinity

Gallery of monsters
The prehistory of fractals

The prehistory of fractals goes back over a hundred 
years, to when mathematicians began thinking 
about new kinds of curves and surfaces, totally dif-
ferent from the shapes typically studied in classical 
geometry. The classical shapes are lines and planes, 
cones and spheres, curves and surfaces – and, except 
for the occasional edge or corner, these curves 
and surfaces are smooth and very well behaved. 
Smoothness in effect implies that they have no 
interesting small-scale structure: when magnified 
sufficiently, they appear flat and featureless. This 
absence of structure on small scales is crucial to clas-
sical ‘limiting’ analysis – the time-honoured methods 
of the calculus, which go back to Isaac Newton and 
Gottfried Leibniz. The very methodology of the 
calculus, the central technique of physics for more 
than two centuries, is to approximate a curve by 
its tangent line, a surface by its tangent plane. This 
approach simply will not work on a highly irregular 
curve or surface.

Nevertheless, we can imagine highly irregular 
curves. Originally these were seen as ‘pathological’ 
objects whose purpose was to exhibit the limitations 
of analysis. They were counter-examples, serving to 
remind us that the capacity of mathematics for nasti-
ness is unbounded. The pure mathematician’s motto 
is Murphy’s Law: ‘Anything that can go wrong, will 
go wrong.’ And the wise mathematician or scientist 
always wants to know what can go wrong. Often this 
is a starting-point for finding new ways for things to go 

right.
For example, during the eighteenth and 

nineteenth centuries it was wide-
ly assumed that any continuous 
curve must have a well-defined 

tangent (that is, any continuously 
varying quantity must have a well-defined 

instantaneous rate of change) at ‘almost’ any point. 
The only exceptions were the corners, where the 
curve makes an abrupt change of direction. However, 
in a lecture to the Berlin Academy in 1872, Karl 
Weierstrass showed that this is not true. It is, in fact, 
about as false as it is possible to get. He described 
a class of curves that are continuous, but have no 
points where the tangent is well defined. The basic 
idea is to add together infinitely many increasingly 
tiny ‘wiggles’. The resulting curve is continuous – it 
has no gaps – but it wiggles so rapidly that there is no 
sensible way to construct a tangent. Anywhere.

Again, in 1890 Giuseppe Peano constructed a 
curve that passes through every point of the interior 
of a unit square. This curve demonstrated the com-
plete inadequacy of the common idea of ‘dimension’ 
as the number of (continuously varying) parameters 
needed to specify a point. Peano’s curve takes a 
square, with its two dimensions and standard para-
metrization by two coordinates (north–south and 
east–west), and reparametrizes it by a single variable: 
how far you have to go along Peano’s curve in order 
to hit a given point.

In 1906 Helge von Koch gave an example of a 
curve of infinite length that bounds a finite area: the 
snowflake. (Fig. 1.1) It is constructed by starting with 
an equilateral triangle, and erecting on each side a 
smaller triangle, one-third the size. This construction 
is repeated to infinity. Like Weierstrass’s curve, the 
snowflake is continuous but has no tangent. A similar 
repetitive process occurs in the construction of one 
of the simplest and most fundamental pathological 
sets of all: the Cantor Set, named for Georg Cantor 
who used it in 1883 (although it was known to Henry 
Smith in 1875). It is constructed by repeated dele-
tions of the middle third of an interval. (Fig. 1.2)

The mathematical community – even leading 
figures – found it hard to come to terms with these 
unsettling discoveries. Henri Poincaré dismissed 
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them as ‘a gallery of monsters’, and Charles Hermite 
deplored what he called a ‘lamentable plague of 
functions with no derivatives’. More recently Jean 
Dieudonné wrote: ‘Some mathematical objects, like 
the Peano curve, are totally non-intuitive ... extrava-
gant.’ But Dieudonné was not suggesting they lacked 
interest, just that they were difficult to wrap your 
head round.

It is only fair to add that the undue proliferation 
of such sets, without any clear purpose in mind, can 
easily become an exercise in futility. So Poincaré and 
Hermite did have some basis for their complaints. But 
as time passed, most mathematicians came to accept 

that these sets play a legitimate, indeed crucial, 
role in mathematics: they demonstrate that there 
are limits to the applicability of classical analysis. 
In fact, this realization stimulated the development 
of new kinds of non-classical analysis, which turned 
out to be important in their own right. Indeed 
by 1900 the great German mathematician David 
Hilbert could refer to the whole area as a ‘paradise’ 
without causing ructions. Nonetheless, many math-
ematicians were perfectly prepared to operate within 
the classical limits. They saw the ‘pathologies’ as 
‘artificial’ objects, unlikely to be of any importance 
in the study of Nature.

Nature, however, had other ideas.

Fig. 1.1 To a casual observer this is a snowflake, but math-
ematically it is a classic fractal shape, constructed out of 
one equilateral triangle, with the middle third of each side 
removed and new equilateral triangles drawn out to the 
edge, their middle third removed, smaller triangles drawn 
out in turn, and so on.
Fig. 1.2 The Cantor Set: first developed in 1883, it is construct-
ed by repeated deletions of the middle third of an interval.
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How long is the coast of Britain?

The fractal geometry of coastlines

One of the formative examples of fractals is the 
geometry of coastlines. In particular: how long is a 
coastline? Coastlines are notoriously irregular, and 
the answer to the question depends on how the 
measurement is made. The simplest method is to 
take a fixed finite length x and move along the coast-
line in steps of length x. Adding these steps together 
gives a total length L(x). (Fig. 1.3)

If the coastline is smooth, in the rigorous mathe-
matical sense, then when x is small enough, the coast-
line is very close to a straight line. For a straight line, 
the value of L(x) tends to a definite limit L as x tends 
to zero, and that limit is the length of the straight line 
in the usual sense. It follows that if the coastline is a 
smooth curve, L(x) also tends to a definite limit L as x 
tends to zero, and that limit is the length of the curve 
in the usual sense. In other words, if x is small enough, 
L(x) is an approximation to the total length that is 
close enough on the scale of the model chosen.

What actually happens, with real coastlines, is 
quite different. Small bays of diameter smaller than 
x are missed by the stepping procedure. Although 
reducing the value of x must in some sense improve 

Fig. 1.3 Mapping a coastline: the actual length depends on 
how many steps of length x one takes. If x = 1 km the length 
will be considerably less than if the length were 1 m; and this 
will be far less than steps of 1 cm; and so to infinity.
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the approximation, by ‘noticing’ ever smaller bays, 
there will still remain irregularities on some scale 
smaller than x, at least until we get down to molecular 
proportions where the whole exercise becomes mean-
ingless. Because coastlines are fractal, the value of 
L(x) grows without limit, and the length is infinite.

In the absence of a finite limiting value, it is 
often useful to study how a quantity tends to infin-
ity. Is the growth rate fast and explosive, or slow 
and steady? In other words, what is the ‘asymptotic’ 
(when a curve tends towards but never reaches a 
straight line) behaviour? Lewis Fry Richardson once 
made an empirical study of the asymptotic problem, 
for real coastlines, and found an excellent empirical 
law: L(x) ~ kx1−D for certain constants k and D. The 
value of D is much the same for most coastlines on 
planet Earth, presumably for geological reasons, and 
in particular D ~ 1.25 for the coast of Britain.

To gain an intuitive feeling for what this result 
means, compare Britain to a snowflake curve. The 
construction of the snowflake is too regular to cor-
respond to a real coastline, but as far as the main 
feature – structure on all scales – goes, it’s not bad.

For simplicity, measure its length using values

x = 1, 1/3, 
1/9, 

1/27, and so on.
 Then L(1) = 1, L(1/3) = 4/3, L(1/9) = (4/3)

2, L(1/27) = 
(4/3)

3, and so on.
 In general L((1/3)

n) = (4/3)
n. Let x = (1/3)

n, and note 
that 4/3 = (1/3)

1−D where D = log 4/log 3.
Then L(x) = x1−D and D = 1.2618.
This is very close to the empirical estimate
D = 1.25 for the coastline of Britain.

I am not claiming that this implies that Britain is a 
snowflake. The snowflake curve’s geometry is much 
too regular. Nevertheless, we may interpret the above 
calculation in the following terms. Suppose a real 
coastline has the same statistical distribution of bays 
and promontories, sub-bays and subpromontories, as 
does the snowflake curve. Then the value of L(x) 
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should follow the same asymptotic law as for the 
snowflake, and thus lead to the same D. If the statis-
tical distribution is similar to that of the snowflake, 
but not quite the same, then the constant D should 
change slightly. So we conclude that the coastline of 
Britain has pretty much the same ‘roughness’ as the 
snowflake – but is maybe just a tad smoother.

The combinatorial regularity of the snowflake 
is essentially a scaling law. If a small section of the 
curve is suitably magnified, then it looks exactly like 
some larger section of the original. The constant D 
describes, in a quantitative manner, the precise scal-
ing required. Here, if four copies of a segment of the 
curve are suitably assembled, the result has exactly 
the same shape as the segment, but is three times as 
large. The value log 4/log 3 of D is built from those two 
numbers. This property is called self-similarity. The 
same idea holds for coastlines, but now the scaling 
affects the statistics, not the curve as such. Instead 
of asking that a magnified version of a section of 
coastline should be exactly the same as the origi-
nal, we ask that it should be a plausible picture of 
a coastline on the same scale as the original. Or, to 
put it another way: if you are presented with a map 
of a coastline, without any other markings and with 
no indication of the scale, then there will be no way 
to determine the scale just by studying the map.

Innumerable other natural phenomena exhibit 
structure on a wide range of scales, connected by 
suitable scaling laws. For instance, the bark of a 
tree, the ripples on the ocean, vortices in a turbu-
lent fluid, landscapes, the inner surface of the lung, 
the holes in a sponge, the surface of a soap flake. 
Therefore we expect there to be some regime of 
mathematical modelling in which the ‘pathological’ 
curves and surfaces that were so despised by the clas-
sical mathematicians find natural application to the 
real world. Since scaling laws appear to be funda-
mental to the whole enterprise, the initial emphasis 
should be on understanding what they have to tell 

us. And the first thing they tell us extends the usual 
notion of ‘dimension’ in a radical way.

Fractal dimension

It turns out that the number D introduced above 
may be interpreted as a dimension. This may seem 
a rather curious idea, since the usual notion of 
dimension is always a whole number, but there are 
plenty of precedents in mathematics. The concept 
‘number’, for example, originated in counting – one 
sheep, two sheep, three sheep. In this context, half 
a sheep makes no sense. But in the butcher’s shop – 
or, less grimly, at the moneylender’s, where a person 
might own a half share in a sheep – the extension of 
the number system to fractions is natural. Again, we 
are used to the idea that the nth power of a number 
is obtained by multiplying n copies of that number 
– so that the fifth power of 3, for example, is 35 = 
3 × 3 × 3 × 3 × 3 = 243. What, then, is the halfth 
power? What you get by multiplying half a copy of 
a number by itself? That makes little sense, but the 
halfth power makes excellent sense: it is the square 
root. Multiply the halfth power by itself, and you get 
back the first power – the original number. Twice a 
half is one – easy.

In fact, the generalization of dimension that 
occurs in fractal geometry is reasonable from several 
points of view. To see why, we begin by reviewing 
the usual concept of dimension. (Fig. 1.4)

 (a) A line segment has dimension 1, by which 
we mean that any point in the segment can 
be specified using just one coordinate, one 
number. The point x lies x units to the right 
of the left-hand end of the segment.

 (b) A square has dimension 2, by which we mean 
that any point in the square can be specified 
using just two coordinates (x, y). Here x is the 
distance from the left-hand edge and y is the 
distance from the bottom edge.
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 (c) A cube has dimension 3, by which we mean 
that any point in the cube can be specified 
using just three coordinates (x, y, z). Here x is 
the distance from the left-hand face, y is the 
distance from the bottom face, and z is the 
distance from the back face.

In these examples, the dimension of the object is 
the number of independent directions in space that 
it occupies. No directions are needed for a point, so 
it has dimension 0. A line lies along one direction, a 
square lies in two (a plane), whereas a cube requires 
three. Similar ideas apply to curved lines and sur-
faces. A curve has dimension 1. The surface of a 
smooth object, such as a sphere or torus, has dimen-
sion 2. A solid object, such as a solid sphere or a solid 
torus, has dimension 3. This concept of dimension is 
always a whole number. A point has dimension 0, a 
curve has dimension 1, a surface has dimension 2, a 

solid has dimension 3. With a suitable act of imagi-
nation, we can go into spaces of dimension 4, 5, 6, 
and so on – see Abbott (1884) and its modern sequel 
Stewart (2001). Engineers will recognize this con-
cept as the number of ‘degrees of freedom’ of a system 
– the number of coordinates needed to determine its 
state – so that space-time, with 3 space coordinates 
and one time coordinate, is 4-dimensional.

The dimension of even a simple system can be 
surprisingly large. For example, describing the posi-
tion and velocity of the Moon in space requires six 
numbers: three position coordinates, and three com-
ponents of velocity relative to those coordinates. So 
the 3-body system composed of the Earth, Moon, and 
Sun, which is basic to astronomy, is an 18-dimen-
sional system. Each body requires 3 coordinates of 
position in space and a further 3 of velocity.

A more extreme case is something we all carry around 
with us: the human body, with its innumerable flexible 
joints. Look at your hand. Each finger can be bent 

x x x

yy

z

Fig. 1.4 The concept of dimension in geometry: (a) a line has 
1 dimension and 1 coordinate; (b) a square has 2 dimen-
sions and 2 coordinates; (c) a cube has 3 dimensions and 3 
coordinates.

At a conservative estimate, the
‘configuration space’ for the human body – 
the totality of possible shapes into which it can be bent – is at least 
101-dimensional.Yes, we live in space of 3 dimensions, and a space-time of 4,
but the complete range of possible configurations of the human body forms

Above: A solar eclipse
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through some angle, and those angles are pretty much 
independent of each other. So just to describe the state 
of your hand, you need a 5-dimensional space of possible 
configurations. In fact, fingers can bend sideways (a bit) 
too, so 10 dimensions is a more realistic number. Your 
two hands and two feet now require at least 40 dimen-
sions to capture all possible combinations of positions, 
and then there are your wrists, elbows, shoulders, ankles, 
knees, thighs ... and your head, eyelids, and waist.

At a conservative estimate, the ‘configuration 
space’ for the human body – the totality of pos-
sible shapes into which it can be bent – is at least 
101-dimensional. Yes, we live in space of 3 dimen-
sions, and a space-time of 4, but the complete range 
of possible configurations of the human body forms a 
conceptual ‘space’ with 101 dimensions.

This notion is called topological dimension because 
shapes that can be continuously deformed into each 
other have the same dimension. Thus a wiggly curve 
has the same dimension, 1, as a straight line; a wobbly 
surface has the same dimension, 2, as a plane. And if 
a shape is magnified by some scale factor – say tripled 
in size – then its dimension remains unchanged.

Scaling laws are more sensitive: they involve not just 
shape, but size. Distances are important, scale matters. 
What count are not topological properties, but metric 
ones. This extra ingredient opens up the possibility of 
finding an extended notion of dimension which

 (a) agrees with the usual definition for smooth 
curves and surfaces;

 (b) applies to more general spaces, such as the 
snowflake or the Cantor Set; and

 (c) reflects metric, not topological, properties, 
especially behaviour under scaling.

The price we pay for such an extension, however, 
is that the resulting concept of dimension is forced 
to take non-integer values. It turns out to be a price 
well worth paying – imaginative ideas that take us 
out of our comfortable world usually are.

The simplest such generalization (there are many) 
is the similarity dimension. This concept is based 
on scaling properties; it is a little too special to be 
entirely satisfactory, but when it does work it is very 
easy to understand.

Consider a unit square. If its sides are divided 
into n equal parts, then it can be cut into N = n2 
subsquares, each similar to the original. With a simi-
lar dissection of a cube, we find that N = n3; with a 
4-dimensional hypercube we get N = n4. And with a 
homely line segment, N = n1. (Fig. 1.5)

The pattern is obvious: if the dimension is d, 
then N = nd. Taking logarithms and solving, we get 
d = log N/log n. All perfectly reasonable, and equivalent to 
standard geometrical properties of these simple shapes.

So let’s try a shape that is not quite so simple: 
the archetypal ‘pathological set’, the Cantor Set. 
Remember: to form a Cantor Set, start with a line 
segment, remove its middle third to get two segments 
each one-third the size; then repeat indefinitely. 
What’s left is the Cantor Set. It is clear that after the 
initial step, we construct two separate Cantor Sets, 
each one third the size of the whole; the Cantor 
Set itself is obtained by uniting these two subsets. 
In other words, the Cantor Set can be broken into 
two pieces (N = 2) each one third as big (n = 3). 
By formal analogy, the dimension of the Cantor Set 
‘ought’ to be d = log 2/log 3 = 0.6309, which is not a 
whole number. This may seem curious, but it makes 
a lot of sense because:

 (a) it accurately reflects the scaling properties of 
the Cantor Set: two copies make a set just the 
same shape but three times as big; and

 (b) the dimension is intermediate between 0, the 
dimension of a finite set of points, and 1, the 
dimension of a curve. This agrees with the 
intuitive idea that the Cantor Set is rather 
less than a curve, since it has gaps, but is more 
closely clustered than a finite set of points.
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Similar reasoning lets us assign a dimension to the 
snowflake. If we work (for convenience) with one seg-
ment of the snowflake, we see that it takes 4 copies to 
make something 3 times as big. (Fig. 1.6) Thus N = 4, 
n = 3, and d = log 4/log 3 = 1.2618. Recognize this number? 
It is the constant D that appeared in the coastline cal-
culation for the snowflake. That is, we have interpreted 
D as a scaling dimension. The same kind of game can 
be played with all scaling laws. (This, by the way, is 
why we used 1−D in the formula, instead of just D.)

For the snowflake, d lies between 1 and 2, and this 
again agrees with visual intuition. The snowflake is 
‘more than’ a smooth curve, but hardly constitutes 
a surface.

The main restriction in the definition of the scaling 
dimension is that it requires the set under consideration 

to be self-similar. It must coincide with small pieces 
of itself when suitably scaled. More general notions of 
dimension also exist. For theoretical work, the best is 
the Hausdorff-Besicovitch dimension, introduced in 
1919 and generalized in 1929. Related but different con-
cepts of dimension are often used in experimental work 
because they are easier to measure; see Falconer (1990).

Brownian motion

Particle paths

One potential application for a theory of ‘pathologi-
cal’ curves has been around since 1828. It demon-
strates that the common assumption that the only 
curves needed to do physics are smooth ones is 
completely wrong.

1

2 3

4

3 9 27

Fig. 1.5 Extending the idea of dimension numerically to 
squares and cubes.
Fig. 1.6 Scaling the Cantor Set: If we assign dimensions to 
a snowflake, it takes 4 copies to make something 3 times 
as big.

The main restriction in the definition of the scaling dimension is that it requires the set under consideration to the self-similar. It must 
coincide with small pieces of itself when suitably scaled.
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In that year, Robert Brown drew attention to a 
curious phenomenon that he had observed through 
a microscope. If very small particles are suspended in 
a fluid, apparently at rest, then on close inspection 
it will be seen that they undergo frequent irregular 
motions. Brown suggested that this movement might 
be caused by the motion of molecules in the fluid, 
brought about by heat. In 1926 Jean Perrin wrote:

The direction of the straight line joining the 
positions occupied at two instants very close in 
time is found to vary absolutely irregularly as the 
time between the two instants is decreased. An 
unprejudiced observer would therefore conclude 
that he is dealing with a function without deriva-
tive, instead of a curve to which a tangent could be 
drawn ... At certain scales and for certain methods of 
investigation, many phenomena may be represented 
by regular continuous functions. If, to go further, we 
attribute to matter the infinitely granular structure 
that is in the spirit of atomic theory, our power to 
apply to reality the rigorous mathematical concept 
of continuity will greatly decrease.

Perrin had discovered that the ‘pathological’ 
curves that both intrigued and repelled the math-
ematicians were entirely natural, in the sense that 
they had sensible counterparts in nature; they arose 
in areas as fundamental as molecular motion. He car-
ried out experiments on these ideas, and was awarded 
the Nobel prize in 1926.

In the 1930s Norbert Weiner formulated a math-
ematical model of Brownian motion, showing that 

it possesses exactly this feature of non-differentiable 
particle trajectories. Weiner’s work, roughly speak-
ing, is carried out in the context of a random func-
tion of time, such that the probability of moving any 
given distance at any instant is determined by the 
classic ‘bell curve’ or Gaussian distribution, while 
the direction is completely and uniformly random. 
In such a setting, particle trajectories are almost 
nowhere differentiable.

Within the past few years, methods from fractal 
geometry have led to major advances in our math-
ematical understanding of Brownian motion. In his 
1982 book, Mandelbrot made a conjecture about the 
fractal dimension of a typical particle trajectory. At 
the time, his evidence was derived mainly from com-
puter simulations. Imagine a single particle obeying 
Brownian motion in the plane. Follow its trajectory 
for a fixed period of time, obtaining an extremely 
wiggly curve. Mandelbrot conjectured that the frac-
tal dimension of this curve – more exactly, of those 
parts of the curve that lie on the outer edge of the 
shape that it forms – is exactly 4/3.

In 2000, Gregory Lawler, Oded Schramm, and 
Wendelin Werner announced a rigorous proof of 
this conjecture, together with several other fractal 
properties of Brownian motion. Their proof involves 
mathematical analogies with other fractal processes. 
Other mathematical physicists have suggested differ-
ent proofs based on links with the theory of quantum 
gravity, which had not previously been related to 
Brownian motion. (The relation is mathematical: 

In that year [1828], Robert Brown drew attention to a curious phenomenon that
he had observed through a microscope. If very small particles are suspended in a
fluid, apparently at rest, then on close inspection it will be seen that they undergo

frequent irregular motions. Brown suggested that this movement might be
caused by the motion of molecules in the fluid, brought about by heat.
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the physical interpretations of the two areas are 
quite different.) Lawler and co-workers also proved 
that the fractal dimension of the set of ‘cut points’ of 
the curve is 3/4 and that of the set of ‘pioneer points’ 
is 7/4. A cut point is one whose removal causes the 
curve to fall apart into two disconnected pieces. A 
pioneer point is one that finds itself on the outer 
boundary at the instant the curve first reaches that 
point. These results illustrate the high level of math-
ematical detail in our new understanding of particle 
paths in Brownian motion, obtained through fractal 
geometry.

Turbulence

One of the most important and baffling phenomena 
in fluid dynamics is turbulence: irregular, twisting 
flow-patterns far removed from the smooth ‘lami-
nar’ flows beloved of the classical analysts. Until 
recently, turbulence has been studied by a variety of 
ad hoc analytical methods and probabilistic models, 
but relatively little attention has been paid to the 
geometry of turbulence. Yet the geometry contains 
hints of a deeper structure that the analytic approach 
misses. Turbulence involves motion on a wide range 
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of scales, large and small. As Lewis Fry Richardson 
put it in 1922:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.

Could fractals be involved in the geometry of tur-
bulence?

This suggestion was made by Mandelbrot in about 
1960. It re-emerged in a very different guise from 
the topological dynamics of the mid-1970s, and 
it now appears to be firmly established by careful 
experiments using a variety of ‘small-scale’ labora-
tory systems. Of course the theory met with fierce 
resistance along the way, as occurs with anything 
genuinely new in science, especially when it is advo-
cated by interlopers from another field. To be fair, 
these experiments establish the occurrence of fractal 
geometry in weak turbulence; fully developed turbu-
lence is quite another matter – but if anything, that 
looks even more fractal.

Turbulence may be confined to certain regions of 
an otherwise smooth flow, or it may appear suddenly 
everywhere. It can appear and disappear intermit-
tently. In the Taylor vortex experiment, where fluid is 
observed in the region between two concentric rotat-
ing cylinders, spiral turbulence occurs in patches on 
a predominantly helical flow like a spinning barber’s 
pole. The boundaries of turbulent regions typically 
have a complex local structure: billows upon billows, 
whorls upon whorls. The region around Jupiter’s 
Great Red Spot is typical of such behaviour.

The topological approach to turbulence was initi-
ated by Ruelle and Takens (1971), who suggested a 
scenario for the transition to turbulence in terms of 
the creation of a so-called ‘fractal attractor’ in the 
dynamics. Harry Swinney, Jerry Gollub, and others 
carried out experiments using lasers to measure the 

speed of the fluid, and confirmed the general con-
ceptual framework, though not the precise scenario 
originally proposed.

In larger systems, the transition to turbulence is 
a much more complex affair. So we still have much 
to learn about turbulence. Fractal geometry can help 
us make advances, but it cannot answer everything. 
What can?

Fractal drums

Fractals as vibrational modes

In 1996 Michael Lapidus and colleagues studied the 
vibrational modes of a drum shaped like the snow-
flake curve. The practical spin-off from such research 
includes a better understanding of why a rocky coast-
line dissipates rough seas better than a smooth one – 
important for coastal defences, and one reason why all 
the old straight-sided promenades are being replaced 
by irregular heaps of spiky concrete. It also helps to 
explain why the foliage of trees proves so resistant 
to the wind, and how our system of elastic-walled 
veins, arteries, and capillaries absorbs the thud of a 
beating heart with surprisingly little damage. It offers 
new insights into how radar waves bounce around 
in mountainous terrain, and how laser beams might 
reflect from the cratered landscape of the Moon.

To understand what a vibrational mode is, think 
about a guitar. Pluck an open string: it produces a 
single note, the fundamental. Now rest your finger 
gently against the exact middle of the string, pluck 
again, and quickly lift your finger off. You hear a 
high-pitched ping!, exactly one octave higher up the 
musical scale than the fundamental. If you place your 
finger one third of the way along the string, you can 
create an even higher note, and so on. Your finger 
is selecting various vibrational modes of the string. 
When the string sounds its fundamental, it forms 
a single standing wave. The ends are fixed, but the 
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rest of the string moves up and down in a regular, 
repetitive fashion. For the octave, two such waves 
fit into the length of the string, and when one goes 
up, the other goes down. In between is a fixed node, 
the place where you put your finger. A guitar string 
can – in theory – vibrate with any whole number 
of waves. So as well as the fundamental frequency, 
it has vibrational frequencies that are twice the 
fundamental, three times, four times, and so on. Its 
spectrum, its list of possible frequencies, consists of 
all whole number multiples of the fundamental.

Every shape has an acoustic spectrum. Physically, 
you can observe the spectrum by making the shape 
from metal and hitting it – or anything equivalent, 
such as making the shape from a soap film and 
watching it wobble, or carving the shape as a cavity 
in a lump of metal and filling it with microwaves. 
Mathematically, the most significant aspect of the 
vibration is the list of frequencies of the natural 
vibrational modes, called the ‘spectrum’ of the 
shape.

In 1910 the physicist Hendrik Lorentz lectured 
on the spectrum of electromagnetic waves in an 
enclosed cavity, which is the same mathematical 
problem in a different physical realization, and made 
a bold conjecture. Suppose you choose a shape, and 
arrange all the frequencies of its spectrum in ascend-
ing numerical order. Now ask how fast those num-
bers grow as you run along the list. For simplicity, 
consider a two-dimensional cavity – an area in the 
plane. Then, said Lorentz, no matter what shape the 

cavity may be, the frequencies are approximately 2p/A, 
4p/A, 6p/A, 8p/A, 10p/A, and so on, where A is the area of 
the cavity and p is the usual ‘pi’ that we all know and 
love. Moreover, the approximation gets better and 
better the higher the frequencies become.

David Hilbert, the world leader in mathemat-
ics at the time, attended the lecture and was really 
impressed by Lorentz’s conjecture, but he alleg-
edly said that he didn’t expect to see a proof in his 
lifetime. If so, he was unduly pessimistic: less than 
two years later his former student Hermann Weyl 
proved something far more general, using a tech-
nique – integral equations – that he had learned 
from his master, Hilbert. Weyl’s ingenious argu-
ment showed that Lorentz’s conjecture is valid not 
just in the plane, but in space of n dimensions, for 
any n. But now, instead of the area, you must use 
the multidimensional equivalent of volume; the 
constant p must be replaced by a more complicated 
expression related to the unit n-dimensional sphere; 
and the frequency must be replaced by its n/2th power. 
Nonetheless, the main point remains: the frequen-
cies in the spectrum are related to the volume of the 
object, so in particular if the object gets smaller, the 
frequencies increase.

It is here that fractal drums get in on the act. Weyl 
originally proved his result for objects with a fairly 
smooth boundary, but over the years his formula was 
extended to objects with fractal boundaries – such as 
the snowflake curve. In 1979 the physicist Michael 
Berry was thinking about light scattering from 

… there is a curious consequence: you can ‘hear’ the fractal dimension 
of the boundary of a drum – that is, you can determine it from the drum’s

spectrum. Ideas of this kind go back to a famous article written by Mark Kac 
in 1966, called ‘Can one hear the shape of a drum?’
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irregular surfaces, and he came up with a conjectured 
improvement to Weyl’s formula. This improvement 
involved an extra term, proportional to the fractal 
dimension of the object’s boundary. According to 
Berry, the extra term in Weyl’s formula ought to be 
proportional to the frequency raised to the power of 
half the fractal dimension of the boundary.

If so, there is a curious consequence: you can 
‘hear’ the fractal dimension of the boundary of a 
drum – that is, you can determine it from the drum’s 
spectrum. Ideas of this kind go back to a famous 
article written by Mark Kac in 1966, called ‘Can 
you hear the shape of a drum?’ Kac pointed out that 
Weyl’s formula shows that you can hear the area of 
a drum, no matter what the shape of the drum’s rim 
might be, and asked what else can you hear? He set 
the ball rolling by proving that the spectrum also 
determines the drum’s perimeter, and even its con-
nectivity – how many holes it has. It turned out that 
there are some features that you can’t always hear. 
Various mathematicians found examples where two 
different high-dimensional shapes had the same 
spectrum, meaning that their shape cannot be 
‘heard’ in complete detail. The first example was in 
16 dimensions. By 1982 the dimension was down to 
4, and in 1992 Carolyn Gordon, David Webb, and 
Scott Wolpert knocked the problem on the head 

by finding two 2-dimensional drums with the same 
spectrum, but different shapes. (Fig. 1.7)

Even though you can’t hear everything you’d like 
to, the question ‘what can you hear from an object’s 
spectrum?’ is important. There are many cases where 
it is impossible to observe an object directly, but far 
easier to observe its vibrations. A good example is 
seismology, which infers the inner structure of the 
Earth from vibrations generated by earthquakes. 
Helioseismology does the same for the Sun. Oil 
companies use sound waves created by surface explo-
sions to look for oil deposits deep underground. 
Children rattle wrapped presents to try to work out 
what’s inside. Berry’s proposal, if correct, would have 
added fractal dimension – roughness – to the list of 
hearable quantities. But it was not to be: in 1986 J. 
Brossard and R. Carmona found a shape for which 
the correction term was not related to fractal dimen-
sion in the anticipated manner.

All was not lost, however: they suggested that 
a different measure of roughness, the less familiar 
‘Minkowski dimension’, might work instead. A ver-
sion of this revised conjecture was proved by Michel 
Lapidus and Jacqueline Fleckinger-Pellé in 1988. 
The most recent work on the spectra of fractals has 
gone beyond general results on the distribution of 
frequencies, to look in detail at the actual vibra-
tional patterns. Since 1989 the experimentalists G. 
Sapoval, Th. Gobron and A. Margolina have been 
studying mechanical vibrations of fractal objects – 
such as a steel plate etched with a laser to produce a 
‘squareflake’-shaped groove – a variant of the snow-
flake curve made from squares rather than triangles. 
Sapoval’s team discovered new effects in vibrating 
fractals, effects that don’t occur for more traditional 
shapes. For example, it looks as though wave motion 
in regions with fractal boundaries can be localized 
– small regions of the object vibrate noticeably, but 
the rest hardly moves.

Fig. 1.7 Two 2-dimensional drums: how to share the same 
spectrum but with different shapes.
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In 1995 Lapidus and M. Pang performed a rigorous 
mathematical analysis of the fundamental mode, the 
lowest frequency vibration, of the snowflake curve. 
They discovered that for this mode, the vibrating 
‘drumskin’ can become infinitely steep near certain 
points of the boundary – mainly those where obtuse 
angles (greater than a right angle) occur. In a physical 
analogy, the vibrating fractal drum experiences infi-
nite stress at such points. The rigorous mathematics 
confirms an effect observed in earlier experiments. 
What does a vibrating fractal really look like? Using 
an Onyx computer from Silicon Graphics, and 
some cunning numerical methods, Lapidus’s team 
has drawn the first fifty snowflake harmonics – the 
vibrational modes of a drumskin whose boundary is 

the snowflake curve. Their findings confirm previous 
discoveries, and add some new puzzles.

In the fundamental mode, as predicted by general 
theory, the whole drumskin moves upwards or down-
wards at the same time – there are no nodal curves 
where the drumskin is stationary, except at the 
boundary. The extremely steep gradient near obtuse-
angle boundary points is clearly visible. Conversely, 
it turns out that the gradient near acute angles is zero 
– the membrane is flat, the stress is zero.

The spectra of fractals comprise a vibrant new 
area of science – pun intended – with the potential 
to solve a lot of puzzles, including many of the ques-
tions raised earlier. For example, think about waves 
hitting a rocky coast. A coastline is much better 
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approximated by a fractal than by a smooth curve, 
so the action of ocean waves on a rocky coast should 
be much closer to the snowflake model than to clas-
sical analyses of waves hitting a flat boundary. A flat 
boundary reflects most of the waves’ energy back out 
to sea, but a fractal boundary seems able to absorb 
wave energy, or isolate it into small patches.

The leaves and branches of trees are fractal, and 
this may be why they make better barriers to the wind 
than a simple flat fence – a fact that modern agricul-
ture is starting to rediscover after decades of rooting 
out hedges to produce vast, but windswept, fields.

Similarly the human circulatory system, with its 
repeated branching pattern of ever-smaller veins 
and arteries, is fractal. As well as conducting blood 
effectively to all parts of our bodies, this fractal 
structure may also help the blood vessels to absorb 
and dissipate the stress caused by the heavy thumps 
of a beating heart.

Fractals in technology

Practical Applications

Although the main importance of fractal geometry is 
as a scientific tool, most science eventually acquires 
practical applications, and fractal geometry is no 
exception. In fact, the next few decades will probably 
see an explosion of fractal-based technology. Already 
the applications are quite diverse. Here are just a few 
examples.

Nearly all machines include springs. A video 
recorder, for example, contains several hundred of 
them. Springs are made by coiling wire on special 
machines. Until recently, a big problem was to test 
in advance whether wire would make good coils or 
poor ones. The only method was to try them and 
see, which could take a day or more. Now a test, 
based on fractal geometry, takes only two minutes. 
It is embodied in the FRACMAT machine (short 

for ‘fractal materials’) and was invented by the 
Institute of Spring Technology in Sheffield, togeth-
er with a team from the University of Warwick. 
The idea is to make a long test coil on a metal 
rod, and then analyse the fractal patterns in the 
spacings of the coils. The type of fractal structure 
present correlates closely with the desirable quality 
of ‘coilability’.

Mines are dangerous places to be. Earthquakes 
or other stresses building up in the walls of a mine 
can sometimes lead to devastating ‘rockbursts’, often 
with fatal consequences for miners nearby. In 2000 

…the combined sounds of thousands of fractures is character-
istic of the rock’s behaviour.
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engineers at the Southwest Research Institute, San 
Antonio, discovered that rockbursts can be detected 
as they build up by listening to the sounds made by 
the rocks. Every tiny fracture makes its own popping 
sound, and the combined sounds of thousands of frac-
tures is characteristic of the rock’s behaviour. Simon 
Hsiung and colleagues at SWRI realized that the pat-
tern of cracks is fractal, and therefore the associated 
sounds should also be fractal. The fractal dimension 
of the cracks (and the associated sounds) first grows 
steadily; then it suddenly begins to drop. Soon after 
that point is reached, the rocks blow apart. In small-
scale experiments the warning time is a few minutes, 
but in the large-scale cracking that occurs in a real 
mine it may be days. If so, miners can either evacu-
ate an area where a rockburst is due to occur, or take 
steps to relieve the stress so that it never happens.

One of the main limitations on the effectiveness 
of mobile phones has been the antenna that receives 
and transmits radio signals. The first radio receivers 
used little more than a bare wire as an antenna, and 
until recently most mobile phones were little more 
sophisticated. Then composite antennas, made of 
thousands of smaller ones, became available. They are 
usually arranged either regularly in a rectangular grid, 
or at random. In 1999 Dwight Jaggard and Douglas 
Werner discovered that a fractal arrangement of these 
micro-antennas combined the robustness of a random 
array with the efficiency of a grid. Already there is 
some theoretical understanding of why fractal shapes 
work so well. Nathan Cohen and Robert Hohfeld 
proved that if an antenna is to work equally well at 
any frequency, then it must have two features: sym-
metry, and self-similarity. Many fractals, for example 
the Sierpinski gasket (Fig. 1.8), have both.

Digital communications, be they television or 
computers, transmit visual images as a sequence 
of binary digits 0 and 1. The easy way to turn an 
image into such a sequence is to read off the black 

and white ‘pixels’ – tiny picture elements – from a 
regular grid, with 0 representing white and 1 black. 
More complex codes can represent shades of grey or 
colours. The resulting list of digits is huge, as anyone 
who uses a scanner knows. Engineers are always look-
ing for ways to encode the sequences so that the same 
image can be represented by fewer digits. For exam-
ple, in photographs there is often a lot of blue sky, so 
using a short code for ‘blue’ makes more sense than a 
longer code. In video, the most important feature is 
which pixels change from one frame to the next; the 
rest can be left the same as they were. And so on.

