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Preface

Academician Mitropolsky’s commentary on the scientific
research of Ukrainian scientist Professor Alexey Stakhov,

Doctor of Engineering Sciences

I have followed the scientific career of Professor Stakhov for a long time—
seemingly since the publication of his first book, Introduction into Algorithmic
Measurement Theory (1977), which was presented by Professor Stakhov in
1979 at the scientific seminar of the Mathematics Institute of the Ukrainian
Academy of Sciences. I became especially interested in Stakhov’s scientific
research after listening to his brilliant speech at a session of the Presidium of
the Ukrainian Academy of Sciences in 1989. In his speech, Professor Stakhov
reported on scientific and engineering developments in the field of “Fibonacci
computers” that were conducted under his scientific supervision at Vinnitsa
Technical University.

I am very familiar with Stakhov’s scientific works as many of his papers
were published in various Ukrainian academic journals at my recommenda�
tion. In April 1998, I invited Professor Stakhov to report on his scientific re�
search at a meeting of the Ukrainian Mathematical Society. His lecture pro�
duced a positive reaction from the members of the society. At the request of
Professor Stakhov, I wrote the introduction to his book, Hyperbolic Fibonacci
and Lucas Functions, which was published in 2003 in small edition. In recent
years, I have been actively corresponding with Professor Stakhov, and we have
discussed many new scientific ideas. During these discussions I became very
impressed with his qualifications and extensive knowledge in regard to his
research in various areas of modern science. In particular, I am impressed by
his knowledge in the field of mathematics history.

The main feature of Stakhov’s scientific creativity consists of his uncon�
ventional outlook upon ancient mathematical problems. As an example, I shall
begin with my review of his book Introduction into Algorithmic Measurement
Theory (1977). This publication rewarded Professor Stakhov with recogni�
tion in the field of modern theoretical metrology. In this book, Professor Sta�
khov introduced a new mathematical direction in measurement theory—the
Algorithmic Measurement Theory.
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In 1993, I recommended a publication of an innovative paper, prepared by
Professor Alexey Stakhov and Ivan Tkachenko, entitled “Fibonacci Hyper�
bolic Trigonometry,” for publication in the journal Reports of the Ukrainian
Academy of Sciences. The paper addressed a new theory of hyperbolic Fibonacci
and Lucas functions. This paper demonstrated the uniqueness of Stakhov’s
scientific thinking. In fact, the classical hyperbolic functions were widely
known and were used as a basis of non�Euclidean geometry developed by Ni�
kolay Lobachevsky. It is quite peculiar that at the end of 20th century Ukrai�
nian scientists Stakhov and Tkachenko discovered a new class of the hyper�
bolic functions based on the Golden Section, Fibonacci and Lucas numbers
that has “strategic” importance for the development of modern mathematics
and theoretical physics.

In 1999, I also recommended Stakhov’s article “A Generalization of the
Fibonacci Q�Matrix”—which was presented by the author in English—to be
published in the journal Reports of the Ukrainian Academy of Sciences (1999,
Vol. 9). In this article, Professor Stakhov generalized and developed a new
theory of the Q�matrix which had been introduced by the American mathe�
matician Verner Hoggatt—a founder of the Fibonacci�Association. Stakhov
introduced a concept of the Qp�matrices (p=0, 1, 2, 3...), which are a new class
of square matrices (a number of such matrices is infinite). These matrices are
based on so�called Fibonacci p�numbers, which had been discovered by Sta�
khov while investigating “diagonal sums” of the Pascal triangle. Stakhov dis�
covered a number of quite unusual properties of the Qp�matrices. In particu�
lar, he proved that the determinant of the Q

p
�matrix or any power of that

matrix is equal to +1 or �1. It is my firm belief that a theory of Qp�matrices
could be recognized as a new fundamental result in the classic matrix theory.

In 2004, The Ukrainian Mathematical  Journal (Vol. 8), published Stakhov’s
article “The Generalized Golden Sections and a New Approach to Geometri�
cal Definition of Number.” In this article, Professor Stakhov obtained mathe�
matical results in number theory. The following are worth mentioning:

1. A Generalization of the Golden Section Problem. The essence of
this generalization is extremely simple. Let us set a non�negative inte�
ger (p=0, 1, 2, 3, ...) and divide a line segment АВ at the point C in the
following proportion:

CB
AC

AB
CB

p

= 




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We then get the following algebraic equation:
xp+1 = xp + 1.

The positive roots of this algebraic equation were named the General�
ized Golden Proportions or the Golden p�proportions tp. Let’s ponder upon
this result. Within several millennia, since Pythagoras and Plato, man�
kind widely used the known classical Golden Proportion as some unique
number. And at the end of the 20th century, the Ukrainian scientist
Stakhov has generalized this result and proved the existence of the in�
finite number of the Golden Proportions; as all of them have the same
right to express Harmony, as well as the classical Golden Proportion.
Moreover, Stakhov proved that the golden p�proportions τp (1≤τp≤2)
represented a new class of irrational numbers, which express some un�
known mathematical properties of the Pascal triangle. Undoubtedly,
such mathematical result has fundamental importance for the develop�
ment of modern science and mathematics.
2. Codes of the Golden р�proportions. Using a concept of the golden
р�proportion, Stakhov introduced a new definition of real number in
the form:

A a ai p
i

i
i= ∈∑ τ , ( { , })0 1

He named this sum the “Code of the golden р�proportion.” Stakhov proved
that this concept, which is an expansion of the well�known Newton’s definition
of real number, could be used for the creation of a new theory for real numbers.
Furthermore, he proved that this result could also be used for the creation of
new computer arithmetic and new computers—Fibonacci computers. Stakhov
not only introduced the idea of Fibonacci computers, but he also organized the
engineering projects on the creation of such computer prototypes in the Vinnit�
sa Polytechnic Institute from 1977�1995. 65 foreign patents for inventions in
the field of Fibonacci computers have been issued by the state patent offices of
the United States, Japan, England, France, Germany, Canada, and other coun�
tries; these patents confirmed the significance of Ukrainian science and of Pro�
fessor Stakhov’s work in this important computer area.

In recent years, the area of Professor Stakhov’s scientific interests has moved
more and more towards the area of mathematics. For example, his lecture “The
Golden Section and Modern Harmony Mathematics” delivered at the Seventh
International Conference on Fibonacci Numbers and their Applications in Graz,
Austria in 1996, and then repeated in 1998 at the Ukrainian Mathematical So�
ciety, established a new trend in Stakhov’s scientific research. This lecture was
impressive and it created wide discussion on Stakhov’s new research.
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Currently, Professor Stakhov is an actively working scientist who publishes
his scientific papers in many internationally recognized journals. Most recently,
he has published many fundamental papers in the international journals: Com�
puters & Mathematics with Applications; The Computer Journal; Chaos, Solitons
& Fractals; Visual Mathematics; and others. This fact demonstrates, undoubt�
edly, tremendous success not only for Professor Stakhov, but also for Ukrainian
science.

Stakhov’s articles are closing a cycle of his long�term research on the
creation of a new direction in mathematics: Mathematics of Harmony. One
may wonder what place in the general theory of mathematics this work may
have. It seems to me that in the last few centuries as Nikolay Lobachevsky
said, “Mathematicians have turned all their attention to the advanced parts
of analytics, and have neglected the origins of Mathematics, and are not
willing to dig the field that has already been harvested by them and left
behind.” As a result, this has created a gap between “Elementary Mathemat�
ics”—the basis of modern mathematical education—and “Advanced Mathe�
matics.” In my opinion, the Mathematics of Harmony developed by Profes�
sor Stakhov fills that gap. Mathematics of Harmony is a huge theoretical
contribution to the development of “Elementary Mathematics,” and as such
should be considered of great importance for mathematical education.

It is imperative to mention that Professor Stakhov focuses his organiza�
tional work on stimulating research in the field of theory surrounding Fibonacci
numbers and the Golden Section; he also assists in spreading knowledge among
broad audiences inside the scientific community. In 2003, under Professor
Stakhov’s initiative and scientific supervision, the international conference
on “Problems of Harmony, Symmetry, and the Golden Section in Nature, Sci�
ence, and Art” was held. At this conference, Professor Stakhov was elected as
President of the International Club of the Golden Section, confirming his of�
ficial status as leader of a new scientific direction that is actively progressing
the modern science.

Professor Stakhov proposed the discipline “Mathematics of Harmony and
the Golden Section” for the mathematical faculties of pedagogical universities.
In essence, this mathematical discipline can be considered the beginning of
mathematical education reform—which is based on the principles of Harmony
and the Golden Section. It should be noted that such discipline was delivered
by Professor Stakhov during 2001�2002 for the students and faculty of physics
and mathematics at Vinnitsa State Pedagogical University. I have no doubts
about the usefulness of such discipline for future teachers in mathematics and
physics. I believe that Professor Stakhov has the potential to write a textbook
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on this discipline for pedagogical universities, and also a textbook on Mathematics
of the Golden Section for secondary schools.

It is clear to me that “Mathematics of Harmony,” created by Professor
Stakhov, has huge interdisciplinary importance as this mathematical disci�
pline touches the bases of many sciences, including: mathematics, theoretical
physics, and computer science. Stakhov suggested mathematical education
reform based on the ideas of Harmony and the Golden Section. This reform
opens the doors for the development of mathematical and general education
curriculum. It would greatly contribute to the development of the new scien�
tific outlook based on the principles of Harmony and the Golden Section.

Yuri Mitropolsky
Doctor of Sciences in Theoretical Mechanics, Professor

Academician of the National Academy of Sciences of Ukraine
Academician of the Russian Academy of Sciences

Honorable Professor: The Mathematics Institute of the National
Academy of Sciences of Ukraine

Editor�in�Chief of the Ukrainian Mathematical Journal
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Introduction

Algebra and Geometry have one and the
same fate. The very slow successes did
follow after the fast ones at the begin�
ning. They left science in a state very far
from perfect. It happened, probably, be�
cause mathematicians paid the main at�
tention to the higher parts of the Analy�
sis. They neglected the beginnings and
did not wish to develop those fields,
which they finished once and left them
from behind.

Nikolay Lobachevsky

Three “Key” Problems of Mathematics on the
Stage of its Origin

1. The Main Stages of Mathematics Development

What is mathematics? What are its origin and history? What distin�
guishes mathematics from other sciences? What is the subject of math�

ematical research today? How does mathematics influence the development
of other sciences? To answer these questions we refer to the book Mathemat�
ics in its Historical Development [1], written by the phenomenal Russian math�
ematician and academician, Andrew Kolmogorov. According to Kolmogor�
ov’s definition, mathematics is “a science about quantitative relations and spa�
tial forms of real world.”

Kolmogorov writes that “the clear understanding of mathematics, as a spe�
cial science having its own subject and method, arose for the first time in An�
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cient Greece at 6�5 centuries BC after the accumulation of the big enough
actual material.”

Kolmogorov points out the following stages in mathematics de�
velopment:
1. Period of the “Mathematics origin,” which preceded Greek mathe�

matics.
2. Period of the “Elementary Mathematics.” This period started during

6�5 centuries BC and ended in the 17th century. The volume of
mathematical knowledge obtained up to the beginning of 17th cen�
tury was, until now, the base of “elementary mathematics”—which
is taught at the secondary and high school levels.

3. The “Higher Mathematics” period, started with the use of variables
in Descartes’ analytical geometry and the creation of differential
and integral calculus.

4. The “Modern Mathematics” period. Lobachevsky’s “imaginary geom�
etry” is considered the beginning of this period. Lobachevsky’s ge�
ometry was the beginning of the expansion of the circle of quantita�
tive relations and spatial forms—which began to be investigated by
mathematicians. The development of a similar kind of mathemati�
cal research gave mathematicians many new important features.

2. A “Count Problem”

Discussing the reasons of mathematical occurrence, Kolmogorov specifies two
practical problems that stimulated the development of mathematics during
its origin: count and measurement.

A “count problem” was the first ancient problem of mathematics. It is em�
phasized [1] that “on the earliest steps of culture development, the count of
things led to the creation of the elementary concepts of natural number arith�
metic. On the base of the developed system of oral notation, written notations
arose, whereby different methods of the fulfillment of the four arithmetical
operations for natural numbers were gradually developed.”

The period that culminated in the origin of mathematics germinated the
“key” mathematical discoveries. We are talking about the positional princi�
ple of numbers representation. It is emphasized in [2] that “the Babylonian
sexagesimal numeral system, which arose approximately in 2000 BC, was the
first numeral system based on the positional principle.” This discovery under�
lies all early numeral systems created during the period of mathematics origin
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and the period of the elementary mathematics (including decimal and binary
systems).

It is necessary to note that the positional principle of number representa�
tion and positional numeral systems (particularly the binary system), which
were created in the period of mathematics origin, became one of the “key”
ideas of modern computers. In this connection, it is also necessary to remem�
ber that multiplication and division algorithms, used in modern computers,
were created by the ancient Egyptians (the method of doubling) [2].

However, the formation of the natural number’s concept was the main
result of arithmetic’s development in the period of mathematics origin. Natu�
ral numbers are one of the major and fundamental mathematical concepts—
without which the existence of mathematics is impossible. For studying the
properties of natural numbers, the number theory—one of the fundamental
mathematical theories—arose in this ancient period.

3. A “Measurement Problem”

Kolmogorov emphasizes in [1], that “the needs of measurement (of quantity
of grain, length of road, etc.) had led to the occurrence of the names and des�
ignations of the elementary fractions and to the development of the methods
of the fulfillment of arithmetic operations for fractions.... The measurement of
areas and volumes, the needs of the building engineering, and a little bit later
the needs of astronomy caused the development of geometry”.

Historically, the first “theory of measurement” arose in ancient Egypt. It
was the collection of rules, which the Egyptian land surveyors used. As the
ancient Greeks testify, geometry—as a “science of Earth measurement”—had
originated from these rules.

However, a discovery of the “incommensurable line segments” was
the “key” discovery in this area. This discovery had been made in the 5th
century BC in Pythagoras’ scientific school at the investigation of the ra�
tio of the diagonal to the side of a square. Pythagoreans proved that this
ratio cannot be represented in the form of the ratio of two natural num�
bers. Such line segments were named incommensurable, and the numbers,
which represented similar ratios, were named “irrationals.” A discovery of
the “incommensurable line segments” became a turning point in the devel�
opment of mathematics. Owing to this discovery, the concept of irrational
numbers, the second fundamental concept (after natural numbers) came
into use in mathematics.
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For overcoming the first crisis in the bases of mathematics, caused by the
discovery of “incommensurable line segments,” the Great mathematician Eu�
doxus had developed a theory of magnitudes, which was transformed later
into mathematical measurement theory [3, 4], another fundamental theory
of mathematics. This theory underlies all “continuous mathematics” includ�
ing differential and integral calculus.

Influence of the “measurement problem” on the development of mathe�
matics is so great that the famous Bulgarian mathematician L. Iliev had de�
clared that “during the first epoch of mathematics development, from antiq�
uity to the discovery of differential and integral calculus, mathematics, inves�
tigating first of all the measurement problems, had created Euclidean geome�
try and number theory” [5].

Thus, the two “key” problems of ancient mathematics, the count problem
and the measurement problem, had led to the formation of the two fundamen�
tal concepts of mathematics: natural numbers and irrational numbers—which,
together with number theory and measurement theory, became the basis of
“classical mathematics.”

4. Mathematics. The Loss of Certainty

The book, Mathematics: The Loss of Certainty [6], written by American math�
ematician Morris Kline, had a huge influence upon the author and became a
source of reflections about the nature and role of mathematics in modern sci�
ence; it is a pleasure for the author to retell briefly the basic ideas of Morris
Kline’s book.

Since the origin of mathematics as an independent branch of knowledge
(Greek mathematics), and during more than two millennia, mathematics was
engaged in a search for truth and had achieved outstanding successes. It seemed
that the vast amount of theorems about numbers and geometrical figures, which
was proved in mathematics, is an inexhaustible source of absolute knowledge
which never can change.

To obtain surprisingly powerful results, mathematicians had used a spe�
cial deductive method which allowed them to get new mathematical results
(theorems) from a small number of axiomatic principles, named by axioms.
The nature of the deductive method guarantees a validity of the conclusion if
the initial axioms are true. Euclid’s Elements became the first great mathe�
matical work in this area, which is a brilliant example of the effective applica�
tion of the deductive method.
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Euclidean geometry became the most esteemed part of mathematics—not
only because the deductive construction of mathematical disciplines had be�
gun with the Euclidean geometry—but, also its theorems completely corre�
sponded to the results of physical research. It was considered a firm scientific
axiom for many millennia. Euclidean geometry is the geometry of the physical
world surrounding us. That is why the unusual geometries created at the be�
ginning of the 19th century, named non�Euclidean geometries, became the
first “blow” to the harmonious building of mathematical science. These un�
usual geometries had forced mathematicians to recognize that mathematical
theories and theorems are not absolute truths in application to Nature. It was
proved that new geometries are mathematically correct, that is, they could be
geometrical models of the real world similar to Euclidean geometry, but then
the following question arises: what geometry is a true model of the real world?

Finding the contradictions in Cantor’s theory of infinite sets was another
“blow” to mathematics. Comprehension of the “Tsarina of sciences” is not perfect
regarding its structure; it lacks much, and it is subjected to monstrous contradic�
tions, which can appear at any moment; it shocked mathematicians. The reaction
of mathematicians to all of these events was ambiguous. Unfortunately, the ma�
jority of mathematicians had simply decided to ignore these contradictions. In�
stead, they fenced themselves off from the external world and concentrated their
efforts on the problems arising within the modern field of mathematics, that is,
mathematicians decided to break connections with natural sciences.

What was mathematics during several millennia? For previous genera�
tions, mathematics was first of all of the greatest creation of human intellect
intended for nature’s research. The natural sciences were the flesh and blood
of mathematics and it fed mathematicians with their vivifying juices. Mathe�
maticians willingly cooperated with physicists, astronomers, chemists, and en�
gineers in searching for the solution to various scientific and technical prob�
lems. Moreover, many great mathematicians of the past were often outstand�
ing physicists and astronomers. The mathematics was the “Tsarina” and si�
multaneously the “Servant” of natural sciences.

Morris Kline noticed that “pure” mathematics, which had completely dis�
associated from the inquiries of natural sciences, was never the center of at�
tention and interest of the great mathematicians of the past. They considered
“pure” mathematics as some kind of “entertainment,” a rest from much more
important and fascinating problems, which were put forward by natural sci�
ences. In the 18th century, such abstract science like number theory had in�
volved only a few mathematicians. For example, Euler, whose scientific inter�
ests had been connected with number theory, was the first to be a recognized
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specialist in mathematical physics. The Great mathematician Gauss did not
consider number theory as the major branch of mathematics. Many of his col�
leagues suggested that he solves The Great Fermat Theorem. In one letter, Gauss
noted that Fermat’s hypothesis is an isolated mathematical problem, which is
not connected with the most important mathematical problems, and conse�
quently, it is not of particular interest.

Morris Kline specifies the various reasons that induced mathematicians
to depart from studying the real world. Widening mathematical and natural�
scientific research did not allow scientists to feel equally free in both mathe�
matics and natural sciences. The problems, that stood before natural sciences
� a solution to which the great mathematicians of the past participated active�
ly �nowadays became more and more complex, and many mathematicians had
decided to limit their activity to the problems of “pure” mathematics.

Abstraction, generalizations, specialization, and axiomatization are the
basic directions of activity chosen by “pure” mathematicians. This activi�
ty led to the situation where, nowadays, mathematics and natural sciences
go different ways. New mathematical concepts are developing without any
attempt to find their applications. Moreover, mathematicians and repre�
sentatives of natural sciences do not understand each other today—owing
to the excessive specialization in fields and often mathematicians do not
understand each other.

What can resolve this situation? Morris Kline emphasizes that researchers
should return to nature and natural sciences, which were the original objectives
of mathematics. Ultimately, common sense should win. The mathematical world
should search for a distinction not between “pure” and applied mathematics,
but between the mathematics; whereby, its purpose is to find a solution to rea�
sonable problems. Mathematicians should not indulge someone’s personal tastes
and whims as our quests in mathematics is purposeful and never�ending be�
cause mathematics is rich in content that is empty, alive, and bloodless.

5. A “Harmony Problem”

As is known, returning to the past is a fruitful source of cognition to the present.
The return to the sources of mathematics, to its history, is one of the impor�
tant directions to overcome the crisis of contemporary mathematics. In re�
turning to ancient science, particularly Greek science, we should pay atten�
tion to an important scientific problem, which was the focus of ancient sci�
ence starting with Pythagoras and Plato.
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We are talking about the “harmony problem.” What is the harmony?
Well�known Russian philosopher Shestakov in his remarkable book Har�
mony as an Aesthetic Category [7] emphasizes that “in the history of aesthet�
ic doctrines, the diversified types of understanding of harmony were put
forward. The concept of “harmony” is multiform and used extremely widely.
It meant the natural organization of nature and space, a beauty of the hu�
man physical and moral world, principles of art works’ design or the law of
aesthetic perception.” Among the various types of harmony (mathematic,
aesthetic, artistic), which arose during the development of science and aes�
thetics, we will first be interested in mathematical harmony. In this sense,
harmony is understood as equality or proportionality of the parts between
themselves and the parts with the whole. In the Great Soviet Encyclopedia,
we can find the following harmony definition, which expresses the mathe�
matical understanding of the harmony: “The harmony of an object is a pro�
portionality of the parts and the whole, a merge of the various components
of the object to create a uniform organic whole. In harmony, the internal
order and the measure of the object had obtained external revealing.”

In the present book we concentrate our attention on mathematical harmo�
ny. It is clear that the mathematical understanding of harmony accepts, as a
rule, the mathematical kind, and it is expressed in the form of certain numer�
ical proportions. Shestakov emphasizes [7] that mathematical harmony “fixes
attention on its quantitative side and is indifferent to qualitative originality
of the parts forming conformity... The mathematical understanding of the har�
mony fixes, first of all, quantitative definiteness of the harmony, but it does
not express aesthetic quality of the harmony, its expressiveness, connection
with a beauty.”

6. The Numerical Harmony of the Pythagoreans

Pythagoreans, for the first time, put forth the idea of harmonious organiza�
tion of the universe. According to Pythagoreans, “harmony is an internal con�
nection of the things, without which the Cosmos could not exist.” At last,
according to Pythagoras, harmony has numerical representation, namely that
harmony is connected with the concept of number. The Pythagoreans had
created the doctrine about the creative essence of number and their number
theory had a qualitative character. Aristotle, in his “Metaphysics”, emphasiz�
es this feature of the Pythagorean doctrine:
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“The so�called Pythagoreans, studying mathematical sciences, for the
first time have moved them forward and, basing on them, began to
consider mathematics as the beginnings of all things... Because all
things became like to numbers, and numbers occupied first place in
all nature, they assumed that the elements of numbers are the begin�
ning of all things and that all universe is harmony and number.”

Pythagoreans recognized that a form of the universe should be harmoni�
ous, and all elements of the universe are connected with harmonious figures.
Pythagoras taught that the Cube originates the Earth, the Tetrahedron the
Fire, the Octahedron the Air, the Icosahedron the Water, the Dodecahedron
the sphere of the universe, that is, the Ether.

The Pythagorean doctrine about the numerical harmony of the universe
had influenced the development of all subsequent doctrines about the nature
and essence of harmony. It was reflected upon and developed in the works of
great thinkers. In particular, the Pythagorean doctrine underlies Plato’s cos�
mology. Plato developed the Pythagorean doctrine; specifically emphasizing the
cosmic importance of harmony. He remained firmly convinced that world har�
mony can be expressed in numerical proportions. The influence of Pythagore�
ans is especially traced in Plato‘s “Timaeus”; whereby, Plato developed the doc�
trine about proportions and analyzed the role of Regular Polyhedrons (Platon�
ic Solids), from which—in his opinion—God had created the world.

The main conclusion, which follows from the Pythagorean doctrine, con�
sists of the following. Numerical or mathematical harmony is objective prop�
erty of the universe, it exists irrespective of our consciousness and is expressed
in the harmonious organization of all in the real world starting from cosmos
and finishing by microcosm.

7. A “Harmony Problem” in Euclid’s Elements

We ask how Pythagoras and Plato’s harmonious ideas were reflected in antique
mathematics. To answer this question we analyze the greatest mathematical
work of Greek mathematics: the Elements of Euclid. As is known, the Elements
of Euclid is not an original work. A significant part of Elements was written by
Pythagorean mathematicians. Their contribution to the theory of proportions—
in which all ancient science and culture is based—is especially great. As the
further progression of science had shown, the Pythagoreans, using numerical
representations, did not leave the real world, but rather came nearer to it.
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The 13th, and final, Book of Euclid’s Elements is devoted to the theory of
the regular polyhedrons, which is expressed in ancient science as universe har�
mony. The regular polyhedrons were used by Plato in his Cosmology and there�
fore they were named Platonic Solids. This fact originated the widespread hy�
pothesis formulated by Proclus—one of the most known commentators of
Euclid’s Elements. According to Proclus’ opinion, Euclid created the Elements
not with the purpose to present geometry as axiomatic mathematical science,
but with the purpose to give the full systematized theory of Platonic Solids, in
passing having covered some advanced achievements of the ancient mathe�
matics. Thus, the main goal of the Elements was a description of the theory of
Platonic Solids described in the final book of Elements. It would not be out of
place to remember that seemingly, the most important material of a scientific
book is placed into the final Chapter of the book. Consequently, the place�
ment of the Platonic Solids theory in the final book of the Elements is indirect
proof surrounding the validity of Proclus’ hypothesis; meaning that Pythago�
ras’ Doctrine about the numerical harmony of the universe got its brightest
embodiment in the greatest mathematical work of the ancient science: Eu�
clid’s Elements.

In order to develop a complete theory of the Platonic Solids, in particular
the Dodecahedron, Euclid formulated in Book II the famous Theorem II,11
about the division in the extreme and mean ratio (DEMR), which is known in
modern science under the name of the golden section. DEMR penetrated all
Books of Euclid’s Elements, and it had been used by Euclid for the geometric
construction of the following “harmonic” geometric figures: equilateral trian�
gle with the angles 72°, 72° and 36° (the “golden” equilateral triangle), regular
pentagon and then the Dodecahedron based on the golden section. Taking
into consideration Proclus’ hypothesis, and a role of the DEMR in Euclid’s
Elements, we can put forward the following unusual hypothesis: Euclid’s Ele�
ments was the first attempt to create the “Mathematical Theory of Har�
mony” which was the main idea of Greek science.

It is clear that the formulation of the division in the extreme and mean
ratio (the golden section) can be considered as the “key” mathematical dis�
covery in the field of the “harmony problem.” The Great Russian philosopher
Alexey Losev wrote in one of his articles that: “From Plato’s point of view,
and generally from the point of view of all antique cosmology, the universe is
a certain proportional whole that is subordinated to the law of harmonious
division, the Golden Section.”

Thus, we have to add the “harmony problem” to the list of the “key” prob�
lems of mathematics regarding the stage of its origin. Such approach leads us
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to the original view on the history of mathematics. This idea underlies the
present book.

During its historical development, the “classical mathematics” had lost
Pythagoras’ and Plato’s “harmonious idea” embodied by Euclid in his Ele�
ments. As the outcome, mathematics had been divided into a number of math�
ematical theories (geometry, number theory, algebra, differential and integral
calculus, etc.), which sometimes have very weak correlations. Unfortunately,
a significance of the “golden mean” had been belittled in modern mathematics
and theoretical physics. For many modern mathematicians, the “golden sec�
tion” reminds us of a “beautiful fairy tale,” which has no relation to serious
mathematics.

8. Fibonacci Numbers

Nevertheless, despite the negative relation of “materialistic” mathematics
to the “golden mean,” its theory continued to develop. The famous Fibonac�
ci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, …, had been introduced into mathe�
matics during the 13th century by the famous Italian mathematician Le�
onardo from Pisa (Fibonacci) at the solution of the rabbits reproduction
problem. It is necessary to note that the method of recursive relations—
one of the most powerful methods of combinatorial analysis—follows di�
rectly from Fibonacci’s discovery. Later, the Fibonacci numbers had been
found in many natural objects and phenomena, in particular, the botanical
phenomenon of phyllotaxis.

9. The First Book on the Golden Mean in the History of Science

During the Italian Renaissance, interest in the “golden mean” arose with new
force. Of course, the universal genius of the Italian Renaissance Leonardo da
Vinci could not pass the division of the extreme and mean ratio (the golden
section). There is an opinion that Leonardo had introduced into the Renais�
sance culture by the name of the “golden section.” Leonardo da Vinci had
influenced the book Divina Proportione [8], which was published by Italian
mathematician Luca Paccioli in 1509. This unique book was the first mathe�
matical book on the “golden mean” in history. The book was illustrated with
60 brilliant geometric figures drawn by Leonardo da Vinci; additionally, the
book had a great influence on Renaissance culture.
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10. Johannes Kepler and the Golden Section

In the 17th century, astronomer and mathematician Johannes Kepler created
the original geometrical model of Solar system based on Platonic Solids. Ke�
pler had expressed his admiration of the golden section with the following
words: “Geometry has two great treasures: one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio. The first, we may
compare to a measure of gold; the second we may name a precious stone.”

11. Fibonacci Numbers and the Golden Section in 19th Century Science

After Kepler’s death, interest in the golden section, considered one of the two
“treasures of geometry,” decreased; whereby, such strange oblivion continued
for two centuries. Active interest in the golden section revived in mathemat�
ics in the 19th century. During this period, many mathematical works were
devoted to Fibonacci numbers and the golden mean, and according to the
witty saying of one mathematician: they “started to reproduce as Fibonacci’s
rabbits.” French mathematicians Lucas and Binet became the leaders of this
type of research in 19th century. Lucas had introduced into mathematics the
name “Fibonacci Numbers,” and also the famous Lucas numbers (1, 3, 4, 7, 11,
18, ...). Binet had deduced the famous Binet formulas, which connect the Fi�
bonacci and Lucas numbers with the golden mean.

During this time, the German mathematician Felix Klein tried to unite
together all branches of mathematics on the base of the Regular Icosahedron,
the Platonic Solid—dual to the Dodecahedron. Klein treats the Regular Icosa�
hedron based on the golden section as the main geometric object, from which
the branches of the five mathematical theories follow, namely, geometry, Ga�
lois’ theory, group theory, invariant theory, and differential equations. Klein’s
main idea is extremely simple: “Each unique geometrical object is somehow or
another connected to the properties of the Regular Icosahedron.”

12. The Golden Section and Fibonacci Numbers in Science of the 20th and
21st Centuries

In the second half of the 20th century the interest in Fibonacci numbers and the
golden mean in mathematics had revived with new force, and the revival expanded
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into the 21st century with many original books [9�57] being published that were
devoted to the golden mean, Fibonacci numbers, and other related topics, which
is evidence of the increasing interest in the golden mean and Fibonacci numbers
in modern science. Prominent mathematicians Gardner [12], Vorobyov [13],
Coxeter [14], and Hoggatt [16] were the first researchers who felt new tenden�
cies growing in mathematics. In 1963, the group of American mathematicians
had organized the Fibonacci Association and they started publishing the math�
ematical journal The Fibonacci Quarterly. Owing to the activity of the Fibonacci
Association and the publications of the special books by Vorobyov [13], Hog�
gatt [16], Vaida [28], Dunlap [38], and other mathematicians, a new mathemat�
ical theory—the “Fibonacci numbers theory”—appeared in contemporary math�
ematics. This theory has its own interesting mathematical history, which is pre�
sented in the book A Mathematical History of the Golden Number, written by
the prominent Canadian mathematician Roger Herz�Fishler [40].

In 1992 a group of the Slavic scientists from Russia, Ukraine, Belarus, and
Poland had organized the so�called Slavic “Golden” Group. Resulting from
the initiative of this group, the International symposiums of “The Golden
Section and Problems of System Harmony” had been held in Kiev, Ukraine
in 1992 and 1993, and then again in Stavropol, Russia from 1994�1996.

The golden mean, pentagram, and Platonic Solids were widely used by
astrology and other esoteric sciences, and this became one of the reasons for
the negative reaction of “materialistic” science towards the golden mean and
Platonic Solids. However, all attempts of “materialistic” science and mathe�
matics to forget and completely disregard the “golden mean” and Platonic
Solids and to throw them out along with astrology and esoteric sciences on
the “dump of the doubtful scientific concepts,” had failed. Mathematical models
based on the golden mean, Fibonacci numbers, and Platonic Solids had proved
to be “enduring,” and they began to appear unexpectedly in different areas of
nature. Already, Johannes Kepler had found Fibonacci’s spirals on the surface
of the phyllotaxis objects. The research of the phyllotaxis objects growth made
by the Ukrainian architect Oleg Bodnar [37, 52] demonstrated that the ge�
ometry of phyllotaxis objects is based on a special class of hyperbolic func�
tions—the “golden” hyperbolic functions. In 1984, the Byelorussian, philoso�
pher Eduardo Soroko, had formulated the “Law of structural harmony of sys�
tems” [25]. This law confirmed a general character of self�organized processes
in the system of any nature; it demonstrated that all self�organized systems
are based on the generalized golden p�proportions. Shechtman’s quasi�crys�
tals, based on the Platonic icosahedron, and fullerenes (Nobel Prize of 1996),
were based on the Archimedean truncated icosahedron, had confirmed Felix
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Klein’s great prediction about the fundamental role of the icosahedron in sci�
ence and mathematics [58]. Ultimately, Petoukhov’s “golden” genomatrices
[59] did completed the list of modern outstanding discoveries based on the
golden mean, Fibonacci numbers, and the regular polyhedra.

It is possible to assume that the increasing interest in the golden mean
and Fibonacci numbers in modern theoretical physics and computer science
is one of the main features of 21st century science. Prominent theoretical phys�
icist and engineering scientist Mohammed S. El Nashie is a world leader in
this field [60�72]. El Nashie’s discovery of the golden mean in the famous phys�
ical two�slit experiment—which underlies quantum physics—became a source
of many important discoveries in this area, in particular, the E�infinity theory.
In this respect, we mention the works of El Nashie’s numerous followers work�
ing in theoretical physics [73�83]. It is also necessary to note the contribution
of Slavic researchers to this important area. The book [53] written by the
Byelorussian physicist Vasyl Pertrunenko is devoted to the applications of
the golden mean in quantum physics and astronomy. In 2006, the book Meta�
physics of the 21st century [57], edited by the famous Russian physicist and
theorist Y.S. Vladimirov was published. The book [57] consists of three chap�
ters and the last chapter was devoted to the golden mean applications in mod�
ern science. This chapter begins with two important articles [59, 84]. Sta�
khov’s article [84] is devoted to the substantiation of “Harmony Mathemat�
ics” as a new interdisciplinary direction of modern science. Petoukhov’s arti�
cle [59] is devoted to the description of the important scientific discovery: the
“golden” genomatrices; which reaffirms the deep mathematical connection
between the golden mean and genetic code. The famous Russian physicist
Professor Vladimirov (Moscow University) finishes his book Metaphysics [85]
with the following words: “It is possible to assert that in the theory of elec�
troweak interactions there are relations that coincide with the ‘Golden Sec�
tion’ that play an important role in the various areas of science and art.”

In the second half of the 20th century multiple interesting mathematical
discoveries in the area of golden mean applications in computer science and
mathematics had been made [86�119]. In 1956, the young American mathe�
matician George Bergman made an important mathematical discovery in the
field of number systems [86]. We are talking about the number system with
irrational base (the golden mean) described in [86]. Modern mathematicians
had been so anxious of overcoming the crisis in the basis of mathematics that
they simply had not noticed Bergman’s discovery, which is, without doubt,
one of the greatest mathematical discoveries in the field of number systems
after the discovery by Babylonians of the positional principle of number repre�
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sentation. Bergman’s number system was generalized by Alexey Stakhov who
developed in the book [24] more general class of the number systems with irra�
tional radices named “Codes of the golden proportion.” Alexey Stakhov, in the
article [105], developed a new approach to geometric definition of real numbers
that is of great importance for number theory. In his article [87], and then in the
book [20], Stakhov developed the so�called Fibonacci codes. The codes of the
golden proportion and Fibonacci codes became a source of the Fibonacci com�
puter project [30] developed in the Soviet Union. This computer project was an
original project, which was defended by 65 patents issued by the State Patent�
ing Departments of the United States, Japan, England, Germany, France, Can�
ada, and other countries [120�131]. Parallel with Soviet computer science, work
continued on Fibonacci computers in the United States [132�135]. In the works
[44, 103, 113, 114], a new class of square matrices, the generalized Fibonacci
matrices and the so�called “golden” matrices, was developed. This led to a new
kind of theory of coding and cryptography [44, 113, 114].

A new class of hyperbolic functions, the hyperbolic Fibonacci and Lucas
functions, introduced by Alexey Stakhov, Ivan Tkachenko, and Boris Rozin
[51, 98, 106, 116, 119], was another important modern mathematical discov�
ery.

The beginning of the 21st century is characterized by a number of the
interesting events; all of which have a direct relation to Fibonacci numbers
and the golden mean. First of all, it is necessary to note that three Interna�
tional Conferences on Fibonacci Numbers and their Applications were held
in the 21st century (Arizona, USA, 2002; Braunschweig, Germany, 2004; Cal�
ifornia, USA, 2006). In 2003, the international conference Problems of Har�
mony, Symmetry, and the Golden Section in Nature, Science and Art was
held in Vinnitsa, Ukraine following the initiative of the Slavic “Golden” Group,
which had transformed into the International Club of the Golden Section.
In 2005, the Academy of Trinitarizm (Russia) and the International Club of
the Golden Section, had organized the Institute of the Golden Section.

Intersecting the 20th and 21st centuries, Western and Slavic scientists
had published a number of scientific books in the field of the golden mean and
its applications. The most interesting of them are the following:

Dunlap R.A. The Golden Ratio and Fibonacci Numbers (1997) [38].

Herz�Fishler Roger. A Mathematical History of the Golden Number
(1998) [40].

Vera W. de Spinadel. From the Golden Mean to Chaos (1998) [42].
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Gazale Midhat J. Gnomon. From Pharaohs to Fractals (1999) [45].

Kappraff Jay. Connections. The Geometric Bridge between Art and Sci�
ence (2001) [47].

Kappraff Jay. Beyond Measure. A Guided Tour Through Nature, Myth,
and Number (2002) [50].

Shevelev J.S. Meta�language of the Living Nature (2000) (Russian)[46].

Petrunenko V.V. The Golden Section in Quantum States and its Astro�
nomical and Physical Manifestations (2005) (Russian) [53].

Bodnar O.J. The Golden Section and Non�Euclidean Geometry in Sci�
ence and Art (2005) (Ukrainian) [52].

Soroko E. M. The Golden Section, Processes of Self�organization and
Evolution of  System. Introduction into General Theory of System Har�
mony (2006) (Russian) [56].

Stakhov A.P., Sluchenkova A.A.. Scherbakov I.G. The da Vinci Code
and Fibonacci Series (2006) (Russian) [55].

Olsen Scott. The Golden Section: Nature’s Greatest Secret (2006) [54].

This list confirms a great interest in the golden mean in 21st century science.

13. The Lecture: “The Golden Section and Modern
Harmony Mathematics”

By the end of the 20th century, the development of the “Fibonacci numbers
theory” was widening intensively. Many new generalizations of Fibonacci
numbers and the golden section had been developed [20]. Different unexpected
applications of Fibonacci numbers and the golden section particularly in the�
oretical physics (the hyperbolic Fibonacci and Lucas functions [51, 98, 106]),
computer science (Fibonacci codes and the codes of the golden proportion
[20, 24, 87, 89, 102]), botany (the law of the spiral biosymmetries transforma�
tion [37]), and even philosophy (the law of structural harmony of systems
[25]) were obtained. It became clear that the new results in this area were far
beyond the traditional “Fibonacci numbers theory” [13, 16, 28]. Moreover, it
became evident that the name “Fibonacci numbers theory” considerably nar�
rows the subject of this scientific direction—which studies mathematical mod�
els of system harmony. Therefore, the idea to unite the new results in the theory



Alexey Stakhov       MATHEMATICS  OF  HARMONY

xxxiv

of the golden mean and Fibonacci numbers and their applications under the flag
of the new interdisciplinary direction of the modern science, named “Harmony
Mathematics,” appeared. Such idea had been presented by Alexey Stakhov in
the lecture “The Golden Section and Modern Harmony Mathematics” at the
Seventh International Conference on Fibonacci Numbers and their Applications
in Graz, Austria in July 1996. The lecture was later published in the book Appli�
cations of Fibonacci Numbers [100].

After 1996, the author continued to develop and deepen this idea [101�
119]. However, the creation of “Harmony Mathematics” was a result of col�
lective creativity; the works of other prominent researchers in the field of the
golden section and Fibonacci numbers Martin Gardner [12], Nikolay Voro�
byov [13], H. S. M. Coxeter [14], Verner Hoggat [16], George Polya [17],
Alfred Renyi [23], Stephen Vaida [28], Eduardo Soroko [25, 56], Jan Grzedz�
ielski [26], Oleg Bodnar [37, 52], Nikolay Vasutinsky [31], Victor Korobko
[43], Josef Shevelev [46], Sergey Petoukhov [59], Roger Herz�Fishler [40],
Jay Kappraff [47, 50], Midhat Gazale [45], Vera W. de Spinadel [42], R.A.
Dunlap [38], Scott Olsen [54], Mohammed S. El Nashie [60�72], and other
scientists had influenced the author’s research in this field.

“Harmony Mathematics,” in its origin, goes back to the Euclidean problem
of “division in the extreme and mean ratio” (the golden section) [40]. Harmony
Mathematics is a continuation of the traditional “Fibonacci numbers theory”
[13, 16, 28]. What are the purposes of this new mathematical theory? Similar to
“classical mathematics,” which is defined sometimes as the “science about mod�
els” [5], we can consider Harmony Mathematics as the “science about the
models of harmonic processes” in the world surrounding us.

14. Two Historical Ways of Mathematics Development

In research, returning to the origin of mathematics, we can point out the two
ways of mathematics development, which arose in the ancient mathematics.
The first way was based on the “count problem” and the “measurement prob�
lem” [1]. In the period of mathematics origin two fundamental discoveries
were made. The positional principle of number representation [2] was used
in all known numeral systems, including the Babylonian sexagecimal, deci�
mal, and binary systems. Ultimately, the development of this direction culmi�
nated in the formation of the concept of natural numbers; it also led to the
creation of number theory—the first fundamental theory of mathematics. In�
commensurable line segments discovered by Pythagoreans led to the dis�
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covery of irrational numbers and the creation of measurement theory
[3, 4]—which was the second fundamental theory of mathematics. Ultimate�
ly, natural and irrational numbers became those basic mathematical concepts
that underlie all mathematical theories of “classical mathematics,” including num�
ber theory, algebra, geometry, and differential and integral calculus. Theoretical
physics and computer science are the most important applications of “classical
mathematics” (see Fig. I.1).
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Figure I.1. Three “key” problems of the ancient mathematics and new directions in
mathematics, theoretical physics and computer science

However, parallel with the “classical mathematics” in the ancient science
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another mathematical theory—Harmony Mathematics—had started to devel�
op. Harmony Mathematics originated from another “key” idea of antique sci�
ence—the “Harmony problem.” The Harmony Problem triggered the “Doc�
trine about Numerical Harmony of the Universe” that was developed by
Pythagoras.

A division in the extreme and mean ratio (the golden section) was the
“key” mathematical discovery in this area [40]. The development of this idea
resulted in the Fibonacci numbers theory [13, 16, 28] in modern mathemat�
ics. However, the extension of the Fibonacci numbers theory and its applica�
tions coupled with the generalization of Fibonacci numbers and the golden
section produced the concept of “Harmony Mathematics” [100] as a new
interdisciplinary direction of modern science and mathematics. This can re�
sult in the creation of the “golden” theoretical physics, based on the “gold�
en” hyperbolic models of nature [51, 98, 106, 116, 118], and the “golden”
computer science, based on new computer arithmetic [20, 24, 30, 87, 89, 94,
104] and a new theory of coding and cryptography [55, 113, 114].

15. The Main Goal of the Present Book

It seems that the dramatic history of the DEMR (the golden section) � that
continued over several millennia � has ended as a great triumph for the golden
section in the beginning of the 21st century. Many outstanding scientific dis�
coveries that are based on the golden section (quasi�crystals, fullerenes , “gold�
en” genomatrices and so on) gave reason to conclude that the golden section
may be considered as some kind of “metaphysical knowledge,” “pre�num�
ber,” or “universal code of Nature,” which could become the basis for the
future development of science; particularly, theoretical physics, genetics,
and computer science. This idea is the main concept of the book [57] and the
articles [59, 84]. These scientific facts demand reappraisal of the role of the
golden section in contemporary mathematics.

The main purpose of the present book is to revive the interest in the gold�
en section and Pythagoras, Plato, and Euclid’s “harmonic idea” in modern
mathematics, theoretical physics, and computer science. It also strives to dem�
onstrate that the Euclidean problem of the “division in extreme and mean
ratio” (the golden section) is a powerful and fruitful source of many funda�
mental ideas and concepts of contemporary mathematics, theoretical physics,
and computer science. We consider different generalizations of the golden
mean, in particular, the generalized golden p�proportions (p=0, 1, 2, 3, …) and



Introduction
xxxvii

the generalized golden means of the order m (m is a positive real number) as
fundamental mathematical constants similar to the numbers π and e. We show
that this approach resulted in: a new class of elementary functions—the hy�
perbolic Fibonacci and Lucas functions; a new class of the recursive numerical
sequences—the generalized Fibonacci and Lucas p�numbers (p=0, 1, 2, 3, …)
and the generalized Fibonacci and Lucas numbers of the order m (m is a positive
real number); and it also led to a new class of square matrices—the Fibonacci
and “golden” matrices. Also, this approach resulted in a new measurement the�
ory, algorithmic measurement theory, in a new class of number systems with
irrational radices that are codes of the golden p�proportions. Additionally, a
new kind of computer arithmetic, the Fibonacci and “golden” arithmetic and
the ternary mirror�symmetric arithmetic, was developed, as well as a new cod�
ing theory based on the Fibonacci matrices and a new kind of cryptography—
the “golden” cryptography.

The book consists of three parts. Part I “Classical Golden Mean, Fibonacci
numbers, and Platonic Solids” consists of three chapters, Chapter 1 “The Gold�
en Section”, Chapter 2 “Fibonacci and Lucas Numbers”, and Chapter 3 “Regu�
lar Polyhedrons”. Part I is popular introduction into the Fibonacci numbers
theory and its applications. Part I is intended for a wide audience including
mathematics teachers of secondary schools, students of colleges and universi�
ties. Also, Part I can attract attention to the representatives of various branches
of modern science and art that are interested in both creative and practical ap�
plications of the golden mean, Fibonacci numbers, and Platonic Solids.

Part II “Mathematics of Harmony” consists of three  chapters, Chapter 4
“Generalizations of Fibonacci Numbers and the Golden Mean,” Chapter 5
“Hyperbolic Fibonacci and Lucas Functions,” and Chapter 6  “Fibonacci and
Golden Matrices”. Part II calls for special knowledge in mathematics and is
intended, first of all, for mathematicians and scientists in theoretical physics.

Part III “Applications in Computer Science” consists of five chapters,
Chapter 7 “Algorithmic Measurement Theory”, Chapter 8 “Fibonacci Com�
puters”, Chapter  9 “Codes of the Golden Proportion” , Chapter 10 “Ternary
Mirror�Symmetrical Arithmetic,” and Chapter 11 “A New Coding Theory
Based on Matrix Approach.” Part III is intended for mathematicians and spe�
cialists in computer science.

Note that Parts II and III are, in the main, results of original researches
obtained by the author in about 40 years of scientific work.
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Chapter 1

The Golden Section

1.1. Geometric Definition of the Golden Section

1.1.1. A Problem of the Division in the Extreme and Mean Ratio
(DEMR)

The Elements of Euclid is one of the best known mathematical works of
ancient science. Written by Euclid in the 3rd century B.C., it contains the
main theories of ancient mathematics: elementary geometry, number theory,
algebra, the theory of proportions and ratios, methods of calculations of areas
and volumes, etc. Euclid, in this work, systematized a 300�year period of de�
velopment of Greek mathematics, and this work created a strong base for the
further development of mathematics. The information about Euclid himself is
extremely scanty. Except for several jokes, we only know that he taught at the
mathematical school in Alexandria. The Elements of Euclid surpassed all works
of his predecessors in the field of geometry, and during more than two millen�
nia, The Elements remained the basic work for the teaching of “Elementary
Mathematics.” The 13 books of The Elements are dedicated to the knowledge
of geometry and arithmetic of the Euclidean epoch.

From The Elements of Euclid, the following geometrical problem,
which was named the problem of “Division in Extreme and Mean Ratio”
(DEMR), came to us [40]. This problem was formulated in Book II of
The Elements as follows:

Theorem II.11 (the area formulation of DEMR). To divide a line AB into
two segments, a larger one AC and a smaller one CB so that:

S AC R AB CB( ) = ( ), . (1.1)

Note that S AC( ) is the area of a square with a side AC and R AB CB,( )  is
the area of a rectangle with sides AB and CB.
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 The Golden Section

We can rewrite the expression
(1.1) in the following form:

AC AB CB( ) = ×2
. (1.2)

Now, divide both parts of the
expression (1.2) by AC and then
by CB. The expression (1.2) then
takes the form of the following
proportion:

AB
AC

AC
CB

= . (1.3)

This form is well�known to
mathematicians as the “golden
section.”

We can interpret a proportion (1.3) geometrically (Fig. 1.2): divide a line
AB at the point C into two segments, a larger one AC and a smaller one CB, so
that the ratio of the larger segment AC to the smaller segment CB is equal to
the ratio of the line AB to the larger segment AC.

Figure 1.2. The division of a line in extreme and mean ratio (the golden section)

Denote a proportion (1.3) by x. Then, taking into consideration that
AB AC CB= + , the proportion (1.3) can be written in the following form:

x
AB
AC

AC CB
AC

CB
AC AC

CB
x

= = + = + = + = +1 1
1

1
1

,

whence we obtain the following algebraic equation:

x x2 1= + . (1.4)

It follows from the “geometrical meaning” of the proportion (1.3) that the
required solution of Eq. (1.4) has to be a positive number; it also follows that
a positive root of Eq. (1.4) is a solution of the problem. If we denote this root
by τ, then we obtain:

τ = +1 5
2

. (1.5)

This number is called the Golden Proportion, Golden Mean, Golden Num�
ber, or Golden Ratio.

A C B

R(AB, BC)

 
Figure 1.1. A geometrical interpretation of

Theorem II.11 (The Elements of Euclid)

S(AC)

A C B
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We can write the following identity, which connects the powers of the
golden ratio:

τ = τ + τ = τ τn n n n− − −×1 2 1. (1.6)

The approximate value of the golden proportion is:
τ ≈ 1.618033988749894848204586834365638117720309180….

Do not be astonished by this number! Do not forget that this number is an
irrational one! In this book, we will use the following approximate value:
τ ≈ 1 618.  or even τ ≈ 1 62. .

This surprising number, which possesses unique algebraic and geometrical
properties, became an aesthetic canon of ancient Greek art and Renaissance art.

Why did Euclid formulate Theorem II.11? As is shown in [40], by using this
theorem, Euclid introduced the geometric construction of the golden triangle,
pentagram, and dodecahedron (these geometric figures will be discussed below).

1.1.2. The Origin of the Concept and Title of the Golden Section

Authorities vary over who introduced both the concept and terminology for
the golden section. According to [40], the concept of the DEMR (or the golden
section) was introduced in The Elements (see Theorem II.11). However, The Ele�
ments is not a completely original work. There is an opinion that the majority of
theorems presented in The Elements are scientific results obtained by the Pythagore�
ans. Roger Herz�Fischler wrote [40]: “Many authors point to references according
to which the pentagram was the symbol of the Pythagoreans, and from this, they
deduce that the Pythagoreans were probably acquainted with DEMR.” Herz�
Fischler notes that the famous historians of mathematics, Heath and Van der Waer�
den, supported this point of view. However, Euclid did not use the term “golden
section” in his works; instead, he used the term DEMR. In [40], we can trace the
history of terminology for the DEMR throughout the ages. As follows from [40],
the terminology of DEMR was used by  Euclid, Fibonacci (1220), Zumberti (1516),
Gryaneus (1533), Candalla (1566), Billingsley (1570), Commandino (1572), Clavius
(1579), and Barrow (1722). However, many mathematicians used the term “Mid�
dle and Two Ends,” in particular: Abu Kamil (850�930), al�Biruni (973�1050), Ger�
hard of Cremona (12th century), Adelard (12th century), Campanus of Novara
(13th century), and Billingsley (1570). In addition to the definitions of the “divi�
sion in the extreme and mean ratio” and “proportion having a middle and two ends,”
other definitions, namely: “divina proportione,” “proportionally divided,” “contin�
uous proportion,” “medial section,” “the golden number,” and “the golden section”
were used. The term “divina proportione” was the title of Pacioli’s book published
in 1509. This term was used by Kepler in his 1608 letter. We can find the term
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“proportionally divided” in Clavius’ 1574 edition of The Elements. Kepler, in his
Mysterium Cosmographycum used the term “proportional division” for the DEMR.
The term “continuous proportion” was used by Euclid and we can also find it used
in Kepler’s 1597 letter. The term “medial section” was used by Leslie (1820) in
connection with the DEMR.

The “golden number,” the “golden section,” or the “golden mean” are the
most popular names for the DEMR. As is emphasized in [40], Tannery (1882)
used the term “Section d’Or” and Cantor (1894) used a title of the “golden
shnitt.” Also noted in [40], for the first time, the term “golden schnitt” (the
“golden section”) was used by Ohm in the second edition of his book Pure
Elementary Mathematics (1835).

However, other points of view exist about the origin of the term “the golden
section” — mainly in Russian literature. Edward Soroko, who is one of the most
authoritative Slavic researchers of the “golden section,” wrote in his book [25]:

“The title of the “Golden Section” (“Sectio Aurea”) takes its origin from
Claudia Ptolemey who gave this title for the number 0.618, after he had been
convinced that the growth of a personwith perfect constitution is divided
naturally in this ratio. The given title was fixed and then became popular due
to Leonardo da Vinci who often used this title.”

Unfortunately, the claim about the involvement of Leonardo da Vinci to
the introduction of the title of the golden section has been questioned be�
cause there are no direct references to this title in his works. However, we
should not forget that the great Italian mathematician Luca Pacioli was first
to introduce the title “divine proportion” for the DEMR. Leonardo da Vinci
actively participated in Pacioli’s book De Divina Proportione as he illustrated
this unique mathematical work — which was the first book on the golden mean
in world history. This means that, without any doubt, Leonardo da Vinci knew
the concept of the “divine proportion.”

Very often, the golden mean is denoted by the Greek letter F (the number
PHI). This letter is the first one in the name of the well�known Greek sculp�
tor Phidias, who widely used the golden section in his sculptural works. Re�
member that Phidias (5th century B.C.), together with Polyclitus, were con�
sidered to be two of the most famous and authoritative masters of ancient
Greek sculpture of the Classical epoch. He became famous thanks to his su�
pervision over designing the Acropolis. He created the enormous bronze statue
of Athena (“Winner in Battle”) in commemoration of the victory over the
Persians. Also, he created two grandiose statues from gold and ivory: Athena
Parthenos (“Maidens”) for the Parthenon and Zeus for the Olympian temple
of Zeus (about 430 B.C.), which is considered one of the “Seven Miracles of
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the World.” Despite the monumental character of his sculptures — which
were unprecedented by their sizes among all Greek sculptures of that time
(for example, the 9�meter sculpture of Athena Parthenos or the 13�meter
sculpture of the Olympian Zeus) — they were constructed with strict steadi�
ness and  harmony based on the golden mean.

1.1.3. A Way of Geometrical Construction of the Golden Section

The golden section
arises often in geometry.
From the Euclidean Ele�
ments, we know the fol�
lowing form of geometric
construction of the gold�
en section by using only a
pair of compasses and a
ruler (Fig. 1.3).

Construct a right tri�
angle ABC with the sides
AB=1 and  AC=1/2. Then,
according to the Pythagorean Theorem, we have: CB = + ( ) =1 1 2 5 2

2
/ / .

By drawing the arc AD with the center at the point C before its intersec�
tion with the segment CB at the point D, we obtain the segment

BD CB CD= − = −( ) = −5 1 2 1/ .τ (1.7)

By drawing the arc DE with the center at the point B before its intersection
with the segment AB at the point E, we obtain a division of the segment AB at
the point E by the golden section because

AB
EB

EB
AE

= = τ    or  AB EB AE= = + = − −1 1 2τ + τ . (1.8)

Thus, the simple right triangle with leg ratio of 1:2, well known to ancient
science, could be the basis for the discoveries of the Pythagorean Theorem, the
Golden Section and Incommensurable Line Segments — the three great mathe�
matical discoveries attributed to Pythagoras.

1.1.4. A “Double” Square

Many mathematical regularities, we can say, did “lie on the surface,” and
they needed only to be seen by a person with analytical, logical thinking that

A

C

D

E
B

Figure 1.3. The geometric construction of the golden section
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was inherent in antique philosophers and mathematicians. It is possible that
ancient mathematicians could find the golden proportion by investigating
the so�called elementary rectangle with the side ratio of 1:2. This is named a
“double” or “two�adjacent” square because it consists of two squares (Fig. 1.4).

Let AB = 1 and AD = 2 . Then, if we
calculate the diagonal AC of the “dou�
ble” square, then according to the
Pythagorean Theorem we get:

AC = 5.

If we take the ratio of the sum
AB AC+ relative to the larger side АD
of the “double” square, we come to the
golden mean, because:

(AB+AC)/AD = +( )1 5 2/ . (1.9)

It is paradoxical that the Pythagorean Theorem is very well�known to
each schoolboy while the golden mean is familiar to very few. The main pur�
pose of this book is to tell about this wonderful discovery of antique science to
everyone who preserved the feeling to be surprised and admired, and we will
show to modern scientists the far, not trivial, applications of the golden mean
in many fields of modern science. We will tell our readers about this unique
mathematical discovery, which during the past millenia has attracted the at�
tention of outstanding scientists, mathematicians and philosophers of the past,
like:  Pythagoras, Plato, Euclid, Leonardo da Vinci, Luca Pacioli, Johannes
Kepler, Zeising, Florensky, Ghyka, Corbusier, Eisenstein, American mathe�
matician Verner Hogatt — founder of the Fibonacci Association, and the Great
scientist Alan Turing — a founder of modern computer science.

1.2. Algebraic Properties of the Golden Mean

1.2.1. Remarkable Identities of the Golden Mean

What a “miracle” of nature and mathematics is the golden mean? Why
does our interest in it not wither, but, on the contrary, increases with each
century? To ponder this issue, we suggest that our readers focus all of their
mathematical knowledge and plunge into this fascinating aspect of the world
of mathematics. Only then there is the possibility of enjoying and under�

A D

B C

5

Figure 1.4. A rectangle with a side ratio
of 2:1 (a “double” square)



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

8

standing the wonderful mathematical properties, beauty and harmony of  this
unique phenomenon — the golden mean.

Let us start from the algebraic properties of the golden mean. It follows
from (1.4) — which is very simple and nevertheless a rather surprising property
of the golden mean. If we substitute the root τ (the golden mean) for x in Eq.
(1.4), then we will get the following remarkable identity for the golden mean:

 τ2
 = τ + 1. (1.10)

Let us be convinced that the identity (1.10) is valid. For this purpose, it is
necessary to carry out elementary mathematical transformations over the left�
hand and right�hand parts of the identity (1.10) and to prove that they coincide.

In fact, we have for the right�hand part:

τ + = + + = +
1

1 5
2

1
3 5

2
.

On the other hand,

τ2

2
1 5

2
1 2 5 5

4
3 5

2
= +







 = + + = +

,

from whence the validity of the identity (1.10) follows.
If we divide all terms of the identity (1.10) by τ we come to the following

expression for τ:

τ
τ

= +1
1

. (1.11)

This can be represented in the following form:

τ
τ

− =1
1

. (1.12)

Now, analyze the identity (1.12). It is well known that any number а has
its own inverse number  1/a . For example, the fraction 0.1 is an inverse num�
ber to 10. A traditional algorithm to get the inverse number 1/a from the
initial number а consists of the division of the number 1 by the number а. In
general case, this is a very complex procedure. Try, for example, to get the
inverse number of a = 357821093572. This can be fulfilled only by the use of
modern computer.

Consider the golden mean τ = +( )1 5 2/ ,  which is an irrational number.
How can we get the inverse number 1/τ? The formula (1.12) gives a very
simple answer to this question. To solve this problem, it is enough to subtract
1 from the golden mean τ. In fact, on the one hand,

1 2

1 5

2 1 5

1 5 1 5

2 1 5

1 5

5 1
22 2τ

=
+

= −
+ −

= −
−

= −( )

( )( )

( )

( ) ( )
.
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While on the other hand, as follows from (1.12), the inverse number 1/τ
can be found in the following manner:

1
1

1 5
2

1
5 1
2τ

τ= − = + − = −
.

However, we will get greater “aesthetic pleasure” if we carry out the
following transformations of the identity (1.10). Multiply both parts of the
identity (1.10) by τ, and then divide them by τ 2. The outcome we get is two
new identities:

τ = τ + τ3 2  (1.13)
and

 τ = 1 + τ 
−1.  (1.14)

If we continue to multiply both parts of the identity (1.13) by τ, then
divide both parts of the identity (1.14) by τ 2, and continue this procedure ad
infinitum, we will come to the following graceful identity that connects the
adjacent degrees of the golden mean:

τ = τ + τn n n− −1 2,  (1.15)

where n is an integer taking its values from the set {0,±1,±2,±3,…}.
The identity (1.15) can be expressed verbally as follows: “Any member of the

golden series (golden powers) is the sum of the previous two golden powers.”
This property of the golden mean is truly unique! It is very difficult to

believe that the following identity is “absolutely true”:

τ100

100 99 98
1 5

2
1 5

2
1 5

2
= +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ,  (1.16)

however, its validity follows from the validity of the general identity (1.15).
Moreover, the following identity is also true:

τ100

100 99 97
1 5

2
1 5

2
1 5

2
1 5

2
= +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + +⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟

96

.  (1.17)

There are an infinite number of identities similar to (1.17), and all of them
follow from the general identity (1.15).

1.2.2. The “Golden” Geometric Progression

Consider the following sequence of golden mean degrees:
..., ,... .τ ,τ ,..., τ ,τ ,τ =1,τ ,τ ,..., τ ,τ− − −( ) − − −{ }n n n n1 2 1 0 1 2 1

 (1.18)

The sequence (1.18) has very interesting properties. On the one hand, the
sequence (1.18) is a geometric progression because each of its element is
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equal to the preceding one multiplied by the number τ, a Denominator or
Constant Multiplier in the geometric progression (1.18), that is,

τ = τ τn n× −1. (1.19)

On the other hand, according to (1.15), the sequence (1.18) has the prop�
erty of “additivity” because each element is equal to the sum of the two pre�
ceding elements. Note, that the property (1.15) is characteristic only for the
geometrical progression with the denominator τ, and such geometrical pro�
gression is named the Golden Progression, Golden Series or Golden Powers.

In this connection, any Logarithmic Spiral corresponds to a certain geo�
metrical progression of the type (1.18), the opinion of many researchers is
that the property (1.15) distinguishes the golden progression (1.18) among
other geometrical progressions, and this fact is a reason for the wide�spread
prevalence of the golden logarithmic spiral in forms and structures of nature.

1.2.3. A Representation of the Golden Mean in the Form of Continued Fraction

Let us now prove another astonishing property of the golden mean based on the
identity (1.11). If we substitute the expression 1+1/τ for t in the right�hand part of
(1.11), then we get the representation t in the form of the following continued fraction

τ

τ

= +
+

1
1

1
1

.

If we continue such substitution ad infinitum, we get the continued frac�
tion of the following form:

τ = +
+

+
+

+

1
1

1
1

1
1

1
1

1 ...

. (1.20)

A representation of (1.20) in mathematics is called a Continued or Chain
fraction. Note that the theory of continued fractions is one of the most impor�
tant topics of modern mathematics.

1.2.4. A Representation of the Golden Mean in “Radicals”

 Consider the identity (1.10). If we extract a square root from the right�
hand and left�hand parts of the identity (1.10), then we will get the following
representation for τ:

τ τ= +1 . (1.21)
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If we substitute the expression 1+ τ for τ in the right�hand part of (1.21),
then we get the following representation for τ:

τ τ= + +1 1 . (1.22)

If we continue such substitution ad infinitum, we will get another re�
markable representation of the golden mean τ in “radicals”:

τ = + + + +1 1 1 1 ... . (1.23)

Every mathematician intuitively aspires to express mathematical results
in the simplest and most compact form, and if he discovers such an expression,
it gives him “aesthetic pleasure.” In this respect, mathematical creative work
(aspiration for “aesthetic” expression of mathematical results), is similar to
the creative activity of a composer or poet, because their main aim is to find
perfect musical or poetic forms that give rise to aesthetic pleasure. Note that
the formulas (1.20) and (1.23) give us an aesthetic pleasure, arousing a feeling
of rhythm and harmony when we begin to think of the infinite repeatability of
the same simple mathematical elements in formulas for τ.

1.3. The Algebraic Equation of the Golden Mean

1.3.1. Polynomials and Equations

Since ancient times, mathematicians paid special attention to the study of
polynomials and the solutions of algebraic equations, and this important math�
ematical problem promoted the development of algebra. As is well known, a
Polynomial of n�th degree is represented by the following expression:

a x a x a x an
n + + + +... ,2

2
1 0  where (1.24)

In other words, a polynomial is the sum of the integer�valued degrees taken
with certain coefficients. For example, a decimal notation of a number is, in essence,
some representation of this number in the form of a polynomial of the number 10,
for instance, 365 3 10 6 10 52= ×( ) + ×( ) + . If x is a variable, then a polynomial gives
any Polynomial Function, the range of which coincides with the range of the variable
x. The polynomials of the first, second, third, and fourth degrees are called Linear,
Quadratic, Cubic, and Biquadrate polynomials, respectively. The Algebraic Equation
(in the standard form) is a statement written with algebraic designations that some
polynomial function is equal to zero for some values of a variable x. For example,
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x x2 5 6 0− + =  is an algebraic equation. The values of the variable, for which the
polynomial becomes equal to 0, are named roots of this polynomial. For example,
the polynomial x x2 5 6− +  has two roots, 2 and 3, because 2 5 2 6 02 − × + =  and
3 5 3 6 02 − × + = .  Note that in the polynomial x x2 5 6− +  the variable x represents
an arbitrary number from the range of the given polynomial function, but the alge�
braic equation x x2 5 6 0− + = , in contrast, means that the variable x can only be
the number 2 or 3, the roots of this algebraic equation.

Algebraic equations have always served as a powerful means to solutions of
practical problems. The exact language of mathematics has allowed mathemati�
cians to simply express the facts and relations, which, when presented in ordi�
nary language, can seem confusing and complicated. The unknown values, de�
noted by some algebraic symbols, for example x, can be found if we formulate
the problem in mathematical language through the form of equations. Methods
of an equation’s solution are the basis for the Equation Theory in mathematics.

Now, recall the basic data of linear and square algebraic equations that are
well�known to us from secondary school. The linear equation, in general form,
can be written as ax b+ = 0,  where a and b are some numbers and a ≠ 0. This
equation has one solution: x b a= − / ; that is, the linear equation has only one
root. The quadratic equation has the following form:

ax bx c2 0+ + = ,  where a ≠ 0. (1.25)

The rules for the solution of algebraic equations of the first and second
degree were well�known in antiquity. For example, as we recall from second�
ary school mathematics, we know the following formula for the roots of the
quadratic equation (1.25):

x
b b ac

a1 2

2 4
2, .= − ± − (1.26)

Remember that the values of the roots depend on the Determinant D of
the quadratic equation (1.25) — which is defined by the following formula:

D b ac= −2 4 . (1.27)

If the determinant D is positive, the formula (1.26) gives exactly two real
roots. If D = 0, then x b a= − / 2 , and we say that Eq. (1.25) has two equal roots.
If the determinant D is negative, we have to introduce an imaginary unit i, which
is defined by i = −1,  and for this case, both of these roots are complex.

1.3.2. Quadratic Irrationals

The discovery of irrational numbers is the greatest mathematical discovery of
Greek mathematics. This discovery was made by Pythagoreans in the 5th century
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B.C. during the investigation of the ratio of two geometric segments: a diagonal and a
side of a square. By using Reductio ad Absurdum, that is, the Indirect Method of Con�
tradiction, the Pythagoreans proved that the ratio of the diagonal to the side of the
square, which is equal to 2 , cannot be represented in the form of the ratio of two
natural numbers. Such geometric segments were named Incommensurable, and the
numbers, which express similar ratios, were named Irrational Numbers.

The discovery of Incommensurable Segments resulted in the first crisis of
the foundations of mathematics, and, ultimately, became a turning point in
the development of mathematics. One legend says that in honor of this dis�
covery, Pythagoras had carried out a “hecatomb,” namely, he had sacrificed
100 bulls to the gods. In the beginning, the Pythagoreans attempted to keep
the new discovery a secret. According to legend, Hippias, one of the Pythagore�
ans, broke the oath and divulged the secret of this discovery. Later, he per�
ished during a ship�wreck that the Pythagoreans considered to be a punish�
ment from the gods for the disclosure the discovery’s secret. The influence of
this discovery on the development of science can be compared to the discov�
ery of Lobachevsky’s geometry in the first half of the 19th century, and with
the discovery of Einstein’s Relativity Theory at the beginning of the 20th
century. Thanks to this discovery, mathematics received an entirely new math�
ematical concept — the concept of Irrational Numbers.

The title “rational” is from the Latin word “ratio,” which is a translation of
the Greek word “logos.” The numbers, which can be represented as the ratios
of two integers, were called “rational.” In contrast to rational numbers, those
numbers, which express the ratios of the incommensurable line segments, had
been named irrational (from the Greek word “alogos”).

Unlike a linear equation, a quadratic equation of the kind (1.25) with ra�
tional coefficients can have irrational roots called quadratic irrationals. Book
10 of The Elements is devoted to the study of the quadratic irrationals.

Scientists of India, the Middle East, and many European mathematicians of
the Middle Ages studied quadratic irrationals. It was proved that any number
of the kind N for any integer N, which is not a full square, is an irrational
number as well as a number N3 , where N is not a cube, etc. As they say, similar
irrationals can be represented in Radicals. In 16th century, Italian mathemati�
cians Tartalja, Cardano, and Ferrari found a general formula for the roots of the
cubic and biquadrate algebraic equations that represented their irrational roots
in radicals. Despite the fact that attempts to find general formulas for the roots
of the algebraic equations of the fifth and more degrees appeared unsuccessful,
this research direction resulted in new mathematical discoveries, which were
connected with the mathematical works of Niels Abel and Evariste Galois.



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

14

1.3.3. Poor “Studious” Niels Abel

 The history of science and mathematics contains many tragic
pages. One of them is the life and scientific work of the Norwe�
gian mathematician Niels Abel, whose mathematical research in�
volves algebra and solutions to algebraic equations.

For a long time, mathematicians assumed that an irratio�
nal root of any algebraic equation with rational factors can
be expressed in radicals. However, in the 19th century, Abel
proved that the irrational roots of the general equations of
the 5th and more degrees cannot be expressed in radicals.

On the big square in the city of Oslo, the capital of Norway, a majestic
monument rises up above the cityscape. On the granite stone of the monu�
ment, a young man is carved with a spiritualized face struggling against two
disgusting monsters. The monument is of the well�known Norwegian mathe�
matician Niels Henrik Abel. What do these monsters symbolize? Some math�
ematicians joke that these monsters represent the equations of the fifth de�
gree and the elliptic functions conquered by Abel. Others consider that it is
allegory: the sculptor wished to embody the social injustice with which Abel
struggled all his life.

The sad life of this Norwegian mathematical genius is typical for scientific
geniuses�not just from his country or of his time. Unfortunately, the destiny
of many mathematical geniuses unfolds tragically. It is connected with the
fact that many of great mathematicians are often not understood, and their
stunning mathematical discoveries are not recognized by their contemporar�
ies, unfortunately, they are only recognized some time after their death.

Abel was born in 1802 in Northwest Norway in the small fishing town of
Finnej, where there were neither mathematicians, nor mathematical text�books
available to him. Very little is known about the first years of his childhood. He was
enrolled in school in Oslo at the age of thirteen. Abel studied lightly and obtained
good marks excelling in mathematics. He also liked to play chess and visit the
theatre. However, within three years of school, a sudden change opened up his
world. Instead of a cruel mathematics teacher who beat pupils, the new mathe�
matics teacher, Holmboe, arrived at the school. He knew his subject very well,
and he spiked the interest of his pupils. Holmboe gave each pupil the opportunity
to act independently, and encouraged them to take the first steps paid special
attention towards a more fulfilling mathematics education. Soon, Abel not only
took a great interest in mathematics, but also found that he was capable of solv�
ing mathematical problems of which other people were incapable.

Niels Henrik Abel
(1802�1829)
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Abel’s family lived in humiliating pov�
erty so he was attending a school free of
charge. In 1820, Abel’s father died, and the
family remained without any financial
means. Their situation was desperate. Niels
thought about returning to his native city
and searching for a job, but some of his pro�
fessors paid attention to the young man’s
talent and helped him to enroll in the local
university. They managed to obtain grants
for Niels Abel to preserve his unique math�
ematical talent in science, and for travel�
ing abroad. Abel’s visits to Berlin, Paris, and
to other large mathematical centers of that
time contributed greatly to his future
mathematical works. Unfortunately, the
young mathematician’s discoveries � which
surpassed much the science of the time �
resulted in a lack of understanding and un�
derestimation by his contemporaries. Abroad, as well as in his native land, Abel ex�
perienced great financial difficulties and a constant feeling of intolerable loneliness.
His attempts to get scientific recognition were unsuccessful.  He sent his works to
the Parisian Academy where they were forwarded to the French mathematician,
Cauchy. Unfortunately, these works were lost. Also his letter to the German math�
ematician Gauss was left unanswered.

The young mathematician, who made a revolution in mathematics, re�
turned home to remain the same poor and unknown “studious” Abel. He
could not find a job. Being ill by tuberculosis, and “poor as a church mouse,”
by his own words, Abel, in a condition of the cheerless melancholy, died on
April 6, 1829, at 26.

The proof of insolvability in radicals of the algebraic equations of the
fifth and greater degrees was his most important mathematical discov�
ery, made at just 22. In the opinion of the mathematician Ermit, “Abel
left such a rich heritage for mathematicians that they will develop it dur�
ing the next 500 years.”

There is a custom, to which new results and discoveries are named after
the scientists who made them. Now, anyone holding a book on higher mathe�
matics can see that Abel’s name is immortalized in various areas of mathemat�
ics. There are several theorems and mathematical results bearing Abel’s name:

A monument of Niels Abel in Oslo



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

16

Evariste Galois
(1811�1832)

Abelian integrals, Abelian equations, Abelian groups, Abelian formulas, and
Abelian transformations. Abel would be surprised to learn that his work has had
a profound influence upon the development of mathematics.

1.3.4. Mathematician and Revolutionist Evariste Galois

The destiny of one more genius, the French mathematician Evariste Galois,
is not less tragic. He was born on October 26, 1811, in the small town of Bourg�
la�Reine near Paris, France.

For the first twelve years of his life his mother, who was a
fluent reader of Latin and classical literature, was responsible
for his education. In October 1823, he entered the Lycee Lou�
is�le�Grand. At Louis�le�Grand, Galois enrolled in the mathe�
matics class of Louis Richard. He worked more and more on
his own researches and less and less on his schoolwork. He stud�
ied Legendre’s Geometrie and the treatises of Lagrange. His
teacher Richard reported, “This student works only in the
highest realms of mathematics.” In April 1829 Galois published
his first mathematics paper on continued fractions in the An�
nales de Mathematiques. Later he submitted articles on the
algebraic solution of equations to the Academie des Sciences.
Cauchy was appointed as referee of Galois’ paper. On Decem�

ber 29, 1829 Galois has received his Baccalaureate degree. In the development of
Abel’s work that he learned from Bulletin de Ferussac, and by the Cauchy’s advice,
he submitted a new article On the Condition that an Equation be Soluble by Radi�
cals in February 1830. The paper was sent to Fourier, the secretary of the Paris
Academy, to be considered for the Grand Prize in mathematics. Since Fourier died
in April 1830, Galois’ paper was never found and considered for the prize. Further
Galois’ works on the theory of elliptic functions and Abelian integrals were initiated
by Abel and Jacobi’s works. With support from Jacques Sturm, he published three
papers in Bulletin de Ferussac in April 1830.

Galois enthusiastically participated in revolutionary activity, and even�
tually found himself in a prison for several times. In March 1832, being in a
prison, he felt ill with cholera and was sent to the pension Sieur Faultrier
where he fell in love with Stephanie�Felice du Motel, the daughter of the
resident physician. In May 1832 his stormy life finished: he was killed in a
duel. The reason for the duel was not clear but certainly linked with
Stephanie. Before the duel, he wrote a resume of his mathematical discover�
ies and transferred his notes to one of his friends, requesting him to pass it on
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to one of the leading mathematicians. The note ended with the following
words: “You will publicly ask Jacobi or Gauss to give a conclusion not about
validity, but about the value of these theorems. Then, I hope, people, who
can decipher all this mess, will be found.”  From what is known, Galois’ letter
reached neither Jacobi nor Gauss. The mathematical community only learned
of Galois’ works in 1846, when the French mathematician Liouville published
most of Galois’ works in his mathematical journal. All of Galois’ works were
presented in a small format of 60 pages. These works contained a presenta�
tion of group theory — now considered to be the “key” theory of modern
algebra and geometry, the first classification of irrationals defined by alge�
braic equations. This doctrine is now referred to as Galois Theory.

1.3.5. The “Golden”Algebraic Equations of n�th Degree

And now, after such fundamental mathematical training, we again turn to
the equation of the golden proportion (1.4). Clearly, it is the quadratic algebraic
equation of the type (1.25) with the factors:

a b c= = − = −1 1 1; ; . (1.28)

By using (1.27) and (1.28), we can calculate the determinant of Eq. (1.4):

D = 5.

It follows from here that Eq. (1.4) has two real roots:

x1
1 5

2
= = +τ    and   x2

1 1 5
2

= − = −
τ

. (1.29)

The root x1 coincides with the golden mean τ.
Typically, the main problem of the theory of algebraic equations is to

find their roots. We know the elementary algebraic equation (1.4) with the
root equal to the golden mean. With this equation, the following question
arises: are there algebraic equations of the highest degrees with the root equal
to the golden mean? And if so, what do they look like? To answer this ques�
tion we will use the following reasoning concerning the initial equation of
the golden mean (1.4).

Multiply both parts of Eq. (1.4) by x; as a result we get the following
equality:

x x x3 2= + . (1.30)

Equation  (1.4) can be written in the following form:

x x= −2 1.
If we substitute x2 � 1 for x in the expression (1.30), we get the following
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algebraic equation of the third degree:

x x3 22 1= − . (1.31)

On the other hand, if we substitute x +1 for x2  in (1.30), then we get one
more equation of the third degree:

x x3 2 1= + . (1.32)

Thus, we have obtained two new algebraic equations of the third de�
gree. Now, prove that the golden mean is a root of Eq. (1.31). With this
end, we substitute the golden mean τ = +( )1 5 2/  for x to the left�hand
and right�hand parts of Eq. (1.31) and show that both parts of this equa�
tion coincide. In fact, by using the identity (1.15), we can obtain for the
left�hand part:

τ = τ + τ =3 2 3 5
2

1 5
2

4 2 5
2

2 5
+ + + = + = + .

We can also obtain for the right�hand part of this equation:

2 1 2
3 5

2
1 2 52τ − = × + − = + .

Hence, the golden mean τ is, in fact, a root of Eq. (1.31), that is, Eq.
(1.31) is a golden one. By analogy, we can prove that Eq. (1.32) is a golden
one as well.

Let us derive the golden algebraic equation of the fourth degree, for this
purpose we multiply both parts of the equality (1.30) by x; as a result we will
get the following equality:

x x x4 3 2= + . (1.33)

We then use the expression (1.4) for x2 and the expressions (1.31) or (1.32)
for x3 . If we substitute them into the expression (1.33), we obtain two new
golden algebraic equations of the fourth degree:

x x4 23 1= − (1.34)

x x4 3 2= + . (1.35)

The analysis of Eq. (1.35) resulted in unexpected result. It is found, that
this equation describes the energetic state of the butadiene molecule, a valu�
able chemical substance used in the production of rubber. American scientist
Richard Feynman, Nobel Prize Laureate, expressed his enthusiasm concern�
ing Eq. (1.35) in the following words: “What miracles exist in mathematics!
According to my theory, the golden proportion of the ancient Greeks gives
the minimal energy condition of the butadiene molecule.”

This fact, at once, raises our interest in the golden equations of the higher
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degrees, which, probably, describe energy conditions of the molecules of other
chemical substances. These equations can be obtained, if we will consistently
consider the equalities of the kind x x xn n n= +− −1 2 . As an example, we can derive
the following golden equations of the higher degrees:

x x x5 25 2 5 3= − = + ;

x x x6 28 3 8 5= − = + ;

x x x6 213 5 13 8= − = + .
The analysis of these equations demonstrates that Fibonacci numbers (1, 1,

3, 5, 8, 13, 21, 34, 55) — which are addressed in Chapter 2 — are the numerical
factors in the right�hand part of these equations. It is easy to show, that in the
general case, the golden algebraic equation of the n�th degree can be expressed in
the following form:
x F x F F x Fn

n n n n= − = +− −
2

2 1, (1.36)

where F F Fn n n, ,− −1 2  are Fibonacci numbers.
Note, once again, that the main mathematical property of all equations of the

kind (1.36) is the fact that all of them have a common root — the golden mean.
Thus, our simple reasoning resulted in a small mathematical discovery:

we have found an infinite number of new golden algebraic equations given by
(1.36) — which have the golden mean as a common root.

If we substitute in Eq. (1.36) its root τ = +( )1 5 2/  for x, then we obtain
the following remarkable identities that connect the golden mean with Fi�
bonacci numbers:

τ τ τn
n n n nF F F F= − = +− −

2
2 1. (1.37)

Below we show that, for instance, the18th, 19th, and 20th Fibonacci num�
bers are equal to the following:
F F F18 19 202584 4181 6765= = =, , . (1.38)

Then, taking into consideration (1.38) and using (1.36), we can write the
following algebraic equations of the 20th degree:

x x20 26765 2584= − (1.39)

x x20 6765 4181= + . (1.40)

It is difficult to imagine that the golden mean τ = +( )1 5 2/  is a root of
the equations (1.39) and (1.40). However, this fact follows from the theory of
golden algebraic equations given by (1.36), and by looking at the equations
(1.36), (1.39) and (1.40).  Once again, we are convinced of the greatness of
mathematics — which allows us to express the complex scientific information
in such compact form.
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1.4. The Golden Rectangles and the Golden Brick

1.4.1. A Golden Rectangle with a Side Ratio of τττττ

Many different definitions
of the golden rectangles exist.
First, we will study the golden
rectangle with a side ratio τ
(Fig. 1.5). A rectangle in Fig.
1.5 is a golden one because the
ratio of its larger side to the
smaller side is equal to the gold�
en mean, that is:

AB BC: .= = +τ 1 5
2

Consider the golden rectangle with the sides AB BC= =τ and 1. We can
find points E and F on the line segments АВ and DC, which divide the seg�
ments АВ and DC in the golden section.

It is clear that if AE DF= = 1 , then EB AB AE= − = − =τ τ1 1/ .
Now, we draw the line segment EF, which is called a Golden Line. It is

clear that the golden line EF divides the golden rectangle ABCD into two
new rectangles AEFD and EBCF. It follows from the above geometric con�
siderations that the rectangle AEFD is a square.

Now, let us consider the rectangle EBCF. As its big side BC = 1 and its
small side EB = 1/ τ , hence their ratio BC EB: = τ . It means that the rectan�
gle EBCF is a golden one also. Thus, the golden line EF divides the initial
golden rectangle ABCD into a square AEFD and a new golden rectangle EBCF.

Now, draw the diagonals DB and EC of the golden rectangles ABCD and
EBCF. It follows from the similarity of the triangles ABD, FEC, BCE that the
point G divides the diagonal DB in the golden section.  Then, we draw a new
golden line GH in the golden rectangle EBCF. It is clear that the golden line GH
divides the golden rectangle EBCF into a square GHCF and a new golden rect�
angle EBHG. By repeating this procedure infinitely, we will get an infinite se�
quence of squares and golden rectangles converging in the limit to the point O.

Note that such endless repetition of the same geometric figures, that
is, squares and golden rectangles, gives rise to aesthetic feelings of harmo�
ny and beauty. It is considered, that this fact is a reason why many rectan�

A

F

O

IG

D

E B

C

H

Figure 1.5. Golden rectangle with a side ratio of τ
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gular forms (match boxes, lighters, books,
suitcases) frequently are golden rectan�
gles. Below we will discuss the applica�
tions of the golden rectangle to architec�
ture and painting.

For example, we widely use credit
cards in our daily life, however we do not
pay attention that in many cases our cred�
it cards have a form that is, or approxi�
mates to the golden rectangle (Fig. 1.6).

1.4.2. A Golden Rectangle with a Side Ratio of  τ τ τ τ τ 2

We look back to Theorem II.11 of The Elements of Euclid. Consider, once
again, a division in the extreme and mean ratio represented in Fig. 1.3, and
according to Theorem II.11, we should construct the line segments АВ, АС,
and СВ, which form the golden mean (Fig. 1.2), a rectangle for the condition
(1.2). We name the rectangle a Euclidean rectangle. If we designate the lengths
of the line segments АВ, АС and СВ as AB a AC b= =,  and CB c= ,  then, we
can rewrite the expression (1.2) as follows:
a c b× = 2. (1.41)

Taking into account (1.41), we can represent
the Euclidean rectangle as is shown in Fig. 1.7.

It follows from Fig. 1.7 that a ratio of the
larger side to the smaller one in the Euclidean
rectangle is equal to the ratio of the initial seg�
ment to the smaller segment in Theorem II.11
of The Elements here, according to (1.41), its

area is equal to a square of the larger segment.
If we take the segment of the length 1 as the initial segment a =( )1 , then the

lengths of the larger segment (b) and smaller one (c) in the DEMR will always be
a proper fraction, and the expression (1.41) can be written in the following form:

c b= 2. (1.42)

The following formulation of Theorem II.11 for the case of the line seg�
ment of the length 1 comes directly from (1.42).

Theorem II.11 for the segment of the length 1. We divide the line seg�
ment of the length 1 into two unequal parts in golden ratio; thus, the length of
the smaller line segment will be equal to the square of the larger line segment.

Figure 1.6. A credit card has a form
of the golden rectangle

a =1

c = τ2 = 0.382

Figure 1.7. The Euclidean rectangle
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If the initial segment АВ in Fig. 1.1 will be the line segment of length 1,
that is, AB = 1 , then the larger segment AC = −τ 1,  and the smaller segment
CB = −τ 2.  Taking into account this fact, we can say that the Euclidean rectan�
gle in Fig. 1.7 is a new golden rectangle with a side ratio AB CB: .= τ2  It fol�
lows from this consideration that Euclid, in his Theorem II.11, not only for�
mulated the DEMR (the golden section), but he also discovered a new golden
rectangle with a side ratio τ2 .

Note that Theorem II.11, for the segment with length 1, presents the
following well�known property of the golden mean:

1 = τ–1 + τ–2 = 0.618 + 0.382. (1.43)

The identity (1.43) is a partial case of the identity (1.6), and it expresses
the famous “Principle of the Golden Proportion” that has been widely used
in human culture since antiquity.

1.4.3. The “Golden” Brick of Gothic Architecture

Again, we will use the Euclidean rectangle in Fig. 1.8, where the larger
side is AB = τ  and the smaller side is AD = −τ 1.  Draw the Euclidean rectangle
in Fig. 1.7 with a diagonal DB.

3  
�1

τ

τ

BA

CD

Figure 1.8. A calculation of the diagonal in the Euclidean rectangle

By using the Pythagorean Theorem, we can write:

DB 
2 = BC 

2 + DC 
2 = τ2 + τ–2. (1.44)

Calculate numerical values for τ τ2 2and − . In fact, we have:

τ2

2
1 5

2
1 2 5 5

4
3 5

2
= +







 = + + = +

. (1.45)

On the other hand, we have:

τ− = −







 = − + = −2

2
5 1
2

5 2 5 1
4

3 5
2

. (1.46)
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Taking into account (1.45) and (1.46), we can rewrite the expression (1.44)
as follows:

DB2 3= . (1.47)

It comes from (1.47) that

DB = 3. (1.48)

As is shown in [26], the Euclidean rectangle in Fig. 1.8, together with the
classical golden rectangle in Fig. 1.5, can be used for the construction of a
special kind of rectangular parallelepiped — also called a Golden Brick (Fig.
1.9). Consider this parallelepiped for the case AB DC= = 1 .

The faces of the golden brick in
Fig. 1.9 are the golden rectan�
gles with geometric ratios
based on the golden
mean. The face
ABCD is a clas�
sical golden
rectangle with
the side ratio of
τ. This means
that the edge is
AD = −τ 1.  The
face ABGF is
also a classical
golden rectan�
gle with the
side ratio of τ.
This means that the edge AF = τ . Finally, the rectangle BCHG is the Euclid�
ean rectangle with the side ratio of τ2 (Fig. 1.7). This means that the edges
are BG = τ  and BC = −τ 1.  Note  that the diagonal CG = 3.

By using the Pythagorean Theorem, we can calculate the diagonal CF of
the golden brick:

CF FG CG= + = + =2 2 21 3 2( ) .

In the book [26], evidence is suggested that the golden bricks were wide�
ly used in the Gothic castles as a form of basic building blocks. In [26], the
hypothesis is drawn that the surprising strength of the Gothic castles is bound
up with the use of the golden bricks during the construction of architectural
monuments of gothic style.

A
B

C

D

E

H

G

F

2

1

1
3

τ

τ

1
τ

Figure 1.9. The golden brick
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1.5. Decagon: Connection of the Golden Mean to the Number πππππ

The quantity of irrational (incommensurable) numbers is infinite. Howev�
er, some of these numbers take a special place in the history of mathematics —
specifically, in the history of material and spiritual culture.  Their significance
involves the fact that they express proportions and relations — which have uni�
versal character — and often appear in the most unexpected places. The irratio�
nal number 2  — which is equal to the ratio of the diagonal to the side of a
square — is the first of them. Recall that the discovery of the so�called “incom�
mensurable line segments” is connected directly with this number. This discov�
ery caused the most dramatic period in ancient mathematics. It resulted in the
development of the theory of irrational numbers and ultimately to the creation
of modern “continuous” mathematics.

Two mathematical constants — the number π, which expresses the ratio of
a circle length to its diameter, and “Euler’s Number” е, the base of natural
logarithms � are the next important irrational numbers. Their significance
consists in the fact that they originate the main classes of the “elementary
functions”: trigonometric functions (the number π) and also exponential func�
tion ex, logarithmic function log

e
x, and lastly hyperbolic functions (the num�

ber е). The numbers π and е, that is, two of the most important constants of
mathematical analysis, are connected by the following astonishing formula:

1 1+ =eix , (1.49)

where i = −1  is an imaginary unit.
This identity is not recognized by

everyone at first sight. However, in con�
sidering this identity, which connects
among themselves the fundamental
mathematical constants, the numbers
π  and e, it is difficult to refrain from
pondering the mystical character of
this mathematical formula (1.49).

The golden mean τ refers also to a
category of the fundamental mathe�
matical constants, but this poses a
question. Is there some connection be�
tween these mathematical constants, for example, between the numbers π
and τ? The analysis of a regular Decagon (Fig. 1.10) gives the intriguing an�
swer to this question.

 

R

36°

a10

Figure 1.10. Decagon
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Consider a circle with a radius R and a decagon inscribed inside the circle
(Fig. 1.9). It is known from geometry that the side a10  of the decagon is con�
nected to the radius R by the following formula:

a10 = 2Rsin18°. (1.50)

If we carry out some trigonometric transformations by using the for�
mulas, well�known from secondary school trigonometry, we obtain the fol�
lowing outcomes:

(1) The side of the decagon inscribed inside the circle with radius R is
equal to a large part of the radius R divided in the golden section, that is:
a R10 = / .τ

(2) The golden mean τ is connected with the number π by the following
correlation:

τ = 2cos36° = 2cos(π/5). (1.51)

This formula, which is obtained as an outcome of mathematical analysis of
the decagon, is one more confirmation of the fact that the golden mean to�
gether with the number π, shares the status of being amongst main mathe�
matical constants of nature.

Consider the following from the area of nuclear physics. By studying the
laws of the nuclear kernel, Byelorussian physicist Vasily Petrunenko, in the
book The Golden Section of Quantum States and its Astronomical and Physical
Manifestations (2005)  [53], came to the following conclusion: a huge stabil�
ity of the nuclear kernel is due to the wave’s multiplicities of the golden mean
underlying their organization. Thus, he proved that the regular decagon un�
derlies the structure of the nuclear kernel!

1.6. The Golden Right Triangle and the Golden Ellipse

1.6.1. The Golden Right Triangle

The right triangle based upon the golden sec�
tion is used widely in architecture. Consider the
right triangle АВC with the side ratio AC CB: = τ
(Fig. 1.11).

If we designate x, y, and z as the side lengths of the
right triangle АВС and also take into account that the

A

z

x

y

C
B51°50'

Figure 1.11. The golden
right triangle



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

26

ratio y x: = τ , then according to the Pythagorean Theorem, the length z of the
side AB can be calculated by the formula:

z x y= +2 2 . (1.52)

If we take x y= =1, ,τ  then we have:

z = + = =1 2τ τ τ.

The right triangle with the side ratios τ : τ :1 is called a Golden Right Tri�
angle.

Below, we will show that the golden right triangle is the main geometric
idea of the Great Pyramid in Giza.

1.6.2. The “Golden” Ellipse

The golden ellipse [26] is
formed with the help of the two
golden rhombi (ACBD and ICJD)
inscribed into the ellipse (Fig.
1.12). The golden rhombi ACBD
and ICJD consist of four right tri�
angles of the kind OCB or OCJ,
which are the golden right trian�
gles (Fig. 1.11).

Now, consider the basic geo�
metric correlations of the golden
ellipse in Fig. 1.12. Let a focal dis�
tance AB of the ellipse in Fig. 1.12 be equal to AB = 2 . The following correla�
tion follows from the ellipse definition:

AC CB AG GB+ = + . (1.53)

The following correlations, which connect the sides of the golden
right triangles OCB and OCJ, follow from the definition of the golden
right triangle. As the smaller leg OB of the golden right triangle is equal
to 1, that is, OB = 1, it follows from the definition of the golden right
triangle that the values for the hypotenuse and the larger leg of the
triangle OCB are:

CB OC= =τ τand . (1.54)

Let us consider the golden right triangle OCJ. Because its smaller leg
OC = τ, then, according to the definition of the golden right triangle, we have:

OJ OC CJ OC= × = × = = × = ×τ τ τ τ τ τ τand . (1.55)

A B

C

D
E F

GH

JI
O

Figure 1.12.  The golden ellipse
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There is also the well�known correlation that connects the half�axes OI and
ОС with the line segment OB of the ellipse in Fig. 1.12:

OC OI OB2 2 2= − . (1.56)

We know that the correlation (1.56) is true for the figure in Fig. 1.11. In fact,
if we substitute in (1.56) the numerical values of the line segments
OI OC= =τ τ,  and OB = 1, we can obtain:

τ τ τ τ( ) = − = −
2

2 21 1or

that  is equivalent to the identity (1.6). This means that the correlation (1.56)
is valid and the figure in Fig. 1.11 is an ellipse.

In the opinion of the Polish scientist Jan Grzedzielski, author of the book
Energeticzno�Geometryczny Kod Phzyrody [26], the golden ellipse can be used
as a geometric model for the spreading of the light in optic crystals, that is, the
geometrical correlations of the golden ellipse give optimal conditions for the
attainability by photons of the focuses with minimal energetic losses.

1.7. The “Golden” Isosceles Triangles and Pentagon

1.7.1. Construction of the “Golden” Isosceles Triangle and Regular
Pentagon in The Elements

Theorem II.11 played an important role in
The Elements by Euclid. Using this theorem, Eu�
clid constructs the isosceles triangle and regu�
lar pentagon, which are then used for the con�
struction of the dodecahedron (see Chapter 3).
First, we construct an isosceles triangle whose
angles at its base are double relative to the ver�
tex angle (Fig. 1.13). We can do this by drawing
the line AB and then divide it in the golden sec�
tion at the point C. Then, we draw a circle with
the cenetr A and the radius AB. We mark on the circle the point D so that
AC=CD=BD. The triangle ABD has the property that its angles B and D, at the
base BD, are double relative to its vertex angle A. Note that the vertex angle
A=36° and the angles B=D=72°. As C is the golden section point, AC=CD=BD,
and AD=AD, this means that the ratio of the hips AB and AD to the base BD of the
isosceles triangle ABD is equal to the golden mean, that is:

A C B

D

Figure. 1.13. A geometric construc�
tion of the golden isosceles triangle
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AB
BD

AD
BD

= = τ (1.57)

The isosceles triangle with a golden ratio
(1.57) is aptly called the Golden Isosceles Tri�
angle (Fig. 1.13).

By using the triangle ABD, we draw a cir�
cle through A, B, and D (Fig. 1.14). Then we
bisect the angle ADB by the line DE, which
meets the circle at the point E. Note that the
line DE passes through the point C, which di�
vides a line AB in the golden section. Similarly
we can find a point F and then we can draw the
pentagon AEBDF.

1.7.2. A Regular Pentagon

Let us consider a regular pentagon presented in Fig. 1.15.
If we draw in the regular pentagon all di�

agonals, we obtain a pentagonal star called a
Pentagram or Pentacle. Note that the word
“pentagon” originates from the Greek word
pentagonon and the word “pentagram” origi�
nates from the Greek word “pentagrammon”
(“pente” is five and “grammon” is a line). A
“pentagram” is a regular pentagon with gold�
en isosceles triangles constructed on each side.
It is proved that the crossing points of diago�
nals in the pentagon are always the points of
the golden section. Thus, they form a new reg�
ular pentagon: FGHKL. In this new pentagon,

we can draw diagonals at their crossing points to form another pentagon.
This process can be continued infinitely. Thus, the pentagon ABCDE consists
of an infinite number of the pentagons formed by the crossing points of diag�
onals. This infinite repetition of the same geometrical figures creates a feel�
ing of rhythm and harmony, which is perceived by our intellect.

The regular pentagon in Fig. 1.15 is a rich source of golden sections. If we
assume that a side of the inner pentagon FGHKL is equal to 1, that is,
FG GH HK KL= = = = 1,  then we get the following properties of the regular
pentagon and pentagram ABCDE based on the golden section:

A

E

BD

C

F

Figure 1.14. A geometric con�
struction of a regular pentagon

A

B

CD

HL

K

GFE

Figure 1.15. Regular pentagon
and pentagram
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1. All five triangles, AGF, BHG, CKH, DLK, and EFL, are golden isosceles
triangles; here the lengths of the ten segments
AG AF BH BG CK CH DL DK EF EL= = = = = = = = = = τ.
2. All five sides of the regular pentagon  ABCDE are equal to τ2 , that is,
AB BC CD DE EA= = = = = τ2.
3. All line segments AH GC AL DF EK LC= = = = = = τ2.
4. All five diagonals of the regular pentagon ABCDE are equal to τ3 ,
that is, AC AD BE BD EC= = = = = τ3 .
5. The lengths of the segments AC, AH, HC, and GH are in geometric
progression because
AC AH HC GH= = = = =τ τ τ τ3 2 0 1, , , .
Some interesting information about the pentagram (pentacle) is presented

in Dan Brown’s book The Da Vinci Code. The five�pointed star is clearly a pre�
Christian symbol connected with the worship and dedication of nature. The
ancient people divided the world into two halves, male and female. They had
gods and goddesses maintaining the balance of forces. When a male’s and fe�
male’s beginnings are balanced, then harmony is reigning in the world. When
the balance is broken, chaos appears. The pentacle symbolizes the female half of
the Universe. Historians, who study religions, name this symbol “the sacred
female beginning,” or “the Sacred Goddess.” The five�pointed star symbolizes
Venus, the Goddess of love and beauty. The Goddess Venus and the planet Ve�
nus are the same. The Goddess takes her place in the night sky and is known
under many names: Venus, East Star, Ishtar, and Astarte, all of them symboliz�
ing the powerful female beginnings connected with nature and mother earth.

Over an eight year period, the planet Venus describes a pentacle on the
big circle of the heavenly sphere. Ancient people noticed this unique phenom�
enon and they were so impressed, that Venus and its pentacle became symbols
for perfection and beauty. Today, only a few people know that the Olympic
Games follow the half cycle of Venus; fewer people know that the five�pointed
star missed out on becoming a symbol for the Olympic Games, because of a
last moment modification: the five acute ends of the star were replaced with
the five rings. Ironically, the organizers apparently believed that their chosen
symbol better reflected the spirit and harmony of the Olympic Games.

1.7.3. The Pentagon

The Pentagon (Fig. 1.16) is the headquarters of the United States De�
partment of Defense and is located in Arlington, Virginia. It is now consid�
ered to be the symbol of the U.S. military. The Pentagon is often used met�
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onymically to refer to the Department of De�
fense — rather than the building itself. The
Pentagon is the largest�capacity office build�
ing in the world, and it is one of the world’s
largest buildings in terms of floor area. It
houses approximately 23,000 military and ci�
vilian employees plus approximately an addi�
tional 3,000 non�defense support personnel. It
has five sides, five floors above ground (plus
two basement levels), and five ring corridors
per floor with a total of 17.5 miles (28 km) of
corridors.

1.7.4. The “Golden Cup” and the Golden Isosceles Triangle

The regular pentagon in Fig. 1.15 includes a num�
ber of remarkable figures used widely in works of art.
In ancient art, the law of the golden cup (Fig. 1.17)
was widely known. It was used by the antiquity’s
sculptors and masters of golden things. The shaded
part of the pentagram in Fig. 1.17 gives a schematic
representation of the golden cup.

The regular pentagon in Fig. 1.15 consists of
five golden isosceles triangles.  Each golden tri�

angle has an acute angle
A = 36° at the top and two acute angles B = D = 72°
at the base of the triangle (Fig. 17). The main fea�
ture of the golden triangle in Fig. 1.18 consists of
the fact that the ratio of the hip АС=AD to the
base DC is equal to the golden mean.

In studying the pentagram in Fig. 1.15 and
the golden triangle in Fig. 1.18, the Pythagoreans
admired the fact that the bisector DH coincides
with the diagonal DB of the pentagon (Fig.
1.15), and it divides the side АС in the golden
section at the point H. Moreover, the new
golden triangle DHC arises. If we draw the bi�
sector of the angle H to the point H', and con�
tinue this process ad infinitum, we will get an

Figure 1.16. The Pentagon
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infinite sequence of the golden triangles. Furthermore, the case of the golden rectan�
gle in Fig. 1.5 and the pentagon in Fig. 1.15, the infinite repetition of the same geo�
metric figure (the golden triangle) after the drawing of the next bisector causes an
aesthetic feeling of rhythm and harmony.

1.7.5. Pentagonal Symmetry in Nature

In nature, the forms based on pentagonal symmetry (starfishes, sea hedge�
hogs, flowers) are widespread. The flowers of a water lily, a dog rose, a haw�
thorn, a carnation, a pear, a cherry, an apple�tree, a wild strawberry, and many
other plants, consist of five�petals. Below, in Fig. 1.19, we can see examples of
nature’s structures based on the pentagonal symmetry.

The presence of five fingers on a human’s hand and, the five bone rudi�
ments on the paws of many animals are an additional confirmation of the wide�
spread occurrence of pentagonal forms in the morphology of flora and the bi�
ological world.

Figure 1.19. Pentagonal symmetry in nature
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1.8. The Golden Section and the Mysteries of Egyptian Culture

1.8.1. Phenomenon of Ancient Egypt

In the early 20th century, in Saqqara (Egypt), archaeologists opened a crypt
in which the Egyptian architect Hesire was buried. The wood panels covered by
a magnificent thread were extracted from the crypt together with different
material objects. In total, there were the 11 panels in the crypt; among them,
only 5 of the panels were preserved; the remaining panels were completely de�
stroyed by moisture inside the crypt. On the salvaged panels the architect Hesire
was depicted with various objects and figures that had symbolic significance at
the time (Fig. 1.20).

For a long time, the purpose of the Hesire panels remained vague. At first,
the Egyptologists considered these panels to be merely false doors. However,
in the mid�20th century, the situation surrounding the panels began to clarify.
In the early sixties of the 20th century the Russian architect Shevelev ob�

Figure 1.20. Hesire panels
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served that the sticks the architect holds in his hands on one of the panels relate
between themselves as 1 5: , that is, as the ratio of the small side of the 1:2
rectangle (“double square”) to its diagonal. Basing on this observation, another
Russian architect Shmelev made a very precise geometrical analysis of the Hesire
panels. This analysis led him to sensational discovery [36].

Having explored the Hesire panels, Igor Shmelev came to the conclusion:
“Now, after the comprehensive and justified analysis, by using the proportion
method, we have good ground to assert that the Hesire panels are the harmony
rules encoded in geometric language… So, in our hands we have the concrete
evidence, which shows us by “plain text” the highest standard of creative thought
of the Ancient Egyptian intellectuals. The artist who created the panels with
amazing accuracy, exquisite refinement and masterly ingenuity demonstrated
the rule of the Golden Section in its broadest range of variations. It gave birth
to the “GOLDEN SYMPHONY” presented by the ensemble of highly artistic
works, which testifies not only the ingenious talents of their creator, but also
convincingly proves that the author was aware of the secret of harmony.  This
genius was the “Golden Affair Craftsman” by the name Hesire.”

But who was Hesire? Ancient texts inform us that Hesire was “a Chief of
Destius and a Chief of Boot, a Chief of Doctors, a Scribe of Pharaoh, a Priest of
Gor, a Main Architect of Pharaoh, a Supreme Chief of South Tens, and a Carver.”

Analyzing the regalia of Hesire, Shmelev paid particular attention to the
fact that Hesire was the Priest of Gor. Gor was considered by the Ancient
Egyptians as the God of Harmony, and therefore, to be the Priest of Gor he
had to execute the functions of the keeper of Harmony.

As it follows from his name, Hesire was elevated to the rank of God of Ra
(the God of the Sun). Shmelev assumes that Hesire was elevated to this rank
rewarded for his “development of aesthetic … principles in the canon system
reflecting the harmonic fundamentals of the Universe … The orientation to
the harmonic principle discovered by the Ancient Egyptian civilization was
the way to the unprecedented flowering of culture; this flowering falls into
the period of Zoser, pharaoh when the system of written signs was complete�
ly implemented.  Therefore it is possible to assume that Zoser’s pyramid be�
came the first experimental pyramid, which was followed by construction of
the unified complex of the Great pyramids in Giza according to the program
designed under Hesire’s supervision” [36].

Thus, Shmelev states: “It is only necessary to recognize that the Ancient
Egypt civilization is the super�civilization explored by us extremely superfi�
cially and it demands a qualitatively new approach to the development of its
richest heritage… The outcomes of researches of Hesire’s panels demonstrate
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that the sources of modern science and culture are in boundless layers of history
feeding creativity of the craftsmen of our days by great ideas, which for long time
inspired the aspirations of the outstanding representatives of the mankind.  And
our purpose is to keep a unity of a connecting thread” [36].

1.8.2. The Mysteries of the Egyptian Pyramids

This infinite never�ending uniform sea of sand, with infrequent dried bushes,
and the barely visible tracks from a camel covered by sand, is a wasteland under
an incandescent sun. Everything around seems dull and covered by fine sand.

Suddenly, as if beset by a mirage, to our amazement we see the pyramids
(Fig. 1.21) whose fancy stone figures are directed toward the Sun. They as�
tonish our imagination by their vast size and perfect geometric forms.

A Pharaoh’s authority in Ancient Egypt was tremendous; divine honors
were given to him, and a Pharaoh was called the “Great God.” The God�Pha�
raoh was a progenitor of the country and a judge of people’s fate. The cult of
the dead pharaoh had great significance in the Egyptian religion. The monu�
mental pyramids (in addition to their more profound philosophical and math�
ematical significance) were constructed for the preservation of a pharaoh’s
body, spirit, and for extolling his authority. Constructed by human hands, they
deserve to be included amongst the Seven Wonders of the World.

The pyramids had multiple functions. They served not only as vaults of a
Pharaoh’s mortal remains, but they also were the attributes of his majesty,
power, riches of country, the monuments of culture, the country’s history, and
items of information about the pharaoh, his people, and life.

It is clear that the pyramids held deep “scientific knowledge” embodied
in their forms, sizes, and orientation of terrain. Each part of a pyramid and
each element of its form were selected carefully to demonstrate the high
level of knowledge of the pyramid creators. They were constructed for mil�
lennia, “for all time,” and for this reason,
the Arabian proverb says: “All in the
World are afraid of a Time. However, a
Time is afraid of the Pyramids.”

Among the gigantic Egyptian pyramids,
the Great Pyramid of the Pharaoh Cheops
(Khufu) is of special interest (Fig. 1.21).

Before the beginning of the analysis
of the form and dimensions of Cheops’
Pyramid it is necessary to introduce the Fig. 1.21. Cheops’ Pyramid in Giza
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Figure 1.22. A geometric model of Cheops’ pyramid
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Egyptian measurement system. The ancient Egyptians used three units of mea�
surement: the “elbow” (466 mm) which equaled 7 “palms” (66.5 mm), which, in
turn, was equal to 4 “fingers” (16.6 mm). Let us analyze the dimensions of Cheops’
Pyramid (Fig. 1.22) employing considerations given in the remarkable book of
Ukrainian scientist Nikolay Vasutinsky [31].

The majority of researchers believe that the length of the side of a pyra�
mid’s base is, for example, GF is equal to L = 233.16 m. This value corresponds
almost precisely to 500 “elbows.” The full accordance to the 500 “elbows” will
be, if we take the length of the “elbow” equal to 0.4663 m. The altitude of the
Pyramid (H) was estimated by researchers variously from 146.6 m up to
148.2 m and depending on the adopted pyramid’s altitude, all ratios of its
geometric construction will change considerably. What is a cause for the dif�
ferences in the estimation of a pyramid’s altitude? Strictly speaking, Cheops’
pyramid is truncated. Today, its apex is approximately 10 × 10, but 1 century
ago, it was 6 × 6. Apparently, the top of the pyramid was dismantled.

In estimating a pyramid’s height, it is necessary to consider physical fac�
tors, such as “shrinkage” of its construction. Under the enormous pressure
(reaching 500 tons on 1 m2 of the ground)   exerted by its weight, the height of
most pyramids would have decreased in comparison to its initial designed val�
ue. What was the initial height of the Pyramid? This height can be reconstruct�
ed if we can discover the main or key “geometrical idea” of the Pyramid.

In 1837, English Colonel Howard Vyse measured the inclination angle of
the Pyramid faces: it appeared to be α = 51°51'. A majority of researchers
recognize this value today. The indicated value of the inclination angle corre�
sponds to the tangent equal to 1.27306. This value corresponds to the ratio of
the pyramid’s altitude AC, which is half of its base СВ (Fig. 2.22), that is,
AC CB H L H L/ / / /= ( ) =2 2 .

Researchers were in a big sur�
prise! If we consider the square
root of the golden mean, that is,

τ , we obtain the following out�
come τ = 1 272. .  Comparing
this value with the value of
tgα = 1.27306, we see that
these values are very close.
If we accept the angle
α = 51°50', that is, we de�
crease it by one arc minute,
the value of tgα will become
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equal to 1.272, that is, it will be exactly equal to the value of τ . It is necessary to
note that in 1840, Colonel Vyse repeated his measurements and corrected the value
of the angle to α = 51°50'. These measurements led researchers to the following
hypothesis: the ratio AC/CB = 1.272 underlies the triangle АСВ of Cheops’ Pyra�
mid!  This ratio is characteristic for the above golden right triangle (Fig. 1.11).
Then, if we accept the hypothesis that the golden right triangle is the main geo�
metrical idea of Cheops’ Pyramid, it is then possible to calculate the initial height

of Cheops’ Pyramid. It is equal to H L= ( ) × =/ .2 148 28τ m .

Now, we deduce other relationships for Cheops’ Pyramid following from this
golden hypothesis. In particular, let us find the ratio of the external area of the
Pyramid to its base. For this purpose, we accept the length of the leg СВ for the
unit, that is, CB = 1,  however, the length of the side of the Pyramid base is GF = 2,
and the area of the base EFGH will be equal to S

EFGH
 = 4.  Now, let us calculate the

area of the lateral side of Cheops Pyramid. As the altitude AB of the triangle AEF
is equal to τ, then the area of each lateral side will be equal to SD = τ , and the
common area of all four lateral sides of the pyramid will be equal to 4τ, while the
ratio of the external area of the pyramid to its base will be equal to the golden
mean. This is the main geometrical secret of Cheops Pyramid!

Analyses of other pyramids confirm that the Egyptians always intended to
embody their most significant mathematical knowledge in the pyramids they
built. In this respect, the Pyramid of Chephren (Khafre) is also rather interest�
ing. The measurements of Chephren’s Pyramid show that the inclination angle
of the lateral sides is equal to 53°12', which corresponds to leg’s ratio of the
right triangle: 3:4. This leg’s ratio corresponds to the well�known right triangle
with the side ratio: 3:4:5, this triangle is called the “perfect,” “sacred,” or “Egyp�
tian” triangle. According to testimony from historians, the “Egyptian” triangle
had a magical sense. Plutarch wrote that the Egyptians compared the universe
to the “sacred” triangle; they symbolically ascribed the vertical leg to the hus�
band, the base to the wife, and the hypotenuse to the child born from them.

According to the Pythagorean Theorem for the triangle 3:4:5 we have:
32+42 = 52. Possibly, this famous theorem was perpetuated in Chephren’s pyr�
amid based on the 3:4:5 triangle. It is difficult to find a more appropriate ex�
ample to demonstrate The Pythagorean Theorem — which evidently was
well�known to the Egyptians long before its re�discovery by Pythagoras.

Thus, the ingenious architects of the Egyptian Pyramids sought to astonish
future generations and fulfilled this goal by selecting the golden right triangle
as the “main geometrical idea” of Cheops’ Pyramid, and the “sacred” or “Egyp�
tian” right triangle as the “main geometrical idea” of Chephren’s Pyramid.
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1.9. The Golden Section in Greek Culture

1.9.1. Pythagoras

Pythagoras is one of the most celebrated people in the history of science. His
name is known to each person who has studied geometry and been introduced to
the Pythagorean Theorem. The famous philosopher, scientist, religious and ethical
reformer, influential politician, “demigod” — in the eyes of his followers, Phythag�
oras personifies ancient wisdom. Coins with his image, which were made in 430�
420 B.C., testify to the exclusive popularity of Pythagoras. In the 5th century
B.C., this was unprecedented! Pythagoras was the first, among the Greek philoso�
phers, to have a special book dedicated to him.

His scientific school is internationally known. He
had organized it in Croton, a Greek colony in northern
Italy. The “Pythagorean School,” or “Pythagorean
Union,” was simultaneously a philosophical school, a
political party, and a religious brotherhood. Entrance
to the “Pythagorean Union” was very demanding. Each,
who entered the “Pythagorean Union,” would be re�
fused personal property for the benefit of the Union;
they undertook to not spill blood, not eat meat, and
protect the secret of their doctrine. The members of
the Union were prohibited to train others for money.

The Pythagorean doctrine focused upon harmony, geometry, number the�
ory, astronomy, and other topics, but the Pythagoreans, most of all, appreciat�
ed the results that were obtained in the theory of harmony because it con�
firmed their idea that “numbers determine everything.” Some ancient scien�
tists assume that the concept of the golden section was borrowed by Pythag�
oras from the Babylonians.

Many great mathematical discoveries were attributed to Pythagoras —
some perhaps undeservedly. For example, the famous geometric “theorem of
squares” (Pythagorean Theorem), which sets a ratio between the sides of a
right triangle, was known to the Egyptians, the Babylonians, and the Chinese
long before Pythagoras.

However, discovery of “incommensurable line segments” is considered to
be the main mathematical discovery of the Pythagoreans. In investigating the
ratio of a diagonal to the side of a given square, the Pythagoreans proved that

Pythagoras
(Born c.569 B.C.,
died c.475 B.C.)
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its ratio cannot be expressed as the ratio of two natural numbers, that is, this ratio
is “irrational.” This discovery caused the first crisis in the history of mathematics,
as the Pythagorean doctrine about integer�valued basis of all existing things could
no longer be accepted as true. Therefore, the Pythagoreans attempted to keep the
discovery a secret; they created a legend about the death of one of the Pythagoreans
— who divulged the secret of this discovery.

Also attributed to Pythagoras were a number of the other geometrical dis�
coveries, namely, the theorem about the sum of the interior angles of a triangle,
and the problem about segmentation of the plane into regular polygons (trian�
gles, squares and hexagons). There is a view that Pythagoras discovered some or
all of the primary regular “spatial” figures, that is, the five regular polyhedrons.

Why was Pythagoras so popular already during his life? The answer to
this question follows from interesting facts from his biography. According to
legend, Pythagoras went to Egypt and lived there for 22 years to learn from
the wisdom of the priest�scientists. After studying all Egyptian sciences, in�
cluding mathematics, he moved to Babylon, where he lived for 12 years and
was introduced to the scientific knowledge of Babylonian priests. Legends
also attribute Pythagoras with a visit to India. It is possible because Ionia and
India�at that time�had business relations. He returned home about 530 B.C.
Pythagoras attempted to organize his philosophical school. However, due to
undetermined reasons, he abandoned Samos and settled in Croton�a Greek
colony in North Italy. Here, Pythagoras organized his school.

Thus, the outstanding role of Pythagoras in the development of Greek
science consists in fulfillment of the historical mission of knowledge transmis�
sion from the Egyptian and Babylonian priests to the culture of ancient Greece.
Thanks to Pythagoras, who was, without any doubt, one of the leading think�
ers of his time, the Greek science could obtain new knowledge in the fields of
philosophy, mathematics, and natural sciences. This new scientific knowledge
contributed to the rapid development and augmentation of Greek science in
ancient Greek culture.

In developing the idea about the role of Pythagoras in the historical de�
velopment of the Greek science, Igor Shmelev, in the brochure Phenomenon
of Ancient Egypt [36], wrote:

“His world renowned name the Croton teacher obtained after the rite of
“consecration.” This name is compounded of two halves and it means “The
Prophet of Harmony” because the “Pythians” in Ancient Greece were pa�
gan priests who predicted a future and Gor in Ancient Egypt personified
harmony. So in the last years of their civilization, the Egyptian priests trans�
mitted their secret knowledge to the representatives of the new civiliza�
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tion, symbolically cementing in one person the Union of man’s and woman’s
origins, the bastion of Harmony.”

It is known that the Pentagram has always attracted special attention from
the Pythagoreans; they considered it the symbol of health. There is a legend
surrounding the pentagram: when a guest in a foreign land, one of the Pythagore�
ans lay on his deathbed, unable to pay the man helping him. He asked the man
to draw the pentagram on his dwelling, hoping that this symbol would be seen
by one of the Pythagoreans. Some years later, one of the Pythagoreans saw this
symbol and the kind host received a rich compensation.

Already, the fact that the Pythagoreans chose the “pentagram,” brimming
with golden sections, as the main symbol of their Fraternity, is another confir�
mation that the Pythagoreans knew and esteemed the golden section. The
Russian researcher Alexander Voloshinov wrote [137]:

“The Pythagoreans gave special attention to the pentagram, the five�point�
ed star that is formed by diagonals of the regular pentagon. In the pentagram,
the Pythagoreans found all proportions well�known in antiquity: arithmetic,
geometric, harmonic, and also the well�known golden proportion, or the golden
ratio. A perfection of mathematical forms of the pentagram finds a reflection in
the perfection of its form itself. The pentagram is proportional and, hence, beau�
tiful. Probably owing to the perfect form and the wealth of mathematical forms,
the pentagram was chosen by the Pythagoreans as their secret symbol and a
symbol of health. Thanks to the Pythagoreans, the five�pointed star is today a
symbol for many states and is on the flags of many countries of the world.”

1.9.2. The Idea of Harmony in Greek Culture

The idea of harmony based on the golden mean became one of the most
fruitful ideas in Greek art. Nature, taken in a broad sense, includes the human
creative patterns of art, where the same laws of rhythm and harmony domi�
nate. Aristotle states:

“Nature aims for the contrasts and from them, instead of similar things,
Nature forms a consonance …. This combines a male with a female and thus
the first public connection is formed through the connection of contrasts,
instead of similarities. Also in art, apparently, by imitating Nature the artist
acts in the same way. Namely the painter makes the pictures conform to the
originals of Nature by mixing white, black, yellow and red paints.  Music
creates the unique harmony by mixing different voices, high and low, long and
short, in congregational singing.  Grammar creates its entire art from the
mixture of vowels and consonants.”
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To take the subject and eliminate all that is superfluous is the plan of the
ancient Greek artist. This is the main idea of Greek art, where the golden
section lay at the center of the canon of aesthetics.  The theory of proportion
is the foundation of Greek art, and, the problem of proportionality could not
have escaped the thought of Pythagoras. Among the Greek philosophers,
Pythagoras was the first who attempted mathematically to understand the
essence of musical or harmonic ratios or intervals. Pythagoras knew that the
intervals of the octave can be expressed by natural numbers, which fit the
corresponding oscillations of the string, and these numerical relations were
put forth by Pythagoras as the basis of his theory of musical harmony.  Pythag�
oras was credited with possessing knowledge of arithmetic, geometric, har�
monic proportions, and the law of the golden section. Pythagoras paid special
attention to the golden section by choosing the pentagram as the distinctive
symbol of the “Pythagorean Union.” By developing further the Pythagorean
doctrine about harmony, Plato analyzed the five regular polyhedrons (the so�
called Platonic solids) and emphasized their ideal beauty.

As to the main requirements of beauty, Aristotle proposed order, proportion�
ality, and size limitation. The order arises when certain relations and proportions
hold between the whole and its parts. In music, Aristotle recognized the octave as
the most beautiful consonance; he considered that the ratio of oscillations be�
tween the basic tone and its octave is expressed by the first natural numbers: 1:2.
He also maintained that in poetry, the rhythmic relations of a verse are based on
small numerical relations, and by this, a beautiful impression is expressed. Except
for the simplicity based upon the commensurability of separate parts and the
whole, Aristotle, as well as his mentor Plato, recognized
that the highest beauty of perfect figures and propor�
tions was based upon the golden section.

The ancient Harmony theory, based on the prin�
ciple of the division in extreme and mean ratio (the
golden section), became the “launching pad,” upon
which, subsequently, a harmony concept was devel�
oped in the science and art of European culture.

1.9.3. The Golden Section in Greek Sculpture

For a long time, the creations by the great Greek
sculptors Phidias, Polyclitus, Myron, and Praxiteles
were considered to be the standard of beauty and har�
monious construction based on the human body. The

Figure 1.23. Doryphorus
by Polyclitus
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statue of Doryphorus, created by Polyclitus in the 5th century B.C., serves as
one of the greatest achievements of classical Greek Art (Fig. 1.23). This statue
is considered to be the best example for analysis of the proportions of the ideal
human body established by ancient Greek sculptors. It is especially important
because the name “Canon” was ascribed to this famous sculpture. The harmon�
ic analysis of the Doryphorus as given in the book Proportionality in Architec�
ture (1933) [10], written by the Russian architect G.D. Grimm, indicates the
following connections of the famous statue to the golden mean :

1. The first golden cut division of the Doryphorus figure with its overall
height M 0=1, relating segments M 1 and M 2, is at the navel.
2. The second division of the lower part of the torso, relating M 2 and M 3,
passes through the line of his knee.
3. The third division, relating M 3 and M 4, passes through the line of his neck.

The Venus de Milo (Fig. 1.24), a statue of the goddess
Aphrodite, is one of the best�known monuments of Greek
sculptural art. This statue was created by Agesandr in the
2nd century B.C. The Goddess Aphrodite is represented
half�naked, so that her clothing — which wrap up her legs
and the bottom of her torso, as if it were a pedestal for the
open hands, which are showing in movement (Fig. 1.24).
During the Hellenic epoch, Aphrodite was one of the most
favorite goddesses. From the Island Melos, Aphrodite is
strict and restrained. It is thought that she stood on the
high pedestal and looked at over the spectators. The Ve�
nus de Milo is a pearl of the Louvre; it is a standard of
female beauty in ancient Greece.

1.10. The Golden Section in Renaissance Art

1.10.1. The Idea of the “Divine Harmony” in the Renaissance Epoch

The idea of Harmony belonged to such ancient conceptual ideas, which
attributed to the interest of the church. According to Christian doctrine,
the universe was created by God and submitted to its will unconditionally.
The Christian God, at the creation of the universe, was guided by mathe�

Figure 1.24. Venus de Milo
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matical principles. In Renaissance culture, Catholic doctrine included the math�
ematical plan to which God created the universe.

In the opinion of the American
historian of mathematics, Morris
Klein, the close merge of the reli�
gious doctrine about God as the cre�
ator of the universe, and the antique
idea of numerical harmony of the uni�
verse, became one of the major sta�
ples of the Renaissance culture [6].
Mainly, the objective of Renaissance
science is presented in the following
text from the well�known astrono�
mer Jogannes Kepler:

“The overall objective of all re�
searches of the external world should

be to discover the rational order and harmony, which was embodied by the
God in the Universe and then was presented for us by the God on
mathematics language.”

The art of the Renaissance period (espe�
cially paintings) is substantially connected to
topics from the Bible. The picture Holy Fam�
ily by Michelangelo is a bright example of
such topical art. This picture is a fairly recog�
nized masterpiece of West�European art. The
picture is often named “Tondo Doni” because,
firstly, the picture belonged to the Doni fam�
ily in Florence, and secondly, it had a round
form (in English “tondo”). After the harmon�
ic analysis of this picture, researchers found
that a compositional construction of the pic�
ture is based on the pentacle (Fig. 1.25).

The picture Crucifixion, by Rafael San�
ti (1483�1520), is another example of a pic�
ture based on the topics of the Bible. The
harmonic analysis of this picture (Fig. 1.26)
showed that the compositional plan of the
picture is based on the golden isosceles tri�
angle (Fig. 1.18).

Figure 1.25.  Holy Family by Michelangelo

Figure 1.26. Crucifixion by
Rafael Santi
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1.10.2. “Vitruvian Man” by Leonardo da Vinci

During the age of the Renaissance, attempts to create an ideal model of a
harmoniously developed human body were continuing. It is known, that a sweep
of human hands approximately is equal to a
human growth. It means that the human fig�
ure can be inserted into a square and a circle.
The ideal human figures, created by Leonar�
do da Vinci and Durer, are widely known. For
a long time, the opinion existed that the “pen�
tagonal” or “five�fold” symmetry, which is
characteristic for flora and animals, is shown
in the structure of the human body. The hu�
man body can be considered as a sample of
the pentagram, where the human head, two
hands, and two legs are, as if, beams of the
pentagonal star. Such model found a reflec�
tion in the constructions of Leonardo da Vin�
ci and Durer, in particular, in the figure of the
well�known Vitruvian Man by Leonardo da
Vinci (Fig. 1.27).

1.10.3. “Mona Lisa” by Leonardo da Vinci

The Renaissance, in the cultural history of the Western and Central
European countries, is a transitive epoch, whereby it progressed from
the Medieval culture to the culture of a new era. A humanistic world
outlook and a return toward the antique cultural heritage, as though, “Re�
naissance” of the ancient culture, are the most typical features of this
epoch. The Renaissance is characterized by large scientific shifts in the
field of natural sciences. The close connection to art is a specific feature of
science of this epoch, and this feature was sometimes expressed by one
creative person. Leonardo da Vinci, the outstanding artist, scientist, and
engineer of the Renaissance, was a brilliant example of a many�sided per�
son. By his nature, Leonardo da Vinci had enviable health, was good�look�
ing man, tall, and blue�eyed. Leonardo was born on the 15th of April under
the Star of Mars, and possibly, therefore, he possessed a huge force and
man’s valour. He sang marvelously by composing melodies and verses for
his listeners. He played many different musical instruments; moreover, he
created new musical instruments.

Figure 1.27. Vitruvian Man
by Leonardo da Vinci
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But art and science were the main spheres of Leonardo’s
creative work — where Leonardo showed his genius talent.
For Leonardo’s art works, his contemporaries and descen�
dants gave such definitions, as “genius,” “divine,” “great,”
but the same words can be used to describe Leonardo’s sci�
entific discoveries. He invented a military tank, a helicopter,
an underwater ship, a parachute, an automatic weapon, a
diving helmet, an elevator, and so on. He solved the most
complicated problems of acoustics, botany, and cosmology; he invented an hour
pendulum one century earlier than Galileo, and he developed a mechanics theory
— among other things. In his relationship with Universe Harmony, Leonardo
expressed the following words: “All earth, mountains, woods, and seas form a
whole, in which each thing feeds the other one, all things are cooperated and
interconnected, supported, but at the same time destroyed and updated.”

Seemingly, each visitor of the Louvre in Paris tries to find the famous “Mona
Lisa” (“Jokonda”) by Leonardo da Vinci. The Great Artist drew this portrait tense�
ly and long. He made many sketches; he paid attention to the pose of Mona Lisa, to
the turn of her head, and to the position of her hands. Italian artist Giorgio Vazari
(1511�1574) tells in his “Biographies,” that during the painting of Mona Lisa, Le�
onardo invited singers, musicians, and clowns to his studio to support the cheerful
mood of the young woman and to have an opportunity to watch a changeable
expression of her face. And only after four years of intense work he, at last, could
present to cultural community his world�famous “Mona Lisa” (“Jokonda”).

It is considered, that a secret of Jokonda’s charm is in the variability of her
smile. There is an opinion that the woman represented in the picture had lost a
child, several months ago. The dark color of her clothes speaks about this. She sits
in a quiet pose combining her hands in her lap, but her face is full of imperceptible
movement: her lips tremble in light smile, and her smiling eyes attract spectators
attentively and derisively. In those days, the lips, slightly opened in corners of the
mouth, were considered as an attribute of elegance. Jokonda’s hardly appreciable
smile, gentle and mysterious, lights up the picture. Mysteriousness of the image
is strengthened by the background, a mountainous silvery�blue landscape.

What is the reason for Jokonda’s charm? The search for the answer to this
question continues. By creating the masterpiece, Leonardo used a secret known
for many portraitists: the vertical axis of the picture passes through the center of
the left eye what should cause the feeling of excitation of the spectator, that is, in
the picture the artist used a “Principle of Symmetry,” But, possibly, the reason is
in another. The picture of the genius artist attracted attention of the researchers.
After precise analysis, they found two golden triangles � one with its base stand�

Leonardo da Vinci
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ing on the bottom of the picture, another with its
base touching the top of the picture and the top
touching the bottom of the picture, and their com�
mon height crosses the center of Jokonda’s left
eye. (Fig. 1.28). Further harmonious analysis of
the picture showed, that the center of Jokonda’s
left eye is on the crossing of the two bisectors of
the upper golden triangle, which, on the one hand,
bisect the angles at the base of the upper golden
triangle, and, on the other hand it divides the sides
of this golden triangle in the golden section. Thus,
Leonardo used in the picture not only the “Prin�
ciple of Symmetry,” but also the “Golden Section
Principle.”

What is considered the apex of Leonardo’s
creativity, this picture is thought as the crys�
tallization of his genius, innermost thoughts,
and inspiration. Very little is known about

Mona Lisa, except for several insignificant facts, therefore, it is difficult to
answer very important questions often asked and discussed: whether she was
simply a beautiful model for Leonardo or she was his muse and even his love.
There are some facts, which confirm the last assumption, and this, probably,
explains a special magic of the picture. But it is clear that Mona Lisa was that
woman who inspired Leonardo to create this unique masterpiece inspiring
thousands of people over many centuries.

A huge number of legends are connected with this well�known picture. We
will begin from the history of its creation. Giorgio Vazari, in his “Biographies,”
wrote the following: “Leonardo undertook to execute for Franchesco Del Jokon�
do the portrait of his wife Mona Lisa.” Some researches assume that Vasari,
apparently, was mistaken. The newest investigations showed that in the pic�
ture another woman, not Mona Lisa, the wife of the Florentine nobleman Del
Jokondo, was presented. Many researchers speculate why Del Jokondo refused
the portrait of his wife, but in reality the portrait became the property of the
artist, and this fact is an additional argument favoring the fact that Leonardo
represented another woman and not Mona Lisa. However, there is another legend
why Mona Lisa’s portrait was found at Leonardo — simply Leonardo had drawn
two copies of this famous picture.

Probably, the creation of this picture is connected with some secret in
Leonardo’s life. Leonardo’s riddle begins with his birth. As is known, Leonar�

Figure 1.28. Harmonic Analysis
of Mona Lisa (“Jokonda”)

by Leonardo da Vinci
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do was an illegally born son of a woman, about which almost nothing is known. It
is known only that her name was Katerina and that she was the owner of a tavern.
Not much more information is known about Leonardo’s father. Mr. Pero,
Leonardo’s father, was 25 years old when Leonardo was born. He was the notary,
and he possessed impressing male merits: he had lived till the age of 77s, had four
wives (three of them he buried), fathered 12 children and the last child was born
when he was 75 years old.

In the Renaissance, a relationship with illegitimate children was tolerat�
ed. Leonardo, at once, was recognized by the family of his father. However, in
the house of his father he was taken away after awhile. Soon after his birth,
Leonardo was sent together with Katerina to the village Anhiano located near
to the city of Vinci. He remained there about four years. During these years,
Mr. Pero married his first wife — a 16�year�old girl — who had a higher social
position than Leonardo’s mother.

The young wife had turned out fruitless. Probably, for this reason, Le�
onardo at the age of almost 5 was taken in his father’s city house, where at
once he was cared by his numerous relatives: grandfather, grandmother, fa�
ther, uncle, and foster mother.

During his life, Leonardo always remembered his native mother Katerine
who surprisingly resembled Mona Lisa, the wife of the Florentine merchant
Jokondo, and, probably, this fact became the main reason of Leonardo’s desire
to create Mona Lisa’s portrait. He embodied into this picture everything that
was cheerful, light, and clear to him. He embodied all of a son’s love to his
mother Katerine in this well�known picture, which defined the development
of painting for many centuries forward, and we should thank God that Le�
onardo da Vinci met Mona Lisa during the final stage of his creative way.

1.11. De Divina Proportione by Luca Pacioli

1.11.1. Luca Pacioli

The spiritual heritage of Greece, Rome, and Byzantium were marvelous�
ly combined in the new Renaissance lead by its Titans of gigantic intellect
and artistic talent. “Titan” is the most appropriate term for the likes of Le�
onardo da Vinci, Michelangelo, Nicholas Copernicus, Albrecht Durer, Raphael,
Bramante and many others. Luca Pacioli, the Italian mathematician of the
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Renaissance, collaborated with Leonardo da Vinci, was the sem�
inal contributor to the field now known as accounting, takes a
place of pride amongst the Titans. He was also called Luca di
Borgo after his birthplace, Borgo Santo Sepolcro, Tuscany,
where he was born in 1445.

Luca Pacioli is rightfully called “The Father of Account�
ing” and “The Unsung Hero of the Renaissance.” In fact,
the Fransican Friar Luca Pacioli was one of the most re�
markable people of his epoch, but unfortunately was one of
the least well�known.  This is surprising because his work as
a master of math is brilliant and revolutionary and continues to affect us.

Although we know little of Pacioli’s early life, there is evidence that he
began to study in the art studio of the artist Piero della Francesca. Amongst
his contemporaries, Pierro della Francesca was known as a mathematician
and geometer, as well as, an artist.  Today he is chiefly appreciated for his art.
Through Piero, Pacioli gained access to the Count of Urbino and the library
of Federico where he gained access to thousands of books. This allowed Luca
to expand and deepen his knowledge of mathematics. Piero also would later
introduce Pacioli to his new mentor, Leon Battista Alberti, who became the
second great man in Luca Pacioli’s life. The following words of Alberti fell
deeply into Luca’s consciousness: “We may conclude Beauty to be such a
Consent and Agreement of the Parts with the Whole in which it is found, as to
Number, Finishing and Collocation, as Congruity, that is to say, the principal
Law of Nature requires. This is what Architecture chiefly aims at, and by this
she obtains her Beauty, Dignity and Value.”

Alberti introduced Luca to Pope Paul II. Pope Paul encouraged Luca to
dedicate his life to God and become a monk. When Alberti died in 1472, Luca
took the vows of a Franciscan Minor.

In 1475 Pacioli began to work at the University of Perugia, receiving a
professorial chair in 1477.  He remained at the University for six years while
becoming the first lecturer holding a chair in math in this University. While
there Pacioli wrote a mathematical manuscript dedicated to the “Youth of
Perugia.” After he left Perugia, he took up more traveling and wandered
throughout Italy, but in 1486 was called back to the University of Perugia by
the Franciscans.  It was at this time that he started calling himself “Magister,”
or “Master” — the equivalent of what we today refer to as a full professorship.

Luca wrote his famous work Summa de Arithmetica, Geometria, Propor�
tioni et Proportionalita, when he was 49 years of age. Luca did this out of the
belief that mathematics was being poorly taught at this time.

Luca Pacioli
(1445 � 1514)
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One section of the book that was entitled Particularis de Computis et Scrip�
turis was dedicated to accounting. This book was referred to by some as “a
catalyst that launched the past into the future.” Luca was the first person to
explain the double�entry system, or the Venetian method. This was absolute�
ly revolutionary and far ahead of its time, sealing for him the title “The Father
of Accounting.”  The Summa was recognized for many accomplishments and
it became the most widely read mathematical work in all of Italy.

After Leonardo Da Vinci read Pacioli’s Summa, he arranged for Luca to
come to the Court of Duke Lodovico Maria Sforzo to tutor him in mathemat�
ical perspective and proportion. Luca joined Leonardo at the Sforza Court in
1496, whence began a seven�year relationship that produced two enduring
masterpieces. Under the direct influence of Leonardo da Vinci, Luca Pacioli
began to write the book De Divina Proportione, pub�
lished in 1509.  The book had a noticeable influence on
his contemporaries and was one of the first fine exam�
ples of the Italian art of book�printing.  The historical
significance of this book is that it was the first mathe�
matical book solely dedicated to the golden mean. Da
Vinci used his artistic skills to illustrate Luca’s De Div�
ina Proportione, the second important Pacioli manu�
script. At the same time, Luca taught Leonardo per�
spective and proportionality. This knowledge would
remain with him forever, and help him to create one of
his greatest masterpieces, “The Last Supper.” Painted
on the back wall of the dining hall at the Dominican
convent of Santa Maria delle Grazie in Italy, it instant�
ly became one of the most famous works of the Italian
Renaissance (if not of all time).

De Divina Proportione consists of three parts: the first part sets out the
properties of the golden ratio, the second part is dedicated to the five regu�
lar polyhedrons, and the third part describes the applications of the Golden
Section in architecture. Using Plato’s Republic, Timeaus, and Laws Pacioli
sequentially infers the twelve different properties of the Golden Section.
Pacioli characterizes them using such epithets as “exceptional,” “remark�
able,” “almost supernatural,” etc. Considering his view (and that of the an�
cients) that the Golden Section is the universal ratio that expresses a per�
fection of Beauty in Nature and Art, he names it the Divine Proportion and
recognizes it as a “thinking tool”, the “aesthetic canon”, and the “Funda�
mental Principle of the Cosmos”.

Figure 1.29.
Luca Pacioli’s book

De Divina Proportione
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This book is one of the first mathematical works that attempted to provide a
solid scientific basis fot the Christian doctrine about God, the creator of the
Cosmos. Considering the properties of the golden mean inherent in God, Pacioli
names it the “Divine Proportion.”

1.11.2. About Pacioli’s Plagiarism

Roger Herz�Fischler wrote in his book [40]: “Perhaps no mathematician has
plagiarized as much and with so little change in details and has stirred so much
controversy and such vehement reactions as Luca Pacioli.”  The main charge for
plagiarism falls on Pacioli’s De Divina Proportione. Some have claimed that this
book is a literal translation out of the Latin of Piero della Francesca’s manuscript
De Quinque Corporibis. However, De Divina Proportione is not the only book of
Pacioli that falls under this charge.  According to Davis [40], Pacioli also derived
dodecahedron and icosahedron problems from Piero’s Trattato and included them
in his 1494 book, Summa de Arithmetica, Geometria, Proportioni et
Proportionalita.

It is now surprising why Pacioli’s books caused such vehement reaction.
Euclid, for instance, could also be blamed for plagiarism in The Elements. Ac�
cording to the statement of the famous mathematician and historian Van der
Waerden, a majority of the mathematical results stated in The Elements be�
longed to the Pythagoreans. The following quote from Roger Herz�Fischler’s
book [40] is very interesting in regard to the aforementioned:

“As a final comment on Pacioli’s “literary borrowings,” I mention Cardano’s
16th century comments … on Pacioli’s use in his Summa of a 1202 manuscript
(Fibonacci?) dealing with algebra; and Agostini (1925) who, after discussing
Pacioli’s word for word inclusion in his Summa of a 1481 mercantile text, says
that one should not accuse Pacioli of plagiarism for having used in his book
what is available to everybody and is not personal intellectual property.”

Thus, following the logic of Pacioli’s accusers, all modern books on geom�
etry are plagiarized, as they could not be written without using Euclid’s Ele�
ments! Unlike artistic creative work, a distinctive feature of scientific, in par�
ticular, mathematical creative work, is that ideas of preceding fundamental
scientific results can be used by all subsequent  authors in new articles and
books. Therefore, it is our responsibility as scientists, who are often in the
same position, to stand up for the great Italian mathematician, Luca Pacioli,
against such accusations of plagiarism. As mentioned earlier, Piero della
Francesca was the first teacher and very good friend of Luca Pacioli. It is
more Francesca’s mathematical works than his art works that influenced the
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young Luca. There is absolutely nothing extraordinary in Luca’s use of Piero
della Francesca’s mathematical ideas.  At the very moment Pacioli began
working on his book, De Divina Proportione; he was already a well�known
mathematician and the author of the book Summa de Arithmetica, Geometria,
Proportioni et Proportionalita.  The latter could well be considered to be the
mathematical encyclopedia of the Renaissance. Considering these facts, it is
hard to believe that the book De Divina Proportione is literal translation of
Francesca’s manuscript De Quinque Corporibis. More likely, Luca Pacioli used
it as the basis of his “second great book” De Divina Proportione.  Leonardo da
Vinci unquestionably was the illustrator of this remarkable book with its 60
geometrical figures. Perhaps somebody will argue that he borrowed them
from Piero della Francesca’s works.  Following the logic of the Pacioli accus�
ers, all future books in the field of the “Golden Section,” including the present
book, should be recognized as a “plagiarism” of Pacioli’s book De Divina Pro�
portione, the first book focusing on the Golden Section in history!

1.11.3. Death and Oblivion of Luca Pacioli

Already tired and ill, in 1510, Luca Pacioli was 65 years old.  In the fore�
word of his unpublished book About the Forces and Quantities he wrote the
sad phrase: “The last days of my life approach.” This manuscript is stored in
the library of the Bologna University. Pacioli died in 1515 and is buried in the
cemetery of his native town Borgo San�Sepolcoro.

After Pacioli’s death, his works fell into oblivion for almost four centuries.
At the end of the 19th century, his works became internationally well�known.
After the 370�year hiatus of recognition, grateful descendants in 1878 placed
a memorial stone in Pacioli’s house of birth in Borgo San Sepolcro with the
following inscription that reflects the essential significance of Pacioli:

“For Luca Pacioli, who had da Vinci and Alberti as friends and advisers,
who turned algebra into a science, and applied it to geometry, who lectured in
double�enrty bookkeeping, whose work was the basis and the norm for later
mathematical research; for this great fellow citizen, the people of San Sepul�
cro, ashamed of their 370 years of silence, have placed this stone, in 1878.”

The names of three geniuses of the Renaissance are mentioned in this
inscription on the stone: Leonardo da Vinci, Leon Battista Alberti and Luca
Pacioli. Their works became a valuable if not priceless contribution to the
development of the theory of Harmony and the Golden Section!

Pacioli’s memorable work is not forgotten in 20th and 21st centuries.
A beautiful Monument to Luca Pacioli was sculpted out of white Carrara
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marble and placed
in Sansepolcro, It�
aly in honor of the
anniversary of the
1494 publication of
the Summa. In re�
cognition of Pacio�
li’s great works, a
500 lira post stamp
was issued, and nu�
merous conferenc�
es were held around
the world.

1.12. A Proportional Scheme of the Golden Section in Architecture

The 1935 book Proportionality in Architecture [10] by Russian architect
Professor Grimm is well known in the theory of architecture. The purpose of
the book is set forth in its Introduction:

“In view of the exceptional significance of the golden section as the pro�
portional division that establishes a constant connection between the whole
and its parts and gives a constant ratio between them, unachievable by any
other division, it is foremost the normative basis upon which we will subse�
quently check the proportionality of both historical and modern monuments
and constructions….

Memorial stone in Borgo San Sepolcro, 1878

In honor of 500 anniversary of Summa, 1994
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Taking into consideration this general importance of the golden section in all
manifestations of architectural thought, it is necessary to recognize the impor�
tance of it, as the basis of architectural proportionality theory in general.”

Grimm illustrates the golden section as a division of line segment AB at point
C into two unequal parts where the larger part CB is called major, and the smaller
part AC is called minor. The whole line AB is to the major (segment CB) as the
major (segment CB) is to the minor (segment AC), both in the golden ratio. Fol�
lowing a detailed analysis of the properties of the golden section, and in a manner
not unlike Pacioli’s comparison of it to the qualities Divine, Grimm places the
golden mean in the forefront of all other proportions. He writes:

“In general it is necessary to recognize the extremely outstanding prop�
erty of the golden section, which cannot be reached by arithmetic mean pro�
portions and other divisions of the whole.”

Grimm further illustrates examples of linear proportionality of the gold�
en division (see the Doryphorus statue, Fig. 1.23), through analysis of golden
divisions of rectangles, triangles, circles, and golden spirals. And finally, he
reviews volumetric proportionality through divisions of cubes, parallelepi�
peds, triangular prisms, and tetrahedral pyramids.

“This analysis of the significance of the golden section and its exclusive
properties for the theoretical solution of proportional division problems of
linear, planar and volumetric masses, leads us to the following conclusion: For
full proportional coordination of architectural structures representing a volu�
metric solution, it is necessary to have a golden proportioning, not only of its

linear dimensions in vertical and horizontal, but
also of the planar areas, and thence, of all volumes.”

Grimm validates his theoretical researches
in the field of the golden proportional scheme by
architectural examples from classical art (Par�
thenon, Jupiter’s temple in Tunis), Byzantine
monuments, and Italian Renaissance art and ar�
chitecture (Saint Peter’s Cathedral, Fig. 1.30;
and the Calleoni monument).

Grimm also analyzed structures of the Baroque
period as they differ from the architecture of the
Classical period and the Italian Renaissance, and at
first sight may have been lacking the golden sec�
tion. He analyzed the Smolny Cathedral (Fig. 1.31)
and its surrounding monastery in St. Petersburg,
Russia, a shining example of Baroque style. The

Figure 1.30. Saint Peter’s
Basilica in Rome

(architect Bramante)
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complex was commissioned in 1744 by Empress Eliza�
beth, a daughter of Peter the Great, and was construct�
ed in place of the Admiralty’s resin yard. Construction
commenced in 1749 under the leadership of the archi�
tect Rastrelli, author of the Winter Palace, and the ba�
sic structure was completed in 1764. The magnificent
blue�white cathedral rising to a height of 93.7 meters
stands at the center of the Smolny monastery com�
plex. The cathedral is stunning in its luxury, perfection
of proportions, and variety of decorative forms. It pos�
sesses a strange, mystical peculiarity and magnificence
that is strengthened as one approaches it. After ana�
lyzing the cathedral, Grimm concluded that its archi�
tecture was based upon the golden section.

Although there is no generally accepted opinion amongst architects
as to Grimm’s harmonious views, his editor’s foreword to Proportionality
in Architecture states:

“Nevertheless, his attempt at a general formulation of the golden section prin�
ciple as the basis of proportionality in a variety of architectural styles, support�
ed by analyses of material from ancient and European architecture, deserves to
be published.  All the more, Grimm’s book presents a historical sketch of the
development and use of proportionality theory, and also a comprehensive math�
ematical statement of the principle of the golden section.”

1.13. The Golden Section in the Art of the 19th and 20th Centuries

1.13.1. Ivan Shishkin’s Picture “The Ship Grove”

Ivan Shishkin (1832�1898) holds a place of honor in Russian painting.
The entire history of Russian landscape painting in the second half of the
19th century is associated with his name. The art works of this eminent
master took on special significance and became established as classics of
Russian painting. Shishkin’s creative work is an exclusive phenomenon
amongst the masters of painting. Like many Russian artists he possessed
a tremendous native talent.

Figure 1.31. Smolny
Cathedral St.�Petersburg,

Russia
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The picture The Ship Grove (Fig.
1.32), created by Shishkin in 1898, is his
last work. It is considered a worthy cul�
mination to his original and creative ca�
reer. This picture has a perfect classical
form, from the point of view of com�
pleteness and composition. The natural
etudes created by Shishkin in his native
land’s forests, where he found his own
idealistic synthesis of harmony and

greatness, were thought to be the basis of his landscapes. In The Ship Grove the
artist exemplified a thorough knowledge of Russian nature that was infused within
him throughout his almost fifty years of creative life.

It is obvious that the golden section law can be found in this well�known
picture, The Ship Grove (Fig. 1.32). For example, the brightly sunlit foreground
pine divides the horizontal plane of the picture in the golden section. Further�
more, from the right of the pine there is the sunlit hillock. This hillock divides the
vertical plane of the picture in the golden section. From the left of the foreground
pine we can see many other pines. A division of the left part of the picture’s
horizontal plane in the golden section suggests itself. Presence of the bright ver�
tical and horizontal lines that divide the picture in the golden section produces a
balance and calmness consistent with the artist’s intention.

1.13.2. “Modulor” by Le Corbusier

Le Corbusier (1887�1965) is an exceptional archi�
tect and theorist. His buildings became a triumph of
the new architectural aesthetics with their vitality and
humanism. After his book To Architecture was published
in 1923, Le Corbusier became one of the twentieth
century’s leading architectural theorists.

During the Second World War Le Corbusier creat�
ed his Modulor, a system of new proportional relations.
He used the proportions of the human body as a principle of architectural met�
rics and, as a basis of his Modulor, he took not only the average height of a man, but
also man’s measurements while seated, including lengths of the hand and foot.
The Modulor is not just a theory; it is a practical guide for the employment of
human proportions in architecture. Einstein was one of the first great scientists
who appreciated the Modulor for its true value. He recognized that Corbusier’s
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Figure 1.32. Harmonic analysis of

 Figure 1.33. Le Corbusier’s
Modulor
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system had practical importance not only for architec�
ture, but for other kinds of human activity as well. Har�
monic analysis of the Modulor (Fig. 1.33) leaves no
doubt of the presence of the golden section.

1.13.3. The Building of the United Nations
Headquarters in New York

The construction of this world famous building
(Fig. 1.34) is associated with the name of Oscar Ni�
emeyer (1907�1989), well�known twentieth centu�
ry Brazilian architect. He was the main adviser at
the construction of the United Nations headquar�
ters in New York. Its main architectural idea of this
building consists of the three golden rectangles.

1.13.4. A Picture “Near to the Window” by Konstantin Vasiliev

Konstantin Vasiliev (1942�1976) is a modern Russian artist who unfortu�
nately died quite young. He lived and worked near Kazan in the village Vasilevo.
His popularity is owed to his mixture of traditional symbolism and modernism
through the painting of folklore themes from ancient and modern Russian histo�
ry. He was first introduced to the golden section at the Kazan school of art.
Having studied the compositional principles of the golden section used by an�
cient Greeks, Konstantin decided “to investigate harmony through algebra.”

He began exploring the possibility of applying the laws of harmony to the
whole picture area in order to achieve maximal artistic expression of the image.
He was moving the different segments expressing the golden section within the
picture. Lastly, using the golden spiral, Vasiliev defined for himself how the hu�
man eye perceives the subject of the picture. Thus he would find how the picture
should be constructed, and where he should
set the imaginary main point of the picture
so that it would absorb all the plot lines.

Vasiliev’s Near to the window (1975) is
a fine example of construction using the
golden mean in all aspects of the picture
(Fig. 1.35). We can only guess what the art�
ist was trying to tell us. The main idea of
this picture and all of its ramifications lies

Figure 1.34. The Building
of the United Nations

Headquarters in New York

Figure 1.35. Vasilev’s picture Near to
the window (1975)
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in the face of the young woman glowing with cleanliness, dignity and quiet wis�
dom. The artist framed her face around the golden point of the picture that is
located on the crossing of the two golden lines, horizontal and vertical. Therefore,
this compositional decision is one of the reasons for the feeling of harmony of the
picture that manifests within all primordial beginnings and the beauty of Russian
women.

1.14. A Formula of Beauty

1.14.1. The Golden Ratio in the External Forms of a Person

Countless artists, poets and sculptors have admired the beauty of the
human body! The French sculptor Rodin proclaimed, “The naked body seems
to me beautiful. For me it is a miracle where there can not be anything ugly.”

A human is considered the highest creation of Nature. Therefore, a human
body at all times is recognized as the most perfect and worthy object of sculp�
tural art. The problem of correct proportional representation of the human body
was always one of the most important factors in art. The golden mean played a
leading role in the art canons of Leonardo da Vinci, Durer and other great
artists. According to these canons the golden section relates the whole body to
its two unequal subdivisions cut at the waistline. This is the most simple realiza�
tion of the proportional division of the human body (Fig. 1.36a). In addition,
the golden proportion is often used by designers of clothes (Fig. 1.36b).

Figure 1.36. The golden mean in human
body (a) and clothes design (b)

a)

b)
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1.14.2. The Beauty of a Woman’s Face

Repeated attempts have been made to analyze a woman’s face using the golden
mean and pentagram (Fig. 1.37).

Numerous researchers have come to the general conclusion that a woman’s
face is beautiful due to the golden section relations exemplified in it. The face of
a woman displays an array of emotions that are an integrated element of her
beauty. It is proven that a woman’s face fits the proportions of the golden section
most fully when she smiles. Any woman is perceived as more beautiful with a
warm smile than with a rigid face filled with anger, arrogance and disregard. Ad�
mirers of great feminine beauty would be advised to make note of these golden
section principles of aesthetics.

1.14.3. Nefertiti

During excavations in 1912, a German archaeological expedition digging in
the deserted city of Amarna discovered a ruined house and studio complex. The
building was identified as a sculptor’s workshop. One of the items found had the
name and job title of Thutmose, court sculptor of Egyptian Pharaoh Akhenaten.
Among the many sculptures recovered was the famous head of Queen Nefertiti
(in ancient Egyptian meaning the “beauty is coming”). This sculpture is

Figure 1.37. A harmonious analysis of a woman’s face
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recognized as a symbol of feminine beauty. After the exposition of Nefertiti in
the Berlin museum, her fame rose as if she were a modern movie star rather than
an ancient Egyptian queen.

With a charming head, long harmonic neck, and direct, but gently outlined
nose, the Nefertiti sculpture caused increased interest in Egyptian art, including
its deep mystical past of a cult of priests and esoteric wisdom. Possibly, our irra�
tional century has selected Nefertiti as a symbol of unusual feminine beauty,
feeling and as yet unrealized affinity for the grandeurs of ancient Egyptian cul�
ture. Belarusian philosopher Edward Soroko tried to determine what ideas were
used by Thutmose in the sculpture of Nefertiti [138]. He thinks that Thutmose’s
logic was very clear and simple. In ancient Egypt, harmony was the prerogative
of the Divine order that dominated the universe, and geometry was the main tool
of its expression. The Queen played the role of Goddess. Hence, her image, which
personified the wisdom of the world, must have been formed with geometrical
perfection and irreproachable harmony, beauty and clarity. As a matter of fact,
the main idea of ancient Egyptian aesthetic philosophy was to glorify the eternal,
the measured, and the perfect in a constantly changing universe.

Soroko made a harmonious analysis of Nefertiti’s sculpture and came to the
conclusion that Thutmose had used the golden section principle as the basis of
its design. During his analysis, Soroko found a harmonious system of regular
geometric figures such as triangles, squares, and rhombi (see Fig. 1.38). Thus, he
established that the parts of these figures, if put in order according to their sizes,
are guided by one and the same ratio — the golden mean.

The metric structure of Nefertiti’s statuette shows that there were an�
cient Egyptian sculptors consciously employing the principle of the golden
section in their creative work. Soroko’s analysis is one of the more compelling
confirmations of the role of the golden mean in ancient Egyptian art.

Figure 1.38. Harmonic analysis of Nefertiti’s portrait
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1.15. Conclusion

The geometrical problem of the “Division in Extreme and Mean Ratio”
(DEMR) came to us from Euclid’s Elements. It was named later the golden sec�
tion, golden mean, golden number, golden proportion or divine proportion. DEMR
appears throughout Euclid’s Elements and was used by Euclid for the geometric
construction of the isosceles triangle with the angles 72°, 72° and 36° (the gold�
en triangle), regular pentagon and dodecahedron. This fact may have given rise
to the widespread belief (see Proclus, commentator of Euclid’s Elements) that
the main goal of the Elements was to describe the geometric construction and
numerical interrelationship of the Platonic Solids. This means that the
Pythagorean doctrine about the numerical Harmony of the Spheres was real�
ized in the greatest mathematical work of ancient science, Euclid’s Elements.

As the history of science shows, the golden section appears diffused with�
in and throughout our cultural history. It became an aesthetic canon for the
Egyptian, Greek and Renaissance cultures. During many millennia the gold�
en section was a subject of delight for the great scientists and thinkers includ�
ing Pythagoras, Plato, Euclid, Leonardo da Vinci, Luca Pacioli, Johannes
Kepler, Allan Turing and countless others. A small list of some of the out�
standing works of art and masterpieces which are based on the golden section
could contain Khufu’s Great Pyramid, the most famous of the Egyptian pyr�
amids, Nefertiti’s sculptural portrait, the majority of Greek sculptural monu�
ments, the magnificent Mona Lisa by Leonardo da Vinci, the works of Raphael,
Shishkin and Konstantin Vasiliev, Chopin’s etudes, the musical works of
Beethoven, Tchaikovsky and Bella Bartok, and the Моdulor of Corbusier.
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Chapter 2

Fibonacci and Lucas Numbers

2.1. Who was Fibonacci?

2.1.1. Leonardo of Pisa Fibonacci

Usually we associate the “Middle Ages” with the inquisition, forced conver�
sions, burning of witches and heretics, and bloody Crusades in search of “Christ’s
Tomb.” Science was not in the spotlight. Under these circumstances, the appear�
ance of the 1202 mathematical book “Liber abaci” by Italian mathematician Le�
onardo of Pisa could not stay unnoticed by the scientific community. Who was
the author of this book, and why were his mathematical works so important for
Western European mathematics? To find the answers to these questions we have
to return to his time and reproduce the historical epoch, in which Leonardo of
Pisa, nicknamed Fibonacci, lived and worked.

It is worth noting that the period between the 11th and
12th centuries was an epoch of the brilliant flowering of
Arabian culture; however, this century was the beginning
of its downfall. At the end of the 11th century, before the
beginning of the Crusades, the Arabs were undoubtedly the
most educated people in the world and went far beyond
their Christian competitors. Arabian influence had pene�
trated to the West long before the Crusades. After the Cru�
sades, Arabian culture continued to influence the West and
this mingling of cultures began to erode the Arabian world. Western research�
ers were dazzled with the Arabian world’s art and scientific achievements. Their
interest rapidly increased in Arabian geographical maps, algebra, astronomy tu�
torials, and architecture. During this time the great European mathematician
of the Middle Ages, Leonardo of Pisa, nicknamed Fibonacci (son of Bonacci or
son of the bull), lived and worked in Pisa. He admired Arabic science and math.

Fibonacci
(c. 1170�after 1228)
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We know little about Fibonacci’s life. The exact date of his birth is un�
known, though he is thought to have been born around 1170. His father was a
merchant and a government official who represented a new class of executives
generated by the “Commercial Revolution.” At that time the city of Pisa was
one of the largest commercial Italian centers that actively cooperated with
the Islamic East. Fibonacci’s father traded in one of the trading posts founded
by Italians on the northern coast of Africa. Thanks to that, he was able to give
his son Fibonacci, the future mathematician, a good mathematical education
in one of the Arabian educational institutions.

Moritz Cantor, well�known historian of mathematics, called Fibonacci “the
brilliant meteor that flashed on the dark background of the Western Europe�
an Middle Ages.”

Fibonacci wrote several mathematical works, including Liber Abaci, Liber
Quadratorum, and Practica Geometriae. The book Liber Abaci is the best known
of them. This book was printed twice during the life of Fibonacci, originally in
1202 and again in 1228. The book consisted of 15 sections covering the fol�
lowing topics: the new Hindu numerals and representation of numbers with
their help (Section 1); multiplication, addition, subtraction and division of
numbers (Sections 2�5); multiplication, addition, subtraction and division of
fractions (Sections 6�7); finding the prices of the goods and their exchange,
the rules of mutual aid and the rule of the “double false situation” (Sections 8�
13); finding the quadratic and cubic roots (Section 14); and the rules related
to geometry and algebra (Section 15).

The book was intended as a manual for traders, though its significance far
exceeded the bounds of trade practice. Fibonacci’s book is a sort of mathemati�
cal encyclopedia of the Middle Ages epoch. Section 12 is of particular interest.
It makes up nearly one third of the book and, apparently, Fibonacci paid special
attention to it and demonstrated great innovation within it. The best�known
Fibonacci problem is that of “rabbit reproduction.” Its solution purportedly re�
sulted in the discovery of the numerical sequence 1, 1, 2, 3, 5, 8, 13 ..., later called
Fibonacci Numbers. This famous problem will be reviewed later.

2.1.2. Fibonacci and Abu Kamil

Roger Herz�Fischler [40] pointed out that Fibonacci borrowed many mathe�
matical problems from the Arab mathematicians, in particular, Abu Kamil. How�
ever, in the summary of this comparison Herz�Fischler did not accuse Fibonacci
of plagiarism. He wrote [40]: “Again when we turn to Fibonacci’s presentation of
the problems from Abu Kamil’s, On the Pentagon and Decagon, we find new meth�



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

62

ods of solution that again display a deep understanding and ability. We must con�
clude then that either there were several, now lost, works from which Fibonacci
obtained his material or he was responsible for significantly raising the level of the
applications of the properties of DEMR to various computational problems.”

2.1.3. Influence of Fibonacci’s Works on the Development of the
European Mathematics

Although Fibonacci was one of the great mathematical intellects in the histo�
ry of Western European mathematics, his contribution in mathematics continues
to be understated. The Russian mathematician Professor Vasiliev, in his book In�
teger Number (1919), noted the merits of Fibonacci’s creative mathematical work:

“The works of the educated merchant from Pisa were so far above and
beyond the level of mathematical knowledge of the scientists of those times,
that the influence of his work on mathematical literature only became recog�
nized two centuries after his death, at the end of the 15th century, when many
of his theorems and problems were included by Luca Pacioli… and in the be�
ginning of the 16th century, when the group of talented Italian mathemati�
cians Ferro, Cardano, Tartalia, and Ferrari produced the beginnings of higher
algebra thanks to the solution of the cubic and biquadrate equations.”

It follows from this statement, that Fibonacci surpassed the Western Eu�
ropean mathematicians of his time by almost two centuries. His historical role
for Western science is similar to the role of Pythagoras who acquired his sci�
entific knowledge from Egyptian and Babylonian sciences and then transferred
them to Greek science. Fibonacci received his mathematical education in the
Arabian educational institutions and transferred the Arabic knowledge of math
to Western European science. Much of the knowledge acquired there, in par�
ticular, the Arabic�Hindu decimal notation, was introduced by him to West�
ern European mathematics. Thus, he provided the fundamentals for the fur�
ther development of Western European mathematics.

2.2. Fibonacci’s Rabbits

2.2.1. The “Rabbit Reproduction Problem”

Fibonacci made a valuable contribution to science and the development of
mathematics, however, the irony of his fate is that in modern mathematics he is
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generally only known as the author of an unusual numerical sequence, the Fi�
bonacci numbers. He deduced that sequence when he was looking for the solu�
tion to the now famous rabbit reproduction problem. The formulation and solu�
tion of this problem is considered to be Fibonacci’s main contribution to the
development of combinatorial analysis. In it Fibonacci anticipated the recur�
sive method that was recognized as one of the most powerful methods of solving
combinatorial problems. The recursive relation achieved by Fibonacci is reput�
ed to be the first recursive relation in mathematical history. Fibonacci formu�
lated the core of the rabbit reproduction problem as follows:

“A pair of rabbits were placed within
an enclosure so as to determine how many
pairs of rabbits will be born there in one
year, it being assumed that every month a
pair of rabbits produces another pair, pro�
vided that rabbits only begin to produce a
new pair at their maturity, which is two
months after their own birth.”

For the solution to this problem (Fig. 2.1) we define a pair of the mature
rabbits by A, and a pair of the newborn rabbits by B. We display the process of
reproduction with two transitions that describe the rabbits’ monthly trans�
formations:
A→AB (2.1)
B→A (2.2)

Note that the transition (2.1) simulates a monthly transformation of each
pair of mature rabbits into two pairs, namely, the same pair of mature rabbits
A and the newborn pair В. The transition (2.2) simulates the process of rabbit
maturation when a newborn pair B is transformed into a mature pair А. Fur�
ther, by beginning with a mature pair A, the process of rabbit reproduction
can be represented by Table 2.1.

Table 2.1. Rabbit reproduction

Date Pairs of rabbits A B A+B 
January, 1 A 1 0 1 
February, 1 AB 1 1 2 
March, 1  ABA 2 1 3 
April, 1 ABAAB 3 2 5 
May, 1 ABAABABA 5 3 8 
June, 1 ABAABABAABAAB 8 5 13 

Note that in the columns A, B and A+B of Table 2.1 we can see the num�
bers, respectively, of mature (A), newborn (B) and total (A+B) rabbits.

Figure 2.1. Fibonacci’s rabbits
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Studying the A, B and (A+B) sequences, we find the following regularity: each
number of the sequence is equal to the sum of the previous two numbers. If we now
designate the n�th number of the sequence that satisfies the rule as Fn, then the
above general rule can be represented by the following mathematical formula:

Fn=Fn�1+Fn�2. (2.3)

Such formula is called recurrence or recursive relation.
Note that the specific values of the numeric sequences generated by the

recursive relation (2.3) depend on the initial values (the seeds) of the sequence
F1 and F2. For example, we have F1 

= F2 
=1 for the A series and for this case the

recursive formula (2.3) generates the following numerical sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, .... (2.4)

For the B series we have: F1=0 and F2=1 then the corresponding numerical
sequence for this case is as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

At last, for the (A+B) series we have: F1=1 and F2=2 then the correspond�
ing numerical sequence for this case is the following:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....

The numerical sequence (2.4) is usually called Fibonacci numbers. Fi�
bonacci numbers have a series of remarkable mathematical properties, which
we will describe further.

2.2.2. About the Rabbits

Why do rabbits occur in the history of mathematics? Rabbits are mammals of
the hare family. The countries of Spain, France, and Italy are considered to be the
native land of wild rabbits; from these countries the rabbits were introduced to
other countries. Wild rabbits now inhabit the southern and middle parts of West�
ern Europe, and also Africa, Asia, Australia, New Zealand and America.

A special feature of rabbits is their surprising rate of reproduction. Female
rabbits become mature at the age of 3�4 months and are able to reproduce
throughout the year. A female rabbit’s pregnancy lasts for 28�32 days (on the
average 30 days); this means, that, by considering process of rabbit reproduc�
tion, Fibonacci employed biological facts. However, mature rabbits may pro�
duce 8 to 10 newborn rabbits monthly. Thus, the rabbits reproduce more in�
tensively than Fibonacci suggested in his famous problem.

This exclusive ability of rabbit reproduction can explain why many coun�
tries consider the “rabbit invasion” to be a “national tragedy.” Australia is one of
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the examples. In 1837 one Australian farmer started a rabbit farm of 24 rabbits.
The rabbits that reproduced and escaped to freedom could have nearly destroyed
all the greenery of the continent. The Australian government succeeded in re�
ducing the number of rabbits by its resolute measures in the struggle with the
so�called “long�eared locust.” In Australia, war was declared against the rabbits
and has lasted more than 150 years. Throughout the continent, Australians had
constructed a kind of “Great Wall of China” of many hundreds of kilometers, an
insuperable barrier for the rabbits. The war has progressed with variable suc�
cess. Wild Australian rabbits have learned to climb trees, becoming terrifyingly
aggressive, capable of attacking the fields and kitchen gardens of the farmers.

The “prolific tribe of rabbits,” which had influenced the famous Italian math�
ematician, now took the Italian island Ustina (to the North of Sicily) under
siege. 100,000 rabbits overran the 1000 inhabitants of this small island. In con�
trast to the Australian inhabitants the native population of Ustina yielded to
the rabbits without a fight; already one fifth of the inhabitants have emigrated
from the island.

It is necessary to remember the flip side of the “rabbit problem”; rabbit
meat is considered useful and tasty. Italy, Fibonacci’s native land, is one of the
largest producers of rabbit meat. Remembering this, the Italian (and non�Ital�
ian) historians of mathematics should work to derive the answer to the fol�
lowing question: what was the main reason for Fibonacci introducing rabbit
reproduction into mathematics: a love for mathematics or rabbit meat?

2.2.3. Dudeney’s Cows

The English puzzlist Henry E. Dudeney (1857�1930) wrote several excel�
lent books on puzzles. In one of them he adapted Fibonacci’s rabbits to cows
by making Fibonacci’s problem more realistic. He replaced months by years
and rabbits with bulls (males) and cows (females). Dudeney states his cow
problem as follows:

If a cow produces its first she�calf at age of two and after that produces
another single she�calf every year, how many she�calves are there after 12 years,
assuming none die?

In Dudeney’s opinion, this simplifies the problem and makes it quite realistic.

2.2.4. Honeybees and Family Trees

As known, Fibonacci took a physical problem and simplified it in the way
many mathematicians often do at first, namely, he simplified the problem and
then observed to see what would happen. This series has many interesting
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and useful applications, which we will see later. Now let us consider another
real�life situation, honeybee reproduction, which can also be precisely mod�
eled on the Fibonacci series

There are over 30,000 species of bees and most of them live solitary lives.
The honeybees are the best known among them. They usually live in a colony
called a hive and have an unusual “Family Tree.” In fact, there are many surpris�
ing features of the honeybees and, in this section, we will show how the Fi�
bonacci numbers can be used to construct the genealogical trees of honeybees.

Before we discuss the Fibonacci series and honeybees, let us look at an unusu�
al fact about them. Not all honeybees have two parents! In a colony of honeybees
there is one special bee called the queen bee. There are many worker�bees, who
are female too, but unlike the queen bee, they do not produce eggs. There are
some male bees called drone�bees. Drone�bees are produced by the unfertilized
eggs of the queen bee, so the male bees have only a mother, and no father. All
female bees are produced when the queen
bee has mated with a male bee and so fe�
male bees have two parents (Fig. 2.2). The
females usually become worker�bees.
However, when some of them are fed with
a special substance called royal jelly, each
grows into a queen bee ready to go off to
start a new colony. When this occurs, the
bees form a swarm and leave their hive in
search of a place to build a new nest.

Here we follow the convention of “Family Trees” where parents appear above
their children, so the latest generations are at the bottom, and the higher up we
go the older the generations. Such trees place all ancestors of the descendent at
the top of the diagram. We would get quite a different tree if we listed all the
descendants (offspring) of an ancestor in a way similar to the rabbit problem,
where we placed all descendants of the initial pair at the bottom.

Now, let us look at the family tree of the male�bee.
1. The male bee has 1 parent, the queen bee.
2. The male bee has 2 grand�parents because his mother (the queen bee)
had two parents, a male and a female.
3. The male bee has 3 great�grand�parents: i.e. his grand�mother had two
parents; however, his grand�father had only one parent.
4. How many great�great�grand parents did the male�bee have?
It is possible to make the following table, which sets forth a family tree of

each male bee and each female bee.

Figure 2.2. Family tree of honeybees
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It follows from Table 2.2 that the reproduction of honeybees is carried out
according to “Fibonacci’s principle!”

Table 2.2. Fibonacci numbers in a family tree of honeybees

 
Number 

of 
parents  

Number of 
grand 

parents  

Number of 
great�grand 

parents  

Number of 
great�great�

grand parents  

Number of 
great�great�
great�grand 

parents  
Number of 
male�bees 

1 2 3 5 8 

Number of 
female�

bees  
2 3 5 8 13 

2.3. Numerology and Fibonacci Numbers

2.3.1. Some Mathematical Properties of Numerological Values

Increasingly popular today, numerology is an ancient tradition that attract�
ed attention of civilization’s greatest minds. There is evidence that numerology
was in use in China, Greece, Rome, and Egypt for a long time before Pythago�
ras, who is generally considered to be the “father” of numerology.

Numerology, not unlike astrology and other esoteric subjects, has experi�
enced a revival in recent years. Many modern numerologists have adopted
the original Pythagorean system. It is a simple system that assigns a number
value (from one to nine) to every letter of the alphabet: A is 1, B is 2, and so
on. According to traditional summation, we add for example, 7+8=15. In nu�
merology, this is not enough: we use a further method of summation known as
the “Fadic” system, or “natural summation.” This simply means we sum two
or more digits together until we arrive at a single digit. For our example, 7 and
8 add up to 15, however, in numerology we sum 1+5, for a final answer 6.

Despite its esoteric aspects, numerology involves a deep mathematical
conception. In fact, a calculation of the numerological values of one or anoth�
er number from the mathematical point of view is very close to obtaining the
remainder of some number through division by 9. In mathematics such oper�
ation is called a reduction by modulo 9.

Let us denote a numerological value of the integer a by k(a). We say that
two integers a and b are comparable by modulo m (m being a natural number)
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if at the division by m they result in the same remainder. In other words, a and
b are comparable by modulo m if their remainder a and b are identical.

Example: 32 and 39 are comparable by modulo 7 because 32=7×4+4,
39=7×5+4, both having the same remainder: 4.

The statement “a and b are comparable by modulo m” is written in the form:

a≡b (mod m).

Note that there is only one distinction between the numerological value
of the number a and its remainder by modulo m=9. Consider, for example,
the Fibonacci number of 144. As this number is perfectly divisible by 9, 144≡0
(mod 9) and the numerological value of the number 144 is equal to 9, i.e.
k(144)=1+4+4=9.

A relation of comparison by the modulo m has many properties similar to
the properties of traditional integers. For example, if

 a1≡b1 (mod m) and a2≡b2 (mod m),

then we have

a1a2≡b1b2 (mod m) (2.5)

and

a1+a2≡(b1+b2)(mod m). (2.6)

As 10≡1 (mod 9) then by using (2.5) it is easy to prove that

(10i)≡1 (mod 9). (2.7)

Now, let us represent a natural number N in the decimal system:

N b b b b bn
n

n
n

i
i= + + + + + +−

−
− −10 10 10 10 101

1
2 1

2
1

1
0... ... , (2.8)

where bn,bn�1,…,bi,…,b2,b1 are decimal numerals of the number N that take their
values from the set of the decimal numerals {0,1,2,3,4,5,6,7,8,9}.

The abridged notation of the sum (2.8) N= b
n
,b

n�1,…,b
i
,…,b2,b1 is called a

decimal notation of the number N.
By using (2.5) through (2.8), we can write:

k N k b b b b bn n i( ) = + + + + + +( )−1 2 1... ... . (2.9)

If we represent the sum

S b b b b bn n i= + + + + + +−1 2 1... ...
in the decimal system (2.8)

S d d d d dm
m

m
m

j
j= + + + + + +−

−
− −10 10 10 10 101

1
2 1

2
1

1
0... ... , (2.10)

then we can obtain a new expression for the numerological value of the
number N:

k N k d d d d dm m j( ) = + + + + + +( )−1 2 1... ... . (2.11)
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This procedure continues until the last sum of the kind (2.11) is less than
the number 10. It is the numerological value of the number N.

From the above examination, it is easy to deduce a number of mathemat�
ical properties of the “numerological values.” First of all, we can find a numer�
ological value of the sum of two numbers, for example, N1+N2. For this pur�
pose, we represent the numbers N1 and N2 in the decimal notation (2.8):

(2.12)

N d d d d dn
n

n
n

i
i

2
1

1
2 1

2
1

1
010 10 10 10 10= + + + + + +−

−
− −... ... (2.13)

Then, we can represent the sum N1+N2 as follows:

N N c c c c c

d

n
n

n
n

i
i

n

1 2
1

1
2 1

2
1

1
010 10 10 10 10+ = + + + + + + 

+

−
−

− −... ...

110 10 10 10 101
1

2
2

1
1

0n
n

n
i

i id d d d−
−

− −+ + + + + + ... ... .
(2.14)

It follows from (2.14) that the numerological value of the sum N1+N2 is
calculated according to the expression:
k N N k c c c c c d d d dn n i m m j1 2 1 2 1 1 2+( ) = + + + + + +( ) + + + + + +− −... ... ... ... ++( ) 
= + + + + + +( ) + + + + +− −

d

k c c c c c k d d dn n i m m j

1

1 2 1 1... ... ... ... ++ +( )d d2 1 .
(2.15)

We can write the expression (2.15) as follows:

k N N k N k N1 2 1 2+( ) = ( ) + ( ) . (2.16)

Thus, the numerological value of the sum N1+N2 is equal to the sum of the
numerological values of the initial numbers N1 and N2 . As examples, we calcu�
late the numerological value of the sum:

17711+5702887=5720598.

It is clear that the numerological value of the numbers 17711, 5702887
and 5720598 are equal, respectively,

k(17711)=1+7+7+1+1=17, 1+7=8;

k(5702887)=5+7+0+2+8+8+7=37, 3+7=10, 1+0=1;

k(5720598)= 5+7+2+0+5+9+8=36, 3+6=9.

On the other hand, we have

k(5720598)=k(17711)+k(5702887)=8+1=9.

2.3.2. Fibonacci Numerological Series

Let us now examine the Fibonacci numbers from numerological points of
view. For this purpose we write the first 48 Fibonacci numbers together with
their numerological values k(F1) through k(F48) (Table 2.3).
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Let us consider the recursive relation (2.3) for Fibonacci numbers. If we
use a general identity (2.16), we can write the following recursive relation for
the numerological values of the adjacent Fibonacci numbers:

k F k F k Fn n n( ) = ( ) + ( )− −1 2 . (2.17)

We can see from Table 2.3 that this regularity is valid for all Fibonacci num�
bers in that table. For example, by using Table 2.3, we can write: k(F41) = 4.  We
can also calculate the numerological value of the Fibonacci number F41 by using
the recursive relation (2.17). In fact,

k F k F k F41 40 39 6 7 1 3 4( ) = ( ) + ( ) = + + =, .

Analysis of the numerological values k(F1) to k(F48) lead us to an unexpect�
ed result. Beginning with the Fibonacci number F25, the numerological values
start to recur, that is, the numerological values k(F25) to k(F48) are a repetition of
the numerological values k(F1) to k(F48). We can continue Table 2.3 in order to
be convinced that the numerological values k(F49) to k(F72) are a repetition of
k(F1) to k(F24) and k(F25) to k(F48). Thus, the Fibonacci Numerological Series k(Fi)
(i=1, 2, 3, ...) is a periodic sequence with the period of length 24:

Table 2.3. Numerological values of Fibonacci numbers

n Fn k(Fn) n Fn k(Fn) 
1 1 1 25 75025 1 
2 1 1 26 121393 1 
3 2 2 27 196418 2 
4 3 3 28 317811 3 
5 5 5 29 514229 5 
6 8 8 30 832040 8 
7 13 4 31 1346269 4 
8 21 3 32 2178309 3 
9 34 7 33 3524578 7 

10 55 1 34 5702887 1 
11 89 8 35 9227465 8 
12 144 9 36 14930352 9 
13 233 8 37 24157817 8 
14 377 8 38 39088169 8 
15 610 7 39 63245986 7 
16 987 6 40 102334155 6 
17 1597 4 41 165580141 4 
18 2584 1 42 267914296 1 
19 4181 5 43 433494437 5 
20 6765 6 44 701408733 6 
21 10946 2 45 1134903170 2 
22 17711 8 46 1836311903 8 
23 28657 1 47 2971215073 1 
24 46368 9 48 4807526976 9 
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1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9 (2.18)

Let us divide the period (2.18) into two parts (with 12 numbers in each part):

and then sum them in pairs. As a result, we obtain the regularity presented in
Table 2.4.

It follows from Table 2.4 that the sum of the first 11 pairs of the Fibonacci
numerological series is equal to the number 9. However, the sum of the last,
that is, the 12th pair is equal to 9+9 = 18; note that the numerological value of
this last sum is also equal to 9.

If we sum all numbers of the first period, then this sum is equal to

1+1+2+3+5+8+4+3+7+1+8+9+8+8+7+6+4+1+5+6+2+8+1+9 = 117.

The numerological value of the sum 117 is again
equal to 9. This means that the numerological value of
the sum of the first 24 Fibonacci numbers is equal to 9.
By analogy, we can assert that the numerological sum
of the next 24 Fibonacci numbers will also be equal to
9. Thus, if we begin from the first Fibonacci numbers F1

to F24 and examine the subsequent periods of 24 Fi�
bonacci Numbers, for example, F25 to F48, F49 to F72, and
so on, then we will find that the numerological values
of these sums are each equal to 9. In order to calculate
the numerological value of the Fibonacci series, we
should calculate the numerological value of the follow�
ing infinite sum 9+9+…+9+…. It is easy to prove that
the numerological value of this sum is equal to 9. This
reasoning results in the following theorem.

Theorem 2.1. The Fibonacci numerological series has the period (2.18) of
length 24; here the numerological value of the sum of the first 24 Fibonacci num�
bers and all subsequent periods of 24 Fibonacci numbers are each equal to 9.

This means that the number 9 is a “numerological essence” of the Fi�
bonacci series, that is, this number expresses a “sacred” property of the
Fibonacci series.

2.3.3. Another Periodic Properties of Fibonacci Numbers

It is necessary to point out that the period (2.18) that appears in the nu�
merological study of Fibonacci numbers is not the only example of a periodic

Table 2.4. Regularity
of the Fibonacci

numerological series

1 + 8 = 9 
1 + 8 = 9 
2 + 7 = 9 
3 + 6 = 9 
5 + 4 = 9 
8 + 1 = 9 
4 + 5 = 9 
3 + 6 = 9 
7 + 2 = 9 
1 + 8 = 9 
8 + 1 = 9 
9 + 9 = 18

1 2 
1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9 
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property of Fibonacci numbers. For example, we can calculate the values of
the Fibonacci series by Mod 2 and Mod 3 (see Table 2.5).

We can see that the Fibonacci numbers by Mod 2 have a period 1, 1, 0 of
length 3 and by Mod 3 a period 1, 1, 2, 0, 2, 2, 1, 0 of length 8. By studying the
numerical sequences obtained by taking Fibonacci series by Mod k, the Amer�

ican scientist Jay Kappraff found the following periodicities of such sequenc�
es as given in Table 2.6.

Note that mathematicians discovered many interesting number�theoretic
properties of Fibonacci numbers concerning their divisibility. Consider the
following remarkable properties of Fibonacci numbers proved in [13]:

1. If n is divisible by m, then Fn is divisible by Fm. For example, consider
two Fibonacci numbers, F26=121393 and F13=233. We can see that F26 is divis�
ible by F13 (121393:233=521) because 26 is divisible by 13 (26:13=2).

2. If Fn≡0 (mod k) and Fm≡0 (modk) then also Fn=m≡0 (mod k) and
Fn�m≡0 (mod k) (for n>m). For example, consider two Fibonacci numbers,
F24=46368 and F12=144. We can calculate that F24≡0 (mod 9) and F12≡0 (mod 9);
then for the Fibonacci numbers F24+12=F36=14930352 and F24�12=F12=144 we
have: F36≡0 (mod 9) and F12≡0 (mod 9).

A surprising periodicity of the Fibonacci series taken by Mod k (see Ta�
bles 2.4 � 2.6) produces a feeling of rhythm and harmony hidden in this re�
markable numerical sequence!

2.4. Variations on Fibonacci Theme

The variations on a given theme in music are known as genre. A distinctive
feature of the musical works of various genres consists of the fact that they be�

Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 

Mod 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 

Mod 3 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1 0 

Table 2.5. Periodicities of Fibonacci numbers taken by Mod 2 and Mod 3

Modulo k 2 3 4 5 6 7 8 9 12 16 
Length of 
the period  

3 8 6 20 24 16 12 24 24 24 

Table 2.6. Periodicities of Fibonacci numbers by different k module
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gin, in most cases, with one simple essential musical theme, which thereinafter
undergoes considerable changes of tempo, mood and nature. However, no mat�
ter how extreme the variations are, the listeners are absolutely impressed that
each variation is a natural development of the main theme.

If we follow the example of musical genre and select a simple mathemati�
cal subject, such as the Fibonacci series, we can consider this series together
with its numerous variations.

2.4.1. Formulas for the Sums of Fibonacci Numbers

Fibonacci numbers have a number of delightful mathematical properties
that have stimulated the imaginations of mathematicians over the centuries.
Let us calculate, for example, the sum of the first n Fibonacci numbers. Begin
from the simplest sums:

1 1 2 1

1 1 2 4 1

1 1 2 3 7 1

1 1 2 3 5 12 1

+ = = −
+ + = = −

+ + + = = −
+ + + + = = −

3

5

8

13

(2.19)

If we consider in the sums (2.19) the numbers marked by bold type: 3, 5, 8,
13, …, then it is easy to see that they are Fibonacci numbers! Then, we can
write the sums (2.19) as follows:

F F F F F F F F F F F F1 2 4 1 2 3 5 1 2 3 4 61 1 1+ = − + + = − + + + = −; ; .
It is clear that the general formula has the following form:

F F F Fn n1 2 2 1+ + + = −+... . (2.20)

Now, let us consider the sum of the n sequential Fibonacci numbers with
the odd indexes 1,3,5,…,2n�1,…. To this end we start from the simplest sums:

1 2

1 2 5

1 2 5 13

1 2 5 13 34

+ =
+ + =

+ + + =
+ + + + =

3

8

21

55

(2.21)

By analyzing (2.21), we find the following regularity for Fibonacci num�
bers: the sum of the n sequential Fibonacci numbers with the odd indexes
is equal to Fibonacci numbers! In general, the partial sums (2.21) can be
written in the form of the following general identity:

F F F F Fn n1 3 5 2 1 2+ + + + =−... . (2.22)



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

74

It is easy to prove the similar formulas for the sums of the n sequential
Fibonacci numbers with even indexes:

F F F F Fn n2 4 6 2 2 1 1+ + + + = −+... . (2.23)

Now, let us find the sum of the squares of the n sequential Fibonacci
numbers:

F F Fn1
2

2
2 2+ + +... . (2.24)

Start from the analysis of the simplest sums of the kind (2.24):

1 1 2

1 1 2 6

1 1 2 3 15

1 1 2 3 5

2 2

2 2 2

2 2 2 2

2 2 2 2 2

+ = = ×

+ + = = ×

+ + + = = ×

+ + + + =

1 2

2 3

3 5

440 = ×5 8

(2.25)

The analysis of (2.25) results in the following general formula:

F F F F Fn n n1
2

2
2 2

1+ + + = +... , (2.26)

that is, the sum of squares of n sequential Fibonacci numbers is equal to
the product of the greatest Fibonacci number used in this sum multiplied
by the next Fibonacci number!

Also we can find the sum of the squares of two adjacent Fibonacci
numbers:
F Fn n

2
1

2+ + . (2.27)

Start from the analysis of the simplest sums of the kind (2.27):

1 1 1 1

1 2 1 4

2 3 4 9

3 5 9 25

2 2

2 2

2 2

2 2

+ = +

+ = +

+ = +

+ = +

=

=

=

=

2

5

13

34

(2.28)

By analyzing (2.28), we can find another remarkable regularity: the sum
of squares of two adjacent Fibonacci numbers is always equal to a Fibonacci
number! The general form of this regularity can be expressed as follows:

F F Fn n n
2

1
2

2 1+ =+ + . (2.29)

2.4.2. Connection of Fibonacci Numbers to the Golden Mean

Now, let us show a connection of Fibonacci numbers to the golden mean.
With this purpose in mind, we can examine a sequence of fractions that are
built up by the ratios of adjacent Fibonacci numbers:
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1
1

2
1

3
2

5
3

8
5

13
8

21
13

34
21

, , , , , , , , ... (2.30)

The first terms of the sequence (2.30) have the following values:

1
1

1
2
1

2
3
2

1 5
5
3

1 666
8
5

1 6
13
8

1 625
21
13

1 615= = = = = = =; ; . ; . ; . ; . ; . ; ...

The question is: what is the limit of the sequence (2.30) if we direct the index
n to infinity? To answer this question, let us consider the representation of the
golden mean in the form (1.15). It is easy to prove that the sequence (2.30) is
connected directly with the representation (1.15). In fact, the fractions (2.30) are
sequential approximations of the continuous fraction (1.15), namely:

1
1

1= (the first approximation);

2
1

1
1
1

= + (the second approximation);

3
2

1
1

1
1
1

= +
+ (the third approximation);

5
3

1
1

1
1

1
1
1

= +
+

+

(the fourth approximation).

If we continue this process to infinity, we obtain:

lim .
n

n

n

F

F→∞
−

= = +

1

1 5
2

τ (2.31)

The result given by the expression (2.31) is the “key” result for our re�
search because it shows a deep connection between the Fibonacci numbers
and the golden mean. This means, that like the golden mean itself, Fibonacci
numbers express harmony in the world around us!

2.4.3. “Iron Table” by Steinhaus

Renowned Polish mathematician Steinhaus constructed a table of ran�
dom numbers by using the golden mean. For this purpose, he multiplied
10 000 integers from 1 to 10 000 by the number ϕ=τ�1=0.61803398, where τ is
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the golden mean. As a result, he obtained the sequence of numbers multiplied
by ϕ, that is:

1ϕ, 2ϕ 3ϕ, ... , 4181ϕ, ... , 6765ϕ, ... , 10000.
Steinhaus called this numerical sequence the Golden Numbers. Each

Golden Number consists of integer and fractional parts. For example, the
number 1000ϕ = 618.03398 has the integer part 618 and the fractional part
0.03398. The number 4181ϕ=2584.00007 has the integer part 2584 and
the fractional part 0.0007, and so on. Moreover, neither a Golden Number
with fractional part equal to 0 exists nor do two Golden Numbers with the
equal fractional parts. This means that every Golden Number has a unique
fractional part.

If we put the Golden Numbers in order in a special table according to their
increasing fractional parts, we find that the number 4181ϕ has the least frac�
tional part and, therefore, this Golden Number should start this table; also we
find that the number 6765ϕ has the largest fractional part and, therefore, this
Golden Number has to end the table:

4181 8362 1597 5778

3194 7365 0610 4791

8739 1974 6155 3571

99

…… …… …… ……

559

8972

7752

0987 5168 9349

……

2584 6765

Steinhaus named this the Iron Table taking into consideration some of its
unique properties. The Iron Table demonstrates deep connections with Fibonac�
ci numbers. The first property is that a difference between the adjacent Gold�
en Numbers of the Iron Table by absolute value is always equal to one of three
numbers: 4181, 6765 and 2584. In fact, we have:

8362 4181 4181 8362 1597 6765 5778 1597 4181

9349 5168

− = − = − =
− =

, , , ...

44181 9349 2584 6765 6765 2584 4181, , .− = − =
It is easy to find the numbers of 2584, 4181 and 6765 if we continue the

Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 897, 1597, 2584, 4181, 6765,...

Hence, the numbers 2584, 4181, 6765 are three adjacent Fibonacci
numbers:

F F F18 19 202584 4181 6765= = =, , .
We can see that the Iron Table starts with the Fibonacci number F18=2584

and ends with the Fibonacci numbers F19=4181 and F20=6765.
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It is clear that the Iron Table may be constructed for any arbitrary natural
number N. Polish scientist Jan Grzedzielski in his book Energy�Geometric Code
of Nature [26] analyzed the Iron Tables for the cases N=F

n
 where F

n
 is Fibonac�

ci number. He obtained an interesting regularity that appears at the conver�
sion of the Iron Table with N=Fn�1 into the next Iron Table with N=Fn. This
latter table is constructed from the preceding table (with N=F

n�1) by means of
the disposition of new numbers Fn�1+1, Fn�2+2,…,Fn�1,Fn on particular positions
in the new Iron Table. In Grzedzielski’s opinion, this method of Iron Table con�
struction “resembles the functioning of all radiation spectra in Nature.”

2.5. Lucas Numbers

2.5.1. Francois�Edouard�Anatole Lucas

Fibonacci did not continue to study the mathematical properties of the nu�
merical series (2.4). However, the study of Fibonacci numbers was continued
by other mathematicians. Since the 19th century, the mathematical works de�
voted to Fibonacci numbers, according to the witty expression of one mathe�
matician, “began to be reproduced like Fibonacci’s rabbits.” The French math�
ematician Lucas became one of the leaders of this research in the 19th century.

What do we know about Lucas? The French math�
ematician Francois�Edouard�Anatole Lucas was born
in 1842. He died in 1891 as a result of an accident that
occurred at a banquet, when a dish was smashed and a
splinter wounded his cheek. Lucas died from an infec�
tion some days later.

Lucas’ major works fall in the area of number
theory and indeterminate analysis. In 1878 Lucas
gave the criterion for the determination of the “pri�
mality” of Mersenne numbers of the kind Mp=2p�1.
Applying his own method, Lucas proved that the
Mersenne number

M127
1272 1 170141183460469231731687303715884105727= − =

is prime. For 75 years, this number was the greatest prime number known in
mathematics. He also found the 12th “perfect number” and formulated a num�
ber of interesting mathematical problems.

Francois�Edouard�
Anatole Lucas

(1842�1891)
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We can give some explanation for Lucas’ scientific achievements. It is well
known that the prime numbers are divisible only by 1 and itself. The first few
prime numbers are: 2, 3, 5, 7, 11, 13, … . Already the Pythagoreans knew that
the number of prime numbers is infinite (the proof of this fact is in The Ele�
ments of Euclid). A study of the prime numbers and determination of their
distribution in the natural series is a rather difficult problem in number theo�
ry. Therefore, the scientific result that was obtained by Lucas in the field of
prime numbers, undoubtedly, belonged to the category of outstanding mathe�
matical achievements.

It is curious, that Lucas took a great interest in the so�called Perfect Num�
bers. What are Perfect Numbers? As is well known, the Pythagorean theory of
numbers had a qualitative character, that is, the Pythagoreans were interest�
ed in the qualitative aspects of numbers. They attributed to numbers some
unusual properties. In this connection, the so�called Perfect Numbers are of
special interest. For example, consider the number 6. Its feature is that this
number is equal to the sum of its divisors, that is, 6=1+2+3. Besides  the num�
ber 6, the Pythagoreans knew another two Perfect Numbers, 28 and 496:

28=1+2+4+7+14; 496=1+2+4+8+16+31+62+124+248.

The fourth perfect number is 8128. It was also known by ancient math�
ematicians.

It is proven, that in the process of movement along natural series the
Perfect Numbers are found less frequently. Only four Perfect Numbers (4, 28,
496 and 8128) are found in the first 10,000 numbers of the natural series.
The search for Perfect Numbers became a fascinating passion for many math�
ematicians. The fifth Perfect Number 212(213�1) was found in the 15th centu�
ry by the German mathematician Regiomontan. In the 16th century, the
German scientist Sheybel found two new Perfect Numbers: 8589869056 and
137438691328. Lucas in the 19th century found the twelfth Perfect Number.
Research in this area continues today where all the power of modern com�
puters is being used. For example, the 18th Perfect Number that was found
by means of computer modeling has 2000 decimal digits.

In honor of Lucas, it is necessary to note one more of his scientific predic�
tions. Already in the 19th century, long before the occurrence of modern com�
puters, Lucas paid attention to technical advantages of the binary notation
for technical realization of computers and machines. This means that he an�
ticipated by a century the outstanding American physicist and mathemati�
cian John von Neumann’s preference for the binary system in the technical
realization of electronic computers (John von Neumann’s principles).
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2.5.2. Some Properties of Lucas Numbers

However, it is most relevant for our book that in the 19th century Lucas
attracted the attention of mathematicians to the remarkable numeric sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, …, which he named Fibonacci Numbers. In addition,
Lucas introduced the concept of generalized Fibonacci numbers that are cal�
culated according to the following general recursive relation:

G G Gn n n= +− −1 2 (2.32)

at the initial terms (seeds) G1 and G2.
For example, the sequence of numbers 2, 8, 10, 18, 28, 46, … falls into the

generalized class of Fibonacci numbers satisfying the recursive relation (2.5)
at the seeds G1=2 and G2=8.

However, the main numerical sequence of the type (2.32), introduced by
Lucas in the 19th century, is a numerical sequence given by the following re�
cursive relation:

L L Ln n n= +− −1 2 (2.33)

at the seeds

L L1 21 3= =, . (2.34)

Then, by using the recursive relation (2.33) at the seeds (2.34) we can
calculate the following numerical sequence called Lucas Numbers:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, …. (2.35)

If we make the reasonings for Lucas numbers similar to Fibonacci num�
bers, we can prove the following identities:

L L L Ln n1 2 2 3+ + + = −+...

L L L L Ln n1 3 5 2 1 2 2+ + + + = −−...

L L L L Ln n1 3 5 2 1 2 2+ + + + = −−...

L L L L L Ln n n1
2

2
2

3
2 2

1 2+ + + + = −+...

L L Fn n n
2

1
2

2 15+ =+ + (2.36)

lim
n

n

n

L

L→∞
−

= = +

1

1 5
2

τ (2.37)

2.5.3. The “Extended” Fibonacci and Lucas Numbers

Up until now, we have studied Fibonacci and Lucas series F
n
 and L

n
 with

the positive indices n, that is, n=1,2,3,…. However, they can be extended with
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the negative values of the indices n, that is, when the indices n take their val�
ues from the set: n=0,�1,�2,�3,….

The “extended” Fibonacci and Lucas numbers are represented in Table 2.7.
It follows from

Table 2.7 that the
elements of the “ex�
tended” numerical
sequences Fn and
L

n
 have a number of

remarkable ma�the�
matical properties.

For example, for the odd indices n=2k+1 the elements of the sequences F
n
 and

F�n coincide, that is, F2k+1= F�2k�1, and for the even indices n=2k they are oppo�
site by a sign, that is,  F2k=F�2k. For the Lucas numbers Ln all is vice versa, that
is, L2k

=L�2k
; L2k+1= L�2k�1.

Now, let us consider the numerical sequences given in Table 2.7. Take, for
example, the Lucas number L4=7 and compare it with Fibonacci numbers. It
is easy to find that L4=7=5+2. However, the numbers 2 and 5 are the Fibonac�
ci numbers F3=2 and F5=5.

Is this a mere coincidence? By continuing examination of Table 2.7, we
can find the following correlations that connect Fibonacci and Lucas num�
bers: 1=0+1, 3=1+2, 4=1+3, 7=2+5, 11=3+8, 18=5+13, 29=8+21, and so on.

Now, let us compare the numerical sequences L�n and F�n. Here we find the
same regularity, that is, �1=0+(�1), 3=1+2, �4=(�1)+(�3), and so on. Thus, we
found the following surprising mathematical identity that connects Lucas and
Fibonacci numbers:

L F Fn n n= + +1, (2.38)

where the index n takes the following values: n= 0, ±1, ±2, ±3, ….
If we continue examination of Table 2.7, we can find other interesting iden�

tities for Fibonacci and Lucas numbers:

L F Fn n n= + −2 1 (2.39)

L F Fn n n+ = −2 1. (2.40)

Note that the above formulas for Fibonacci and Lucas numbers can be
considered to be the “golden treasure” of mathematics! And, by comprehend�
ing these formulas, we can understand the delight of many outstanding math�
ematicians of the 20th century, in particular, the Russian mathematician Ni�
kolay Vorobyov and the American mathematician Verner Hoggatt. It was Pro�
fessor Nikolay Vorobyov who was the author of the remarkable brochure

n 0 1 2 3 4 5 6 7 8 9 10 

Fn 0 1 1 2 3 5 8 13 21 34 55 

F�n 0 1 �1 2 �3 5 �8 13 �21 34 �55 

Ln 2 1 3 4 7 11 18 29 47 76 123 

L�n 2 �1 3 �4 7 �11 18 �29 47 �76 123 

Table 2.7. “Extended” Fibonacci and Lucas numbers
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Fibonacci Numbers [13] that became a mathematical bestseller of the 20th cen�
tury. Professor Verner Hoggat was the founder of the Fibonacci Association,
the mathematical journal The Fibonacci Quarterly and the author of the book
Fibonacci and Lucas Numbers [16]. They saw in Fibonacci and Lucas numbers
a “mathematical secret of nature.” The desire to uncover this “secret” inspired
them to study these unique mathematical sequences!

2.5.4. Other Remarkable Identities for Fibonacci and Lucas Numbers

The next group of formulas is based on the following identity that connects
the generalized Fibonacci numbers G

n
 with the classical Fibonacci numbers F

n
:

G F G F Gn m m n m n+ − += +1 1. (2.41)

We can prove this formula by induction on m. For the cases m=1 and m=2
this formula is valid because

G F G F G Gn n n n+ + += + =1 0 1 1 1  and G F G F G G Gn n n n n+ + += + = +2 1 2 1 1.
The basis of the induction is proved.
Let us suppose that the formula (2.41) is valid for the cases m=k and m=k+1,

that is,

G F G F Gn k k n k n+ − += +1 1, G F G F Gn k k n k n+ + + += +1 1 1.

By summarizing these formulas termwise, we obtain the following identity:

G F G F Gn k k n k n+ + + + += +2 1 2 1.

The identity (2.41) is proved.
A number of interesting identities for Fibonacci and Lucas numbers fol�

low from the identity (2.41). Suppose that Gi=Fi and m=n+1. Then, the iden�
tity (2.41) is reduced to the following:

F F Fn n n2 1 1
2 2

+ += + . (2.42)

For the case Gi=Fi and m=n, the formula (2.41) is reduced to the following:

F F F F F F F F F Ln n n n n n n n n n2 1 1 1 1= + = +( ) =− + − + . (2.43)

By using the formula (2.43), we can write:

F L F L F F F Ln n n n n n n n+ + +− = − =1 1 2 2 2 . (2.44)

2.5.5. Lucas Numbers and Numerology

As was mentioned above, the Fibonacci series generates a periodic Fibonac�
ci numerological series with the period (2.18). There is a question: whether
there is a similar periodicity for the Lucas series? Table 2.8 presents 48 Lucas
numbers and their numerological values.
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Table 2.8. Numerological values of Lucas numbers

n Ln k(Ln) n Ln k(Ln) 
1 1 1 25 167761 1 
2 3 3 26 271443 3 
3 4 4 27 439204 4 
4 7 7 28 710647 7 
5 11 2 29 1149851 2 
6 18 9 30 1860498 9 
7 29 2 31 3010349 2 
8 47 2 32 4870847 2 
9 76 4 33 7881196 4 

10 123 6 34 12752043 6 
11 199 1 35 20633239 1 
12 322 7 36 33385282 7 
13 521 8 37 54018521 8 
14 843 6 38 87403803 6 
15 1364 5 39 141422324 5 
16 2207 2 40 228826127 2 
17 3571 7 41 370248451 7 
18 5778 9 42 599074578 9 
19 9349 7 43 969323029 7 
20 15127 7 44 1568397607 7 
21 24476 5 45 2537720636 5 
22 39603 3 46 4106118243 3 
23 64079 8 47 6643838879 8 
24 103682 2 48 10749957122 2 

The analysis of Table 2.8 shows that the numerological Lucas series
{k(Ln, n=1, 2, 3,…)} possess mathematical properties similar to the numerolog�
ical Fibonacci series, that is, the numerological Lucas series is periodic with
the period of length 24 of the following kind:

1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2 (2.45)

If we divide the period (2.45) into two parts (by 12 numbers in each part)

1 2 
1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2 

and then sum them in pairs, we find the following regularity (see Table 2.9):
That is, the sums of all 11 mutual numerological values of the period (2.45)

are equal to 9 and only one to the sum 9+9=18; however, its numerological
value is equal to 9. If we use the same reasoning as for Fibonacci numbers, we
can prove the following theorem.

Theorem 2.2. The Lucas numerological series has the period (2.45) of  length
24; here the numerological value of the sum of the first 24 Lucas numbers and
all the next sequential 24 Lucas numbers are equal to 9.
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This means that the number 9 is the “numerological
essence” of the Lucas series, that is, it expresses some “sa�
cred” property of Lucas numbers.

It is easy to prove that the generalized Fibonacci
numbers given by (2.32) has similar general property (see
Theorem 2.3).

Theorem 2.3. The numerological series of the gen�
eralized Fibonacci numbers given by the recursive rela�
tion (2.32) has the period of  length 24; here the numer�
ological value of the sum of the first 24 generalized Fi�
bonacci numbers and all the next sequential 24 general�
ized Fibonacci numbers are equal to 9.

2.6. Cassini Formula

2.6.1. Great Astronomer Giovanni Domenico Cassini

Cassini is the name of a famous dynasty of French as�
tronomers. Giovanni Domenico Cassini (1625�1712) is the
most famous of them and the founder of this dynasty. The
following facts illustrate his outstanding contribution to as�
tronomy. The name Cassini was given to numerous astro�
nomical objects, the “Cassini Crater” on the Moon, the
“Cassini Crater” on Mars, “Cassini Slot” in Saturn’s ring,
and “Cassini Laws” of the Moon’s movement.

However, the name of Cassini is widely known not only
in astronomy, but also in mathematics. Cassini developed a
theory of the remarkable geometrical figures known under the name of Cassini Ovals.
The mathematical identity that connects three adjacent Fibonacci numbers is well
known under the name Cassini Formula. Below we will review this famous formula.

Giovanni Cassini was born on June, 8, 1625 in the Italian town of Perinal�
do. He got his education in Jesuit collegiums in Genoa. During 1644�1650 he
worked in the observatory located near Bologna.

In 1650 Cassini took a professorial chair in mathematics and astronomy at
the University of Bologna. Cassini’s basic scientific works concerned obser�
vational astronomy and he became famous, first of all, as a talented observer.
Working in Bologna, for the first time in history, he executed numerous posi�

1 + 8 = 9 
3 + 6 = 9 
4 + 5 = 9 
7 + 2 = 9 
2 + 7 = 9 
9 + 9 = 18
2 + 7 = 9 
2 + 7 = 9 
4 + 5 = 9 
6 + 3 = 9 
1 + 8 = 9 
7 + 2 = 9 

Table 2.9. Regularity
of the Lucas numero�

logical series

Giovanni Domenico
Cassini (1625�1712)



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

84

tional observations of the Sun with meridian tools. On the basis of these ob�
servations he made new Solar tables published in 1662. Owing to Cassini’s
researches, the Parisian Meridian was established. Cassini’s work provided the
possibility for the creation of the well�known map of France, the Cassini Map.

The glory of Cassini as an astronomer was so great that in 1669 he was
elected a member of the Parisian Academy of Sciences. According to Pikar’s
recommendation, King Louis XIV invited Cassini to take a position as Direc�
tor of Parisian observatory. France became his second native land up to the
end of his life. In Paris, Cassini made a number of outstanding astronomical
discoveries. During 1671�1684 he discovered several satellites of Saturn. In
1675 he found that the ring of Saturn consists of two parts divided by dark
strip called the Cassini Slot. During 1671�1679 he observed details of the Lu�
nar surface and in 1679 he made a finer map of the Moon. In 1693 Cassini
formulated three empirical laws for the Moon’s movement called Cassini Laws.

Cassini died in Paris on September 14, 1712 at the age of 87, absolutely
blind but a highly honored man.

2.6.2. Cassini Formula for Fibonacci Numbers

The history of science is silent as to why Cassini took such a great interest
in Fibonacci numbers. Most likely it was simply a hobby of the Great astron�
omer. At that time many serious scientists took a great interest in Fibonacci
numbers and the golden mean. These mathematical objects were also a hobby
of Cassini’s contemporary, Kepler.

Now, let us consider the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, 34, … . Take
the Fibonacci number 5 and square it, that is, 52=25. Multiply two Fibonacci
numbers 3 and 8 that encircle the Fibonacci number 5, so we get 3×8=24.
Then we can write:

52�3×8=1.

Note that the difference is equal to (+1).
Now, we follow the same process with the next Fibonacci number 8, that

is, at first, we square it 82=64 and then multiply two Fibonacci numbers 5 and
13 that encircle the Fibonacci number 8, 5×13=65. After a comparison of the
result 5×13=65 with the square 82=64 we can write:

82�5×13=�1.

Note that the difference is equal to (�1).
Further we have:

132�8×21=1,     212�13×34=�1,
and so on.
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We see that the square of any Fibonacci number Fn always differs from the
product of two adjacent Fibonacci numbers Fn�1 and Fn+1, which encircle it, by
1. However, the sign of 1 depends on the index n of the Fibonacci number F

n
.

If the index n is even, then the number 1 is taken with minus, and if odd, with
plus. The indicated property of Fibonacci numbers can be expressed by the
following mathematical formula:
F F Fn n n

n2
1 1

11− = −− +
+( ) . (2.46)

This wonderful formula evokes a reverent thrill, if one recognizes that this
formula is valid for any value of n (we remember that n can be some integer in
limits from �∞ up to +∞). The alternation of +1 and �1 in the expression (2.45)
at the successive passing of all Fibonacci numbers produces genuine aesthetic
enjoyment and a feeling of rhythm and harmony.

2.7. Pythagorean Triangles and Fibonacci Numbers

2.7.1. Pythagorean Theorem

The Pythagorean Theorem is probably the best�known theorem in all
of geometry. It is remembered by anyone who studied geometry in second�
ary school, though having “absolutely forgotten” all mathematics. The es�
sence of this theorem is extremely simple. The Pythagorean Theorem as�
serts that the sides a, b and c of a right triangle are connected by the fol�
lowing formula:
a2+b2=c2. (2.47)

Despite its ultimate simplicity, the Pythagorean Theorem, in the opinion
of many mathematicians, refers to a category of the most outstanding mathe�
matical theorems. Earlier we mentioned Kepler’s widely known statement con�
cerning the Pythagorean Theorem and the golden mean. Among all the vast
sea of geometrical results and theorems, Kepler chose only two results that he
named “treasures of geometry”: the Pythagorean Theorem and the “division
in extreme and mean ratio” (the golden mean).

2.7.2. Pythagorean Triangles

Amongst the infinite number of right�angled triangles, it is the Pythagorean
Triangles, for which the numbers a, b, c in (2.47) are integers, which have al�
ways caused a special interest.
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Pythagorean triangles also can be referred to as
a category of the “treasures of geometry,” and a
study of such triangles is one of the most fasci�
nating pages in the history of mathematics.
The right triangle with sides 3, 4 and 5 is
the most widely known Pythagorean trian�
gle (Fig. 2.3). It is called the Sacred or Egyp�
tian Triangle because it was widely used in
Ancient Egyptian culture. We mentioned above
that this triangle is the main geometrical idea of
the Chephren Pyramid in Giza.

For the Egyptian Triangle in Fig. 2.3 the Py�
thagorean Theorem (2.47) takes the following form:

42+32=52. (2.48)

There is a legend that the identity (2.48) was used by the Egyptian land sur�
veyors and builders for the definition of a right angle on the earth’s surface. For
this purpose, they used a rope of the length 12m, for example (12=3+4+5). The
rope was divided by means of special loops into three parts of the lengths 3, 4, 5m,
respectively. For the definition of a right angle, the Egyptian land surveyor pulled
one of the parts of the rope, for example, of the length 3m, and then fixed it on the
ground by using special pegs, inserted in two loops. Then, the rope was pulled by
means of the third loop and this loop was fixed by using the third peg. Clearly, the
angle that is formed between the two smaller sides of the triangle accurately equals
90°. Tradition has it that at the foundation of the Pyramid a ritual procedure to
define the right angles at the base of the Pyramid was carried out by the Pharaoh.

2.7.3. Fibonacci�Pythagorean Triangles

There is a question: are there other Pythagorean triangles besides the Egyp�
tian Triangle? Rasko Jovanovich [139] gives an original answer to this question.

First, we try to express the identity (2.47) by Fibonacci numbers begin�
ning with the first four Fibonacci numbers:
F F F F1 2 3 41 1 2 3= = = =, , , . (2.49)

Perform the following procedure:
1. Multiply the two middle Fibonacci numbers of the series (2.49):
F2×F3=1×2=2.
2. Double this result: 2×(F2×F3)=2×2=4. The product 4 is the length of
the side a of the Egyptian Triangle in Fig. 2.3, that is, a=2×(F2×F3)=4.
3. Multiply the two external numbers of the series (2.49): F1×F4=1×3=3.

Figure 2.3. Sacred or
Egyptian Triangle

3

4

5



Chapter 2
87

Fibonacci and Lucas Numbers

The product 3 is the length of the side b of the Egyptian Triangle in
Fig. 2.3, that is, b= F1×F4=3.
4. The third, the longest side c of the Egyptian Triangle, is determined if
we add the squares of the interior numbers of the series (2.49), that is, the
numbers (F2)

2=12=1 and (F3)
2=22=4; then their sum is equal to 1+4=5.

Hence, c=(F2)
2+(F3)

2=5.
Therefore, we can represent a fundamental identity for the Egyptian Tri�

angle (2.48) by Fibonacci numbers as follows:

2 2 3

2

1 4
2

2
2

3
2 2

F F F F F F×( )  + ×( ) = ( ) + ( )



 . (2.50)

Is this result (2.50) a mere coincidence? To answer this question, we ex�
amine the next four Fibonacci numbers:
F F F F2 3 4 51 2 3 5= = = =, , , . (2.51)

If we repeat the above procedure for the series (2.51), we obtain:
1. 2×3=6
2. 2×6=12; hence, a=12
3. 1×5=5; hence, b=5
4. 22=4, 32=9, 4+9=13; hence, c=13
It is easy to be convinced, that the sides a=12, b=5 and c=13 make up a

Pythagorean triangle because:

122+52=132.

These examples allow us to formulate a general rule to find Pythagorean
triangles by using four adjacent Fibonacci numbers:

F F F Fn n n n, , , .+ + +1 2 3 (2.52)

Perform the following:
1. Multiply two middle Fibonacci numbers of the series (2.52): F Fn n+ +×1 2 .
2. Double this result: 2 1 2× ×( )+ +F Fn n ;  hence, a F Fn n= × ×( )+ +2 1 2 .
3. Multiply the two external Fibonacci numbers of the series (2.52):
F Fn n× +3 ;  hence, b F Fn n= × +3 .
4. Square the two interior Fibonacci numbers of the series (2.52),

Fn+( )1
2 and Fn+( )2

2
,  and then add them: c F Fn n+ ( ) + ( )+ +1

2
2

2
.

For the general case of (2.52) the main identity for Pythagorean triangles
is as follows:

2 1 2
2

3
2

1
2

2
2 2

× ×( ) + ×( ) = +( )+ + + + +F F F F F Fn n n n n n . (2.53)

Now let us consider the Pythagorean triangle for the case n=3. For this
case, the four adjacent Fibonacci numbers are the following:
2, 3, 5, 8. (2.54)
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Then, according to the above algorithm, the sides of the Pythagorean tri�
angle can be found in the following manner:
a b c= × × = = × = = + = + =2 3 5 30 2 8 16 3 5 9 25 342 2; ; .

The Pythagorean Theorem for this case is: 302+162=342.
Finally, for the case n=4 the four adjacent Fibonacci numbers are the follow�

ing: 3, 5, 8, 13, and the sides of Pythagorean triangle are equal to, respectively,
a b c= × × = = × = = + = + =2 5 8 80 3 13 39 5 8 35 64 892 2; ; .

The Pythagorean Theorem for this case is as follows: 802+392=892.
Table 2.10 represents Pythagorean triangles for the initial values n.

It is essential to
note that side c of the
Pytha�gorean triangles
of Table 2.10 are calcu�
lated by the formula:

c F Fn n= ++ +1
2

2
2 . (2.55)

By using the identi�
ty (2.29), we can write:
c F n= +( )+2 1 1,

that is, the hypotenuse
c of the Fibonacci�Py�
thagorean triangle is

always equal to some Fibonacci number that is confirmed by Table 2.10.

2.7.4. Lucas�Pythagorean Triangles

The above procedure for the Fibonacci�Pythagorean triangles also proves
to be valid for Lucas numbers. For example, the first four adjacent Lucas num�
bers 1, 3, 4, 7 result in the Lucas�Pythagorean triangle with the sides:
a b c= × × = = × = = + = + =2 3 4 24 1 7 7 3 4 9 16 252 2; ; .

For this case the Pythagorean Theorem is as follows:
242+72=252.

The next four adjacent Lucas numbers 3, 4, 7, 11 result in the next Lucas�
Pythagorean triangle with the sides:
a b c= × × = = × = = + = + =2 4 7 56 3 11 33 4 7 16 49 652 2; ; .

For this case the Pythagorean Theorem is as follows:
562+332=652.

Table 2.11 represents the Lucas�Pythagorean triangles for the initial
values of n.

n Fn Fn+1 Fn+2 Fn+3 a b c 

1 1 1 2 3 4 3 5 

2 1 2 3 5 12 5 13 

3 2 3 5 8 30 16 34 

4 3 5 8 13 80 39 89 

6 8 13 21 34 546 272 610 

7 13 21 34 55 1428 715 1597 

8 21 34 55 89 3740 1869 4181 

9 34 55 89 144 9790 4869 10946 

Table 2.10. Fibonacci�Pythagorean triangles
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2.7.5. Fibonacci and Lucas Right Triangles

Now, let us consider the identity F F Fn n n
2

1
2

2 1+ =+ +  (2.29) as an expression
of the Pythagorean Theorem (2.47) for the right triangle with the sides
a F b Fn n= = +; 1  and c F n= +2 1 . We name
these right triangles Fibonacci Right Trian�
gles because they are based on the impor�
tant identity (2.29) that connects the adja�
cent Fibonacci numbers. Note that Fibonacci
Right Triangles are not Pythagorean. Nev�
ertheless, they are a very interesting class
of right triangles. Fibonacci right triangles
are given by Table 2.12.

Note that similar triangles can also be
constructed on the basis of Lucas numbers
if we use the identity (2.36) that gives Lucas right triangle with the sides:

a L b Ln n= = +, 1  and c F n= +5 2 1 .
Table 2.13 gives the Lucas right tri�

angles.
The above connection of Fibonacci and

Lucas numbers with Pythagorean triangles
allows us to propose the existence of an in�
finite set of Fibonacci and Lucas Pythagore�
an triangles. This fact is additional testimo�
ny for the fundamental character of Fi�
bonacci and Lucas numbers!

n 2

n
F  2

1nF  2 1nF  

1 1 1 2
2 1 4 5
3 4 9 13
4 9 25 34
5 25 64 89
6 64 169 175
7 169 441 610
8 441 1156 1597
9 1156 3025 4181

Table 2.12. Fibonacci right triangles

n 2

nL  2

1nL  2 15 nF

1 1 9 10
2 9 16 25
3 16 49 65
4 49 121 170
5 121 324 445
6 324 841 1165
7 841 2209 3050
8 2209 5776 7985
9 5776 15129 7305

Table 2.13. Lucas right triangles

n Ln  Ln+1 Ln+2 Ln+3 a b c 

1 1 3 4 7 24 7 25 

2 3 4 7 11 56 33 65 

3 4 7 11 18 154 72 170 

4 7 11 18 29 396 203 445 

5 11 18 29 47 1044 517 1165 

6 18 29 47 76 2726 1368 3050 

7 29 47 76 123 7144 3567 7985 

8 47 76 123 199 18696 9353 20905 
9 76 123 199 322 48954 24472 54730 

Table 2.11. Lucas�Pythagorean triangles
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Jacques Philippe Marie
Binet (1776�1856)

2.8. Binet Formulas

2.8.1. Jacques Philippe Marie Binet

In the 19th century, the interest in Fibonacci numbers and the golden
mean in science and mathematics again arose. The mathematical works of the
French mathematicians Lucas and Binet were a bright reflection of this inter�
est. We have mentioned above about the French 19th century mathematician
Lucas (1842�1891), who revived the interest in Fibonacci numbers of the sci�
entific 19th century community.

The French mathematician Jacques Philippe Marie
Binet was the other 19th century enthusiast of Fi�
bonacci numbers and the golden mean. He was born
on February 2, 1776 in Renje and died on May 12, 1856
in Paris. Following his graduation from the Polytech�
nic School in Paris in 1806 Binet worked at the Bridge
and Road Department of the French government. He
became a teacher at the Polytechnic school in 1807
and then Assistant Professor of applied analysis and
descriptive geometry. Binet studied the fundamentals
of matrix theory and his work in this direction was
continued later by other researchers. He discovered in 1812 the rule for ma�
trix multiplication, which glorified his name more than any of his other works.

Binet worked in other areas in addition to mathematics. He published
many articles on mechanics, mathematics and astronomy. In mathematics,
Binet introduced the notion of the “beta function”; also he considered the
linear difference equations with alternating coefficients and established some
metric properties of conjugate diameters, etc. Among his many honors, Binet
was elected to the Parisian Academy of sciences in 1843.

Binet entered Fibonacci number theory as author of the famous mathe�
matical formulas called Binet Formulas. These formulas link the Fibonacci and
Lucas numbers with the golden mean and, undoubtedly, belong amongst his�
tory’s most famous mathematical formulas.

2.8.2. Deducing Binet Formulas

In order to deduce Binet formulas, we must first consider the remarkable
identity that connects the adjacent degrees of the golden mean:
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τ = τ + τn n n− −1 2 , (2.56)
where τ is the golden mean and n takes its values from the set: 0, ±1, ±2, ±3, ….

Now, let us write the expressions for the zero, first and minus�first terms of
the golden mean:

τ τ0 11
2 0 5

2
1 5

2
= = + × = +

, ,  and τ− = − +1 1 5
2

. (2.57)

Let us remember that the degrees of τ are connected one to the other by
the following identity:
τ = τ +2 1, (2.58)
that is a partial case of the general identity (2.56) for the case n=2.

By employing the expressions of (2.57) and the identities (2.56) and (2.58),
we can represent the second, third and fourth degrees of the golden mean as
follows:

τ2 1 0 3 2 1 4 3 23 5
2

4 2 5
2

7 3 5
2

= + = + = + = + = + = +τ τ τ τ τ τ τ τ; ; . (2.59)

Is it possible to see some regularity in the formulas (2.57) and (2.59)?
First of all, we can see that each expression for any degree of the golden mean
has the following typical form:

A B+ 5
2

.

What are the numerical sequences A and B in these formulas? It is easy to
see that the series of the numbers А is the number sequence 2, 1, 3, 4, 7, 11, 18, …,
and the series of the numbers В is the number sequence 0, 1, 1, 2, 3, 3, 5, 8, ….
Thus, the first sequence is Lucas numbers L

n
 and the second one is Fibonacci

numbers F
n
! It follows from this reasoning that the general formula that allows

representation of the n�th degree of the golden mean by Fibonacci and Lucas
numbers has the following form:

τn n nL F
=

+ 5
2

. (2.60)

Note that the formula (2.60) is valid for each integer n taking its values
from the set 0, ±1, ±2, ±3, ….

By using the formula (2.60), it is possible to represent the “extended” Fi�
bonacci and Lucas numbers by the golden mean. For this purpose, it is enough
to write the formulas for the sum or difference of the n�th degrees of the gold�
en mean τ τn n+ −  and τ τn n− −  as follows:

τ τn n n n n nL L F F
+ =

+ + +− − −( ) ( ) 5
2

(2.61)
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τ τn n n n n nL L F F
− =

− + −− − −( ) ( )
.

5
2

(2.62)

Now, let us consider the expressions of the formulas (2.61) and (2.62) for
the even values of the index n=2k. For this purpose, recall once again the fol�
lowing wonderful property of Fibonacci numbers: for the even values of n the
Fibonacci numbers F2k and F�2k are equal by absolute value and opposite by sign,
that is, F

�2k
=�F

2k
 and likewise for the Lucas numbers L

2k
 and L

�2k
, that is,

L�2k=L2k. Then for the case of n=2k the (2.61) and (2.62) take the following form:

τ τ2 2
2

k k
kL+ =− (2.63)

τ τ2 2
2 5k k

kF− =− . (2.64)

For the odd n=2k+1 we have the following relations for the “extended”
Fibonacci and Lucas numbers: F

�2k�1=�F
2k+1 and L

�2k�1=L
2k+1. Then, for this case

the formulas (2.63) and (2.64) take the following form:

τ τ2 1 2 1
2 5k k

kF+ − +( )+ = (2.65)

τ τ2 1 2 1
2 1

k k
kL+ − +( )
+− = . (2.66)

We can now represent the formulas (2.65) and (2.66) in the following com�
pact forms:

L
n k

n k
n

n n

n n
=

+ =

− = +







−

−

τ τ

τ τ

for

for

2

2 1
(2.67)

F

n k

n k
n

n n

n n
=

+ = +

− =











−

−

τ τ

τ τ
5

2 1

5
2

for

for

. (2.68)

The analysis of the formulas (2.67) and (2.68) provide us with “aesthetic
pleasure” and once again we are convinced of the power of the human mind! We
know that the Fibonacci and Lucas numbers are always integers. On the other
hand, any degree of the golden mean is an irrational number. It follows from this
that the integer numbers L

n
 and F

n 
can be represented with the help of the for�

mulas (2.67) and (2.68) by the special irrational number, the golden mean!
For example, according to (2.67) and (2.68) we can represent the Lucas

number 3(n=2) and the Fibonacci number 5(n=5) as follows:

 3
1 5

2
1 5

2

2 2

= +







 + +









−

, (2.69)
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5

1 5
2

1 5
2

5

5 5

=

+







 + +









−

. (2.70)

It is easily proven that the identity (2.69) is valid because according to
(2.60) we have:

1 5
2

5
2

3 5
2

2

2 2+







 =

+
= +L F

 and 
1 5

2
5

2
3 5

2

2

2 2+







 =

+
= −

−

− −L F
.

If now we substitute these expressions to the right of the formula (2.69),
then the right�hand side of (2.69) can be represented as follows:

3 5
2

3 5
2

+ + −
. (2.71)

By adding the items of (2.71), we can see that all “irrationalities” in (2.71)
are mutually eliminated and we obtain the number 3 from the sum, that is, the
identity (2.69) is valid.

We can be convinced in the validity of the identity (2.70), if we remember
that according to (2.60) we have the following representations:

1 5
2

5
2

11 5 5
2

5

5 5+







 =

+
= +L F

and 
1 5

2
5

2
11 5 5

2

5

5 5+







 =

+
= − +

−

− −L F
.

If we substitute these expressions into (2.70), then we obtain the follow�
ing expression for the right�hand side of (2.70):
10 5

2 5
5= ,

whence follows the validity of the identity (2.70).
Note that this reasoning has a general character, that is, for any Lucas or

Fibonacci numbers that are given by formulas (2.67) and (2.68), all “irratio�
nals” in the right�hand parts of (2.67) and (2.68) are always mutually elimi�
nated and we obtain integers as the outcome!

2.8.3. A Historical Analogy

The situation of the mutual elimination of all “irrationals” in the formulas
(2.67) and (2.68) reminds one of the situations that appeared in mathematics
with the introduction of complex numbers. In the 16th century, Italian mathe�
maticians contributed significantly to the development of algebra: they solved
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radicals with equations of the 3rd and 4th degrees. Cardano’s famous book, The
Great Art (1545), contains the algebraic solution of the cubic equation:
x px q3 0+ + = (2.72)
according to the formula x u v= + , where

u
q q p= − + 





+ 



2 2 3

2 3

3 ; v
q q p= − − 





+ 



2 2 3

2 3

3 ; uv
p= −
3

.

It was proven algebraically that there are three roots of the algebraic equa�
tion (2.72), namely:

1. For the case ∆ = 





+ 





>q p
2 3

0
2 3

, Eq.  (2.72)  has one  real root and

two complex conjugate roots; for example, the equation x3+15x+124=0 with
∆>0 has the following roots: x1=�4; x i2 3 2 3 3, .= ±
2.  For the case ∆=0, p≠0, q≠0, Eq. (2.72) has three real roots; for exam�
ple, the roots of the equation x3�12x+16=0  are: x1=�4, x2,3=2.
3.  For ∆<0 we have the most interesting instance, the so�called “non�
reducible” case, where we need to extract the root of the 3rd degree from
complex numbers and the cubic roots u and v are complex numbers. Nev�
ertheless, in this case the equation (2.72) has real roots. For example, the
equation x3�21x+20=0 with

∆ = −243, u = − + −10 2433 , v = − − −10 2433 (2.73)

has real roots 1, 4 and �5 !
This fact seemed paradoxical to the 16th century mathematicians! Real�

ly, all factors of the equation x3�21x+20=0 are real numbers, all its roots are
real numbers, however, the intermediate calculations result in the “imagi�
nary,” “false,” “nonexistent” numbers of the kind (2.73). Mathematicians were
in a very difficult situation again (starting with the discovery of irratio�
nals). To completely ignore the numbers of the kind (2.73) would mean to
refuse the general formulas for the solution of algebraic equations of the 3rd
degree, and other remarkable mathematical achievements. On the other hand,
to recognize that these obtrusively appearing “monstrous” numbers such as
(2.73) are equivalent with real numbers was inadmissible from the point of
view of common sense. For a long time the “monstrous” numbers of the kind
(2.73) were not recognized by many mathematicians. For example, Descartes
considered that the complex numbers do not have any real interpretation
and are doomed forever to remain only “imaginary” numbers (the name
“imaginary numbers” came into mathematics in 17th century after Des�
cartes). Many eminent mathematicians, in particular, Newton and Leibniz,
adhered to the same opinion.
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17th Century English mathematician Vallis in the book Algebra: Histori�
cal and Practical Treatise (1685) pointed out a possible geometric interpreta�
tion of complex numbers. Ultimately, the complex numbers came into use in
18th century after the works of the French mathematician Moivre (1667�1754)
who introduced the following well�known formula:

cos sin cos sin .ϕ ϕ ϕ ϕ±( ) = ±i n n n (2.74)

After the introduction of Moivre’s formula (2.74), a representation of the
complex numbers in trigonometric form came into use, which facilitated a
solution of numerious mathematical problems. However, the famous Euler’s
Formulas became the “moment of celebration” for complex numbers. By using
Moivre’s formula (2.74), Euler proved the following formulas for trigonomet�
ric functions:

cos ,x
e exi xi

= + −

2
sin .x

e e
i

xi xi

= − −

2
(2.75)

Note that finding the connection between trigonometric and exponential
functions expressed by Euler’s formulas emphasize a fundamental connection
between the numbers π and е, two numerical constants of mathematics, that
play an important role in mathematics, in particular, in the development of
the complex number concept.

By returning back to Binet formulas (2.67) and (2.68) and taking into
consideration our reasoning concerning the complex numbers, we may sup�
pose that Binet formulas touch upon some rather deep number�theoretical
problems that are at the intersection of integers (Fibonacci and Lucas num�
bers) and irrationals (the golden mean). Further, in Chapter 9 we will try to
broaden this idea by considering the number systems with irrational bases,
which may overturn our ideas about number systems.

2.9. Fibonacci Rectangle and Fibonacci Spiral

2.9.1. Fibonacci Rectangles

Let us consider the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, …. Take two
squares with all of the sides equal to 1 (the area of each square is equal to 1)
and put them together. As a result we get the 2×1 or “double square” rectan�
gle. Then, construct a new square of the size 2×2 on the longer side of the
“double square.” Here we obtain a new rectangle of size 3×2. Then, construct
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Figure 2.5. Fibonacci spiral

a new square of size 3×3 on the longer side of the preceding rectangle; as a
result, we obtain a new rectangle by the size 5×3. Continuing this process,
results in rectangles, with side equal to adjacent Fibonacci numbers, that is,
the rectangles with the following sizes: 8×5, 13×8, 21×13, and so on (Fig. 2.4).

Such rectangles are called Fibonacci Rectangles. Consider a sequence of
the ratios of the Fibonacci rectangles sides: 1:1, 2:1, 3:2, 5:3, 8:5, 13:8, 21:13,
34:21, …. As these ratios aim for the golden mean, we can conclude that the
Fibonacci rectangles aim for the golden rectangle, that is, the Fibonacci rect�
angles are sequential approximations of the golden rectangle.

2.9.2. Fibonacci Spiral

Fibonacci rectangles in Fig.
2.4 consist of the squares with
sides 1, 2, 3, 5, 8, 13, …. Now, in
each square we draw an arc that
is equal to a quarter of a circle as
shown in Fig. 2.5. If we connect
these arcs, we obtain a curve that
is suggestive of a spiral by its form
(Fig. 2.5). Strictly speaking, this
curve is not a spiral from the
mathematical point of view. How�
ever, it is a very good approximation of the golden spirals that are widely met
in nature. The curve in Fig. 2.5 we call a Fibonacci Spiral.

2.9.3. Fibonacci Spirals in Nature

The great poet and scientist Goethe considered a spiral form as one of the
characteristic attributes of all living organisms, as a manifestation of the most
secret essence of life. Short moustaches of plants and horns of rams are twisted
by a spiral, a growth of tissues in trunks of trees is carried out by a spiral, sun�

1 11 1111 1111
2222 333

55

8

Figure 2.4. Fibonacci rectangles
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flower seeds are disposed by a spiral, and so on. Everyone admires the forms of
shells that are constructed under the spiral law. Let us begin from the spiral
form of the Nautilus (Fig. 2.6�a). If we compare its shape with the Fibonacci
spiral (Fig. 2.5), we can conclude that the nautilus shell is constructed accord�
ing to the Fibonacci spiral principle. The motives of the Fibonacci spiral can be
found in the shape of the Galaxy (Fig. 2.6�b) and other sea shells (Fig. 2.6�c).

a) b) c)
Figure 2.6. Fibonacci spirals in Nature

2.10. Chemistry by Fibonacci

2.10.1. Law of Multiple Ratios

There is an opinion that the accumulated sum of knowledge in some disci�
pline can be called science only when it passes into a precise, quantitative
analysis beyond the merely qualitative perspective. To the end of the 18th
century, chemistry accumulated a significant volume of knowledge and chem�
ists had learned to decompose many complex substances into simple ones and
to build the complex substances from the simple ones. During this process the
problem of quantitatively describing various chemical compounds composing
complex compounds appeared. It was necessary for the creation of a graceful
theory of chemical structures, which would meet the requirements for the pro�
duction practice of various chemical products.

The Law of Constant Proportions of Chemical Compounds is one of the funda�
mental chemical laws. This law came into chemical science after research by French
scientist Prust (1754�1826). By studying chemical compounds, in particular the
oxides of metals, he came to the conclusion that the chemical compounds have a
strictly constant structure that is not dependent on the conditions of their forma�
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tion. Thanks to the works of the English scientist Dalton (1766�1844), the atom�
ic doctrine came into chemistry and the Law of Simple Multiple Ratios was formu�
lated. According to this law, simple integer�valued ratios between atoms in chem�
ical structures exist. Now students know that the structure of water is described
by the formula H2O, of common salt NaCl, and zinc oxide ZnO. Chemistry became
a precise science. A new branch of chemistry arose that studies the ratios of atoms
in chemical structures called Stoichiometry.

The discovery of the law of multiple ratios is one of the remarkable achieve�
ments of chemistry as a science: a beautiful simply�ordered system of chemical
compounds appeared from the chaos of atomic representations. Atoms of differ�
ent elements can form different combinations that are connected by the forces of
chemical connection. However, only some of them are stable; the other chemical
combinations perish by disintegrating into more stable compounds. Only those
combinations of atoms of different elements will be steady, if they correspond to
simple integer�valued ratios of their components. This idea is surprisingly simple
and clear and corresponds completely to the Pythagorean doctrine about the dom�
inating role of integer numbers in the organization of the Universe!

However, such formulation of the main chemical law evokes some bewil�
derment. It is not clear as to what the “simple integer�valued ratios” of atoms in
the formulas of chemical compounds really means. While we studied rather sim�
ple chemical compounds, atomic ratios in them usually corresponded to “small”
numbers, for example, H2O, Al2O3, Fe3O4, As2O5. However, the range of the stud�
ied chemical compounds started to broaden rapidly. Formulas of chemical com�
pounds appeared there with the stoichiometric factors of 7, 9, 15, 21, etc. When
the chemists started studying the structure of the organic compounds, it be�
came inconvenient to speak about the “simple integer�valued ratios.” The chem�
ical structure of the bacteriophage is a peculiar champion in stoichiometry be�
cause it has the following formula: C5750H7227N2215O4131S590. What do the ratios of
the “small” integers mean in this formula? Here we see four�digit numbers!

Thus, not all is so simple in stoichiometric laws: simplicity here is com�
bined with complexity, and the question about the possible ratios of atoms in
compounds remains open.

2.10.2. Research by the Ukrainian Scientist Nikolai Vasyutinsky

We will not delve too deeply into the chemistry of different compounds.
We are interested in only one problem — whether Fibonacci numbers are found
in the formulas of chemical compounds. The Ukrainian chemist Nikolai
Vasyutinsky attempted to give the answer to this question in his book [31].
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By analyzing oxides of uranium and chromium, Vasyutinsky found that
these chemical compounds are based on Fibonacci numbers. With the oxides
of uranium, the structure of the generating oxides is changing not continu�
ously, but spasmodically, from one steady compound with a certain integer�
valued ratio of atoms into another one. Between the uranium oxides UO2 and
UO3 a lot of the intermediate compounds are forming; their structures are
described by the formulas U2O5, U3O8, U5O13, U8O21, U13O34. We can see that
the atomic ratios in these compounds are equal to the ratios of Fibonacci num�
bers: 2:5, 3:8, 5:13, 8:21, 13:34. It is easy to prove that such ratios aim in the
limit for the quadrate of the golden mean! Each of the described uranium ox�
ides can be represented as the sum of two oxides UO2 and UO3 taken in the
different proportions, for example: U5O13=3UO3 +2UO2, U8O21=5UO3+3UO2.
Here the factors of the oxides UO2 and UO3 correspond to the adjacent Fi�
bonacci numbers! This means that the structures of the above�considered ura�
nium oxides are subordinated completely to the Fibonacci number regularity.
Note that according to Vasyutinsky’s research the chromium oxides Cr2O5,
Cr3O8, Cr5O13 have structures that are described by Fibonacci numbers.

By considering the equalities of the type U5O13=3UO3 +2UO2, we can find
their similarity to the algebraic golden mean equation of the 4th degree
x4=3x+2 that is used for the description of the butadiene structure. By com�
paring the equality U8O21=5UO3+3UO2 with the algebraic golden mean equa�
tion of the 5th degree x5=5x+3, we can see that they also have a similar math�
ematical structure. Perhaps these analogies can be the beginning of rather
interesting research into the field of stoichiometry.

It is generally accepted procedure to determine the structures of the
chemical compounds by the ratio of atoms of the elements that is included
in this compound. However, it is possible to estimate the chemical com�
pounds by the ratios of the atoms (ions) of different elements to the mo�
bile valence electrons that are responsible for the formation of chemical
connections between atoms. So, for example, in the chromium oxide Cr2O5

the 10 valence electrons correspond to the 7 atoms of the chromium and
oxygen. Making similar calculations for all the above oxides, we obtain
the following ratios of the sums of the atoms to the sums of the valence
electrons: 10:7, 16:11, 26:18, 42:29, 68:47. Note that the numerators of these
fractions are double Fibonacci numbers (10=2×5, 16=2×8, 42=2×21,
68=2×34) and the denominators are the Lucas numbers 7, 11, 18, 29, 47. If
we decreased sequentially the numerators and the denominators of these
fractions on the Fibonacci numbers that correspond to the metal atom
quantity in compounds, that is, on 2, 3, 5, 8, 13, we obtain the series of
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Figure 2.7. A symmetry of triangle and rectangular parallelepiped

ratios of adjacent Fibonacci numbers: 8:5, 13:8, 21:13, 34:21, 55:34; in the
limit these ratios aim for the golden mean.

Thus, the Ukrainian chemist Vasyutinsky convincingly demonstrated that
chemical compounds organized by Fibonacci Numbers do exist.

2.11. Symmetry of Nature and the Nature of Symmetry

2.11.1. Basic Concepts of Symmetry

Symmetry is one of the most fundamental scientific concepts that among
the concept of Harmony has a relation to practically all branches of Nature,
Science and Art. The outstanding mathematician Hermann Weil evaluated
the role of symmetry in modern science in the following words:

“Symmetry, as though wide or narrow we did not understand this word,
there is an idea, with the help of which a person attempts to explain and cre�
ate an order, beauty and perfection.”

What is symmetry? When we look at a mirror we can see us in its reflec�
tion; this is an example of mirror symmetry. The mirror reflection is an exam�
ple of the so�called Orthogonal Transformation that changes an orientation. In
the general case Symmetry in mathematics is perceived as a transformation of
space (plane), when each point M of space (plane) turns into the other point
M′  with respect to some plane (or a straight line) a; here, the line segment
MM is perpendicular to a plane (or a straight line) a and is divided by it in
half. The plane (or the straight line) a is called Plane (or Axis) of Symmetry.

Plane of Symmetry, Symmetry Axis and Center of Symmetry are fundamental
concepts of symmetry. A plane of symmetry P is a plane that divides the figure into
two mirror�symmetrical parts that are disposed one to another as some subject and
its mirror reflection. For example, the isosceles triangle ABC shown in Fig. 2.7 at
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the left is divided by the altitude BD into two mirror�symmetrical halves ABD and
BCD; thus, the altitude BD is the “track” of the plane of symmetry P that is perpen�
dicular to the plane of the triangle. We say that the isosceles triangle ABC has only
the plane of symmetry P. In Fig. 2.7 at the right a rectangular parallelepiped (match�
box) is shown; it has three orthogonal planes of symmetry 3P. It is easy to show, that
a cube has nine planes of symmetry — 9P. These examples could be continued.

A symmetry axis L is called a straight line, around which a symmetrical figure
can be turned several times in such a manner that each time the figure coincides
with itself in space. For example, the equilateral triangle has the symmetry axis L3

that is perpendicular to the triangle plane in the center of the triangle. It is clear
that there are three ways of turning a triangle around the symmetry axis L3 when
the triangle coincides with itself. It is clear, that a square has the symmetry axis L4

and the pentagon L5. The cone also has a symmetry axis; there are an infinite
number of the turns of the cone around the symmetry axis. This means that the
cone has the symmetry axis of the type L∞.

Finally, a symmetry center C of a figure is constructed inside the figure
when any straight line, drawn through the point C, meets the identical points
on the figure at equal distances from the center C. A sphere is a perfect exam�
ple of a figure with center symmetry.

2.11.2. Symmetry of Crystals

For many centuries, the geometry of crystals seemed a mysterious and un�
solvable riddle. In 1619, the Great German mathematician and astronomer Jo�
hannes Kepler (1571�1630) paid close attention to the six�fold symmetry of snow�
flakes. He tried to explain it by the fact that their crystals are constructed from
small identical balls that are connected one to another. Kepler’s idea was devel�
oped by the English polymath Robert Hooke (1635�1703) and the Russian poly�
math Mikhail Lomonosov (1711�1765), who made important contributions to
Russian literature, education and science. They also assumed that it is possible to
liken the elementary particles inside crystals to densely packed balls. Presently
the Principle of Dense Spherical Packing underlies structural crystallography, only
the spherical particles of the ancient authors are replaced now by atoms and ions.

Fifty years after Kepler, the Danish geologist and crystallographer Nicolas Stenon
(1638�1686) for the first time formulated the main idea of crystal growth: “Crystal
growth is implemented not from within, similar to plants, but by means of the su�
perposition on the external planes of the crystal’s smallest particles, which are brought
from outside by certain liquids.” This idea about crystal growth as the outcome of
the sediment forming new stratums of substance on crystal faces preserves its sig�
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Figure 2.8. Spatial crystal lattices of NaCl (а)
and CaO (b)

a) b)

nificance until now. It was Nicolas Stenon who discovered the main law of geomet�
ric crystallography — the law of Constancy of Interface Angles.

The law of Constancy of Interface Angles became a reliable basis for the de�
velopment of geometric crystallography and provided the richest material for ver�
ification of the true symmetry of crystallographic structures. The French researcher
Rene Just Hauy assumed that the crystals consist not of the small balls (according
to the assumption of Kepler, Hooke and Lomonosov), but of the molecules of
parallelepiped shape, and these molecules are the extreme small splinters of the
same shape. In other words, the crystals are peculiar “masonries” forming molec�
ular “bricks.” Despite all the naivety of this theory from the modern point of view,
this idea did play an important role in the history of crystallography and gave an
impetus to the origin of the theory of crystal lattice structures.

The French crystallographer Brave was Hauy’s direct follower. He replaced
the molecular “bricks” by points, the centers of molecular weight. As a result
of this approach, the spatial lattices of crystals were obtained. By developing
a hypothesis about the lattice structure of all crystals, Brave created the fun�
damentals of modern structural crystallography long before the experimental
research of crystal structures with the help of X�rays.

We can see in Fig. 2.8 the spatial crystal’s lattices of the common salt NaCl
(a) and the calcium oxide CaO (b). In all crystals, we can see the set of the
identical atoms located like the points of a spatial lattice. The straight lines, on
which atoms in the lattice are located, are named rows, and the planes, filled by
atoms, are named planar lattices.

A presentation about the lattice
structure of crystals allowed us to give
a general definition of crystals. It is
accepted that crystals are solid bod�
ies, which consist of particles (atoms,
ions, molecules), located the strictly
regular knot�like spatial lattice. This
general definition can be applied to
all types of Nature’s crystals.

However, already in 1830, long before Brave, the German professor Johannes
Fridrich Hessel (1796�1872) published the long article Crystallometry, where he
developed an approach to crystal geometry based on the symmetry concept. In
this article, Hessel gave a full research report of the set of symmetry elements of
crystals and spatial geometric figures. Only in 1890, that is, in 60 years after pub�
lication of this article, and in 18 years after the death of its author, crystallogra�
phers could evaluate the significance of Hessel’s outstanding discovery.
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In 1890, the eminent Russian crystallographer Fedorov proved the exist�
ence of the 230 sets of symmetry elements for all existing types of crystals.
Fedorov’s symmetry groups corresponding to the geometric laws of atom lo�
cation in crystal structure underlies modern structural crystallography.

A presentation about the lattice structure of crystals, in particular, a con�
cept of “planar lattice,” on which the knots of the crystal lattice are located,
resulted in the discovery of the Major Law of Crystallographic Symmetry. Ac�
cording to this law of crystal, symmetry axes the first, second, third, fourth and
sixth orders are allowed. However, it is impossible for crystals to have the fifth
order symmetry or anything greater than the sixth order of symmetry.

According to the main crystallography law, there is a fundamental difference
between the symmetry of the mineral world and the symmetry of the living world,
where five�fold symmetry is widely used. For crystals, the five�fold axis of sym�
metry and the symmetry axes greater than the 6th order are prohibited: this strict
rule of classical crystallography existed until 1982, when the Israeli physicist Dan
Shechtman proclaimed the startling discovery of quasi�crystals.

2.11.3. Symmetry Laws in Nature

The concept of symmetry is used widely in
physics. If the laws that determine relations be�
tween physical magnitudes and a change of these
magnitudes in the course of time do not vary at
the definite operations (transformations), they
say, that these laws have symmetry (or they are
invariant) with respect to the given transforma�
tions. For example, the law of gravitation is val�
id for any points of space, that is, this law is in�
variant with respect to the system of coordinates.

In the opinion of outstanding Russian sci�
entist and academician Vernadsky, “symmetry
encompasses properties of all fields of physics
and chemistry.”

The Pythagoreans paid very close attention
to the phenomenon of symmetry in Nature that
was connected with their Harmony doctrine. The
two kinds of symmetry, Mirror and Radial, are
widespread throughout Nature. A butterfly, a leaf,
and a beetle (Fig. 2.9�a) have “mirror” symmetry

Figure 2.9. Natural forms with
“bilateral” (а) and “radial” (b)

symmetries

a) b)
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and often such type of symmetry is called Leaf Symmetry or Bilateral Symmetry. A
mushroom, a chamomile, and a pine tree (Fig. 2.9�b) have a “radial” symmetry, and
often such type of symmetry is called a Chamomile�Mushroom Symmetry.

Already in the 19th century the researchers in this area came to the con�
clusion that symmetry of natural forms largely depend upon the influence of
the Earth’s gravitational forces that have the symmetry of a cone in each point.
In the outcome, the following law was found:

“Everything that grows or moves in a vertical direction, that is, upwards or
down relative to the Earth’s surface is subordinated to the “radial” (“chamomile�
mushroom”) symmetry. Everything that grows and moves horizontally or with an
inclination relative to the Earth’s surface is subordinated to the “bilateral” or “leaf”
symmetry.”

2.11.4. Symmetry Laws in Art

The principle of symmetry is used widely in Art. The curbs in architectural
and sculptural works, the ornamental designs in the applied art are examples of
the application of the laws of symmetry.

Symmetry together with the golden mean principle is often used in works
of art. Raphael’s picture The Engagement of Virgin Mary (Fig. 2.10) is just
such an example.

    

Figure 2.10. Raphael’s picture “The Engagement of Virgin Mary” and its harmonic analysis
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2.12. Omnipresent Phyllotaxis

2.12.1. A Helical Symmetry

Everything in Nature appears subordinate to stringent mathematical laws.
For example, leaf disposition on plant stems also has stringent mathematical reg�
ularity, a phenomenon called Phyllotaxis in botany. The essence of phyllotaxis

consists of a spiral disposition of
leaves on plant stems, trees, petals
in flower baskets, seeds in a pi�
necone and those of a sunflower
head, etc. This phenomenon was
already known to Kepler and was
a subject of discussion of many sci�
entists throughout the years, in�
cluding Leonardo da Vinci, Turing,
Veil, and so on. Much more com�

posite concepts of symmetry are used in the phenomenon of phyllotaxis, in partic�
ular, the concept of Helical Symmetry. Let us examine, for example, a disposition
of leaves on the plant stem (Fig. 2.11). We can see in Fig. 2.11 that the leaves are
on different heights on the stem along the he�
lical curve that encircles the stem. To move
up from the lower leaf to the higher one, it is
necessary virtually to turn the leaf at some
angle around the vertical axis and then to raise
the leaf up a definite distance. This transfor�
mation is the essence of helical symmetry.

Let us examine typical helical axes that
can appear along the plant stems (Fig. 2.12).
In Fig. 2.12�a we can see the stem of a plant
with helical symmetry axis of the 3rd order.
We can unite all leaves of the plant by any
virtual line. We start from leaf 1. To move
up from leaf 1 to leaf 2, it is necessary to turn
leaf 1 around the stem axis 120° counter�
clockwise (if looking from below) and then
move up leaf 1 along the stem in the verti�
cal direction until it coincides with leaf 2. If

Figure 2.11. A helical symmetry

Figure 2.12. The helical axis on
stems of plants
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we repeat a similar operation, we can move up from leaf 2 to leaf 3 and then on
to leaf 4. It is necessary to note that leaf 4 is on the same line with respect to
leaf 1 (as though it repeats on the higher level). It is clear if we want to move
up from leaf 1 to leaf 4 we have to make three turns of 120o i.e. we have to
carry out a full rotation around the stem axis (120°×3=360°).

Botanists called the rotation angle of the helical axis the Leaf’s Diver�
gence Angle. A vertical straight line that is parallel to the stem of the plant
connecting two leaves is called an Ortho�line. The line segment of leaf 1 to leaf
4 of the ortho�line corresponds to a full transformation of the helical axis. We
will see further that the number of turns around the stem axis to move up
from the bottom leaf to the next leaf directly above it along the ortho�line,
can be equal not only to 1, but also to 2, 3, and so. This number of turns is
called the Leaf’s Cycle. In botany, it is acceptable to characterize helical leaf
location by the ratio m/n where the numerator m is a number of turns in the
leaf’s cycle, and the denominator n is the number of leaves in this cycle. In the
above case, we have a helical axis of 1/3.

In Fig. 2.12�b the helical axis of five�fold symmetry with a leaf cycle 2 is
presented; this means that for the transition from leaf 1 to leaf 6 it is necessary
to make two full turns. The fraction 2/5 characterizes the given helical axis;
the leaf divergence angle is equal to 144° that is, we have: 360/5=72°;
72°×2=144°. Note that there are also more complex helical axes, for example,
of the kind 3/8, 5/13, and so forth.

There is a question as to what values can take the numbers m and n that
describe the helical axis of the kind m/n. And here Nature gives us the follow�
ing surprise called the Law of Phyllotaxis.

Botanists assert that the fractions that describe the helical axes of plants
build up a strict mathematical sequence of the following kind, for example:

1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, …. (2.76)
Note that the fractions in the sequence (2.76) are the ratios of two adja�

cent Fibonacci numbers beginning with number one. It is easy to prove, that
the sequence (2.76) aims for the number τ�2=0.382, that is, to the inverse of
the square of the golden mean.

Botanists found that different plants have different ratios of the above
sequence (2.76). For example, the fraction 1/2 is peculiar to cereals, birch and
grapes; 1/3 to sedge, tulip, and alder; 2/5 to pear, currant, and plum; 3/8 to
cabbage, radish, and flax; 5/13 to fir�tree and jasmine, etc.

What is the “physical” cause that underlies the phyllotaxis law (2.76)?
The answer is very simple. It proves to be the disposition of leaves that allow
for the maximum inflow of solar energy to the plant.
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2.12.2. Densely Packed Phyllotaxis Structures

The phyllotaxis phenomenon shows itself in inflorescences and densely
packed botanical structures, such as, pinecones, pineapples, cacti, sunflowers,
cauliflowers and many other structures.

Figure 2.13 gives examples of phyllotaxis objects (cactus, sunflower, cone�
flower, Romanescue cauliflower, pineapple, pinecone), in which the phyllo�
taxis law is based on the numerical sequence (2.30) that consists of the ratios
of adjacent Fibonacci numbers. This means that the seeds or small parts on
the surface of such botanical objects are located at the crossings of left�hand
and right�hand spirals; here the ratio of the numbers of left�hand and right�
hand spirals is always equal to the ratio of adjacent Fibonacci numbers (2.30).
The same regularity is observed in baskets of flowers.

    

(a) (b) (c)

      

(d) (e) (f)

Figure 2.13. Phyllotaxis structures: (a) cactus; (b) head of sunflower; (c) coneflower; (d)
Romanescue cauliflower; (e) pineapple; (f) pine cone

Geometric models of phyllotaxis structures in Fig. 2.14 provide a clearer
representation of this unique botanical phenomenon.
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(a)

           

(b)

     

(c)

Figure 2.14. Geometric models of phyllotaxis structures:
 (a) pineapple; (b) pinecone; (c) shasta daisy

Thus, we find strict mathematics in the dispositions of leaves on plant
stalks, flower petals, in the cross�section of an apple (pentacle), in the spiral
dispositions of seeds of a pinecone, pineapple, cactus and the head of a sun�
flower. And this mathematical law is expressed by Fibonacci numbers and
therefore the golden mean! Once again, it appears as though Nature is subor�
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dinate to a coherent plan, the uniform Law of the Golden Section! To discover
and explain this fundamental law of Nature in all its expressions is one of the
most important problems of science and philosophy.

2.12.3. Use of Phyllotaxis Lattices in Painting

In the above we mentioned a wide�ranging use of the golden rectangle and
other golden geometrical figures in artwork. One art method used by artists of
the Renaissance was the use of phyllotaxis grids in painting. This is not unlike the
botanical phyllotaxis phenomenon in which Nature appears to design pinecones,
pineapples, cacti, sunflower heads, and many other botanical structures.

According to phyllotaxis law, cactus spines are located along Fibonacci
spirals; here the adjacent Fibonacci numbers 21 and 34 are the numbers of the
left�hand and right�hand spirals. If we unroll on a plane the spines of a cactus,
we can obtain a raster grid (Fig. 2.15). In the raster grid in Fig. 2.15 the in�
clined lines with right�hand and left�hand inclination represent the principle
of disposition of the spines on the cactus surface. This raster grid has 21 lines
with right�hand inclination and 34 lines with left�hand inclination. The net of
the lines in Fig. 2.15, Phyllotaxis Raster Grid, from an aesthetic point of view
looks as if it is a golden rectangle. Many artists of the Renaissance used the
phyllotaxis raster grid in their art work.

        

Figure 2.15. Phyllotaxis raster grid

Paturi, the Austrian researcher and author of the remarkable book, Plants as
Ingenious Engineers of Nature [140], made an analysis of the use of phyllotaxis
raster grids in the artworks of great artists. For this purpose, he put together the
phyllotaxis raster grid with Titian’s picture Bacchus and Ariadne (Fig. 2.16).

After an analysis of Titian’s painting Paturi concluded:
“All basic lines of the perspective coincide with the raster grid. Even the

set of the minor parts and forms were placed by the artist in that field of
internal constraints, on which the picture is constructed. Pay attention to
the line along the small hill seen on the horizon near to the church campa�
nile, to the branches of the large tree, to the outline of the cloud lying under
the constellation, to the hind paws and the belly line of the large wild cat,
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along the direction of the axis of the over�
turned vase, to the raised right hand of the
satyr in the garland of grapevines in the
right corner of the canvas and, at last, to
the raised leg of the horse.”

Paturi further concluded:
“At all times the artists consciously or un�

consciously comprehended the laws of aesthet�
ic perception by watching nature. Artists  were
always enchanted by the simple and simulta�
neously rational geometry of the growth of bi�
ological forms.”

2.13. “Fibonacci Resonances” of the Genetic Code

2.13.1. The Initial Data about the Genetic Code

Among the biological concepts [141] that are well formalized and have a
level of general scientific significance, the genetic code takes special prece�
dence. Discovery of the striking simplicity of the basic principles of the genet�
ic code places it amongst the major modern discoveries of mankind. This sim�
plicity consists of the fact that inheritable information is encoded in the texts
from three�lettered words — triplets or codonums compounded on the basis
of the alphabet that consists of the four characters or nitrogen bases: A (Ade�
nine), C (Cytosine), G (Guanine), T (Thiamine). The given system of the ge�
netic information represents a unique and boundless set of diverse living or�
ganisms and is called the Genetic Code.

2.13.2. DNA SUPRA�code (Jean�Claude Perez’s Discovery)

In 1990 Jean�Claude Perez, an employee of IBM, made a rather unexpected
discovery in the field of the genetic code. He discovered the mathematical law
that controls the self�organization of bases A, C, G and Т inside the DNA. He
found that the consecutive sets of the DNA nucleotides are organized in frames
of remote order called “RESONANCES.” Here, the resonance means a special
proportion that divides the DNA sequence according to Fibonacci numbers
(1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …).

Figure 2.16.
Titian’s Bacchus and Ariadne
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The key idea of Perez’s discovery, called the DNA SUPRA�code, consists of
the following. Let us consider some fragment of the genetic code that consists of
the A, C, G and T bases. Suppose that the length of this fragment is equal to
some Fibonacci number, for example, 144. If a number of the T�bases in the
DNA fragment is equal to 55 (Fibonacci number), and a total number of the C,
A and G bases is equal to 89 (Fibonacci number), then this fragment of the
genetic code forms is a resonance — that is, a proportion between three adjacent
Fibonacci numbers (55:89:144). Here it is permissible to consider any combina�
tions of the bases, that is, C against AGT, A against TCG, or G against TCA. The
discovery consists of the fact that the arbitrary DNA�chain forms some set of
the resonances. As a rule, the fragments of the genetic code of the length equal
to the Fibonacci number F

n
 are divided into the subset of the T�bases, and the

subset of the remaining A, C, G bases; here the number of T�bases is equal to the
Fibonacci number Fn�2 and the total number of the remaining A, C, G bases is
equal to the Fibonacci number F

n�1, where F
n
=F

n�1+F
n�2. If we make a systematic

study of all the Fibonacci fragments of the genetic code, we can obtain a set of
the resonances that is called the SUPRA�code of DNA.

2.13.3. A Verification of Jean�Claude Perez’s Law

In the Petoukhov book [141] the sequences of triplets for the α� and β�
chains of insulin are given. For the β�chain this sequence has the following form:

ATG�TTG�GTC�AAT�CAG�CAC�CTT�TGT�GGT�TCT�CAC�CTC�GTT�
GAA�GCT�TTG�TAC�CTT�GTT�TGC�GGT�GAA�CGT�GGT�TTC�TTC�
TAC�ACT�CCT�AAG�ACT

Note that all the T�bases in the indicated sequence are marked by bold type.
A verification of Jean�Claude Perez’s Law using the β�chain of the insulin

molecule as an example (see above) results in the following outcome. The total
number of the triplets in the β�chain is 30, that is, the molecule contains 90 bases
(the nearest Fibonacci number is 89). If we count the number of T�bases in the
above β�chain, we find that there are 34 (a Fibonacci number). Then the number
of the remaining A, C, G bases is equal to 90�34=56 (the nearest Fibonacci num�
ber being 55). Thus, there is the following proportion between the T�bases and
the rest, i.e. the A, C, G bases in the β�chain are 90:56:34. This proportion is very
close to the Fibonacci resonance of 89:55:34. It follows from this analysis that
Jean�Claude Perez’s Law for the insulin β�chain is fulfilled with great accuracy. If
now we take the initial segment of the above β�chain that consists of the first 18
triplets, that is, of the 54 bases (the nearest Fibonacci number is 55), and count
the number of T�bases in this fragment we find that it is 22 (the nearest Fibonacci
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number being 21). This means that we have the following proportion in the first
fragment of the β�chain, namely, 54:32:22 that is close to a Fibonacci resonance of
54:34:21.Thus, the Perez’s Law is also fulfilled for the first fragment. If we take the
segment that consists of the rest of the 12 triplets (36 bases) then the number of
the T�bases in this segment is 12 (the nearest Fibonacci number being 13). Thus,
for this case we have a proportion of 34:24:12 that is close to the Fibonacci reso�
nance of 34:21:13. Therefore, both for the β�chain of the insulin molecule as a
whole, and for its separate fragments, the Perez Law is fulfilled in practice with
sufficient accuracy. In addition, it is possible to see that practically in any segment
of the β�chain there is a tendency towards the golden mean.

This surprising discovery of Jean�Claude Perez has a number of interest�
ing applications in the so�called plastic arts and market analysis. Below we
can see application of this law in, for example, music, poetry, cinema and mar�
ket processes (Elliott Waves).

2.14. The Golden Section and Fibonacci Numbers in Music and Cinema

2.14.1. Pythagorean Theory of Musical Harmony

Music is a form of art reflecting reality and influencing a person by means of
organized sound sequences. Preserving some similarity to natural sounds, musical
sounds principally differ from the latter by constrained pitch and rhythmic organiza�
tion (musical harmony). Since antiquity, the search for the “laws of musical harmony”
has been one of the important pursuits of science. Greek musicology does not corre�
spond exactly with the character of modern musicology. Greek musicology was not
directed toward analyzing musical works. Rather, the Greeks saw musicology as a
study of the acoustic aspects of sound. An essential feature of Greek musicology was
the aspiration for a mathematical description of musical harmony.

Pythagoras is credited with the discovery of two fundamental harmonic
musical laws:

1. If the ratio of the oscillation frequencies of two tones is describable in
small integers, a harmonic sound may result;
2. To get a harmonic triad, it is necessary to add a third tone to the chord,
which consists of two consonant tones. The oscillation frequency of the
third tone should be in harmonic proportional connection to the two tones
of the chord.
Pythagoras’ work on the scientific explanation of musical harmony was the first
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well�grounded scientific theory of musical harmony! Pythagoras attempted to apply
his musical theory to cosmology; according to his ideas, the planets of the Solar Sys�
tem are arranged pursuant to the musical octave (“harmony of the spheres”).

There are many legends surrounding the acoustic experiments of Pythag�
oras. The most popular of them describes how Pythagoras, passing by a black
smith, heard the sounds of hammer blows on an anvil and found in them an
octave, a fifth and a fourth. In his excitement, Pythagoras hastened to the
smithy and after a series of experiments with hammers, found that the differ�
ence in sounds depended on the weight of the hammers.

The Pythagorean discovery of the deep connection between music and
mathematics caused harmonics to be included amongst the mathematical sci�
ences influencing the future development of musical theory.

2.14.2. Chopin’s Etudes in the Lighting of the Golden Section

Any piece of music has a temporal duration and is divided into separate
parts by marks that attract our attention (“expression marks”) and simplify
our perception of the musical work. These marks are dynamic culmination
points within the musical work. The question is whether or not there is cer�
tain regularity in the placing of “expression marks” in the musical work. An
attempt to answer this question was made by Russian musicologist Sabaneev.
He showed [142] that the separate time intervals of the musical works of
Chopin are connected, as a rule, by “culmination events” dividing the musical
work in the golden ratio. Sabaneev writes:

“All such events are referred by the author’s instinct to such points of the
musical work that divide the temporal durations into separate parts being in
the ratio of the “Golden Section.” Observation shows that quite often similar
“expression marks” are found at golden points. It is quite surprising, because
frequently the knowledge about these things is absent for many composers,
and these facts are a consequence of internal feelings of rhythm.”

Sabaneev’s analysis of a large number of musical works allowed him to con�
clude that the organization of music is often done so that its cardinal parts, divided
by the “marks,” are based upon the golden mean series. Such organization of music
corresponds to the most economical perception and consequently creates an im�
pression of the best “regularity” within the musical structure. In Sabaneev’s opin�
ion, quantity and frequency of golden mean appearances in music depends upon a
“composer’s expertise.” The musical work of great composers is distinguished by
the highest percentage of golden mean appearances, that is, “the intuition of the
form and regularity, as would be expected, is highest for the first class geniuses.”
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According to Sabaneev, the golden mean is repeatedly met in the musical
works of different composers. Every such golden point reflects the overall mu�
sical event, the qualitative jump in the development of the musical theme. In
the 1,770 musical works of 42 composers that were studied by him, the golden
mean is met 3,275 times. The greatest frequency of musical works based upon
the golden mean is found in Beethoven (97%), Haydn (97%), Arensky (95
%), Chopin (92%), Mozart (91%), Schubert (91%), and Scriabin (90 %).

Chopin’s 27 etudes were studied by Sabaneev in particular detail. Golden
sections were found 154 times in them; the golden section being absent in
only three etudes. In some cases, the principles of symmetry and the golden
mean are combined simultaneously in the structure of a musical work; in these
cases, the musical work is divided into some symmetrical parts; however, the
golden section is met within every separate part. For example, Beethoven’s
music is often divided into two symmetrical parts; however, the golden sec�
tion is always met inside each part.

2.14.3. Rosenov’s Research

The Russian art critic Rosenov paid particular attention to research into
the harmonic laws of music. He asserted that the stringent proportional rela�
tions in music and poetry that are present with the golden mean should play
an outstanding role.

Rosenov chose for his analysis a number of typical musical works of out�
standing composers: Bach, Beethoven, Chopin and Wagner. For example, by
studying Bach’s Chromatic fantasy and fugue, he used the quarter duration as
the unit of measure. There are 330 such units of measure in this musical work.
The 204th quarter from the beginning corresponds to the golden section here.
This golden point coincides precisely with the fermata (in musical pieces the
fermata sign augments a pause’s duration, usually in 1.5�2 times). Further�
more, the golden point separates the first part of the musical work (the pre�
lude) from the second part. The fugue, which follows the fantasy, also demon�
strates an astonishing harmony of parts. Looking at the scheme of the fugue’s
harmonic analysis, “one experiences a sacred thrill [and] comes into contact
with the greatness of the composer, who embodies the innermost laws of cre�
ative musical work with such accuracy.”

Rosenov analyzed the final of the sonata of Cis�moll by Beethoven, the
Fantasia�Impromptu by Chopin, the introduction to Tristan and Isolda by
Wagner and so on. The golden section occurs very often in all of these musical
works. He paid special attention to Chopin’s Fantasia, which was an impromptu
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creation and not subject to any editing. Since this was impromptu, there was
no conscious application of the golden section, which nevertheless is present
throughout this musical piece even in the smallest musical parts.

Thus, we should recognize the golden section as a harmonic criterion in
many musical works appearing frequently. Every part can be divided into two
parts by the golden section and each new part can be divided by the golden
section. Here we can see an analogy with Fibonacci resonances of the genetic
code where each segment of the genetic code is divided in the golden ratio!

2.14.4. Bella Bartok’s Music

The Hungarian Bella Bartok is one of the composers who consciously used the
golden section in his music. The deep harmonic analysis of Bartok’s music was giv�
en by Jay Kappraff [47] who wrote: “Bartok based his music on the deepest layer of
folk music. He believed that all folk music of the world can ultimately be traced to
a few primeval sources.” According to the Hungarian musicologist Erno Lendai,
“[Bartok] discovered and drew into his art the laws governing the depths of the
human soul which have been untouched by civilization.” As Kappraff noted, “Bar�
tok based the entire structure of his music on the golden mean and Fibonacci series
— from the largest elements of the whole piece, whether symphony or sonata, to the
movement, principal, and secondary themes and down to the smallest phrase.”

2.14.5. The Golden Mean and Fibonacci Numbers in Cinema

Sergey Eisenstein (1898�1948) is the great Soviet film director and art theo�
rist. Having seen inexhaustible new opportunities for art in cinema, Eisenstein soon
created his first film, Strike. In 1925 Eisenstein created the film The Battleship
Potemkin that caused a triumph in the world. The American Film Academy recog�
nized The Battleship Potemkin as the best film of 1926. At the Parisian Exhibition of
Arts this film received the highest award: “Super Grand�Prix.” It became a classic of
new cinema art. Creating the films October, Old and New, etc., Eisenstein developed
a theory of “intellectual cinema” that gave the spectator an opportunity to get not
only the artistic, but also scientific knowledge and concepts.

Eisenstein was a pioneer in the use of the golden mean in cinema. It is most
interesting how that Eisenstein used the “Golden Section Principle” in his film The
Battleship Potemkin. First of all this film consists of 5 acts. The partitioning of the
film into two separate parts corresponds to the proportion 2:3, that is, the first Fi�
bonacci approximation to the golden mean. This 2:3 watershed occurs between the
end of the second and the beginning of the third act of the five�act film, the basic
caesura of the film occurs as a Zero Point of the action stop. However, perhaps, the
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 Alexander Pushkin

most curious fact in all of this is that the “Golden Section Law” in The Battleship
Potemkin is observed not only for the zero point of the movement, but also is true for
the apogee point: a Red Flag on the battleship mast. Finally, the moment of the
appearance of the red flag is the golden section of the film’s duration.

2.15. The Music of Poetry

In many respects, poetic works are close to music. A distinctive rhythm,
regular alternation of stressed and unstressed syllables, a certain dimension�
ality, and their emotional saturation make poetry a native sister to music. Each
verse has its musical form, rhythm and melody. It is possible to expect some
musical features in poems, for example, regularity of musical harmony, and
consequently, the golden section can often be present.

2.15.1. Pushkin’s Poetry

Alexander Pushkin was a Romantic author consid�
ered to be the greatest Russian poet and the founder of
modern Russian literature. Pushkin’s father came from a
distinguished family of the Russian nobility. His moth�
er’s grandfather was Abram Petrovich Gannibal, an Ethi�
opian, who as a child was abducted by the Turks during
their governing of Ethiopia, and he became a great mili�
tary leader, engineer and nobleman in Russia under the
auspices of his adoptive father, Peter the Great.

Born in Moscow, Pushkin published his first poem at the age of fifteen. By
the time he finished the first grade of the prestigious Imperial Lyceum in Tsar�
skoe Selo near St. Petersburg, his talent was widely recognized by the Russian
literary community. In 1820 he published his first epic poem, Ruslan and Lyud�
mila. Because of his 1820 poem, Ode to Liberty, he was exiled by the Czar Alex�
ander I to the south of Russia. First coming to Kishinev in 1820, he there be�
came a Freemason. He was in Kishinev until 1823. After a summer trip to the
Caucasus and to the Crimea, he wrote two Romantic poems which brought him
wide popularity, The Captive of the Caucasus and The Fountain of Bakhchisaray.

When Alexander’s brother, Nicholas I, came to power in 1825, he invited Push�
kin back to the capital and gave him a government post. However, Nicholas acted
as his personal censor to make sure that Pushkin did not publish anything that



Chapter 2
117

Fibonacci and Lucas Numbers

would hurt the government. The Czar ordered his spies to follow him, cutting out
whole stanzas from his manuscripts. In the autumn of 1830 Pushkin left the cap�
ital to visit a small village left to him by his father. There Pushkin wrote some of
his best poems, including completing his most famous poem Eugene Onegin.

On January 19, 1831, when he was almost 30 years old, Pushkin married
the beautiful young Nathalie Goncharova. Although they had three children,
they were not a happy couple. Nathalie was very beautiful and a favorite at
the court, often encouraging the attention of other men. In 1837, influenced
by rumors that his wife had entered into a scandalous liaison, Pushkin chal�
lenged her alleged lover, Georges d’Anthиs, to a duel. Pushkin was mortally
wounded in the duel and died on January 29, 1837.

Pushkin’s poetic works were analyzed by many researchers from the gold�
en mean point of view. Let us begin with the poem’s size, the number of lines.
At first, it seemed that this parameter of the poem could change somewhat
arbitrarily. However, this proved not to be so. For example, the analysis of
Pushkin’s poems by Vasjutinsky [31] showed that the sizes of Pushkin’s po�
ems are not distributed uniformly; Pushkin appearantly preferred poems of 5,
8, 13, 21 and 34 lines (Fibonacci numbers!).

It was noted by many researchers that his poetical verses and poems are sim�
ilar to musical pieces; there are also culmination points in them dividing the po�
ems at the golden section. By studying Pushkin’s poem Shoemaker, Vasjutinsky
noted that the poem consists of 13 lines. Two semantic parts can be singled out in
the verse: the first part consists of 8 lines and the second one (the parable moral)
consists of 5 lines. Note of course that the numbers 13, 8, 5 are Fibonacci numbers
and their ratios are thus an approximation to the golden mean proportion!

One of Pushkin’s last poems, Not Dearly I Appreciate the High�Sounding Rights
…, consists of 21 lines in which two semantic parts are singled out: the first part is 13
lines and the second part 8 lines (21, 13 and 8 are of course Fibonacci numbers).

The analysis of the famous novel, Eugene Onegin, by Vasyutinsky [47] is very
intriguing. This novel consists of 8 chapters; each chapter is, on the average, about
50 verses. The eighth chapter is the most perfect and the most emotional. This
chapter consists of 51 verses. Together with the letter of Eugene to Tatjana, the
size of this chapter corresponds precisely to the Fibonacci number 55.

Vasyutinsky writes: “Eugeny’s declaration of love to Tatjana is the chap�
ter’s culmination (the line ‘To turn pale and to die away… it is bliss!” This line
divides the 8th chapter into two parts, the first part consists of 477 lines and
the second part consists of 295 lines. Their ratio is equal to 1.617! We can see
the finest conformity to the golden mean! This fact is the great miracle of
harmony created by Pushkin’s genius!”
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2.15.2. Lermontov’s Poetry

Rosenov analyzed many poetic works of Lermontov, Schiller and Tolstoy,
also finding in them the golden mean.

Michael Lermontov was born on the 15th of Octo�
ber, 1814 into a family of nobility. The poet spent his
youth at Tarkhany. He enrolled in Moscow University,
but very soon had to leave the University. Later he en�
rolled in and graduated from St. Petersburg School of
Cavalry Cadets. In 1837, he was exiled to the Cauca�
sus because of his poem on Pushkin’s death, in which
he blamed the ruling circles of Russia and the Czar Nico�
las I. In 1841, Lermontov was sent into exile in the Cau�
casus once again. As a result of intrigues between the

officers, he was provoked into a personal quarrel with an old schoolfellow.
This led him to a duel on July 15, 1841 in which the poet was killed.

Lermontov began writing his poems when he was very young. However, he
became famous because of his poem on Pushkin’s death. Lermontov’s poems,
including The Demon and Mtsyri, and his innumerable lyrical poems such as, A
Hero of Our Time and Masquerade, are masterpieces of Russian literature.

Lermontov’s famous poem, Borodino (see English translation by Eugene
M. Kayden at  www.lermontov.net/content/view/39/2/), is divided into two
parts: the short introduction and the main part. The introduction consists
of only one stanza:

“But tell me, uncle, why our men
Let Moscow burn, yet fought again
To drive the French away?
I hear it was a dreadful fight,
A bitter war, by day and night;
That’s why we celebrate the might
Of Borodino today.”

The main part of the poem consists of 13 verses, and it is divided into
two parts: first consist of 8 verses, and second of 5 verses. In the first part, a
battle of Borodino is described with rising tension an expectation of action;
in the second part, the battle itself is described with gradual reduction of
tension to the end of the poem. Each verse consists of 7 lines, that is, in total
the main part consists of 91 lines. If we divide the main part in the golden
section (91/1.618 = 56.238), we find, that the division point corresponds to
the beginning of the 57th line, that begins from the short phrase: “O what a

Michael Lermontov
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day!” This phrase represents the culmination point of the tense anticipa�
tion, which completes the first part of the poem � the expectation of the
action,  and opens its second part�   a description of the battle:

O what a day! The Frenchmen came,
A solid mass, like clouds aflame,
Straight for our redoubt.
Their lancers rode with pennons bright;
Dragoons came on in all their might
Against our walls, and in the fight
They scattered in a rout.

2.15.3. Shota Rustaveli’s Poem

Shota Rustaveli was a Georgian poet of the 12th century.
He is one of the greatest representatives of medieval literature.
There is not much biographical data about Rustaveli: the ex�
act dates of his birth and death, and historical data about the
main events of his life are unknown. Many poetic works writ�
ten by him were lost. He is the author of the literary work The
Knight in the Panther’s Skin, a Georgian national epic poem.
Rustaveli was a Georgian noble and treasurer to the Queen of
Georgia Tamara. He also restored and painted frescoes in the
Georgian monastery of the Holy Cross in Jerusalem. One of
the pillars of this monastery bears a portrait, which is believed to be that of the
poet. According to the legend, he fell hopelessly in love with Tsarina Tamara. It
was here in the cell of this monastery that Rustaveli terminated his life.

A grandiose poem, The Knight in the Panther’s Skin, brought to Rustaveli
world glory. Translated into many languages this poem is rightfully consid�
ered one of the world’s greatest pieces of literature.

Many researchers of Shota Rustaveli’s poem note its harmony and melody.
In the opinion of Georgian scientist and academician Zereteli, these properties
of Rusataveli’s poem arise, thanks to his conscientious use of the golden mean in
both its poetic forms and the construction of its verses. Rustaveli’s poem con�
sists of 1 637 stanzas; each consisting of four lines. Each line consists of 16 sylla�
bles divided into two equal parts, the half�lines, which therefore consist of 8
syllables. All half�lines are divided into two segments of two kinds: the A�kind
segment is the half�line with equal segments and with an even number of sylla�
bles (4+4), the B�kind segment is the half�line with asymmetrical division into
two unequal parts (5+3 or 3+5). Thus, we can see the following 3:5:8 ratio in

Shota Rustaveli



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

120

the half�line of the B�kind; that is, Fibonacci numbers, whose ratios are, of course,
close to the golden mean. Zereteli proved that 863 of the 1 637 stanzas in Rustave�
li’s poem are constructed according to the golden mean principle!