In 1996 Iterated Systems of Atlanta, a company 
founded by mathematician Michael Barnsley (see the 
chapter in this book written by Michael with his wife 
Louise), developed a data-compression system for 
video images based on fractal self-similarity. Roughly 
speaking, a computer compares small regions of the 
image with larger ones, and lists cases where the two 
have much the same form. From this list, which is 
typically much shorter than a grid of pixel codes, 
it is possible to reconstruct the image with almost 
perfect accuracy.

Fig. 1.8 The Sierpinski gasket: this nest of triangles displays 
two of the common characteristics of fractals – symmetry 
and self-similarity.
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Through fractal eyes

A Voyage of discovery

What, then, have fractals taught us? Until recently it 
was fair to say, as I did in From Here to Infinity in 1996, 
that: ‘The contribution of fractals to our understanding 
of the natural world is not so much one of technology 
as of what used to be called natural philosophy.’ Fractals 
provide a unified point of view on certain kinds of 
complexity and irregularity in the natural world, and 
open a path for a mathematical attack. They act as an 
organizing principle, not as a computational tool like 
calculus or linear algebra or numerical methods.

Nowadays it must hastily be added that the com-
putational and technological aspects of the subject 

are advancing rapidly, as more and more scientists 
wake up to the new methods, stop trying to dismiss 
them, and start trying to use them. The recognition 
of fractals as basic geometric forms, amenable to 
analysis but having quite different characteristics 
from the familiar smooth forms such as spheres and 
cylinders, opens our eyes to a new range of phenom-
ena and sensitizes us to new points of view. Instead 
of being seen as ‘erroneous’ or ‘uninteresting’, and 
hence avoided, these phenomena are seen as some-
thing to be deliberately sought out and understood.

One measure of the maturity of a mathematical 
theory is the extent to which it studies things that 
a previous generation dismissed as being ‘special’, 
‘pathological’, ‘non-generic’, ‘accidental’, ‘abnormal’, 

Above:  The nebula
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‘coincidental’... There are many words in the lan-
guage for ‘we don’t understand this’, and science uses 
them all. Major new theories often arise when some-
one takes such unorthodoxies seriously, and investi-
gates them in their own right with an open mind.

Examples are ready to hand. When Edward Lorenz 
(1963) first observed irregular solutions to a model 
of the weather, hardly anybody took any notice, 
yet today there is scarcely any branch of science 
that does not make contact with Chaos Theory, 
which grew from that discovery (and several others). 
Again, the study of chemical oscillators, now highly 
fashionable, was for many years thought to be akin 
to the search for a perpetual motion machine. The 
list is virtually endless: the only counterbalance to 
this memorial to human folly, narrow-mindedness, 
and prejudice is the even more extensive list of com-
parably unorthodox ideas that have proved utterly 
worthless. Not all novelty is valuable, and being 
enthusiastic does not guarantee being right.

As an identifiable area of mathematics with its 
own characteristic point of view and body of tech-
niques, fractal geometry has now ‘arrived’. Its view-
point is recognizable and recognized. But for all the 
beauty of its pictures and the breadth of its vision 
of the natural world, more work needs to be done 
before the theory becomes fully established. Many 
of its models are descriptive rather than explanatory. 
Fractal ‘fake’ mountains look like real ones, but we 
have as yet little understanding of how erosion proc-
esses produce the fractal structure. We often cannot 
compute the fractal dimension, let alone anything 
more sophisticated, from basic physical principles.

As I said, all this is starting to change, as the 
theory moves into its next phase. But even a purely 
descriptive theory adds scientific value. If cellular 
tissue is best modelled by a fractal, then there is 
no point in treating it as a rectangular slab. Today, 
the role of fractal geometry is not primarily to add 
new weapons to the pure mathematician’s armoury 

(though it sometimes does), or to help us make a 
better mobile phone (though it sometimes does), or 
to provide insight into the structure of the universe 
(though it sometimes does). It is to open our eyes to 
an entire realm of mathematics. In 1996 I put it this 
way: ‘[Fractals] are important because they suggest 
that, out there in the jungle of the unknown, is a 
whole new area of mathematics, directly relevant to 
the study of nature.’ We have now explored enough 
of the jungle to realize that what remains to be 
explored is even bigger, and more exciting, than we 
ever imagined.
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… perhaps there is some structure,
if one can use that term, deep in the human mind
that resonates to the patterns in the M-set.

Today, everybody is familiar with graphs, 
especially the one with Time along the hori-
zontal axis, and the Cost of Living climbing 

steadily up the vertical one. The idea that any point 
on a plane can be expressed by two numbers, usually 
written x and y, now appears so obvious that it seems 
quite surprising that the world of mathematics had to 
wait until 1637 for Descartes to invent it.

We are still discovering the consequences of that 
apparently simple idea, and the most amazing is now 
just a few years old. It’s called the Mandelbrot Set 
(from now on, the ‘M-set’) and you’re soon going 
to meet it everywhere – in the design of fabrics, 
wallpaper, jewellery and linoleum. And, I’m afraid, it 
will be popping out of your TV screen in every other 
commercial.

The stunning beauty of the images the M-set gen-
erates has an appeal that is both emotional and uni-
versal: I have seen people almost hypnotized by the 
computer-produced films that explore its –  literally 
infinite – ramifications.

Resonating to the M-set

The psychological reasons for this appeal are still a 
mystery, and may always remain so; perhaps there is 
some structure, if one can use that term, deep in the 
human mind that resonates to the patterns in the 
M-set. Carl Jung would have been surprised – and 
delighted – to know that thirty years after his death, 
the computer revolution whose beginnings he just 

lived to see would give new impetus to his theory of 
archetypes, and his belief in the existence of a ‘col-
lective unconscious’.

Many patterns in the M-set are strongly reminiscent 
of the abstract, curvilinear motifs of Islamic decorative 
art; the comma-shaped Paisley design is one exam-
ple. Others resemble organic structures – tentacles, 
 compound insect eyes, armies of sea- horses, elephant 
trunks … then, abruptly, they become transformed into 
angular shapes like the crystals and snowflakes of the 
world before any life existed.

Yet perhaps the most astonishing feature of the 
M-set is its basic simplicity. Unlike almost every-
thing else in modern mathematics, any schoolchild 
can understand how it is produced. Its generation 
involves nothing more advanced than addition and 
multiplication; there’s no need for such complexi-
ties as subtraction and – heaven forbid! – division, 
let alone any of the more exotic beasts from the 
mathematical menagerie.

Another of those equations

There can be few people in the civilized world who 
have not encountered Einstein’s famous E = mc2, or 
who would consider it too hopelessly complicated to 
understand. Well, the equation that defines the M-set 
contains the same number of terms, indeed looks very 
similar. Here it is:

Z  z2 + c.

Exploring the Fractal Universe
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Not very terrifying, is it? Yet the lifetime of the 
Universe would not be long enough to explore all its 
ramifications.

The zs and the c in Mandelbrot’s equation are all 
numbers, not (as in Einstein’s) physical quantities 
like mass and energy. They are coordinates, which 
specify the position of a point, and the equation con-
trols the way in which it moves, to trace a pattern.

There’s a very simple analogue familiar to 
everyone – those children’s books with blank 
pages sprinkled with numbers, which when 
joined up in the right order reveal hidden – and 
often surprising – pictures. The image on a TV 
screen is produced by a sophisticated application 
of the same principle.

In theory, anyone who can add and multiply could 
plot out the M-set with pen or pencil on a sheet of 
squared paper. However, as we’ll see later, there are 
certain practical difficulties – notably the fact that a 
human lifespan is seldom more than a hundred years. 
So the M-set is invariably computer-generated, and 
usually shown on a computer screen.

Take any point in space

Now, there are two ways of locating a point in space. 
The more common employs some kind of grid refer-
ence – West–East, North–South, or, on squared graph 
paper, a horizontal X-axis and a vertical Y-axis.

But there’s also the system used in radar, now famil-
iar to most people thanks to countless movies. Here 
the position of an object is given by (1) its distance 
from the origin, and (2) its direction, or compass 
bearing. Incidentally, this is the natural system – the 
one you use automatically and unconsciously when 
you play any ball game. Then you’re concerned with 
distances and angles, with yourself as the origin.

So think of a computer’s screen as a radar screen 
with a single blip on it, whose movements are going 
to trace out the M-set. However, before we switch 

on our radar, I want to make the equation even sim-
pler, to: Z = z2. I’ve thrown c away, for the moment, 
and left only the zs. Now let me define them more 
precisely. Small z is the initial range of the blip – the 
distance at which it starts. Big Z is its final distance 
from the origin. Thus if a point was initially 2 units 
away, by obeying this equation it would promptly 
hop to a distance of 4.

The iteration loop 

Nothing to get very excited about, but now comes 
the modification that makes all the difference:

Z  z2

That double arrow is a two-way traffic sign, indicating 
that the numbers flow in both directions. This time, 
we don’t stop at Z = 4; we make that equal to a new  
z – which promptly give us a second Z of 16, and so on.

In no time we’ve generated the series 
256,65536,4294967296 … and the spot that started 
only 2 units from the centre is heading towards infin-
ity in giant steps of ever-increasing magnitude.

This process of going round and round a loop is 
called ‘iteration’. It’s like a dog chasing its own tail, 
except that a dog doesn’t get anywhere. But math-
ematical iteration can take us to some very strange 
places indeed – as we shall soon discover.

Now we’re ready to turn on our radar. Most dis-
plays have range circles at 10, 20 … 100 kilometres 
from the centre. We will require only a single circle, 
at a range of 1. There’s no need to specify any units, 
as we’re dealing with pure numbers. Make them cen-
timetres or light years, as you please.

Let’s suppose that the initial position of our blip is 
anywhere on this circle – the bearing doesn’t matter. 
So z is 1.

As 1 squared is still 1, so is Z. And it remains at 
that value because no matter how many times you 
square 1, it always remains exactly 1. The blip may 
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hop round and round the circle, but it always stays 
on it.

Shooting for infinity

Now consider the case where the initial z is greater 
than 1. We’ve already seen how rapidly the blip 
shoots to infinity if z equals 2, but the same thing 
happens even if it’s only a microscopic shade more 
than 1: say 1.000000000000000000001. Watch:
At the first squaring, Z becomes

1.000000000000000000002
then
1.000000000000000000004
1.000000000000000000008
1.000000000000000000016
1.000000000000000000032
1.000000000000000000064

and so on for pages of printout. For all practical 
purposes, the value is still exactly 1. The blip hasn’t 
moved visibly outwards or inwards; it’s still on the 
circle at range 1.

But those zeros are slowly being whittled away, 
as the digits march inexorably across from the right. 
Quite suddenly, something appears in the third, sec-
ond, first decimal place – and the numbers explode 
after a very few additional terms, as this example 
shows, reading left to right:

1.001 1.002 1.004 1.008

1.016 1.032 1.066 1.136

1.292 1.668 2.783 7.745

59.987 3598.467 12,948,970

167,675,700,000,000

28,115,140,000,000,000,000,000,000,000

There could be a million – a billion – zeros on the 
right hand side, and the result would still be the same. 
Eventually the digit would creep up to the decimal 
point – and then Z would take to infinity.

The other side of infinity

Now let’s look at the other case. Suppose z is a 
microscopic amount less than 1 – say something like 
0.99999999999999999999.

As before, nothing much happens for a long time 
as we round the loop, except that the numbers on 
the far right get steadily smaller. But after a few 
 thousand or million iterations – catastrophe! Z sud-
denly shrinks to nothing, dissolving in an endless 
string of zeros …

Check it out on your computer. It can only handle 
twelve digits? Well, no matter how many you had to 
play with, you’d get the same answer. Trust me …

The results of this ‘program’ can be summarized in 
the laws that may seem too trivial to be worth for-
mulating. But mathematical truth is trivial, and in a 
few more steps these laws will take us into a universe 
of mind-boggling wonder and beauty.

The laws of squaring

Here are the three laws of the squaring program:

 1.  if the input z is exactly equal to 1, the output 
Z always remains 1;

 2.  if the input is more than 1, the output eventu-
ally becomes infinite; and

 3.  if the input is less than 1, the output eventu-
ally becomes zero.

That circle of radius 1 is therefore a kind of map, 
dividing the plane into two distinct territories. 
Outside it, numbers that obey the squaring law have 
the freedom of infinity; numbers inside it are prison-
ers, trapped and doomed to ultimate extinction.

At this point, someone may say: ‘You’ve only 
talked about ranges – distances from the origin. To 
fix the blip’s position, you have to give its bearing as 
well. What about that?’

Very true. Fortunately, in this selection process – this 
division of the zs into two distinct classes – bearings are 
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irrelevant; the same thing happens in every direction. 
For this simple example – let’s call it the S-set – we can 
ignore them.

When we come on to the more complicated case 
of the M-set, where the bearing is important, there’s 
a very neat mathematical trick to take care of it. 
Many of you will have guessed that it uses complex 
or imaginary numbers (which really aren’t at all com-
plex, still less imaginary). But we don’t need them for 
this discussion, and I promise not to mention them 
again.

Inside the map

The S-set lies inside a map, and its frontier is the 
circle enclosing it. That circle is simply a continuous 
line with no thickness. If you could examine it with 
a microscope of infinite power, it would always look 
exactly the same.

You could expand the S-set to the size of the uni-
verse; its boundary would still be a line of zero thick-
ness. Yet there are no holes in it; it’s an absolutely 
impenetrable barrier, forever separating the zs less 
than one from those greater than one.

Now, at last, we’re ready to tackle the M-set, 
where these commonsense ideas are turned upside 
down. Fasten your seat belts.

During the 1970s, the French mathematician Benoît 
Mandelbrot, working at Harvard and IBM, started to 
investigate the equation that has made him famous, 
and which I will now write in dynamic form:

Z  z2 + c.

The only difference between this and the equation we 
have used to describe the S-set is the term c. This – not 
z – is now the starting point of our mapping operation. 
The first time round the loop, z is put equal to zero.
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The M-set and the unimaginable  
universe

It seems a trifling change, and no-one could have 
imagined the universe it would reveal. Mandelbrot 
himself did not obtain the first crude glimpses until 
the spring of 1980, when vague patterns started to 
emerge on computer printouts. He had begun to peer 
through Keats’s

Charmed magic casements, opening on the foam
Of perilous seas, in faery lands forlorn.

As we shall learn later; that word ‘foam’ is surpris-
ingly appropriate.

The new equation asks and answers the same ques-
tion as the earlier one: What shape is the ‘territory’ 
mapped out when we put numbers into it? For the 
S-set it was a circle of radius 1. Let’s see what happens 
when we start with this value in the M-equation.

You should be able to do it in your head – for the 
first few steps. But after a few dozen even a supercom-
puter may blow a gasket.

For starters, z = 0, c = 1. So Z = 1.
First loop: Z = 12 + 1 = 2.
Second loop: Z = 22 + 1 = 5.
Third loop: Z = 52 + 1 = 26.
Fourth loop: Z = 262 + 1 … and so on.

I once set my computer to work out the higher 
terms (about the limit of my programming ability) 
and it produced only two more values before it had 
to start approximating. Starting from the beginning 
we get:

1
2
5
26
677
458,330
21,006,640,000
4,412,789,000,000,000,000,000.

At that point my computer gave up, because it 
doesn’t believe there are any numbers with more 
than 38 digits.

However, even the first two or three terms are 
quite enough to show that the M-set must have a 
different shape from the perfectly circular S-set.  
A point at distance 1 is in the S-set; indeed, it 
defines its boundary. A point at that same distance 
may be outside the boundary of the M-set.

Note that I say ‘may’ not ‘must’. It all depends on 
the initial direction, or bearing, of the starting point, 
which we have been able to ignore hitherto because 
it did not affect our discussion of the (perfectly sym-
metrical) S-set. As it turns out, the M-set is only 
symmetrical about the X, or horizontal, axis.

One might have guessed that, from the nature 
of the equation. But no-one could possibly have 
intuited its real appearance: if the question had 
been put to me in my virginal pre-Mandelbrot 
days, I would probably have hazarded: ‘Something 
like an ellipse, squashed along the Y-axis.’ I might 
even (though I doubt it) have correctly guessed 
that it would be shifted towards the left, or minus, 
direction.

The indescribable M-set

At this point, I would like to try a thought experi-
ment on you. The M-set being literally indescrib-
able, here’s my best attempt describe it: imagine 
you’re looking straight down on a rather plump 
turtle swimming westwards. It’s been crossed 
with a swordfish, so has a narrow spike pointing 
ahead of it. Its entire perimeter is festooned with 
bizarre marine growths – and with baby turtles of 
assorted sizes, which have smaller weeds growing 
on them …

I defy you to find a description like that in any 
maths textbook. And if you think you can do better 
when you’ve met the real beast, you’re welcome to try. 
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(I suspect that the insect world might provide better 
analogies; there may even be a Mandelbeetle lurking in 
the Brazilian rain forests. Too bad, we’ll never know.)

Here is the first crude approximation, shorn of 
details; if you like to fill its blank spaces with the 
medieval cartographers’ favourite ‘here be dragons’ 
you will hardly be exaggerating.

First of all, note that – as I’ve already remarked – 
it’s shifted to the left (or West, if you prefer) of the 
S-set, which of course extends from +1 to −1 along 
the X-axis. The M-set only gets to 0.25 on the right 
of the horizontal axis line itself, though above and 
below the axis line it bulges out to just beyond 0.4.

The ‘Utter West’

On the left-hand side, the map stretches to about 
−1.4, and then it sprouts a peculiar spike – or 
antenna – which reaches out to exactly −2.0. As far 
as the M-set is concerned, there is nothing beyond 
this point; it is the edge of the Universe.

Some Mandelbrot fans call it ‘the Utter West’, 
and you might like to see what happens when you 
make c equal to −2. Z doesn’t converge to zero – 
but it doesn’t escape to infinity either, so the point 
belongs to the Set – just. But if you make c equal to 
−2.0000001, before you know you’re passing Pluto 
and heading for Quasar West.

Now we come to the most important distinction 
between the two sets. The S-set has a nice, clean 
line for its boundary. The frontier of the M-set is, to 
say the least, fuzzy. Just how fuzzy you will begin to 
understand when we start to zoom into it; only then 
will we see the incredible flora and fauna that flour-
ish in that disputed territory.

The boundary – if one can call it that – of the M-set 
is not a simple line; it is something that Euclid never 
imagined, and for which there is no word in ordinary 
language. Mandelbrot, whose command of English 
(and American) is awesome, has ransacked the dic-
tionary for suggestive nouns. A few examples: foams, 
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The Mandelbrot Set is, as I have tried to
explain, essentially a map.We’ve all read
those stories about maps that reveal the

location of hidden treasure.
Well, in this case the map IS the treasure!

sponges, dusts, webs, nets, curds. He himself coined 
the technical name fractal, and is now putting up a 
spirited rearward action to stop anyone defining it too 
precisely.

The colours of infinity

Computers can easily make snapshots of the M-set at 
any magnification, and even in black and white they 
are fascinating. However, by a simple trick they can 
be coloured, and transformed into objects of amaz-
ing, even surreal, beauty.

The original equation, of course, is no more 
concerned with colour than is Euclid’s Elements of 
Geometry. But if we instruct the computer to colour 
any given region in accordance with the number of 
times z goes round the loop before it decides whether or 
not it belongs to the M-set the results are gorgeous.

Thus the colours, though arbitrary, are not mean-
ingless. An exact analogy is found in cartography. 
Think of the contour lines on a relief map, which 
show elevations above sea level. The spaces between 
them are often coloured so that the eye can more 
easily grasp the information conveyed. Ditto with 
bathymetric charts; the deeper the ocean, the darker 
the blue. The map-maker can make the colours any-
thing he likes, and is guided by aesthetics as much 
as geography.

It’s just the same here – except that these contour 
lines are set automatically by the speed of the calcu-
lation – I won’t go into details. I have not discovered 
what genius first had this idea –  perhaps Monsieur M. 
himself, but it turns them into fantastic works of art. 
And you should see them when they’re animated …

Only in the computer age

One of the many strange thoughts that the M-set 
generates is this. In principle, it could have been dis-
covered as soon as the human race learned to count. 
In practice, since even a low magnification image 
may involve billions of calculations, there was no way 
in which it could even be glimpsed before computers 
were invented! And such movies as those on the 
DVD with this book would have required the entire 
present world population to calculate night and day 
for years – without making a single mistake in multi-
plying together trillions of hundred-digit numbers.

I began by saying that the Mandelbrot Set is the 
most extraordinary discovery in the history of math-
ematics. For who could have possibly imagined that 
so absurdly simple an equation could have generated 
such literally infinite complexity, and such unearthly 
beauty?

The Mandelbrot Set is, as I have tried to explain, 
essentially a map. We’ve all read those stories about 
maps that reveal the location of hidden treasure.

Well, in this case the map IS the treasure!
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MatheMatical appendix
One way of appreciating where the curiously-shaped country of the M-set is located on 
the map of all possible (complex) numbers is to pin down its Eastern and Western fron-
tiers, ignoring everything to the North and South.

The Western, or negative, limit is easily identified; for once, the calculation can be 
done mentally, without the aid of a computer! If we take the basic equation: Z = z2 + c 
and set the initial value of c equal to −2, the first time round the loop gives Z = −2. The 
second value is Z = (−2)2 − 2 = 2. The third value is Z = 22 − 2 = 2.

And so on for ever: Z is stuck at 2! It does not shrink to zero, but neither does it go rac-
ing off to infinity. Thus the point at −2 on the X-axis, or 2 units to the left of the origin, 
definitely belongs to the M-set. It masks the Utter West – the very tip of the strangely 
ornamented spike that extends in that direction.

It’s interesting to see what happens for values of c on either side of −2, and for that 
we certainly do need a computer. Take c = −1.99999. Table 2.1 shows what happens to 
Z as it goes round and round the loop:

The value then goes on oscillating, presumably forever (my computer has been round 
the loop only about ten thousand times) between the limits of plus and minus 2. Perhaps 
after ten million iterations Z might change its mind and suddenly shoot off to infinity, 
but it seems reasonable to assume that this value of c is definitely inside the M-set.

Table 2.1 c = −1.99999 (reading the numbers left to right)

1.999970 1.999890 1.999570 1.998290 1.993174
1.972752 1.891762 1.578773 0.492534 −1.757400
1.088466 −0.815231 −1.335388 −0.216729 −1.953019
1.814292 1.291665 −0.331592 −1.890037 1.572248
0.471975 −1.777230 1.158556 −0.657737 −1.567371
0.456663 −1.791449 1.209298 −0.537588 −1.710989
0.927494 −1.139744 −0.700973 −1.508626 0.275963

−1.923834 1.701 149 0.893918 −1.200901 −0.557826
−1.688820 0.852124 −1.273875 −0.377232 −1.857686

1.451007 0.105431 −1.988874 1.955631 1.824503
1.328822 −0.234222 −1.945130 1.783540 1.181027

−0.605166 −1.633764 0.669195 −1.552168 0.409236
−1.832516 1.358123 −0.155492 −1.975812 1.903845

1.624634 0.639446 −1.591099 0.531605 −1.717386
0.949426 −1.098581
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The fate of the point only 0.00002 units further ‘west’, on the other hand, is very 
quickly decided, as we see in Table 2.2:

As far as an Apple Mac is concerned, the numbers in that last line are infinite, and I 
doubt if even a Super Cray would disagree. So −2.00001 is definitely outside the M-set.

On the Eastern, or positive side of the Set, the limit is not so easily defined.
Obviously, it is closer to the origin (0,0) than the point + 1, which gives a value 

shooting off to infinity after only a few times round the loop. A few minutes’ work with 
pencil and paper shows that it is even closer than 0.5, for putting c = 1/2 also gives a 
rapidly soaring Z. It is, in fact, at 0.25 – though this is by no means easy to prove.

When I set c = 0.25 in the program I have painfully written, the screen is flooded 
with a torrent of numbers, which after hundreds of iterations finally settle down to the 
odd value 0.4998505. I assume that this should be exactly 0.5, with the difference due 
to rounding-off errors. In any event, Z doesn’t shoot off to infinity, so the Eastern limit 
of the M-set is definitely at 0.25. (On the centre line, that is; above and below, it bulges 
considerably further eastwards.)

It’s interesting to check what happens when bracketing this value and setting c equal 
to 0.24999 and 0.25001. Table 2.3 gives the result of the first:

Table 2.2 c = −2.00001

2.00003 2.00011 2.00043 2.00171 2.00683
2.02737 2.11023 2.45306 4.01748 14.14011
197.942 39,179.2 1.5E+9
2.4E+18 5.5E+36 3.1E+73

Table 2.3 c = .24999

.3124850 .3476369 .3708414 .3875133 .4181846

.4248683 .4305031 .4431468 .4463691 .4492353

.4562108 .4581183 .4598624 .4643020 .4655664

.4667420 .4698221 .4707228 .4715699 .4738342

.4745088 .4751486 .4768840 .4774084 .4779088

.4792815 .4797008 .4801028 .4812158 .4815586

.4818887 .4828091 .4830946 .4833704 .4001566

.4101153 .4353229 .4394960 .4518024 .4541154

.4614634 .4629385 .4678381 .4688625 .4723682

.4731217 .4757562 .4763340 .4783868 .4788439

.4804887 .4808594 .4822067 .4825133 .4833704

and then, after 12 more screens-full of figures …
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Although all these calculations involve only the X-coordinate, and ignore complex 
numbers by setting Y = 0, they can be very time-consuming. Tables 2.3 and 2.4 dem-
onstrate how impossible it would have been to discover – let alone map in detail! – the 
Mandelbrot Set before the advent of modern computers.

Table 2.4 c = .25001

.3125150 .3476756 .3708883 .3875682 .4002191

.4305951 .4354222 .4493631 .4519372 .4600251

.4616331 .4669395 .4680425 .4718018 .4726070

.4754148 .4760292 .4101853 .4182620 .4249531

.4396025 .4432603 .4464897 .4542572 .4563596

.4582741 .4631151 .4644856 .4657569 .4690738

.4700402 .4709478 .4733673 .4740866 .4747681

and then, after some eight screens-full of figures…

.5611078 .5648520 .5690677 .5738481 .5793116

.5856120 .5929514 .6016013 .61 19342 .6244734

.6399771 .6595806 .6850566 .7193126 .7674206

.8389443 .9538376 1.159816 1.595183 2.794620
8.059914 6.5E+1 4.3E+3 1.8E+7 3.3E+14
1.07E+29 1.1E+58 1.3E+116 1.7E+232

c = 0.25001 is therefore outside the M-set.

.4968333 .4968333 .4968334 .4968334 .4968334

.4968334 .4968335 .4968335 .4968335 .4968335

.4968336 .4968336 .4968336 .4968337 .4968337

.4968337 .4968337 .4968338 .4968338 .4968338

.4968338 .4968339 .4968339 .4968339 .4968339

.4968339 .4968340 .4968340 .4968340 .4968340

.4968341 .4968341 .4968341 .4968341 .4968342
and so on forever.

c = .24999 is therefore definitely inside the M-set. If we increase its value very 
slightly, to .25001, Table 2.4 reveals a quite different result, though it takes almost 
as long to arrive at it.
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It has very often been forgotten that geometry 
simply must have a visual component, and I 
believe that in many contexts this omission has 

proven to be very harmful.
To begin, let me say a few words concerning the 

scope of fractal geometry. In 1990, I saw it as a work-
able geometric middle ground between the excessive 
geometric order of Euclid and the geometric chaos 
of general mathematics. It is based on a form of 
symmetry that had previously been underutilized, 
namely self-similarity, or some more general form of 
invariance under contraction or dilation.

Fractal geometry is conveniently viewed as a lan-
guage, and it has proved its value by its uses. Its uses 
in art and pure mathematics, being without practical 
application, can be said to be poetic. Its uses in various 
areas of the study of materials and other areas of engi-
neering are examples of practical prose. Its uses in phys-
ical theory, especially in conjunction with the basic 
equations of mathematical physics, combine poetry and 
high prose. Several of the problems that fractal geom-
etry tackles involve old mysteries, some of them already 
known to primitive man, others mentioned in the Bible 
and others familiar to every landscape artist.

To elaborate, let us provide a marvellous text that 
Galileo wrote at the dawn of science:

Philosophy is written in this great book – I am 
speaking of the Universe – which is constantly 
offered for our contemplation, but which can-
not be read until we have learned its language 
and have become familiar with the characters in 
which it is written. It is written in the language 
of mathematics, and its characters are triangles, 
circles and other geometric forms, without 

which it is humanly impossible to understand 
a single word of it; without which one wanders 
in vain across a dark labyrinth. (Galileo Galilei: 
Il Saggiatore, 1623)

We all know that mechanics and calculus, therefore 
all of quantitative science, were built on these char-
acters, and we all know that these characters belong 
to Euclidean geometry. In addition, we all agree with 
Galileo that this geometry is necessary to describe 
the world around us, beginning with the motion of 
planets and the fall of stones on Earth.

A geometry of nature?

But is it sufficient? To answer, let us focus on 
that part of the world that we see in everyday life. 
Modern box-like buildings are cubes or parallelepi-
peds. Good-quality plasterboard is flat. Good-quality 
tables are flat and typically have straight or circular 
edges. More generally, the works of Man, as the 
engineer and the builder, are typically flat, round or 
follow the other very simple shapes of the classical 
schools of geometry.

By contrast, many shapes of nature – for example, 
those shapes of mountains, clouds, broken stones, and 
trees – are far too complicated for Euclidean geome-
try. Mountains are not cones. Clouds are not spheres. 
Island coastlines are not circles. Rivers don’t flow 
straight. Therefore, we must go beyond Euclid if we 
want to extend science to those aspects of nature.

A geometry able to include mountains and clouds 
now exists. I put it together in 1975, but of course it 
incorporates numerous pieces that have been around 
for a very long time. Like everything in science, this 

In order to understand geometric shapes,  

I believe that one must see them
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new geometry has very, very deep and long roots. Let 
me illustrate some of the tasks it can perform.

Figure 3.1 seems to represent a real mountain but 
is neither a photograph nor a painting. It is a compu-
ter forgery; it is completely based upon a mathemati-
cal formula from fractal geometry. The same is true 
of the forgery of a cloud that is shown in Fig. 3.2.

An amusing and important feature of these figures 
is that both adopt and adapt formulas that had been 
known in pure mathematics. Thanks to fractal geom-
etry, diverse mathematical objects, which used to be 
viewed as being very far from physics, have turned 
out to be the proper tools for studying nature. I shall 
return to this in a moment.

Fractal modelling of relief was successful in an 
unexpected way. It is used in an immortal mas-
terpiece of cinematography called Star Trek Two, 
The Wrath of Khan. Many people have seen it, 
but – unless prodded – few have noticed that the 
new planet that appears in the Genesis sequence 
of that film has a fractal relief. If I could show it to 
you, you would see that it happens to have peculiar 
characteristics (superhighways and square fields). 
They occur because of a shortcut taken by Lucasfilm 
in order to make it possible to compute these fractals 
quickly enough. But we need not dwell on flaws. Far 

more interesting is the fact that the films that include 
fractals create a bridge between two activities that are 
not expected to ever meet – mathematics and physics 
on the one hand, and popular art on the other.

More generally, fractals have an aspect that I 
found very surprising at the beginning and that 
 continues to be a source of marvel: people respond 
to fractals in a deeply emotional fashion. They either 

Fig. 3.1 left: A fractal 
landscape that never was 
(R.F.Voss).

Fig. 3.2 below: A cloud 
formation that never was 
(S. Lovejoy & 
B.B.Mandelbrot).
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like them or dislike them, but in either case the emo-
tion is completely at variance with the boredom that 
most people feel towards classical geometry.

Let me state that I will never say anything nega-
tive about Euclid’s geometry. I love it as it was an 
important part of my life as a child and as a student; 
in fact, the main reason why I survived academically, 
despite a chaotic schooling, was my geometric intui-
tion, which allowed me to cover my lack of skill as a 
manipulator of formulae. But we all know by experi-
ence that, apart from professional geometers, almost 
everybody views Euclid as being cold and dry. The 
fractal shapes I am showing are exactly as geometric 
as those of Euclid, yet they evoke emotions that 
geometry is not expected or supposed to evoke.

The shape of deterministic chaos

Only one new geometry

Now a few preliminary words about deterministic 
chaos. This topic will be touched on below, but 
something should be mentioned immediately. The 
proper geometry of deterministic chaos is the same as 
the proper geometry of the mountains and the clouds. 
Not only is fractal geometry the proper language to 
describe the shape of mountains and clouds, but it is 
also the proper language for all the geometric aspects 
of chaos. The fact that we need only one new geom-
etry is really quite marvellous, because several might 
have been needed, in addition to that of Euclid.

I have myself devoted much effort to the study of 
deterministic chaos, and would like to show you now 
a few examples of the shapes I have encountered in 
this context.

Figure 3.3 is an enormously magnified fragment 
from a set to which my name has been attached. 
Here, a fragment has been magnified in a ratio equal 
to Avogadro’s number, which is 1023. Why choose 
this particular number? Because it’s nice and very 
large, and such a huge magnification provides a 

good opportunity for testing the quadruple-precision 
arithmetic on the IBM computers of a few years ago. 
(They passed the test. It’s very amusing to be able to 
justify plain fun and pure science on the basis of such 
down-to-earth specific jobs.) If the whole Mandelbrot 
Set had been drawn on the same scale, the end of it 
would be somewhere near the star Sirius.

The shape of the black bug near the centre is 
very nearly the same as that of the centre of the 
whole Mandelbrot Set, to be discussed later when I 
return to this topic. Finding bugs all over is a token 
of geometric orderliness. On the other hand, the 
surrounding patterns vary from bug to bug. This is a 
token of variety.

The shape shown in Fig. 3.4 is a variant of the 
Mandelbrot Set that corresponds to a slightly differ-
ent formula. This shape is reproduced here simply to 
comment on a totally amazing and extraordinarily 
satisfying aspect of fractal geometry. Fractals are per-
ceived by many people as being beautiful, but were 
initially developed for the purpose of science, for 
the purpose of understanding how the world is put 

Fig. 3.3 above: A very small fragment of the Mandelbrot Set 
(R.F.Voss).
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together – both statically (in terms of mountains) 
and dynamically (in terms of chaos, strange attrac-
tors etc.).

In other words, the shapes shown in Figs. 3.1 to 
3.4 were not intended to be beautiful. So why is it 
that they are perceived as beautiful? The fact that 
they are must tell us about something regarding our 
system of visual perception.

I started with these four figures because their 
structure is so rich, but I went overboard. The rich-
ness of their structure means that these figures can-
not be used to explain the main feature of all fractals. 
The underlying basic principle shows far more clearly 
on Fig. 3.5, which – for a change – reproduces a real 
photograph of a real object. You may recognize the 
Romanesco variety of cauliflower. Each bud looks 
absolutely like the whole head, and in turn, each 
bud subdivides into smaller buds, and so on. I am 
told that the same structure repeats over five levels of 
separation that you can see with the naked eye, and 
then through many more levels that you can only see 
with a magnifying glass or microscope.

Scientists’ first reaction to such shapes was to focus 
on the spirals formed by the buds. This interest led to 

extensive knowledge about the relation between the 
golden mean (and the Fibonacci series), and the way 
plants spiral. But to me what is more important is the 
hierarchical structure of buds because it embodies 
the essential idea behind fractals.

What is a fractal?

Before we go on to tackle what a fractal is, let us 
ponder what a fractal is not. Zoom on to a geometric 
shape and examine it in increasing detail. That is, 
take smaller and smaller portions near a point P, and 
allow every one to be dilated, that is, enlarged to 
some prescribed overall size.

If our shape belongs to standard geometry, it is 
well known that the enlargements become increas-
ingly smooth. That is, one expects a curve to be 
‘attracted’, under dilations, towards a straight line 
(thus defining the tangent at the point P). The term 
‘attractor’ is borrowed from dynamics and probabil-
ity theory. One also expects a curve to be attracted 
under dilation to a plane (thus defining the tangent 
plane at the point P).

An exception to this rule is when P is a double 
point of a curve; the curve near P is then attracted to 
two intersecting lines and has two tangents, but double 
points are few and far between in standard curves. In 
general, one can say that nearly every standard shape’s 
local structure converges under dilation to one of the 
small number of ‘universal attractors’. The grandiose 
term universal is borrowed from recent physics.

Fig. 3.4 below: A small fragment of a modified Mandelbrot 
Set (B.B.Mandelbrot).

Fig. 3.5 above: Cauliflower Romanesco.
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Yet the shapes I have been showing fail to be 
locally linear. In fact, they deserve to be called ‘geo-
metrically chaotic’ until proven otherwise. In an 
isolated neighbourhood of the great City of Science, 
a kind of geometric chaos was discovered in the 
fifty years from 1875. Then, while trying to escape 
their concern about nature, mathematicians became 
aware of the fact that a geometric shape’s roughness 
need not vanish as the examination becomes more 
searching. It is conceivable that it should either 
remain constant, or endlessly vary up and down.

The hold of standard geometry was so powerful, 
however, that the resulting shapes were not recog-
nized as models of nature. Quite to the contrary, 
their discoverer proudly labelled them ‘monstrous’ 
and ‘pathological’. After discovering these sets, 
mathematics proceeded to increasingly greater gen-
erality.

Like a sailor, science must constantly navigate 
between two dangers: the lack of and excess of gener-
ality. Between the extremes of the excessive geometric 
order of Euclid, and of the geometric chaos of the most 
general mathematics, can there be a middle ground? 
To provide one is the ambition of fractal geometry.

The essential nature of fractals

The reason why fractals are far more special than the 
most general shapes of mathematics, is because they 
are characterized by so-called ‘symmetries’, which 
are invariances under dilations and/or contractions. 
Broadly speaking, mathematical and natural frac-
tals are shapes whose roughness and fragmentation 
neither tend to vanish, nor fluctuate up and down, 
but remain essentially unchanged as one continually 
zooms in. Hence, the structure of every piece holds 
the key to the whole structure.

The preceding statement is made precise and 
illustrated by Fig. 3.6, which represents a shape that 
is enormously more simple than those shown previ-
ously. As a joke, I called it the ‘Sierpinski gasket’, 
and the joke has stuck.

The four small diagrams show the ‘initiator’ of the 
construction, which is a triangle, then its first three 
stages, while the large diagram shows an advanced 
stage. The basic step of the construction is to divide 
a given (black) triangle into four sub-triangles, and 
then erase (whiten) the middle fourth. This step is 
first performed with a wholly black filled-in triangle 
of side 1, then with three remaining black triangles 
of side 1/2. This process continues, following a pattern 
called recursive deletion, which is very widely used 
to construct fractals. Related patterns are recursive 
substitution and recursive addition (which we shall 
encounter) and recursive multiplication (which is 
fundamental but beyond the scope of this talk).

Now, take the gasket and perform an isotropic linear 
reduction whose ratio is the same in all  directions – 
namely 1/2 – and whose fixed point is any of the three 
apexes of the initiator triangle. This  transformation is 
called a similarity. More precisely, it is homothety or 
linear self-similarity. By examining the large advanced 
stage picture, it is obvious that each of the three 
reduced gaskets is simply superposed on one-third of 
the overall shape. For this reason, the fractal gasket is 
said to have three properties of self-similarity.

The essence of self-similarity

Precise terminology is necessary here because one can 
also understand ‘similar’ as a loose everyday synonym 
of ‘analogous’. In the early days of fractal geometry, 
the resulting terminological ambiguity was accept-
able to physicists, because early detailed studies did 
indeed concentrate on linearly self-similar shapes. 
However, later developments have extended to self-
affine shapes, in which the reductions are still linear, 
but the reduction ratios in different directions are 
different. For example, in order to go from a large to 
a small piece of fractal relief, one must contract the 
horizontal and vertical coordinates in different ratios. 
Hence, a fractal relief is called linearly self-affine.

When the Sierpinski gasket is constructed by delet-
ing middle triangles, as in Fig. 3.6, its  self-similarity 
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seems, so to speak, to be ‘static’ and ‘after-the-fact’. 
But this is a completely misleading impression. Its 
prevalence and its being viewed as a flaw are contin-
ual sources of surprise. In fact, the same symmetries 
can be reinterpreted ‘dynamically’ and suffice to 
generate the gasket. The device, which is called the 
‘chaos game’, is a stochastic, or randomly determined 
interpretation of a scheme made by Hutchinson. 
Start with an ‘initiator’, that is, an arbitrary bounded 
set, for example a P0. Denote the three similarities 
of the gasket by S0, S1, and S2, and denote by k(m) 
a random sequence of the digits 0, 1 and 2. Then 
define an ‘orbit’, as made of the points

P1 = Sk(1) (P0), P2 = Sk(2) (P1) and more generally
Pj = Sk(j) (Pj−1). One finds that this orbit is 

‘attracted’ to the gasket, and that after a few stages it 
describes its shape very well.

In 1964, when I first used the word ‘self-similarity’, 
I thought it was a neologism. In fact at least one writer 
had used it before. But the idea itself is perfectly obvi-
ous and must be very old. The reason the word was 
needed is that the shapes to which it refers had no 
importance until my work. For example, Sierpinski 
had defined his shape for some purpose that has long 
been forgotten – because it was not very important.

Why did self-similarity become important? Because 
Figs. 3.1 to 3.5 are self-similar, not – to be sure – in 
an exact, but in a slightly loose meaning of the word. 
Why fractal geometry has become such a large sub-

ject, and why I spent so much time in my efforts to 
build it as a discipline, is driven by the empirical dis-
coveries (each established by a separate  investigation) 
that the relief of planet Earth is self-similar, and that 
the same is true of many other shapes around us. 
Figures 3.1 to 3.5 suffice to show that the impression 
that self-similarity is a barren and not very fruitful 
idea would be an altogether wrong impression.

Granted what has just been asserted, why did the 
gasket become important? It does not represent any-
thing of interest; in fact, it is so relentlessly monotonous 
that it could be seen as being as simple as Euclid. You 
can know nearly everything about it in just a few days 
of study. The same holds for another widely known 
shape, called the snowflake curve or Von Koch Island, 
for a set Cantor Dust, and for a few other long-known 
structures of the same ilk. The reason why they are 
important is because you must begin the study of fractal 
geometry with the Sierpinski gasket and its type, but 
keep in mind that the real fun begins beyond them.

The new Peano curve

The fun begins after one has added an element of 
unpredictability, due to either randomness (as in 
Figs. 3.1, 3.2 and 3.5) or non-linearity (as in Figs. 3.3 
and 3.5). Non-linearity is the key word of the new 
meaning of chaos, namely of deterministic chaos, 
and randomness is the key to chaos in the old sense 
of the word. The two are very intimately linked.

Fig. 3.6 above and right: The Sierpinski gasket: early and late stages 
of construction.

The fact that we need only one new geometry 

is really quite marvellous, because several 

might have been needed, in addition to  

that of Euclid.
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But let us not rush away from linearly self-similar 
fractals, because in some cases a suitable graphic ren-
dering suffices to break their relentless monotony.

Figure 3.7 shows my variant of a curve that 
Giuseppe Peano constructed in 1890. The point of 
Peano curves is that they manage to fill a portion of 
the plane, hence contradict the basis of the notion  
of curves. Mathematicians have written pages and pages 
to praise the freedom of imagination that allows man 
to invent shapes that are completely removed from 
reality. The Peano curve was specifically designed to 
be a counterexample to a natural belief that used to 
be universal: that curves and surfaces do not mix. It 
was designed for the purpose of separating mathe-
matics and physics into two completely independent 
investigations. Unfortunately, it was quite successful 
in that respect, at least for a century.

To obtain my new Peano curve, you replace an initial 
straight segment by the complicated zigzag (top left). 
Then (top middle) each zig and zag is replaced by smaller 
versions of the zigzag on the top left. The same pattern 
(called recursive substitution) is then repeated without 
end. In the top-right  diagram, it is easy to believe that 
the boundary between black and white will end up fill-
ing a snowflake curve. I call it a ‘snowflake sweep’. The 
bottom of Fig. 3.7 reproduces the same curve but will 
replace every segment by an arc of a circle.

This fancy computer rendering was great fun but 
had a very practical goal. It was carefully thought 
through to force everybody to see all kinds of 
branching systems of arteries and veins, or of rivers, 
or of flames or whatever else you prefer. But those 
very realistic things were not seen until my work, if 
only because mathematicians spurned their ability 
to see. Partly as a result,  mathematics and physics 
did indeed move in very different directions.

Figure 3.8 combines a sequence of completely arti-
ficial, random landscapes. Each part of this picture 
consists of enlarging a small black rectangle in the 
preceding picture and then filling in additional detail. 
This procedure is called recursive addition. Each 

landscape differs from the preceding one by being 
more detailed, yet at the same time the  successive 
enlargements are comparable. They might have been 
different parts of the same coastline examined on 
the same scale, but in fact they are neighbourhoods 
of one single point examined at very different scales. 
Clearly, these successive enlargements of a coastline 
completely fail to converge to a limit tangent!

How to measure roughness

At this point, let me recall a story about the great 
difficulties the ancient Greeks used to experience 
in formulating the idea of ‘size’. Navigators knew 
that Sardinia took longer to circumnavigate than 
Sicily. On the other hand, there was evidence that 
Sardinia’s fields are smaller than Sicily’s. So which 
was the bigger island? Greeks sailors seem to have 
held the belief that Sardinia was bigger because its 
coastline was longer.

Fig. 3.7 above: Mandelbrot’s Peano curve (B.B.Mandelbrot).
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But let us examine Fig. 3.9, and ponder the 
notion of coastline length. When the ship used to 

circumnavigate is large, the captain will report a 
rather small length. A much smaller ship would 
come closer to the shore and navigate along a longer 
curve. A man walking along the coastline will meas-
ure an even longer length. So what about the ‘real 
length of the coast of Sardinia’? The question seems 
both elementary and silly, but it turns out to have 
an unexpected answer. The answer is, ‘it depends’. 
The length of a coastline depends on whether you 
 circumnavigate it in a large or a small ship, or walk 
along it, or use a mouse or some other instrument to 
measure the coastline.

This makes us appreciate the extraordinary power 
of the mental structure that schools have imposed 
by restricting their teaching of geometry to Euclid. 
Many people thought they never understood geom-
etry, yet they learned enough to expect every curve 
to have a length. For the curves in which I am inter-
ested, this turns out to have been the wrong thing to 
remember from school. Once again, the theoretical 

Fig. 3.8 right: Zoom 
onto a fractal land-
scape that never 
was (R.F.Voss).

Fig. 3.9 above: A 
fractal coastline 
that never was 
(B.B.Mandelbrot).
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So what about the ‘real length of the
coast of Sardinia’?  The question seems
both elementary and silly,but it turns out
to have an unexpected answer…it
depends on whether you circumnavigate
it in a ..ship…or walk along it,or use a
mouse or some other instrument to
measure the coastline.

length is infinite, and the practical length depends 
on the method of measurement. Its increase is faster 
where the coastline is rough, making it necessary to 
study the notion of roughness.

This last notion is fundamental, because the 
world we live in includes many rough objects that 
can cause great harm. Man must learn to live among 
those objects. However, the task of measuring rough-
ness objectively has turned out to be extraordinar-
ily difficult. People whose work demands it, like 
 metallurgists, merely went to their friends in statistics 
asking for a number they could measure and call 
roughness.

But the following experiment reveals a serious 
problem. Take samples of steel that the US National 
Bureau of Standards guarantees to come from one 
block of metal as as homogeneous as man can make 
it. Break the steel samples and measure the  roughness 
of the fractures, evaluated according to the rules of 
statistics. You will find that the values you get are in 
complete disagreement.

Fractal dimension is the answer

On the other hand, I argue that roughness happens 
to be measured consistently by a quantity called 
fractal dimension, which happens in general to be a 
fraction, and which one can measure very accurately. 
Studying many samples from the same block of metal, 
we found the same dimension for every sample.

The idea is that fractal dimension is a proper meas-
ure for the notion of roughness just as temperature is 
a proper measure for the notion of hotness. Man 
must have known forever that some things are hot 
and others are cold, but before physics could move 
on to a theory of matter, it was necessary to describe 
the degree of hotness by one number. This was pos-
sible only when the thermometer was invented, and 
different people using the same thermometer could 
get the same value of hotness for the same object.

Similarly and most fortunately, fractal geometry 
started with a few ideas about how to express rough-
ness and complexity by a number. Some of these 
ideas add up a bunch of related but distinct tools 
(one can think of them as being different types of 
screwdrivers) that are collectively called ‘fractal 
dimensions’. People who work with fractal geometry 
quickly develop an intuition of fractal dimension and 
can now guess it very accurately for simple shapes.

The reason we use the term ‘dimension’ is that it 
can also be applied to points, intervals, full squares 
and full cubes, and in those cases yield the familiar 
values of 0, 1, 2 and 3. Applied to fractals, however, 
these definitions usually yield values that are not 
integers. The loose idea of ‘roughness’ has turned 
out to demand a number of distinct numerical 
implementations, hence the multiplicity of distinct 
‘fractal dimensions’ has proven valuable. A dimen-
sion delineated by Hausdorff and Besicovitch was the 
first example, but for practical needs it is either too 
difficult or too specialized.

The simplest variant is the similarity dimension 
Ds, which applies to shapes that are linearly self-
similar. As I have already stated, this means that 
they are made up of N replicas of the whole, each 
replica being reduced linearly in the same ratio r. 
Then one defines

s 1
r

logN 
D

log( / )
=
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For a point, an interval, a square and a full cube, one 
has Ds = 0, 1, 2 and 3, respectively. As announced, 
these are the familiar values of the ‘ordinary’ dimen-
sions. But the Sierpinski gasket adds something very 
new: one has N = 3 and r = 1/2, hence

D = log3/log2 ~ 1.5849...

Another simple fractal dimension is the mass dimen-
sion. Take a distribution of mass of uniform density 
on the line, in the place or in space. Then choose a 
sphere of radius R whose centre lies in our set. The 
mass in such a sphere takes the form MR = FRD, 
where D is the ‘ordinary’ dimension and F is a numer-
ical constant. The idea of uniform density extends to 
fractals, and in many cases an exponent D can be 
defined; it is called the mass dimension and is often 
equal to the similarity dimension. Unfortunately, we 
must move away from dimension.

How to grow a tree

The next subject I wish to tackle is the increas-
ingly valuable role of fractal geometry as a tool 
in the discovery and study of previously unknown 
aspects of nature. Nothing illustrates this role bet-
ter than a form of random growth that generates 
the Fractal Diffusion Limited Aggregates (DLA) 
or Witten-Sander aggregates. A DLA cluster lurks 
in the centre of Fig. 3.10. It is a tree-like shape 
of baffling complexity that one can use to model 
how ash forms, how water seeps through rock, 
how cracks spread in a solid and how lightning 
discharges.

To see how the growth proceeds, take a very large 
chess board and place a queen that is not allowed 
to move in the central square. Pawns are allowed 
to move in any of the four directions on the board. 
They are released from a random starting point at 
the edge of the board, and are instructed to perform 

a random or drunkard’s walk. Each step can take one 
of four directions chosen with equal probabilities. 
When a pawn reaches a square next to that of the 
original queen, it transforms itself into a new queen 
and cannot move any further. Eventually, one has a 
branched, spidery collection of queens.

Quite unexpectedly, massive computer simula-
tions show that DLA clusters are fractal. They are 
nearly self-similar, that is, small portions are very 
much like reduced versions of large portions. But 
deviations from randomized linear self-similarity are 
obvious and pose interesting challenges.

One reason for the importance of DLA is that it 
concerns the interface between the smooth and the 
fractal. A premise of fractal geometry is that much in 
the world is fractal. Nevertheless, science is expected 
to be cumulative, the new being added to the old, 
without chasing it away. Therefore, new wisdoms 
must not deny the old wisdom that the world is made 
of smooth shapes and involves smooth variation and 
differential equations.

Fig. 3.10 above: A cluster of diffusion limited aggregation, 
surrounded by its equipotential curves (C.J.G.Evertsz and 
B.B.Mandelbrot).
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What DLA shows is that the old and new wisdoms 
are compatible only if one abandons the old philo-
sophical expectation that everything in the world will 
eventually prove to be smooth or of smooth variation.

To show how smooth variation can produce rug-
ged behaviour, the original construction must first 
be rephrased in terms of the theory of electrostatic 
potential. The description that follows is necessarily 
a little schematic. Grow DLA in the big box con-
nected to a positive potential (to be taken as unity) 
and connect the cluster itself to the potential 0. 
Then the value of the potential elsewhere in the box 
is best described by equipotential curves, for exam-
ple, the curves along which the potential takes the 
increasing values .01, .02, … .99.

Figure 3.10 shows that all these curves are smooth 
and that they provide a progressive transition between 
the box and the boundary of the cluster. Analytic cal-
culation is out of the question, but  ‘physical common 
sense’ can be combined with numerical calculation. In 
effect, the object’s boundary includes many needles, 
and each has a high probability of getting hit by light-
ning. This is manifested by the fact that equipotential 
lines crowd together near the tips of a DLA cluster. 
More generally, returning to the random pawns that 
build up a DLA cluster, the position where the pawn 
lands is obtained from the shapes of the electrostatic 
equipotentials.

Now we come to the next logical step, which 
implies that DLA has brought an intellectual inno-
vation of the highest order. For nearly 200 years, the 
study of potentials has limited itself to fixed bounda-
ries. But in the simple random walk that creates DLA, 
a ‘hit’ in the above terminology can be interpreted as 
provoking a displacement of the boundary. Thus, the 
massive numerical experiments about DLA teach us 
that when one allows boundaries to move in response 
to the potential, the boundaries become fractal.

This shows without any trace of doubt that one 
can create rough fractals from the smoothness that 

characterizes equipotential lines, but this knowledge 
remains imperfect. We all thirst for new mathemat-
ics and physics. Nevertheless, it is worth noting how 
fractal geometry has led to an altogether new problem, 
outlined the broad solution and set many scientists to 
work.

The Julia Set

Our next move returns from randomness to deter-
ministic chaos, and replaces objects in real physi-
cal space by imaginary objects. What will remain 
unchanged is that we shall deal with spiky sets sur-
rounded by smooth equipotential lines.

The first notion here is that of the Julia Set of 
quadratic iteration. Pick a point c of coordinates u and 
v, and call it a ‘parameter’. Next, in a different plane, 
a point P0 of the coordinates x0 and y0. Then form x1 
= x0

2 − y0
2 + u and y1 = 2x0y0 + v. These formulas may 

seem a bit artificial, but in order to satisfy the reader 
who is scared of complex numbers, they simplify if 
the point c of coordinates x and y is represented by 
the complex number z = x + iy. (Complex numbers 
add and multiply like ordinary numbers, except that 
i2 must always be replaced by −1.) In terms of the 
complex numbers c = u + iv and z = x + iy, the preced-
ing rule simplifies to z1 = z0

2 + c and (more generally) 
zk+1= zk

2 + c. Even the reader who is scared of complex 
numbers is able to understand the expressions in terms 
of xk and yk.

When the orbit Pk fails to escape to infinity, the 
initial P0 is said to belong to the ‘filled-in Julia Set’. 
An example is shown in Fig. 3.11. If you start outside 
of the black shape, you go to infinity. If you start 
inside, you fail to iterate to infinity.

The boundary between black and white is called 
a ‘Julia curve’. It is approximately self-similar. Each 
chunk is not quite identical to a bigger chunk, because 
of non-linear deformation. Yet, it is astonishing that 
iteration should create any form of self-similarity, 
quite spontaneously.
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As in the investigation of fractal mountains, the 
computer was essential to the study of iteration. The 
bulk of fractal geometry is concerned with shapes of 
great apparent complication and they could never 
be drawn by hand. More precisely, this picture might 
have been computed by a hundred different people 
working for years, but nobody would have started 
such an enormous calculation without first feeling 
that it was worth performing.

Not only did I have access to a computer in 1979, 
but I was familiar with its power. The fact that no 
one knew what was going to emerge was enough 
to make these calculations worth trying. A fish-
ing expedition led to a primitive form of Fig. 3.12. 
The Julia Sets of the map z2+ c can take all kinds of 
shapes, and a small change in C can change the Julia 
Set very greatly. I set out to classify all the possible 
shapes (for reasons that are too lengthy to discuss) 
and came up with a new shape. That it has been 
called the Mandelbrot Set is of course a great hon-
our. Figure 3.3 above was a tiny portion of Fig. 3.12.

Constructing the Mandelbrot Set

Here is how the Mandelbrot Set is constructed. Take 
a starting point C0 in the plane of coordinates u0 and 
v0. From the coordinate of C0, form a second point C1 
of coordinates u1 = u0

2 − v0
2 + u0

and v1 = 2u0u0 + v0.
Next, form the point C2 of coordinates
u2 = u1

2 − v1
2 + u0

and
v2 = 2u1u1 + v0.

More generally, the coordinates uk and vk of Ck are 
obtained from uk−1 and vk−1 by the so-called ‘iterative 
formulas’

uk = uk2 − 1 − vk2 − 1 + u0

and
vk = 2uk−1 vk −1 + v0.

Fig. 3.11 above: Quadratic Julia Set for the map z  z2 + C.

Fig. 3.12 below: The Mandelbrot Set, surrounded by its equi-
potential curves.
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When C0 is represented by z0 = u0 + iv0, the above 
formulas simplify to z1 = z0

2 + z0 and zk = zk
2
−1 + z0. 

The points Ck are said to form the orbit of C0, and 
the set M is defined as follows: If the orbit Ck fails to 
go to infinity, one says that C0 is contained within 
the set M. If the orbit Ck does go to infinity, one says 
that the point C0 is outside M.

This algorithm concerns the following very sober 
problem of deterministic dynamics. When C0 is in 
the interior of M, quadratic dynamics yields an orbit 
that is perfectly orderly, in the sense that it is asymp-
totically periodic. When C0 is outside M, to the 
contrary, the behaviour of the orbit is deterministic, 
but almost unpredictably, chaotic. Quadratic dynam-
ics was singled out for detailed study because in this 
case the criterion separating orderly from chaotic 
behaviour is as clean as can be, as seen above. The 
boundary between the two possibilities turns out to 
be messy beyond any expectation.

Zooming towards a portion of the boundary of 
the Mandelbrot Set, you see two distinct phenom-
ena. The part is simply a repetition of something 
already seen. This element of repetition is essential 
to beauty. But beauty also requires an element of 
change, and this is also very clearly present. As you 
come closer and closer, what you see becomes more 
and more complicated. The overall shape is the 
same, but the hair structure becomes more and more 
intense. This feature is not something we put in on 
purpose. In so far as the mathematics is concerned, 
it is not invented, but discovered: we see something 
that has been there forever. What we discover is 
that the mathematics of z squared plus C is astonish-
ingly complicated, by contrast with the simplicity 
of the formula. We find that the Mandelbrot Set, 
when examined more and more closely, exhibits the 
co-existence of something that repeats itself relent-
lessly, something that exhibits a variety that boggles 
the imagination. I first saw the Mandelbrot Set on a 
black and white screen of very low graphic quality, 

and the picture looked dirty. But zooming in on what 
seemed like dirt revealed an extraordinary little copy 
of the whole.

In Fig. 3.12, the Mandelbrot Set is the white 
‘bug’ in the middle. It is very rough-edged, but is sur-
rounded by a collection of zebra stripes whose edges 
become increasingly smooth as one goes away from 
M. These zebra-stripe edges happen to be Laplacian 
equipotential curves. They are just like those in 
Fig. 3.10 but are far easier to obtain.

Fractal art and the mathematician

To the layman, fractal art tends to seem simply magi-
cal, but no mathematician can fail to try to under-
stand its structure and meaning. A remarkable aspect 
of recent events is that the mathematics triggered 
by the Mandelbrot Set could have passed as ‘pure’ 
if only its visual origin could have been hidden. To 
many mathematicians, the newly opened possibility 
of playing with pictures interactively has revealed 
a new mine of purely mathematical questions and 
conjectures, of isolated problems and whole theories. 
To take an example, examination of the Mandelbrot 
Set led me in 1980 to many conjectures that were 
simple to state, but then proved very hard to crack. 
(The main one remains unsolved.) To mathemati-
cians, their being difficult and slow to develop does 
not make them any less fascinating, because a host 
of intrinsically interesting side-results have been 
obtained in their study.

Herein lies a tale. Pure mathematics is certainly 
one of the remarkable activities of man; it certainly 
is different in spirit from the art of creating pictures 
by numerical manipulation, and it has indeed proven 
that it can thrive in splendid isolation – at least over 
some brief periods. Nevertheless, the interaction 
between art, mathematics and fractals confirms what 
is suggested by almost all earlier experiences. Over 
the long haul, mathematics gains by not attempting 
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to destroy the organic unity that appears to exist 
between seemingly disparate but equally worthy 
activities of man, the abstract and the intuitive.

Of course, the black and white figures in this 
chapter are not beautiful colour fractal pictures. As 
in the case of the mountains, the quality of the col-
our rendering shows the skills of the programmers, 
but the structure itself is independent of the colour 
rendering. What is important is that the structure is 
too complicated to be understood unless the colour 
rendering is sufficiently rich. In fact, the set has such 
an enormous amount of structure that we cannot see 
it in one single colour rendering. Different render-
ings emphasize very different aspects of it. Again, this 
structure was not invented for the purpose of doing 
something beautiful, but purely for the purpose of 
exploring the advanced theory of z squared plus C.

Simplicity generates marvellous complexity

Let me now bring together the separate strings of 
my chapter. How did fractals come to play their role 
of ‘extracting order out of chaos’? The key resides 
in a very surprising discovery that I made thanks to 
computer graphics.

The algorithms that generate fractals are  typically 
so extraordinarily short as to look positively dumb. 
This means they must be called ‘simple’. Their 
fractal outputs, on the contrary, often appear to 
involve structures of great richness. A priori, one 
would expect the construction of complex shapes 
to necessitate complex rules, but surprisingly, it is 
not so.

What is the special feature that makes fractal 
geometry perform in such an unusual manner? The 
answer is very simple. The algorithms are recursive, 
and the computer code written to represent them 
involves ‘loops’. That is, the basic instructions are 
simple, and their effects can be followed easily.

Let these simple instructions be followed repeat-
edly. Unless one deals with the simple old fractals 

(the Cantor Set and Sierpinski gasket), the process 
of iteration effectively builds up an increasingly 
complicated transform, whose effects the mind can 
follow less and less easily. Eventually, one reaches 
something that is qualitatively different from the 
original building block. One can say that the situa-
tion is a fulfilment of what in general is nothing but a 
dream: the hope of describing and explaining chaotic 
nature as the cumulation of many simple steps.

Many fractals have been accepted as works in a 
new form of art. Some are representational, while 
others are totally unreal and abstract, yet all strike 
almost everyone in forceful, almost sensual, fashion. 
The artist, the child and the ‘man in the street’ can 
never see enough as they never expect to get any-
thing of this sort from mathematics.

Nor did mathematicians expect their subject to 
interact with art in this way. Eugene Wigner has 
written about ‘the unreasonable effectiveness of 
mathematics in the natural sciences’. To this line, 
I have been privileged to add another parallel state-
ment, concerning ‘the unreasonable effectiveness 
of mathematics as creator of shapes that Man can 
marvel about, and enjoy’.

After Benoît Mandelbrot had 
delivered this paper,  
he answered some questions:
Chairman: First of all, are there any responses from 
the panel?

Q1: Benoît, if I could ask, speaking of poetry and 
prose, this is a rather flippant question, but is it 
more like music or like noise?

Mandelbrot: For me, music is a form of poetry, and 
I forgot to say so simply because I felt it was obvi-
ous. Analogies can become very dangerous if pur-
sued too far, but I’m glad that you have been taken 
by the game.
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Q2: Benoît has given us a lot of very nice insights, 
I think, into this kind of geometry, but I would 
like to express a little, maybe different point of 
view, which emphasizes something else. I think 
Benoît spoke at one point, something to the 
effect that the physical properties reduced to the 
geometric properties. And I think, somehow the 
geometry is very static, and to me the static should 
best be seen with deeper understanding as flow-
ing from the dynamics. Therefore, I would put a 
dynamical perspective on the understanding of 
physics, above that of a geometrical perspective. In 
the dynamics, the physical process itself, the equa-
tions, which are time-dependent, from those one 
can derive some of these fractal geometric pictures 
with a deeper understanding than just looking at 
the pure fractal geometry in its own right. So, for 
me, there’s a little more primary emphasis on the 
deeper physics coming from the dynamics rather 
than the geometry.

Mandelbrot: I see absolutely no conflict between 
our viewpoints. To study the dynamics of Julia 
Sets, you must study the statics of the Mandelbrot 
Set. In many cases, for example, the shape of the 
mountains, everyone knows well, is static. If so, the 
next step would be to understand the processes that 
create the mountains. This task is far from having 
been completed, but James Bardeen has constructed 
in successive fractal pictures that attempt to make 
use of what is known of the dynamics in order to 
represent the statics. Since very often the geometry 
of statics is fractal, and the geometry of dynamics is 
also fractal, fractals do not lose either way.

Q3: I would like to say that I’m completely in 
agreement with what Q2 just said. I believe that 
one of the main points is to relate dynamics to 
chaos and to fractals. In fact, let me give two exam-
ples where I think some additional dynamics would 
be very nice. When we speak about adding some 

noise, from where is this noise coming? And when 
we speak about boundary conditions, from where 
are the boundary conditions coming? Essentially, 
boundary conditions are an empirical concept. In 
hydrodynamics or microscopic physics, you can 
speak about boundaries. If you speak about dynam-
ics, there are no boundaries. Boundaries are part 
of the dynamical problem. Therefore, in a sense, 
I think that your presentation, which was very 
beautiful, of course, is more a kind of phenomenolo-
gy which has to be, I would say, made a little deeper 
by making some relation with dynamical concepts.

Mandelbrot: Two of the figures illustrated a fractal 
aggregate. As it grows, its boundary is continually 
changed by the dynamics of the generating proc-
ess. Thus, I agree with what you say. This dynamics 
consists in little particles aggregating together, but 
eventually leads to an extraordinary structure. The 
open mystery is why this structure is fractal.

Chairman: In the past, large mathematical mod-
els were used to centralize decisions – for exam-
ple, in economics – for traditional models have 
not worked. What does the new science bring 
to  prediction, control and, ultimately, to social 
 responsibility?

Mandelbrot: Your question is complicated. I prefer 
not to answer the last part.

But I have been greatly interested in economics. 
In view of your comments, I must emphasize that 
existing economic thought strikingly fail to predict 
anything about those aspects of the economy on 
which tests are possible, because data are avail-
able in large quantity. For example, many people 
attempt to explain or predict the stock market, but 
they all fail. My approach to finance in the early 
1960s was very different. It was phenomenological, 
absolutely, deliberately, and even arrogantly. My 
goal was to generate wiggles that people active in 
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the stock market would not be able to distinguish 
from the wiggles they see in newspapers. This goal 
was both modest and demanding; I succeeded with 
the help of a very simple, purely random process. 
Economists challenged me to explain my statistical 
statics from their dynamics. Disappointingly, their 
dynamic is not up to the task.

Economics and other more complicated areas 
borrow a great deal from physics. What they bor-
row is mostly made of fully developed concepts and 
theories, such as the concept of equilibrium and 
the theory of displacement of equilibrium in perfect 
gases. Next, they try to develop these concepts and 
themes in rigorous fashion in an economics con-
text. Much less effort is devoted to testing whether 
economic phenomena really fall into the domain in 
which those standard physical arguments can con-
ceivably apply.

For example, take continuity. Everyone in eco-
nomics seemed to assume that prices were a contin-
uous function of time. To the contrary, all the evi-
dence shows that one comes much closer to reality 
by assuming prices to be a discontinuous function of 
time. Incidentally, this discontinuity is not that of 
quantum physics.

To summarize: I was active in economics both in 
the early 1960s and again more recently. The rea-
son why my effort in this area has been arrogantly 

phenomenological is because the more ambitious 
dynamical study of these things has been an abject 
failure.

Q4: I was interested to see that that question was 
put in the past tense about complicated economic 
models. It continues to be true that a fantastic 
amount of money and effort is put into enormous-
ly complex, many variable, mostly linear, eco-
nomic forecasting models. You can read the pre-
dictions from these every year in The Wall Street 
Journal. Models that attempt to link tens of thou-
sands of variables and relationships – home mort-
gage interest rates, the ratio of the dollar and the 
yen, the demand for Sierpinski gaskets – anything 
you can imagine is built into these models, and 
the results are often announced to two or three 
digits of precision. And then, of course, next year, 
they have to be artificially amended with tens of 
thousands of ad hoc changes. I think we’re only 
beginning to see an appreciation by some econo-
mists of some of the work you’ve already started 
to describe, and that you’ll hear described as this 
conference goes on. An appreciation of what can 
be done with a greater recognition of the essential 
non-linearity of enormous complex systems like 
economics.

Chairman: I have one more question from the audi-
ence: When doing mathematical research, do you 
discover or invent?

Mandelbrot: I certainly feel that I discover. The 
assertion that eventually became the four-colour 
theorem was discovered long ago … by an amateur. 
It was not some new thing to be invented, but an 
existing fact to be discovered. It was there.

The same was true when I sat in front of a ter-
minal, next to this extraordinarily gifted young 
assistant, to investigate the set that became known 
as the Mandelbrot Set. It was never our feeling that 
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we were inventing anything. This thing was there. 
My whole thrust was to discover more about its 
complication. Its complication was the key to the 
dynamics of quadratic iteration, which is a dynami-
cal system with particularly simple equations. We 
tried to discover the so-called static geometry of 
one set, in order to understand the dynamics of 
another set.

Let me also mention the work on multifractals 
that I did in the 1960s and published in 1974. In 
this instance, the process of discovery occurred on 
two levels. First of all, I discovered new facts about 
random singular measures. The key was a math-
ematical theorem that I had learned as a young 
man, but had always felt would never be used in 
physics. Hence, it is the study of multifractals that 
made me discover the real meaning of that theo-
rem. Until then, its statement was so abstract that 
I could not see it and appreciate what it had always 
meant.

Proofs are very often a very different matter. 
Some are so contrived that they definitely look and 
feel invented, but the best proofs also have both the 
look and the feel of discovery.

Further reading

1. The Fractal Geometry of Nature by 
B.B. Mandelbrot (W.H. Freeman, 1982) was the 
first comprehensive book on the subject, and 
remains a basic reference book. Innumerable 
other books have appeared since. An up-to date 

list is found on the website www.math.yale.edu/
mandelbrot

2. The basic how-to book is The Science of 
Fractal Images, eds. H.-O. Peitgen and D. Saupe 
(Springer, 1988).

3. The best-known book on iteration is, deservedly, 
The Beauty of Fractals by H.-O. Peitgen and 
P.H. Richter (Springer, 1986).

4. For other aspects of the mathematics, see 
Fractals: Mathematical Foundations and 
Applications by K.J. Falconer (Wiley, 1990) and 
Fractal Geometry and its Applications: a Jubilee 
of B. Mandelbrot ed. M. Lapidus (2004)

 On the concrete uses of fractals, three references 
are convenient, because they are special volumes 
of widely available periodicals:

5. Proceedings of the Royal Society of London, 
Volume A423 (8 May 1989), which was also 
reprinted as Fractals in the Natural Sciences, 
ed. M. Fleischmann et al. (Princeton University 
Press, 1990).

6. Physica D, Volume 38, which was also reprinted 
as Fractals in Physics, Essays in Honor of B.B. 
Mandelbrot on his 65th birthday, eds. A. 
Aharony and J. Feder (North Holland, 1989).

7. Fractals Volume 3 (September 1995), reprint-
ed as Fractal Geometry and Analysis: The 
Mandelbrot Festschrift, Curação, 1995 eds. 
C.J.G. Evertsz, H.-O. Peitgen & R.F. Voss.

8. On the physics, a standard textbook is Fractals 
by J. Feder (Plenum, 1988).

http://www.math.yale.edu/mandelbrot
http://www.math.yale.edu/mandelbrot
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Imagine that you are a great soccer player, with 
perfect ball control and perfect consistency. 
Wherever the ball is on the soccer pitch you can 

kick it so that it lands halfway between where it was 
and a corner. And the ball comes to a dead stop right 
where it lands. You can always do this.

That is how Alf, Bert, Charlie and Debbie are. 
They play soccer on the soccer pitch ABCD in 
Fig. 4.1. Debbie always kicks the ball when she 
gets to it first. She kicks it from X to the midpoint 
between D and X. See Debbie kick!

Alf acts in the same way, except that he kicks the 
ball halfway to A. And Bert kicks the ball halfway to B. 
You can guess where Charlie kicks the ball, when she 
gets to it first.

Who kicks the ball next is entirely random. It makes 
no difference where the players are on the pitch or 
who kicked it last. You can never reliably predict who 
is going to kick it next. The sequence of kickers might 
be determined by a random sequence of their initials: 
DABACBADAABCDCBACAADDBAC…

The game goes on forever.
To watch this awful game of soccer is rather like 

watching four chickens in a farmyard chasing after a 
bread crust. There is no team play, and no goals are 
ever scored. But at least no one eats the ball.

What actually happens to the ball is fascinating. 
Almost certainly it jumps around all over the pitch 
forever, going incredibly close to all of the points on 
the pitch. If you mark any little circle on the pitch, 
eventually the ball will hit the ground inside the 
circle. Sometime later it will do so again. And again 
and again. The soccer ball marks out the pitch, going 
arbitrarily close to every point on it. We say that the 
ball travels ‘ergodically’ about the pitch.

Alf, Bert, Charlie and Debbie represent ‘transfor-
mations’ of the soccer pitch. Alf represents the trans-

formation that takes the whole pitch into the bottom 
left quarter. Let  denote the soccer pitch. Then

Alf() = Quarter A of Soccer Pitch,

the quarter at the bottom left. Think of Alf ‘kicking’ 
the whole pitch into a quarter of the pitch.

Similarly Bert () = Quarter B of Soccer Pitch, 
the quarter at the bottom right. Also Charlie () = 
Quarter C of Soccer Pitch, and Debbie () = Quarter 
D of Soccer Pitch, the quarter at the top left.

These transformations actually provide an ‘equa-
tion’ for the soccer pitch:

= Alf() ∪ Bert() ∪ Charlie() ∪ Debbie().

It says that that the pitch  is made of ‘four trans-
formed copies of itself’. It says that the pitch is the 
union of the four quarter-pitches, just as the UK is 

A B

D C

Alf

Charlie

Debbie

Bert

Fig. 4.1 above: Debbie has just kicked the ball halfway 
towards D. If the ball was at X, then it lands at the mid-
point of the line segment XD.

A fascinating soccer game – See Debbie kick!
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What is amazing is that the transformations represented by the players,

and this type of equation,define one and exactly one picture,the fern in

this case,the Sierpinski Triangle in the previous case,and the whole

soccer pitch in the first case.

fraCTal TransformaTIons

the union of England, Northern Ireland, Scotland 
and Wales.

For us each player is a transformation or a func-
tion, providing a unique correspondence between 
each location on the pitch (from where the ball is 
kicked) and another location on the pitch (the point 
where the ball lands).

Charlie hurts her leg

What has all this got to do with fractals? Lots, as we 
shall see.

Suppose Charlie gets kicked in the shin and can-
not play. Only Alf, Bert and Debbie kick the ball. 
Their sequence of kicks is still random, for exam-
ple starting out in the order DBAABADBADDA 
BBAD…

The game begins with the ‘kick-off’, with the ball 
in the middle of the pitch.

Where now does the ball go? To find out we cover 
it with greeny-black ink. Now the ball makes a dot 
on the white pitch every time it lands. It will make a 
picture while the game is played.

Amazingly, the picture it makes, almost always, 
looks like the one in Fig. 4.2. This is called ‘The 
Sierpinski Triangle ABD’. We denote it by ▲. With 
Charlie out of the game, the ball travels ergodically 
about ▲. Mark a small circle centred at any poin-
ton ▲. The ball will visit this circle over and over 
again.