2.16. The Problem of Choice: Will Buridan’s Donkey Die?

The Russian academician Zeldovich wrote in one of his works: “Do not
treat with contempt “simple” reasoning. Those researchers, who obtain deep
results out of the simple, but firmly established facts, deserve the highest
praise.” The works of American psychologist Vladimir Lefevre have an utter
“simplicity” of initial reasoning giving them aesthetic charm.

2.16.1. A Parable about Buridan’s Donkey

Often times we have to choose the best amongst various possibilities. This
leads to a rather unexpected consequence — the pleasure of choice suddenly
turns into a complex problem, and this problem can be extremely serious. This
problem of choice is a perennial problem. The Greek philosopher Aristotle wrote
of the difficulty for a person experiencing both hunger and thirst who is equally
distant from food and drink. He remains unmoved at the same place because
he cannot make a choice. This problem of a person not being able to make a
choice between food and drink, was formulated more precisely by the French
philosopher Jean Buridan, who demonstrated an apparent absence of the free�
dom of will. He gave the example of the donkey who, being situated between
two equally sized haystacks each equally distant, should by all means die when
the donkey cannot choose which haystack to go and eat. Since then a popular
expression, Buridan’s donkey, has arisen. A person, irresolute in a choice or
vacillating between two equivalent situations, is called “Buridan’s donkey.”

2.16.2. A Psychological Experiment

We are quite confident that repeatedly throwing a coin inevitably results in
50% heads and 50% tails. American psychologist Vladimir Lefevr began to re�
flect upon whether one can apply this result to psychology. For this reason, he
carried out the following experiment. He asked a person to divide a pile of string
beans into two piles; the good string beans are in one of them and the bad string
beans in the other. String beans in the initial pile are all very similar to one
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another, and it is difficult to give any objective criterion for their division into
the “good” and “bad” string beans. It is clear that this problem is similar to throw�
ing a coin and we can expect the result: 50% by 50%. However, the actual result
overturned the expectations: the number of the good string beans steadily built
up to 62% (0.62) from the initial number of string beans. What a surpise! As we
know, 62% is the golden mean of 100%! The result of the psychological experi�
ment proved very surprising: a person divides the string beans into two piles in
the golden ratio! Vladimir Lefevre offered an original explanatory theory for
this experiment. However, to understand Lefevre’s theory, it is necessary to know
some basic concepts of mathematical logic and psychology.

2.16.3. What is an Implication?

The name of the English mathematician George Boole (1816�1864) is wide�
ly known in modern science. In 1854 he published An Investigation of the Laws
of Thought, on Which are Founded the Mathematical Theories of Logic and Prob�
abilities. His work produced the beginning of a new algebra, the algebra of logic,
or Boolean Algebra. Boole showed for the first time, that there is an analogy
between algebraic and logical operations, if we assume that logical variables
take only two values — true or false (symbolized as 1 or 0). He invented a sys�
tem of designations and rules, which allows one to code any statements and
then to operate on them as traditional numbers. Boolean algebra has three basic
operations — AND, OR, NOT, which allow one to perform logical operations of
conjunction, disjunction and negation on statements. In his Laws of Thought
(1854) Boole finally formulated the basis of mathematical logic. However, as
often happens with mathematicians, Boole wrote that he did not see the practi�
cal applications of his algebra. Fortunately, regarding practical applications of
his algebra the great mathematician was mistaken. Modern science, in particu�
lar computer science, is impossible without Boolean logic, which is widely used
in the analysis and synthesis of digital automatons, as well as in the solutions of
logic problems on computers.

Propositions can be 1 (true) or 0 (false) and Boolean Functions connecting
them are the basis of Boolean algebra. A proposition is any statement that can
be evaluated from the point of view of its truth or falsity. As an example, con�
sider the two propositions:

A = “George Boole is the creator of Boolean algebra”
B = “2×2=5”
The first proposition is true, that is, A=1, the second proposition is false,

that is, B=0.
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Propositions can be Simple or Complex. We gave examples above of simple
propositions. Their basic property is the fact that they can be either true or
false. The complex proposition consists of several simple propositions, thus,
the complex proposition is also either true or false (1 or 0). However, the truth
value of the complex proposition depends on the truth values of the simple
propositions that make up the complex proposition. Thus, the complex prop�
osition Y is a logic function (Boolean function) of the simple propositions
contained within it (for example, A and B), that is, Y=ƒ(A,B).

The following logic functions — Negation, Conjunction (the logic function
AND), Disjunction (the logic function OR), Addition by the Module 2, etc. are
the most widespread elementary Boolean functions. Boolean functions are
employed in computers. Boolean functions are also used in other fields of
knowledge including implication in psychology. Implication is a logical oper�
ation that builds up the complex proposition corresponding to the logical con�
nective “if … then.” Implication consists of two simple propositions, the Ante�
cedent which follows “if” and the Consequent which follows “then.” If A and B
are the antecedent and the consequent, respectively, then the implication is
the Boolean function Y=A→B that is false (Y=0) only in the case where the
antecedent is true (A=1) and the consequent is simultaneously false (B=0);
for the rest of the cases the implication is true (Y=1).

The implication is represented by Table 2.14.
What would be a physical applica�

tion of the implication? How can the
implication connect two simple propo�
sitions? We will show this in the exam�

ple of the statements: A = “the given quadrangle is a square” and B = “around a given
quadrangle we can describe a circle.” Let us examine the complex proposition A→B
= “if the given quadrangle is a square, then around the given quadrangle we can
describe a circle.” There are three variants, when the proposition A→B is true (1):

1. A is true (1) and B is true (1), that is, a given quadrangle is a square
and it is possible to describe a circle around it.
2. A is false (0) and B is true (1), that is, a given quadrangle is not a
square, however, it is possible to describe a circle around it (it is clear that
the proposition B is not true for all quadrangles).
3. A is false (0) and B is false (0), that is, a given quadrangle is not a
square and it is not possible to describe a circle around it.
Note that only one variant for the implication is false (0), when A is true

and B is false, that is, when a given quadrangle is a square, and at the same
time, it is not possible to describe a circle around it.

A 0 0 1 1 
B 0 1 0 1 
Y 1 1 0 1 

Table 2.14. A truth table for implication
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In usual speech a connective “if ... then” describes a relationship of cause
and effect between propositions. However, in terms of logical operations the
meanings of the propositions are not considered. We only consider the truth
or falsity of the propositions. Therefore, we should not be confused by the
seeming “nonsense” of the implications formed by the propositions that can�
not be connected by their contents. For example: “If the President Bush is a
democrat, then giraffes are in Africa”, “if a watermelon is a berry, then gasoline
is sold at the gas station.”

2.16.4. What is a Reflection?

In the most general sense reflection maybe though of as the human soul
pondering itself. There is variety of definitions for this concept. More often, a
reflection is determined as the analysis of one’s own ideas and experiences; a
reflection is full of doubts and uncertainties. For the first time the concept of
Reflection in a contemporary sense was used by the British philosopher John
Locke (1632�1704). From his point of view, a reflection is a special operation
by a person upon his own consciousness. As a result, this operation generates
ideas about one’s own consciousness. Further down, in relation to a person
words “his” and “himself” stands for both genders.

A person is reflecting, when one says: “I think that I think,” and so forth.
According to Lefevre’s opinion, a description of reflection signifies that a person
a0 can be represented symbolically by two elements: a person and his “map of
consciousness,” in which the information about how the person thinks about him�
self is placed. This means that the “map of consciousness” contains some image Z
of a person regarding himself (Fig. 2.17).

There therefore appears to be a reflective struc�
ture, in which the person possesses a “map of con�
sciousness,” where the person’s image about himself
is represented. Symbolically such a structure can be
expressed by the formula A aa= 0

1 ,  where a0 is the
person himself (how the “absolute observer” can see
a person from outside), and a1 is the image of a person about himself. On the other

hand, it is possible to consider the reflection of the
second order A aaa

= 0
1

2

,  where a1 is the image of a
person thinking about himself, and a2 is the image
of a person about his own thoughts (Fig. 2.18).

Now, let us introduce one more intriguing
word, Intention (from the Latin word intentio —

Z
a0

Figure 2.17. A person with
his “map of consciousness” Z

Figure 2.18. A reflective
structure of the second order

a0
a1

Z
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aspiration). This word means an aspiration, a purpose, a direction or an orienta�
tion of consciousness, wish, and feelings towards any subject. In the expression
aa

0
1  the symbol a0 means the intention of the person and the symbol a1 means

the intention of his image. We can estimate the intentions and the acts of the
person as positive (1) or negative (0) as done in Boolean algebra. A negative
estimation of oneself means the presence of guilt. A negative estimation of the
partner means the feeling of the partner’s guilt and self�condemnation.

Let us consider the expression:

A aaa
= 0

1
2 . (2.77)

Here, the power A aa
1 1

2=  means the image of the person in his representa�
tion. The appraisal A1=0 means that a person estimates himself negatively,
vice versa, A1=1 means that a person estimates himself positively. The power
a2=1 is a representation of what a person thinks about how he estimates him�
self. The appraisal a2=1 means that a person has a positive self�appraisal. The
appraisal a2=0 means that a person has a negative self�appraisal.

Lefevre started to study this kind of self�reflection (2.77), that is, the reflec�
tion of the second order, where a1 is a representation (a thought) of a person about
himself, a2 is a representation (a thought) of a person about his own thought.

Lefevre’s important idea consists of the fact that the appraisal of a one’s
self and negative or positive determination of this appraisal is fulfilled by a
person without any efforts from the person’s consciousness, that is, each per�
son seems to have a “reflective computer” that automatically makes these self�
appraisals according to the formula (2.77).

Now consider the values taken by the function (2.77) with dependence on
the variables a0, a1, a2. With this purpose in mind, we first take into account
the expression. We can write the numerical values of this expression with de�
pendence on the values of a1 and a2 as follows:

11=1; 01=0; 10=1; 00=1. (2.78)

These expressions do not raise any objections from the mathematical point of
view. In mathematics, the expression 00=1 is accepted as “correct” by definition.

Now compare the expressions (2.78) with the truth table for implication
(Table 2.13). It follows from the comparison that the expression A aa

1 1
2=  sets

the implication A1=a2→ a1. If we consider the values of the function (2.77), we
can conclude that this function creates the implication of a more complicated
kind, namely:
A=(a2→ a1)→ a0. (2.79)

Note that the expression (2.79) is Lefevre’s key idea! Let us consider a
truth table for this logical function (2.79).
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Analysis of Table 2.15 results in very interesting conclusion. The total num�
ber of possible values for Lefevre’s function (2.79) is equal to 8. Five of them
take the value 1 (a positive estimation) and the remaining 3 values take the
value 0 (a negative estimation). Note that 8, 5 and 3 are adjacent Fibonacci
numbers! This means that according to Table 2.15, our “reflective computer”
automatically (that is, without participation of our consciousness) gives a Fi�
bonacci ratio between positive (5) and negative (3) estimations. This 5:3 ratio
is a Fibonacci approximation to the golden mean of 1.618! That is, Lefevre’s
theory explains an occurrence of the golden mean in the above psychological
experiment with the string beans, that is, a person automatically, without the
participation of his consciousness, tends to make a choice according to the golden
mean principle! This paradoxical conclusion can have very unexpected applica�
tions to the so�called “behavioral” sciences. The theory of Elliott’s wave that
has actively developed in American science is one such theory.

2.17. Elliott Waves

However, if Lefevre’s theory is true, that is, all processes of the behavior of a
person and his decisions are based on (or related to) the “Golden Mean Princi�
ple,” then perhaps Fibonacci numbers and the golden mean can be discovered in
such “behavioral systems,” such as in an economy that is a function of human
behavior through the decisions made by many people. Here we may be in for a big
surprise! In the first half of the 20th century the American bookkeeper and econ�
omist Ralph Elliott developed an original theory about stock market price fluctu�
ations. This research resulted in the modern science of Elliott Waves.

2.17.1. Ralph Nelson Elliott

Let us start from who was Elliott and how did he come by his discovery?
Ralph Nelson Elliott (1871�1948) was one of the brightest representatives of
the “American Renaissance.” Being an accountant by education, he special�

ao 1 1 1 1 0 0 0 0 

a1 1 0 1 0 1 0 1 0 

a2 1 1 0 0 1 1 0 0 

А 1 1 1 1 0 1 0 0 

Table 2.15. A truth table for Lefevre’s function
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ized in reorganizing and revitalizing large companies such as export�import
houses and railroads in the U.S. and Central America. In 1924 the U.S. State
Department appointed Elliott to serve as Chief Accountant for Nicaragua
where the U.S. had large economic ties.

Later, Elliott wrote a foreign policy proposal based upon his long�term
experience in Central and South America and submitted it to the State De�
partment. The essential ideas of his proposal were reflected in the program
“Good Neighbor” as elaborated by Roosevelt’s administration, and used later
in the more recent programs of the World Bank.

In the 1930s Elliott turned his attention toward studying the stock mar�
ket. In 1938 at the age of 67, he published his first monograph about market
models, The Wave Principle. In the next year, he published a series of articles in
Financial World magazine that detailed his discovery. In 1946 he completed a
large book, Nature’s Law, in which he expanded his 1938 essay on the connec�
tion between the Wave Principle, the golden mean and the stock market.

2.17.2. Rhythm in Nature

The proposition that the Universe is subordinated to some general Laws
returns us to Pythagoras and Plato, and the origin of this great universal recog�
nition in modern science. It is obvious that without the Laws of Nature we would
have chaos. A strict ordering and constancy of Nature follows. This is confirmed
by a surprising periodicity and repetition in all of Nature’s processes.

A person is a natural object similar to the Sun or the Moon. One’s activity
can be expressed by the language of numbers and is subject to scientific analy�
sis. Human activity, for example the heart’s activity, could be considered from
the point of view of rhythmic processes. A person’s heart beats uniformly (about
60 beats per minute). The heart acts as a cylinder piston by drawing in and then
pushing out the blood. Blood pressure changes during this cardiac cycle. It
reaches its greatest value in the left ventricle at the moment of compression
(systole). In arteries (during systole) the blood pressure is reaching its maxi�
mum value, equal to 115�125 mm Hg. At the moment of the cardiac reduction
(diastole), the pressure is decreasing until there is 70�80 mm Hg. The ratio of
the maximum (systolic) pressure to the minimum (diastolic) pressure is equal,
on the average, to 1.6, which is a close approximation to the golden mean.

Is this a mere random coincidence, or does it reflect some objective regularity
of the organized cardiac activity? The heart beats continuously from a person’s
birth up to his death. And its activity should be optimal and be subordinate to the
self�organizational laws of biological systems. Because the golden mean is one of
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the criteria of self�organizing systems, one might naturally expect the cardiac cy�
cle to be subordinate to the golden mean law. This hypothesis underlies the mam�
mal cardiac research activity of Russian biologist Tscvetkov [39].

Judgments about heart activity are done through an electrocardiogram,
displaying a curve that reflects cardiac performance (Fig. 2.19).

In a cardiogram, a comparison is
made of two time intervals of different
duration corresponding to the heart’s
systolic (t1) and diastolic (t2) activity.
Tscvetkov found that there exists the
optimal (golden) frequency for people
and other mammals; here, the durations
of systole, diastole and the full cardiac
cycle (T) are in golden mean proportion,
that is, T: t2= t2: t1. For example, for a
person this golden frequency is equal to
63 heart beats per minute, and 94 beats
per minute for dogs.

Tscvetkov found that if we take the middle blood pressure in the aorta as
the measurement unit, then the systolic blood pressure is 0.382, and the dias�
tolic pressure is 0.618, that is, their ratio corresponds to the golden ratio
(0.618:0.382=1.618). It means that cardiac performance in the timing cycles
and blood pressure variations are optimized according to the same principle,
the law of the golden mean.

If we move on from the investigation of the person as a biological unit to
the consideration of our social and economic activity, we find that human ac�
tivity follows certain laws, which force the social and economic processes to
repeat in the form of a certain set of waves or impulses. The best way this idea
can be shown is through the example of stock exchange processes.

2.17.3. Elliott’s Wave Principle

Let us now return to a consideration of the main ideas concerning the
stock market that underlie the Elliott wave theory:

1. Natural Laws embrace the most important element of all, namely, tim�
ing. They are not themselves some simple system or method for playing
the market. However, as expressed in market phenomena they appear to
mark the expression of all human activities. The application of these laws
to forecasting may have a revolutionary character.

Figure 2.19. Human electrocardiogram
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Figure 2.21. The smaller Elliott Waves

2. This law can only be discerned when the market is viewed and ana�
lyzed as a product of human decisions. Simply put, the stock market is a
human creation and therefore reflects human idiosyncrasy.
3. All human activities have three distinctive features — pattern, time
and ratio — each of which appears to be based upon the Fibonacci series.
According to the Elliott Wave Theory, stock prices can be simulated by using

a specific wave that is connected with Fibonacci numbers. Elliott’s main wave is
shown in Fig. 2.20. More specifically, Elliott believed that the main wave is simu�

lated by distinct upward and downward
movements. For example, the ascending
part of the wave consists of 5 movements,
three movements up and 2 movements
down (3 and 2 are of course adjacent Fi�
bonacci numbers); the descending part of
the wave consists of 3 movements, 2 move�
ments down and 1 movement up (again ad�
jacent Fibonacci numbers).

The movements 1, 3 and 5 represent the Impulses in a Major Bull Move�
ment. The movements 2 and 4 represent the Corrective Movements in a major
bull movement. The movements A, B and C define a Minor Bear Wave; here,
the movements A and C represent the descending movements of the minor
bear wave, while B represents one ascending movement of the minor bear wave.
The major waves determine the major trends of the market, and the minor
waves determine the minor trends. Elliott carefully examined the market’s
waves, and found that the golden mean and Fibonacci numbers play an im�
portant role in the pressures and trends of the stock market.

Elliott proposed that the main wave exists at many levels; this means that
new sub�waves could appear within the primary wave. To clarify, this means
that the chart above (Fig. 2.20) represents only the primary wave pattern. How�
ever, the same kind of wave occurs, for example, between the points 2 and 4.
The diagram below (Fig. 2.21) shows how primary waves could be broken down
into smaller waves. We can see in Fig.
2.21 that the smaller waves are subor�
dinate to one and the same principle,
the golden mean principle.

Trading which is based upon the
Elliott Wave patterns is quite simple.
A trader identifies the main wave as
a super�cycle and then acts accord�
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c

b

a5
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Figure 2.20. Elliott Waves
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ing to the Elliott Wave model, that is, increasing or decreasing the sales be�
cause market behavior is subordinated to the golden mean principle. This goes
on in progressively shorter cycles until the cycle is complete.

Of course, real market processes are more complex than the Elliott model.
Even if we do not agree with some of Elliott’s findings, the idea is of great
methodological interest. Many scientists, especially in the U.S., are convinced
Elliott supporters. The American scientist Robert Prechter is the most fa�
mous follower of Elliott’s ideas. In 1999, he published a book [143], which is
dedicated to the development of the Elliott Wave Principle, and organized
Elliott Wave International to promote Elliott’s ideas.

Prechter made the following very ambitious statement: “(R.N. Elliott’s)
Wave Principle is to sociology what Newton’s laws were to physics” [143].

Time will tell whether Prechter’s comparison of the Elliot Wave Princi�
ple to Newton’s Laws has merit. However, one thing is doubtless: thanks to
the activities of Elliott and his followers, a theory of modern sociology and
market economics was added with deep scientific significance. According to
this concept, Fibonacci numbers and the golden mean are not only behind the
growth of the pinecone or sea�shell, but also determine the laws of human
behavior, and through them the laws of the stock market!

2.18. The Outstanding Fibonacci Mathematicians of the 20th Century

The 20th century is characterized by an increasing interest in Fibonacci
numbers and the golden section. Two scientific works, the book Aesthetics of
Proportions in Nature and Art [11] by the French scientist Matila Ghyka and
the book Proportionality in Architecture [10] by Russian architect Professor
G.D. Grimm were very important achievements in the “golden” area in the
first half of the 20th century.

In addition, considerable results in this area were obtained in the 20th Cen�
tury by Danish mathematician Willem Abraham Wythoff and Belgian ama�
teur mathematician Edouard Zeckendorf.

2.18.1. Willem Abraham Wythoff

Many specialists in combinatorial analysis and number theory know about
the Wythoff game. However, few know anything about the man for whom this
game was named. W. A. Wythoff was born in Amsterdam in 1865, the son of a
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Verner Emil Hoggatt
(1921�1981)

sugar refinery operator, and obtained his Ph.D. in mathematics in 1898 from the
University of Amsterdam. Wythoff’s game was described in his article A Modifi�
cation of the Game of Nim [Nieuw Archief voor wiskunde, 2 (1905�07), 199�202].

Dr. Wythoff described his famous game as follows:
“The game is played by two persons. Two piles of counters are placed on the

table, the number of each pile being arbitrary. The players play alternately and
either take from one of the piles an arbitrary number of counters or from both piles
an equal number. The player who takes up the last counter, or counters, wins.”

The solutions to Wythoff’s game that are based on Fibonacci numbers can
be found in numerous articles in The Fibonacci Quarterly, and also in the fa�
mous article The Golden Section, Phyllotaxis, and Wythoff’s Game by Coxeter
(Scripta Mathematica, 19 (1953) 135�143).

2.18.2. Edouard Zeckendorf

Many number theorists know about Zeckendorf sums,
however, here again, few know anything about the man
for whom these sums are named. Edouard Zeckendorf was
born in Liиge, Denmark. In 1925, he qualified as a medi�
cal doctor at the University of Liиge and then became a
Belgian army officer. He also obtained a license for dental
surgery some time prior to 1930.

Mathematics nevertheless was Zeckendorf’s main pas�
sion. In 1939, he published the article devoted to Zecken�

dorf sums. According to his theorem, each positive integer has a unique repre�
sentation as a sum of Fibonacci numbers, though two adjacent Fibonacci num�
bers are actually never employed. Research on Zeckendorf sums became the
subject of many articles published in The Fibonacci Quarterly.

2.18.3. Verner Emil Hoggatt

The mathematical organization of the Fibonacci Associ�
ation was founded in 1963 by a group of American mathe�
maticians making it one of the most outstanding events in
the history of Fibonacci number theory. Beginning of 1963,
the Fibonacci Association began to issue The Fibonacci Quar�
terly. The American mathematicians Verner Emil Hoggatt
(1921�1981) and Alfred Brousseau (1907�1988) were
founders of the Fibonacci Association. Verner Hoggatt, along

Edouard Zecken�
dorf (1901�1983)
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with Brother Alfred Brousseau, published the first volume of The Fibonacci Quar�
terly in 1963, thereby founding the Fibonacci Association. The April 4, 1969 issue
of TIME magazine reported the phenomenal growth of the Fibonacci Association.
In the same year, Houghton Mifflin published Verner Hoggatt’s book, Fibonacci
and Lucas Numbers [16], perhaps the world’s best introduction to Fibonacci num�
ber theory. Howard Eves wrote that “during his long and outstanding tenure at
San Jose State University, Vern directed an enormous number of master’s theses,
and put out an amazing number of attractive papers. He became the authority on
Fibonacci and related numbers.”

2.18.4. Alfred Brousseau (1907�1988)

Alfred Brousseau was another outstanding person involved in the orga�
nization of the Fibonacci Association. Brother Alfred belonged to the reli�
gious order Fratres Scholarum Christianarum that translates as Brothers of the
Christian Schools, or simply, The Christian Brothers.

Brother Alfred was an avid photographer. He made a col�
lection of some 20,000 slides of California wildflowers. Im�
ages of more than half of these and other collections by Broth�
er Alfred are preserved in the form of widely used websites at
the University of California, Berkeley.

In 1969, Time magazine featured two founders of the Fibonacci
Association in an article titled The Fibonacci Numbers. Brother
Alfred was pictured in the Time article holding a pineapple, one
of the best known representatives of phyllotaxis. The article re�
ferred to the many natural applications of Fibonacci numbers: for
example, male bees reproduce “fibonaccically,” and Fibonacci numbers occur in the
formations visible in many sunflowers, pine cones, and leaf�positions on branches of
trees. Brother Alfred recommended that people who learn about Fibonacci num�
bers should focus their attention on the aesthetic pleasure involved in it.

2.18.5. Steven Vaida

In 1989, twenty years after Verner Hoggat’s book, the publishing house of
Ellis Horwood Limited published the book Fibonacci & Lucas Numbers and the
Golden Section [28] by Prof. S. Vaida. The book attracted wide attention from
Fibonacci mathematicians, as it is considered to be one of the best mathemat�
ical books on the subject. Who is the author of this book? From his brief sci�
entific biography, we learn that the mathematician Steven Vaida was Profes�
sor of Mathematics of University Sussex (England) at the time of the book’s

Alfred Brousseau
(1907�1988)
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publication. He obtained a Doctorate in Philosophy at Vienna University. In
1965, he began to work as Professor of operational researches at Birmingham
University. It is also noteworthy that he was an honorary member of many
mathematical organizations, in particular, the Mathematics and Statistics In�
stitute of the Society of Operational Researches (England).

2.18.6. Herta Taussig Freitag

Among the modern Fibonacci mathematicians, it is necessary to name Pro�
fessor Herta Taussig Freitag, another member of the Fibonacci Association.
She was born on December 6th, 1908 in Vienna, Austria and died January
25th, 2000 in Roanoke, Virginia.

Herta Freitag graduated with a Ph.D. from Columbia Uni�
versity in 1953. Her colleagues at the Fibonacci Association
named Herta Freitag the Queen of the Fibonacci Association.
Over the years, she attended and presented a paper at every In�
ternational Conference of Fibonacci numbers starting with the
first Conference in 1984. It is curious to note that Professor Fre�
itag delivered the lecture Elements of Zeckendorf Arithmetic (co�
author G.M. Phillips) at the 7th International Conference on
Fibonacci Numbers and Their Applications. The appearance of

this lecture title is rather distinctive. It testifies to the fact that Fibonacci mathe�
maticians came close to the creation of the new computer arithmetic based on
Fibonacci numbers and Zeckendorf sums. This became a central subject of the
Soviet scientific and engineering developments in the 1970s and 1980s.

2.19. Slavic “Golden” Group

The outstanding Hungarian geometer Janos Bolyai, one of the creators of
Non�Euclidean geometry, once wrote the following remarkable words:

“For ideas, as well as for plants, the time comes, when they mature in their
various locales, just as in the spring the violets blossom wherever the Sun shines.”

The history of science should tell us why the 80s and 90s became the his�
torical period in which interest in Fibonacci numbers and the Golden Section
began to peak. Particularly in this period, scientists of different disciplines
put forward hypotheses concerning the applications of the golden mean and
made discoveries that have fundamental significance for the development of
science and its many branches.

Herta Taussig
Freitag

(1908�2000)
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The small brochure Fibonacci Numbers [13] published in 1961 by the Rus�
sian mathematician Nikolay Vorobyov resulted in an expanding mathemati�
cal interest in Fibonacci numbers. The brochure was re�issued repeatedly and
translated into many languages.

First of all, it is necessary to mention the primary direction that arose in the 1970s
in Soviet science. It is well known that Fibonacci’s problem of “rabbit reproduction”
became a source for research into Fibonacci numbers. However, the “rabbit reproduc�
tion problem” is not the only problem suggested by Fibonacci. He also proposed the
well�known problem of Choosing the Best System of Standard Weights. This problem is
named the Weighing Problem or Bashet�Mendeleev Problem in Russian historic�math�
ematical literature. In 1977, the author of this book published the book Introduction
into Algorithmic Measurement Theory [20] and in 1979 the brochure Algorithmic Mea�
surement Theory [21]. These works generalize the Bashet�Mendeleev problem and
provide a new measurement theory based on Fibonacci numbers, namely Algorithmic
Measurement Theory. Published at the end of the 70s they helped determine the ap�
plied nature of research in the Fibonacci field (Fibonacci codes, Fibonacci arithmetic,
Fibonacci computers) that began to develop in Soviet science. The practical direction
of Fibonacci research by the Soviet scientific school is distinctively different from the
direction of the American Fibonacci Association.

In 1984, two books were published dedicated to the golden section. The
Byelorussian philosopher Eduard Soroko in his book Structural Harmony of
Systems [25] made a courageous attempt to revive for modern science the
Pythagorean idea of the numeric harmony of the Universe, proposing the so�
called Law of Structural Harmony of Systems that is expressed with the help of
the generalized golden sections, namely, the golden р�sections [20]. In the
same year Stakhov’s book Codes of the Golden Proportion [24] was published.
This book developed number systems with irrational bases or codes of the
golden proportion that are a generalization of Bergman’s number system [86].

One year later in 1985, the book Aesthetic Foundations of Ancient Egyp�
tian Art [145] by Russian art critic Natalia Pomerantseva was published; the
book demonstrates quite convincingly the role of the golden section in An�
cient Egyptian culture.

The year 1986 was marked by the publication of two books on the Golden
Section. In Poland the Energy�Geometric Code of Nature [26] by Polish scien�
tist and journalist Jan Grzedzielski was published. This book, probably for the
first time, uncovered the physical sense of the golden mean as the main code of
the Universe, as the proportion of thermodynamic equilibrium in self�organiz�
ing systems. In the same year a teacher at the Kiev State Art Institute, Kovalev,
published a manual for artists called The Golden Section in Painting [29].
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The beginning of the 1990s was characterized by the publication of two
more books on the Golden Section. The first was The Golden Section: Three
Approaches to the Nature of Harmony (1990) [146]. The book was authored
by three representatives of Russian art, the architect Shevelev, the composer
Marutaev and the architect Shmelev. The abstract states: “This book is dedi�
cated to the theoretical substantiation of the phenomenon of the golden sec�
tion, one of the universal laws of Nature.”

The popular book The Golden Proportion [31] by Nikolay Vasyutinsky, a
Ukrainian researcher, chemist, geologist, metallurgist and mechanic, was of
considerable importance of 1990. Written with great proficiency, it states: “the
manifestation of the Golden Proportion laws in architecture, music, poetry,
chemistry, biology, botany, geology, astronomy, and engineering sciences are
herein described.”

At the beginning of the 1990s, it became clear that Slavic science (Ukraine,
Russia, Belarus, and Poland) had developed an immensely powerful group of re�
searchers formed of representatives of various sciences and arts, and authors of
very original books on the golden section. The idea arose to unite these research�
ers together and create a Slavic golden scientific society. The First International
Seminar of The Golden Proportion and Problems of System Harmony was held in
Kiev in 1992 under the scientific supervision of Professor Stakhov, the author of
this book. The Belarussian philosopher Eduard Soroko (Minsk), the Ukrainian
architect and art critic Оleg Bodnar (Lvov), the Ukrainian mathematician and
economist Ivan Tkachenko, the Russian mechanical engineer Victor Korobko
(Stavropol), the Ukrainian physician and anatomist Pavel Shaparenko (Vinnit�
sa), the Ukrainian chemist Nikolay Vasjutinsky (Zaporozhye), and the Polish
journalist Jan Grzedzielski (Warsaw) participated as members of the group’s or�
ganizing committee. This group of highly respected scientists became the skele�
ton of the Slavic scientists’ association called the Slavic Golden Group.

The Second International Seminar of The Golden Proportion and Problems
of System Harmony was held in 1993 in Kiev. Then on the initiative of Profes�
sor Korobko, the Seminar continued its work in 1994, 1995 and 1996 in
Stavropol, Russia.

The Seminars stimulated research in the golden section in a variety of
fields. During the 1990s the Slavic Golden Group published a number of very
interesting books on the subject.

In 1994, the book The Golden Section and Non�Euclidean Geometry in Na�
ture and Art [37] was published by Oleg Bodnar. A new geometrical theory of
phyllotaxis (the Law of Spiral Bio�symmetry Transformation) discovered by
Bodnar became the primary outcome of the book.
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The end of the 20th century was very successful for the Slavic Golden Group.
In 1997 Heart, Golden Section and Symmetry [39] by Russian biologist Tsvetk�
ov was published. The book is a summary of the author’s long�term research in
the area of Golden Section applications to cardiac activity in mammals. In this
book the set of Golden Sections in the different structures of the cardiac cycle is
found. Tsvetkov also demonstrated the role of the Golden Section and Fibonac�
ci numbers in optimization of the heart activity (minimization of energy con�
sumption, in the blood, muscle and vascular matter) of mammals.

In 1998, the book The Golden Proportion and Problems of System Harmony
[43] was published by Professor Korobko (Russia), an active member of the
Slavic Golden Group. The book contains considerable information concerning
the application of the golden section throughout Nature, Science and Art. The
great strength of the book is that it can serve as a manual for university and
college teachers of post�graduate students in both the engineering sciences and
the liberal arts. In fact, the Russian Association for Building Universities rec�
ommended it as a manual for all students in colleges and universities.

In 1999, Alexey Stakhov with assistance of Vinancio Massingue and Anna
Sluchenkova published Introduction into Fibonacci Coding and Cryptography
[44]. This book presented a new coding theory based on Fibonacci matrices.
In 2000, the famous Russian architect Shevelev [46] published the book The
Meta�language of Living Nature.

The beginning of the 21st century has been characterized by increasing
scientific activity by the Slavic Golden Group. In 2001, Alexey Stakhov and
Anna Sluchenkova created a website Museum of Harmony and the Golden
Section www.goldenmuseum.com. The uniqueness of this site in its bilingual�
ism (Russian/English) and big concentration of exclusive information about
Golden Section and its applications.

In 2003, the Slavic Golden Group organized the international conference Prob�
lems of Harmony, Symmetry and the Golden Section in Nature, Science and Art in the
Ukrainian city of Vinnitsa. Here the great contribution of the Slavic scientists to
the development of the theory of the golden section and its applications was recog�
nized in the 38 books written on the golden section. According to the Conference
resolution, the Slavic Golden Group was transformed into the International Club of
the Golden Section. This group stimulated Slavic researchers to further develop their
creative work. Included amongst the many interesting books written by this presti�
gious group of leading Slavic scientists, were the following very popular ones:

1. Bodnar, O.J. The Golden Section and Non�Euclidean Ggeometry in Sci�
ence and Art (2005) (in Ukrainian) [52]. This book is the second edition
of Bodnar’s preceding book [37].
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2. Petrunenko, V.V. The Golden Section in Quantum States and its Astro�
nomical and Physical Manifestations (2005) (in Russian) [53].
3. Soroko, E. M. The Golden Section, Processes of Self�organization and
Evolution of System. Introduction into General Theory of System Harmony
(2006) (in Russian) [[56]. This book is the second edition of Soroko’s
preceding book [25].
4. Stakhov, A.P., Sluchenkova, A.A., and Scherbakov, I.G. The da Vinci
Code and Fibonacci Series (2006) (in Russian) [55].
Together with the American Fibonacci Association, the Slavic Golden

Group greatly influenced the development of contemporary research in the
field of the golden section and Fibonacci numbers, and their applications.

2.20. Conclusion

The Fibonacci and Lucas numbers are two remarkable numerical sequences,
which are becoming widely known in modern science. Fibonacci numbers were
introduced into mathematics in the 13th century by the famous Italian mathema�
tician Leonardo of Pisa (Fibonacci) as the solution to the Fibonacci rabbit repro�
duction problem. Fibonacci and Lucas numbers have many interesting mathe�
matical properties. If we take the ratio of two adjacent Fibonacci numbers
Fn/Fn�1 and direct n towards infinity, the ratio approaches the golden mean in the
limit. The discovery of this mathematical property is attributed to Johannes Ke�
pler. In the 17th century Kepler’s contemporary, the great astronomer Giovanni
Cassini, proved the remarkable Cassini formula connecting three neighboring
Fibonacci numbers. If we calculate the numerological values of all the terms of
the Fibonacci series, then we will find that there is an intriguing periodicity, equal
to 24, in this series of numerological values. The French 19th century mathemati�
cians Lucas and Binet made great contributions to the development of Fibonacci
number theory. Lucas introduced Lucas numbers into mathematics and Binet
derived the famous mathematical formulas (Binet formulas) which connect Fi�
bonacci and Lucas numbers with the golden mean. The Fibonacci and Lucas num�
bers show themselves throughout Nature’s structures. The botanic phenomenon
of phyllotaxis is the best recognized amongst them. However, during the last few
decades, Fibonacci numbers have been revealed in the genetic code (Fibonacci
Resonances), in psychology (Lefevre’s experiments), and the extension of market
processes (Elliott Waves), and numerous other areas and disciplines.
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Chapter 3

Regular Polyhedrons

3.1. Platonic Solids

3.1.1. Regular Polygons

People show an interest in regular polygons and polyhedrons (i.e. polyhedra)
throughout life – from the two�year�old child, playing with wooden cubes, to the
mature mathematician. Some regular and semi�regular solids appear in Nature in
the form of crystals, others as viruses seen only by using an electron microscope.

What is a polygon? Recall that geometry may be defined as a science of
space and spatial figures – two�dimensional and three�dimensional. A two�
dimensional geometric figure can be defined as a set of line segments limiting
some part of a plane. Such a planar figure is called a Polygon.

Scientists have been interested for some time in the Ideal or Regular poly�
gons, that is, the polygons having equal sides and equal angles. The idea of
“regularity” and “ideal geometric figures” is very old in geometry. It dates back
to the ancient Greek mathematicians and philosophers.

The equilateral triangle is considered to be the simplest regular polygon be�
cause it has the least number of sides necessary to limit part of a plane. The square
(four sides), pentagon (five sides), hexagon (six sides), octagon (eight sides), deca�
gon (ten sides) and so on to�
gether with the equilateral tri�
angle (Fig. 3.1) provide a gen�
eral picture of the regular poly�
gons. It is obvious that there are
no theoretical restrictions on
the number of sides of a regular
polygon, meaning there are an
infinite number of polygons. Figure 3.1. Regular convex polygons

Equalateral

Heptagon

Cube

Octagon

Pentagon

Nonagon Decagon

Hexagon
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Note that all regular polygons in Fig. 3.1 are Convex. What is a convex geo�
metric figure? The Convex geometric figure is the opposite of a Concave geo�
metric figure. To understand the distinction between convex and concave
geometric figures, we examine two famous figures, the pentagon (Fig. 3.2�a)
and pentagram (Fig. 3.2�b).

The regular pentagon in Fig. 3.2�a is a planar
convex figure, while the pentagram in Fig. 3.2�b
is a planar concave figure.

The notion of convex and concave geometric
figures should be intuitively clear. Below we clar�
ify these geometric concepts in greater detail when
we begin the study of regular polyhedra.

The first textbook of geometry, Euclid’s Elements, assumed convexity with�
out providing a precise definition. Convex polygons have an interesting prop�
erty connected with the interior angles of polygons. We know that the three
angles in any triangle always total 180°. As the equilateral triangles have equal
angles, each of its angles must be equal to 60° (60+60+60=180). The angles of
any quadrangular polygon add to 360°. As the angles of a regular polygon are
equal, each angle of the regular quadrangular polygon (square) is equal to 90°
(90+90+90+90=360). The angles of any five�sided polygon add to 540°. It is
clear that each angle of the regular pentagonal polygon (pentagon) is equal to
108° (108+108+108+108+108=540).

How can we calculate the interior angle of any regular n�gon? Take any vertex
of a regular n�gon and draw from this vertex all possible diagonals within the poly�
gon. This process divides the regular n�gon into n–2 (n minus 2) nonintersecting
triangles. As three angles of a triangle total 180°, then the interior angles of any
regular n�gon total [180° (n�2 )], a characteristic property of the convex polygon.
Table 3.1 lists the numerical values for the interior angles of regular n�gons.

Table 3.1. Interior angle measures in regular polygons

Name  Number of sides Sum of interior angles Interior angle  
Triangle  3  180  60  
Square  4  360  90  

Pentagon  5  540  108  
Hexagon  6  720  120  
Octagon  8  1080  135  
Nonagon  9  1260  140  
Decagon  10  1440  144  

Dodecagon  12  1800  150  
...  ...  ...  ...  

n�gon  n  180(n�2)  180(n�2) /n  

Figure 3.2. Regular pentagon (a)
is a convex figure, pentagram (b)

is a concave figure

b)a)



Chapter 3
139

Regular Polyhedrons

Note that regular polygons have many lines of symmetry. This character�
istic is very important in their ability to build up different tessellations. We
can see from Fig. 3.3 that the regular oc�
tagon has eight axes of symmetry: one be�
tween each pair of opposite vertices and
one between each pair of opposite sides.
The regular pentagon has five axes of
symmetry: one between each vertex and
its opposite side. A regular polygon with
n sides has n axes of symmetry.

3.1.2. Regular Polyhedra

A polyhedron is a “solid” three�dimensional figure similar to two�dimen�
sional polygons discussed above. Polyhedra have vertices, edges and faces. If a
polyhedron has faces that are regular polygons and if at each vertex exactly the
same number of faces meets, such a polyhedron is called a Regular Polyhedron.
How many regular polyhedra exist? At first sight, the answer to this question is
very simple: as many as there are regular polygons that are faces of regular poly�
hedra. However, this is not the case. To find the correct answer to this question
we must divide all regular polyhedra into convex and concave types.

Let us start with the convex polyhedra. Euclid’s Elements give a strict
proof of the fact that only five convex regular polyhedra exist, and their faces
must be one of only three types of the regular polygons: triangles, squares and
pentagons (Fig. 3.4).

Many books are devoted to the theory of polyhedra. Polyhedron Models
by English mathematician M. Wenninger is the best known amongst them.
The Russian translation of this book was published in 1974 [147]. Bertrand
Russell’s statement was chosen as an epigraph to this book: “Mathematics
possesses not only truth, but also supreme beauty … sublimely pure, and capa�
bly of a stern perfection such as only the greatest art can show.”

Figure 3.4. Platonic Solids: (a) tetrahedron (Fire), (b) octahedron (Air), (c) hexahedron
or cube (Earth), (d) icosahedron (Water), (e) dodecahedron (Universal Mind)

a) b) c) d) e)

Figure 3.3. Symmetry lines of the regular
octagon and the regular pentagon
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The book [147] begins with a description of the convex regular polyhedra, that is,
the polyhedra that are regular polygons of one type. These polyhedra are named the
Platonic Solids in honor of the ancient Greek philosopher Plato, who used regular
polyhedra in his cosmology. We begin our consideration with the regular polyhedra
possessing equilateral triangles as faces. The Tetrahedron is the first and simplest of
them (Fig. 3.4�a). The key observation is that the sum of the interior angles of the
polygons that are meeting at every vertex is always less than 360 degrees. In the tet�
rahedron, three equilateral triangles (the sum of their interior angles is equal to
180°=3×60°) meet at each vertex; thus, their bases create a new equilateral triangle.
The tetrahedron has the least number of faces among the Platonic Solids and there�
fore it is the three�dimensional analog to the equilateral triangle (which of course has
the least number of sides among the regular polygons).

The Octahedron (Fig. 3.4�b) is the next spatial geometric figure based on
equilateral triangles. In the octahedron, four equilateral triangles (the sum of
their interior angles is equal to 240°=4×60°) come together at one vertex; as a
result, a pyramid with a quadrangular base arises. If one connects two such
pyramids by their bases, then the symmetric figure with eight triangular fac�
es, called the Octahedron, appears.

Now, we can try to connect 5 equilateral triangles at one vertex (the sum
of the interior angles is equal to 300°=5×60°). As a result, we obtain a spatial
geometric figure with 20 triangular faces called the Icosahedron (Fig. 3.4�d).

A square is the next regular polygon (with interior angle of 90°). If we
unite 3 squares at one vertex (the sum of their interior angles equaling
270°=3×90°) and then add to this figure three new squares, we obtain a per�
fect geometric figure with 6 faces called a Hexahedron or Cube (Fig. 3.4�c).

Finally, there is one more regular polyhedron to construct based on the
use of a pentagon with the interior angle 108°. If we collect 12 pentagons so
that 3 regular pentagons come together at each vertex (the sum of their inte�
rior angles is equal to 324°=3×108°), then we obtain the next Platonic Solid
with 12 pentagonal faces called the Dodecahedron (Fig. 3.4�e).

The hexagon is the next regular polygon after the pentagon. It has an
interior angle 120°. If we connect 3 hexagons at one vertex, we obtain a sur�
face because the sum of their interior angles is equal to 360°=3×120°. This
means that it is impossible to construct a three�dimensional geometric fig�
ure from hexagons alone. Other regular polygons after the hexagon have
interior angles greater than 120°. This means that we cannot construct spa�
tial geometric figures from them. It follows from this examination that there
are only 5 convex regular polyhedra, the faces of which are limited to
equilateral triangles, squares and pentagons.
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There are surprising geometrical connections between all regular polyhe�
dra. For example, the cube (Fig. 3.4�c) and the octahedron (Fig. 3.4�b) are dual
to one another, that is, they can be obtained from each other, if the centroids of
the faces of the first figure are taken as the vertices of the other and conversely.
Similarly, the icosahedron (Fig. 3.4�d) is dual to the dodecahedron (Fig. 3.4�e).
The tetrahedron (Fig. 3.4�a) is dual to itself. The fact of the existence of only
five convex regular polyhedra is surprising because the number of regular poly�
gons is infinite! This fact was proven in Euclid’s Elements.

3.1.3. Numerical Characteristics of Platonic Solids

Before continuing, let us collect some data about the regular polyhedra. Let
• m be the number of polygons meeting at one vertex,
• n be the number of vertices of each polygon,
• f be the number of faces of a polyhedron,
• e be the number of edges of a polyhedron, and
• v be the number of vertices of a polyhedron.
The values of these numbers for

each of the regular polyhedra are list�
ed in Table 3.2.

Further, our aim is to show that for
any pair of numbers n and m the values
of the other parameters f, e, and v are
uniquely determined. As two faces come
together at one edge, we can write:

e=nf / 2. (3.1)

Next, as m faces come together at each vertex, we can write:

v=nf / m. (3.2)

It is apparent from Table 3.2 that for all five regular polyhedra we have:

f=2+e�v. (3.3)

The result (3.3) is known as Euler’s Polyhedron Theorem.

3.1.4. The Golden Section in the Dodecahedron and Icosahedron

The dodecahedron and its dual the icosahedron (Fig. 3.4�d, e) take up a
special place among the Platonic Solids. First of all, it is necessary to empha�
size that the geometry of the dodecahedron and icosahedron is directly con�
nected with the golden section. The faces of the dodecahedron (Fig. 3.4�e) are

 n m f e v 
Tetrahedron  3 3 4 6 4 
Octahedron  3 4 8 12 6 
Icosahedron  3 5 20 30 12
Hexahedron  4 3 6 12 8 
Dodecahedron 5 3 12 30 20

Table 3.2. Numerical characteristics of
regular polyhedra
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pentagons based on the golden section. If we look carefully at the icosahedron
(Fig. 3.4�d), we can see that five triangles come together at each vertex of the
icosahedron; here, their external sides produce a pentagon based on the gold�
en section. Already these facts demonstrate that the golden section plays an
essential role in these two Platonic Solids.

A duality of the dodecahedron and the icosahedron is expressed in the fact
that the number of the dodecahedron faces (f=12) is equal to the number of the
icosahedron vertices (v=12) and the number of the icosahedron faces (f=20) is
equal to the number of the dodecahedron vertices (v=20), but they both have
the same number of edges (e=30). There is another numerical characteristic
that unites the dodecahedron and the icosahedron: the number of planar angles
on the surface of both spatial figures is equal to 60. As the number of vertices
(and sides) n of the regular polygons (triangle and pentagon) that are the faces
of the icosahedron and dodecahedron are equal to 3 and 5, respectively, and the
number of faces of the icosahedron and dodecahedron are equal to 20 and 12,
respectively, it follows that the following formula for the number of the planar
angles on the surface of the icosahedron and the dodecahedron are valid:
60=3×20=5×12. (3.4)

There are also deeper confirmations of the fundamental role of the gold�
en section in the icosahedron and the dodecahedron. It is recognized that
these Platonic Solids have three unique spheres. The first sphere (the in�
scribed sphere or insphere) is a sphere that is inserted into the Platonic Sol�
id and touches the centroids of its faces. Define the radius of this insphere
by Ri. The second or middle sphere (midsphere or intersphere) touches the
centroids of its edges. Define the radius of the midsphere by Rm. The third
(external) sphere or circumsphere is circumscribed around the Platonic Solid
and passes through its vertices. Define this radius by Rc. It was proven in
geometry that the radius lengths of the indicated spheres for the dodecahe�
dron and the icosahedron with sides equal to 1 are expressed by the golden
mean τ (see Table 3.3).

 Rc Rm Ri 

Icosahedron  
3

2
 

2
 

2

2 3
 

Dodecahedron  
3

2
 

2

2
 

2

2 3
 

Table 3.3. Connection of the icosahedron and dodecahedron with the golden mean τ
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Note that the ratios of the radii 
R

R
c

i

=
−3 3( )τ

τ
 are equal for both the icosa�

hedron and the dodecahedron. Thus, if the dodecahedron and the icosahe�
dron have identical inserted spheres, then their described spheres are also iden�
tical. A proof of this mathematical theorem is given in Euclid’s Elements.

There are other well�known geometric relations for the dodecahedron and
the icosahedron verifying their connection with the golden mean. For exam�
ple, if we take the icosahedron and the dodecahedron with edge length equal
to 1 and compute their external areas and volumes, then they will be expressed
in terms of the golden mean (see Table 3.4).

Thus, there are a large number of relations obtained by the mathemati�
cians of antiquity, which verify the remarkable fact, that the golden mean is
the main proportion of the dodecahedron and icosahedron. A connection of
the golden mean with dodecahedron and icosahedron is especially interesting
from the point of view of the so�called “dodecahedron�icosahedron doctrine”
considered below.

3.1.5. Plato’s Cosmology

We mentioned above that the regular polyhedra were named Platonic Sol�
ids because they played a very important part in Plato’s cosmology.

In Plato’s cosmology, the first four polyhedra personified
four “essences” or “elements.” The Tetrahedron symbolized Fire
with its top pointed upwards; the Icosahedron symbolized
Water as the most “fluid” polyhedron; the Cube symbolized
Earth, as the “steadiest” polyhedron; the Octahedron symbol�
ized Air presumably the most “aerial” polyhedron. The fifth
polyhedron, the Dodecahedron, symbolized “the real World,”
“Universal Reason,” and was considered the main geometrical
figure of the Universe or entire Cosmos.

 Icosahedron  Dodecahedron  

Outer area  5 3  
15

3
 

Volume  
55

6
 

35

2(3 )
 

Table 3.4. The golden mean in the areas and volumes of the icosahedron and dodecahedron

Plato
(427 � 347 BC)
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The ancient Greeks considered harmonious relations as a basis of the Uni�
verse, therefore the first four “elements” were connected by the following pro�
portion: Earth/Water = Air/Fire. According to Plato, the atoms of the “ele�
ments” are in perfect consonances similar to four strings of lyre. It is pertinent
to tell that such system of “elements” that includes the four elements, Earth,
Water, Air and Fire, was canonized also by Aristotle. These four “elements”
remained the four fundamental stones of the Universe within many centuries.
Here we can use an analogy with today’s well�known four states of substance:
rigid, liquid, gaseous and plasma.

Thus, the ancient Greek idea about the Harmony of the Universe was bound
together with its embodiment in the Platonic Solids. Plato’s idea about the role
of the regular polyhedra in the structure of the Universe influenced Euclid in
his Elements. In this famous book, which over the centuries was the unique text�
book of geometry, a description of “ideal” lines and figures is given. A straight
line is the most “ideal” line, and also the regular polygons and polyhedra are the
most ideal geometric figures. It is interesting that Euclid’s Elements begins with
the description of an equilateral triangle that is the simplest regular polygon
and ends with a study of the five Platonic Solids. We mentioned above that the
theory of the Platonic Solids was stated in the 13th, that is, final book of Eu�
clid’s Elements. That is why, the ancient Greek mathematician Proclus, a com�
mentator on Euclid, put forward the interesting hypothesis about the true pur�
pose for which Euclid wrote the Elements. In Proclus’ opinion, Euclid wrote his
Elements in order to provide a complete theory of the construction of the “ideal”
geometric figures, in particular, the five Platonic Solids. In passing he gave in
the Elements some advanced achievements of the Greek mathematics necessary
to give a complete theory of the “ideal” geometric figures! Thus, we can consid�
er Euclid’s Elements as the first historically geometric theory of the Harmony of
the Universe, based on the “Golden Section” (division in extreme and mean
ratio) and the Platonic Solids!

3.2. Archimedean Solids and Star�shaped Regular Polyhedra

3.2.1. Archimedean Solids

There are 13 semi�regular convex polyhedra attributed to Archimedes.
This well�known set of the perfect geometric figures is named Archimedean or
Semi�regular Polyhedra.
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The Archimedean Solids can be divided into several
groups. The first group consists of the five polyhedra that
are formed from the Platonic Solids by means of the trun�
cation of their vertices. For the Platonic Solids the trunca�
tion can be made in such a manner that the new faces and
the remaining parts of the old faces are regular polygons.
For example, the tetrahedron (Fig. 3.4�а) can be truncated
so that its four triangular faces are converted into hexago�
nal faces and the four new regular triangular faces are add�
ed to them. In this manner the five Archimedean Solids are obtained: Truncat�
ed Tetrahedron, Truncated Hexahedron (Cube), Truncated Octahedron, Trun�
cated Icosahedron, and Truncated Dodecahedron (Fig. 3.5).

Figure 3.5. Archimedean solids: (а) truncated tetrahedron, (b) truncated cube, (c) truncat�
ed octahedron, (d) truncated dodecahedron, (e) truncated icosahedron

In his Nobel lecture (1996) the American chemist Richard E. Smalley, one of
the authors of the experimental discovery of fullerenes, spoke about Archimedes
(287 � 212 BC) as the first researcher of truncated polyhedra, in particular, the
Truncated Icosahedron. It is his opinion, however, that Archimedes may have as�
cribed to himself this discovery, even though the icosahedron was truncated long
before him. All these solids were described by Archimedes, although, his original
works on this topic were lost and were known only from second�hand sources.
Various scientists gradually rediscovered all these polyhedra during the Renais�
sance, and Kepler finally reconstructed the entire set of Archimedes’ polyhedra in
his 1619 book The World Harmony (“Harmonice Mundi”).

How we can construct the Archi�
medean truncated icosahedron from the
Platonic icosahedron? The answer to this
question is given in Fig. 3.6. We can see
from Table 3.2 that five faces converge in
each of the 12 vertices of the Platonic icosa�
hedron. If we truncate 12 vertices of the
icosahedron by a plane, then 12 new pentagonal faces will be formed. The old
triangular faces are converted into hexagonal faces. 12 new pentagonal faces to�

Figure 3.6. Construction of the
Archimedean truncated icosahedron

from the Platonic icosahedron

Archimedes
(287 – 212 BC)

a) b) c) d) e)
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gether with 20 hexagonal faces compose a truncated icosahedron with 32 faces.
Here the edges and vertices are equal to 90 and 60, respectively.

Another group of Archimedean solids consists of two quasi�regular polyhe�
dra. A polyhedron is called Quasi�regular if it consists of two sets of regular
polygons, let’s say, m�sided and n�sid�
ed, respectively, and it is constructed so
that each polygon of the first set is com�
pletely surrounded by polygons of the
second set. There are two quasi�regular
Archimedean solids named Cuboctahe�
dron and Icosidodecahedron (Fig. 3.7).
For the cuboctahedron (Fig. 3.7�a) m =
3, n = 4, and for the icosidodecahedron
(Fig. 3.7�b) m = 3, n = 5.

There are two Archimedean solids called the Rhombicuboctahedron
(Fig. 3.8�a) and the Rhombicosidodecahedron (Fig. 3.8�b). The rhombicubocta�
hedron (Fig. 3.8�a) consists of two kinds of faces, squares and triangles. Each square

is surrounded by four squares and each tri�
angle is surrounded by three squares.

Some believe that the rhombicosi�
dodecahedron (Fig. 3.8�b) is the most
attractive among the Archimedean sol�
ids. The rhombicosidodecahedron con�
sists of pentagons, squares and triangles.
Each pentagon is surrounded by five
squares and there is a triangle surround�
ed by three squares.

Finally, there are two so�called “snub�nosed” versions of the Archimedean
solids – one for the hexahedron (cube), Snub Hexahedron (Fig. 3.9�a), another –
for the dodecahedron, Snub Dodecahedron (Fig. 3.9�b). The snub hexahedron (Fig.
3.9�a) consists of six squares surround�
ed by triangles. Each square is surround�
ed by four triangles. Each triangle ad�
joined to a square is surrounded by two
triangles. The same idea underlies a snub
dodecahedron (Fig. 3.9�b). It consists of
12 pentagons where each is surrounded
by five squares. The gap between squares
is filled by triangles.

a) b)

Figure 3.7. Cuboctahedron (a) and
icosidodecahedron (b)

a) b)
Figure 3.8.

Rhombicuboctahedron (a)
and rhombicosidodecahedron (b)

a) b)

Figure 3.9. Snub hexahedron (a) and
snub dodecahedron (b)
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3.2.2. Star�shaped Regular Polyhedra

In Polyhedron Models by M. Wenninger [147] we find 75 various mod�
els of regular and semi�regular polyhedra. The Russian mathematician
Ljusternak, who made much of this area, wrote: “A theory of polyhedra,
in particular, the convex polyhedra, is one of the most fascinating chap�
ters of geometry.” The development of this theory is connected with the
names of several outstanding scientists. We mentioned Kepler’s contri�
bution to the development of the theory of polyhedra. He wrote the etude
About snowflakes where he noted the following: “Among the regular poly�
hedra the cube is the very first one, the beginning and the primogenitor
of others, if it is permissible so to say, its spouse is the octahedron be�
cause it has as many vertices as the cube has faces.” Kepler published a
full list of the 13 Archimedean solids and gave them the names under
which they are now known.

Also Kepler started to study the so�called Star�shaped Polyhedra that un�
like Platonic and Archimedean Solids are regular concave polyhedra. In the
beginning of the 19th century the French mathematician and physicist Poin�
sot (1777 � 1859), whose geometric works relate to star�shaped regular poly�
hedra, followed Kepler’s work and discovered two new star�shaped regular
polyhedra. So, thanks to Kepler and Poinsot’s works, four types of the star�
shaped regular polyhedra (Fig. 3.10) became known. In 1812, the French math�
ematician Cauchy (1789 � 1857) proved that other star�shaped regular poly�
hedra do not exist.

Many readers may ask a question: “For what purpose is it necessary to
study regular polyhedra? What benefit can we have from them?” We could
answer this question by another question: “What benefit can we derive from
music or poetry? Is all that is beautiful merely useful?” The models of polyhe�
dra presented in Figs. 3.4�3.10, first of all, make an aesthetic impression upon
us and can be used
as decorative orna�
ments. However, it
will be shown that a
wide manifestation
of regular polyhedra
in natural structures
caused a great deal
of interest in mod�
ern science.

Figure 3.10. Star�shaped regular polyhedra
(Kepler�Poinsot solids)
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3.3. A Mystery of the Egyptian Calendar

3.3.1. What is a Calendar?

A Russian proverb states: “Time is the eye of history.” Everything that
exists in the Universe: the Sun, the Earth, stars, planets, known and unknown
worlds – they all have spatial�temporal measurement. Time is measured by
observation of the periodically repeating processes of definite duration.

In remote antiquity people noted that the day is always followed by night,
the seasons of the year alternating on a regular basis: after the winter the spring
comes, after the spring the summer, after the summer the autumn…

 By searching for the cause of these phenomena, a person paid attention to
the celestial heavenly bodies, the Sun, the Moon, stars, and the strict period�
icity of their movement in the firmament. It was the first celestial observa�
tions that preceded the origin of astronomy, one of the most ancient sciences.
As the basis of time measurement, the astronomers had used three important
astronomical phenomena: rotation of the Earth around the axis, motion of the
Moon around the Earth and motion of the Earth around the Sun. The various
concepts of time often depended on the physical phenomenon used for time
measurement. Astronomy knows of a stellar time, solar time, local time, zone
time, nuclear time, etc. The Sun, as well as all other heavenly bodies, partici�
pates in the motion of the firmament. Except for diurnal motion, the Sun has
so�called annual motion, and the totality of the annual motion of the Sun on
the firmament is an Ecliptic. If, for example, we fix the location of the constel�
lations at some definite moment of time and then repeat this observation each
month, we can see different pictures of the palate. A view of the starry sky
changes continuously: each season has its own picture of vesper constella�
tions recurring yearly. Therefore, on the expiration of one year the Sun re�
turns to its initial location in the starry sky.

To be oriented conveniently in the stellar world, astronomers divided the
entire firmament into 88 constellations. Each of them has its own name. Among
the 88 constellations, those that are on the ecliptic, play a special role. These
constellations have a generalized title – “the zodiac” (from the Greek word
“zoop” – animal), and are widely known throughout the world as symbols
(signs) with a variety of allegorical meanings and calendar systems.

During its apparent movement along the ecliptic, the Sun intersects 13
constellations. However, astronomers found it necessary to divide the Sun’s
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path into 12 parts (not 13), by uniting the constellations of Scorpions and the
Dragon in one unified constellation under the common name Scorpio.

The special science of Chronology studies the problems of time measure�
ment. This science underlies all calendar systems constructed by mankind. In
antiquity the creation of calendars was one of the major problems of astronomy.

What are “calendars” and “calendar systems?” The word “calendar” orig�
inated from the Latin word “calendarium” which meant a “debt book”; in An�
cient Rome interest was tracked in such books and was to be paid on the first
day of each month, called “calendas.”

The calendar makers paid great attention to periodicities in the motion of the
Sun, the Moon, as well as, Jupiter and Saturn, the two gigantic planets of the
Solar system. The idea of Jupiter’s calendar with the celestial symbolism of a 12�
year animal cycle may be connected to the rotation of Jupiter, which makes its
full rotation around the Sun in approximately 12 years (11.862 years). On the
other hand, Saturn, the second gigantic planet of the Solar system, makes its full
rotation around the Sun in approximately 30 years (29.458 years). By wishing to
coordinate the cyclic movements of the gigantic planets, the ancient Chinese in�
troduced the idea of a 60�year cycle of the Solar system. During this cycle, Saturn
makes 2 full rotations around the Sun, and Jupiter makes 5 rotations.

From antiquity the calendar makers of Eastern and South�East Asia made
use of the following astronomical phenomena: alternation of day and night,
change of lunar phases and alternation of seasons. The use of different astro�
nomical phenomena resulted in the creation of three kinds of calendars: the
lunar one based on the motion of the Moon, the solar one based on the motion
of the Sun, and the combination lunar�solar one.

3.3.2. Structure of the Egyptian Calendar

The Egyptian calendar that was produced in the 4th millennium BC was
one of the first solar calendars. One year in this calendar consisted of 365
days. One Year was divided into 12 months, each Month consisted of 30 days;
at the end of the year the 5 holidays that were not part of the month structure
were added. Thus, the Egyptian calendar year had the following structure:
365 = 12×30 + 5. It is important to note that the Egyptian calendar is a prede�
cessor of the contemporary calendar.

Why the Egyptians divided the calendar year into 12 months? We know
that there were calendars with other numbers of months in the year. For ex�
ample, in the Maya calendar one year consisted of 18 months, each month
being 20 days. Furthermore, why did each month in the Egyptian calendar
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have exactly 30 days? One may ask questions concerning the Egyptian sys�
tem of time measurement, in particular, regarding the choice of such units of
time, such as Hour, Minute and Second. In particular, the question is: why was
unit of hour chosen so that 1 day=24(2×12) hours? Further, why 1 hour=60
minutes, and 1 minute=60 seconds? The same questions concerning the choice
of the measurement units of angular magnitudes, in particular, why is a cir�
cumference divided into 360° that is, why 2π=360°=12×30°? We can ask oth�
er questions, for example: why do astronomers find it expedient to introduce
12 “zodiacal” constellations, instead of the 13 the Sun appears to intersect
during its motion along the ecliptic? And why does the Babylonian number
system have a rather esoteric radix, the number 60?

3.3.3. Connection of the Egyptian Calendar with the Numerical
Characteristics of the Dodecahedron

Analyzing the above questions we discover with surprising consistency
the following four numbers are repeated: 12, 30, 60 and the derivative num�
ber 360 (360=12×30). Is there some scientific fact that could give a simple
and logical explanation of the use of these numbers in the Egyptian calen�
dar, and their system of time and angle measurement? To answer this ques�
tion, we return once again to the regular dodecahedron based on the golden
section (Fig. 3.4�e).

Did the Egyptians know the dodecahedron? Historians of mathematics
recognize that the ancient Egyptians had information about the regular poly�
hedra. The ancient Greek mathematician Proclus attributes to Pythagoras
the construction of all 5 regular polyhedra. However, we know that Pythago�
ras borrowed from the ancient Egyptians many mathematical theorems and
discoveries, in particular, the Pythagorean Theorem. Some accounts claim
Pythagoras spent 22 years in Egypt and 12 years in Babylon. Therefore, it is
possible that Pythagoras could have also borrowed the knowledge about the
regular polyhedra from the ancient Egyptians.

However, there is more substantial proof that the Egyptians possessed
information about all 5 regular polyhedra. In particular, the British Muse�
um has preserved the dice from Ptolemy’s epoch that have the form of an
icosahedron, the Platonic dual to the dodecahedron. These facts allow us to
put forward the hypothesis that the dodecahedron was known to the Egyp�
tians. The very unusual theory of the origin of the Egyptian calendar, as
well as the Egyptian measurement system of the time and geometric angles
follows from this hypothesis.
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Earlier we found that the dodecahedron has 12 faces, 30 edges and 60
planar angles on its surface. If we accept the hypothesis that the ancient Egyp�
tians knew the dodecahedron and its numerical parameters 12, 30 and 60, then
the scientists of antiquity should not have been surprised, when they discov�
ered that the cycles of the Solar system are expressed by the same numbers
(12�year cycle of Jupiter, 30�year cycle of Saturn, and 60�year cycle of the
Solar system). Thus, there is a deep mathematical connection between the
Solar system and this perfect spatial figure, the dodecahedron. Scientist of
antiquity apparently came to this conclusion. This may explain why the Egyp�
tians (and Plato) chose the dodecahedron as the “Main Geometric Figure,”
that symbolizes the “Harmony of the Universe.” It appears that the Egyptians
made all their main systems (calendar system, systems of time and angle mea�
surement) correspond to the numerical parameters of the dodecahedron! Ac�
cording to ancient thought, the motion of the Sun on the ecliptic was strictly
circular. By then choosing the 12 Zodiac constellations with the distance of
30°, the Egyptians were able to coordinate the yearly motion of the Sun on
the ecliptic with the structure of their calendar year: one month correspond�
ed to the apparent motion of the Sun along the ecliptic between two adja�
cent Zodiacal constellations! Moreover, the movement of the Sun one de�
gree along the ecliptic corresponded to one day in the Egyptian calendar!
Thus, the ecliptic was divided automatically into 360°. By dividing one day
into two parts, the Egyptians thereby automatically divided each half of one
day into 12 parts (12 faces of the dodecahedron) and introduced the Hour, a
major unit of time. By dividing one hour into 60 minutes (60 planar angles on
the surface of the dodecahedron), the Egyptians introduced the Minute, the
next important unit of a time. And of course this allowed them to introduce
the Second (1 minute = 60 seconds), the smallest unit of time in that period.

Thus, by choosing the dodecahedron as the Main Harmonic Figure of
the Universe and by following strictly to its numerical characteristics (12, 30
and 60), the Egyptians designed a perfect calendar together with the systems
of time and angle measurement that have stood the test over several millen�
nia. These systems of course correspond to the golden mean “Theory of Har�
mony,” the underlying proportional basis of the dodecahedron.

These surprising conclusions follow from a simple comparison of the dodeca�
hedron with the Solar system. And if our hypothesis is correct (let somebody
attempt to deny it), it follows that for several millennia mankind has lived under
the standard of the golden section! And each time, when we look at the index dial
of our watch based on the numerical parameters of the dodecahedron 12, 30 and
60, we touch the “Main Secret of the Universe,” the “Golden Section!”
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3.3.4. The Mayan Calendar

The Maya were a very advanced race that made great achievements in the
fields of mathematics and astronomy. Their calendar was, at the time, the most
accurate calendar in the world, surpassed later only by the current Gregorian
calendar (introduced in the 16th century). Their calendar was the product of
the obsession with measuring long periods of time, which they tracked by means
of highly accurate observations of the stars and the planets. The Mayan calen�
dar had the following structure: 1 year=360+5=20×18+5. Unlike the Egyptian
calendar, the Mayan calendar year was divided into 18 months of 20 days. It is
clear that the structure of the Mayan calendar was similar to the structure of
the Egyptian solar calendar: 1 year=360+5=12×30+5. Remember that the num�
bers 12 and 30 are numerical parameters of the dodecahedron. However, what
does the number 20 refer to in the Maya calendar? Let us address again the
icosahedron and the dodecahedron. In these “sacred” figures, there is one more
“sacred” numerical parameter: the number of the icosahedron faces is 20 and
the number of the dodecahedron vertices is 20! Thus, the Maya undoubtedly
used these numerical characteristics of the icosahedron and dodecahedron in
their calendar by means of the division of one year into 20 months.

3.4. A Dodecahedron�Icosahedron Doctrine

3.4.1. Sources of the Doctrine

Plato’s cosmology became a source of the so�called Dodecahedron�Icosa�
hedron Doctrine, which by a golden thread passes through all human science.
The essence of this doctrine consists in the fact that the dodecahedron and
the icosahedron are typical forms of Nature in all its manifestations from the
macrocosm down to the microcosm.

According to the remark of one commentator on Plato’s works, for Plato
“all cosmic proportionality is based on the principle of the “golden” or har�
monic proportion.” Plato’s cosmology is based on the Platonic Solids. Each
Platonic Solid symbolized one of the five “beginnings” or “elements”: the Tet�
rahedron – the body of Fire, the Octahedron – the body of Air, the Hexahedron
(Cube) – the body of Earth, the Icosahedron – the body of Water, the Dodeca�
hedron – the body of the Universe. A representation of the general harmony of
the Universe was invariably associated with its embodiment in these regular
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polyhedra. The fact that the dodecahedron, the “Main Cosmic Figure,” was
based on the golden section gave to the latter a deep sense in its qualifying to
be the “Main Proportion of the Universe.”

We mentioned above that, according to Proclus, the commentator on Eu�
clid’s Elements, Euclid did consider a theory of geometric construction of the
Platonic Solids, the “Main Geometric Figures of the Universe,” as the main
goal of Euclid’s Elements. Therefore, Euclid placed this major mathematical
information in the final, that is, 13th book of his Elements.

3.4.2. A Shape of the Earth

The question about Earth’s shape has perennially attracted the attention of
scientists since antiquity. When the hypothesis about the spherical shape of the
Earth received scientific substantiation, the idea arose that the Earth is a dodeca�
hedron in shape. Socrates wrote: “The Earth,  if to look at it from outside, is sim�
ilar to the ball consisting of 12 pieces of skin.” Socrates’ hypothesis found further
scientific development in the works of physicists, mathematicians and geologists.
So, the French geologist de Bimon and the French mathematician Poincare pro�
posed the hypothesis that the Earth is a deformed dodecahedron in shape.

In the first half of the 20th century, the Russian geologist Kislitsin pro�
posed the hypothesis that 400�500 million years ago the geo�sphere’s dodeca�
hedral shape was converted into the geo�icosahedron. However, such trans�
formation appeared incomplete. As a result, the geo�dodecahedron appeared
as if to be inserted into the frame of the icosahedron.

Recently, the Moscow researchers Makarov and Morozov have proposed
another interesting hypothesis that concerns the shape of the Earth. They
supposed that the kernel of the Earth has the shape and properties of a grow�
ing crystal that is either a dodecahedron or icosahedron. This crystal influ�
ences the development of all natural processes that occur on our planet. Its
energetic field is the cause of this dodecahedral�icosahedral structure of the
Earth. The influence of this energetic field reveals itself in the fact that we
find evidence on the Earth’s surface of the dodecahedron and the icosahedron
as if they were inserted into the globe.

In recent years, the hypothesis about the icosahedron�dodecahedron shape
of the Earth was subjected to verification. For this purpose, scientists com�
bined the axis of the dodecahedron with the axis of the Globe; then they start�
ed to rotate the dodecahedron around this axis. They saw that the edges of
the dodecahedron coincide with the gigantic disturbances of Earth’s crust.
Then they started to rotate the icosahedron around the Globe. They saw that

′



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

154

its edges coincide with the smaller�sized partitioning of Earth’s crust (moun�
tain ranges, breaks etc.). These observations support the hypothesis of the
closeness of the tectonic framework of Earth’s crust with the shapes of the
dodecahedron and the icosahedron.

It is as if the vertices of the hypothetical geo�crystal are the centers of cer�
tain anomalies on the planet: in them all global centers of extreme atmospheric
pressure including the regions of hurricane origin are located. In one of the hubs
of the geo�icosahedron (in Gabon) the natural nuclear reactor, which acted 1.7
million years ago, was found. The gigantic mineral fields (for example, Tyumen’s
oil field), the anomalies of the animal world (the lake of Baikal), the centers of
the development of mankind’s civilizations (Ancient Egypt, Northern Mongo�
lia, etc.) coincide with many of the vertices of the two polyhedra. All of these
examples tend to confirm Plato’s surprising intuition.

3.5. Johannes Kepler: from “Mysterium” to “Harmony”

3.5.1. “Mysterium Cosmographicum”

Among the fathers of the new European science there was not a person
more mysterious than Johannes Kepler: it seems that he connected two scien�
tific epochs not only by his “elliptic” astronomical works, but also his unique
personality. On the one hand, Kepler was a professional astrologer, a dreamer
and visionary, whose style of thinking was unacceptable to the creators of clas�
sical science, including Galileo and Newton. On the other hand, this astrolo�
ger, almost medieval in his style of thinking, introduced basic concepts into
science. The modern, that is, mechanistic concept of Force was introduced by
Kepler. He introduced the concept of Inertia that distinguishes modern phys�
ics from all former physics. At the same time he introduced the concept of
Energy. However, the discovery of New Quantitative Laws of Astronomy was
his main scientific achievement. Kepler is the founder of physics of the heav�
ens. This remarkable word�combination is a subtitle of his basic work: “New
Astronomy based on the Causes, or Physics of the Heavens.”

Johannes Kepler is known by all of educated mankind as the author of
three famous astronomical laws that overturned astronomical ideas that had
existed from antiquity. However, it is less well�known that these laws were
obtained by Kepler as insights resulting from his ambitious research program
into Universal Harmony that he pursued at a young age.
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Johannes Kepler was born in 1571 into a poor Protestant family. In 1591,
he enrolled in the Tubingen Academy where he received quite good mathe�
matical education. In the Tubingen Academy the future great astronomer be�
came acquainted with the heliocentric system of Nicolaus Copernicus. After
graduation from the Academy, Kepler obtained a Masters degree and then
was appointed mathematics professor at the Graz secondary school (Austria).
The small book with the intriguing title Mysterium Cosmographicum, his first
astronomical work, was published by Kepler in 1596 at the age of 25.

Reading the Mysterium Cosmographicum, it is impos�
sible not to be surprised by his visionary insights. A deep
belief in the existence of the Harmony of the Universe was
Kepler’s main idea.

Kepler formulated the purpose of his research in the
Foreword as follows:

“To you kind reader! In this book I intend to demonstrate
that our almighty God at the creation of our moving world
and at the disposition of the celestial orbits used the five reg�
ular polyhedra that are from Pythagoras’ and Plato’s times
and up to now have received great honor. He chose the number and proportions
of the celestial orbits and also the relations between the planetary motions pursu�
ant to the nature of the regular polyhedra. I am especially interested in the nature
of three things: why are the planets arranged this way and not otherwise, namely,
the number, sizes and motions of the celestial orbits.”

So, already in the Foreword of his first book the 25�year�old Kepler put
forward the main problem of contemporary physics, the problem of the natural
causes of physical phenomena. Though natural today, this problem in Kepler’s
times sounded unusual. In Ptolemy’s and even in Copernicus’ astronomy, this
problem had not been formulated. According to that old tradition, the astrono�
mers considered a problem of their science only in terms of a precise description
of planetary motion and the possible prediction of celestial phenomena.

3.5.2. Kepler’s Cosmic Cup

How did Kepler answer the surprising questions raised by him in Mysteri�
um Cosmographicum? After the verification of the numerous hypotheses con�
nected with the arrangement of planets, Kepler found the following geometri�
cal model of the Solar system based on the “Platonic solids” (see Fig. 3.11):

“Earth’s orbit is the measure of all orbits. We place the dodecahedron
around this orbit. The orbit around the dodecahedron is Mars’ orbit. We place

Johannes Kepler
(1571�1630)
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the tetrahedron around Mars’ orbit. The orbit around the tetrahedron is Jupi�
ter’s orbit. We place the cube around Jupiter’s orbit. The orbit around the
cube is Saturn’s orbit. Then we insert the icosahedron inside Earth’s orbit.
The orbit inside the icosahedron is Venus’ orbit. We insert the octahedron
inside Venus’ orbit. The orbit inside the octahedron is Mercury’s orbit.”

This model gave Kepler an opportunity to collect together all Platonic Solids
so that they could unite the then “known” planetary spheres. There are only 5
Platonic Solids and only 5 interplanetary spaces, and all of them appear to allow
the regular polyhedra to be placed in them. Could this be mere coincidence?

Kepler’s Cosmic Cup (Fig. 3.11) that inserts the
Platonic Solids into the crystalline spheres embod�
ies this model of reality. The most precious trea�
sure of ancient geometry, the Platonic Solids, were
used in Kepler’s astronomy. After that Kepler had
the right to say that he comprehended the Universe
as if he created it with his own hands.

Kepler sent his Mysterium Cosmographicum to
Galileo and Brahe and received reassuring respons�
es from them. Armed with this support, Kepler ad�
dressed the court of Wurttemberg’s duke Freder�
ick in hopes of receiving the means for the creation
of the new model of the Universe, the Cosmic Cup,

in silver. On his application the duke recommended that he first make it in cop�
per. The astronomer began to glue a paper model and then threw out the result
after one week of hard work.

Certainly, the creation of the Cosmic Cup was a great success for the young
astronomer. This scientific result had brought scientific renown to Kepler. How�
ever, this success was incomplete and even somewhat doubtful, because Kepler’s
basic scientific purpose had not been achieved. In his first scientific work, Kepler
merely anticipated the secret of the world. The Cosmic Cup provided him with
access into the invaluable observational data collected in the Heavenly Castle of
Tycho Brahe. Kepler assisted the great astronomer in the study of Mars. By using
Brahe’s data, the most exact in the world, he intended to polish his new Cosmos,
faceted by Platonic Solids, into a cosmic brilliance. It was necessary only to deter�
mine how the planetary orbits could be placed into the Cosmic Cup.

The Cosmic Cup resulted in an important conclusion that disclosed the main
secret of the Universe: the Universe is created on the basis of a general geomet�
ric principle, the regular polyhedra! Unfortunately, Kepler’s joy was premature.
In spite of his over�fervid character, Kepler had all the characteristics of a seri�

Figure 3.11. Kepler’s Cosmic
Cup as a model of the Solar

system
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ous scientist. He believed that the theory should fit the observational data. By
restraining his delight, Kepler undertook to verify his model.

The universal geometric principle allowed Kepler to give answers to two of
the three problems that had been raised by him: (1) to explain the number of
the then known planets (with the help of the five Platonic Solids, it is possible
to construct 6 orbits; the conclusion follows regarding the existence of 6 planets
known in that period); (2) to give an answer about the distances between plan�
ets. The answer to the third problem (about the motion of planets) turned out
to be the most difficult and Kepler only attained this answer many years later.

3.5.3. Discovery of Kepler’s First Two Astronomical Laws

Kepler’s model in Fig. 3.11 was based upon the supposition that nature’s
planetary motion is spherical. By obtaining data from the perennial observa�
tions of the famous astronomer Brahe, and then carrying out his own observa�
tions, Kepler decided to reject the astronomical models of his forerunners,
Ptolemy and Copernicus, and even his own models. After a thorough study of
the planetary orbits, he came to the following conclusion:

“The fact that planetary motions are circular is confirmed by their inces�
sant recurrence. The human intellect, by extracting this truth from experi�
ence, at once concludes from here, that the planets are rotated on the ‘ideal’
circles, because among the planar figures a circle and among the spatial fig�
ures a sphere can be considered as the most perfect geometric figures. Howev�
er, after closer examination we can conclude that experience gives another
result, namely, the planetary orbits differ from simple circles.”

The results of this work are presented in Kepler’s main book A New As�
tronomy Based on the Causes, or Physics of the Heavens published in 1606. The
importance of this book consists, first of all, of the fact that Kepler therein
formulates the first two of three astronomical laws named after him. Accord�
ing to Kepler’s First Law, the orbit of each planet is an Ellipse with the Sun as
one of its foci. Kepler’s Second Law asserts that the areas, covered by the radii�
vectors of the planets, are constant.

Kepler’s Laws are the first quantitative laws that are of great importance
for the development of astronomy. By testing the Cosmic Cup, Kepler found
that this model based upon circular planetary orbits did not fit the experi�
mental data. Therefore, Kepler decided to reject the idea of circular planetary
motion. After numerous and difficult calculations Kepler found that the or�
bits of planets were not circles but Ellipses. This result dramatically altered
much of the basis of previous cosmology.
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3.5.4. “Harmonices Mundi”

Kepler’s third astronomical law, formulated by him in Harmonices Mundi
(The Harmony of the World) completed the creation of a new astronomy.

Kepler’s first two laws could not answer one major question of astronomy.
How is it that the planetary distances from the Sun change? Kepler tried to
grasp a new principle for the solution to this challenge. He used his philo�
sophical views going back to Pythagoras and Plato. According to Kepler’s
deep belief, Nature was created by God on the basis of not only mathematical,
but also harmonious principles. Kepler believed in the “music of the spheres”
that generate bewitching melodies embodied not in sounds, but in the move�
ments of the planets capable of generating harmonious chords. Based on this
idea, Kepler combined mathematical and musical arguments to discover the
third law of planetary motion that asserts the following:

“If Т is the cycle of time of a planet’s orbit around the Sun, and D is its
middle distance from the Sun, then they are connected by the following cor�
relation: T 2=kD3, where k is a constant value equal for all planets.”

Kepler arrived at the following conclusion from this discovery: “Thus, the
heavenly movements are a never ending polyphonic music that is perceived
by the human intellect, but not the ear.”

The Russian scientist Predtechensky (1860�1904), Kepler’s biographer,
wrote about this Kepler’s discovery as follows: “The wonderful harmony, reign�
ing in the world, was perceived by Kepler not only in an abstract sense of the
organization of the Universe. The harmony was sounding in its poetic soul by a
true form of music, which could be understood by us if we could enter into the
circle of his ideas and would be imbued with his mighty enthusiasm about the
marvelous construction of the world and the Pythagorean belief in numerical
relations. Really, it is surprising that what makes sounds ‘beautiful’ for hearing
depends upon a strict numerical ratio, for example, between the lengths of the
strings, which produce the sounds as discovered by Pythagoras. But in Kepler,
undoubtedly, part of Pythagoras’ soul lived on, and it is not accidental that he
saw the numerical ratios in the planetary cosmos.”

Kepler’s third Law is the outstanding scientific result, at the summit of
his career. The result obtained filled Kepler’s soul with great joy and grati�
tude for the Creator. He expressed this gratitude in the following words:

“The wisdom of the Creator is endless and his glory and power are bound�
less. You, the heavens, glorify and praise be to Him! The Sun, the Moon and
the planets, glorify God with their ineffable language! Celestial harmonies,
comprehended by His wonderful creations, do glorify and praise to Him! Let
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my soul eulogize the Creator! Everything is built by Him and everything is
embodied within Him. Everything the best which is known to us is created by
Him in our bustling life. Praise, Honor and Glory to Him for all of eternity!”

The dramatic period in astronomical development was completed. This pe�
riod ended with the discovery of three major astronomical laws of planetary
motion, Kepler’s Laws. This history started with an original model of the Solar
system based on the Platonic Solids. Though Kepler’s model, in the end, ap�
peared somewhat erroneous, Kepler did not reject from this model what he de�
scribed in his Mysterium Cosmographicum. He always considered this model to
be one of his greatest scientific achievements. By submitting to the requests of
his friends, Kepler in the twilight of his life decided to undertake the second
main issue of his first book “for benefit not only to booksellers, but also scien�
tists.” Addressing the new readers, Kepler wrote in the dedication with pride:

“Almost 25 years have passed since I issued a small book Mysterium Cos�
mographicum. Though in that time I was very young and this publication was
my first astronomical work, nevertheless the success accompanying this book
in subsequent years, testifies eloquently that no one could write a first book
with a more substantive, successful and valuable treatment of the subject. It is
as if an oracle from the heavens dictated through me the chapters of this book,
because all of them, as is generally accepted, were excellent and corresponded
to the truth. During the 25 years, the chapters of this book illuminated my
way in astronomy many times. Almost all my astronomical works, which I
published by this time, had their beginning in one or another chapter of my
first book, and therefore these later books can be considered to be a more in�
depth or more complete presentation of these original chapters.”

3.5.5. Life through the Centuries

Kepler’s life is an example of scientific selflessness based upon the timeless
belief in the Harmony of the Universe. His entire life was a struggle on two
fronts. On the one hand, the “mathematician of the famous province Stiria” strug�
gled against poverty and the almost intolerable “life” of the poor having so many
children. His life was accompanied by the depression of his wife, the untimely
deaths of his children, the charges of sorcery against his mother, and the dull�
ness of coreligionists. On the other hand, Kepler’s scientific life was a world of
calculations, improbable in their complexity. “The intense, incessant and vigor�
ous thoughts” were the basis of Kepler’s unique scientific life.

However, old age was coming. Kepler’s death (in 1630) interrupted his
work on the last book Somnium (Dreams), a science fiction novel about flight



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

160

to the Moon. Unfortunately, the Harmony was not written in this book. There
were no captious verifications; there were no new hypotheses. Kepler was tired:
“My brain got tired when I attempted to understand what I wrote, and it is
already difficult for me to re�establish a connection between figures and text
found by me at an earlier time …”

So, the drama had been finished. With Kepler’s death, his discoveries were
forgotten. Even the wise Descartes did not know about Kepler’s works. Gali�
leo had not found necessary to read his books. Only in Newton’s works Ke�
pler’s Laws find a new life. However, the Harmony is not of interest to New�
ton. He is interested in Equations. A new era had arrived.

Kepler’s life terminated the epoch of “scientific romanticism,” the epoch
of the Harmony of the Golden Section that is characteristic of the Renais�
sance. On the other hand, his scientific works became the beginning of the
new science that started with the works of Descartes, Galileo and Newton.

And in conclusion we once again remember Kepler’s well�known state�
ment about the Golden Section:

“Geometry has two great treasures: one is the Theorem of Pythagoras; the
other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel.”

For those, who treat skeptically Kepler’s comparison of the Pythagorean
Theorem with the Golden Section, we should remind them that Kepler was
not only a great astronomer, but also a great mathematician! Predictions of
great scientists can sometimes dramatically advance the development of a sci�
ence. The development of modern science confirms that Kepler was right: the
Golden Section becomes one of the major ideas of modern science!

Unfortunately, after Kepler’s death, the Golden Section, that was consid�
ered by him to be one of the great “treasures of geometry,” was forgotten. This
unfortunate ignorance was continued for almost two centuries. With few ex�
ceptions interest in the Golden Section was revived only in the 19th century!

3.6. The Regular Icosahedron as the Main Geometrical Object of Mathematics

3.6.1. Felix Klein

Among the five Platonic Solids, the icosahedron and the dodecahedron
have a special place. In Plato’s cosmology the icosahedron symbolizes Water,
and the dodecahedron � the Harmony of the Universe. These two Platonic
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Solids are connected directly with the pentagon and through it the Golden
Section. The dodecahedron and icosahedron give rise to the so�called “icosa�
hedron�dodecahedron doctrine” that permeates the history of human culture
from Pythagoras and Plato up to the present. It is not an accident that this
doctrine received a unique boost or development in the works of the German
mathematician Felix Klein (1849�1925).

Felix Klein, a graduate of the University of Bonn, was born
in 1849 and died in 1925. Beginning in 1875 he worked as a
Professor of the Higher Technical School in Munich, then from
1880 as a Professor of the University of Leipzig. In 1886 he
arrived in Gettingen, where he headed the Mathematical In�
stitute of the University of Gettingen. During the first quar�
ter of the 20th century this Mathematical Institute was rec�
ognized as the World’s leading center of mathematics.

Klein’s main works were dedicated to Non�Euclidean
geometry, and the theories of continuous groups, algebraic
equations, and elliptic and automorphic functions. Klein presented his ideas
in the field of geometry in a Comparative Consideration of the New Geometri�
cal Researches (1872) known under the title Erlangen’s Program.

According to Klein, each geometry is some invariant theory of a special
group of transformations. By dilating or narrowing down the group, it is pos�
sible to pass from one type of geometry to another. The Euclidean geometry is
a science about invariants of the metric group, projective geometry � about
invariants of the projective group, etc. The classification of transformation
groups gives us the classification of the geometries. A proof for the existence
of different Non�Euclidean geometries is considered to be Klein’s most essen�
tial achievement.

3.6.2. Elementary Mathematics from the Point of View of Higher
Mathematics

Felix Klein was not only a well�known mathematician�theorist, but also a
reformer of mathematical education in the schools. Prior to World War I he
organized the commission on reorganization of mathematical teaching. The
book Elementary Mathematics from the Point of View of Higher Mathematics
was devoted to the development of a solution to this problem.

Mathematics in the 19th century produced a number of remarkable ideas
that influenced all branches of knowledge and engineering. The main idea
behind the reformers headed by Klein was to increase the role of mathematics

Felix Klein
(1849�1925)
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and natural science in the general education. The study of natural sciences
and mathematics, a deepening of the connection between theoretical and ap�
plied mathematics, the introduction of functional analysis and calculus into
mathematical teaching, and a broad use of graphic methods are the main prin�
ciples suggested by Klein and his followers as a basis for mathematical educa�
tion. It is important to recognize that Klein’s ideas are rather topical for mod�
ern mathematical education.

3.6.3. Role of the Icosahedron in Mathematical Progress

Besides the Erlangen Program and other outstanding mathematical
achievements, Klein’s greatness consists of the fact that 100 years ago he pre�
dicted an outstanding role for the Platonic Solids, in particular, the icosahe�
dron in the future development of science. In 1884, Klein published the book
Lectures on the Icosahedron and Solution of the 5th Degree Equations [58] ded�
icated to a geometric theory of the icosahedron.

The icosahedron (and its dual, the dodecahedron) play a special role in
“living” nature; many viruses and other living things have the shape of the
icosahedron, that is, the icosahedron shape and pentagonal symmetry play a
fundamental role in the organization of living substance.

According to Klein, the tissue of mathematics extends widely and freely
by the sheets of the different mathematical theories. However, there are geo�
metric objects, in which many mathematical theories converge. Their geome�
try unites these mathematical theories and allows us to embrace the general
mathematical sense of the various theories. The icosahedron, in Klein’s opin�
ion, is just such a mathematical object. Klein treats the regular icosahedron as
the central mathematical object, from which the branches of the five mathe�
matical theories follow, namely: Geometry, Galois’ Theory, Group Theory, The�
ory of Invariants and Differential Equations.

Thus, the great mathematician Felix Klein following after Pythagoras, Pla�
to, Euclid, Johannes Kepler could realize the fundamental role of the Platonic
Solids, in particular the icosahedron, for the development of science and math�
ematics. Klein’s main idea is extremely simple: “Each unique geometrical object
is somehow or other connected to the properties of the regular icosahedron.”

Unfortunately, Klein’s contemporaries could not understand and appre�
ciate the revolutionary importance of Klein’s idea proposed by him in the
19th century. However, its significance was appreciated one century later,
when the Israeli scientist Dan Shechtman discovered in 1982 a special alloy
with an icosahedral phase called Quasi�crystals. And the famous researchers
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Robert F. Curl, Harold W. Kroto and Richard E. Smalley discovered in 1985
a special kind of carbon called Fullerenes. In 1996, they became Nobel Prize
winners for their discovery. It is important to emphasize that the quasi�crys�
tals are based on the Platonic icosahedron and the fullerenes on the
Archimedean truncated icosahedron.

3.7. Regular Polyhedra in Nature and Science

3.7.1. Symmetry Groups of Regular Polyhedra

The influence of Klein’s Erlangen Program on school geometry is especial�
ly important. The influence of Klein’s “group approach” can be traced in all
themes of school geometry. Each geometric figure F determines some group of
movements; this group contains all those movements that convert the figure F
in a manner similar to itself. This is called the Symmetry Group of the figure F.
In many respects, knowledge of the symmetry group of the figure F deter�
mines the geometric properties of that figure.

Let us consider in greater detail some im�
portant concepts of symmetry theory. We start
with the Symmetry Plane P that is familiar to
us from the previous Chapter. We offer to the
reader to be convinced that a square has four
planes of symmetry (4Р), however, a rectangle
has only two planes of symmetry (2Р). It can
be easily proven that a cube has 9 planes of sym�
metry (Fig. 3.12), that is, 9Р.

Let us now consider the second type of sym�
metry elements, the Axis of Symmetry. The axis
of symmetry is based upon a straight line,
around which the identical parts of a symmetric figure can be repeated a par�
ticular number of times. These identical parts are located so that after a turn
around, the symmetry axis on the certain angle the figure occupies the same
position as before the turn. As a result, the figure comes to “self�coincidence.”
A faceted glass in a glass holder is the best visual example of “self�coincidence.”
Taking the glass out of the glass holder and then inserting it back in the changed
position, we execute the operation of “self�coincidence.” The number of all

Figure 3.12. The 9 planes of
symmetry of the cube
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possible “self�coincidences” that can be carried out around a given axis is named
its Symmetry Order. Usually the axis of symmetry is denoted by the capital
letter L, but its order is denoted by a small subscript number that stands after
this capital letter. Thus, for example, the symmetry axis of the 3rd order is
denoted by L3. It is clear, that the equilateral triangle has the symmetry axis
L3, the square – L4, the pentagon – L5, and the circle has the symmetry axis of
the infinite order L∞.

As an example, for demonstration of symmetry axes, we examine a cube
(Fig. 3.13).

a) b) c)
Figure 3.13. The symmetry axes of the cube: 3L4(a), 4L3(b), 6L2(c)

We can draw three axes of symmetry of the 4th order through the center of a
cube perpendicularly to each pair of opposite faces (Fig. 3.13�a). This means, that a
cube has 3 axes of symmetry of the fourth order, that is, 3L4. A cube has 8 vertices.
We can draw a triple symmetry axis that coincides with the corresponding diagonal
of the cube through each pair of the opposite vertices of the cube (Fig. 3.13�b). This
means, that the cube has 4 symmetry axes of the 3rd order, that is, 4L3. The cube has
12 edges. We can draw double symmetry axes through the middles of each pair of
the opposite edges, in parallel to the diagonals of the faces (Fig. 3.13�с). This means,
that the cube has 6 symmetry axes of the 2nd order, that is, 6L2. Therefore, the full
set of the cube axes of symmetry is the following: 3L44L36L2.

There are geometric figures that have symmetry axes of the infinite order
L∞ . The so�called “figures of rotation,” cylinder, cone, etc. have similar axes. Any
diameter of a full�sphere is the axis of the type L∞. This means, that a full�sphere
has an infinite set of symmetry axes of infinite order, that is, ∞ L∞.

Now, let us consider one more element of symmetry, the Center of Symmetry.
The center of symmetry is a special point inside the figure, when any straight
line, drawn through this point, meets an identical point of the figure at equal
distances from this point. The cube, for example, has a center of symmetry.

Usually for the description of symmetry of some geometric figure a full set
of symmetries is used. For example, the symmetry group of a snowflake is L66P.
This means that a snowflake has one symmetry axis of the 6th order L6, that is,
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the snowflake “self�coincides” 6 times at its rotation around the symmetry axis,
and 6 planes of symmetry. The symmetry group of camomile having 24 petals is
L2424P, that is, the camomile has one symmetry axis of the 24th order and 24
planes of symmetry. By uniting all symmetry elements of the cube, we can write
the following symmetry group of the cube: 3L44L36L29PC.

The cube
is, of course,
one of 5 Pla�
tonic Solids.
Table 3.5 pre�
sents the sym�
metry groups
of all Platonic
Solids.

Analysis of the symmetry groups of Platonic Solids, given in Table 3.5,
shows that the symmetry groups of the cube and the octahedron, on the one
hand, and the dodecahedron and the icosahedron, on the other hand, coin�
cide. Thus the dodecahedron is dual to the icosahedron, and the cube is dual
to the octahedron.

3.7.2. Applications of Regular Polyhedra in the Living Nature

Ernst Heinrich Philipp August Haeckel (1834�1919) was the eminent Ger�
man biologist and philosopher. He became famous following the publication
of his book Kunstformen der Nature (Art�shapes of Nature)

Haeckel wrote in his book: “Nature has an inexhaustible number of sur�
prising creations, which by beauty and variety far surpass all works created
by human art.”

Nature’s creations presented in Haeckel’s book are beautiful and sym�
metric (see Fig. 3.14). This fact is an inseparable property of natural harmo�
ny. In his book he gave the examples of the single�cell organisms similar to
the icosahedron in shape. The icosahedron attracted the attention of biolo�
gists in their disputes concerning the shape of viruses. The virus cannot be
absolutely round as was considered earlier. To establish its form, the biolo�
gists took the various polyhedra and directed a light on them under the same
angle, such as a stream of atoms on the virus. It is proved that only the icosa�
hedron gives a precisely identical shadow. It is considered that the geomet�
rical properties of the icosahedron allow it to preserve genetic information
in the best possible manner.

Table 3.5. Symmetry groups of the Platonic Solids

Polyhedron  A shape of faces  Symmetry group 

Tetrahedron  Equilateral triangles 3 2
4 3 6L L P   

Cube Squares  4 3 23 4 6 9L L L PC  

Octahedron  Equilateral triangles 4 3 23 4 6 9L L L PC  

Dodecahedron Pentagons  5 3 2
6 10 15 15L L L PC  

Icosahedron  Equilateral triangles 5 3 26 10 15 15L L L PC  
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The regular polyhedra are the most “preferred” and “symmetric” figures.
Nature makes wide use of this property of the polyhedra. The crystals of many
chemical substances have the shape of regular polyhedra. For example, a crys�
tal of table salt NaCl has the shape of a cube, a mono�crystal of the potassium
alum has the shape of an octahedron, a crystal of the chemical substance FeS
has the shape of a dodecahedron, a sodium sulphite – a tetrahedron, a boron
Br – an icosahedron and so on.

Figure 3.14. Art�shapes of Nature from Haeckel’s book Kunstformen der Nature (1904)
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Today it has been proven that the process of the formation of a human
embryo from the ovum is carried out by its divisions according to the “bina�
ry” law, that is, at first the ovum is transformed into two cells, these new
cells are transformed in turn into four cells, etc. Earlier we considered that
at the second stage of the division the four cells form a square. In fact, it
occurs in another manner: at the second stage of the division, the four cells
form the tetrahedron (Fig. 3.4�а). The cells are further divided into eight;
together forming a geometric figure that consists of one tetrahedron point�
ing upward and the oth�
er tetrahedron pointing
downwards, connected
together. As a result we
obtain the Star Tetrahe�
dron that reminds one of
the Egg of Life in esoter�
ic sciences (Fig. 3.15).

3.7.3. “Parquet Problem” and Penrose Tiling

Since ancient times, “parquet’s problem” in geometry has been the prob�
lem of how to fill a plane with regular polygons. Already the Pythagoreans
proved that only regular (equilateral) triangles (symmetry axis of the 3rd or�
der), squares (symmetry axis of the 4th order) and hexagons (symmetry axis
of the 6th order) can be solutions to this problem. “Parquet’s problem” has a
direct relation to the main law of crystallography, according to which only

the symmetry axes of the 3rd, 4th and 6th
order are allowed in crystals. The symme�
try axes of the 5th order and more than 6
are prohibited in crystals.

The English mathematician Sir Roger
Penrose was one of the first scientists, who
found another solution to “parquet’s prob�
lem.” In 1972, he covered a plane in a non�
periodic manner, by using only two simple
polygons. In the simplest form, the Penrose’s
Tiles are a non�random set of rhombi of two
types, the first one (Fig. 3.16�a) has the in�
ternal angle 36°, and the second one (Fig.
3.16�b) has the internal angle 72°.

Egg of life Tetrahedron Star Tetrahedron

Figure 3.15. A star tetrahedron

36°

72°

Figure 3.16. Penrose tiles: (a) “thin”
rhombus; (b) “thick” rhombus

b)

а)

τ

1

1

1/τ
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 To understand the mathematical essence of the Penrose Tiles, we return
to the Pentagon and Pentagram (Fig. 3.17).

The pentagram contains a number of char�
acteristic isosceles triangles. The triangle of the
type ADC is the first of them. The acute angle at
the vertex of A is 36°, and the ratio of the side
AC=AD to the base DC is equal to the golden
mean, that is, the given triangle is the golden isos�
celes triangle. Note that the pentagram consists
of 5 identical golden isosceles triangles ADC,
BED, CAE, DBA, and ECB (the 5 crossing trian�
gles). Besides, we have in the pentagram
5 smaller “golden” isosceles triangles AGF, BHG,

CKH, DLK, and EFL similar to ACD. If we now take two such triangles and
connect them together by their bases, we obtain the Penrose’s tile displayed
in Fig. 3.16�a and named “Thin” Rhombus. The “thin” rhombus has four verti�
ces with the following angles: 36°,  36°, 144°, 144°.

Now, let us consider one more type of isosceles triangle presented in the
pentagram, for example, ABE. In such triangle the acute angles at the vertices
Е and B are each 36°, and the obtuse angle at the vertex A is 108°. Note that
the ratio of the base ЕВ of the triangle ABE to its sides AE=AB is equal to the
golden mean, that is, this triangle is also the golden isosceles triangle. Note
also, the pentagram has 5 identical golden isosceles triangles of this kind, name�
ly, ABE, BCA, CDB, DEC, and EAD. If we connect two such triangles together
at their bases, we obtain the second Penrose tile represented in Fig. 3.16�b and
named “Thick” Rhombus. The thick rhombus has the four vertices with the
angles: 72°, 72°, 108°, 108°.

Below in Fig. 3.18 we can see a process of sequential construction of the
Penrose Tiling. Take 5 “thick” rhombi and connect them together, as shown in
Fig. 3.18�a. Then, we add to the figure in Fig. 3.18�a the “thick” and “thin”
rhombi, as shown in Fig. 3.18�b. Figure 3.18�c is a further development of the
Penrose tiling.

It is proved that the ra�
tio of the number of “thick”
rhombi (Fig. 3.16�b) to the
number of “thin” rhombi
(Fig. 3.16�a) in the Penrose
tiling aims in the limit for
the golden mean.

A

B

CD

HL

K

GFE

Figure 3.17. Pentagram

a) b) c)
Figure 3.18. Penrose tiling
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3.7.4. Quasi�crystals

On November 12, 1984 in a small article, published in
the authoritative journal Physical Review Letters, the ex�
perimental proof of the existence of a metal alloy with ex�
clusive physical properties was presented. The Israeli physi�
cist Dan Shechtman was the author of this article.

Dan Shechtman is Philip Tobias Professor of Materials
Science at the Israel University Technion. A special alloy
discovered by Professor Shechtman in 1982 and called Quasi�
crystal is the focus of his research. By using methods of elec�
tronic diffraction, Shechtman found new metallic alloys having all the symptoms
of crystals. Their diffraction pictures were composed from the bright and regular�
ly located points similar to crystals. However, this picture is characterized by the
so�called “icosahedral” or “pentagonal” symmetry, strictly prohibited according
to geometric reasons. Such unusual alloys are called “quasi�crystals.”

The concept of quasi�crystals generalizes and completes the definition of
a crystal. Gratia wrote in the article [148]: “A concept of the quasi�crystals is
of fundamental interest, because it extends and completes the definition of
the crystal. A theory, based on this concept, replaces the traditional idea about
the ‘structural unit,’ repeated periodically, with the key concept of the distant
order. This concept resulted in a widening of crystallography and we are only
beginning to study the newly uncovered wealth. Its significance in the world
of crystals can be put at the same level with the introduction of the irrational
to the rational numbers in mathematics.”

What are quasi�crystals? What are their properties and how we can de�
scribe them? We mentioned above that according to the Main Law of Crystal�
lography some strict restrictions are imposed on the structure of a crystal.
According to classical ideas, the crystal is constructed from one single cell.
The identical cells should cover a plane densely without any gaps.

As we know, the dense filling of a plane can be carried out by means of Equi�
lateral Triangles (Fig. 3.19�а), Squares (Fig. 3.19�b) and Hexagons (Fig. 3.19�d). A
dense filling of the plane by means of Pentagons is impossible (Fig. 3.19�c).

The Israel physicist
Dan Shechtman

Figure 3.19. A dense filling of a plane can be carried out by means of equilateral triangles (а),
squares (b) and hexagons (d)

а) b) c) d)
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Penrose tiling (Fig. 3.18) that is a “planar analogy” of quasi�crystals was
used for the theoretical explanation of the quasi�crystal phenomenon. In the
spatial model, the “regular icosahedrons” (Fig. 3.20) played the role of “Pen�
rose rhombi” in the planar model. By using regular icosahedrons, we can ful�
fill a dense filling of three�dimensional space.

What is the practical significance of the discovery of
quasi�crystals? Gratia wrote in [148] that “the mechanical
strength of the quasi�crystals increased sharply; here the
absence of periodicity resulted in slowing down the distri�
bution of dislocations in comparison to the traditional
metals .… This property is of great practical significance:
the use of the “icosahedral” phase allows for light and very
stable alloys by means of the inclusion of small�sized frag�
ments of quasi�crystals into the aluminum matrix.”

What is the significance of the discovery of quasi�crystals from the point
of view of the main idea of our book, the golden mean? First of all, this discov�
ery is a great triumph for the “icosahedron�dodecahedron doctrine,” which
passes throughout the history of natural sciences and is a source of profound�
ly practical scientific ideas. Secondly, the quasi�crystals shattered the con�
ventional picture of an insuperable barrier between the mineral world where
the “pentagonal” symmetry was prohibited, and the living world, where the
“pentagonal” symmetry is widespread.

Note that Dan Shechtman published his first article about the quasi�crys�
tals in 1984, that is, exactly 100 years after the publication of Felix Klein’s
Lectures on the Icosahedron in 1884. This means that this discovery is a wor�
thy gift to the centennial anniversary of Klein’s book, in which the famous
German mathematician predicted an outstanding role for the icosahedron in
future scientific development.

3.7.5. Fullerenes

Fullerenes were an important
modern discovery in chemistry.
This discovery was made in 1985,
several years after the quasi�crys�
tal discovery. The “fullerene” is
named after Buckminster Fuller
(1895 � 1983), the American de�
signer, architect, poet, and inven�

Figure 3.20.
A regular icosahedron

a) b)
Figure 3.21. Fuller’s inventions:

(a) Buckminster Fuller; (b) Fuller’s geodesic dome
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tor. Fuller created a large number of inventions,
primarily in the fields of design and architecture.
The best�known invention was the Geodesic
Dome based on the truncated regular icosahedron
(Fig. 3.21�b).

The geodesic dome, Montreal Biosphere, de�
signed by Buckminster Fuller for the American
Pavilion at Expo 67 (Fig. 3.22), is Fuller’s best�
known architectural construction.

Fuller was the author of many inventions in
designing and architecture. In the USA, a post�
age stamp was produced immortalizing Buckminster Fuller’s contributions to
architecture and science (Fig. 3.23). Fuller’s head on this postage stamp de�
picts the structure of his geodesic dome.

After the discovery of Fullerenes, the name of Buckminster
Fuller became famous worldwide. The title “fullerenes” refers
to the carbon molecules С60, С70, С76, and С84 in which all the
atoms are on a spherical or spheroid surface. In these molecules
the atoms of carbon are located at the vertices of regular hexa�
gons or pentagons that cover the surface of the sphere or spher�
oid. We start from a brief history of the C60 molecule. This mol�
ecule plays a special role among the fullerenes. It is character�
ized by the greatest symmetry and as a consequence is highly
stable. By its shape, the С60 molecule reminds one of a typical
white and black soccer ball (Fig. 3.24) that has the structure of
a truncated regular icosahedron (Fig. 3.5�e, Fig. 3.6).

The atoms of carbon in this molecule are located on the
spherical surface at the vertices of 20 regular hexagons and
12 regular pentagons; here each hexagon is surrounded by
three hexagons and three pentagons, and each pentagon is
surrounded by five hexagons (Fig. 3.25).
The most striking property of the C60

molecule is its high degree of symmetry.
There are 120 symmetry operations that convert the mole�
cule into itself making it the most symmetric molecule.

It is not surprising that the shape of the C60 molecule
has attracted the attention of many artists and mathemati�
cians over the centuries. As mentioned earlier, the truncat�
ed icosahedron was already known to Archimedes. The old�

Figure 3.22. The Montreal
Biosphere, formerly the American

Pavilion of Expo 67

Figure 3.23. The
U.S. postage stamp

immortalizing
Buckminster Fuller

Figure 3.24.
The Soccer Ball

Figure 3.25. The
structure of the

С60
 
molecule
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est known image of the truncated icosahedron was found in the Vatican library.
This picture was from a book by the painter and mathematician Piero della
Francesca. We can find the truncated icosahedron in Luca Pacioli’s Divina Pro�
portione (1509). Also Johannes Kepler studied the Platonic and Archimedean
Solids actually introducing the name “truncated icosahedron” for this shape.

The fullerenes, in essence, are “man�made” structures following from funda�
mental physical research. They were discovered in 1985 by Robert F. Curl, Harold
W. Kroto and Richard E. Smalley. The researchers named the newly�discovered
chemical structure of carbon C60 the Buckminsterfullerene in honor of Buckmin�
ster Fuller. In 1996 they won the Nobel Prize in chemistry for this discovery.

Fullerenes possess unusual chemical and physical properties. At high pressure
the carbon С60 becomes firm, like diamond. Its molecules form a crystal structure as
though consisting of ideally smooth spheres, freely rotating in a cubic lattice. Ow�
ing to this property, С60 can be used as firm greasing (dry lubricant). The fullerenes
also possess unique magnetic and superconducting properties.

3.8. Applications of Regular Polyhedra in Art

3.8.1. Leonardo da Vinci’s Methods of Regular Polyhedra Representation

Many authors pay particular attention to Leonardo da Vinci’s original
methods of the spatial representation of icosahedron, dodecahedron and trun�
cated icosahedron, for the book Divina Proportione (1509) by his contempo�
rary, the Franciscan monk and mathematician Luca Pacioli (1445 � 1514). It
is probably impossible to consider Leonardo’s participation in studying such
perfect geometrical figures as Platonic and Archimedean Solids as a mere co�
incidence. And what is more, this fact is deeply symbolic. A true titan of the
Renaissance, artist, sculptor, scientist, engineer and inventor, Leonardo da
Vinci (1452 � 1519) is a symbol of the inseparable bond between Art and Sci�
ence. His interest in such fine and highly symmetrical figures as regular and
semi�regular polyhedra was natural.

Below (Fig. 3.26) we examine the different representations of the dodeca�
hedron used by Leonardo da Vinci in Pacioli’s Divina Proportione. Leonardo
used two methods, a method of Rigid Edges (Fig. 3.26�a) and a method of Con�
tinuous Faces (Fig. 3.26�b). Comparison of these methods with the example of
the dodecahedron convincingly shows the advantage of the method of rigid edges.
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The essence of the method of rigid edges consists in the fact that the faces of the
polyhedron are represented as “empty,” not continuous. Strictly speaking, the
faces are not represented at all; they exist only in our imagination. However, the
edges of the polyhedron are represented not by geometrical lines (which have
neither width nor thickness), but by the rigid three�dimensional segments. Such

techniques of polyhedron repre�
sentation allow the spectator to
accurately determine, first of all,
which edges belong to the front
and which belong to the back fac�
es of the polyhedron (which is
practically impossible when the
edges are represented by geomet�
rical lines). On the other hand, we
can look through a geometrical
body to see the body in perspec�
tive and depth. It is clear that this
is impossible if we use the method
of continuous faces.

Below (Fig. 3.27) we see Leonardo’s representation of the truncated icosa�
hedron by the method of rigid edges. At the top of the picture we see the Latin
inscription Ycocedron Abscisus (truncated icosahedron) Vacuus. The Latin word
Vacuus meant, that the faces of the polyhedron are represented as “empty,”
not continuous.

It is necessary to note that the representation of
polyhedra by the method of rigid edges began to be used
widely in science and works of art following Leonardo.
As an example, Johannes Kepler used the method of rigid
edges for the representation of the polyhedra from which
he constructs his Cosmic Cup (Fig. 3.11).

3.8.2. Pacioli’s Polyhedron

As we saw previously, Pacioli was one of the great�
est mathematicians of 15th century Europe. He also
invented the principle of the so�called double record
used now in all modern systems of book�keeping. That
is why, he can be called “the father of modern book�
keeping.” However, the creative works of Luca Pacio�

a) b)
Figure 3.26. Leonardo’s representations of the

dodecahedron by the methods of (а) rigid edges
and (b) continuous faces in Pacioli’s Divina

Proportione

Figure 3.27. Leonardo’s
representation of the

truncated icosahedron by
the method of rigid edges in
Pacioli’s Divina Proportione



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

174

li, who was a very mysterious person in his time, have up to now been the source
of fierce disputes amongst historians of science. It is known that Luca Pacioli
was born in 1445 in the Italian city Borgo San Sepulcro. In his childhood he
was a pupil of the artist and mathematician Piero della Francesca. Later he was
a student at the University of Bologna, which during the 15th and 16th centu�
ries was one of the best educational institutions in Europe (at various periods
Copernicus and Durer were its students). In 1472, Pacioli came back to his
native city Borgo San Sepulcro and started to write his best known book Sum�
ma de Arithmetica, Geometria, Proportioni et Proportionalita. This book was not
published in Venice until 1494. In 1496, he was invited to Milan to give the
lectures on geometry and mathematics. Here is when he met Leonardo da Vin�
ci. After reading Pacioli’s Summa, Leonardo stopped writing his own book on
geometry and started to illustrate Pacioli’s new book Divina Proportione.

Some researchers accuse the author of Div�
ina Proportione of plagiarism of the unpublished
manuscript belonging to Pacioli’s teacher Pie�
ro Della Francesca. However, it is rather doubt�
ful, if we take into consideration that in the pe�
riod when Pacioli was writing this book, he was
already a well�known mathematician, and his
glory reverberated throughout all of Italy. Pa�
cioli is well known to us today owing to the
portrait (Fig. 3.28) painted of him by the Ital�
ian artist Jacopo de Barbari (1440 � 1515). Bar�

bari’s picture is revealing in several respects, first of all, in respect of the presen�
tation of Luca Pacioli’s personality. Numerous compositional details in Barbari’s
picture are full of deep scientific sense. The artist demonstrates an understand�
ing of the interrelation between Art and Science which was peculiar to Renais�
sance experts. Pacioli in the robe of the Franciscan
monk is represented by standing behind the table of
geometrical tools and books (in the lower right�hand
corner of the picture we can see a model of the
dodecahedron). The attention of Pacioli and the
handsome young man, who stands on the right and
somewhat behind Pacioli, is directed to the glass
model of the polyhedron that hangs in the upper left�
hand corner of the picture. The choice of the poly�
hedron is not accidental: it is Pacioli’s rhombic cube�
octahedron (Fig. 3.29).

Figure 3.28. Jacopo de Barbari’s
painting of Luca Pacioli

Figure 3.29. Pacioli’s
rhombic cube�octahedron
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3.8.3. Albrecht Durer

The identity of the young man, who is near to Pacioli in Jacopo de Bar�
bari’s picture (Fig. 3.28), has often caused disputes amongst historians of art.
Some of them assert that this is Barbari’s self�portrait, others identifying the
individual with Albrecht Durer (1471 � 1528), German painter, draughtsman
and art theorist who is generally known as the greatest German Renaissance
artist. However, and this is very important in our context, Durer was amazed
by the art method of Barbari, who later created his pictures on the basis of a
deep study of the system of proportions, that is, strict use of particular ratios
of parts of the represented objects among themselves.

Durer was one of the first artists to start studying the laws of perspec�
tive. He dreamed of meeting with the glorified Italian artists to study their
art works and to compete with them. With this purpose in mind Durer trav�
eled to Italy in 1505. We do not know his teachers at the school of perspec�
tive, but we do know that throughout his life Durer continued to teach at
this school. He wrote several books on the theory of arts. One of them, The
Painter’s Manual, was dedicated to geometry and perspective and was pub�
lished in Nuremberg in 1525. His last work on human proportion was pub�
lished in 1528 following his death.

Durer’s books are a serious scientific contribution to the theory of per�
spective and stereometry of polyhedra. He described several Archimedean
Solids unknown at that time, and also developed and published for the first
time books that included spatial models of the planar unfolding of various
polyhedra, including the unfolding of the truncated icosahedron. Today a
similar unfolding of volumetric models of polyhedra is widely used to study
the elementary forms of crystals, the structures
of molecules (fullerenes, for example), and vi�
ruses and so on.

In 1512 in the rough draft of his first trea�
tise about proportions, Durer wrote: “All needs
of the person are satiated by the fleeting things
in the case of their surplus, so that they cause in
him disgust, except for a thirst for knowledge....
A desire to know a lot and through this to grasp
the essence of all things is inherent within us
from nature.” These words became a prologue
to Durer’s theoretical works. Art of that epoch
is often penetrated by a thirst for knowledge and

Figure 3.30. Albrecht Durer’s
Melancholia
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many representatives of that epoch became scientists and researchers. The
idea of the unity of artistic inspiration and mathematical theory is also re�
flected in Durer’s well�known picture Melancholia created in 1514. This pic�
ture embodies the image of a person, who is near to God. The individual is
surrounded by various geometric tools (Fig. 3.30). The presence in the en�
graving of a polyhedron (most likely, truncated rhombohedra), is certainly
not accidental.

3.8.4. Piero Della Francesca

We should start a list of the greatest experts of the Renaissance, who made
a concerted study of the geometry of polyhedra beginning with Piero Della
Francesca (1420 � 1492). We know a little about the life of Piero Della Frances�
ca, who was a great Italian artist, art theorist and mathematician. It is known,
that he was born into the family of a craftsman in the small city of Borgo San
Sepulcro. He studied in Florence, then worked in some Italian cities, includ�
ing Rome. Francesca’s creativity went far beyond the local art schools and
helped define the whole of art of the
Italian Renaissance. Fortunately, at
the beginning of the 20th century
the originals of three mathematical
manuscripts by Piero Della Frances�
ca were discovered. They are now
housed in the Vatican Library. After
five centuries of obscurity, the glory
of this great mathematician has been
returned to Piero Della Francesca.
Now it is known for certain that
Francesca was the Renaissance’s
first expert, who rediscovered and
described in detail all Archimedean
Solids, in particular, the five trun�
cated Platonic Solids, the truncat�
ed tetrahedron, hexahedron, octa�
hedron, dodecahedron, and, what is
especially important here, the trun�
cated icosahedron.

Piero Della Francesca was both
a talented mathematician and great

Figure 3.31. Piero Della Francesca’s
The Baptism of Christ and its harmonious

analysis based on the golden section
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artist. His art works express majestic solemnity, nobleness and harmony of
images, reasonableness of proportions, and clarity of perspective in their con�
struction. His painting of The Baptism of Christ is one of the highlights of his
artistic style. Christ is placed in the center of the picture (Fig. 3.31). His feet
are being washed by the river water; his hands are combined in a gesture of
Catholic prayer. Near to Christ we see John the Baptist, who pours water
from a dish on Christ’s head. The dove, representing the Holy Spirit, descends
from above the head of Christ.

3.8.5. Art of Intarsia

At the end of the 15th and beginning of the 16th centuries the art of Intar�
sia, a special kind of inlay, a mosaic, constructed from thousands of fine slices of
various species of trees, was very pop�
ular in Northern Italy. The mosaic
created by Fra Giovanni da Verona
(1457 � 1525) for the church Santa
Maria in Verona in roughly 1520, is
an example of intarsia (Fig. 3.32).
The image of half�opened shutters
creates on the planar mosaic a spa�
tial effect, which increases through
the representation of various poly�
hedra (including the truncated
icosahedron) by using Leonardo’s
technique of rigid edges.

3.8.6. Salvador Dali’s Last Supper

Now, let us consider an example of the representation of polyhedra by the
well�known 20th century artist Salvador Dali (1904 � 1989). This great Spanish
artist is one of the best known representatives of surrealism. An excellent art�
ist, Dali created images similar to dreadful visions, called by him “drawing
pictures of dreams.” Some of the most common repeat images, for example
hours, which lose their forms under the sun beams, became Dali’s logo. Dali’s
creativity continues to cause disputes (e.g. some critics even suggest that af�
ter 1930 he did not create anything of real worth). However, in 1955 Dali
created one of his best known pictures, Last Supper (Fig. 3.33).

This big picture is an original masterpiece of painting. Geometrical ra�
tionalism testifies to the invincible belief in the sacred force of number. In

Figure 3.32. Fra Giovanni da Verona’s intarsia
created for the church Santa Maria in Verona
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the center of the big horizontal
picture (167×288) we see Christ.
Together with his pupils he sits
at the table as God’s son descend�
ed from the Heavens (Dodecahe�
dron) upon the Earth. The apos�
tles are represented with heads
held low inclined to the table.
They appeared as if in deep wor�
ship of Christ. The dodecahe�
dron in this picture plays a cen�
tral role because it personifies the spiritual harmony, moral cleanliness and
greatness of character.

3.8.7. Escher’s Creative Work

Maurits Cornelis Escher (1898 � 1972) is one of the world’s most famous
graphic artists. His art continues to amaze millions of people all over the world.
In his works we recognize his keen observation of the world around us and the
expressions of his own fantasies. Escher shows us that reality is wonderful and
fascinating. He is most famous for his so�called impossible structures, such as
Ascending and Descending, Relativity, and his Transformation Prints such as
Metamorphosis I, Metamorphosis II and Metamorphosis III, Sky & Water and
Reptiles (see www.mcescher.com).

Escher’s creative work was highly esteemed by many scientists, in partic�
ular, by mathematicians and crystallographers. At the International Crystal�
lographic Congress in Cambridge (1960) the exhibition of Escher’s pictures
became a sensation attracting the special attention of the crystallographers.
What do art and crystallography hold in common? The question arises as to
whether Maurits Cornelis Escher intuitively discovered the laws of symme�
try, those laws which dominate over crystals and define their external shape,
nuclear structure and physical properties, and then illustrated these laws in
his pictures. Escher took great interest in periodic figures and drew up the
mosaic patterns of the repeating figures in his pictures. He inserted one image
in another so that identical figures are periodically repeated without leaving
any empty space between them. In fact, it is based on the same law, according
to which the particles in crystal structures are placed, namely, the law of the
densest packing: the periodic recurrence of identical groups of particles with�
out intervals and infringements.

Figure 3.33. Salvador Dali’s Last Supper
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3.9. Application of the Golden Mean in Contemporary Art

3.9.1 Abstract Art by Astrid Fitzgerald

Astrid Fitzgerald is an internationally acclaimed artist, born and educated
in Switzerland and now residing and working in New York. Her works are rep�
resented in major public museums and private collections in the United States,
Europe and Asia. Fitzgerald’s installation, Amish Quilts, was chosen by the judges
to represent the United States at the Artcanal Exposition (2002) in Switzerland.
She is also the author of An Artist’s Book of Inspiration – A Collection of Thoughts
on Art, Artists and Creativity (1996) and Being Consciousness Bliss – A Seeker’s
Guide (2002), both published by Lindisfarne Books. Fitzgerald refers to her re�
cent work as Cosmic Measures – a phrase that expresses
her continuing search for the true nature of things. Here
she began to work with the fundamental laws of geo�
metric forms that include the Golden Mean – the uni�
versal principle that underlies Nature from the spiral of
our DNA to that of our galaxy. These harmonious pro�
portions have fascinated philosophers, architects and
artists for millennia. Fitzgerald embodies the golden
mean within her abstract pictures.

In Figs. 3.34 we can see some pictures of Astrid
Fitzgerald based on the Golden Mean.

Figure 3.34. Abstract art of Astrid Fitzgerald

Astrid Fitzgerald
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3.9.2. The World of Matjuska Teja Krasek

Matjuska Teja Krasek obtained her B.A. degree in painting from the Arthose–
College for visual arts in Ljubljana, Slovenia. Her theoretical and practical work
focuses primarily on symmetry as a connecting concept between art and science.
Through her art, Krasek wishes to convey her experience and feelings that are
connected with her research results from various disciplines. She wants to convey
this to all who are interested in exploring the way and functioning of our universe
and nature. In this manner she wishes to contribute to the awareness of certain
characteristics such as the various kinds of symmetry, the
golden mean, and the Fibonacci sequence’s connection to
nature, natural science and art. She also explores in her works
how the use of various formal elements of artistic expression
(lines, colors, structures, etc.) can influence the stability of
art work. She uses contemporary computer technology as
well as a classical painting technique. And her artworks have
been represented at many international exhibitions and pub�
lished in international journals (Leonardo Journal, Leonardo
on�line and so on).

In Fig. 3.35 we can see some pictures of Matjuska Teja Krasek.

Figure 3.35. The art works of Matjuska Teja Krasek

 3.9.3. The Geometric Art of John Michell

John Michell, born in 1933, was educated at Eton and Cambridge and
published his first book in 1967. The author of 12 books, he is a specialist in

Matjuska Teja Krasek
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sacred geometry and the geometry of reconciliation. With
The View over Atlantis (1969) and City of Revelation (1972)
Michell helped to change the world�views of a whole gen�
eration by illuminating the science, culture and wisdom of
past civilizations. Michell’s City of Revelation was sum�
marized and extended with further research in The Dimen�
sions of Paradise, in which the proportions and symbolic
numbers of ancient cosmology were explained.

Michell’s books, Twelve Tribe Nations and Science of Enchanting the Land�
scape (1991), the latter with Christine Rhone, explain that throughout the
history of civilization an ideal social order harmonically related to nature and
the zodiac was imposed upon the landscapes of the world. This is depicted, for
example, by the 12 tribe divisions of people and the careful alignment of var�
ious holy places.

Fig. 3.36. The Geometric Art of John Michell

3.9.4. Quantum Connections by Marion Drennen

Marion Drennen is a Louisiana Artist, who received her Bachelor in Fine
Arts from LSU, working in Acrylic on Board. These paintings incorporate the
concepts of Number and Quantum Physics in an effort to evoke a sense of con�
nectedness across time and space, within ourselves and in our relationships.

In her artistic statement she describes her artistic
process – “Being an idea person, an avid reader and re�
searcher, my paintings manifest from contemplations on
a variety of subjects – Mathematics, The Golden Ratio,
Quantum Physics, and Spiritual. I glimpse the connec�
tions and begin to draw thumbnail sketches around the
edges of my notes. The internal dialogue is about the con�
cept, then words gradually disappear and visual elements

John Michell

Marion Drennen
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expand until only sketches are coming off the end of the pencil. Later, within
the painting, words may reappear.” She compares her creation process with a
dance – “I used to dance. There’s something exquisite about losing yourself in
movement. Sometimes, when I’m painting, I’ll start to dance. I almost always
paint to music. After working with the Golden Ratio for several years, I now
have custom painting surfaces made that allow me to paint within that for�
mat. It sets the stage. It is the architecture, the structure on which I begin to
build. I break up the space and then insert my one or two shapes, the initial
idea, and then the dance begins.”

In Fig. 3.37 we represent some pictures of Marion Drennen from her Quan�
tum Connections exhibit that was showing at the Brunner Gallery in the Shaw
Center for the Arts.

                    

Fig. 3.37. Quantum Connections by Marion Drennen.

3.10. Conclusion

The regular and semi�regular polyhedra have been known from antiquity.
The regular polyhedra got the name Platonic Solids, because they played such
an important role in Plato’s cosmology. According to Plato, the atoms of the
Universe’s “Basic Elements” have the form of the Platonic Solids (Fire – a Tet�
rahedron, Earth – a Hexahedron or Cube, Air – an Octahedron, Water –an
Icosahedron). The Dodecahedron was considered to be the primary figure of
the Universe, expressing the Universal Intellect and the Harmony of the Uni�
verse. The semi�regular polyhedra are named Archimedean Solids. A geometric
theory of the Platonic Solids was presented in the 13th or final Book of Euclid’s
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Elements. This is the reason why the ancient Greek mathematician Proclus, a
commentator on Euclid, put forward the hypothesis about the true purpose of
Euclid writing The Elements. In Proclus’ opinion, Euclid wrote his Elements to
give a full and systematized theory of geometric construction of the “ideal” geo�
metric figures, in particular, the five Platonic Solids. Thus, we can consider The
Elements of Euclid to be the first historical geometrical theory of the Harmony
of the Universe, based upon the golden section (division in the extreme and
mean ratio) and the Platonic Solids! Since antiquity the Platonic and
Archimedean Solids have been a source of many scientific hypotheses, theories
and discoveries. The surprising coincidence of the numerical characteristics of
the dodecahedron (12 faces, 30 edges and 60 planar angles on its surface) with
the main cycles of the Solar System (12�year cycle of Jupiter, 30�year cycle of
Saturn, and 60�year basic cycle of the Solar System) apparently became one
reason why the numbers 12, 30, 60 and 360=12×30 were used by the Ancient
Egyptians in their calendar and their systems of time and angle measurement.
In the 19th century the prominent mathematician Felix Klein began to consid�
er the regular Icosahedron as the main geometric object, from which the branches
of the five mathematical theories follow, namely, geometry, Galois’ theory, group
theory, theory of invariants and differential equations. Shechtman’s quasi�crys�
tals were based on the icosahedron and fullerenes (1996 Nobel Prize in chemis�
try). These are brilliant confirmations of the role of the Platonic and
Archimedean Solids, and therefore the golden section, in modern physics.
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Chapter  4

Generalizations of Fibonacci Numbers and the
Golden Mean

4.1. A Combinatorial Approach to the Harmony of Mathematics

4.1.1. Mathematical, Aesthetic and Artistic Understanding of Harmony

In the Introduction we mentioned that the Harmony Problem is one of the
“key” problems of mathematics entering the scene at its very origin. But what
does a concept of “harmony” mean?

The Russian philosopher Shestakov, one of the best researchers in the field,
pointed out three basic understandings of “harmony” that have been devel�
oped in science and aesthetics since antiquity [7]:

1. Mathematical Understanding of Harmony or Mathematical
Harmony. In this sense, harmony is understood as equality or proportion�
ality of parts one to another and the parts to the whole.
2. Aesthetic Harmony. In contrast to the mathematical harmony, the
aesthetic harmony is not quantitative, but qualitative notion and express�
es the internal nature of things. The aesthetic harmony is connected with
aesthetic excitements and estimations. Most precisely this type of harmo�
ny is shown at perception of beauty of Nature.
3. Artistic Harmony. This type of harmony is connected with art. Artistic
harmony is an actualization of the harmony principle in the realm of art.
In the present book, our attention is concentrated on Mathematical

Harmony. It is clear that mathematical harmony is expressed in the form of
certain numerical proportions. Shestakov emphasizes that mathematical har�
mony “attracts attention to its quantitative side and is indifferent to qualita�
tive originality of the parts forming conformity.... The mathematical under�
standing of the harmony fixes, first of all, quantitative definiteness of the har�
mony, but it does not express aesthetic quality of the harmony, its expressive
connection with beauty.”
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Thus, in this  book we consciously restrict the area of our research to the
mathematical understanding of harmony. This approach is fruitful in mathe�
matics and allows us to create a Mathematical Theory of Harmony or Mathe�
matics of Harmony that extends the area of the mathematical models of the
harmonic processes of Nature.

4.1.2. Concept of the Mathematical Theory of Harmony

We can ask a question: how does one create a Mathematical Theory of
Harmony? As is known, mathematics studies the quantitative aspect of this
or that phenomenon. Starting with a mathematical analysis of the concept of
harmony, we should concentrate our attention on the quantitative aspects of
harmony. What is the quantitative aspect of this concept?

There are many definitions of the harmony concept. However, the major�
ity of them are reduced to the following definition that is given in The Great
Soviet Encyclopedia:

“Harmony is proportionality of parts and the whole, a combination of the
various components of the object in the uniform organic whole. It is the inter�
nal order and measure obtained in the harmony external expression [of the
harmony].”

In the article Harmony in Nature and Art [149], the Russian crystallogra�
pher Shubnikov compared harmony with the Order studied by science to dis�
cover Nature’s laws. He writes: “Law, Harmony, Order underlie not only sci�
entific work but also any work of art.”

Now let us analyze a question of the origin and meaning of the word “harmo�
ny.” “Harmony” has a Greek origin. The Greek word αρµουια has the following
meaning: connection, consent. The analysis of the word of “harmony” and its defi�
nitions demonstrate that the most important, key notions, which underlie this
concept, are the following: Connection, Consent, Combination, Order.

We can ask a question: what branch of mathematics studies these concepts?
A search for the answer leads us to Combinatorial Analysis. “Combinatorial anal�
ysis studies the various kinds of combinations and connections, which can be
formed from the elements of some finite set. The term ‘combinatorial’ is derived
from the Latin word combinary which means to combine or connect.” [150]

It follows from this consideration that both the Latin word combinary and
the Greek word αρµουια, in essence, have the same meaning, namely, Combi�
nation and Connection. It allows us to put forward the following hypothesis:
the “Laws of combinatorial analysis” can be used for the analysis of the Har�
mony concept from the quantitative point of view.
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Therefore, the main concepts underlying the Harmony Mathematics and
the combinatorial analysis, in essence, coincide. And this allows us to use com�
binatorial analysis as the main mathematical theory for the analysis of the
harmony concept from the quantitative point of view. This is the main idea
behind the research, in which the author made an attempt to create the Fun�
damentals of the Harmony Mathematics based upon combinatorial analysis.

Thus, Harmony Mathematics is a mathematical theory studying the no�
tion of harmony from a quantitative point of view. Its main goal is to study
mathematical laws, mathematical proportions, which underlie the Harmony
of the Universe.

4.1.3. An Analogy between the Theory of Information and Mathematics
of Harmony

Are there similar theories in modern science? The Mathematical Theory of
Information developed by Claude Shannon [151] is possibly a brilliant exam�
ple of a similar theory. Information is a complex and interdisciplinary concept
similar to Harmony. Both information and harmony are non�material and om�
nipresent. In spite of its non�material character, the Mathematical Theory of
Harmony may be considered to be an original mathematical theory similar to
the Theory of Information.

By developing a Theory of Information, Claude Shannon used the concept
of Probability as the starting point of the theory. The concept of Entropy, based
on the notion of probability, became the underlying basic concept of the The�
ory of Information. It is necessary to emphasize that Shannon’s Theory of In�
formation is a mathematical theory and can be effectively used, first of all, for
the quantitative analysis of any informational system. In his well�known arti�
cle Bandwagon [151] Shannon warned that one must be cautious applying
this theory to other areas of human activity.

Shannon’s Theory of Information is sometimes considered to be a branch
of probability theory. By continuing the analogy between Shannon’s Theory
of Information [151] and Harmony Mathematics, it is possible to consider the
Harmony Mathematics as a special branch of combinatorial analysis.

From this point of view, it becomes imperative to answer the question
about practical application of the Harmony Mathematics. What are the areas
of the effective application of this theory? By answering this question, it is
important to emphasize that the most effective areas are those where the quan�
titative aspects of the Harmony are most important, such as theoretical phys�
ics, computer science, biology, botany, economics, and so on.
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4.2. Binomial Coefficients and Pascal Triangle

4.2.1. The Main Concepts of Combinatorial Analysis

Combinatorial analysis studies different kinds of combinations that can
be built up from the elements of some set. The term “combinatorial analysis”
originates from the Latin word combinare that has the meaning to combine
or connect.

Some elements of combinatorial analysis were known in India already in
the 2nd century AD. The Indian mathematicians knew how to calculate num�
bers Cn

m called Combinations from n elements by m, and they knew the fol�
lowing formula:

C C Cn n n
n n0 1 2+ + + =... . (4.1)

A theory of binary codes, the basis of modern computers, is an example of
the effective application of the formula (4.1). We can consider a set of the
n�digit binary words starting from the code combination 00 … 0 and ending by
the code combination 11 … 1. As is known, the number of elements of this set
is equal to 2n. We can divide this set into the (n+1) disjoint subsets. Then we
can refer all binary words consisting only of 0’s to the first subset. It is clear
that the only code combination 00 … 0 satisfies this condition, that is, the
number of the elements of this subset is equal to Cn

0 1= . Then, we can refer to
the second subset all the binary words containing only 1 and the (n�1) 0’s. It
is clear that the number of elements of this subset is equal to Cn

1 .  We can refer
to the (m+1)�th subset all the n�digit binary words containing m 1’s and (n�
m) 0’s;  the number of code combinations of this subset is equal to Cn

m .  At last,
we can refer to the (n+1)�th subset all the n�digit binary words which contain
only 1’s. It is clear that the only code combination 11 … 1 satisfies this condi�
tion, that is, the number of elements of this subset is equal to Cn

n = 1. From this
reasoning the validity of the formula (4.1) follows.

The term “combinatorial analysis” began to be used after publication
in 1666 of Leibniz’s Reasoning about Combinatorial Art; in this book he
gave for the first time scientific substantiation of the theory of combina�
tions and permutations. Bernoulli introduced for the first time a notion
of Distribution in the second part of his famous book Art of Guessing pub�
lished in 1713. He introduced and used in our sense the term Permuta�
tion. The term Combination was introduced by Pascal in his Treatise about
the Arithmetical Triangle (1665).
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Thus we have the well�known formula

C
n

m n mn
m =

−
!

!( )! , (4.2)

where n!=1×2×3×…×n is a Factorial of n.

4.2.2. Binomial Formula

Now, write the following formulas:

a b

a b a b

a b a ab b

a b a a b ab

+( ) =

+( ) = +

+( ) = + +

+( ) = + +

0

1

2 2 2

3 3 2 2

1

1 1

1 2 1

1 3 3 ++1 3b .

(4.3)

Note that the first two formulas from (4.3) are trivial; the other two for�
mulas are well�known from secondary school.

We can ask the question: how do we calculate the binom (a+b)n? The
well�known mathematical formula called the Binomial Formula gives the an�
swer to this question:

a b a C a b C a b C a b C ab
n n

n
n

n
n

n
k n k k

n
n n+( ) = + + + + + + +− − − − −1 1 2 2 2 1 1... ... bbn . (4.4)

Here the numbers Cn
k  are named Binomial Coefficients or Binomial

Factors.
Sometimes the discovery of formula (4.4) was attributed to Newton. How�

ever, long before Newton, the mathematicians of many countries, in particu�
lar, the Arab mathematician Al Kashi, the Italian mathematician Tartalja, the
French mathematicians Fermat and Pascal, knew this formula. Newton’s mer�
it consists in the fact that he derived this formula for the case of any real num�
ber n, that is, he proved that the formula (4.4) is true when n is rational or
irrational, positive or negative.

The formulas (4.3) are special cases of a general formula (4.4). In particu�
lar, for the case n=1 the formula (4.4) is reduced to the following:

a b C a C b a b+( ) = + = +1
1
0

1
1 1 1 ,

whence  it appears that C1
0 1=  and C1

1 1= .
For the case n=2, the formula (4.4) takes the following form:

a b C a C ab C a ab b+( ) = + + = + +2
2
0 2

2
1

2
2 2 21 2 1 ,

whence it appears that C C C2
0

2
1

2
21 2 1= = =, , .
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Thus, we can get the decomposition (4.4) which can be very easy if we
know how to calculate the binomial coefficients Cn

k .