The Sierpinski Triangle ▲ is a bona fide fractal. 
Notice how it is ‘made of three transformed copies of 

itself’. One copy lies in the top left quadrant, one in 
the lower left quadrant, and one in the lower right 
quadrant. It appears now that the soccer players 
‘kick’ ▲ into smaller parts of ▲.

Our equation this time reads

▲ = Alf(▲) ∪ Bert(▲) ∪ Debbie(▲).

This is the equation for m, the Sierpinski Triangle 
ABD.

Fig. 4.2 above: Charlie hurts her leg and can’t play for a 
while. The ball travels ‘ergodically’ on the Sierpinski 
Triangle ABD.
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The players change how they kick.

Charlie is back in the game.
Alf, Bert, Charlie and Debbie are fed up that they 

have not scored any goals. So they change the way 
they kick the ball.

Each player kicks in his or her own special way, 
methodically and reliably. Alf now kicks the ball 
so that it always lands in a certain quadrangle. Bert 
kicks the ball so that it lands in another quadrangle. 
Charlie and Debbie kick the ball into their own 
quadrangles. You can see the soccer pitch and the 
four quadrangles in Fig. 4.3.

Alf kicks straight lines into straight lines in this 
way. Let P, Q and R be three points that lie on a 
straight line. He kicks the ball from P to Alf(P), from 
Q to Alf(Q) and from R to Alf(R). Then Alf(P), 
Alf(Q), and Alf(R) lie on a straight line! For example, 
if the ball is on one of the sidelines of the soccer pitch, 
Alf kicks it to land on one of the sides of his quadran-
gle. If the ball lies at the centre of the soccer pitch, Alf 
kicks it so that it lands at the intersection of the two 
diagonals of his quadrangle. Alf is a precision kicker.

If Alf kicks the ball from two different points, it 
lands at two points closer together than the starting 
points. We say that Alf represents a ‘contractive’ 
transformation.

The other players act similarly; the only differ-
ences are the quadrangles that they kick to.

Where does the ball go this time? The selection of 
the order in which the players kick the ball is again 
random. The game goes on for eons. The players never 
get bored or tired. They are immortal. And the ball 
marks green or black points on the white pitch wher-
ever it lands, after the first year of play. The resulting 
pattern of dots forms the fern in Fig. 4.3. We call this 
fern F. The soccer ball travels ergodically on F.

Our equation this time reads

F = Alf(F) ∪ Bert(F) ∪ Charlie(F) ∪ Debbie(F).

The fern F is the union of ‘four transformed copies 
of itself’.

What is amazing is that the transformations rep-
resented by the players, and this type of equation, 
define one and exactly one picture, the fern in this 
case, the Sierpinski Triangle in the previous case, 
and the whole soccer pitch in the first case. Change 
the way the players kick the ball and you will change 
the picture upon which eventually the ball ‘ergodi-
cally’ travels.

Fig. 4.3 above: Each soccer player now represents a 
 projective transformation. One transformation corre-
sponds to each of the quadrangles inside the pitch 
ABCD.The places where the ball lands make a picture of 
a fern.The ball travels ‘ergodically’upon the fern.
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Fig. 4.4 left: Fractal made with three 
projective transformations. It is ren-
dered in black and shades of purple. 
Can you spot the transformations?.

Infernal football schemes (IFS)

Many different fractal pictures and other geometrical 
objects can be described using an IFS. The letters 
really stand for Iterated Function System but here we 
pretend they mean Infernal Football Scheme.

An IFS is made up of a soccer pitch and some 
players each with their own special way of kicking. 
Each player must always kick the ball from the pitch 
to the pitch according to some consistent rule. And 
each player must represent a contractive transforma-
tion, must ‘kick’ the pitch into a smaller pitch. We 
continue to call the players Alf, Bert, Charlie and 
Debbie, but there may be more or less players.

Then there will always be a unique special picture, 
a ‘fractal’, a collection of dots on the white pitch, 
which obeys the equation

Fractal = Alf(fractal) ∪ Bert(fractal) ∪ Charlie( fractal) 
∪ Debbie(fractal)

We call this picture a fractal, but it might be 
something as simple as a straight line, a parabola, or 
a rectangle. This picture can be revealed by playing 
random soccer as in the above examples.

An example of a fractal made using an IFS of 
three transformations is shown in Fig. 4.4.

In this way many fractals and other geometrical 
pictures can be encoded using a few transforma-
tions. Once one knows an IFS for a particular frac-
tal one knows its secret. One knows that despite 
its apparent visual complexity, it is really very 
simple. One can make it and variations of it, over 
and over again. One can describe it with infinite 
precision.

Given a picture of a natural object, such as a leaf, 
a feather, or a mollusc shell, it is interesting to see 
if one can find an IFS that describes it well. If so, 
then one would have an efficient way to model and 
compare some biological specimens.
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Geometrical transformations

Simple transformations

So far we have shown that to understand fractals 
one needs to understand transformations. But which 
transformations?

Transformations can be very complicated. They 
may involve bending one part of space, squeezing 
another, and be expressed using elaborate formulas 
that take pages to write down.

But one of the goals of fractal geometry is to 
describe pictures of natural objects in an efficient 
manner. Clearly, if one makes a description of a fern 
using an IFS, and the transformations that are used 
are very complicated, then little is gained in the way 
of simplification. So we seek simple transformations 
– ones that are easy to write down, explain, and 
understand.

One source of simple transformations is classical 
geometry, which involves the study of invariance 
properties of collections of transformations. For 
example, Euclidean geometry studies properties of 
geometrical pictures that remain unchanged when 
elementary displacements and rotations are applied 
to them. The distance between a pair of points is 
invariant under a Euclidean transformation. So is the 
angle between a pair of straight lines.

Similarity geometry involves the transformations 
of Euclidean geometry as well as similarity transfor-
mations, so called because they magnify or shrink 
pictures by fixed factors. Many well-known fractals 
may be expressed with similarity transformations, for 
example the Sierpinski Triangle  and the soccer 
pitch j. But projective geometry provides a much 
richer simple set of transformations for describing 
natural shapes and forms.

Fig. 4.5 left:  Two circlepre-
serving projective transfor-
mations of a picture of an 
Australian heath.

Fig. 4.6 below:  Two different 
ellipsepreserving projective 
transformations of a beech 
leaf.The straight lines along 
which the veins nearly lie 
are preserved.



65fraCTal TransformaTIons

Projective transformations

Projective transformations are of the type represented 
by Alf, Bert, Charlie and Debbie when they started 
kicking the soccer pitch into quadrangles. Given any 
pair of quadrangles, one can always find a projective 
transformation that converts one into the other, 
even making the corners go to specified corners.

Projective transformations arise naturally in 
optics, in explaining perspective effects, and play 
an important role in modern physics. They seem to 
appear naturally when one searches for order and 
pattern in the arrangements of matter and light in 
the natural physical world.

They are indeed natural in the following way. 
Suppose you take a wonderfully sharp photo of a tree 
full of flat leaves, some bigger, some smaller, but all 
of the same shape. Then all of the whole leaves in 
the photo will be (almost) projective transforma-
tions of one another.

When you watch television from a difficult angle, 
the images that fall on your retinas are in effect 
projective transformations of what they would have 
been if you viewed face-on. But, within reasonable 
limits, the mind/eye system copes with the distor-
tion. ‘Recognisability’ is an invariance property of 
projective transformations.

Projective transformations have the property that 
they often transform images of plants and leaves 
into recognizable images of plants and leaves. This is 
illustrated in Figs. 4.5 and 4.6. Note how the straight 
lines of the veins in the beech leaf are transformed 
into other straight lines in Fig. 4.6.

Images of the real world contain much repeti-
tion. Often nearby leaves look similar for biological 
and physical reasons. And the local weather pattern 
seems to clump clouds into regions of similar looking 
ones. This similarity and repetition may be specified 
with projective transformations.

Michael Barnsley in the 
‘dream’sequence from 
‘The Colours of Infinity’ 
film:‘I woke up in the 
 morning and knew that I’d 
discovered it.This was the 
total secret to fractal 
image compression:how 
to automatically look at a 
digital picture … and how 
to turn it into (a) a formula 
and (b) an entity of infinite 
resolution. So the goal is 
now to be able to capture 
this Fire of Prometheus, if 
you like, this fractal wonder, 
put it in a box and being 
able to make this available 
to everyone.’
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Projective transformations take points to points and 
straight lines to straight lines. Even more remarkable, 
they map conic sections into conic sections. That is, 
if you make a picture of circles, ellipses, parabolas, 
hyperbolas and straight lines, then apply a projective 
transformation, the resulting picture will also be made 
of these same shapes. That is not to say that circles are 
transformed to circles, ellipses to ellipses, parabolas to 
parabolas, or hyperbolas to hyperbolas.

Are the coloured circular and elliptical cells on 
the wings of some butterflies more easily recognized 
by other butterflies, or predator species, because of 
this invariance?

Mobius transformations

Mobius transformations are another type of transfor-
mation that is ‘simple’. They are often used to describe 
fractals and, in a different way than projective trans-
formations, seem to have some natural affinity with 

real world images. They have the remarkable property 
that they transform any circle into either a circle or a 
straight line. This is illustrated in Fig. 4.7. They also 
preserve the angles at which lines in pictures cross, as 
can be seen by examining the bike frames in Fig. 4.8.

In certain situations they transform patterns of 
fluid motion, represented by streamlines, into other 
possible fluid motion patterns. They also transform 
pictures of fish into other pictures of fish, as illus-
trated in Fig. 4.8.

Mobius transformations are the basic elements 
of hyperbolic geometry. They were used by Escher 
in some of his graphic designs, including ones with 
natural elements such as fish.

In Fig. 4.9 we illustrate the Circumscribed Fish 
Theorem. This is one of many such observations. It 
illustrates that geometry applies not only to triangles, 
circles, and straight lines, but to all sorts of other 
pictures as well.

Fig. 4.7 left: A single Mobius 
transformation is applied 
over and over again to a 
picture of a person on a 
bike.The images are mas-
sively distorted one from 
another, but the wheels are 
all round,except near the 
edges of the picture, where 
some precision has been 
lost. Also angles are pre-
served. Each bicycle frame is 
a curvilinear triangle with 
the same three angles.
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The cost of describing transformations

Even ‘simple’ transformations can be complicated if 
they involve ‘constants’ that require lots of digits to 
express them accurately. To explain this point, let us 
look briefly at some ‘formulas’ for simple transforma-
tions. The details of these formulas, other than the fact 
that they contain ‘constants’, need not concern us.

Transformations in two-dimensional space may 
be represented using Cartesian coordinates (x, y) to 
represent points. A projective transformation can be 
expressed with a formula such as

ax + by + c dx + ey + f
Alf(x,y) =

gx + hy + 1 , gx + hy + 1
 
  

where a, b, c, d, e, f, g, h, and k, are numbers, the 
‘constants’, such as a = 1.023, b = 7.1, c = −0.00035, 
d =1 00, f = 9.1, g = 34.9, and h = 17.3. Similarly, a 
Mobius transformation can take the form

+ + + +
=

+ + + +
 
  

( 1) ( ( 1) ( ( 1) )
( , )

( 1) ( ( 1) )( ( 1) )

a b c d x y
Bert x y

e f g h x y

÷ - ÷ - ÷ -
÷ - ÷ - ÷ -

which uses complex arithmetic and also uses eight 
constants.

If we know that each constant is an integer 
between −128 and +128, which can be expressed 
using one byte of data (since 28 = 256) then each of 
these transformations requires 8 bytes of information 
to express it, one byte for each constant. These are 
in, an obvious way, ‘simpler’ transformations than 
ones in which each constant requires two bytes of 
information. And both of these possibilities are much 
simpler, that is, able to be expressed much more suc-
cinctly, than if each constant were a decimal number 
with random digits, such as a = 1.79201434953…, 
going on forever.

Now one might say that all of these extra digits 
are without significance. But in fractal geometry 
they are very significant, because fractal geometry 
is about details! Tiny changes in the constants will 
usually lead to tiny changes in a fractal built using 
the transformations.

Fig. 4.8 above:  The same Mobius transformation is 
applied over and over again to a single fish, to produce 
this double spiral of fish. Notice that although the fish 
are massively distorted, they all look fish-like.

Fig. 4.9 below: Illustration of the Circumscribed Fish 
Theorem.Although the fish in Fig. 4.8 look quite various, 
they have the following property:Draw the smallest cir-
cle around each fish, such that the circle touches the fish 
in at least three points; then each fish touches its circle 
with the same parts of its body.
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Transformations can be very complicated.They may involve bending one
part of space,squeezing another,and be expressed using elaborate
formulas that take pages to write down.But one of the goals of fractal
geometry is to describe pictures of natural objects in an efficient manner.

The Colours of InfInITy

But when the fractal is under the microscope, so 
to speak, and one is zoomed in to look at fine detail, 
and a tiny change is made in a coefficient, the part 
of the fractal one is looking at may completely dis-
appear – not only has its form changed, but it has 
moved out of the field of view.

For the application of fractals to image compression, 
for example, it is important that the transformations 
can be expressed succinctly, and that the constants 
involved do not require lots of digits. We say that such 
transformations have ‘low information content’.

One of the important features of fractals and 
other geometrical pictures is that they are simple to 
describe. Thus it is appealing to use low information 
content transformations, quite generally.

More soccer: Fractal transformations are discovered.
Alan, Brenda, Celia and Doug start a second game
We can use fractal soccer, with simple projective 

‘kicks’, to make a new kind of transformation. We 
call these new transformations ‘fractal transforma-
tions’. They too are of low information content. But 
they can transform pictures in very surprising ways, 
very differently from projective and Mobius trans-
formations.

In Fig. 4.10, two games of soccer are played at the 
same time. The game on the left is the same as in 
Fig. 4.1 above. But in the game on the right, Doug 
kicks the pitch into the small rectangle at the top 
left, while Brenda kicks into the large rectangle at 
the bottom right. Similarly, Celia kicks towards C 
and Alan kicks towards A, but the quadrangles that 

they kick to are of different dimensions than in the 
first game.

Alan, Brenda, Celia and Doug are copycats. They 
watch the game on the left. When Alf kicks the ball, 
Alan kicks the ball in his game; when Bert kicks 
the ball, Brenda kicks the ball; when Charlie kicks the 
ball, then so does Celia; and when Debbie kicks 
the ball, so does Doug – he’s been watching her closely. 
But of course Alf, Bert, Charlie and Debbie stay on 
the pitch on the left, while Alan, Brenda, Celia and 
Doug stay to their soccer pitch on the right.

Now put a picture on the soccer pitch on the left, 
a great big one. This is the ‘Before’ picture. To illus-
trate this, there is a big red and green fish painted on 
the left-hand pitch in Fig. 4.11.

Let the game begin. Then after each pair of kicks, 
one on each pitch, a dot is painted on the right-
hand pitch at the spot where the ball has landed, in 
the same colour as the point on the left-hand pitch 
where the ball on that pitch has landed. The result, 
after thousands and thousands of kicks, is shown in 
Fig. 4.11, on the right-hand pitch. This is the ‘After’ 
picture.

The After picture is an amazingly deformed ver-
sion of the Before picture, stretched greatly in some 
places and only a little in others. We call this a frac-
tal transformation.

But the transformation between the Before and 
After pictures is fundamentally no more compli-
cated than the transformations that are used to make  
it, the transformations represented by the players. 
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Although the player transformations are quite 
smooth and regular, the fractal transformation is 
non-uniform and irregular.

In Fig. 4.12, we show a prettier fish, before apply-
ing a fractal transformation to it. In Fig. 4.13, we 
show the same fish after transformation. Another 

before and after pair is shown in Fig. 4.14. Such 
effects clearly have applications in digital content 
creation.

In Fig. 4.15, we show a before-and-after pair of 
pictures of Australian heath flowers. It is interesting 
to compare this figure with Fig. 4.5, where the two 

A B

D C

A B

D C

Alf

Charlie

Debbie

Bert

Doug

Celia Alan

Brenda

Fig 4.10 right:  Alan, Brenda, 
Celia and Doug start up a 
second game. They are copy-
cats: Doug kicks the ball 
whenever Debbie does,Alan 
kicks the ball whenever Alf 
does, Celia kicks when Charlie 
does, and Bert copies Brenda. 
But they kick the ball a bit 
differently!.

Fig. 4.11 left:  The fish is 
transformed by the two 
soccer games.
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Fig. 4.12 above:  
Before transformation.

Fig. 4.13 right:  
After transformation.

Fig. 4.14 above:  These two pictures of leaves and sky are related via a fractal transformation.

images are related by a circle-preserving projective 
transformation. In the present case the images are 
related by a rectangle-preserving fractal transforma-
tion (the rectangular picture frame is preserved). 
Under projective transformation, points that are 
collinear are mapped into collinear points. Under 
the present fractal transformations collinear points 
parallel to the picture frames are preserved.

Colour stealing

Essentially the same algorithm to the one we have 
described in the previous section may be applied to 
render rich colouring to diverse IFS fractals. Here we 
show how a fern is coloured by this new algorithm. 
See Fig. 4.16. The main difference is that on the right-
hand pitch the IFS that makes the fractal fern is used.
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Fig. 4.15 above:  These images of Australian heath are related by a rectangle-preserving fractal transformation. 
Compare with Fig. 4.5.

Fig. 4.16 left: On the left-
hand soccer pitch with the 
colourful photo on 
it,Alf,Bert, Charlie and 
Debbie play a game of ran-
dom soccer.The players in 
the game on the right are 
Alan, Brenda,Celia and 
Doug.They kick the ball into 
quadrangles, as in Fig. 4.3. 
Alan kicks the ball when Alf 
does,Brenda kicks it when 
Bert does, and so on. Each 
time after both balls have 
been kicked, the spot where 
the ball lands in the right-
hand game is marked with 
a dot the same colour as 
the point where the ball 
lands in the left-hand game.
The result is a painted frac-
tal fern.

On the left-hand soccer pitch with the colourful 
photo on it, Alf, Bert, Charlie and Debbie play a 
game of random soccer as in Fig. 4.1. Each player 
simply kicks the ball to the quarter pitch labelled 
with his or her initial. The players in the game on 
the right are Alan, Brenda, Celia and Doug. They 

kick the ball into quadrangles, as in Fig. 4.3. Alan 
kicks the ball when Alf does, Brenda kicks it when 
Bert does, Celia kicks when Charlie does, and Doug 
kicks when Debbie does.

A while after kick-off, each time after both balls 
have been kicked, the spot where the ball lands in 
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Fig. 4.17 right: The same 
fractal fern is rendered 
using two different input 
images,shown on the left.

the right-hand game is marked with a dot the same 
colour as the point where the ball lands in the left-
hand game. The result is a fractal fern, painted with 
the colours of the picture on the left.

Fig. 4.17 contrasts two copies of the same fern 
coloured by a fractal transformation of two differ-
ent pictures, samples of which are shown at left. 
Notice that there need be no particular relationship 
between the size of the picture from which the colour 
is stolen and the target image, the fern in this case, 
that is painted with the stolen colours.

Comments, background references 
and further reading

The ideas of fractal transformations and colour steal-
ing using random iteration, the main topics of this 
chapter, are, so far as we know, entirely new and are 
presented for the first time here. What is actually 
going on in both cases is that a mapping is set up 
between two IFS attractors using the underlying code 
space, which is the same for both IFSs.

This means that a fractal transformation between 
two ‘just-touching’ IFS attractors is very nearly con-
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tinuous, which explains why the colourings of the 
fern, for example, have a nice consistency from one 
frond to the next and do not vary too abruptly.

The random soccer game is a novel way of pre-
senting geometrical transformations, the random 
iteration algorithm and IFS theory. Our goal has 
been to minimize the use of formulas and to try and 
rely on geometrical intuition and non-mathematical 
wording. The random iteration algorithm was first 
described formally, in the context of fractal imaging, 
in [1], although the seeds of this idea are men-
tioned in the early work of Mandelbrot, [9], p. 198. 
This algorithm is also known as the ‘Chaos Game’, 
but we think it may attract a wider audience if it is 
explained in terms of soccer.

The mathematical theory of IFS was originally 
formulated by John Hutchinson [6]. It was popular-
ized and developed by one of us and co-workers as 
well as many others, see for example [5] and [8]. 
You can read about the application of IFS to image 
modelling, how to make fractal ferns and leaves, and 
about the underlying code space, in [2]. The applica-
tion of IFS to image compression is described in [3] 
and in [7]. A lovely book about fractals made with 
Mobius transformations is [10].

The future holds another exciting discovery, 
which you may read about in [4] and also hopefully 
in 2004 in a book entitled Superfractals.
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5 Fractal Limits
The Mandelbrot Set and the self-similar  
tilings of M.C. Escher

Will  Rood

Will Rood, a pioneer fractal animator, says many people have asked 
him about the apparent similarities between the M-set and the fan-
tasy lizards and wheelie animals of iconic Dutch artist M. C. Escher. 
This chapter develops the theme of art at the fractal limits and styles 
of colouring the M-set by exploring the meeting of Mandelbrot and 
Escher.
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Fig. 5.1 right: The meeting of Mandelbrot and Escher.
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What is the Mandelbrot Set?

It’s been called the most complex shape known 
to man. A lifetime would not be enough to get 
to the bottom of it. And yet it is generated by 

a formula of surprising simplicity. In principle it 
could have been discovered at any time in human 
history. However, in practice we had to wait until 
the invention of the silicon chip, for visualizing the 
Mandelbrot Set involves applying this simple for-
mula, over and over and over again.

Benoît Mandelbrot discovered his eponymous Set 
while delving into the almost forgotten work of his 
uncle’s teacher, Gaston Julia. In the 1920s Julia dis-
covered a whole class of strange and beautiful shapes, 
now known as Julia Sets. However, Julia never actu-
ally saw a Julia Set. Without computers, he could 
only have a vague idea of their true form.

Working at IBM in the late 1970s, Mandelbrot 
was one of the first scientists with enough computing 
power at his disposal to generate Julia Sets. He cre-
ated many stunning images of these shapes, but what 
he really wanted to know was the overall pattern 
behind the whole family of Julia Sets. He decided to 
make a map of them, which map is now called the 
Mandelbrot Set.

The Mandelbrot Set is a strange shape, and the 
closer you look, the stranger it becomes. It’s been 
called the thumbprint of God and the Creator’s 
calling card – clear evidence of a deep underlying 
harmony and unity in nature.

A deeper journey

The main body of the Mandelbrot Set consists of a 
cardioid, or heart-shaped core, surrounded by infi-
nitely many circular buds. Each bud is surrounded 
by a further infinity of smaller buds, and, at the end 
of each of these chains of buds, a spiral frond, some-
times lacy and floral, sometimes straight and spiky. 
The fronds, which comprise the boundary of the 
Mandelbrot Set, actually consist of infinitely many 
miniature copies of the whole shape, joined together 
by bifurcating threads of ever-smaller miniatures.

In response to this continual branching, these 
fronds are also called dendrites, from the Greek for 
tree. The name conjures up associations with the 
straggly branching receptors of nerve cells in our 
brains, which are also called dendrites. This is no 
accident: evidently the functionality and processing 
power of neurons derive from their richly entwined 
fractal structure.

The formula

The Mandelbrot Set looks very complicated, and yet 
it is generated by a very simple rule:

Z   Z2 + c

The arrow can be read as ‘goes to’ or ‘becomes’, 
for what this rule represents is a transformation of 
two-dimensional space; the letters z and c by con-
vention indicate generic points in this space, with 
z being variable and c constant. In other words, 
the rule transforms the point z to another point in 
the space, while leaving c unchanged. This two-
dimensional space inhabited by z and c, the home 
of the Mandelbrot Set and Julia Sets, is central to 
mathematics, from quantum mechanics to number 
theory.
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The complex plane

In the early sixteenth century mathematicians such as 
Gerolamo Cardano discovered that certain numerical 
problems are easier to solve if we pretend that every 
number has an imaginary part, with special proper-
ties. Adding these imaginary parts makes no differ-
ence to the real part of the number, but multiplying 
two imaginary parts produces a negative number. 
Gradually it became apparent that these complex 
numbers are not only a natural extension of our nor-
mal numbers, they also encapsulate the geometry of 
two dimensions in a beautifully compact form.

Mapping the real and imaginary parts of numbers 
onto the axes of a graph, the arithmetic operations 
become elementary geometrical transformations. 
(see Fig. 5.2) Addition becomes translation; multi-
plication becomes rotation. The function z2 + c can 
be interpreted as stretching and wrapping the plane 
twice around itself.

The Mandelbrot Set emerges when we apply this 
rule over and over again, taking the outcome of one 
transformation as the input for the next. Like the 
clues in a treasure hunt, for each point the rule gives 
us the location of the next point in the sequence.

The map is the treasure

The process of repeatedly applying a rule is called 
iteration. When we do this, or, more likely, program 
a computer to do this, one of two things can happen: 
either the point z gets very big, that is, very far from 
the origin 0, or it doesn’t.

That much is obvious. Furthermore, once z reaches 
a certain size, it keeps on getting bigger and bigger, in 
which case we say the point z goes to infinity, other-
wise z remains bounded. What is less obvious is that 
colouring these points, according to whether or not 
they go to infinity, will produce pictures of enormous 
complexity and aesthetic appeal.

Fig. 5.2 above: The Mandelbrot Set and the complex plane.
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In these maps, black represents points that remain 
bounded.

If we iterate z ? z2 + c for an array of different z 
values, keeping c fixed, we build up a picture of the 
Julia Set for that value of c. (Fig. 5.3)

If we iterate the rule for one particular value of z, 
and an array of different c values, we get a picture of 
the Mandelbrot Set. (Fig. 5.4)

The critical point

The particular value of z that we start with is a spe-
cial one: z = 0. It is what is called the critical point 
for the mapping z2 + c.

What this means is that the behaviour of the 
point z = 0 indicates the general effect of this map-
ping on the entire plane. If this point goes to infin-
ity, then so do almost all points, and the Julia Set 
is a disconnected dust; otherwise the Julia Set is 
connected, and if there is an attractive cycle, a set of 
points that pulls others towards it, the critical point 
will find it.

If we use a different starting point, say z = −1, and 
iterate this point for a whole range of c values, the 
resultant picture is a bizarre hybrid, with no overall 
cohesion, looking like a M-set with chunks missing. 
(Fig. 5.5)

So there are infinitely many different Julia Sets, 
one for each value of c, but only one Mandelbrot Set, 
as the mapping z2 + c has only one critical point.

Different rules

So what is special about this formula, z2 + c? 
Actually, nothing. It’s just the simplest rule that 
generates any interesting behaviour. Using more 
complicated formulae produces different shapes but 
the boundary details remain very much the same. 
(See Fig. 5.6).

Fig. 5.3 above: Map of z-plane showing Julia Set in black.

Fig. 5.4 below: Map of c-plane with Mandelbrot Set in 
black.
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Escape time

There are many ways of colouring the exterior of the 
M-set that help us visualize how this mapping z2 + 
c transforms the complex plane. The simplest is to 
colour each point according to how many iterations 
it takes to reach a cut-off region |z| > R, where  
R  2. This is called the escape time method, 
since it measures the time for a point to ‘escape’ 
into the cut-off region: any points that fail to 
escape after a given time are assumed to belong to 
the Mandelbrot Set, and are traditionally coloured 
black.

The colours we assign to the outside of the M-set 
are quite arbitrary: they serve to illustrate the level 
sets of points that escape in equal time. (Fig. 5.7)

The level sets are loops, which each make one 
complete circuit of the M-set. Alternating black and 
white gives striped bands, which, near the boundary 
of the M-set, form highly convoluted squiggles remi-
niscent of the op-art of Bridget Riley. (Fig. 5.8)

Smooth shading gives a clearer view of the edge 
of the M-set (Fig. 5.9), and more advanced methods 
such as distance estimation reveal a clearer picture 
still of this intricate boundary, (Fig. 5.10) but the 
striped black and white bands accentuate the behav-
iour of points farther away from the M-set.

Continuous escape time

Like the contours on a map, the exact position of 
these bands is arbitrary, determined in this case by 
the size of the cut-off region. A more natural repre-
sentation of the exterior of the M-set can be achieved 
using the continuous escape time method. This uses 
the escape time as a starting point, and then adds 
a correction factor between 0 and 1, depending on 
how far into the escape region the point got.

If z is the final point in our sequence, and R is big 
enough, we know that the following are roughly true 

(where |z| is the modulus of z, the distance from z 
to 0):

          R < |z|            R2

     logR < log|z|        2logR
log2logR < log2log|z|  1 + log2logR
          0 < log2log|z|− log2logR  1

Fig. 5.5 above: Map of c-plane for initial point z = −1.

Fig. 5.6 below: Detail of Julia Set for 4th order quotient map
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So we can define the continuous escape time cet as:

cet = escape time + log2logR − log2log|z|

For large R this function is relatively smooth on the 
entire exterior of the M-set. (Fig 5.11) The continu-
ous escape time gives precise information about the 
rate of escape of each point, but since it uses the 
modulus of the final point and not its direction, 
provides no picture of the shape of the trajectory 
of the point. The smooth contours suggest a steady 
outward flow, but this is illusory. The contours may 
flow smoothly into each other but the points on 
them jump all over the place, since the mapping z2 
+ c wraps the entire plane twice around itself. (Of 
course, this dynamic takes place in the z-plane, not 
the c-plane shown in most of these pictures, but 
remarkably these methods work just as well whether 
applied to the Mandelbrot or Julia Sets.)

Escape angle

Plotting the escape angle, the angle the final point 
makes with the real axis, for each point that escapes, 
demonstrates this. (Fig. 5.12)

Fig. 5.7 above: Level Sets of z   z2 + c.

Fig. 5.8 above: Level sets. Fig. 5.9 above: Smooth shading. Fig. 5.10 above: Distance estimation.
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The gradient flows perpendicular to the escape 
time contours, which are still visible as discontinui-
ties in the escape angle. Each band has been wrapped 
around itself once more than its predecessor, giving 
it twice as many bright stripes. (Fig. 5.13)

Taken together, the continuous escape time and 
the escape angle provide an orthogonal grid – they 
intersect each other only at right angles – since the 
real axis cuts the escape region at right angles and 
the mapping z2 + c is conformal: it preserves angles.

This implies that pictures mapped onto this grid 
will be relatively undistorted. These pictures reveal 
where each escaping point ends up. Points mapped 

to the same part of the picture end up in the same 
place. (Fig. 5.14 a and b)

Self-similar tessellations

M.C. Escher, the undisputed master of tessellated 
(covering a surface with closely fitting pieces) art, 
often drew inspiration from mathematical  sources. 
The geometer Donald Coxeter introduced him 
to  hyperbolic tessellations, tilings of the strange 
non-Euclidean space discovered by Bolyai and 
Lobachevsky around 1820 where through each point 
there are many parallels to a given line. When 

Fig. 5.11 above: Three-dimensional plot of continuous escape time.
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viewed in Euclidean space, these seem to contain 
cascades of ever-smaller tiles, although, in the hyper-
bolic space represented, all these tiles are exactly the 
same size. (Fig. 5.15)

The apparent shrinking can be thought of as a 
perspective effect of the mapping, analogous to the 
apparent diminishing of size on a receding plane. 
(Fig. 5.16)

These hyperbolic tilings solved a persistent prob-
lem for Escher: how to represent infinity in a closed 
form, and he used them in a series of woodcuts, 
Circle Limit I – IV.

As well as these hyperbolic tilings, Escher also 
developed methods for generating self-similar 

Euclidean tilings, which repeat in one direction 
while shrinking in another. Coxeter was not overly 
impressed with these:

... not very interesting. The circle limits are 
much more interesting, being non-Euclidean.1

However, it seems as though Escher had actually 
come up with the archetypal self-similar Euclidean 
tiling, which, by a magnificent stroke of luck, is 
perfect for mapping onto the exterior of quadratic 

Fig. 5.13 right:Detail of escape angle map.

Fig. 5.12 above: Map of escape angle.

1 Bruno Ernst, The Magic Mirror of M.C. Escher (Tarquin Publi-
cations, 1985).
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Fig. 5.14 a above and b overleaf: These pictures indicate the escape route of points outside the Mandelbrot Setb above.
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Fig. 5.14 b above.
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fractals, allowing the creation of tessellations with 
fractal limits. (see Fig. 5.17)

Escher’s reptiles can be seen to follow lines of 
flow, based upon the escape time and escape angle 

contours. The same patterns occur in the foliage that 
surrounds the miniature copies buried deep within 
the M-set. The smaller the miniature, the more 
detailed the foliage. (Fig. 5.18)

Fig. 5.15 above: Tiling of hyperbolic space2.

Fig. 5.16 above: Perspective effect: in the space depicted, all 
the squares are the same size, although in this projection 
some appear larger than others.

2 Don Hatch, www.hadron.org
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Fig. 5.17 above: Fractal limit: Escher’s lizards surround the Mandelbrot Set
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Fig. 5.18 right: The main spike of a miniature, deep within the Mandelbrot Set



6  Self-organization, 
Self-regulation, 
and Self-similarity 
on the Fractal Web

Gary Wil l iam Flake and David M.  Pennock  
Yahoo!  Research Labs

The authors begin by modelling the World Wide Web as an eco-
system, which reflects an intimate coupling of people, programs, 
and pages. Viewing the Web from a variety of scales and view-
points, from macroscopic to microcscopic, it is evident that users, 
authors, and search engines all influence one another to yield an 
amazing array of self-organization, self-regulation, and self-simi-
larity. Ultimately, the Web’s organization is intimately related to 
the complexity of human culture and to the human mind, and it 
is this subtle relationship between humanity and the Web that is 
responsible for the Web’s amazing properties.

N. Lesmoir-Gordon (ed.), The Colours of Infinity: The Beauty and Power of Fractals,
DOI 10.1007/978-1-84996-486-9_6, © Springer-Verlag London Limited 2010
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The World Wide Web is a digital entity like 
no other. Over the course of roughly fifteen 
years – and at an exponentially increasing 

rate – the Web has managed to capture, collect, 
organize, and connect a stunning amount of human-
kind’s collective knowledge. It now reflects almost 
every aspect of our collective culture: from the peace 
prize to pornography; from academia to e-commerce; 
and from the mega-corporation to the personal home 
page. Though the Web is certainly a unique object 
in the history of the world, at its heart the Web is 
a social creation, and so perhaps it is not surprising 
that many of the Web’s properties mimic those of 
nearly every other social and biological entity. The 
Web is in a very real sense an ecosystem, and as such 
can be viewed from a number of different perspec-
tives spanning the microscopic to the macroscopic, 
with each vantage point showing an astonishing 
amount of complexity.

Natural ecosystems derive much of their complexi-
ty from a vast number of interdependencies: predators 
consume prey; individuals compete for the opportuni-
ty to reproduce; symbiotes cooperate with other spe-
cies for improved viability; and the expired biomass 
from all organisms ultimately fuels the microbes at the 
lowest level of the food chain. In this way, an ecosys-
tem is endlessly circular, with chains of dependencies 
streaming between individuals and species.

We say that an ecosystem’s state is recursive 
because of the circularity of the ecosystem’s depend-
encies. The future of every creature is intimately 
coupled to the present state of every other member 
of the ecosystem. As a result, the life cycle of a sin-
gle individual as well as the evolution of an entire 
ecosystem are both tremendously complex precisely 
because each is a function of the other.

The circular dependencies of the Web are rich as 
well. Web authors attempt to build pages that a tar-
get audience of users will value, and the authors add 
value by supplying a mixture of content and hyper-
links (or more simply, links) to other valuable pages. 
Hence, one instance of recursion on the Web is that 
valuable pages tend to accumulate incoming links, 
and pages can become more valuable by linking 
to other valuable pages. The subtlety of the Web’s 
recursion partially hinges on the circular influences 
that authors and users have on one another, each 
taking actions that are influenced by the other. To 
complete the analogy between the Web and natural 
ecosystems: the behaviours of individual authors or 
users as well as the evolution of the entire Web are 
tremendously complex precisely because each is a 
function of the other.

Throughout this chapter, we will use the analogy 
between natural ecosystems and the Web to better 
explore the Web’s fractal properties and from whence 
they come. We will focus on three different vantage 
points: the microscopic level of the individual author 
or user (single organism), the intermediate level 
of the Web community (the niche or species), and 
the macroscopic level of the entire Web (the entire 
ecosystem or biosphere). But first, we will step back 
from the Web completely to examine its origin and 
evolution.

The Web as an Ecosystem

Fig. 6.1 previous page: A map of part of the Internet’s 
topology,updated March 2004, illustrating the macro-
scopic structure of the Web and the apparent fractal 
nature of link connectivity. Points correspond to distinct 
Internet addresses of computers on the Internet; lines 
correspond to the connections between computers.

Data and visualization courtesy Bill Cheswick and Hal Burch of Lumeta 
Corporation. Lumeta is a pioneer in analyzing and securing corporate net-
works, http://www.lumeta.com.Reprinted by permission.
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A Birds Eye View of People, 
Programs, and Pages

Before we dissect the Web in terms of scale, it is 
valuable to stand back and take a look at the Web’s 
evolution in the broader context of human behav-
iour. Doing so will allow us to better understand and 
appreciate how the different scaling properties of the 
Web relate to one another and what external forces 
drive the dynamics of the Web. For this discussion, 
we will focus our attention on how users (people), 
search engines (programs), and Web sites (pages) 
impact one another.

At any moment in time, one can (in theory) 
measure the number of users that view a page over 
some period, the likelihood that a page will be the 
result of a typical query sent to a search engine, and 
the number of links that point to a particular page 
from other Web pages. Let’s refer to these three 
properties more simply as the ‘traffic,’ ‘rank,’ and 
‘connectedness’ of a page, respectively. Notice that 
each attribute superficially appears to be determined 
by only one type of thing: users determine traffic, 
search engines determine rank, and pages (and 
by implication authors) determine connectedness. 
However, in reality, all three properties are deeply 
intertwined; but it was not always this way.

In the beginning of the Web, there were no search 
engines, only links. As a result, users could visit a Web 
page only by directly typing in a URL (the part at the 
top of your browser that typically begins with ‘http://’), 
or by clicking on a link. Relative to each other, a click 
is far easier for a user to do than it is to type in a URL. 
This leads us to the first observation on the relation-
ship between traffic and connectedness:

The greater a page’s connectedness,  
the greater its traffic.

After all, if users predominately arrive at pages via 
a link, then (all things being equal) the more pages 

that link to a certain page, the more clicks from dif-
ferent locations that it can generate.

Different stages of the Web also saw vastly differ-
ent demographics between Web page users and Web 
page authors. Given the Web’s academic origin, 
most early authors were scientists, as were most users. 
But as excitement for the Web spread, and being 
that it is far easier to be a user than an author, there 
was a brief period in time in which users and authors 
were very different groups of people.

Over time, as Web-authoring tools became read-
ily available and as Web resources became easier to 
attain, these two demographics gradually merged. 
Thus, in the current state of the world, many Web 
users are also Web authors. We will explore this fact 
more closely later when we discuss the phenomenon 
of Web loggers. However, for now, just consider the 
fact that when authors and users come from similar 
pools of people, a new relationship emerges:

The greater a page’s traffic, the greater its connectedness.

This happens simply because people tend to link to 
pages that they themselves value.

Still in the dark ages of the Web, there suddenly 
emerged a new tool: the search engine. Now ubiqui-
tous, the first general purpose search engine, AltaVista, 
represented a revolution in usability on the Web. 
Suddenly, pages could be found by content and not 
just by location. Instead of knowing where some piece 
of information was located on the Web, one could find 
it by supplying a rough sketch (say a few keywords) to 
describe the desired document. While there are many 
benefits to retrieving information in this reversed 
manner, there is an unfortunate side affect: a single 
query can have thousands or even millions of valid 
results. Worse yet, some results, while technically a 
valid match to a query, may actually be off topic to the 
intent of a user’s query. For these cases, the ‘right’ result 
may be buried deep within a pile of ‘wrong’ results.
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We have seen throughout this book how circular
relationships (i.e.positive feedback loops) are key to the
creation of fractals and chaos, and so it is on the Web.

Search engines – back then and still today – try to 
ease the burden on the user by ordering search results 
so that the high quality pages that are likely to satisfy 
a user’s intent show up first. But the process of rank-
ing results is both art and science and still far from 
perfect. In any event, with the emergence of search 
engines came a new relationship:

The greater a page’s rank, the greater its traffic.

This new relationship holds simply because a search 
engine can introduce users to pages that they never 
knew about. Moreover, in the case where the user is 
an author as well, we also find the corollary:

The greater a page’s rank, the greater its connectedness.

Hence, the programs behind the search engines have 
an impact on the traffic patterns of users and the 
linking patterns of pages (as search engines influence 
authors).

Over time, new search engines would come and 
go, offering different features with the goal of earn-
ing a dedicated user base. But the sticky feature – a 
feature that entices users to be repeat users – is a 
better ranking function, one that seems to anticipate 
the user intentions, and satisfies the user needs with 
relevant results better than the competition.

Two interesting breakthroughs in the search 
engine industry used an implicit form of intelligence 
embedded within the Web: traffic and connected-
ness. In the aggregate, traffic patterns on the Web 
reflect what users find valuable, while patterns in 
connectedness reflect what authors find valuable. 
Both represent something akin to a voting scheme 
for ordering pages by value. In the late 1990s each 
of these ideas were exploited by two new search 
engines, DirectHit and Google, which were able to 
use traffic and connectedness (respectively) 
to more effectively rank pages.

Today, virtually every major search 
engine uses traffic and connectedness as an 

ingredient to their ranking function, but at the time 
of their introduction, DirectHit and Google each 
represented another major step in search engine 
technology by using the collective wisdom of the 
Web to better satisfy users. However, these two inno-
vations closed the loop, so to speak, on how people, 
programs, and pages influence one another:

The greater a page’s traffic, the greater its rank. 
The greater a page’s connectedness, the greater its rank.

With these final two relationships, people, programs, 
and pages each have the ability to influence one 
another. We have seen throughout this book how 
circular relationships (i.e. positive feedback loops) 
are key to the creation of fractals and chaos, and so 
it is on the Web. Besides the benefits seen from an 
evolving Web, we can also see instances of spontaneous 
weirdness that are all a direct consequence of the 
Web’s recursion:

• A single link from an influential Web site can 
cause the linked Web site to collapse, due to a 
spontaneous increase in traffic. For example, the 
Web site Slashdot, http://slashdot.org/, is a daily 
compendium of links to interesting developments 
in technology, submitted by a vast and some-
times fanatical user base, and vetted by editors. 
When Slashdot adds a new link to an interesting 
Web page, the ensuing stampede of readers click-
ing on the link can bring an unprepared Web 
site to its knees under the weight of all its new 
audience.
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This phenomenon has been called the Slashdot 
effect (even if the originating site is not Slashdot 
itself), and affected sites are said to be slashdotted.

• Communities of Web loggers have colluded to 
form Google bombs. By collectively linking to a 
page in an atypical manner, small groups of indi-
viduals have successfully tricked search engines 
into producing humorous results. For example, a 
search on ‘more evil than evil itself’ used to return 
Microsoft’s Web site as the top-ranked result. This 
was accomplished by a loosely coordinated group 
of Web authors creating links to Microsoft, where 
the underlined text in the link (the so-called 
anchor text) said ‘more evil than evil itself’. A 
similar phenomenon is known as link spam where 
individuals attempt to influence search engines to 
favor pages of their choosing.

All of these cases are a consequence of the Web 
reflecting an intricate coupling between people, pro-
grams, and pages. Throughout the rest of the chapter 
we will see how the Web’s recursion yields a surpris-
ing degree of self-organization, self-regulation, and 
self-similarity on multiple levels.

The Macroscopic Web

Assigning superlatives to the Web is easy: it’s 
massive, it’s dynamic, it’s decentralized – it’s 
unlike anything else in the world. But one of the 
Web’s most amazing attributes is that it is argu-
ably the largest self-organized artifact in existence. 
Every day millions of Web publishers add, delete, 
move, and change their pages and links, yet what 
results is far from random or haphazard. Rather, from 
these millions of uncoordinated decisions emerge a 
startling number of regularities. Figures 6.1 and 6.2 
display two visualizations of the Internet’s map, its 
complex flowering and branching structures tanta-
lizingly fractal-like. Scientists have quantified that 

intuition, uncovering self-organizing fractal patterns 
in examining nearly every aspect of the Web, includ-
ing the contents of pages, the hyperlinks between 
pages [Barabási 1999], the physical wires making up 
the Internet [Faloutsos 1999], the types of files found 
on the Web [Crovella 1998], the traffic patterns on 
the Internet [Leland 1993] [Crovella 1996], and the 
behaviour of people as they surf the Web [Huberman 
1998].

Consider traffic patterns. If you were to tap a par-
ticular wire on the Internet and listen as emails, Web 
page contents, and other data zipped back and forth, 
you would observe erratic rises and falls in the volume 
of traffic, marked with occasional bursts. Figure 6.3a 
shows a representative sample of traffic volume over 
the course of 100,000 seconds, or a little more than a 
day: you can see somewhat noisy fluctuations punc-
tuated with large bursts. Figure 6.3b zooms in on a 
particular 10,000-second sub-period (about three 
hours) within the full series. The pattern of fluctua-
tions and bursts looks roughly the same. Similarly, in 
Figures 6.3c through 6.3e, as we zoom in to shorter 
and shorter time scales, the same degree of fluctua-
tions and bursts seems evident. The distribution of 
traffic is neither smoothing out nor getting choppier 
as we zoom in further and further. Here we have the 
classic appearance of self-similarity. We observe the 
same statistical behavior regardless of the resolution 
(time scale) of our plot. Scientific studies confirm 
mathematically what our eye suspects: statistical 
measurements of the variability of traffic on the 
Internet and on corporate networks do not differ sub-
stantially whether we are examining patterns across 
a month, a day, an hour, or a few seconds [Leland 
1993] [Crovella 1996].

Why is Internet traffic self-similar? The answer is 
surprisingly simple. A particular wire on the Internet 
will carry a variety of data traffic, including email, Web 
pages, images, music, videos, and network control 
information. Each piece of data requires a different 
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amount of information to encode: a single email 
usually requires little information, while a video clip of 
a movie trailer requires much more information. While 
the vast majority of pieces of data travelling around the 
Internet are quite small, a few pieces of data are many 
many times larger than average. The occasional video 
file or dissertation-length email punctuates a steadier 
stream of comparatively miniscule Web pages, emails, 

Fig. 6.2 above and previous page: Two additional 
 visualizations of part of the Internet’s topology, each 
generated after a day of probing the Internet from a 
 single source.The topological structure is rendered 
inside a sphere using hyperbolic geometry, which 
yields a fisheye-like display.

Data and visualization are courtesy scientists at the Cooperative 
Association for Internet Data Analysis (CAIDA), one of the leading academic 
centers for measuring,understanding, and supporting the Internet infra-
structure, http://www.caida.org.Copyright © 2003 The Regents of the 
University of California. All Rights Reserved. Reprinted by permission.
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etc. This skewed distribution in the sizes of pieces of 
data is called a power law distribution or a heavy-tailed 
distribution, for reasons we will explain shortly. It turns 
out that, when the sizes of pieces of data in a stream of 
traffic are governed by a power law, that stream will be 
self-similar. That’s all it takes for self-similarity to arise. 
The consistency of the series of plots in Figures 6.3a 
through 6.3e is a direct result of the fact that data 
traversing across the Internet is mainly a river of small 
and moderate bits of data littered intermittently with 
relatively monstrous chunks.

In more detail, a power law states that, within a 
set of items, items of size x are a constant factor (say, 
two times) more frequent than items of size 2x. In 
turn, items of size 2x are twice as frequent as items 
of size 4x. Mathematically, the frequency of an item 
of size x is proportional to x-b, where b is a constant. 
For example, suppose b=1. Then the frequency of an 
item of size 2 is 2−1 or 1/2, while the frequency of an 
item of size 4 is 4−1 or 1/4. The larger the item, the less 
frequently it occurs, in direct proportion to its size. 

Visualizing the Net
Creating a visual depiction of the Internet is no 
easy task. The difficulty is not only a matter of the 
Internet’s size. Because the Internet is composed 
of independent computers distributed around 
the globe, no one person can hope to compile a 
specification of all the computers and connections 
involved. Visualization is also hampered by the fact 
that the overlapping connections in the Internet 
– and similarly the hyperlinks among Web pages 
– are impossible to flatten into two-dimensional 
or three-dimensional images suitable for human 
consumption.

Scientists have long examined the problem of 
visualizing high-dimensional data in two or three 
dimensions. Throughout this chapter, we report 
summary characterizations of statistical measures 
of the Internet that we can show using tradi-
tional two-dimensional plots. Figures 6.1 and 6.2 
represent more direct attempts at capturing the 
structure of the Internet in images, using a variety 
of visualization techniques. The layout algorithm 
used for Figure 6.1 can take almost a day of com-
puting time to optimize visual space. The method 
used for Figure 6.2 was developed by Young 
Hyun, and was based on the pioneering visualiza-
tion techniques of Tamara Munzer. By plotting 
points within a three-dimensional sphere, the 
image is more comprehensible for viewers and 
allows a natural interactive mode where differ-
ent points can be ‘dragged‘ into the centre of the 

sphere for closer inspection of that point and its 
neighbourhood. 
(http://www.caida.org/tools/visualization/walrus/)

A number of other scientific efforts have focused 
on depicting the intricacies of the Internet using 
visual means. Many are cataloged in The Atlas of 
Cyberspace [Dodge 2002].  
(http://www.cybergeography.org/atlas/) Ben Fry 
of the MIT Media Lab has created a real-time ani-
mation of Web traffic, growing and squirming like 
an anemone in immediate response to browsing 
behaviour across an MIT Web site (http://acg.
media.mit.edu/people/fry/anemone/).Beyond 
mapping, several teams have explored methods 
for presenting Web search results graphically, 
though none has yet supplanted today’s standard 
text-based lists.

To many people, the inner workings of the 
 Internet are a mystery: how do computers 
everywhere interact so that email and Web 
contents zip to and from the right places at the 
right times? An informative and entertaining 
 computer-animated movie called The  Warriors 
of the Net (http://www.warriorsofthe.net/) 
explains the Internet’s mechanics by portray-
ing its components (bits, wires, packets, rout-
ers,  firewalls, etc.) as robotic creatures in a stark 
 factory of the future.
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The distribution is called a power law because of the 
constant power b used in the formula for frequency.

The distribution is said to be heavy-tailed because 
the tail of the distribution (the right-hand side of 
the distribution when plotted, or the part describing 
large values of x) actually contains a much larger 
proportion of items than would be predicted by the 
standard bell-shaped distribution (a.k.a. the Normal 
or Gaussian distribution) often used in statistics. 
That is, as we move to the far right of a bell-shaped 
distribution – well past the centre of the bell – 
the frequency of items approaches zero extremely 
quickly, much more quickly than in a power law 
distribution.

The power law is a fundamental indicator of 
fractal-ness [Schroeder 1995]. A power law is such 
that, no matter how much we zoom in or out, it looks 
the same. It doesn’t matter if we draw a plot of the 
distribution over a huge range of sizes, say ranging 
from 1 to 100,000, or over a smaller range of sizes, 
say between 10 and 100, the shape of the distribution 
will be the same. Figure 6.4 illustrates the self-similar 
nature of the power law.

Power Laws and the Log-Log Plot

The best way to understand the power law is by 
example. In Figure 6.5, we show a series of plots, all 
displaying the same information in different ways. All 

Traffic across 100,000 seconds

a

b c

d e

1000 seconds

10 seconds100 seconds

10,000 seconds

Fig. 6.3 below:  Self-similarity of Internet traffic. 
Fluctuations and bursts in traffic over a period of (a) 
100,000 seconds, or about one day (b) 10,000 seconds, 
or about three hours, (c) 1,000 seconds, (d) 100 seconds, 
and (e) 10 seconds.Each plot is a zoomed-in image of 
the previous.The degree of fluctuations and bursts 
appears similar at every level.

Figure courtesy Will E. Leland et al., ‘On the Self-Similar Nature of Ethernet 
Traffic,’ACM SIGComm’93,p. 186,Copyright © 1993 ACM,Inc. Reprinted by 
permission.
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of the plots convey information about the number of 
inbound links to each of 100,000 randomly chosen 
Web pages. Each point on the graph can be read as 
follows: the point’s x-value is a particular number of 
inbound links, while the point’s y-value is the number 
of Web pages (among the 100,000) that have the 
specified number of inbound links pointing to them. 
This type of plot, which displays the number of items 
that appear within specified ranges on the x-axis, is 
called a distribution or a histogram. Figure 6.5a shows 
the distribution with ordinary linear scales on each 
axis. The plot is an almost perfect L shape, revealing 
the extremely skewed distribution of links on the Web. 
Almost all Web pages have a very small number of 
inbound links, as seen by the points lying on the verti-
cal portion of the L shape. On the other hand, a tiny 
handful of Web pages have a hugely disproportionate 
number of inbound links, as seen by the few points on 
the far right of the horizontal piece of the L.

Figure 6.5a is hard to read, since all the points are 
squashed onto the vertical and horizontal pieces of 
the L. Figure 6.5b displays exactly the same informa-
tion: the only difference is that the x-axis is plotted 
on a log scale, where the distance between the x-val-
ues of one and ten is given as much visual space as 
the distance between ten and one hundred and the 

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

nu
m

be
r 

of
 p

ag
es

0

1000

2000

3000

4000

5000

6000

nu
m

be
r 

of
 p

ag
es

nu
m

be
r 

of
 p

ag
es

number of inbound links number of inbound links

a b c

1 10 100 1000

number of inbound links
1 10 100 1000

1

10

100

1000

Fig. 6.5 Different ways to visualize a power law distribution. All three graphs display the same data: a histogram of the 
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Fig. 6.4 above: Self-similarity of the power law distribu-
tion. Both plots show the same power law distribution 
with parameter b=1, so that frequency equals x −1.The 
top graph displays a large region from 1 to 100,000; the 
bottom graph displays a smaller region from 10 to 100.
No matter what region is plotted at what resolution, the 
distribution will always appear as straight line (of the 
same slope) on a log-log plot.
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distance between one hundred and one thousand. 
The log scale stretches out the data points, making it 
easier to see the detail of the distribution.

Figure 6.5c plots the same information using log 
scales on both the x and y axes. This is the so-called 
log-log plot. Notice that, once the data is drawn on a 
log-log plot, a striking regularity emerges that would be 
impossible to see using the linear scales of Figure 6.5a: 
the points follow an almost perfectly straight line. 
When a distribution drawn on a log-log plot follows a 
straight line, it is a power law distribution.

Power laws arise naturally. The amount of wealth 
spread among people follows a power law. The 
number of people spread across cities follows a power 
law. The number of connections in the metabolic 
network of a microorganism, the number of citations 
to academic papers, the number of connections in 
the electricity power grid, and the number of people 

seeing a particular movie are but a few of thousands 
of examples of naturally-occurring power laws.

Power laws also abound on the Web. As men-
tioned, the sizes of data pieces as they flow across the 
Internet are distributed according to a power law. The 
sizes of files themselves, residing on Web servers on the 
Internet, obey a power law. The number of queries sub-
mitted to search engines, the frequency of word usage 
on pages around the Web, the number of hyperlinks 
pointing to and from Web pages, the depth to which 
Web users surf, and the number of physical wires con-
necting to Internet hubs all follow power laws.

Let’s examine more closely the pattern and for-
mation of links on the Web. Figure 6.6a shows the 
distribution of inbound links on the Web plotted 
on a log-log plot. Notice that on a log-log plot a 
power law distribution appears as a straight line. We 
see that the distribution of inbound links on the 
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Fig. 6.6 right: A tour of 
the power-law Web. 
Distributions capturing 
nearly all aspects of the 
Web follow a power law, 
including (a) inbound 
links, (b) outbound links, 
(c) files sizes, and (d) the 
physical Internet itself 
(the wires connecting 
computers around the 
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up elsewhere too, 
including people’s 
behaviour as they surf 
the Web, and even the 
level of interest among 
advertisers to be show-
cased in conjunction 
with particular search 
queries.
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Web is close to a pure power law, except for a very 
slight drop-off from a straight line at the top left of 
Figure 6.6a (the region of small values of x, or small 
numbers of inbound links).

Compare Figure 6.6a with Figure 6.6b. The latter 
shows the distribution of outbound links on the Web 
(links emanating from Web pages) instead of inbound 
links. Near the right end of the graph, the distribution 
looks very much the same as the inbound link graph: 
a straight line on a log-log plot. But on the left side, in 
the range of smaller values of x, the distribution devi-
ates fairly strongly from the linear signature of a power 
law. There is a bump in the distribution of outbound 
links not seen in the graph of inbound links. It turns 
out that bumps like these are the rule rather than the 
exception (in this sense, the near perfectly straight 
line of Web inbound links is rare). For example, 
the graph of the distribution of file sizes pictured in 
Figure 6.6c has an even more pronounced bump before 
straightening out on the far right. Many of the power 
laws observed in nature are also marked with signifi-
cant deviations in the region of small values of x.

Figures 6.7a, b, and c show inbound link distribu-
tions for specific e-commerce segments of the Web, 
comparing the communities of online booksellers, 
commercial health-related sites, and online wedding 

retailers, respectively. Here we see more examples 
of the modified power law: in each case, the plot 
displays a significant bump on the left side before 
converging toward the linear power law on the right-
hand portion of the graph.

In the section that follows on the microscopic web, 
we will examine what low-level forces are at work in 
generating both the pure power law seen for inbound 
links and the modified ‘bumpy’ power law more com-
mon in other distributions. For now, simply note that 
the closer a community’s distribution is to a linear 
power law, the more cutthroat the competition is to get 
noticed within that community, and the harder it is for 
new entrants to compete with the well-established play-
ers. The larger the bump on the left edge of the graph 
(the larger the divergence from a pure power law), the 
more egalitarian is the community, and the easier it is 
for new sites to rise to (or near) the top. From analyzing 
the data underlying Figures 6.7a, b, and c, one can infer 
that booksellers – led by Amazon.com with millions 
of inbound links – are extremely competitive, while 
wedding retailers are less so. Commercial health sites 
lie somewhere in between. Similarly, online sites for 
corporations and the entertainment industry are highly 
competitive, while Web sites for scientists, universities, 
and photographers are not.
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Zipf’s Law
The Web is not alone in exhibiting power laws. 
Data gathered on the use of language, the 
population of cities, and the distribution of 
wealth all show clear power-law behaviour. The 
frequency of words used in human language 
deserves special mention: it follows the famous 
Zipf’s Law, named after George Kingsley Zipf, 
an early twentieth-century scientist who revolu-
tionized our understanding of power laws, and 
helped to reveal their astonishing prevalence 
throughout society and nature. 

Zipf’s Law states that the most common word 
used in language is a constant factor (say, two 
times) more common than the second most 
common word, and the second most common 
is twice as common as the third, etc. Remark-
ably, for almost any sizeable source of words 
you can think of – all New York Times articles, or 
all the works of Shakespeare, or all textbooks 
on molecular biology, or the Bible – Zipf’s law 
holds.

In 1955, Herbert Simon sought to unify the 
observations of Zipf and others by formulating 
a single common explanatory model for many 
of the systems displaying power-law behaviour, 
including language, population, and wealth.  
Benoît Mandelbrot [1953,1959] proposed a 
fascinating alternative explanation for Zipf’s 
Law as it relates to language. He showed that 
the distribution can be understood as the end 
result of centuries of adaptive maximization of 
the information content of language.

There are multiple factors that can lead to the dif-
ferences in competition that we see. For commercial 
wedding sites, one factor could be their local nature: 
many wedding-related retailers serve only a local area, 
and those serving different areas usually do not compete. 
Another factor may be that people looking for wedding 
services use methods other than the Web more often 
(e.g. referrals from friends). Perhaps because people use 
wedding providers rarely, they are less likely to create 
and share information among related sites on the Web.

Note that more difficulty competing with existing 
popular sites does not mean that substantially bet-
ter newcomers cannot become popular quickly. For 
example, Google (a relative latecomer to the search 
business) has captured a huge fraction of the Web 
search business largely by providing better service 
and spreading through word of mouth.

The Web is a Bow Tie

In 2000, a collaboration of scientists from AltaVista, 
IBM, and Compaq [Broder 2000] discovered a fas-
cinating property of the Web: somehow, all of the 
billions of pages and links have organized them-
selves into an overall bow tie shape as pictured in 
Figure 6.8. The centre of the bow tie is a core of 
strongly connected pages: every one of these pages 
can be reached from any other page within the core 
by clicking on a sequence of links (the sequence may 
need to traverse a number of intermediate pages, but 
some path exists between the two core pages). The 
left bow is connected to the core, but only through 
outgoing links. That is, there exist links from the 
left bow to the core, but not vice versa. Conversely, 
the right bow is connected from the core only via 
inbound links. One can traverse links from the core 
to the right bow, but not back again. Finally, discon-
nected pages that have no links either to or from the 
core surround the bow tie. The scientists measured 
the relative sizes of these four main components of 

the Web (the core, the left bow, the right bow, and 
the disconnected pages). To their surprise, all four 
components were roughly the same size.

A year later, some of the same scientists [Dill 
2001] showed that the bow tie property is a feature 
not only of the Web in its entirety, but also of vari-
ous pieces of the Web. No matter how the Web is 
sliced – whether by content into topic-specific 
clusters, by geographic location into regions, or by 
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organizational entity into groups of pages owned 
by the same person – the bow tie shape emerges, 
even retaining the rough equality of size among the 
four main components of the bow tie. This strange 
structure appears endemic to the Web and pervasive 
at all levels, revealing a beautiful new type of self-
similarity not seen anywhere else.

Search Engines: Tapping The Ebb and Flow of 
Ideas

In a way, search engines like Google and Yahoo! 
have a window into the mind of the masses. Search 
queries stream in by the second capturing people’s 
thoughts, worries, and whims, whatever they happen 
to be looking for at that particular time. Web sites 
like Google’s Zeitgeist:

(http://www.google.com/press/zeitgeist.html),
the Yahoo! Buzz Index (http://buzz.yahoo.com/),
and the Lycos 50 (http://50.lycos.com/)

report on fads and trends reflected in search traffic: 
the thoughts and ideas that people are searching for 
en masse, including what is hot and what is passé. It 
is fascinating to watch as memes appear, skyrocket, 
cycle, or decay, as the case may be.

In watching the top search terms from one week to 
the next, clearly some terms will stay perched among 
the top ten, while others will drop out. For example, 

as of Sunday August 3, 2003, ‘Britney Spears’ moved 
from third to second place, continuing a remark-
able run of 123 straight weeks atop the Yahoo! Buzz 
Index charts. ‘Tour de France’ also remained in the 
top ten, though only for the second week running. 
Meanwhile, ‘Beyoncé Knowles’ and ‘PlayStation 2’ 
fell from their top-ten perch the prior week, sup-
planted by Kobe Bryant and Angelina Jolie, celebri-
ties whose profiles rose during the week, fuelled by a 
criminal indictment and a new movie release, respec-
tively. The percent of terms that disappear from the 
top ten from one week to the next – equivalent to 
the percent of new terms, and reciprocal to the per-
cent of stationary terms – is called the churn rate. 
The churn rate of search terms captures the speed at 
which new memes rise and old memes fall.

Churn rate can be computed for different numbers 
of top N terms. We can examine the proportion of 
terms lost from the top ten, or the proportion lost 
from the top 100, or the proportion lost from the top 
50,000 terms. Note also that we can compute churn 
rate over any time frame: daily, weekly, monthly, etc.

You might hypothesize that churn rates would dif-
fer depending on whether you examine the top ten 
terms, or, say, the top 50,000 terms. For example, it 
seems reasonable that the status of the most popular 
terms could be so self-reinforcing as to render them 

IN OUTSCC

Fig. 6.8 The Bow Tie structure of the Web, consist-
ing of a strongly connected component (SCC), a 
set of pages that follow into the SCC, a set of 
pages that pass out of the SCC, and a set of smaller 
disconnected islands that are themselves mini 
bow ties.
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more stable than the hordes of terms among the 
top 50,000. However, this hypothesis is not correct: 
in reality, the top ten is no more stable than the 
top 50,000. In fact, no matter what value for N is 
chosen – 10, 50, 100, 500, 1000, or 50,000 – churn 
rates are unaffected. Figure 6.9 shows churn rates 
after one month, two months, three months, etc., 
out to one year. As expected, the longer the time 
frame, the higher the churn rate, as a greater propor-
tion of terms filter up and down. However, for any 
given time frame (say, seven months), churn rates 
are nearly identical for all values of N. Here we see 
a remarkable form of self-similarity: with no matter 
what granularity we look at search terms – whether 
we zoom in to examine the top ten, or zoom out to 
examine the top 50,000 – the percent of terms enter-
ing and leaving the identified set remains constant.

The Middle Web

Having just seen how the Web contains some meas-
ure of order at the highest level, we now turn our 
attention to the next lower level, where groups of 
authors and users form patterns on the Web. The 
short version of this story is that the Web’s content is 
effectively self-organized by the actions of individu-
als. Contrasting this self-organization to the more 

familiar phenomenon of centralized organization, we 
will see that the Web exhibits aggregate behaviour 
that begins to resemble a hive-like intelligence.

Web Logs a.k.a. Blogs

One of the more recent additions to the Web site 
bestiary is the Web log or blog. Blogs began as some-
thing like online diaries with authors making regular 
postings that were topically focused on everything 
under the sun or nothing in particular. Journalists 
and pundits found the medium to be promising new 
ground for self-publishing. At its best, early blogs 
allowed for grass-roots journalism and an unbiased 
flow of ideas and information. At its worst, blogs 
were simply vanity sites.

The emergence of blogs is important for two rea-
sons. First, blogs, more than any other phenomenon, 
blurred the line between author and user as most 
blog content was about the first hand experience 
of visiting other Web sites. Second, blog software 
– the programs that facilitate and automate the 
maintenance of a blog site – would evolve in sophis-
tication, incorporating many new features including 
user accounts, discussions, postings by multiple indi-
viduals, rating systems (of users and posted stories), 
multimedia, and search. Today, sophisticated blog 
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software is freely available, and modern blog sites 
come in many flavours including current event dis-
cussions, various grades of self-published journalism, 
community forums of differing degrees of speciality, 
and, yet still, the simple diary.

All told, blog sites represent a deliberate effort 
by individuals to cooperate towards a form of com-
munity publishing, with the authors, editors, and 
readers all coming from a similar pool of individuals. 
Blog sites also represent larger-scale communities, 
beyond a single site, because many individuals often 
contribute to the content of modern blog sites and 
the membership of related blog sites often overlap. 
Moreover, the content on one blog site often influ-
ences the content on other blogs.

Modern search engines, which use link structure 
for improving the relevance of served results, have 
had to co-evolve with the emergence of blogs for 
multiple reasons. The primary reason is that blogs, by 
and large, are quirky sites, yet they carry a dispropor-
tionate amount of influence in assessing the impor-
tance of Web sites because they contain so many 
links. When a quirky group of people link to pages 
in an atypical manner, their quirks are propagated to 
the mainstream if left unchecked.

This amplification property of blogs results in 
many interesting social phenomena on the Web that 
has no real-world analogue. Propagation of memes on 
the Web can start with a single blog site distributing 
a funny or unusual link. Other blog sites, exhibiting 
almost a flocking behavior, redistribute the meme, 
which impacts not only the content that people 

read but also the links that persist on the Web. In 
this way, ideas and information (both true, false, and 
otherwise) can circumnavigate the globe multiple 
times in a single day, making the circular influence of 
linking patterns all the more pronounced.

Shared Taxonomies

Another form of deliberate cooperation by Web 
authors can be found in shared taxonomies, which 
is best exemplified by the Open Directory Project 
(ODP) located at http://dmoz.org/. The ODP con-
sists of a topical taxonomy, not unlike the best-
known taxonomy at Yahoo!. However, the ODP is 
a strictly volunteer effort, where individual editors 
assume ownership for different topics on the Web. 
The volunteer editors collect links to pages that are 
relevant to their particular speciality and incorporate 
them into their respective location within the tax-
onomy. All told, the ODP has thousands of editors 
that maintain links to millions of pages, which, in 
turn, are incorporated into the ranking algorithms of 
the most important search engines.

Clearly, the ODP is a distributed effort by indi-
viduals to bring order to the Web. However, as 
with blogs, the ODP represents a deliberate and 
intentional form of cooperation by individuals. 
There exists an unintentional form of cooperation 
by authors that is, perhaps, even more striking than 
the ODP and blogs because it represents the truest 
form of self-organization; namely, one in which the 
individuals cooperating do not even know that they 
are contributing to something larger.

The essence of the self-organized nature of the Web is that authors –
being somewhat independent of one another – can effectively do
whatever they want.
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Hubs and Authorities

The essence of the self-organized nature of the Web 
is that authors – being somewhat independent of 
one another – can effectively do whatever they 
want. Some will post a flat collection of favorite 
bookmarks about nothing specific. Others contrib-
ute volumes of original material that is focused on a 
single topic. And still other authors produce noth-
ing more than small collections of links that point 
to things that are all about the same thing. These 
last two examples of authors – those that create 
original material and those that point to focused 
material – are special in that they form two halves 
of a single relationship.

Web pages that contain compelling original mate-
rial (without necessarily the emphasis on having 
many outgoing links) are often referred to as author-
ity Web sites, or more simply as just authorities. 
Authorities have the property that they tend to 
accumulate incoming links because others interested 
in their content will create links that point to them. 
The name, authority, comes from the language of bib-
liographic studies where there is a notion of a work of 
literature as being authoritative if many authors cite 
it. As with literature, Web authorities are frequently 
cited but with links instead of proper citations.

A hub Web page (or more simply a hub) is the 
complement to the authority. Hubs are akin to a 
survey papers or focused reference books in that they 
contain links that point to many pages that are all 
about the same topic. Hubs are natural organizers 
of information because they group similar things 
together.

Together, hubs and authorities form a recursive 
relationship that reflects the dependencies between 
the two types of pages [Kleinberg 1999]. While 
authorities may earn links by having original con-
tent, they may also acquire links by the rich-get-
richer process alluded to above (and which we will 

examine in greater detail in the next section), where 
highly-linked sites tend to obtain even more links 
due to their greater visibility. That is to say, hubs 
may have to link to very popular authorities if they 
are to retain their status as being a hub. (Not doing 
so would be like writing a survey article on evolution 
that fails to cite Darwin.) Similarly, authorities are 
only truly recognized as being authorities if impor-
tant hubs link them. Together, these two facts yield 
a recursive definition for what it means to be a hub 
or authority.

Hubs are pages that link to authorities. 
Authorities are pages that are linked by hubs.

Put simply, these two definitions are recursive because 
each entity in some sense defines the other. What is 
truly fascinating about this mutual dependence is 
that Web pages – in the wild, so to speak – seem to 
co-evolve via this recursive relationship.

Community Signatures

In 1999, Ravi Kumar and his colleagues [Kumar 
1999] surmised that if the Web is, in fact, composed 
of many hubs and authorities, then one should be able 
to find a Web community core by looking for a group 
of hubs that all point to the same set of authorities. 
Mathematically speaking, these two groups of pages 
form what is known as a bipartite core. A bipartite 
structure is illustrated in Figure 6.10, and consists of 
two types of objects: those in the left set and those in 
the right set, with every object on the left pointing to 
every object on the right. Notice that this structure 
is identical to what you would expect to find if there 
existed some number of hubs that were all focused on 
the same collection of authorities.

Kumar et al. found that there were hundreds of 
thousands of community cores that contained this 
exact bipartite signature. When inspected by hand, 
these community cores were almost always focused on 



106 The Colours of InfInITy

an extremely narrow topic such as Japanese elemen-
tary schools, Hotels in Costa Rica, or Turkish student 
associations. But most striking, the identified commu-
nity cores are often so narrow and specific that they 
are not contained in any taxonomy like the ODP.

Because Web pages contain both regular content 
and links, there are multiple ways in which two pages 
can be said to be similar (or dissimilar) to each other. 
Ignoring text and focusing just on links, one can eas-
ily see that hubs within the same community core 
have outbound links that are similar or identical. 
Authorities within the same core have inbound links 
that are similar or identical. Thus, we can speak of two 
pages as being similar in content (they express similar 
words and concepts), in outbound links (they point 
to approximately the same pages), or in inbound links 
(they are pointed to by the same inbound links).

One remarkable attribute of the Web is that 
similarity in inbound or outbound links often implies 
similarity in page content. This relationship means 
that one can find new pages of interest by looking 
only at how pages link to one another within a local 
neighbourhood of a starting page. The connection 
between links and content also means that one can 
analyze link structure to find how topics on the Web 
relate to one another.

Self-Organized Communities

The link structure of the Web is not unlike the social 
network of humans. We have reciprocal relation-
ships with some people, and we know of people that 
don’t know us, which are respectively akin to pages 
that mutually link to each other and pages where one 
links to the other only in one direction. Who we are 
is in some sense defined by the links we have in the 
human social network. Likewise, Web pages can also 
be better understood by examining the context in 
which pages exist within a Web community.

The notion of a Web community core, as defined 
above, is powerful in the sense that it gives an unam-
biguous signature from which to identify collections 
of related Web pages. However, this notion can be 
considered insufficient because most Web pages will 
not belong to a Web community core. How, then, can 
one identify the community in which a page belongs?

There are many different ways to define a Web 
community, and to be sure, there is no absolute 
correct definition. Nonetheless, some definitions 
for a Web community can be used to identify larg-
ish collections of pages that, in some sense, seem to 
belong with one another because they are all focused 
on a similar theme. We now turn to one particular 
definition for a Web community that is mathemati-
cally rigorous in that it is well defined, is surprisingly 
intuitive and simple to understand, and empirically 
corresponds well to real communities on the Web.

For reasons to be explained shortly, we will refer 
to this type of Web community as a cut Web com-
munity, or more simply as just a cut community. A 
cut community consists of a collection of pages that 
predominately link to one another (with links in 
either direction). That’s the whole definition; it is 
simple, but yields several elegant properties.

First, note that it is a meta-definition in that it 
permits one to make more specific statements like ‘the 
bicycle community consists of pages that predominately 

Fig. 6.10 above: A bipartite core on the Web: every page 
on the left links to every page on the right.
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link to bicycle pages’. Also note that community 
membership is easy to test for and validate. Hence, if 
you know about the bulk of the bicycle community, 
you can look at the links coming in and out of a page 
in question. If more than half of the links refer back to 
the bicycle community, then the page in question is 
also a member of the bicycle community.

In 2000, Gary William Flake and colleagues [Flake 
2000] discovered an effective method for identifying 
self-organized collections of Web pages that obeyed 
the cut community definition. The method works by 
recasting the community identification problem into 
what is known as the s-t minimum cut network prob-
lem. In this framework, one looks at a collection of 
pages and links and asks: for two pages, s and t, what 
is the smallest number of links that need to be ‘cut’ 
(i.e., removed) in order to completely separate s and t 
from one another, where s is a page that is indicative 
of the type of community that one is looking for and 
t is an artificial page that represents the whole of the 
Web. By looking for the smallest number of links to 
cut, the procedure effectively tries to find the small-
est group of pages connected to s (our page of inter-
est) that nicely separates from the rest of the Web.

Flake’s community algorithm also has the 
nice attribute that it is computationally efficient. 
Nonetheless, it is not at all clear that it should even 
produce collections of pages that are all focused on a 
single theme. However, in practice, the community 
algorithm is remarkably successful at finding large 
collections of related pages. When seeded with the 
personal home pages of famous scientists, the com-
munity algorithm will find hundreds or thousands 
of pages that are all focused on the specialty of the 
scientist in question [Flake 2002].