4.2.3. Pascal Triangle

The French 17th century mathematician Blaise Pascal (1623�1662) sug�
gested an original method for the calculation of the coefficients Cn

k for any
arbitrary non�negative integers  n and k.

In addition to the properties (4.1) and (4.2), the binomial coefficients Cn
k

have a number of remarkable properties that are given here without a proof:

C Cn n
n0 1= = (4.5)

C Cn
k

n
n k= − (4.6)

C C Cn
k

n
n

n
k

+
−= +1

1 . (4.7)

The last property (4.7) is also named the Pascal Law.
Using the recursive relation (4.7), Pascal had offered an orig�
inal method for the calculation of binomial factors that are
based on their disposition in the form of a special numerical
table called Pascal’s Triangle.

Let us examine an infinite table of numbers constructed
according to the Pascal Law (4.7).

The top of the indicated table (Fig. 4.1) that is named
Zero�row, consists of the only binomial coefficient C0

0 1= . The next row – the
1st row � consists of two binomial coefficients C C1

0
1
1 1= = .  Each succeeding

row can be constructed from the preceding row according to the rules (4.5)�
(4.7). It is easy to prove the following properties of Pascal triangle:

1. The sum of the binomial coefficients of the n�th row of Pascal triangle
is equal to 2n what corresponds to the identity (4.1).
2. All rows of Pascal triangle are symmetric relative to the binomial coef�
ficient C0

0 1= of the zero�row that corresponds to the property (4.6).
The above Pascal Trian�

gle appeared for the first time
in Pascal’s Treatise about Ar�
ithmetical Triangles written in
1665. However, one century
prior to the publication of
Pascal’s Treatise, this numer�
ical table (but in rectangular
form rather than triangular)Figure 4.1. Pascal Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 11
1 9 36 84 126 126 84 36 9 1

Blaise Pascal
(1623�1662)
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was described in the General Treatise about Number and Measure written by
the Italian mathematician Nikola Tartalja (1500�1557). Tartalja’s Treatise was
published immediately after his death.

Here the first or top row
and the first column on the
left consist only of 1’s; each
“internal” number of other
rows is equal to the sum of
two numbers, the first one
that stands in the same row
on the left to it and the second one that stands in the preceding row above it.
This table of binomial factors is called Tartalja’s Rectangle (Table  4.1).

4.3. The Generalized Fibonacci p�Numbers

4.3.1. Rectangular Pascal Triangle

There are many forms of the representation of the Pascal Triangle, for exam�
ple, in the form of an isosceles triangle, in the form of a rectangular table (Tartal�
ja’s Rectangle), etc. We will examine the so�called Rectangular Pascal Triangle
that can be represented by the following table of binomial coefficients (Fig.  4.2).

The rows of the Pascal Triangle are numbered
from top to bottom. The binomial coefficients
C C C Cn0

0
1
0

2
0 0 1= = = = =...  make up a “zero” row.

Every n�th row starts with the binomial coefficient
of the kind C nn

n = =( )1 0 1 2 3, , , , ... .
The columns of the Pascal Triangle are num�

bered from left to right; the first left�hand column
that consists of the only binomial coefficient

C0
0 1=( )  is called the Zero�column. The  n�th col�

umn (n=0,1,2,3,…) includes the following binomial coefficients:

C C C C C Cn n n n
k

n
n k

n
n0 1 2, , , ..., , ..., , ..., ,−

where C Cn
k

n
n k= − .

As mentioned above, Pascal Triangle is based on the recursive relation (4.7).
What is the correlation between Pascal Triangle and Fibonacci numbers?

In the second half of the 20th century many Great mathematicians (Martin

Table 4.1. Tartalja’s Rectangle

1 1 1 1 1 1 
1 2 3 4 5 6 
1 3 6 10 15 21 
1 4 10 20 35 56 
1 5 15 35 70 126 
1 6 21 56 126 252 

Figure 4.2.
Rectangular Pascal

Triangle

C C C C C C C

C C C C C C

C C C C C

C

n

n

n

0

0
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0

2

0

3

0

4

0

5

0 0

1

1

2

1

3

1

4

1

5

1 1

2

2

3

2

4

2

5

2 2

…
…
…

33

3

4

3

5
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4
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5 5

C C C

C C C

C C

C

n

n

n

n

n
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Gardner [12], George Polya [17], Alred Renyi [23] and others) independently
one after another discovered the connection of Fibonacci numbers with Pascal’s
Triangle and binomial coefficients. This discovery demonstrates a fundamental
connection of the Harmony Mathematics based on Fibonacci numbers and the
golden mean with combinatorial analysis and outlines a way for the future gen�
eralization of Fibonacci numbers. Below we will demonstrate a surprisingly sim�
ple mathematical regularity that connects Pascal Triangle and Fibonacci num�
bers. A generalization of this regularity resulted in the mathematical discovery
called the Generalized Fibonacci p�Numbers [19, 20].

4.3.2. Pascal p�Triangles and Fibonacci p�Numbers

Let us examine the Rectangular Pascal Triangle represented in numerical
form (Fig. 4.3).

We can name the given table of binomial co�
efficients Pascal 0�Triangle (the meaning of this
definition will become clear below). If we sum the
binomial coefficients of the Pascal 0�Triangle by
columns starting from the 0�column,
then according to (4.1) we obtain the binary se�
quence:

1 2 4 8 16 2, , , , , ..., , ....n    (4.8)

Now, we do some “manipulations” around the
Pascal 0�Triangle. We move each row of the Pas�

cal 0�Triangle one column to the right with respect to the previous row. As a result
of such move, we obtain a table called Pascal 1�Triangle (Fig. 4.4).

Now, sum the binomial coefficients of the Pascal 1�Triangle in each column.
To our amazement, we find that this summation results in the Fibonacci numbers:

1,1,2,3,5,8,13,21,…,F
n+1,….    (4.9)

where Fn+1 is the (n+1)�th Fibonacci number given by the following recursive
relation:

Fn+1= Fn+Fn�1.  (4.10)

The numerical sequence (4.9) is generated by the recursive relation (4.10)
at the seeds:

F1=F2=1.  (4.11)

If we move in the initial Pascal 0�Triangle (Fig.  4.1) the binomial coeffi�
cients of each row by p columns to the right with respect to the previous row

Figure 4.3. Pascal 0�Triangle

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

1 3 6 10 15 21 28 36
1 4 10 20 35 56 84

1 5 15 35 70 126
1 6 211 56 126

1 7 28 84
1 8 36

1 9
1

1 2 4 8 16 32 64 128 256 512
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(p=0,1,2,3,…), we get the numerical table named
Pascal p�Triangle. It is clear that the Pascal 0�
Triangle that corresponds to the case p=0 is the
initial Pascal Triangle (Fig.  4.3). The Pascal 1�
Triangle is represented in Fig.  4.4. The Pascal
p�Triangles for the cases p=2 and p=3 have the
forms shown in Fig. 4.5.

Now, sum the binomial coefficients in each column of the Pascal 2� and 3�
Triangles. As a result, we obtain two new numerical sequences:

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, ...  (4.12)

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, ...  (4.13)

Denote by F2(n) and F3(n) the n�th elements of the sequences (4.12) and (4.13),
respectively. It is easy to see the following regularities in the numerical sequences
(4.12) and (4.13) that can be expressed by the following recursive relations

F2(n)= F2(n�1)+F2(n�3)   for n≥4  (4.14)

at the seeds

F2(1)=F2(2)=F2(3)=1  (4.15)

and by the recursive relation

F3(n)=F3(n�1)+F3(n�4)   for n≥5  (4.16)

at the seeds

F3(1)=F3(2)=F3(3)=F3(4)=1.  (4.17)

Thus, as a result of this examination we have found two new numerical se�
quences. The first of them that is given by the recursive relation (4.14) at the
seeds (4.15) is named the Fibonacci 2�numbers and the second one that is given
by (4.16) at the seeds (4.17) is named the Fibonacci 3�numbers.

In the general case, for arbitrary р if we sum the binomial coefficients of
each column of the Pascal p�Triangle, we obtain the numerical sequences giv�
en by the following recursive relation:

Figure 4.4. Pascal 1�Triangle

1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

1 3 6 10 15 21 28 36
1 4 10 20 35 56

1 5 15 35
1 6

1 1 2 3 55 8 13 21 34 55 89 144

Figure 4.5. Pascal 2�Triangle  and 3�Tirangle

Pascal 2�Triangle Pascal 3�Triangle

1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

1 3 6 10 15 21 28
1 4 10 20

1
1 1 1 2 3 4 6 9 13 19 28 41 660

1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

1 3 6 10 15
1

1 1 1 1 2 3 4 5 7 10 14 19 26
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Fp(n)=Fp(n�1)+Fp(n�p�1) for n≥p+1  (4.18)

at the seeds

F
p
(1)=F

p
(2)=...=F

p
(p+1)=1.  (4.19)

The numerical sequences that correspond to the recursive relation (4.18)
and (4.19) are named [20] the Fibonacci p�numbers.

4.3.3. Partial Cases of the Fibonacci p�Numbers

It is clear that for the case p=0 the recursive relation (4.18) and the seeds
(4.19) takes the following form:

F0(n)=F0(n�1)+F0(n�1)   for n ≥2  (4.20)

F0(1)=1.  (4.21)

It is easy to guess that the recursive relation (4.20) at the seed (4.21)
generates the binary sequence (4.8) that is a special case of the Fibonacci
p�numbers for p=0.

Let us examine the case p=1. For this case the recursive relation (4.18)
and the seeds (4.19) are reduced to the following:

F1(n)=F1(n�1)+F1(n�2)   for n≥3  (4.22)

F1(1)=F1(2)=1.  (4.23)

Comparing these formulas with the recursive relation for the classical Fi�
bonacci numbers (4.10) and (4.11), we can conclude that the Fibonacci 1�
numbers coincide with the classical Fibonacci numbers, that is, F1(n)=Fn.

At last, we find that for the case p=∞ the sequence of the Fibonacci p�
numbers consists only of the unities: {1,1,1,…}.

4.3.4. A Representation of the Fibonacci p�Numbers by the Binomial
Coefficients

In the above we have examined the formula (4.1) that allows us to repre�
sent binary numbers by the binomial coefficients. Analyzing the Pascal 1�Tri�
angle (Fig. 4.4), it is easy to derive the mathematical formula that allows us to
represent the Fibonacci 1�numbers by the binomial coefficients:

F n C C C C Cn n n n n1
0

1
1

2
2

3
3

4
41+( ) = + + + + +− − − − ....  (4.24)

This means that there are two ways to calculate the Fibonacci numbers,
namely, by using the recursive relation (4.10) at the seeds (4.11) or by using
the formula (4.24).
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For example, using the formula (4.24), we can represent the Fibonacci num�
ber F1(7)=13 as follows:

F C C C C C1 6
0

5
1

4
2

3
3

2
47( ) = + + + + + ....  (4.25)

Note that the binomial coefficient C2
4  in the sum (4.25) as well as all of the

binomial coefficients following C2
4  are equal to 0 identically. This means that

the expression (4.25) is the following finite sum of the binomial coefficients:

F C C C C1 6
0

5
1

4
2

3
37 1 5 6 1 13( ) = + + + = + + + = .  (4.26)

Studying the Pascal p�Triangle, we can represent the Fibonacci p�num�
ber F

p
(n+1) by the binomial coefficients as follows:

F n C C C C Cp n n p n p n p n p+( ) = + + + + +− − − −1 0 1
2

2
3

3
4

4 ....  (4.27)

Note that the known formula (4.1) is a partial case of (4.27) for p=0  and
the formula (4.24) is a partial case of (4.27) for p=1.

4.3.5. The “Extended” Fibonacci р�Numbers

Until now we have studied the Fibonacci p�numbers F
p
(n) given for the

positive values of n. In Chapter 2 we extended the classical Fibonacci num�
bers into the side of the negative values of n. By analogy, we can find the ex�
tended Fibonacci p�numbers, if we extend the Fibonacci p�numbers to the
side of the negative values of n. With this purpose, we will find some general
properties of such extended sequences. For the calculation of the Fibonacci p�
numbers F

p
(n) corresponding to the non�negative values of n=0,�1,�2,�3,… we

use the recursive relation (4.18) and the seeds (4.19). Let us represent the
Fibonacci p�number Fp(p+1) in the form (4.18) as follows:

F
p
(p+1)=F

p
(p)+F

p
(0).  (4.28)

According to (4.19), we have: Fp(p+1)=Fp(p)=1. This means that Fp(0)=0.
Continuing this process, that is, representing the Fibonacci p�numbers

F
p
(p), F

p
(p�1),…, F

p
(2) in the form (4.18), we have:

Fp(0)=Fp(�1)=Fp(�2)=...=Fp(�p+1)=0.  (4.29)

Now, represent the Fibonacci p�number F
p
(1) in the form (4.18):

F
p
(1)=F

p
(0)+F

p
(�p).  (4.30)

As Fp(1)=1 and Fp(0)=0, we get from (4.30):

F
p
(�p)=1.  (4.31)

Representing the Fibonacci p�numbers Fp(0), Fp(�1), …, Fp(�p+1) in the
form of (4.18) , we get:

F
p
(�p�1)=F

p
(�p�2)=...=F

p
(�2p+1)=0.  (4.32)
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By continuing this process,
we can obtain all values of the
Fibonacci p�numbers F

p
(n) for

the negative values of n. Table
4.2 gives some values of the “ex�
tended” Fibonacci p�numbers
for the cases p=1, 2, 3, 4, 5.

4.3.6. Some Identities for the Sums of the Fibonacci р�Numbers

Once again, let us examine the recursive relation (4.14). Decomposing
the Fibonacci 2�number F2(n�1) in (4.14) according to the same recursive re�
lation (4.14), that is, representing F2(n�1) in the form F2(n�1)=F2(n�2)+F2(n�
4), we can represent the recursive relation (4.14) as follows:

F2(n)=F2(n�2)+F2(n�3)+F2(n�4).  (4.33)

This means that the sum of the three successive Fibonacci 2�numbers is
always equal to the Fibonacci 2�number, which is two positions from the se�
nior Fibonacci 2�number of the sum.

Now, consider the recursive relation for the Fibonacci 3�numbers given
by (4.16). Decomposing the Fibonacci 3�number F3(n�1) in (4.16) according
to the same recursive relation (4.16), we can represent the recursive relation
(4.16) as follows:

F3(n)=F3(n�2)+F3(n�4)+F3(n�5).  (4.34)

Decomposing the number F3(n�2) in (4.34) according to the recursive re�
lation (4.16), we can represent (4.34) as follows:

F3(n)=F3(n�3)+F3(n�4)+F3(n�5)+F3(n�6),  (4.35)

that is, the sum of the four sequential Fibonacci 3�numbers is always equal to
the Fibonacci 3�number, which is three positions from the senior Fibonacci 3�
number of the sum.

If we use a similar approach to the Fibonacci р�numbers in the general
case, we obtain the following general identity:

Fp(n)=Fp(n�p)+Fp(n�p�1)+Fp(n�p�2)+...+Fp(n�2p).  (4.36)

Note that the identity (4.36) is valid for all “extended” Fibonacci p�num�
bers Fp(n) when n takes the values from the set: {0,±1,±2,±3,…}.

Now, let us consider the sum of the first n Fibonacci p�numbers:

F
p
(1)+F

p
(2)+F

p
(3)+...+F

p
(n).  (4.37)

Table 4.2. The “Extended” Fibonacci р�Numbers

N 6 5 4 3 2 1 0 �1 �2 �3 �4 �5 �6 �7

F1(n) 8 5 3 2 1 1 0 1 �1 2 �3 5 �8 13

F2(n) 4 3 2 1 1 1 0 0 1 0 �1 1 1 �2

F3(n) 3 2 1 1 1 1 0 0 0 1 0 0 �1 1

F4(n) 2 1 1 1 1 1 0 0 0 0 1 0 0 0

F5(n) 1 1 1 1 1 1 0 0 0 0 0 1 0 0
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To get the required result, we write the basic recursive relation (4.18) for
the Fibonacci p�numbers as follows:

F
p
(n)=F

p
(n+p+1)�F

p
(n+p).  (4.38)

By using (4.38), we can write the following equalities:
F F p F p

F F p F p

F F p F

p p p

p p p

p p p

1 2 1

2 3 2

3 4

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

= + − +
= + − +

= + − 33

1 1

1

+

− = + − + −
= + + − +

( )

( ) ( ) ( )
( ) ( ) ( )

p

F n F n p F n p

F n F n p F n p
p p p

p p p

...

.

Summing term by term the left�hand and right�hand parts of these equal�
ities and taking into consideration that Fp(1+p)=1, we obtain the following
expression for the sum (4.37):

F
p
(1)+F

p
(2)+F

p
(3)+...+F

p
(n)=F

p
(n+p+1)�1.  (4.39)

The formula (4.39) includes a further number of remarkable formulas of
discrete mathematics. In fact, for the case p=0 this formula is reduced to the
following well�known formula for binary numbers:

20+21+22+…+2n�1=2n�1.

For the case p=1, the Fibonacci р�numbers coincide with the classical Fi�
bonacci numbers, that is, F1(n)=Fn. And then the formula (4.39) is reduced to
the following formula:

F1+F2+F3+...+F
n
=F

n+2�1,

that is well known from Fibonacci number theory [13, 16].
Thus, our “manipulations” with Pascal’s Triangle resulted in a small math�

ematical discovery! We found an infinite number of the new numerical se�
quences named the Fibonacci p�numbers (p=0,1,2,3,…). These numerical se�
quences include the binary numbers (4.8) (p=0) and the classical Fibonacci
numbers (4.9) (p=1) as partial cases. These numerical sequences possess a
number of interesting mathematical properties, and their study can result in
widening the Fibonacci number theory.

4.3.7. The Ratio of Adjacent Fibonacci p�Numbers

In Chapter 2 we found that the classical Fibonacci numbers are closely
connected with the golden mean. In particular, the limit of the ratio F

n 
/F

n�1

aims for the golden mean. There is a question: what is a limit of the ratio of the
two adjacent Fibonacci p�numbers? Introduce the following definition:
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lim
( )

( )
.

n

p

p

F n

F n
x

→∞ −
=

1  (4.40)

By using the recursive relation (4.18), we can represent the ratio of the
two adjacent Fibonacci p�numbers as follows:

F n

F n

F n F n p

F n

F n

F n p

p

p

p p

p

p

p

( )

( )

( ) ( )

( )

( )

( )

−
=

− + − −
−

= + −
− −

=

1

1 1

1

1
1

1

1

11
1

1 2

2 3 1

+ − ⋅ − ⋅⋅ ⋅ −
− ⋅ − − −

F n F n F n p

F n F n F n p
p p p

p p p

( ) ( ) ( )

( ) ( ) ( )

.  (4.41)

Taking into consideration the definition (4.40), for the case n→∞ we can
replace the expression (4.41) by the following algebraic equation:

xp+1=xp+1.  (4.42)

Note that the equation (4.42) is called the Characteristic Equation for the
Recursive Relation (4.18).

Denote by τ
p
 a positive root of the characteristic equation (4.42). Let us

examine Eq. (4.42) for the different values of p. For p=0, Eq. (4.42) is reduced
to the trivial case: x=2. For p=1, Eq. (4.42) is reduced to the classical golden
algebraic equation:

x2=x+1  (4.43)

with a positive root τ = +( )1 5 2.
Thus, Eq. (4.42) can be considered to be a very broad generalization of the

golden equation (4.43).

4.4. The Generalized Golden p�Sections

4.4.1. A Generalization of the Division in Extreme and Mean Ratio
(DEMR)

Equation (4.42) has the following geometric interpretation. Let us give
the integer р a non�negative value (p=0,1,2,3,…) and divide the line АВ at the
point С in the following proportion (Fig. 4.6):

CB
AC

AB
CB

p

= 





.  (4.44)
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Note that the proportion (4.44) is reduced to the “dichotomy” for the case
p=0 (Fig. 4.6�a) and to the classical “division in the extreme and mean ratio”
(the golden section) for the case p=1 (Fig. 4.6�b). Taking this fact into consid�
eration, we will name the division of the line segment AB at the point C in the
proportion (4.44) a Golden p�Section and the positive root of Eq. (4.42) a Gold�
en p�Proportion [20].

4.4.2. Algebraic Properties of the Golden р�Proportions

If we substitute the golden р�proportion τp for x in Eq. (4.42), we get the
following identity for the golden р�proportion:

τ τp
p

p
p+ = +1 1.  (4.45)

If we divide all terms of the identity (4.45) by τp
p , we get the following

remarkable property of the golden р�proportion:

τ
τp

p
p

= +1
1

 (4.46)

or

τ
τp

p
p

− =1
1

.  (4.47)

Note that for the case p=0 (τp=2)  the identities (4.46) and (4.47) are
reduced to the following trivial cases:

2 1
1
1

= +  or 2 1
1
1

− = .

For the case p=1 we have τ τ1 1 5 2= = +( )  and the identities (4.46),
(4.47) are reduced to the identities (1.11) and (1.12).

Figure 4.6. The Generalized Golden p�Sections

a) p = 0   A B   τ0=2

B   τ1=1.618

B   τ2=1.465

B   τ3=1.380

B   τ4=1.324

b) p = 1   A

c) p = 2   A

d) p = 3   A

e) p = 4   A

C

C

C

C

C
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If we multiply and divide repeatedly all terms of the identity (4.45) by  τp,
we obtain the following remarkable identity connecting the powers of the gold�
en p�proportion:

τ τ τ τ × τp
n

p
n

p
n p

p p
n= + =− − − −1 1 1.  (4.48)

Note that for the case p=0 the identity (4.48) is reduced to the following
trivial identity for the binary numbers:

2n=2n�1+2n�1=2×2n�1.

For the case p=1 the identity (4.48) is reduced to the following well�known
identity for the classical golden mean:

τn=τn�1+τn�2=τ×τn�1.  (4.49)

4.4.3. Geometric Progressions Based on the Golden p�Proportions

Now, consider a geometric progression based on the golden p�proportion:

τ τ τ τ τ τ τ τ τp
n

p
n

p p p p p p p, , ..., , , , , , , , ... .− − − −={ }1 3 2 1 0 1 2 31  (4.50)

The geometric progression (4.50) possesses the remarkable property: for
the case p>0 according to (4.48) each term of the geometric progression (4.50),
for example, τp

n can be obtained from the preceding terms in two ways: (1) by
the multiplication of the preceding term by  τ

p
 τ τ × τp

n
p p

n=( )−1 ; (2) by the
summation of the (n�1)�th and the (n�p�1)�th terms τ τ τp

n
p
n

p
n p= +( )− − −1 1 .

Note that till now we believed that only the golden geometric progression
based on the classical golden mean possesses similar “additive” property. It
follows from this consideration that a number of similar geometric progres�
sions are infinite and all of them are based on the golden p�proportions.

By decomposing τp
n and all the cases arising from such decomposition terms

τ τ τp
n

p
n

p
n− − −1 2 3, , , ...  according to the recursive relation (4.48), we obtain the fol�

lowing identities:
τ τ τ
τ τ τ τ
τ τ τ

p
n

p
n p

p
n

p
n

p
n p

p
n p

p
n

p
n

p
n p

p
n

= +
= + +
= +

− − −

− − − − −

− − −

1 1

1 2 2

1 pp
p
n p

p

p
n

p
n p j

j

k

p
n k

− − − −

− −

=

−

+ +

=








 +∑

2 3 3

1

τ τ

τ τ τ

...

.

  (4.51)

In particular, for the case k=p the identity (4.51) takes the following form:

τ τ τ τp
n

p
n p j

j

p

p
n p

p
n p j

j

p

=








 + =− −

=

− − −

=
∑ ∑

1 0

.  (4.52)
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By decomposing τp
n  and terms τ τ τp

n p
p
n p

p
n k p− + − + − − +( ) ( ) ( )( ), , ,...1 2 1 1 1  arising from

such decomposition according to the recursive relation (4.48), we obtain the
following identities:

τ τ τ

τ τ τ τ

τ τ

p
n

p
n

p
n p

p
n

p
n

p
n p

p
n p

p
n

p
n

= +

= + +

=

− − +( )

− − +( )− − +( )

1 1

1 1 1 2 1

−− − +( )− − +( )− − +( )

− −( ) +

+ + +

=

1 1 1 2 1 1 3 1

1 1

τ τ τ

τ τ

p
n p

p
n p

p
n p

p
n

p
n j p

...

(( )−

=

− +( )∑








 +1

1

1

j

k

p
n k pτ .

 (4.53)

In particular, for the case p=0 (τ
p
=2) the identities (4.51) and (4.53) co�

incide and they are reduced to the following remarkable identity for the “bi�
nary” numbers:

2 2 2
1

n n j

j

k
n k= +−

=

−∑ .  (4.54)

For the case p=1 we have: τ τ1 1 5 2= = +( ) ; then the identities (4.51)
and (4.53) take the following forms, respectively:

τ τ τn n j

j

k
n k= +− −

=

−∑ 1

1
 (4.55)

τ τ τn n j

j

k
n k= +− +

=

−∑ 2 1

1

2 .  (4.56)

4.5. The Generalized Principle of the Golden Section

4.5.1. Dichotomy Principle

The remarkable book [46] by Russian architect Shevelev is devoted to a
study of the most general principles that underlie Nature. The Dichotomy Prin�
ciple and the Golden Section Principle are the most important of them. The
Dichotomy Principle is based on the following trivial property of the binary
numbers:

2n=2n�1+2n�1,  (4.57)

where n=0,±1,±2,±3,… .
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For the case n=0, we have:

1=20=2�1+2�1.  (4.58)

In the book [46] the following “dynamic” model of the Dichotomy Princi�
ple is given in the form of the infinite division of the “Unit” (“The Whole”)
according to the “dichotomy” relations (4.57) and (4.58):

 

1=2 =2 +2
2 =2 +2

2 =2 +2

2 2 2 2 2

0 �1 �1

�1 �2 �2

�2 �3 �3

0 �1 �2 �3 �41= = + + + = ... == ∑2�

=1

i

i

∞
.

 (4.59)

4.5.2. Classical Golden Section Principle

The Golden Section Principle that came to us from Pythagoras, Plato, and
Euclid is based on the following fundamental property that connects the ad�
jacent powers of the golden mean τ = +( )1 5 2 :

τn=τn�1+τn�2,  (4.60)

where n=0,±1,±2,±3,… .
For the case n=1, the identity (4.60) takes the following form:

1=τ0=τ�1+τ�2.  (4.61)

Using the golden identities (4.60) and (4.81), Shevelev developed [46]
the following “dynamic” model of the Golden Section Principle:

1

1

0 1 2

2 3 4

4 5 6

0 1 3 5 7

= = +
= +

= +
= = + + + +

− −

− − −

− − −

− − − −

τ τ τ
τ τ τ

τ τ τ
τ τ τ τ τ ... == − −( )

=

∞

∑τ 2 1

1

i

i

.
 (4.62)

Note that the Dichotomy Principle (4.59) and the Golden Section Principle
(4.62) have a great number of applications in nature, science and mathemat�
ics (binary number system, numerical methods of the algebraic equation solu�
tions, self division and so on).

4.5.3. The Generalized Principle of the Golden Section

By dividing all terms of the identity (4.48) by τp
n , we obtain the following

identity:

1 0 1 1= = +− − −τ τ τp p p
p .  (4.63)
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Using (4.48) and (4.63), we can construct the following “dynamic” model of
the “Unit” decomposition according to the Golden p�Proportion:

 

1 0 1 1

1 1 1 2 1

2 1

= =
=

=

− − +( )

− +( ) − +( )− − +( )

− +( )

τ τ + τ
τ τ + τ

τ

p p p
p

p
p

p
p

p
p

p
p ττ τ

τ τ + τ τ + τ

p
p

p
p

p p p
p

p
p

p

− +( )− − +( )

− − +( )− − +( )−

+

= = +

2 1 1 3 1

0 1 1 1 2 1 11 −− +( )− − −( ) +( )−

=

∞

+ = ∑3 1 1 1 1 1

1

p
p

i p

i

... .τ
 (4.64)

The main result of the above consideration is  to find more general principle
of the “Unit” division that is given by the following identity:

1 1 1 1 1 1

1

= + =− − + − − + −

=

∞

∑τ τ τp p
p

p
i p

i

( ) ( )( ) ,  (4.65)

where τ
p
 is the golden p�proportion, p=0,1,2,3,… .

It is clear that this general principle � Generalized Principle of the Golden
Section � includes the Dichotomy Principle (4.59) and the classical Golden
Section Principle (4.62) as special cases for p=0 and p=1, respectively.

4.6. A Generalization of Euclid’s Theorem II. 11

4.6.1. A Generalization of Euclid’s Theorem II.11 for the Case p=2

As we mentioned above, the golden p�sections that are given by the pro�
portion (4.44) is a generalization of the classical golden section that is given
by (1.3). However, in Euclid’s Theorem II.11 the DEMR is formulated in the
form (1.2). We can try to represent the proportion (4.44) in the form (1.2).
We start from the partial case p=2. For this case the proportion (4.44) takes
the following form:

CB
AC

AB
CB

= 





2

.  (4.66)

Let us denote the lengths of the line segments АВ, АС and СВ in (4.66) as
follows: AB=a, CB=b, AC=c. Then, it can be represented in the form:

a2×c=b3.  (4.67)

We can give the following geometric interpretation of the equality (4.67).
The right�hand part of the equality (4.67) can be interpreted as the volume of
a cube with the side equal to b, that is, to the length of the larger segment CB
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that arises at the division of a line segment АВ in the golden 2�proportion (4.66).
The left�hand part of the equality (4.67) can be interpreted as the volume of a
rectangular parallelepiped. This parallelepiped has a square at its base with sides
equal to а, that is, to the length of the initial segment АВ. The height of the
rectangular parallelepiped is equal to с, that is, to the length of the smaller seg�
ment АС in the proportion (4.66).

Then, taking into consideration (4.66) and (4.67), we can formulate a new
geometric problem of the division of a line in the golden 2�section that is a
generalization of Euclid’s DEMR.

Generalization of DEMR (a Division in the Golden 2�Proportion). Di�
vide the given line АВ at point C into two segments, the smaller segment АС
and the larger segment СВ, so that a volume of the cube with the side equal to
the larger segment CB is equal to the volume of a rectangular parallelepiped
with a base, which is a square with sides equal to the initial line АВ, and with
the height equal to the smaller segment AC.

4.6.2. Euclid’s Rectangular Parallelepiped

The rectangular parallelepiped appearing in the above problem consists
of 6 faces (Fig. 4.7). The top and bottom faces are squares with sides equal to
the length of the initial segment a; the lateral faces are the rectangles with
sides equal to a and c. These rectangles are similar to Euclid’s rectangle in Fig.
4.7 where the ratio of its sides a:c for the given case is equal to the square of
the golden 2�proportion τ2, that is,

a
c

= τ2
2 .  (4.68)

We will name this  geometric figure Euclid’s Rect�
angular Parallelepiped. Thus, according to (4.68) the
ratio of the side of its base to its height in Euclid’s Rect�
angular Parallelepiped is equal to the square of the
golden 2�proportion τ2; here, according to (4.67) its
volume is a cube of the length of the larger segment in
the proportion (4.66).

If the initial segment AB is a unit segment (AB=1),
then the equality (4.67) takes the following form:

c=b3.  (4.69)

Then, we can formulate the following geometric problem of the division
of the unit segment in the golden 2�proportion.

Figure 4.7.
Euclid’s rectangular

parallelepiped

a

c
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A Problem of the Division of the Unit Segment in the Golden 2�Propor�
tion. Divide a unit segment into two unequal segments such that the smaller
segment’s length is equal to the cube of the larger segment’s length.

Note that the formulated problem expresses the following property of the
golden 2�proportion:

1 0 6823 0 31772
1

2
3= + = +− −τ τ . . .  (4.70)

4.6.3. The General Case of p

For the general case of р, we represent (4.44) in the following form:

ap×c=bp+1.  (4.71)

By using geometric language, we can interpret the equality (4.71) as fol�
lows. The right�hand part of the equality (4.71) is a volume of a hypercube in
the (p+1)�dimensional space with the side equal to the length b of the larger
segment of the division of a line in the golden р�proportion. The left�hand
part of the equality (4.71) is a volume of Euclid’s Hyper�Rectangular Parallel�
epiped in the (p+1)�dimensional space; here, the р sides are equal to the length
а of the initial segment at the division of a line in the golden р�proportion,
and the (p+1)�th side (its “height”) is equal to the length с of the smaller
segment at the division of a line in the golden р�proportion.

It is clear that (4.71) expresses a generalized Euclidean problem of the
division in extreme and mean ratio. We can consider this problem for the case
of the unit segment (a=1). Then, the equality (4.71) takes the following form:

c=bp+1. (4.72)

Taking into consideration (4.72), we can formulate the following problem.
 A Problem of the Division of the Unit Segment in the Golden p�Pro�

portion. For a given p=0,1,2,3,… divide a unit segment into two unequal seg�
ments in such proportion that the smaller segment’s length is equal to the
(p+1)�th degree of the larger segment’s length.

4.7. The Roots of the Generalized Golden Algebraic Equations

4.7.1. Algebraic Equations

 As is well known, algebraic equations have the following general properties,
which can be used by us before finding their roots:
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1. Algebraic equations of the n�th degree have n roots. In special cases it
can appear, that some roots are repeated some times (multiple roots); hence,
the number of various roots can be less than n.
2. Descartes’ “rule of signs”: the algebraic equation has no more positive
roots than the number of sign changes in a series of its factors. Often, it is
not so important to calculate the roots, it is more important to understand
the character of these roots. “The rule of signs” helps to solve this problem.
For example, the equation x5�4x�2=0 has only one positive root because the
series of their factors 1,�4,�2 have only one change of a sign.
3. In the equations with real factors, the complex roots can appear only
by pairs: alongside with the root a+bi the complex number a�bi is always
a root of the same equation.
4. If xi (i=1,2,3,…,n) is one of the roots of the algebraic equation

a0x
n+ a1x

n�1+…+an=0,  (4.73)

then it is easy to prove, that a polynomial that stands in the left�hand part
of Eq. (4.73), is divided by the binom (x�xi) without remainder. It is easy
to prove that any polynomial of n�th degree can be represented as a prod�
uct of the n multipliers of the 1�st degree of the kind (x�x

i
), that is,

a0x
n+ a1x

n�1+…+an=(x�x1)(x�x2) … (x�xn).  (4.74)

This theorem (4.74) is sometimes named the Basic Theorem of Algebra.

4.7.2. Properties of the Roots of the Generalized Golden Algebraic
Equations

Once again, consider the characteristic equation (4.42). By using the above
rules 1�4, we can prove the following properties of the roots of Eq. (4.42):

1. According to Descartes’ “Rule of Signs,” Eq. (4.42) has the only positive
root τ

p
. This root expresses some important property of Pascal Triangle.

2. As Eq. (4.42) has the degree (p+1), this means that Eq. (4.42) has (р+1)
roots x1, x2, …, xp, xp+1. Further, without loss of generality, we suppose that
the root x1 always coincides with the golden р�proportion τ

p
, that is, x1=τ

p
.

3. As Eq. (4.42) has only the real factors 1, �1 and �1, this means that all
complex roots of Eq. (4.42) appear in pairs, that is, each complex root
a+bi appears always together with the root a�bi, which is the complex
conjugate to the root a+bi.
4. By using (4.74), we can represent Eq. (4.42) by its roots as follows:

xp+1�xp�1 =(x�x1)(x�x2) … (x�x
p
)(x�x

p+1).  (4.75)

 The general identity below for the roots x1, x2, …, xp, xp+1 comes from (4.42):
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x x x x xk
n

k
n

k
n p

k k
n= + = ×− − − −1 1 1,  (4.76)

where n=0,±1,±2,±3,… and xk (k=1,2,3,…, p+1) is a root of Eq. (4.42). Note
that the identity (4.48) is a partial case of the identity (4.76) for the case k=1.

Theorem 4.1. For a given integer p>0, the following correlations for the
roots of the characteristic equation xp+1�xp�1=0 are valid:

x x x x x
p p1 2 3 1 1+ + + + + =+...  (4.77)

x x x x x x x x x x x x

x x x
p p p p1 2 1 3 1 1 2 3 2 1 1

1 2

0+ + +( )+ + +( )+ + =+ + +... ... ...

33 1 3 4 1 1 2 3 4 2 1 1+ + +( )+ + +( )+ ++ + −x x x x x x x x x x x x x x xp p p p p p... ... ... pp

p p p p p p px x x x x x x x x x x x x x x

+

− − − + −

=

+ + +

1

1 2 2 1 1 3 4 1 1 2 3 4 1

0
...

... xx xp p+ =1 0
 (4.78)

x x x x x xp p p

p

1 2 3 1 1 1− + = −( ) .  (4.79)

Proof. Consider the representation of Eq. (4.42) in the form (4.75). If we
remove the parentheses in (4.75), then, for the even p=2k we can write:

x x x x x x x x x x x x x

x

p p
p

p
p

p+
+

+
+− − = −( ) −( ) −( )= − + + +( )

+

1
1 2 1

1
1 2 1

1

1 ...

xx x x x x x x x x x x x

x
p p p p p p

p
2 1 1 2 3 2 1 1 1 1

1+ + + + + + + +( )
−

+ + − + +
−... ... ...

11 2 3 1 1 2 3 4 2 1 1 1x x x x x x x x x x x x x x xp p p p p p p
p+ + + + + + +( )+ + − +... ... ... −−

− − +
−

−

+ + + +( )

+

2

1 2 3 4 1 2 3 5 2 1 1
3

1 2

x x x x x x x x x x x x x

x x x

p p p p
p

p

...
...

11 1 3 1 2 3 1 1 2 1 0x x x x x x x x x x x x x xp p p p p p p+ + +( ) − =+ + +... .

 (4.80)

The following outcomes follow from the comparison of (4.42) and (4.80):
x x x x
x x x x x x x x

p p

p p

1 2 1

1 2 1 1 2 3 2 1

1+ + + + =
+ +( )+ + +( )+

+

+ +

...
... ... ...++ +( )+ =
+ +( )+ +

− − + +

+

x x x x x x

x x x x x x x x x
p p p p p p

p p

1 1 1 1

1 2 3 1 1 2 3 4

0

... .... ...
...

+( )+ + =

+

+ − +

− −

x x x x x x

x x x x x x x x x

p p p p p

p p p

2 1 1 1

1 2 2 1 1 3 4

0

pp p p p p p

p p

x x x x x x x x
x x x x

− + − +

+

+ + =
=

1 1 2 3 4 1 1

1 2 1

0
1

...
.

 (4.81)

For the odd p=2k+1, we have:

x x x x x x x x x x x x x

x x

p p
p

p
p

p+
+

+
+− − = −( ) −( ) −( )= − + + +( )

+

1
1 2 1

1
1 2 1

1 2

1 …
++ + + + + + + + +( )

−
+ + − − + +

−… … …x x x x x x x x x x x x x

x
p p p p p p p p

p
1 1 2 3 2 1 1 1 1 1

1

1xx x x x x x x x x x x x x x x

x x
p p p p p p p

p
2 3 1 1 2 3 4 2 1 1 1

2

1 2

+ + + + + + +( )
+

+ + − +
−… … …

xx x x x x x x x x x x

x x x x x x

p p p p
p

p p p

3 4 1 2 3 5 2 1 1
3

1 2 3 2 1

+ + +( )

−

− − +
−

− −

…
...

++ +( ) + =− + − +… x x x x x x x x x x x x xp p p p p p2 3 4 1 1 1 2 3 1 1 0.

 (4.82)

The following outcomes follow from the comparison of (4.42) and (4.82):
x x x x
x x x x x x x x

p p

p p

1 2 1

1 2 1 1 2 3 2 1

1+ + + + =
+ +( )+ + +( )+

+

+ +

...
... ... ...++ +( )+ =
+ +( )+ +

− − + +

+

x x x x x x

x x x x x x x x x
p p p p p p

p p

1 1 1 1

1 2 3 1 1 2 3 4

0

... .... ...
...

+( )+ + =

+

+ − +

− −

x x x x x x

x x x x x x x x x

p p p p p

p p p

2 1 1 1

1 2 2 1 1 3 4

0

pp p p p p p

p p

x x x x x x x x
x x x x

− + − +

+

+ + =
=−

1 1 2 3 4 1 1

1 2 1

0
1

...
.

 (4.83)
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The outcomes (4.81) and (4.83) prove Theorem 4.1.
It is evident from (4.77) that the sum of the roots of Eq. (4.42) is identi�

cally equal to 1. The expression (4.78) gives the values for every possible sum
of the roots of Eq. (4.42) taken by two, three, ..., or р roots from the (p+1)
roots of Eq. (4.42). According to (4.78), each of these sums is identically equal
to zero! At last, the expression (4.79) gives the value of the product of all
roots of Eq. (4.42). According to (4.79) this product is equal to 1 (for the even
р) or �1 (for the odd р).

Theorem 4.2. For a given integer p=1,2,3,… and for the condition when k
takes its values from the set {1,2,3,…,p}, the following identity is valid for the
roots of the characteristic equation xp+1�xp�1=0:

x x x x x x x xp

k k k k
p
k

1 2 3 1 1 2 3 1 1+ + + +( ) = + + + + =+ +... ... .  (4.84)

Proof. Consider the expression:

(x1+ x2+…+ xp+ xp+1)
k,  (4.85)

where k takes its values from (4.86)

k∈{1,2,…,p}.  (4.86)

Taking into consideration the identity (4.77), we can write:

(x1+ x2+…+ xp+ xp+1)
k =1k=1.  (4.87)

Consider a partial case of the expression (4.87) for the case p=1. Taking
into consideration the condition (4.86) for the case p=1 the expression (4.85)
can take the only form:

x1+x2.  (4.88)

According to the property (4.87), we can write:

x1+x2 = 1  (4.89)

that satisfies the expression (4.84).
Now, consider the case p=2. Taking into consideration the condition (4.86),

for the case p=2 the expression (4.85) can take only two different forms:

x1+x2+x3  (4.90)

and

(x1+x2+x3)
2.  (4.91)

Taking into consideration the identity (4.87), we can write for the case
(4.90) the following identity:

x1+x2+x2 = 1.  (4.92)

Now, consider the case (4.91). Representing (4.91) in the form

[(x1+x2)+ x3]
2,  (4.93)
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we can write:

x x x x x x x x x x x x x x x1 2 3

2

1 2 3

2

1
2

2
2

3
2

1 2 1 3 2 32+ + = + + = + + + + +( ) ( )[ ] ( ).  (4.94)

If we take into consideration the properties (4.78) and (4.84), we can re�
write the expression (4.94) as follows:

x x x x x x1 2 3
2

1
2

2
2

3
2 1+ +( ) = + + = .  (4.95)

By analogy, we can write 3 possible expressions like (4.85) for the case p=3:

x1+x2+x3+x4,  (4.96)

(x1+x2+x3+x4)
2,  (4.97)

(x1+x2+x3+x4)
3.  (4.98)

If we fulfill simple transformations of the expressions (4.96)�(4.98) and
take into consideration the properties (4.77) and (4.84), we can write 3 iden�
tities for the case p=3:

 x1+x2+x3+x4 = 1 (4.99)

x x x x x x x x1 2 3 4
2

1
2

2
2

3
2

4
2 1+ + +( ) = + + + = (4.100)

x x x x x x x x1 2 3 4
3

1
3

2
3

3
3

4
3 1+ + +( ) = + + + = . (4.101)

In the generalized case, for the proof of Theorem 4.2 for arbitrary p we can
use the so�called Multinomial Theorem [35], which is a generalization of the
binomial theorem (4.4). For any positive integer m and any non�negative in�
teger n, the multinomial formula is the following:

( ... )
, , , ...,, , ,...,

x x x x xm
n

k k k k

n

k k k k
mm

1 2 3
1 2 31 2 3

+ + + + =








∑ 11 2 3

1 2 3k k k
m
kx x x m... . (4.102)

The summation is taken over all sequences of the nonnegative integer in�

dexes k1 through km such that k ni
i

m

=
=
∑

1

. The numbers

n

k k k k
n

k k k km m1 2 3 1 2 3, , ,...,
!

! ! !... !








 = (4.103)

are called Multinomial Coefficients.
Note that the Binomial Theorem (4.4) and the Binomial Coefficients (4.2)

are special cases (m=2) of the Multinomial Formula (4.102) and the Multino�
mial Coefficients (4.103), respectively.

In the general case of p, the expression (4.85) can be factorized if we use
the Multinomial Formula (4.102). As is known [35], for a given k, the Multino�
mial Formula (4.102) will include in itself the sum of all k�th powers of Eq.
(4.42) that are taken with the coefficient of 1, that is,

x x x x xk k k
p
k

p
k

1 2 3 1+ + + + + +... , (4.104)



Chapter 4
211

Generalizations of Fibonacci  Numbers and the Golden Mean

and the sum of the products of every possible combination of two (k=2), three
(k=3) or the k roots of Eq. (4.42) that are taken with the factors known as
Multinomial Coefficients (4.103) [35]. According to Theorem 4.1 all these sums
are identically equal to zero. And then taking into consideration (4.86), we
can write the general identity (4.84).

4.7.3. Some Corollaries of Theorems 4.1 and 4.2

Now, consider some corollaries of Theorems 4.1 and 4.2 for the different val�
ues of р. It is well known that for the case p=1 the golden algebraic equation
(4.43) has two real roots:

x1
1 5

2
= = +τ   and  x2

1 1 5
2

= − = −
τ

.

Hence, from the above we can obtain the following identities � correspond�
ing to Theorem 4.1 � for the roots x1 and x2:

x1+x2=1; x1×x2=�1. (4.105)

For the case p=2, the golden algebraic equation (4.42) takes the following
form:

x3=x2+1. (4.106)

Equation (4.106) has three roots � one real root x1 and two complex con�
jugate roots x2 and x3 that are  given below:

x
h

h1 6
2

3
1
3

1 4655712319= + + = . ... (4.107)

x
h

h
i

h
h

i2 12
1

3
1
3

3
2 6

2
3

0 233 0 793= − − + − − = − −( ) . ... ( . ...) (4.108)

x
h

h
i

h
h

i3 12
1

3
1
3

3
2 6

2
3

0 233 0 793= − − + + − = − +( ) . ... ( . ...) , (4.109)

where

h = +116 12 933 . (4.110)

Using direct substitution for the roots x1, x2 and x3, it is easy to prove the
following identities corresponding to Theorems 4.1 and 4.2 for the case p=2:

x x x

x x x x x x

x x x

x x x

1 2 3

1 2 1 3 2 3

1 2 3

1
2

2
2

3
2

1

0

1

1

+ + =
+ + =

=

+ + =

,

,

,

.

× ×
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4.8. The Generalized Golden Algebraic Equations of Higher Degrees

4.8.1. The Case of p=1

In Chapter 1 we developed a theory of the golden algebraic equations of higher
degrees. We proved that for the simplest golden algebraic equation (4.43) – which
is a partial case (p=1) of the characteristic equation (4.42) � there is an infinite
number of the characteristic equations with the degree greater than 2 that have

the golden mean τ = +( )1 5 2  as their general root. In their general form these
golden equations are given by the expression:

xn=Fnx
2�Fn�2= Fnx�Fn�1, (4.111)

where Fn, Fn�1, Fn�2 are Fibonacci numbers.
As we mentioned in Chapter 1, the equation x4=3x+2 � which is a partial

case of the general equation (4.111) corresponding to  n=4 � describes the
energy state of the butadiene molecule, a valuable chemical substance, which
is used in the production of rubber. This fact at once places our interest in the
golden equations (4.111), because they, probably, in general, can describe the
energy conditions of the molecules of other chemical substances.

In this connection it is of great interest to study the characteristic equa�
tions given by (4.42) and the algebraic equations following from them with
degrees more than p+1 � which have the golden p�proportions τp as their gen�
eral roots. Let us demonstrate our approach for the partial cases p=2,3.

4.8.2. The Case of p=2

For the case of p=2 Eq. (4.42) is reduced to the algebraic equation of the
third degree: x3=x2+1. Multiplying repeatedly all terms of the equation x3=x2+1
by x, we can find the following equality for the case of p=2:

xn=xn�1+ xn�3, (4.112)

where n=3, 4, 5,… .
Using the equality (4.112) and (4.42), we derive the following algebraic

equations that have the golden 2�proportion τ2 as a root:

x x x x x
x x x x x
x x x x x

x x xn n

4 3 2

5 4 2 2

6 5 3 2

1

1
2 1
3 2

= + = + +
= + = + +
= + = + +

= +−
...

nn F n x F n x F n− = −( ) + −( ) + −( )3
2

2
2 21 3 2 ,

(4.113)
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where F2(n�1), F2(n�2), F2(n�3) are the Fibonacci 2�numbers that are given by
the recursive relation (4.14) at the seeds (4.15).

As the golden 2�proportion τ2 is the root of each of the equations that are
given by (4.113), the following general identity, which connects the golden 2�
proportion τ2 with the Fibonacci 2�numbers F2(n), follows from (4.113):

τ τ + τ τ τ2 2
1

3
3

2 2
2

2 2 21 3 2n n
n
n F n F n F n= = −( ) + −( ) + −( )−

−
− . (4.114)

4.8.3. The Case of p=3

Consider the characteristic equation (4.42) for the case of p=3:

x4=x3+1. (4.115)

If we use the reasoning similar to the case of p=2, we can obtain the following
algebraic equations that have the golden 3�proportion τ3 as their general root:

x x x x x
x x x x x x
x x x x x x

x xn

5 4 3

6 5 2 3 2

7 6 3 3 2

1
1

2 1

= + = + +
= + = + + +
= + = + + +

=
...

nn nx F n x F n x F n x F n− −+ = −( ) + −( ) + −( ) + −( )1 4
3

3
3

2
3 32 5 4 3 ,

(4.116)

where F3(n�2), F3(n�3), F3(n�4), F3(n�5) are the Fibonacci 3�numbers given
by the recursive relation F3(n)=F3(n�1)+F3(n�4) at the seeds:

F3(1)=F3(2)=F3(3)=F3(4)=1.

As the golden 3�proportion τ3 is the root of any of the equations (4.116),
the following identity, which connects the golden 3�proportion τ3 with the
Fibonacci 3�numbers F3(n), follows from (4.116):

τ τ + τ τ τ τ3 3
1

3
4

3 3
3

3 3
2

3 3 32 5 4 3n n n F n F n F n F n= = −( ) + −( ) + −( ) + −( )− − . (4.117)

4.8.4. The General Case

For the general case of р, we can write the following equality, which can
be obtained from the algebraic equation (4.42):

xn=xn�1+ xn�p�1, (4.118)

where n=p+1, p+2, p+3, … .
Using Eqs. (4.42) and (4.118), we can obtain the following formula for

the generalized characteristic equations that have the golden p�proportion τ
p

as their root:

x F n p x F n p t xn
p

p
p

t

t

p

= − +( ) + − −( )
=

−

∑1
0

1

, (4.119)
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where n=p+1, p+2, p+3, …; Fp(n�p+1) and Fp(n�p�t) are the Fibonacci р�num�
bers given by the recursive relation (4.18) at the seeds (4.19).

It is clear that, for a given p>0, the formula (4.119) sets an infinite num�
ber of generalized characteristic equations with the general root τp. The fol�
lowing general identity that comes from (4.119) connects the degrees of the
golden р�proportion τ

p with the Fibonacci р�numbers F
p
(n):

τ τ τp
n

p p
p

p p
t

t

p

F n p F n p t= − +( ) + − −( )
=

−

∑1
0

1

, (4.120)

where n=p+1, p+2, p+3, … .
Concluding this Section we may note that the above algebraic equations

that are given by (4.111), (4.113), (4.116), and (4.119) are unusual algebraic
equations. First of all, they follow from Pascal Triangle and express some im�
portant mathematical properties. Besides, they describe some harmonious
chemical and physical structures and we may expect their application for sim�
ulation of many physical and chemical processes and structures.

4.9. The Generalized Binet Formula for the Fibonacci р�Numbers

4.9.1. A General Approach to the Synthesis of the Generalized Binet
Formulas

 In Chapter 2 we established the Binet formulas (2.62) and (2.63). These
formulas are the representations of the “extended” Fibonacci and Lucas num�
bers by the golden mean τ. In this Section we try to develop a general approach
to the synthesis of Binet formulas based on the representation of the “extended”
Fibonacci p�numbers by the roots of the characteristic equation (4.42).

Our main hypothesis is the following. For a given p>0, we can represent
the Binet formula for the Fibonacci р�numbers as follows:
F n k x k x k xp

n n
p p

n( ) = ( ) + ( ) + + ( )+ +1 1 2 2 1 1... , (4.121)

where  x1, x2, …, xp+1 are the roots of Eq. (4.42), and k1, k2, …, kp+1 are constant
coefficients that depend on the initial elements of the Fibonacci p�series.

It follows from (4.29) that F
p
(0)=0 for any p>0. Therefore, we can calculate

the Fibonacci р�numbers according to the recursive relation (4.18) at the seeds:

F
p
(0)=0, F

p
(1)=F

p
(2)=F

p
(p)=1. (4.122)
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Taking into consideration (4.121) and (4.122), we can write the following
system of algebraic equations:

F k k k

F k x k x k

F k x

p p

p p

p

0 0

1 1

2

1 2 1

1 1 2 2 1

1 1

( ) = + + + =

( ) = + + + =

( ) =

+

+

...

...

(( ) + ( ) + + ( ) =

( ) = ( ) + ( ) +

+ +
2

2 2
2

1 1

2

1 1 2 2

1k x k x

F p k x k x

p p

p
p p

...
...

... ++ ( ) =+ +k xp p

p

1 1 1.

(4.123)

Solving the system of the equations (4.123), we obtain the numerical val�
ues of the coefficients k1, k2, …, k

p+1 for the different values of p.

4.9.2. A Derivation of Binet Formulas for the Classical Fibonacci and
Lucas Numbers

We can use the general formula (4.121) to obtain Binet formulas for the
case p=1. For this case, the characteristic equation (4.42) is reduced to Eq.
(4.43), which has two roots x1=τ and x2=�1/τ, where τ = +( )1 5 2.

Therefore, formula (4.121), for the case of p=1, takes the following form:

F n k k
n

n

1 1 2
1( ) = ( ) + −





τ
τ

. (4.124)

It is clear that for the case of p=1 the system of algebraic equations (4.123) is
F k k

F k k

1 1 2

1 1 2

0 0

1 1 1

( ) = + =

( ) = −( ) =





 τ + τ . (4.125)

By solving the system (4.125), we obtain: k1 1 5= and k1 1 5= − .  If we
substitute k1 and k2 into (4.124), we obtain the well�known Binet formula for
the classical Fibonacci numbers in the form:

F n
n n

1

1

5
( ) .=

− −( )τ τ
(4.126)

If we assume k1=k2=1 in (4.124), we obtain the Binet formula for the clas�
sical Lucas numbers:

L n n n
1 1( ) .= + −( )τ τ (4.127)

This formula generates the Lucas series at the seeds L1(0)=2 and L1(1)=1:

2, 1, 3, 4, 7, 11, 18, 29, … . (4.128)

Let us note one important fact regarding the seed F1(0)=0. It follows di�
rectly from the Binet formula (4.124). In fact, according to (4.124) we have
the following result for the case of n=0:
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F k k k k1 1
0

2
0

1 20 1 1 5 1 5 0( ) = + −( ) = + = − =τ τ . (4.129)

These simple calculations show that the seed F1 0 0( ) =  comes from the
fact that the sum of the coefficients k1 and k2 in the expression (4.125) is also
equal to zero.

4.9.3. Binet Formula for the Fibonacci 2�Numbers

Let us give p=2 and use the above approach for obtaining Binet formula
for the Fibonacci 2�numbers. For the case p=2, the recursive relation for the
Fibonacci 2�numbers and the characteristic equation (4.42) take the follow�
ing forms, respectively:

F2(n)=F2(n�1)+F2(n�3) (4.130)

F2(0)=0, F2(1)=F2(2)=1 (4.131)

x3=x2+1. (4.132)

Equation (4.132) has three roots � real (positive) root x1=τ2 given by
(4.107) and two complex�conjugate roots x2 and x3 (4.108) and (4.109).

We recall that the real root x1 of the algebraic equation (4.132) is an irra�
tional number that is equal to the golden 2�proportion (x1=τ2). The number h
given by (4.110) is also irrational; hence, the roots x2 and x3 are complex num�
bers with irrational real parts.

For the case p=2, the formula (4.121) and the system (4.123) take the
following forms, respectively:
F n k x k x k x

n n n
2 1 1 2 2 3 3( ) = ( ) + ( ) + ( ) (4.133)

F k k k

F k x k x k x

F k x k x

2 1 2 3

2 1 1 2 2 3 3

2 1 1
2

2 2

0 0

1 1

2

( ) = + + =

( ) = + + =

( ) = ( ) + ( )22
3 3

2
1+ ( ) =k x .

(4.134)

Solving the system (4.134), we obtain:

k
h h

h
1 3

2 2

8
=

+( )
+( ) (4.135)

k
h i h h

h
2 3

2 3 2

8
=

− +( ) + −( ) 
+( ) (4.136)
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k
h i h h

h
3 3

2 3 2

8
=

− +( ) − −( ) 
+( ) , (4.137)

where h is given by (4.110).
Note that the coefficient (4.135) is an irrational number because the num�

ber h given by (4.110) is irrational. Also the coefficients (4.136) and (4.137)
are complex�conjugate numbers with irrational real parts.

Substituting (4.107)�(4.110) and (4.135)�(4.137) into the expression
(4.133), we can write the following Binet formula for the Fibonacci 2�
numbers, which is a generalization of the Binet formula (4.126) for the classi�
cal Fibonacci numbers :

F n
h h

h
h

h

h i h h

h

n

2 3

3

2 2

8 6
2

3
1
3

2 3 2

8

( ) =
+( )

+
+ +





+
− +( ) + −( )





+
− hh

h
i

h
h

h i h h

h

n

12
1

3
1
3

3
2 6

2
3

2 3 2

83

− + − −















+
− +( ) − −( )





+
−− − + + −















h
h

i
h

h

n

12
1

3
1
3

3
2 6

2
3

.

(4.138)

It seems incredible at first sight, that the formula (4.138) � that is
very complicated combination of complex numbers with irrational coeffi�
cients � represents the integer Fibonacci 2�numbers F2(n) for any integer
n=0, ±1, ±2, ±3, ... .

4.9.4. Binet Formula for the Fibonacci 3�Numbers

For the case of p=3, the recursive relation for the Fibonacci 3�numbers and
the characteristic equation (4.42) take the following forms, respectively:

F3(n)=F3(n�1)+F3(n�4) (4.139)

F3(0)=0, F3(1)=F3(2)=F3(3)=1 (4.140)

x4=x3+1. (4.141)

Equation (4.141) has four roots � two real roots, x1 and x2, and two com�
plex�conjugate roots, x3 and x4. The roots of Eq. (4.141) are irrational and
complex numbers, which have a very complex symbolic representation; there�
fore, we can use their approximate numerical values:

x1=1.380; x2=�0.819; x3=0.219+0.914i; x4=0.219�0.914i. (4.142)
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It is important to note that the root x1 of Eq. (4.141) is the golden 3�propor�
tion (x1=τ3=1.380).

The formulas (4.122) for the Fibonacci 3�numbers and the system of the
algebraic equations (4.123) take the following forms, respectively:

F n k x k x k x k x
n n n n

3 1 1 2 2 3 3 4 4( ) = ( ) + ( ) + ( ) + ( ) (4.143)

F k k k k

F k x k x k x k x

F k x

3 1 2 3 4

3 1 1 2 2 3 3 4 4

3 1 1

0 0

1 1

2

( ) = + + + =

( ) = + + + =

( ) = ( )22
2 2

2
3 3

2
4 4

2

3 1 1
3

2 2
3

3 3
3

1

3

+ ( ) + ( ) + ( ) =

( ) = ( ) + ( ) + ( ) +

k x k x k x

F k x k x k x kk x4 4
3

1( ) = .

(4.144)

Solving the system (4.144), we obtain the following numerical coefficients:

k1=0.3969; k2=�0.1592; k3=�0.1188�0.2045i; k4=�0.1188+0.2045i. (4.145)

Hence, using (4.142) and (4.145), we can represent Binet formula (4.143)
for the Fibonacci 3�numbers in the following numerical form:

F n

i

n n
3 0 3969 1 38 0 1592 0 819

0 1188 0 2045 0 219
( ) = ( ) − −( )

+ − −( )
. . . .

. . . ++( )
+ − +( ) −( )

0 914
0 1188 0 2045 0 219 0 914

.
. . . . .

i

i i

n

n
(4.146)

4.9.5. Binet Formulas for the Fibonacci 4�Numbers

For the case of p=4, the recursive relation for the Fibonacci 4�numbers and
the characteristic equation (4.42) take the following forms, respectively:

F4(n)= F4(n�1)+F4(n�5) (4.147)

F4(0)=0, F4(1)=F4(2)= F4(3)= F4(4)=1 (4.148)

x5=x4+1. (4.149)

Equation (4.141) has five roots � one real root x1 that coincides with the gold�
en 4�proportion τ4 and two pairs of complex�conjugate roots x2, x3 and
 x4,  x5. They all can be represented in the following analytical and numerical form:

x
h

h
x

i
i x

i
i

x

1 2 36
2

1 3247
1
2

3
2

0 5 0 866
1
2

3
2

0 5 0 866= + = = − = − = + = +. , . . , . .

44

5

12
1 3

2 6
2

0 6623 0 5623

12
1

= − +





− −





= − −

= − +

h
h

i h
h

i

x
h

h

. .





+ −





= − +i h
h

i
3

2 6
2

0 6623 0 5623. . ,

(4.150)
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where h = +108 12 693 .
For this case, the formula (4.121) for the Fibonacci 4�numbers and the

system of the algebraic equations (4.123) take the following forms:
F n k x k x k x k x k x

n n n n n
4 1 1 2 2 3 3 4 4 5 5( ) = ( ) + ( ) + ( ) + ( ) + ( ) (4.151)

F k k k k k
F k x k x k x k x k x

F

4 1 2 3 4 5

4 1 1 2 2 3 3 4 4 5 5

4

0 0
1 1

2

( ) = + + + + =
( ) = + + + + =

( )) = ( ) + ( ) + ( ) + ( ) + ( ) =

( ) = ( ) +

k x k x k x k x k x

F k x
1 1

2
2 2

2
3 3

2
4 4

2
5 5

2

4 1 1
3

1

3 kk x k x k x k x

F k x k x k
2 2

3
3 3

3
4 4

3
5 5

3

4 1 1
4

2 2
4

3

1

4

( ) + ( ) + ( ) + ( ) =

( ) = ( ) + ( ) + xx k x k x3
4

4 4
4

5 5
4

1( ) + ( ) + ( ) = .

(4.152)

Solving the system (4.152), we obtain the numerical values of the coefficients:

k k i k i

k
1 2 3

4

0 380 0 171 0 206 0 071 0 206

0 119 0 046

= = − + = − −
= − +

. ; . . ; . . ;

. . ii k i; . . .5 0 119 0 046= − − (4.153)

Using (4.150) and (4.153), we can represent the Binet formula for the
Fibonacci 4�numbers (4.151) in numerical form.

4.9.6. A General Case of p

In the general case, Binet formula for the Fibonacci р�numbers has the
form (4.121). The coefficients k1, k2, …, k

p+1 in the formula (4.121) are the solu�
tions of the system (4.123). This outcome can be formulated as the following
theorem.

Theorem 4.3 (Generalized Binet Formula for the Fibonacci p�
Numbers). For a given integer p>0, any Fibonacci р�number Fp(n) (n=0, ±1,
±2, ±3, …) given by the recursive relation F

p
(n)=F

p
(n�1)+F

p
(n�p�1) at the seeds

F
p
(0)=0, F

p
(1)=F

p
(2)= … =F

p
(p)=1 can be represented in the following ana�

lytical form:

F n k x k x k xp
n n

p p

n( ) = ( ) + ( ) + + ( )+ +1 1 2 2 1 1... ,

where x1, x2, …, xp+1 are the roots of the characteristic equation xp+1=xp+1 and
k1, k2, …, kp+1 are constant coefficients that are the solutions of the system of
the algebraic equations:

F k k k

F k x k x k x

F

p p

p p p

p

0 0

1 1

2

1 2 1

1 1 2 2 1 1

( ) = + + + =
( ) = + + + =

( ) =

+

+ +

...

...

kk x k x k x

F p k x k x

p p

p
p p

1 1
2

2 2
2

1 1

2

1 1 2 2

1( ) + ( ) + + ( ) =

( ) = ( ) + ( )
+ +...

...
++ + ( ) =+ +... .k xp p

p

1 1 1
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Proof. Represent the Fibonacci р�number Fp(p+1) in the analytical form
according to (4.121):
F p k x k x k xp

p p
p p

p
+( ) = ( ) + ( ) + + ( )+ +

+ +
+

1 1 1
1

2 2
1

1 1

1
... . (4.154)

Using the identity (4.76), we can represent the expression (4.154) in the
following form:

F p k x k x k x

k x k x

p
p p

p p

p
+( ) = ( ) + ( ) + + ( )





+ ( ) +

+ +1 1 1 2 2 1 1

1 1
0

2 2

...

(( ) + + ( )



+ +

0
1 1

0
... .k xp p

(4.155)

Then, using the definition (4.121), we can write:

F
p
(p+1)= F

p
(p)+F

p
(0). (4.156)

This means that the recursive relation (4.18) is valid for the Fibonacci
p�number Fp(p+1), that is, the analytical formula (4.154) represents the
Fibonacci p�number F

p
(p+1).

Furthermore, applying the formula (4.121) for the Fibonacci р�numbers
Fp(p+2), Fp(p+3), …, Fp(n), … and using the identity (4.76), it is easy to prove
that the analytical formula (4.121) represents all Fibonacci p�numbers for the
positive values of n.

Let us prove that Eq. (4.121) is valid for the negative values of n=�1, �2, �3, … .
In order to do this, we consider the formula (4.121) for the case n=�1:
F k x k x k xp p p−( ) = ( ) + ( ) + + ( )− −

+ +
−

1 1 1
1

2 2
1

1 1

1
... . (4.157)

We can rewrite the identity (4.76) in the following form:
x x xk

n p
k
p

k
n− − −= −1 1. (4.158)

For the case n=p, the identity (4.158) takes the following form:
x x xk k

p
k
p− −= −1 1. (4.159)

Using the identity (4.159), we can rewrite (4.157) as follows:

F k x k x k x

k x k x

p
p p

p p

p

p

−( ) = ( ) + ( ) + + ( )





− ( ) +

+ +

−

1 1 1 2 2 1 1

1 1
1

2

...

22
1

1 1

1( ) + + ( )





−
+ +

−p
p p

p
k x... . (4.160)

Hence, using the general formula (4.121), we can see that the formula
(4.160) is equivalent to

Fp(�1)= Fp(p)+Fp(p�1)=1�1=0,

that is, the formula (4.160) represents the Fibonacci р�number Fp(�1)=0.
Furthermore, considering the formula (4.121) for the negative values of

n=�2, �3, �4, … and using (4.158), it is easy to prove that the formula (4.121) is
valid for all negative values of n.
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4.10. The Generalized Lucas p�Numbers

4.10.1. Binet Formula for the Lucas p�Numbers

Next let us generalize the Binet formula for the classical Lucas numbers that
are given by (4.127). We recall that the formula (4.127) can be obtained from
the Binet formula for Fibonacci numbers that are given by (4.126), provided we
assume in it that k1=k2. We can use this approach for the introduction of a new
class of the recursive sequences. If we assume that k1=k2=…=kp+1=1 in the for�
mula (4.121), we can obtain the following formula:

L n x x xp
n n

p

n( ) = ( ) + ( ) + + ( )+1 2 1... . (4.161)

Note that for the case p=1 this formula is reduced to the Binet formula for
the classical Lucas numbers that are given by (4.127). Let us prove that this
formula represents a new class of recursive numerical sequences called Lucas
p�numbers. They are given by the following recursive relation:

Lp(n)= Lp(n�1)+Lp(n�p�1) (4.162)

at the seeds:

Lp(0)=p+1 (4.163)

L
p
(1)=L

p
(2)=…=L

p
(p)=1. (4.164)

In fact, for the case n=0, we can write the formula (4.161) as follows:

L x x x pp p0 11
0

2
0

1

0( ) = ( ) + ( ) + + ( ) = ++... .

This proves that for the case n=0 the formula (4.161) gives the seed (4.163).
Now, consider the formula (4.161) for the cases of n=1, 2, 3, ..., р:

L x x x

L x x x

L x

p p

p p

p

1

2

3

1 2 1

1
2

2
2

1

2

1

( ) = + + +

( ) = ( ) + ( ) + + ( )
( ) = (

+

+

...

...

)) + ( ) + + ( )

( ) = ( ) + ( ) + + ( )
+

+

3
2

3
1

3

1 2 1

x x

L p x x x

p

p
p p

p

p

...
...

... .

(4.165)

Then, according to Theorem 4.2, all expressions (4.165) are equal to 1.
This proves that the expression (4.161) is valid for the cases n=1, 2, 3, …, p.

To prove the validity of the recursive relation (4.162) for the general case
of n, we can use the identity (4.76) and represent the formula (4.161) as follows:
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L n x x x

x x

p
n n

p

n

n p n

( ) = ( ) + ( ) + + ( )





+ ( ) + ( )

− −
+

−

− − −

1
1

2
1

1

1

1
1

2

...

pp
p

n p
x

−
+

− −
+ + ( )





1
1

1
... .

(4.166)

Using the definition (4.161), we can rewrite the expression (4.166) in the
form of the recursive relation (4.162).

Our reasoning resulted in the discovery of new recursive numerical se�
quences � Lucas p�numbers given by the recursive relation (4.162) at the seeds
(4.163) and (4.164). It is clear that for the case p=1 this recursive relation is
reduced to the recursive relation for the classical Lucas numbers.

Let us study the partial cases of the Lucas p�numbers for the cases p=2, 3, 4.

4.10.2. Binet Formula for the Lucas 2�Numbers

For the case p=2, the formula (4.161) can be presented in the form below:

L n x x x
n n n

2 1 2 3( ) = ( ) + ( ) + ( ) . (4.167)

This formula defines the Lucas 2�numbers L2(n).
If we substitute the expressions for the roots x1, x2, x3, given by (4.107)�

(4.110) into (4.167) we can rewrite the formula (4.167) as follows:

 

L n
h

h
h

h
i h

h

n

2 6
2

3
1
3 12

1
3

1
3

3
2 6

2
3

( ) = + +





+ − − + + −

















nn

n
h

h
i h

h
+ − − + − −















12

1
3

1
3

3
2 6

2
3

.
(4.168)

For the case p=2, the recursive relation (4.162) and the seeds (4.163) and
(4.164) are reduced to the following:

L2(n)=L2(n�1)+L2(n�3) (4.169)

L2(0)=3 (4.170)

L2(1)=L2(2)=1. (4.171)

Then, using the recursive relation (4.169) at the seeds (4.163) and (4.164),
we can calculate all elements of the Lucas 2�series:

3, 1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 98, 144, … . (4.172)

4.10.3. Binet Formula for the Lucas 3�Numbers

For the case p=3, the formula (4.161) takes the following form:
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L n x x x x
n n n n

3 1 2 3 4( ) = ( ) + ( ) + ( ) + ( ) . (4.173)

This formula is an analytical expression for the Lucas 3�numbers L3(n).
Using the numerical values for the roots x1, x2, x3, x4 given by (4.142), we

can represent the formula (4.173) in the following numerical form:

L3(n)=(1.380)n+(�0.819)n+(0.219+0.914i)n+(0.219�0.914i)n. (4.174)

For the case p=3 the recursive relation (4.162) and the seeds (4.163) and
(4.164) are reduced to the following:

L3(n)= L3(n�1)+ L3(n�4) (4.175)

L3(0)=4 (4.176)

L3(1)= L3(2)=L3(3)=1. (4.177)

The recursive relation (4.175) at the seeds (4.176) and (4.177) generates
the following Lucas 3�series:

4,1,1,1,5,6,7,8,13,19,26,34,47,66,… . (4.178)

4.10.4. Binet Formula for the Lucas 4�Numbers

For the case p=4, the formula (4.161) takes the following form:
L n x x x x x

n n n n n
4 1 2 3 4 5( ) = ( ) + ( ) + ( ) + ( ) + ( ) . (4.179)

This formula sets the Lucas 4�numbers L4(n) in analytical form.
Substituting the analytical representations of the roots x1, x2, x3, x4, x5 giv�

en by (4.150) into (4.179), we obtain the following formula:

L n
h

h
i i

h

n n n

4 6
2 1

2
3

2
1
2

3
2

12
1
6

( ) = +





+ −








 + +











+ − − −− −

















+ − − + −

















i h h i h
n n

3
2 6

2
6 12

1
6

3
2 6

2
6

.
(4.180)

For the case p=4, the recursive relation (4.162) and the seeds (4.163) and
(4.164) are reduced to the following:

L4(n)= L4(n�1)+ L4(n�5) (4.181)

L4(0)=5 (4.182)

L4(1)= L4(2)=L4(3)=L4(4)=1. (4.183)

The recursive relation (4.181) at the seeds (4.182) and (4.183) generates
the following Lucas 4�series:

5, 1, 1, 1, 1, 6, 7, 8, 9, 10, 16, 23, 31, 40, … . (4.184)
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n 5 4 3 2 1 0 �1 �2 �3 �4 �5 

L1(n) 11 7 4 3 1 2 �1 3 �4 7 �11 

Table 4.3. The “extended” classical Lucas numbers

4.10.5. The “Extended” Lucas р�Numbers

Above we introduced the so�called “extended” Fibonacci p�numbers that
are given for the negative values of n (see Table 4.2). By analogy, we can in�
troduce the “extended” Lucas p�numbers, if we extend the Lucas p�numbers
to the side of the negative values of n. With this purpose in mind, we shall find
some general properties of such “extended” sequences. For the calculation of
the Lucas p�numbers Lp(0), Lp(�1), Lp(�2),…, Lp(�p),…, Lp(�2p+1), …, which
correspond to the non�negative values of n=�1,�2,�3,…, we represent the re�
cursive relation (4.162) as follows:

Lp(n�p�1)= Lp(n)�Lp(n�1). (4.185)

In particular, for the case n=p the formula (4.185) is

L
p
(�1)= L

p
(p)�L

p
(p�1). (4.186)

Now, consider the formula (4.185) for the different values of p. For p=1,
the formulas (4.185) and (4.186) take the following forms, respectively:

L1(n�2)=L1(n)�L1(n�1). (4.187)

L1(�1)=L1(1)�L1(0). (4.188)

As L1(1)=1 and L1(0)=2, it comes from (4.188) that

L1(�1)=�1. (4.189)

Using the recursive relation (4.186), we can calculate all values of the
Lucas numbers L1(n) for the negative values of n=�1, �2, �3, … and then repre�
sent the classical Lucas numbers L1(n) as is shown in Table 4.3.

For the case p=2, the formulas (4.185) and (4.186) take the following form:

L2(n�3)=L2(n)�L2(n�1) (4.190)

L2(�1)=L2(2)�L2(1). (4.191)

Taking into consideration (4.171), we can write:

L2(�1)=0. (4.192)

Using (4.170) and calculating numerical values of the Lucas 2�numbers
L2(n) for the non�negative n=0, �1, �2, �3, �4, ... , we can get the following
numerical sequence:

L2(n) (n≤0): 3, 0, �2, 3, 2, �5, 1, 7, �6, 6, … . (4.193)
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For the case p=3, the formulas (4.185) and (4.186) take the following form:

L3(n�4)=L3(n)�L3(n�1) (4.194)

L3(�1)=L3(3)�L3(2). (4.195)

Using (4.170) and (4.194) and (4.195), we can calculate numerical values
of the Lucas 3�numbers L3(n) for the non�negative n=0, �1, �2, �3, �4, ..., we can
get the following numerical sequence L3(n) (n≤0): 4, 0, 0, �3, 4, 0, 3, �7, 4, �3, … .

Of course, by using the general recursive relation (4.185), we can calcu�
late the rest of the values of L

p
(n) for the non�negative values of n.

In Table 4.4 we can see the “extended” Lucas numbers L
p
(n) for the cases

p=1, 2, 3, 4.

4.10.6. Identities for the Sums of the Lucas р�Numbers

Once again, consider the recursive relation (4.169). Decomposing the Lucas
2�number L2(n�1) in (4.169) according to the same recursive relation (4.169),
that is, representing L2(n�1) in the form

L2(n�1)=L2(n�2)+L2(n�4),

we can represent the formula (4.169) in the following form:

L2(n)=L2(n�2)+ L2(n�3)+L2(n�4). (4.196)

This means that the sum of the three sequential Lucas 2�numbers is al�
ways equal to the Lucas 2�number that is two positions from the senior Lucas
2�number of the sum.

If we use a similar approach for the Lucas р�numbers in the general case,
we obtain the following general identity:

Lp(n)=Lp(n�p)+Lp(n�p�1)+Lp(n�p�2)+…+Lp(n�2p). (4.197)

Note that the identity (4.197) is valid for all “extended” Lucas p�numbers.
Now, let us examine the sum of the first n Lucas p�numbers:

n 6 5 4 3 2 1 0 �1 �2 �3 �4 �5 �6 

L1(n) 18 11 7 4 3 1 2 �1 3 �4 7 �11 18 

L2(n) 10 6 5 4 1 1 3 0 �2 3 2 �5 1 

L3(n) 7 6 5 1 1 1 4 0 0 �3 4 0 3 

L4(n) 7 6 1 1 1 1 5 0 0 0 �4 5 0 

Table 4.4. The “extended” Lucas p�numbers
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Lp(1)+Lp(2)+Lp(3)+…+Lp(n). (4.198)

In order to get the required result, we write down the basic recursive rela�
tion (4.162) for the Lucas p�numbers in the following form:

Lp(n)=Lp(n+p+1)�Lp(n+p). (4.199)

Using (4.199), we can write the following equalities:

L L p L p
L L p L p
L L p L

p p p

p p p

p p p

1 2 1
2 3 2
3 4

( ) = +( ) − +( )
( ) = +( ) − +( )
( ) = +( ) − 33

1 1
1

+( )
−( ) = +( ) − + −( )

( ) = + +( ) − +( )

p

L n L n p L n p
L n L n p L n p

p p p

p p p

...

.

Summing term by term the left�hand and right�hand parts of these equal�
ities, we obtain the following formula:

Lp(1)+Lp(2)+Lp(3)+…+Lp(n)= Lp(n+p+1)�Lp(1+p). (4.200)

It follows from the recursive relation (4.162) and the seeds (4.163) and
(4.164) that

Lp(1+p)=Lp(p)+Lp(0)=1+p+1=p+2. (4.201)

The following formula for the sum (4.200) follows from (4.201):

Lp(1)+Lp(2)+Lp(3)+…+Lp(n)= Lp(n+p+1)� p�2. (4.202)

4.10.7. The Ratio of Adjacent Lucas p�Numbers

Above we found that the Fibonacci p�numbers are closely connected with
the golden p�proportion. In particular, the limit of the ratio Fp(n)/Fp(n�1)
aims for the golden p�proportion. There is a question: what is the limit of the
ratios of adjacent Lucas p�numbers? Introduce the following definition:

lim
( )

( )
.

n

p

p

L n

L n
x

→∞ −
=

1 (4.203)

Using the recursive relation (4.162), we can represent the ratio of the ad�
jacent Lucas p�numbers as follows:

L n

L n

L n L n p

L n p

L n

L n p

p

p

p p

p

p

p

( )

( )

( ) ( )

( )

( )

(

−
=

− + − −
− −

= +
−

− −

1

1 1

1

1
1

1

1))

( ) ( ) ( )

( ) ( ) ( )

.= +
− ⋅ − ⋅⋅⋅ −

− ⋅ − − −

1
1

1 2

2 3 1

L n L n L n p

L n L n L n p
p p p

p p p

(4.204)
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Taking into consideration the definition (4.203), for the case n→∞ we can
exchange the formula (4.204) by the algebraic equation (4.42) with the positive
root τp� the golden p�proportion. It follows from this reasoning that

lim
( )

( )
.

n

p

p
p

L n

L n→∞ −
=

1
τ (4.205)

4.11. The “Metallic Means Family” by Vera W. de Spinadel

4.11.1. The Generalized Fibonacci Sequences

Recently the Fibonacci numbers and the golden mean were generalized
by the Argentinean mathematician Vera W. de Spinadel who is the author of
the original book in this regard [42]. Spinadel generalized the Fibonacci re�
cursive relation F(n+1)=F(n)+F(n�1) as follows:

G(n+1)=pG(n)+qG(n�1), (4.206)

where p and q are natural numbers.
Consider the examples of the generalized Fibonacci sequences of the kind

(4.206). If we assume that p=2 and q=1 in (4.206) and begin from the seeds
G(1)=G(2)=1, then the recursive relation (4.206) generates the following
generalized Fibonacci numbers:

1, 1, 3, 7, 17, 41, 99, 140, … . (4.207)

For the case p=3 and q=1, and G(1)=G(2)=1 the generalized Fibonacci
numbers are:

1, 1, 1 , 4, 13, 43, 142, 469, … . (4.208)

We can represent the recursive relation (4.206) in the following form:

G n
G n

p q
G n

G n
p

q
G n

G n

( )
( )

( )
( ) ( )

( )

.
+ = + − = +

−

1 1

1
(4.209)

If we denote by x the limit of the ratio of two adjacent generalized Fi�
bonacci numbers, that is,

x
G n

G nn
= +

→∞
lim

( )
( )

,
1

then we can represent the expression (4.209) as follows:
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x p
q
x

= + (4.210)

or

x2�px�q=0. (4.211)

This algebraic equation has the following positive solution:

x
p p q

=
+ +2 4

2
. (4.212)

This means that

lim
( )

( )
.

n

G n
G n

p p q
→∞

+ =
+ +1 4

2

2

(4.213)

4.11.2. The Metallic Means Family

Above we have introduced the quadratic algebraic equation (4.211). Vera
W. de Spinadel proved that Eq. (4.211) gives an infinite set of positive qua�
dratic irrationals for the different values of p and q. They are all given by the
formula (4.212) and together make the Metallic Means Family (MMF).

Let us denote any member of the MMF by σp
q , where p and q take their

values from the set of natural numbers, that is, p=1, 2, 3, … ; q=1, 2, 3, … .
Consider special cases of Eq. (4.211). We start from the case q=1, that is,

from the following algebraic equation:

x2�px�1=0. (4.214)

It is convenient to represent the members of the MMF in the form of a
continued fraction. It is clear that for the case p=1 Eq. (4.214) is reduced to
the simplest algebraic equation

x2�x�1=0 (4.215)

with the positive root equal to the golden mean.
Equation (4.215) can be written in the form:

x
x

= +1
1

. (4.216)

By substituting the golden mean τ  for x in Eq. (4.216), we obtain the
following representation of τ :

τ
τ

= +1
1

. (4.217)

It comes from (4.217) that the following representation of the golden
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mean in the form of a continued fraction:

τ = +
+

+
+

1
1

1
1

1
1

1 ...

.

(4.218)

Note that the representation (4.218) was considered in Chapter 1.
In mathematics, for the compact representation of the continued fractions

the following representation is used:

ϕ = [ ] =  1 1 1 1, , ,... . (4.219)

Now, assume that p=2 in Eq. (4.214), that is, consider the following equation:

x2�2x�1=0. (4.220)

Then, according to the above definition we can denote the positive root of
Eq. (4.220) by σ2

1 .  We can represent Eq. (4.220) in the form:

x
x

= +2
1

. (4.221)

If we substitute 2+(1/x) for x on the right�hand part of (4.221), we obtain
the following representation of x:

x

x

= +
+

2
1

2
1

.
(4.222)

Continuing this process ad infinitum, we obtain the representation of σ2
1

in the form of the following continued fraction:

σ2
1 2

1

2
1

2
1

2

= +
+

+
+ ...

.

(4.223)

The positive quadratic irrational number σ2
1  given by (4.223) was named

by Spinadel the Silver Mean. By analogy with the golden mean (4.219), the
Silver Mean (4.223) can be represented in the following compact form:

σ2
1 2 2 2 2= [ ] =  , , ,... . (4.224)

Using the formula (4.212), we can write the analytical representation of
the silver mean σ2

1  as follows:

σ2
1 1 2 2= + =   . (4.225)

If we assume p=3, then Eq. (4.214) takes the following form:

x2�3x�1=0. (4.226)
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The positive root of this equation is called the Bronze Mean σ3
1 ; it can be

represented in the form of the following continued fraction:

σ3
1 3

1

3
1

3
1

3

= +
+

+
+ ...

(4.227)

or

σ2
1 3 3 3 3= [ ] =  , , ,... . (4.228)

Using the formula (4.212), we can write the analytical representation of

the bronze mean σ3
1  as follows:

σ3
1 3 13

2
3= + =   . (4.229)

 For the cases where p=4, 5, 6, 7, 8, 9, 10, respectively, we can find the
following analytical representations of the corresponding Metallic Means:

σ σ σ σ

σ σ σ

4
1

5
1

6
1

7
1

8
1

9
1

1

2 5
5 29

2
3 10

7 53
2

4 17
9 85

2

= + = + = + = +

= + = +

; ; ; ;

; ; 00
1 5 26= + .

It is clear that all Metallic Means of the kind σp
1  have the following  gen�

eral representation in the form of the periodic continued fraction:

σp p
p

p
p

p1 1
1

1

= +
+

+
+

= [ ]

...

.

(4.230)

4.11.3. Other Types of the Metallic Means

If we assume that p=1 in Eq. (4.211), then we obtain the following equation:

x2�x�q=0, (4.231)

where q is a natural number. The positive roots of this equation generate a
new class of the Metallic Means denoted by σ1

q .
Note that for the case q=1, Eq. (4.231) is reduced to the golden equation

(4.215). For the case q=2, Eq. (4.231) takes the following form:

x2�x�2=0. (4.232)
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The number σ1 2q =  is a positive root of this equation. Spinadel calls this
number the Copper Mean. Using a traditional representation of the continued
fraction, we can represent the Copper Mean as follows:

σ1 2 2 0q = =  , .

If we assume that q=3 in Eq. (4.231), then we obtain the following equation:

x2�x�3=0. (4.233)

This equation results in the Nickel Mean

σ1
3 1 13

2
2 3= + =  , . (4.234)

By analogy, we can find the next representations of the other Metallic
Means of the type σ1

q .

4.11.4. Pisot�Vijayaraghavan Numbers and Metallic Means

Vera W. de Spinadel paid attention to the fact that her Metallic Means
have a direct relation to Pisot�Vijayaraghavan numbers or PV�numbers [152].
It is well known that the PV�numbers are positive roots of the following alge�
braic equation:

x a x a x a x am
m

m
i

i= + + + + +−
−

1
1

1 0... ... , (4.235)

where a
i
 are integers.

The golden mean τ = +( )1 5 2  is the example of the PV�numbers be�
cause the golden mean is the positive root of Eq. (4.215), which is a partial
case of (4.235). Also, all the golden p�proportions tp are PV�numbers because
Eq. (4.42) is a partial case of (4.235).

The number Q1=1.324…� a positive root of the equation x3�x�1=0 � is also
a PV�number. This number is called a Plastic Constant.

 It is proved that Eq. (4.215) with the root τ = +( )1 5 2  appears in qua�
si�crystal structures. In addition, the following algebraic equations � which
are partial cases of (4.235) � appear in quasi�crystal structures:

x x2 2 1 0 1 2− − = → = +γ (4.236)

x x2 4 1 0 1 3− + = → = +δ . (4.237)

Note that the particular PV�number τ = +( )1 5 2  (the golden mean)
corresponds to pentagonal and decagonal quasi�lattices, while another PV�
number γ = +1 2  (the Silver Mean) corresponds to the octagonal quasi�lat�
tice, and the PV�number δ = +1 3  corresponds to the case of the dodecago�
nal quasi�lattice.
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The above examples demonstrate that Spinadel’s Metallic Means are of great
theoretical importance for algebra and crystallography.

4.11.5. “Silver Means” by Jay Kappraff

The American researcher Jay Kappraff – the author of the interesting books
[47, 50 ] – developed an approach to the generalization of Fibonacci numbers
and the golden mean similar to Spinadel’s Metallic Means. He considered the
recursive relation

G(n+1)=N G(n)+G(n�1) (4.238)

that is a partial case of the recursive relation (4.206) for the case q=1 and
p=N. This recursive relation gives different generalized Fibonacci numbers at
different seeds. From the recursive relation (4.238) Kappraff derived the fol�
lowing algebraic equation

x
x

N− =1
, (4.239)

which is the other form of the equation (4.214).
It is clear that for the case N=1 and the seeds G(0)=0 and G(1)=1 the

recursive relation (4.238) generates the classical Fibonacci numbers 0, 1, 1, 2,
3, 5, 8, 13, 21, 34, ... . The ratios of the adjacent numbers in this series converge
to the golden mean τ � a positive root of the golden equation x2�x�1=0.  Kap�
praff names the classical golden mean τ the 1st Silver Mean of Type 1 and
denotes it by SM1(1).

For the case N=2, the recursive relation (4.238) at the seeds G(1)=1
and G(2)=2 generates Pell’s Sequence 1,2,5,12,29,... . The ratios of the ad�
jacent numbers in Pell’s sequence converge to the positive root of the
equation x2�2x�1=0 Kappraff names the positive root of this equation
θ = + =1 2 2 414. ...  the 2nd  Silver Mean of Type 1 and denotes it by SM1(2).

4.12. Gazale Formulas

4.12.1. The Generalized Fibonacci m�Numbers

Independently of Spinadel and Kappraff, the idea of generalized Fibonac�
ci numbers was developed in the book [45] written by Egyptian mathemati�
cian and engineer Midchat Gazale. Gazale considers the recursive relation
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Fm(n+2)=m Fm(n+1)+Fm(n), (4.240)

where m is a positive real number and n=0,±1,±2,±3,… . Note that the recur�
sive formula (4.240) is similar to the recursive formula (4.206) used by Spi�
nadel, when we take p=m and q=1 in (4.206). However, in contrast to (4.206),
where the coefficients p and q are integers, the coefficient m in the recursive
formula (4.240) used by Gazale is a positive real number m>0.

We will name a positive real number m, used in the recursive relation
(4.240), an order of the recursive relation (4.240). If we take the seeds

F
m
(0)=0, F

m
(1)=1 (4.241)

and then use the recursive relation (4.240) for a given m>0, we obtain an
infinite number of the recursive numerical sequences called Generalized Fi�
bonacci Numbers of Order m or simply Fibonacci m�numbers.

Note that for the case m=1 the recursive relation (4.240) and the seeds
(2.41) can be represented, respectively, as follows:

F1(n+2)=F1(n+1)+F1(n) (4.242)

F1(0)=0, F1(1)=1. (4.243)

It is clear that the recursive relation (4.242) with the seeds (4.243) gener�
ates the classical Fibonacci numbers.

For the case of m=2 the recursive formula (4.240) and the seeds (4.241)
are reduced to the following:

F2(n+2)=2F2(n+1)+F2(n) (4.244)

F2(0)=0, F2(1)=1. (4.245)

This case generates the so�called Pell numbers: 0, 1, 2, 5, 12, 29, … .
If we take m = 2,  then the recursive relation (4.240) at the seeds (4.241)

generates the following recursive numerical sequence:

0 1 2 3 4 2 11 15 2 41 56 2, , , , , , , , , ....

4.12.2. The Generalized Golden Mean of Order m

Let us represent the recursive relation (4.240) as follows:
F n

F n
m

F n
F n

m

m m

m

( )
( ) ( )

( )

.
+
+

= +
+

2
1

1
1 (4.246)

For the case n→∞, the expression (4.246) is reduced to the following qua�
dratic equation:

x2�mx�1=0. (4.247)
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Equation (4.247) has two roots � a positive root

x
m m

1

24
2

= + +
(4.248)

and a negative root

x
m m

2

24
2

= − + +
. (4.249)

If we sum up (4.248) and (4.249), we obtain:

x1+ x2=m. (4.250)

If we substitute the root (4.248) for x in Eq. (4.247), we obtain the follow�
ing identity:

x mx1
2

1 1= + . (4.251)

If we multiply or divide repeatedly all terms of the identity (4.251) by x1,
we obtain the following general identity:

x mx xn n n
1 1

1
1

2= +− − , (4.252)

where n=0,±1,±2,±3,… .
Using similar reasoning for the root x2, we obtain the following identity

for the root x2:

x mx xn n n
2 2

1
2

2= +− − . (4.253)

Denote a positive root x1 by Fm and name it the Golden Mean of Order m
or the Golden m�Proportion. The golden m�proportion Fm has the following
analytical expression:

Φm
m m= + +4
2

2

. (4.254)

Note that for the case m=1, the golden m�proportion coincides with the
classical golden mean Φ1 1 5 2= +( ) .

Let us express the root x2 by the golden m�proportion Φm. After simple
transformation of (4.249) we can write the root x2 as follows:

x
m m

m m m
2

2

2

4
2

4

2 4

1= − + + = −

+ +
= −

( )
.

Φ (4.255)

Substituting Fm for x1 and (�1/Fm) for x2 in (4.250), we obtain:

m m m= −Φ Φ1/ , (4.256)

where Φ
m is given by (4.254) and 1/Φ

m
 is given by the formula:

1 4
2

2

Φm

m m= + −
. (4.257)
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Using the formulas (4.254) and (4.257), we can write the following identity:

Φ
Φm

m

m+ = +1
4 2 . (4.258)

It is also easy to prove the following identity:

Φ Φ Φm
n

m
n

m
nm= +− −1 2 , (4.259)

where n=0, ±1, ±2, ±3,… .

4.12.3. Two Surprising Representations of the Golden m�Proportion

For the case n=2, the identity (4.259) can be represented in the form:

Φ Φm mm2 1= + . (4.260)

The following representation of the golden m�proportion Φm comes from
(4.260):

Φ Φm mm= +1 . (4.261)

Substituting 1+ m mΦ for Φm on the  right�hand part of (4.261), we  obtain:

Φ Φm mm= + +1 1 . (4.262)

Continuing this process ad infinitum, that is, substituting repeatedly
1+ m mΦ for Φm on the right�hand part of (4.262), we obtain the following sur�

prising representation of Φ
m
:

Φm m m m= + + +1 1 1 ... . (4.263)

Now, represent the identity (4.260) in the form:

Φ
Φm

m

m= + 1
. (4.264)

Substituting m+(1/Φm) for Φm on the  right�hand part of (4.264), we obtain:

Φ

Φ

m

m

m
m

= +
+

1
1

.
(4.265)

Continuing this process ad infinitum we obtain the following surprising
representation of the golden m�proportion:

Φm m
m

m
m

= +
+

+
+

1
1

1
...

.

(4.266)
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Note that for the case of m=1, the representations (4.263) and (4.28) coin�
cide with the well�known representations of the classical golden mean in the
forms (1.20) and (1.24), respectively.

4.12.4. A Derivation of the Gazale Formula

The formula (4.240) at the seeds (4.241) defines the Fibonacci m�numbers
F

m
(n) by recursion. We can represent the numbers F

m
(n) in analytical form us�

ing the golden m�proportion Φm.
Let us represent the Fibonacci number Fm(n) by the roots x1 and x2 in the

form:

F n k x k xm
n n( ) ,= +1 1 2 2 (4.267)

where k1 and k2 are constant coefficients that are the solutions to the follow�
ing system of algebraic equations:

F k x k x k k
F k x k x k k

m

m m m

( )
( ) ( / )

.
0
1 1

1 1
0

2 2
0

1 2

1 1
1

2 2
1

1 2

= + = +
= + = −



 Φ Φ (4.268)

Taking into consideration that F
m
(0)=0 and F

m
(1)=1, we can rewrite the

system (4.268) as follows:

k1 =� k2 (4.269)

k k km m m m1 1 11 1 1Φ Φ Φ Φ+ ( ) = +( ) =/ / . (4.270)

Taking into consideration (4.269) and (4.270) and also the identity (4.258),
we can find the following formulas for the coefficients k1 and k2:

k
m

1 2

1

4
=

+
;   k

m
2 2

1

4
= −

+
. (4.271)

Taking into consideration (4.271), we can write the formula (4.267) as
follows:

F n
m

x
m

x
m

x xm
n n n n( ) .=

+
−

+
=

+
−( )1

4

1

4

1

42 1 2 2 2 1 2 (4.272)

Taking into consideration that x1=Φm and x2=�1/Φm, we can rewrite the
formula (4.272) as follows:

F n
m

m
m
n

m
n

( )
( / )

=
− −

+

Φ Φ1

4 2 (4.273)

or

F n
m

m m m m
m

n n

( ) .=
+

+ +











− − +

























1

4

4
2

4
22

2 2

(4.274)
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For the partial case m=1, formula (4.274) is reduced to the formula:

F n

n n

1
1

5

1 5
2

1 5
2

( ) = +







 − −



















 (4.275)

called the Binet formula. This formula was obtained by Binet in 1843, although
the result was known to Euler, Daniel Bernoulli, and de Moivre more than
one century earlier. In particular, de Moivre obtained this formula in 1718.

For the case m=2, the formula (4.274) takes the following form:

F n
n n

2
1

2 2
1 2 1 2( ) .= +( ) − −( )



 (4.276)

Note that this formula was obtained for the first time by the English math�
ematician John Pell (1610�1685).

For the cases m=3 and m = 2 , the formula (4.274) takes the following
forms, respectively:

F n

n n

3
1

13

3 13
2

3 13
2

( ) = +







 − −



















 (4.277)

F n

n n

2

1

6

2 6
2

2 6
2

( ) .= +







 − −



















 (4.278)

Thus, the Egyptian mathematician Midhat J. Gazale obtained [45] the
unique mathematical formula (4.274), which includes as partial cases the Bi�
net formula for Fibonacci numbers (4.275) for the case m=1 and Pell’s formu�
la (4.276) for the case m=2. This formula generates an infinite number of the
Fibonacci m�numbers because every positive real number m generates its own
Generalized Binet Formula (4.274). Taking into consideration the uniqueness
of the formulas (4.272)�(4.274) we will name this formula the Gazale Formula
for the Fibonacci m�numbers.

4.13. Fibonacci and Lucas m�Numbers

4.13.1. Fibonacci m�Numbers

Let us prove that Gazale formulas (4.272)�(4.274) really express all Fi�
bonacci m�numbers given by the recursive formula (4.240) at the seeds (4.241).
In fact, for the case n=0 the formula (4.274) gives the Fibonacci m�number
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Fm(0)=0 that corresponds to the seeds (4.241). For the case n=1, we can rewrite
the formula (2.274) as follows:

F
m

m m m m
m ( )1

1

4

4
2

4
2

1
2

2 2

=
+

+ + − − +











=

that corresponds to the seeds (4.241).
This means that the formula (4.276) does express the seeds (4.241).
Suppose that the formula (4.274) is valid for a given n (the inductive hy�

pothesis) and prove that this formula is valid for the case n+1, that is,

F n
m

x xm
n n( ) .+ =

+
−( )+ +1

1

4 2 1
1

2
1

(4.279)

Using the identities (4.252) and (4.253), we can represent the formula
(4.279) as follows:

F n
m

m
x x

m
x x

mF n F n

m
n n n n

m m

( )

.

+ =
+

−( ) +
+

−( )
= ( ) + −( )

− −1
4

1

4

1

2 1 2 2 1
1

2
1

(4.280)

Thus, the formula (4.280), in fact, defines the Fibonacci m�numbers given
by the recursive relation (4.240) at the seeds (4.241).

Note that the formula (4.274) defines all Fibonacci m�numbers in the range
n=0, ±1, ±2, ±3, … . Let us find some surprising properties of the Fibonacci m�
numbers. First of all, compare Fm(n) and Fm(�n). We can write the formula
(4.273) as follows:

F n
m

m
m
n n

m
n

( )
( )

.=
− −

+

−Φ Φ1

4 2 (4.281)

Let us consider the formula (4.281) for the negative values of n, that is,

F n
m

m
m

n n
m
n

( )
( )

.− =
− −

+

− −Φ Φ1

4 2 (4.282)

Comparing the expression (4.281) and (4.282) for the even (n=2k) and
odd (n=2k+1) values of n, we find:

F
m
(2k)=� F

m
(�2k) and F

m
(2k+1)=F

m
(�2k�1). (4.283)

This means that the sequences of the Fibonacci m�numbers in the range
n=0, ±1, ±2, ±3, … are symmetrical sequences with respect to the Fibonacci
m�number F

m
(0)=0 except that the Fibonacci m�numbers F

m
(2k) and F

m
(�2k)

are opposite in sign.
In Table 4.5 we can see the Fibonacci m�numbers for the cases m=1, 2, 3, 4.
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4.13.2. The Generalized Cassini Formula

Next let’s find a fundamental formula that connects three adjacent Fi�
bonacci m�numbers. For the case m=1, this formula is known as the Cassini
Formula. Remember that this formula for the classical Fibonacci numbers F1(n)
has the following form:

F n F n F n
n

1
2

1 1
1

1 1 1( ) − −( ) × +( ) = −( ) +
. (4.284)

It is easy to prove the following general identity for the Fibonacci m�numbers:
F n F n F nm m m

n2 1
1 1 1( ) − −( ) × +( ) = −( ) +

. (4.285)

For example, for the case m=2 the Fibonacci m�numbers F2(�5)=29,
F2(�4)=�12 and F2(�3)=5 are connected by the following correlation: (�12)2�
(29×5)=�1 and for the case m=3 the Fibonacci m�numbers F3(4)=33, F2(3)=10
and F3(3)=3 are connected by the following correlation: (10)2�(33×3)=1. Note
that both examples correspond to the general formula (4.285).

4.13.3. Lucas m�Numbers

Once again, consider the formula (4.267) that defines the Fibonacci m�num�
bers. By analogy with the classical Lucas numbers we can consider the formula

L n x xm
n n( ) = +1 2 . (4.286)

It is clear that for the case m=1, this formula defines the classical Lucas
numbers: 2, 1, 3, 4, 7, 11, 18, … . Let us assume that this formula defines the
Generalized Lucas Numbers of Order m or simply Lucas m�Numbers. For a giv�
en m we can find some peculiarities of the Lucas m�numbers. First of all, cal�
culate the seeds of the Lucas m�numbers given by (4.286). In fact, for the
cases n=0 and n=1 we have from (4.286), respectively:

L x xm 0 1 1 21
0

2
0( ) = + = + = (4.287)

L x x mm m m1 11
1

2
1( ) = + = + −( ) =Φ Φ/ . (4.288)

m �4 �3 �2 �1 0 1 2 3 4 

1 �3 2 �1 1 0 1 1 2 3 

2 �12 5 �2 1 0 1 2 5 12 

3 �33 10 �3 1 0 1 3 10 33 

4 �72 17 �4 1 0 1 4 17 72 

Table 4.5. Fibonacci m�numbers (m=1, 2, 3, 4)
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Note that for the case m=1, the seeds (4.287) and (4.288) come for the seeds
of the classical Lucas numbers: L1(0)=2, L1(1)=1.

Using (4.252) and (4.253), we can represent the formula (4.286) as follows:

L n x x mx x mx x

m x x

m
n n n n n n

n n

( ) = + = +( ) + +( )
= +( )

− − − −

− −

1 2 1
1

1
1

2
1

2
1

1
1

2
1 ++ +( )− −x xn n

1
1

2
1 .

(4.289)

Taking into consideration the definition (4.286), we can rewrite (4.289)
in the following form of a recursive relation:

Lm(n)=mLm(n�1)+Lm(n�2). (4.290)

It is clear that the recursive relation (4.290) at the seeds (4.287) and
(4.288) gives the Lucas m�numbers in recursive form.

If we substitute x1=Φm and x2=�1/Φm in the formula (4.286), we can repre�
sent the Lucas m�numbers in the following analytical form:
L nm m

n
m

n( ) = + −( )Φ Φ1/ . (4.291)

Although this formula is absent in Gazale’s book [45], we will name this
important formula the Gazale Formula for Lucas m�Numbers.

We can rewrite the formula (4.291) as follows:
L nm m

n n
m

n( ) = + −( ) −Φ Φ1 . (4.292)

Let us write the formula (4.292) for the negative values of n, that is,
L nm m

n n
m
n−( ) = + −( )−Φ Φ1 . (4.293)

Comparing the expressions (4.292) and (4.293) for even (n=2k) and odd
(n=2k+1) values of n, we obtain:

Lm(2k)=Lm(�2k) and Lm(2k+1)=�Lm(�2k�1). (4.294)

This means that the sequences of Lucas m�numbers in the range n=0, ±1,
±2, ±3,… are symmetrical sequences with respect to the Lucas m�number
Lm(0)=2 except that the Lucas m�numbers Lm(2k+1) and Lm(�2k�1) are oppo�
site by sign.

In Table 4.6 we can see the Lucas m�numbers for the cases m=1, 2, 3, 4.

m �4 �3 �2 �1 0 1 2 3 4 

1 7 �4 3 �1 2 1 3 4 7 

2 34 �14 6 �2 2 2 6 14 34 

3 119 �36 11 �3 2 3 11 36 119 

4 322 �76 18 �4 2 4 18 76 322 

Table 4.6. The Lucas m�numbers (m=1, 2, 3, 4)
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Note that for the case m=1 the Lucas m�numbers coincide with the classical
Lucas numbers and for the case m=2 coincides with the Pell�Lucas numbers.
Note similar results obtained by Kappraff and Adamson in [153].

4.14. On the m�Extension of the Fibonacci and Lucas p�Numbers

4.14.1. A Recursive Relation for the Fibonacci (p,m)�Numbers

Now, we define the recursive relation for the m�extension of the Fibonac�
ci p�numbers [154]. For a given integer p>0 and positive real number m>0
the recursive relation is given as follows

Fp,m(n)=mFp,m(n�1)+Fp,m(n�p�1) (4.295)

with initial conditions

Fp,m(0)=a0, Fp,m(1)=a1, Fp,m(2)=a2, …, Fp,m(p)=ap,

where a0, a1, a2, … , ap are integer, real or complex numbers.
In particular, we can take these initial conditions as follows

Fp,m(0)=0, Fp,m(k)=mk�1, (4.296)

where k=1,2,3,…,p.
We name a new class of recursive numerical sequences given by (4.295) at

the seeds (4.296) an m�extension of the Fibonacci p�numbers or simply Fibonacci
(p, m)�numbers.

It is clear that the recursive formula (4.295) at the seeds (4.296) defines a
more general class of recursive numerical sequences than the Fibonacci p�num�
bers or the Fibonacci m�numbers. Note that for the case m=1 the Fibonacci
(p,m)�numbers coincide with the Fibonacci p�numbers, that is, Fp,1(n)= Fp (n),
and for the case p=1, the Fibonacci (p,m)�numbers coincide with the Fibonacci
m�numbers, that is, F1,m

(n)=F
m
 (n). For the cases p=1 and m=1, the Fibonacci

(p, m)�numbers coincide with the classical Fibonacci numbers.

4.14.2. Some Properties of the Fibonacci (p,m)�Numbers

Let us consider the m�extension of the Fibonacci p�numbers given by
(4.295) with the initial conditions of (4.296). Let us calculate the set of Fi�
bonacci (p,m)�numbers for the negative values of the argument m

F
p,m

(�1), F
p,m

(�2), … , F
p,m

(�p), … , F
p,m

(�2p+1).
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According to (4.296), we have: Fp,m(p+1)=mp and Fp,m(p)=mp�1, thus
Fp,m(0)=0. Continuing in this way, we obtain

F
p,m

(�1)=F
p,m

(�2)=…=F
p,m

(�p+1)=0. (4.297)

Let us write the m�extension of the Fibonacci p�number Fp,m(1) in the form

Fp,m(1)=mFp,m(0)+Fp,m(�p).

Then, we obtain

Fp,m(�p)=1. (4.298)

Using (4.295), (4.296) and (4.298), we have

Fp,m(�p�1)= Fp,m(�p�2)=…= Fp,m(�2p+1)= 0. (4.299)

Also, we have

F
p,m

(�2p)=m, F
p,m

(�2p�1)=1, F
p,m

(�2p�2)= 0,…. (4.300)

For the case m=2 we obtain the 2�extension of Fibonacci p�numbers called
Pell p�numbers. Table 4.7 gives the values of Pell p�numbers for the cases of
p=1, 2, 3, 4.

4.14.3. Characteristic Algebraic Equation for the Fibonacci (p, m)�
Numbers

Let us represent the recursive relation (4.295) in the form:
F n

F n

mF n F n p

F n

m
F n

p m

p m

p m p m

p m

p m

,

,

, ,

,

,

( )

( )

( ) ( )

( )

(

−
=

− + − −

−

= +

1

1 1

1

1
−−

− −

= +
− ⋅ − ⋅⋅⋅ −

−

1

1

1
1 2

2

)

( )

( ) ( ) ( )

(,

, , ,

,F n p

m
F n F n F n p

F np m

p m p m p m

p m )) ( ) ( )

.

, ,⋅ − − −F n F n pp m p m3 1

(4.301)

Suppose that

lim
( )

( )
.,

,
n

p m

p m

F n

F n
x

→∞ −
=

1 (4.302)

n 5 4 3 2 1 0 �1 �2 �3 �4 �5 

F1,2(n)  29 12 5 2 1 0 1 �2 5 �12 29 

F2,2(n) 22 9 4 2 1 0 0 1 0 �2 1 

F3,2(n) 17 8 4 2 1 0 0 0 1 0 0 

F4,2(n) 16 8 4 2 1 0 0 0 0 1 0 

Table 4.7. Pell p�numbers (m=2; p=1,2,3,4)
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Taking into consideration the definition (4.302) and directing n → ∞, we
can replace the expression (4.301) with the following algebraic equation

x m
x p

= + 1
,

whence it appears

xp+1�mxp�1=0. (4.303)

We will name the equation (4.303) a Characteristic Equation for the Fi�
bonacci (p, m)�numbers.

Note that for the case m=1, Eq. (4.303) is reduced to Eq. (4.42) – the
characteristic equation for the Fibonacci p�numbers – and for the case p=1 to
Eq. (4.247) � the characteristic equation for the Fibonacci m�numbers.

Equation (4.303) has p+1 roots x1,  x2,  …,  x
p
,  x

p+1. If we substitute the root
x

k
 (k=1, 2, 3, …,  p+1) for x into Eq. (4.303), we obtain the following identity

for the root xk:

x mxk
p

k
p+ = +1 1. (4.304)

If we multiply and divide all terms of the identity (4.304) by xk repeated�
ly, we come to the following general identity

x mx x x xk
n

k
n

k
n p

k k
n= + = ×− − − −1 1 1, (4.305)

where n=0,±1,±2,±3,… and xk (k=1,2,3,…, p+1) is a root of Eq. (4.303).

4.14.4. The Golden (p,m)�Proportions

According to Descartes’ “rule of signs,” Eq. (4.303) has the only positive
root. Suppose without loss of generality that the root x1 is a positive root of
Eq. (4.303). Let us denote the root x1 by Φp,m and name it a Golden (p, m)�
Proportion. Substituting Φ

p,m
 for x

k
 (k=1) into the identities (4.304) and

(4.305), we obtain two important identities for Φp,m:

Φ Φp m
p

p m
pm, ,

+ = +1 1 (4.306)

Φ Φ Φ Φ Φp m
n

p m
n

p m
n p

p m p m
nm, , , , , ,= + = ×− − − −1 1 1 (4.307)

where n=0,±1,±2,±3,….
If we divide all terms of the identity (4.306) by Φp m

p
, , we obtain the fol�

lowing remarkable property of the golden (p,m)�proportions

Φ Φp m p m
pm, ,/= +1 (4.308)

or

Φ Φp m p m
pm, ,/ .− = 1 (4.309)
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Note that the golden (p,m)�proportions Φp,m is a wide generalization of the
golden p�proportions (m=1), the generalized golden m�proportions (p=1) and
the classical golden mean (p=1, m=1). Also the identities (4.308) and (4.309)
are a wide generalization of the corresponding identities for the golden p�pro�
portions, the golden m�proportions, and the classical golden mean.

4.14.5. Properties of the Roots of the Characteristic Equation

Theorem 4.4. For a given integer p>0 and a positive real number m, the
following correlations for the roots of the golden algebraic equation
xp+1�mxp�1=0 are valid:

x x x x x mp p1 2 3 1+ + + + + =+... (4. 310)
x x x x x x x x x x x xp p p p p p1 2 1 1 2 3 2 1 1 1 1+ +( )+ + +( )+ + +( )++ + − − +... ... ... xx x

x x x x x x x x x x x x x

p p

p p p p

+

+ +

=

+ +( )+ + +( )+ +

1

1 2 3 1 1 2 3 4 2 1

0

... ... ... pp p p

p p p p p p

x x

x x x x x x x x x x x x x x

− +

− − − +

=

+ + +

1 1

1 2 2 1 1 3 4 1 1 2 3

0

...

... 44 1 1 0x x xp p p− + =

(4.311)

x x x x x xp p p

p

1 2 3 1 1 1− + = −( ) . (4.312)

Theorem 4.4 is proved by analogy with Theorem 4.1. We use the “Basic
Theorem of Algebra” that is given by (4.74) to represent the characteristic
equation (4.303) in the form:
x mx x x x x x x x x x x x

x

p p
p

p
p

p+
+

+
+− − = −( ) −( ) −( )= − + + +( )

+

1
1 2 1

1
1 2 11 ...

11 2 1 1 2 3 2 1 1 1 1
1x x x x x x x x x x x xp p p p p p

p+ + + + + + + +( )
−

+ + − + +
−... ... ...

xx x x x x x x x x x x x x x x xp p p p p p p1 2 3 1 1 2 3 4 2 1 1 1+ + + + + + +( )+ + − +... ... ... pp

p p p p
px x x x x x x x x x x x x

x x x

−

− − +
−+ + + +( )

+

2

1 2 3 4 1 2 3 5 2 1 1
3

1 2 3

...

...

xx x x x x x x x x x x x x x x xp p p p p p p p p− − − + − ++ +( ) − =2 1 2 3 4 1 1 1 2 3 1 1 0... .

(4.313)

We can give some explanations regarding the identities (4.310), (4.311),
and (4.312) that connect the roots of Eq. (4.303). It is evident from (4.310)
that the sum of the roots of Eq. (4.303) is identically equal to m. The expres�
sion (4.311) gives the values for every possible sum of the roots of Eq. (4.303)
taken by two, three, ..., or р roots from the (р+1) roots of Eq. (4.303). Accord�
ing to (4.311), each of these sums is equal to 0 ! At last, the expression (4.312)
gives the value of the product of all roots of Eq. (4.303). According to (4.312)
this product is equal to 1 (for the even р) or �1 (for the odd р).

Theorem 4.5. For a given integer p=0,1,2,3,… and for the condition, when
k takes its values from the set {1,2,3,…, p}, the following identity is valid for
the roots of the algebraic equation xp+1�mxp�1=0:
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x x x x x x x x x x mp p

k k k k
p
k

p
k k

1 2 3 1 1 2 3 1+ + + + +( ) = + + + + + =+ +... ... . (4.314)

Theorem 4.5 is proven by analogy with Theorem 4.2. For the proof we
may consider the following expression:

x x x x xp p

k

1 2 3 1+ + + + +( )+... , (4.315)

where k takes its values from the set {1,2,3,…, p}.
Taking into consideration the identity (4.310), we can write:

x x x x x mp p

k k
1 2 3 1+ + + + +( ) =+... . (4.316)

On the other hand, if we factorize the expression (4.315) and take into
consideration the identities (4.311), we obtain:

x x x x x x x x xp p

k k k k
p
k

1 2 3 1 1 2 3 1+ + + + +( ) = + + + ++ +... ... , (4.317)

whence the identity (4.314) appears.

4.14.6. Generalized Binet Formulas for the Fibonacci (p,m)�Numbers

For a given p > 0,  the generalized Binet formula for the Fibonacci (p,m)�
numbers is
F n k x k x k xp m

n n
p p

n

, ... ,( ) = ( ) + ( ) + + ( )+ +1 1 2 2 1 1 (4.318)

where x1, x2, …, xp+1 are the roots of the characteristic equation (4.303) and k1,
k2, …, kp+1 are constant coefficients that depend on the initial terms (4.296) of
the Fibonacci (p,m)�sequence.

In order to calculate the values of the coefficients k1, k2, …, kp+1 in (4.318),
we consider solutions of the following system of equations

F k k k

F k x k x k x

F

p m p

p m p p

p m

,

,

,

( )

( )

(

0 0

1 1

2

1 2 1

1 1 2 2 1 1

= + + + =

= + + + =
+

+ +

))

( ),

= + + + =

= + + +

+ +

+ +

k x k x k x m

F p k x k x k x

p p

p m
p p

p p

1 1
2

2 2
2

1 1
2

1 1 2 2 1 11
1p pm=













 −

.
(4.319)

Solving the system of the equations (4.319), we can obtain the numerical
values of the coefficients k1, k2, …, k

p+1 for different values of p.
For the case p=1, the Fibonacci (p, m)�numbers are reduced to the Fi�

bonacci m�numbers, and we obtain the formula similar to the Gazale formula
(4.281), that is,

F n
m

m
m

n n
m
n

1
1 1

2

1

4
,

, ,( )
( )

,=
− −

+

−Φ Φ
(4.320)
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where Φ1,m is the golden (1, m)�proportion.

For the case p=2, the recursive relation (4.295), the seeds (4.296), and
the characteristic equation (4.303) take the following forms, respectively,

F2,m(n)=mF2,m(n�1)+F2,m(n�3) (4.321)

F2,m(0)=0, F2,m(1)=1, F2,m(2)=m (4.322)

x3�mx2�1=0. (4.323)

Equation (4.323) has one real root and two complex roots. The roots of
Eq. (4.323) are:

x
h mh m

h1

2 22 4
6

= + +
, (4.324)

x
h mh m

h
i

h m
h2

2 2 22 4
6

3
12 3

= − − + + −








 , (4.325)

x
h mh m

h
i

h m
h3

2 2 22 4
6

3
12 3

= − − + − −








 , (4.326)

where h m m= + + +108 8 12 81 123 33 .

The Binet formula for the Fibonacci (2,m)�numbers is

F n k x k x k xm
n n n

2 1 1 2 2 3 3, .( ) = ( ) + ( ) + ( ) (4.327)

The values of k1, k2, k3 are solutions of the system

F k k k

F k x k x k x

F k x

m

m

m

2 1 2 3

2 1 1 2 2 3 3

2 1 1

0 0

1 1

2

,

,

,

,

,

( ) = + + =

( ) = + + =

( ) = ( )22
2 2

2
3 3

2+ ( ) + ( ) =k x k x m.
(4.328)

Solving the system, we obtain

k
h h m

h m1 3 3

2 2

8
= +

+
( )

,   k
h h m i h m

h m2 3 3

2 3 2
8

= − + − −
+

[ ( ) ( )]

k
h h m i h m

h m3 3 3

2 3 2
8

= − + + −
+

[ ( ) ( )]
.

 Taking p=2,3,4,5,… we can  derive  the generalized Binet formulas for the
Fibonacci (p,m)�numbers. For example, the Binet formula for the Fibonacci
(2, m)�numbers is the following:
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F n
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h m hm
h

i
h m

h

h h m

n
)]

[ ( )

3 3

2 2 2

8
4 4
12

3
12 3

2

+
− + − + −









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
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

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









i h m
h m

h m hm
h

i
h m

h

n
3 2

8
4 4
12

3
12 33 3

2 2 2( )]
(4.329)

4.14.7. Generalized Binet Formulas for the Lucas (p,m)�Numbers

By analogy to the formula (4.161), we introduce the following formula

that defines the Lucas p m,( ) �numbers:

L n x x xp m
n n

p

n

, ... ,( ) = ( ) + ( ) + + ( )+1 2 1 (4.330)

where x1, x2, …, x
p+1 are the roots of the characteristic equation (4.303).

Calculate the value of the initial (p+1) terms of the number sequence de�
fined by (4.330). For the case n=0, we have:

L x x x pp m p, ... .0 11
0

2
0

1

0( ) = ( ) + ( ) + + ( ) = ++ (4.331)

Let us take k from the set 1 2 3, , ,..., p{ }  and represent the formula (4.330)

in the form:

L k x x xp m
k k

p

k

, ... .( ) = ( ) + ( ) + + ( )+1 2 1 (4.332)

Using the identity (4.314), we can write:

Lp,m(k)=mk, (4.333)

where k takes its values from the set {1,2,3,…, p}.
The expressions (4.331) and (4.333) can be considered as the seeds of the

Lucas (p, m)�numbers that are given by the following recursive formula:

L
p,m

(n)=mL
p,m

(n�1)+L
p,m

(n�p�1). (4.334)

Let us prove that the formula (4.330) gives the same numerical sequence
as well as the recursive relation (4.334) at the seeds (4.331) and (4.333).
Suppose that the formula (4.330) defines the same number L

p,m
(n) that is

calculated according to the recursive relation (4.334). Consider the formula
(4.330) for the case of n+1, that is,

L n x x xp m
n n

p

n

, ... .+( ) = ( ) + ( ) + + ( )+ +
+

+
1 1

1
2

1
1

1
(4.335)
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Using the identity (4.305), we can write the expression (4.335) as follows

L n m x x x

x x

p m
n n

p

n

n p n p

, ...+( ) = ( ) + ( ) + + ( )





+ ( ) + ( )

+

− − −

1 1 2 1

1
1

2
−−

+
− −

+ + ( )1
1

1
... ,x p

n p (4.336)

whence it appears

Lp,m(n+1)=mLp,m(n)+Lp,m(n�p) (4.337)

that corresponds to the recursive relation (4.334).
This means that our reasoning results in the discovery of a new class of

numerical sequences – the m�extension of the Lucas p�numbers or simply the
Lucas (p, m)�numbers.

Note that for the case m=1 the recursive relation (4.334) and the seeds
(4.331) and (4.333) are reduced to the following:

Lp,1(n)=Lp,1(n�1)+Lp,1(n�p�1) (4.338)

L
p,1(0)=p+1 and L

p,1(k)=1 (k=1,2,3,…,p). (4.339)

It is clear that the recursive relation (4.338) at the seeds (4.339) gives the
above Lucas p�numbers.

For the case m=2, the recursive relation (4.334) and the seeds (4.331) and
(4.333) are reduced to the following:

L
p,2(n)=2L

p,2(n�1)+L
p,2(n�p�1) (4.340)

Lp,2(0)=p+1; Lp,2(k)=2k (k=1,2,3,…,p). (4.341)

For the case p=1, the Lucas (p,m)�numbers are reduced to the Lucas m�
numbers and we obtain the Binet formula similar to (4.292), that is,

L nm m
n n

m
n

1 1 11, , , ,( ) = + −( ) −Φ Φ (4.342)

where Φ1,m is the golden (1, m)�proportion.
For the case p=2, the recursive relation (4.334), the seeds (4.331) and

(4.333), the characteristic equation (4.303), and Binet formula (4.330) take
the following forms, respectively:

L2,m(n)=mL2,m(n�1)+L2,m(n�3) (4.343)

L2,m(0)=3, L2,m(1)=2, L2,m(2)=4 (4.344)

x3�mx2�1=0 (4.345)

L n x x xm
n n n

2 1 2 3. .( ) = ( ) + ( ) + ( ) (4.346)

If we substitute the expressions (4.324)�(4.326) for the roots x1, x2, x3

into (4.346), we obtain the following analytical expression of the Binet for�
mula for the Lucas (2,m)�numbers that are called the Pell�Lucas p�numbers:
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L n
h m

h
m h m
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h m

h
m i h m

h12 3 3
3

2 6
2
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2 2

.
(4.347)

Table 4.8 gives the 2�extension of the Lucas p�numbers (Pell�Lucas p�
numbers) for the cases p=1,2,3,4.

It is clear that our reasoning resulted in a wide generalization of the Fibonacci
and Lucas p�numbers and the Fibonacci and Lucas m�numbers. The Fibonacci
and Lucas (p,m)�numbers are of theoretical interest for discrete mathematics
and open new perspectives for the development of theoretical physics because
new recursive numerical sequences and new mathematical constants that follow
from this approach may be discovered in some physical processes.

4.15. Structural Harmony of Systems

4.15.1. Soroko’s Law of the Structural Harmony of Systems

Belorussian philosopher Eduardo Soroko was one of the first researchers
who used the Fibonacci p�numbers and golden p�proportions for simulation of
the processes in self�organizing systems [25, 56]. Soroko’s main idea is to con�
sider real systems from the dialectical point of view. As is well known, any nat�
ural object can be represented as the dialectical unity of the two opposite sides
A and B. This dialectical connection may be expressed in the following form:

A+B=U (universum). (4.348)

n �5 �4 �3 �2 �1 0 1 2 3 4 5 

L1,2(n)  �82 34 �14 6 �2 2 2 6 14 34 82 

L2,2(n) �10 8 3 �4 0 3 2 4 11 24 52 

L3,2(n) 0 4 �6 0 0 4 2 4 8 20 42 

L4,2(n) 5 �8 0 0 0 5 2 4 8 16 37 

Table 4.8. Pell�Lucas p�numbers (m=2, p=1,2,3,4)
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The equality (4.348) is the most general expression of the so�called
Conservation Law. Here A and B are distinctions inside of the Unity, logically
disjoint classes of the Whole. There is one requirement that A and B need to
be measured by the same measure and members of the relation that underlies
the unity. Probability and improbability of events, mass and energy, the nu�
cleus of an atom and its envelope, substance and field, anode and cathode,
animals and plants, spiritual and material beginnings in a value system, and
profit and cost are various examples of (4.348).

The identity (4.348) may be reduced to the following normalized form:

A B+ = 1, (4.349)

where A  and B  are the relative “weights” of the parts A and B that make up
some Unity.

The Law of Information Conservation is a partial case of (4.348):

I+H=logN, (4.350)

where I is an information quantity and H is the entropy of the system having
N different states.

The normalized form of the law (4.350) is the following:

R H+ = 1, (4.351)

where R=1/logN is a relative redundancy, H H N= log  is a relative entropy.
Let us consider the process of system self�organization. This one is re�

duced to the passage of the system into some “harmonious” state called the
state of thermodynamic equilibrium. There is some correlation or proportion
between the sides A and B of the dialectical contradiction (4.348) for the state
of thermodynamic equilibrium. This correlation has a strictly regular charac�
ter and is the cause of system stability. Soroko uses the Principle of Multiple
Relations to find a connecting law between A and B in the state of thermody�
namic equilibrium. This principle is well known in chemistry as Dalton’s Law
and in crystallography as the Law of Rational Parameters.

Soroko proposes the hypothesis that the Principle of Multiple Relations is
a general principle of the Universe. That is why, in accordance with this prin�

ciple there is the following connection between the components R and H  in
the identity (4.351):

log R s H= +( )1 (4.352)

or

log .H s R= +( )1 (4.353)

The equalities of (4.352) and (4.353) may be represented in exponential form:
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R H
s

= ( ) +1
(4.354)

H Rs= +1, (4.355)

where the number s is called the Range of Multiplicity and takes the following
values: 0,1,2,3,… .

Substituting the expressions (4.354) and (4.355) into the equality (4.351),
we obtain the following algebraic equations, respectively:

H H
s( ) + − =
+1

1 0 (4.356)

R Rs+ + − =1 1 0. (4.357)

If we denote the variables H  and R in the equations (4.356) and (4.357)
by y, we obtain the following algebraic equation:

ys+1+y�1=0. (4.358)

Let us introduce the new variable x=1/y and apply it to the equation
(4.358). Inserting the new variable into (4.358), we obtain the following alge�
braic equation:

xs+1+xs�1=0. (4.359)

We can see that the equation (4.359) coincides with the algebraic equa�
tion of the golden p�proportion that is given by (4.42). The positive root of
the equation (4.358) is the reciprocal of the golden p�proportion:

βs=1/τs, (4.360)

where τ
s
 is a positive root of the equation (4.359).

In accordance with Soroko’s concept, the roots of the equation (4.358)
that are equivalent to equation (4.359), express the Law of the Structural Har�
mony of Systems:

“The generalized golden proportions are invariants that allow natu�
ral systems in the process of their self�organization to find harmonious
structure, a stationary regime for their existence, and structural and func�
tional stability.”

What is peculiar about Soroko’s Law? Since Pythagoras, scientists
combined the concept of Harmony solely with the classical golden mean
τ = +( )1 5 2.  Soroko’s Law asserts that the harmonious state that corre�
sponds to the classical golden mean is not unique to a system. Soroko’s
Law asserts that there are an infinite number of harmonious states of the
system that correspond to the numbers τs or to the inverse numbers βs=1/
τ

s
 (s=1,2,3,…) that are positive roots of the general algebraic equations

(4.358) and (4.359).
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Table 4.9 gives the values of Soroko’s “structural invariants” for the initial
terms of s.

Table 4.9. Soroko’s numerical invariants

s

s

1 2 3 4 5 6 7

0 618 0 682 0 724 0 755 0 778 0 796 0 812β . . . . . . .

4.15.2. Application of Soroko’s Law to Thermodynamic and Information
Systems

The thermodynamic or informational state of a system is expressed by en�
tropy, which is the principal concept of thermodynamics and information theo�
ry. The expression for the entropy of an information source with the alphabet
A={a1, a2, …, aN} has the following form:

H p pk k
k

N

= −
=

∑ log
1

, (4.361)

where p1, p2, …, pN are the probabilities of the letters a1, a2, …, aN, N is a number
of the letters.

It is well known that entropy (4.361) reaches its maximum value

Hmax=logN (4.362)

for the case, when the probabilities of the letters are equal among themselves,
that is,

p1=p2= …= pN=1/N.

Using the concept of relative entropy

H H N= log , (4.363)

we can write the following evident equality:

H N H p pk k
k

N

log log .= = −
=

∑
1

(4.364)

In accordance with the Law of the Structural Harmony of Systems, any
system reaches its harmonious state when its relative entropy (4.363) satis�
fies the equality (4.353). The following expression for the entropy of the
harmonious system follows from this consideration:

H p p Nk k s
k

N

= − =
=

∑ log log .β
1

(4.365)

It is clear that for any given s, the problem of obtaining the optimal set of
values pi (i=1, 2, 3, …, N) corresponding to the optimal (“harmonious”) state
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of the system, has many solutions. However, the expression (4.365) plays a role
in the function’s “aim” towards the solution of various scientific and technical
problems.

In his book, Structural Harmony of Systems [25], Soroko gave a number of
interesting examples from different fields of science to confirm the Law of the
Structural Harmony of Systems. For example, let us consider such a natural
object as “dry air” that is the basis for life on Earth. We can ask the question:
does the “dry air” have an optimal or harmonious structure? Soroko’s theory
gives a positive answer to this question. In fact, the chemical compound of the
“dry air” is the following: nitrogen – 78.084%; oxygen – 20.948%; argon –
0.934%; carbon dioxide – 0.031%; neon – 0.002%; and helium – 0.001%. If we
calculate the entropy of the “dry air” according to the formula of (4.361) and
then its relative entropy according to (4.363) taking into consideration that
logN=log 6, then the value of the relative entropy of the “dry air” will be equal
to 0.683. With a high degree of precision this value corresponds to the invari�
ant β2=0.682. This means that in the process of self�organization the “dry air”
reaches its optimal, harmonious structure. This example is very typical and
demonstrates that “Soroko’s Law” can be used today for checking the bio�
sphere state, in particular, the states of air and water.

It is clear thus the practical use of the Law of the Structural Harmony of
Systems provides a clear advantage to the solution of many technological, eco�
nomical, ecological and other problems. In particular, it can help improve the
technology of structurally�complicated products, including the monitoring
of the biosphere and so forth.

4.16. Conclusion

In recent years the generalization of Fibonacci and Lucas numbers and
the golden section has been an important trend in the development of Fi�
bonacci number theory. One may cite various ways in which this generaliza�
tion takes place. One way, for example, is a generalization based on Pascal’s
triangle. In the latter half of the 20th century several eminent mathemati�
cians (including Martin Gardner [12], George Polya [17], Alfred Renyi [23]
and others) each independently discovered a connection of Fibonacci num�
bers with Pascal’s triangle and binomial coefficients. This finding confirms a
fundamental connection of Fibonacci and golden mean based Harmony Math�
ematics with combinatorial analysis suggesting a future line of development.
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In the early 1970s, in his doctoral dissertation [19], Alexey Stakhov intro�
duced the so�called Fibonacci p�numbers (p=0,1,2,3,…) that follow from the
diagonal sums in Pascal’s triangle. By studying the Fibonacci p�numbers, Sta�
khov generalized the golden section problem and introduced the golden p�
proportions that are positive roots of the characteristic equation xp+1=xp+1.
Later by continuing this research, Stakhov formulated the Generalized Prin�
ciple of the Golden Section [107] and generalized the Euclidean problem of the
“division in extreme and mean ratio” (the golden section) [20]. Later Stakhov
and Rozin generalized the Binet formulas and introduced the generalized Lucas
p�numbers [111].

Fibonacci numbers were further generalization through a consideration
of the generalized recursive relation G(n+1)=pG(n)+qG(n�1) (p and q are
integers or real numbers) that coincides with the classical recursive Fibonac�
ci relation for the case p=q=1. This became the source of many original dis�
coveries made by Vera W. de Spinadel [42], Midhat Gazale [45] and Jay Kap�
praff [47]. By using this approach, Vera W. de Spinadel introduced the Me�
tallic Means [42]. By using the recursive relation Fm(n+1)=mFm(n)+Fm(n�1)
and the characteristic equation x2�mx�1=0, where m is a positive real number,
Midhat Gazale further generalized the Binet formula for Fibonacci m�num�
bers Fm(n). Gazale formulas allow one to represent all Fibonacci and Lucas m�
numbers by the golden m�proportion F

m
 that is a generalization of the classi�

cal golden mean.
Recently, E. Gokcen, Naim Tuglu and Alexey Stakhov [154] introduced

the m�extension of the Fibonacci and Lucas p�numbers, generating the new
class of Fibonacci and Lucas (p,m)�numbers. This new class of characteristic
equations xp+1�mxp�1=0, for generalized Fibonacci and Lucas (p,m)�numbers
and the golden mean, infinitely extend algebraic equations and mathematical
constants, which can be used in contemporary mathematics, theoretical phys�
ics and computer science.
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Chapter 5

Hyperbolic Fibonacci and Lucas Functions

5.1. The Simplest Elementary Functions

5.1.1. Trigonometric Functions

In mathematics, an Elementary Function is built up from a finite number
of exponentials, logarithms, constants, variables, and roots of equations by
using the four elementary operations (addition, subtraction, multiplication
and division). Logarithms, Exponential Functions (including Hyperbolic Func�
tions), Power Functions, and Trigonometric Functions are the best known
amongst them.

We begin to study the elementary functions starting with trigonometric
functions. Trigonometry and trigonometric functions Sine, Cosine, Tangent, Co�
tangent, Secant, and Cosecant are well known to many of us from secondary
school. Trigonometry was developed in antiquity initially as a branch of astron�
omy, as a computing tool for practical purposes. Application of trigonometry to
astronomy explains why spherical trigonometry arose first, before planar trigo�
nometry. Ancient Greek astronomers successfully solved some problems of trig�
onometry. However, these scientists (Ptolemy, Menelaus, etc.) had not studied
trigonometric functions (sine, cosine, etc.) but line segments and spans. The span
that connects together a double arch 2α played a role of a sine of the angle α.
Ptolemy had found a formula for the definition of the span as the sum and differ�
ence of two arches, the span of the half arch, and so on.

Sine and cosine were first introduced by Indian scientists. In India, the
doctrine of trigonometric values was named Goniometry as it started to de�
velop. The further development of the doctrine of trigonometric values con�
tinued in the 9th�15th centuries in the countries of the Middle and the Near
East. The Arabian mathematicians introduced all basic trigonometric func�
tions derivative from sine and cosine: tangent, cotangent, secant and cose�
cant. They had proved the basic relations amongst trigonometric functions.
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For the first time Arabian mathematicians began to develop trigonometry as
a part of mathematics independent from astronomy.

In the 13th�15th centuries, the further development of trigonometry in Eu�
rope continued following the translation of mathematical and astronomical works
of Arabian and Greek science into Latin. The German scientist Regiomontanus
(1436�1476) was the most famous European mathematician of this epoch in the
field of trigonometry. His trigonometric work Five Books about Triangles of All
Kinds was of great importance for the further development of trigonometry dur�
ing the 16th�17th centuries.

On the threshold of the 17th century, an analytical direction in trigonometry
started to develop. Before the 17th century, the direction regarding triangles and the
calculation of the elements of geometric figures was the main objective of trigonom�
etry and the doctrine of trigonometric functions had developed along geometrical
lines. Whereas in the 17th�19th centuries, trigonometry gradually became one of the
branches of mathematical analysis. Trigonometry finds wide application in mechan�
ics, physics and engineering, especially in the study of oscillatory movements and
other periodic processes. The development of the doctrine of oscillatory movements,
of sound, light and electromagnetic waves became central to the basic contents of
trigonometry. It is well known from physics that the equation of harmonious fluctu�
ation (for example, of a variable electric current) appears as:

y A t= +( )sin .ω α
Sinusoids are graphs of harmonious fluctuations; therefore, in physics and

engineering the harmonious fluctuations are often called Sinusoidal Fluctuations.
Newton and Euler developed an analytical approach to trigonometry, and

in the first half of the 19th century the French scientist Fourier proved that
any periodic movement can be presented (with any degree of accuracy) in the
form of the sum of simple harmonious fluctuations. Presently trigonometry
is no longer considered an independent part of mathematics. Its major sec�
tion – the Doctrine about Trigonometric Function – is a part of the theory of
functions; and its other section –the Decision of Triangles – is considered to
be part of geometry (planar and spherical).

5.1.2. The Power Function

The Power Function plays an important role in mathematics. The Power con�
cept originally meant the product of a finite number of equal coefficients (a pow�
er with a natural parameter), that is,

an=a×a×...×a (n times).  (5.1)
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This definition possesses the following mathematical properties:

ab a b a b a b

a a a a a

n n n n n n

m n mn m n m n

( ) = × ( ) =

( ) = = −

; / / ;

; / . (5.2)

Over the centuries, this concept was repeatedly generalized and enriched
by its contents. The concept of the 2nd and 3rd powers a2 and a3 appeared in
connection with the definition of the area of a square and the volume of a
cube. Already the Babylonians had made use of tables of the squares and
cubes of numbers. The titles Square and Cube for the 2nd and 3rd powers
are of ancient Greek origin. The practice of solving more and more complex
algebraic problems, led to the necessity to generalize the power concept
and its extension by means of the introduction of the powers of zero, and
negative and fractional numbers. The powers of zero and also negative and
fractional parameters were defined so that the actions of the power with a
natural basis given by (5.2) were applied to them. The principle here ob�
served in the generalization of mathematical concepts is referred to as “a
permanence principle.”

The power concept (5.1) depends on two parameters, the numbers of a and n.
Depending on what parameter is chosen as a variable, it is possible to give two gener�
alizations of the power concept (5.1). The first generalization is the power function:

y=xσ,  (5.3)

where x is a variable and σ is a given real number.
Note that for the cases σ=0 and σ=1 according to (5.3) we have, respectively:

y=1 and y=x.  (5.4)

The graph of the function y=1 is a straight line parallel to the axis OX, and
the graph of the function y=x is a bisector of the 1st and 3d coordinate angles.

For the case σ=2 the graph of the function (5.3) is a Parabola y=x2. For the
case σ=3 the graph of the function (5.3) is a Cubic Parabola y=x3. This curve had
been used by French mathematician Gaspard Monge (1746�1818), the father of
descriptive geometry, for finding the real roots of the cubic equations.

A derivative of the power function (5.3) is equal to the product of the power
parameter α multiplied by the power function with the parameter (α�1), that is,
d
dy

x xα αα= −1.

The power function (5.3) is a basic mathematical tool that is used widely in
many other fields as well, including economics, biology, chemistry, physics, and
computer science, with such applications as compound interest, population
growth, chemical reactions, wave behavior, and public key cryptography.
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5.1.3. An Exponential Function

However, there is another generalization of the power concept (5.1). Let us
examine the so�called exponential function given by the following expression:
y=ax,  (5.5)
where x is a variable and a>0 is any real number.

The exponential function (5.5) has many applications in the study of natu�
ral and social phenomena. It is known, for example, that the decay of radioactive
substance is described by the function (5.5). If we denote by t0 a period of the
half�decay, that is, a time interval necessary to get half of the initial mass m0,
then the mass of the substance via t years can be expressed as follows:
d
dy

x xα αα= −1.

The exponential functions (5.5) posses the following Exponential Laws:

a a a a a a a a

a a a b ab

x y x y xy x y

x x x x x

0 11

1

= = = = ( )
= = ( )

+

−

; ; ; ;

/ ; .

These correlations are valid for all positive real numbers a and b and all
values of the variables x and y. The expressions that involve fractions and
roots can often be simplified by using exponential functions because:

1 1a a a a abn n
b b

n= = ( ) =− ; ,

where n is a natural number.
In mathematics, the following partial case of the exponential function is

widely used:

y ex= ,  (5.6)

where e=2.71828183 is the base of natural logarithms. The graph of the exponen�
tial function (5.6) is represented in Fig. 5.1.

The exponential function is climbing
slowly with the negative values of x, it is
climbing quickly with the positive values
of x, and is equal to 1 when x is equal to 0.
As a function (5.6) is the function of real
variable x, the graph of (5.6) is positive for
all values of x and is increasing (by viewing
left�to�right). This graph never touches the
x�axis, although it approaches the x�axis;
thus, the x�axis is a horizontal asymptote
to the graph. Figure 5.1. Exponential function
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A derivative of the exponential function (5.6) coincides with the function
(5.6), that is,

d
dx

e ex x= .

Note that only the function (5.6) has this unique property.
For the exponential functions with other bases we have:

d
dx

a a ax x= (ln ) .

5.1.4. Logarithms

The theory of logarithms is based on the following simple reasoning. Let us
examine the exponential function (5.5). First we represent the variable x in (5.5)
in the form of a special function of y as follows:

x y aa a
x= = ( )log log .

We name this function a Logarithm with base a. Depending upon the choice
of the base a there are different kinds of logarithms. For the case a=2 we have
Binary Logarithms log2x=lgx, for the case a=10 we have Decimal Logarithms
log10x and finally, for the case a=e we have Natural Logarithms logex=lnx.

Logarithms are used widely in many areas of science and engineering
where the magnitudes vary over a large range. Logarithmic scales are used,
for example, in the decibel scale for the loudness of sound, the Richter scale of
earthquake magnitudes, and the astronomical scale of stellar brightness.

A derivative and an indefinite integral of log
a
z are given respectively by

d
dz

z
z aalog

ln
;= 1
  log

(ln )
ln

.a dz
z z

a
c= − +∫ 1

5.2. Hyperbolic Functions

5.2.1. Definition of the Hyperbolic Functions

The function

sh x
e ex x

( ) = − −

2
(5.7)

is called the Hyperbolic Sine and the function
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ch x
e ex x

( ) = + −

2
 (5.8)

is called the Hyperbolic Cosine.

There is a similarity between trigono�
metric and hyperbolic functions. Like the
trigonometric sine and cosine that are the
coordinates of the points on a circle, the hy�
perbolic sine and cosine are the coordinates
of the points on a hyperbola. The hyper�
bolic functions are defined on all numeri�
cal axes. The hyperbolic sine is an odd func�
tion that is increasing on all numerical axes.
The hyperbolic cosine is an even function
that is decreasing on the interval (�∞; 0)
and increasing on the interval (0; +∞). The
point (0; 1) is the minimum of this func�
tion (see Fig. 5.2).

By analogy with the trigonometric functions we can define hyperbolic tan�
gent and cotangent:

th x
sh x
ch x

cth x
ch x
sh x

( )
( )
( )

, ( )
( )
( )

.= =

Analytical definitions (5.7) and (5.8) of the hyperbolic functions can be used
for obtaining some important identities of the hyperbolic trigonometry. It is
well known that there are Trigonometric Identities, for example, the Pythagore�
an Theorem for the Trigonometric Functions:

cos2a+sin2a=1.  (5.9)

We can prove similar identities for the hyperbolic functions:

ch x sh x
e e e e

e e e

x x x x

x x x

2 2

2 2

2 2 2

2 2

2
4

2

− = +





 − −








= + + − − +

− −

− ee x−
=

2

4
1

 (5.10)

ch x sh x
e e e e

e e e

x x x x

x x x

2 2

2 2

2 2 2

2 2

2
4

2

+ = +





 + −








= + + + − +

− −

− ee e e
sh x

x x x− −
= + =

2 2 2

4 2
2 .

 (5.11)
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Figure 5.2. Graphs of the
hyperbolic sine and cosine
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We can prove the following properties for derivatives and integrals:
shx chx chx shx thx ch x( ) = ( ) = ( ) =′ ′ ′; ; /1 2

sh x dx ch x C

ch x dx sh x C

th x dx ch x C

ch x

( ) ( )

( ) ( )

( ) ln[ ( )]

(

∫
∫
∫

= +

= +

= +

1
2 ))

( )

( )
( )

∫

∫

= +

= − +

dx th x C

sh x
dx cth x C

1
2

5.2.2. History and Applications of the Hyperbolic Functions

5.2.2.1. Lambert and Riccati

Although Johann Heinrich Lambert (1728�1777), a French mathemati�
cian, is often credited with introducing hyperbolic functions, it was actually
Vincenzo Riccati (1707�1775), an Italian mathematician, who did this in the
middle of the 18th century. He studied these functions and used them to
obtain solutions for cubic equations. Riccati found the standard Addition for�
mulas, similar to trigonometric identities, for hyperbolic functions as well as
their derivatives. He revealed the relationship between the hyperbolic func�
tions and the exponential function. For the first time Riccati used the sym�
bols sh and ch for the hyperbolic sine and cosine.

5.2.2.2. Non�Euclidean Geometry

Among the mathematical works of ancient science, The Elements by Euclid is
of special importance. This famous work contains the fundamentals of ancient
mathematics: elementary geometry, number theory, algebra, the general theory
of relations and calculation of areas and volumes. Euclid summarized Greek math�
ematics and created a stable foundation for further mathematical progress. The
Elements by Euclid is constructed as a deductive mathematical system: at first the
definitions, the postulates and the axioms are given, then the theorems are formu�
lated and their proofs are given. Among the Euclidean axioms, the 5th Euclidean
axiom, the Axiom about Parallels is the most famous.

During almost 2 millennia many mathematicians tried to deduce this axiom
as a theorem from other Euclidean axioms. The problem of the 5�th Euclidean
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axiom was brilliantly solved for the first time by a professor of Kazan University,
the Great Russian mathematician Nikolay Lobachevsky (1792�1856) who devel�
oped a non�Euclidean geometry in 1826. Lobachevsky’s geometry is also named
Hyperbolic Geometry because it is based on the hyperbolic functions. Indepen�
dently Lobachevsky, the young Hungarian mathematician Janosh Bolyai had
also developed a similar non�Euclidean geometry. The first published work on
non�Euclidean geometry, Lobachevsky’s article About the Geometry Beginnings,
was published in 1829 in The Kazan Bulletin. Three years later Janosh Bolyai’s
work on non�Euclidean geometry, called the Appendix, was published in Latin.
After Gauss’ death it was clear that he also had developed a geometry similar to
those of Lobachevsky and Bolyai.

Lobachevsky had formulated a new axiom about parallel lines that, in
contrast to the Euclidean 5th axiom, was formulated as follows:

“Through any point outside of a given straight line, it is possible to draw
at least two different ‘parallel’ straight lines that are mutually disjoint with
the given straight line.”

Having replaced the 5th Euclidean axiom with this new axiom,
Lobachevsky developed a non�Euclidean geometry that is as logically correct
as Euclidean geometry.

We will not stop to detail all features of Lobachevsky’s geometry, as its
study goes far outside the limits of “Elementary mathematics,” studied in
high school. It is important to emphasize that, by studying trigonometric
relations of his geometry, Lobachevsky used the above hyperbolic functions,
that is, Lobachevsky’s geometry is an important confirmation of the funda�
mental character of hyperbolic functions in the development of new geomet�
ric models of the Universe.

5.2.2.3. Minkowski’s Four�dimensional World

The 20th century became a new stage in the evolution of spatial ideas in all
scientific spheres. Physics stimulated the global process of change regarding
geometric spatial ideas. Until the creation of non�Euclidean geometry, it was
not necessary to prove the mutual relation of Newton’s mechanics and Euclid�
ean geometry. This fact was considered to be obvious. However, at the end of
the 19th century and the beginning of the 20th century many new physical
facts and observations, which did not fit the classical spatial representations,
were gathered together. Maxwell’s research on electro�dynamics, Michelson’s
experiments on the measurement of the speed of light and other scientific facts
resulted in the problem of the correspondence of Euclidean geometry to the
real physical world. Einstein’s theory of relativity resulted in the explanation of
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new physical facts, which concern relations between physics and classical geome�
try. The conclusion about the non�Euclidean character of real spatial geometry
became the main outcome of Einstein’s special theory of relativity.

The need for attracting new geometric ideas arose within 20th century phys�
ics. In particular, Einstein’s special relativity theory (1905) was a cause for this
research. In this theory for the first time in the history of physics, a mutual rela�
tion between space and time became the objects of physical research. Relativity
theory proves that the metrics of real space and time are not absolute: they de�
pend on dynamical conditions, in which the spatial and temporal measurements
are carried out. Relativity theory for the first time showed that space and time
are continuum and that their properties are integrally interconnected.

In 1908, that is, in three years after the promulgation of Einstein’s special
theory of relativity, the German mathematician Herman Minkowski presented
the geometric substantiation of the special relativity theory [37]. Minkowski’s
idea is characterized by two essential peculiarities. In the first place, the geomet�
ric spatial�temporal model that was offered by him was four�dimensional: in this
model the spatial and temporal coordinates are connected in the common coor�
dinate system. The position of the material point in Minkowski’s model was de�
termined by the point M (x, y, z, t) called the World Point. Secondly, the geo�
metric connection between the spatial and temporal coordinates in Minkows�
ki’s system had a non�Euclidean character, that is, the given model reflected cer�
tain special properties of real space�time that could not be simulated in the frame�
work of the “traditional” Euclidean geometry.

Geometrically, a connection between the spatial (x) and temporal (t) co�
ordinates in Minkowski’s model is given by the Hyperbolic Turn, the move�
ment that is similar to the traditional turn of the Cartesian system in Euclid�
ean geometry. Here, the coordinates x and t of any point can be transformed
according to the formulas:

x xch tsh t xsh tch′ ψ ψ ′ ψ ψ= + = +, ,
where ψ is the angle of the hyperbolic turn and ch and sh are the hyperbolic sine
and cosine, respectively.

 The original geometric interpretation of the well�known Lorentz transfor�
mations  follows from the given model:

x x vt v c

t t vx c v c

′

′

= +( ) − ( )
= + ( )



 − ( )

1

1

2

2 2

;

,

where v is the speed of the system, с is the speed of light.
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Note that in Minkowski’s geometry Lorentz transformations  are rela�
tions of the hyperbolic trigonometry expressed in physics terms. Minkows�
ki’s geometry uncovers the hyperbolic nature of all mathematical formulas
of relativity theory.

5.2.2.4. Vernadsky’s Ideas

Up until the time of relativity theory the mathematical apparatus for
biological research practically did not exist. Nevertheless the response of
biologists to discoveries in geometric physics was practically instantaneous.

Russian scientist Vladimir Vernadsky was one of the first scientists to give
serious attention to the geometric problems of biology [37]. Vernadsky’s pecu�
liar approach was a holistic vision of the “space�time” problem. Vernadsky ex�
panded on the concepts of the “space�time” problem. He took into consideration
the biological specificity of its study and discussed the realization in Nature of
general geometric (spatial�temporal) laws. Vernadsky gave attention to the prob�
lem of biological symmetry and considered this to be the key biological problem.
He came to the conclusion that the explanation of biological symmetry is con�
nected to the non�Euclidean character of the spatial geometry of living sub�
stance. He also assumed that the geometry of biological “space�time” differs from the
geometry of “space�time” relativity theory, known as the “Four�dimensional
Minkowski world” [37].

According to his opinion, the issue of how non�Euclidean geometry is
embodied in living nature is the key problem of biological research.
Vernadsky’s ideas became a leitmotiv for scientific research in subsequent
periods of development in biology resulting in the creation of a new direction,
mathematical biology.

5.3. Hyperbolic Fibonacci and Lucas Functions (Stakhov�Tkachenko’s
Definition)

5.3.1. A Definition of Hyperbolic Fibonacci and Lucas Functions

Fibonacci and Lucas functions were introduced, for the first time, in 1993 by
Alexey Stakhov and Ivan Tkachenko [98]. If we compare the hyperbolic func�
tions (5.7) and (5.8) with Binet formulas (2.66) and (2.67), we can see that Binet
formulas are similar to the hyperbolic functions in their mathematical structure.
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For a strong definition of the hyperbolic Fibonacci and Lucas functions we
can rewrite the formulas (2.68) and (2.67) respectively, as follows:

F k
k k

2
2 2 5= −( )−τ τ  (5.12)

F k
k k

2 1
2 1 2 1 5+

+ − += +( )τ τ ( )
 (5.13)

L k
k k

2 1
2 1 2 1

+
+ − += −τ τ ( )

 (5.14)

L k
k k

2
2 2= + −τ τ ,  (5.15)

where the discrete variable k takes its values from the set 0 1 2 3, , , ,... .± ± ±{ }
Comparing the formulas (5.12)�(5.15) to the hyperbolic functions (5.7) and

(5.8), we can see that formulas (5.12) and (5.14) correspond in their structure to
the hyperbolic sine (5.7) and the formulas (5.13) and (5.15) correspond to the
hyperbolic cosine (5.8). This simple analogy underlies the Hyperbolic Fibonacci
and Lucas Functions [98].

By substituting the discrete variable k in the formulas (5.12)�(5.15) for
the continuous variable x that takes its values from the set of real numbers,
we obtain the following four new elementary functions:

Hyperbolic Fibonacci sine
sF x x x( ) = ( )−τ − τ2 2 5 .  (5.16)

Hyperbolic Fibonacci cosine
cF x x x( ) = ( )+ − +( )τ + τ2 1 2 1 5 .  (5.17)

Hyperbolic Lucas sine

sL x k k( ) ( )= −+ − +τ τ2 1 2 1 .  (5.18)

Hyperbolic Lucas cosine

cL x k k( ) .= + −τ τ2 2  (5.19)

Note that for the discrete values x=k the hyperbolic Fibonacci and Lucas
functions (5.16)�(5.19) coincide with the Fibonacci and Lucas numbers, that is,

sF k F cF k F sL k L cL k Lk k k k( ) = ( ) = ( ) = ( ) =+ +2 2 1 2 1 2; ; ; .  (5.20)

This means that the extended Fibonacci and Lucas numbers coincide with
the hyperbolic Fibonacci and Lucas functions for the discrete points of the
continuous variable x=k (k=0,±1,±2,±3,…), that is, the extended Fibonacci
and Lucas numbers are “discrete analogs” of the hyperbolic Fibonacci and
Lucas sine and cosine. This property (5.20) is a rather characteristic peculiarity
of the above hyperbolic Fibonacci and Lucas functions (5.16)�(5.19) in compar�
ison with the classical hyperbolic functions (5.7), (5.8) that, however, do not
have “discrete analogs” similar to (5.20).
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5.3.2. The Hyperbolic Fibonacci and Lucas Tangent and Cotangent

Let us introduce the definitions of the hyperbolic Fibonacci and Lucas tangents
and cotangents by analogy to the classical hyperbolic tangent and cotangent.

 Hyperbolic Fibonacci tangent:

tFx
sFx
cFx

= .  (5.21)

Taking into consideration (5.16) and (5.17), the hyperbolic Fibonacci tan�
gent can be represented as follows:

tFx
x x

x x

x x

x x

x

= −
+

= −
+

= −−

+ − +

+

+

τ τ
τ τ

τ τ
τ τ

τ τ2 2

2 1 2 1

4 2 1

2 4 2

41
1( )

( )
( )

( 11
14 1

)
.

τ x+ +  (5.21)

Hyperbolic Fibonacci cotangent:

ctFx
cFx
sFx

= .

Taking into consideration (5.16) and (5.17), the expression for the hyper�
bolic Fibonacci cotangent can be represented as follows:

ctFx
x

x
= +

−

+τ
τ τ

4 2

4

1

1( )
.  (5.22)

Hyperbolic Lucas tangent:

tLx
sLx
cLx

x

x
= = −

+

+τ
τ τ

4 2

4

1

1( )
.  (5.23)

Hyperbolic Lucas cotangent:

ctLx
cLx
sLx

x

x
= = +

−+
τ τ
τ
( )

.
4

4 2

1

1
 (5.24)

Thus, the main result that follows from our study is the introduction of two
new kinds of elementary functions, the Hyperbolic Fibonacci Functions and the
Hyperbolic Lucas Functions. By their form, these functions are similar to the
classical hyperbolic functions, but differ from them by one important feature. In
contrast to the classical hyperbolic functions, the hyperbolic Fibonacci and Lu�
cas functions have numerical analogs � the classical Fibonacci and Lucas num�
bers. In particular, the Fibonacci numbers with the even indices are discrete
analogs for the hyperbolic Fibonacci sine (5.16), the Fibonacci numbers with
the odd indices are discrete analogs for the hyperbolic Fibonacci cosine (5.17),
the Lucas numbers with the odd indices are discrete analogs for the hyper�
bolic Lucas sine (5.18), and the Lucas numbers with the even indices are
discrete analogs for the hyperbolic Fibonacci cosine (5.19).
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5.3.3. Some Properties of the Hyperbolic Fibonacci and Lucas Functions

5.3.3.1. Hyperbolic Fibonacci Sine

The function y=sF(x) is odd function because

sF x sF xx x x x−( ) = −( ) = − −( ) = − ( )− − − −τ τ τ τ2 2 2 25 5( ) .

Its value at the point x=0 is equal to

sF 0 5 00 0( ) = −( ) =τ τ .

5.3.3.2. Hyperbolic Fibonacci Cosine

The function  y=sF(x)  is given by (5.17).  Let us find the intersec�
tion points of the function graph with the coordinate axes.  As
cF x x x( ) = ( ) >+ − +( )τ + τ2 1 2 1 5 0  for any x∈{�∞,+∞} this means that the graph of
the function does not intersect the x�axes at any point.

For x=0 we have

cF 0 5 11 1( ) = ( ) =−τ + τ ,

that is, the graph of the function y=sF(x) intersects the y�axis at the point y=1.
Now, let us examine the function y=cF(x) on the extremum; for this pur�

pose we find its first derivative:

y cFx sLxx x′ ′ τ τ τ τ= = −( ) =+ − +( )
ln

ln .( )2

5

2

5
2 1 2 1

Note that y′=0 for the condition:

τ τ τ2 1 2 1 4 20 1 4 2 0 1 2x x x x x+ − +( ) +− = = + = = −; ; ; .
Thus, we have the extremum at the point with abscissa x=�1/2.
It is easy to prove that the function y=cF(x) is symmetric about the line

x=�1/2 because

cF x cF xx x− ( )  = ( ) = − − ( ) 
−1 2 5 1 22 2τ + τ .

It is important to note that the function y=cF(x) is not symmetric about
the y�axis.

5.3.3.3. Hyperbolic Lucas Sine

The hyperbolic Lucas sine y=sL(x) is given by (5.18). Let us calculate the
value of the function at the point x=0:

sL 0 1 5 2 1 5 2 11( ) = − = +( ) + −( ) =−τ τ .
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Now, let us calculate the value of x where the function y=sL(x) is equal to 0:

τ τ τ2 1 2 1 4 20 1 4 2 0 1 2x x x x x+ − +( ) +− = = + = = −; ; ; .
As sL(�1/2)=0, this means that the graph of the function y=sL(x) intersects

the x�axis at the point x = −1 2.

5.3.3.4. Hyperbolic Lucas Cosine

The function y=cL(x) is given by (5.19). By using the calculus methods
[154], we can find the following properties of the function y = cL(x). The
function is an even function because

cL x cLxx x x x−( ) = + = + =− − −( ) −τ τ τ τ2 2 2 2 .
Let us find the intersection points of the function graph with the coordinate

axes. As cL(x)=τ2x+τ�2x>0 for any x∈{�∞,+∞}, this means that the graph of the
function does not intersect the x�axes at any point.

For the case x=0 we have: cL(0)=τ0+τ�0=2; therefore, the graph of the func�
tion intersects the y�axis at the point y=2.

Let us examine the function y=cL(x) on the extremum; with this purpose
we find the first derivative of the function:

y cL x x x′ ′ τ τ τ= ( )  = ( )−2 2 2ln .−
The first derivative y′ turns out to be 0 only under the condition that

τ2x�τ�2x=0, this is possible only for the case x=0. This means that at the point x=0
the function has an extremum. The extreme value of the function y=cL(x) at the
point x=0 is equal to cL(0)=2.

By analogy, we can examine other hyperbolic Fibonacci and Lucas functions,
in particular, tangent and cotangent, secant and cosecant.

5.4. Integration and Differentiation of the Hyperbolic Fibonacci and Lucas
Functions and their Main Identities

5.4.1. Integration of the Function y=sF(x)

Represent the function y=sF(x) given by (5.16) in the form:

sF x e ex x x x( ) = −( ) = −( )− −τ τ τ τ2 2 2 25 5ln ln .  (5.25)

Then, by using the representation (5.25), we obtain the following expres�
sion for the integral of the function y=sF(x):
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sF x dx e e dx
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5.4.2. Integration of the Function y=cF(x)

By using the above approach, we obtain the following expression for the in�
tegral of the function y=cF(x) given by (5.17):
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= ( ) − ( )
=

∫ ∫ −

−

2 2

2 21 2 1 2

ln ln

ln lnln ln

τ τ

τ ττ τ
11 2

1 2

5 2

2 2

2 2

ln

ln

ln

ln lnτ
τ τ τ

τ

τ τ( ) − 
= ( ) − 
= ( ) =

−

−

e e

sFx

x x

x x

11 2 1 2ln .τ( ) − ( ) sL x
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The results of integration are presented in Table 5.1.

Table 5.1. Formulas for the integrals of the hyperbolic Fibonacci and Lucas functions

y sF x cF x

ydx cL x cF x sL x s

( ) ( )

( ) ( ) ( )∫ = − =
1

2 5

1

2

1

2

1

2 5

1

2ln ln ln lnτ τ τ τ
FF x

y sL x cL x

ydx cF x cL x sF x

+

= + =

( )
( ) ( )

( ) ( ) ( )∫

1

2

5

2

1

2

1

2

5

2ln ln lnτ τ τ

11

2

1

2ln τ
sL x −( )

5.4.5. Differentiation of the Function y=sF(x)

By using the expression (5.25), we obtain the following expressions for the
derivatives of the function y=sF(x):

y e e

cL x

x x

x x

′ τ τ

τ τ τ τ

τ τ= +( )
= ( ) +( ) = ( ) (

−

−

2 2 5

2 5 2 5

2 2

2 2

ln ln

ln ln

ln ln

));

y e ex x

x x

″ τ τ τ

τ τ τ

τ τ= ( ) −( )
= ( )



 −( ) =

−

−

2 5 2 2

2 5

2 2

2 2 2

ln ln ln

ln

ln ln

22
2

ln ;τ( ) ( )sF x

y e ex x

x

′′′ τ τ τ

τ τ

τ τ= ( )



 +( )

= ( )



 +

−2 5 2 2

2 5

2 2 2

3 2

ln ln ln

ln

ln ln

ττ

τ τ ′;

−( )
= ( )



 ( ) = ( )

2

3 2
2 5 2

x

cL x yln ln
...

ln
ln ;( )y cL x yk

k
k2 1

2 1
22

5
2+

+

= ( ) ( ) = ( )τ
τ ′

y sF xk k( ) ln .2 2
2= ( ) ( )τ

5.4.6. Differentiation of the Function y=cF(x)

By representing the function y=cF(x) in the form

y cF x

e e

x x

x x

= ( ) = +





= +





+( ) − +( )

+( ) − +( )

τ τ

τ τ

2 1 2 1

2 1 2 1

5

5ln ln  (5.26)
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and repeatedly carrying out the differentiation of (5.26), we obtain the following
expressions for the derivatives of the function y=cF(x):

y sL x′ τ= ( ) ( )2 5ln ;

y cF x'' = ( ) ( )2
2

ln ;τ

y sL x y''' = ( )



 ( ) = ( )2 5 2

3 2
ln ln ;τ τ ′

y cF xIV( ) = ( ) ( )2
4

ln ;
...

τ

y sL x yk k k( ) ln ( ) ln ;2 1 2 1 2
2 5 2+ += ( )



 = ( )τ τ ′

y cF xk k2 2
2( ) = ( ) ( )ln .τ

5.4.7. Differentiation of the Function y=sLx

By representing the function y=sLx given by (5.18) in the form

y sL x e ex x x x= ( ) = − = −+ − + +( ) − +( )τ τ τ τ2 1 2 1 2 1 2 1( ) ln ln ,  (5.27)

and repeatedly carrying out the differentiation of (5.27), we obtain the following
expressions for the derivatives of the function y=sLx:

y cF x′ τ= ( )2 5 ln ;

y sL x″ τ= ( )( ln ) ;2 2

y cF x y′′′ τ τ ′= ( ) = ( )( ln ) ln ;2 5 23 2

y sL xIV( ) = ( )( ln ) ;2 4τ

y cF x yV( ) = ( ) = ( )( ln ) ln ;
...

2 5 25 4τ τ ′

y cF x yk k k2 1 2 1 2
5 2 2+( ) += ( ) ( ) = ( )ln ln ;τ τ ′

y sL xk k2 2
2( ) = ( ) ( )ln .τ

5.4.8. Differentiation of the Function y=cLx

By representing the function y=cLx in the form

y cL x e ex x x x= ( ) = + = +− −τ τ τ τ2 2 2 2ln ln  (5.28)

and repeatedly carrying out the differentiation of (5.28), we obtain the following
expressions for the derivatives of the function y=cLx:

y sF x′ τ= ( )2 5 ln ;

y cL x″ τ= ( ) ( )2
2

ln ;
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y sF x y= ( ) ( ) = ( )5 2 2
3 2

ln ln ;τ τ ′
y cL xIV( ) = ( ) ( )2

4
ln ;τ

y sF x yV( ) ln ln ;
...

= ( ) ( ) = ( )5 2 2
5 4τ τ ′

y sF x yk k k2 1 2 1 2
5 2 2+( ) += ( ) ( ) = ( )ln ln ;τ τ ′

y cL xk k2 2
2( ) = ( ) ( )ln .τ

The results of differentiation are given in Table 5.2.

Table 5.2. Formulas for the derivatives of hyperbolic Fibonacci and Lucas functions

y sF x cF x sL x cL x

y cL x sL x cF x

( ) ( ) ( ) ( )

( ) ( ) ( )′
τ τ

τ τ
2

5

2

5
2 5 2 5

ln ln
ln ln ssF x

y sF x cF x sL x cL x

y

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )′′ τ τ τ τ2 2 2 2
2 2 2 2

ln ln ln ln

′′′′ τ ′ τ ′ τ ′ τ ′

τ

2 2 2 2

2 2

2 2 2 2

4

ln ln ln ln

ln

( ) ( ) ( ) ( )

( ) ( )( )

y y y y

y sF xIV lln ln ln

ln ln

τ τ τ

τ ′ τ ′

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

4 4 4

4 4

2 2

2 2

cF x sL x cL x

y y yV 22 2

2 2 2

4 4

2 2 2

ln ln

ln ln ln

τ ′ τ ′

τ τ

( ) ( )

( ) ( ) ( ) ( )( )

y y

y sF x cF xk k k
ττ τ

τ ′ τ ′ τ

( ) ( ) ( ) ( )

( ) ( ) ( )+( )

2 2

2 1 2 2 2

2

2 2 2

k k

k k k

sL x cL x

y y y

ln

ln ln ln
kk k

y y′ τ ′2
2

ln( )

5.4.9. The Main Identities for the Hyperbolic Fibonacci and Lucas
Functions

The hyperbolic Fibonacci and Lucas functions (5.16)�(5.19) are a generaliza�
tion of the classical Fibonacci and Lucas numbers given by Binet formulas (5.12)�
(5.15). These hyperbolic Fibonacci and Lucas functions (5.16)�(5.19) are connected
with the classical Fibonacci and Lucas numbers through simple correlations (5.20).
Using a geometric representation of the hyperbolic Fibonacci and Lucas functions,
we result in a very simple geometric interpretation of the correlations (5.20). The
classical Fibonacci and Lucas numbers are as if inscribed into the graphs of the
hyperbolic Fibonacci and Lucas functions at the discrete points of the variable
x=0,±1,±2,±3,… .Thus, the hyperbolic Fibonacci and Lucas functions are an ex�
tension of the classical Fibonacci and Lucas numbers for the continuous domain.
From this it appears that the hyperbolic Fibonacci and Lucas functions possess
recursive properties similar to those of the classical Fibonacci and Lucas numbers.
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On the other hand, functions (5.16)�(5.19) are similar to the classical hyper�
bolic functions (5.7) and (5.8). We can assume by analogy that the hyperbolic
Fibonacci and Lucas functions possess hyperbolic properties similar to the prop�
erties of classical hyperbolic functions.

Let us examine these analogies in greater detail, starting with the sim�
plest recursive relation that gives classical Fibonacci numbers:

Fn+1= Fn + Fn�1.  (5.29)

If we accept n=2k or n=2k+1, where k=0,±1,±2,±3,…, we can rewrite the
recursive relation (5.29) in two ways:

F2k+1= F2k + F2k�1  ( 5.30)

F2k+2=F2k+1+F2k
.  (5.31)

Using the correlations (5.20), we can rewrite the recursive relations (5.30)
and (5.31) in terms of hyperbolic Fibonacci and Lucas functions as follows:

cF(k)=sF(k)+cF(k�1),  (5.32)

sF(k+1)=cF(k)+sF(k),  (5.33)

where k is a discrete variable that takes its values from the set {0,±1,±2,±3,…}.
Substituting the discrete variable k with the continuous variable x in the

recursive relations (5.32) and (5.33), we obtain two important identities for
the hyperbolic Fibonacci and Lucas functions:

cF(x)=sF(x)+cF(x�1)  (5.34)

sF(x+1)=cF(x)+sF(x).  (5.35)

Let us represent the recursive relation L
n+1= L

n
 + L

n�1 for the classical Lucas
numbers in the form of two recursive relations

L2k+1=L2k +L2k�1  (5.36)

L2k+2=L2k+1+L2k
,  (5.37)

where k is a discrete variable that takes its values from the set {0,±1,±2,±3,…}.
Then we represent (5.36) and (5.37) in terms of the hyperbolic Fibonacci and
Lucas functions, rewriting the recursive relations (5.36) and (5.37) as follows:

sL(k)=cL(k)+sL(k�1)  (5.38)

cL(k+1)=sL(k)+cL(k).  (5.39)

Substituting the continuous variable x for the discrete variable k in the re�
cursive relations (5.38) and (5.39), we obtain two important identities:

sL(x)=cL(x)+sL(x�1)  (5.40)

cL(x+1)=sL(x)+cL(x).  (5.41)
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Note that there is another way to obtain the identities (5.34), (5.35), (5.40),
and (5.41). For example, let us prove the identity (5.35) by using the definitions
(5.16) and (5.17):

sF x cF x x x x x

x x

( ) + ( ) = −( ) + + 

= +( ) +

− + − +( )

−

τ τ τ τ

τ τ τ τ

2 2 2 1 2 1

2 2

5 5

1 −− +( ) − +( )−( )  = −  = +( )1 2 1 2 11 5 5 1τ τx x sF x .

By analogy we can prove the other identities (5.34), (5.40) and (5.41).
The above examination has very unusual consequences for the Fibonacci

number theory [13, 16, 28]. We can assume the following hypothesis: all well�
known identities for the Fibonacci and Lucas numbers have the “hyperbolic in�
terpretations” in the form of corresponding identities for the hyperbolic Fibonacci
and Lucas functions. For example, let us give the “hyperbolic interpretation” of
the famous Cassini formula that connects three adjacent Fibonacci numbers:

F F Fn n n
n2

1 1
1

1− = −( )− +
+

,  (5.42)

where n=0,±1,±2,±3,… is a discrete variable.
We can represent the Cassini formula (5.42) in the form of two formulas for

the even (n=2k) and odd (n=2k+1) values of the discrete variable n as follows:

F F Fk k k2
2

2 1 2 1 1− = −− +  (5.43)

F F Fk k k2 1
2

2 2 2 1+ +− = ,  (5.44)

where k is a discrete variable that takes its values from the set {0,±1,±2,±3,…}.
By using (5.20), we can represent the identities (5.43) and (5.44) as follows:

 sF k cF k cF k2 1 1( ) − −( ) ( ) = −  (5.45)

cF k sF k sF k2 1 1( ) − ( ) +( ) = .  (5.46)

Substituting the continuous variable x for the discrete variable k in the for�
mulas (5.45) and (5.46), we obtain two important identities for the hyperbolic
Fibonacci and Lucas functions:

 sF x cF x cF x2 1 1( ) − −( ) ( ) = −  (5.47)

cF x sF x sF x2 1 1( ) − ( ) +( ) = .  (5.48)

We can prove the identities (5.47) and (5.48) by using the definitions (5.16)
and (5.17). For example, let us prove the identity (5.48):

τ τ τ τ × τ τ2 1 2 1
2

2 2 2 2 2 25 5 5x x x x x x+ − + − + − ++( )( ) − −( )( ) −( )( )
=

( ) ( )/ / /

ττ τ τ τ τ τ τ τ4 2 2 1 2 1 4 2 4 2 2 2 4 22 5x x x x x x+ + − + − + + − − ++ +( )( ) − − − +( ) ( ) ( )/ (( )( )
= + +( )−

/

/ .

5

2 52 2τ τ (5.49)
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In Chapter 2 we derived the Binet formulas for Lucas numbers given by
(2.67). For the even n=2k the formula (2.67) can be written as follows:

L2k
=τ2k+τ�2k.  (5.50)

For k=1 we have:

L2=τ2+τ�2=3.  (5.51)

Substituting (5.51) into (5.49), we obtain the identity (5.48).
It is important to note that the hyperbolic Fibonacci and Lucas functions

are a generalization and extension of the Fibonacci and Lucas numbers for the
continuous domain. This means that the classical Fibonacci number theory [13,
16, 28] is reducible to a more general theory � the theory of the hyperbolic Fi�
bonacci and Lucas functions. All identities for the classical Fibonacci and Lucas
numbers have their continuous analogs in the form of the corresponding identi�
ties for the hyperbolic Fibonacci and Lucas functions, and conversely.

As practical examples for students we can consider the following
“recursive” identities for the hyperbolic Fibonacci and Lucas functions:

sF x cF x sL x( ) ( ) = ( ) − 
1
5

2 1

sF x sL x sF x sF x( ) ( ) = ( ) +





5
1
2

cF x cL x cF x cF x( ) ( ) = ( ) −





5
1
2

sF x sL x( )= −





1

5

1
2

cF x cL x−




= ( )1

2
1

5

cF x cF y cL
x

sL
y( ) + ( )= +





+ −













5

2 1
4

2 1
4

2 2

sF x sF
x

cL x3
2

1( )= 





( ) + 

cL x sF
x

cL x3
2

1( )= 





( ) + 

Let us next consider some “hyperbolic” properties of the hyperbolic Fi�
bonacci and Lucas functions. Consider these important properties for the
classical hyperbolic functions:
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Evenness property

sh x sh x ch x ch x th x th x−( ) = − ( ) −( ) = ( ) −( ) = ( ); ; .

Formulas for addition

sh x y sh x ch y sh y ch x

ch x y ch x ch y sh y sh x

+( ) = ( ) ( ) + ( ) ( )
+( ) = ( ) ( ) + ( ) (

;

)) .

Formulas for the double angle

sh x ch x sh x ch x ch x2 2 2 2 12( ) = ( ) ( ) ( ) = ( ) −;
It is easy to prove that the hyperbolic Fibonacci and Lucas functions possess

similar “hyperbolic” properties, for example,

sF x sF x cL x2( ) = ( ) ( )
cF x cF x sL x2 1+( ) = ( ) ( )
sF x sL x sF x( ) ( ) = ( ) −2 1

cF x cL x cF x( ) ( ) = ( ) +2 1

sL x sL x cL x2 1( )= ( ) ( ) +

sF y sF x sL x y sL x y( ) ( ) = +( ) − −( ) 
1
5

sL x cL x sL x y sL x y( ) ( ) = +( ) + −( )

sF x sF y sF
x y

cL
x y( ) + ( ) = +





−



2 2

sF x sF y sF
x y

cL
x y( ) − ( )= −





+



2 2

cF x cF y cF
x y

cL
x y( ) + ( )= +





−



2 2

cF x cF y sF
x y

sL
x y( ) − ( )= −





+



2 2

ctF x
sF x cL x

sF x cL x
2

2

2 2

( ) =
( ) + ( )

( ) ( )
The above formulas produce only a small portion of the huge number of math�

ematical identities for the hyperbolic Fibonacci and Lucas functions. Their proof
can become a fascinating pastime for students interested in Fibonacci mathe�
matics and its applications.
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5.5. Symmetric Hyperbolic Fibonacci and Lucas Functions (Stakhov � Rozin
Definition)

The above hyperbolic Fibonacci and Lucas functions given by (5.16)�(5.19)
have an essential shortcoming relative to the classical hyperbolic functions. In par�
ticular, they don’t possess the evenness property of classical hyperbolic functions:

sh x sh x ch x ch x th x th x−( ) = − ( ) −( ) = ( ) −( ) = ( ); ; .  (5.52)

To overcome this shortcoming, Stakhov and Rozin introduced [106] the so�
called Symmetric Hyperbolic Fibonacci and Lucas Functions:

Symmetric hyperbolic Fibonacci sine

sFs x
x x

( ) = − −τ τ
5

 (5.53)

Symmetric hyperbolic Fibonacci cosine

cFs x
x x

( ) = + −τ τ
5

 (5.54)

Symmetric hyperbolic Lucas sine

sLs x x x( ) = − −τ τ  (5.55)

Symmetric hyperbolic Lucas cosine

cLs x x x( ) = + −τ τ  (5.56)

The Fibonacci and Lucas numbers are determined identically by the sym�
metric hyperbolic Fibonacci and Lucas functions as follows:

F
sFs n for n k

cFs n for n k

L
cLs n for n k

sLs

n

n

=
( ) =

( ) = +






=
( ) =

,

,

,

2

2 1

2

nn for n k( ) = +




 ,
.

2 1

 (5.57)

It is easy to prove that the function (5.53) is an odd function because

sFs x sFs x
x x x x

−( ) = − = − − = − ( )
− −τ τ τ τ

5 5
.  (5.58)

On the other hand,

cFs x cFs x
x x

−( ) = + = ( )
−τ τ

5
,  (5.59)
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that is, the symmetric hyperbolic Fibonacci cosine (5.54) is an even func�
tion. By analogy we can prove the following properties of the hyperbolic Lucas
functions:

sL x sL x−( ) = − ( )  (5.60)

cL x cL x−( ) = ( ).  (5.61)

The properties (5.58)�(5.61) show that the symmetric hyperbolic Fibonacci
and Lucas functions (5.52)�(5.55) possess the evenness property (5.52).

It is easy to construct the graphs of symmetric hyperbolic Fibonacci and
Lucas sines and cosines (Fig. 5.3 and Fig. 5.4). Their graphs have  symmetric
form and in this respect are similar to the classical hyperbolic functions.

Here it is necessary to point out that at x=0 the symmetric hyperbolic Fibonac�
ci cosine cFs(x) takes the value cFs(0) = 2 5 , and the symmetric hyperbolic Lucas
cosine cLs(x) takes the value cLs(0)=2. It is also important to emphasize that the
Fibonacci numbers Fn with even indices (n=0,±2,±4,±6,…) are “inscribed” into the
graph of symmetric hyperbolic Fibonacci sine sFs(x) at the discrete points
(x=0,±2,±4,±6,…) and the Fibonacci numbers with odd indices (n=±1,±3,±5,…)
are “inscribed” into the symmetric hyperbolic Fibonacci cosine cFs(x) at the dis�
crete points (x=±1,±3,±5,…). On the other hand, the Lucas numbers L

n
 with the

even indices are “inscribed” into the graph of symmetric hyperbolic Lucas cosine
cLs(x) at the discrete points (n=0,±2,±4,±6,…) and the Lucas numbers with odd
indices are “inscribed” into the graph of the symmetric hyperbolic Lucas cosine sLs(x)
at the discrete points (x=±1,±3,±5,…).

The symmetric hyperbolic Fibonacci and Lucas functions are connected
amongst themselves by the following simple correlations:

Figure 5.3. A graph of the symmetric
hyperbolic Fibonacci sine and cosine

Figure 5.4. A graph of the symmetric
hyperbolic Lucas sine and cosine

1

y = sFs(x)

y = cFs(x)

10

Y

1

y = sLs(x)

y = cLs(x)

10

Y
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sFs x
sLs x( ) = ( )

5
; cFs x

cLs x( ) = ( )
5

.

Also we can introduce the notions of symmetric hyperbolic Fibonacci and
Lucas tangents and cotangents.

Symmetric hyperbolic Fibonacci tangent

tFs x
sFs x

cFs x

x x

x x( ) =
( )
( ) = −

+

−

−
τ τ
τ τ  (5.62)

Symmetric hyperbolic Fibonacci cotangent

ctFs x
cFs x

sFs x

x x

x x( ) =
( )
( ) = +

−

−

−
τ τ
τ τ  (5.63)

Symmetric hyperbolic Lucas tangent

tLs x
sLs x

cLs x

x x

x x( ) =
( )
( ) = −

+

−

−
τ τ
τ τ  (5.64)

Symmetric hyperbolic Lucas cotangent

ctLs x
cLs x

sLs x

x x

x x( ) =
( )
( ) = +

−

−

−
τ τ
τ τ  (5.65)

We conclude from a comparison of the functions (5.62) with (5.63), and (5.64)
with (5.65) that these functions coincide, that is, we have:

tFs x tLs x( ) = ( )  and ctFs x ctLs x( ) = ( ).  (5.66)

It is easy to prove that the functions (5.62) and (5.63) are odd functions
because

tFs x tFs x
x x

x x

x x

x x
−( ) = −

+
= − −

+
= − ( )

−

−

−

−
τ τ
τ τ

τ τ
τ τ

ctFs x ctFs x
x x

x x

x x

x x
−( ) = +

−
= − +

−
= − ( )

−

−

−

−
τ τ
τ τ

τ τ
τ τ

.

Taking into consideration (5.66), we can write:
tLs x tLs x ctLs x ctLs x−( ) = − ( ) −( ) = − ( ); ,

that is, the functions (5.64) and (5.65) are also odd functions.
Next let us compare the classical hyperbolic functions (5.7), (5.8) with

the symmetric hyperbolic Fibonacci functions (5.53)�(5.56). It follows from
this comparison that the symmetric hyperbolic Fibonacci and Lucas func�
tions possess all the important properties of classical hyperbolic functions.
Thus, the symmetric hyperbolic Fibonacci and Lucas functions have Hy�
perbolic Properties.
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On the other hand, a comparison of Fibonacci and Lucas numbers with the
symmetric hyperbolic Fibonacci and Lucas functions show that according to
(5.61) these functions are a generalization of Fibonacci and Lucas numbers for
the continuous domain. This means that the symmetric hyperbolic Fibonacci
and Lucas functions possess Recursive Properties similar to the properties of Fi�
bonacci and Lucas numbers.

5.6. Recursive Properties of the Symmetric Hyperbolic Fibonacci and
Lucas Functions

Consider the recursive properties of the symmetric hyperbolic Fibonacci
and Lucas functions in comparison with the analogous properties of Fibonac�
ci and Lucas numbers.

Theorem 5.1. The following correlations, that are analogous to the recursive
correlation for the Fibonacci numbers Fn+2=Fn+1+Fn, are valid for the symmetric
hyperbolic Fibonacci functions:

sFs x cFs x sFs x

cFs x sFs x cFs x

+( ) = +( ) + ( )
+( ) = +( ) + ( )

2 1

2 1 .  (5.67)

Proof:

cFs x sFs x
x x x x

x x x

+( ) + ( ) = +

=
+( ) − −( ) =

+ − +( ) −

−

1
5 5

1 1

5

1 1τ + τ τ − τ

τ τ τ τ τ ×× ×

= − = +( )

− −

+ − +( )

τ − τ τ

τ τ

2 2

2 2

5

5
2

x

x x

sFs x ;

sFs x cFs x
x x x x

x x x

+( ) + ( ) = +

=
+( ) + −( ) =

+ − +( ) −

−

1
5 5

1 1

5

1 1τ − τ τ + τ

τ τ τ τ τ ×× ×

= + = +( )

− −

+ − +( )

τ + τ τ

τ τ

2 2

2 2

5

5
2

x

x x

cFs x .

Theorem 5.2. The following correlations, that are analogous to the recursive
equation for the Lucas numbers L

n+2=L
n+1+L

n
, are valid for the symmetric hy�

perbolic Lucas functions:
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sLs x cLs x sLs x

cLs x sLs x cLs x

+( ) = +( ) + ( )
+( ) = +( ) + ( )

2 1

2 1 .  (5.68)

The proof is analogous to Theorem 5.28.
Theorem 5.3 (a generalization of Cassini’s formula). The following corre�

lations, that are similar to Cassini’s formula F F Fn n n
n2

1 1
1

1− = −( )+ −
+ , are valid

for the symmetric hyperbolic Fibonacci functions:

sFs x cFs x cFs x

cFs x sFs x sFs x

( )  − +( ) −( ) = −

( )  − +( ) −(

2

2

1 1 1

1 1)) = 1.
 (5.69)

Proof:

sFs x cFs x cFs x

x x x x

( )  − +( ) −( )

= 





 −

− + − +( )

2

2 1 1

1 1

5 5

τ τ τ τ ×− + ττ τ

τ τ τ τ τ τ

x x

x x x x

− − −( )

− − −

+

=
− + − + + +( )

= −

1 1

2 2 2 2 2 2

5

2

5
1;

cFs x sFs x sFs x

x x x x

( )  − +( ) −( )

=








 − ×

− + − +( )

2

2 1 1

1 1

5 5

τ τ τ τ+ − ττ τ

τ τ τ τ τ τ

x x

x x x x

− − −( )

− − −

−

=
+ + − − − +( )

=

1 1

2 2 2 2 2 2

5

2

5
1.

Note that for the proof we used the Binet formula for the Lucas numbers:

τ τ2 2 3 3+ = ( ) =− L .
Theorem 5.4. The following correlations, that are similar to the identity

L Ln
n

n
2

22 1− −( ) = , are valid for the symmetric hyperbolic Lucas functions:

sLs x cLs x cLs x sLs x( )  + = ( ) ( )  − = ( )2 2
2 2 2 2; .  (5.70)

The proof is analogous to Theorem 5.3.
Theorem 5.5. The following correlations, that are similar to the iden�

tity Fn+1+Fn�1=Ln, are valid for the symmetric hyperbolic Fibonacci and
Lucas functions:

cFs x cFs x cLs x

sFs x sFs x sLs x

+( ) + −( ) = ( )
+( ) + −( ) = ( )

1 1

1 1 .  (5.71)
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The proof is analogous to Theorem 5.1.
Theorem 5.6. The following correlations, that are similar to the identity

F
n
+L

n
=2F

n+1, are valid for the symmetric hyperbolic Fibonacci and Lucas
functions:

cFs x sLs x sFs x

sFs x cLs x cFs x

( ) + ( ) = +( )
( ) + ( ) = ( )

2 1

2 .  (5.72)

The proof is analogous to Theorem 5.1.
Based on the definitions (5.53) � (5.56), we can prove different identities

for the symmetric hyperbolic Fibonacci and Lucas functions. We can see
some of these identities in Table 5.3.

Table 5.3. The identities for Fibonacci and Lucas numbers
and for symmetric hyperbolic Fibonacci and Lucas functions

F F F sFs x cFs x sFs x cFs x sFs x cFs xn n n+ += + + = + + + = + +( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 (( )
( ) ( ) ( ) ( ) ( )+ += + + = + + + = + +L L L sLs x cLs x sLs x cLs x sLs x cn n n2 1 2 1 2 1 LLs x

F F sFs x sFs x cFs x cFs x

L L

n
n

n

n
n

( )
( ) ( ) ( ) ( ) ( )
( )

= − = − − = −

= −

+
−

−

1

1

1

nn

n n n

sLs x sLs x cLs x cLs x

F F F sFs x cFs x

( ) ( ) ( ) ( )
( ) (

= − = − −

+ = + ++ +3 22 3 )) ( ) ( ) ( ) ( )
( )

= + + + = +

− = ++ +

2 2 3 2 2

2 33 1

cFs x cFs x sFs x sFs x

F F F sFs xn n n −− = + + − = +

− =

( ) ( ) ( ) ( ) ( )
+ +

cFs x sFs x cFs x sFs x cFs x

F F F sFn n n

2 1 3 2 1

46 3 ss x cFs x sFs x cFs x sFs x cFs x

F F Fn n

+ − = + + − = +

−

( ) ( ) ( ) ( ) ( ) ( )

+

6 4 3 6 4 3

2
1 nn

n
sFs x cFs x cFs x cFs x sFs x−

+= − − + − = − − +( ) ( )[ ] ( ) ( ) ( )[ ] (1
1 2 2

1 1 1 1 1)) ( )
( ) ( )[ ] ( )[ ]

− =

= + + = + ++ +

sFs x

F F F cFs x cFs x sFs xn n n

1 1

2 1 12 1 1
2 2 2 2

ssFs x sFs x cFs x

L L sLs xn
n

n

2 1 1

2 1 2

2 2

2
2

2

+ = + +

− − = + =

( ) ( )[ ] ( )[ ]
( ) ( )[ ] ccLs x cLs x cLs x

L L L sLs x cLs x sn n n

2 2 2

2 3 2

2

3 2

( ) ( )[ ] ( )
( ) ( )

− =

+ = + + =+ + LLs x cLs x sLs x cLs x

L L L sLs xn n n
n

+ + + = +

− = − − +

( ) ( ) ( ) ( )
( )+ −

2 3 2 2

5 11 1
2 11 1 5 1 1 5

2 2

3

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]− − = − + − − =

−+

sLs x cLs x cLs x cLs x sLs x

Fn 22 3 2 3 2

1

F L sFs x cFs x sLs x cFs x sFs x cLs x

L

n n

n

= + − = + − =

+

( ) ( ) ( ) ( ) ( ) ( )
− LL F sLs x sLs x sFs x cLs x cLs x cFs xn n+ = − + + = − + + =( ) ( ) ( ) ( ) ( ) (1 5 1 1 5 1 1 5 ))

( ) ( ) ( ) ( ) ( )+ = + = + + =+L F L sLs x cFs x cLs x cLs x sFs x sLs xn n n5 2 5 2 1 5 21 ++

+ = + + = + +

( )
( )[ ] ( )[ ] ( )+ +

1

5 1 5 2 11
2 2

2 1
2 2

L L F sLs x cLs x cFs x cLs xn n n 11 5 2 1
2 2( )[ ] ( )[ ] ( )+ = +sLs x sFs x

We can see from Table 5.3 that two identities for hyperbolic Fibonacci and
Lucas functions correspond to one identity for Fibonacci and Lucas numbers.
This fact can be explained very easily. This all depends on the evenness of the
index n of the Fibonacci and Lucas numbers. For example, consider the sim�
plest identity F

n+2 = F
n+1+F

n
. If n=2k (n is even), we should use the first identi�

ty sFs(x+2)= cFs(x+1)+sFs(x); in the opposite case (n=2k+1) we should use
the other identity cFs(x+2)= sFs(x+1)+cFs(x).
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5.7. Hyperbolic Properties of the Symmetric Hyperbolic Fibonacci and Lu�
cas Functions and Formulas for Their Differentiation and Integration

5.7.1. Hyperbolic Properties

The symmetric hyperbolic Fibonacci and Lucas functions possess “hyper�
bolic” properties similar to classical hyperbolic functions. Consider some of them
in contrast to certain properties of classical hyperbolic functions.

Theorem 5.7. The following identity, that is similar to the identity [ch(x)]2�
[ch(x)]2 =1, is valid for the symmetric hyperbolic Fibonacci function:

cFs x sFs x( )  − ( )  =
2 2 4

5
.  (5.73)

Proof:

cFs x sFs x
x x x x

x

( )  − ( )  = +







 − −









= +

− −
2 2

2 2

2

5 5

τ τ τ τ

τ 22 2
5

4
5

2 2 2+ − + − =
− −τ τ τx x x

.

By analogy, we can prove the following theorem for symmetric hyperbolic
Lucas functions.

Theorem 5.8.

cLs x sLs x( )  − ( )  =
2 2

4.  (5.74)

Theorem 5.9. The following identity, that is similar to the identity
ch(x+y)=ch(x)ch(y)+sh(x)sh(y), is valid for the symmetric hyperbolic
Fibonacci function:

2

5
cFs x y cFs x cFs y sFs x sFs y+( ) = ( ) ( ) + ( ) ( ).  (5.75)

Proof:

cFs x cFs y sFs x sFs y
x x y y x x y y

( ) ( ) + ( ) ( ) = + × + + − × −

=

− − − −τ τ τ τ τ τ τ τ
5 5 5 5

ττ τ τ τ τ τ τ τ

τ τ

x y x y x y x y x y x y x y x y

x y x y

+ − − + − − + − − + − −

+ − −

+ + + + − − +

=
+(

5

2 ))
= +( )

5

2

5
cFs x y .
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Theorem 5.10. The identity, that is similar to the identity ch(x�y)=ch(x)ch(y)�
sh(x)sh(y), is valid for the symmetric hyperbolic Fibonacci function:

2

5
cFs x y cFs x cFs y sFs x sFs y−( ) = ( ) ( ) − ( ) ( ).  (5.76)

By analogy we can prove the following theorems for the symmetric hyper�
bolic Lucas functions.

Theorem 5.11.

2cLs x y cLs x cLs y sLs x sLs y±( ) = ( ) ( ) ± ( ) ( ).  (5.77)

Theorem 5.12. The following identities, that are similar to the identity
ch(2x)=[ch(x)]2+[sh(x)]2, are valid for the symmetric hyperbolic Fibonacci and
Lucas functions:

2

5
2

2 2
cFs x cFs x sFs x( ) = ( )  + ( )   (5.78)

2 2
2 2

cLs x cLs x sLs x( ) = ( )  + ( )  .  (5.79)

Theorem 5.13. The following identities, that are similar to the identity
sh(2x)=2sh(x)ch(x), are valid for the symmetric hyperbolic Fibonacci and
Lucas functions:

1

5
2sFs x sFs x cFs x( ) = ( ) ( )  (5.80)

sLs x sLs x cLs x2( ) = ( ) ( ).  (5.81)

Theorem 5.14. The following formulas, that are similar to Moivre’s formu�
las [ch(x)±sh(x)]n =ch(nx)±sh(nx), are valid for the symmetric hyperbolic Fi�
bonacci and Lucas functions:

cFs x sFs x cFs nx sFs nx
n

n

( ) ± ( )  = 





 ( ) ± ( ) 

−
2

5

1

 (5.81)

cLs x sLs x cFs nx sFs nx
n n( ) ± ( )  = ( ) ± ( ) 

−2 1 .  (5.82)

5.7.2. Formulas for Differentiation and Integration

It is easy to prove the following formulas for differentiation and integration
of symmetric hyperbolic Fibonacci and Lucas functions.

Theorem 5.15 (formulas for differentiation). The following correlations
similar to the nth derivatives of the classical hyperbolic functions

ch x
sh x for n k

ch x for n k

n( )  =
= +
=





( ) ( ),

( ),
;

2 1

2
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sh x
ch x for n k

sh x for n k

n( )  =
= +
=





( ) ( ),

( ),

2 1

2

are valid for the derivatives of the symmetric hyperbolic Fibonacci functions:

cFs x
sFs x for n k

cFs x for n k

n
n

n( )  =
( ) = +

( ) =




( ) ln ( ),

ln ( ),

τ

τ

2 1

2




 (5.83)

sFs x
cFs x for n k

sFs x for n k

n
n

n( )  =
( ) = +

( ) =




( ) ln ( ),

ln ( ),

τ

τ

2 1

2




.  (5.84)

Theorem 5.16 (formulas for integration). The following correlations simi�
lar to the integrals of the classical hyperbolic functions

ch x dx
sh x for n k

ch x for n k
n

( )
( ),

( ),∫∫∫ =
= +
=





2 1

2  ;

sh x dx
ch x for n k

sh x for n k
n

( )
( ),

( ),∫∫∫ =
= +
=





2 1

2

are valid for the symmetric hyperbolic Fibonacci and Lucas functions:

cFs x dx
sFs x for n k

cFs x for n kn

n

n
( )

ln ( ),

ln ( ),
∫∫∫ =

( ) = +

( ) =

 −

−

τ

τ

2 1

2




 (5.85)

cLs x dx
sLs x for n k

cLs x for n kn

n

n
( )

ln ( ),

ln ( ),
∫∫∫ =

( ) = +

( ) =

 −

−

τ

τ

2 1

2




 (5.86)

sFs x dx
cFs x for n k

sFs x for n kn

n

n
( )

ln ( ),

ln ( ),
∫∫∫ =

( ) = +

( ) =

 −

−

τ

τ

2 1

2




 (5.87)

sLs x dx
cLs x for n k

sLs x for n kn

n

n
( )

ln ( ),

ln ( ),
∫∫∫ =

( ) = +

( ) =

 −

−

τ

τ

2 1

2




.  (5.88)
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5.8. The Golden Shofar

5.8.1. The Quasi�sine Fibonacci and Lucas Functions

Consider Binet formulas for Fibonacci and Lucas numbers represented in
the following form:

Fn

n n n

=
− −( ) −τ τ1

5
 (5.89)

Ln
n n n= + − −τ τ( )1 ,  (5.90)

where τ = +( )1 5 2  is the golden mean and n= 0, ±1, ±2, ±3, … .
By comparing Binet formula (5.89) and (5.90) with the symmetric hyper�

bolic Fibonacci and Lucas functions (5.53)�(5.56), we can see that the continu�
ous functions τx and τ�x in the formulas (5.53)�(5.56) correspond to the discrete
sequences τn and τ�n in formulas (5.89) and (5.90). Then we set up in correspon�
dence to the alternating sequence (�1)n in the Binet formulas (5.89) and (5.90)
some continuous function, taking the values �1 and 1 at the discrete points x= 0,
±1, ±2, ±3, …. The trigonometric function cos(πx) is the simplest of them. This
reasoning is the basis for introducing the new continuous function that is con�
nected with Fibonacci and Lucas numbers.

Definition 5.1. The following continuous function is called the Quasi�sine
Fibonacci Function (QSFF):

Q x
x

F

x x

( ) =
− ( ) −τ π τcos

.
5

 (5.91)

There is the following correlation between Fibonacci numbers Fn given by
(5.89) and the quasi�sine Fibonacci function given by (5.91):

F Q n
n

n F

n n

= ( ) =
− ( ) −τ π τcos

,
5

 (5.92)

where n= 0, ±1, ±2, ±3, … .
Definition 5.2. The following continuous function is called the Quasi�sine

Lucas Function (QSLF):
Q x xL

x x( ) = + ( ) −τ π τcos .  (5.93)

The graph of the QSFF is a quasi�sine curve that passes through all points
corresponding to the Fibonacci numbers that are given by (5.89) on the coordi�
nate plane (Fig. 5.5). The symmetric hyperbolic Fibonacci functions (5.53) and
(5.54) (Fig. 5.3) are the envelopes of the quasi�sine Fibonacci function Q(x).
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The graph of the QSLF is a quasi�sine curve that passes through all points
corresponding to the Lucas numbers that are given by (5.90) on the
coordinate plane (Fig. 5.6). The symmetric hyperbolic Lucas functions (5.55)
and (5.56) (Fig. 5.4) are the envelopes of the quasi�sine Lucas function QL(x).

5.8.2. Recursive Properties of the Quasi�sine Fibonacci and Lucas
Functions

It is easy to prove the following theorems for the quasi�sine Fibonacci and
Lucas functions.

Theorem 5.17. For the quasi�sine Fibonacci function there is the following
correlation similar to the recursive relation for the Fibonacci numbers
Fn+2=Fn+1+Fn:

Q x Q x Q xF F F+( ) = +( ) + ( )2 1 .  (5.94)

Theorem 5.18. For the quasi�sine Lucas function there is the following cor�
relation similar to the recursive relation for the Lucas numbers L

n+2=L
n+1+L

n
:

Q x Q x Q xL L L+( ) = +( ) + ( )2 1 .  (5.95)

Theorem 5.19. For the quasi�sine Fibonacci function there is the following
correlation similar to Cassini’s formula F F Fn n n

n2
1 1

1
1− = −( )+ −

+ :

Q x Q x Q x xF F F( )  − +( ) −( ) = − ( )2
1 1 cos .π  (5.96)

By analogy with Theorems 5.17 � 5.19 we can prove other identities for
the quasi�sine Fibonacci and Lucas functions (Table 5.4).

Figure 5.5. A graph of the
quasi�sine Fibonacci function

Figure 5.6. A graph of the
quasi�sine Lucas function

Y

y = sFs(x)

y = FF(x)

y = cFs(x)

10

1

Y

y = sLs(x)

y = FL(x)

y = cLs(x)

10

1
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Table 5.4. The identities for the quasi�sine Fibonacci and Lucas functions

F F F Q x Q x Q x

F F F Q x Q x

n n n F F F

n n n F F

+ +

+ +

= + + = + +

+ = + +

( ) ( ) ( )
( ) (

2 1

3 2

2 1

2 3 )) ( )
( ) ( ) ( )

= +

− = + − = +

− =
+ +

+ +

2 2

2 3 2 1

4

3 1

6

Q x

F F F Q x Q x Q x

F F F

F

n n n F F F

n n n 33

2
1 1

1 2

6 4 3

1 1

Q x Q x Q x

F F F Q x Q x

F F F

n n n

n

F F

+ − = +

− = − − +

( ) ( ) ( )
( ) ( )[ ]+ −

+ (( ) ( ) ( )
( ) ( )[ ] (

− = −

= + + = + ++ +

Q x x

F F F Q x Q x Q x

F

n n n L L L

1

2 1 12 1 1
2 2 2

cos π

))[ ]
( ) ( ) ( )
( )

+ +

+ +

= + + = + +

+ = +

2

2 1

3 2

2 1

2 3

L L L Q x Q x Q x

L L L Q x

n n n F F F

n n n L
++ = +

+ = − + + =

+ =

( ) ( )
( ) ( ) ( )− +

Q x Q x

L L F Q x Q x Q x

L F

L L

n n n L L F

n n

2 2

5 1 1 5

5

1 1

22 5 2 1

2 3 2

1

3

L Q x Q x Q x

F F L Q x Q x Q x

n L F L

n n n F F L

+

+

( ) ( ) ( )
( ) ( ) ( )

+ = +

− = + − =

LL L L Q x Q x Q x x
n n n

n

L L L+ − − = − − + − − = −( ) ( ) ( ) ( )[ ] ( )1 1
2 2

5 1 1 1 5cos π

5.8.3. Three�dimensional Fibonacci Spiral

It is well known that the trigonometric sine and cosine can be defined as a
horizontal projection of the translational movement of a point on the surface of an
infinite rotating cylinder with radius 1 and the symmetry center coinciding with
the axis ОХ. Such three�dimensional spiral is described by the complex function
f(x)=cos(x)+isin(x), where i = −1.  The sine function is its projection on a plane.

If we assume that the quasi�sine Fibonacci function (5.91) is a projection of
the three�dimensional spiral on some funnel�shaped surface, we can then define
the so�called Three�dimensional Fibonacci Spiral.

Definition 5.3. The following function is called the Three�dimensional Fi�
bonacci Spiral:

 S x
x

i
x

F

x x x

( ) =
− ( )  +

( ) 
− −τ π τ π τcos sin

.
5 5

 (5.97)

This function, by its shape, reminds one of a spiral that is drawn on a well
with the end bent (Fig. 5.7).

It is easy to prove the following theorem for the three�dimensional
Fibonacci spiral.

Theorem 5.20. For the three�dimensional Fibonacci spiral the following cor�
relation, similar to the recursive relation for Fibonacci numbers F

n+2=F
n+1+F

n
,

 is valid:

S x S x S xF F F+( ) = +( ) + ( )2 1 .
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5.8.4. The Golden Shofar

We can separate the real and imaginary parts of the three�dimensional Fi�
bonacci spiral (5.97):

Re
cos

S x
x

F

x x

( )  =
− ( ) 

−τ π τ

5
 (5.98)

Im
sin

.S x
x

F

x

( )  =
( ) 

−π τ

5
 (5.99)

The following system of equations can be obtained from (5.97), (5.98), and
(5.99) if we consider the axis OY as a real axis and the axis OZ as an imaginary axis:

y x
x

z x
x

x x

x

( ) − = −
( ) 

( ) =
( ) 











−

−

τ π τ

π τ
5 5

5

cos

sin (5.100)

Let us square both expressions of the equation system (5.100) and add them
together. Taking y and z as independent variables, we obtain a curvilinear sur�
face of the second degree called the Golden Shofar.

Figure 5.7. The three�dimensional Fibonacci spiral

X

Y

Z 0
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Definition 5.4. The following curvilinear function of the second degree is
the Golden Shofar:

y z
x x

−








 + =











−τ τ
5 5

2

2

2

. (5.101)

We can see in Fig. 5.8 a three�dimension�
al surface corresponding to (5.101). It is sim�
ilar to the horn or well with a narrow end. In
the Hebrew language the word “Shofar”
means horn which is a symbol of power.

The formula for the Golden Shofar can
be represented in the following form:

z cFs x y sFs x y2 = ( ) −  × ( ) +  ,      (5.102)

where sFs(x) and cFs(x) are the symmetric
hyperbolic Fibonacci sine and cosine, respectively.

A projection of the Golden Shofar on the plane XOY is shown in Fig. 5.9. The
Golden Shofar is a projection into the space between the graphs of the symmet�
ric hyperbolic Fibonacci sine and cosine (Fig. 5.3).

The function (5.97) lies on the Golden Shofar and “pierces” the plane XOY
at the points that correspond to the Fibonacci sequence (Fig. 5.9).

A projection of the Golden Shofar on the plane XOZ is shown in Fig. 5.10.
The Golden Shofar is a projection into the space between the graphs of the two
exponent functions −( )τx 5  and τ−( )x 5 .

By cutting the Golden Shofar by the planes that are parallel to the plane
YOZ, the circles with the center 0 5;τx( ) and the radius τ− x 5  are obtained.

Figure 5.8. The Golden Shofar

Figure 5.9. A projection of the
Golden Shofar on the plane XOY

Figure 5.10. A projection of the
Golden Shofar on the plane XOZ

Y

y = sFs(x)

y = cFs(x)

10

1

X

Z

z = a�x/√5

10

1

X

z = �a�x/√5
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It is possible to say that the function y x x( ) = τ 5  is the pseudo�axis of sym�
metry (or the axis of pseudo�symmetry) of the Golden Shofar (Fig. 5.8).

It is possible to assume that the Golden Shofar is a new model of the field
with curvilinear structure and similar to the model of the gravitational well
used in the general theory of relativity.

5.8.5. A General Model of the Hyperbolic Space with a “Shofarable”
Topology

Based on experimental data obtained in 2003 by the NASA Wilkinson
Microwave Anisotropy Probe (WMAP), a new hypothesis about the structure
of the Universe was developed. According to [155], the geometry of the Uni�
verse is similar in shape to a horn or a pipe with an extended bell. As a result of
this discovery we can make the following claim:

The Universe has a “shofar�like” topology as shown in Fig. 5.11.

5.9. A General Theory of the Hyperbolic Functions

5.9.1. A Definition of the Hyperbolic Fibonacci and Lucas m�Functions

Alexey Stakhov and Boris Rozin introduced [106] a new class of hyperbol�
ic functions, the Symmetric Hyperbolic Fibonacci and Lucas Functions, based
on an analogy between Binet formulas and the classical hyperbolic functions.
By using this approach, Alexey Stakhov introduced [118] the Hyperbolic Fi�
bonacci and Lucas Functions of the Order m or simply Hyperbolic Fibonacci
and Lucas m�Functions. These functions are based on an analogy between Gaza�
le formulas that are given by (4.281) and (4.292) with the classical hyperbolic

Figure 5.11. The “shofar�like” topology
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functions (5.7) and (5.8). Consider the new class of hyperbolic Fibonacci and
Lucas functions introduced in [118].

Hyperbolic Fibonacci m�sine

sF x
m m

m m m m
m

m
x

m
x

x

( ) =
−

+
=

+

+ +











− + +











−
−

Φ Φ

4

1

4

4
2

4
22 2

2 2
xx















(5.103)

Hyperbolic Fibonacci m�cosine

cF x
m m

m m m m
m

m
x

m
x

x

( ) =
+

+
=

+

+ +











+ + +











−
−

Φ Φ

4

1

4

4
2

4
22 2

2 2
xx















(5.104)

Hyperbolic Lucas m�sine

sL x
m m m m

m m
x

m
x

x x

( ) = − = + +











− + +











−

−

Φ Φ 4
2

4
2

2 2

(5.105)

Hyperbolic Lucas m�cosine

cL x
m m m m

m m
x

m
x

x x

( ) = + = + +











+ + +











−

−

Φ Φ 4
2

4
2

2 2

(5.106)

It is easy to prove that the Fibonacci and Lucas m�numbers are determined
identically by the hyperbolic Fibonacci and Lucas m�functions as follows:

F n
sF n for n k

cF n for n k

L n
cL n for n k

m
m

m

m
m

( ) =
( ) =

( ) = +







( ) =
( ) =

2

2 1

2

ssL n for n km ( ) = +





 2 1

(5.107)

Graphs of the hyperbolic Fibonacci and Lucas m�functions are similar to
graphs of the classical hyperbolic functions. Here it is important to note that
at the point x=0, the hyperbolic Fibonacci m�cosine cFm(x) (5.104) takes on
the value cF x mm ( ) = +2 4 2 ,  and the hyperbolic Lucas m�cosine cLm(x)
takes on the value cLm(0)=2. It is also important to emphasize that the Fibonac�
ci m�numbers F

m
(n) with the even indices n=0,±2,±4,±6,… are “inscribed” into

the graph of the hyperbolic Fibonacci m�sine sFm(x) at the discrete points
x=0,±2,±4,±6,… and the Fibonacci m�numbers Fm(n) with odd indices
n=±1,±3,±5,… are “inscribed” into the hyperbolic Fibonacci m�cosine cF

m
(x) at

the discrete points x=±1,±3,±5,…. On the other hand, the Lucas m�numbers
Lm(n) with even indices are “inscribed” into the graph of the hyperbolic Lucas
m�cosine cL

m
(x) at the discrete points x=0,±2,±4,±6,… and the Lucas m�num�

bers Lm(n) with odd indices are “inscribed” into the graph of the hyperbolic Lu�
cas m�sine cLm(x) at the discrete points x=±1,±3,±5,… .
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We can also introduce the notions of hyperbolic Fibonacci and Lucas m�
tangents and m�cotangents.

Hyperbolic Fibonacci m�tangent

tF x
sF x

cF xm
m

m

m
x

m
x

m
x

m
x( ) =

( )
( ) =

−
+

−

−

Φ Φ
Φ Φ (5.108)

Hyperbolic Fibonacci m�cotangent

ctF x
cF x

sF xm
m

m

m
x

m
x

m
x

m
x( ) =

( )
( ) =

+
−

−

−

Φ Φ
Φ Φ (5.109)

Hyperbolic Lucas m�tangent

tL x
sL x

cL xm
m

m

m
x

m
x

m
x

m
x( ) =

( )
( ) =

−
+

−

−

Φ Φ
Φ Φ (5.110)

Hyperbolic Lucas m�cotangent

ctL x
cL x

sL xm
m

m

m
x

m
x

m
x

m
x( ) =

( )
( ) =

+
−

−

−

Φ Φ
Φ Φ (5.111)

By analogy we can introduce other hyperbolic Fibonacci and Lucas m�func�
tions, in particular, secant, cosecant, and so on.

5.9.2. General Properties of the Hyperbolic Fibonacci and Lucas m�
Functions

It is easy to prove that the function (5.103) is an odd function because

sF x
m m

sF xm
m

x
m
x

m
x

m
x

m−( ) = −

+
= − −

+
= − ( )

− −Φ Φ Φ Φ

4 42 2
. (5.112)

On the other hand,

cF x
m m

cF xm
m

x
m
x

m
x

m
x

m−( ) = +

+
= +

+
= ( )

− −Φ Φ Φ Φ

4 42 2
, (5.113)

that is, the hyperbolic Fibonacci m�cosine (5.104) is an even function.
By analogy, we can prove that the hyperbolic Lucas m�sine (5.105) is an

odd function and the hyperbolic Lucas m�cosine (5.106) is an even function,
that is,

sL x sL xm m( ) = − −( ) (5.114)

cL x cL xm m( ) = −( ). (5.115)

The properties (5.112)�(5.15) show that the symmetric hyperbolic Fibonac�
ci and Lucas m�functions (5.103)�(5.106) possess the property of evenness (5.52).
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By making the pair�wise comparison of the functions (5.108) with (5.110),
and (5.109) with (5.111), we can conclude that the hyperbolic Fibonacci and
Lucas m�tangents and m�cotangents are coincident, respectively, that is, we have:

tF x tL xm m( ) = ( )  and ctF x ctL xm m( ) = ( ). (5.116)

It is easy to prove that the functions (5.108) and (5.109) are odd func�
tions because

tF x tF xm
m

x
m
x

m
x

m
x m−( ) =

−
+

= − ( )
−

−

Φ Φ
Φ Φ

ctF x ctF xm
m

x
m
x

m
x

m
x m−( ) =

+
−

= − ( )
−

−

Φ Φ
Φ Φ

.

Taking into consideration (5.116) we can write:

 tL x tL xm m−( ) = − ( )
ctL x ctL xm m−( ) = − ( ),

that is, the functions (5.110) and (5.111) are also odd functions.

5.9.3. Partial Cases of the Hyperbolic Fibonacci and Lucas m�Functions

Consider the partial cases of the hyperbolic Fibonacci and Lucas m�func�
tions (5.103)�(5.106) for different values of the order m.

Hyperbolic Fibonacci and Lucas 1�functions

sF x
x x x x

1
1 1

5

1

5

1 5
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1 5
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(5.117)

cF x
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(5.118)

sL x x x

x x
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Hyperbolic Fibonacci and Lucas 2�functions

sF x
x x x x

2
2 2

8

1

2 2
1 2 1 2( ) =

−
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+
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sL x x x
x x

2 2 2 1 2 1 2( ) = − = +( ) − +( )− −
Φ Φ (5.123)

cL x x x
x x

2 2 2 1 2 1 2( ) = + = +( ) + +( )− −
Φ Φ (5.124)

Hyperbolic Fibonacci and Lucas 3�functions
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 (5.126)
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x x
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Note that a list of these functions can be continued ad infinitum.
 It is easy to see that the functions (5.103)�(5.106) are connected by very

simple correlations:

sF x
sL x

m
m

m( ) =
( )

+4 2
;  cF x

cL x

m
m

m( ) =
( )

+4 2
. (5.129)

This means that the hyperbolic Lucas m�functions (5.103) and (5.104) coin�
cide with the hyperbolic Fibonacci m�functions (5.105) and (5.106) to within
the constant coefficient 1 1 2+ m .

5.9.4. Comparison of the Classical Hyperbolic Functions with the
Hyperbolic Lucas m�Functions

Let us compare the hyperbolic Lucas m�functions (5.105) and (5.106) with
the classical hyperbolic functions (5.7) and (5.8). For the case

Φm
m m

e= + + =4
2

2

(5.130)

the hyperbolic Lucas m�functions (5.105) and (5.106) coincide with the classical
hyperbolic functions (5.7) and (5.8) to within the constant coefficient 1/2, that is,

sh x
sL xm( ) =

( )
2

 and ch x
cL xm( ) =

( )
2

. (5.131)

By using (5.130), after simple transformations we can calculate the value
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me, for which the equality (5.130) is valid:

m e
ee = − ≈1

2 35040238. ... (5.132)

Thus, according to (5.131) the classical hyperbolic functions (5.7) and (5.8)
are a partial case of the hyperbolic Lucas m�functions, if  m  is equal to (5.132).

As the classical hyperbolic functions (5.7) and (5.8) are a partial case of
(5.105) and (5.106), we have the right to assert that the formulas (5.103) through
(5.106) represent a general class of hyperbolic functions.

5.9.5. Recursive Properties of the Hyperbolic Fibonacci and Lucas m�
Functions

The hyperbolic Fibonacci and Lucas m�functions possess recursive prop�
erties similar to Fibonacci and Lucas m�numbers that are given by the recur�
sive relations (4.250) and (4.302). On the other hand, they possess all of the
hyperbolic properties similar to the properties of the classical hyperbolic
functions. Let us first prove the recursive properties for the hyperbolic Fi�
bonacci and Lucas m�functions.

Theorem 5.21. The following correlations that are similar to the recursive
relation for the Fibonacci m�numbers F

m
(n+2)=mF

m
(n+1)+F

m
(n) are valid

for the hyperbolic Fibonacci m�functions:

sF x mcF x sF xm m m+( ) = +( ) + ( )2 1 (5.133)

cF x msF x cF xm m m+( ) = +( ) + ( )2 1 . (5.134)

Proof:

mcF x sF x m
m m
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m m
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m
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2
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(5.135)

As m m mΦ Φ+ =1 2  and 1 1 2− =− −Φ Φm m , we can represent (5.135) as follows:

mcF x sF x
m

sF xm m
m
x

m
x

m+( ) + ( ) =
−

+
= +( )

+ − −

1
4

2
2 2

2

Φ Φ

that proves the identity (5.133).
By analogy, we can prove the identity (5.134).
Theorem 5.22 (a generalization of Cassini formula).

The following correlations, that are similar to the Cassini formula
F n F n F nm m m

n2 1
1 1 1( ) − −( ) +( ) = −( ) + , are valid for the hyperbolic Fibonacci

m�functions:
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sF x cF x cF xm m m( )  − +( ) −( ) = −
2

1 1 1 (5.136)

cF x sF x sF xm m m( )  − +( ) −( ) =
2

1 1 1. (5.137)

Proof:
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(5.138)

By using the Binet formula (4.292), for the case n=2 we can write:

Lm m m2 2 2( ) = −Φ Φ+ . (5.139)

By using the recursive formula (4.290) and the seeds (4.287) and (4.288),
we can represent the Lucas m�number L

m
(2) as follows:

L mL L m m mm m m2 1 0 2 22( ) = ( ) + ( ) = × + = + . (5.140)

Taking into consideration (5.140), we can conclude from (5.138) that the
identity (5.136) is valid.

By analogy, we can prove the identity (5.137).

5.9.6. Hyperbolic Properties of the Hyperbolic Fibonacci and Lucas m�
Functions

Theorem 5.23. The following identity, that is similar to the identity [ch(x)]2�
[sh(x)]2=1 for the classical hyperbolic functions, is valid for the hyperbolic Fi�
bonacci m�functions:

cF x sF x
mm m( )  − ( )  =

+
2 2

2

4

4
. (5.141)

Proof:
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m
x

m
x

m m
.

Theorem 5.24. The following identity, that is similar to the identity
[ch(x)]2� [sh(x)]2=1 for the classical hyperbolic functions, is valid for the hyper�
bolic Lucas m�functions:
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cL x sL xm m( )  − ( )  =
2 2

4. (5.142)

The proof is analogous to Theorem 5.23.
Theorem 5.25. The following identity, that is similar to the identity

ch(x+y)=ch(x)ch(y)+sh(x)sh(y) for the classical hyperbolic functions, is valid
for the hyperbolic Fibonacci m�functions:

2

4 2+
+( ) = ( ) ( ) + ( ) ( )

m
cF x y cF x cF y sF x sF ym m m m m . (5.143)

Proof:
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Theorem 5.26. The following identity, that is similar to the identity ch(x�
y)=ch(x)ch(y)�sh(x)sh(y) for the classical hyperbolic functions, is valid for
the hyperbolic Fibonacci m�functions:

2

4 2+
−( ) = ( ) ( ) − ( ) ( )

m
cF x y cF x cF y sF x sF ym m m m m . (5.144)

The proof is analogous to Theorem 5.25.
By analogy, we can prove the following theorems for the hyperbolic Fibonacci

and Lucas m�functions.
Theorem 5.27. The following identities, that are similar to the identity

ch(2x)=[ch(x)]2+[sh(x)]2 for the classical hyperbolic functions, are valid for the
hyperbolic Fibonacci and Lucas m�functions:

2

5
2

2 2
cF x cF x sF xm m m( ) = ( )  + ( )  (5.145)

2 2
2 2

cL x cL x sL xm m m( ) = ( )  + ( )  . (5.146)

Theorem 5.28. The following identities, that are similar to the identity
sh(2x)=2sh(x)ch(x) for the classical hyperbolic functions, are valid for the hy�
perbolic Fibonacci and Lucas m�functions:

1

4
2

2+
( ) = ( ) ( )

m
sF x sF x cF xm m m (5.147)
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sL x sL x cL xm m m2( ) = ( ) ( ). (5.148)

Theorem 5.29. The following formulas, that are similar to Moivre’s formu�
las [ch(x)±sh(x)]n =ch(nx)±sh(nx) for the classical hyperbolic functions, are
valid for the hyperbolic Fibonacci and Lucas m�functions:

cF x sF x
m

cF nx sF nxm m

n
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
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−
2
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cL x sL x cF nx sF nxm m

n n
m m( ) ± ( )  = ( ) ± ( ) 

−2 1 . (5.150)

Thus, our research results in a general theory of hyperbolic functions based on
the Gazale formulas (4.281) and (4.291). Over several centuries, science, in partic�
ular, mathematics and theoretical physics, made wide use of classical hyperbolic
functions with base e. These functions were used by Lobachevsky in his non�Eu�
clidean geometry and Minkowski in his geometric interpretation of Einstein’s rel�
ativity theory. More recently Ukrainian mathematicians Stakhov, Tkachenko and
Rozin [51, 98, 106, 116, 118, 119] broke monopoly on classical hyperbolic func�
tions in contemporary mathematics and theoretical physics. It is now clear that
the above hyperbolic Fibonacci and Lucas m�functions based on the Gazale for�
mulas infinitely extendable to new hyperbolic models of Nature. It is difficult to
imagine that the set of new hyperbolic functions has the same cardinality as the
set of real numbers because every positive real number m generates its own kind of
hyperbolic functions! And all of them possess unique recursive and hyperbolic
properties similar to the properties of classical hyperbolic functions and the sym�
metric hyperbolic Fibonacci and Lucas functions introduced in [106, 116, 119].

5.10. A Puzzle of Phyllotaxis

5.10.1. The Phenomenon of Phyllotaxis

In Chapter 2 we described the botanical phenomenon known as Phyllotaxis.
This phenomenon is inherent in many biological objects. On the surface of the
bio�organs, these objects (sprouts of plants and trees, seeds on the disks of sun�
flower heads and pine cones, etc.) are arranged in clockwise and counterclock�
wise spirals. There are two types of phyllotaxis. The first type concerns the dispo�
sition of branches of plants and trees, and the second type concerns the dense�
packed phyllotaxis objects such as that of a pinecone, pineapple, or the disk of a
sunflower head. In the first case, the regularities of phyllotaxis are described by
the ratios of adjacent Fibonacci numbers taken through one, that is,
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cL x sL x cF nx sF nxm m

n n
m m( ) ± ( )  = ( ) ± ( ) 

−2 1 . (5.151)

Each plant and tree possesses its own characteristic ratio taken from
(5.151). This ratio is named the Phyllotaxis Order of a given plant or tree.
The phyllotaxis orders are different for different plants and trees, for exam�
ple, for linden, elm, beech and cereals the phyllotaxis order is equal to (2/1);
for alder, hazel and grape (3/1); for oak and cherry (5/2); for raspberry, pear,
poplar and barberries (8/3); and for almonds (13/5).

Note that trees and plants are subject primarily to the laws of Fibonacci
phyllotaxis (5.151); in rare cases the plants are subject to Lucas phyllotaxis
(Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, …) or in a few cases phyllotaxis based on
the numerical sequence: 5, 2, 7, 9, 16, 25, … that also satisfies the Fibonacci
recursive formula.

The other type of phyllotaxis is represented in the form of densely�packed
botanical objects such as the head of a sunflower, pinecone, pineapple or cactus,
etc. For such phyllotaxis objects, it is used usually the number ratios of the left�
hand and right�hand spirals observed on the surface of the phyllotaxis objects.
These ratios are equal to the ratios of adjacent Fibonacci numbers, that is,
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For example, the head of a sunflower can have the phyllotaxis orders given
by Fibonacci ratios: 89/55, 144/89 and even 233/144.

5.10.2. Dynamic Symmetry

When observing phyllotaxis the question arises: how do Fibonacci spirals
forming on the surface during growth? This problem is one of the most intrigu�
ing Puzzles of Phyllotaxis. Its essence consists in the fact that the majority of
bio�forms change their phyllotaxis orders during their growth. It is known, for
example, that sunflower disks that are located on different levels of the same
stalk have different phyllotaxis orders; moreover, the greater the age of the
disk, the higher its phyllotaxis order tends to be. This means that during the
growth of the phyllotaxis object, a natural modification (or increase) of the
symmetry relation occurs, and this modification of symmetry obeys the law:
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→ → → → → → .... (5.153)

The modification of the phyllotaxis orders according to (5.153) is called
Dynamic Symmetry [37]. Many scientists who study this puzzle of phyllotax�
is believe that the phenomenon of dynamic symmetry (5.153) is of fundamen�
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tal interdisciplinary importance. Recall that, in Vernadsky’s opinion, the prob�
lem of biological symmetry is the key problem of biology.

Thus, the phenomenon of dynamic symmetry (5.153) plays a special role in
the geometric problem of phyllotaxis. One may assume that this numerical reg�
ularity (5.153) reflects some general geometric laws that hide the secret of the
dynamic mechanism of phyllotaxis, and uncovering it would be of great impor�
tance for understanding the phyllotaxis phenomenon in general.

A new geometric theory of phyllotaxis was developed recently by the Ukrai�
nian architect Oleg Bodnar. This original theory is stated in Bodnar’s books [37,
52]. However, in order to understand Bodnar’s research more fully, we have to
get a better understanding of the geometric theory of hyperbolic functions [156].

5.11. A Geometric Theory of the Hyperbolic Functions

5.11.1. Compression and Expansion

We start the study of geometric theory of hyperbolic functions from the impor�
tant geometric transformation of the hyperbolic geometry. This is a geometric trans�
formation named the Compression to a Straight Line о with the Compression Coeffi�
cient k (Fig. 5.12). This transformation consists of the following: Every point А of the
plane passes into the point А′ that lies on the ray РА perpendicular to о, here the
ratio PA′ : PA=k or PA′ = kPA (Fig. 5.12�a). If the compression coefficient k>1, then
PA′ > PA (Fig. 5.12�b); in this case the transformation could be named an Expansion
from a Straight Line о. It is clear that the expansion using the coefficient k is equiva�
lent to the compression with coefficient (1/k).

A compression and an expansion possess
a number of important properties [156]:
1. At the compression (expansion) every
straight line passes on into a straight line.
2. At the compression (expansion) all
parallels pass on into parallels.
3. At the compression (expansion) the ra�
tio of the segments lying on one straight
line remain constant.
4. At the compression (expansion), the
areas of all figures change in a constant ra�
tio equal to the compression coefficient k.

Figure 5.12. The compression of a
point A to a straight line (a) and the

expansion from a straight line (b)

PP

A

A′
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A′

o o

(a) (b)
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5.11.2. Hyperbola

Consider the important geometric curve called a Hyperbola. It is described
by the following equality:

y=a/x or xy=a. (5.154)

A graph of the hyperbola is represented in Fig. 5.13.

It follows from (5.154) and Fig. 5.13 that a graph of the hyperbola consists of
two branches that are located for the case a>0 in the first quadrant (x and y are
positive) and in the third quadrant (x and y are negative) of the coordinate sys�
tem. Geometrically, the branches of the hyperbola aim towards the coordinate
axes, but they never intersect themselves. This means that the coordinate axes are
asymptotes of the hyperbola. Note that the equation xy=a has a simple geometric
interpretation: the area of the rectangles MQOP or M′Q′O′P′ that are bounded by
the coordinate axes and the straight lines that are drawn through any points M
and M′ of the hyperbola in parallel to the coordinate axes (Fig. 5.13) is equal to a,
that is, this area does not depend on the choice of the points M and M′. We will
name these rectangles MQOP and M′Q′O′P′ with area equal to a the Coordinate
Rectangles of the points M and M′. Then we can give the following geometric def�
inition of the hyperbola [156]:

“A hyperbola is the geometric location of the points that lie in the first and
third quadrants of the coordinate system with coordinate rectangles that
have constant area.”

It is easy to prove that the origin of coordinate O is the Centre of Symmetry of
the hyperbola, that is, the branches of the hyperbola are symmetric one to other

Figure 5.13. Hyperbola Figure 5.14. The axes of a hyperbola
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with respect to the origin of coordinates O. The hyperbola also has the Axes of Sym�
metry, the bisectors of the coordinate angles аа and bb (Fig. 5.14). The centre of
symmetry O and the axes of symmetry аа and bb are frequently called simply the
Center and the Axes of the hyperbola; the points A and B, in which the hyperbola is
intersected with the axis аа, are called Tops of the hyperbola.

Hereinafter, we will use analogies between hyperbola and circle. With this
purpose in mind we will introduce, first of all, the concept of the Diameter of a
hyperbola; every line segment passing through the centre of the hyperbola and
connecting the points of the opposite branches of the hyperbola is called a
Diameter of the Hyperbola (it is similar to the diameter of a circle passing through
its centre). Let us also introduce the concept of a radius of the hyperbola; a line
segment, going from the centre of the hyperbola up to the crossing point with
the hyperbola, is called a radius of the hyperbola (that is, the radii of the hyper�
bola are determined similarly to the radii of the circle).

5.11.3. Geometric Definition of the Hyperbolic Functions

The hyperbola in Fig. 5.13 and Fig. 5.14 is the basis for a geometric
definition of hyperbolic functions. The geometric theory of Hyperbolic Func�
tions or Hyperbolic Trigonometric Functions is similar to the theory of tradi�
tional Circular Trigonometric Functions. In order to emphasize an analogy
between hyperbolic and circular trigonometric functions, we will state the
theory of the hyperbolic functions in parallel with the theory of circular
trigonometric functions. We can choose the axis of symmetry of the hyper�
bola by the coordinate axes as is shown in Fig. 5.15 and then we use this
geometric representation of the hyperbola for the geometric definition of
the hyperbolic functions.

Figure 5.15. The unit circle (a) and the unit hyperbola (b)
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Let us examine the unit circle (Fig. 5.15�a). We can see in Fig. 5.15�a a Circular
Sector OMA bounded by the radii OM, OA and the arc MA. The number that is
equal to the length of the arc АМ or equal to the double area of the sector, bound�
ed by the radii OM and OA and the arc MA, is called a Radian Angle α between the
radii ОА and ОМ of the circle. We can now drop the perpendicular МР to the
diameter ОА from the point М of the circle; at the point A we draw a tangent to
the circle up to its intersection with the diameter ОМ at the point N. The line
segment РМ of the perpendicular is called a Line of Sine, the line segment ОР of
the diameter is called a Line of Cosine and the line segment AN is called a Line of
Tangent. The lengths of the line segments РМ, ОР and AN are equal respectively
to the Sine, Cosine and Tangent of the angle α, that is,

PM=sinα, OP=cosα, AN=tgα.
Now, let us examine the unit hyperbola (Fig. 5.15�b) X2 – Y2 =1. We can see

in Fig.20�b the Hyperbolic Sector OMA bounded by the hyperbolic radii OM,
OA and the hyperbolic arc MA. Then, the number that is equal to the double
area of the hyperbolic sector, bounded by these radii OM, OA and the arc MA of
the hyperbola, is called the Hyperbolic Angle t between the hyperbolic radii ОА
and ОМ. We can now drop the perpendicular МР from the point М of the hyper�
bola to the diameter ОА, which is a symmetry axis, intersecting the hyperbola at
the top A. Next we draw a tangent to the hyperbola to its intersection with the
radius ОМ at point N. The line segment РМ of the perpendicular is called a Line
of Hyperbolic Sine, the line segment ОР of the axis X is called a Line of Hyper�
bolic Cosine and the line segment AN is called a Line of Hyperbolic Tangent. The
lengths of the line segments РМ, ОР and AN are equal respectively to the Hyper�
bolic Sine, Hyperbolic Cosine and Hyper�
bolic Tangent of the hyperbolic angle t,
that is,

PM=sht, OP=cht, AN=tht.

As is well�known, the circular trigono�
metric functions are changing periodical�
ly with the period 2π. In contrast with this
the hyperbolic functions are not periodic.
It follows from Fig. 5.15�b that the hyper�
bolic angle t changes from 0 up to ∞. It fol�
lows from the definition of hyperbolic
functions that at the change of the hyper�
bolic angle from 0 up to ∞, the hyperbolic
sine sht is changing from 0 up to ∞, the hy�
perbolic cosine cht is changing from 1 up

Figure 5.16. Graphs of the hyperbolic
functions
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to ∞ and the hyperbolic tangent tht is changing from 0 up to 1. The graphs of
these functions are represented in Fig. 5.16.

Based upon this geometric approach, it is easy to obtain the basic rela�
tions for the circular and hyperbolic trigonometric functions.

It follows from the similarity of the triangles ОМР and ОNА (Fig. 5.15�a) that

AN
OA

PM
OP

= .

However, AN/OA=tgα (because OA=1), and PM/OP=sinα/cosα. Thus, we
have: tgα= sinα/cosα.

Further, the coordinates of any point М of the circle are equal OP=X,
PM=Y. However, then the following important identity follows from the
unit circle equation X2+Y2=1:

OP2+PM2 = 1

or

cos2α+sin2α=1.

By dividing both parts of the obtained identity at first by cos2α and then by
sin2α we get the following remarkable formulas for the trigonometric functions:

1+tg2α=1/cos2α

ctg2α+1=1/sin2α.

It follows from a similarity of the triangles ОМР and ОNА (Fig. 5.15�b) that

AN
OA

PM
OP

= .

However, AN/OA=tgt (because OA=1), and PM/OP=sht/cht. Thus, we
have: tgt= sht/cht.

Further, the coordinates of any point М of the hyperbola are equal
OP X PM Y= =, .  However, then the following important identity follows
from the unit hyperbola equation

X2�Y2=1:

OP2�PM2 = 1

or

ch2t – sh2t=1.

By dividing both parts of the obtained identity at first by ch2t and then by
sh2t we get the following remarkable formulas for the hyperbolic functions:

1�th2t=1/ch2t
cth2t�1=1/sh2t.
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By using the geometric approach, we can prove many other identities for
the trigonometric and hyperbolic functions.

5.11.4. Hyperbolic Rotation

Next we will study the hyperbola xy=a. First we make the compres�
sion of a plane to the axis x with the compression coefficient k. In this case
the hyperbola xy=a passes on into the hyperbola xy=ka because the ab�
scissa x remains without change and the ordinate y is replaced by yk. Then,
we make one more compression of a plane to the axis y with coefficient 1/k.
Note that the compression with coefficient 1/k is equivalent to the expan�
sion with coefficient k. After the fulfilment of the compression to axis y
with coefficient 1/k it is equivalent to the extension from axis y with the
same coefficient k, the hyperbola xy=ka passes on into the hyperbola
xy=(ka/k)=a, because the ordinate y of each point for the case of new com�
pression to the axis y does not vary, and the abscissa x passes on into x/k.
Thus, we can see that the sequential compression of the plane to the axis x
with the compression coefficient k and then to the axis y with the compres�
sion coefficient 1/k transforms the hyperbola xy=a into itself. A sequence
of these two compressions of the plane to a straight line represents the im�
portant geometric transformation called Hyperbolic Rotation. The title of
the hyperbolic rotation reflects the fact that in such transformation all
points of the hyperbola act as though they “glide on a curve,” that is, the
hyperbola acts as though it “rotates.”

Once again, note that the hyperbolic rotation is the sequential fulfilment of
the two geometric transformations, at first the compression of a plane with the
coefficient k to the axis x and then the expansion of a plane from the axis y with
the same coefficient k.

From the above properties of the “compression” and “extension,” the follow�
ing properties of the hyperbolic rotation result:

1. At the hyperbolic rotation every straight line passes on into a straight
line.
2. At the hyperbolic rotation the coordinate axes (the asymptotes of the
hyperbola) pass on into themselves.
3. At the hyperbolic rotation parallels pass on into parallels.
4. At the hyperbolic rotation the ratios of all segments, lying on one and
the same straight line, remain constant.
5. At the hyperbolic rotation, the areas of all transferred figures remain
constant.
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It is very important to emphasize that by means of the choice of the appro�
priate value of the coefficient k, and by means of the hyperbolic rotation we can
transfer each point of the hyperbola into any other point of the same hyperbola.
In fact, the compression to the axis x with a given coefficient k transfers the point
(x,y) of the hyperbola xy=a into the point (x,ky) of the other hyperbola xy=ka;
after that the extension of the point (x,ky) from the axis y with the same coeffi�
cient k transfers the point (x,ky) of the hyperbola xy=ka into the point (x/y,ky)
of the initial hyperbola. Thus, a result of the hyperbolic rotation the point (x,y)
passes on into the point (x/y,ky) of the initial hyperbola. It follows from here
that by means of a suitable hyperbolic rotation we can transfer the point (x,y) of
the hyperbola into the point (x1,y1) of the same hyperbola provided we take the
compression coefficient k=x/x1.

5.12. Bodnar’s Geometry

5.12.1. Structural � numerical Analysis of Phyllotaxis Lattices

As previously noted, the Ukrainian architect Oleg Bodnar recently made an
attempt to uncover the Puzzle of Phyllotaxis with a new phyllotaxis geometry
(“Bodnar’s geometry”) presented in his books [37, 52].

To understand Bodnar’s ge�
ometry let us study a cedar cone
as a characteristic example of a
phyllotaxis object (Fig. 5.17�a).

On the surface of the cedar
cone every seed is blocked by
the adjacent seeds in three di�
rections. As a result, we can see
the picture consisting of three
types of spirals equal to the Fi�
bonacci numbers: 3, 5 and 8. In
an effort to simplify the geo�
metric model of the phyllotax�
is object in a Fig. 5.17�a, b, we
can represent the phyllotaxis
object in a cylindrical form (Fig.

Figure 5.17. Analysis of structure�numerical
properties of the phyllotaxis lattice

a b

c d
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5.17�c). If we cut the surface of the cylinder in Fig. 5.17�c by the vertical straight
line and then unroll the cylinder on a plane (Fig. 5.17�d), we obtain a fragment of
the phyllotaxis lattice that is bounded by two parallel straight lines that are
traces of the cutting line. We can see that the three groups of parallel straight
lines in Fig. 5.17�d, namely, the three straight lines 0�21, 1�16, 2�8 with the right�
hand small declination; the five straight lines 3�8, 1�16, 4�19, 7�27, 0�30 with the
left�hand declination; and the eight straight lines 0�24, 3�27, 6�30, 1�25, 4�25, 7�
28, 2�18, 5�21 with the right�hand abrupt declination, correspond to three types
of spirals on the surface of the cylinder in Fig. 5.17�c.

We use the following method of numbering the lattice nodes in Fig. 5.17�d,
introducing the following system of coordinates. We use the direct line OO ′ as
the abscissa axis and the vertical trace that passes through the point O as the
ordinate axis. Taking the ordinate of the point 1 as the length unit, the number
that is ascribed to some point of the lattice is then equal to its ordinate. The
lattice that is numbered by the indicated method has some characteristic prop�
erties. Any pair of the points gives a certain direction in the lattice system and,
finally, the set of the three parallel directions of the phyllotaxis lattice. We can
see that the lattice in Fig. 5.17�d consists of triangles. The vertices of the trian�
gles are indicated by the letters a, b and c. It is clear that the lattice in Fig. 5.17�
d consists of the set triangles of the kind {c,b,a}, for example, {0,3,8}, {3,6,11},
{3,8,11}, {6,11,14} and so on. It is important to note that the sides of the triangle
{c,b,a} are equal to the differences between the values a,b,c of the triangle {a,b,c}
and are the adjacent Fibonacci numbers: 3,5,8. For example, for the triangle {0,3,8}
we have the following differences: 3�0=3; 8�3=5; 8�0=8. This means that the sides
of the triangle {0,3,8} are equal to, respectively, 3, 5, 8. For the triangle {3,6,11}
we have: 6�3=3; 11�6=5; 11�3=8. This means that its sides are equal to 3, 5, 8,
respectively. Here each side of the triangle defines one of three declinations of
the straight lines that build up the lattice in Fig. 5.17�d. In particular, the side of
length 3 defines the right�hand small declination, the side of length 5 defines the
left�hand declination, and the side of length 8 defines the right�hand abrupt dec�
lination. Thus, Fibonacci numbers 3, 5, 8 determine the structure of the phyllo�
taxis lattice in Fig. 5.17�d.

The second property of the lattice in Fig. 5.17�d is the following. The line seg�
ment OO′ can be considered as a diagonal of the parallelogram constructed on the
basis of the straight lines corresponding to the left�hand declination and the right�
hand small declination. Thus, the given parallelogram allows one to evaluate the
symmetry of the lattice without having to use digital numbering. This parallelo�
gram is called a Coordinate Parallelogram. Note that coordinate parallelograms of
different sizes correspond to lattices with different symmetries.
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5.12.2. The Dynamic Symmetry of Phyllotaxis Objects

Here we begin an analysis of the phenomenon of dynamic symmetry. The idea
of analysis involves the comparison of a series of phyllotaxis lattices (the unrolling
of the cylindrical lattice) with different symmetries (Fig. 5.18).

In Fig. 5.18 a variance of Fibonacci phyllotaxis is illustrated, where we ob�
serve the following modification of the dynamic symmetry
of the phyllotaxis object during its growth:
1:2:1→ 2:3:1→ 2:5:3 → 3:8:3 → 5:13:8

Note that the lattices, represented in Fig. 5.18, are con�
sidered as the sequential stages (5 stages) of the transforma�
tion of one and the same phyllotaxis object. There is a ques�
tion: how are the transformations of the lattices being car�
ried out, that is, which geometric movement can be used to
provide the sequential passing of all illustrated stages of the
phyllotaxis lattice?

5.12.3. The Key Idea of Bodnar’s Geometry

Here we will not go deeply into Bodnar’s original
reasoning that resulted in a new geometrical theory of
phyllotaxis, but direct readers to the remarkable Bod�

nar books [37, 52] for a more detailed acquain�
tance with his original geometry. Rather we
focus our attention solely on two key ideas
that underlie his geometry.

We first begin with an analysis of the phe�
nomenon of dynamic symmetry. The idea of

analysis involves a comparison
of the series of the phyllotaxis
lattices of different symmetries
(Fig. 5.18). We start with the
comparison of stages I and II. At
these stages the lattice can be
transformed by the compres�
sion of the plane along the 0�3
direction up to the position
where the line segment 0�3 ar�
rives at the edge of the lattice.

Figure 5.18. An analysis of dynamic symmetry of a
phyllotaxis object
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Simultaneously, the expansion of the plane should occur in the 1�2 direction
perpendicular to the compression direction. At the passing on from stage II to
stage III, the compression should be made along the O�5 direction and the ex�
pansion along the perpendicular 2�3 direction. The next passage is accompanied
by similar deformations of the plane in the O�8 direction (compression) and in
the perpendicular 3�5 direction (expansion).

But we know from the prior consideration that the compression of a plane to
any straight line with the coefficient k and the simultaneous expansion of a plane
in the perpendicular direction with the same coefficient k are nothing but Hy�
perbolic Rotation. A scheme of hyperbolic transformation of the lattice fragment
is presented in Fig. 5.19. The scheme corresponds to stage II of Fig. 5.18. Note
that the hyperbola of the first quadrant has the equation xy=1 and the hyperbo�
la of the fourth quadrant has the equation xy=�1.

The transformation of the phyllotaxis lattice in the process of its growth is
carried out by means of the
hyperbolic rotation, the main
geometric transformation of
hyperbolic geometry, follow�
ing from a consideration of the
first key idea of Bodnar’s ge�
ometry.

This transformation is
accompanied by a modifica�
tion of dynamic symmetry,
which can be simulated by
the sequential passage from
the object with smaller sym�
metry order to the object
with larger symmetry order.

However, this idea does
not give the answer to the
question: why are the phyllo�
taxis lattices in Fig. 5.18  based on Fibonacci numbers?

5.12.4. The “Golden” Hyperbolic Functions

For a more detailed study of the metric properties of the lattice in Fig. 5.19
we can examine its fragment represented in Fig. 5.20. Here the disposition of the
points is similar to Fig. 5.19.

y

Figure 5.19. The general scheme of phyllotaxis lattice
transformation in a system of equatorial hyperboles

Y

xy = �1

xy = 1

x

X

y
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Let us pay attention to the basic peculiarities of the disposition of points in
Fig. 5.20: (1) the points M1 and M2 are symmetrical relative to the bisector of the
right angle YOX; (2) the geometric figures OM1M2N1, OM2N2N1, and OM2M3N2

are parallelograms; and (3) the point А is the vertex of the hyperbola xy=1, that
is, xA=1, yA=1, therefore OA = 2.

Let us evaluate the abscissa of
point M2 denoted by x xM2

= .  Tak�
ing into consideration the symmetry
of points M1 and M2, we can write:
x xM1

1= − .  It follows from the symme�
try condition of these points that the
line segment M1M2 is tilted to the coor�
dinate axis under the angle of 45°. The
line segment M1M2 is parallel to the line
segment ON1; this means that the line
segment ON1 is tilted to the coordinate
axis under the angle of 45°. Therefore, the
point N1 is the top of the lower branch
of the hyperbola; here xN1

1= ,
y ON OAN1

1 21= = =, .  It is clear
that ON M M1 1 2 2= = .  It is obvious

that the difference between the abscissas of the points M1 and M2 is equal to 1.
These considerations result in the following equation for the calculation of

the abscissa of the point M2, that is, x xM2
= :

x x− =−1 1 or x x2 1 0− − = . (5.155)

This means that the abscissa x xM2
=  is the positive root of the famous “gold�

en” algebraic equation (5.155):

xM2

1 5
2

= = +τ . (5.156)

Thus, study of the metric properties of the phyllotaxis lattice in Fig. 5.20 un�
expectedly leads us to the golden mean. And this fact is the Second Key Outcome
of Bodnar’s Geometry. This result was used by Bodnar for a detailed study of the
phenomenon phyllotaxis. By developing this idea, Bodnar concluded that for a
mathematical simulation of the phyllotaxis phenomenon we need to use a special
class of the hyperbolic functions, the “Golden” Hyperbolic Functions:

The “golden” hyperbolic sine

Gshn
n n

= − −τ τ
2

. (5.157)

Figure 5.20. Analysis of the metric
properties of the phyllotaxis lattice
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The “golden” hyperbolic cosine

Gchn
n n

= + −τ τ
2

. (5.158)

Furthermore, Bodnar found a fundamental connection of the “golden” hy�
perbolic functions with Fibonacci numbers:

F Gch kk2 1
2

5
2 1− = −( ) (5.159)

F Gsh kk2
2

5
2= ( ). (5.160)

Using the correlations (5.159) and (5.160), Bodnar gave a very simple expla�
nation for the “puzzle of phyllotaxis”: why do Fibonacci numbers occur with such
persistent constancy on the surface of phyllotaxis objects? The main reason is the
fact that the geometry of “Living Nature,” in particular, the geometry of phyllo�
taxis, is a non�Euclidean geometry; however, this geometry differs substantially
from Lobachevsky’s geometry and Minkowski’s four�dimensional world based on
the classical hyperbolic functions. This difference consists in the fact that the main
correlations of this geometry are described with the help of the “golden” hyperbol�
ic functions (5.157) and (5.158) that are connected with Fibonacci numbers by
the simple correlations (5.159) and (5.160).

It is important to emphasize that Bodnar’s model of the dynamic symme�
try of the phyllotaxis object illustrated in Fig. 5.20 is brilliantly confirmed by
real�life phyllotaxis pictures of botanic objects.

5.12.15. The Connection of Bodnar’s “Golden” Hyperbolic Functions
with the Hyperbolic Fibonacci Functions

Comparing the expressions for symmetric hyperbolic Fibonacci and Lucas
sines and cosines given by formulas (5.57) � (5.60) with expressions for Bodnar’s
“golden” hyperbolic functions given by formulas (5.155) and (5.156), we discov�
er the following simple correlations between the indicated groups of the formu�
las:

Gsh x sFs x( ) = ( )5
2

(5.161)

Gch x cFs x( ) = ( )5
2

(5.162)

Gsh x sLs x( ) = ( )2 (5.163)
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Gch x cLs x( ) = ( )2 . (5.164)

The analysis of these correlations allows us to conclude that the “golden” hy�
perbolic sine and cosine introduced by Oleg Bodnar [37], and the symmetric
hyperbolic Fibonacci and Lucas sines and cosines introduced by Stakhov and
Rozin [106], coincide within constant coefficients. The question of the use of
the “golden” hyperbolic functions or the hyperbolic Fibonacci and Lucas func�
tions for the simulation of phyllotaxis objects has no particular significance
because the final result is the same: it always results in an unexpected appear�
ance of Fibonacci or Lucas numbers on the surfaces of phyllotaxis objects.

5.13. Conclusion

1. The discovery of Lobachevsky’s geometry became an epoch�making
event in the development not only mathematics, but also of science in general.
Academician Kolmogorov appreciated the role of this discovery in the devel�
opment of mathematics in the following words [1]: “... It is difficult to overrate the
importance of the reorganization of the entire warehouse of mathematical think�
ing, which happened in the 19th century. In this connection, Lobachevsky’s
geometry was the most significant mathematical discovery at the start of the
19th century. Based upon this geometric insight, the belief in the absolute stabil�
ity of mathematical axioms was overthrown. This allowed for the creation of essen�
tially new and original abstract mathematical theories and, at last, to demonstrate
that similar abstract theories can result hereafter in wider and more concrete ap�
plications.” After Lobachevsky’s discovery, the “hyperbolic ideas” started to pen�
etrate widely into various spheres of science. After the promulgation of the special
theory of relativity by Einstein in 1905 and its “hyperbolic interpretation,” given
by Minkowski in 1908, the “hyperbolic ideas” became universally recognized. Thus,
a comprehension of the “hyperbolic character” of the processes in the physical world
surrounding us became the major result in the development of science during the
19th and 20th centuries.

The mathematical correlations of Lobachevsky’s geometry are or course based
upon the classical hyperbolic functions. Why did Lobachevsky use these func�
tions, introduced by Vincenzo Riccati in the late 18th century, in his geometry?
Apparently, Lobachevsky understood that these functions provide the best way
to model the “hyperbolic character” of his geometry; however, he used them be�
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cause other hyperbolic functions at that moment simply did not exist. It is nec�
essary to note that Lobachevsky’s geometry, based on classical hyperbolic func�
tions, is historically the first “hyperbolic model” of physical space. Lobachev�
sky’s geometry and Minkowski’s geometry had put forward the hyperbolic func�
tions as the basic plan for modern science.

2. At the end of the 20th century, the Ukrainian architect Oleg Bodnar [37]
and the Ukrainian mathematicians Alexey Stakhov and Ivan Tkachenko [98]
broke the monopoly of classical hyperbolic functions in modern science. They
introduced a new class of hyperbolic functions based on the golden mean. Later
Alexey Stakhov and Boris Rozin developed the symmetrical hyperbolic Fibonacci
and Lucas functions [108]. However, Bodnar, Stakhov, Tkachenko and Rozin
each used their own unique methods to arrive at a new class of hyperbolic func�
tions. Oleg Bodnar found the “golden” hyperbolic functions thanks to his scien�
tific intuition, which resulted in the “golden” hyperbolic functions as the “key”
idea in the study of the phyllotaxis phenomenon. These functions were used by
him for the creation of the original geometric theory of phyllotaxis (Bodnar’s
Geometry). The approach of Alexey Stakhov, Ivan Tkachenko and Boris Rozin
was based on an analogy between the Binet formulas and hyperbolic functions.
This approach resulted in the discovery of a new class of hyperbolic functions,
Hyperbolic Fibonacci and Lucas Functions.

3. The hyperbolic Fibonacci and Lucas functions are a generalization of the
Fibonacci and Lucas numbers “extended” to the continuous domain. There is a
direct analogy between the Fibonacci and Lucas number theory and the theo�
ry of hyperbolic Fibonacci and Lucas functions because the “extended” Fibonac�
ci and Lucas numbers coincide with the hyperbolic Fibonacci and Lucas func�
tions at discrete values of the variable x (x=0, ±1, ±2, ±3, ...). Besides, every
identity for the Fibonacci and Lucas numbers has its continuous analog in the
form of a corresponding identity for the hyperbolic Fibonacci and Lucas func�
tions, and conversely. This outcome is of special significance for the Fibonacci
number theory [13, 16, 28, 38] because this theory is as if it were transformed
into the theory of hyperbolic Fibonacci and Lucas functions [98, 108, 116, 119].
Thanks to this approach, the Fibonacci and Lucas numbers became one of the
most important numerical sequences of hyperbolic geometry.

4. Bodnar’s geometry [37, 52] demonstrates that the “golden” hyperbolic
world exists objectively and independently of our consciousness and persis�
tently appears in Living Nature, in particular, in pine cones, pineapples, cacti,
heads of sunflowers and baskets of various flowers in the form of Fibonacci and
Lucas spirals on the surface of these biological objects (the phyllotaxis law).
Furthermore Bodnar’s geometry is a demonstration of the “physical practica�
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bility” of the hyperbolic Fibonacci and Lucas functions, which underlie all of
Living Nature. However, the promulgation of the new geometrical theory of
phyllotaxis, made by the Ukrainian architect Oleg Bodnar [37], had demon�
strated that in addition to “Lobachevsky’s geometry.” Nature also uses other
variants of the so�called “hyperbolic models of Nature” [98, 108]. The use of
hyperbolic Fibonacci and Lucas functions allowed for the solution to the “rid�
dle of phyllotaxis,” that is, an explanation of, how Fibonacci and Lucas spirals
appear on the surface of phyllotaxis objects.

5. However, perhaps the final step in the development of the “hyperbolic
models” of Nature was made by Alexey Stakhov in his article [118]. The hyper�
bolic Fibonacci and Lucas m�functions are a wide generalization of the symmet�
ric hyperbolic Fibonacci and Lucas functions introduced by Stakhov and Rozin
in an earlier article [106]. They are based on the Gazale formulas and extend ad
infinitum a number of new hyperbolic models of Nature. It is difficult to imagine
that the set of new hyperbolic functions is infinite! The hyperbolic Fibonacci
and Lucas m�functions do complete a general theory of hyperbolic functions,
started by Johann Heinrich Lambert and Vincenzo Riccati, and opens new per�
spectives for the development of new “hyperbolic ideas” in modern science.

The development of a general theory of hyperbolic functions [118], based
on the Gazale formulas [45], gives us the opportunity to put forward the fol�
lowing unusual hypothesis. Apparently, we can assume that theoretically there
are an infinite number of “hyperbolic models of Nature.” One of the possible
types of the hyperbolic functions given by the general formulas (5.105) � (5.108)
underlies these models. Each type of hyperbolic function meets some positive
real number m, called the order of the function. This number generates new
mathematical constants, the generalized golden m�proportions, given by the
formula (4.266). Each type of hyperbolic function, in turn, generates new classes
of the recursive numerical sequences, the generalized Fibonacci and Lucas m�
numbers given by the recursive relations (4.251) and (4.302).

Nature intelligently uses one or another type of hyperbolic function for
introducing objects into this or that “hyperbolic world.” It is necessary to note
that “Lobachevsky’s geometry” is one of the possible variants of the realization
of the “hyperbolic world,” which probably is preferable for the objects of “min�
eral Nature.” Apparently in the case of “Living Nature,” “Bodnar’s geometry”
based on the hyperbolic Fibonacci and Lucas functions, is preferable. This fact
is confirmed by the “law of phyllotaxis” met in many botanical objects. But
“Lobachevsky’s geometry” and “Bodnar’s geometry” are not unique variants
of the realization of the “hyperbolic worlds.” It is possible to expect that new
types of hyperbolic functions, described in [118], will result in the discovery of
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new “hyperbolic worlds” which can be embodied in natural structures at dif�
ferent levels of organization in the Universe. Importantly, the occurrence of
characteristic recursive numerical sequences given by the general recursive for�
mulas (4.251) and (4.302) are “external attributes”, embodied in Nature’s “hy�
perbolic worlds,” found in the search for corresponding types of hyperbolic
functions (5.105) � (5.108).
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Chapter 6

Fibonacci and Golden Matrices

6.1. Introduction to Matrix Theory

6.1.2. A History of Matrices

The history of matrices goes back to ancient times. But the term “matrix”
was not applied to the subject until 1850 by James Joseph Sylvester. “Matrix” is
the Latin word for womb, and it retains that sense in English. It can also mean,
more generally, any place in which something is formed or produced.

The origin of mathematical matrices arose with the study of systems of
simultaneous linear equations. An important Chinese text from between
300 BC and 200 AD, Nine Chapters of the Mathematical Art (Chiu Chang
Suan Shu), is the first known example of the use of matrix methods to solve
simultaneous equations. In the treatise’s seventh chapter, Too Much and
Not Enough, the concept of a determinant first appears, nearly two millen�
nia before its supposed invention by the Japanese mathematician Seki Kowa
in 1683, or alternatively, his German contemporary Gottfried Leibnitz (who
is also credited with the invention of differential calculus, independently
though simultaneously with Isaac Newton). More uses of matrix�like ar�
rangements of numbers appear in chapter eight, Methods of Rectangular
Arrays, in which a method is given for solving simultaneous equations. This
method is mathematically identical to the modern matrix method of solu�
tion outlined by Carl Friedrich Gauss (1777�1855), also known as Gauss�
ian elimination.

James Joseph Sylvester (1814 – 1897) was an English mathematician.
He made fundamental contributions to matrix theory, invariant theory, num�
ber theory, partition theory and combinatorics. He played a leading role in
American mathematics in the latter half of the 19th century as a professor at
Johns Hopkins University and as founder of the American Journal of Mathe�
matics. At his death, he was a professor at Oxford.
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Sylvester began his study of mathematics at St.
John’s College, Cambridge in 1831. In 1838 he be�
came professor of natural philosophy at University
College London. In 1841 he moved to the United
States to become a professor at the University of
Virginia, but soon returned to England. On his re�
turn to England he studied law, alongside British
lawyer/mathematician Arthur Cayley, with whom
he made significant contributions to matrix theory.
Poetry was one of Sylvester’s lifelong passions; he
read and translated works out of the original French,

German, Italian, Latin and Greek, and many of his mathematical papers
contain illustrative quotes from classical poetry. In 1870, following his ear�
ly retirement, Sylvester published a book titled The Laws of Verse in which
he attempted to codify a set of poetry laws. In 1877 he again crossed the
Atlantic to become the inaugural professor of mathematics at the new Johns
Hopkins University in Baltimore, Maryland. In 1878 he founded the Amer�
ican Journal of Mathematics. And in 1883, Sylvester returned to England
to become Savilian Professor of Geometry at Oxford University.

Since their first appearance in ancient China, matrices have remained
important mathematical tools. Today, they are used not only for solving
systems of simultaneous linear equations, but also for describing quantum
atomic structure, designing computer game graphics, analyzing relation�
ships, and in numerous other capacities.

The elevation of the matrix from mere tool to important mathematical
theory owes a lot to the work of female mathematician Olga Taussky Todd
(1906�1995), who began by using matrices to analyze vibrations on airplanes
and became the torch�bearer for matrix theory.

6.1.2. Definition of a Matrix

In mathematics, a Matrix (plural Matrices) is a rectangular table of
numbers or, more generally, a table consisting of abstract quantities that
can be added and multiplied. Matrices are used to describe linear equa�
tions, keep track of the coefficients of linear transformations, and to
record data that depend on two parameters. Matrices can be added,
multiplied, and decomposed in various ways, making them a key concept
in linear algebra and matrix theory [157].

James Joseph Sylvester
(1814 � 1897)
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Let us consider, for example, a matrix A

A

a a a
a a a

a a a

n

n

m m mn

=
















11 12 1

21 22 2

1 2

.

The horizontal lines in a matrix are called Rows and the vertical lines are
called Columns. A matrix with m rows and n columns is called an m�by�n ma�
trix (written m×n) and m and n are called its Dimensions. The dimensions of a
matrix are always given with the number of rows first, then the number of
columns. The entry of a matrix A that lies in the i�th row and the j�th column
is called the (i, j)�th entry of A. This is written as Ai,j or A[i, j]. As is indicated,
the row is always noted first, then the column.

A matrix, where one of the dimensions is equal to 1, is often called a Vector.
The (1×n)�matrix (one row and n columns) is called a Row Vector, and the
(m×1)�matrix (m rows and one column) is called a Column Vector.

6.1.3. Matrix Addition and Scalar Multiplication

Let A and B be two matrices with the same size, i.e. the same number of
rows and of columns. The sum of A and B, written A+B is the matrix obtained
by adding corresponding elements from A and B:

a a a
a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

















++













b b b
b b b

b b b

n

n

m m mn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...



=

+ + +
+ + +

a b a b a b
a b a b a b

n n

n n

11 11 12 12 1 1

21 21 22 22 2 2

...

...
... ... .... ...

...

.

a b a b a bm m m m mn mn1 1 2 2+ + +

















The product of a scalar k and a matrix A, written kA or Ak is the matrix
obtained by multiplying each element of A by k:

k

a a a
a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

















=
ka ka ka
ka ka ka

ka ka ka

n

n

m m

11 12 1

21 22 2

1 2

...

...
... ... ... ...

... mmn
















.

We also define:

�A=(�1)A and A�B=A+(�B)

Note that the matrix (�A) is negative to the matrix A.
Let us consider the following theorem for matrix addition and scalar

multiplication.
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Theorem 6.1. Let A, B and C be matrices with the same size and let k and
k′ be scalars. Then we have:

A B C A B C associative

A B B

+( ) + = + +( )
+( ) = +

, ;

(

i.e., matrix addition is

AA commutative

A A A A k A B

), ;

; ;

i.e., matrix addition is

+ = + + −( ) = +0 0 0 (( ) = +

+( ) = + ×( ) = ( ) × =

kA kB

k k A kA k A k k A k k A A A

;

; ; .′ ′ ′ ′ 1

6.1.4. Matrix Multiplication

Suppose A and B are two matrices such that the number of columns of A is
equal to the number of rows of B, say A is an (m×p)�matrix and B is a (p×n)�
matrix. Then the product of A and B, written AB is the (m×n)�matrix whose
(i, j)�entry is obtained by multiplying the elements of the i�th row of A by the
corresponding elements of the j�th column of B and then adding:

a a

a a

a a

bp

i ip

m mp

11 1

1

1

...
... ... ...

...
... ... ...

...

















111 1 1... ...
... ... ... ... ...
... ... ... ... ...
... ... ... ... .

b bj n

...
... ...

...
... ... ...
... ...

b b b

c c

c

p pj pn

n

ij

1

11 1















=
.... ... ...

...

,

c cm mn1

















where

c a b a b a b a bij i j i j ip pj ik kj
k

p

= + + + =
=

∑1 1 2 2
1

... .

Matrix multiplication satisfies the following properties:
Theorem 6.2.

AB C A BC A B C AB AC

k AB kA B A kB

( ) = ( ) +( ) = +

( ) = ( ) = ( )
; ;

,

where k is a scalar.

6.1.5. Square Matrices

6.1.5.1. Definition of a Square Matrix

A matrix with the same number of rows and columns is called a Square
Matrix. A square matrix with n rows and n columns is said to be of order n, and
is called an n�square matrix. The Main Diagonal, or simply Diagonal, of a
square matrix A=(aij) consists of the numbers:

(a11, a22,…, a
nn

) .
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The n�square matrix with 1’s along the main diagonal and 0’s elsewhere, e.g.

I =
















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

is called the Unit or Identity Matrix and will be denoted by I. The unit matrix I
plays the same role in matrix multiplication as the number 1 does in the usual
multiplication of numbers.

Specifically,
AI=IA=A
for any square matrix A.

Square matrices can be raised to various powers. We can define powers of
the square matrix A as follows:
A2=AA, A3= A2A, …, and A0=I.

6.1.5.2. Invertible Matrices

A square matrix A is said to be Invertible if there exists a matrix B with the
property that
AB=BA=I.

Such a matrix B is unique; it is called the Inverse of A and is denoted by A�1.

6.1.5.3. Determinants

To each n�square matrix A=(a
ij
) we assign a specific number called the

Determinant of A, denoted by Det(A) or A.
The determinants of order one, two and three are defined as follows:

Det a a a

Det a a
a a a a a a

11 11 11

11 12

21 22
11 22 12 21

( ) = =







= −

 

a a a
a a a
a a a

a a a a a a a a a
11 12 13

21 22 23

31 32 33

11 22 33 12 23 31 13 21 32= + + − aa a a a a a a a a13 22 31 12 21 33 11 23 32− −

An important determinant property is given by the following theorems.
Theorem 6.3. For any two n�square matrices A and B we have

Det(A×B)=DetA×DetB
Theorem 6.4

Det(An)=(DetA)n.  (6.1)
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6.2. Fibonacci Q�Matrix

6.2.1. A Definition of the Q�Matrix

In recent decades the theory of Fibonacci numbers [13, 16, 28] has been sup�
plemented by the theory of the so�called Fibonacci Q�matrix [9]. The latter is
the (2×2)�matrix of the following form:

Q = ( )1 1
1 0 . (6.2)

Note that the determinant of the Q�matrix is equal to �1:

DetQ=�1.  (6.3)

The article [158] devoted to the memory of Verner E. Hoggatt, founder of
the Fibonacci Association, contained the history and an extensive bibliogra�
phy of the Q�matrix and emphasized Hoggatt’s contribution in its develop�
ment. Although the name of the Q�matrix was introduced before Verner E.
Hoggatt, it was from Hoggatt’s articles that the idea of the Q�matrix “caught
on like wildfire among Fibonacci enthusiasts. Numerous papers have appeared
in ‘The Fibonacci Quarterly’ authored by Hoggatt and/or his students and
other collaborators where the Q�matrix method became a central tool in the
analysis of Fibonacci properties” [158].

We will consider here a theory of the Q�matrix developed in Hoggatt’s
book [16].

6.2.2. Properties of the Q�Matrix

The following theorem connects the Q�matrix to Fibonacci numbers.
Theorem 6.5. For a given integer n the nth power of the Q�matrix is given by

Q F F
F F

n n n

n n
= 





+

−

1

1
, (6.4)

where F
n�1, Fn

, F
n+1, are Fibonacci numbers.

Proof. We use mathematical induction. Clearly, for n=1,

Q F F
F F

1 2 1

1 0

1 1
1 0= 





= 




.

Suppose that Q
F F
F F

k k k

k k
= 





+

−

1

1
, then
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Q Q Q
F F

F F

F F F

F F
k k k k

k k

k k k

k k

+ +

−

+ +

−
= × =









×









 =

+
+

1 1

1

1 1

1

1 1

1 0 FF

F F

F Fk

k k

k k









 =











+ +

+

2 1

1

.

The theorem is proved.
The next theorem gives a formula for the determinant of the matrix (6.5).
Theorem 6.6. For a given integer n we have:

Det(Qn)=(�1)n.  (6.5)
Proof. Using (6.1) and (6.5), we can write:

Det(Qn)=( DetQ)n=(−1)n.
The theorem is proved.
The following remarkable property for Fibonacci numbers follows from

Theorem 6.5:
DetQ F F Fn

n n n
n= − = −( )− +1 1

2 1 .  (6.6)
Recall that the identity (6.6) is one of the most important identities for

Fibonacci numbers. This one is called the Cassini formula in honor of the
famous French astronomer Giovanni Domenico Cassini (1625�1712), who
discovered this formula for the first time.

Now, represent the matrix (6.4) in the following recursive form:

Q
F F F F

F F F F
F F

F F
n n n n n

n n n n

n n

n n
= + +

+ +






=− − −

− − − −

−

− −

1 1 2

1 2 2 3

1

1 2







+ 





− −

− −

F F
F F

n n

n n

1 2

2 3

 (6.7)

or
Q Q Qn n n= +− −1 2.  (6.8)

We can represent the recursive relation (6.8) in the following form:
Q Q Qn n n− −= −2 1.  (6.9)

The explicit forms of the matrices Qn and Q�n n = ± ± ±( )0 1 2 3, , , ,... obtained
by means of the use of the recursive relations (6.8) and (6.9) are
given in Table 6.1.

6.2.3. Binet Formulas for the Q�Matrix

We can find the analytical expressions for the following sum and difference:

Qn+Q�n and Qn−Q�n.  (6.10)

Table 6.1. Q�matrices

n

Q

Q

n

n

0 1 2 3 4 5
1 0
0 1

1 1
1 0

2 1
1 1

3 2
2 1

5 3
3 2

8 5
5 3

1 0
0 1

0 1
1

( ) ( ) ( ) ( ) ( ) ( )
( )−

−11
1 1
1 2

1 2
2 3

2 3
3 5

3 5
5 8( ) ( ) ( ) ( ) ( )−

−
−

−
−

−
−

−
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We can start from the following examples for the even (n=2k) and odd
(n=2k+1) powers. For the case n=5 we have the following expression for the
matrix sum (6.10):

Q Q F T5 5
5

8 5
5 3

3 5
5 8

5 10
10 5 5 1 2

2 1+ = ( ) + −
−( ) = −( ) = −( ) =− ,  (6.11)

where F5 is a Fibonacci number and

T = −( )1 2
2 1 .  (6.12)

We have the following expression for the matrix difference (6.10):

Q Q L I5 5
5

8 5
5 3

3 5
5 8

11 0
0 11 11 1 0

0 1− = ( ) − −
−( ) = ( ) = ( ) =− ,  (6.13)

where L5 is a Lucas number, I is the identity matrix.
For the case n=6 we have:

Q Q L I6 6
6

13 8
8 5

5 8
8 13

18 0
0 18 18 1 0

0 1+ = ( ) + −
−( ) = ( ) = ( ) =−

 (6.14)

Q Q F T6 6
6

13 8
8 5

5 8
8 13

8 16
16 8 8 1 2

2 1− = ( ) − −
−( ) = −( ) = −( ) =− ,  (6.15)

where the matrix T is given by (6.12).
The expressions (6.11), (6.13), (6.14), (6.15) are the partial cases of the

following general formulas valid for an arbitrary n (n=0, ±1, ±2, ±3,…):

Q2k+1� Q�(2k+1)=L2k+1I  (6.16)

Q2k � Q�2k=L2kI  (6.17)

Q2k+1+ Q�(2k+1)=F2k+1T  (6.18)

Q2k+ Q�2k=F2k+1T  (6.19)

Note that the formulas (6.16) � (6.19) are the matrix equivalents of the
Binet formulas (2.67) and (2.68). The formulas (6.16) and (6.17) are the ma�
trix equivalent of the Binet formula (2.67) for Lucas numbers and the formu�
las (6.18) and (6.19) are the matrix equivalents of the Binet formula (2.68)
for Fibonacci numbers. It is clear that the Q�matrix (6.2) in these formulas
plays the role of the golden ratio τ in the formulas (2.67) and (2.68). For all
that, the special matrix (6.12) plays the role of the irrational number 5  in
the Binet formula (2.68) for Fibonacci numbers.

This analogy between the golden ratio τ and Q�matrix (6.2) shows
that there is an isomorphism between the golden mean theory and the Q�
matrix theory. We can prove the following theorems confirming this isomor�
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phism. First of all, we can write the following trivial property for the golden
ratio powers:

τnτm =τmτn =τn+m .

Note that we do not need to prove for the number τ the following obvious
equality: τnτm =τmτn, however, for the matrices we need to prove the similar
equality.

We can prove the following theorem for the Q�matrices.
Theorem 6.7.

QnQm =QmQn =Qn+m .  (6.20)

Proof. At first, we prove the identity

QnQm = Qn+m .

In order to prove this identity we can write the product of the matrices QnQm

as follows:

Q Q
F F

F F

F F

F F

F F F F

n m n n

n n

m m

m m

n m n m

=








×











=
+

+

−

+

−

+ +

1

1

1

1

1 1 FF F F F

F F F F F F F F
n m n m

n m n m n m n m

+ −

+ − − − −

+
+ +











1 1

1 1 1 1 1

.
 (6.21)

For the proof we use the formula for the generalized Fibonacci numbers Gn

described in Section 2.5:

G
n+m

=G
n+1Fm

+G
n
F

m�1 .  (6.22)

If Gi=Fm , the formula (6.22) takes the following form:

Fn+m=Fn+1Fm+FnFm�1.  (6.23)

Using (6.23), we can represent the elements of the matrix (6.21) as follows:

Fn+1Fm+1+FnFm= Fn+m+1  (6.24)

F
n+1Fm

+F
n
F

m�1= F
n+m

 (6.25)

FnFm+1+Fn�1Fm= Fn+m  (6.26)

FnFm�1+Fn�1Fm�1= Fn+m�1.  (6.27)

Taking into consideration the formulas (6.24) � (6.27), we can represent the
matrix (6.21) as follows:

Q Q
F F
F F

Qn m n m n m

n m n m

n m= 







+ + +

+ + −

+=1

1

.

By analogy we can prove the validity of the following identity:

QmQn = Qn+m .
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It follows from the identity (6.20) that the matrices Qn and Qm possess the
property of multiplication commutativity.

Thus, the above property of the Q�matrix, given by (6.20), gives us the right
to affirm that the Fibonacci matrix Q = ( )1 1

1 0  is a special matrix, which plays in
the theory of two�by�two matrices a particular role similar to the role of the
golden mean in the theory of real numbers.

6.3. Generalized Fibonacci Qp�Matrices

6.3.1. A Definition of the Qp�Matrices

Note that the Q�matrix is a generating matrix for the classical Fibonacci
numbers given by the recursive relation (2.3). In the article [103] Alexey
Stakhov generalized the concept of the Q�matrix [16, 158] and introduced
the generalized Fibonacci Q

p
�matrices. For a given p (p=1, 2, 3, …) the gener�

alized Fibonacci Qp�matrix has the following form:

Qp =










1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0















 (6.28)

The Qp�matrix (6.28) is a square (p+1)×(p+1)�matrix. It consists of the
identity (p×p)�matrix bordered by the last row consisting of 0’s and the lead�
ing 1, and the first column consisting of 0’s embraced by a pair of 1’s. We can
list the Qp �matrices for the case p=1, 2, 3, … as follows:

Q Q Q Q1 2 3
1 1
1 0

1 1 0
0 0 1
1 0 0

1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

= = = =( ) 

















; ;






















=; .Q4

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

   (6.29)

6.3.2. The Main Theorems for the Q
p
�Matrices

Next let us raise the Qp�matrix (6.28) to the n�th power and find the
analytical expression for the matrix Qp

n . Let us prove the following theorem.
Theorem 6.8. For a given integer p= 1, 2, 3, … we have:
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Q

F n F n F n p F n p
F n p F n p F n

p
n

p p p p

p p p

=

+ − + − +
− + − −

( ) ( ) ( ) ( )
( ) ( ) (

1 2 1
1 2 pp F n p

F n F n F n p F n p
F n F

p

p p p p

p p

+ − +

− − − − −

2 2 1

1 2 1

) ( )

( ) ( ) ( ) ( )
( ) (( ) ( ) ( )

,

n F n p F n pp p− − + −

















1 1

 (6.30)

where Fp(n) is the Fibonacci p�number, n=0, ±1, ±2, ±3, … .
Before the proof of Theorem 6.8 we analyze the matrix (6.30). Note that all

entries of the matrix  are Fibonacci p�numbers given by the recursive relation
(4.18) at the seeds (4.19). The matrix (6.30) consists of (p+1) rows and (p+1)
columns. The first row is the following sequence of the Fibonacci p�numbers:
Fp(n+1), Fp(n),…, Fp(n�p+2), Fp(n�p+1),  (6.31)
the second row consists of the Fibonacci p�numbers:
Fp(n�p+1), Fp(n�p),…, Fp(n�2p+2), Fp(n�2p+1),  (6.32)
the p�th row consists of the Fibonacci p�numbers:
Fp(n�1), Fp(n�2),…, Fp(n�p), Fp(n�p�1),  (6.33)
the (p+1)�th row consists of the following Fibonacci p�numbers:
Fp(n), Fp(n�1),…, Fp(n�p+1), Fp(n�p).  (6.34)

Note that every one of the rows given by (6.31) – (6.34) is the sequence of
the Fibonacci p�numbers consisting of (p+1) sequential Fibonacci p�numbers.
The first row (6.31) begins with the Fibonacci p�number Fp(n+1) and finishes
with the Fibonacci p�number F

p
(n�p+1), the second row (6.32) begins with the

Fibonacci p�number Fp(n�p+1) and finishes with the Fibonacci p�number Fp(n�
2p+1) and finally, the (p+1)�th row begins from the Fibonacci p�number Fp(n)
and finishes with the Fibonacci p�number F

p
(n�p). It is important to emphasize

that the second Fibonacci p�number of the first row (6.31) and the first Fi�
bonacci p�number of the last row (6.34) are equal to Fp(n), the third Fibonacci
p�number of the second row (6.32), the fourth Fibonacci p�number of the third
row, ..., and the (p+1)�th Fibonacci p�number of the p�th row (6.33) are equal to
Fp(n�p�1). Now we can start a proof of Theorem 6.8.

Proof. For a given p we can use the induction method.
(a) The basis of the induction. At first we prove the basis of the induction,

that is, we prove that the statement (6.30) is valid for the case n=1. It is clear
that for the case n=1 the matrix (6.30) takes the following form:

F F F p F p
F p F p F p F

p p p p

p p p p

( ) ( ) ( ) ( )
( ) ( ) ( ) (

2 1 3 2
2 1 2 3 2

− + − +
− + − + − + − pp

F F F p F p
F F F p F

p p p p

p p p p

+

− − + −
− +

2

0 1 1
1 0 2

)

( ) ( ) ( ) ( )
( ) ( ) ( ) (−− +



















p 1)

.  (6.35)



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

328

Taking into consideration the values of the initial terms of the Fibonacci p�
numbers given by (4.19) and the mathematical properties of the extended Fi�
bonacci p�numbers given by (4.29), (4.31) and (4.32) we can write:

Fp(2)=Fp(1)=Fp(�p)=1.