In fact, the community algorithm, and other 
link-based approaches, have been shown to be very 
effective in making sense of the Web. Notice the 
language-independent nature of link-based methods: 

since they ignore the textual content of pages, they 
work equally well for pages in English, Spanish, 
or Swahili, for that matter, or for pages composed 
nearly entirely of images and multimedia. But here’s 
a secret of the power of the community algorithm 
and other methods like it: it’s not the algorithm 
that’s special, it’s the Web.

Topic Affinity

Consider a completely random Web surfer, who wan-
ders about the Web clicking on randomly chosen 
links (we will have more to say about the proper-
ties and implication of the random surfer model in 
the next section). The surfer travels from page to 
page, each time moving forward by clicking on a 
random link on the current page. Assuming that 
the surfer starts at a random page, we can measure 
the relative bond between content and links by 
measuring how long it takes for the random surfer 
to visit pages that drift away from the topic of the 
starting page.

Soumen Chakrabarti and his colleagues [Chakrabarti 
2002] found that on the whole, the correspondence 
between the topicality of a page, and the links that it 
contains is remarkably strong. In the example of our 
random surfer, Chakrabarti et al. found that for some 
subjects, a random surfer could remain on topic after 
following as many as 5 or 10 links. Interestingly, the 
degree of topic drift was strongly dependent on the 
starting topic. For example, ‘soccer’ pages would drift 
off-topic relatively fast, while ‘photography’ pages 
maintain topical focus for many more steps.

Related to all of this is the role of anchor text to 
content. Anchor text is the text that is contained 
in a link (usually underlined in most browsers). The 
author of a page that contains a link creates the 
anchor text, but anchor text is usually intended to 
be descriptive of the page that the link points to, not 
necessarily the page that contains the link.
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Computer scientists have long been working on the 
problem of how to recognize when a document is about 
a particular topic by analyzing a document’s text. In 
this vein, scientists have used these tools to improve 
search engines and related technologies. Interestingly, 
many scientists studying the Web have found that the 
anchor text that points to a page is often a stronger 
indicator of the referred page’s subject than its own 
text. This is truly a surprising result because it means 
that the links that point to a page are often a better 
descriptor of a page’s content than its own title.

All of this goes to show that despite being decen-
tralized, the Web seems to ‘like’ order instead of dis-
order. Authors don’t have to link to pages that relate 
to their own; but they do. And authors don’t have to 
use anchor text that is strongly relevant to the pages 
that it refers to; but they do that too. The bottom 
line is that links, instead of being unruly, are, in fact, 
self-organizing. In the aggregate, connections and 

content go hand-in-hand and they co-contribute 
to the Web’s higher-level formation of patterns and 
structure.

Having seen the self-similarity evident in the top-
level view of the Web, and the self-organizing niches 
and structures evident in the middle Web, we now 
turn to the underlying low-level processes and forces 
driving organization and structure on the Web.

The Microscopic Web

The Web in its most fine-grained detail is the results 
of billions of individual decisions taken every day 
around the globe. CNN adds a breaking story; a 
job hunter updates her online résumé; a university 
department deletes the homepage of a graduated 
student; Amazon.com adds a new book title. All 
around the world, the content of the Web is modi-
fied in response to significant real-world events as 

Small World Networks
Many people are familiar with the expression ‘six 
degrees of separation’ which suggests that for 
any two people in the world, there are at most 
six person-to-person relationships that separate 
those two people.  Thus, you and I may not have 
any friends in common, but we will probably 
have a friend-of-a-friend-of-a-friend in common.

The remarkable feature of small world networks 
is that they contain few links relative to their 
number of members.  Intuitively, small world 
networks have this dual property by having 
many members with mostly ‘local’ relationships 
(say, most of your friends and neighbours), and a 
very small number of members that have ‘global’ 
relationships (e.g., a celebrity that is known or 
knows thousands of people).  Thus, the path that 
joins any two random people is likely to begin 
and end with some local relationships, but will 

pass through some global relationships in the 
middle.

Throughout this chapter, we have seen how the 
Web reflects the properties of our society – and 
so it does with the small world nature of human 
culture [Watts 1998].  Between any two Web 
pages in the Web’s largest strongly-connected 
core, there are at most a few dozen links that 
connect those pages.  E-mail and instant mes-
saging relationships also form small world 
networks.

The good news about small world networks is 
that for those who know how to pick links to 
follow, a small number of clicks will lead one to a 
desirable location.  The bad news is that it is also 
remarkably easy to spread problems (like viruses 
and misinformation) in a small world network as 
well.
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well as trivial whims. Clearly, to understand the 
evolution of the Web, we must understand how indi-
vidual pages are created and modified. However, it is 
simply impossible to factor into our understanding 
the details of the innumerable human motivations 
behind all pages in the Web.

Instead of focusing on minutiae, we need to 
abstract away as many inessential details as possible 
and look instead for the simplest rules that capture 
the most important aspects of the Web’s behaviour. 
This modelling process will help us identify what 
are the essential ingredients responsible for the self-
similar structures on the Web. But don’t be fooled by 
the simplicity of the models that we will talk about. 
Despite their simplicity, they capture a considerable 
amount of the complexity that we’ve observed so far. 
As Ian Stewart eloquently states elsewhere in this 
book, simple explanations for complex observations 
lie at the heart of modelling nature, and fractals are 
a powerful tool in the mathematician’s arsenal for 
doing so.

Modelling Web Growth

As in the previous section, let’s temporarily ignore 
Web page content and focus on the links that they 
contain. Moreover, let’s also ignore the direction of 
all links and just focus on the fact that two pages can 
be linked to one another. To better understand how 
the Web evolves, we need to understand how indi-
vidual pages contribute to the overall link structure. 
We will model the Web’s evolution by iterating over 
the following five steps:

1. Create a new page, called p.
2.  Randomly pick an existing link, l, not con-

nected to p.
3. Randomly select one of l’s two adjacent pages, q.
4. Add a new link between p to q.
5. Repeat steps 2–4 a total of k times.

One pass through these steps adds one new page to 
the Web and k new links. Obviously, one can repeat 
the entire process multiple times to add many new 
pages and even more links.

The recipe above specifies what is known as a 
generative model because it explicitly shows how one 
takes a current snapshot of the Web, and generates a 
successor to it that has grown a little bit. The model 
– introduced for the Web by Albert-László Barabási 
and Reka Albert [Barabási 1999] – is simple enough 
that with sufficient mathematical tools, one can 
effectively see how it would behave if iterated for an 
infinite number of steps.

The most interesting part of the recipe for grow-
ing the Web is in steps 2 and 3, where we pick a 
random page, q, in which to connect to our new 
page, p. If there were n existing pages, and we were 
to select one of them purely at random, then we 
would find that each page has a 1/n chance of being 
selected. But that’s not we are doing. Notice that we 
are picking a link, and then picking one of the two 
pages adjacent to it. This means that the more con-
nected a page is, the more likely it is to be selected 
in steps 2 and 3.

The selection process in steps 2 and 3 can be 
reasoned as follows. Think of each link as own-
ing two lottery tickets, and giving away one ticket 
each to the two pages connected to that link. Now 
you can verify that the probability that an existing 
page is selected in steps 2 and 3 is equal exactly to 
the number of lottery tickets it has, divided by the 
total number of lottery tickets possessed by all pages. 
Thus, the more links (or lottery tickets) a page has, 
the more likely it is to ‘win’ by being selected in steps 
2 and 3. If a page has many links, it’s bound to get 
more. But if a page has few links, it will probably not 
get many more. As a result of these facts, this pattern 
is often referred to as a ‘rich get richer’ phenomenon 
or as ‘preferential linking’.
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Clearly, Web page authors don’t add links to their 
pages in precisely this manner. But, as we have seen, 
more links to a page implies many things, including 
more traffic, higher ranking, and more visibility, in 
general. Thus, it is not too outrageous to simplify 
things and just simply say that authors prefer to link 
to pages that are more connected.

While some may debate the fairness or desirability 
of such a state of affairs, the ‘rich get richer’ process is 
a common one that arises naturally in a large number 
of domains, including many social, biological, and 
physical systems ranging from the power grid net-
work to the metabolic networks of microorganisms.

In an influential article published in the journal 
Science in 1999, Barabási and Albert revealed a 
fascinating discovery: their simple generative model 
for Web growth is sufficient to replicate many of the 
key features of the Web. Most notably, the structures 
generated using this simple model exhibit precisely 
that same power law distribution as observed on the 
real Web, and as we witnessed earlier in the section 
on the macroscopic Web.

Power Laws and Communities

Barabási and Albert’s first Web model touched off a 
wave of research aimed at capturing additional aspects 
of the real Web. While Barabási and Albert’s model 
succeeded in capturing some of the highest-level prop-
erties of the Web (as well as showing that the Web is 
unambiguously fractal in construction), it was some-
what incomplete in that it did not account for how the 
Web operates when viewed on intermediate scales.

David Pennock and his colleagues [Pennock 
2002] made a simple modification to the Barabási-
Albert model that would account for some of the 
behaviours of Web communities. Before we get into 
the details, let’s recap some of the intuition behind 
power laws and how they occur in nature.

Within the biosphere, we see far more small crea-
tures than we do larger creatures: there are many more 

bacteria than there are insects; there are many more 
insects than medium-sized animals; and there are still 
far fewer large animals, such as whales and elephants, 
than just about anything else. The distribution of sizes 
of creatures across all species is a power law.

On the other hand, within a species, we see a dif-
ferent pattern entirely. The size, weight, and height 
distributions of humans follow the more familiar bell-
shaped or Gaussian distribution. This means that most 
individuals fall somewhere in the middle – that is, 
there are more average-sized people than small people 
or large people. The trend of having more average 
individuals than big or small is found in just about all 
species, when a species is examined in isolation.

Returning to the Web, and thinking about Web 
communities and inbound links as being somewhat 
analogous to species and the size of animals, we find 
that if one looks at the number of inbound links to a 
Web page – but restricted to pages in the same com-
munity – the distribution is neither a strict power 
law, nor is it Gaussian. Instead, it is bump-shaped 
(like a Gaussian distribution) but on a logarithmic 
scale (like a power law), as we saw in Figure 6.7. The 
important point in all of this is that at the intermedi-
ate level, there is something different going on than 
the strict rich-get-richer linking patterns that the 
Barabási-Albert model suggests.

As a people, we all know of celebrities such as 
famous actors, athletes, and politicians. But we also 
know many people based on our interests, where we 
live, and where we work. Likewise, Web authors cre-
ate links not just to popular pages, but also to pages 
that are related to their own page in some manner. 
These non-popular links are akin to the people that 
we personally know, while the popular links (say to 
Yahoo!) simply represent an awareness of what the 
masses link to or know of in the aggregate (like a 
celebrity).

In an article published in the Proceedings of the 
National Academy of Sciences in 2002, David Pennock 
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and his colleagues showed two important things. First, 
they showed that the distribution of inbound links 
for category-specific subsets of the Web, for example 
all University homepages or all movie homepages, 
follows the power law but bump-like pattern seen in 
Figure 6.7. Second, they showed that a simple modi-
fication to the Barabási-Albert model predicts the 

observed data on the Web with remarkable accuracy. 
The new recipe looks like the following:

1. Create a new page, called p.
2. Flip a bias coin; if heads:
 2a.  Randomly pick an existing link, l, not con-

nected to p.
 2b.  Randomly select one of l’s two adjacent 

pages, q.

Generative Fractals

The Web (and the output of the Barabási and Albert’s model) may not look like
a fractal to the casual observer, partly because it does not lend itself to
visualization the way other fractals do. Nonetheless, the Web is just as much a
fractal as the more familiar eye-pleasing fractals. It is just a little too much for
the human eye to behold. However, we can see similarities between the Web
and other fractals when we examine how each is produced.

MRCM fractals are produced by iteratively
expanding parts of the fractal so that each part
contains a smaller version of the whole. After a
few iterations, the MRCM fractal will possess the
signature look and feel of a fractal.

In both cases – as well as in the Barabási and
Albert Web model – taking one stage, applying a
simple rule to it, yields the next stage, and
ultimately produces a fractal

L-systems, discovered by Aristid Lindenmayer
[Lindenmayer 1968], simulate plant growth with
only a small number of rules that specify how
‘cells’ grow into other cells. As can be seen, each

iteration looks like how one would expect a
plant to grow. Different ‘seeds’ and growth rules
can be used to produce different types of plant-
like structures.
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3. Else, if tails
 3a.  Randomly pick an existing page, q, not 

equal to p.
4. Add a new link between p to q.
5. Repeat steps 2-4 a total of k times.

The only new difference is that in step 2, we 
randomly switch between two types of new links, 
one that is preferentially based as before (in steps 2a 
and 2b) and one that is uniformly selected in 3a. In 
step 3a, the page we pick, q, is independent of how 
many links it has. The ‘biasness’ of the coin in step 2 
influences to what degree the links tend to be prefer-
entially based or non-preferentially based.

Looking back at our analogy between people, step 
3a is akin having an association with a person that 
is not influenced by popularity, which is the main 
force behind the observed bump in the community 
link distributions. It turns out that this divergence 
from the pure power law, while most pronounced 
within topically coherent communities on the Web, 
also shows up to a lesser extent in a wide variety of 
distributions, including the distribution of outbound 
links on the Web and the distribution of movie actor 
collaborations.

Web Surfing Patterns

Ultimately the Web is about people. Above our 
focus was on the behavioural patterns of Web 
authors. In this section, we focus on users. How do 
people typically surf the Web? Again, we won’t get 
far by analyzing the intricacies of each and every 
surfer during each of their Web use sessions. Instead, 
we look instead for overall patterns of behaviour and 
simplified rules of thumb that seem to capture the 
essence of observed aggregate behaviour.

Along these lines, Bernardo Huberman and his 
colleagues [Huberman 1998] developed a simple 
and elegant model of surfing behaviour. In their 
model, a user continues to click deeper and deeper 

on a particular path of linked pages until he or she 
reaches a page of sufficiently low perceived quality; 
at which point the user abandons the current path 
and either gives up or begins anew, for example by 
typing in a URL directly, choosing a favorite book-
mark, or initiating a web search.

Huberman and his colleagues showed that – 
assuming surfers on the whole obey the above ten-
dencies – the depth to which the typical user surfs 
follows a type of power-law distribution called the 
inverse Gaussian distribution. In fact, data gathered 
from several different websites and user bases, over 
different time periods, match the conclusions of the 
model extremely well. Webmasters can even use the 
model to predict which pages will receive the most 
traffic on their site, and how to rearrange their site 
to maximize traffic to particular pages. Hence, users, 
in the aggregate, seem to surf Web pages in a fractal 
manner.

Another model of surfing behavior is called the 
‘random walk’ model, and aptly so. Imagine a com-
pletely random surfer. Starting at a random page, this 
wandering surfer clicks on a random outgoing link, 
bringing him or her to a new page. From there, the 
surfer clicks another random link, moving to a third 
page, etc. The surfer continues like this ad infinitum, 
except that occasionally (with some small probabil-
ity at each step) the surfer restarts, ‘teleporting’ from 
its current location to a completely random location.
[1] Although the random walker model is by any 
measure an extreme simplification of reality, it turns 
out to be very powerful.

Because of the teleportation step, we know that the 
random walker can always move on to a new page. 
The key question is: which Web pages will the ran-
dom walker visit most often if allowed to walk forever? 
It turns out that this question can be answered very 
elegantly with a remarkably straightforward calcula-
tion. The equations behind the calculation are very 
simple, but they must be performed for every page on 
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the Web multiple times. Instead of diving into those 
mathematical details, we will instead try to capture 
the intuition of the random walker, which gets at the 
heart of what it means for a page to be important. If 
you think of a link as being an endorsement by an 
author that the page at the other end is high quality, 
then we get the following recursive rule:

Web pages are important if other important pages  
predominately link to them.

In the above rule, we use ‘predominately’ to mean 
that the page with the link has a relatively small 
number of outgoing links and, hence, is only ‘voting’ 
for a small number of other pages. (More outgoing 
links can be interpreted as an author diluting his or 
her vote.)

Larry Page and Sergey Brin, the founders of 
Google, discovered in 1998 that this calculation – 
which they dubbed PageRank after Larry Page – was 
very effective at separating quality pages from poor 
pages [Brin 1998]. In fact, when introduced, Google, 
with the help of PageRank, offered such a vastly bet-
ter way of organizing the Web that Google came to 
lead the Web search industry.

The power of PageRank is that it uses the links 
of the Web (which are made by authors) and simu-
lates how an infinite number of users given infinite 
time would visit those pages. The pages visited the 
most by the random walkers are deemed the best. 
Hence, Google makes explicit use of Web authors 
and implicit use of users to do a better job of finding 
quality content.

The Web as a Mirror

We’ve now come full circle. Having examined the 
Web from a variety of scales and viewpoints, we have 
now seen how users, authors, and search engines all 
influence one another to yield an amazing array of 
self-organization, self-regulation, and self-similarity.

Ultimately, the Web’s organization is intimately 
related to the complexity of human culture and to 
the human mind, and it is this subtle relationship 
between humanity and the Web that is responsible 
for the Web’s amazing properties. In the remainder 
of this chapter, we will explore how the Web can 
be seen as a mirror to humanity, and we make some 
predictions as to where the Web is evolving.

Search and the No Free Lunch Theorem

What computer scientists refer to as ‘search’ is perhaps 
the hardest mathematical problem in existence. By 
‘search’ computer scientists mean all of the following:

• Teach a computer to drive with only positive 
and negative reinforcement. That is, reward the 
computer when it gets to a destination scratch 
free, and punish it when it has an accident or goes 
to the wrong destination.
• Find a model that accurately predicts the stock 
market both on historical data, and on future 
data, and make lots of money with it.
• Beat anyone in the world at chess or the game 
of go.
• Analyze the human genome and find all genes 
complicit in cancer.
Find the perfect document on the Web that satis-
fies the user’s intent as indicated by a query.

Clearly, these are all hard problems. They all share 
in the fact that one is searching for a solution that 
is hidden among an infinite number of inferior solu-
tions. Not only is what we are looking for hidden, 
but it may also be hard to recognize it when put right 
in front of your face.

Search is such an interesting problem precisely 
because it resembles learning, reasoning, evolution, 
and other forms of deep and profound adaptation. 
The topics of neural networks, artificial intelligence, 
and genetic algorithms are all subsets of the general 
search problem.
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We believe that the Web is rapidly approaching the point that it will be
humanity’s best effort of organizing the collective knowledge of all humanity.

clearly surpasses the library of Alexandria and it will soon surpass the
US Library of Congress and all other libraries in sheer size.

g. WIllIam flake and d.m. PennoCk

There is a mathematical result, published in 
1997, due to David Wolpert and William Macready 
[Wolpert 1997], referred to as the ‘No Free Lunch’ 
theorem (or NFL for short) that is often misunder-
stood. The theorem deals with algorithms for solving 
the search problem. The theorem has both pessimis-
tic and optimistic interpretations, hence the confu-
sion surrounding it. The pessimistic interpretation 
can be summarized as:

All search algorithms are equally bad.

Put in this way, it should be clear why so many peo-
ple are unhappy with it. In fact, if you are a scientist 
that has invested years showing that your type of 
search algorithm is better than most, than the NFL 
theorem is outright slanderous.

A more complete characterization of the NFL 
theorem would be:

Averaged over all possible spaces, even crazy ones that 
never occur in nature, all search algorithms are equally bad.

This alternative view clarifies the major caveat with 
the NFL theorem, namely, that it is making a state-
ment about all search algorithms if they were applied 
to all possible search problems even ones that could 
never exist in our universe. There is still another way 
to characterize the NFL theorem, which we believe 
is both optimistic and realistic:

If your search algorithm is moulded to a particular problem 
space, it can work better than most other search algorithms.

The remaining caveat to this more gentle interpre-
tation is that the penalty for being optimized to a 
particular problem domain is that the same solution 
that works well in one domain may prove horrible in 
every other domain. So it goes, we say.

All of this may seem to be completely unrelated 
to this chapter; however, we believe that the NFL 
theorem is key to understanding the current state of the 

Web and how it will evolve over time. In a nutshell, our 
claim is that the Web has co-evolved with humanity, 
and it will continue to do so. Moreover, we believe that 
the Web will approach a level of complexity that is on 
par with all human culture and with the human mind.

Simplicity, Complexity, and Search

Much of this chapter has focused on how the Web 
possesses an amazing array of properties that smack of 
both simplicity and complexity. To better appreciate 
this point consider how complicated a miniature ver-
sion of the Web could be with only ten pages.

If each page is permitted to link to any of the ten, 
including itself, then there are 2100 different ways in 
which to connect up ten pages. This number is larger 
than the number of electrons in the universe. Now, 
instead of ten pages, think about billions and consider 
how complicated the Web could be if authors, pages, and 
users were not so regular in their collective behaviours. 
A billion pages with links pointing everywhere would 
truly be intractable and effectively unimaginable because 
no one would be able to make any sense out of it.

The point of this exercise is simple: the Web 
could have been tremendously complex, but it is 
not. In fact, the Web is exceedingly regular given its 
size and the lack of central authority. Moreover, this 
regularity can be exploited to make more effective 
algorithms for finding information on the Web.

Recall from the previous section our discussion of 
the PageRank algorithm. PageRank is mathemati-
cally very well understood. As an algorithm, it per-
forms an iterative calculation that must be repeated 
multiple times, and the required number of iterations 
is easily known in terms of the error rate (associated 
with not running it for an infinite number of steps) 
and the properties of the link structure of the Web.

If the Web was not self-organized and if the link 
structure did not follow a power law, in all likelihood 
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PageRank would not be a practical algorithm because 
its required number of iterations would be close to 
infinite. Instead, we know that the Web is a forgiv-
ing domain for PageRank, in the sense that its power 
law properties all but guarantee that PageRank will 
quickly converge to valuable results.

This is an extremely subtle but important point: 
the Web’s self-organized and fractal properties make 
it easier for algorithms to make sense of it. Moreover, 
these self-organized and fractal properties are a direct 
consequence of our (humanity’s) own self-organiza-
tion and fractal nature.

The Future

We believe that the Web is rapidly approaching the 
point that it will be humanity’s best effort of organ-
izing the collective knowledge of all humanity. It 
clearly surpasses the library of Alexandria and it will 
soon surpass the US library of Congress and all other 
libraries in sheer size.

The Web will continue to become an integral part 
of society, nearly blending into the background, as 
much of our society transitions into a dual nature that 
includes both a physical and a virtual existence.

We also believe that the generalized search problem 
– and the problem of building a nearly perfect search 
engine, in particular – will increase in importance as 
the need to find information on the Web becomes 
more ubiquitous and necessary to our day-to-day lives. 
In the future, Web search engines will radically change, 
ultimately possessing enough intelligence to simultane-
ously recognize the needs of the users that use it while 
making sense of the plethora of available information.

In short, we believe that the Web will become a 
mirror to humanity in the aggregate, and that the 
search engine will become a mirror to the human 
mind, and it is the self-organized and fractal nature 
of the Web that is both a symptom and a cause for 
this co-evolution.
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7 Fractal Financial 
Fluctuations

Benoît  Mandelbrot

In the great depression of the 1930s the economist John Maynard Keynes 
wrote: ‘We have involved ourselves in a colossal muddle, having blundered in the 
control of a delicate machine, the workings of which we do not understand.’ In this 
century the very same machine is far bigger and much more delicate and we 
continue to struggle desperately to understand just how it works.

The collapse of our banks, hedge funds and other lenders – as well as rising 
unemployment – leave us gasping for air, comprehension and reassurance. 
As we flounder it would be foolhardy not to investigate models providing 
more accurate estimates of risk. We do thankfully find that fractal and mul-
tifractal geometry throws considerable light on our ever-darkening puzzle.

A discipline better known as describing the shapes of coastlines and clouds 
and the distribution of galaxies and as having led to the discovery of the 
Mandelbrot set, this geometry has also been successful in describing the 
growth and collapse of financial prices. (Nigel Lesmoir-Gordon)
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Were all the fountains of the great deep broken 
up, and the windows of heaven were opened. 
And the rain was upon the earth forty days and 
forty nights. (Genesis: 6, 11–12)

There came seven years of great plenty throughout 
the land of Egypt. And there shall arise after 
them seven years of famine. (Genesis: 41, 29–30)

These two quotes from the Bible (In King James 
translation) suffice to show that Man has known for 
millennia that the Earth’s physical environment is 
subject to ferocious variations of at least two very 
separate kinds. The intensity of those fluctuations 
has, however, long been underestimated in the 
Sciences, hence not faced properly.

The same is true of the historical fluctuations on 
competitive markets, which are not ruled by physics, 
rather by the mostly unknown laws of financial eco-
nomics. As is being written, early in 2009, scream-
ing headlines bear witness that the unevenness, the 
“instability,” of both Nature and Culture has been 
very broadly and deeply underestimated.

Seeking a closer relation between theory and fact, 
I have been studying such “wild” fluctuations for 
about forty years. My extensive work on price vari-
ation may have been overshadowed – for example 
– by the Mandelbrot Set, but current events (early 
in 2009) demonstrate its significance. The present 
paper is an informal introduction.

Motivated by the two quotes from the Bible with 
which this piece began, my terminology classifies the 
threatening deviations in two categories. Because 
of the Biblical story of the Flood and Noah, “Noah 
Effect” will denote major changes that occur rapidly 
(even instantaneously) but have strong and dura-
ble consequences. Because of the Biblical story of 
the dream of Pharaoh and Joseph the son of Jacob, 
“Joseph Effect” will denote sequences of changes that 
need not seem threatening when viewed individually 
but have major cumulative effect.

The Noah and the Joseph obstacles to sustainability 
range from the wholly natural (earthquakes, volca-
noes, non man-made climate changes) to the wholly 
man-made. Both “effects” have long characterized 
the phenomena I have chosen to study most. I shall 
make minimal reference to the other aspects of the 
Noah and Joseph Effects, and focus on one field of 
application.

That field is the variation of financial prices, that 
is, of prices quoted on financial markets that trade 
securities, commodities, and exchange or inter-
est rates. The wild volatility of those markets has 
long been known. The details belong to political 
economy and will be briefly touched upon at the 
end of this chapter. Here, the aim of this chapter 
is to further the knowledge of the underlying facts 
and to contribute to a better understanding of price 
variation. Inevitably, it criticizes previous strongly 
held views on this topic, particularly, the “coin toss-
ing” or Brownian model. Unfortunately and perhaps 
surprisingly, the existing models of financial price 
variability are not good enough and new research is 
keenly needed, because the points that matter most 
have, in previous research, been deliberately set aside 
or disregarded.

The point of departure is that financial prices, 
including those of securities, commodities, foreign 
exchange or interest rates, are largely unpredictable. 
The best one can do is to evaluate the odds for or 
against some desired or feared outcomes, the most 
extreme being “ruin.” Those odds will also be used as 
inputs for decisions concerning economic policy or 
changes in institutional arrangements. To handle all 
those issues, the first step – but far from the last! – is 
to represent different instances of price variation by 
suitable random processes.

The word “suitable” and the plural in “proc-
esses” will surprise many readers. It is, indeed, widely 
believed that “random change” is a synonym for 
“prices that move up a bit or down a bit following the 
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toss of a coin.” The technical term is “simple random 
walk.” It was made popular by a book title that won 
the high distinction of becoming a cliché, namely, 
“random walk down the Street.”

The belief that there is no alternative is strength-
ened by the fact that – in effect – the coin tossing 
model dates to 1900! It is, indeed, by far the oldest 
and the most widely used model of price variation. 
The (unsaid) point of departure of this chapter is 
that the term, random, has a far broader meaning, 
allowing the coin tossing model to be replaced by 
alternatives. It will be argued that the “multifractal” 
alternative that I put forward is very suitable indeed.

The multifractal model does not belong to esoter-
ic mathematics and it must not be allowed to remain 
part of pure science. Its practical consequences are 
many and very serious. The first but not last is in 
the spirit of the Hippocratic Oath, “do no harm,” 
which deserves to be generalized to finance and is 
best expressed in nautical terms. When a ship was 
built to navigate placid lakes by fair weather, to 
send it across the ocean in typhoon season is to do 
serious harm. Similarly, the “coin tossing” model of 
financial prices (and its kin) may well be beloved by 
mathematicians, but it denies the existence of hur-
ricanes; therefore it is dangerous.

The preceding nautical analogy will be heavily 
used throughout this text, because it resides at the 
very centre of the present study. Many alternatives to 
the coin tossing model are available, but the multi-
fractal alternative differs from the others in “qualita-
tive” ways that have immediate consequences for 
finance and economic policies.

The coin tossing model exemplifies a form of ran-
domness (a “state of randomness,” as I shall argue) 
that can be called “mild.” Had the evidence agreed 
with this model – but it does not at all – variability 
in finance would be as easily controllable as is vari-
ability in physics.

However, the coin tossing model must not be 
criticized too hard. It is always best to start with the 
simplest possible model and hold to it until it has 
begun to bring more harm than value. In its time, it 
played a fundamental and positive role in creating 
awareness of the difficulty of even the simplest forms 
of randomness. One can also argue that for the “man 
in the street” coin tossing is an adequate description 
of the facts. But policy makers and the professionals 
in finance are (or should be) far more demanding 
for them, as will be seen. It matters very much that 
coin tossing is very far from accounting for some 
essential facts.

Once again, the history of price variation is filled 
with “financial hurricanes” while we shall see that coin 
tossing claims that they practically never happen. 
Shipbuilders and ship owners cannot predict the 
dates and destructiveness of the hurricanes their vessel 
will encounter over its lifetime. But the knowledge 
that hurricanes will happen – and realistic evaluation 
of the corresponding odds – permeates ship-building, 
ship ownership and navigation.

This chapter argues that tools needed to acquire 
some mastery of the intensities of financial hurricanes 
are already available. They are those of fractal and 
multifractal geometry, a discipline better known as 
describing the shapes of coastlines and clouds and the 
distribution of galaxies and as having led to the dis-
covery of the Mandelbrot set. My claim is that it also 
describes the growth and collapse of financial prices.

Pick the Fakes

This chapter includes a multitude of words or num-
bers and also of formulas and dry diagrams. Without 
mastering them, my claims and contributions cannot 
be fully understood and appreciated. But to make 
the central point, words and formulas are not really 
necessary if one uses diagrams.
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To explain this, the best and quickest way is to 
encourage the reader to participate in a test concern-
ing Figs. 7.1 and 7.2. No one is asked to accept pic-
tures as the sole or final arbiter in scientific discourse, 
only as a useful additional tool. Pictures are often 
used to delude, but in this instance they deserve to 
be described as uncovering a widespread delusion and 
assisting in the selection of an improvement.

Drawn in no particular order, some of the graphs 
in Fig. 7.1 are “real” plots of the behaviour in time of 
some actual financial prices. Other graphs are compu-
ter drawn “forgeries” of the outputs of diverse models. 

The real ones follow the practice of financial journals 
and trace the sequence of daily closing of some price 
series such as security, commodity, foreign exchange, 
or interest rate. The “forgeries” correspond to more or 
less effective imitations of financial reality – provided 
by mathematical models that are fully specified in 
quantitative fashion, therefore can be sampled and 
illustrated without resorting to unreported stretching 
and reducing or other such manipulations. For each 
graph of Fig. 7.1, Fig. 7.2 plots the “price” differences 
from one day to next.

Now the “find-the-fakes test” can be described: you 
are asked to separate reality and forgery as completely as 

Fig. 7.1 A collection of diagrams, illustrating – in no particular 
order – the behaviour in time of some actual financial prices 
and of some mathematical models of this behaviour. It would 
be very difficult to pick the fakes.

Fig. 7.2 A stack of diagrams, illustrating the successive “daily” 
differences in some actual financial prices and some mathe-
matical models. The reader is challenged to pick the fakes.
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you can. For a perfect score, you must rank the diagrams 
from “most obviously a forgery” to “apparently real.”

When the test relates to Fig. 7.1, all records look 
very much alike. To separate the real and forged 
records is very difficult. This impression is confirmed 
by looking through the financial press and the books 
on the mathematics of finance. The optimist will rush 
to conclude that coin tossing – which is represented by 
one of the graphs in Fig. 7.1 – is perfectly acceptable.

Unfortunately, as we shall see momentarily, this 
optimism would be seriously misplaced. The resem-
blance between those curves is due to the fact that, 
on graphs of prices themselves, important differences 
are not revealed or enhanced. They are hidden. 
In other words, plots of prices are a very misleading 
way of presenting information. This is well-known to 
students of the psychology of vision: position is seen 
less accurately than change.

In sharp contrast, the lines in the stack of this 
Fig. 7.2 strikingly differ from one another. The mean-
ing of those differences will be refined through this 
chapter, which should end by revealing the solution 
of the test.

Large Stock Market Movements  
and Their Odds

Individual investors and professional stock and cur-
rency traders know better than ever that prices 
quoted in any financial market often change with 
heart-stopping swiftness. Fortunes are made and lost 
in sudden bursts of activity when the market seems 
to speed up and the volatility soars.

In September 1998, for instance, the stock for Alcatel, 
a French telecommunications equipment manufac-
turer, dropped about 40% one day and another 6% 
over the next few days. In a reversal, the stock shot up 
10% on the fourth day. On a longer time scale most real 
price changes behave like those in the lower portion 

of Fig. 7.2. However, not all lines at the bottom of 
Fig. 7.2 are real. (However, I am not giving away the 
test the reader is in the process of taking!)

The coin tossing model, which served as founda-
tion for the theory of finance used most widely during 
the twentieth century, is represented by the top line 
of Fig. 7.2 (now, I am giving away part of the test). As 
we see, precipitous events like the Alcatel debacle are 
given totally negligible odds. Certainly, they should 
never happen in the lifetime of this generation and 
the next few. A cornerstone of finance is “modern 
portfolio theory,” which tries to maximize returns 
for a given level of risk. The mathematics underlying 
portfolio theory ignore the possibility of a typhoon.

This term, coin-tossing, is actually an oversimpli-
fication However, the risk-reducing formulas behind 
portfolio theory rely on a number of demanding 
premises that are mathematically attractive but rely 
on hope rather than reality. First, they suggest that 
price changes are statistically independent of one 
another: for example, that today’s price has no influ-
ence on the changes between the current price and 
tomorrow’s. This is the “efficient market” hypothesis 
– attractive beyond words, but simply lethal.

The second assumption is that all price changes are 
distributed in a pattern that conforms to the standard 
“bell curve” of statistics. Of the three curves in Fig. 7.3, 

Fig. 7.3 Shapes of the Gaussian distribution and of two “stable” 
distributions. The latter provide a far better fit for many financial 
data, but the multifractal model is even more satisfactory.
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the bell curve is the flattest in the centre. The width 
of its bell (as measured by its “sigma,” or standard 
deviation) depicts how far price changes diverge from 
the mean. In this perspective, 95% of all cases fall 
into the narrow range between minus two sigmas and 
plus two sigmas. As was already mentioned and will 
be elaborated momentarily, the bell curve declares 
extreme events to be extremely rare. Typhoons are, in 
effect, defined out of existence.

Do financial data neatly conform to such assump-
tions? Of course, they never do! This is shown by a more 
attentive inspection of the bottom portion of Fig. 7.2. 
It is true that charts of stock or currency changes over 
time reveal a constant background of small up and 
down price movements – though not as uniform as one 
would expect of price changes that fit the bell curve. 
Invariably, however, these patterns constitute only one 
aspect of the graph. A substantial number of sudden 
large changes – spikes on the chart that shoot up and 
down as with the Alcatel stock – stand out from the 
background of more moderate perturbations.

But the presence of “long tails” is very far from 
being all. Equally important is the fact that successive 
price movements are not independent. It is typical of 
their magnitude – large or small – to remain roughly 
constant for an extended period and then suddenly 
and unpredictably increase or decrease for another 
extended period. Big price jumps become more com-
mon as the turbulence of the market grows – they 
cluster on the chart, expressing an obvious amount 
of dependence.

According to the coin tossing model, these large 
fluctuations often exceed ten sigmas, meaning ten 
standard deviations. This value is so huge that stand-
ard textbook tables of the Gaussian fail to include it. 
But a good calculator should show that their proba-
bility is a few millionths of a millionth of a millionth 
of a millionth, that is, approximately one day out of 
ten million million million years. If risks were so 

tiny, they would not deserve even a passing thought. 
But this tiny value grossly contradicts the evidence. 
The real world of finance produces “ten sigma” spikes 
on a regular basis – as often as every month, to give 
an idea – and their probability should be expected to 
be a few hundredths.

The tiny probability mentioned a few lines above 
illustrates that the Gaussian practically vanishes near 
the left and right ends of the graph. Had the horizontal 
axis been part of Fig. 7.3 (which – by design – it is 
not), it would have hidden those insignificant tails.

Reality is incomparably better represented by the 
other two curves in Fig. 7.3, both with more peaked 
heads and fatter tails. These curves belong to the 
“M 1963 model” produced by my first attack on 
financial data. Having revealed this fact, it is best 
to narrow down the test the reader is supposed to 
be taking. Price changes according to the M 1963 
model are the source of the second line in Fig. 7.2. 
This is clearly better than the top line, to be sure, but 
far from being the last word.

Coin Tossing Normality Versus  
the Financial Reality

The bell curve is often described as illustrating 
the “normal” distribution. But does it follow that 
financial markets should be described as “abnormal 
or anomalous”? Of course, not. They are what they 
are, and it is the coin tossing model, and therefore 
portfolio theory, which is flawed.

Modern portfolio theory poses a danger to those 
who believe in it too strongly and is a powerful chal-
lenge for the theoretician. The extremely bearish 
answer acknowledges faults in the present body of 
thinking, yet claims that there is no alternative: that 
very large market swings are anomalies, individual 
“acts of God” that present no conceivable regularity. 
Other adherents suggest that no other premise can 
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both be handled through mathematical modelling 
and lead to a rigorous quantitative description of at 
least some features of major financial upheavals. In 
the absence of an alternative, coin tossing must be 
maintained, “faute de mieux.”