Note that all the remaining entries of the matrix (6.34) are equal to 0. This
means that the matrix (6.35) coincides with the Q

p
�matrix given by (6.28). The

basis of the induction is proved.
(b) Inductive hypothesis. Suppose that the statement (6.30) is valid for

arbitrary n, and then prove it for n=1. For this purpose we shall consider the
product of the matrices

Q Q

F n F n F n p F n p
F n p F n p F

p

n

p

p p p p

p p p

× =

+ − + − +
− + −

( ) ( ) ( ) ( )
( ) ( ) (

1 2 1
1 nn p F n p

F n F n F n p F n p
F n

p

p p p p

p

− + − +

− − − − −

2 2 2 1

1 2 1

) ( )

( ) ( ) ( ) ( )
( )) ( ) ( ) ( )F n F n p F n p

p p p
− − + −

×

















1 1

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 00 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0





















. (6.36)

Let us now consider the matrix (6.36). If we multiply the first row of the
matrix Qp

n  by the matrix Qp in the example (6.36) we obtain the entry a11:

a11= F
p
(n+1)+ F

p
(n�p+1)= F

p
(n+2).

Continuing the process of the matrix multiplication for the example
(6.36), we obtain the following entries of the first row of the matrix Qp

n+1 :

F
p
(n+2), F

p
(n+1),…, F

p
(n�p+3), F

p
(n�p+2).  (6.37)

Next let us compare the first row of the matrix Qp
n  given by (6.31) with the

first row of the matrix Qp
n+1  given by (6.37). We can see that all arguments of

the Fibonacci p�numbers in the sequence (6.37) differ by 1 from the arguments
of the corresponding Fibonacci p�numbers, which form the first row (6.31) of
the matrix (6.30). By analogy we can show that this rule is valid for all entries of
the matrix Qp

n+1 , which is formed from the matrix Qp
n  by means of its multipli�

cation by the matrix Qp in accordance with (6.36). This consideration proves the
validity of Theorem 6.8.

It is easy to prove the following identity for the product of the following
Qp �matrices:

Q Q Q Q Qp
n

p
n

p p p
n+ = × = ×1 .  (6.38)

Using (6.38), we can prove the following theorem.
Theorem 6.9.

Q Q Q Q Qp
n

p
m

p
m

p
n

p
m n× = × = + .
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Decomposing each entry of the matrix (6.30) � the Fibonacci p�number � in
accordance with the basic recursive relation (4.18), we obtain the following re�
sult given by Theorem 6.10.

Theorem 6.10.

Q Q Qp
n

p
n

p
n p= +− − −1 1.  (6.39)

This recursive relation (6.39) can also be represented in the following form:

Q Q Qp
n p

p
n

p
n− − −= −1 1.  (6.40)

For example, consider the matrices Qp
n  corresponding to the cases

p=2 and p=3

Q
F n F n F n
F n F n F n

F n F n F

n
2

2 2 2

2 2 2

2 2 2

1 1
1 2 3

1
=

+ −
− − −

−

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) (( )n −













2

(6.41)

Q

F n F n F n F n
F n F n F n F nn

3

3 3 3 3

3 3 3 3

1 1 2
2 3 4 5=

+ − −
− − − −

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

FF n F n F n F n
F n F n F n F n

3 3 3 3

3 3 3 3

1 2 3 4
1 2 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

− − − −
− − −
















.  (6.42)

Using the matrices (6.41) and (6.42) and the general matrix (6.30), we
obtain some special matrices, in particular, the matrices of the kind Qp

p  and
the inverse matrices of the kind Qp

−1.  For example, for the cases p=2, 3 , 4, 5
the matrices of the kind Qp

p  and Qp
−1  have the following form:

p=2

Q
F F F
F F F
F F F

2
2

2 2 2

2 2 2

2 2 2

3 2 1
1 0 1
2 1 0

= −














( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

==














1 1 1
1 0 0
1 1 0

 (6.43)

Q
F F F

F F F
F F F

2
1

2 2 2

2 2 2

2 2 2

0 1 2
2 3 4
1 2 3

− =
− −

− − −
− − −

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )















= −














0 0 1
1 0 1
0 1 0

 (6.44)

p=3

Q

F F F F
F F F F
F F F3

3

3 3 3 3

3 3 3 3

3 3 3

4 3 2 1
1 0 1 2
2 1

= − −
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) (( ) ( )
( ) ( ) ( ) ( )

0 1
3 2 1 0

1 1 1 1
1 0 0 0
1 1 0 0
1 1 1

3

3 3 3 3

F
F F F F

−

















=

00















  (6.45)

Q

F F F F
F F F F
F3

1

3 3 3 3

3 3 3 3

3

0 1 2 3
3 4 5 6
2

− =

− − −
− − − −
−

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) FF F F

F F F F
3 3 3

3 3 3 3

3 4 5
1 2 3 4

0 0

( ) ( ) ( )
( ) ( ) ( ) ( )

− − −
− − − −

















=

00 1
1 0 0 1
0 1 0 0
0 0 1 0

−














  (6.46)
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p=4

Q4
4

1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0

=



















 
Q4

1

0 0 0 0 1
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− =
−



















  (6.47)

p=5

Q5
5

1 1 1 1 1 1
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0

=





















 
Q5

1

0 0 0 0 0 1
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

− =
−





















.
 (6.48)

Looking at the matrices (6.43) � (6.48), we can see that they have a strong
regular form. This allows us to construct similar matrices for arbitrary p.
Comparing the matrices of the kind Q pp

p =( )1 2 3, , , ... we can see that each ma�
trix Qp

p  includes in itself all the preceding matrices of the kind Q Q Qp
p

p
p

−
−

−
−

1
1

2
2

1
1, , ..., .

For example, the matrix Qp
p
−
−
1
1  is built up from the matrix Qp

p  by means of strik�
ing out the last row and last column of the matrix Qp

p .
The last rows and columns of all matrices of the kind Qp

p  have a strong
regular structure. In particular, each last row has the following form (111…10)
(p+1 entries) and each last column begins with the top 1, but all the remain�
ing entries are equal to zero.

Comparing the inverse matrices of the kind Qp
−1  p =( )1 2 3, , , ... ,  we can find

the following regularity. The main diagonal of the matrix Qp
−1 consists of zeros.

All entries, forming the diagonal under the main diagonal, are equal to 1. The last
column starts with the entries 1 and −1. All of the remaining entries of the ma�
trix Qp

−1 are equal to 0.
There is the following connection between the next matrices Qp

−1 and Qp−
−

1
1 .

The matrix Qp−
−

1
1  can be obtained from the matrix Qp

−1 , if we strike out the last
row and the next to the last column of the matrix Qp

−1 .

6.4. Determinants of the Qp�Matrices and their Powers

Now let us calculate the determinants of the Q
p
�matrices (6.28). It is

clear that DetQ1=�1. Calculate the determinant of the Q2�matrix

Q2

1 1 0
0 0 1
1 0 0

=











.  (6.49)
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Comparing the Q2�matrix (6.49) with the Q1�matrix

Q Q1
1 1
1 0= ( ) = ,  (6.50)

we can see that the Q2�matrix (6.49) is reduced to the Q1�matrix (6.50) if we strike
out from the Q2�matrix (6.49) the 2nd row and the 3rd column. Note that the sum of
these numbers 2+3=5. According to the matrix theory [157] we have:

DetQ2=1×(�1)5×DetQ1=1×(�1)×(�1)=1.  (6.51)

Now let us calculate the determinant of the Q3�matrix

Q3

1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

=















.   (6.52)

Comparing the matrix (6.52) with the matrix (6.49) we can see that the Q3 �
matrix (6.52) is reduced to the Q2 �matrix (6.49) if we strike out the 3rd row and
the 4th column (3+4=7) in the matrix (6.52). This means [157] that

DetQ3=1×(�1)7×DetQ2=1×(�1)×1=�1.  (6.53)

By analogy we can show that

DetQ4=1×(�1)9×DetQ3=1×(�1)×(�1)=1.  (6.54)

Ccontinuing this process, that is, generating the formulas similar to (6.51),
(6.53), and (6.54) we can write the following recursive relation, which con�
nects the determinants of the adjacent matrices Qp and Qp�1:

DetQ
p
=1×(�1)2p+1×DetQ

p�1.  (6.55)

It is easy to show that DetQ
p
 is equal to 1 for the even values of p=2k and

is equal to (�1) for the odd values of p=2k+1. We can formulate this result in
the form of the following theorem.

Theorem 6.11. For a given p=1,2,3,… we have:

DetQp=(�1)p .  (6.56)

Let us calculate the determinants of the inverse matrices of the kind Qp
−1. For

this purpose we consider the well�known correlation, which connects the “di�
rect” and “inverse” matrices:

Q Q Ip p
− × =1 1 ,  (6.57)

where I is the identity matrix with

DetI=1.  (6.58)

Applying to (6.57) the well�known rule given by Theorem 6.3 for the deter�
minant of the product of two matrices and taking into consideration (6.58), we
can write:
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Det Q Det Q Det Ip p
− × = =1 1 1.  (6.59)

In accordance with (6.56) the determinant of the matrix Qp
1  takes one of the

two values, 1 or �1; it follows from (6.59) that

Det Q Det Qp p
− = =1 1 1.  (6.60)

Let us calculate the determinant of the matrix Qp
n using (6.1):

Det Q Det Qp
n

p

n
= ( ) ,  (6.61)

where n=0,±1,±2,±3,… .
Taking into consideration the result of Theorem 6.11, we can formulate

the following theorem.
Theorem 6.12. For given p=1,2,3,… and n=0,±1,±2,±3,…, the determi�

nant of the matrix Qp
n  is given by the following expression:

Det Qp
n pn= −( )1 .  (6.62)

It is clear that Theorem 6.12 is a generalization of the well�known Theorem
6.6 for the Q�matrix that corresponds to the case p=1.

Note that Theorems 6.8 and 6.12 are a source for new results in the field of
Fibonacci number theory [16].

For example, consider the matrix Q n
2  for the case p=2

Q
F n F n F n
F n F n F n

F n F n F

n
2

2 2 2

2 2 2

2 2 2

1 1
1 2 3

1
=

+ −
− − −

−

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) (( )n −













2

 (6.63)

where n=0,±1,±2,±3,… .
By calculating the determinant of the matrix (6.63) and by using the

identity (6.62), we can write the case for p=2:

Det Q n
2 1= .  (6.64)

It is easy to prove the following theorem.
Theorem 6.13. For p=2 and n=0,±1,±2,±3,…, we have the following iden�

tity connecting the adjacent Fibonacci 2�numbers:
Det Q F n F n F n F n F n

F n F n

n
2 2 2 2 2 2

2 2

1 2 2 1 3= +( ) −( ) −( ) − −( ) −( ) 
+ ( ) ( ) FF n F n F n

F n F n F n F n F n

2 2 2

2 2 2 2 2

3 1 2

1 1 1

−( ) − −( ) −( ) 
+ −( ) −( ) −( ) − ( ) −−( )  =2 1.

 (6.65)

It is clear that Theorem 6.8 and 6.12 give a theoretically infinite number of
correlations similar to (6.6) and (6.65). If we remember that Fibonacci p�num�
bers were obtained in the study of the diagonal sums of Pascal’s triangle, we can
assert that the identities similar to (6.6) and (6.65) express some unusual math�
ematical properties of Pascal’s triangle!
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6.5.The “Direct” and “Inverse” Fibonacci Matrices

Again, let us consider Table 6.1, which gives the “direct” and “inverse” Q�
matrices. By comparing the “direct” (Qn) and “inverse (Q�n) Fibonacci Q�
matrices, it is easy to find a very simple method that allows us to obtain the
“inverse” matrix Q�n from its “direct” matrix Qn.

In fact, if the power n of the “direct” matrix Qn given by (6.4) is even
(n=2k), then for obtaining its inverse matrix Q�n it is simply necessary to
interchange the places of the diagonal elements Fn+1 and Fn�1 in (6.4) and to
change the sign of the diagonal elements F

n
. This means that for the case n=2k

the “inverse” matrix Q�n has the following form:

Q
F F

F F
k k k

k k

− −

+
=

−
−









2 2 1 2

2 2 1

.  (6.66)

In order to obtain the “inverse” matrix Q�n from the “direct” matrix Qn given by
(6.4) for the case n=2k+1, it is necessary to interchange the places of the diagonal
elements Fn+1 and Fn�1 in (6.4) and give them the opposite sign, that is:

Q
F F

F F
k k k

k k

− − +

+ +
=

−
−









2 1 2 2 1

2 1 2 2
.  (6.67)

Another way to obtain the matrices Qn follows directly from the expression
(6.4). Here we can represent two Fibonacci series F

n+1 and F
n�1 shifted by one

number with respect to the other (Table 6.2).

If we select the num�
ber n=1 in the first row
of Table 6.2 and then se�
lect the four Fibonacci
numbers in the lower
two rows under the num�

ber 1 and to the right with respect to it, then the totality of these Fibonacci
numbers form the Q�matrix. The Q�matrix is singled out in bold type in Table
6.2. If we move in Table 6.2 to the left with respect to the Q�matrix, then we
obtain the matrices Q2, Q3,…, Qn, respectively. If we move in Table 6.2 to the
right with respect to the Q�matrix, then we obtain the matrices Q0, Q�1,…, Q�n,
respectively. Also the Fibonacci matrices Q5 and the “inverse” to it, Fibonac�
ci matrix Q�5 are singled out in bold type in Table 6.2. Note that the matrix Q0

is an identity matrix.

This principle of the Q�matrices design can be used for the general case of
Qp�matrices. The analysis of the matrix (6.30) for the case p=2 shows that all

Table 6.2. Fibonacci series F
n+1 

and F
n�1

n

F

F

n

n

5 1 �5

8 5 1 1 �3 5

5 3 1 0 5 �8

4 3 2 0 1 2 3 4 6

3 2 0 1 1 2

2 1 1 1 2 3

1

− − − − −

−

− −
+
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matrices of the kind Q n
2  can be obtained from (6.30), provided we represent

three series of the adjacent Fibonacci 2�numbers F2(n+1), F2(n�1), F2(n), shift�
ed with respect to each other as is shown in Table 6.3.

Select the number n=1 in the first row of Table 6.3 and then select the known
Fibonacci 2�numbers in the lower rows with respect to the number 1 as is shown
in Table 6.3 (they are singled out by bold type). It is clear that the totality of
singled out Fibonacci 2�numbers form the Q2�matrix.

If we move to the left in Table 6.3 with respect to the Q2�matrix, then we
obtain the matrices Q Q Q n

2
2

2
3

2, , ..., , respectively. If we move to the right in
Table 6.3 with respect to the Q2�matrix, then we obtain the matrices
Q I Q Q n

2
0

2
1

2= − −, , ..., , respectively.
By analogy, using (6.30), we can construct the table of the Fibonacci

3�numbers that give the matrices of the kind Q n
3  (see Table 6.4).

6.6. Fibonacci Gm�Matrices

6.6.1. A Definition of the Fibonacci Gm�Matrix

In Chapter 4 we introduced the generalized Fibonacci m�numbers
given by the recursive relation

Fm(n+2)=mFm(n+1)+Fm(n)  (6.68)

at the seeds

Table 6.3. Fibonacci 2�numbers F
2
(n+1), F

2
(n�1), F

2
(n)

n

F n

F n

5 1 �5

4 3 2 1 1 0 �1 1 1

2 1 1 0 0 1

4 3 2 0 1 2 3 4 6 7

1 1 0 1 0

1 1 0

2

2

− − − − − −

+

− −

( )
( ) 11 1

1 1 0 1
2

1 �2 0

3 2 1 0 0 1 1 �2F n( ) −1

Table 6.4. Fibonacci 3�numbers F
3
(n+1), F

3
(n�2),F

3
(n�1), F

3
(n)

n

F n

F n

5 4 3 2 0 1 2 3 4 5 6 7

1 3 2 1 1 0 1 0 0 1

2 1 1 1 0 0

3

3

1

1 1 0 0

0 0 1 0

− − − − − − −

+ −

−

( )
( ) −−

− −

−

( )
( )

1 1 0 1

1 1 1 1 1 0 0 1 1 0

2 1 1 1 1 0 0 1 1

3

3

F n

F n

0 0 0 1

1 0 0 0
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Fm(0)=0, Fm(1)=1,  (6.69)

where m>0 is a given real number and n=0,±1,±2,±3,… .
Similar to the Fibonacci Q�matrix (6.2), which is a generating matrix for

the classical Fibonacci numbers, we can introduce the Gm�matrix [118] that
is a generating matrix for the Fibonacci m�numbers given by the recursive
relation (6.68) at the seeds (6.69).

Gm�matrix

G m
m =( )1

1 0 .  (6.70)

Note that the determinant of the G
m
�matrix (6.70) is equal to −1:

Det Gm =m×0 −1×1=−1.  (6.71)

The following theorem gives a connection of the G
m
�matrix (6.70) to the

Fibonacci m�numbers given by (6.68) and (6.69) .
Theorem 6.14. For a given integer n=0,±1,±2,±3,…, the n�th power of

the G
m
�matrix is given by

G
F n F n

F n F nm
n m m

m m
= +

−






( ) ( )
( ) ( )

,
1

1  (6.72)

where Fm(n−1), Fm(n), Fm(n+1) are the Fibonacci m�numbers.
Proof. We use mathematical induction. Clearly, for n=1

G
F F
F Fm

m m

m m

1 2 1
1 0

= 





( ) ( )
( ) ( )

.  (6.73)

By using the seeds (6.69) and the recursive relation (6.68), we can write:

F
m
(0)=0, F

m
(1)=1, F

m
(2)=mF

m
(1)+ F

m
(0)=m.  (6.74)

It follows from (6.73) and (6.74) that

G m
m
1 1

1 0=( ).  (6.75)

The basis of the induction is therefore proved.
Suppose that for a given integer k our inductive hypothesis is the following:

G
F F
F Fm

k m
k

m
k

m
k

m
k=











+

−

1

1 .

We can then write:

G G G
F k F k

F k F k

m
m
k

m
k

m
m m

m m

+ = × =
+

−








×









1

1

1

1

1 0

( ) ( )

( ) ( )
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=
+( ) + ( ) +( )

( ) + −( ) ( )








 =

+( )mF k F k F k

mF k F k F k

F k Fm m m

m m m

m1 1

1

2 mm

m m

k

F k F k

+( )
+( ) ( )











1

1
.

Thus, the theorem is proved.

6.6.2. Determinants of the Gm�Matrices

The next theorem gives a formula for the determinant of the matrix (6.72).
Theorem 6.15. For a given integer n=0,±1,±2,±3,…, we have:

Det Gm
n n
= −( )1 .  (6.76)

Proof. By using the property (6.1) and by taking into consideration (6.71),
we can write:

Det G Det Gm
n

m
n n

=( ) = −( )1 .
Thus, the theorem is proved.

6.6.3. G
m
�Matrix and Cassini Formula for the Fibonacci m�Numbers

If we calculate the determinant of the matrix (6.72) and take into consid�
eration (6.76), we obtain the following identity:

Det G F n F n F nm
n

m m m
n

= +( )× −( )− ( )= −( )1 1 12 .  (6.77)

Note that the identity (6.77) is one of the most important identities for
the Fibonacci m�numbers. It is clear that the identity (6.77) is a generaliza�
tion of the well�known Cassini formula (6.6).

6.6.4. Some Properties of the Gm�Matrices

Theorem 6.16.

G mG Gm
n

m
n

m
n= +− −1 2.  (6.78)

Proof. By using the recursive relation (6.68), we can represent the matrix
(6.72) as follows:

G
mF n F n mF n F n

mF n F n mF nm
n m m m m

m m m

=
+ − − + −

− + − −
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2

1 2 2 ++ −










=
( ) −( )
−( ) −( )









 +

−(
F n

m
F n F n

F n F n

F n

m

m m

m m

m

( )3

1

1 2

1)) −( )
−( ) −( )









 = +− −F n

F n F n
mG Gm

m m
m
n

m
n

2

2 3
1 2.

Thus, the theorem is proved.
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We can also represent the recursive relation (6.78) in the following form:

G G Gm
n

m
n

m
n− −= −2 1.  (6.79)

Based on the recursive relations (6.78) and (6.79), we can construct the se�
quences of the Gm�matrices (6.72) similar to Table 6.1. Note that for the case
m=1 the matrices Gn

1  coincide with the matrices Qn, that is, Table 6.1 gives a
sequence of the matrices Gn

1 .
Consider the case m=2. Remember that for this case a sequence of the

Fibonacci m�numbers Fm=2(n) looks similar to Table 6.5.

Let us construct a sequence of the matrices Gn
2 .  For the case n=0, we define

the matrix Gm
n  as follows:

Gm
0 1 0

0 1= ( ) .  (6.80)

Using the recursive relation (6.78) and taking into consideration the seeds (6.80)
and (6.75), we can construct the matrices G G G2

2
2
3

2
4, ,  and so on as follows:

G2
2 2 2 1

1 0
1 0
0 1

5 2
2 1= ( ) + ( ) = ( )  (6.81)

G2
3 2 5 2

2 1
2 1
1 0

12 5
5 2= ( ) + ( ) = ( )  (6.82)

G2
4 2 12 5

5 2
5 2
2 1

29 12
12 5= ( ) + ( ) = ( ) .  (6.83)

Using the recursive relation (6.79) and taking into consideration the seeds
(6.80) and (6.75), we can construct the matrices G G G2

1
2

2
2

3− − −, ,  and so on as
follows:

G2
1 2 1

1 0 2 1 0
0 1

0 1
1 2

− = ( ) − ( ) = −( )  (6.84)

G2
2 1 0

0 1 2 0 1
1 2

1 2
2 5

− = ( ) − −( ) = −
−( )  (6.85)

G2
3 0 1

1 2 2 1 2
2 5

2 5
5 12

− = −( ) − −
−( ) = −

−( ) .  (6.86)

A sequence of the matrices Gn
2  is represented in Table 6.6.

Table 6.5. A sequence of the Fibonacci m�numbers for the case m=2

n

F n

6 5 4 3 2 1 0 1 2 3 4 5 6

70 29 12 5 2 1 0 1 2 5 12 29 70
2

− − − − − −

− − −( )
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Consider the case m=3. Remember that for the case m=3 a sequence of the
Fibonacci m�numbers Fm(n) looks similar to Table 6.7.

Using the recursive formulas (6.78) and (6.79) at the seeds (6.75) and (6.80)
for the case m=3 we can construct the matrices Gn

3 (see Table 6.8).

It is easy to verify that all square matrices of the kind Gm
n in Table 6.6 and

Table 6.8 possess one surprising property: all their determinants are equal to +1
(for the even powers n) or (−1) (for the odd powers n). In fact, the determinant

of the matrix G2
4 29 12

12 5
= ( ) is equal to 29×5−12×12=1 and the determinant of the

matrix G3
5 33 109

109 360
− = −

−( ) is equal to (−33)×(−360)−109×109=−1.
Now, let us consider a general case of m. Remember that the number m takes

its value from the range of positive real numbers, for example, m can take the
following values: m = 2, π,  e (the base of natural logarithms) and so on. Using
the recursive relation (6.78) and taking into consideration the seeds (6.75) and
(6.80), we can construct the matrices G G Gm m m

2 3 4, ,  and so on for a general case of
m:

G m m m m
mm

2
21

1 0
1 0
0 1

1
1

= 





+ 





= +





 (6.87)

G m m m
m

m m m m
m mm

3
2 3 2

2
1

1
1

1 0
2 1
1

= +





+ 





= + +
+







  (6.88)

Table 6.7. A sequence of the Fibonacci m�numbers for the case m=3

n

F n

6 5 4 3 2 1 0 1 2 3 4 5 6

360 109 33 10 3 1 0 1 3 10 33 109 360
3

− − − − − −

− − −( )

Table 6.6. A sequence of the matrices Gn
2

n

G

G

n

n

0 1 2 3 4 5
1 0
0 1

2 1
1 0

5 2
2 1

12 5
5 2

29 12
12 5

70 29
29 122

2

( ) ( ) ( ) ( ) ( ) ( )
− 11 0

0 1
0 1
1 2

1 2
2 5

2 5
5 12

5 12
12 29

12 29
29 70( ) ( ) ( ) ( ) ( ) ( )−

−
−

−
−

−
−

−
−

n

Gn

0 1 2 3 4 5
1 0
0 1

3 1
1 0

10 3
3 1

33 10
10 3

109 33
33 10

360 109
1093 ( ) ( ) ( ) ( ) ( ) 333

1 0
0 1

0 1
1 3

1 3
3 10

3 10
10 33

10 33
33 109

33
3

( )
( ) ( ) ( ) ( ) ( )−

−
−

−
−

−
−

−
−

G n 1109
109 360−( )

Table 6.8. A sequence of the matrices Gn
3



Chapter 6
339

Fibonacci and Golden Matrices

G m m m m
m m

m m
m

m m m m
m m mm

4
3 2

2

2 4 2 3

3 2
2 1
1

1
1

3 2
2

= + +
+







 + +





= + +
+ ++







1
.  (6.89)

Using the recursive relation (6.79) and taking into consideration the seeds
(6.75) and (6.80), we can construct the matrices G G Gm m m

− − −1 2 3, ,  and so on for
another general case of m:

G m m mm
− =( )− ( )= −( )1 1

1 0
1 0
0 1

0 1
1  (6.90)

G
m

m mm
− = −

− +






2
2

1
1  (6.91)

G m m
m m mm

− = − +
+ − −









3
2

2 3
1

1 2
.  (6.92)

6.6.5. The Inverse Matrices Gm
n

Again, let us consider Tables 6.6 and 6.8. They set the “direct” and “inverse”
G

m
�matrices. Compare the “direct” and the “inverse” G

m
�matrices, Gm

n  and Gm
n− .

It is easy to find a very simple method to obtain the “inverse” matrix Gm
n−  from

its “direct” matrix Gm
n .

In fact, if the power n of the “direct” matrix Gm
n  given by (6.72) is

even (n=2k), then for obtaining its inverse matrix Gm
n−  it is necessary

to interchange the places of the diagonal elements Fm(n+1) and Fm(n�
1) in (6.72) and to take the diagonal elements F

m
(n) in (6.72) with the

opposite sign. This means that for the case n=2k the “inverse” matrix
Gm

k−2 has the following form:

G
F k F k

F k F km
k m m

m m

− = − −
− +







2 2 1 2
2 2 1

( ) ( )
( ) ( )

.  (6.93)

To obtain the “inverse” matrix Gm
n− from the “direct” matrix Gm

n  given by
(6.72) for the case n k= +2 1,  it is necessary to interchange the places of the
diagonal elements Fm(n+1) and Fm(n�1) in (6.72) and to take them with the
opposite sign, that is:

G
F k F k
F k F km

k m m

m m

− − = − −
− +







2 1 2 1 2
2 2 1

( ) ( )
( ) ( ) .  (6.94)

Another way of obtaining the matrices Gm
n  follows directly from the ex�

pression (6.72). Let us consider the case m=2. In order to get the matrices
Gn

2 (n=0,±1,±2,±3,…) we have to represent two Fibonacci series F2(n+1)
and F2(n) shifted by one number with respect to the other (Table 6.9).
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If we select the number n=1 in the first row of Table 6.9 and then select four
Fibonacci numbers in the lower two rows under the number 1 and to the right
with respect to it, then a totality of these Fibonacci numbers build up the G

m
�

matrix (6.72). The Gm�matrix is singled out by bold type in Table 6.9. If we move
in Table 6.9 to the left with respect to the Gm�matrix, then we obtain the matri�
ces G G G2

2
2
3

2
4, , and so on. If we move in Table 6.9 to the

right with respect to the Gm�matrix, we then obtain the matrices
G I G G2

0
2

1
2

2= − −, ,  and so on. Note that the matrix G2
5  and the “inverse” to it ma�

trix G2
5−  are singled out by bold type in Table 6.9. Note that the matrix G2

0 1 0
0 1=( )

is an identity matrix.

This method of obtaining the matrices Gm
n can be used for any arbitrary m.

6.7. Fibonacci Qp,m�Matrices

6.7.1. A Definition of the Qp,m�Matrix

In order to define the Q
p,m

�matrix, let us return back to the recursive rela�
tion (4.295) at the seeds (4.296) that generate the Fibonacci (p,m)�numbers. By
analogy with the Qp�matrix (6.28), which is a generating matrix for the Fibonac�
ci p�numbers F

p
(n), we introduce the Q

p,m
�matrix (6.95), which is a generating

matrix for the recursive relation (4.295) at the seeds (4.296). Given integer p>0
and real number m>0, the generating matrix for the Fibonacci (p, m)�numbers is

Qp m

m

, =








1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0















.
 (6.95)

Note that the expression (6.95) defines an infinite number of square matri�
ces because every positive real number m generates its own generating matrix of

n

F n

F n

6 4 3 2 0 1 2 3 4 6

1 169 12 5 0 1 2 5

70
2

2

5 1 �5

70 29 2 1 �12 29

29

− − − − −
+( ) −

( ) 112 1 0 29 �705 2 1 2 5 12− −

Table 6.9. The shifted Fibonacci series F
2
(n+1) and F

2
(n)
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the kind (6.95). The Qp,m�matrix (6.95) is a square (p+1)×(p+1)�matrix. It con�
sists of the identity (p×p)�matrix bordered by the last row consisting of 0’s and
the leading 1, and the first column consisting of 0’s embraced by the upper ele�
ment of m and the lower element of 1. We can list the Qp,m�matrices for the case
p=1, 2, 3, 4 as follows:

Q m G Q
m

Q

m

m m m m1 2 3
1

1 0

1 0
0 0 1
1 0 0

1 0 0
0 0 1 0
0 0 0 1
1 0 0

, , ,; ;= = = =( ) 









00

1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

4































=; .,Q

m

m   (6.96)

Note that the Qp,m�matrix (6.95) is a wide generalization of the Q�matrix
(6.2) (p=1, m=1), the Qp�matrix (6.28) (m=1) and Gm�matrix (6.70) (p=1).

6.7.2. The Main Theorems for the Powers of the Q
p,m

�Matrices

Now, let us raise the Qp,m�matrix (6.95) to the n�th power and find the
analytical expression for matrix Qp m

n
, . We have the following theorem for the

Q
p,m

�matrices.
Theorem 6.17. For a given integer p=1,2,3,…, we have:

Q

F n F n F n p F n p
F n p F

p m
n

p m p m p m p m

p m p

,

, , , ,

,

( ) ( ) ( ) ( )
( )

=

+ − + − +
− +

1 2 1
1 ,, , ,

, ,

( ) ( ) ( )

( ) ( )

m p m p m

p m p m

n p F n p F n p

F n F n F

− − + − +

− −

2 2 2 1

1 2 pp m p m

p m p m p m p m

n p F n p
F n F n F n p F n p

, ,

, , , ,

( ) ( )
( ) ( ) ( ) ( )

− − −
− − + −



1
1 1

















,
 (6.97)

where F
p,m

(n) is the Fibonacci (p,m)�number, and n=0,±1,±2,±3,… .
Proof. For a given p we can use an induction method.
(a) The basis of the induction. First, we will prove the basis of the induc�

tion, that is, we prove that the statement (6.97) is valid for the case n=1. It is
clear that for the case n=1 the matrix (6.97) takes the following form:

F F F p F p
F p F p F

p m p m p m p m

p m p m p

, , , ,

, ,

( ) ( ) ( ) ( )
( ) ( )

2 1 3 2
2 1

− + − +
− + − + ,, ,

, , , ,

( ) ( )

( ) ( ) ( ) (

m p m

p m p m p m p m

p F p

F F F p F

− + − +

− − + −

2 3 2 2

0 1 1 pp
F F F p F pp m p m p m p m

)
( ) ( ) ( ) ( )

.

, , , ,1 0 2 1− + − +



















 (6.98)

Taking into consideration the values of the initial terms of the Fibonacci
(p,m)�numbers given by (4.296) and their mathematical properties given by
(4.297), (4.299) and (4.300), we can write:

Fp,m(2)=m, Fp,m(2)=1 and Fp,m(�p)=1.
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Note that all the remaining entries of the matrix (6.98) are equal to 0. This
means that the matrix (6.98) coincides with the Qp,m�matrix given by (6.95).
The basis of the induction is proved.

(b) Inductive hypothesis. Suppose that the statement (6.97) is valid for an
arbitrary n and prove it for n+1.  For this purpose we consider the product of
the matrices

Q Q Qp m
n

p m
n

p m

F n F n F n p F n p
p m p m p m p m

, , ,

, , , ,
( ) ( ) ( ) ( )

+ = ×

=

+ − + − +

1

1 2 1

FF n p F n p F n p F n p

F n

p m p m p m p m

p m

, , , ,

,

( ) ( ) ( ) ( )

(

− + − − + − +

−

1 2 2 2 1

11 2 1

1

) ( ) ( ) ( )

( ) ( ) (
, , ,

, , ,

F n F n p F n p

F n F n F n p
p m p m p m

p m p m p m

− − − −
− − ++ −

×



















1

1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0

) ( )
,

F n p

m

p m

1 0
0 0 0 0 0 1
1 0 0 0 0 0





















.  (6.99)

Let us consider the matrix Q ap
n

ij
+ =1 ( ) . In order to calculate the entry

a11, we multiply term by term the first row of the matrix Qp m
n

,  by the first
column of the matrix Q

p,m
 as follows:

a11=mFp,m(n+1)+Fp,m(n�p+1). (6.100)

According to the recursive relation (4.295) we have: a11=F
p,m

(n+2).
Continuing the process of the matrix multiplication for the example

(6.99), we obtain the following entries of the first row of the matrix Qp m
n

, :+1

F
p,m

(n+2), F
p,m

(n+1), …, F
p,m

(n�p+3), F
p,m

(n�p+2). (6.101)

Now, let us compare the first row of the matrix Qp m
n

,  given by (6.97) with
the first row of the matrix Qp m

n
,
+1  given by (6.101). We can see that all argu�

ments of the Fibonacci (p,m)�numbers in the sequence (6.101) differ by +1
from the arguments of the corresponding Fibonacci (p,m)�numbers, which
build up the first row of the matrix (6.97). By analogy, we can show that this
rule is valid for all entries of the matrix Qp m

n
,
+1  that are formed from the matrix

Qp m
n

, by means of its multiplication by the matrix Qp,m in accordance with
(6.99). This consideration proves the validity of Theorem 6.17.

Also, it is easy to prove the following identity for the product of these
Qp m

n
, �matrices:

Q Q Q Q Qp m
n

p m
n

p m p m p m
n

, , , , , .+ = × = ×1 (6.102)

Using (6.102), we can prove the following theorem.
Theorem 6.18.

Q Q Q Q Qp m
n

p m
k

p m
k

p m
n

p m
n k

, , , , , ,× = × = + (6.103)

where n and k are integers.
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Decomposing each entry of the matrix (6.97), that is, the corresponding Fi�
bonacci (p,m)�number and taking into consideration the recursive relation
(4.295), we obtain the following result given by Theorem 6.19.

Theorem 6.19.

Q mQ Qp m
n

p m
n

p m
n p

, , , .= +− − −1 1 (6.104)

The recursive relation (6.104) can also be represented in the following form:

Q Q Qp m
n p

p m
n

p m
n

, , , .− − −= −1 1 (6.105)

Using (6.104) and (6.105), we can construct different sequences of the
Qp m

n
, �matrices. For example, for the case p=1 the sequences of the Q m

n
1, �matri�

ces for the cases m=2 and m=3 are given by Tables 6.6 and 6.8, respectively.

6.8. Determinants of the Qp,m�Matrices and their Powers

6.8.1. Determinant of the Q
p,m

�Matrix

For the case p=1 the Qp,m�matrix is reduced to the Gm�matrix, that is:

Q m Gm m1
1

1 0, .=( )= (6.106)

According to (6.71) we have:

DetQ1,m=−1. (6.107)

Now, let us calculate the determinant of the Q2,m
�matrix

Q
m

m2

1 0
0 0 1
1 0 0

, .=










 (6.108)

By comparing the Q2,m�matrix (6.108) with the Q1,m�matrix (6.106), we
can see that the Q2,m

�matrix (6.108) is reduced to the Q1,m
�matrix (6.106) if

we strike out the 2nd row and the 3rd column from the Q2,m�matrix (6.108).
Note that the sum of these numbers 2+3=5. According to the matrix theory
[157] we have:

Det Q2,m=1×(�1)5Det Q1,m=1×(�1)×(�1)=1. (6.109)

Now, let us calculate the determinant of the Q3,m�matrix

Q

m

m3

1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

, .=














 (6.110)
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Comparing the matrix (6.110) with the matrix (6.108), we can see
that the Q3,m�matrix (6.110) is reduced to the Q2,m�matrix (6.108) if we
strike out the 3rd row and the 4th column (3+4=7) in the matrix (6.110).
This means [157] that

Det Q3,m=1×(−1)7×Det Q2,m=1×(−1)×1=−1. (6.111)

By analogy, we can show that

Det Q4,m=1×(−1)9×Det Q3,m=1×(−1)×(−1)=1. (6.112)

Continuing this process, that is, generating the formulas similar to (6.109),
(6.111), and (6.112), we can write the following recursive relation, which
connects the determinants of the adjacent matrices Qp,m and Qp�1,m :

Det Q
p,m

=1×(−1)2p+1×Det Q
p�1,m

 . (6.113)

It is clear that Det Qp,m is equal to 1 for the even values of p=2k and to (�1)
for the odd values of p=2k +1. We can formulate this result in the form of the
following theorem.

Theorem 6.20. For a given p=1,2,3,…, we have:

Det Qp,m=(−1)p. (6.114)

Now, let us calculate the determinants of the inverse matrices of the kind
Qp m, .−1  For this purpose we consider this well�known correlation connecting
the “direct” and “inverse” matrices:

Q Q Ip m p m, , ,− × =1 1 (6.115)

where I is the identity matrix with Det I=1.
Applying to (6.115) the well�known rule that is given by Theorem 6.3, we

can write:

Det Q Det Q Det Ip m p m, , .− × =1 1 (6.116)

In accordance with (6.114) the determinant of the matrix Det Q
p,m

 takes
one of the two values, 1 or �1. It follows from (6.116) that

Det Q Det Qp m p m, , .− =1 (6.117)

6.8.2. Determinant of the Matrix Qp m
n

,

Let us calculate the determinant of the matrix Qp m
n

,  given by (6.97). Us�
ing the property (6.1), we can write:

Det Q Qp m
n

p m

n

, , ,=( ) (6.118)

where n=0,±1,±2,±3,… .
Taking into consideration the result of Theorem 6.20, we can formulate

the following theorem.
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Theorem 6.21. For given p=1,2,3,… and n=0,±1,±2,±3,… the determi�
nant of the matrix Qp m

n
,  is given by the following formula:

Det Qp m
n pm

, .= −( )1 (6.119)

6.9. The Golden Q�Matrices

6.9.1. A Definition of the Golden Matrices

We can represent the matrix (6.4) in the form of two matrices that are given
for the even (n=2k) and odd (n=2k+1) values of n:

Q
F F
F F

k k k

k k

2 2 1 2

2 2 1
= 





+

−
 (6.120)

Q
F F
F F

k k k

k k

2 1 2 2 2 1

2 1 2

+ + +

+
= 




.  (6.121)

In Chapter 5 we introduced the so�called Symmetric Hyperbolic Fibonacci
and Lucas Functions (5.57)�(5.60) that are connected with the Fibonacci and
Lucas numbers by the simple correlations (5.61). Consider once again the
symmetric hyperbolic Fibonacci functions:

Symmetric hyperbolic Fibonacci sine

sFs x
x x

( )= − −τ τ
5

 (6.122)

Symmetric hyperbolic Fibonacci cosine

cFs x
x x

( )= + −τ τ
5

 (6.123)

Remember that the symmetric hyperbolic Fibonacci functions (6.122) and
(6.123) are connected by the following surprising identities:

sFs x cFs x cFs x

cFs x sFs x sFs x

( )  − −( ) −( ) = −

( )  − −( ) −

2

2

1 1 1

1 1

;

(( ) = −1.
(6.124)

Note that the identities (6.124) are a generalization of the Cassini formu�
la for the continuous domain.

Remember that the Fibonacci numbers Fn are connected with the func�
tions (6.122) and (6.123) by the simple correlation:
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F
sFs n for n k

cFs n for n kn =
( ) =
( ) = +







,

, .

2

2 1 (6.125)

We can use the correlation (6.125) to represent the matrices (6.120) and
(6.121) in terms of the symmetric hyperbolic Fibonacci functions (6.122)
and (6.123):

Q
cFs k sFs k

sFs k cFs k
k2

2 1 2

2 2 1
=

+
−











( ) ( )

( ) ( ) (6.126)

Q k
sFs k cFs k

cFs k sFs k
2 1

2 2 2 1

2 1 2
+ =

+ +

+










( ) ( )

( ) ( )
, (6.127)

where k is a discrete variable, k=0,±1,±2,±3,… .
If we exchange the discrete variable k in the matrices (6.126) and (6.127)

for the continuous variable x, we obtain two unusual matrices that are func�
tions of the continuous variable x:

Q
cFs x sFs x

sFs x cFs x
x2

2 1 2

2 2 1
=

+
−











( ) ( )

( ) ( )  (6.128)

Q x
sFs x cFs x

cFs x sFs x
2 1

2 2 2 1

2 1 2
+ =

+ +

+










( ) ( )

( ) ( )
.  (6.129)

It is clear that the matrices (6.128) and (6.129) are a generalization of the Q�
matrix (6.4) for the continuous domain. They have a number of unique mathe�
matical properties. For example, for x=1/4 the matrix (6.128) takes the follow�
ing form:

Q Q
cFs sFs

sFs cFs

1
2

3
2

1
2

1
2

1
2

= =



















−






















. (6.130)

It is difficult to even imagine what a “square root of the Q�matrix” means.
However, such an amazing “Fibonacci fantasy” follows directly from (6.130).

6.9.2. The Inverse Golden Matrices

In the above we introduced the “inverse” Fibonacci Q�matrices given
by (6.66) and (6.67). We can represent the inverse of matrices (6.66) and
(6.67) in terms of the symmetric hyperbolic Fibonacci functions (6.122)
and (6.123) as follows:
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Q
cFs k sFs k

sFs k cFs k
k− =

− −
− +









2

2 1 2

2 2 1

( ) ( )

( ) ( )  (6.131)

Q k
sFs k cFs k

cFs k sFs k
− − =

− +

+ − +








2 1

2 2 1

2 1 2 2

( ) ( )

( ) ( )
, (6.132)

where k is a discrete variable, k=0,±1,±2,±3,… .
If we exchange the discrete variable k in the matrices (6.131) and (6.132)

for the continuous variable x, we then obtain the following matrices that are
functions of the continuous variable x:

Q
cFs x sFs x

sFs x cFs x
x− =

− −
− +









2

2 1 2

2 2 1

( ) ( )

( ) ( )  (6.133)

Q x
sFs x cFs x

cFs x sFs x
− − =

− +

+ − +








2 1

2 2 1

2 1 2 2

( ) ( )

( ) ( )
.  (6.134)

It is easy to prove that the matrices (6.133) and (6.134) are the inverse of the
matrices (6.128) and (6.129), respectively, that is,

Q2x× Q�2x =I and Q2x+1× Q�2x�1 =I ,

where I is an identity matrix.

6.9.3. Determinants of the Golden Matrices

Now, let us calculate the determinants of the matrices (6.128) and
(6.129):

Det Q cFs x cFs x sFs xx2 2
2 1 2 1 2= +( ) −( ) − ( )  (6.135)

Det Q cFs x cFs x sFs xx2 1 2
2 2 2 2 1+ = +( ) ( ) − +( )  . (6.136)

Compare formulas (6.135) and (6.136) with the identities (5.124) for the
symmetric hyperbolic Fibonacci functions. As the identities (6.124) are valid
for all values of the variable x, in particular, for the value of 2x, the next
identities follow from (6.135), (6.134) and (6.124):

DetQ2x=1 (6.137)

DetQ2x+1=�1 (6.138)

Note that the unusual identities (6.137) and (6.138) are a generalization
of the “Cassini formula” for the continuous domain.
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6.10. The Golden Gm�Matrices

6.10.1. A Definition of the Golden Gm�Matrices

The Fibonacci G
m
�matrices (6.72) are a source for the wide generalization of

“golden” matrices introduced above. We can represent the Gm�matrix (6.72) in
the form of two matrices that are given for the even (n=2k) and odd (n=2k+1)
values of n:

G
F k F k

F k F km
k m m

m m

2
2 1 2

2 2 1
=

+
−











( ) ( )

( ) ( ) (6.139)

G
F k F k

F k F km
k m m

m m

2 1
2 2 2 1

2 1 2
+ =

+ +
+











( ) ( )

( ) ( )
. (6.140)

Let us consider the hyperbolic Fibonacci and Lucas m�functions.
Hyperbolic Fibonacci m�functions

sF x
m m

m m m m
m

m
x

m
x

x

( ) = −
+

=
+

+ +







 − + +









−
−

Φ Φ
4

1

4

4
2

4
22 2

2 2
xx











      (6.141)

cF x
m m

m m m m
m

m
x

m
x

x

( ) = +
+

=
+

+ +







 + + +









−
−

Φ Φ
4

1

4

4
2

4
22 2

2 2
xx













.  (6.142)

The Fibonacci m�numbers are determined identically by the hyperbolic Fi�
bonacci and Lucas m�functions as follows:

F n
sF n for n k

cF n for n km
m

m

( ) =
( ) =

( ) = +






,

, .

2

2 1  (6.143)

As is shown in Chapter 5, the hyperbolic Fibonacci m�functions (6.141)
and (6.142) possess the following unique properties:

sF x cF x cF xm m m( )  − +( ) −( ) = −
2

1 1 1 (6.144)

cF x sF x sF xm m m( )  − +( ) −( ) =
2

1 1 1. (6.145)

Using (6.143), we can represent the matrices (6.139) and (6.140) in terms
of the hyperbolic Fibonacci m�functions (6.122) and (6.123) as follows:
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Gm
k m m

m m

cF k sF k

sF k cF k
2

2 1 2

2 2 1
=

+

−










( ) ( )

( ) ( ) (6.146)

G
sF k cF k

cF k sF km
k m m

m m

2 1
2 2 2 1

2 1 2
+ =

+ +
+











( ) ( )

( ) ( )
, (6.147)

where k is a discrete variable, k=0,±1,±2,±3,… .
If we exchange the discrete variable k in the matrices (6.146) and (6.147)

for the continuous variable x, we then obtain two unusual matrices that are
functions of the continuous variable x:

G
cF x sF x

sF x cF xm
x m m

m m

2
2 1 2

2 2 1
=

+
−











( ) ( )

( ) ( )  (6.148)

G
sF x cF x

cF x sF xm
x m m

m m

2 1
2 2 2 1

2 1 2
+ =

+ +
+











( ) ( )

( ) ( )
.  (6.149)

Note that the “golden” Gm�matrices given by (6.148) and (6.149) provide a
wide generalization of the “golden” Q�matrices given by (6.128) and (6.129).
The “golden” Q�matrices (6.128) and (6.129) are partial cases of the matrices
(6.148) and (6.149) for the case m =1,  that is,

G Qx x
1
2 2=  and G Qx x

1
2 1 2 1+ += . (6.150)

6.10.2. Inverse Golden G
m
�matrices

We can represent the inverse Gm�matrices (6.93) and (6.94) in terms of
the hyperbolic Fibonacci m�functions (5.105) and (5.106), that is,

G
cF k sF k

sF k cF km
k m m

m m

− =
− −

− +








2

2 1 2

2 2 1

( ) ( )

( ) ( ) (6.151)

G
sF k cF k

cF k sF km
k m m

m m

− − =
− +

+ − +








2 1

2 2 1

2 1 2 2

( ) ( )

( ) ( )
, (6.152)

where k is a discrete variable, k=0,±1,±2,±3,… .
If we exchange the discrete variable k in the matrices (6.151) and (6.152)

for the continuous variable x, we then obtain the following matrices, which
are functions of the continuous variable x:

G
cF x sF x

sF x cF xm
x m m

m m

− =
− −

− +








2

2 1 2

2 2 1

( ) ( )

( ) ( ) (6.153)
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G
sF x cF x

cF x sF xm
x m m

m m

− − =
− +

+ − +








2 1

2 2 1

2 1 2 2

( ) ( )

( ) ( )
. (6.154)

It is easy to prove that the matrices (6.153) and (6.154) are the inverse of the
matrices (6.148) and (6.149), respectively, that is,

G G Im
x

m
x2 2× =−  and G G Im

x
m

x2 1 2 1+ − −× = ,
where I is an identity matrix.

6.10.3. Determinants of the Golden Gm�Matrices

Calculate the determinants of the “golden” m�matrices (6.148) and (6.149):

Det G cF x cF x sF xm
x

m m m
2 2

2 1 2 1 2= +( ) × −( ) − ( )  (6.155)

Det G sF x sF x cF xm
x

m m m
2 1 2

2 2 2 2 1+ = +( ) × ( ) − +( )  . (6.156)

Let us compare the formulas (6.155) and (6.156) with the identities (5.136)
and (5.137) for the hyperbolic Fibonacci m�functions. As the identities (5.136)
and (5.137) are valid for all values of the variable x, in particular, for the value of
2x, the following identities follow from this consideration:

Det Gm
x2 1= (6.157)

Det Gm
x2 1 1+ =− . (6.158)

Note that the unusual identities (6.157) and (6.158) are further generaliza�
tions of the Cassini formula for the continuous domain.

6.11. The Golden Genomatrices by Sergey Petoukhov

6.11.1. The Genetic Code

The discovery of the genetic code, which is general for all living organ�
isms from a bacterium to a man, led us to the development of the informa�
tional point of view for living organisms. As it is emphasized in [59], “from
this point of view all organisms are informational essences. They exist
because they get hereditary information from ancestors and they live to
transfer the informational genetic code to descendants. Given such an
approach we may treat all other physical and chemical mechanisms pre�
sented in living organisms as auxiliary, helping promote the realization of
this basic, informational problem.”



Chapter 6
351

Fibonacci and Golden Matrices

The basis for the hereditary information language is amazingly simple. For
recording genetic information in the ribonucleic acids (RNA) of any organism,
the “alphabet” that consists of the four “letters” of nitrogenous bases, is used:
Adenine (A), Cytosine (C), Guanine (G), Uracil (U) [in DNA instead of
Uracil(U) the related Thymine (T) is used].

The genetic information transferred by molecules of heredity (DNA and
RNA) defines the primary structure of the protein of the living organism. Each
coded protein represents a chain that consists of 20 kinds of amino acids. The
block formed from three adjacent nitrogen bases is known as a Triplet. It is
possible to make 43=64 triplets from the four�letter alphabet. The genetic code
is called a Degenerate one because 64 triplets code only 20 amino acids. If any
protein chain contains n amino acids, then the sequence of triplets that corre�
sponds to it contains 3n nitrogen bases in the DNA molecule or, in other words,
is given by a 3n�triplet. Protein chains usually contain hundreds of amino acids
and are accordingly represented by rather long poly�triplets.

Recently the Russian researcher Sergey Petoukhov made an original dis�
covery in the genetic code [59]. This discovery shows the fundamental role of
the golden ratio in the genetic code. It provides further evidence that the
golden ratio underlies all Living Nature!

6.11.2. Symbolic Genomatrices

Petoukhov’s basic idea [59] consists of the representation of the genetic
code in matrix form. A square (2×2)�matrix P is an elementary matrix that is
used for the representation of a system of four nitrogen bases (“letters”) of
the genetic alphabet:

P C A
U G=( ). (6.159)

Sergey Petoukhov further suggests that one may represent a family of
genetic codes of identical length in the form of a corresponding family of
matrices P(n) that are tensor (Kronecker) degrees of the initial matrix (6.159).

The matrices P(n) are named Symbolic Genomatrices. For a large enough n
the given family of symbolic genomatrices P(n) represents all systems of ge�
netic polyplets including Monoplets of the genetic alphabet (6.159) and
Triplets (6.161) that are used for coding amino acids.

In each of the four quadrants of the genomatrix P(n) we can see all n�plets
that begin from one of the letters C, A, U, G. If we ignore the first letter of the
n�plets, we can see that every quadrant of the matrix P(n) reproduces the
matrix P(n�1) of the preceding generation. On the other hand, every matrix
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P(n) builds up a quadrant of the matrix P(n�1)of the next generation. Thus, a genom�
atrix of every new generation contains in itself in latent form all the information
of the preceding generations. It is pertinent here to compare the genomatrices
P(n) and the Qp�matrices (6.28). Examples of the matrices P(2) and P(3) are repre�
sented below:

P P P

CC CA AC AA
CU CG AU AG
UC UA GC GA
UU UG GU GG

2( ) = ⊗ =














 (6.160)

P P P P

CCC CCA CAC CAA ACC ACA AAC AAA
CCU CCG CAU CAG ACU ACG AAU AA

( )3 = ⊗ ⊗ =

GG
CUC CUA CGC CGA AUC AUA AGC AGA
CUU CUG CGU CGG AUU AUG AGU AGG
UCC UCA UACC UAA GCC GCA GAC GAA
UCU UCG UAU UAG GCU GCG GAU GAG
UUC UUA UGC UGA GUC GUAA GGC GGA
UUU UUG UGU UGG GUU GUG GGU GGG

























.
(6.161)

We can see that the matrices (6.159)�(6.161) possess the properties sim�
ilar to the matrix (6.28) because any Qp�matrix (6.28) comprises the informa�
tion about all the previous matrices Qp�1, Qp�2,…, Q1, Q0. However, on the other
hand, the Q

p
�matrix (6.28) is contained in all the next matrices

Qp+1, Qp+2, Qp+3,… .

6.12.3. Numerical Genomatrices

If we substitute some numerical parameter for every symbol of nitro�
gen bases in the symbolic genomatrix, we obtain a Numerical Genomatrix.
To form such numerical parameters, Petoukhov suggests that one uses the
numerical parameters of the complementary hydrogen relation for the ni�
trogen bases of the genetic code. We are talking about the two or three
hydrogen relations that connect complementary pairs of nitrogen bases in
molecules of heredity. For the bases C and G the number of such nitrogen
relations is equal to 3; however, for A and U it is equal to 2. Petoukhov
suggested the following rule for obtaining the numerical genomatrix from
the corresponding symbolic genomatrix.

Petoukhov’s rule 1. To obtain the numerical genomatrix from the corre�
sponding symbolic genomatrix, it is necessary to substitute every polyplet
for the product of the numbers of hydrogen relations of its nitrogen bases,
namely A=U=2 and C=G=3.

For example, triplet CGA in the octet matrix (6.164) is replaced by the
product 3×3×2=18.
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As a result of such substituting, the symbolic genomatrices (6.159)�(6.161)
are converted, respectively, into the following numerical genomatrices Pmult:

Pmult
( )1 3 2

2 3= ( ) (6.162)

Pmult
( )2

9 6 6 4
6 9 4 6
6 4 9 6
4 6 6 9

=














 (6.163)

Pmult
3

27 18 18 12 18 12 12 8 125
18 27 12 18 12 18 8 12 125
18 12 27 18 12 8

( ) =

=
=

118 12 125
12 18 18 27 8 12 12 18 125
18 12 12 8 27 18 18 12 125
12 18 8 12 18 27

=
=
=

112 18 125
12 8 18 12 18 12 27 18 125
8 12 12 18 12 18 18 27 125

125 125 125 12

=
=
=

55 125 125 125 125 1000



























. (6.164)

It is easy to find a number of interesting properties of the numerical genom�
atrices (6.162) � (6.164). First of all, all numerical genomatrices (6.162) �
(6.164) are symmetric with respect to both diagonals and therefore are called
bisymmetric [141]. Further, the sum of numbers of each line and each column
of the matrices (6.162) � (6.164) are equal to 5, 52=25, and 53=125, respec�
tively, and the total sums of numbers in the matrices (6.162) � (6.164) are
equal to 10, 102=100, and 103=1000, respectively. It is proven [141] that any
numerical genomatrix Pmult

n( )  possesses similar properties because each such
matrix is bisymmetric. Thus, the sum of numbers of each line and each column
is equal to 5n, and the total sum of numbers in the matrix is equal to 10n.
Already these surprising properties of Petoukhov’s numerical genomatrices
create the impression of “magic.” But Petoukhov’s discovery [59] of an im�
probable connection of these numerical genomatrices to the golden mean is
absolutely astounding!

6.12.4. The Golden Genomatrices

Next let us consider the numerical genomatrix (6.162) that corresponds
to the simplest symbolic genomatrix (6.159).

Consider a square matrix Φ(1), where the numbers τ = +( )1 5 2 (the

golden mean) and τ− = − +( )1 1 5 2  are  its elements:

Φ τ τ
τ τ

( ) .1
1

1= 





−

− (6.165)
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If we square the matrix (6.165), we obtain the following matrix:

Φ τ τ
τ τ

τ τ
τ τ

τ τ
τ τ

1
2 1

1

1

1

2 2

2 2
2

2
( ) −

−

−

−

−

−




 = 





× 





= +
+






. (6.166)

Now, let us recall the Lucas numbers L
n
 (1, 3, 4, 7, 11, 18, ...) and the Binet

formula for Lucas numbers. We can represent the Binet formula for Lucas
numbers as follows:
Ln

n n n= + −( ) −τ τ1 , (6.167)

where n=0,±1,±2,±3,… .
For the case n=2 the identity (6.167) takes the following form:

τ2+τ�2=L2=3. (6.168)

Taking into consideration the identity (6.168), we can represent the ma�
trix (6.166) as follows:

Φ 1
2 3 2

2 3
( )( ) =( ). (6.169)

If we compare the matrices (6.162), (6.165), and (6.169), we can see a
deep mathematical connection between the numerical genomatrix (6.162)
and the “golden” genomatrix (6.165), because after squaring the “golden”
genomatrix (6.165) we come to the numerical genomatrix (6.169).

Petoukhov proved [59] that every numerical genomatrix of the kind Pmult
n( )

has the “golden” genomatrix Φ(n), which after its squaring coincides with the
initial numerical genomatrix. Petoukhov suggested the following rule for
obtaining the “golden” genomatrix from the corresponding symbolic genom�
atrix.

Petoukhov’s rule 2. To obtain the “golden” genomatrix from the corre�
sponding symbolic genomatrix, it is necessary to substitute every polyplet
for the product of the following values of its letters: C=G=τ, A=U=τ�1.

If we apply this rule to the symbolic genomatrix (6.160), we obtain the
following “golden” genomatrix:

Φ 2

2 0 0 2

0 2 2 0

0 2 2 0

2 0 0 2

( )

−

−

−

−

=

















τ τ τ τ
τ τ τ τ
τ τ τ τ
τ τ τ τ

.
(6.170)

If we square the matrix (6.170), we obtain:

Φ 2 2

4 0 0 4 2 2 2 2 2 2 2 2 0 0 0

( )  =

+ + + + + + + + + + + +− − − − −τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ00

2 2 2 2 0 4 4 0 0 0 0 0 2 2 2 2

2 2

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ
τ τ

+ + + + + + + + + + + +
+ +

− − − − −

− ττ τ τ τ τ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ

2 2 0 0 0 0 0 4 4 0 2 2 2 2

0 0 0 0 2

+ + + + + + + + + +
+ + + +

− − − −

− ττ τ τ τ τ τ τ τ τ τ τ− − − − −+ + + + + + + +















2 2 2 2 2 2 2 4 0 0 4

. (6.171)
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If we use the Binet formula (6.167), we can write the following identities:

τ2+τ�2=3 and τ4+τ�4=7. (6.172)

Taking into consideration the identities (6.172), we can represent the ma�
trix (6.171) as follows:

Φ 2
2

9 6 6 4
6 9 4 6
6 4 9 6
4 6 6 9

( )



 =
















. (6.173)

After comparison of (6.163) and (6.173) we can write:

Φ 2
2 2( )  = Pmult

( ) , (6.174)

that is, the “golden” genomatrix (6.170), which was obtained from the sym�
bolic genomatrix (6.160) by using Petoukhov’s rule 2, is converted after its
squaring into the numerical genomatrix (6.173), which was obtained from
the symbolic genomatrix (6.160) by using Petoukhov’s rule 1.

Now, let us consider the “golden” genomatrix Φ(3), which can be obtained
from the symbolic genomatrix (6.163) by using Petoukhov’s rule 2:

Φ

τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ
τ τ τ τ τ τ

3

3 1 1 1 1 1 1 3

1 3 1 1 1 1 3 1

1 1 3 1 1

( )

− − − −

− − − −

− −

=

−− −

− − − −

− − − −

− − −

3 1 1

1 1 1 3 3 1 1 1

1 1 1 3 3 1 1 1

1 1 3

τ τ
τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ
τ τ τ τ 11 1 3 1 1

1 3 1 1 1 1 3 1

3 1 1 1 1 1 1 3

τ τ τ τ
τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ

−

− − − −

− − − −





























. (6.175)

If we square the matrix (6.175), then after simple transformation we obtain:

Φ 2
2 3( )  = Pmult

( ) . (6.176)

It appears that a similar regularity is valid for any numerical genomatrix
Pmult

n( ) . This means that Sergey Petoukhov proved the following important
proposition named Petoukhov’s Discovery.

Petoukhov’s discovery.
Let A (adenine), C (cytosine), G (guanine), and U (uracil) be nitrogen

bases (“letters”) of the genetic alphabet that build up the initial symbolic
matrix P C A

U G
= ( ) . Let P(n) be a symbolic genomatrix formed by means of a

tensor (Kronecker) raising of the initial symbolic matrix P to the n�th power
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and let polyplets, which are built up from the “letters” A, C, G and U, be the
elements of the symbolic matrix P(n). If we build a numerical genomatrix Pmult

n( )

from the symbolic genomatrix P(n) by substituting for each polyplet of the
matrix P(n) the products of the numbers of hydrogen relations of its nitrogen
bases according to the rule: A=U=2 and C=G=3, and if we build a “golden”
genomatrix Φ(n) from the symbolic genomatrix P(n) by substituting for each
polyplet of the symbolic matrix P(n) the products of the following values of its
“letters” according to the rule:  C=G=τ and A=U=τ�1 , where τ = +( )1 5 2  is
the golden mean, then there is the following fundamental relation between
the numerical genomatrix Pmult

n( )  and the “golden” genomatrix Φ(n):

Φ n
mult

nP( )  =
2 ( ) .

This discovery of the relation between the golden mean and the genetic
code allowed Petoukhov to give a new “matrix�genetic” definition based upon
the golden mean.

Petoukhov’s definition.
The golden mean and its inverse number (τ  and τ�1) are the only matrix

elements of the bisymmetric matrix Φ that is a root square of such bisym�
metric numerical genomatrix Рmult of the second order whose elements are
genetic numbers of hydrogen relations (C=G=3, A=U=2).

The “golden” genomatrices of Sergey Petoukhov are the most surprising
application of the matrix approach to the golden section theory. Petoukhov’s
discovery [59] shows a fundamental role of the “golden mean” in the genetic
code. This discovery gives further evidence that the golden mean underlies
all Living Nature! It is difficult to estimate the full impact of Petoukhov’s
discovery for the development of modern science. It is clear that this scientif�
ic discovery is of equal importance to the discovery of the genetic code!

We would like to end this chapter by quoting from Petoukhov’s paper
[59] emphasizing the importance of the matrix approach in Fibonacci num�
ber and golden mean theory:

“The above formulated proposition about the matrix definition and es�
sence of the golden section gives the possibility of considering all this mate�
rial and its informative interpretation from the fundamentally new, matrix
point of view. The author believes that many realizations of the golden sec�
tion in both Organic and Inorganic Nature are connected precisely to the
matrix essence and representation of the golden section. The mathematics of
the golden matrices is a new branch of mathematics, which studies recur�
rence relations between the series of the golden matrices and also models
natural systems and processes with their help.”
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6.12. Conclusion

1. Thus in this chapter we have developed a theory of the special class of
square matrices that have exceptional mathematical properties. The begin�
ning of this theory is connected with the name of the American mathemati�
cian Verner Hoggatt – founder of the Fibonacci Association. The theory of
the Fibonacci Q�matrix was first stated in Hoggatt’s book [16]. Although
the name of the Q�matrix, which is a generating matrix for the classical Fi�
bonacci numbers, was introduced before Verner E. Hoggatt, it was from
Hoggatt’s research that the idea of the Q�matrix “caught on like wildfire
among Fibonacci enthusiasts. Numerous papers have appeared in ‘The Fi�
bonacci Quarterly’ authored by Hoggatt and/or his students and other col�
laborators where the Q�matrix method became a central tool in the analysis
of Fibonacci properties” [158].

2. Alexey Stakhov in his 1999 article [103] generalized the concept of the
Q�matrix and introduced the Generalized Fibonacci Q

p
�matrix, which is a gen�

erating matrix for the Fibonacci p�numbers. In 2006 Stakhov introduced
[118] the concept of a Gm�matrix, which is a generating matrix for the Fi�
bonacci m�numbers. E. Gokcen Kocer, Naim Tuglu and Alexey Stakhov in�
troduced [154] the concept of the Qp,m�matrix, which is a generating matrix
for the Fibonacci (p,m)�numbers. The “golden” Q� and Gm�matrices are based
on the symmetric hyperbolic Fibonacci functions and the hyperbolic Fibonac�
ci m�functions. A general property of all the above matrices is the fact that
their determinants are equal to +1 or �1. It is clear that a theory of similar
matrices is of general mathematical interest.

3. However, the “golden” genomatrices of Sergey Petoukhov [59] are the
most surprising application of the matrix approach to the golden mean theo�
ry. Petoukhov’s discovery [59] demonstrates the fundamental role of the
“golden mean” in the genetic code. This discovery gives further evidence that
the golden mean underlies all Living Nature! Petoukhov’s discovery may
actually be scientifically equal in importance to the discovery of the genetic
code itself!
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Chapter 7

Algorithmic Measurement Theory

7.1.  The Role of Measurement in the History of Science

7.1.1.  What is a Measurement?

 In the Great Soviet Encyclopedia we can find the following definition of
the measurement notion:

“Measurement is an operation, by means of which the ratio of one magni�
tude to another homogeneous magnitude is determined; the number, which rep�
resents this ratio, refers to the numerical value of the subject magnitude.”

A measurement is an important method of quantitative cognition of the
objective world.  The eminent Russian scientist Dmitry Mendeleev, the
founder of the Periodic System of Chemical Elements and Father of Russian
Metrology, maintained: “Science begins with a measurement.  Exact science is
inconceivable without a measure.”

7.1.2.  The “Differentiation Principle” of “Measurement Science”

 The concept of a Magnitude and its Measurement belongs among the basic
concepts of science.  The theoretical study of this concept began developing  in
ancient Greece.  During the 20th century the representatives of the different
scientific disciplines, philosophy, physics, mathematics, information theory,
psychology, economy, and so on, paid focused attention to this concept.  That
is why, the problem of the definition of the subject, contents and the position
of measurement science in the system of contemporary sciences is of great im�
portance.  In this Section we make a methodological analysis of the ideas, prin�
ciples, and scientific theories that can be united under the general name Sci�
ence of Measurement or Measurement Science.

The existence of various directions of measurement study in modern
science is a reflection of dialectic process of the Measurement Science dif�
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ferentiation as a major principle of its development.  Measurement as a
method of quantitative reflection of the objective properties of the Uni�
verse is a dialectically many�sided concept.  Every exact science studies
measurement from its own specific point of view.  It selects the measure�
ment property that is most important for that given science, and a study of
this measurement property results in a special measurement theory.  For
example, in quantum physics the most essential property of quantum mea�
surement is the interaction between micro�object and the macro�measure�
ment device.  This problem underlies Quantum�Mechanical Measurement
Theory [159].  In sociology, psychology, systems theory, and economics the
measurement is reduced to the choice of the type of scale, to which the
measurable magnitude can be referred, and therefore the Scale Problem un�
derlies the Psychological Measurement Theory [160].  For technical and phys�
ical measurement, the main problem of measurement is the choice of the
System of Physical Units and the decrease of Measurement Errors.  Study of
these aspects of measurement resulted in the creation of Metrology � the
science of technical and physical measurements [161].  Measurement er�
rors can be considered to be “random noises” in the “measurement chan�
nel;” this idea underlies the Information Measurement Theory [162].  The
study of measurement, as some method or algorithm to get a numerical
result, then results in the Algorithmic Measurement Theory [20, 21].

7.1.3.  Applied and Fundamental Theories of Measurement

As we mentioned above, the general measurement theory concerns all
branches of science and technology.  On the one hand, Metrology is an applied
science that concerns the Engineering Sciences and Applied Physics.  On the
other hand, measurement concerns the fundamental problems of science, in
particular, Mathematics and Theoretical Physics.  Therefore, at all stages of
the development of science and technology, two levels or aspects of measure�
ment study exist:  Applied and Fundamental.

The Fundamental Level assumes a study of measurement as a fundamental
problem that is a source of the development of the exact sciences (in particu�
lar, physics, mathematics, non�physical exact sciences); on this level the prob�
lem consists of revealing the most general properties and laws of measurement
as the method of quantitative cognition of the objective world.  Discovery
of these measurement laws had a substantial influence on the development
of the exact sciences.  The proof of the existence of Incommensurable Seg�
ments made by the Pythagoreans is an example of just such a unique math�
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ematical discovery.  This discovery determined the development of mathe�
matics over millennia because it resulted in Irrational Numbers, one of the
most important mathematical concepts.   Heisenberg’s “Uncertainty Rela�
tions” that underlie quantum physics fundamentally limit the exactness of
quantum�mechanical measurement and may be considered to be the out�
standing physical idea in the field of the measurement.

The Applied Level assumes the study of measurement from the point
of view of the practical, applied problems that appear in technology and
applied physics.  The problem of the creation of Systems of Measurement
Units (metric system, Gauss’ absolute system, etc.) that runs throughout
the history of science and technology is the most typical example of the
applied measurement problem.

7.1.4.  What is the Fundamental Distinction between Physics and
Mathematics?

Physics and mathematics education programs do not, as a rule, give much
attention to this important question.  Its answer lies, for example, in the works
of the famous physicist Brilluen [163].  By pondering mathematical theorems
and physical theories, Brilluen defines the essence of the distinction as follows.
While mathematics begins with definitions of dimensionless points, infinitely
thin curves, and continuous space�time, modern physics denies any real sense to
such definitions.  Brilluen noted that “for physicists the irrational numbers do
not have any significance.  It is assumed that the irrational numbers need to be
defined with infinite precision because the exactness of say one in a hundred, one
in a million or even one in a billion is insufficient for their definition.  For the
physical experiment, this does not make any sense; we can measure within the
fifth or tenth digits of a decimal fraction, but there is no experiment, which would
give twenty decimal digits.  There is no sense in asking, whether the speed of
light is a rational number, whether the ratio M/m (the ratio of the proton weight
M to the electron weight m) is rational.  All irrational numbers, like π, e, 2 ,
etc., only follow from abstract mathematical definitions.  However, as we have
already said, mathematics is an aimless art.  No physical objects can show real
geometrical properties in those borders, which are assumed by mathematicians;
we can even name such an approach, “wishful thinking” [163].

Thus, according to Brilluen, a feature of the “physical” approach to the study
of the objective world consists in the postulation of some limit of “definiteness”
of the “physical” magnitude that is completely ignored in the purely mathemat�
ical approach to the definition of the concept of magnitude.
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7.1.5.  A Thesis about Inevitability of Measurement Errors

Hence, according to Brilluen, the distinction between physical and mathe�
matical approaches to measurement theory consists of different attitudes toward
the Thesis about the Inevitability of Measurement Errors.  The physical approach
recognizes this thesis as the main postulate of the physical measurement theory.
This axiom has an empirical, practical substantiation.  The Russian mechanic
and academician Krylov noted that “every measurement of any magnitude al�
ways has some error.  Clearly, the less the error, the more exact the measure�
ment, but the practice of measurement shows that it is impossible to avoid error
entirely.  This is confirmed by the fact that when iterating the same measure�
ment many times by the same device we will get measurement results, which are
different between themselves” [161].

This axiom finds its theoretical acknowledgement in the fact of the existence
of some limit of  definiteness (negentropy) of physical magnitude, which is known
in quantum mechanics as Heisenberg’s Uncertainty Relation, in wave mechanics
as a Relation of Time�and�Frequency Uncertainty, and on the molecular level is
given by the laws of thermodynamics (Brilluen’s Negentropy Principle of Infor�
mation).  The existence of the limit of definiteness of physical magnitude and, as
a consequence, the impossibility of the “absolutely exact” comparison (distinc�
tion) of the sizes of two physical magnitudes, which differ from each other in the
size of the definiteness limit, is the basic thesis of “physical” measurements.  Thus,
the concept of “magnitude” in physics differs from a similar concept in mathe�
matics, where we adopt the opposite thesis about the possibility of the “abso�
lutely exact” comparison of two magnitudes independently of their sizes (com�
parison axioms of the mathematical theory of magnitudes).

7.1.6.  Purposes of the “Physical” Measurement Theory

If we follow Brilluen’s approach, we can divide the “fundamental” part of
measurement theory into the Physical and Mathematical measurement theo�
ries.  This approach allows us to formulate the basic purpose of the “physical”
measurement theory which follows from the basic thesis about the inevitability
of measurement errors.  In quantum physics [159], the main purpose of mea�
surement theory is the study of the interaction of the quantum�mechanical ob�
ject with the macro�device used for the quantum�mechanical measurement.  In
metrology and the applied physics, the main purpose of the measurement theo�
ry is to study and model the errors of the physical measurements and in recent
decades to study the sensitivity threshold of measurement devices.  Of course,
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the doctrine about physical magnitudes and units [161] always was an impor�
tant branch of the “physical” measurement theory.

Study of the character of physical measurement errors resulted in the formu�
lation of two empirical axioms, which underlie the theory of random errors [161]:

1. Randomness’ axioms: for the very big number of measurement re�
sults, the random errors, equal in terms of absolute value, but varying by
sign, meet equally often; the number of the negative errors is equal to the
number of the positive errors.
2. Distribution’s axiom: smaller errors meet more often, than bigger; very
big errors do not meet.
These empirical axioms resulted in the well�known Normal Law of Probabil�

ity Distribution (Gauss’ law):
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where σ2 is a dispersion of probabilities; x is current value of error.
In the opinion of Russian mathematical authority Tutubalin [164], “the ‘Nor�

mal Law’ is some kind of “miracle” of probability theory, without which this
theory almost would not have the original contents ....”

The correctness of the above axioms and the “normal law,” which follows
from them, is confirmed by the fact that all conclusions, based on them, are
always consistent with experience.  However, the non�strict character of the
formulated axioms always causes a certain dissatisfaction with Gauss’ law.
This situation is expressed by one witty mathematician who sarcastically
noted that “the experimenters believe in Gauss’ law, by relying on the proofs
of mathematicians, and the mathematicians believe in this law, by relying on
the experimental verification.”

7.2.  Mathematical Measurement Theory

7.2.1.  Evolution of the Measurement Concept in Mathematics

A measurement problem plays the same exceptional role in mathematics, as in
other areas of science, particularly in technology, physics, and other exact sciences.
The Russian mathematician and academician Kolmogorov in the foreword to the
Russian edition of Lebesgue’s The Measurement of the Magnitudes [3] expressed
his outlook on this problem in the following words: “Where is the main interest of
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Lebesgue’s book? It seems to me, it is in the following: mathematicians have a
propensity already owning the finished mathematical theory to be ashamed of its
origin.  In comparison with the crystal clearness of the development of a theory,
beginning from its already prepared basic concepts and assumptions, it seems dirty
and unpleasant to delve into the origin of these basic concepts and assumptions.
The entire edifice of school algebra and all mathematical analysis can be construct�
ed solely on the concept of real number without any reference to the measurement
of concrete magnitudes (lengths, areas, time intervals, etc.).  Therefore, on the
different steps of education with a different degree of boldness, one and the same
tendency emerges: as soon as it is possible to be done with the introduction of
number concept and immediately to start discussing only numbers and relations
between them.  This is the tendency Lebesgue protests against this!”

Let us track now the evolution of the measurement concept in mathemat�
ics.  It is well attested that, the measurement rules used by the Egyptian land
surveyors were the first “measurement theory.” The ancient Greeks testify
that geometry was obliged by its origin (and the name) to those measurement
rules, that is, to the “measurement problem.” However, in Ancient Greece the
separation of the measurement problems into two parts began – the applied
problems related to “logistics,” which was at that time referred to as a set of
certain rules for the applied measurements and calculations;  and fundamental
problems related to geometry and number theory.  These latter fundamental
measurement problems became the main problems of Greek mathematics.

In the Greek period, a science of measurement was developing primarily as a
mathematical theory.  During this period, the Greek mathematicians made the
following mathematical discoveries:  Incommensurable Segments, Eudoxus’ Meth�
od of Exhaustion and the Measurement Axiom.  These outstanding mathematical
discoveries later became the sources of number theory, integration and differen�
tiation and other mathematical theories.  These mathematical discoveries had a
direct impact upon the “measurement problem.” It gave the Bulgarian mathema�
tician and academician Iliev the impetus to proclaim that “during the first epoch
of mathematics development, from antiquity to the discovery of differential and
integral calculus, investigating first of all the measurement problems, mathemat�
ics had created Euclidean geometry and number theory” [5].

7.2.2.  Incommensurable Line Segments

From high school on we believe in the strictness and stability of mathemat�
ics.  Therefore, for some of us it is a big surprise that in the process of its develop�
ment, mathematics was experiencing different crises.  Moreover, it may be a big�
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ger surprise for others that, since the beginning of the 20th century, modern
mathematics is in a deep crisis, and contemporary mathematicians cannot see
any way out of this crisis yet.

The first crisis in the foundations of mathematics was connected directly to
the “measurement problem.” The early Pythagorean mathematics was based upon
the so�called Commensurability Principle.  Let us recall, that in mathematics,
two nonzero real numbers a and b are said to be Commensurable if and only if
a/b is a rational number.  According to the commensurability principle, any two
geometric magnitudes Q and V have a common measure, that is, both magni�
tudes are divisible by it.  Thus, their ratio can be expressed as the ratio of two
mutually prime natural numbers m and n:
Q
V

m
n

= .    (7.1)

According to the main Pythagorean philosophical doctrine that Everything
is a number, all geometrical magnitudes can be expressed in the form (7.1), that
is, their ratio is always rational.  This means that geometry is reduced to a num�
ber theory because according to (7.1) all geometric relations can be expressed
by rational numbers.

Let us examine the ratio of the diagonal b and the side a of the square
(Fig. 7.1).  According to Pythagorean Theorem

b2=2a2.    (7.2)

It follows from (7.2) that the ratio of the diagonal b to the side a of the
square (Fig. 7.1) is equal

b a/ .= 2    (7.3)

Suppose that the diagonal b and the side a of the square are commensura�
ble.  This means that we can represent their ratio in the form 2 = m n , where
m and n are the mutually prime natural numbers.  Then m2=2n2.  Hence, it
follows from here that the number m2 is an even number.  However, if a square
of a number is even, this means that the number m is also an even number. As the
numbers m and n are mutually prime natural numbers, then the number n is an

odd number, according to the definition (7.1).  Howev�
er, if m is even number, the number m2 can be divided
by 4, and hence, n2 is an even number.  Thus, n is also an
even number.  However, n cannot be an even and odd
number simultaneously! This contradiction shows that
our premise about the commensurability of the diago�
nal and the side of the square is wrong and therefore the
number 2  is irrational.

Figure 7.1.  Incommensura�
ble line segments.

a 

b 2
b

a
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The discovery of incommensurability staggered the Pythagoreans and caused
the first crisis in the basis of mathematics, as this discovery refuted the initial
Pythagorean doctrine about commensurability of all geometric magnitudes.  A
discovery of irrational numbers originated a complicated mathematical notion,
which did not have direct connection with human experience.  According to the
legend, Pythagoras made a “hecatomb,” that is, sacrificed one hundred oxen to
the gods in honor of this discovery.  However, according to the Brewer’s Dictio�
nary, “He sacrificed to the gods millet and honeycomb, but not animals.  He
forbade his disciples to sacrifice oxen.” In any case, it was a worthwhile sacrifice
because this discovery became the turning point in the development of mathe�
matics.  It ruined the former system created by the Pythagoreans (the commen�
surability principle) and became a source of new and remarkable theories.  The
importance of this discovery may be compared with the discovery of non�Euclid�
ean geometry in the 19th century or to the theory of relativity at the beginning
of 20th century.  Similar to these theories, the problem of incommensurable line
segments was well�known among educated people.  Plato and Aristotle were also
addressing the problem of incommensurability in their works.

7.2.3.  Eudoxus�Archimedes and Cantor’s Axioms

To overcome the first crisis in the mathematics foundations, the Great
Greek mathematician Eudoxus developed the method of exhaustion and
created a new theory of magnitudes.

Eudoxus of Cnidus (c.410/408 – 355/347 BC) was a Greek astronomer,
mathematician, physicist, scholar and friend of Plato.  Unfortunately, all of
his own works were lost, therefore we obtained information about him from oth�
er sources, such as Aratus’ poem on astronomy.  Archytas from Athens was his
mathematics teacher.  He is famous due to the introduction of the astronomical
globe, and his early contributions to the explanation of the planetary motion.

Eudoxus developed the method of exhaustion and used it for the creation
of the theory of irrationals.  Later this method was used masterfully by
Archimedes.  The essence of Eudoxus’ method of exhaustion can be explained
by the following practical example.  If we have a barrel of beer and a beer mug,
then this beer in the barrel will eventually be exhausted, even though the beer
barrel is enormous and the beer mug very small.

Eudoxus’ theory of incommensurability (see Book V of Euclid’s Ele�
ments) could be considered one of the greatest achievements of mathe�
matics and in general coincides with the modern theory of irrational num�
bers suggested by Dedekind in 1872.
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The measurement theory of geometric magnitudes dates back to the incom�
mensurable line segments.  It is based on the group of so�called continuity axi�
oms, which comprise both Eudoxus�Archimedes’ axiom and Cantor’s axiom (or
Dedekind’s axiom).

Eudoxus�Archimedes’ axiom (the axiom of measurement).  For any
two segments A and B it is possible to specify such natural number n, which
always results in the following non�equality:

nB>A.    (7.4)

In the 19th century, Dedekind and then Cantor made a final attempt to
create a general theory of real numbers.  For this purpose, they introduced
the additional axioms into the group of the continuity axioms.  For instance, let
us consider Cantor’s Axiom.

Cantor’s continuity axiom (Cantor’s principle of nested segments).  If
an infinite sequence of segments is given on a straight line A0B0, A1B1,
A2B2,…,A

n
B

n
, …, such that each next segment is nested within the preceding

one, and the length of the segments tends to zero, then there exists a unique
point which belongs to all the segments.

The main result of the mathematical measurement theory that is based on
the continuity axioms is a proof of the existence and uniqueness of the solution q
of the Basic Measurement Equality:

Q=qV,     (7.5)

where V is a measurement unit, Q is a measurable segment, and q is any real
number named a Result of Measurement.

The idea of the proof of the equality (7.5) consists of the following. Using Eu�
doxus�Archimedes’ axiom and certain rules called a Measurement Algorithm, we
can form from the measurement unit V some sequence of the nested segments,
which can be compared with the measurable segment Q during the process of mea�
surement.  If we direct this process ad infinitum, then according to Cantor’s axiom
for the given line segments Q and V we always can find such nested segments,
which coincides with the measurable segment Q. It follows from this proof that
the idea about a measurement is one of a process running during an infinite time.

 a)      b) 

A 

BB BB B B 

B0B1B2BnAnA1 A2A0

C

Figure 7.2.  The continuity axioms: (a) Eudoxus�Archimedus’ axiom
(b) Cantor’s axiom



Chapter 7
369

Algorithmic Measurement Theory

It is difficult to imagine that the continuity axioms and the mathematical
measurement theory are the result of a more than 2000�year period in the devel�
opment of mathematics.  The continuity axioms and basic measurement equa�
tion (7.5) comprise in themselves a number of the important mathematical ideas
that underlie different branches of mathematics.

It is necessary to note that the measurement axiom expressed by (7.4) is a
reflection of Eudoxus’ method of exhaustion in modern mathematics.  The axiom
generalizes mankind’s millennia of experience regarding the measurement of dis�
tances, areas and time intervals.  The simplest measurement algorithm of the line
segment A by using the line segment B less than A underlies this axiom.  This
algorithm consists of the successive comparison of the line segment B+B+…+B
with the measurable line segment A.  During the measurement process we count
a number of the line segments B that are laid out on the measurable line segment
A.  This measurement algorithm is called a Counting Algorithm.

The counting algorithm is the source of the various fundamental notions of
arithmetic and number theory, in particular, the notions of Natural Number, the
Prime and Composite numbers, as well as the notion of Multiplication, Division, etc.
In this connection the Euclidean definition of prime (the “first” number) and com�
posite numbers (“the first number is measured only by 1,” “the composite number
is measured by some number”) is of great interest.  The measurement axiom origi�
nates a Divisibility Theorem, which plays a fundamental role in number theory.  A
Theory of Divisibility and a Comparison Theory are based on the Divisibility Theo�
rem.  Thus, the simplest measurement algorithm, a Counting Algorithm, originates
natural numbers and all concepts and theories connected with them.

7.2.4.  A Contradiction in the Continuity Axioms

The idea about measurement as a process running during infinite time is a
brilliant example of the Cantorian style of mathematical thinking based on
the concept of Actual Infinity.  However, this concept was subjected to sharp
criticism from the side of the representatives of constructive mathematics.

For the explanation of the distinctions between different interpretations
of infinity used in Eudoxus�Archimedes’ and Cantor’s axioms, once again we
return back to them.  In Cantor’s axiom all infinite sets of the nested segments
are considered as the set given by all its objects simultaneously (Cantor’s actu�
al infinity).  Eudoxus�Archimedes’ axiom, which has an “empirical origin,” is an
example of a constructive axiom and in the implicit form relies on the abstrac�
tion of Potential Practicability because after each step it assumes the possibility
of constructing the next line segment bigger than the previous one.  The number
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of measurement steps in Eudoxus�Archimedes’ axiom, necessary for realization of
the condition nB >A, is always finite, but potentially with no limitation.  Here we
can see the example of the constructive understanding of infinity as a potential
category.  In this connection we can pay attention to the internal contradiction of
the classical mathematical measurement theory (and as a consequence, of the the�
ory of real numbers), which assumes in the initial suppositions (the continuity
axioms) the coexistence of two opposite ideas about infinity, that is, the actual or
completed infinity in Cantor’s axiom and the potential or uncompleted infinity in
the Eudoxus�Archimedes’ axiom.

7.3.  Evolution of the Infinity Concept

7.3.1.  An Infinity Concept

The book Philosophy of Mathematics and Natural Science (1927, German)
by the famous Germany mathematician Hermann Weyl (1885�1955) begins with
the following words: “Mathematics is the science of infinity” [166].  Without a
doubt, the infinity concept permeates throughout all mathematics, because math�
ematical objects are, as a rule, members of the classes or sets containing an un�
countable set of elements of the same kind; examples include the set of natural
numbers, the set of real numbers, the set of triangles, etc.  That is why the infin�
ity concept is necessary under a strict analysis.

Starting a discussion of the infinity concept, we should say a little about
the concept of the “finite” that is opposite to the notion of “infinity.” Our
intellect determines that infinity is something that does not have an end, and
the finite is something that does have an end.  At first sight, the concept of the
finite seems to us clear and self�obvious.  However, in actuality it is not so
simple.  If we consider the finite as a self�obvious concept, then infinity can be
seen as an unlimited accumulation of the finite.  On the other hand, recognizing
the infinite division of the finite object (for example, the geometric line seg�
ment that consists of points), we are compelled to state that the infinite is
made from the finite and the finite is made from the infinite.

The secret of the infinity in space and of the “immortality” in time has
always been the most high�powered catalyst that directs the human intellect
to the search for truth.  David Hilbert, one of the most brilliant mathematicians
of the first half of the 20th century, said:
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“No other question has ever moved so profoundly the spirit of man; no other
idea has so fruitfully stimulated his intellect; yet no other concept stands in great�
er need of clarification than that of the infinite” [quoted from E.  Manor, To In�
finity and Beyond, Boston, 1987].

7.3.2.  The Origin of the Symbol ∞∞∞∞∞

The symbol for “infinity” in the form of the “horizontal 8” was introduced for
the first time in Arithmetic of Infinite Values by English mathematician John
Vallis in 1665.  Some historians of mathematics give the following explanation
for the use of this infinity symbol: a similar symbol was used in Roman notation
and was designated as a thousand which was identified as “very much.” The Rus�
sian historian of mathematics Gleiser in his book [150] gives, however, another
explanation of the origin of this symbol in Vallis’ book.  According to his opin�
ion, the symbol ∞ can be considered as two zeros connected among themselves.
This symbol was opposed by Vallis to the symbol “zero” (0) in the connection
with the following expressions given in Vallis’ book:

1 0 1 0/ , / .= ∞ ∞ =    (7.6)

However, at the present moment, the expressions (7.6) are considered to be
an error.  People should know and remember that the symbol ∞ does not mean
any number and does not have any numerical sense.  Therefore, it is necessary to
use the symbols +∞ and −∞ with big caution; in particular, we cannot fulfill any
arithmetical operations similar to (7.6) with them.

7.3.3.  Potential and Actual Infinity

Although according to Hermann Weyl, “infinity” is a fundamental concept of
mathematics, there is nevertheless no comprehensible definition of this important
concept in mathematics.  Arithmetical and Geometric, Potential and Actual infini�
ty are used in mathematics.  Let us consider these concepts in greater detail.

A sequence of natural numbers

1,2,3,…    (7.7)

is the first and most important example of Arithmetical Infinity.  Since Hegel,
the arithmetical infinity of natural numbers 1+1+1+ … i.e. the endless “itera�
tion of the same” is called the “bad infinity.”

Geometric Infinity, for instance, consists of the unlimited bisection of a line
segment.  Pascal wrote about geometric infinity as follows: “There is no geometer
who would not suppose, that any space can be divided ad infinitum.  It is impossi�
ble to be devoid of this, similar to a person, who cannot be without a soul.  And
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nevertheless there is no person who would understand that means an infinite di�
visibility” [166].  Except for the distinction between arithmetical and geometric
infinity, there is a distinction between Actual and Potential infinity.  For consid�
eration of the difference between these concepts, once again, we address to the
sequence of natural numbers (7.7).  We can suppose this sequence as if “complet�
ed” sequence, that is, determined by all its members simultaneously.  Such pre�
sentation about “infinity” is named Actual Infinity.

However, the sequence of natural numbers (7.7) can also be considered as
the “developing” sequence that is generated according to the principle

n′=n+1.    (7.8)

This means that each natural number can be obtained from the previous
one by means of summation of 1.  Such presentation of the “infinity” is named
Potential Infinity.

7.3.4.  An Origin and Application of the Infinity Idea in the Ancient Greek
Mathematics

Mathematics was turned into a deductive science in Ancient Greece.  Many
historians of mathematics believe that Greek mathematicians introduced into
mathematics for the first time the concept of Potential Infinity.

“Zeno’s paradoxes” played a major role in the development of the infinity
concept.  They demonstrated so well the logical difficulty of the hypotheses about
the infinite division of geometric line segments and time intervals.  Let us con�
sider two of them, Dichotomy and Achilles and the Tortoise.

 1. Dichotomy (“bisection” in Greek).  In this antinomy Zeno asserts that
movement is impossible.  Really, if a solid moves from point A to point B,
this solid must first traverse the line segments in 1/2, and before that 1/4, 1/
8, 1/16 ... of the distance between points A and B.  However, the sequence of
such line segments is infinite.  This means that one can never leave point A!
The paradox, which results in an insuperable logical impasse, is based on the
theorem that the sum of the infinite set of addends is finite.
2. Achilles and the Tortoise.  Zeno asserts: “The fast�moving Achilles can never
catch up to the tortoise.”  The proof comes to the following: let Achilles be n
times faster than the tortoise and let the initial distance between them be
equal to d.  While Achilles overcomes this new distance, simultaneously with
him the tortoise can move forward on the distance d/n; while Achilles over�
comes new distance, the tortoise can move forward on the new distance d/n2

and so on.  Thus, the distance between Achilles and the tortoise will always  be
more than 0, that is, Achilles never can catch up to the tortoise.
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Aristotle paid a great deal of attention to the concept of mathematical infin�
ity.  He strongly objected to the use of actual infinity in mathematics.  The fol�
lowing well�known thesis is attributed to Aristotle: “Infinitum Actu Non Da�
tur;” translated from Latin this means that the existence of actually�infinite ob�
jects in mathematics is impossible.

7.3.5.  Cantor’s  Theory of Infinite Sets

The German mathematician George Cantor (1845�1918) is considered to be
the prime disrupter of tranquility in 19th century mathematics.  The history of
set theory is quite different from the history of other areas of mathematics.  For
most areas, we can outline a long process, in which the ideas are evolving until
the ultimate flash of inspiration produces a discovery of major importance, often
in many mathematicians somewhat synchronously. That non�Euclidean geome�
try was discovered by Lobachevski and Bolyai independently at the same time
is a brilliant example of such synchronous inspiration.  As for set theory, it was
the creation of one person, George Cantor.

Cantor’s main idea is the study of infinite sets as actual�infinite sets.  The
idea of one�to�one correspondence between the elements of the comparable
sets was used by Cantor in his research of infinite sets.  If we can establish such
correspondence between the elements of two sets, we can say that the sets have
the same Cardinality, that is, they are equivalent.  Cantor wrote � “In the case of
the finite sets the cardinality coincides with the number of the elements.” That
is why, the cardinality is also named the cardinal (quantitative) number of the
given set.  This approach resulted in many paradoxical conclusions being in sharp
contradiction to one’s intuition.  So, in contrast to the finite sets that comply
with the Euclidean axiom, “The whole is more than its parts,” the infinite sets do
not comply with this axiom.  For example, it is easy to prove that the set of
natural numbers and some of its subsets are equivalent.  In particular, we can
establish the following one�to�one correspondence between the sets of natural
numbers and the even numbers:

1 2 3

2 4 6 2

... ...

... ...

.

n

n

This feature of the infinite sets can be used for their definition: a set is named
infinite if the set is equivalent in extant to one of its subsets. A set is finite if the set
is not equivalent to any of its subsets.  Any set equivalent to the set of natural
numbers is named Denumerable because all of its elements can be numbered.
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The most amazing discovery was made by Cantor in 1873.  He proved that
all three of the most characteristic sets (natural numbers, rational numbers, and
algebraic numbers) have one and the same cardinality, that is, the sets of ratio�
nal and algebraic numbers are denumerable.  Cantor also proved that the cardi�
nality of real numbers is greater than the cardinality of natural numbers.

From the above consideration it is possible to conclude that in contrast to the
majority of his predecessors, Cantor had undertaken for the first time a deep re�
search into mathematical infinity that resulted in new and unexpected outcomes.

7.3.6.  Antinomies of Cantor’s Theory of Infinite Sets

It seemed for many mathematicians, that Cantor’s theory of infinite sets pro�
duced a revolution in mathematics.  The end of the 19th century culminated in
the recognition of Cantor’s theory of infinite sets.  French mathematician Jacques
Hadamard in his 1897 speech at the First International Congress of Mathemati�
cians in Zurich officially proclaimed the set�theoretical ideas as the basis of math�
ematics.  In his lecture, Hadamard emphasized that the most attractive reason of
Cantor’s set theory consists of supporting the fact that for the first time in math�
ematics history the classification of sets was made on the basis of a new concept
of “cardinality” and the amazing mathematical outcomes inspired mathemati�
cians to new and surprising discoveries.

However, very soon the “mathematical paradise” based on Cantor’s set
theory was destroyed.  In the first few years after the First International
Congress of Mathematicians, the paradoxes or antinomies appeared in set
theory.  Cantor discovered the first paradoxes at the end of the 19th century.
Other paradoxes were discovered later by other scientists.  These paradoxes be�
came the basis for the next, or third (after the discovery of incommensurable
line segments and substantiation of the limit theory) crisis in the foundation of
mathematics.  One of them, discovered by the English philosopher and mathe�
matician Bertrand Russell in 1902, was connected with the foundations of set
theory and the concept of the set of all sets.  Each of the usual sets, which we met
until now, does not contain itself as an element; so, for example, the set of all
natural numbers is not a natural number. We name such sets Ordinary Sets.
However, there are also such exotic sets that contain themselves as their own
elements, for example, the set of all sets. We name such sets Non�ordinary Sets.
Consider the set S of all ordinary sets and ask the following question: is S an
element of S? Alternatively, is the set S ordinary or non�ordinary set? Suppose
that S is an element of S; then it is necessary to recognize that S is a non�ordinary
set.  However,  as S contains only ordinary sets, this means that S should also be
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an ordinary set.  Thus, from this supposition it follows that S is an ordinary set,
that is, we have a logical contradiction.  Now, suppose that S is not an element of
S, that is, S is the ordinary set; then S should be in S, as all ordinary sets.  Thus,
from the supposition that S is the ordinary set it follows that S is the non�ordi�
nary set; again, we have contradiction!

Russell demonstrated this contradiction, known as the Barber Paradox, with
the example of the village barber, who gave a promise to shave those and only
those village inhabitants, who do not shave themselves.  We can ask the ques�
tion: Does the barber shave himself? If he shaves himself, this means that there�
by he includes himself into the set of inhabitants, who shave themselves, and
therefore he should not shave himself; if he does not shave himself, this means
that he belongs already to those, who do not shave themselves, that is, he should
shave himself.  We again have a logical contradiction which of course is unac�
ceptable in mathematics!

7.3.7.  Is Cantor’s Actual Infinity the Greatest Mathematical
Mystification?

A discovery of the antinomies in Cantor’s set theory caused a new crisis in
the foundations of mathematics.  Various attempts were made to overcome
this crisis including Constructive Analysis in mathematics the most radical of
them.  The representatives of constructive analysis saw the main reason for
paradoxes in Cantor’s theory of sets to be the use of the concept of “actual
infinity.” Russian mathematician Markov, one of the brightest representa�
tives of constructive analysis, wrote: “It is impossible to imagine an endless
process as a completed process without rough violence to our intellect, in the
rejection of such inconsistent fantasies.”  [167]

On the other hand, probably the works of Russian mathematician Alex�
ander Zenkin took the final step in the dispute over Cantor’s set theory.  Zenkin
found logical contradictions and errors in Cantor’s set theory.  The essence of
Zenkin’s approach, presented in a few main publications [168], consists of the
fact that for the first time he formulated an almost obvious fact – the concept
of potential infinity (PI) in the Aristotelian form – “all infinite sets are poten�
tial sets,” and the concept of actual infinity (AI) in Cantor’s form – “all infinite
sets are actual sets” � are AXIOMS, that is, they cannot be proved or refuted,
but they can be either accepted, or rejected.  For this reason, any discussions
about “existence” or “non�existence” of the “actual infinity,” which goes back
to Aristotle, cannot convince anyone of anything.  Here we can provide an
analogy with the history of the 5th Euclidean axiom about parallel lines.  Howev�
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er, there is also an essential difference – the correctness of the non�Euclidean ge�
ometry was proven – however, the correctness of Cantor’s theory of sets
based on “actual infinity” is not proven.  Moreover, the antinomies of Cantor’s
theory of sets demonstrate that this theory is self contradictory.

After a thorough analysis of Cantor’s continuum theorem, in which Zen�
kin gave the logical substantiation for legitimacy of the use of the “actual
infinity” in mathematics, he derived the following unusual conclusion:

1.  Cantor’s proof of this theorem is neither a mathematical proof in Hilbert’s
sense nor in the sense of classical mathematics.
2.  Cantor’s conclusion about non�denumerability of the continuum is a jump
through a potentially infinite stage, that is, Cantor’s reasoning contains the
fatal logical error of “unproved basis” (a leap to a “wishful conclusion”).
3.  Cantor’s theorem does, in fact, strictly mathematically prove the potential,
that is, the unfinished character of the infinity of the set of all “real numbers.”
Thus, Cantor proves mathematically  the fundamental principle of classical
logic and mathematics: “Infinitum Actu Non Datur” (Aristotle).
According to the opinion of Alexander Zenkin [168], Aristotle’s famous the�

sis  “Infinitum Actu Non Datur” – that is, the assertion about the impossibility
of the existence of actually�infinite objects – had been supported during the last
2300 years by Aristotle’s great followers Leibniz, Cauchy, Gauss, Kronecker,
Poincare, Brouwer, Vail, Lusin and by many other famous founders of classical
logic and modern classical mathematics! Every one of them professionally stud�
ied the problem of mathematical infinity, and there were not be any doubts, that
they understood the true nature of the infinity in general no worse than Cantor
did.  Especially, if we take into consideration the important fact, that infinity
does not depend on progress of technological equipment of science, infinity nev�
er was and never becomes an object of the technological research, because no
contemporary computers, never, by definition, would ever be able to finish an
enumeration of all elements of natural series 1, 2, 3, … .

For this reason – Alexander Zenkin asserted – all discussions about the pos�
sibility or impossibility of actual infinity during two millennia down to
Cantor had only a speculative character.  The infinity does not depend on the
progress of science and technology!

Alexander Zenkin wrote [168]: “Why was such an analysis of Cantor’s
theorem not executed in time, i.e. at the end of the 19th century? It is a very
crucial topic for fundamental research in the field of the psychology of scien�
tific knowledge.”

Thus, there is the impression that the long history (starting from Greek
science) of the study of the infinity concept as one of the fundamental mathe�
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matical concepts is approaching its completion.  The antinomies of Cantor’s set
theory, which caused the contemporary crisis in the foundations of mathematics,
showed that the concept of actual infinity could not be a reliable basis for mathe�
matical reasoning, because from the point of view of the representatives of con�
structive analysis the “actual infinity” concept is internally self�contradictory.  On
the other hand, the research of Russian mathematician Alexander Zenkin [168]
testifies  the existence of logical errors in Cantor’s theorems, and this fact gives one
the right to doubt the accuracy of Cantor set theory.

Thus, the concept of potential infinity introduced in the Greek mathe�
matics can be the only real base for mathematical reasoning.  In this connec�
tion Aristotle’s thesis “Infinitum Actu Non Datur” should become the main
axiom for the creation of new, constructive mathematics.

7.4.  A Constructive Approach to Measurement Theory

7.4.1.  The Rejection of Cantor’s Axiom from Mathematical
Measurement Theory

As the concept of “actual infinity” is an internally contradictory notion (“the
completed infinity”), this concept cannot be a reasonable basis for the creation
of constructive mathematical measurement theory.  If we reject Cantor’s axiom,
we can try to construct mathematical measurement theory on the basis of the
idea of potential infinity, which underlies the Eudoxus�Archimedes’ axiom.  By
referring to the measurement theory, this means, that the number of steps for
the given measurement is always finite, but potentially unlimited.  The accep�
tance of the given approach at once results in the occurrence of the fundamental�
ly irremovable measurement error called Quantization Error.

The constructive approach to measurement theory results in a change of
the purpose of measurement theory.  One of the essential moments at the proof
of the equality (7.5) is a choice of the Measurement Algorithm, by means of
which we carry out the formation of “nested segments” from the measurement
unit V.  With the actually infinite time, the measurement algorithm does not
influence the measurement result q and its choice is arbitrary.  With the given
time of measurement – that is defined by the number of measurement steps n
– and with the other equal conditions, the distinction between the measure�
ment algorithms with respect to the “reached” measurement exactness appears.
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With these conditions, the second constructive idea about the “efficiency” of
the measurement algorithms comes into effect and the Problem of the Synthe�
sis of the Optimal Measurement Algorithms is put forward as a central problem
of the Constructive (Algorithmic) Measurement Theory.

7.4.2.  Bashet�Mendeleev’s Problem

The constructive approach, at once, results in the optimization problem in
measurement theory which was not a topical problem for classical measurement
theory.  By studying the optimization problem in the measurement theory, we
come unexpectedly to a combinatorial problem known as a Problem about the
Choice of the Best Weights System.  For the first time, this prob�
lem appeared in the 1202 in Fibonacci’s Liber Abaci.  From Fi�
bonacci’s work this problem moved to the 1494 book Summa
de Arithmetica, Geomeytria, Proprtioni et Proportionalita by
Luca Pacioli.  After Pacioli’s work, this problem again appeared
in the 1612 book Collection of the Pleasant and Entertaining
Problems by the French mathematician Claude Gaspar Bachet
de Meziriac.

Claude Gaspar Bachet was born in Bourg�en�Bresse in Sa�
voy (France).  This was a region, which in different periods belonged to France,
Spain or Italy.  Therefore, the life of Claude Gaspar Bachet is connected with
France, Spain and Italy of that period.  He was a writer of books on mathemati�
cal puzzles and tricks that became a basis for all the books on mathematical puz�
zles.  Bachet’s 1612 book Collection of the Pleasant and Entertaining Problems
contains different numerical problems.  Fibonacci’s “weighing” problem is one of
them.  This problem was formulated as follows: “What is the least number of
weights used to weigh any whole number of pounds from 1 to 40 inclusively by
using a balance, if the weights can be placed on both balance cups?”

In the Russian historical�mathematical literature
[169] Fibonacci’s “weighing” problem is known also un�
der the name of the Bachet�Mendeleev problem in honor
of Bachet de Meziriac and the famous Russian chemist
Dmitri Mendeleev.  However, this raises the question:
why did the great Russian chemist become interested in
the “weighing” problem? The answer to this question re�
quires some little�known facts from the life of the great
scientist.  In 1892, Mendeleev was appointed the director
of the Russian Depot of Standard Weights, which, accord�

Claude Gaspar
Bachet de Meziriac

(1581�1638)

Dmitri Mendeleev
(1834�1907)
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ing to Mendeleev’s initiative, was transformed in 1893 to the Main Board of
Weights and Measures of Russia.  Mendeleev remained its director until the end
of his life.  Thus, the final stage of Mendeleev’s life (since 1892 until his death in
1907) was connected with the development of metrology.  During this period,
Mendeleev was actively involved in various problems connected with measures,
measurement and metrology; the “weighing” problem was one of them.  Men�
deleev’s contribution to the development of metrology in Russia was so great,
that he was named “the father of Russian metrology” and the “weighing” prob�
lem was named the Bachet�Mendeleev problem.

The essence of the problem consists of the following [169].  Suppose, we need
to weigh on a balance any integer�valued weight Q in the range from 0 up to Qmax

by using the n standard weights {q1, q2, …, q
n
}, where q1=1 is a measurement unit;

qi=ki×q1; ki is any natural number.  It is clear that the maximal weight Qmax is
equal to the sum of all the standard weights, that is,

Qmax = q1+ q2+ …+ q
n
 = (k1+ k2+…+ k

n
) q1.    (7.9)

We have to find the Optimal System of Standard Weights, that is, such
standard weight system, which gives the maximal value of the sum (7.9) with
a given measurement unit q1=1 among all possible variants.

There are two variants of the solution to the Bachet�Mendeleev problem.  In
the first case, the standard weights can be placed only on the free cup of the
balance; in the second case, they can be placed on both cups of the balance.  The
Binary Measurement Algorithm with the binary system of standard weights {1,
2, 4, 8,…, 2n�1} is the optimal solution for the first case.  It is clear that the binary
measurement algorithm generates the binary method of number representation:

Q ai
i

i

n
= ∑

=

−
2

0

1
,  (7.10)

where ai∈{0,1} is a binary numeral.
Note that the binary numerals 0 and 1 have a precise measurement interpre�

tation.  The binary numerals 0 and 1 encodes one of the two possible positions of
the balance; thus, ai=1, if the balance remains in the initial position after putting
a new standard weight on the free cup, otherwise a

i
=0.

The ternary system of the standard weights {1, 3, 9, 27,…, 3n�1} is the optimal
solution to the second variant of the “weighing” problem when we can put the
standard weights on both cups of the balance.  It is clear that the ternary system
of the standard weights results in the ternary method of number representation:

Q bi
i

i

n
= ∑

=

−
3

0

1
,  (7.11)

where bi  is a ternary numeral that takes the values {�1, 0, 1}.
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Hence, by solving the “weighing” problem, Fibonacci and his followers found a
deep connection between measurement algorithms and positional methods of num�
ber representation.  This is the key idea of algorithmic measurement theory [20,
21], which goes back to the “weighing” problem for its origin.  Thus, from the measure�
ment problem we come unexpectedly to the positional method of number representa�
tion � the greatest mathematical discovery of Babylonian mathematics.

7.4.3.  Asymmetry Principle of Measurement

The principles of Finiteness and Potential Feasibility of measurement, under�
lying the constructive measurement theory, are “external” with respect to the
measurement.  They have such a general character that there is a danger of their
reduction to some trivial result (for example, to the above binary measurement
algorithm that leads the measurement to the consecutive comparison of the measur�
able weight with the binary standard weights 2n�1, 2n�2, …, 20).

For obtaining non�trivial results, the methodological basis of the con�
structive (algorithmic) theory of measurement should be added to by a cer�
tain general principle, which follows from the essence of measurement.  Such
principle follows directly from the analysis of the binary measurement algo�
rithm, which is the optimal solution to Bachet�Mendeleev’s problem.

Q 
2n�1 

   2n�1<Q 20 2n�1 2n-2

...

...

    + 

2n�1 

2n�1 Q  20   2n�1   2n�2 

...

...

2n�2  20   2n�1 2n�2 

...

...

    + 

a) 

b) 

  c) 

Figure 7.3.  Asymmetry Principle of Measurement
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We will analyze the above binary measurement algorithm by means of the use
of the balance model (Fig. 7.3).  This analysis allows for finding a measurement
property of general character for any thinkable measurement, based on the com�
parison of the measurable weight Q with the standard weights.

We shall examine the weighing process of the weight Q on the balance, by
using the binary standard weights.  On the first step of the binary algorithm the
largest standard weight 2n�1 is placed on the free cup of the balance (Fig. 6.3�a).
The balance compares the unknown weight Q with the largest standard weight
2n�1.  After the comparison, we can get two situations: 2n�1<Q (Fig. 7.3�a) and
2n�1≥Q (Fig. 6.3�b).  In the first case (Fig. 7.3�a), the second step is to place the
next standard weight 2n�2 on the free cup of the balance.  In the second case
(Fig.7.3�b), the weigher should perform two operations.  First, one should
remove the previous standard weight 2n�1 from the free cup of the balance
(Fig. 7.3�b), after that, the balance should return to the initial position (Fig.
7.3�c).  After returning the balance to the initial position, the next standard
weight 2n�2 should be placed on the free cup of the balance (Fig. 7.3�c).

As we can see, both cases differ in their complexity.  In the first case, the weigher
fulfils only one operation, that is, he adds the next standard weight 2n�2 on the free
cup of the balance.  In the second case, the weigher’s actions are determined by
two factors. First, he has to remove the previous standard weight 2n�1 from the free
cup of the balance, and after that, the balance is back to the initial position.  After
that, the weigher has to place the next standard weight on the free cup of the bal�
ance. Thus, for the first case the weigher has to perform only one operation. How�
ever, for the second case the weigher has to perform two sequential operations:

(1) remove the previous standard weight 2n�1 from the free cup;
(2) place a new standard weight 2n�2 on the free cup of the balance.
In the second case, the weigher’s actions are more complicated in comparison

with the first case because the weigher has to remove the previous standard weight
taking into consideration the time necessary for the balance to return to its initial
position. By synthesizing the optimal measurement algorithms, we have to consider
these new data, which influence the process of measurement. We name this discov�
ered property of measurement, the Asymmetry Principle of Measurement [20].

7.4.4.  A New Formulation of the Bachet�Mendeleev Problem

Now, let us introduce the above measurement property into the Ba�
chet�Mendeleev problem.  For this purpose we will examine a measurement
as a process, running during discrete periods of time; let the operation to
“add the standard weight” be carried out within one unit of discrete time
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and the operation to “remove the standard weight” (which is followed by re�
turning the balance into the initial position) be carried out within p units of
discrete time, with p∈{0,1,2,3,…}.

It is clear that the parameter p simulates the Inertness of the balance.  Note that
the case p=0 corresponds to the “ideal situation” when we neglect the inertness of the
balance.  This case corresponds to the classical Bachet�Mendeleev problem.  For the
other cases p >0, we have some new variants of the Bachet�Mendeleev problem, which
are studied in the algorithmic measurement theory [20, 21].  Below we study other
generalizations of the Bachet�Mendeleev problem.

7.5.  Mathematical Model of Measurement

7.5.1.  A Notion of the “Indicator Element”

If we put forward a problem to create the Algorithmic Measurement The�
ory, we should define more exactly, what is a Measurement, what is the Purpose
of Measurement, what is a Measurement Algorithm, and How are the Measure�
ment Algorithms carried out.

First of all, we should note that, if we wish to measure something, we should
know the range of the measurable magnitude.  When we discuss “mathematical
measurement,” we are distracted from the physical nature of measurable magni�
tude.  We will present a Range of Measurable Magnitude in the form of the geo�
metric line segment AB.  Clearly the measurable magnitude is one of the possible
sizes of the magnitude that belong to the range of measurement, that is, prior to
the measurement, a certain “indeterminacy” about the measurable size exists be�
cause otherwise the measurement would be senseless.  We will represent this situ�
ation of “indeterminacy” by the “unknown” point X, which belongs to the line
segment AB.

Now, let us formulate a purpose for the measurement.  The purpose of the
measurement is to find the length of the “unknown” segment AX.  In practice
this purpose is carried out by means of special devices, for example, “balances”
or “comparators.” The “comparators” perform a comparison of the measurable
magnitude with some “measures,” generated from the “measure unit.” In de�
pendence on the result of comparison, the device “indicates” the result of com�
parison in the form of a binary signal 0 or 1.  Thus, the essence of the measure�
ment consists of Consecutive Comparisons of the measurable magnitude with
some “measures,” which are formed at each step of the measurement.  More�
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over, each step of the measurement depends on the results of comparison on the
preceding steps.

In order to model the process of comparison of the measurable segment
AX with the “measures,” we introduce the important concept of the Indicator
Element (IE), which is an original model of the “comparator” or “balance,” the
basic tool of any measurement.  Suppose that every IE can be put to any
“known” point C of the segment AB.  The indicator element provides the
information about the mutual positioning the “unknown” point X and the
“known” point C.  If the IE is to the right of the point X, it “generates” the
binary signal 0; otherwise, the binary signal 1.

7.5.2.  The (n, k, S)�algorithms

Some Conditions or Restrictions S (that follow, for example, from the “Princi�
ple of Asymmetry of Measurement”) can be imposed on the measurement pro�
cess; thus, by means of the restrictions S the “inertness” property of the balance

can be taken into consideration.
By using a concept of the in�

dicator elements, we can describe
the process of measurement in
terms of geometry.  Suppose we

have a line segment AB with some “unknown” point X (Fig. 7.4).
The problem is to find the length of line segment AX.  This is performed by

means of the k “Indicator Elements” (IE).  After we enclose the j�th IE (j=1,2,3,…,k)
at some point Cj, the line segments AX and ACj are compared, i.e. the relations “less
than” (AX< AC

j
) or “greater than or equal” (AX≥AC

j
) are defined.  The relations

“less than” and “greater than or equal” are encoded by the binary numerals 0 and 1,
which are generated by the IE in the process of measurement.  The problem of the
measurement of a line segment AX by the k IE’s is reduced to decreasing the Inde�
terminacy Interval about X according to the IE�“indications.”

A measurement procedure consists of the Measurement Steps: in the first
step the k IE’s are enclosed to some points of the line segment AB, and the
indeterminacy interval about X is diminished to the line segment A1B1 ac�
cording to the IE�“indications”; in the next step the IE’s are enclosed to the
points of the line segment A1B1, and so on.  The restrictions S are imposed on
the measurement procedure.  For the given restrictions S and the given n and
k,  the system of formal rules, which strictly define the points of the k IE’s
enclosures for each step in dependence on the IE�“indications” on the preced�
ing  steps,  is called the (n,k,S)�algorithm.

......

A B Ck Cj+1 Cj C2 C1 X 

Figure 7.4. A geometric model of measurement
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7.5.3.  The Optimal (n, k, S)�algorithms

A model of the indicator elements reduces the measurement problem to the
problem of searching the point X (its coordinate is equal to the length of the line
segment AX) within the line segment AB by means of the use of the k IE’s in n
steps.  The above approach allows one to use the methods of one�dimensional
search for the synthesis of the optimal measurement algorithms [20].

Let us consider the (n,k,S)�algorithm, which acts on the line segment AB.
Some “indeterminacy interval” ∆i, which contains the point X on the last step
of the algorithm, is the result of the (n,k,S)�algorithm for the certain point X.
Let us consider the action of the algorithm for all possible points X∈AB.  As
a result we obtain the set of line segments {∆i} called the Partition P of the Line
Segment AB, i.e.

P={∆1, ∆2 , …, ∆i , …, ∆N }.  (7.12)

For the general case, the partition (7.12) consists of the N line segments
of the kind ∆

i
.  They are not equal to one another in the general case.  Besides,

there is the following correlation for the partition P:

AB=∆1+∆2+…+∆N.  (7.13)

We choose from the partition (7.13) the largest line segment ∆max and
define the effectiveness of the (n,k,S)�algorithm by means of the line segment
∆max .  Consider the ratio

T
AB=

∆max

,  (7.14)

which is called the (n,k)�exactness of the (n,k,S)�algorithm.
In accordance with (7.14), each (n,k,S)�algorithm is characterized by the

number T, which is some numerical evaluation of the effectiveness of the (n,k,S)�
algorithm.  The availability of such a number T allows one to compare the dif�
ferent (n,k,S)�algorithms according to their effectiveness.  By using the defini�
tion (7.14), we can introduce the notion of an Optimal (n,k,S)�algorithm.

Definition 7.1.  For some given n, k, and S, the (n,k,S)�algorithm is called
optimal, if it provides a maximal value of the (n,k)�exactness T given by (7.14)
among all possible variants.

Note that this definition is based on the so�called Mini�max Principle [20].
This principle is used widely in the modern theory of optimal systems.  Ac�
cording to this principle we refer some strategy to the “optimal” strategy, if it
provides the maximal value of the efficiency criterion for the worst case.

It is easy to prove [20] that the optimal (n,k,S)�algorithm divides the line
segment AB into N equal parts, i.e.



Chapter 7
385

Algorithmic Measurement Theory

∆ ∆ ∆ ∆1 2= = = =... .N  (7.15)

For the case (7.15) we have the following expression for the (n,k)�exactness:

T
AB

N= =
∆

.  (7.16)

Thus, in accordance with (7.16) the n k,( ) �exactness of the optimal (n,k,S)�
algorithm coincides with the number N of the quantization levels that are pro�
vided by the optimal (n,k,S)�algorithm.

7.6.  Classical Measurement Algorithms

Over the millennia, the practice of human measurement found a number of
measurement algorithms that are widely used today in mathematics and mea�
surement technology.  The most common among them include the following:
Binary Algorithm, Counting Algorithm, Ruler Algorithm.  We will study these
algorithms by using the above “indicator” model of measurement (Fig. 7.4).

7.6.1.  The “Binary” Algorithm

The essence of the “Binary” Algorithm is demonstrated in Fig. 7.5.  It con�
sists of 3 steps (n steps in the general case) and uses only IE (k=1).  By using 3
steps, the algorithm divides the initial line segment [0,8] into 8 equal parts.

The First Step is to enclose the IE to the middle of the initial line segment
[0,8], i.e. to point 4.  After the first step there appear two situations in depen�
dence on the IE�“indication,” [0,4] and [4,8].

The Second Step:
(a) If the IE�“indication” in point 4 is equal to 0 (the IE appears to the left),

this means that the “unknown” point X is at the line segment [0,4].  For this
situation the second step of the “binary” algorithm is to enclose the IE to the
middle of the line segment [0,4], that is, to point 2.

(b) If the IE�“indication” in point 4 is equal to 1 (the IE appears to the right),
this means that the “unknown” point X is at the line segment [4,8]. For this
situation the second step of the “binary” algorithm is to enclose the IE to the
middle of the line segment [4,8], i.e. to point 6.

It is clear that after the second step four situations may appear as
shown in Fig. 7.5.
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The Third Step.  We can see from Fig. 7.5 that after the second step of the
“binary” algorithm we have the four “indeterminacy intervals” [0,2], [2,4], [4,6],
[6,8]. The third step of the “binary” algorithm is to enclose the IE at the middle
of one of the “indeterminacy intervals” [0,2], [2,4], [4,6], [6,8].   It follows from
Fig. 7.5 that the “binary” algorithm provides the following partition of the initial
line segments [0,8]:

P={[0,1], [1,2], [2,3], [3,4], [4,5], [5,6], [6,7], [7,8]},

that is, it divides the line segment [0,8] into 8 equal parts.
It is clear that the above “binary” algorithm is the (3,1,S)�algorithm and its

(3,1)�exactness is equal to T=23=8. It is easy to prove that the n�step “binary”
algorithm provides the (n,1)�exactness given by the following formula:

T n= 2 .  (7.17)

7.6.2.  The “Counting” Algorithm

Now, let us consider the so�called Counting Algorithm widely used in mea�
surement practice.  The “counting” algorithm (see Fig. 7.6) consists of 3 steps (n
steps in the general case) and uses only the IE (k=1).  It divides the initial line
segment [0,4] into 4 equal parts in 3 steps.

The First Step is to enclose the IE at the point 1. After the first step there appear
two situations, [0,1] and [1,4], depend on the IE�“indication” in point 1.

Figure 7.5.  The “binary” algorithm

1�st step 

2�d step 

3�d step 

0 8 4 

4 2 0 

8 6 4 

2 1 0 

4 3 2 

6 5 4 

8 7 6 
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The Second Step:
(a) If the IE�“indication” in

point 1 is equal to 0 (the IE appears
to the left), then the “unknown”
point X is at the line segment [0,1].
For this situation the measurement
process is over because the X�coor�
dinate (X∈[0,1]) is defined with
“exactness” equal to measurement
unit 1.

(b) If the IE�“indication” in point 1 is equal to 1 (the IE appears to the
right), this means that the “unknown” point X is at the line segment [1,4].
For this situation the measurement process will continue and the IE is en�
closed at point 2.

The Third Step.  We can see from Fig. 7.6 that on the third step the IE is
enclosed at point 3, which is from point 2 on the distance equal to the measure�
ment unit 1.

From the example in Fig. 7.6 we can find the following general rule for the
“counting” algorithm.  If on the i�th step of the “counting” algorithm, which
acts  at the line segment AB, the IE was enclosed at point C, then we have two
situations on the (i+1)�th step.  If the IE appears at point C to the left, then the
measurement procedure is over.  If the IE appears at point C to the right, then
we get the “indeterminacy interval” CB and the IE on the (i+1)�th step is en�
closed at point C′=C+1.

It is clear that the above “counting” algorithm is the (3,1,S)�algorithm
and its (3,1)�exactness is equal to T=4.  It is easy to prove that the n�step
“counting” algorithm has the (n,1)�exactness given by the following formula:

T n= +1.  (7.18)

7.6.3.  The “Ruler” Algorithm

Let’s consider one more example of the measurement algorithm widely
used in measurement practice.  The latter underlies the traditional measure�
ment ruler.  We call this algorithm the “Ruler” Algorithm.  The essence of the
latter is demonstrated in Fig. 7.7.

The “ruler” algorithm is performed in
1 step and uses the k IE (the 3 IE in Fig.
7.7).  The algorithm divides the initial
line segment into

1�st step 

2�d step 

3�d step 

0 4 1 

1 0 

4 2 1 

2 1 

4 2 3 

Figure 7.6.  The “counting” algorithm

0 4 3 1 2 

Figure 7.7.  The “ruler” algorithm
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T k= +1  (7.19)

equal parts (into 4 parts in Fig. 7.7).
The formula (7.19) gives the (1, k)�exactness of the “ruler” algorithm.  We

can see that the latter refers to a class of the (1,k,S)�algorithms.

7.6.4.  The Restriction S

The above definition of the (n,k,S)�algorithm includes a concept of the
Restriction S.  Clearly, any “restriction” limits the efficiency of the algorithm.
However, each “restriction” (as show below) can result in rather unusual
measurement algorithms, which are of theoretical and practical interest.

We start with the elementary “restrictions,” which can be found in the
comparative analysis of the classical measurement algorithms, in particular,
the “binary” algorithm and the “counting” algorithm.  Compare two 3�step
(n,k,S)�algorithms, shown in Figs. 7.5 and 7.6.  Both algorithms consist of 3
steps and use only the IE (k=1). What is the difference between them? The
difference consists in the character of the movement of the IE along the line
segment AB.  Consider the restriction S for the “binary” algorithm in Fig. 6.6.
Remember that the restriction S is imposed upon the movement of the IE along
the line segment AB.  We can see that the IE for the “binary” algorithms may
be enclosed at each step to the left or to the right of the “unknown” point X.
One may say that the movement of the IE for this case is performed with�
out any “restrictions.” Denote the restriction S for the “binary” algorithm
by S≡0. We will call the class of (n,k,S)�algorithms, which each individually
satisfy the restriction S≡0, the (n,k,0)�algorithms.

Consider the restriction S for the “counting” algorithm. We can see that
for this case the IE is moving along the line segment [0,4] in only one direc�
tion, namely, from the point 0 to the point 4. We denote the restriction of this
kind by S≡1 and call the class of (n,k,S)�algorithms satisfying the restriction
S≡1, the (n,k,1)�algorithms.

Note that the restrictions S≡0 and S≡1 are not the only possible “re�
strictions.” Below we will study the “restriction” S, which follows from the
above formulated Asymmetry Principle of Measurement.  It is important to
emphasize, that each “restriction” results in the development of one or an�
other class of the new measurement algorithms, which can be of theoretical
or practical interest; therefore, a search of reasonable “restrictions” impos�
able on the measurement algorithm, is an important problem in algorithmic
measurement theory.
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7.6.5.  Connection between Measurement Algorithms and Positional
Number Systems

There is a deep connection between measurement algorithms and positional
methods of number representation.  In fact, the “binary” algorithm generates
the binary representation of numbers:

A a a a a an
n

n
n

i
i= + + + + + +−

−
−

−
1

1
2

2
1

1
0

02 2 2 2 2... ... ,  (7.20)

where ai is a binary numeral {0,1}; 2i is the weight of the ith digit (i=0,1,2, …, n�1).
The formula (7.20) has the following “measurement” interpretation.  The

binary numerals a
n�1, an�1, …, a0  are the IE�“indications” on the first, second, ... ,

nth step of the “binary” algorithm, respectively.
One can readily see that the “counting” algorithm “generates” the

following method of number representation that underlies the Euclidean
definition of natural number:

N
N

= + + +1 1 1... .  (7.21)

The latter is well known as a Unitary Code of the number N.

7.7.  The Optimal Measurement Algorithms Originating Classical Position�
al Number Systems

7.7.1.  A General Method for the Synthesis of the Optimal (n,k,S)�
algorithms

For the synthesis of the optimal (n,k,S)�algorithm we use the Method of
Recurrence Relations [170].  To obtain the recursive relation for (n,k)�exact�
ness T of the optimal (n,k,S)�algorithm, we first formulate an Inductive As�
sumption: for any arbitrary n, k and S there is the optimal (n,k,S)�algorithm,
which divides the line segment AB into T equal line segments of length D, where
T is the (n,k)�exactness of the optimal (n,k,S)�algorithm.  For a given restriction
S, the (n,k)�exactness T depends on n and k.  We can present this dependence in
the form of some function of n and k, i.e.

T=F(n,k).  (7.22)

It is clear if the length D=1, then the line segment

AB=T=F(n,k).  (7.23)
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Consider the first step of the optimal (n,k,S)�algorithm, which acts on the
line segment AB (Fig.  7.8).

Let the first step be to enclose the k IE’s at some points C1,C2,…,Cj,Cj+1, …, Ck.
Then, according to the IE�“indications” the following (k+1) different situations
may result:

1 2 1 11 1 2 1( ) ∈ ( ) ∈ +( ) ∈ +( ) ∈+X AC X C C j X C C k X C Bj j k; ; ...; ; ...; .  (7.24)

The second step of the optimal (n,k,S)�algorithm is to enclose the IE’s at the
points of the new “indeterminacy interval,” which is one of the line segments
(7.24).  It is clear that for this situation we can use the optimal (n�1)�algorithm.
However, the number of the IE’s on the second step depends on the restriction
S.  Suppose, that in accordance with the restriction S we can use only the r IE’s
(r≤k) on the second step of the algorithm.  Note that the number r may vary for
the different situations (7.24).

Suppose that the line segment C
j
C

j+1 is the “indeterminacy interval” on the
second step.  Since on the second step we have r IE’s and (n�1) steps of the algo�
rithm, we can use the optimal (n�1,r,S)�algorithm on the line segment C

j
C

j+1.  In
accordance with the inductive assumption, the (n�1,r,S)�algorithm will divide
the line segment CjCj+1 into F(n�1,r) equal line segments of length ∆=1,  i.e.

C
j
C

j+1 = F(n�1,r).  (7.25)

Using the equality (7.13), we can write:

AB=AC1+ C1C2+…+ CjCj+1+…+CkB.  (7.26)

Using (7.23) and (7.25), we can get the recursive relation for the calcula�
tion of the function (7.23).

7.7.2.  The Optimal (n,k,0)�algorithms

Now, we can use the above method for the synthesis of the optimal (n,k,0)�
algorithm.  Recall that the restriction S≡0 means what each IE may be en�
closed at any arbitrary point of the line segment of AB on each step.

According to the above method, one of the situations (7.24) appears after the
first step of the optimal (n,k,0)�algorithm.  Consider the situation: X∈CjCj+1, which
can appear after the first step of the algorithm.  Then in accordance with the restric�
tion S≡0, the second step of the optimal (n,k,0)�algorithm is to enclose all k IE’s at
the points of the new line segment CjCj+1. If we use the (n�1,k,0)�algorithm on the

A B Ck Cj+1 Cj C2 C1 

......

Figure 7.8.  The first step of the optimal (n, k, S)�algorithm
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“indeterminacy interval” CjCj+1, then in accordance with the inductive assumption we
can divide the line segment CjCj+1 into F(n�1,k) equal parts  ∆=1, i.e.

C
j
C

j+1 = F(n�1,k).  (7.27)

The expression (7.27) is valid for any arbitrary line segment from the set
(7.24).  Then, by using (7.26), we obtain the following recursive relation for
the calculation of the function F(n,k):

F(n,k)=(k+1)F(n�1,k).  (7.28)

The recursive function (7.28) can be expressed in explicit form.  For this
purpose, we can use the recursive relation

F(n�1,k)=(k+1)F(n�2,k)

for the representation of (7.28) in the following form:

F(n,k)=(k+1)(k+1)F(n�2,k).

By continuing this process, we can represent the function (7.28) in the fol�
lowing form:

F(n,k)=(k+1)n�1F(1,k).  (7.29)

Thus, according to (7.29) the solution to the problem is reduced to obtain�
ing the expression for the function F(1,k). The latter is the expression for the
(1,k)�exactness of the optimal (1,k,0)�algorithm.  Remember that the (1,k,0)�
algorithm consists of 1 step.  This step is to enclose the k IE’s at the points of the
line segment AB.  It is easy to prove that in this case the optimal solution is to
divide the line segment AB into (k+1) equal parts.  It follows from this consid�
eration that the (1,k)�exactness of the optimal (1,k,0)�algorithm is equal to

F(1,k)=k+1.  (7.30)

By substituting (7.30) into (7.29), we obtain the expression for the function
(7.28) in the explicit form:

F(n,k)=(k+1)n .  (7.31)

The expression (7.31) allows one to formulate the essence of the optimal (n,k,0)�
algorithm.  Each step of the algorithm is to divide the initial “indeterminacy inter�
val” (the line segment AB) and all the next “indeterminacy intervals” into (k+1)
equal parts.  As a result of the application of the algorithm, we obtain the formula
(7.31), which characterizes the effectiveness of the optimal (n,k,0)�algorithm.

7.7.3.  Special Cases of the Optimal (n,k,0)�algorithm

Consider some special cases of the optimal (n,k,0)�algorithm.  For the
case k=1 the formula (7.31) is reduced to the formula (7.17), which expresses
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the (n,1)�exactness of the “binary” algorithm.  For the case n=1 the formula (7.31)
is reduced to the formula (7.19), which expresses the (1,k)�exactness of the “rul�
er” algorithm.  It follows from this examination that the well�known measure�
ment algorithms, “binary” algorithm and “ruler” algorithm, are partial cases of
the optimal (n,k,0)�algorithm.

Similar to the “binary” algorithm, which generates the “binary” number
system (7.20), the optimal (n,k,0)�algorithms generate the positional number
systems with radix R=k+1, i.e.

A=a
n�1R

n�1+ a
n�2R

n�2+…+a
i
Ri+…+ a1R

1+ a0R
0,  (7.32)

where ai∈{0,1,2,3,…,k} is a numeral of the ith digit.
The expression (7.32) has the following “measurement” interpretation.  The

numeral a
n�1 in (7.32) encodes the “indications” of the IE’s on the first step of the

optimal (n,k,0)�algorithm according to the rule:

0 000 00
1 100 00
2 110 00

1 111 10
111 11

=
=
=

− =
=

...
...
...

...
...
...

k
k

 (7.33)

The numeral a
n�2 encodes the “indications” of the IE’s on the second step of

the algorithm and the numerals a1 and a0 encode the “indications” of the k IE’s
according to the rule (7.33) on the (n�1)�th and n�th steps of the optimal
(n,k,0)�algorithm, respectively.

It is clear that for k=9  the optimal (n,9,0)�algorithm generates the deci�
mal system and for k=59 the Babylonian sexagesimal system.  It follows from
this consideration that the optimal (n,k,0)�algorithms generate all historical�
ly well�known positional systems.

7.8.  Optimal Measurement Algorithms Based on the Arithmetical Square

7.8.1.  The Optimal (n,k,1)�algorithms

Consider the class of the (n,k,1)�algorithms.  Remember that the restriction
S≡1 means that the indicator elements (IE) are moving along the line segment
AB only in the direction from point A to point B.  This means, if any IE on any step
is found to the right of the “unknown” point X, then this IE will “leave the field,”
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i.e. this IE cannot be used for further measurement.  Note that the above “count�
ing” algorithm (Fig. 7.6) is the simplest example of the restriction S≡1.

Let the first step of the optimal n k, ,1( ) �algorithm be to enclose the k IE’s
to the certain points C1,C2,…,Cj,Cj+1, …, Ck of the line segment AB (Fig. 7.8).
Consider the situations (7.24) that can appear after the first step of the algo�
rithm.  Consider the situation

X∈CjCj+1.  (7.34)

It is clear for the situation (7.34) that the j IE’s are on the left of the “un�
known” point X and the rest, the (k�j)�th IE’s, are on the right of point X.

In accordance with the restriction S≡1, the (k � j) IE’s, which are on the
right of the “unknown” point X, cannot be used for further measuring.  This
means that the second step of the algorithm is to enclose to the line segment
CjCj+1 only those j IE’s which are found on the left of the “unknown” point X
after the first step of the algorithm.  That is why we can only use the optimal (n�
1,j,1)�algorithm for the situation (7.34).  In accordance with the inductive as�
sumption, the optimal (n�1,j,1)�algorithm can divide the line segment  CjCj+1

into F(n�1,j) equal parts ∆=1, that is,

C
j
C

j+1=F(n�1,j).  (7.35)

Consider the situations

X∈AC1  (7.36)

and

X∈CkB.  (7.37)

For the situation (7.36) all IE’s are to the right of the point X after the first
step.  This means that all IE’s “leave the field” and the process of the measure�
ment is over.  It is clear from this examination that the line segment AC1 must be
the line segment of a single length, i.e.

AC1=1.  (7.38)

For the situation (7.37) all IE’s are to the left of point X after the first step of
the algorithm and they can be enclosed to the points of the line segment C

k
B on

the second step of the algorithm.  Using the optimal (n�1,k,1)�algorithm, we can
divide the line segment C

k
B into F(n�1,k) equal parts ∆=1, i.e.

C
k
B=F(n�1,k).  (7.39)

Using the expressions (7.26), (7.35), (7.38), (7.39), we obtain the follow�
ing recursive relation for the calculation of the function F(n,k), which gives the
(n,k)�exactness of the optimal (n,k,1)�algorithm:

F(n,k)=1+F(n�1,1)+F(n�1,1)+F(n�1,2)+…+F(n�1,j)+…+F(n�1,k�1)+F(n�1,k). (7.40)
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Using the recursive relation (7.40), we can write the following recursive for�
mula for the calculation of the function  F(n, k�1):

F(n,k�1)=1+F(n�1,1)+F(n�1,1)+F(n�1,2)+…+F(n�1,j)+…+F(n�1,k�1).  (7.41)

Comparing the expressions (7.40) and (7.41), we can rewrite the recursive
relation (7.40) in the following form:

F(n,k)= F(n,k�1)+ F(n�1,k�1).  (7.42)

Calculating the values of the function F(n, k) for the special cases n=0 and
k=0, we clearly have:

F(0,k)=1  (7.43)

F(n,0)=1.  (7.44)

For an explanation of the “physical sense” of the expressions (7.43) and (7.44)
we can examine the optimal (n, k,1)�algorithm for cases n=0 and k=0.  The case
n=0 means that we do not have any step for the measurement and, hence, the
“indeterminacy interval” (the line segment AB) cannot be decreased.  Thus, the
expression (7.43) is valid.

Now, suppose that k=0. This means that we do not have any “Indicator
Elements” for the measurement and the “indeterminacy interval” (the line seg�
ment AB) cannot be decreased.  Thus, the expression (7.44) is valid.

7.8.2.  Arithmetical Square

Using the recursive relation (7.42) with the initial terms (7.43) and (7.44),
we can construct a table of the values of the function F(n,k) (Table 7.1).  We
can see that Table 7.1 coincides with the well�known Arithmetical Square or
Pascal Triangle and that the terms F n k,( )  are Binomial Coefficients, that is,

 F n k C Cn k
k

n k
n, .( ) = =+ +  (7.45)

Table 7.1.  Arithmetical Square

k n n

F n

F n

/ ...

...

... ,

... ,

0 1 2 3 4 5

0 1 1 1 1 1 1 1

1 1 2 3 4 5 6 1

2 1 3 6 10 15 21 2

( )
( ))
( )
( )

3 1 4 10 20 35 56 3

4 1 5 15 35 70 126 4

5 1 6 21 56 126 252

... ,

... ,

..

F n

F n

.. ,

, , , , , ... ,

F n

k F k F k F k F k F k F n k

5

1 1 2 3 4 5

( )

( ) ( ) ( ) ( ) ( ) (( )
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7.8.3.  The Optimal Measurement Algorithms Based on Arithmetical
Square

The arithmetical square (Table 7.1) allows to demonstrate the optimal
(n,k,1)�algorithm.  In fact, for the given n and k, the value of the function F(n,k)
is at the intersection of the n�th column and k�th row of the arithmetical square.
The coordinates of the k IE’s, which should be enclosed to the points
C1,C2,…,Cj,Cj+1, …, Ck  of the initial line segment AB, are in the n�th column of
the arithmetical square, that is,
AC AC F n AC F n j AC

F n j AC F n

j j

k

1 2 11 1 1= = ( ) = −( )
= ( ) =

+, , , ..., , ,

, , ..., ,kk −( )1 .  (7.46)

If after the first step of the algorithm the j IE’s are to the left of point X and the
rest (k�j) IE’s are to the right of X, the “indeterminacy interval” about X is dimin�
ished up to the line segment C

j
C

j+1.  The length of the latter is equal to the binomi�
al coefficient F(n,j).  This binomial coefficient is at the intersection of the (n�1)�th
column and the j�th row of the arithmetical square.  To obtain the binomial coeffi�
cient F(n,j) we have to move from the initial coefficient F(n,k) by one column to
the left and by (k�j) rows upwards.  On the second step we have to accept the
point C

j
 as the new beginning of coordinates.  Here the second step is to enclose j

IE’s to the points D1, D2, …, D
j
 of the new “indeterminacy interval” C

j
C

j+1.  The
coordinates of the points D1, D2, …, Dj  with respect to the point Cj � the new begin�
ning of coordinates � are in the (n�1)�th column of the arithmetical square, that is,

C D C D F n C D F n C D F n jj j j j j1 2 31 1 1 1 2 1 1= = −( ) = −( ) = − −( ), , , , , ..., , .  (7.47)

This process continues up to the exhaustion either of all measurement steps
or all IE’s.

7.8.4.  The Example of the Optimal (n, k, 1)�algorithm

Consider the optimal (3, 3, 1)�algorithm (Fig. 7.9).  The algorithm con�
sists of 3 steps (n steps in the general case) and uses 3 IE’s (k IE’s in the
general case).  The value of the initial “indeterminacy interval” is the binomi�
al coefficient F(3, 3)=20, which is at the intersection of the 3�d column and 3�
d row of the arithmetical square.

The first step of the algorithm at line segment [0,20] is to enclose 3 IE’s to
the points 1, 4, 10 (Fig. 7.9).  In accordance with the IE�“indications,” four
situations may appear after the first step: [0,1], [1,4], [4,10], [10,20].

The second step:
(1�a) For the situation [0,1] the process of measurement is over because all

IE’s are on the right of the point X.
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(1�b) For the situa�
tion [1,4] we have the
only 1 IE, which can be
enclosed at point 2.

(1�c) For the situa�
tion [4,10] we have 2
IE’s, which can be en�
closed to points 5 and 7.

(1�d) For the situa�
tion [10,20] we have 3 IE’s.  For this case the coordinates of three points of the
IE’s enclosing line segment [10,20] with respect to the point 10, the new begin�
ning of coordinates, are in the second column of the arithmetical square (Table
7.1) above binomial coefficient 10.  Those are the binomial coefficients 1, 3, 6.  By
summing these numbers with the number 10, we obtain the coordinates of the
points of the IE’s enclosed on the second step, namely: 11=10+1, 13=10+3, and
16=10+6.

The third step.  After the second step, the following situations will appear: [1,2],
[2,4], [4,5], [5,7], [7,10], [10,11], [11,13], [13,16], [16,20]. Note that for the situa�
tions [1,2], [4,5], [10,11] the measurement process is over on the second step.

It is clear from Fig. 7.9 that the optimal (3,3,1)�algorithm can divide the
initial line segment [0,20] into 20 equal parts.

7.9.  Fibonacci Measurement Algorithms

7.9.1.  The Optimal Measurement Algorithms Based on the Fibonacci
p�numbers

Return to the “indicator” measurement model (Fig. 7.4) and try to intro�
duce the above Asymmetry Principle of Measurement into this model.  The
following “restriction” to the movement of the IE along the line segment AB
follows from the Asymmetry Principle of Measurement.

Suppose that the IE is enclosed at the point C on the first step of the n�
step measurement algorithm (Fig. 7.10).

Thereafter, two situations (a) and (b) appear after the first step, as shown
in Fig. 7.10.  It is clear that for the situation (a) we can enclose the IE at any
point of the “indeterminacy interval” CB on the next step.  For the situation (b)

(1a) 

(1b) 

(1c) 

(1d) 

1 0 

4 2 1 

0 20 1 104 

10 7 5 4 

2016131110

Figure 7.9.  The optimal (3, 3, 1)�algorithm
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we do not have the right to en�
close the IE to the points of the
“indeterminacy interval” AC, be�
cause on the first step the balance
moves to the opposite position
and we need p units of discrete
time for returning the balance
into the initial position.  Thus,
the restriction S, which follows
from the Asymmetry Principle of Measurement, consists of the fact that for the
situation (b) it is forbidden to enclose the IE to the points of the line segments
AC during the next p steps of the algorithm.

We can use the above restriction for synthesis of the optimal measurement
algorithm.  Here we introduce the following “inductive assumption.” Suppose that
for the given n≥0 and p≥0 there is the optimal n�step measurement algorithm,
which divides the initial line segment AB into Fp(n) equal parts of ∆=1, that is,

AB=Fp(n).  (7.48)

Suppose that the first step of the algorithm is to enclose the IE at the
point C (Fig.  7.10).  Then, after the first step two situations can appear.  Line
segment CB is the “indeterminacy interval” for situation (a).  According to
the restriction S we can enclose the IE at any point of CB on the second step.
By using the optimal (n�1)�step algorithm in this situation we can divide the
line segment CB into the F

p
(n�1) equal parts ∆=1 and, hence,

CB = F
p
(n�1).  (7.49)

Line segment AC is the “indeterminacy interval” for the situation (b).
According to the restriction S, we cannot enclose the IE to the points of the
line segment AC during the next p steps of the algorithm.  Let us consider the
situation (b) for two possible cases: (1)  p≥n�1 (2) p<n�1.

It is clear that all steps of the algorithm for case (1) will be “exhausted”
much earlier before the “prohibition” to enclose the IE to the points of the
line segment AC will be taken off.  This means that for situation (1) the mea�
surement is over after the first step.  That is why line segment AC should be
the line segment of unit length, that is,

AC=1.  (7.50)

Consider the situation (b) for case (2).  For this case we have the right to
enclose the IE to the points of the line segment AC only after p steps.  Then,
acting by the optimal  (n�p�1)�algorithm we can divide the line segment AC
into the  F

p
(n�p�1) equal parts D=1, that is,

A 

A B C 

C 

B C 

F(n�1) 

F(n�p�1) 

(a) 

(b) 

Figure 7.10.  The first step of the Fibonacci
measurement algorithm
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AC=Fp(n�p�1).  (7.51)

Taking into consideration that AB=AC+CB, we can write the following
expression for the function F

p
(n)  for cases (1) and (2), respectively:

Fp(n)= Fp(n�1)+1 with    p≥n�1  (7.52)

F
p
(n)= F

p
(n�1)+ F

p
(n�p�1) with   p<n�1.  (7.53)

Note that the recursive formula (7.53) coincides with the recursive for�
mula for the Fibonacci p�numbers introduced in Chapter 4.  That is why the
measurement algorithms that correspond to the mathematical formulas
(7.52) and (7.53) were called Fibonacci Measurement Algorithms [20].  Re�
member that Fibonacci p�numbers is a numerical sequence that is given by
the following recursive relation

Fp(n)=Fp(n�1)+ Fp(n�p�1)  (7.54)

at the seeds:

 F
p
(1)= F

p
(2)=…= F

p
(p+1)=1.  (7.55)

Consider in greater detail the mathematical formulas (7.52) and (7.53).  For
the case p≥n�1 the Fibonacci measurement algorithms are described by the for�
mula (7.53).  The recursive relation (7.52) may be expressed in the explicit
form.  In fact, by decomposing the function Fp(n�1) in (7.52) and all the fol�
lowing functions F

p
(n�2), F

p
(n�3), F

p
(1) in accordance with the same recur�

sive relation (7.52), we obtain the following expression:

Fp(n)=n+Fp(0).  (7.56)

It follows from the “physical” reasoning that F
p
(0)=1 and then the expres�

sion (7.56) may be represented in the following “explicit” form:

Fp(n)=n+1.  (7.57)

Note that the formula (7.57) generates the natural numbers.
By joining the formulas (7.57) and (7.53), we can write the following

expression for the function  Fp(n)

F n
n p n

F n F n p p np
p p

( ) .=
= ≥ −

−( ) + − −( ) < −




1 1

1 1 1

with

with  (7.58)

Consider some special cases of the formula (7.58) for the different values of p.
Let p=0. For this case the formula (7.58) is reduced to the following:

F0(n)=2 F0(n�1)  (7.59)

F0(0)=1.  (7.60)

It is clear that the recursive formula (7.59) at seed (7.60) generates the
“binary” sequence:
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1, 2. 4. 8, 16, …, F0(n)=2n�1.
It is clear that the Fibonacci measurement algorithm that corresponds to

this case is reduced to the classical “binary” algorithm.
Let p=∞. This means that the IE “leaves the field” when it is on the right

of the point X.  For this case the formula (7.58) takes the form of the expres�
sion (7.57) that generates natural numbers.  It is clear that the classical “count�
ing” algorithm is the optimal Fibonacci measurement algorithm correspond�
ing to this case.  Table 7.2 gives the values of the (n,1)�exactness (7.58) of the
optimal Fibonacci algorithms for the different values p.

The expression (7.58)
gives the (n,1)�exactness
of the optimal n�step Fi�
bonacci algorithm for the
restriction S that follows
from the Asymmetry Prin�
ciple of Measurement.  We
find the expression for the
standard weights for Fi�
bonacci algorithms in the
form:

{W
p
(1), W

p
(2), …, W

p
(i), …, W

p
(n)},

where Wp(i) is the i�th standard weight.  It is easily proven that the standard
weight W

p
(n) is given by the following expression:

W
p
(n)= W

p
(n�1)+W

p
(n�p�1)  with     n>p+1  (7.61)

Wp(1)= Wp(2)= … = Wp(p+1)=1.  (7.62)

Table 7.3 gives different variants of the standard weight systems correspond�
ing to different values of p.

A comparison of the expressions (7.61) and (7.62) with expressions (7.52)
and (7.53) shows that
the standard weights
Wp(n) for Fibonacci’s
measurement algo�
rithms coincide with
the p�Fibonacci num�
bers [20], in particular,
with the classical Fi�
bonacci numbers for
the case p = 1 .

W n n

W n

W n

W n

p ( )
( )
( )
(

/ 1 2 3 4 5 6 7 8 9

1 2 4 8 16 32 64 128 256

1 1 2 3 5 8 13 21 34
0

1

2 ))
( )

( )∞

1 1 1 2 3 4 6 9 13

1 1 1 1 2 3 4 5 7

1 1 1 1 1 1 1 1 1

3W n

W n

Table 7.3.  Standard weights for the Fibonacci
measurement algorithms

F n n

F n

F n

p ( )
( )
( )

/ 1 2 3 4 5 6 7 8 9

2 4 8 16 32 64 128 256 512

2 3 5 8 13 21 34 55 89
0

1

FF n

F n

F n

2

3

2 3 4 6 9 13 19 28 41

2 3 4 5 7 10 14 19 26

2 3 4 5 6 7

( )
( )

( )∞ 88 9 10

Table 7.2.  The (n,1)�exactness of the Fibonacci
measurement algorithms
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7.9.2.  The Example of  the Fibonacci Measurement Algorithm

Here we examine the optimal Fibonacci’s measurement algorithm given by
the expression (7.58) for the case p=1.  Let n=5.  Consider the 5�step Fibonacci
algorithm (Fig. 7.11) corresponding to the case p=1.  It follows from Table 7.2
that the above 5�step Fibonacci algorithm provides the (5,1)�exactness F1(5)=13.
This means that the optimal 5�step Fibonacci algorithm divides the line segment
[0,13] into 13 equal parts.  Thus, the given Fibonacci measurement algorithm
consists of 5 steps and uses 5 standard weights {1, 1, 2, 3, 5} (see Table 7.3).

Let us consider the first 3 steps of the given algorithm.
The first step.  We can use the first standard weight 5 for comparison with

the measurable weight.  This means that in the terms of the “indicator” model
we have to enclose the IE at the point 5 of the line segment [0,13] (Fig. 7.11).
We can see that the first step consists in the division of the line segment
[0,13] in the Fibonacci ratio: 13=5+8. Two situations (a) and (b) (Fig. 7.11)
can appear after the first step.

The second step.  For situation (a) we can use the next standard weight 3 and
divide the line segment [5,13] by the IE in the Fibonacci ratio: 8=3+5. Two new
situations (c) and (d) (Fig. 7.11) appear after the second step.

0 135

1385

0 5

forbidden 
10 138

85

forbidden 
0 2 5

10 13

108

forbidden
2 5

0 2 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i)

Figure 7.11.  Example of the Fibonacci measurement algorithm
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For the situation (b) the second step is “empty” because in accordance with
restriction S it is forbidden to enclose the IE to the points of the line segment [0,
5] on the second step.

The third step. For the situation (c) we can use the next standard weight
2 to divide the line segment [8,13] in the Fibonacci ratio: 5=3+2. Two new
situations (f) and (g) appear after the third step.

For the situation (e) we can return to the situation (b) on the third step.
In accordance with the restriction S we can enclose the IE at any point of the
line segment [0,5] on the third step.  We can use the standard weight 2 to
divide the line segment [0,5] in the Fibonacci ratio: 5=2+3. Two new situa�
tions (h) and (i) appear after the third step.

It is easy to trace the actions of the Fibonacci algorithm for the next two
steps (Fig. 7.11).

We can see from this example that the essence of the Fibonacci measure�
ment algorithm is to divide the “indeterminacy interval” obtained on the pre�
ceding step in the Fibonacci ratio.  It is easy to show that this general principle
is valid for any arbitrary p.  The division of the “indeterminacy interval” for this
case is affected according to the recursive relation for Fibonacci p�numbers.

7.10.  The Main Result of Algorithmic Measurement Theory

7.10.1.  A Further Generalization of the Bachet�Mendeleev Problem

We can give a further generalization of the Bachet�Mendeleev problem
[20].  Suppose that we use k balances simultaneously (k is a natural number, 1,
2, 3 …).  We can imagine that one and the same measurable weight Q is on the
left�hand cups of all balances.  Such a situation arises for the case of the “par�
allel measurement” of one and the same measured magnitude Q, when we
compare the measurable magnitude Q with the standard weights by means of
k “comparators” (such situation is widely used in the measurement of electric
magnitudes).  In this case the generalized Bachet�Mendeleev problem can be
formulated as follows: it is necessary to synthesize the optimal n�step mea�
surement algorithm to determine the value of the measurable magnitude Q
with the help of k balances (“comparators”), which have the “inertness” р, for
the condition that on each step the standard weights can be placed on the free
cups of those balances, which are in the initial state.
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Suppose that all balances, which participate in measuring, have the “inert�
ness” p (p=0, 1, 2, 3, …). This results in the problem to find the “parallel” optimal
(n,k,S)�algorithm, which uses k balances having the “inertness” p.  For the simula�
tion of the “inertness” of the balances (or “Indicator Elements”) we can introduce
the notion of the state of the j�th IE on the l�th step (j=1, 2, 3, …, k; l=1, 2, 3, …, n).
Denote the latter by p

j
(l). It follows from the physical examination of the Bachet�

Mendeleev problem that the integer function pj(l) has the following properties:

0≤ pj(l)≤p  (7.63)

p
j
(l+1)= p

j
(l)�1.  (7.64)

We can clarify the “physical sense” of the expressions (7.63) and (7.64).  Note
that the case p

j
(l)=0 means that the j�th balance is in the initial position (Fig. 7.3�

a) and the case p
j
(l)=p means that the balance is in the opposite position (Fig. 7.3�

b).  The expression (7.64) depicts the process of returning the j�th balance from
the opposite position (Fig. 7.3�b) to the initial position (Fig. 7.3�a).  According to
(7.64) the state of the IE is decreased by 1 on the next step.  Thus, if the j�th IE on
the l�th step of the algorithm turns out to be in the state pj(l)=p,  then its states on
the next steps will decrease successively according to the following:

pj(l)=p→ pj(l+1)=p�1→ pj(l+2)=p�2→ … → pj(l+p�1)=1→ pj(l+p)=0.

Note that the case of pj(l)=0 means that the j�th IE on the l�th step of the
algorithm may be enclosed to the points of the “indeterminacy interval.”

After such preliminary remarks we can try to synthesize the optimal (n,k,S)�
algorithm.  Before the l�th step is carried out, we renumber all indicator ele�
ments so that their states would be arranged according to the rule:

pk(l)≥ pk�1(l)≥ pk�2(l)≥ … ≥p2(l)≥ p1(l),  (7.65)

where pj(l) is the state of the j�th IE on the l�th step (j=1,2,3, …, k; l=1,2,3, …, n).
We denote the IE�states on the first step of the (n,k,S)�algorithm by p1, p2,

p3, …, pk.  The initial IE�states are disposed in accordance with (7.65), that is,

pk≥ pk�1≥ pk�2≥…≥ p2≥ p1.  (7.66)

7.10.2.  The Main Recursive Relation of the Algorithmic Measurement
Theory

We denote the (n,k)�exactness of the optimal (n,k,S)�algorithm for this case by

F(n,k)=F
p
(n; p1, p2, p3, …, p

k
).

Let the initial IE�states p1, p2, p3, …, pk be disposed according to (57) so
that the first t states p1, p2, p3, …, p

t
 are equal to 0, that is,
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p1=p2= p3= …= pt =0.  (7.67)

This means that only the first t IE’s, which satisfy (7.66), can be enclosed to
the points of the line segment AB on the first step of the (n, k, S)�algorithm.

Suppose there is the optimal (n, k, S)�algorithm, which for the above restric�

tion divides the line segment AB into Fp n p p p
t

t t k
; , , ..., , , , ...,0 0 0 1 2+ +









  equal parts of

∆=1.  Let the first step of the algorithm be to enclose the t IE’s to the points  C1,
C2, …, Ct  (Fig. 7.12).

After the first step of the algorithm, the (t+1) situations

X∈AC1, X∈ C1C2, …,  X∈CjCj+1, …,  X∈CtB

appear dependent upon the “indications” of the t IE’s.
Consider the situation X∈ΑC1. For this situation all t IE’s are on the right of

the “unknown” point X and hence they turn into the states of p after the first
step.  In accordance with property (7.64) the rest of the (k�t) IE’s decrease their
states by 1 on the second step, that is, their states are:

pt+1�1, pt+2�1, …, pk�1.

If we arrange all k IE’s in accordance with (7.65), we obtain the following IE�
states on the second step of the algorithm:
p p p p p pt t k

t

+ +− − −1 21 1 1, , ..., , , , ..., .  (7.68)

If we use the optimal (n�1,k,S)�algorithm with the initial IE�states (7.68)
for this situation, then in accordance with the inductive assumption we can
divide the line segment AC1 into

F n p p p p p pp t t k

t

− − − −










+ +1 1 1 11 2; , , ..., , , , ...,

equal parts of ∆ = 1.
Consider the situation X∈C1C2. It follows from Fig. 7.12 that for this case

the j IE’s are on the left of the point X and hence remain in the 0�states, the
(t�j) IE’s turn into the p states and the rest of the (k�t) IE’s decrease their
states by 1, that is,

p
t+1�1, p

t+2�1, …, p
k
�1.

A BCt Cj+1CjC2C1 

... ... 
t+1j+1 2 1 

Figure 7.12.  Synthesis of the optimal (n, k, S)�algorithm
for the general case
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If we arrange all k IE’s in accordance with (7.65), we obtain the following
sequence of the IE�states on the second step of the algorithm:
0 0 0 1 1 11 2, , ..., , , ..., , , , ..., .,

j

t t k

t j

p p p p p p+ +

−

− − −  (7.69)

If we use the optimal (n�1,k,S)�algorithm with the initial IE�states (7.69)
for this situation, then in accordance with the inductive assumption we divide
the line segment C

j
C

j+1  into

F n p p p p p pp

j

t t k

t j

− − − −+ +

−

1 0 0 0 1 1 11 2; , , ..., , , , ..., , , , ...,














equal parts of ∆ = 1.
At least, it is easy to show that for situation X∈C

t
B  the optimal (n�1,k,S)�

algorithm divides the line segment CtB  into

F n p p pp

t

t t k− − − −










+ +1 0 0 0 1 1 11 2; , , ..., , , , ...,

equal parts of ∆ = 1.
Taking into consideration the evidence equality

AB AC C C C C C Bj j t= + + + + ++1 1 2 1... ... ,

we obtain the following recursive relation for the calculation of (n,k)�exactness
of the optimal (n,k,S)�algorithm:

F n k F n p p p

F n

p

t

t t k

p

, ; , , ..., , , , ...,

;

( ) =












= −

+ +0 0 0

1

1 2

00 0 0 1 1 11 2, , ..., , , , ..., , , , ...,
j

t t k

t j

p p p p p p+ +

−

− − −












=

∑
j

t

0

.
 (7.70)

Define the initial conditions for the calculation of Fp(n,k) according to the
recursive relation (7.70).  We take into consideration that for the cases n=1 and
p1=p2=p3=…=p

t
=0, p

t+1>0 the optimal (1,k,S)�algorithm divides the line segment
AB into t=1 equal parts, that is,

F p p p tp

t

t t k1 0 0 0 11 2; , , ..., , , , ..., .+ +













= +  (7.71)

Let us introduce the following definition:

F n k
n

np ,
,

,
.( ) =

<
=





0 0

1 0

with

with  (7.72)

It follows from the “physical sense” of the function  F(n,k)=F
p
(n; p1, p2, p3, …,

pk) that for the case n≥p1>0 we have:
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Fp(n; p1, p2, p3, …, pk)=Fp(n�p1; 0, p2� p1, p3�p1, …, pk�p1).  (7.73)

The recursive relation (7.70) at the initial terms (7.71) and (7.72) is the main
result of the algorithmic measurement theory.  This recursive relation gives a the�
oretically infinite set of optimal measurement algorithms for the given n, k and p.

7.10.3.  The Unusual Results

The recursive relation (7.70) at the initial terms (7.71) and (7.72) contains a
number of remarkable formulas of discrete mathematics.

Consider now the case of p=0. This means that the IE�states are equal to 0
on each step of the algorithm, that is,

pk(l)= pk�1(l)= … = p2(l)= p1(l)=0.  (7.74)

Taking into consideration (7.74), we can prove that the recursive relation
(7.70) and the initial condition (7.71) are reduced to the following:

F n k F np

k

p

k

; , , ..., ; , , ...,0 0 0 1 1 0 0 0












= +( ) −










  (7.75)

F kp

k

1 0 0 0 1; , , ..., .












= +( )  (7.76)

If we use the following definition

F n F n kp

k

; , , ..., , ,0 0 0












= ( )

we can then represent the expressions (7.75) and (7.76) as follows:

F(n,k)=(k+1)F(n�1,k)  (7.77)

F(1,k)=k+1.  (7.78)

We can see that the expressions (7.77) and (7.78) coincide with the formu�
las (7.28) and (7.30) for the optimal (n,k,0)�algorithm.  As is shown above, the
recursive function F(n,k) that is defined by the recursive relation (7.77) at the
seeds (7.78) can be expressed in the explicit form given by the formula (7.31).

It follows from this consideration that for the case p=0 the general opti�
mal (n,k,S)�algorithm given by the formulas (7.70) and (7.71) is reduced to
the optimal (n, k, 0)�algorithm.

Now, let us consider the case when

p=∞  (7.79)
and

p1=p2= p3= …= pk =0.  (7.80)
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The “physical sense” of the conditions (7.78) and (7.80) are as follows.  The
condition (7.80) means that all k IE’s are in the 0�states on the first step of the
algorithm.  According to the condition (7.79) every IE that is found on the right
above the “unknown” point X at any step of the algorithm “leaves the field,” that
is, cannot participate in further measurement.

Let us consider the function

F n p p pp

j k j

; , , ..., , , , ..., .0 0 0
−













  (7.81)

It follows from the “physical sense” that for the cases (7.79) and (7.80) the
function (7.81) cannot depend on the (k�j) IE’s that are found in the state p=∞.
Hence, for this case the function (7.81) depends only on the number n of the
algorithm steps and the number j of the IE’s that are found to the right of the
point X on the first step of the algorithm.  These “physical” considerations
can be expressed in the following form:

F n p p p F n jp

j k j

; , , ..., , , , ..., , .0 0 0
−















= ( )  (7.82)

Note that

F n p p p F np

k

; , , ..., , .












= ( ) =0 1  (7.83)

The “physical sense” of the expression (7.83) consists of the fact that all IE’s
are found in the state  p=∞ and we therefore do not have the possibility of de�
creasing the “indeterminacy interval.”

Now let us return to formulas (7.70) and (7.71).  It is clear that for the condi�
tions (7.79) and (7.80) the formulas (7.82) and (7.83) take the following forms,
respectively:

F n F n kp

k

; , , ..., ,0 0 0












= ( )  (7.84)

F kp

k

1 0 0 0 1; , , ..., .












= +  (7.85)

Taking into consideration definitions (7.82) and (7.83), we can represent
the expressions (7.70) and (7.71) as follows:

F(n,k)=1+ F(n�1,k)+F(n�1,1)+F(n�1,2)+…+ F(n�1,j)+…+ F(n�1,k)  (7.86)
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F(1,k)=k+1.  (7.87)

Comparing the expressions (7.86) and (7.87) with the corresponding recur�
sive relations for the optimal (n,k,1)�algorithm, we can see that these expres�
sions coincide and hence,

F n k C Cn k
k

n k
n, .( ) = =+ +

It follows from this consideration that for conditions (7.79) and (7.80) the
general optimal (n,k,S)�algorithm given by formulas (7.70) and (7.71) is reduced
to the optimal (n,k,1)�algorithm based on the arithmetical square.

At least, consider the case

k=1, p≥0 and  p1=0.  (7.88)

This means that we deal with the (n,1,S)�algorithm (k=1) and the IE�state
on the first step of the algorithm equal to 0.  Then, the expressions (7.70) and
(7.71) for this case take the following form:

F
p
(n;0)= F

p
(n�1;0)+F

p
(n�1;p)  (7.89)

Fp(1;0)=2.  (7.90)

Let us consider the function Fp(n�1;p) in (7.89).  Using (7.73), we can write
the following expression:

Fp(n�1;p)= Fp(n�p�1;0).  (7.91)

Then, the expression (7.89) can be written as follows:

Fp(n;0)= Fp(n�1;0)+Fp(n�p�1;0).  (7.92)

Next let us introduce the following definition:

 F
p
(n;0)= F

p
(n).

Then, the expressions (7.92) and (7.90) can be written as follows:

Fp(n)= Fp(n�1)+Fp(n�p�1)  (7.93)

F
p
(1)=2.  (7.94)

Comparing the expressions (7.93) and (7.94) with the corresponding recur�
sive relations for the optimal Fibonacci measurement algorithms, we can see that
these expressions coincide and, hence, for the case (7.88) the general optimal
(n,k,S)�algorithm given by the expressions (7.70) and (7.71) are reduced to the
Fibonacci measurement algorithm.

The main result of the algorithmic measurement theory together with all
the unusual results is demonstrated in Fig. 7.13.

Thus, the “unexpectedness” of the main result of the algorithmic measure�
ment theory (Fig. 7.13) consists of the following.  The general recursive rela�
tion (7.70) at the seed (7.71) sets in general form an infinite number of new,
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until now unknown, optimal measurement algorithms.  All well�known classical
measurement algorithms that are used in measurement practice (the “binary” al�
gorithm, the “counting” algorithm, the “ruler” algorithm) are special limiting cas�
es of the optimal measurement algorithms.  The main recursive relation (7.70) at
the seed (7.71) includes a number of the well�known combinatorial formulas as
special cases, in particular, the formula (k+1)n, the formula C Cn k

k
n k
n

+ +=  that gives
binomial coefficients, the Fibonacci recursive relation, and finally the formulas  for
the “binary” (2n) and natural (n+1) numbers.

7.11.  Mathematical Theories Isomorphic to Algorithmic Measurement
Theory

7.11.1.  What is an Isomorphism?

The concept of Isomorphism [from the Greek words isos (equal), and morphe
(shape)] is used widely in mathematics.  Informally, isomorphism is a kind of
correspondence between objects that show a relationship between two proper�
ties or operations.  If there is isomorphism between two structures, we call these
structures isomorphic. The word “isomorphism” applies when two complex
structures can be reflected onto each other in such a way that each part of
one structure fits a corresponding part of the other structure.

We can give the following physical analogies of isomorphism:
1. A solid wood cube and a solid metallic cube are both solid cubes; although
their physical nature differs, their geometric structures are isomorphic.
2.  The Big Ben Clock in London and a wristwatch; although the clocks
differ greatly in size, their time�counting mechanisms are isomorphic.

p p p
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n
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numbers−

Figure  7.13.  The main result of the algorithmic measurement theory
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We can give different examples of isomorphism in mathematics.  In abstract
algebra, two basic isomorphisms are defined: Group Isomorphism, the isomorphism
between groups, and Ring Isomorphism, the isomorphism between rings.  There is
also Graph Isomorphism in graph theory.  In linear algebra, the isomorphism can
also be defined as a Linear Map between two vector spaces.

7.11.2.  Isomorphism between the “Balance” and “Rabbits”

In the above we formulated the Asymmetry Principle of Measurement, the main
methodological principle of algorithmic measurement theory.  Note that this principle
has practical origin because it reflects some essential properties of the comparators
used in Analog�to�Digit Converters.  For the first time, the isomorphism between bal�
ances and comparators was stated in this author’s Doctor of Science dissertation Syn�
thesis of Optimal Algorithms of Analog�to�Digit Conversion (1972).

The above Asymmetry Principle of Measurement is based on the concept of
the “inertial balances” used for measurement.  If we define by I the initial posi�
tion of the balance (Fig. 7.3�a) and by O the opposite position (Fig. 7.3�b), then
the functioning of the balance can be described by using two transitions:

I
I

O
→





 (7.95)

O I→ .  (7.96)

The transition (7.95) means that the balance can be in one of two extreme
positions, I or O, after we place the next standard weight on the free cup of the
balance.  The transition (7.96) means that if the balance is in the position O,
then during a certain time the balance is coming back into the initial position I.

In Chapter 2, we described Fibonacci’s problem of rabbit reproduction.
Let us recall that the “Law of rabbit reproduction” boils down to the follow�
ing rule.  Each mature rabbit’s pair А gives birth to a newborn rabbit pair B
during one month.  The newborn rabbit’s pair becomes mature during one
month and then in the following month said pair starts to give birth to one
rabbit pair each month.  Thus, the maturing of the newborn rabbits, that is,
their transformation into a mature pair is performed in 1 month.  We can
model the process of “rabbit reproduction” by using two transitions:

A AB→  (7.97)

B A→ .  (7.98)

Note that the transition (7.97) simulates the process of the birth of the new�
born rabbit pair B and the transition (7.98) simulates the process of the maturing
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of the newborn rabbit pair B.  The transition (7.97) reflects an asymmetry of rabbit
reproduction because the mature rabbit pair А is transformed into two non�identi�
cal pairs, the mature rabbit pair А and the newborn rabbit pair B.

Comparing the transitions (7.95) and (7.96) with the transitions (7.97) and
(7.98), we can see analogies or isomorphism between them.  Moreover, this
isomorphism is confirmed by the fact that the solutions of these problems come
to one and the same recursive numerical sequence, the Fibonacci numbers!

7.11.3.  The Generalized “Asymmetry Principle” of Organic Nature

Using the model of “rabbit reproduction,” which is described by the tran�
sitions (7.97) and (7.98), we can generalize the problem of rabbit reproduc�
tion in the following manner.  Let us give a non�negative integer p≥0 and
formulate the following problem:

“Let us suppose that in the enclosed place one pair of rabbits (female and
male) is in the first day of January.  This rabbit couple gives birth to a new pair
of rabbits in the first day of February and then in the first day of each follow�
ing month.  The newborn rabbit pair becomes mature in p months and then
gives birth to a new rabbit pair each month thereafter.  The question is: how
many rabbit pairs will be in the enclosed place in one year, that is, in 12 months
from the beginning of reproduction?”

It is clear that for the case p=1 the generalized variant of the “rabbit repro�
duction” problem coincides with the classical “rabbit reproduction” problem
described in Chapter 2.

Note that the case p=0 corresponds to the idealized situation when the rabbits
become mature at once after birth.  One may model this case using the transition:

A→AA.  (7.99)

It is clear that the transition (7.99) reflects symmetry of “rabbit reproduc�
tion” when the mature rabbit pair А turns into two identical mature rabbit pairs
АA.  It is easy to show that for this case the rabbits are reproduced according to
the “Dichotomy principle,” that is, the amount of rabbits doubles each month:
1, 2, 4, 8, 16, 32, ….

Now, let us consider the case p>0.  We can analyze the above “rabbit reproduc�
tion” problem in greater detail, taking into consideration new conditions of “rabbit
reproduction.” It is clear that the reproduction process is described by a more com�
plex system of transitions.  Really, let A and B be the pairs of mature and newborn
rabbits, respectively.  Then the transition (7.97) simulates a process of the monthly
appearance of the newborn pair В from each mature couple А.
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Let us examine the process of transformation of the newborn pair В into the
mature pair А. It is evident that during the maturation process the newborn pair
В passes via the intermediate stages corresponding to each month:
B B
B B
B B

B Ap

→
→
→

→−

1

1 2

2 3

1

... (7.100)

For example, for the case p=2 a process of transformation of the newborn
pair into the mature pair is described by the following system of transitions:

B B→ 1 (7.101)

B A→ . (7.102)

Then, taking into consideration (7.97), (7.101) and (7.102), the process
of “rabbit reproduction” for the case p=2  can be represented in Table 7.4.

Note that column А gives the number of the mature pairs for each stage of
reproduction, column В gives the number of the newborn pairs, column B1 gives
the number of the newborn pairs in stage B1, column A+B+B1 gives the general
number of rabbit pairs for each stage of reproduction.

The analysis of the numerical sequences in each column

A

B

B

: , , , , , , , , , ,...

: , , , , , , , , , , ,...

1 1 1 2 3 4 6 9 13 19

0 1 1 1 2 3 4 6 9 13 19

1 :: , , , , , , , , , , , ,...

: , , , , , , , ,..

0 0 1 1 1 2 3 4 6 9 13 19

1 2 3 4 6 9 13 191A B B+ + ..
demonstrates that they are subordinated to one and the same regularity: each
number of the sequence is equal to the sum of the preceding number and the

Table 7.4 The process of “rabbit reproduction” for the case p=2

Date Rabbit's pairs

January,

February,

M

A B B A B B

A

AB

1 1

1 1 0 0 1

1 1 1 0 2

+ +

aarch,

April,

May,

June,

1 1 1 1 3

1 2 1 1 4

1 3 2 1 6

1

1

1

1

1

ABB

ABB A

ABB AAB

ABB AAABABB

ABB AABABB ABB A

1

1 1 1

4 3 2 9

1 6 4 3 13July,
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number distant from the latter in 2 positions. However, as we know the Fibonacci
2�numbers are subordinated to this regularity!

Studying this process for the general case of р we come to the conclusion
that the Fibonacci p�numbers are a solution to the generalized variant of the
“rabbit reproduction” problem! They reflect the “Generalized Asymmetry
Principle” of “Organic Nature.”

At first appearance the above formulation of the generalized problem of
“rabbit reproduction” appears to have no real physical sense.  However, we
should not hurry to such a conclusion! The article [171] is devoted to the appli�
cation of the generalized Fibonacci p�numbers for simulation of biological cell
growth.  The article affirms, “In kinetic analysis of cell growth, the assumption
is usually made that cell division yields two daughter cells symmetrically.  The
essence of the semi�conservative replication of chromosomal DNA implies com�
plete identity between daughter cells.  Nonetheless, in bacteria, insects, nema�
todes, and plants, cell division is regularly asymmetric, with spatial and func�
tional differences between the two products of division….  Mechanism of asym�
metric division includes cytoplasmic and membrane localization of specific pro�
teins or of messenger RNA, differential methylation of the two strands of DNA
in a chromosome, asymmetric segregation of centrioles and mitochondria, and
bipolar differences in the spindle apparatus in mitosis.”  In the models of cell
growth based on the Fibonacci 2� and 3�numbers are analyzed [171].

The authors of [171] made the following important conclusion: “Binary
cell division is regularly asymmetric in most species.  Growth by asymmetric
binary division may be represented by the generalized Fibonacci equation ….
Our models, for the first time at the single cell level, provide rational bases for
the occurrence of Fibonacci and other recursive phyllotaxis and patterning in
biology, founded on the occurrence of regular asymmetry of binary division.”

Now we return to the Asymmetry Principle of Measurement.  We can see
that the transitions (7.100) for the generalized problem of “rabbit reproduc�
tion” are similar to the return of the balance to the initial position in the
Bashet�Mendeleev problem.  This means that the generalized problem of “rab�
bit reproduction” is isomorphic to the Fibonacci measurement algorithm!

We can generalize this idea.  As the Asymmetry Principle of Measurement is
the main idea of the algorithmic measurement theory, we can put forward the
following hypothesis.  The algorithmic measurement theory described by the
very general recursive relation (7.70) and (7.71) is isomorphic to a General
Theory of Biological Populations.  This means that we can use the main result
of the algorithmic measurement theory in the scientific field, which is very
far from measurement theory.
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7.11.4.  Isomorphism between Measurement Algorithms and Positional
Number Systems

In the above we found that each measurement algorithm generates some posi�
tional number system.  For example, the binary measuring algorithm generates the
binary system, the optimal (n,k,0)�algorithm generates all well�known positional
number systems, including the Babylonian sexagesimal system and the decimal sys�
tem.  This means that the algorithmic measurement theory is isomorphic to the
theory of positional number systems and we can interpret all optimal measurement
algorithms as fundamentally new positional number systems.

It is very important to emphasize, that the Algorithmic Measurement The�
ory [20, 21] as though precede a positional principle of number representa�
tion and positional numeral systems.  This means that the creation of a gener�
al theory of positional numeral systems is reduced to a synthesis of the opti�
mal measurement algorithms.  This remark is very important in order to de�
termine the role and place of the Algorithmic Measurement Theory in the de�
velopment of mathematics.  In the Introduction, we attributed the Babylo�
nian positional principle of number representation to the greatest mathe�
matical discovery, which preceded number theory and mathematics.  The Al�
gorithmic Measurement Theory infinitely enlarges a number of new, until now
unknown positional numeral systems, turning mathematics back to the peri�
od of its origin.  It is important to emphasize the “great practicability” of the
Algorithmic Measurement Theory, which could become the basis of a new com�
puter arithmetic that is of fundamental interest to computer science.

7.12.  Conclusion

1.  It is well known that the “problem of measurement” played a fundamental
role in mathematics.  It stimulated the development of two basic theories of
mathematics – geometry and number theory.  The famous Bulgarian mathemati�
cian and academician L.  Iliev wrote, “During the first epoch of mathematics
development, from antiquity to the discovery of differential and integral calcu�
lus, mathematics, investigating first of all the measurement problems, created
Euclidean geometry and number theory” [5].  That is why, since antiquity math�
ematical measurement theory together with number theory have been consid�
ered to be the fundamental mathematical theories underlying mathematics.
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2. Let us compare the Classical Mathematical Measurement Theory [3, 4]
with the Algorithmic Measurement Theory [20].  The creation of the classical
measurement theory is connected with internal problems that appeared in math�
ematics after the discovery of Incommensurable Line Segments.  This discovery
staggered the Pythagoreans and caused the first crisis in the foundations of math�
ematics.  The resulting Irrational Numbers became one of the fundamental
concepts of mathematics.  In order to overcome the first crisis in the founda�
tions of mathematics, the great mathematician Eudoxus (408 � 355 BC) sug�
gested the Method of Exhaustion, used by him for the creation of a Theory of
Magnitudes, which preceded the Mathematical Measurement Theory complet�
ed in the 19th century.  The interest in mathematical measurement theory in
the 19th century increased again.  The measurement theory received a new
impulse thanks to Cantor’s theory of infinite sets.  The mathematical mea�
surement theory was constructed on the basis of the Continuity Axioms �
Eudoxus�Archimedes’ Axiom and Cantor’s Axiom, which underlie classical
mathematical measurement theory.  Thanks to Cantor’s axiom, Cantor’s idea
of Actual Infinity was introduced into mathematical measurement theory
that allowed for the proof of the Basic Measurement Equality Q=qV.  This
equality for the given measurement unit V sets one�to�one correspondence
between geometric magnitudes Q and real numbers q.  However, a construc�
tive approach to mathematics foundations, based on the Potential Infinity
concept, demands the elimination of  Cantor’s axiom from the Continuity
Axioms, and  puts forward a problem to prove the equality Q=qV from the
constructive point of view (Constructive Measurement Theory).

 3. In contrast to the classical mathematical measurement theory, the cre�
ation of the Algorithmic Measurement Theory is connected with the practical
need for new algorithms of measurement to appear in theoretical metrology,
in particular, in the theory of analog�to�digital conversion [20].  It was found,
that this practical problem is deeply connected with the ancient “Problem
about the Choice of the Best Weights System.” This problem appeared in the
1202 work Liber Abaci by Fibonacci and is the first optimization problem in
measurement theory.  In the Russian mathematical literature, this problem is
called the Bashet�Mendeleev Problem [169].  The analysis of the Bashet�Men�
deleev problem from point of view of analog�to�digital conversion resulted in
the discovery of the very unusual measurement property known as the Asym�
metry Principle of Measurement, which in turn underlies Algorithmic Mea�
surement Theory [20, 21, 88, 90, 91].  The algorithmic measurement theory is
an absolutely new and original mathematical theory.  The synthesis of opti�
mal measurement algorithms is its main topic.  This resulted in the discovery
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of the infinite number of new, unknown until now, optimal measurement algo�
rithms, which have great theoretical and practical interest.  These optimal
measurement algorithms contain all the classical measurement algorithms
(“binary,” “counting” and ruler” algorithms) and generate a wide class of new
original measurement algorithms based on the Fibonacci p�numbers, binomi�
al coefficients, Pascal’s triangle, and so on.  The main recursive relation of the
algorithmic measurement theory (7.70), which generates an infinite number
of different numerical sequences including natural numbers, binary numbers,
Fibonacci p�numbers and binomial coefficients, is of fundamental interest for
combinatorial analysis.

4. The idea of isomorphism resulted in an expansion of the applications of
the algorithmic measurement theory.  There is an isomorphism between
measurement algorithms, the Fibonacci “rabbit reproduction,” and positional
number systems.  This idea gives us the right to put forward a new hypothesis
that the new theory of measurement is the source of the three isomorphic
theories, namely Algorithmic Measurement Theory, New Theory of Positional
Number Systems and New Theory of Biological Populations.

5. The new theory of positional number systems returns mathematics to the
Babylonian “positional principle of number representation,” which is consid�
ered to be the greatest mathematical achievement of Babylonian mathemat�
ics.  We can emphasize that positional number systems were never considered
in mathematics as a subject of serious mathematical research.  That is why, a
new theory of positional number systems, which follows from the algorith�
mic measurement theory, fills this gap, and a new theory of positional number
systems should become a fundamental part of number theory.

6. We have a new theory of biological populations based upon the isomor�
phism between measurement algorithms and rabbit reproduction.  In partic�
ular, as formulated above, the Generalized “Asymmetry Principle” of Organic
Nature can play fundamental role here.  This idea has been confirmed by con�
temporary research in the field of cell division [171].
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Chapter 8

Fibonacci Computers

8.1. A History of Computers

8.1.1. Era of Information

An interesting view of the history of computer science is given in the book
[172]. The time when people started creating instruments for hunting and man�
ual labor, is usually considered to be the beginning of human civilization. The
secret of the promethean�like “fire abduction” got lost in antiquity. However,
the subsequent history of technical progress – from the “fire abduction” up to
the discovery of nuclear energy – is the history of more and more powerful
forces of nature being subjugated by humans: taming of animals, windmills,
water�mills, thermal engines, and atomic energy. During several millennia the
main problem of material culture of humanity was to increase the muscular
force of humans by various tools and machines. On the other hand, from aba�
cus stones up to modern computers, the efforts to create the tools strengthen�
ing human information processing mark the way for the accumulation of ideas
in the general stream of scientific and technical progress, evident in the thin
trickle of facts and museum pieces.

Already in the earliest stages of the collective work development, a per�
son required some encoded signals for communication in order to synchro�
nize labor operations with others. Human speech, as the predecessor of infor�
mation technology and as the first transmitter of human knowledge, arose as
a result of the complication of these information signals. At first, human knowl�
edge was accumulated in the form of oral stories and legends transmitted
from one generation to the next.

For the first time, the natural potential of a person accumulating and
transmitting knowledge obtained “technological support” with the creation
of Written Language. Written language became the first historical stage in
the development of information technology.
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We can find the proof of this stage imbedded deep in human history: such as,
cave paintings (pictographs) and carvings (petroglyphs) in the form of people and
animal images in stone, created twenty to twenty�five thousand years ago; a lunar
calendar, engraved on bone more than twenty thousand years ago. However, ac�
cording to modern archaeological data, the time between the use of the first work
tools (axe, trap, etc.) and tools for representing images (in stone, bone, etc.) is rough�
ly a million years. That is, nearly 99% of human history deals only with the develop�
ment of material labor tools. It appears that only the last (roughly) 1% of human
history involves the development of information representation through images.

The wheel, a recognized symbol of contemporary technical progress, was sup�
posedly invented in the Ancient East about 4 millennia BC, but the most an�
cient written code of laws, the first monument of the written language, arose
only one thousand years later. About four millennia passed before the creation of
the first Printing Machine in the middle of 15th century proclaimed to the world
the onset of the Era of Printed Knowledge. The printing press rapidly increased
the circulation of books as a passive means of information transmission. Printing
machines for the first time created information accelerating the growth of pro�
ductive forces. The creation of Computers became the next stage in the develop�
ment of human civilization. These new machines for information processing ap�
peared in the middle of the 20th century, when the growing load of information
problems became one of the most noticeable factors, limiting economic growth
in industrially developed countries.

Thus, during the history of human civilization before the 20th century, ma�
terial objects were the main subject of labor, and the economic power of
countries was measured by material resources. At the end of the 20th century
for the first time in the history of humanity, information became the main sub�
ject of labor in industrially developed countries. The tendency for a steady in�
crease in the information sphere in comparison to the material sphere is the most
noticeable symptom of the “information era” approach.

8.1.2. The Basic Milestones in Computer Progress

The history of computers, that is, the machines created for automation of
information processing, is considered one of the least developed themes in the
history of science. In the present book we will use a classification of periods of
the computer development suggested in the book [173]. According to [173], the
history of computers is divided into two main periods:

1. From abacus up to electronic computers
2. Electronic computers onward
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8.1.2.1. Abacus

The necessity for calculation arose in the early stages of human civilization:
notches on bones and stones representing calculations were found beginning
in the Paleolithic and Neolithic periods. The abacus was probably the first
calculating device. The word “abacus” originates from the Greek word abax,
which in turn comes from the Hebrew word avak (dust). The history of science
testifies to the fact that many different cultures used the abacus – Babylon,
China, India, Egypt, Arabian countries, Japan, Pakistan, and others.

In medieval times, the word “abacus” was used as a synonym for
mathematics. This was the meaning contained in the title of the mathematical
book, Liber Abaci, written in 1202 by the famous Italian mathematician
Leonardo from Pisa (Fibonacci). His book could be considered the original math�
ematical encyclopaedia of the Middle Ages.

It is important to emphasize that in this early period of scientific
development, mathematical history is inseparably linked to the history of
primitive computers (abaci), because the problem of counting and calculation
hastened the development of many important mathematical concepts. Note
that at this stage, the Babylonian mathematicians discovered the positional
principle of number representation underlying modern computers. The
majority of the historians of mathematics emphasize that the creation of the
first primitive abacus played a large role in the development of mathematics,
and resulted in the development of a concept of natural number – one of our
fundamental mathematical concepts.

8.1.2.2. Mechanical Calculation Machines

Already philosophers in the Middle Ages advanced the problem of replacing
human brain functions with various mechanisms. Several scientists were interest�
ed in the idea of the construction of “thinking” gear, and this idea stimulated the
designs of the first mechanical calculating machines. In 1623, English professor of
mathematics Schickard, a friend of Kepler, made such an attempt. In Kepler’s ar�
chive we find Schickard’s letter addressed to him. Schickard informed Kepler about
a calculation machine he had constructed. Schickard’s machine was known, ap�
parently, by a very small group of people. Because of this limited exposure, for a
long time it was thought that the first mechanical calculator was invented in 1642
by the famous French mathematician and physicist Pascal. About 50 copies of
Pascal’s calculator were purportedly produced. Some copies of Pascal’s calculator
are still available today. Five copies are in the Parisian Museum and one is in the
Dresden physical and mathematical salon, which this author personally saw in
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1988. In addition, the German mathematician Gottfried Leibniz, Wurttemberg’s
pastor Gan, and the famous Russian mathematician and mechanician Chebyshev
were inventors of original mechanical calculating machines.

Production of calculating machines for the first time was started by Karl
Thomas, the founder and chief of two Parisian insurance companies (“Fenix”
and “Soleil”). In 1820, he built the calculation machine called Calculator. In 1821,
15 calculators were made in Thomas’ workshop. Later their production was in�
creased to 100 per year. These calculators had been produced during 100 years
and had (certainly for that time) very impressive technical characteristics – two
8�digit numbers could be multiplied in 15 seconds, and a 16�digit number could
be divided by the 8�digit number in 25 seconds.

A further improvement of calculators is connected with the name of Russian
engineer Odner. Beginning in the 1890s, the triumphal procession of Odner’s
calculators began with the serial production of 500 calculators per year in St.
Petersburg, Russia. In the 20th century, Odner’s calculators were produced un�
der a variety of names in different countries. In the first quarter of the 20th cen�
tury, Odner’s calculators were the main mathematical machines used in many
fields of human activity. In 1914, in Russia alone more than twenty�two thou�
sand Odner�calculators were produced.

8.1.2.3. Babbage’s Analytical Machine

Charles Babbage was the mathematician, mechanical engineer and com�
puter scientist who originated the idea of a Programmable Computer. Babbage’s
analytical machine was the best of the mechanical calculation machines. For the
first time this machine embodies the idea of a completely automatic computer
with program control. This idea was a revolutionary discovery in computer sci�
ence. It started to be used only in the middle of the 20th century in the design of
the first electronic computers. The first copy of
his analytical machine was made by Babbage in
September 1834.

From 1842 to 1848, Babbage paid significant
attention to the design of his analytical machine.
According to his idea, the machine should include
three main blocks:

1. A device where digital information could
be stored on sprocket registers. In modern
computers a similar block is named the Stor�
age Device or Memory. Babbage named this
part of the machine the Storehouse. Charles Babbage (1791 –1871)
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2. A device where various operations with numbers, taken from the store�
house, can be carried out. Today this part of the machine is called the Arith�
metical Device. Babbage named this part of the machine the Factory.
3. A device for control of the operating sequence. Babbage didn’t have a spe�
cial name for this part of the machine. Today a similar computer block is
called the Control Unit.
In addition, his analytical machine had both Input and Output Devices.
Babbage was the creator of the greatest invention in computer history,

the Programmable Computer. Babbage’s main idea was only embodied in
modern computers. A simple list of problems that was advanced by Babbage
in his analytical machine is astonishing for its depth and foresight regarding
the progress of modern computers.

8.1.2.4. Hollerith’s Tabulators

The development of the theory of electricity and the theory of weak electri�
cal currents naturally resulted in the idea of using these currents in calculation
devices. At first, the electric energy in calculation machines was used only as a
motion force for the actuation of the calculator mechanism in place of the hand.
Such machines were called Electromechanical Machines.

At the end of the 19th century, the need for population census processing arose.
In 1888, an employee of the U.S. Census Bureau, Herman Hollerith, designed a
calculation machine that was used for processing the population census. Hollerith
named his machine the Tabulator. His tabulator was intended to automatically
process punch cards for the population census. In his machine Hollerith applied
the benefits of weak current engineering and his machine was based on the electro�
mechanical principle. The same electromechanical principle was used for improve�
ment of the technical parameters of calculators. Thus, at the beginning of the 20th
century, digital computer engineering developed in two directions. The first di�
rection was the small Calculators intended for the mechanization of the elementa�
ry arithmetical operations. The second direction was that of Tabulators intended
for the processing of statistical information.

8.1.2.5. Electromechanical Computers by Zuse, Aiken and Stibitz

In the 1930s and 1940s the development of tabulators, as well as, the achieve�
ments in the field of the electromechanical relay applications (for example, in
automatic telephone stations) resulted in the development of computer machines
similar to Babbage’s machine by their structure. The first universal electrome�
chanical computers with programmed control were designed in Germany and
the U.S. in the early 1940s. German engineer Konrad Zuse, along with American



Chapter 8
421

Fibonacci Computers

scientists Howard Aiken from Harvard University and George Robert Stibitz
from Bell Labs, played significant roles in these projects.

Zuse developed several models of electromechanical computers. The first
model Z�1 was constructed over a period of two years (1936�1938). It was based
completely on mechanical elements, rendering it somewhat unsatisfactory. The
next models Z�2, Z�3, Z�4 used electromagnetic relays as their basis. An elabora�
tion of the Z�3 machine was completed in 1941. This machine was the first uni�
versal computer with programmed control. The computer performed eight com�
mands including four arithmetical operations, multiplying by negative numbers,
and calculating square roots. All calculations were fulfilled in the binary system
using a floating point.

Aiken’s universal digital computer used standard punch cards produced
by IBM (USA). In August, 1944 the project was completed, and the machine
called MARC�1 was installed at Harvard University, where the machine was
used thereafter for over 15 years. If we compare the machine MARC�1 with
the machine Z�3, we should note that Zuse’s machine exceeded Aiken’s
machine from the point of view of its circuit and structural solutions.

Also the works of American scientist Stibitz played an essential role in
the creation of the first computers, which were intended for the fulfilment of
complicated scientific and technical calculations. In 1938, working for Bell
Laboratory, Stibitz developed the computer “Bell�1” capable of operating
with complex numbers. In 1947, Stibitz developed a high�power universal
computer with programmed control (the machine “Bell�5”) based on elec�
tromagnetic relays. At the same time, the computing laboratory of Harvard
University developed the large program�controlled computer MARC�2 which
is also based on electromagnetic relays.

8.1.2.6. ENIAC

One of the first attempts to use electronic elements in computers was
launched in the U.S. in 1939�1941 at the State College of Iowa (now the Iowa
State University). Physics professor John Atanasov was the principal developer
of this project. Unfortunately, the project was not completed, but in 1973 the
U.S. Federal Court confirmed Atanasov’s priority in the design of the first elec�
tronic computer project.

Work on the creation of the electronic computer ENIAC was started in 1942,
at Pennsylvania University under John Mauchly and John Eckert’s leadership.
This works was completed at the end of 1945, and in February 1946 the ma�
chine’s first public demonstration was held. The important role of ENIAC in the
development of computer science is clear from the fact that it was the first ma�
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chine in which electronic elements were used for the realization of arithmetical
and logical operations, and also the storage of information. The use of new elec�
tronic technology in this machine allowed for an increase of computer operation
speed by approximately 1000 times greater in comparison with electromechan�
ical computers.

8.1.2.7. John von Neumann’s Principles

The ENIAC confirmed in practice the high efficiency of electronic technolo�
gy in computers. The problem of maximal real�
ization of the large advantages of electronic tech�
nology arose for computer designers. It was nec�
essary to analyze the strengths and weaknesses of
the ENIAC project and to give appropriate rec�
ommendations. A brilliant solution to this prob�
lem emerged in the famous report Preliminary Dis�
cussion on Logic Designing the Electronic Com�
puting Device (1946). This report, written by
famed mathematician John von Neumann and his
colleagues from Princeton University, Goldstein
and Berks, presented the project of developing the
new electronic computer.

The essence of the primary recommendations
of the report consisted of the following:

1. The machines based on electronic elements should work in Binary System
instead of the decimal system.
2. The program should be stored in the machine block called the Storage
Device, which should have sufficient capacity and appropriate speeds for ac�
cess and entry of a variety of program commands.
3. Programs, as well as numbers, with which the machine operates, should be
represented in Binary Code. Thus, Commands and Numbers Should Have
One and the Same Form of Representation. This meant that all programs
and all intermediate outcomes of calculations, constants and other numbers
should be stored in one and the same storage device.
4. Difficulties of physical realization of the storage device, speed of which
should correspond to the speed of logical elements, demanded a Hierarchical
Organization of Memory.
5. The arithmetical device of the machine should be constructed on the basis
of the Logical Summation Element; it is not recommended to design special
devices for the realization of other arithmetical operations.

John von Neumann
 (1903�1957)
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6. The machine should use the Parallel Principle of Organization of Com�
puting Processes, that is, the operations on binary words should be performed
on all digits simultaneously.
John von Neumann’s Principles, in general, were some of the most important

contributions to the development of universal electronic computers. The further
development of electronic computers was based upon these principles. The changes
concerned only the technology of the element base. Depending on the electronic
base used, electronic computers started developing in the following three directions:

1. Computers based on the electronic lamps.
2. Computers based on the discrete semi�conducting and magnetic elements.
3. Computers based on the integrated schemes.

8.1.2.8. The Phenomenon of Personal Calculators

The capacity of the present book, which is not a specialty textbook on the
history of the computer, does not allow us to refer to many achievements of mod�
ern computers. We can only discuss one phenomenon of modern computer his�
tory – that of personal computers (PC), which were the first mass tools for the
active formalization of professional knowledge. Varied influence of the PC on
progress of industrial society is comparable to book printing, which began the
information era. Continuing this analogy: while a book was and remains the tool
for mass duplication and passive storage of knowledge, the PC is the first mass
produced tool for direct transformation of professional knowledge into an active
industrial product. The discovery of the PC phenomenon in the U.S. was con�
nected with the name Steve Jobs, founder of Apple Computer.

In 1980, Steve Jobs defined this type of computer as the tool for increasing the
natural potentialities of human intellect. The PC, more than any other tool for infor�
mation processing, brings forward the information era. According to the opinion of
many competent scientists, we can now identify a few of the symptoms, which testi�
fy to the beginning of the transition within the industrially developed countries to a
qualitatively new stage of technological development – the information era:

1. Information becomes the main subject of labor in public production of the
industrially developed countries.
2. The time of doubling accumulated scientific knowledge is something like
2�3 years.
3. The material expenses for storage, transmission and processing of infor�
mation begin to exceed similar costs for energy expenses.
4. Humanity for the first time in its history becomes the really observed astro�
nomical “cosmic factor,” as the level of Earth radio emissions in the separate
parts of the radio diapason approaches the level of the Sun’s radio emissions.
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 8.2. Basic Stages in the History of Numeral Systems

The creation of the first numeral systems is attributed to the period of the
mathematics origin, when the necessity to count things, and measure time, land
and product quantities, resulted in the development of the basic principles of
the arithmetic of natural numbers. In the history of numeral systems we can
identify several stages: the Initial Stage of Counting, Non�Positional Numeral
Systems, Alphabetic Notations, and Positional Numeral Systems. Initially people
used body parts, fingers, sticks, knots, etc. for representation of counted sets.
Article [2] emphasizes that “despite the extreme primitiveness of this way of
number representation, it played an exclusive role in the development of the
number concept.” This statement confirms that numeral systems played an im�
portant role in the formation of the concept of natural numbers – one of mathe�
matics’ most fundamental concepts.

8.2.1. Babylonian Sexagecimal Numeral System

At an early stage in the history of mathematics, one of the greatest mathemat�
ical discoveries was made. This was the Positional Principle of number representa�
tion. “The Babylonian sexagecimal numeral system that arose in approximately
2000 B.C. was the first numeral system based on the positional principle” [2]. There
were a number of competing hypotheses explaining its origin. M. Cantor original�
ly assumed that Sumerians (the primary population of the Euphrates valley) con�
sidered that one year consisted of 360 days and therefore that base 60 had an as�
tronomical origin. According to Kevitch’s hypothesis, in the Euphrates valley two
persons met. The first person knew the decimal system, and the other one knew
the base 6 system (Kevitch explains the occurrence of such base by finger count�
ing, in which the compressed hand meant the number 6). After the two systems
were merged the compromise base of 60=6×10 arose.

We should note that Cantor’s and Kevitch’s hypotheses concerned the ques�
tion of the origin of base 60, but they do not explain the origin of the positional
principle of number representation. Neugebauer’s hypothesis presented in the
book [174] gives an answer to this last question. According to his hypothesis,
the positional principle has a measurement origin.

Neugebauer asserts [174] that “the basic stages of the origin of the positional
principle in Babylon were the following: (1) determination of a quantitative ratio
between two independent existing systems of measures and (2) omitting the names
of numerals in the writing.” According to his opinion, these stages of the origin of
the positional numeral systems had a common foundation. He emphasizes that
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“the positional sexagecimal number system was the natural outcome of a long his�
torical development, which does not differ from similar processes in other cultures.”

However, we can explain the choice of the number 60 as the base of the Baby�
lonian system from the point of view of the Universal Harmony concept. As is well
known, the dodecahedron was the main geometric figure expressing the Universal
Harmony in ancient science. As is shown in Chapter 3, the numerical parameters
of the dodecahedron (12, 30, 60) were connected to the basic cycles of the Solar
system (Jupiter’s 12�year cycle, Saturn’s 30�year cycle and the Solar system’s 60�
year main cycle). The ancient scientists chose the numbers 12, 30, 60 and derived
from them the number 360=12×30 as the “main numbers” of the calendar system
and systems of time and angular values measurement. Taking into consideration
the deep connection between the Babylonian and Egyptian cultures, we may ad�
vance the hypothesis that the base 60 of the Babylonian number system was cho�
sen by the Babylonians from astronomical considerations. This hypothesis coin�
cides with Cantor’s hypothesis about the astronomical origin of base 60.

8.2.2. Alphabetic and Roman Systems of Numeration

Many people used the so�called alphabetic system of numeration, where nu�
merical values were attributed to the letters of the alphabet. For instance, ancient
Greek, Hebrew, Sanskrit, Slavic and Arabic alphabets employed this idea.

The Roman system of numeration is widely known. It uses special numerals
for the representation of the “nodal” numbers (I, V, X, L, C, D, M). The greatest
shortcoming of Roman numeration was the fact that it was not adapted to per�
form arithmetical operations in written form.

8.2.3. Mayan System

The origin of positional numeral systems is considered to be one of the main
events in the history of material culture. Many people took part in its creation.
In the 6th century AD a similar numeral system arose within the Maya people.
It is widely accepted that the number 20 is the base of the Mayan number sys�
tem and, therefore, may have a “finger/toe” origin (10+10=20). It is well known
that the number system with base 20 used the following set of the “nodal” num�
bers for number representation: {1, 201, 202, 203}. However, the Mayan number
system used another set of “nodal” numbers: {1, 20, 360, 20×360, 202×360,…}. This
means that the next “nodal” number, which follows after 20, is equal to 360 (in�
stead of 202=400) and all subsequent “nodal” numbers are derivable from the
numbers 20 and 360. As is emphasized in the article [2], this somewhat unusual
numbering system can be explained by the fact that “the Maya divided one year
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into 18 months, with 20 days in every month, plus five more days.” Thus, like
the base of the Babylonian system, the “nodal” numbers of Mayan notation have
an astronomical origin. It is essential to emphasize, that the structure of the Maya
calendar year (360+5=18×20+5) is similar to the structure of the Egyptian cal�
endar year (360+5=12×30+5).

8.2.4. Decimal System

We use a decimal system for daily calculations. In mathematics this numeral
system is called the Hindu�Arabic or Arabic numeral system. This number system
was invented by Hindu mathematicians in approximately the 6th�8th centuries
AD and it is the predecessor of the traditional decimal system. This number sys�
tem uses the number 10 as the base and requires 10 different numerals, the digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for the representation of numbers. From India, the decimal
system penetrated into the Arabic world. Arabic mathematicians extended the
system to decimal fractions. In 9th century Muhammad ibn Musa al�Khwarizmi
wrote an important work about the decimal system. Thanks to a translation of al�
Khwarizmi’s work, the decimal system began to be used in Europe.

There are different opinions concerning the choice of the number 10 as the
base of the decimal system; the most widespread opinion is that the base of 10
has a “finger” origin. However, it is necessary to remind oneself that the number
10 always had special significance in ancient science. Pythagoreans considered
this number to be the “Sacred Number” and named it the Tetractys. The number
10=1+2+3+4 was considered by Pythagoreans to be one of the greatest values,
being “a symbol of the Universe,” because it comprised four “basic elements”:
the One or Monad symbolizes spirit, out of which all the visible world appears;
the Two or Dyad (2=1+1), symbolizes the material atom; the Three or Triad
(3=2+1), symbolizes the living world. The Four or Tetrad (4=3+1) connected
the living world with the Monad and consequently symbolizes the Whole, that
is, the Visible and Invisible World together. As the Tetractys 10=1+2+3+4, which
meant that the Tetractys, 10, expressed Everything. Thus, the hypothesis about
the “harmonic” origin of base 10 is as tenable as the hypothesis of the “finger”
origin of the decimal system.

8.2.5. Binary System

The binary system uses two symbols, 1 and 0, for number representation.
The number 2 is its base or radix. In connection with the development of com�
puter technology, the binary system was introduced into modern science. Dis�
cussing the history of the binary system, we should note that the ancient Indian
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writer and mathematician Pingala pre�
sented in 2nd century AD the first
known description of a binary system,
more than 1500 years before its discov�
ery by German mathematician Got�
tfried Leibniz in 1695. Pingala’s work
also contains elements of combinatorics
(Pascal triangle) and the basic ideas of
Fibonacci numbers.

The modern binary system was ful�
ly documented by Gottfried Leibniz in
17th century in his article Explication
de l’Arithmйtique Binaire. Leibniz’s sys�
tem used 0 and 1 in a manner similar to
the modern binary system. Gottfried
Wilhelm von Leibniz (1646 �1716) was
a German polymath who wrote mostly
in French and Latin. He invented calcu�
lus independently of Newton. Leibniz also made major contributions to physics
and technology, and anticipated notions that surfaced much later in biology, med�
icine, geology, probability theory, psychology, and information science. His con�
tributions to this vast array of subjects are scattered in journals and in numerous
letters and unpublished manuscripts. To date, there is no complete edition of Leib�
niz’s writings, and a full list of his accomplishments is not yet known.

The binary arithmetic developed by Leibnitz is much similar to arithmetic
in other numeral systems. Summation, subtraction, multiplication, and division
can be performed on binary numerals. All arithmetical operations in the binary
system are reduced to binary summation. The summation of two single�digit
binary numbers is relatively simple:

0 0 0
0 1 1
1 0 1
1 1 10 1

+ =
+ =
+ =
+ = ( )carry of
In 1854, British mathematician George Boole published an important paper

detailing a system of logic that became known as Boolean Algebra. His logic
system became the instrumental tool for the development of the binary system,
particularly in its implementation in electronic circuits.

In 1937, Claude Shannon presented his master’s thesis at MIT that initiated
the implementation of Boolean algebra and binary arithmetic using electronic

Gottfried Wilhelm von Leibniz
(1646�1716)
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relays and switches for the first time in history. Entitled A Symbolic Analysis of
Relay and Switching Circuits, Shannon’s thesis essentially developed the practi�
cal digital circuit design.

In 1946, John von Neumann, Goldstein and Berks in their Preliminary
Discussion on Logic Designing the Electronic Computing Device gave a decisive
preference for the use of the binary system in electronic computers.

8.2.6. Exotic Number Systems

However, we should note that the binary system suffers from some serious
disadvantages [175, 176]:

1. The problem of a number sign. In the binary system we can represent in
the “direct” code only positive numbers. That is why, for the representation
of negative numbers we need to use special codes � additional and inverse
codes. This complicates the arithmetical structures of computers and influ�
ences the internal performance of a computer.
2. The problem of error detection. As is well known, all computer devices are
subjected to severe external and internal influences that are a cause of vari�
ous errors, which can appear in the information transmission and process�
ing. Unfortunately, such errors cannot be detected because all binary code
combinations are permissible.
3. The problem of long carry�over. If, for example, we sum the two binary
numbers 011111111+000000001=100000000,  we should take into consider�
ation the “long carry�over” from the lowest digit to the highest digit appear�
ing in such a summation. This “long carry�over” fundamentally influences
the internal performance of computers.
The intention to overcome these disadvantages of the binary system led to the

appearance of different numeral systems with “exotic” titles and properties: Sys�
tem for Residual Classes, Ternary Symmetrical Numeral System, Numeral System
with Complex Radix, Nega�positional, Factorial, Binomial Numeral Systems [175,
176], etc. All of them had certain advantages in comparison with the binary sys�
tem, and were directed at the improvement of computer characteristics; some of
them became the basis for the creation of new computer projects (e.g. the ternary
computer “Setun,” the computer based on system for residual classes, and so on).

However, there is also another interesting aspect to this problem. Four mil�
lennia after the invention by Babylonians of the positional principle of number
representation, we observe some kind of “Renaissance” in the field of numeral
systems. Thanks to the efforts of the experts in computers and mathematics, it is
as if we once again have returned to the origin of computation, when the numeral
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systems defined the subject�matter and were the heart of mathematics (Baby�
lon, Ancient Egypt, India, and China).

The main purpose of chapters 8, 9 and 10 is to demonstrate that new meth�
ods of number representation based on the golden mean and Fibonacci numbers
can become the source of a new and unusual computer arithmetic and from this
will follow new and exciting computer projects.

8.3. Fibonacci p�Codes

8.3.1. Zeckendorf Sums

Many number�theorists know about Zeckendorf sums [16], however, few know
about the man for whom these sums are named. The Fibonacci Association con�
siders Edouard Zeckendorf to be one of the famous Fibonacci mathematicians of
the 20th century although he did not have mathematical education. Zeckendorf
was a medical doctor and was licensed for dental surgery. Mathematics was Zeck�
endorf’s hobby. Through the years, he published several mathematical articles.
The most important article, on Zeckendorf sums, was published in 1939. In it,
Zeckendorf proved that each positive integer can be represented as the unique
sum of non�adjacent Fibonacci numbers, as exemplified below:

38=34+3+1; 39=34+5; 40=34+5+1; 41=34+5+2; 42=34+8.

The numerous articles published in The Fibonacci Quarterly discussed Zeck�
endorf sums and their generalizations.

Let us write Zeckendorf representation in the following form:

N=anFn+an�1Fn�1+…+aiFi+…+a1F1,    (8.1)

where ai ∈{ }0 1,  is the binary numeral of the i�th digit of the representation (8.1);
n is the number of digits of the representation (8.1); Fi is a Fibonacci number
given by the recursive relation

F
n
= F

n�1+F
n+2  (8.2)

at the seeds

F1= F2=1.  (8.3)

It is important to emphasize that the Fibonacci numbers Fi (i=1,2,3,…,n) are
used as the digit weights in Zekendorf’s representation (8.1).

The binary representation of Zeckendorf sum (8.1) has the following form:
N = an an�1 ... ai ... a1,  (8.4)
where ai ∈{ }0 1, is a binary numeral of the i�th digit of the binary representation
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(8.4). Thus, Zeckendorf sum (8.1) can be considered as the binary representa�
tion (8.4) with “Fibonacci weights.”

It is clear that the minimal number Nmin that can be represented by using
Zeckendorf sum (8.1) is equal to 0 and has the following binary representation:
N

n
min ... .= =0 00 0  (8.5)

The maximal number Nmax that can be represented by using Zeckendorf sum
(8.1) has the following binary representation:
N

n
max ... .= 11 1  (8.6)

The binary representation (8.6) is an abridged representation of the
following sum:

Nmax=Fn+Fn�1+…+Fi+…+F1  (8.7)

Using the formula (2.20), we can write:

Nmax=Fn+2�1.  (8.8)

This means that we have proved the following theorem.
Theorem 8.1. Using the n�digit Zeckendorf sum (8.1), we can represent

Fn+2 integers in the range from 0 to Fn+2�1.

8.3.2. Definition of the Fibonacci p�Code

In Chapter 7 we developed the so�called Algorithmic Measurement Theory
[20, 21] that can be a source of new ideas in numeral systems field. Fibonacci
codes and Fibonacci arithmetic, which are a wide generalization of the binary
system, are amongst the most interesting applications of the algorithmic mea�
surement theory.

The Fibonacci measurement algorithms, which were examined in Chapter
7, are isomorphic to the following sum:

N=anFp(n)+an�1Fp(n�1)+…+aiFp(i)+…+a1Fp(1),  (8.9)

where N is a natural number, ai ∈{ }0 1, is a binary numeral of the i�th digit of the
code (8.9); n is the digit number of the code (8.9); the Fibonacci number Fp(i) is
the i�th digit weight calculated in accordance with the recursive relation (4.18)
at the seeds (4.19).

The positional representation of the natural number N in the form (8.9) is
called a Fibonacci p�code [20]. The abridged representation of the Fibonacci
p�code (8.9) has the same form (8.4) as the abridged representation of Zecken�
dorf sum (8.1).

Note that the notion of a Fibonacci p�code (8.9) includes an infinite number
of different positional “binary” representations of natural numbers because ev�
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ery p produces its own Fibonacci p�code (p=0,1,2,3,…). In particular, for the case
p=0 the Fibonacci p�code (8.9) is reduced to the classical binary code:

N=a
n
2n�1+a

n�12
n�2+…+a

i
2i�1+…+a12

0 .  (8.10)

For the case p=1 the Fibonacci p�code (8.9) is reduced to Zeckendorf
sum (8.1).

Now, let us consider the partial case p=∞. For this case each Fibonacci p�
number is equal to 1, that is, for any integer i we have:

Fp(i)=1.

Then the sum (8.9) takes the form of the “unitary code”:
N

N

= + + +1 1 1... .  (8.11)

Thus, the Fibonacci p�code given by (8.9) is a very wide generalization of
the binary system (8.10) and Zeckendorf sum (8.1) that are partial cases of the
Fibonacci p�code (8.9) for the cases p=0 and p=1, respectively. On the other
hand, the Fibonacci p�code (8.9) includes the so�called “unitary code” (8.11) as
another extreme case for p=∞.

8.3.3. The Range of Number Representation in the Fibonacci p�Code

Consider the set of n�digit binary words. The number of them is equal to 2n.
For the classical binary code (8.10) (p=0) the mapping of the set of n�digit bina�
ry words onto the set of natural numbers has the following peculiarities:

(a) Uniqueness of mapping. This means that for the infinite n there are one�
to�one correspondences between natural numbers and sums (8.10), that is,
every integer N has only one representation in the form (8.10).
(b) For a given n with the help of the binary code (8.10) we can represent all
integers in the range from 0 to 2n �1, that is, the range of number representa�
tion is equal to 2n.
(c) The minimal number 0 and the maximal number 2n�1 have the following
binary representations in the binary code (8.10), respectively:

N

N
n

n

n

min

max

...

... .

= =

= − =

0 00 0

2 1 11 1

For the Fibonacci p�code (8.9) the mapping of the n�digit binary words onto
natural numbers has distinct peculiarities for the case p>0.

Let n=5. Then, for the cases p=1 and p=2 the mappings of the 5�digit Fi�
bonacci p�code (8.9) onto the natural numbers have the forms, represented in
Tables 8.1 and 8.2, respectively.
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An analysis of Tables 8.1
and 8.2 leads to the following
peculiarities of binary represen�
tations of natural numbers in
Fibonacci p�codes (8.9). By us�
ing the 5�digit Fibonacci 1�code
(Table 8.1), we can represent 13
integers in the range from 0 to
12, inclusively. Note that the
number 13 is the Fibonacci 1�
number with index 7, that is,
F1(7)= F7=13. We can see from
Table 8.2 that by using the 5�
digit Fibonacci 2�code (Table
8.2) we can represent 9 integers
in the range from 0 to 8, inclu�
sively. Here, the number 9 is the
Fibonacci 2�number with index
8, that is, F2(8)=9. The results

of this consideration are partial cases of the following theorem.
Theorem 8.2. For the giv�

en integers n>0 and p>0, with
the help of the n�digit Fibonac�
ci p�code, we can represent
Fp(n+p+1) integers in the
range from 0 to Fp(n+p+1)�1,
inclusively.

Proof. It is clear that the
minimal number Nmin can be
represented in the Fibonacci p�
code (8.9) as follows:

N
n

min ... .= =0 00 0        (8.12)

The binary representa�
tion of the maximal number
Nmax has the following form:

N
n

max ... .= 11 1               (8.13)

CC N CC N

A A

A A

A

5 3 2 1 1 5 3 2 1 1

0 0 0 0 0 0 1 0 0 0 0 5

0 0 0 0 1 1 1 0 0 0 1 6

0 0 0 1 0 1

0 16

1 17

2 AA

A A

A A

A A

18

3 19

4 20

5 21

1 0 0 1 0 6

0 0 0 1 1 2 1 0 0 1 1 7

0 0 1 0 0 2 1 0 1 0 0 7

0 0 1 0 1 3 1 0 1 00 1 8

0 0 1 1 0 3 1 0 1 1 0 8

0 0 1 1 1 4 1 0 1 1 1 9

0 1 0 0 0 3 1 1 0 0 0 8

0

6 22

7 23

8 24

9

A A

A A

A A

A 11 0 0 1 4 1 1 0 0 1 9

0 1 0 1 0 4 1 1 0 1 0 9

0 1 0 1 1 5 1 1 0 1 1 10

0 1 1

25

10 26

11 27

12

A

A A

A A

A 00 0 5 1 1 1 0 0 10

0 1 1 0 1 6 1 1 1 0 1 11

0 1 1 1 0 6 1 1 1 1 0 11

0 1 1

28

13 29

14 30

15

A

A A

A A

A 11 1 7 1 1 1 1 1 1231A

Table 8.1. Mapping the Fibonacci 1�code
 onto natural numbers

CC N CC N

A A

A A

A

3 2 1 1 1 3 2 1 1 1

0 0 0 0 0 0 1 0 0 0 0 3

0 0 0 0 1 1 1 0 0 0 1 4

0 0 0 1 0 1

0 16

1 17

2 AA

A A

A A

A A

18

3 19

4 20

5 21

1 0 0 1 0 4

0 0 0 1 1 2 1 0 0 1 1 5

0 0 1 0 0 1 1 0 1 0 0 4

0 0 1 0 1 2 1 0 1 00 1 5

0 0 1 1 0 2 1 0 1 1 0 5

0 0 1 1 1 3 1 0 1 1 1 6

0 1 0 0 0 2 1 1 0 0 0 5

0

6 22

7 23

8 24

9

A A

A A

A A

A 11 0 0 1 3 1 1 0 0 1 6

0 1 0 1 0 3 1 1 0 1 0 6

0 1 0 1 1 4 1 1 0 1 1 7

0 1 1 0

25

10 26

11 27

12

A

A A

A A

A 00 3 1 1 1 0 0 6

0 1 1 0 1 4 1 1 1 0 1 7

0 1 1 1 0 4 1 1 1 1 0 7

0 1 1 1 1 5

28

13 29

14 30

15

A

A A

A A

A A331 1 1 1 1 1 8

Table 8.2. Mapping the Fibonacci 2�code
onto natural numbers
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The binary combination (8.13) is an abridged representation of the fol�
lowing sum:

Nmax=F
p
(n)+ F

p
(n�1)+…+F

p
(i)+…+F

p
(1).  (8.14)

Using the formula (4.39), we can write:

Nmax=Fp(n+p+1)�1.  (8.15)

The theorem is proved.
Note that for the case p=0, F0(n+1)=2n and Theorem 8.2 is reduced to the

well�known theorem about the range of number representation for the classical
binary system. This range is equal to 2n for the n�digit binary code (8.10).

8.3.4. Multiplicity of Number Representation

The Multiplicity of number representation in the form (8.9) is the next
peculiarity of the Fibonacci p�
code (8.9) for the case p>0. By
accepting the minimal number
0 given by (8.12) and the max�
imal number given by (8.13),
the remaining integers from
the range [0, Fp(n+p+1)�1]
have more than one represen�
tation in the form (8.9). This
means that all integers in the
range [1, Fp(n+p+1)�2] have
multiple representations in the
Fibonacci p�code (8.9) for the
case p>0.

Now, let us examine the
mapping of integers onto the 5�
digit binary code combinations
A in accordance with Table 8.1
(p=1) and Table 8.2 (p=2).
This mapping is represented in Table 8.3.

Note that for the arbitrary p the minimal and the maximal numbers have
only binary representations in the n�digit Fibonacci p�code:

0 = 0 0 ... 0  (n digits)

and

Fp(n+p) � 1 = 1 1 ... 1 (n digits).

Table 8.3. Mapping natural numbers to binary
combinations in the Fibonacci 1 and 2 codes

p p

A

A A

A A

A A A

A A A

A

= =

={ }
={ }
={ }
={ }
={ }
=

1 2

0

1

2

3

4

5

0

1 2

3 4

5 6 8

7 9 10

,

,

, ,

, ,

111 12 16

13 14 17 18

15 19 20

21 22

6

7

8

, ,

, , ,

, ,

, ,

A A

A A A A

A A A

A A A

{ }
={ }
={ }
= 224

23 25 26

27 28

29 30

31

0

9

10

11

12

0

{ }
={ }
={ }
={ }
={ }

={ }

A A A

A A

A A

A

A

, ,

,

,

11

2

3

4

1 2 4

3 5 6 8

7 9 10 12 16

11 13

={ }
={ }
={ }
=

A A A

A A A A

A A A A A

A A

, ,

, , ,

, , , ,

, ,, , , ,

, , , ,

, , ,

A A A A

A A A A A

A A A A

14 17 18 20

15 19 21 22 24

23 25 26 2

5

6

{ }
={ }
= 88

27 29 30

31

7

8

{ }
={ }
={ }

A A A

A

, ,
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8.4. Minimal Form and Redundancy of the Fibonacci p�Code

8.4.1. Convolution and Devolution

The different binary representations of one and the same integer N in the
Fibonacci p�code (8.9) for the case p>0 may be obtained from one another by
means of the peculiar code transformations called Convolution and Devolution
of the binary digits. These code transformations are carried out within the scope
of one binary combination and follow from the basic recursive relation (4.18)
that connects adjacent digit weights of the Fibonacci p�code (8.9). The idea of
such code transformations consists in the following.

Let us consider the abridged representation (8.4) of integer N in the Fibonacci
p�code (8.9). Suppose that the binary numerals of the l�th, (l�1)�th and (l�p�1)�
th digits in (8.4) are equal to 0, 1, 1, respectively, that is,

N=an an�1 … al+1 01 al�2… al�p 1 al�p�2… a1.  (8.16)

This binary representation (8.16) may be transformed into another binary
representation of the same number N, if, in accordance with the recursive rela�
tion (4.18), we replace the binary numerals 1 in the (l�1)�th and (l�p�1)�th digits
with the binary numerals 0 and the binary numeral 0 in the l�th digit with the
binary numeral 1, that is,

N
a a a a a a

a a a a

n l l l p l p

n l l l p

=
+ − − − −

+ − −

... ... ...

... ...

1 2 2 1

1 2

0 1 1

1 0 00 2 1a al p− −





 ...
.  (8.17)

Such transformation of the binary representation (8.17) is named Convolu�
tion of the (l�1)�th and (l�p�1)�th digits into the l�th digit.

The initial binary representation (8.17) can be restored if we fulfill the fol�
lowing code transformation over the binary representation of the number N:

N
a a a a a a

a a a a

n l l l p l p

n l l l p

=
+ − − − −

+ − −

... ... ...

... ...

1 2 2 1

1 2

1 0 0

0 1 11 2 1a al p− −





 ...
.  (8.18)

Such transformation of the code representation is named Devolution of the
l�th digit into the (l�1)�th and (l�p�1)�th digits.

Note that in accordance with (4.18) the fulfillment of the convolution and
the devolution in the binary representation (8.16) does not change the initial
number N, represented by the binary combination (8.16).

It is  simple to fulfill convolutions and devolutions for the Fibonacci p�code
corresponding to the case p=1. In this case operations are carried out over three
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adjacent digits, namely over the l�th , (l�1)�th and (l�2)�th digits. Let us consider
the fulfillment of these operations for the Fibonacci 1�code (“Zeckendorf sum”):

(a) Convolution

7
0 1 1 1 1
1 0 0 1 1
1 0 1 0 0

=





 (8.19)

(b) Devolution

5
1 0 0 0 0
0 1 1 0 0
0 1 0 1 1

=





 (8.20)

The procedure that consists in the fulfillment of all possible convolutions or
devolutions in the initial binary combination (8.16) is named Code Convolution
and Code Devolution, respectively. It is easy to prove that the fulfillment of the
code convolution and the code devolution result in the so�called Convolute and
Devolute binary representations of the number N.

For the case p=1, the convolute and devolute binary representations of the
number N have peculiar indications. In particular, in the convolute binary rep�
resentation, two binary numerals of 1 together do not meet and in the devo�
lute binary representation two binary numerals of 0 together do not meet since
the highest 1 of the binary representation (8.16).

The rule of the “convolution�devolution inversion” is of great importance
for technical applications. This rule consists in the following: the “convolution”
of the initial binary combination is equivalent to the “devolution” of the inverse
binary combination, and conversely. By using this rule, we can fulfill the reduc�
tion to the “convolute” form for the example (8.19) as follows:

 (a) Inversion of the initial binary combination 0 1 1 1 1:

01111 10000=
(b) “Code devolution” of the inverse binary combination:
10000 01100 01011= =
(c) Inversion of the obtained code combination:

01011 10100=
Now, let us consider the peculiarities of the “convolution” and “devolution”

for the lowest digits of the Fibonacci 1�code. As is well�known in the case p=1,
the weights of the two lowest digits of the Fibonacci 1�code equal 1, that is,
F1=F2=1. And then the operations of the “devolution” and “convolution” for these
digits are fulfilled as follows:
10=01 (“devolution”) and 01=10 (“convolution”).
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8.4.2. Radix of the Fibonacci p�Code

What is the radix of the p�Fibonacci code? For the case p=0, the radix of the
binary system (8.10) is calculated as the ratio of the adjacent digit weights, that
is, 2k/2k�1=2.

Apply this principle to the Fibonacci p�code (8.9) and examine the ratio

F
p
(k)/F

p
(k�1).  (8.21)

The radix of the Fibonacci p�code (8.9) is the limit of the ratio (8.21). From
Chapter 4 we know that

lim
( )

( )
,

k

p

p
p

F k

F k→∞ −
=

1
τ

where τp is the golden p�proportion.
This means that the radix of the Fibonacci p�code (8.9) is an irrational num�

ber τ
p
, the positive root of the characteristic equation xp+1�xp�1=0.

8.4.3. A Minimal Form of the Fibonacci p�Code

The following theorem is of great importance for the theory of Fibonacci
p�codes.

Theorem 8.3. For the given integers p≥0 and n≥p+1, the arbitrary integer N
can be represented in the only form:

N=Fp(n)+R1,  (8.22)

where

0≤R1<F
p
(n�p).  (8.23)

Proof. Note that the sequence of the Fibonacci p�numbers that are generat�
ed by the recursive relation (4.18) at the seeds (4.19) is strictly an increasing
sequence starting with n=p+1. Consider the following number sequence:

Fp(p+1), Fp(p+2),…, Fp(n), Fp(n+1),… .  (8.24)

We can choose in this sequence the pair of adjacent Fibonacci p�numbers
F

p
(n) and F

p
(n+1) so that

Fp(n)≤N< Fp(n+1).  (8.25)

By subtracting the Fibonacci p�number F
p
(n) from all terms of the inequal�

ity (8.25), we obtain:
0≤N�Fp(n)<Fp(n+1)�Fp(n).  (8.26)

The formulas (8.22) and (8.23) follow directly from (8.26) because

Fp(n+1)�Fp(n)=Fp(n�p).
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The theorem is proved.
Note that for the case p=0 we have: F0(n)=2n�1 and therefore the expres�

sions (8.22) and (8.23) take the following well�known (in “binary” arith�
metic) form:

N=2n�1 +R1, 0≤R1<2n�1.  (8.27)

Let us represent the integer N according to the formula (8.22) and
then let us represent all the remainders R1, R2, Rk , which can arise in the
process of such representation, according to one and the same formula
(8.22). We will continue this process up to obtaining the remainder equal
to 0. As a result of this decomposition of the number N, we obtain a pecu�
liar representation of integer N in the Fibonacci p�code (8.9). Its peculiarity
is that in the binary representation of the integer N given by (8.16) no less
than p binary numerals 0 follow after every digit al=1 from the left to the
right, that is,

a
l�1= a

l�2= a
l�p

=0.  (8.28)

Such representation of the integer N is called the Minimal Form or Minimal
Representation of the integer N in the Fibonacci p�code. This name reflects the
fact that for the case p=1 the minimal form of the integer N has a minimal num�
ber of the binary numerals 1 in the binary representation of the Fibonacci 1�
code among all binary representations of the same integer N.

For example, by using the above algorithm, we can obtain the following
minimal forms of the number 25 in the Fibonacci 1� and 2�codes (Table 8.4).

Table 8.4. Minimal forms of the Fibonacci1� and 2�codes

p F i

p F i

= ( )
=

= ( )
=

1 55 34 21 13 8 5 3 2 1 1

25 0 0 0 0

2 19 13 9 6 4 3 2 1 1 1

25

1

2

1 0 1 0 1 0

11 0 0 1 0 0 0 0 0 0

A peculiarity of the binary representations of number 25 given by Table
8.4 consists in the following. For the case p=1, not less than one binary nu�
meral 0 follows after every binary numeral 1 from left to right in the binary
representation of number 25; for the case p=2 not less than two binary numerals
0 follow after every binary numeral 1 from left to right in the code representa�
tion of the same number 25.

Corollary from Theorem 8.3. For a given p (p=0,1,2,3,…) every integer N
has  the only minimal form in the Fibonacci p�code.

This means that there is a one�to�one mapping of natural numbers onto
the minimal forms of the Fibonacci p�code (8.9).
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Note that for the case p=0 (the classical binary code) every integer N has the
only representation in the form (8.10). This means that every code representa�
tion (8.10) is its “minimal form.”

Now, let us prove the following theorem.
Theorem 8.4. For a given integer p≥0 by using the n�digit Fibonacci p�

code in the minimal form we can represent F
p
(n+1) integers in the range from

0 to Fp(n+1)�1, inclusively.
Proof. To prove the theorem, recall that there is a one�to�one map�

ping between natural numbers and their minimal forms in the Fibonacci
p�code (8.9). Suppose that the number of different n�digit minimal forms
of the Fibonacci p�code (8.9) is equal to Tp(n). Let us find a recursive
relation for T

p
(n). First of all, we can write the following evidence equal�

ities:
T

p
(1)=T

p
(2)=…=T

p
(p)=1.  (8.29)

It is easy to prove that for the case n=p+1 we can represent only two num�
bers in the minimal form, 0 and 1, as follows:
0 00 0 1 100 0

1

= =
+
... ; ... .

p p

This means that

T
p
(p+2)=2.  (8.30)

Let n>p+1. Suppose that for this case the set A of n�digit minimal forms in
the Fibonacci p�code (8.9) consists of Tp(n) elements, that is, we can represent
T

p
(n) different numbers in the minimal form. To obtain a recursive relation for

T
p
(n), we divide the set A into two non�crossing subsets A0 and A1. All minimal

n�digit forms of the subset A0 begin from 0 and all minimal n�digit forms of the
subset A1 begin from 1. By taking away the first binary numeral 0 at the begin�
ning of all minimal forms of the subset A0, we obtain the subset of (n�1)�digit
minimal forms. According to the inductive hypothesis, the number of elements
in it is equal to T

p
(n�1).

Next let us examine the subset A1. In accordance with the condition for
minimal form, the p binary numerals 0 follow after the binary numeral 1. This
means that all binary combinations of the subset A1 begin from the code combi�
nation 100…0 (p+1 digits). By taking away these (p+1) digits standing at the
beginning of all minimal forms of the subset A1, we obtain the set of all (n�p�1)�
digit minimal forms. According to the inductive hypothesis, the number of ele�
ments of this subset is equal to T

p
(n�p�1).

The next recursive relation for Tp(n) follows from this consideration:

T
p
(n)= T

p
(n�1)+T

p
(n�p�1).  (8.31)
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If we compare the recursive relation (8.31) that is given at the seeds (8.29) and
(8.30) with the recursive relation (4.18) at the seeds (4.19), we can conclude:

T
p
(n)=F

p
(n+1).

The theorem is proved.
For the case p=1, the minimal form has a very simple indicator: in the mini�

mal form two binary numerals 1 together do not meet. But the “convolute” form,
considered above, has the same property. This means that for the Fibonacci 1�
code the “convolute” form coincides with the minimal form and the reduction of
the Fibonacci 1�code combination to the minimal form can be performed by us�
ing “convolutions.” The example (8.19) demonstrates the process of reduction of
the Fibonacci 1�code combination to the minimal form. Also the notion of the
maximal form is very important for the Fibonacci 1�code. The maximal form can
be obtained from the initial binary combination by means of “devolutions” and
it coincides with the “devolute” form. The example (8.20) demonstrates the pro�
cess of reduction of the Fibonacci 1�code combination from the minimal form of
the number 5 to its maximal form. Note that the operations of the reduction of
the Fibonacci 1�code combinations to the minimal and maximal forms are the
most important operations of Fibonacci arithmetic.

8.4.4. Comparison of Numbers in the Fibonacci p�Codes

Now, let us deduce a rule for the number comparison of Fibonacci p�codes.
With this purpose we compare the n�digit numbers corresponding to the sub�
sets A0 and A1. As all numbers of the subset A1 have the binary numeral 1 in the
highest, that is, the n�th digit, the minimal number of the subset A1 is equal to
F

p
(n), the weight of the n�th digit of the Fibonacci p�code (8.9). On the other

hand, all numbers of the subset A0 have the binary numeral 0 in the highest, that
is, the n�th digit. Then according to Theorem 8.4, the maximal number, which
may be represented in the minimal form by using (n�1) digits is equal to F

p
(n)�

1. Hence, the minimal number of the subset A1 is always greater than the maxi�
mal number of the subset A0.

From this examination, the simple rule of comparison follows. The compar�
ison of two numbers A and B represented in the minimal form of the Fibonacci
p�code (8.9) can be carried out digit�by�digit starting with the highest digit un�
til the first pair of non�coincident digits of the comparable codes A and B is found.
If the number A has the binary numeral 1 and the number B has the binary
numeral 0 in the first pair of the non�coincident digits, we can then conclude
that A>B. If the code combinations of the comparable numbers coincide for all
digits, then the numbers are equal to each other.
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Thus, the comparison of numbers in the Fibonacci p�codes is carried out in a
manner similar to the classical binary code, provided before the comparison we
reduce the comparable codes to their minimal form. This property (simplicity of
number comparison) is one of the important arithmetical advantages of the Fi�
bonacci p�codes (8.9).

For example, we need to compare two numbers A=00111101101 and
B=00111110110 that are represented in the Fibonacci 1�code. The number
comparison is carried out in two steps:

1. Reduce the comparable codes to their minimal form:

A = = =00111101101 0100111001 0101001010

B = = = =00111110110 01001111000 01010011000 01010100000.
 2. Compare digit�by�digit the minimal forms of the number A and B begin�
ning with the highest digit on the left:

A

B

= [ ]
= [ ]

01010 0 10010

01010 1 00000.

We can see that the first non�coincident pair of the comparable combina�
tions (from left to right) contains the binary numeral 0 in the minimal form of
the first number A and the binary numeral 1 in the minimal form of the second
number B. This means that B>A.

 8.4.5. Redundancy of the Fibonacci p�Codes

For the case p=0, the Fibonacci 0�code (classical binary code) is non�
redundant. However, for  p>0, all Fibonacci p�codes (8.9) are redundant. And
their redundancy shows in the Multiplicity of the Fibonacci p�code represen�
tation of one and the same integer N. Theorems 8.2 and 8.4 allow one to
calculate the redundancy of the Fibonacci p�codes for p>0 in comparison
with the classical binary code (p=0).

We can calculate the relative code redundancy r by the following
formula [177]:

r
n m

m
n
m

= − = −1,  (8.32)

where n and m are the code length of the redundant and non�redundant codes,
respectively, for the representation of one and the same number range.

Note that the redundancy definition given by (8.32) characterizes a
relative increase of the code length of the redundant code relative to the non�
redundant code for the representation of one and the same number range.
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Now, let us examine the range of number representation for the n�digit Fi�
bonacci p�codes (p>0). The problem has two solutions. It follows from Theorem
8.2 that we can represent F

p
(n+p+1) integers by using the n�digit Fibonacci p�

code (8.9) if we represent integers N≥0 without the restrictions on the form of
the code representation. However, it follows from Theorem 8.4 that we can rep�
resent F

p
(n+1) integers N by using the n�digit Fibonacci p�code (8.9) if we use

only the minimal forms for the number representation.
For the code representation of the numbers that are in the number range

F
p
(n+p+1) or F

p
(n+1), it is necessary to use either m1≈log2Fp

(n+p+1) or
m2≈log2Fp(n+1) binary digits of the non�redundant code, respectively. Using
(8.32) we obtain the following formulas for the calculation of the relative code
redundancy of the Fibonacci p�code (8.9):

r
n

F n pp
1

2 1
1=

+ +
−

log ( )  (8.33)

r
n

F np
2

2 1
1=

+
−

log ( )
.  (8.34)

The simplest redundant Fibonacci p�code is the code corresponding to the
case p=1. Let us calculate the limiting value of the relative redundancy for this
code. The formulas (8.33) and (8.34) for the Fibonacci 1�code take the following
forms, respectively:

r
n
Fn

1
2 2

1= −
+log  (8.35)

r
n
Fn

2
2 1

1= −
+log

,  (8.36)

where Fn+1, Fn+2 are the classical Fibonacci numbers.
We can represent the Fibonacci numbers Fn+1, Fn+2 by using the Binet for�

mulas (2.68). For any large n we can write the Binet formulas (2.68) in the fol�
lowing approximate form:

Fn

n

≈ τ
5

.  (8.37)

Using (8.37) and substituting the approximate values for F
n+2 and F

n+1 into
the formulas (8.35) and (8.36), we obtain the following formulas:

r
n

n
1

2 22 5
1=

+ −
−

( )log logτ  (8.38)

r
n

n
2

2 21 5
1=

+ −
−

( )log log
.

τ  (8.39)
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If we direct n to infinity  in the expressions (8.38) and (8.39), we find that
they coincide for this case. Here, the utmost value of the relative redundancy
for the Fibonacci 1�code is determined by the following expression:

r = − =1
1 0 44

2log
. .

τ

Thus, the utmost value of the redundancy of the Fibonacci 1�code (Zecken�
dorf representation) is a constant value equal to 0.44 (44%).

8.4.6. Surprising Analogies Between the Fibonacci and Genetic Codes

Among the biological concepts that have a level of general scientific signifi�
cance and are well formalized, the genetic code plays a special role. The discov�
ery of the now well�known fact of the striking simplicity of the basic principles
of the genetic code is one of the major modern discoveries of modern science.
This simplicity consists of the fact that the inheritable information is encoded
by the texts of the three�alphabetic words � Triplets or Codonums � compounded
on the base of the alphabet that consists of the four characters � nitrogen bases:
A (adenine), C (cytosine), G (guanine), T (thiamine). The given recording sys�
tem is unique for all boundless set of miscellaneous living organisms and is called
the Genetic Code [141].

It is known [141] that by using the three�alphabetic triplets or codonums,
we can encode 21 items that include 20 amino acids and one more item called the
Stop�codonum (sign of the punctuation). It is clear that 43=64 different combi�
nations (from four by three nitrogen bases) are used for encoding 21 items. In
this connection some of the 21 items are encoded by several triplets. It is called
the Degeneracy of the Genetic Code. Finding the conformity between triplets
and amino acids (or signs of the punctuation) is interpreted as Decryption of the
Genetic Code. Now, let us examine the 6�digit Fibonacci 1�code (Zeckendorf
representation) (8.1) that uses 6 Fibonacci numbers 1, 1, 2, 3, 5, 8 as digit weights:
N a a a a a a= + + + + +6 5 4 3 2 18 5 3 2 1 1× × × × × × .  (8.40)

There are the following surprising analogies between the 6�digit Fibonacci
code and the genetic code:

1. The first analogy. For the representation of numbers the 6�digit binary
Fibonacci code uses 26=64 binary combinations from 000000 up to 111111
which coincide with the number of triplets of the genetic code (43=64).
2. The second analogy. By using the 6�digit Fibonacci code (8.40), we can
represent 21 integers including the minimal number 0 that is encoded by
the 6�digit binary combination 000000 and the maximal number 20 that is
encoded by the 6�digit binary combination 111111. Note that by using the
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triplet coding we can also represent 21 items including 20 amino acids and
one additional object, the stop�codonum or the sign of the punctuation that
indicates a termination of protein synthesis.
3. The third analogy. The main feature of the Fibonacci code is the Multiplic�
ity of number representation. Except for the minimal number 0 and the max�
imal number 20 that have the only code representations 000000 and 111111,
respectively, all the rest of numbers from 1 up to 19 have multiple representa�
tions in the Fibonacci code, that is, they use no less than two code combina�
tions for their representation. It is necessary to note that the genetic code
has the similar property called the Degeneracy of the genetic code.
Thus, between the Fibonacci code (8.40) and the genetic code based on

the triplet representation of amino acids, there are very interesting analogies
that allow us to consider the Fibonacci code to be a peculiar class of redun�
dant codes among various ways of redundant coding. Thus we suggest that
the study of the Fibonacci code may be of great interest for the genetic code.
It is very possible that the similar analogies can become rather useful in the
designing of DNA�based bio�computers.

8.5. Fibonacci Arithmetic: The Classical Approach

8.5.1. Fibonacci Addition

Let us begin with developing the Fibonacci arithmetic. There are two meth�
ods for its development. The first way is to use an analogy between classical bi�
nary arithmetic and Fibonacci arithmetic (a “classical approach”). The second
way is to develop the “original Fibonacci arithmetic” based on some peculiari�
ties of the Fibonacci p�codes.

Let us first start the development with the classical approach. As the
notion of the Fibonacci p�code given by (8.9) is a generalization of the notion
of the classical binary code (8.10), we can use the following method for
obtaining the arithmetical rules of the Fibonacci p�arithmetic. We begin by an�
alyzing the corresponding rule for the classical binary arithmetic and then by
analogy we find a similar rule for the Fibonacci p�arithmetic.

We start from the addition rule for the Fibonacci p�code (8.9). It is well
known that the classical binary addition is based on the following identity for
the binary numbers:

2k�1+2k�1=2k,  (8.41)
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where 2k�1 and 2k are the weights of the (k�1)�th and k�th digits of the binary code
(8.10), respectively.

To obtain the rule of number addition for the Fibonacci p�code, we ana�
lyze the following sum:
F

p
(k)+F

p
(k),  (8.42)

where Fp(k) is the weight of the k�th digit of the Fibonacci p�code (8.9).
Let p=1. For this case we have

F
p
(k)=F

k
,  (8.43)

where Fk is the classical Fibonacci number given by the recursive relation (8.2)
at the seeds (8.3). If we take into consideration (8.2) and (8.3), we can represent
the sum (8.42) as follows:

Fk+Fk=Fk+Fk�1+Fk�2  (8.44)

F
k
+F

k
=F

k+1+F
k�2.  (8.45)

The following addition rule of two binary digits ak + bk with the same index k
for the Fibonacci 1�code  follows from (8.44) and (8.45) represented in  Table 8.5.

The following rules of the Fibonacci 1�addition of the binary numerals of
the k�th digits ak+bk follow from
Table 8.5:

Rule 8.1. At the addition of
the binary numerals 1+1 of the k�
th digits the carry�over of the bi�
nary numeral 1 from the k�th dig�
it to the next two digits arises.

Rule 8.2. There are two
ways of carrying�over the for�
mation. In method (a) (see Ta�

ble 8.5) the binary numeral 1 is attributed to the k�th digit of the intermediate
sum sk and the carry�over of the binary numeral 1 to the next two lower digits,
that is, to the (k�1)th and (k�2)th digits, ck�1 and ck�2, occurs. Method (b) (see
Table 8.5) assumes another rule of the Fibonacci 1�summation of binary dig�
its. The binary numeral 0 is attributed to the k�th digit of the intermediate
sum sk and the binary numeral 1 is carried�over to the next two digits, that is,
to the (k+1)�th and (k�2)�th digits, c

k+1 and c
k�2, appear.

The summation of the multi�digit numbers in the Fibonacci 1�code is
fulfilled in accordance with the Fibonacci 1�summation according to Table
8.5. However, we should adopt the following rules:

Rule 8.3. Before summation, the addends are reduced to the minimal
form.

a b c s c c

a

k k k k k k+ =
+ =
+ =
+ =
+ =
+

+ − −1 1 2

0 0 0 0 0 0

0 1 0 1 0 0

1 0 0 1 0 0

1 1 0 1 1 1

1 1

( )

== 1 0 0 1 ( )b

Table 8.5. A rule of summation
for the Fibonacci 1�code
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Rule 8.4. In accordance with Table 8.5, it is necessary to form the multi�
digit intermediate sum and multi�digit carry�over.

Rule 8.5. The multi�digit intermediate sum is reduced to the minimal
form and is then summarized with the multi�digit carry�over.

Rule 8.6. The addition process continues in accordance with rules 8.4 and
8.5 until the multi�digit carry�over equal to 0 is obtained. The last intermediate
sum, which is reduced to the minimal form, is the result of the addition.

For the Fibonacci 1�addition it is necessary to fulfill the  additional rule 8.7.
Rule 8.7. Let us examine the case, where we have two binary numerals 1 in

the k�th digits of the addends. It follows from the property of the minimal form
that the binary numerals of the (k+1)�th and (k�1)�th digits of both of the
addends are always equal to 0. It is clear that for this case the intermediate sum
that appears at the addition of the (k+1)�th and (k�1)�th digits of both of the
addends are also always equal to 0. This means that we can place one of the
carry�overs that appear at the addition of the k�th significant digits (1+1) at
once to the (k�1)�th digit of the intermediate sum (for the (a)�method) or to
the (k+1)�th digit of the intermediate sum (for the (b)�method).

We can demonstrate the above Fibonacci addition rules in the example below.
Example 8.1. Summarize the numbers 31=10011011 and 22=01011010

represented in the Fibonacci 1�code.
The first step is to reduce the binary representations of the numbers 31 and

22 to the minimal form:

31=10100100; 22=10000010.

The second step is the formation of the multi�digit intermediate sum S1 and
multi�digit carry�over C1 in accordance with method (a) of Table 8.5:

31 10100100

22 10000010

11100110
00100000

1

1

=
+

=

=
=

___________
S
C

The third step is to reduce the intermediate sum S1 to the minimal form:

S1=11100110=100101000.

The fourth step is the addition of S1 and C1:
S

C

S
C

1

1

2

2

100101000

000100000

100111000
000001

=
+

=

=
=

____________

0000
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Table 8.6. The
rule of subtrac�

tion for the
Fibonacci 1�code

0 0 0

1 1 0

1 0 0 1 1

1 0 1 0 1

1 0 0 1 1 1

1 0 0 0 1 1 1 1

− =
− =
− =
− =
− =
− =

The fifth step is to reduce the intermediate sum S2 to the minimal form:

S2=100111000=101001000.

The sixth step is the addition of S2 and C2:
S

C

S
C

2

2

3

3

101001000

000001000

101001100
000000

=
+

=

=
=

____________

0010

The seventh step is to reduce the intermediate sum S3 to the minimal form:

S3=101001100=101010000.

The eighth step is the addition of S3 and C3:
S

C

S
C

3

3

4

4

101010000

000000010

101010010
000000

=
+

=

=
=

____________

0000

The addition is over because the carry�over C4=0 appears in the eighth step.

8.5.2. Direct Fibonacci Subtraction

The well�known “direct” method of number subtraction in classical bina�
ry arithmetic (p=0) is based on the following property of binary numbers:

2n+k�2n=2n+k�1+2n+k�2+…+2n .  (8.46)

Now, let us write a similar identity for the Fibonacci 1�numbers:

Fn+k � Fn= Fn+k�2+Fn+k�3+…+Fn�1 .  (8.47)

Using the identity (8.47) and the Fibonacci recursive relation (8.2), we
obtain the following Fibonacci 1�subtraction table represented in Table 8.6.

The reader of the present book can “deduce” the rules of
the “direct” Fibonacci p�subtraction by using the recursive
relation for the Fibonacci p�numbers.

The “direct” Fibonacci 1�subtraction of multi�digit num�
bers is based on the following rules:

Rule 8.8. The numbers are reduced to the minimal form
before subtraction.

Rule 8.9. After reduction to the minimal form, the numbers
are compared by their value and then in accordance with Table
8.6, the smaller number being subtracted from the larger one.
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8.5.3. Fibonacci Inverse and Additional Codes

It is well�known that the classical binary arithmetic employs the notions of
“inverse” and “additional” codes for the representation of negative numbers. This
approach allows one to reduce the binary subtraction to binary addition. For
the case of integer representation, the following mathematical properties under�
lie the “inverse” code (G

inv
) and the “additional” code (G

ad
):

Ginv=2n�1� |G|  (8.48)

Gad=2n� |G|,  (8.49)

where |G| is the module of the initial integer G.
Note that the “�” (“minus”) sign is encoded by the binary numeral 1 and

the “+” (“plus”) sign by the binary numeral 0. They are placed at the begin�
ning of the code combination. The digital part coincides with its direct code
for the positive number G, and is determined by (8.48) and (8.49) for the
negative number G.

The notions of inverse and additional codes have the following generaliza�
tion for the Fibonacci 1�code. By analogy to (8.48) and (8.49) we can introduce
the notions of the “Fibonacci inverse” and “Fibonacci additional” n�digit 1�codes:

Ginv=Fn+1�1� |G|  (8.50)

Gad=Fn+1� |G|,  (8.51)

where F
n+1 is the Fibonacci 1�number, and G is any integer.

The expressions (8.50) and (8.51) have the following code interpretation.
Suppose that the initial integer G is represented in the minimal form of the n�
digit Fibonacci 1�code (8.1). It follows from Theorem 8.4 that the integer G is in
the following number range:

0 1≤ ≤ −G Fn .  (8.52)

On the other hand, the following important expressions that connect the
Fibonacci inverse and additional codes follow from (8.50) and (8.51):

G G Finv n+ = −−1 1  (8.53)

G Gad inv= +1.  (8.54)

Using the general property (2.20), we can represent the number Fn+1–1 as
follows:

Fn+1–1= Fn�1+Fn�2+…+F2+F1.  (8.55)

Note that the sum (8.55) has the following code interpretation:

F G Gn
n

inv+
−

− = = +1
1

1 011 1... .  (8.56)
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The formula (8.56) can be used for the introduction of the following algo�
rithm for obtaining the Fibonacci inverse and Fibonacci additional 1�codes
from the initial code G (for example, from the initial Fibonacci 1�code
G=10010100):

1. By using the operation of “devolution” for the initial code G:

G=10010100=01110011=01101111.

2. By using the operation of “inversion” for all binary digits of the “devolute”
form of the number G, except for the higher digit:

01101111 00010000= .
The resulting binary combination is the Fibonacci inverse 1�code of G:

G
inv

=00010000.

3. By adding the binary numeral 1 to the lowest digit of the Fibonacci in�
verse 1�code in accordance to (8.54) and by reducing the obtained code com�
bination to the minimal form, we obtain the Fibonacci additional 1�code G:

Gad=00010001=00010010.

Note that in the general case p≥0, the expressions for the Fibonacci inverse
and additional p�codes have the following forms:
G F n Ginv p= +( ) − −1 1  (8.57)

G F n Gad p= +( ) −1 .  (8.58)

We can see that the expressions (8.48), (8.49) and (8.53), (8.54) are partial
cases of expressions (8.57) and (8.58) because for the case p=0, F0(n+1)=2n

and for the case p=1, F1(n+1)=Fn+1.
Now, let us introduce the following rule of the sign encoding for the Fibonacci

inverse and additional 1�codes. We will be encoding the “−” sign with the binary
numeral 1 and the “+” sign with the binary numeral 0. The sign of the code com�
binations is put at the beginning of the numerical part of the code. Hence, the
Fibonacci inverse and additional 1�codes of the negative number

G=�10010100

have the following forms, respectively:

Ginv=1.00010000

G
inv

=1.00010010.

Note that the numerical part of the Fibonacci inverse and additional 1�
codes of the positive number G, coincide with the Fibonacci 1�code of the
same number G. For example, the Fibonacci inverse and additional 1�codes of
the positive number G=+10010100 have the following form:

Gad=0.10010100.
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Let us formulate the Fibonacci subtraction algorithm based on the notions
of the Fibonacci inverse and additional 1�codes:

1. Represent the initial numbers in the Fibonacci inverse or additional 1�
codes.
2. Sum the numerical parts in accordance with the rule of the Fibonacci 1�
addition and the signs in accordance with the rule of classical binary addi�
tion. The addition result is represented in the Fibonacci inverse or addition�
al 1�codes. If the sign of the code combination is equal to 1, it means that the
addition result is a negative number. For obtaining the absolute value of the
addition result, it is necessary to use the above algorithm of code transfor�
mation for the Fibonacci inverse or additional 1�codes for the numerical part
of the addition result.

8.6. Fibonacci Arithmetic: An Original Approach

8.6.1. Basic Micro Operations

As mentioned above the multiplicity of number representation is the
main peculiarity of the Fibonacci p�code (8.9) for the case p>0 in compar�
ison to the classical binary code (8.10). By using the above operations of
“devolution” and “convolution”, we can change the form of representation
of one and the same number. This means that the binary 1’s can move in the
code combination to the left or to the right. This fact allows us to develop
an original approach to the Fibonacci arithmetic based upon the so�called
Basic Micro�operations.

We can introduce the following four “basic micro�operations” that are used
in the Fibonacci processor for fulfillment of the logical and arithmetical opera�
tions: (a) Convolution; (b) Devolution; (c) Replacement; (d) Absorption.

Consider these micro�operations for the case of the Fibonacci 1�code
(Zeckendorf representation). We showed above that for the case p=1 the
Convolution and Devolution are the following code transformations that are
carried out for all the adjacent triple digits of one and the same Fibonacci 1�
code combination.

Convolution:

[011→100]

Devolution:

[100→011]
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The micro�operation of Replacement
1 0

0 1
↓ =













is a two�placed micro�operation that is fulfilled at the same digit of two reg�
isters, the top register A and the bottom register B. Examine the case when
the register A has the numeral 1 in the k�th digit and the register B has the
numeral 0 in the same digit. For this condition we can fulfill the following
micro�operation. We shift the above binary numeral 1 of the top register A to
the bottom register B. This micro�operation is named Replacement. Note
that this operation can be carried out only for the condition if the k�th digits
of the registers A and B are equal to 1 and 0, respectively.

The micro�operation of Absorption

1 0

1 0
=













is a two�placed micro�operation that consists in mutually annihilating two 1’s
in the k�th digit of two registers A and B and replacing them with the binary
numerals 0.

It is necessary to pay attention to the following “technical” peculiarity of the
above “basic micro�operations.” At register interpretation of these micro�opera�
tions, each micro�operation may be considered to be the inversion of the triggers
(flip�flops) that are involved in the micro�operation. This means that each mi�
cro�operation is carried out by trigger switching.

8.6.2. Logical Operations

We can demonstrate the possibility of carrying out all logical operations by
using the above four “basic micro�operations.”

Let us construct all the possible “replacements” from top register A to
bottom register B:
A

B
A
B

=
↓ ↓

=
=
=

1 0 0 1 0 0 1

0 1 0 0 1 0 1
0 0 0 0 0 0 1
1 1 0 1 1 0 1

′
′

We obtain two new code combinations A′ and B′ as the outcome of the “re�
placement.” We can see that the binary combination A′ is a logical “conjunction”
(∧) of the initial binary combinations A and B, that is,
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A A B′ = ∧
and the binary combination B′ is a logical “disjunction” (∨) of the initial code
combinations A and B , that is,

B A B′ = ∨ .

The logical operation of “module 2 addition” is performed by means of the
simultaneous fulfillment of all possible micro�operations of “replacement”
and “absorption.” For example,

A

B

A const
B

=
↓ ↓ ↓

=
= =
=

1 0 1 0 0 1 1 0 1

1 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0

′
′ == ⊕A B

We can see that the two new code combinations A′ = const 0  and B A B′ ⊕=
are the result of this code transformation. The logical operation of “code A inver�
sion” is reduced to fulfillment of the operation of “absorption” at the initial code
combination A and the special binary combination B=const 1 (see below):

A

B

A const
B

=

=
= =
=

1 0 1 0 0 1 1 0 1

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0

′
′ == A

8.6.3. The Counting and Subtracting of Binary 1

Let us demonstrate the possibility of carrying out the simplest arithmet�
ical operations by using the “basic micro�operations.” We start with the oper�
ations of “counting” and “subtracting” of the binary numerals 1.

 The “counting” of the binary numerals 1 in the Fibonacci 1�code (a
“summing counter”) is carried out by using “convolution.” For example, the
transformation of the initial Fibonacci 1�code combination 01010 � the minimal
form of the number 4

Fi =
=

5 3 2 1 1
4 0 1 0 1 0

to the next Fibonacci code combination of the number 5 is carried out in the
“summing Fibonacci counter” according to the rule:
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Fi =
= +
=
=
=

5 3 2 1 1
4 0 1 0 1 0 1
5 0 1 0 1 1
5 0 1 1 0 0
5 1 0 0 0 0

Here, in the top row we see Fibonacci numbers 5, 3, 2, 1, 1 that are the
weights of the Fibonacci 1�code. The second row is a representation of the
number 4 in the minimal form (01010). We can see that the binary numeral 1 is
added (+1) to the lowest digit of the Fibonacci binary combination 01010.
Then, the initial binary combination 4=01010 is transformed into the binary
combination 5=01011 that is the Fibonacci binary representation of the next
number 5 (the third row). After that the Fibonacci binary combination 01011
is reduced to the minimal form. This transformation is fulfilled in 2 steps by
using the “convolutions.” The first step is to carry out the “convolution” over
the three lowest digits of the binary combination 01011 (the third row). Using
the “convolution” [011→100], we transform the Fibonacci binary representa�
tion of the number 5=01011 to another Fibonacci binary representation of the
same number 5=01100 (the fourth row). Then, we carry out the “convolution”
over the next group 011 of the Fibonacci binary combination 5=01100 (the
fourth row). In the fifth row we see the minimal form of the number 5=10000.
We can continue the “counting” of the binary numerals 1 as follows:
6 10000 1 10001 10010

7 10010 1 10011 10100

= + = =
= + = = .

If we add the binary numeral 1 to the lowest digit of the number 7=10100,
we obtain:

10100+1=10101=10110=11000=00000.
This situation is well known in computer engineering and is named “over�

filling” of the “summing counter.”
The “subtracting” of the binary numerals 1 (a “subtracting counter”) is

fulfilled by using “devolution.” For this purpose the initial Fibonacci 1�code
combinations are reduced to the “devolute” or “maximal” form, and then the
binary numeral 1 is subtracted sequentially from the lowest digit:

Fi =
=
=
= −
=

5 3 2 1 1
5 1 0 0 0 0
5 0 1 1
5 0 1 0 1 1 1
4 0 1 0 1 0
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Here, in the second row we see the representation of the number 5 in the
minimal form (5=10000). In the third row we carry out the “devolution” over
the highest three digits [100→011] of the binary representation of the initial
binary combination 5=10000. In the fourth row we carry out the next “devolu�
tion” over the next three digits of the binary representation of the number
5=01100 (see the third row). As the outcome we obtain the maximal form of the
number 5=01011 (the fourth row). Then, we subtract the binary numeral 1 from
the lowest digit of the binary combination 5=01011. A result of this transforma�
tion 4=01010 is represented in the fifth row. Then, we can continue the “sub�
tracting” of the 1’s as follows:

4 01010 01001

3 4 1 01001 1 01000

3 01000 001

= = ( )
= − = − =
= =

" "devolutions

110 00101

2 3 1 00101 1 00100

2 00100 00011

= ( )
= − = − =
= =

" "

"

devolutions

deevolution

devolution

"

" "

( )
= − = − =
= = (

1 2 1 00011 1 00010

1 00010 00001 ))
= − = − =0 1 1 00001 1 00000.

8.6.4. Fibonacci Summation

The idea of summation of two numbers A and B is based on the “basic micro�
operations.” The first step is to shift all binary numerals 1 from the top register A
to the bottom register B. With this purpose we use “replacement,” “devolution,”
and “convolution.” The sum is formed in register B.

For example, let us sum the following numbers

A0=010100100 and B0=001010100.

The first step of the Fibonacci addition consists in the “replacement” of
all possible binary numerals 1 from register A to register B:

A

B
A
B

0

0

1

1

0 1 0 1 0 0 1 0 0

0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 1 0 0

=
↓ ↓

=
=
=

The second step is the fulfillment of all possible “devolutions” in the binary
combination A1 and all possible “convolutions” in the binary combination B1:
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A1=000000100→ A2=000000011

B1=011110100→ B2=100110100.

The third step is the “replacement” of all possible binary numerals 1 from
register A to register B:

A

B
A
B

2

2

3

3

0 0 0 0 0 0 0 1 1

1 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1

=
↓ ↓

=
=
=

The addition is over because all binary numerals 1 are shifted from the regis�
ter A to the register B. After reducing the binary combination B3 to the minimal
form, we obtain the sum B3=A+B, which is represented in the minimal form:

B3=100110111=101001001=101001010=A+B.

Thus, the addition is reduced to a sequential fulfillment of the micro�opera�
tions of “replacement” over two binary combinations A and B and the micro�
operations of both “convolution” over the binary combination B and “devolu�
tion” over the binary combination A.

8.6.5. Fibonacci Subtraction

The idea of direct subtraction of number B from number A which is based on
the “basic micro�operations,” consists of the mutual “absorption” of the binary
numerals 1 in the binary combinations of numbers A and B until one of them
becomes equal to 0. To perform this process, we have to sequentially carry out the
aforementioned micro�operations of “absorption” and “devolution” over the code
combinations A and B. The subtraction result is always formed in the register
that contains the larger number. If the subtraction result is formed in the top
register A, it follows from this fact that the sign of the subtraction result is “+”
(“plus”); in the opposite case the subtraction result has the “−” (“minus”) sign.

Let us now demonstrate this idea for the following example. Subtract the
number B0=101010010 from the number A0=101001000 in the Fibonacci 1�code.

The first step is “absorption” of all possible binary 1’s in the numbers A and B:

A

B
A
B

0

0

1

1

1 0 1 0 0 1 0 0 0

1 0 1 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0

=

=
=
=
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The second step is “devolution” of the code combinations A1 and B1:

A1=000001000→ A2=000000110

B1=000010010→ B2=000001101.

The third step is “absorption” of A2 and B2:

A

B
A
B

2

2

3

3

0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1

=

=
=
=

The fourth step is “devolution” of A3 and B3:

A3=000000010→ A4=000000001

B3=000001001→ B4=000000111.

The fifth step is “absorption” of A4 and B4:

A

B
A
B

4

4

5

5

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0

=

=
=
=

The subtraction is finished. After reducing the code combination B5 to the
minimal form we obtain:

B5=000001000.

The subtraction result is in the register B. This means that the sign of the
subtraction result is “−” (“minus”), that is, the difference of the numbers A�B is
equal to:

R=A�B=�000001000.

8.7. Fibonacci Multiplication and Division

8.7.1. The Egyptian Method of Multiplication

In order to find the algorithms for Fibonacci multiplication and division, we
use an analogy with classical binary multiplication and division. We start with
multiplication. To multiply two numbers A and B in the classical binary code
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(8.10) we should represent the multiplier B in the form of the n�digit binary
code. The product P=A×B can then be written in the following form:

P=A×b
n
2n�1+ A×b

n�12
n�2+…+ A×b

i
2i�1+…+ A×b12

0,  (8.59)

where bi is the binary numeral of the multiplier B. It follows from (8.59) that
the binary multiplication is reduced to form the partial products of the kind
A×bi2

i�1 and their addition. The partial product A×bi2
i�1 is made up by shifting

the binary code of number A to the left by (i�1) digits.
The binary multiplication algorithm based on (8.59) has a long history

and goes back in its origin to the Egyptian Doubling Method [169].
As is known, the Egyptian number system was decimal, but non�position�

al. The Egyptians represented the “nodal” numbers of their number system 1,
10, 100, 1000, 10 000, etc. by using special hieroglyphs. Then, in the record of
any number, for example, 325, they used the 5 hieroglyphs representing the
“nodal” number 1, the 2 hieroglyphs representing the “nodal” number 10, and
the 3 hieroglyphs representing the “nodal” number 100.

The invention of the Doubling Method that underlies the arithmetical oper�
ations of multiplication and division is the main achievement of Egyptian arith�

metic. In order to multiply the number 35 by the number
12, the Egyptian mathematician acted as follows. He built
up a special table of numbers (see Table 8.7). The binary
numbers 2k (k=0,1,2,3,…) were placed in the first column
of Table 8.7. In the second column of Table 8.7 we can see
the numbers 35, 70, 140, 280, that is, the numbers formed
from the multiplier 35 according to the Doubling Method.

After that the Egyptian mathematician used the in�
clined line to mark those binary numbers of the first

column whose sum is equal to the second multiplier (12=8+4). Then he
selected those numbers of the second column corresponding to the marked
“binary” numbers of the first column. The result of multiplication is equal
to the sum of the selected numbers of the second column (140+280=420).

The analysis of the Egyptian method of multiplication based on the Dou�
bling Method results in a rather unexpected conclusion. The representation
of the multiplier 12 in the form 12=8+4 corresponds to its representation in
the binary system (12=1100). On the other hand, if we represent the second
multiplier 35 in the binary system (35=100011), then the “doubling” of the
number 35 corresponds to the displacement of the binary code of the multi�
plier 35=100011 to the left (70=1000110, 140=10001100, etc.). In other
words, the Egyptian multiplication method based on the Doubling Method
coincides with the basic multiplication algorithm used in modern computers!

1 35

2 70

/4 140 140

/8 280 280

420

→
→

Table 8.7. Egyptian
method of

multiplication
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This basic algorithm follows from the representation of the product in the form
of (8.56).

8.7.2. The Egyptian Method of Division

The Egyptians also used the Doubling Method for the division of numbers.
If, for example, we need to divide the number 30 by the number 6, the Egyp�
tian mathematician acted as follows (see Table 8.8).

The first stage of the division consists of the following. Let us write in the
first column of Table 8.8 the binary numbers 2k (k=0, 1, 2, 3,…). Then, let us
write in the second column the divisor 6 and
its “doubling” numbers 12, 24, and 48. In ev�
ery “doubling” step we will compare the divi�
dend 30 with the numbers of the second col�
umn until the next “doubling” number (the
number 48 in this example) becomes more
than the dividend (48>30). After that we shall
subtract the “doubling” number of the previ�
ous row (30�24=6) from the dividend 30 and mark the corresponding binary
number of the first column (the number 4) with the inclined line. After that
we shall perform the same procedure with the remainder 6 (see the third
column) until the “doubling” number becomes strictly more than the differ�
ence 6 (12>6). By marking the number 1 of the first column with the inclined
line and then by subtracting the divisor 6 from the remainder 6, we obtain the
number 0 (6�6=0). This means that the division is over. After that we can see
that the sum of the binary numbers of the first column marked by the inclined
line (4+1=5) is equal to the result of the division.

Thus, after due consideration one is astonished by the genius of the Egyp�
tian mathematicians who several millennia ago invented the methods of mul�
tiplication and division that are today used in our modern computers!

8.7.3. Fibonacci Multiplication

Analysis of the Egyptian Doubling Method allows us to develop the follow�
ing method of “Fibonacci p�multiplication.”

Let us consider the product P=A×B, where the numbers A and B are rep�
resented in the Fibonacci p�code (8.9). By using the representation of the
multiplier B in the Fibonacci p�code (8.9), we can write the product P=A×B
in the following form:

/1

12 > 6

/4

48 > 30

6 30 6 6

2 12 30

24 30

8

4 1 5 30 24 6 6 6 0

≤ ≤
≤
≤

+ = − = − =

Table 8.8. Egyptian method
of division
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P=A×bnFp(n)+A×bn�1Fp(n�1)+…+A×bi Fp(i)+…+A×b1 Fp(1), (8.60)

where Fp(i) is the Fibonacci p�number.
Note that the expression (8.60) is a generalization of the expression

(8.59) that underlies the algorithm of the “binary” multiplication. The fol�
lowing algorithm of the Fibonacci p�multiplication follows directly from
the expression (8.60). The multiplication is reduced to the addition of the
partial products of the kind A×biFp(i). They are formed from the multiplier
A according to the special procedure that reminds one of the Egyptian Dou�
bling Method. Let us demonstrate the “Fibonacci multiplication” for the
case of the simplest Fibonacci 1�code (p=1).

Example 8.2. Find the following product: 41×305.
Solution:
1. Construct a table consisting of
three columns marked by F, G and P
(see Table 8.9).
2. Insert the Fibonacci 1�sequence
(the classical Fibonacci numbers) 1,
1, 2, 3, 5, 8, 13, 21, 34 into the F�col�
umn of Table 8.9.
3. Insert the generalized Fibonacci 1�
sequence: 305, 305, 610, 915, 1525,
2440, 3965, 6505, 10370, which is built
up from the first multiplier 305 ac�
cording to the “Fibonacci recursive
relation” into the G�column.
4. Mark by inclined line (/) and bold
type all numbers of the F�column, which make up the second multiplier 41
in the sum (41=34+5+2).
5. Mark by bold type all G�numbers corresponding to the marked F�num�
bers and rewrite them in the P�column.
6. Summing all P�numbers, we obtain the product: 41×305=12505.
The multiplication algorithm is easily generalized for the case of Fibonac�

ci p�codes.

8.7.5. Fibonacci Division

We can apply the above Egyptian method of division to construct the
algorithm of Fibonacci p�division. Consider this method for the following
specific example.

F G P

1 305

1 305

3 915

8 2440

13 3965

21 6505

/2 610 610

/5 1525 1525

/34 103

→

→

770 10370→
= + + × =41 34 5 2 41 305 12505

Table 8.9. Fibonacci multiplication
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Example 8.3. Divide the number 481 (the dividend) by the number 13 (the
divisor) in the Fibonacci 1�code.

Solution has two steps as shown below.

8.7.5.1. The first stage

1. Construct the table, which consists of three columns marked by F, G
and D (see Table 8.10).
2. Insert the Fibonacci 1�sequence (the classical Fibonacci numbers) 1, 1,
2, 3, 5, 8, 13, 21, 34, 55 to the F�column of Table 8.10.
3. Insert the generalized Fibonacci 1�se�
quence: 13, 13, 26, 39, 65, 104, 169, 273,
442, 615 formed from the divisor 13 ac�
cording to the “Fibonacci recursive rela�
tion” into the G�column.
4. Compare sequentially every G�number
with the dividend 481, inscribed into the
D�column, and fix the result of compari�
son (≤  or >) until we obtain the first com�
parison result of the kind: 615>481.
5. Mark with the inclined line (/) and bold
type the Fibonacci number 34, which cor�
responds to the preceding G�number 442,
and mark the latter with bold type.
6. Calculate the difference: R1=481�
442=39.

8.7.5.2. The second stage

The second stage of the Fibonacci 1�division is
a repetition of the first stage when we instead use
the dividend 481, the remainder R1=39 (see Table
8.11).

The second remainder R2=39–39=0, which
means the Fibonacci 1�division is complete. The
result of the division is equal to the sum of all the
marked F�numbers obtained throughout all stages
(see Tables 8.10 and 8.11), that is, 34+3=37.

F G D

1 13 481

1 13 481

2 26 481

3 39 481

5 65 481

8 104 481

13 169 481

21 2

≤
≤
≤
≤
≤
≤
≤

773 481

481

481 442 391

≤
≤/34 442

55 615 > 481

R = − =

Table 8.10. The first stage
 of the Fibonacci division

F G D

R

1 13 39

1 13 39

2 26 39

39

39 39 02

≤
≤
≤
≤/3 39

5 65 > 39

= − =

Table 8.11. The second
stage of the Fibonacci

division
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8.8. Hardware Realization of the Fibonacci Processor

8.8.1. A Device for Reduction of the Fibonacci Code to Minimal Form

The devices for the “convolution” and “devolution” play an important
role in the technical realization of arithmetical operations in the Fibonacci
code. They can be designed on the basis of the binary register, which has
special logical circuits for the “convolutions” and “devolutions.” Each digit of
the register contains a binary “flip�flop” (trigger) and logical elements. The
operations of “convolution” [011→100] and “devolution” [100→011] can be
carried out by means of the inversion of the “flip�flops” (triggers).

One of the possible variants of the “convolution” register or “the device
for the reduction of the Fibonacci code to the minimal form” is shown in Fig.
8.1. This device consists of the five R�S�triggers and the logical elements
AND, OR which are used to carry out the “convolution.” The “convolution” is
carried out by means of the logical elements AND1 � AND5 and OR which stand
before the R� and S�inputs of the triggers. The logical element AND1 fulfills
the “convolution” of the 1st digit to the 2nd digit. Its two inputs are connect�
ed with the direct output of trigger T1 and the inverse output of trigger T2.
The 3rd input is connected with the synchronization input C. The logical
element AND1 analyzes the states Q1 and Q2 of the triggers T1 and T2. If Q1=1
and Q2=0, it means that the convolution condition is satisfied for the 1st and
2nd digits. The synchronization signal C=1 is the cause of the appearance of
the logical 1 at the output of the element AND1. The latter causes the switch�
ing of triggers T1 and T2. This results in the “convolution” [01→10].

The logical element AND
k
 of the k�th digit (k=2,3,4,5) fulfills the “convolu�

tion” of the (k�1)�th and k�th digits to the (k+1)�th digit. Its three inputs are
connected with the direct outputs of triggers Tk�1 and Tk and the inverse output
of trigger T

k+1. The 4�th input is connected with the synchronization input C.
The logical element ANDk analyzes the states Qk�1, Qk and Qk+1 of the triggers
Tk�1, Tk , and Tk+1. If Qk�1=1, Qk=1, and Qk+1=0, this means that the “convolution”
condition is satisfied. The synchronization signal C=1 results in switching trig�
gers Tk�1, Tk, and Tk+1. The “convolution” of the corresponding digits [011→100]
is complete.

Note that all elements AND1 � AND5 are connected through the common
element ORc with the check output of the “convolution” register.

The device for the reduction of the Fibonacci code to the minimal form in
Fig. 8.1 operates in the following manner. The input code information is sent to
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the information inputs 1�5 of the “convolution” register and enters the S�inputs of
the triggers through the corresponding logical elements OR of the register. Let the
initial condition of the convolution register be in the following state:

i
N

=
=

5 4 3 2 1
0 1 0 1 1

It is clear that the “convolution” condition is satisfied only for the 1st,
2nd and 3rd digits. The first synchronization signal C=1 results in the transi�
tion of the “convolution” register into the following state:

1

&

AND1

1

1

1

1

1

1

1

1

5

4

3

2

1 T
1S

R

T
2S

R

T
3S

R

T
4S

R

T
5S

R

&

AND2

1

ORC

&

AND3

&

AND4

&

AND5

Check
output

Control
input C

Figure 8.1. A device for reducing the Fibonacci code to minimal form
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i
N

=
=

5 4 3 2 1
0 1 1 0 0

Here the “convolution” condition is satisfied for the 3rd, 4th and 5th
digits. The next synchronization signal C=1 results in the transition of the
“convolution” register into the following state:

i
N

=
=

5 4 3 2 1
1 0 0 0 0

The “convolution” is complete.
One may estimate the maximal delay time of the “convolution” operation

for the n�digit “convolution” register. It is clear that we have to estimate the
maximal time of the “convolution” delay for the following situation:

0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 0 0 1
1 0 1 0 1 0

We can see from this example that for the even n, the maximal number of the
sequential “convolutions” is equal to n/2.

The analysis of the logical circuit in Fig. 8.1 shows that the delay time ∆  of
one “convolution” is defined by the sum of the (R�S)�trigger delay time ∆T and
the delay time ∆e of the two sequential logical elements AND,OR, that is,

∆ ∆ ∆= +T e2 .
It follows from this consideration that the maximal “convolution” delay

time for the n�digit “convolution” register is equal to:

∆ ∆ + 2∆C T e
n= ( )
2

.

8.8.2. “Convolution” Register as a Self�checking Device

The outputs of the logical elements AND1�AND5 of the “convolution”
register in Fig. 8.1 are connected with the register checking output through
the common element OR. This output plays an important role as the check
output of the “convolution” register.

It follows from the functioning principle of the “convolution” register that
the logical 1 appears on the check output in only two situations:

(1) The binary combination, written into the “convolution” register, is not
in “minimal form.” This means that the “convolution” condition is satisfied at
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least for one triple of the adjacent triggers of the “convolution” register. This
causes the appearance of the logical 1 at the output of the corresponding
element AND. Hence, in this case the appearance of the logical 1 at the check
output of the “convolution” register indicates the fact that the “convolution”
process is not over. This means that we have the possibility of determining
the termination of the “convolution” process by means of observing the check
output of the “convolution” register.

(2) The appearance of the constant logical 1 at the check output is an
indication of a fault in the “convolution” register. Hence, the “convolution”
register is a natural self�checking device.

8.8.3. Combinative Logical “Convolution” Circuits

The further increase in speed of the “convolution” device is connected
with its realization as a combinative logical circuit. The simplest solution is
the application of the constant electronic memory (Fig. 8.2).

For this case the initial Fibonacci code representation is the address of
the constant electronic memory(CEM). Its
output is the minimal form of the initial
code combination.

The other variant is the combinative
logical convolution circuit that consists of
n/2 identical logical circuits (Fig. 8.3),
where n is the digit number of the initial
code combination.

Let the initial code combination be the
following:

i
N

=
=

6 5 4 3 2 1
0 1 0 1 1 1

We can see that the “convolution”
condition (011) is satisfied for the 2nd,
3rd and 4th digits.

Address
(not minimal form)

Minimal form

Figure 8.2. The constant electronic memory as the “convolution” circuit.

CEM

LC1

LC2

LC3

Not minimal form

Minimal form

Figure 8.3. The combinative
“convolution” circuit.
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The logical circuit LC1 transforms the initial code combination by the com�
binative process into the next code combination of the kind:

i
N

=
=

6 5 4 3 2 1
0 1 1 0 0 1 ,

where the values of the 2nd, 3rd and 4th digits are replaced by their inverse val�
ues. We can see that the convolution conditions are satisfied for two triples of
the digits, namely for the 6th, 5th and 4th digits and for the 2nd and 1st digits.
The logical circuit LC2 transforms the latter code combination into the next code
combination through the combinative process

i
N

=
=

6 5 4 3 2 1
1 0 0 0 1 0

We can see that the obtained code combination is the minimal form, that
is, the “convolution” process is complete. The logical circuit LC3 passes this
code combination onto the output without any change.

In the conclusion we consider the combinative logical circuit for check�
ing the minimal form (Fig. 8.4). The logical circuit consists of n logical elements
AND. Their outputs are connected with the inputs of the common element OR.

If the initial code com�
bination has two adja�
cent binary 1’s or a bi�
nary 1 in the lower dig�
it, the logical 1 appears
at least at one input of
the logical elements
AND. It results in the
appearance of the log�
ical 1 at the output of
the common element
OR and this logical 1 is
an indication of error.

8.8.4. “Devolution” devices

One may synthesize the “devolution” devices similar to the above “convolu�
tion” device on Fig. 8.1. However, we can design a special “devolution” device
based on the “convolution” device (Fig. 8.5). Remember that “devolution” is
reduced to “convolution” in the corresponding inverse code. Figure 8.5 demon�
strates the application of this idea.

& & & & &

1

1

Minimal form

Check output

Figure 8.4. The logical circuit for checking the minimal form.
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The “devolution” device consists of the convolution device CD and two in�
verters I1 and I2. Consider how we can fulfill the “devolution” of the code combi�
nation 101000. The input inverter I1 transforms the initial code combination
into the inverse code combination 010111. The “convolution” device CD trans�
forms the latter into the minimal form 100010. The output inverter I2 trans�
forms the minimal form into the inverse code 011101. It is the “devolution” form
of the initial code combination.

8.9. Fibonacci Processor for Noise�tolerant Computations

8.9.1. Noise�tolerant Computations

In modern science the need exists for fault�tolerant and noise�tolerant com�
puters. What distinction is there between these two important directions of high�
ly�reliable computers? As is well�known, a computer program is carried out with
the help of a processor. The processor consists of flip�flops (triggers) that are con�
nected with combinative logic. In this case the fulfillment of the program is re�
duced to the flip�flop switching. Unfortunately, it is impossible to eliminate com�
puter errors caused by the malfunctioning of computer elements. Nevertheless, it
is necessary to distinguish two types of malfunctioning of computer elements. The
first type is the so�called Constant Failure of the elements, when the latter con�
stantly “falls out of order”. The second type is the so�called Alternating Failure of
the elements when the element temporarily “falls outside the order,” that is, in the
accidental time moments, while at other times the computer elements work cor�
rectly. The second type of failure is called a Malfunction. Processor malfunctions
appear under the influence of different internal and external noises in computer
elements. Thus, the fault�tolerant computers are intended to eliminate the “con�
stant failures” that may appear in processors and other computer parts during
their work. The noise�tolerant computers are intended to eliminate the “malfunc�
tions” that may appear in computer elements during their work.