An increasingly wide agreement is being reached 
that this extremely bearish view is untenably bad sci-
ence and that the coin tossing model must be replaced 
by one that allows (near-)instantaneous price changes 
and substantial temporal dependence. This agreement 
marks a change of mood in the “mainstream,” bring-
ing it toward the views I have been campaigning for 
since 1963 and 1965, respectively. From this point 
on, however, two general approaches are in conflict, 
leading to what I shall call “micromanaged” and 
“macromanaged” models.

Micromanaged models agree with my diagnosis 
but not my follow-up. They proceed through a series 
of “fixes.” Each fix “patches” a perceived defect of 
coin tossing, independently of its other defects. The 
outcome is that this approach accumulates a large 
number of parameters and no property is present that 
was not knowingly incorporated in the construction. 
In the nautical analogue, the fixes consist in length-
ening a small boat’s keel, lengthening its mast, rein-
forcing its engine, etc..., one by one. My experience 
of successful modeling in other fields has fostered 
deep a priori doubts about the chances of microman-
aged modeling in finance. But personal prejudices 
would not have mattered if a posteriori modeling had 
been effective. I think it has not.

My own work – carried out over many years – takes 
the very different and decidedly bullish position that 
it is clearly preferable to design a large boat from 
scratch. I claim that a financial model can be rede-
signed following an approach that is macromanaged 
by being guided by a principle of fractal invariance, 
to which we shall come soon. The outcome, as 
I propose to show, is that the variation of financial 

prices can be accounted for by a model derived from 
my work in fractal geometry in an elaboration called 
multifractals. Once again, I never claimed the ability 
to predict the future with certainty. But multifractals 
do create a more realistic picture of market risks. 
Given the recent events (this is written in January, 
2009) it would be foolhardy not to investigate models 
providing more accurate estimates of risk.

Fractals, Multifractals and the Market

An extensive mathematical basis already exists for 
fractals and multifractals. Fractal patterns do not only 
appear in the price changes of securities but also in 
the distribution of galaxies throughout the cosmos, in 
the shape of coastlines and in the decorative designs 
generated by innumerable computer programs.

A fractal is a geometric shape with the property 
that it can be separated into parts, each of which is a 
reduced-scale version of the whole and has that same 
property itself. (The trouble is that by this definition 
an interval or square are fractals. This problem is 
familiar in a classical context, insofar as the defini-
tion of complex numbers does not prevent them from 
being real.) In finance, this concept is not a rootless 
abstraction but a theoretical reformulation of a down-
to-earth bit of market folklore, namely, the notion 
that movements of a stock or currency all look alike 
when a market chart is enlarged or reduced so that it 
fits some prescribed time and price scales. This implies 
that an observer cannot tell which of the data con-
cern price changes from week to week, day to day, or 
hour to hour. This quality defines the charts as fractal 
curves and many powerful tools of mathematical and 
computer analysis become available.

A technical term for this form of close resem-
blance between the parts and the whole is self-
affinity. This property is related to the better-known 
concept of fractals called self-similarity, in which 
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every feature of a picture is reduced or blown up 
by the same ratio, a process familiar to anyone who 
ordered a photographic enlargement or a photocopy. 
Financial market charts, however, are far from being 
self-similar. If we simply focus on a detail of a graph, 
the features become increasingly higher than they 
are wide – as are the individual up-and-down price 
ticks of a stock. Hence, the transformation from the 
whole to the parts must shrink the time scale (the 
horizontal axis) less than the price scale (the verti-
cal axis). This task is routinely performed by copiers 
using lasers. The geometric relation of the whole to 
its parts is said to be one of self-affinity.

Unchanging properties are not given much weight 
by most statisticians, but they are beloved of physicists 
and mathematicians like myself. We call them invar-
iances and are happiest with models that present an 
attractive invariance property. A good idea of what 
I mean is provided by drawing a simple chart that 
inserts (interpolates) price changes from time 0 to a 
later time 1 in successive steps. The intervals them-
selves are chosen arbitrarily; they may represent a 
second, an hour, a day or a year.

The process begins with a price represented by a 
straight trend line called “initiator,” shown in the 
top panel of Fig. 7.4. Next, a broken line called 
“generator” is used to create the pattern that corre-
sponds to a slow up-and-down price oscillation. It is 
obviously essential that the number and positions of 
the pieces of the generator are completely specified. 
As soon as one allows oneself the right to fiddle with 
the generator during the construction, no prediction 
can be made.

In Fig. 7.4, the generator consists of three pieces 
that are inserted (interpolated) to refine the straight 
trend line. A generator with fewer than three pieces 
could not simulate a price that must be able to 
move up and down. Then each of the generator’s 
three pieces is interpolated by three shorter ones. 

Repeating these steps reproduces the shape of the 
generator, or price curve, but at increasingly com-
pressed scales. Both the horizontal axis (time scale) 
and the vertical axis (price scale) are squeezed to fit 
the horizontal and vertical boundaries of each piece 
of the generator.

Fig. 7.4 Constructing a “pseudo-Brownian cartoon” of the 
idealized coin-tossing model that underlies modern portfo-
lio theory. The construction starts with a linear trend (“the 
initiator”) and breaks it repeatedly by following a prescribed 
“generator.” The interpolated generator is inverted for each 
descending piece. The pattern that emerges increasingly 
resembles market price oscillations.
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Interpolations Continued (Not Quite) 
Forever

Only four construction stages are shown in Fig. 7.4, 
but the same process continues. In theory, it has no 
end, but in practice, it makes no sense to interpolate 
down to time intervals shorter than those between 
transactions, which may be of the order of a minute. 
The fact that each piece ends up with a shape like 
the whole is not a surprise: this scale invariance is 
present simply because it was built in. The novelty 
(and surprise) is that these very simply defined self-
affine fractal curves suffices to exhibit a wealth of 
structure. The beauty of fractal geometry is that it 
does not consist in micromanaged models in which 
everything of interest has been inputed separately. 
Fractals involve only macromanaged instructions, 
yet yield models general enough to reproduce the 
patterns that characterize portfolio theory’s placid 
markets as well as the tumultuous trading conditions 
of real markets. Indeed the construction’s outcome, 
if plotted as in Fig. 7.2, is very sensitive to the exact 
shape of the generator.

For example, Fig. 7.4 uses a very special genera-
tor that – according to a theory I developed – will 
produce a behaviour that is pseudo-Brownian, mean-
ing that it is close to the relatively tranquil “mildly 
random” picture of the market ruled by coin tossing. 
But this level of tranquillity prevails only under 
extraordinarily special conditions that are satisfied 
only by equally special generators. Figure 7.3 satisfies 
those conditions because each generator segment’s 
height – namely, 2/3, 1/3 or 2/3 – was made equal 
to the square root of the corresponding width – 
namely, 4/9, 1/9 or 4/9. This “square root rule” is a 
characteristic of a process physicists call “simple dif-
fusion.” Adherence to the assumptions behind this 
oversimplified model is one of the central mistakes of 
modern portfolio theory. It is much like a theory of 
sea waves that forbids the swells to exceed six feet.

A first and very important generalization of 
Fig. 7.4 yields models that are non-Brownian but 
can be called “unifractal.” It consists in continuing 
to require that the height of every segment of the 
generator be linked to its width by the same relation 
in the form of a power H. Previously, we set H = 1/2 
, but a different value of H can be chosen, as long as 
it is positive and less than 1. Taking H = .7 suffices to 
change the top line of Fig. 7.2 into its third line.

On the corresponding graphs in Fig. 7.1, the place 
of tranquility and mildness is taken by movements 
that are non-periodic but described by everyone as 
“cyclic” with many apparent cycle lengths, ranging 
from very small up to “about three cycles in a sam-
ple.” (This last rule is a remarkable observation that 
cannot be elaborated here.) Here, cyclic behaviour is 
present in the output without having been incorpo-
rated in the input. This is lovely, but large spikes of 
variation were lost and must be reinstated.

There is a second and far more drastic generaliza-
tion of Fig. 7.3. So far, market activity was assumed 
constant but one can allow it to speed up and slow 
down. This variability is the essence of volatility. In 
fact, practical people describe the diverse lines at the 
bottom of Fig. 7.2 as proceeding at many different 
speeds and at different times. This is why models that 
allow for variability add the prefix “multi” before the 
word “fractal.”

To define “activity” is beyond our concern and 
not necessary. The key idea is that the market does 
not follow the physical time that proceeds with the 
relentless regularity of a clock, but instead a subjec-
tive time that flows slowly during some periods and 
fast during others.

In this spirit, the theory provides a neat “trans-
mutation” from uni to multifractal. The key step 
shown in Fig. 7.5 is to lengthen or shorten the hori-
zontal time axis so that the pieces of the generator 
are either stretched or squeezed. At the same time, 
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the vertical price axis may remain untouched. As 
seen on the “back” wall of Fig. 7.5, the first piece of 
the unifractal generator is progressively shortened, 
which also provides room to lengthen the second 
piece. After making these adjustments, the genera-
tors become multifractal (M1 to M4). As seen on 
the “floor,” of Fig. 7.6, market activity speeds up in 
the interval of time represented by the first piece 
of the generator and slows in the interval that cor-
responds to the second piece.

When the generators in Fig. 7.5 are used recur-
sively, one obtains the patterns shown in Fig. 7.6. 

Recall that those patterns do not pretend to exhaust 
all the possibilities offered by either theory or the 
facts. Their sole aim is to show the power of the very 
simplest fractal models.

Such an alteration to the generator can produce 
a full simulation of price fluctuations over a given 
period, using the process of interpolation described 
earlier. Each time the first piece of the generator 
is further shortened. The process of successive 
interpolation produces a chart that increasingly 
resembles the characteristics of volatile markets 
(Fig. 7.7).

Once again, the unifractal (U) chart that prevails 
before any shortening corresponds to the becalmed 
markets postulated in the portfolio theorists’ model. 
Proceeding down the stack (Ml to M4), each chart 

Fig. 7.5 This open cube illustrates related generators: The 
“right wall” shows an oscillating generator in trading time. 
This is the pseudo-Brownian (unifractal) generator of Fig. 7.4. 
The “back wall” shows four multifractal oscillating generators 
in clock time. The “floor” shows the generators that relate the 
clock time to trading time. Each is an increasing function of 
the other. Moving a piece of the fractal generator to the left 
causes the same amount of market activity in a shorter time 
interval for the first piece of the generator and the same 
amount in a longer interval for the second piece.

Fig. 7.6 The underlying pattern is as in Fig. 7.5, but limited to 
the left-most generator, and the generators are replaced by 
the curve obtained by repeating it recursively as done in 
Fig. 7.3. To make the picture clearer, the back and right wall 
are moved away from the floor.
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diverges further from that model, exhibiting the 
sharp, spiky price jumps and the persistently large 
movements that characterise financial trading.

To make these models of volatile markets achieve 
the necessary realism, the figures involve an important 
detail, which has not been mentioned yet. The three 
pieces of each generator were scrambled – a process 
not shown in the illustrations. It works as follows. 
Altogether, the three pieces of the generator allow 
the following six permutations:

1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2 and 3,2,1.
Conveniently enough, a die has six sides; imagine 

that each bears the image of one of the six permuta-
tions. Before each interpolation, the die is thrown 
and the permutation that comes up is selected.

Back to the Game of Picking  
the Fakes

How do simulations of the multifractal model stand 
up against actual records of changes in financial pric-
es? To respond, let us return to Fig. 7.2, which is a 
composite of several historical series of price changes 
with a few outputs of artificial models.

As we have already observed the goal of modelling 
the patterns of real markets is certainly not fulfilled 
by the first chart, which is extremely monotonous 
and reduces to a static background of small price 
changes, analogous to the static noise from a radio. 
Volatility stays uniform with no sudden jumps. In a 
historical record of this kind, daily chapters would 
vary from one another, but all the monthly chapters 
would read very much alike.

The rather simple second chart is less unrealistic, 
because it shows many spikes; however, these are 
isolated against an unchanging background in which 
the overall variability of prices remains constant. 
The third chart has interchanged strengths and failings, 
because it lacks any precipitous jumps.

The eye tells us that these three diagrams are unreal-
istically simple. Let us now recall the sources. Chart 1 
illustrates price fluctuations in a model introduced in 
1900 by French mathematician Louis Bachelier. The 
changes in prices follow a “random walk” that con-
forms to the bell curve and illustrates the model that 
underlies modern portfolio theory. Charts 2 and 3 are 
partial improvements on Bachelier’s work: one is the 
“M 1963” model, which I proposed in 1963 (based 
on Levy stable random processes). The other is the 
“M 1965” model, which I published in 1965 (based 
on fractional Brownian motion). These revisions of 
coin tossing are inadequate, except under certain 
special market conditions.

By now, the test around which this chapter is struc-
tured has been reduced to a careful inspection of the 
more important five lower diagrams of the graph.  

Fig. 7.7 Randomized multifractal “price increments” that cor-
respond to the five multifractal generators in Fig. 7.5. On 
top a pseudo-Brownian sequence of “price increments”. A 
gradual displacement of the generator to the left causes 
market activity to increase gradually, becoming more and 
more volatile.
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Let me now add a piece of information that was 
withheld until now: at least one record is real and at 
least one is a computer-generated sample of my latest 
multifractal model. The reader is free to sort those five 
lines into the appropriate categories. I hope the forger-
ies will be perceived as surprisingly effective. In fact, 
only two are real graphs of market activity. Chart 5 
refers to the changes in price of IBM stock and chart 6 
shows price fluctuations for the dollar/deutschemark 
exchange rate. The remaining charts (4, 7 and 8) bear 
a strong resemblance to their two real-world predeces-
sors. But they are completely artificial.

Two technical points must be mentioned before 
moving on to conclusions. The recursive constructions 
in the body of the chapter were nothing but “cartoons”. 
The artificial charts 4, 7 and 8 were, instead, generated 
through a refined form of my multifractal model, called 
“fractional Brownian motion in multifractal trading 
time.” Secondly, this introductory survey necessarily 
emphasizes graphics, but – once again – the theory 
of multifractals is endowed with full numerical tools 
of analysis.

Very Tentative Conclusions: 
Diversification and Reinsurance

What conclusions should be drawn from all this? 
Does this matter to a corporate treasurer, currency 
trader or other market strategists? Does this matter to 
the central banker and others concerned with overall 
financial and economic policy? Does this matter to 
the economist who seeks to explain the workings 
of the economy and concedes that his task may be 
helped by an accurate description of part of what is 
to be explained?

All those questions arise because the discrepancies 
between coin-tossing and the actual movement of 
prices have become too obvious to be ignored much 
longer. Prices do not vary continuously, and they 
are subjected to wild fluctuations at all time scales. 

Volatility – far from a static entity to be ignored or 
easily compensated for – is at the very heart of what 
goes on in financial markets. In the past, nearly eve-
ryone embraced the modern portfolio theory because 
of the absence of strong alternatives. But one need 
no longer accept it at face value.

However, the multifractal alternative is very 
young and very far from being fully developed. It 
deserves to draw attention (and criticism). By con-
trast, modern portfolio theory was formulated years 
ago and was energetically developed ever since.

Moreover, wild variability is a new notion endowed 
with little inherited capital. Modern portfolio theory 
inherited a large accumulated capital of techniques 
that statisticians designed to deal with mild Gaussian 
variability. The challenge was to adapt them to the 
context of financial prices.

Therefore, it is necessary, as we near a conclusion, 
to separate thoughts concerning the near future from 
thoughts concerning the longer range. Multifractals 
can immediately be put to work to “stress-test” port-
folios, in particular, from the viewpoint of a quantity 
called “value at risk,” whose definition is unfortu-
nately beyond the scope of this chapter. Stress-
testing begins by questioning how a portfolio would 
have performed if it had been designed a while ago. 
That is, the simplest stress test merely uses historical 
data. But the actual market test will not come in the 
past, but rather in the future, and a future that simply 
repeats the past is only one of many alternatives, and 
not a very likely one.

The goal of every model of price variation (coin-
tossing not being an exception) is to use the past 
to create the same patterns of variability as do the 
unknown rules that govern actual markets. This 
attempt should yield a collection of alternative 
scenarios for the future, and stress-testing should 
include tests based on many such alternatives.

According to the coin-tossing model, the differ-
ences between those alternatives are comparatively 
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slight. Not so with the multifractal models. They 
describe the past market fluctuations more realisti-
cally and the scenarios they propose for the future 
include a quota of extreme events that will really 
stress a portfolio. This is all that can be said on this 
subject at this point.

Of greatest interest, at least to me, are problems 
that the multifractal model confronts on broader 
institutional, temporal and spatial horizons. They 
are more important than any detail and question the 
worth of the widespread faith in the power of diver-
sification and other forms of lumping and averaging. 
Here an enlightening analogy and powerful guidance 
for the future is provided by a distinction between 
different levels of insurance that relates to my dis-
tinction between mild and wild “states” of chance.

Most life, automobile, or homeowner risks are 
mild. Very much like the coin-tossing model of 
price change, they fall within a narrow range and 
are mutually independent. Even when a portfolio of 
insurance contracts is small, the wonders of diversifi-
cation (due to the law of large numbers and related 
mathematics) can be trusted to create a risk of ruin 
that is sufficiently small to be profitable even for an 
insurance company with limited reserves. To play safe 
and to insure the occasional higher risk, the insurer of 
mild risks will seek reinsurance – which will seldom 
be needed, therefore will not be expensive. When a 
tornado defeats diversification of homeowner policies 
the reinsurer is likely to be an entity that had col-
lected no premiums, namely an agency of a state.

However, many other risks seeking to be insured 
are wild, very much like in my multifractal model 
of price change. They involve the equivalents of 
the notorious “ten sigma” price changes that were 
discussed earlier in this chapter. Ordinary diver-
sification would be defeated by such risks, even if 
the number of cases had sufficed for a law of large 
numbers to apply. More precisely, the odds of those 
wild risks, if included in the usual calculations, 

would imply reserves that are clearly unreason-
able. However, such risks become insurable if they 
are immediately shared with reinsurers (or almost 
directly with competitors, as is apparently the case in 
the shipping industry).

The key fact is that insurers cannot survive by 
only considering the “fair weather” 95% of the 
claims, which would have easily been diversified. 
Not only can the 5% of large “foul weather” claims 
not be ignored, but their odds are non-negligible and 
are an essential input of planned and carefully priced 
reinsurance.

Once again, theories based on coin-tossing legislate 
this “foul weather” out of existence, but it is evident 
that many features of the real world are best under-
stood as designed to tackle comparatively rare but 
potentially disastrous situations. It is indeed filled with 
state or private institutions and informal or ad-hoc 
arrangements, whose purpose can be viewed as that of 
reinsurance. A central part of my thinking in finance 
is that those arrangements may have worked in the 
past but cannot be relied upon in the future. As for 
institutions, their role deserves a fresh examination.

As a result of globalisation and of the events of 
2006, the relevance of the preceding comments on 
insurance is bound to increase. Under the coin-
tossing model, the effects of globalisation are limited. 
But the actual behaviour of financial prices confirms 
what intuition suggests: the larger the markets, the 
greater the attention demanded by the potentially 
disastrous effects of financial storms.

To conclude, no overall mathematical technique 
comes close to forecasting a price drop or rise on a 
specific day on the basis of past records. Multifractals 
do not claim to do any better. But they provide 
estimates of the probability of what the market 
might do in the future and allow one to prepare 
for inevitable sea changes. The new modelling 
techniques are designed to cast a light of order into 
the seemingly impenetrable thicket of the financial 
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markets. They also recognize the mariner’s warning 
that, as recent events demonstrate, deserves to be 
heeded: On even the calmest sea, a gale may be just 
over the horizon.
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8 Filming The  
Colours of Infinity

Nigel  Lesmoir-Gordon

Film-maker Lesmoir-Gordon offers a fascinating behind-the-scenes 
account of how a modern cult classic came into being. The task of 
moving from a ‘Eureka!’ moment of understanding the Mandelbrot 
Sets for the first time to making a compelling and saleable film 
about them was beset by challenges, on technical, logistical and 
financial levels, but was also helped by many strokes of good 
fortune. The sustaining vision, in the director’s own words, was to 
‘set out to make, not a deeply mathematical, analytical piece, but 
rather a celebration of a remarkable discovery. I wanted it to be fun. 
I knew it had to entertain at some level if it was going to reach a 
really wide audience.’ This chapter is followed by a transcript of the 
final script of The Colours of Infinity.
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applications of fractal geometry
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Plato sought to explain nature with five regular solid forms. 

Newton and Kepler bent Plato’s circle into an ellipse. Modern 

science analysed Plato’s shapes into particles and waves, and 

generalised the curves of Newton and Kepler to relative prob-

abilities – still without a single ‘rough edge’. Now, more than 

two thousand years after Plato, nearly three hundred years after 

Newton, Benoît Mandelbrot has established a discovery that 

ranks with the laws of regular motion.

In the late summer of 1991 I was reading Professor 
Ian Stewart’s book on the new mathematics, 
Does God Play Dice? and Sir Roger Penrose’s 

The Emperor’s New Mind. On 12 August of that 
year a truly remarkable corn circle was discovered 
near Cambridge, whose formation has come to be 
known as ‘The Ickleton Mandelbrot’. Ickleton is 
five miles from where I live. It quickly became part 
of local folklore. Reading Ian Stewart’s and Roger 
Penrose’s books I was simultaneously discovering for 
myself, for the first time, the Mandelbrot Set and 
fractal geometry. This was a revelation to me. I was 
reading the books as part of some ongoing research 
I was doing into cosmology and the new maths for a 
documentary I was hoping to make.

Interestingly in both books the chapters on the 
M-set have most poetic and evocative titles and 
both refer to the Set itself. Stewart calls his chapter 
‘The Gingerbread Man’ and Penrose ‘The Land of 
Tor’ Bled-Nam’. In a mathematics book! Well, right 
off they looked intriguing, and indeed they were.

And once I had seen the Mandelbrot Set and then 
read about it, I was hooked. So what was it about the 
M-set that drew me in? It was that this mathemati-
cal entity should look so organic – like an insect or a 
hairy potato – and that it was infinitely complex and 
yet born from such humble beginnings – a simple 

equation with just three components. You would be 
hard-pressed to find anything simpler. As Professor 
Ian Stewart says in the film:

There’s an interesting parallel with the equation 
that almost everybody is familiar with – the only 
equation that everybody is familiar with: e = mc2. 
Albert Einstein’s equation, which says that mat-
ter and energy are equivalent to each other. That 
was a very simple equation with very far-reaching 
consequences. And the equation for the Mandel-
brot Set is equally simple: Z  z2 + c

But there is one big, big difference, though, between 
the equation for the M-set and Einstein’s famous 
equation. In Mandelbrot’s equation there’s no equal 
sign. Instead there’s a double arrow. This works as a 
kind of two-way traffic sign, allowing the numbers 
to flow in both directions, constantly feeding back 
on themselves. The numbers go round and round in 
a loop. This effect is called iteration. The output of 
the first operation becomes the input of the second 
operation, becomes the output of the third operation 
and so on. In just this same way evolution proceeds 
in nature through an iterative feedback loop.

And the structures, which we find in the 
Mandelbrot Set do remind us of many things we 

Professor Eugene Stanley
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see in the natural world. There are spirals and ten-
drils like the finest gossamer, each precisely formed. 
These curlicues look, not so much like crystal 
structures, as like plants, which have grown with a 
regularity amounting to perfection. Some resemble 
the tails of sea horses, others like spiralling seashells 
or the petals of some intricate flower. No matter how 
far we dive into the Mandelbrot Set, we can never 
reach the end of it, nor will it ever cease to create 
more patterns, more structures, more intricate forms. 
It is infinitely complex.

Professor Rudy Rucker wrote:

The image is a bit like a bug: a big warty 
buttocks-shape with a disk stuck onto it. There’s 
an antenna sticking out of the disk, and shish-
kababbed onto the antenna are tiny little 
Mandelbrot sets: buttocks, warts & disk. Each of 
the warts is a Mandelbrot disk, too, each with a 
wiggly antenna coming out, and with shish ka-
babs of buttocks, warts & disks, with yet smaller 
antennae, buttocks, warts, and disks.

Now, I found it amazing that this extraordinary 
creature should be born from this ridiculously simple 
equation. Eureka! The power and beauty of math-
ematics was revealed to me for the first time. I got 
it. The scales were lifted from my eyes and I could 
finally see the link between mathematics, the mind 
and the physical, observable universe.

The point is that the universe is described most 
effectively and accurately using the language of math-
ematics. The subatomic world can only be described by 
physicists through the language of mathematics. There 
is no other way to talk about the very, very small.

There is one more extremely important aspect 
of this equation, which I have not yet mentioned, 
which is that z and c are complex numbers. Complex 
numbers are among the most important ideas in 
the whole of mathematics. Complex numbers have 
their own arithmetic, algebra and analysis. They rely 
for their existence on an act of pure mathematical 
imagination: that is, to agree that minus 1 is allowed 

Once I had seen the Mandelbrot Set and then read about it, I was hooked.
So what was it about the M-set that drew me in? It was that this 
mathematical entity should look so organic – like an insect or a hairy
potato – and that it was infinitely complex and yet born from such 
humble beginnings – a simple equation with just three components.
you would be hard-pressed to find anything more simple.
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to have a square root – the square root of minus 
one: √−1. Complex numbers have two components 
or coordinates: ‘real’ and ‘imaginary’. They were 
originally invented as a mathematical tool to help 
solve equations. For mathematicians now imaginary 
numbers are just as ‘real’ as real numbers. They are 
connected to reality at a deep level.

Since the square root of a negative number can-
not be placed anywhere on the number line, math-
ematicians up to the nineteenth century could not 
ascribe any sense of reality to these quantities. The 
great Leibniz, inventor of the Differential Calculus, 
attributed √−1 a mystical quality, seeing it as a 
manifestation of the Divine Spirit. He called it ‘that 
amphibian between being and not being’.

A century later, Leonhard Euler wrote in his work 
ALGEBRA in words that still echo the same sense 
of wonder:

All expressions such as the square root of minus 
one (√−1) are impossible or imaginary numbers, 
since they represent roots of negative quantities. 
Of such numbers we may truly assert that they 
are neither nothing, nor greater than nothing, 
nor less than nothing.

Carl Friedrich Gauss declared forcefully that ‘an 
objective existence can be assigned to these imagi-
nary beings’. Gauss realized that there was no room 
for imaginary numbers anywhere on the real number 
line, which runs from east to west. He took the bold 
step of placing them on a perpendicular axis, through 

the point zero and running from north to south. 
This creates a coordinate system, where all the real 
numbers are placed on the ‘real axis’ and all the 
imaginary numbers on the ‘imaginary axis’.

Imaginary numbers! Wonderful! That was it. I was 
caught and completely snared in this wild, weird and 
wonderful world. And so it was that the Mandelbrot 
Set became the subject of the film I was to make. 
I saw it as a way into this mysterious mathematical 
world through which I could make this world acces-
sible and fun for viewers.

I researched a lot more, wrote my treatment and 
submitted it to the BBC, Discovery and Channel 4. 
And, as night follows day, the almost predictable 
rejections followed. I fumed for a year, thrashing 
about for a way to finance the project. But the penny 
finally dropped and I came straight to the conclusion 
that what I needed was a name – a famous name or 
names, to attach to the project – some star quality 
to give it that special feel and appeal to financiers. 
A star yes, but it had to be the right kind of star for 
the subject – Maths! It was difficult.

There used to be a little shop in Ladbroke Grove 
called Strange Attractions. Sadly it’s closed now, but 
at the time it was thriving, selling the products of the 
new mathematics – fractal geometry and chaos the-
ory. Books, music, computer games, T-shirts, posters, 
coasters, cups and postcards. Inside, everywhere I 
looked, I saw the M-set.

Chatting with the sales assistant, I found out I had 
known the owner in London in the sixties. Among 

Imaginary numbers! Wonderful! That was it.
I was caught and completely snared in this wild,weird and wonderful world.

And so it was that the Mandelbrot set became the subject of the film I was to make.
I saw it as a way into this mysterious mathematical world through which 

I could make this world accessible and fun for viewers.
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other things, Greg Sams pioneered the Vegiburger. 
Now it was chaos theory. Greg and I went out for cof-
fee. We talked about old times, shared our excitement 
in the new maths and then I told him my problem.

Bingo! Two months before, Greg told me, Fred 
Clarke had been driving Sir Arthur C. Clarke back 
to his apartment in Holland Park, through Ladbroke 
Grove and past Greg’s shop. Arthur C’s sharp eyes 
caught a glimpse of the colourful snapshot of the 
M-set, swinging in the wind on a big sign over Greg’s 
shop door. Arthur had Fred reverse the car back to 
the shop and park. Greg was in.

And now comes the good bit. Clarke had just 
returned from Riyadh, where he wrote that he had:

... the privilege of addressing the largest gather-
ing of astronauts and cosmonauts ever as-
sembled at one place (more than fifty, including 
Apollo 11’s Buzz Aldrin and Mike Collins, and 
the first ‘space-walker’ Alexei Leonov) … I 
decided to expand their horizons by introducing 
them to something really large! So, with astro-
naut Prince Sultan bin Salman bin Abdul Aziz 
in the chair, I delivered a lavishly illustrated 

lecture: ‘The Colours of Infinity – Exploring the 
Fractal Universe’.

Arthur gave Greg Sams permission to publish 
the speech. When I arrived Greg had just that week 
received the printer’s proof. He gave me a copy and 
Sir Arthur’s fax number in Colombo, Sri Lanka, and 
off I went to compose a persuasive letter.

I faxed my two-page plea the next morning, but 
forgot to inform my wife, Jenny, that I’d sent it, 
more or less expecting nothing to come back. So 
when Arthur C. Clarke phoned, all the way from 
Sri Lanka, two hours later, Jenny was completely 
unprepared. Only her quick responses saved the 
situation as she took on board what was happening. 
She calmed down, took notes and came away with 
his agreement to a two-day shoot at his house in 
Colombo.

Only one problem now: no money, love! But word 
got about surprisingly quickly and the finance started 
to flow. Not a torrent, but enough of a trickle for us 
to afford to take a British crew and equipment to Sri 
Lanka for four days.

The crew with Nigel 
Lesmoir-Gordon and 
Arthur C Clarke in his 
study, from the left, 
standing:  
Editor & Designer, 
Simon Gilbert; 
Production Assistant, 
Artup Warnasiri; 
Production Manager, 
A K Warnarsiri; Pro-
ducer, Paul Sinclair; 
Writer & Director, 
Nigel Lesmoir-Gordon; 
Seated: Director of 
Photography, John 
Lamborn and Arthur 
C Clarke
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Jenny put in some of her savings, as did two of her 
friends, my close friend and my friend’s Mum. The 
crew all agreed to forgo salaries and settle for percent-
age points according to the number of days/weeks (in 
my case years!) put into the project. Everything else 
had to be paid for: equipment, stock, flights, excess 
baggage, food, accommodation, insurances and so on.

Paul Sinclair bravely undertook to produce the 
programme, relying on me to cover the writing and 
directing. John Lamborn jumped at the chance of 
pointing his camera at Arthur C. Clarke.

Full of fear and trepidation, we entered Arthur 
C. Clarke’s humble but high-tech apartment. I 
shook his hand and presented my offerings – three 
Mandelbrot mugs and some fractal coasters from 
Strange Attractions. As he was opening the pack-
age, he said, ‘Nigel, if you hadn’t turned up to make 
this film, I would have done it sooner or later with 
someone, somehow!’ Nice timing.

Arthur and I talked for the best part of the next 
day, came to an agreement on the programme 
structure that I was proposing and wrote his links. 
We kept them all short. We had to. Autocue tele-
prompting was not within our budget!

Arthur C. Clarke was wonderful and passionate 
about the topic and furiously keen to do a good job. 
Fortunately, we saw eye to eye on the project imme-
diately, and things stayed like that almost every inch 
of the way. In two days we had everything we needed 
in the can and were off.

By this time I had got hold of some animated 
colour pictures of the Mandelbrot Set on videotape. 
This tape had been made some two years earlier by 
a group of American mathematicians working in 
down time during the installation of the Cray super-
computer at Cornel University.

I needed somewhere to cut a short pilot together 
to show what we had done and give an idea of what 
still needed to be done. We were out of money. Boyd 
Catling of Original Films came to the rescue and 
offered me the use of his off-line suite when it wasn’t 
booked out.

I’d known David Gilmour since teenage days in 
Cambridge and had watched with awe and wonder 
his rise to stardom with the Pink Floyd. So I took my 
pilot round to David’s house, ran it for him a couple 
of times and, with very little persuasion on my part, 
he agreed to do the music for the programme.
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Once again, it didn’t take long for the finance to 
appear. But we needed a fair old wedge this time. We 
had to go to Warwick University to shoot Professor 
Ian Stewart, our star academic, and we needed to 
cross the pond too. Dr Benoît Mandelbrot, the dis-
coverer of the set, was in upstate New York and our 
genius-inventor, Dr Michael Barnsley was at Iterated 
Systems in Atlanta, Georgia.

We managed eventually to pull all the finance 
we needed, and the same crew boarded the plane at 
Heathrow, only this time since we needed more help 
and took my daughter Daisy along as our PA. What 
struck me most forcefully throughout the shooting 
of the production was how happy all the contribu-
tors were to talk about the subject. And, I’d say, 
this aspect does come across loud and clear in the 
programme. I set out to make, not a deeply math-
ematical, analytical piece, but rather a celebration of 
a remarkable discovery. I wanted it to be fun. I knew 
it had to entertain at some level if it was going to 
reach a really wide audience.

With the shooting over, nothing remained but 
the edit. But how? Simon Gilbert, an old friend, 
offered his services. Simon and I then cast around 
for ways and means of off-lining. We couldn’t go 
back to Boyd Catling again. In the event we put the 
programme together over a nine-month period in a 
whole host of different suites. most of it in a shed out 
by Heathrow Airport. Nights, weekends, holidays. 
You name it!

While Simon and I ached away on the low-band, 
a young mathematics graduate from Cambridge, 
Bill Rood, was working wonders on his Acorn 
Archimedes computer. We needed new fractal pic-
tures, new M-set zooms and Bill could make them. 
Strange Attractions!

I can’t say the off-line edit was all fun. It wasn’t. It 
was painful. But we did get there, and getting there 
was just wonderful. I have to say the end product 

was all that I had hoped it would be. It was just as I 
imagined it would be. It was exactly to my original 
treatment. And, it had quite a bit more to it than I 
had ever expected. The thread was thrown beautifully 
from one participant to the next. The programme 
flowed and David Gilmour’s music was a perfect fit.

The on-line was completed in fits and starts 
over an uncomfortably extended period at Essential 
Pictures and at Barrie Hinchcliffe Productions. 
Kevin Pyne did an expert sound dub and we had our 
finished 52-minute programme.

I sent a VHS copy to Arthur C. Clarke and he 
faxed back: ‘I have now seen the programme a second 
time and am even more impressed. It really is stun-
ning. I hope it wins lots of awards!’

That fax came as an enormous relief for me. I had 
expected him to like it, but nonetheless I really did 
breathe a huge sigh of relief when he responded so 
positively. Same thing again when I showed it to 
David Gilmour. He also thought it was excellent. I had 
the stamp of approval I needed from the big boys!

We had that, yes, and we had our programme, yes. 
But, we didn’t have a distributor! No way for us to 
get it out there! No way to get it seen.

Fortunately, Paul Sinclair had been able to take 
the pilot cut down to MIPCOM in Cannes a couple 
of times. So seeds had been sown and we hoped that 
interest was growing. It had been. And, before we 
knew what had hit us, we were spoilt for choice. We 
had three potential players at our door. In the event we 
went with Beyond Distribution, based in Sydney. We 
signed our contract with them on 17 November 1995.

Since that date they have sold the programme 
for broadcast in Japan, Canada, Russia, Finland, 
Argentina, Venezuela, Russia, Poland, Hungary, 
Spain, Italy, the CIS, Israel, over 70 PBS stations 
in the USA, Thailand, Indonesia, New Zealand and 
Australia. ‘Colours’ was eventually broadcast in the 
UK by Channel Four on 7 September 1996.
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FADE UP M-SET IN DISTANCE

M-SET ZOOMS UP SLOWLY UNTIL IT FILLS THE FRAME

ARTHUR C. CLARKE

This is the Mandelbrot Set: one of the most beautiful and remarkable dis-
coveries in the entire history of mathematics. And yet it was discovered as 
recently as 1980.

MAIN TITLE FADES UP OVER M-SET WITH BURST OF COLOUR CYCLING:

‘ARTHUR C. CLARKE PRESENTS THE COLOURS  
OF INFINITY’

M-SET AND TITLE MIX TO TRACK OVER PCB WITH M-SET FRACTAL 

SUPERIMPOSITION

ARTHUR C. CLARKE

The invention of the silicon chip in the 1970s created a 
revolution in computers and communication and hence transformed our 
way of life. We are now seeing another … revolution which is going to 
change our view of the Universe and give us a better understanding of its 
working.

MIX FROM FRACTAL TO CRAB NEBULA

I’m Arthur C. Clarke. I write Science Fact and Science 
Fiction. You may know my movie, 2001– A Space 
Odyssey. I’ve seen some remarkable developments and 
inventions in my lifetime, but one of the most extraordi-
nary is the Mandelbrot Set and Fractal Geometry. This 
film will explore the Fractal Universe. And on our voyage 
of discovery we will be helped by …

PIC OF IAN STEWART

Professor Ian Stewart of the Mathematics Institute, University of Warwick 
and author of over 100 published scientific works.
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PIC OF MICHAEL BARNSLEY

Dr Michael Barnsley, former Professor of Mathematics at Georgia Institute 
of Technology who received a $21/2 million government grant in 1991 to 
develop Fractal Image Compression Systems.

PIC OF STEPHEN HAWKING

Professor Stephen Hawking, the Mathematician and 
Cosmologist and author of the bestselling book A Brief 
History of Time.

PIC OF BENOÎT MANDELBROT

And finally Dr Benoît Mandelbrot whose unorthodox 
mathematics led to the discovery of the Mandelbrot Set 
and Fractal Geometry.

IAN STEWART

(Prof. Ian Stewart Mathematics Institute, University of Warwick)
I first saw the Mandelbrot Set somewhere in the mid-eighties. I remember it 
quite clearly. We were at a mathematical conference on something totally 
different. And everyone went along to this exhibition because it was math-
ematical pictures. And there were these amazing coloured pictures on the 
wall. And I’d really not seen anything like this before.

M-SET ON BLACK, ROTATING THROUGH 180 DEGREES

It’s not easy to describe the Mandelbrot Set visually. It 
looks like a man. It looks like a cat. It looks like a cactus. 
It looks like a cockroach. It’s got little bits and pieces that 
remind us of almost anything you can see out in the real 
world. Particularly living things. So it has a character that 
reminds us of a lot of things. And yet it itself is unique 
and new.

MICHAEL BARNSLEY

(Dr Michael Barnsley Chief Scientist, Iterated Systems Inc.)
The Mandelbrot Set is real. An absolute thing – no question whatsoever! Any 
mathematician, or any computer scientist, or student in a school can study it 
and find the same – describe the same – thing. It’s a common experience.
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M-SET ON BLACK WITH ZOOM INTO BOUNDARY

And so such things that can be magnified forever, and 
have infinite precision, do exist. But, they’re not  
touchable.

IAN STEWART

It’s a geometrical shape, an icon if you wish, which some-
how embodies as an example, a very important aspect of 
how the world works. Somebody recently actually called 
this set ‘The Thumbprint of God’!

ARTHUR. C. CLARKE

Now we’ll begin our serious exploration of the Mandelbrot 
Set. A voyage, which in fact, could last for ever and ever 
– much longer than the lifetime of the Universe! I have 
here the full Set – about six inches across. Now, if I blow 
this up: I’ll increase the magnification thirteen times. 
And you’ll see more and more detail is appearing. And 
the interesting thing is you see mini-Mandelbrots-replicas 
– almost identical, yet perhaps, subtly different from the 
original Set. And I can go on doing this. Here’s a magnifi-
cation of more than three thousand times. So, the original 
picture – about six inches across – is now half a mile across! And no matter 
how much we magnified it, a million times, a billion times – until the 
original set was bigger than the entire Universe – we would still see new 
patterns, new images emerging, because the frontier of the M-set is  
infinitely complex. And when I say infinitely, I really 
mean that. Most people when they say infinitely, they 
mean – oh – only, rather big. But, this is really infinity!

M-SET ZOOM SEQUENCE

What is so remarkable, in fact astounding, about the 
Mandelbrot Set is that, although it is … infinitely com-
plex, it’s based on incredibly simple principles – unlike 
almost everything in modern Mathematics. In fact,  
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anybody who can add and multiply, can understand the principles on 
which it’s based. You don’t even have to subtract or divide, still less 
use logarithms, or trigonometrical functions to comprehend how the 
Mandelbrot Set is created. In fact, in principle, it could have been discov-
ered any time in human history, and not merely in 1980. But the problem 
was this, although it’s only based on adding and multiplying, 
you have to carry out those operations millions, billions 
of times, to create a complete Set. And that’s why it was 
not discovered until the era of modern computers.

EXTERIOR: THOMAS J. WATSON RESEARCH CENTER, NEW YORK

It was on the 1st March 1980 at IBM’s Thomas J. Watson 
Research Centre in upstate New York, that Benoît 
Mandelbrot first glimpsed the M-set.

B&W STILL BENOIT MANDELBROT: STILL OF FIRST PRINT OF M-SET

The seeds of this discovery were in fact sown decades 
before the M-set was first seen. In Paris, in 1917, a 
mathematician called Gaston Julia published papers con-
nected with so-called complex numbers. The results of 
his endeavours eventually became known as Julia Sets. 
Although Julia himself never saw a Julia Set! He could 
only guess at them. And it wouldn’t be until the advent 
of modern computers that Julia Sets could be seen for the 
first time.

STILL OF GASTON JULIA: B&W STILL OF JULIA SET

BENOÎT B. MANDELBROT

For me the first step almost with any difficult mathematical 
problem was to program it, and see how it looked like. 
We started programming Julia Sets of all kinds. It was 
extraordinary great fun! And in particular, at one point, we 
became interested in the Julia Set of the simplest possible 
transformation …– Z goes to Z squared plus C. So Z times 
Z plus C.
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MONTAGE OF FIVE B&W STILLS OF JULIA SETS

STILL OF ROUGH PRINT OUT OF M-SET

I made many pictures of it. First of all, the first one was very rough.

THREE STILLS OF FIRST M-SET PRINT-OUT

But the very rough pictures, they were not the answer. 
Each rough picture asked a question. So I made another 
picture, another picture. And after a few weeks we had 
this very strong, overwhelming impression that this was a 
kind of big bear we have encountered.

ZOOM IN ON M-SET

I think the most important implication is that, from very 
simple formulas you can get very complicated results. It’s 
fundamental from the viewpoint of the very basis of sci-
ence. Because, what is science? We have all this mess 
around us. Things are totally incomprehensible. And then eventually – more 
or less rapidly, more or less hard to achieve– we find simple laws, simple 
formulas. In a way, a very simple formula Newton’s Law, 
which is just also a few symbols can, by hard work, explain 
the motion of the planets around the sun and many, many 
other things to the 50th decimal! It’s marvellous: a very 
simple formula explains all these very complicated things.

SOLAR SYSTEM GRAPHIC WITH ZOOM OUT AND CAPTION OF NEWTON’S  

EQUATION SUPERIMPOSED

IAN STEWART

There’s an interesting parallel with the equation that almost everybody is 
familiar with – the only equation that everybody is familiar with – E = mc2. 
Albert Einstein’s equation, that says matter and energy are equivalent to 
each other.



151The Colours of InfInITy The fIlm sCrIpT

EINSTEIN STILL WITH EQUATION SUPERIMPOSED

That was a very simple equation with very far-reaching 
consequences. And the equation for the Mandelbrot Set is 
equally simple. Z = Z2 + c.

M-SET GRAPHIC WITH MANDELBROT’S EQUATION.

ARTHUR C. CLARKE

The letters in the Mandelbrot equation stand for numbers, 
unlike those in Einstein’s equation, where they stand for physical quantities 
– mass, velocity, energy. The Mandelbrot numbers are coordinates, posi-
tions on the plane, defining the location of a spot.

M-SET GRAPHIC WITH MANDELBROT’S EQUATION

Another difference from Einstein’s equation – and a very important one – 
is this double arrow. It’s a kind of two-way traffic sign. The numbers flow 
in both directions, constantly feeding back on themselves.This process of 
going round and round a loop is called iteration. It’s rather 
like a dog chasing its own tail: the output of one operation 
becomes the input of the other, and so on and on.

M-SET GRAPHIC WITH ITERATING NUMBERS

When the Mandelbrot equation is given a number repre-
senting a point, and that number is iterated through the 
equation, one or two things happen. Either the number 
gets bigger and bigger and shoots off to infinity. Or it 
shrinks to zero. Depending on which happens, the compu-
ter then knows where to draw a boundary line. So, what 
we get from this basic iteration is a kind of map, dividing 
this world into two distinct territories. Outside it are all the numbers that 
have the freedom of infinity. Inside it, numbers that are prisoners, trapped 
and doomed to ultimate extinction.

M-SET GRAPHIC WITH ZOOM INTO BOUNDARY
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IAN STEWART

Think of a computer screen. You’re looking at each 
individual little element, each pixel of the screen. You 
pick one of these pixels. You apply this rule lots and 
lots of times, and either the pixel moves off and disap-
pears completely from view, or it moves in towards a 
fixed point in the middle of the screen. And what you 
do is, you just want to distinguish between going off out 
to infinity or going into zero. So any point that moves 
into zero when you apply this rule, you colour that point 
black. And any point that goes off to infinity – what 
people tend to do is colour it all sorts of wonderful, rainbow hues about 
how fast it goes away. The important bit is the black bit in the middle 
that’s all the stuff that doesn’t escape when you keep applying this rule.

ARTHUR. C. CLARKE

Now the colours are completely arbitrary. They could be anything. But they 
are not meaningless. A very good analogy is the contour map you’ll see of 
a mountain range for example, where the contours are drawn and coloured 
– the areas are coloured. The highest areas might be coloured white, then 
brown, then green, and then if you went on into the sea, deeper and deeper 
blues – just to show where the various levels occur. So, it’s the same here. 
You can make the colours anything you like, but they do define the different 
areas of calculation. And you can change them and get 
the most gorgeous results! Just look at this.

COMPUTER SCREEN SHOWING INTERIOR OF M-SET WITH COLOUR CYCLING

Now, you may think that the frontiers are moving, but 
there’s no motion whatsoever. Only the colours are 
cycling. In or out. Nothing is moving.

COMPUTER SCREEN SHOWING M-SET WITH COLOUR CYCLING

BENOÎT MANDELBROT

When you get very, very fine to very, very small details, the variations can 
become of overwhelming complexity. So complex that no single picture can 
possibly give justice to them. It’s impossible, in black and white or coloured 
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picture, to show how complicated it is. The only way is to use what we call 
a ‘colour cycle’.

COMPUTER SCREEN SHOWING M-SET WITH COLOUR CYCLING

That is, the colours change regularly and each set of 
colours, in a way, reveals a different property of these 
variations – a different variation. So by having this 
colour cycling, one reveals in a very, very strong fashion 
the extraordinary complexity of the Set. If the whole Set 
were represented this scale, the end of the Set would go 
so far as to go somewhere near the star Sirius! Very, very 
far. Enormously big! For this very tiny speck. Yet, in the 
middle of the speck you see an exact replica of the whole.

DEEP ZOOM INTO M-SET WITH COLOURS CYCLING

IAN STEWART

One of the most striking facets of the Mandelbrot Set is the internal 
consistency of the object. It all hangs together. And if you look at the 
boundary and zoom in – if you look in just the right place, what you see 
is baby Mandelbrot Sets. Perfect in every detail. They’re just slightly bent 
compared to the real Set – you can’t even see that. But if you look closer 
you see they are. And they’re decorated by slightly different external 
features. And then, by the same token, if you zoom into the boundary of 
those, you see baby, baby Mandelbrot Sets! The second generation. And 
inside those the third generation. It goes on forever. And so, you’re seeing 
islands of order in a sea of chaos.

ARTHUR C. CLARKE

I’m sure it’s occurred to you that the Mandelbrot Set looks 
like some kind of strange insect. It certainly has an organic 
feeling about it. It’s got warts all over it and it’s also quite 
hairy!

ZOOM INTO M-SET DENDRITE

If you go out along one of these hairs we find something 
rather interesting. Now, look what’s happening: at the tip 
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of each hair it splits into two others. And so on. Each is splitting, going on 
indefinitely. This splitting up – this ‘bifurcation’ – going off into apparently 
random directions quite abruptly, is typical of a class of mathematical enti-
ties called Fractals. The Mandelbrot Set is the most famous Fractal.

IAN STEWART

The word Fractal means any geometrical structure that 
has detail on all scales of magnification. No matter how 
big you make it, you still see extra, new details you didn’t 
see before. And the name was actually invented by 
Mandelbrot himself. He felt he had to have a name for 
this area he realized he was working in. And so he coined 
the word Fractal because it conveys this feeling of frag-
mented, broken, fractional, irregular.

M-SET STILL

MICHAEL BARNSLEY

Chief Scientist Iterated Systems Inc.

It took a long time for us to emerge and start to look out at the other part 
of the physical, observable Universe. Not as narrow, studied little entities – 
the scientist, who studies the flea on the back of the flea on the back of the 
flea. But rather being able suddenly to look out at the totality of nature, and 
then say, ‘my goodness me, we’ve got nothing to describe this with!’. Clouds 
are not made with straight edges. Trees are not circles, they’re not triangles, 
they’re something very, very different indeed.

THREE CLOUD FORMATIONS

But there is a continual kind of a pattern that I can see as 
I look at the edge of a rising cumulus cloud, one of those 
very, very wrinkly, coruscated clouds that has such fine 
structure in it. And you say, but there’s no lines or circles 
there. The wonderful discovery has been that there’s an 
extension of classical geometry – Euclidean Geometry – 
which is called Fractal Geometry.
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BENOÎT MANDELBROT

Fractals are shapes which we are extraordinarily used to 
in … how to say … in our subconscious, ill-organized 
life. For example, everybody knows that if you take a map 
of Britain on a small school globe, you see a very simpli-
fied shape. Cornwall is just a kind of triangle and Wales 
perhaps a little rectangle. You cannot put the detail on 
a small map. If you look at a larger map, you add more 
detail.

SLOW ZOOM IN THROUGH THREE SUCCESSIVE MIXES ON GRAPHIC OF PLANET EARTH

The closer you come, in a certain sense – imagine yourself like somebody 
coming in a rocket: from far away you see very little. The closer you come, 
the more detail you see. If you come very, very close you begin to see rocks.

WAVES BREAKING OVER ROCKS

And finally the idea of coastline disappears, because one 
doesn’t know any longer where is land and where is water. 
So a need arose in my mind to put together a geometry, 
based upon many known facts in mathematics – scattered 
facts in mathematics – many scattered facts in our experi-
ence, many scattered facts in the results of what scientists 
had done of various kinds putting together all of these 
things, and using them as bricks, if you will, of a new 
building, which is a new geometry, which is a geometry 
of shapes, which are equally rough at all scales.

M-SET DETAIL WITH COLOUR CYCLING

ARTHUR C. CLARKE

One of the revolutions in thought that’s resulted from this discovery is the 
realization that nature deals not in the smooth, continuous objects, as we 
always imagined, but more often in Fractals. And I’d like to show you how 
she does this.

INTERIOR: CLOSE SHOT COMPUTER TERMINAL WITH FRACTAL PROGRAM

Now I’m going to generate a Fractal before your very eyes!
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INTERIOR: COMPUTER SCREEN, SHOWING FRACTAL ‘SEED’

What you see here is what is called the ‘seed’ and it’s an 
appropriate word in this case. Those two lines represent 
the first generation of the formation of a geometric figure. 
And the computer has been told to continue growing 
these lines, but changing the direction every so often and 
at different distances. Now, that’s a very simple set of 
instructions.

INTERIOR: COMPUTER SCREEN, SHOWING GROWTH OF FIRST FRACTAL TREE

But look what happens after they have been carried out 
for, say, ten generations. The tree I showed here – and it 
does look very much like a tree in nature – is symmetrical 
because the two branches at the beginning were the same 
length, off in the same direction. But if we change the 
length of one branch and change the direction, look what 
happens.

INTERIOR: COMPUTER SCREEN SHOWING GROWTH OF SECOND FRACTAL TREE

In a way this is a more realistic tree than the first one, 
because in nature you seldom have perfect symmetry.

COMPUTER-GENERATED OBJECTS: FERN; SEA-SHELL; MOUNTAINS

Much more elaborate structures can be created by very similar rules. I would 
like to emphasize that all of these shapes, or objects, or whatever you like to 
call them, although they look real, are generated entirely in the computer 
by following out a few simple instructions, and repeating them over and 
over again. This is the way in which nature creates things.

BUTTERFLY’S LIFE CYCLE: STARTING WITH GRAPHIC OF COMPLEX MOLECULE,  

THROUGH TO EMERGENCE OF THE BUTTERFLY

MICHAEL BARNSLEY

It’s exactly like the DNA in a butterfly’s egg. Somehow 
that unravels and unrolls to form the extraordinary and 
beautiful pattern on a butterfly’s wing with its myriads of 
colours and form. Somehow it’s hidden in that seed, in 
the DNA. And not only that, but the wings themselves 
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probably only occupy a relatively small part of the total DNA. They are, if 
you like a little formula, that is unravelled by the process of growth and 
deterministic following of rules to form this natural and beautiful thing.

FRACTAL IMAGE WITH COLOUR CYCLING

FRACTAL IMAGE WITH COLOUR CYCLING AND BUTTERFLIES SUPERIMPOSED

IAN STEWART

Living creatures seem to be complicated structures 
produced from simple rules, simple laws of physics and 
chemistry. And a lot of the structure that you see in 
living creatures – this organic, but patterned structure – leaves 
on trees, ferns particularly things like that – have the 
same feature that the Mandelbrot Set has.

CLOSE SHOT FERN LEAF WITH RIVER IN BACKGROUND

You look at little pieces of them and they have lots and lots of detail. And 
in fact the little pieces look very similar sometimes to the whole thing. 
It’s very tempting to compare the way a simple formula produces the com-
plicated Mandelbrot Set with the way very tiny things in nature produce 
complicated organisms. And there are certainly some similarities, in that 
there is the same kind of unfolding of a process. The instructions are there 
but not an actual description of the object.

WIDER SHOT OF RIVERBANK WITH FERN

TRACK ALONG M-SET LEFT TO RIGHT

MONTAGE OF TREES, FOLIAGE, BRANCHES, FLOWERS

MICHAEL BARNSLEY

Once you’ve developed a Fractal Geometer’s eye, you can’t 
help but see them everywhere. Every single thing you see is, one way or 
another, described by reference either to itself or to something else in the 
picture you see. It’s as though you’re staring at a vast dictionary but the 
dictionary words are bits of pictures and the references, the definitions of 
the words, are made with other bits of pictures. So you stare at one picture. 
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I look out in the garden and at the trees, and I see this set of relationships 
between the picture and other bits of the picture.

GRAPHIC OF BLOCK MOVING ON SCREEN

Those relationships are no more or less than the assertion – from my point 
of view – that what I’m seeing is Fractals everywhere!

ZOOM IN ON FOLIAGE, FOLLOWED BY TRACK ALONG M-SET FROM LEFT TO 

RIGHT WITH COLOUR CYCLING AND WITH LEAVES, TREES VINES DISSOLVING IN 

AND OUT

IAN STEWART

The discovery of Fractal Geometry changes completely 
the kind of patterns we can look for in nature. And that 
is really a fundamental change to the sort of things math-
ematicians and scientists can do. And that’s got to have a 
big effect.

M-SET WITH COLOUR CYCLING AND CLOUDS SUPERIMPOSED

Fractal Geometry is already being applied throughout the physical sciences 
as a way of describing data in a new way. And the dream is that a Fractal 
Geometer can describe a cloud as simply as an architect can describe a 
house! He can use his intricate, repeatable formulas – simple formulas – 
to describe these unimaginably complex and beautiful shapes, and then 
communicate them: from me to another scientist, to you. Here’s, not my 
straight line, build it straight, but here’s my ragged formula – but it’s very 
simple. Go build it wild like this!

ZOOM OUT FROM RAIN FOREST RIVER

MICHAEL BARNSLEY

Can sort of think there might even be the sort of semaphore 
of nature – of the physical world – of how it tells itself what 
it’s supposed to be.

TRACK ALONG TOP OF M-SET SPIKE FROM LEFT TO RIGHT
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ARTHUR C. CLARKE

Let’s go back to the Mandelbrot Set and look at some 
more of the strange flora and fauna of the Mandelbrot zoo. 
There’s a certain similarity between these shapes. We can 
recognize they are cousins of each other, and yet they’re 
all different, despite their similarity. There’s an infinite 
variety here, just indeed as there is in the world of nature. 
We see shapes that remind us of Elephants’ trunks, tentacles 
of octopae, sea horses, compound insect eyes. There’s some 
connection between the Mandelbrot Set and the way 
nature operates!

FRACTAL WITH COLOUR CYCLING MIXES TO TILT FROM SPIRAL GALAXY

ARTHUR C. CLARKE

ARTHUR C. CLARKE ON ROOF WITH TELESCOPE: STILL OF THE PLANET SATURN

I’m looking at Saturn, one of the most beautiful objects in 
the sky. In fact we’ve discovered quite recently that the 
beautiful rings of Saturn, which have intrigued astrono-
mers for centuries, do illustrate some of the phenomena 
we’ve been discussing in the Mandelbrot Set.

ZOOM IN ON STILL OF SATURN’S RINGS

As you go closer and closer at Saturn, you see more and more detail, which 
no one had ever dreamed of before the space age opened and we were able 
to get close-ups of Saturn and its rings. It’s not surprising that when we 
have so many examples of Fractals and related phenomena here on this 
planet, that there are even more in the heavens.

SLOW ZOOM IN ON STILL OF MILKY WAY GALAXY

MICHAEL BARNSLEY

To me just looking up at the Milky Way is staring at a Fractal. 
It’s got an extraordinary dotty character and yet, if you take a 
magnifying glass to it – that is, a telescope – and you look at 
it ever closer you find that there are hundreds and thousands 
more little dots where you thought there were almost none.
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ZOOM IN ON MILKY WAY GALAXY

So you get an immediate example of a structure that seems 
to go in and in and in with more and more detail.

ARTHUR C. CLARKE

I had the great privilege of having a discussion with the 
famous cosmologist, Stephen Hawking, when I passed 
through London recently. And I said him, ‘Dr. Hawking, 
the Mandelbrot Set is infinite in detail. You can explore 
it forever and ever – zoom into it. The real universe, however, does seem 
to have limits. As you go down into the micro-world you get, of course, 
molecules, atoms, neutrons and subatomic particles – quarks. But, does 
the real universe go on forever, is there a limit – a basement – unlike the 
Mandelbrot Set?’

STEPHEN HAWKING

Prof. Stephen Hawking Lucasian Professor of Mathematics Cambridge University
In the case of the universe there seems to be a limiting 
scale. It is called the Planck Length, and is about a mil-
lion, billion, billion times smaller than an inch. This 
means that there is a limit to how complex the universe 
can be. It also means that the universe could be described 
by a theory that is fairly simple, at least on scales of the 
Planck Length. I just hope that we are smart enough to 
find it!

ARTHUR C. CLARKE

He thinks that there is a limit in the real universe: there’s a small size below 
which nothing exists, called the Planck Length, which is about a million, 
million, million, millionth of a centimetre. Unimaginably small! But that is 
the fundamental unit of size, the sort of grittiness of the universe – nothing 
smaller than that. So perhaps the real universe does end there in smallness. 
But we’re not sure. It may indeed go on forever like the Mandelbrot Set. 
We just don’t know yet.

TRACK OVER M-SET RIGHT TO LEFT
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STILL OF MICHAEL FARADAY DEMONSTRATING IN LABORATORY

I’m often asked, well these pictures are very pretty, but what’s their practi-
cal value? And I’m tempted to answer in the famous words of Faraday, who 
once said, when someone asked him what use were these experiments – 
playing with wires and magnets – ‘What use is a new-born baby? Faraday 
is also supposed to have told the Prime Minister, ‘One day, Mr Prime 
Minister, you’ll be able to tax it!’ And in fact Fractal Geometry, the sort of 
things we have been demonstrating, has enormous commercial value.

IAN STEWART

I think the discovery of the Mandelbrot Set and of Fractals 
in general is very important. It’s important at the moment 
on an intellectual level more than hard-core technologi-
cal level. There are some applications, but it’s not yet put 
an important new gadget into every home, whereas things 
like the silicon chip certainly have. So most mathemati-
cal developments are like this. The ideas must come first, 
and then you have to translate them into practical things. 
And you can already see the beginnings of that translation 
occurring.

MICHAEL BARNSLEY

No longer do you have to draw a straight line through your data to make 
science of it. You can actually draw some Fractal Curve through it or measure 
some Fractal Dimension of the data and do science! So the first application 
is in terms of a better description of the physical observable world. There’s a 
new branch of mathematics available to all scientists, and that application 
will stretch on through the centuries now as the primary tool for descriptive 
physical science.

BENOÎT MANDELBROT

Phenomena of great irregularity are very, very widespread 
in nature. In the study of what’s called Condensed Matter 
– Polymers – such physical problems – one finds shapes of 
extremely great complication. These shapes could not be 
examined as geometric shapes before because there was 
no language to describe them. One couldn’t describe the 
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shape. One could only say things indirectly about them. Say, if you make 
such and such a measurement on them you’ll get such and such a result. But 
that is, in a certain sense a shadow of the object. It’s the effect the object 
had on a certain measurement procedure. But the object itself could not be 
described with the other geometry.

COMPLEX MOLECULE ROTATING WITH COLOUR CYCLING FRACTAL BACKGROUND

That’s a very mundane example, but it’s just the tip of the iceberg. There’re 
an enormous number of structures, which are indeed only describable in 
terms of Fractal Geometry.

MICHAEL BARNSLEY

So the primary application will be as a tool for science 
in its own right. Science, and then engineering, and on 
through into the building of the next generation of devices 
and equipment that will follow from that in terms of the 
sort of application that we think of. You know, will there be 
a new type of – not computer – because before you perceived, 
understood, about desktop computers they weren’t here, 
one didn’t imagine them.

M-SET SPIRAL ZOOM WITH COLOUR CYCLING

But there will be new devices, extraordinary new devices based on the principles 
of Fractal Geometry, that will emerge over the next centuries.

ARTHUR C. CLARKE

Suppose you were the owner of a television station, or 
a satellite, which could broadcast just one television 
programme, and somebody came to you and said, ‘with 
the same amount of power you can broadcast not one 
but ten programmes! What would that be worth to you?’ 
Obviously it would multiply the value of your investment 
ten times overnight! Well, that’s the sort of thing that 
Fractal Geometry makes possible.
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EXTERIOR: ATLANTA SKYLINE, EFFECTS INTO M-SET, WHICH RESOLVES INTO3-D 

IMAGE

Atlanta, Georgia, headquarters of Michael Barnsley’s 
Iterated Systems. In 1991 Barnsley received a $21/2 million 
government grant to develop fractal image compression sys-
tems. Corporations such as Microsoft, Mitsubishi, Multicom 
and Virgin, now use Barnsley’s Image and Data Compression 
software.

INTERIOR: ATLANTA: MICHAEL BARNSLEY WITH DESIGN TEAM IN LONG SHOT

MICHAEL BARNSLEY

One of the most exciting moments occurred when I discovered the Collage 
Theorem. We’d been trying to work out how you could control a certain 
class of dynamical systems to make pictures of leaves.

COMPUTER SCREEN WITH FRACTAL STRUCTURE

Then, struggling with the question, it just dawned on me 
– that it was very simple. You needed to form a collage: 
a covering of the object with copies of itself – smaller 
shrunken copies. So that the whole object was tiled with 
copies of itself. It’s a self-reference statement. It’s as though 
you took a – you might take a triangle and cover it with 
little triangles. You might take a square and cover it with 
little squares.

COMPUTER SCREEN WITH THREE FERN TRANSFORMATIONS

Well, the theorem said, if you took a fern and covered it 
with little ferns, then you would have created a dynamical 
system or a formula for a fern. But, if you tried to actually create a picture 
using the Collage Theorem, it took hundreds of hours of graduate student 
time, working on the problem. And the Holy Grail at this point for us 
becamethe question of could we find a way to: tell a computer, just look at 
a picture – a digital picture – and automatically go ahead and find the fractal 
formula for it.
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FRACTAL WITH COLOURS CYCLING

The discovery of how to automatically calculate the 
collage for an arbitrary picture came to me in a dream. 
From the early days of doing mathematics I used to have 
a recurrent nightmare, which was something to do with 
studying matrixes – may kind of remind one of, perhaps, an 
old-fashioned telephone switchboard. Well, in the dream 
what happened was there were thousands of holes and lots 
of wires connecting everywhere to everywhere. And it was 
always a sort of tense muddle between the switchboard 
with all the wires going everywhere, always in a horrible 
tangle. And somehow it represented a matrix.

SUPERIMPOSED IMAGES OF CIRCUIT BOARDS, WIRING CHANNELS, SWITCHBOARD WIRING

FRACTAL SURROUNDING MICHAEL BARNSLEY. IN OFFICE

I’d had this nightmare many, many times over twenty 
years. The night of the anniversary of my father’s death 
– two years after – suddenly I saw in the dream how you 
could straighten out the switchboard, how all the wires 
would become untangled and be nicely connected.

FRACTAL WITH COLOUR CYCLING, EFFECTING INTO SPLIT SCREEN

And how you would join all the wires from big blocks to 
little blocks in the grid. And I woke up in the morning 
and knew that I’d discovered it. This was the total secret 
to fractal image compression: how to automatically look at 
a digital picture – these ones made of the … low resolution input, like your 
eye receives – and how to turn it into (a) a formula and (b) an entity of 
infinite resolution.

FRACTAL WITH COLOUR CYCLING

So the goal is now to be able to capture this Fire of Prometheus, if you like, 
this fractal wonder, put it in a box and being able to make this available to 
everyone.
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ARTHUR C. CLARKE

ARTHUR C. CLARKE IN GARDEN WITH COMPUTER TERMINAL

Using Michael Barnsley’s system we can now compress images so they 
require vastly fewer bits to store them. Now, whether you compress or 
expand an image depends on the same fractal principles, and Barnsley’s the-
ories have now become a commercial reality. Let’s take a look at one of his 
programs. If you take a tiny piece of this image, which has been stored in 
digital form in the normal way and blow it up … it becomes very pixilated. 
And they’re huge pixels!

COMPUTER SCREEN WITH PARROT’S EYE

Now, if we take this very coarse image and pass it through 
Barnsley’s Fractal Analyser we can actually reconstruct the 
details of the original image. If we then put the two images 
side by side the difference is startling.

PIXELATED AND FRACTAL IMAGE SIDE BY SIDE ON SCREEN

So, where has all this detail come from? Well, this fractal 
image is a prediction, based on the digital data sample at 
the original low resolution.

FULL SCREEN MAGNIFICATION OF FRACTAL IMAGE

And you can of course magnify this image just as much 
as you wish. Because, like the M-set, it has infinite  
resolution.

MICHAEL BARNSLEY

What you see are fractal textures – fractal creations – that 
mimic the missing data. They are, if you like, interpolations 
or predictions, but they are done using Fractal Geometry. What happens is, 
the original data is modelled by a fractal formula, and then we are looking 
at that Fractal in greater and greater detail.

FURTHER EXPANDED FRACTAL IMAGE OF THE PARROT’S EYE
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ARTHUR C. CLARKE

We are all used to seeing, every night on TV, these satellite views of the 
Earth, with clouds moving over continents, showing the formation of 
storms and so forth. Now, these weather satellites have been operating for 
decades. What is not so well known is that there are also satellites up there 
so-called spy satellites or reconnaissance satellites – which produce images 
of the Earth or, at least, points of particular interest to the military – with 
thousands of times the definition of the weather satellites! This means that 
they have to transmit tremendous amounts of data to the ground. Far more 
information than the weather satellites.

ANIMATION OF SATELLITE ORBITING THE EARTH

So, therefore, data compression – the ability to squeeze images, and 
send them, and then expand them again on the ground – is of enormous 
importance to the military. And we can thank those satellites for the fact 
that World War III has not yet broken out, and – hopefully – never will 
break out.

MODEL OF HUMAN CIRCULATORY SYSTEM

Fractal Geometry has surprising applications in medicine. 
This is the blood circulatory system of the human body.

MODEL OF BLOOD CIRCULATORY SYSTEM OF THE HUMAN HEAD

And yet, you’ll recognize it. It is a kind of Fractal. Now we 
can understand what is really happening when our blood 
circulates.

GRAPHIC OF BRAIN CIRCUITS

Here is the most important Fractal of all in the human 
body: a small portion of the incredibly complex wiring 
circuit of the brain. We may never understand how our 
brains work, but if we do, I suspect they will depend on 
some application of Fractal Geometry.

M-SET ZOOM

Why I think there may be some connection between the 
Mandelbrot Set and the wiring of the brain is because 
when I close my eyes – press my fingers against my eyelids, 
I see these patterns.
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M-SET ZOOM

I’m sure you are all familiar with them. You also see them when anybody 
gives you a bang on the head! Sometimes these patterns echo some of the 
shapes of the Mandelbrot Set. Also I am told – I have never 
tried this experiment myself – but when certain illegal 
chemicals are ingested, you experience visual hallucinations 
strikingly similar to some of the patterns of the Mandelbrot 
Set. Why do these strange patterns have such an appeal? 
Well, obviously they trigger some kind of resonance in 
the mind. And, incidentally, there’s an odd coincidence 
here: the name ‘Mandelbrot’ and the word ‘Mandala’ for a 
religious symbol. I’m sure it’s a pure coincidence but, the 
Mandelbrot Set does indeed seem to contain an enormous 
number of Mandalas or symbols.

TIBETAN MANDALAS MIXING INTO M-SET

PAISLEY PATTERN MIXING INTO M-SET

The Paisley Pattern is one, and I am sure there are many 
others.

STAINED GLASS WINDOW

And in ecclesiastical design – such as stained glass win-
dows, particularly in Islamic art, we find many echoes of 
the Mandelbrot Set centuries before it was discovered!

CARPET AND RUG DESIGNS

BENOÎT MANDELBROT

I had this experience, which many people repeated and 
told me about. I had this experience immediately: that 
when I first saw them, I was the first person to see them! 
There was absolutely no way anybody could have seen 
before. Yet, after a few days, or sometimes a few hours, 
a few minutes, it became almost familiar. I was finding 
features in it, which I have seen somewhere. So where I 
have I seen them? Well, first of all certainly, as I’ve said, 
in natural phenomena, but also, perhaps, in art.



168 The Colours of InfInITy

CARPET MIX TO M-SET WITH COLOUR CYCLING, THEN WITH MODEL OF HUMAN 

BRAIN MIXED INTO THE CENTRE OF THE M-SET, AND OUT

So, one wonders, why is it so? We know the brain has some cells, 
which handle shapes, boundaries, and other cells, which handle the 
colour. Does the brain have also cells which handle Fractal compli-
cation? Well, we don’t know. It’s a purely hypothetical question. It’s 
a tempting question, but we don’t know anything about it.

MONTAGE OF FOUR PAINTINGS BY A PATIENT OF C.G. JUNG

ARTHUR C. CLARKE

Here’s another strange resonance. This series of paintings was made in 1928 
by a patient of Carl Gustav Jung, the co-founder of 
modern psychology.

STILL OF C.G. JUNG

Jung would have been surprised and delighted to know 
that the computer revolution, whose beginnings he just 
lived to see would give new impetus to his theory of the 
Collective Unconscious.

STILL OF PAINTING BY A PATIENT OF C. G. JUNG

MONTAGE OF FOUR M-SETS WITH COLOURS CYCLING

The idea that there is a well of consciousness, compounded of primor-
dial, universal images that we all share. The substructure, or background 
of awareness. The mind clearly finds resonances in the 
M-set. But there are other, wider, implications too. This 
mathematics offers new insights into the way the universe 
works.

ZOOM OUT OF STILL OF SPIRAL GALAXY

How much in life is determined, and how much is due to 
chance?

ZOOM IN ON STILL OF SIR ISAAC NEWTON
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IAN STEWART

When Isaac Newton came up with laws of motion and laws of gravity the 
picture that emerged was of a clockwork universe.

ZOOM OUT OF STILL OF SPIRAL GALAXY

It was of a machine that ticked on a predetermined 
course. All we needed to know was where it was now and 
what it was doing now, and then you could predict the 
future forever. And there are two challenges to this. One 
is Quantum Mechanics, which says that in fact there is 
irreducible chance built into the very fabric of the uni-
verse. And you can’t actually say exactly what it’s doing 
now. You can’t say exactly what it’s doing ever. But the 
other is, things that come out of the Mandelbrot Set and 
related parts of mathematics, which says that even in a 
Newtonian world, in practice you may not be able to 
predict the future. It can be deterministic in principle, but 
not in practice.

MICHAEL BARNSLEY

This is how God created a system, which gave us free will. 
It’s the most brilliant manoeuvre in the universe: to create 
something, in which everything is free! How could you 
do that?

M-SET WITH COLOURS CYCLING

GRAPHIC: EINSTEIN AND DICE

IAN STEWART

Albert Einstein refused to accept the idea of a dice-playing deity. He wrote 
a letter to Max Born in which he said, ‘you believe in a God who plays 
dice, and I in complete law and order’. So he obviously felt that chance 
and deterministic laws were not compatible. And he preferred the deter-
ministic laws.
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TRACK ALONG M-SET LEFT TO RIGHT WITH COLOUR CYCLING

Now, what the Mandelbrot Set and chaos and related 
things have done for us, is to show that you can have both 
at the same time. So it’s not whether God plays dice that 
matters, it’s how God plays dice.

BENOÎT MANDELBROT

I can tell you exploring this set I certainly never had 
the feeling of invention, I had never the feeling that my 
imagination was rich enough to invent all these extraordi-
nary things. I was discovering them. They were there, even though nobody 
had seen them before. It’s marvellous, a very simple formula explains all 
these very complicated things! So the goal of science is starting with mess 
to explain by simple formulas. It’s the kind of dream of science. And in this 
case the dream is implemented in a fantastic fashion.

M-SET SECTION WITH COLOURS CYCLING

ARTHUR C. CLARKE

Often when I am looking at my computer screen and 
watching the beautiful images unfolding, I am reminded of 
Keats’s famous lines: ‘Charmed, magic casements, opening 
on the foam/ Of perilous seas, in faery lands forlorn …’ 
The Mandelbrot Set is indeed one of the most astonish-
ing discoveries in the entire history of mathematics. Who 
could have dreamed that such an incredibly simple equa-
tion could have generated images of literally infinite complexity? We’ve all 
read stories about maps that revealed the location of some hidden treasure. 
Well, in this case, the map is the treasure!

M-SET AND JULIA SET ZOOMS WITH FULL CREDITS AND ACKNOWLEDGEMENTS

END CAPTION OVER M-SET ZOOM OUT:
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And what you ask was the

beginning of it all? …

And it is this:

Existence that multiplied itself

for sheer delight of being,

so that it might find itself

innumerably.
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