I
1

CD I
2

Initial
code

Devolution
 code

Figure 8.5. “Devolution” device based on the “convolution” device CD.
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It is clear that the problem of designing noise�tolerant computers and
processors is absolutely vital to modern computer science. For example,
many modern crypto�systems are based on computations in very large
finite fields. The hardware realization of such computational tools or pro�
cessors requires thousands of logical gates. It is very difficult and costly
to design these kinds of processors giving error�free results. It means that
the problem of designing processors for noise�tolerant computations is
extremely important for reliable crypto�system design.

It has been experimentally demonstrated that the intensity of the “malfunc�
tions” in computer elements in the switching regime is greater than the elements
in the stable states. It follows from this consideration that the flip�flop (trigger)
“malfunctions” in the switching regime is the most probable reason for unreliable
computer processor functioning. This is why designing self�checking digital au�
tomatons, which can guarantee effective checking for trigger “malfunctions,” is
one of the most important issues surrounding noise�tolerant computers.

8.9.2. Checking the Basic Micro�Operations

The basic idea behind designing the self�checking Fibonacci processor con�
sists of the following. It is necessary to choose a certain set of micro�operations
called the Basic Micro�operations and to introduce an effective system for check�
ing these micro�operations.

Let us demonstrate the possibility of realizing this idea on the basis of the
“basic micro�operations” of Convolution, Devolution, Replacement, and Ab�
sorption as used in Fibonacci arithmetic.

We must pay attention to the following “technical” peculiarity of the afore�
mentioned “basic micro�operations.” For the register interpretation of these
micro�operations, each micro�operation may be considered the inversion of trig�
gers involved in the micro�operation. This means that each micro�operation is
fulfilled by means of trigger switching.

Let us now evaluate the potential ability of the “basic micro�operations”
to detect errors arising during micro�operation fulfillment.

It is well�known that the potential detection ability is determined by the
ratio between the number of detectable errors and the general number of all pos�
sible errors [177]. Let us explain the essence of our approach to the detection of
errors with an example of the micro�operation of “convolution”:

 [011→100].  (8.61)
The “convolution” can be fulfilled for the 3�digit binary code combina�

tion (8.61). It is clear that there are 23=8 possible transitions, which can arise at
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the fulfillment of the micro�operation (8.61). Note that only one of them given
by (8.61) is a correct transition. The code combinations

{011, 100}  (8.62)
which make up the correct transition (8.61), are called the Allowed Code Com�
binations for the “convolution.” The remaining code combinations that can
appear during the “convolution” (8.61)

{000,011,010,101,110,111}  (8.63)

are called Prohibited Code Combinations.
The idea behind error detection is the following. If during the fulfillment

of the micro�operation (8.61) one of the “prohibited” code combinations
(8.63) appears, it is an indication of error. Note that the transition

011→011,  (8.64)

is an erroneous transition. However, the transition (8.64) can be interpreted
as Non�detectable Error because code combination 011 is an allowed one.

Let us consider the different erroneous situations that can arise during
the performance of the micro�operation (8.61):

011→{011,000,001,010,101,111}.  (8.65)

Among them only the erroneous transition (8.64) cannot be detected, because
the code combination 011 is an allowed code combination. All the other erroneous
transitions of (8.65) are detectable. Study the erroneous transition (8.64) from an
arithmetical point of view. It is clear that the essence of the erroneous transition
(8.64) consists of the repetition of the preceding code combination 011. If we ana�
lyze this transition from arithmetical point of view, we may conclude that this
transition neither destroys numerical information nor influences the outcome of
arithmetical operations. Hence, the erroneous transition (8.64) does not belong to
the class of numerical errors of “catastrophic character.” This error only delays
data processing. All other erroneous transitions of (8.65) destroy numerical infor�
mation and therefore results in errors of a “catastrophic nature.”

The main conclusion that follows from this examination is that the set of
“catastrophic” code combinations from (8.65) coincides with the set of de�
tectable code combinations (8.63). This means that all “catastrophic” transi�
tions for “convolution” are detectable. It thus follows from this study that we
can design a computer device for fulfillment of the “convolution” with the
“absolute” (i.e. 100%) potential ability to detect all “catastrophic” transi�
tions that may appear at the fulfillment of the “convolution.”

We can draw an analogous conclusion for the other basic micro�operations.
However, the fulfillment of any algorithm for data processing in the Fibonacci
processor is fulfilled by the use of certain basic micro�operations on each compu�
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tation step. As the checking method for each micro�operation has “absolute”
detecting ability regarding “catastrophic” errors, it means that we can design
the Fibonacci arithmetical self�checking processor. It has “absolute” detection
ability regarding the “catastrophic” errors that can appear in the Fibonacci pro�
cessor during trigger switching.

8.9.3. The Hardware Realization of a Noise�tolerant Fibonacci Processor

 The noise�tolerant Fibonacci�processor is based on the principle of “cause �
effect” [30]. The essence of this principle consists in the following. The initial
information (the “cause”) that is subjected to data processing can be transformed
back to the “result” by means of the inverse micro�operation. After that, we trans�
form the “result” (the “effect”) into the initial information (the “cause”) and
then check that the “effect” fits with its “cause.”

For example, at the fulfillment of the “convolution” for the code combi�
nation 011 (the “cause”) we obtain a new code combination 100 (the “ef�
fect”), which is a necessary condition for the fulfillment of the “devolution”
(the inverse micro�operation). This means that the correct fulfillment of the
“convolution” results in the condition necessary for the “devolution.” Analo�
gously, the correct fulfillment of the “devolution” [100→011] results in the
condition necessary for the “convolution.” It follows from this observation
that the micro�operations of “convolution” and “devolution” are mutually
checkable micro�operations.

Now, let us consider other “basic micro�operations” from this point of view.

The indication of the correct fulfillment of the “replacement” 
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erroneous for the “absorption.”

For the “register interpretation,” the finding is that of correspondence between
the “cause” and the “effect” carried out by means of the “checking” flip�flop. The
“cause” sets up the “checking” flip�flop in the state 1, and then the correct fulfill�
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ment of the “inverse” micro�operation (the “effect” fits the “cause”) switches the
“checking” flip�flop at the state 0. If the “effect” does not fit the “cause” (i.e. the
micro�operation has been carried out incorrectly), then the “checking” flip�flop
remains in the state 1 which is an indication of the error.

If we analyze the “causes” and the “effects” for every basic micro�opera�
tion, we may conclude that every “effect” is the inversion of its “cause,” that
is, all micro�operations can be fulfilled by the inversion of digits involved to
the micro�operation.

The block diagram of the Fibonacci device for the realization of the prin�
ciple of “cause�effect” is shown in Fig. 8.6. The device in Fig. 8.6 consists of
two registers, the information register and the checking register, which are con�
nected with the help of the logical circuits of “cause” and “effect.” The code infor�
mation, which enters into the information register through the “Input,” is ana�
lyzed by the logical circuit of “cause.”

Suppose that we need to
fulfill “convolution” for the
code combination in the infor�
mation register. Let some flip�
flops Tk�1, Tk, Tk+1 of the infor�
mation register be in the state
011, that is, the condition for
“convolution” is satisfied for
this group of flip�flops. Then
the logical “cause” circuit (the
logical circuit for “convolu�
tion” for the considered exam�
ple) results in recording the
logical 1 into the correspond�
ing flip�flop Tk of the checking
register. The logical 1 results
in the inversion of the flip�
flops Tk�1, Tk, Tk+1 of the infor�
mation register by using the
back connection, that is, their new states are 100. This means that the condi�
tion for “devolution” is satisfied for this group of flip�flops. Then, the logical
“effect” circuit (the logical circuit for “devolution” for the above example) an�
alyzes the states of the flip�flops Tk�1, Tk, Tk+1 of the information register and
switches the same flip�flop Tk of the checking register to the initial state 0. This
switching of the flip�flop T

k
 of the checking register into the initial state 0

 

Check register

Logic

"cause"

circuit

Logic

"effect"

circuit

Information register

Input

Error

Figure 8.6. A block diagram of the Fibonacci
device for realization of the principle of

“cause�effect.”
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confirms that the “cause” (011) fits its “effect” (100), that is, the micro�opera�
tion of “convolution” is carried out correctly.

Hence, if we have the code combination 00…0 in the checking register after
ending all micro�operations, it means that all “causes” fit their “effects,” that is, all
micro�operations are carried out correctly. If the checking register contains at least
one logical 1 in some flip�flop, this means that at least one basic micro operation is
carried out incorrectly. The logical signals 1 in the flip�flops of the checking regis�
ter cause the error signal at the output “Error” of the device in Fig. 7.6.

The most important advantage of the principle of “cause�effect,” which is
fulfilled in the Fibonacci device in Fig. 8.6, is the possibility of detecting an error
at the moment of its appearance. The correction of error is fulfilled by repetition
of this micro�operation.

Hence, the above approach based on the principle of “cause�effect” allows
one to detect and then to correct, by means of repetition, all errors that can arise
at the moment of the flip�flop’s switching over with 100% guaranteed success.

8.10. The Dramatic History of the Fibonacci Computer Project

8.10.1. First Steps in the Development of Fibonacci Arithmetic

 Recall that it was the Dutch amateur of mathematics Eduardo Zeckendorf
who invented in 1939 the Fibonacci representation (or Zeckendorf sum) given
by (8.1). However, Zeckendorf did not try to develop “Fibonacci arithmetic,”
that is, the rules for the Fibonacci arithmetical operations. This did not interest
him.

In 1972, the  author of this book Alexey Stakhov, defended his DrSci dis�
sertation [19], in which for the first time a theory of Fibonacci measurement
algorithms and Fibonacci p�codes (8.9) were developed. After this, Stakhov
began to develop Fibonacci arithmetic. The invention of the rule of Fibonacci
summation given by Table 8.5 was the first step in the development of this
arithmetic. Later the idea of Fibonacci subtraction, multiplication and divi�
sion were also developed. These results were presented by Stakhov in the arti�
cles [87, 89] as new computer arithmetic – Fibonacci Arithmetic. Though the
initial steps in the development of Fibonacci arithmetic were made personally
by Alexey Stakhov [87, 89], the further development of this arithmetic was
the result of a creative collective scientific effort. Many talented students of
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the Taganrog Radio Engineering Institute participated in this work. In 1977,
in the Taganrog Radio Engineering Institute, the first Ph.D. dissertation in
the field of Fibonacci computers, Development of Principles of Construction
and Research of Counting Devices in the Fibonacci p�codes, was defended by
Yuri Wishnjakov under Stakhov’s scientific supervision.

8.10.2. Stakhov’s Lecture in Austria (1976)

International recognition of the Fibonacci arithmetic and its offshoot of Fi�
bonacci Computers began after Stakhov’s lecture in Vienna on the joint meeting
of the Austrian Computer and Cybernetic Societies in 1976. On the evening of
March 3, 1976, the seminar room at the Austrian Cybernetic society (Vienna,
Shottengasse, 3) was filled with people. Well�known Austrian scientists, mem�
bers of the Austrian Cybernetic and Computer societies, scientific employees of
the IBM computer laboratory in Vienna, and representatives of the Soviet Em�
bassy in Austria gathered together in the seminar room. Stakhov’s lecture, Al�
gorithmic Measurement Theory and Foundations of Computer Arithmetic, was
the main reason for this unusual meeting. However, there were other reasons,
why the well�known scientists in the field of cybernetics and computer sci�
ence and officers of the Soviet Embassy (basically KGB representatives)
gathered together to listen to Alexey’s lecture.

The advertisement of Stakhov’s lecture proclaimed the following:
“Methods of representation of numbers can be considered to be special

measurement algorithms. Such an interpretation is the main idea of the
present lecture.”

The basic scientific results are:
· Asymmetry Principle of Measurement as a new scientific principle
· Algorithmic measurement theory
· The generalization of Fibonacci numbers
· Fibonacci arithmetic as a novel way to increase the informational reliability
of computers
Stakhov’s main objective was to present a new measurement theory – Al�

gorithmic Measurement Theory – and the new methods of positional represen�
tation of numbers, and new computer arithmetic – Fibonacci Arithmetic– that
can be used for the development of Fibonacci Computers, as a new direction in
computer science. These scientific results were the main focus of interest.

However, the interest of the Soviet Embassy in Stakhov’s lecture had a po�
litical aspect. On March 5, 1976, two days after Stakhov’s lecture, the “histori�
cal” 25th Congress of the CPSU should have been opened in Moscow. A couple of
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months prior to the Congress, the well�known West German journal, Spiegel,
published a scathing article “If Lenin had known this!” The article was devoted
to the facts of corruption in the highest levels of the CPSU that was in sharp
contrast with the representation about the CPSU as “Intelligence, Honor and
Mind of our Epoch.” In connection with this publication the Central Commit�
tee of the CPSU sent a confidential memorandum to all Soviet embassies in the
Western countries. In it the Central Committee recommended providing assis�
tance to Soviet scientists, athletes, and actors in Western countries that could
smooth over any negative impression the world community had as a result of the
Spiegel article. Thus, Stakhov’s lecture was one of the political measures of the
Soviet Embassy in Austria before the 25th Congress of the CPSU.

The very positive reaction to Stakhov’s lecture by the Austrian scientists,
including Professor Aigner, Director of the Mathematics Institute of the Graz
Technical University, Professor Trappel, President of the Austrian Cybernetic
society, Professor Eier, Director of the Institute of Data Processing of the Vien�
na Technical University, and also Professor Adam the representative of the Fac�
ulty of Statistics and Computer Science of Johannes Kepler Linz University,
caused the decision of the Soviet Embassy in Austria to assist in the develop�
ment of Stakhov’s scientific pursuits within the U.S.S.R. With this purpose the
Soviet Ambassador in Austria Ivan Efremov sent a letter to the Soviet State
Committee on Science and Engineering. In this letter the Ambassador positive�
ly evaluated Stakhov’s 2�month scientific work in the Austrian Universities and
offered to begin the needed foreign patenting with the intention of “protecting
the priority of the Soviet science.”

8.10.3. Patenting the Soviet Fibonacci Computer Inventions

The decision by the Soviet State Committee on Inventions and Patenting
to patent Stakhov’s inventions on Fibonacci computers in all leading com�
puter producing countries, including U.S., Japan, Germany, England, France,
Canada, and other countries became the major consequence of the Austrian
Soviet Embassy letter. Later it was found that this was the U.S.S.R’s first
effort at extensively patenting Soviet computer inventions.

The protection of Soviet scientific priority in Fibonacci computers was
the main purpose of this patenting. New computer arithmetic � Fibonacci
Arithmetic � was its main object. However, according to the patent laws of the
majority of the countries, it is impossible to procure a patent for mathematical
inventions, in particular, Fibonacci arithmetic. Therefore, the idea arose to pro�
tect Fibonacci arithmetic by means of computer devices for the performance of
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arithmetical operations in Fibonacci code. The different arithmetical and other
devices based on Fibonacci code such as counters, adders, devices for multiplica�
tion and division, analog�to�digit and digit�to�analog converters, and so on, be�
came the subjects of patenting. However, from a financial point of view, it was
desirable to invent an original device, which could be recognized as the “pioneer
invention” in the Fibonacci computer field. On the basis of such a “pioneer in�
vention,” other computer devices could be developed. Out of this consideration
the idea arose to create a multistage invention formula with the first term being
the protection of the Fibonacci computer “pioneer invention.”

What should the pioneer Fibonacci computer invention be? The analysis of
the Fibonacci arithmetic indicates that the basic micro�operations of Fibonacci
arithmetic are Convolution, Devolution and the Reduction of the Fibonacci p�code
to the Minimal Form based upon “convolution” and “devolution.” For this reason,
the Device for Reduction of the Fibonacci p�code to Minimal Form became the
main subject of patent protection. An example of this device is shown in Fig. 8.1.

The first patent application on the invention Reduction Method of Fibonac�
ci p�Code to the Minimal Form and Device for Its Realization contained over 200
pages of text material, about 100 figures (operational devices and their elements),
and its multistage invention formula consisted of 85 points. This meant that the
application on invention, offered for patenting, contained 85 technical decisions,
that is, 85 inventions.

The general outcome of the Fibonacci invention patenting surpassed all
expectations. 65 foreign patents on various devices for the Fibonacci com�
puter were given by the State Patent Offices of the U.S., Japan, England,
France, Germany, Canada, Poland and GDR, including 12 patents on the in�
vention of the Reduction Method of Fibonacci p�Code to the Minimal Form and
Device for Its Realization [120�131]. These patents testify to the fact that the
Fibonacci computer was a world class innovation, as the Western experts
could not challenge the Soviet Fibonacci computer inventions. This means,
as a result, the Fibonacci patents [120�131] are the official legal documents,
which confirm Soviet priority in this computer direction.

The Vinnitsa Technical University, where Alexey Stakhov worked during
1977�1995 as Head of the Computer Engineering Department, became the main
Soviet scientific and engineering center for engineering developments in the
Fibonacci computer field. The projects of the Fibonacci computers and Fi�
bonacci measurement and information systems were of great interest to Sovi�
et military organizations, which gave about $15,000,000 for the realization of
these projects. The most important engineering developments of this project
included special micro�elements for the Fibonacci processors, the self�correct�



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

474

ing highly stable 18�digit analog�to�digital converters, and so on. The brochure
[30] is recommended to all readers interested in engineering developments in
the Fibonacci computer field.

The cutbacks on scientific and engineering research became one of the nega�
tive results of the Gorbachev’s so�called “perestroika,” which eventually result�
ed in the breakdown of the Soviet Union. In 1989, the Soviet Ministry of Gener�
al Mechanical Engineering (the Soviet Rocket Ministry), which financed the
Fibonacci computer project, informed Professor Stakhov about the financial
cutbacks to the Fibonacci computer project. Unfortunately, this fact practically
halted all main research in the Fibonacci computer field. So, Gorbachev’s “pere�
stroika” led to a full stop in this dramatic history of the Soviet Fibonacci com�
puter project.

8.10.4. The Fibonacci Computer Developments in the U.S.

Any expert, who is interested in the Fibonacci computer project, will ask the
question: what Fibonacci computer research is done in other countries? Some
publications of American scientists on the Fibonacci arithmetic and applications
in the Fibonacci computer field are presented in [132�135]. One concludes from
these publications that the concept of the Fibonacci computer is widely used in
American computer science. In particular, work on Fibonacci computers was
done at the University of Maryland under scientific supervision of Professor
Newcomb, during roughly the same period that Professor Stakhov was supervis�
ing the Fibonacci computer research in the Taganrog Radio Engineering Insti�
tute (1971�1977) and at the Vinnitsa Technical University (1977�1995). It is
important to emphasize that the first Ph.D. dissertation on Fibonacci computers
[135] was defended by V.D. Hoang at the University of Maryland in 1979. This
was two years after the Ph.D. dissertation was defended by Yuri Wishnjakov at
the Taganrog Radio Engineering Institute [136].

8.10.5. Fibonacci Digital Signal Processing

It is important to note the recent applications of the Fibonacci codes to
“Digital Signal Processing.” In Russian science the idea of the use of Fibonac�
ci p�numbers for the design of super�fast algorithms of digital processing were
actively developed by Professor Vladimir Chernov, DrSci in Physics and Math�
ematics at Samara the Images Processing Institute of the Russian Academy of
Science [178]. Also Fibonacci p�numbers for the development of super�fast algo�
rithms of digital signal processing [179] are widely used by the research group
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from the Tampere International Center for Signal Processing (Finland). As is
shown in the book [179], the super fast algorithms of digital signal processing
requires a processing of numerical data represented in the Fibonacci p�codes.
This means that for the realization of such super�fast transformations require
the specialized Fibonacci signal processors! This is why the problem of Fibonac�
ci processor development is of vital concern today!

8.11. Conclusion

1. A new and unique view of computer theory was developed in this chapter.
We discussed Fibonacci Computers based on a new positional method of number
representation � Fibonacci p�codes. The Fibonacci p�codes are a wide generaliza�
tion of the classical binary code and use the Fibonacci p�numbers as the weights
of binary digits. In contrast to the classical binary code, the Fibonacci p�codes
have code redundancy, which shows this feature in the plural representation of
one and the same number. This leads to the creation of a very special computer
arithmetic, which allows one to detect errors appearing during arithmetical trans�
formations. The main thrust of this Chapter was to show that computers can be
designed on other positional number systems. Chapters 9 and 10 further de�
velop this idea.

2. The first attempt to design computer and measurement systems based
on Fibonacci representation was undertaken in the Soviet Union during the
1970s and 1980s. Soviet computer inventions were awarded 65 patents by
the Patenting Offices of the U.S., Japan, England, Germany, France, Canada
and several other countries. This appears to support the Soviet claim to pri�
ority in this important computer field. Scientific research and engineering
developments [30] demonstrated the high efficiency of Fibonacci codes and
Fibonacci arithmetic for designing self�correcting analog�to�digital and dig�
ital�to�analog converters and noise�tolerant processors. In addition, the Fi�
bonacci p�codes provide a solid foundation for developments in the new su�
per�fast transformations for digital signal processing.
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Chapter 9

Codes of the Golden Proportion

9.1. Numeral Systems with Irrational Bases

9.1.1. Bergman’s Numeral System

In this Section we discuss the mathematical work of American mathema�
tician George Bergman. At present, George Mark Bergman is a Professor of
Mathematics Department at the University of California (USA). He has
authored many articles in the field of discrete mathematics and co�authored
the books An Invitation to General Algebra and Universal Constructions (1998)
and Co�groups and Co�rings in Categories of Associative Rings (1996).

In 1957 George Bergman published his first article A number system with
an irrational base [86] in the authoritative journal Mathematics Magazine. The
numeral system with irrational base developed by George Bergman in 1957 is
possibly the most important mathematical discovery in the field of numeral sys�
tems after the discoveries of the positional principle of number representation
(Babylon, c. 2000 B.C.) and the decimal system (India, 5th century B.C.). How�
ever, it is most surprising that George Bergman made his mathematical discov�
ery at the age of 12!

The following sum is called Bergman’s Numeral System:

A ai
i

i

= ∑ τ , (9.1)

where A is any real number, ai is a binary numeral {0,1} of the i�th digit,
i=0,±1,±2,±3,…, τi is the weight of the i�th digit, and τ = +( )1 5 2  is the base
or radix of the numeral system (9.1).

On the face of it, there appears to be no distinction between the formula (9.1)
for Bergman’s system and the formulas for the canonic positional numeral system,
for example, the binary system. However, it is only on the face of it.
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The principal distinction of the numeral system (9.1) from the canonical
positional numeral systems is the fact that the irrational number τ = +( )1 5 2
(the golden mean) is used as the radix of the numeral system (9.1). That is why,
Bergman called it the Number System with an Irrational Base or Tau System.
Although Bergman’s article [86] contained a result of fundamental importance
for number theory, mathematicians and engineers of the period did not take no�
tice. In the conclusion of his paper [86] George Bergman wrote: “I do not know
of any useful application for systems such as this, except as a mental exercise
and pastime, though it may be of some service in algebraic number theory.”

 9.1.2. A Definition of the Golden p�Proportion Code

However, progress in computer science rejected Bergman’s pessimistic as�
sessment of the practical application of his numeral system. During the 1970’s
and 1980’s scientific and engineering developments based on Bergman’s numer�
al system were developed in the former Soviet Union [24, 30, 93]. Researchers
there showed the high efficiency of Bergman’s system (9.1) for designing self�
correcting analog�to�digit converters (ADC) and noise�tolerant processors. The
theoretical substantiation of this research is given in this author’s book [24] and
the engineering elaborations are described in [30].

It follows from the Bashet�Mendeleev problem studied in Chapter 7 that
the classical binary system has the following “measuring” interpretation.
Consider the infinite set of the binary standard line segments:

{2i} (i=0,1,±2,±3,…).  (9.2)

Using (9.2), we can represent every real number A in the form:

A a ii
i

i

= = ± ± ±( )∑ 2 0 1 2 3, , , ,... ,    (9.3)

where ai is the binary numeral of the i�th digit; 2i  is the weight of the i�th digit.
The binary representation of the real number A in the form (9.3) can be gen�

eralized as follows. Consider the set of the following standard line segments:

τp
i i{ } = ± ± ±( ), , , , ,.. ,0 1 2 3  (9.4)

where τ
p
 is the golden p�proportion, a real root of the characteristic equation

(4.42). Let us remember that the powers of the golden p�proportion are con�
nected by the remarkable identity (4.48).

Using (9.4), we obtain this positional representation of real number A:

A a ii p
i

i

= = ± ± ±( )∑ τ 0 1 2 3, , , ,... , (9.5)
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where ai is the binary numeral of the i�th digit; τp
i is the weight of the i�th digit;

and τp is the radix of the numeral system (9.5).
Let us examine in greater detail the aforementioned method of the

positional representation of real numbers given by (9.5). First of all, we note
that the formula (9.5) gives a theoretically infinite number of binary
representations of real numbers because every p=0,1,2,3,… generates its own
method of binary representation in the form (9.5).

The radix of a numeral system is one of the fundamental notions of
positional numeral systems. An analysis of the sum (9.5) shows that the golden
p�proportion τp  is the radix of the numeral system (9.5). That is why the repre�
sentation of the real number A in the form (9.5) was called the Code of the Gold�
en p�Proportion [24].

Note that, except for the case p=0 (τ0=2), all other golden p�proportions τp

(p>0) are irrational numbers. It follows from this fact that the codes of the gold�
en p�proportion given by the sum (9.5) are binary numeral systems with irratio�
nal radices for the case p>0.

Now, let us consider the particular cases of the golden p�proportion codes
(9.5). For the case p=0 we have: τ

p
=τ0=2  and, therefore, the golden p�proportion

code (9.5) becomes the classical binary system (9.3). For the case p=1, the gold�
en p�proportion τ

p
 coincides with the classical golden mean τ = τ1 1 5 2= +( )

and the golden p�proportion code (9.5) becomes Bergman’s system (9.1).
The abridged representation of the sums (9.1) and (9.5) has the following form:

A=a
n
 a

n�1 … a1 a0, a�1 a�2 … a
�k

.  (9.6)

Here the comma divides the abridged representation (9.6) into two parts.
The left�hand part corresponds to the binary digits with nonnegative indices;
the right�hand part corresponds to the binary digits with negative indices.

9.1.3. Representation of the Golden p�Proportion Powers

One may prove that all real numbers, in particular, natural numbers can be
represented in the form (9.5). All properties of such representation are deter�
mined by the fundamental identity (4.48) that connects the powers of the gold�
en p�proportions.

Note that the identity (4.48) is the cause of the redundancy of the golden
p�proportion codes (9.5) for the case p>0 in comparison to the binary system
(9.3). The redundancy of the code (9.5) proves itself in the plurality of the
code representation of numbers in the form (9.5). Similar to the situation with
Fibonacci p�codes (8.9), the different code representations of the same real
number A can be obtained from each other by means of the fulfillment of the
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operations of “convolution” and “devolution.” These operations are based on
the fundamental identity (4.48).

Consider some peculiarities of the representation of numbers in the
form (9.5). The powers of the golden p�proportions are represented in the
form (9.5) very simply. In particular, the radix of the numeral system (9.5) is
represented traditionally, that is,

τp=10.  (9.7)

Note that the expression (9.7) is a generalization of the representation of the
radix 2 in the binary system (9.3), that is,
2=10.  (9.8)

Also note that for case p>0, the radix τ
p
 of the numeral system (9.5) is an

irrational number. This means that the expression (9.7) represents the irratio�
nal number τp by the finite number of the binary numerals 1 and 0, which is
impossible for traditional numeral systems.

The number τp
0 1=  has the following code representation in (9.5):

τp
0 1 0= . .  (9.9)

The positive and negative powers of the golden p�proportion are represent�
ed as follows:

τ = τ

τ = τ

τ = τ

p p

p p

p p

1 1

2 2

3 3

10 0 1

100 0 01

1000 0 001

; .

; .

; . .

−

−

−

=

=

=
 (9.10)

For the case p>0, every power of the golden p�proportion has an infinite
number of code representations in the form (9.5). For example, we can find
the representation of the radix τ

p
  for the case p=1. Using “devolution,” we can

represent the radix τp =τ1  =τ as follows:

τ = + =1 5
2

1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0
0 1

.

.

.

.

. 00 1 0 1 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1 1.














 (9.11)

Let us consider the “golden” representations of the sums of the golden p�
proportion powers. For example, the sum

A=τ4+τ3+τ0+τ−1+τ−2+τ−5  (9.12)

has the following binary representation:

A=11001.11001.  (9.13)
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Using the Binet formula (2.60), we  represent the number (9.12) as follows:

A
L F L F L F L F L F L F

=
+

+
+

+
+

+
+

+
+

+
+− − − − − −4 4 3 3 0 0 1 1 2 2 5 55

2
5

2
5

2
5

2
5

2
5

2
.   ( 9.14)

Substituting the values of the Fibonacci and Lucas numbers from Table 2.7

L4=7, L3=4, L0=2, L�1=�1, L�2=3, L�5=11, F4=3, F3=2, F0=0, F�1=1, F�2=�1, F�5=5,

into the expression (9.14), we obtain the number A in the explicit form:

A = + = +4 10 5
2

2 5 5.  (9.15)

Note that all real numbers given by the expressions (9.7), (9.10), (9.12)
and (9.15) are irrational numbers! However, according to (9.7), (9.10), and
(9.13) they are all represented by finite combinations of binary numerals.
This means that the Bergman system (9.1) and its generalization (9.5) allow
us to represent some irrational numbers (in particular, the powers of the gold�
en p�proportions and their sums) by finite combinations of binary numerals what
is absolutely impossible for classical positional numeral systems! This is the first
unusual property of the numeral systems (9.1) and (9.5) and their fundamental
difference from the traditional positional numeral systems with integer radices
(i.e. binary system, decimal system, and so on).

9.2. Some Mathematical Properties of the Golden p�Proportion Codes

9.2.1. A Minimal Form of the Golden p�Proportion Code

The codes of golden p�proportions (9.5) are connected closely with Fibonac�
ci p�codes (8.9). This follows from the similarity of the mathematical relations
(4.18) and (4.48) that connect the digit weights of the Fibonacci p�codes and
the golden p�proportion codes. This allows one to use the same code transforma�
tions of “convolution” and “devolution” for the representations of numbers in
the Fibonacci p�code (8.9) and the code of “golden” p�proportion (9.5).

We can prove the following theorem for the golden p�proportion codes.
Theorem 9.1. For a given p≥0, there is  the unique representation of any real

number A in the following form:
A rp

n= +τ ,  (9.16)
where
0 ≤ < −r p

n pτ .  (9.17)
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Proof. The sequence of the golden p�proportion powers is the monotonically
increasing numerical sequence. That is why we can always find in this sequence the
only pair of adjacent golden p�proportion powers τp

n  and τp
n+1  so that

τ τp
n

p
nA≤ < +1.  (9.18)

Subtracting the number τp
n  from all terms of the non�equality (9.18), we

obtain:
0 1≤ = − < −+ −r A p

n
p
n

p
n

p
n pτ τ τ = τ .

The theorem is proved.
Note that for the case p=0, Theorem 9.1 becomes the well�known represen�

tation of real number A in the following form:

A=2n+r,

where 0≤r<2n.
By making the decomposition of any real number A and all remainders r in

accordance with (9.17) and (9.18), we obtain the peculiar representation of
number A in the golden p�proportion code (9.5). Let us examine the abridged
representation of number A in the golden p�proportion code given by (9.6). It
is clear that in accordance with (9.16) and (9.17) not less than p binary nu�
merals 0 follow after every binary numeral 1 in the abridged representation
(9.6) from left to right. Such a representation of number A is called the Min�
imal Form of the Number A in the Golden p�Proportion Code. According to
Theorem 9.1, the representation of number A in the form of (9.16) and (9.17)
is unique; the uniqueness of the minimal form of representation of number A
in the golden p�proportion code (9.5) follows from this fact.

9.2.2. Comparison of Numbers

Similar to the Fibonacci p�codes the golden p�proportion codes are found
within the class of positional numeral systems. As is well known, the simplicity of
comparing numbers represented in positional numeral systems is one of their fun�
damental advantages over non�positional numeral systems. Let us now prove that
this important advantage is maintained for the codes of the golden p�proportion.

A very simple rule for the comparison of the values of two “golden” num�
bers A and B follows from (9.16) and (9.17), if beforehand the numbers are
represented in their minimal form. Let’s examine the set of all n�digit minimal
forms of the golden p�proportion code (9.5) of the kind

A(n)=an an�1 … a1 a0, a�1 a�2 … a�m ,  (9.19)
where an, an�1,…, a�m are binary numerals {0,1} and an is the higher digit of the
code combination (9.19).
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Compare two n�digit minimal forms of the kind (9.19) with an=1 and an=0,
that is,

A(n;1)=1 a
n�1 … a1 a0, a�1 a�2 … a

�m   
(9.20)

and

A(n;0)=0 an�1 … a1 a0, a�1 a�2 … a�m .  (9.21)

Note that the representation A(n;1) is the minimal n�digit form (9.19) with
an=1 and A(n;0) being the minimal n�digit form (9.19) with an=0. Further note
that binary numerals a

n�1, an�2,…, a
�m

 in (9.20) and (9.21) do not coincide in the
general case.

Every minimal form (9.20) and (9.21) represents some real numbers of
the kind A(n;1) and A(n;0) given by the sum (9.5). Let us prove the following
non�equality:
A(n;1)>A(n;0),  (9.22)
which is valid for the general case.

It is important to note that the non�equality (9.22) depends only on the
values of the higher digits a

n
 of the comparable minimal forms (9.20) and (9.21).

The non�equality (9.22) is valid in the general case if we can prove that

Amin(n;1)>Amax(n;0),  (9.23)

where Amin(n;1) is a minimal number among the numbers of the kind (9.20) and
Amax(n;0) is a maximal number among the numbers of the kind (9.21).

Let us examine the numbers Amin(n;1) and Amax(n;0). It is clear that a
number of the kind (9.20) takes its minimal value Amin(n;1), when all digits
an�1, an�2,…, a�m in (9.21) are equal to 0, that is,

A n p
n

min ; ... , ... .1 100 0 000( ) = = τ  (9.24)

Now, let us find the value of the number Amax(n;0). According to Theorem
9.1, the number Amax(n;0) can be represented in the form:

A n rp
n

max max; ,0 1( ) = +−τ  (9.25)

where

r p
n p

max .< − −τ 1  (9.26)

As τ τ τp
n

p
n

p
n p= +− − −1 1, it then follows from the comparison of the expressions

(9.24), (9.25), and (9.26) that the non�equality (9.23) is valid and, therefore, the
non�equality (9.22) is valid for general case.

A very simple rule for the comparison of numbers A and B represented in
the golden p�proportion code (9.5) follows from (9.22). Before the compari�
son we must represent the compared codes A and B in the minimal form.
Comparison of the minimal forms of numbers A and B begins with the highest



Chapter 9
483

Codes of the Golden Proportion

digits and continues until obtaining the first pair of non�coincident digits 0
and 1. The number, which contains the binary numeral 1 in the first pair of the
non�coincident digits, is greater. If all the compared digits coincide, the num�
bers A and B are equal.

It is important to emphasize that the simplicity of number comparison is
one of the important advantages of the golden p�proportion codes.

9.2.3. Representation of Numbers with a Floating Comma

Next let us compare the golden p�proportion codes with the Fibonacci p�
codes to show the differences:

(1) The Fibonacci p�codes are intended only for the representation of
integers and require fewer digits (for number representation) than do the
golden p�proportion codes. For example, the decimal number 10 is represented
in the golden 1�proportion code by the 9�digit binary combination:
10=10100.0101.

However, we need only 6 binary digits for the representation of the same
number 10 in the Fibonacci 1�code:
10=100100.

Thus, here we can give a preference to the Fibonacci p�codes for code repre�
sentation of integers.

(2) Another difference between Fibonacci p�codes and golden p�pro�
portion codes is connected with digit weights. The digit weights of the
golden p�proportion codes (9.5) build up the geometric progression (9.4).
This fact raises the possibility of shifting the golden p�proportion code
combination to the left or to the right. This corresponds to multiplication
and division of the initial number by the radix τ

p
 (the golden p�propor�

tion). The “shift�property” of the golden p�proportion codes raises the
possibility of representing numbers with the floating comma. In fact, the
decimal number 10=10100.0101 can be represented with the floating com�
ma as follows:

10=0.101000101×τ5,  (9.27)

where τ is the radix of the number system (the golden mean).
The representation (9.27) consists of two parts. The first part is the Mantissa

of the number 10

m(10)= 0.101000101

and the second part is the golden mean power τ5. The value 5 is called the
Exponent of the number 10.
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9.3. Conversion of Numbers from Traditional Numeral Systems into the
Golden p�Proportion Codes

9.3.1. The Table Method

There are two general methods of number conversion from one numeral system
to another. One method is called the Table Method and the other method is called

the Analytic Method. The table method
is based on the preliminary design of a
special table for golden p�proportion
codes. This method can be performed
with a computer by means of a special
constant electronic memory. In this case
the golden p�proportion code of the
number N is kept in memory at the ad�
dress that is the classical binary repre�
sentation of the number N. For the case
p=1 such a table has the following form
(Table 9.1).

9.3.2. The Conversion of Fractional Numbers

Now let us consider the analytic method of the “golden” number conversion.
This method is widely used in classical numeral systems. Its essence consists of
the fulfillment of any arithmetical operation in the initial numeral system for
obtaining numerals of the unknown code.

Consider the case of the conversion of a given fractional number. Suppose
that the representation of the fractional number A in the golden mean code (p=1)
is as follows:

A a a a a a an
n

n= + + + =−
−

−
−

−
−

− − −1
1

2
2

1 20τ τ τ... . ...  (9.28)

Suppose that the fractional number A is represented in the minimal form.
Then, by the multiplication of the fractional number (9.28) by the radix τ, we
obtain the following result:

A a a a a a an
n

n× τ τ τ= + + + =− −
−

−
− +

− − −1 2
1 1

1 2... . ...  (9.29)

where a�1 is the integral part of the product A×τ and the sum

A a a a an
n

n1 2
1 1

20= + + =−
−

−
− +

− −τ τ... . ...  (9.30)

is the fractional part of the product A×τ.

Address N τ τ τ τ τ τ τ τ τ4 3 2 1 0 1 2 3 4

0 0000 0 0 0 0 0 0 0 0 0
1 0001 0 0 0 0 1

− − − −

=
=

.

. 00 0 0 0
2 0010 0 0 0 1 0 0 1 0 0
3 0011 0 0 1 0 0 0 1 0 0
4 0100 0 0 1 0 1 0 1 0 0
5 010

=
=
=
=

.

.

.
11 0 1 0 0 0 1 0 0 1

6 0110 0 1 0 1 0 0 0 0 1
7 0111 1 0 0 0 0 0 0 0 1
8 1000 1 0 0 0 1 0 0

.

.

.

.

=
=
= 00 1

9 1001 1 0 0 1 0 0 1 0 1
10 1010 1 0 1 0 0 0 1 0 1

=
=

.

.

Table 9.1. A table of the golden mean code
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Thus, it follows from this examination that after the first multiplication of
the initial fraction (9.28) by the radix τ, the integral part of the product A×τ is
the binary numeral a−1 of the golden mean code of the fractional number (9.29).

By multiplying the fractional number (9.30) by the radix τ, we obtain the
following result:

A a a a a a an
n

n1 2 3
1 2

2 3× τ τ τ= + + + =− −
−

−
− +

− − −... . ... .  (9.31)

The analysis of (9.31) shows that the second multiplication results in the
binary numeral a−2 of the golden mean code of the fractional number (9.28).

By continuing the multiplication process n times, we obtain the representa�
tion of fractional number A in the golden mean code.

Example 9.1. Convert the decimal fraction 1/2 into the golden mean
code (Bergman’s system).

Solution:

9.3.2.1. The first multiplication:

1
2

1
2

1 5
2

1 5
4

0 809× = × + = + =τ . .  (9.32)

As the integral part of the fractional number (9.32) is equal to 0, it follows
from this examination that the first “golden” binary numeral of the decimal frac�
tion 1/2 is equal to a

�1=0.

9.3.2.2. The second multiplication:

1
2

1
2

1
2

3 5
2

3 5
4

1 3092×




× = × = × + = + =τ τ τ . .  (9.33)

As the integral part of the resulting product (9.33) is equal to 1, this
means that a−2=1. It follows from this result that prior to the third multiplica�
tion, it is necessary to subtract the number 1 from the number (9.33):

3 5
4

1
5 1
4

1
2

1+ − = − = × −τ .

9.3.2.3. The third multiplication:

1
2

1
2

0 51×




× = =−τ τ . .

We have obtained the fractional number 1/2 as the result of the third multi�
plication. This means that the “golden” binary numeral a−3 of the decimal
fraction 1/2 is equal to a−3=0.
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After the third multiplication we have arrived at the initial fractional num�
ber 1/2. It follows from this fact that the further multiplications result in the
repetition of the obtained binary numerals, namely, a a− −= =4 1 0;  a a− −= =5 2 1;
a a− −= =6 3 0  and so forth. Hence, the decimal fraction 1/2 is represented in the
golden mean code as a periodic fraction:

1
2

0 010010010= . ....

9.3.3. A Conversion of Integers

The analytic method of the conversion of integers into the golden p�
proportion code is based on the relations (9.16) and (9.17). It follows from
(9.16) and (9.17) that the process of the integer N conversion into the golden
p�proportion code becomes a sequential comparison of the initial number N
and the remainders r with the powers of the golden p�proportion.

Example 9.2. Convert integer number 4 into the golden mean code (p=1).
Solution:
Using the Binet formula (2.60), we can obtain analytical expressions for

the powers of the golden mean (see Table 9.2).
Table 9.2. The powers of the golden mean

n

D E

n

3 2 1 0 1 2 3

4 2 5
2

3 5
2

1 5
2

1
1 5

2
3 5

2
4 2 5

2
4 236 2 61

0

− − −

+ + +
=

− + − − +τ τ

. . . . 88 1 618 1 0 618 0 382 0 236. . . .

Here D.E. stands for a “decimal equivalent.”

9.3.3.1. The first step of conversion

Comparing the integer 4 with the golden mean powers in Table 9.2, we can

find the pair of the powers τ3 4 2 5 2 4 236= +( ) = . and τ2 3 5 2 2 618= +( ) = .

that are connected with the number 4 by the following non�equality:

τ2 3 5 2 2 618 4 4 2 5 2 4 236= +( ) = ≤ < +( ) =. . .  (9.34)

It follows from (9.34) that the binary numeral of the second digit of the
“golden” representation of number 4 is equal to a2=1.

9.3.3.2. The second step of conversion

Represent the number 4 as follows:

4 3 5 2 1= +( )



 + r .  (9.35)
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We can calculate the reminder r1 as follows:

r1 4 3 5 2 5 5 2 1 382= − +( )



 = −( ) = . .  (9.36)

9.3.3.3. The third step of conversion

Comparing the difference (9.36) with the golden ratio powers in
Table 9.2, we can find the next pair of the golden ratio powers, τ1 1 5 2= +( )  =
1.618 and τ0 =1 that are connected with the  reminder r1=1.382 by the following
non�equality:

τ0 1 1 382 1 5 2 1 618= ≤ < +( ) =. . .  (9.37)

It follows from (9.37) that the binary numeral of the 0�th digit of the “gold�
en” representation of the number 4 is equal to a0=1.

9.3.3.4. The fourth step of conversion

Represent the remainder r1 as follows:

r r1 25 5 2 1= −( ) = + ,  (9.38)

where the second reminder r2 is equal:

r r2 1 1 5 5 2 1 3 5 2 0 382= − = −( )



 − = −( ) = . .  (9.39)

9.3.3.5. The fifth step of conversion

Comparing the remainder (9.39) with the golden mean powers of
Table 9.2, we can find the next pair of the golden mean powers,
τ− = − +( ) =1 1 5 2 0 618.  and τ− = −( ) =2 3 5 2 0 382.  that are connected
with the remainder r2=0.382 by the following non�equality:

3 5 2 0 382 0 382 1 5 2 0 6182−( ) = ≤ = < − +( ) =. . . .r  (9.40)

It follows from (9.40) that the binary numeral a
�2 of the “golden” representa�

tion of number 4 is equal to a−2=1.

9.3.3.6. The sixth step of conversion

Represent the remainder r2 3 5 2 0 382= −( ) = .  as follows:

r r2 33 5 2 3 5 2= −( ) = −( )



 + ,  (9.41)

where

r r3 2 3 5 2 0= − −( ) = .  (9.42)
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As the remainder r3=0, this means that the conversion process is over and
the conversion result is the following:

4=101.01.  (9.43)

Note that the above numerical examples 9.1 and 9.2 are the basis for
the development of computer algorithm of number conversion into the
golden mean code.

It is important to emphasize that the algorithms of number conversion are
similar to the algorithms of number conversion of the classical binary system.

9.4. Golden Arithmetic

9.4.1. Golden Summation and Subtraction

Recall the fundamental identity that connects the digit weights of the gold�
en p�proportion codes (9.5):

τ = τ + τ = τ τp
n

p
n

p
n p

p p
n− − − −×1 1 1.  (9.44)

Now let us compare the identity (9.44) with the recursive relation for the
Fibonacci p�numbers:

Fp(n)=Fp(n�1)+Fp(n�p�1).  (9.45)

We can see from this comparison that for the given p the digit weights of the
golden p�proportion code (9.5) and the Fibonacci p�code (8.9) are subordinated
to the same mathematical regularity. This means that the above micro�opera�
tions “convolution” and “devolution” based on (9.44) can be used in the golden
p�proportion code (9.5) for the case p>0. These operations are the basic micro�
operations underlying Fibonacci summation and subtraction, this means that
the rules of “golden” summation and subtraction coincide with the rules of Fi�
bonacci summation and subtraction that are reduced to “basic micro�operations”
(see Section 8.6).

Example 9.3. Summarize the numbers 5+4 in the golden mean code (p=1).
Solution:
(1) Represent the numbers 5 and 4 in the golden mean code (see Table 9.1):

5=1000.1001 and 4=101.0100.

(2) Carry out the micro�operation “replacement” over the “golden” rep�
resentations of numbers 5 and 4:
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5 1000 1001

4 0101 0100

5 4 1101 1101

=
+

=
+ =

.

.

.

↓ ↓ ↓

(3) Reduce the addition result 5+4 to its minimal form:

5+4=1101.1101=10010.0101.  (9.46)

Example 9.4. Subtract number 11 from number 3 in the golden mean
code (p=1).

Solution:
(1) Represent numbers 3 and 11 in the golden mean code (see Table 9.1):

3=100.01 and 11=10101.0101.

(2) Carry out the micro�operation “absorption”:

3 00100 0100

11 10101 0101
10001 0001

=
−

=
=

.

.

.R

That the subtraction result R=3�11 is in the bottom register, means that
the result R has the sign “minus,” that is,

3 �11= �10001.0001.

9.4.2. Golden Multiplication

“Golden” multiplication is based on the following trivial identity of the
golden p�proportion powers:

τ τ τp
n

p
m

p
n m× = + .  (9.47)

The following table of “golden” multiplication that is true for all golden p�
proportion codes (9.5) follows from (9.47).

 We can see that the given table coincides with the multi�
plication table for classical binary arithmetic. This means that
“golden” multiplication is reduced to classical binary multi�
plication, that is, to the following rules:

(1) Make up the partial products in accordance with
Table 9.3.

(2) Summarize the partial products in accordance with the
rule for “golden” addition.

0 0 0

0 1 0

1 0 0

1 1 1

×

×

×

×

=

=

=

=

Table 9.3.
Golden

multiplica�
tion
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Example 9.5. Multiply the fractions A=0.010010 and B=0.001010 in the
golden mean code (p=1).

Solution:
1. Represent the “golden” fractional numbers A=0.010010 and

B=0.001010 in the form with the floating comma:

A=010010×τ�6; B=001010×τ�6.

This means that the mantissas and exponents of the numbers A and B are
equal, respectively:

m(A)= 010010; e(A)=�6 and m(B)= 001010; e(B)=�6.

2. Multiply the mantissas:

0 1 0 0 1 0

0 0 1 0 1 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1 1 0 1 0 00

3. Reduce the product to the minimal form:

00010110100=00100000100.

4. Summarize the exponents:

e(A)+ e(b)=(�6)+(�6)=�12.

 Then we can represent the product A×B in the form with the floating comma:

A×B=00100000100×τ�12.

9.4.3. Golden Division

In order to formulate the rules of the “golden” division, we can use an
analogy between classical binary arithmetic and “golden” arithmetic. As is
well known, the classical binary division consists of the shift of the divisor
and comparison of the shifted divisor with the dividend or with the partial
remainder. If the dividend or the intermediate remainder is greater than the
shifted divisor, then the binary numeral 1 is written down corresponding to
the digit of the quotient, whereas in the opposite case, the binary numeral 0 is
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written down here. For the former case the shifted divisor is subtracted from the
dividend or the intermediate remainder. One may show that these operations
also underlie “golden” division. As the “golden” comparison of numbers is ful�
filled with the numbers, represented in minimal form, it follows from this exam�
ination that the dividend and all intermediate remainders should be reduced to
minimal form at every step of “golden” division. Let us demonstrate “golden”
division with the following example.

Example 9.6. Divide the number 5=1000.1001 (the dividend) by the num�
ber 10=10100.0101 (the divisor) in the golden mean code (p=1).

Solution:
We can represent the numbers 5 and 10 in the form with the floating comma

as follows:

m(5)=10001001; e(5)=4  (9.48)

m(10)=101000101; e(10)=4.  (9.49)

As their exponents are equal, that is, e(5)= e(10)=4, we can write:

5:10=m(5):m(10),

that is, the division of the initial numbers 5:10 is reduced to the division of their
mantissas m(5):m(10).

Let us consider the division m(5):m(10):
1. If we compare m(5) with m(10), we find that m(5)<m(10). This means

that the result of the division is a proper fraction, that is, the binary numeral
of the 0�th digit of the quotient Q is equal to a0=0.

2. If we shift m(5)=10001001 by one digit to the left, we obtain:

A1=100010010.  (9.50)

3. If we compare the number (9.50) with the mantissa m(10) given in
(9.49), we find that A1<m(10). This means that the binary numeral of the next
digit of the quotient Q is equal to

a�1= 0.

4. By shifting the number (9.50) by one digit to the left, we obtain:

A2=1000100100.  (9.51)

5. If we compare the number (9.51) with the mantissa m(10), we find that
A2≥m(10). This means that the next binary numeral of the quotient Q is equal
to a�2=1.

6. Since we obtained the first significant digit of the quotient equal to
a�2=1, we should subtract the mantissa m(10) from the number A2. We find
the next intermediate result as the outcome
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A3=A2� m(10)=1000100.1.  (9.52)

A peculiarity of the number (9.52) is the fact that it has the numeral 1 in
its fractional part.

7. By shifting the number of (9.52) by one digit to the left, we obtain a new
intermediate result:

A4=10001001.  (9.53)

Note that the number (9.53) is equal to the mantissa m(10), meaning that
the division process will be repeated. Hence, the next binary numerals of the
quotient are equal to a�3=0, a�4=0, a�5=1, a�6=0, and so on.

It follows from this examination that the quotient has the following “gold�
en” binary representation:

Q=0.010010010…,

that is, for this case the quotient Q=5:10=1:2 is represented in the golden mean
code as a periodic fraction.

If we compare “golden” arithmetic with Fibonacci arithmetic, and with clas�
sical binary arithmetic, we discover two unique properties of “golden” arithmetic:

1. The rules of “golden” summation and subtraction coincide with the corre�
sponding rules for Fibonacci arithmetic.
2. Similar to the classical binary code, the golden p�proportion code (9.5)
possesses an important arithmetical property to represent numbers with a
floating comma.
3. The rules of “golden” multiplication and division coincide with analogous
rules for classical binary arithmetic.
Thus, “golden” arithmetic is a unique synthesis of Fibonacci and classical

binary arithmetic.

9.5. A New Approach to the Geometric Definition of a Number

9.5.1. The Geometric Definition of Number

 It is well known, that Number is the most important notion of mathemat�
ics and Number Theory is one of the ancient mathematical theories called
Tsarina of Mathematics. However, we can ask: what is a number? On the face
of it, it seems that mathematicians have a common answer to this question.
But all is not quite so simple. There are various definitions of number. Euclid’s
Definition of natural numbers is the most simple of them.
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Euclid considered all numbers as geometric line segments (geometric alge�
bra) and such an approach resulted in the following definition of natural num�
ber. Suppose that we have an infinite number of “standard line segments” of
length 1. Euclid named them Monads but did not consider the Monad a number.
It was simply the “beginning of all numbers.” It is clear that for the construction
of natural numbers we need to have the infinite set S of the Monads, that is,
S={1,1,1,…}.  (9.54)

Then we can define a natural number N as some geometric line segment that
can be represented as the sum of the Monads taken from (9.54), that is,
N

N

= + + + +1 1 1 1... .  (9.55)

Despite the utmost simplicity of the Euclidean Definition (9.55), it never�
theless played a major role in mathematics, particularly in number theory. This
definition underlies many important mathematical concepts, for example, con�
cepts of Prime and Composite numbers, and also of the concept of Divisibility,
one of the main concepts of number theory.

But there are also other definitions of number. According to the “construc�
tive” approach [167], the real number A is some mathematical object that can be
represented by using the binary system in the form (9.3). The representation of
the real number A in the form (9.3) has the following geometric interpretation.
Let us consider an infinite set of “binary” line segments of the length 2n, that is,
B={2n} (n=0,±1,±2,±3,…).  (9.56)

Then, all real numbers can be represented in the form (9.3), that is, in the
form of the sum that is formed from the “binary” line segments taken from (9.56).

Note that the number of the terms in the sum (9.3) is always finite but po�
tentially unlimited, that is, the definition (9.3) is a brilliant example of the po�
tential infinity concept used in the “constructive” mathematics [167].

Clearly, the definition (9.3) determines on the numerical axis only a part of
real numbers that can be represented exactly by the sum (9.3). We name such
numbers Constructive Real Numbers. All other real numbers that cannot be rep�
resented exactly by the sum (9.3) are named Non�constructive Real Numbers.

We can ask: what numbers can be classified as non�constructive numbers by
the definition (9.3)? Clearly, all irrational numbers, in particular, the main math�
ematical constants π, е, the number 2 , and the golden mean are classified as
non�constructive numbers. But within the definition (9.3) some “rational” num�
bers (for example, 2/3, 3/7, etc.) that cannot be represented by the finite sum
(9.3) are also classified as non�constructive real numbers. Note that this example
shows a distinction between the two approaches to real numbers. The first ap�
proach � Classical Approach � supposes that all real numbers are separated into
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two nonoverlapping sets: Rational and Irrational numbers; the second approach �
Constructive Approach � supposes that all real numbers are separated into two
nonoverlapping sets: Constructive and Non�constructive numbers. Regarding this,
the set of constructive numbers does not coincide with the set of rational numbers
and the set of the non�constructive numbers does not coincide with the set of irra�
tional numbers. We should also note that the set of constructive numbers depends
directly upon the use of the positional method of number representation.

Note that the definition (9.3) considerably limits the set of real numbers. How�
ever, this fact does not detract from the “practical” significance of its computation�
al point of view. It is easy to prove that any non�constructive real number can be
represented approximately in the form (9.3); where the approximation error ∆ is
decreasing as we are increasing the number of the terms in (9.3). However, ∆>0 for
all non�constructive real numbers. Note that in modern computers we use only
constructive numbers given by (9.3). However, we do not have any problem with
the non�constructive numbers because they can be represented in the form (9.3)
with an approximation error that potentially aims for 0. This means that the con�
cept of non�constructive numbers has only theoretical interest.

9.5.2. Newton’s Definition of Real Numbers

Over the centuries, mathematicians developed and defined with greater pre�
cision the concept of a number. In the 17th century, in the period of the origin of
new science, in particular, new mathematics, several new methods of the study
of “continuous” processes were developed; in particular, the concept of a real
number stands out in the foreground. Most clearly, Isaac Newton, one of the
founders of mathematical analysis, gives a new definition of this concept in his
Arithmetica Universalis (1707):

 “We understand a number not as a set of units, but as the abstract ratio of
one magnitude to another magnitude of the same kind taken for that unit.”

This formulation gives us a general definition of real numbers, rational
and irrational. If we consider now the Euclidean Definition (9.50) from the
point of view of Newton’s Definition, we can see that in (9.50) the monad here
plays the role of a unit. In the binary system (9.3) the number 2, the radix of the
binary system, plays the role of a unit.

9.5.3. Numeral Systems with Irrational Radices as  a New Definition of
Real Numbers

We have developed the so�called “constructive” approach to the definition of
real number based on the binary system (9.3). This idea allows us to give the fol�
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lowing generalized definition of real number. We can develop Newton’s definition
of real numbers on the basis of numeral systems with irrational radices (9.1) and
(9.5). In fact, these systems with irrational radices are fundamentally new numer�
al systems that are of major theoretical importance for modern mathematics. They
revolve around our ideas about real numbers, in general. Historically, natural num�
bers were the first class of real numbers; the irrational numbers were introduced
into mathematics much later, after the discovery of “incommensurable segments.”
In the traditional numeral systems (Babylonian sexagecimal, decimal, binary, and
so on), the natural numbers 60, 10, and 2 are used as the “beginning of numbers.”
All real numbers can be represented by using the bases 60, 10 or 2. In the systems
with irrational bases, some irrational numbers of the kind τp named the golden p�
proportions are the “beginning of numbers.” All other real numbers (including
natural numbers) can be represented by using the irrational numbers τp.

Following this general reasoning, we can develop Newton’s definition of real
numbers, which is based on the numeral systems with irrational radices.

Thus, in our conceptual scheme we may consider the sum (9.5) to be a new
definition of real number. Above we have considered the particular extreme cas�
es of number representation (9.5). For the case p=0, the formula (9.5) becomes
(9.3), and for the case p=1, the system (9.5) becomes Bergman’s system (9.1).
Finally for the case p=∞, the radix τp →1; this means that the positional repre�
sentation (9.5) approaches the Euclidean definition (9.55). It follows from this
examination that the positional representation (9.5) is broad generalization of
the classical binary system (9.3), Bergman’s system (9.1) and Euclid’s defini�
tion (9.50) that underlie number theory.

Note that the above definition of real numbers based on their representation
in the form of a sum (9.5) gives us an infinite number of variants within the
Constructive Number Theory because every p (p=0, 1, 2, 3, …) generates its vari�
ant of the constructive number theory. Indeed, for the case p=0, we have the
variant of constructive number theory developed in constructive mathematics
[167]. For the case p=1, we get the variant of constructive number theory based
on Bergman’s system (9.1). For the cases p>1 we get the variants of construc�
tive number theory based upon the general definition (9.5). Below we will only
develop the beginning of this new theory of real numbers.

9.5.4. The Golden Representations of Natural Numbers

A new definition of real numbers based on (9.5) can become the source of a
new number�theoretical result. We begin our study with the “golden” represen�
tations of natural numbers in the form (9.5), that is,
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N ai p
i

i

= ∑ τ .  (9.57)

We name the sum (9.57) the τ
p
�code of natural number N. The abridged

notation of the τp�code of natural number N has the following form:

N= an an�1… a1 a0 , a�1 a�2 …a�m .  (9.58)

We use the rule

N′=N+1  (9.59)

for obtaining all “golden” representations of natural numbers in the form (9.57).
In order to apply rule (9.59) for obtaining all the “golden” representations of

natural numbers in the form (9.57), we need to transform the code representa�
tion (9.58) of the initial number N into such a form, when the binary numeral of
the 0�th digit becomes equal to 0, that is, a0=0. We can always carry out such a
transformation by using the operations of “convolution” and “devolution” based
on the fundamental property (9.44). If we then add the binary 1 to the 0�th digit
of the code representation (9.57), we carry out rule (9.59).

Let us demonstrate this method for the case p=1 (Bergman’s system). We
begin the demonstration of this method with the transformation of the “golden”
representation of number 1 to the “golden” representation of number 2. The
“golden” representation of number 1 in the form (9.57) has the following form:

1=τ0=1.00.

Using the micro�operation “devolution” [100→011], we obtain another
“golden” representation of number 1 in the following form:

1=0.11=τ�1+τ�2.  (9.60)

Now we apply rule (9.59) to the “golden” representation (9.60). In order
to carry out the transformation of number 1 into number 2, we have to add
the binary numeral 1 to the 0�th digit of the “golden” representation (9.60). As a
result, we obtain the “golden” representation of number 2:

2=1.11.  (9.61)

If we carry out the operation of “convolution” [011→100] on the “gold�
en” representation (9.61), we obtain another “golden” representation of number
2 (the minimal form):

2=10.01=τ1+τ�2.  (9.62)

By adding the binary 1 to the 0�th digit of the “golden” representation (9.62)
and by carrying out the “convolution” [011→100], we obtain the following “gold�
en” representation of the number 3:

3=11.01=100.01=τ2+τ�2.  (9.63)
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The “golden” representation of number 4 is the following:

4=101.01=τ2+τ0+τ�2.  (9.64)

We can obtain the “golden” representation of number 5 from the represen�
tation (9.64), if we carry out the following transformation of (9.64) by using
“devolution” [100→011]:

4=101.01=101.0011=100.1111.  (9.65)

By adding the binary numeral 1 to the 0�th digit of the right�hand “golden”
combination (9.65), we obtain the following “golden” representation of number 5:

5=101.1111.  (9.66)

By carrying out the “convolutions” [011→100] in the “golden” combination
(9.66), we obtain new “golden” representations of number 5:

5=101.1111=110.0111=1000.1001=τ3+τ�1+τ�4.  (9.67)

Continuing this process, we obtain “golden” representations of all natural
numbers. Thus, this study results in the following unexpected result that can
be formulated as the following theorem.

Theorem 9.2. All natural numbers can be represented in Bergman’s system
(9.1) by using a finite number of binary numerals.

This result could be generalized for the golden p�codes [105].
Theorem 9.3. For a given p>0 all natural numbers can be represented in

the golden p�proportion code (9.5) by using a finite number of binary numerals.
Note that this unusual property of the “golden” representation (9.5) se�

lects natural numbers from the remaining rational numbers because only nat�
ural numbers have this unique property. And we regard this unique property
of natural numbers as a first confirmation of the fruitfulness of the construc�
tive approach to number theory based on (9.5).

9.6. New Mathematical Properties of Natural Numbers (Z� and D�properties)

Bergman’s system (9.1) is a source of new number�theoretical results. The
Z�property of natural numbers is one of these results. This property is based
upon the following very simple reasoning.

Let us study the representation of natural number N in Bergman’s system
(9.1):

N a ii
i

i

= = ± ± ±( )∑ τ 0 1 2 3, , , ,... ,  (9.68)
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where ai is a binary numeral, {0,1}, τi is the weight of the i�th digit, τ = +( )1 5 2
is the golden mean – the radix of the number system (9.68).

The representation of the natural number N in the form (9.68) is called the
τ�code of natural number N.

Note that according to Theorem 9.2, the sum (9.68) is always a finite sum for
the arbitrary natural number N.

If we use the Binet formula (2.60), we can represent the τ�code of N as follows:

N A B= +( )1
2

5 ,  (9.69)

where

A a Li i
i

= ∑  (9.70)

B a Fi i
i

= ∑ .  (9.71)

Note that all binary numerals {0,1} in the sums (9.70) and (9.71) coin�
cide with the corresponding binary numerals of the τ�code (9.68) of natural
number N.

Let us represent the expression (9.69) as follows:

2 5N A B= + .  (9.72)

Note that the expression (9.72) has a general character and is valid for
any arbitrary natural number N.

Let us study the “strange” expression (9.72). It is clear that the number 2N
that stands on the left of the expression (9.72) is always an even number. The
right�hand part of the expression (9.72) is the sum of the number A and the
product of the number B multiplied by the irrational number 5 . However,
according to (9.70) and (9.71) the numbers A and B are always integers because
the Fibonacci and Lucas numbers are integers. Then, it follows from (9.72) that
for every natural number N, the even number 2N is equal to the sum of the inte�
ger A and the product of the integer B multiplied by 5 . This assertion is valid
for all natural numbers N! We can ask the question: when is the identity (9.72)
valid in the general case? The answer to this question is very simple: the identity
(9.72) will be valid for any natural number N only if the sum (9.71) is equal to 0
(“zero”), and the sum (9.70) is equal to the double of N, that is,

B a Fi i
i

= =∑ 0  (9.73)

A a L Ni i
i

= =∑ 2 .  (9.74)

Next let us compare the sums (9.68) and (9.71). Since the binary numerals
a

i
 in these sums coincide, it follows that the expression (9.71) can be obtained
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from the expression (9.68) if we substitute the Fibonacci number F
i
 for every

power of the golden mean τi in the expression (9.68), where the index i takes its
values from the set {0,±1,±2,±3,…}. However, according to (9.73) the sum (9.71)
is equal to 0 independently of the initial natural number N in the expression
(9.68). Thus, we have discovered a new fundamental property of natural num�
bers, which can be formulated through the following theorem.

Theorem 9.4 (Z�property of natural numbers). If we represent an arbi�
trary natural number N in Bergman’s system (9.1) and then substitute the
Fibonacci number Fi for the power of the golden ratio τi in the expression
(9.68), where the index i takes its values from the set {0,±1,±2,±3,…}, then the
sum that appears as a result of such substitution is equal to 0 independently of
the initial natural number N, that is,

a Fi i
i

∑ = 0.

Let’s compare the sum (9.68) and (9.70). Since the binary numerals ai in
these sums coincide, the expression (9.70) can be obtained from the expression
(9.68) if we substitute the Lucas number L

i
 for the power of the golden mean τi in

the expression (9.68), where the index i takes its values from the set
{0,±1,±2,±3,…}. However, according to (9.74) the sum (9.70) is equal to 2N inde�
pendently of the initial natural number N in the expression (9.68). Thus, we
have discovered one more fundamental property of Bergman’s system (9.1) that
can be formulated as the following theorem.

Theorem 9.5 (D�property). If we represent an arbitrary natural number N in
Bergman’s system (9.68) and then substitute the Lucas number L

i
 for the power

of the golden mean τi in the expression (9.68), where the index i takes its values
from the set {0,±1,±2,±3,…}, then the sum that appears as a result of such substitu�
tion is equal to 2N independently of the initial natural number N, that is,

a L Ni i
i

∑ = 2 .

Thus, Theorems 9.4 and 9.5 provide new fundamental properties of natural
numbers. For the first time the Z� and D�properties of natural numbers are de�
scribed in this author’s article [105] published in the Ukrainian Mathematical
Journal. It is suprising for many mathematicians to find that the new mathemat�
ical properties of natural numbers were only discovered at the end of the 20th
century, 2.5 millennia after the beginning of their theoretical study. The golden
mean and the extended Fibonacci and Lucas numbers play a fundamental role in
this discovery. This discovery connects together two outstanding mathematical
concepts of Greek mathematics � Natural Numbers and the Golden Section. This
discovery is the second confirmation of the fruitfulness of the constructive ap�
proach to the number theory based upon Bergman’s system (9.1).
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9.7. The F� and L�Codes

9.7.1. Definition of the F� and L�Codes

The above Z� and D�properties of natural numbers given by Theorems 9.4
and 9.5 allow us to create new and very unusual codes for the representation of
natural numbers.

Taking the Z�property (9.73) into consideration, we can write the
expression (9.69) in the following form:

N A B= +( )1
2

, (9.75)

where A is defined by the expression (9.70) and B by the expression (9.71).
By using the expressions (9.70) and (9.71), we can rewrite the expression

(9.69) as follows:

N a
L F

ii
i i

i

=
+

= ± ± ±( )∑ 2
0 1 2 3, , , ,... .  (9.76)

Taking into consideration the following well�known identity [16]

L F
Fi i

i

+
= +2 1,

we obtain from (9.76) the following representation of the same natural number N:

N a F ii i
i

= = ± ± ±( )+∑ 1 0 1 2 3, , , ,... . (9.77)

The expression (9.77) is named the F�code of natural number N [105].
As the binary numerals of the expressions (9.68) and (9.77) coincide, it fol�

lows from this fact that the F�code of the natural number N can be obtained from
the τ�code (9.68) of the same natural number N by means of substitution of the
Fibonacci number Fi+1 for the golden mean power τi, where i=0,±1,±2,±3,….

Let us now represent the F�code of N (9.77) in the following form:
N a F Bi i

i

= ++∑ 1 2 ,  (9.78)

where the term B is defined by the expression (9.71). Note that according to
(9.73) the expression (9.71) is equal to 0. Then, the expression (9.78) can be
represented in the following form:
N a F Fi i i

i

= ++∑ ( ).1 2  (9.79)

Taking into consideration the following well�known identity [16]

Li+1=Fi+1+2Fi,
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the expression (9.79) can be represented in the following form:

N a L ii i
i

= = ± ± ±( )+∑ 1 0 1 2 3, , , ,... .  (9.80)

The expression (9.80) is named the L�code of natural number N [105].
As the binary numerals of the expressions (9.68) and (9.80) coincide, it

follows that the L�code of N can be obtained from the τ�code of N (9.68) by
means of substituting the Lucas numbers L

i+1 for the golden mean powers τi,
where i=0,±1,±2,±3,… . It is clear that the L�code of N (9.80) can also be ob�
tained from the F�code (9.77) of the same number N by means of substituting
the Lucas number Li+1 for the Fibonacci number Fi+1 in the formula (9.80).

Let us represent the sums (9.68), (9.77) and (9.80) in the abridged form
(9.58). It is clear that the expressions (9.68), (9.77) and (9.80) give three
different methods for the binary representation of one and the same natural
number N. The τ�code (9.68) is a representation of the number N as the sum of
the golden mean powers, the F�code (9.77) is a representation of the same
number N as the sum of Fibonacci numbers and the L�code (9.80) is a repre�
sentation of the same number N as the sum of Lucas number. As we men�
tioned above, all sums (9.68), (9.77) and (9.80), which represent one and the
same natural number N, have one and the same abridged representation (9.58).

9.7.2. A Numerical Example

Once again let us consider the abridged representation (9.58). We can see
that the abridged representation (9.58) is divided by the comma into two
parts, namely the left�hand part, which consists of the digits with non�negative
indices, and the right�hand part, which consists of the digits with negative indi�
ces. For example, we can consider the “golden” representation of the decimal
number 10 in Bergman’s system:

10=10100.0101.  (9.81)

For the τ�code (9.68) the “golden” representation (9.81) has the follow�
ing algebraic interpretation:

10=τ4+τ2+τ�2+τ�4.  (9.82)

Using Binet’s formula (2.60), we can represent the sum (9.82) as follows:

10
5

2
5

2
5

2
5

2
4 4 2 2 2 2 4 4=
+

+
+

+
+

+
+− − − −L F L F L F L F

.  (9.83)

If we take into consideration the following correlations that connect the Fi�
bonacci and Lucas numbers

L�2=L2; L�4=L4; F�2=�F2; F�4=�F4,
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we can reduce the expression (9.83) to the following:

10
2

2
7 34 2

4 2=
+

= + = +
( )

.
L L

L L

Now, let us consider the interpretation of the “golden” notation (9.81) as the
F� and L�codes:

10=F5+F3+F�1+F�3=5+2+1+2;

10=L5+L3+L�1+L�3=11+4�1�4.

Also we can check the sum (9.82) according to the Z� and D�properties. If we
substitute in (9.82) the Fibonacci numbers F

i
 and the Lucas numbers L

i
 for the

powers τi, we obtain the following sums:

F4+F2+F�2+F�4=3+1+(�1)+(�3)=0 (Z�property)

L4+L2+L�2+L�4=7+3+3+7=20=2×10 (D�property).

9.7.3. Some Properties of the F� and L�Codes

Once again, we note that the “golden” combination (9.58) represents one
and the same natural number N in the τ�, F� and L�codes given by (9.68), (9.77)
and (9.80), respectively. However, a difference between them appears when
we start to shift the binary code combination (9.58) to the right or to the left.

Let us denote by N(k) and N(�k) the results of the shift of the binary combina�
tion (9.58) on the k digits to the left and to the right, respectively.

If we interpret the binary combination (9.58) as the τ�code of natural num�
ber N given by (9.68), then its shift to the left (that is, to the side of the highest
digits) by one digit corresponds to the multiplication of the number N by the
radix τ, and its shift to the right (that is, to the side of the lowest digits) by one
digit corresponds to the division of the number N by the radix τ, that is,

N N ai
i

i
1

1
( )

+= × ∑τ = τ  (9.84)

N N ai
i

i
( ) .−

− −= × = ∑1
1 1τ τ  (9.85)

It is clear that the shift of the code combination (9.58) on the k digits to the
left corresponds to the multiplication of the number N by τk and the shift on the
k digits to the right corresponds to the division by τ�k , that is,

N N ak
k

i
i k

i
( ) = × = +∑τ τ  (9.86)

N N ak
k

i
i k

i
( ) .−

− −= × = ∑τ τ  (9.87)
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Consider the shift of the code combination (9.58) to the left and to the right
when we interpret it as the F� or L�codes. If we interpret the code combination
(9.58) as the F�code (9.77), then by its shifting to the left on k digits we obtain
the following sum, which expresses this code transformation:
N a Fk i i k

i
( ) .= + +∑ 1  (9.88)

Apply to the expression (9.88) the following property of the generalized Fi�
bonacci numbers Gk [28]:

G F G F Gn m m n m n+ − += +1 1.  (9.89)

For the case Gk=Fk the identity (9.89) takes the following form:

Fn+m=Fm�1Fn+FmFn+1.  (9.90)

It follows from (9.90) that for n=i and m=k+1 the identity (9.90) amounts
to the following:

F
i+1+k

=F
k
F

i
+F

k+1Fi+1.  (9.91)

Substituting (9.91) into the expression (9.88), we obtain:

N a F a F F F F F a F F a Fk i i k
i

i k i k i
i

k i i k i i
ii

( ) .= = +( ) = ++ + + + + +∑ ∑ ∑∑1 1 1 1 1  (9.92)

Taking into consideration (9.73) and (9.77), we can simplify the expression
(9.92) as follows:

N(k)=Fk+1×N.  (9.93)
Let us consider the shift of the code combination (9.58), which is interpret�

ed as the F�code (9.77), to the right. Then shifting it to the right on k digits we
obtain the following sum, which expresses this code transformation:
N a Fk i i k

i
( ) .− − += ∑ 1  (9.94)

If we take n=i and m=�k+1, we can then write the identity (9.90) as follows:

Fi�k+1=F�kFi+F�k+1Fi+1.  (9.95)

Substituting (9.95) into the expression (9.94), and after simple transforma�
tions with regard to (9.73) and (9.77), we obtain:
N a F F Nk i i k k

i
( ) .− − + − += = ×∑ 1 1  (9.96)

Let us formulate the results (9.93) and (9.96) as the following theorem.
Theorem 9.6. The shift of the code combination (9.58), that is interpreted

as the F�code, on the k digits to the left (that is, to the side of the highest digit)
corresponds to the multiplication of the number N by the Fibonacci number
Fk+1. However, its shift on the k digits to the right (that is, to the side of the
lowest digit) corresponds to the multiplication of the number N by the Fi�
bonacci number F�k+1.
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Let us next examine the formula (9.96). For the case k=1 (the shift to the
right of one digit) the formula (9.96) takes the following form:

a F F Ni i
i

∑ = ×0 .  (9.97)

However, the Fibonacci number F0=0 and therefore the formula (9.97)
becomes the formula (9.73), which sets the Z�property. This examination is
another proof of the relevancy of the Z�property given by Theorem 9.4.

Note that the shift of the code combination (9.58), that is interpreted as the F�
code, of three digits to the right corresponds to the multiplication of the number
N by the Fibonacci number F�2=�1. This means that such a shift can result in the
number (�N)=(�1)×N. This property of the F�code together with the Z�property
has a number of interesting applications in computer and measurement systems.

Now, let us consider the shift of the code combination (9.58), which is inter�
preted as the L�code (9.80) of number N. Shifting it k digits to the right and k
digits to the left results in the following respective sums:

N a Lk i i k
i

( ) = + +∑ 1  (9.98)

N a Lk i i k
i

( ) .− − += ∑ 1  (9.99)

Using the identity (9.89) and taking Gk=Lk, we can express the Lucas num�
bers Li+k+1 and Li�k+1 as follows:

L
i+k+1=L

k
F

i
+ L

k+1Fi+1 (9.100)

Li�k+1=L�kFi+L�k+1Fi+1. (9.101)

Then, the expressions (9.98) and (9.99) can be represented in the follow�
ing forms, respectively:

N a L L a F L a Fk i i k
i

k i i k i i
ii

( ) = = ++ + + +∑ ∑∑1 1 1 (9.102)

N a L L a F L a Fk i i k
i

k i i k i i
ii

( ) .− − + − − + += = +∑ ∑∑1 1 1 (9.103)

With regard to the correlations (9.73) and (9.77), we obtain from (9.102)
and (9.103) the following results:

N a L L Nk i i k
i

k( ) = = ×+ + +∑ 1 1 (9.104)

N a L L Nk i i k
i

k( ) .− − + − += = ×∑ 1 1 (9.105)

We can formulate the results (9.104) and (9.105) as the following theorem.
Theorem 9.7. The shift of the code combination (9.58), that is interpreted as

the L�code, on the k digits to the left (that is, to the side of the highest digit) corre�
sponds to the multiplication of the number N by the Lucas number Lk+1. However,
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its shift on the k digits to the right (that is, to the side of the lowest digit) corre�
sponds to the multiplication of the number N by the Lucas number L�k+1.

Let’s consider the formula (9.105). For the case k=1, (the shift to the right
on one digit) the formula (9.105) takes the following form:

a L L Ni i
i

∑ = ×0 .

As the Lucas number L0=2, then this formula emerges as the formula (9.74),
which sets the D�property. This examination is another proof of the relevancy of
the D�property given by Theorem 9.5.

Note that the F� and L�code given by (9.77) and (9.80) and their surprising
properties are additional mathematical properties of natural numbers which con�
firm the fruitfulness of the constructive approach to the number theory based
on Bergman’s system (9.1).

 9.7.4. Algebraic Summation of Integers

We can use the Z�property of natural numbers to check arithmetical opera�
tions in computers. For example, let us consider the operation of the algebraic
summation of two integers N1±N2. We always obtain a new integer as the out�
come of this operation. This means that the “golden” algebraic summation of
two integers, which are represented in the τ� , F� or L�codes, results in a new code
representation of the algebraic sum N1±N2 in the τ� , F� or L�codes. It follows
from this consideration that the Z�property is invariant regarding the “golden”
algebraic summation. A similar conclusion is valid for “golden” multiplication.
The outcome of “golden” division of two integers is always another two integers,
quotient Q and remainder R. It follows from this consideration that the results
of “golden” division, the integers Q and R, retain the Z�property.

Hence, we have obtained some new fundamental properties of natural num�
bers that can be represented in the τ�, F� and L�codes given by (9.68), (9.77), and
(9.80). These properties (for example, the Z�property) are invariant to arithmeti�
cal operations and may be used for checking arithmetical operations in computers.

9.8. Number�theoretical Properties of the Golden p�Proportion Codes

9.8.1. The Zp�property of Natural Numbers

Above we found the interesting mathematical properties of natural num�
bers (Z�property, D�property, F� and L�codes) that appear in the representa�
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tion of natural numbers in Bergman’s system (9.1). We can ask further ques�
tion: whether or not a similar property is inherent in golden p�proportion
codes corresponding to the case p>1?

Consider the representation of a natural number N in the golden p�propor�
tion code given by (9.57). Remember that for a given p>0 all radices τp of the
codes (8.57) are irrational numbers, the roots of the “golden” algebraic equa�
tion (4.42). According to Theorem 9.3, all natural numbers can be represented
in the golden p�proportion code (9.57) by a finite number of binary numerals.

Above we have introduced a number of interesting properties of Berg�
man’s system (9.1) that appear in the representation of natural numbers in
Bergman’s system given by (9.68), in particular, the Z� and D�properties of
natural numbers. We can try to generalize the Z� and D�properties for the
general case of the golden p�proportion code (9.57).

Let us prove the following theorem.
Theorem 9.8 (Z

p
�property of natural numbers). If we represent some

natural number N in the τp�code (9.57) and substitute into this representation
the Fibonacci р�number Fp(i) for the golden p�proportion τp

i , where p>0 and
i=0,±1,±2,±3,…, then the sum a F ii p

i

( )∑ , which appears at this replacement, is

equal to 0 independent of the initial natural number N, that is,

a F ii p
i

( ) =∑ 0 . (9.106)

Proof. Let us prove this theorem by induction on N. For the case N=1,
the sum (9.57) becomes:

1 1 0 1 0= = ×. .τp (9.107)

If we substitute the Fibonacci p�number F
p
(0) for the power τp

0  in (9.107),
we obtain the following expression:

1×Fp(0).  (9.108)

Above we proved that for any given p>0 the Fibonacci p�number F
p
(0)=0.

It follows from this consideration that

1×Fp(0)=0  (9.109)

for any τ
p
�code (9.57). The basis of the induction is proved.

Suppose that the statement of the theorem is valid for some natural number
K (“the inductive hypothesis”). Let us prove the validity of the theorem for the
next natural number K+1 by this “inductive hypothesis.”

Represent the natural number K in the τp�code (9.57) as follows:

K a a ai p
i

i
p i p

i

i

=
=

+∞

=−

−∞

∑ ∑+ +τ τ τ
1

0
0

1

.  (9.110)
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Then, the sum a F ii p
i

( )∑ , which is formed from (9.110) by the substitution

of F
p
(i) for τp

i , takes the following form:

a F i a F a F ii p
i

p i p
i

( ) + ( ) + ( )
=

+∞

=−

−∞

∑ ∑
1

0
1

0 . (9.111)

According to the “inductive hypothesis,” the sum (9.111) is equal to 0 for
the given natural number K, that is,

a F i a F a F ii p
i

p i p
i

( ) + ( ) + ( ) =
=

+∞

=−

−∞

∑ ∑
1

0
1

0 0.  (9.112)

In order to obtain the next natural number K+1 from (9.110), it is nec�
essary to add 1 to the 0�th digit of (9.110). Here two cases are possible: (a)
a0=0 and (b) a0=1.

(а) If a0=0 in (9.110), then the τ
p
�code of the number K+1 can be ob�

tained from (9.110) by the replacement of a0=1 for a0=0. Let us study how
this replacement can influence the value of the sum (9.111). As Fp(0)=0 for
every p>0, the value of the sum (9.111) does not depend on the value of the digit
a0, that is, the identity (9.112) is valid for the next natural number K+1.

(b) Now, let us consider the case a0=1 in (9.110). In this case, as shown above,
by using “devolutions” and “convolutions,” we can always carry out such trans�
formation of (9.110), when the digit a0 in (9.110) becomes equal to 0. However,
then the case (b) becomes case (a) and this means that Theorem 9.8 is proven.

9.8.2. F
p
�code

As is shown above, the F�code of the natural number N (9.77) can be ob�
tained from the τ�code of the same natural number N (9.68) by means of the
simple substitution of all Fibonacci numbers F

i+1 for the powers τi in (9.63), where
i=0,±1,±2,±3,… . Also the L�code of natural number N (9.80) can be obtained
from the τ�code of the same natural number N (9.68) by means of the simple
substitution of the Lucas number L

i+1 for the powers τi in (9.68), where
i=0,±1,±2,±3,… . We can generalize these results for the case of the golden
p�proportion code (9.57).

Let us prove the following theorem.
Theorem 9.9 (Fp�code). If we represent some natural number N in the

τp�code (9.57) and substitute in this representation the corresponding
Fibonacci р�number Fp(i+1) for the golden p�proportion power τp

i

(i=0,±1,±2,±3,…), then the sum a F ii p
i

( )+∑ 1 , which appears at this substitu�

tion, is equal to the initial natural number N, that is,
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N a F ii p
i

= +∑ ( ).1 (9.113)

We name the sum (9.113) the F
p
�code of the natural number N.

Proof. Let us prove the theorem by the induction on N. For the case N=1,
the sum (9.57) becomes:

1 1 0 1 0= = ×. .τp (9.114)

If we substitute the Fibonacci p�number Fp(1) for the power τp
0 ,  we ob�

tain the following expression:

1×F
p
(1). (9.115)

Above we proved that the Fibonacci p�number F
p
(1)=1 for any given

p>0. It follows from this consideration that

1×F
p
(1)=1 (9.116)

for any τp�code (9.57). The basis of the induction has been proved.
Suppose that the assertion of the theorem is valid for some natural number

K (“the inductive hypothesis”). We prove the validity of the theorem for the
next natural number K+1 with this “inductive hypothesis.”

Represent the natural number K in the τp�code (9.57) as follows:

K a a ai p
i

i
p i p

i

i

=
=

+∞

=−

−∞

∑ ∑+ +τ τ τ
1

0
0

1

. (9.117)

Then, the sum a F ii p
i

( )+∑ 1 , which is formed from (9.117) by the substi�

tution of Fp(i+1) for τp
i , where i=0,±1,±2,±3,…, takes the following form:

a F i a F a F ii p
i

p i p
i

+( ) + ( ) + +( )
=

+∞

=−

−∞

∑ ∑1 1 1
1

0
1

. (9.118)

According to the “inductive hypothesis,” the sum (9.118) is equal to nat�
ural number K, that is,

a F i a F a F i Ki p
i

p i p
i

+( ) + ( ) + +( ) =
=

+∞

=−

−∞

∑ ∑1 1 1
1

0
1

. (9.119)

In order to obtain the next natural number K+1 from (9.119), it is necessary
to add 1 to the 0�th digit of (9.119). Here, two cases are possible: (a) a0=0 and
(b) a0=1.

(а) If a0=0 in (9.119), then the Fp �code of the number K looks as follows:

a F i F a F i Ki p
i

p i p
i

( ) ( ) .+ + × ( ) + + =
=

∞

=−

−∞

∑ ∑1 0 1 1
1 1

(9.120)

If we substitute a0 = 1 for a0=0 in (9.120), it takes the following form:
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a F i F a F i Ki p
i

p i p
i

( ) ( )+ + × ( ) + + = +
=

∞

=−

−∞

∑ ∑1 1 1 1 1
1 1

(9.121)

because F
p
(1)=1 for any given p>0.

(b) Now, let us consider the case a0=1 in (9.119). In this case, as is shown above,
by using “devolutions” and “convolutions,” we can always carry out such transfor�
mation of (9.119), when the digit a0 in (9.119) becomes equal to 0. However, then
the case (b) becomes case (a) and this means that Theorem 9.9 is proven.

Theorem 9.9 is a partial case of the following general theorem.
Theorem 9.10 (the shift of the F

р
�code). The shift of the F

р
�code of the

natural number N on k digits to the left (that is, towards the higher digits) cor�
responds to the multiplication of the number N by the Fibonacci р�number
F

p
(k+1) and its shift on the k digits to the right (that is, towards the lower dig�

its) corresponds to the multiplication of the natural number N by the Fibonacci
р�number Fp(�k+1).

Proof. Consider the formula (9.113) for the F
р
�code of the natural num�

ber N. The proof of the theorem consists of two parts:
(a) If we shift the code combination, which corresponds to the sum (9.113),

to the left (that is, towards the higher digits) on the k digits, we obtain the shift�
ed code combination that corresponds to the following sum:

a F i ki p
i

( )+∑ .  (9.122)

Let us prove that this sum is equal to N×F
p
(k), that is,

a F i k N F ki p
i

p( ) .+ = × ( )∑  (9.123)

It is clear that for the case k=1, the formula (9.123) is valid because Fp(1)=1
and the formula (9.123) becomes (9.113). Suppose that the formula (9.123) is
valid for the case k=m and prove that this formula is valid for the case k=m+1.
Thus, our “inductive hypothesis” is the following:

a F i m N F mi p
i

p( ) .+ = × ( )∑  (9.124)

Let us consider the sum

a F i mi p
i

( ).+ +∑ 1  (9.125)

Using the recursive relation

Fp(i+m+1)= Fp(i+m)+Fp(i+m�p),  (9.126)

we can write the sum (9.125) as follows:

a F i m a F i m a F i m pi p
i

i p
i

i p
i

+ +( ) = +( ) + + −( )∑ ∑ ∑1 .  (9.127)
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According to the “inductive hypothesis” (9.124), that is valid for all k<m+1,
we can write the sum (9.127) as follows:

a F i m N F m N F m pi p
i

p p( ) .+ + = × ( ) + × −( )∑ 1 (9.128)

By using the recursive relation (9.126), we can rewrite the sum (9.128) as
follows:

a F i m N F m N F m pi p
i

p p( ) .+ + = × ( ) + × −( )∑ 1 (9.129)

(b) If we shift the code combination, which corresponds to the sum (9.113),
to the right (that is, towards the lower digits) on the k digits, we obtain the
shifted code combination that corresponds to the following sum:

a F i ki p
i

( ).− +∑ 1  (9.130)

By analogy to the case (a) we can prove the following identity:

a F i k N F ki p
i

p( ) .− + = × − +( )∑ 1 1 (9.131)

The theorem is proved.
Let us consider the formula (9.131) for the case k=1:

a F i N Fi p
i

p( ) .∑ = × ( )0  (9.132)

As Fp(0)=0 for every given p>0, we can write the following identity:

a F ii p
i

( ) .∑ = 0  (9.133)

Then we can formulate the following theorem that is a partial case of Theo�
rem 9.10.

Theorem 9.11. For a given p>0, and for any natural number N, which is
represented in F

р
�code (9.113), the shift of the F

р
�code of natural number N on

the one digit to the right (that is, towards the lower digits) results in the code

combination corresponding to the sum a F ii p
i

( )∑ , which is equal to 0 indepen�

dent of the initial natural number N, that is,

a F i ii p
i

( ) , , , ,... .∑ = = ± ± ±( )0 0 1 2 3

9.8.3. Lр�code

The Lucas p�numbers given by the recursive relation (4.162) at the seeds
(4.163) and (4.164) are a source of the following number�theoretical results
that are given by Theorems 9.12 and 9.13.

Theorem 9.12 (Lр�code). If for a given p>0 we represent some natural num�
ber N in the τ

p
�code (9.57) and substitute into this representation the Lucas р�
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number Lp(i+1) for the golden p�proportion power τp
i , where i=0,±1,±2,±3,…,

then the sum a L ii p
i

( )+∑ 1 , which appears at this substitution, is also equal to

the initial natural number N, that is,

N a L i ii p
i

= + = ± ± ±( )∑ ( ) , , , ,... .1 0 1 2 3 (9.134)

We name the sum (9.134) the L
p
�code of the natural number N.

Theorem 9.12 is proved by analogy with Theorem 9.9.
Theorem 9.13 (the shift of the Lp�code). The shift of the Lp�code of the nat�

ural number N on k digits to the left (that is, towards the higher digits) corre�
sponds to the multiplication of the number N by the Lucas р�number L

p
(k+1) and

its shift on k digits to the right (that is, towards the lower digits) corresponds to
the multiplication of the natural number N by the Lucas р�number L

p
(�k+1).

Theorem 9.13 is proved by analogy to Theorem 9.10.

9.9. The Golden Resistor Dividers

9.9.1. The Binary Resistor Divider

In engineering practice the so�called resistor dividers, which are intended
for the current and voltage division in the given ratio, are widely used. One of
the variants of such a divider is shown in Fig. 9.1.

The resistor divider in Fig. 9.1 consists of the “horizontal” resistors of the
kind R1 and R3 and the “vertical” resistors R2. The resistors of the divider are
connected between themselves by the “connecting points” 0, 1, 2, 3, 4. Each point

R2

R3 R1 R1 R1 R1 R3

R2 R2 R2 R2

01234

Figure 9.1. Resistor dividers
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connects three resistors, which form together the resistor section. Note that Fig.
9.1 shows the resistor divider, which consists of 5 resistor sections. In general,
the number of resistor sections can be equal to n (n=1,2,3,…).

First of all, we note that the parallel connection of the resistors R2 and R3 to
the right of the “connecting point” 0 and to the left of the “connecting point” 4
can be replaced by the equivalent resistor with a resistance that can be calculat�
ed according to the law of the resistor parallel connection:

R
R R
R Re1

2 3
2 3

= ×
+

. (9.135)

Taking into consideration (9.135), it is easy to find the equivalent resistance
of the resistor section to the right of the “connecting point” 1 and to the left of
the “connecting point” 3:

R R Re e2 11= + . (9.136)
Depending upon the choice of the resistance values of the resistors R1, R2,

R3, we will obtain different coefficients of current or voltage division. Let us con�
sider the so�called “binary” divider that consists of the following resistors: R1=R;
R2=R3=2R, where R is some standard resistance value. For this case the expres�
sions (9.135) and (9.136) take the following values:

R R R Re e1 2 2= =; . (9.137)

Then taking into consideration (9.137), we discover that the equivalent resistance
of the resistor circuit to the left or to the right of any “connecting point” 0, 1, 2, 3, 4 is
equal to 2R. This means that the equivalent resistance of the divider in the “connecting
points” 0, 1, 2, 3, 4 can be calculated as the resistance of the parallel connection of three
resistors 2R. By using the electrical circuit laws, we can calculate the equivalent resis�
tance of the divider in each “connecting point” 0, 1, 2, 3, 4:

R Re3
2
3

= . (9.138)

Now, let us connect the generator of electric current I to one of the “con�
necting points,” for example, to point 2. Then, according to Ohm’s law, the fol�
lowing electric voltage appears at this point:

U RI= 2
3

.  (9.139)

Let us next find the electrical voltages in the “connecting points” 3 and 1 that
are adjacent to point 2. It is easy to show that the voltage transmission coefficient
between the adjacent “connecting points” is equal to 1/2. This means that the “bina�
ry” divider fits the binary system very well. This results in the wide use of “binary”
dividers in modern digit�to�analog and analog�to�digit converters.
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9.9.2. The Golden Resistor Dividers

We can take the values of the resistors in Fig. 9.1 as follows:

R R R R R Rp
p

p
p

p1 2 31= = =− +τ τ τ; ; , (9.140)

where τp is the golden р�proportion, p=0,1,2,3,… .
It is clear that the divider in Fig. 9.1 gives an infinite number of different

resistor dividers because every р produces a new divider. In particular, for the
case p=0, the value of the golden 0�proportion τ0=2 and the divider is re�
duced to the classical “binary” divider.

For the case p=1, the resistors R1, R2, R3 take the following values:

R R R R R R1 2 31 2= = =−τ τ τ; ; , (9.141)

where τ = +( )1 5 2  is the  golden mean.
Let us examine the basic electrical properties of the “golden” resistor

divider in Fig. 9.1 that is given by (9.140). For this purpose we use the following
properties of the golden p�proportion:

τ τp p
p= + −1 (9.142)

τ τ τ .p
p

p
p

p
+ += +2 1 (9.143)

Now, let us find the equivalent resistance of the resistor circuit of the divider
to the left and to the right with respect to the “connecting points” 0 and 4. By
using the expression (9.143), we can write:

R
R R
R R

R R

R R
Re

p
p

p

p
p

p
1

1

1

2 3
2 3

= ×
+

=
×
+

=
+

+

τ τ
τ τ

. (9.144)

Note that we have simplified the expression (9.144), using the mathematical
identity (9.143).

Using (9.136) and (9.142), we can find the equivalent resistance of Re2:

R R R Re p
p

p2 = + =−τ τ . (9.145)
Thus, according to (9.145) the equivalent resistance of the resistor circuit of

the divider to the left or to the right of the “connecting points” 0, 1, 2, 3, 4 is
equal to τ

p
R, where τ

p
 is the golden p�proportion. This fact can be used for the

calculation of the equivalent resistance R
e3 of the divider in the “connecting

points” 0, 1, 2, 3, 4. In fact, the equivalent resistance Re3 can be calculated as the
resistance of the electrical circuit that consists of the parallel connection of the
“vertical” resistor R p

p2 1= +τ  and two “lateral” resistors with the resistance τpR.
However, as the equivalent resistance of the parallel connection of the resistors
R p

p2 1= +τ  and R Rp3 = τ  is equal to R, then the equivalent resistance R
e3 of the

divider in each “connecting point” can be calculated by the formula:
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=
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+ −

τ
τ

τ
τ τ

. (9.146)

Note that for the case p=0 (the “binary” divider), τ
p
=τ0=2 and the expression

(9.146) is reduced to (9.138).
Now, let us find the coefficient of voltage transmission between the adja�

cent “connecting points” of the “golden” divider. For this purpose we connect
the generator of the electric current I to one of the “connecting points,” for
example, to point 2. Then, according to Ohm’s law the following electrical volt�
age appears at this point:

U RI
p

=
+ −
1

1 1τ
. (9.147)

Now, let us calculate the electrical voltage in the adjacent “connecting
points” 3 and 1. The voltages at the points 3 and 1 can be calculated as a result
of linking the voltage U given by (9.147) to the resistor circuit that consists of
the sequential connection of the “horizontal” resistor R Rp

p1 = −τ  and the resis�
tor circuit with the equivalent resistance R. Then for this case, the electrical
current, which appears in the resistor circuit to the left and to the right of the
“connecting point” 2, is equal to

U
R R

U

R

U
R

p
p

p1+
= ( ) =

−τ +1 τ
. (9.148)

If we multiply the electrical current (9.148) by the equivalent resistance R,
we obtain the following value of the electrical voltage in the adjacent “connect�
ing points” 3 and 1:

U

pτ
. (9.149)

This means that, in the general case, the coefficient of voltage transmis�
sion between the adjacent “connecting points” of the “golden” divider in Fig.
9.1 is equal to the reciprocal of the golden p�proportion!

Thus, the “golden” resistor divider, that is based on the golden p�propor�
tions τ

p
, are quite real electrical circuits. It is clear that the above theory of the

“golden” dividers could become a new source for the development of the “digital
metrology” and analog�to�digital and digital�to�analog converters.
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9.10. Application of the Fibonacci and Golden Proportion Codes to Digital�
to�Analog and Analog�to�Digital Conversion

9.10.1. The “Golden” Digital�to�Analog Converters

The electrical circuit of the “golden” DAC, that is based on the “golden”
resistor divider in Fig. 9.1, is shown in Fig. 9.2.

Note that the “golden” DAC in Fig. 9.2 consists of 5 digits. However, the
number of DAC digits may be increased to some arbitrary n by extending the
resistor divider to the left and to the right.

The “golden” DAC contains 5 (n in the general case) generators of the stan�
dard electrical current I0 and 5 (n in the general case) electrical current keys K0�
K4. The key states are controlled by the binary digits of the golden p�proportion
code a4 a3 a2 a1 a0. For the case a

i
=1, the key K

i
 is closed, for the case a

i
=0, it is

open (i=0,1,2,3,…,n). One can show that the closed key Ki results in the following
voltage in the i�th point of the resistor divider: Ui=βpI0R, where

β τp p
�= +1 1 1( ).

As the potential U
i
 is transferred from the i�th point to the (i�1)�th point

with the transmission coefficient 1/τp, the following voltage appears at the DAC
output:

I
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I
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I
0
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R2 R2 R2 R2 R2

01234
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out

Figure 9.2. The “golden” DAC
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Using the superposition principle, it is easy to show that the golden p�pro�
portion code a

n
 a

n�1 an�2 … a1 a0 results in the following voltage U
out

:

U = B aout p i p
i

i=

n�

τ
0

1

∑ , (9.150)

where B =  I Rp p p
n�β τ0

1.
It follows from (9.150) that the electrical circuit in Fig. 9.2 converts the golden

p�proportion code into the electrical voltage Uout with regard to the constant
coefficient B

p
.

9.10.2. Checking the “Golden” DAC

In measurement practice there is a necessity to check the DAC for linearity
in the process of its production and operation. For the classical binary DAC
the following correlation for checking the DAC linearity is used:

2 2 1
0

1
n i

i=

n�

= +∑ .

The mathematical properties of the golden p�proportion give a very wide
possibility for checking the DAC linearity. In particular, checking the linearity
of the “golden” DAC, which is based on the classical golden mean τ is reduced
to checking the following relations:

τ = τ + τ = τ + τ + τ = τ + τ + τ + τn n n n n n n n n n− − − − − − − − − =1 2 1 3 4 1 3 5 6 .... (9.151)

This check up is performed in the following manner. We may check that the
output voltage of the “golden” DAC in Fig. 9.2 would be unchanged for the fol�
lowing input code combinations:

1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 1 1 0 0
0 1 0 1 0 1 1.

Note that the different input code combinations are obtained from the top
code combination 1000000 by means of the “devolutions” 100 011→[ ].

9.10.3. The “Golden” ADC

The functioning algorithms and structural scheme of the “golden” ADC co�
incide with the functioning algorithms and the structural scheme of the classical
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“binary” ADC. However, the golden mean relations, that connect the adjacent
digit weights of the golden mean code, provide a number of interesting technical
advantages for the “golden” ADC.

Now we need to convert the analogous magnitude of the value X, which is in
the range 0≤X<τn into the n�digit golden mean code by using the digit�by�digit
algorithm of the analog�to�digit conversion. Then, the “golden” digit�by�digit
algorithm may be considered as a process of the sequential presentation of the
value X and all remainders r1, r2, … , rn as follows.

9.10.3.1. The first step

X=τn�1+r1,

where  0≤r1<τn�2.

9.10.3.2. The second step

r1=τn�3+r2,

where 0≤r2<τn�4.

9.10.3.3. The third step

r2=τn�5+r3,

where 0≤r3<τn�6.
It follows from this consideration that the output code of the “gold�

en” ADC is represented in the minimal form. This means that the process
of the “golden” analog�to�digital conversion is checked in accordance with
the minimal form.

9.10.4. The Self�correcting “Golden” ADC

A guarantee of the high long�time and temperature stability of the technical
parameters of ADC and DAC is one of the most important problems of designing
such systems.

Designing the self�correcting ADC and DAC is one of the most effective fields
of the Fibonacci and golden proportion codes applications [30].

As is well known, for the evaluation of the reliability of measurement sys�
tems and devices, in particular, ADC and DAC, a notion of Metrological Stabil�
ity is widely used. While faults and failures of the digital components are the
basic cause of non�reliability of the digital systems, the deviations of parame�
ters of analogous elements from their standard values are the main cause of
instability of measurement systems. The problem of the diminution of techno�
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logical precision of the analogous elements arises in designing measurement
systems of high accuracy. The solution to this problem is based upon the use of
the Principle of Self�correction.

The Fibonacci and golden proportion codes allow one to use the principle of
self�correction to increase the accuracy and metrological stability of ADC and
DAC. Let us demonstrate the application of this principle on the example of the
8�digit Fibonacci ADC. The ADC uses the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13,
21 as the digit weights. Let us suppose that the Fibonacci weight 21 has a devia�
tion from its standard value by 20%  that equals 4 units. Thus the “real” weights
of the Fibonacci ADC are equal to: 1, 2, 3, 5, 8, 13, 25. At the stage of self�check�
ing, we give the ADC the input value 26 that exceeds the weight 21 taking into
consideration all its possible deviations from the standard value. Let us carry out
the analog�to�digit conversion of the input value 26 twice: the first time with the
use of the higher weight 25 and without this weight the second time. As a result,
we obtain two code combinations:

25 13 8 5 3 2 1 1
1 0 0 0 0 0 1 0
0 1 1 1 0 0 0 0

A
B

=
=

If we interpret code combinations A and B as Fibonacci code combina�
tions with the “ideal” weights, we find that their difference is D=B�A=4.
Hence, we obtain the deviation of the higher digit weight 25�21=4 from the
standard value.

The above method of measurement of deviation of Fibonacci weights
from their standard values underlies the high�precision self�correcting ADC
and DAC [30] that possess high metrological stability. By using this procedure,
we can measure deviations of all the higher digit Fibonacci number weights. Af�
ter that, we can measure the input value X by using “real” weights that allow us
to increase the precision of ADC.

9.10.5. An Application of the Z�property for Checking DAC

There is a problem when Checking the Last Cascade in a reliable control
system. Usually the control system uses DAC as its “last cascade” and there�
fore the problem is reduced to checking the DAC.

Let us demonstrate the possibility of solving this problem with the use of the
golden mean code Z�property. The Z�property is fundamental to all natural num�
bers N that appear in the representation of number N in the F�code (9.77). Con�
sider the technical application of the F�code for checking the DAC (Fig. 9.3).
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The DAC for the F�code consists of the register RG, used for memorizing the
initial F�code, the set of electric current keys K, and the set of standard electric
current generators I with electric currents proportional to the Fibonacci num�
bers 21,13,8,5,2,1,1,0,1,�1,2,�3,5,�8, …. If we send the F�code of the number N to
the ADC input, we form an electric current proportional to N at its output:

I = a Fout i i+
i=�n

n

1∑ . (9.152)

We can see in Fig. 9.3 that we need to send the F�code to the input of the
register RG. This results in switching the corresponding keys K and then switch�
ing the corresponding standard electric currents I proportional to Fibonacci
numbers. It is clear that each item (register RG, keys K and the current genera�
tors I) may be a source for DAC faults. That’s why there is a problem checking
all the electronic components that compose the DAC.

We can see that the DAC for the F�code consists of a discrete part (regis�
ter RG) and an analogous part, that include the electric current keys K and the
current generators I. It is clear that the following opportunities arise for check�
ing the discrete part of the F�code DAC:

1. Checking the F�code according to minimal form.
2. Checking the F�code according to the Z�property.
The following opportunities arise for checking the analogous part of the DAC:
3. The application of “convolution” and “devolution” micro�operations. For
example, if we write the binary numeral 1 to the highest digit of the register
RG and then carry out all possible “devolutions,” we can check that the val�
ue of the output current remains unchanged, i.e.

Iout=Fn+1=const.

7 6 5 4 3 2 1 0 �1 �2 �3 �4 �5 �6 �7

21 13 8 5 3 2 1 1 0 1 �1 2 �3 5 �8

I
out

RG

K

I

Figure 9.3. The DAC for the F�code
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4. Checking the electric current output in accordance with the Z�property.
By shifting the F�code in the register RG to the right by one digit, we can
check that

Iout=0. (9.153)

It is essential for highly�reliable control systems that the checking of the
Fibonacci DAC is carried out without disconnection of the DAC output. This
problem is solved in the following manner. The initial F�code combination
that is shifted by one digit to the right is written into the register. Then, the
equality (9.153) is checked in accordance with the Z�property. Having 0 at
the ADC output means that the initial F�code is valid and then the F�code is
shifted one digit to the left causing the electric current (9.152) on the out�
put of the DAC in accordance with the F�code.

9.11. Conclusion

1. A rather unusual approach to the fundamental principles of Number Theo�
ry is developed in this Chapter. The traditional approach is that number theory
as a mathematical discipline arose in ancient Greece. However, a study of the
history of mathematics shows that long before Greek science, quite a number of
outstanding discoveries in number theory and arithmetic had occurred in antiq�
uity. The discovery of the positional principle of number representation was the
most important achievement of the “pre�Greek” stage in mathematical history.
This discovery was made by Babylonian mathematicians and was used in their
sexagecimal positional number system. All the best known positional number
systems, including the decimal system, discovered by Hindu mathematicians
(somewhere in the 8th to 5th century B.C.), and the binary system, underlying
modern computers, are based upon this principle.

2. Some historical sources assert that the golden section was also discov�
ered by Babylonian mathematicians and Pythagoras simply borrowed this
mathematical discovery from the Babylonians. Two outstanding Babylonian
mathematical discoveries, the positional principle of number representation
and the golden section, developed independently of each other over the ages.
Their unification occurred in 1957, when a young 12�year�old American mathe�
matician, George Bergman, published the article A number system with an irra�
tional base [144]. In Bergman’s number system [32] the golden mean, an irra�
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tional number, plays the role of progenitor of all numbers, because all numbers,
including natural, rational and irrational, can be represented in Bergman’s num�
ber system. This result is of great methodological importance for all of mathe�
matics and science generally. Since all numbers can be represented in Bergman’s
number system, that is, all numbers can be represented by the golden mean, it
follows that we can formulate the new scientific doctrine that “Everything is the
golden mean” in place of the Pythagorean doctrine, “Everything is a number.”

3. There is a “strange tradition” in mathematics. Mathematical history shows
that many mathematicians are unable to properly assess the outstanding quali�
ty of their contemporaries’ mathematical discoveries. As a rule, many outstand�
ing mathematical discoveries meet incomprehension, rejection and even gibes at
the moment of their appearance. As a rule, their general recognition begins only
40�50 years after their emergence. The 19th century became especially saturated
with such blunders. Failure of 19th century Russian academic science to recog�
nize the signifigance of Lobachevsky’s geometry, the sad fate of the mathemati�
cal discoveries of French mathematician Evariste Galois, killed in a duel at only
21 years of age, and Norwegian mathematician Niels Abel, who died in poverty
and obscurity at 27 years of age, are sad examples of this “strange tradition.”
Unfortunately, we must note that George Bergman’s mathematical discovery
did not receive proper recognition by his contemporary mathematicians. Tak�
ing into consideration that 50 years have passed since Bergman’s discovery, and
following the “strange tradition” rule, it would seem that we now finally have the
right to properly assess his discovery. This discovery changes the relationship
between rational and irrational numbers, pushing the golden proportion into
the forefront of mathematics! The discovery of Bergman’s number system [86]
with its generalizations, and the codes of golden p�proportions [24, 93], are sig�
nificant events in the realm of knowledge, if not wisdom. Numeral systems with
irrational radices [24, 93, 86] are amongst the most important mathematical dis�
coveries in numeral systems, possibly secondary only to discoveries of the posi�
tional number representation principle (Babylon, 2000 B.C.) and the decimal
system (India, 8th to 5th century B.C.).

4. Bergman’s system and its generalization – the codes of the golden p�pro�
portions � are of great importance for theoretical arithmetic. As shown here in
this Chapter, it is clear that the codes of the golden p�proportions are a bountiful
source of new ideas for the development of number theory. They form a new
constructive definition for real numbers, which can become a significant source
of new number�theoretical results (including, for example, the Z�property of
natural numbers, and F� and L�codes). This new theory of real numbers has roots
in ancient Babylonian mathematics (both in the positional principle of number
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representation and the golden section) with an origin that is two millennia older
than classical number theory. In addition, Bergman’s system and the golden p�
proportion codes are of great importance in computer and measurement prac�
tice because the numeral systems with irrational radices reveal the way to high�
ly original computer and measurement projects. Thus, this new theory of real
numbers, developed in this Chapter, both extends the theory of real numbers
and returns number theory to its proper applications in computer and measure�
ment systems (the “golden” computers and the “golden” analog�to�digital and
digital�to�analog converters).
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Chapter 10

Ternary Mirror�Symmetrical Arithmetic

10.1. A Ternary Computer “Setun”

10.1.1. Brousentsov’s Ternary Principle

As is well known, computer process design begins with the choice of numer�
al system that determines many technical characteristics of computers. At the
beginning of the computer era, the problem of choosing the “optimal” number
system for electronic computers was brilliantly solved by American physicist
and mathematician John von Neumann, who forcefully argued his preference for
the binary system in electronic computers. The famous John von Neumann Prin�
ciples include three basic ideas for electronic computer design: the Binary Sys�
tem, Binary (Boolean) Logic, and the Binary Memory Element (“Flip�Flop”).

Even though the binary system is the most popular one in contemporary
computers, the study and development of new numeral systems continued.
The desire to overcome a number of significant shortcomings in the classical
binary system is the primary motivation for this ongoing study. Two short�
comings of the binary system are certainly well known. The first of them
involves the fact that it is impossible to represent negative numbers (the Sign
Problem) and perform arithmetical operations on them in “direct” binary code
what complicates arithmetical computer structures. The second shortcom�
ing of the binary system is the Problem of “Zero” Redundancy. The fact that all
binary combinations are allowed complicates errors detection during infor�
mation transmission, processing, and storage.

The initial attempt to overcome the Sign Problem was made in the Soviet
Union during the very dawn of the computer era. The original computer project
– the ternary computer “Setun” [180] – was designed in 1958 at Moscow Uni�
versity, and became a brilliant example for an “optimal” solution of the Sign Prob�
lem. A new principle of construction for computers was implemented in the “Se�
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tun.” This principle was based on the concepts of Ternary Logic, Ternary Symmet�
rical Numeral System, and Ternary Memory Element (“Flip�Flap�Flop”). This prin�
ciple is called Brousentsov’s Ternary Principle [104] in honor of the Soviet scien�
tist Nikolay Brousentsov, the principal designer of the “Setun” computer.

10.1.2. The Dramatic History of the “Setun” Computer

Nikolay Brousentsov was born in 1925 in Kamenskoe, Ukraine. In 1953 he
graduated from the Moscow Energy University and started to work as a com�
puter engineer at the Special Designing Bureau (SDB) of Moscow University.

In the beginning of his career Brousentsov participat�
ed in the modification of the M�2 computer that was con�
structed in a special computer laboratory at the Soviet
Academy of Sciences under the scientific supervision of
Soviet computer specialist M. Kartcev. The M�2 comput�
er, which was one of the best Soviet computers of that
period, literally overwhelmed Brousentsov’s heart, and he
began dreaming about designing his own computer. His
intention coincided with the decision of famous Soviet
mathematician Sergey Sobolev, who headed the Compu�
tational Mathematics Department at Moscow Universi�
ty, to create a new computer for educational purposes.
Sergey Sobolev organized the scientific seminar, in which the Moscow mathe�
maticians and programmers Shura�Bura, Semendyaev, Jogolev and Brousentsov
participated. They discussed the shortcomings of today’s binary computers, and
considered their architecture and various technical methods of design. After
heated discussions, the seminar participants decided to give the preference to
magnetic elements as the basis of new computer. The magnetic cores and diodes
were the preferred basic elements at that period, because transistors did not yet
exist, and vacuum tubes were excluded because of large size and low reliability.

In April 1956, when academician Sobolev formulated the new computer project
at the Moscow seminar, intensive work began. Brousentsov was appointed princi�
pal developer of the project. To realize this project, Sobolev organized the Problem
Computer Laboratory in the Mechanics and Mathematics Department of Moscow
University, where in 1962 Brousentsov was appointed its head. The first idea was
to design a traditional binary computer based upon magnetic elements. After study�
ing the binary magnetic computer projects, Brousentsov found many disadvan�
tages. Therefore, he decided to develop the ternary magnetic computer. Brousentsov
wrote in his journal: “Of course, I knew about the advantages of the ternary code

Nikolay Brousentsov
(born in 1925)
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from the special books devoted to this problem. Later I found that American scien�
tist Grosh (“Grosh’s law”) was interested in the ternary number system. However,
the American scientists could not develop a ternary computer.”

In 1957, Brousentsov developed the basic components of ternary com�
puters: the summator, counter and other devices. In 1958, engineers at the
Laboratory produced the first prototype ternary computer which began func�
tioning 10 days after the start of its debugging! It was called “Setun” after
the small river Setun near Moscow University.

The “Setun” was a one�address computer of sequential functioning with a
fixed comma. From the functional point of view, the computer was divided into
six components: arithmetic, control, operative memory, input, output, and mag�
netic drum memory. From the mathematical point of view a special feature of
the “Setun” computer was its use of a ternary symmetrical numeral system
with ternary numerals {�1,0,1}. From the engineering perspective, a special feature
of the computer was its use of a magnetic amplifier as its basic component. Such an
amplifier consisted of a non�linear transformer with a miniature magnetic core and
a germanium diode. The three stable states that are necessary for carrying out
ternary representation were obtained by using one pair of such amplifiers. The 18�
digit ternary code combination was the “ternary word.” In “Setun’s” arithmetic
device the 18�digit ternary word was considered to be a number, in which the
comma was located between the second and third digits. The commands were en�
coded by the 9�digit ternary half�word.

According to a resolution of the Ministerial Council of the Soviet Union,
the Kazan Computer Plant (now known as ICL�KPO) was ordered to pro�
duce 50 prototypes of “Setun.” Thirty computers were distributed amongst
the Soviet universities. These computers functioned efficiently in all climate
zones of the former U.S.S.R. – from Kalinigrad to Magadan, and from Odessa
and Ashchabad to Novosibirsk. These computers functioned beautifully, prac�
tically without any service or repairs.

During 1961�1968, Brousentsov designed the architecture of the new terna�
ry computer, “Setun�70.” Its functional algorithm was described in the program�
ming language “ALGOL.” Unfortunately, due to a negative opinion from the
Moscow University administration regarding his new computer idea, Brousents�
ov’s laboratory was not able to continue further developments after “Setun�70”.
Brousnetsov’s laboratory was moved to the attic of a student dormitory where
daylight was absent and the overall conditions were unsuitable. Based upon a
decision by the University administration, the prototype of the “Setun” comput�
er (having operated without failure for 17 years), was subjected to barbaric de�
struction. The computer was chopped into pieces and thrown into the garbage.
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10.1.3. Ternary Technology

Unfortunately, the history of the ternary “Setun” computer ended dramati�
cally. The main reason was the fact that “Setun” was designed on magnetic ele�
ments, and could not compete with binary electronic computers. However, “Set�
un” is of great importance in the development of computer science and its rele�
vance is preserved today. In contrast with computers based on von Neumann’s
Binary Principle (the binary system, Boolean logic and the binary memory ele�
ment, flip�flop), “Setun” was the first computer designed on Brousentsov’s Terna�
ry Principle [104]. According to Brousentsov’s ternary principle, computers can
be designed on the “ternary” base: the ternary symmetrical numeral system, ter�
nary logic, and the ternary memory element, flip�flap�flop.

Next let us compare the Binary Digital Technology based on von Neumann’s
Binary Principle with the Ternary Digital Technology based on Brousentsov’s Ter�
nary Principle. The binary digital technology is based on two�valued signals (bits)
and two�state memory elements (flip�flop). The discrete objects that have more
than two states are represented by combinations of bits or bytes (8 bits). For
example, the decimal numerals are represented by four bits; the symbols of the
alphabet are represented by bytes, etc. Accordingly, all operations over multi�
valued objects are carried out as sequences of operations of two�valued logic.

The ternary digital technology is based on three�valued signals (trits) and
three�state memory elements (flip�flap�flop). The objects that have more than
3 states are represented as combinations of trits. The operations over these ob�
jects are carried out as sequences of operations of three�valued logic. The analog
of a byte (8 bits) is the combination of 6 trits, called a trite.

One of the barriers that restrains the development and spread of ternary
digital technology is disbelief and the inability to comprehend the extraordinary
nature of three�valued logic. Actually three�valued logic is not only reasonable
and related to reality; but is more convenient and comprehendible for people
than two�valued logic. In real life three�valued relations occur quite frequently.
For example, “increase � does not change � decrease,” “forward � stop � backward,”
“victory � a draw � defeat,” “surplus � the norm � shortage,” “friendly � neutrality �
hostility,” “earlier � now � later,” “to the left � center � to the right,” etc.

Many modern computer experts have come to the conclusion that the ternary
computer design principle may become an alternative in the future of computer
progress. In this connection, it is important to recall the opinion of well�known
Russian scientist, Prof. D. Pospelov, about the ternary�symmetrical number sys�
tem. In his book [175] he wrote: “The barriers, which stand in the way of application
of ternary�symmetrical number systems in computers, are of a technical character.
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Until now, economical and effective elements with three stable states have not been
developed. As soon as such elements will be designed, a majority of computers of the
universal kind and many special computers will most likely be re�designed so that
they will operate on the ternary�symmetrical number system.”

Also, American scientist Donald Knuth expressed the opinion [181] that
one day the replacement of “flip�flop” by “flip�flap�flop” will occur.

10.2. Ternary Symmetrical Numeral System

10.2.1. Ternary Symmetrical Representation

The key idea of “Brousentsov’s Ternary Principle” is the “ternary symmet�
rical numeral system” [175, 176, 180]. This uses the following positional method
of number representation:

N bi
i

i

n

= −

=
∑ 3 1

1

,  (10.1)

where b
i
 (i=1,2,3,…,n) is the ternary numeral {�1,0,1} of the i�th digit; 3i�1 is the

“weight” of the i�th digit; and the number 3 is the base of the numeral system.
We can explain the essence of the ternary symmetrical representation of num�

bers with the example of the Bashet�Mendeleev problem considered in Chapter
7. This numeral system appears as an outcome of the solution to the Bashet�
Mendeleev problem, when we have the right to place the standard weights on
both cups of the balance, the “free” cup and the “weight” cup. It was proved that
the ternary numbers
1, 3, 27, …, 3n�1  (10.2)
are the optimal solution to the Bashet�Mendeleev problem for this condition.

Using the standard weights (10.2), we can weigh the different unknown
weights according to the following rule. The weighing of the unknown weight
Q=1kg is carried out by using the first “standard weight” 1kg that is put on the
“free” cup of the balance. The weighing result can be represented as follows:

1=00013.

The weighing of the unknown weight Q=2kg can be carried out by using
two “standard weights”: 1kg and 3kg. The standard weight of 3kg is put on
the “free” cup of the balance and the standard weight of 1kg on the “weight”
cup of the balance. The weighing result can be represented as follows:

2 00113= .
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The negative unit 1 1= − , which appeared in this ternary representation,
has the following “measurement interpretation.” It means that the first “stan�
dard weight” of 1kg is on the “weight” cup of the balance and this weight is
“subtracted” from the second “standard weight” of 3kg, which is on the “free”
cup of the balance.

The weighing resulting in the unknown weights of Q=3kg and Q=4kg can
be written as follows:

3 0010 4 00113 3= =, .
However, the ternary representation of the unknown weight of Q=5kg has

the following form:

5 01113= .
This ternary representation means that the “standard weight” of 9kg is on

the “free” cup and the “standard weights” of 3kg and 1kg are on the “weight” cup
of the balance.

From the above numerical representation, a new interpretation of the no�
tion of “numeral” follows. The positive unit 1 means that the corresponding stan�
dard weight is on the “free” cup of the balance, the negative unit 1  means that
the corresponding standard weight is on the “weight” cup of the balance, and the
numeral 0 in the ternary representation means that the corresponding standard
weight is not involved in the weighing.

Hence, the ternary representation 01113  has the following numerical inter�
pretation:

01 1 1 0 3 1 3 1 3 1 3 53
3 2 1 0

10= × + × × × =� � .

Now, let us consider some other examples:

01 1 0 0 3 1 3 1 3 0 3 63
3 2 1 0

10= × + × × + × =�

01 1 1 0 3 1 3 1 3 1 3 73
3 2 1 0

10    -     = × + × × + × =
010 1 0 3 1 3 0 3 1 3 83

3 2 1 0
10          = × + × × × =� � .

10.2.2. Ternary Inversion

The basic advantage of this numeral system (10.1) in comparison to the clas�
sical binary system is the graceful solution to the “sign problem.” A sign of the
number is determined by the highest significant digit of the ternary symmetri�
cal representation (10.1). For example, the number N1 0 1 110 1= is negative
because the highest significant digit has the ternary numeral 1,  while the num�
ber N2 1 1 0 1 0 01= is positive because the highest significant digit is positive.
Both positive and negative numbers are represented in the “direct” code and all
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arithmetical operations are fulfilled in the “direct” code. It is easy to obtain a
representation of the negative number (�N) from the ternary representation of
positive number N by using the rule of “ternary inversion”:

1 1 0 0 1 1→ → →, , .  (10.3)

For example, by applying the rule of ternary inversion (10.3) to the ternary
representations N1 0 1 110 1= and N2 1 1 0 1 0 01= , we can obtain ternary rep�
resentations for the following numbers:

−( ) = −( ) =N N1 201 1 1 01 1 1010 0 1; .

10.2.3. The Range of Number Representation

It is clear that the maximal and minimal integer numbers in the ternary sys�
tem (10.1) have the following “register representations”:

n n i
A

− −
=

1 2 1 0

1 1 1 1 1

... ...

... ...max
 (10.4)

n n i
A

− −
=

1 2 1 0

1 1 1 1 1

... ...

... ...min
 (10.5)

The numeral notations (10.4) and (10.5) have the following numerical
interpretations, respectively:

Amax=3n�1+3n�2+…+31+30  (10.6)

Amin=�3n�1�3n�2�…�31�30.  (10.7)

It follows from the comparison of (10.6) and (10.7) that

Amin=� Amax.  (10.8)

And it is easy to prove the following identity:

A  =  = 
 �i

n

i=

n

max .3
3 1

20
∑  (10.9)

We can formulate the results given by the expressions (10.8) and (10.9)
as the following theorem.

Theorem 10.1. The ternary�symmetrical numeral system (10.1) with the
radix 3, that uses the ternary numerals {�1,0,1}, allows one to represent, by
using n ternary digits, 3n integers (including positive, negative numbers, and
the number 0) in the range from

A    
 

     A   
  n n

min max�
� �

.= =3 1
2

3 1
2

to
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10.3. Ternary�Symmetrical Arithmetic

10.3.1. Ternary�Symmetrical Summation and Subtraction

The following elementary identity for the powers of the radix 3 underlies
the ternary�symmetrical summation:

3i+3i=3i+1�3i. (10.10)

The next table of the ternary�symmetrical summation follows from
this identity (Table 10.1).

A number of peculiarities of the ternary�symmet�
rical summation follows from Table 10.1. These pe�
culiarities appear in the summation of the ternary
units of the same sign, namely:

1 1 1 1+ =  and 1 1 1 1+ = .
We can see that there appears to be an interme�

diate sum and carry�over at the addition of the ter�
nary units of the same sign. In this case the sign of the carry�over coincides
with the sign of the summable numerals; however, the sign of the intermedi�
ate sum is opposite.

The ternary�symmetrical subtraction of the numbers A�B comes to the
summation of the numbers A+(�B) if the rule of the ternary inversion (10.3)
is applied to the subtrahend B.

Example 10.1. Sum up two ternary�symmetrical numbers 64 1 1 10110 =
and 16 1 1 1 110 = .

Solution:

1 1 1 0 1

1 1 1 1
1 0 0 0 1

+

The summation result 10 0 0 1 1 3 1 3 804 0= × + × =  is a positive number
because its ternary�symmetrical representation begins with the positive 1.

Example 10.2. Subtract the ternary�symmetrical number 16 1 11 110 =
from the ternary�symmetrical number 64 1 110110 = .

Solution. Subtraction of two ternary numbers 64�16 amounts to the sum�
mation of the numbers 64+(�16), if we apply to the number 16 the rule of the
ternary inversion (10.3):

−( ) =16 1 11 1.

b a
k k

/ 1 0 1

1 11 1 0

0 1 0 1

1 0 1 1 1

Table 10.1. Ternary�
symmetrical summation
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Then, the subtraction amounts to the summation:

1 1 1 0 1

1 1 1 1
1 1 1 1 0

+

The subtraction result 1 1 1 10 1 3 1 3 1 3 1 3 484 3 2 0= × + × + × + × =  is a
positive number because its ternary�symmetrical representation begins
with the positive 1.

10.3.2. Ternary�Symmetrical Multiplication

The ternary�symmetrical multiplication table (Table 10.2) is based on the
following trivial mathematical identity for the number 3 powers:

3m×3n=3m+n. (10.11)

Example 10.3. Multiply two ternary�symmetrical numbers −( ) =10 1 0 1
10

and 2 1 110 = .
Solution:

1 0 1

1 1
1 0 1

1 0 1
1 1 1 1

×

You can see that the ternary�symmetrical multiplication amounts to
the summation of two partial products, that are formed as the result of the
multiplication of the first multiplier 1 0 1  by the lowest ternary numeral
1 of the second multiplier and then by the highest ternary numeral 1 of the
second multiplier.

Note that we have multiplied the negative number
(�10)10 by the positive number 2 in the “direct” code.
After summation, we obtained the following result of
multiplication:

1 1 1 1 1 3 1 3 1 3 1 3 203 2 1 0= × + × + × + × = − .
By looking at the ternary representation 1 1 1 1,  we

can find that it represents a negative number because
the ternary representation 1 1 1 1  begins with the neg�
ative unit 1.

b a
k k

/ 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

Table 10.2.
 Ternary�symmetrical

multiplication
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10.3.3. Ternary�Symmetrical Division

The ternary�symmetrical division amounts to a sequential shift of the divisor
to the left until the highest significant digit (1 or 1 ) of the shifted divisor coin�
cides with the highest significant digit of the dividend D. Consider the case, when
the divisor is shifted on the k digits to the left. Then, the shifted divisor is com�
pared with the dividend D. If the signs of the highest significant digit of the shifted
divisor and the dividend coincide, then the highest significant digit of the first
partial quotient Q1 is equal to 1 and the first partial quotient has the form:
Q

k

1 10 0 0= ... ,��� (10.12)

where the number of 0’s after 1 is equal to k. For this case the shifted divisor is
subtracted from the dividend.

If the highest significant digits of the shifted divisor and the dividend are
opposite by sign, then the first partial quotient Q1 is equal to 1 and the first
partial quotient has the form:
Q

k

1 1 0 0 0= ... ,��� (10.13)

where the number of 0’s after 1  is equal to k. For this case the shifted divisor is
added to the dividend.

As a result of the first stage of division, we obtain the first partial quotient in
the forms (10.12) or (10.13) and the first intermediate dividend D1 as the result
of summation or subtraction of the shifted divisor from the dividend.

The next stage of the ternary�symmetrical division consists of the compari�
son of the first intermediate dividend D1 with the shifted divisor according to
the rules described above.

The procedure of the comparison of the intermediate dividend and the shift�
ed divisor continues until we obtain the intermediate dividend equal to 0 or when
the exactness of the division becomes acceptable for us. Then, we have to sum up
all partial quotients for obtaining the result of ternary�symmetrical division.

Example 10.4. Divide the ternary�symmetrical number 16 1 1 1 110 =  (the
dividend) by the ternary symmetrical number 2 1 110 =  (the divisor).

Solution. The first stage of the division shifts the divisor to the left two
digits. Then we obtain the shifted divisor in the form:

1 1 0 0. (10.14)

Comparing the shifted divisor (10.14) with the dividend 16 1 1 1 110 =  we
can see that their highest significant digits coincide in sign. This means that
the first partial quotient is equal to:

Q1=100. (10.15)
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Then, we have to subtract the shifted divisor (10.14) from the dividend
16 1 1 1 110 = .  The ternary�symmetrical subtraction comes to the ternary�sym�
metrical summation of the dividend with the number 110 0  that is opposite in
sign to (10.14):

1 1 1 1

1 1 0 0
0 0 1 1

+

As a result of the first stage of the division, we obtain two numbers, the first
partial quotient (10.15) and the first intermediate dividend D1 1 1= .

The second stage of the division consists in a comparison of the first inter�
mediate dividend D1 1 1=  with the divisor 1 1.  As the highest significant digits
of the comparable ternary symmetrical numbers are opposite in sign, it follows
that we have to write the second partial quotient as:

Q2 1= . (10.16)

Then, we should sum up the first intermediate dividend D1 1 1=  and the
divisor 1 1 :

1 1

1 1
0 0

+

Since the second intermediate dividend is equal to 0, the division is over.
The result of the division is the sum Q=Q1+Q2:

1 0 0

1
1 0 1

+

Hence, Q = = × + × + × =10 1 1 3 0 3 1 3 82 1 0
10.

10.4. Ternary Logic

10.4.1. Basic Functions of Ternary Logic

Ternary logic is a special case of the so�called k�valued logic (k=2,3,4,5,…)
for the case k=3. For coordination with the ternary�symmetrical number
system we assume that the ternary logical variables take their values from the
set 1 0 1, , .{ }
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Then, the basic logic functions of one ternary variable are determined in
the following manner:

Inversion function Cyclic negation

f v v

with v

with v

wit

( ) = =
=
=

1 1

0 0

1 hh v

f v v

with v

with v

with v=

⎧

⎨
⎪

⎩
⎪

( ) = =
=
=
=

⎧

⎨
⎪

⎩
⎪1

1 0

0 1

1 1

�

Consider the following important functions of two ternary variables:
(1) Ternary conjunction f v v v v v v1 2 1 2 1 2, min ,( ) = ( ) = ∧

∧ 1 0 1

1 1 1 1

0 1 0 0

1 1 0 1

(2) Ternary disjunction f v v v v v v1 2 1 2 1 2, max ,( ) = ( ) = ∨

∨ 1 0 1

1 1 0 1

0 0 0 1

1 1 1 1

(3) Addition by modulo 3 f v v v v1 2 1 2 3, mod( ) = ⊕ ( )
⊕ 1 0 1

1 1 1 0

0 1 0 1

1 0 1 1

(4) Multiplication by modulo 3 f v v v v1 2 1 2 3, mod( ) = ⊗ ( )
⊗ 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

The following identities are for the above ternary logical functions:

v v v v v v v v v v v v v v

v v v v v

= ∧ = ∧ = ∧ = ∨ = ∨ = ∨ =
⊕ = ⊗ = ⊗ =

, , , , , , ,

, , ,

1 1 1 1 1 1

0 0 0 1 vv v⊗ =1 .
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The ternary functions of conjunction, disjunction and inversion are con�
nected by De Morgan’s formulas:

v v v v v v v v1 2 1 2 1 2 1 2∧ = ∨ ∨ = ∧, .
Note that the three�valued logic used in the “Setun” [180] appears for engi�

neers as the long known logic of the positive, negative and equal to zero electrical
current, and for programmers as the logic of number signs: + −, , ,0  etc.

Similar to Boolean logic, there are different variants of the functionally�
completed systems of ternary logical functions. We can use the functions of
so�called “modular logic” to synthesize the ternary logic elements. The sys�
tem of “modular logic” includes the following functions:

f v v v v f v v v v1 2 1 2 1 2 1 2, , , .( ) = ⊕ ( ) = ⊗ (10.17)

We can add to the modular functions (10.17) a special function

f v v v v1 2 1 2, .( ) = (10.18)

This function gives the rule for the carry�over formation of the addi�
tion of single�digit ternary numbers. The logic table for this function has
the following form:

Θ 1 0 1

1 1 0 0

0 0 0 0

1 0 0 1

The set of the ternary functions (10.17) and (10.18) is a functionally�
completed set of ternary logic functions that may be used for the synthesis of
the ternary logic elements. It is easy to prove that the ternary inversion func�
tion v  and the cyclic negation function �v  are carried out by using the modulo
3 addition logic element (Fig. 10.1).

The ternary single�digit half�
summator of the kind 2Σ  is de�
signed by using the logical ele�
ments ⊕  and  (Fig. 10.2�a) and
the ternary single�digit multiplier
is based on the logical element ⊗
(Fig. 10.2�b).

If we take the ternary single�
digit half� summator of the kind 2Σ
as the basic logic element for de�
signing the ternary�symmetrical

v 

a) 

v

1v 

b)

v~

+ +

Figure 10.1. The logic elements of ternary
inversion (a) and cyclic negation (b)
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arithmetical devices, we can prove that the 5 single�digit half�summators
build up the ternary single�digit full summator of the kind 4Σ  (Fig. 10.3).

10.4.2. Binary Realization of Ternary Logic Elements

For micro�electronic realization by using VLSI we can use the binary
encoding of ternary variables as shown in Table 10.3.

Using Table 10.3, every ternary element, for instance, the ternary sum�
mators and multipliers in Fig. 10.2 and Fig. 10.3, can be represented by means
of VLSI with binary inputs and outputs. Then, the problem of designing the
ternary elements comes to the design of the binary VLSI.

Figure 10.2. The ternary single�digit half�summator (a) and multiplier (b)

b)

v1
v2

a) 

 ak bk

sk ck

 
2∑k

v1 ⊗ v2

⊗⊕ Θ

Figure 10.3. The full ternary single�digit summator

ak

sk

s4

s3

c3

c2

s2

c1

s1

2Σ1

fkdkbk

ck

2Σ5

2Σ42Σ3

2Σ2

4Σk
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Note that some ternary functions are designed very
simply in this manner. For example, the logic element of
the ternary inversion f v v( ) = ( v x x= 1 2  and v x x= 2 1 )
is represented as it is shown in Fig. 10.4.

10.4.3. Flip�flap�flop

The same “binary approach” can be used for designing the ternary mem�
ory element called Flip�Flap�Flop. As is well known, the classical binary
Flip�Flop is based on the logical elements 1 and 2 of the kind OR�NOT
(Fig. 10.5�a) that are connected by the back logic connections.

Now, let us consider the logical circuit that consists of three logic elements 1,
2, 3 of the kind OR�NOT (Fig. 10.5�b). Suppose that the logic elements 2 and 3 are
adjacent to the logic element 1, the logic elements 3 and 1 are adjacent to the
logic element 2, and the logic elements 1 and 2 are adjacent to the logic element 3.
Every logic element OR�NOT is connected with its adjacent logic elements by
the back logic connections. This is cause for three stable states of the logic circuit
in Fig. 10.5�b. In fact, suppose that we have the logic 1 on the input C of the logic
element 2. This logic signal 1 enters the inputs of the adjacent logic elements 2
and 3 and supports the logic signals 0 on their outputs A and B. These logic signals
0 enter the inputs of the logic element 2 and support the logic signal 1 on its
output C. Hence, this state of the circuit in Fig. 10.5�b is the first stable state. This
stable state corresponds to the code combination 0 1 0 on the outputs A, C, B.
One may show that the circuit has one or two stable states that correspond to the

v x x=

=

=

=

1 2

1 1 0

0 0 0

1 0 1

Table 10.3. Binary
encoding of ternary

numerals

x1

x1 x2

x2

Figure 10.4. The binary representation of “ternary inversion”

a) 1
1

1
2

A B

S R

b) 1
1

1
2

A B

S                           R

1
3

C

I

Figure 10.5. “Flip�flop” (a) and “flip�flap�flop” (b)
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code combinations 10 0  and 0 0 1 on the outputs A, C, B. Really, it is easy to
prove that the logic signal 1 on the output A is a cause of the second stable state
100 of the logic circuit in Fig. 10.5�a. At least, the logic signal 1 on the output B is
a cause of the third stable state of the logic circuit in Fig. 10.5�a. We can use the
above�mentioned stable states of the circuit in Fig. 10.5�b for binary coding of
the ternary numerals according to the following rule:

0 0 1 0

1 0 0 1

1 1 0 0

=
=
=

If we eliminate the middle output C, we obtain the binary outputs A
and B that correspond to the binary encoding of ternary variables accord�
ing to Table 10.3.

Hence, the logic circuit in Fig. 10.5�b can be considered as the ternary�bina�
ry memory element called Flip�Flap�Flop. Let us consider the functioning of the
“flip�flap�flop” in Fig. 10.5�b. It has three stable states 1 , 0 and 1. Let the “flip�
flap�flop” in Fig. 10.5�b be in the state Q=0. This means that the output C=1
and the other outputs A=B=0. If we need to set the “flip�flap�flop” into the
state Q=1 (001), we have to send to the “flip�flap�flop” inputs S, I, R the
following adjusting signals S=1, I=1, R=0. The signals S=1 and I=1 cause an
appearance of the logic signals 0 on the outputs A and C. These logic signals 0
enter the inputs of the logic element 3 and together with the logic signal R=0
cause an appearance of the logic signal 1 on the output B.

By analogy one may show that installation’s signals S=0, I=1, R=1 turn
over the “flip�flap�flop” in Fig. 10.5�b into the state 1 100( ) .

10.5. Ternary Mirror�Symmetrical Representation

10.5.1. A Conversion of the Binary “Golden” Representation to the
Ternary “Golden” Representation

We start our study from Bergman’s system (9.1). Let us consider the
τ�representation of natural number N given by (9.68). We use the minimal
form of the τ�representation (9.68). This means that each binary unit a

k
=1

in the binary “golden” representation (9.68) surrounded by two adjacent
binary “zeros” ak�1=ak+1=0.
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Let us consider the following well�known identity for the powers of the
golden mean:

τk=τk+1−τk�1. (10.19)

The identity (10.19) has the following code interpretation:

k k k k k k+ − + −
=

1 1 1 1

0 1 0 1 0 1
(10.20)

where 1  is the negative unit, that is, 1 1= − . It follows from (10.20) that the
positive binary 1 of the k�th digit in the binary “golden” representation (9.68)
is transformed into two 1’s, the positive unit 1 of the (k+1)�th digit and the
negative unit 1  of the (k�1)�th digit.

The code transformation (10.20) can be used for conversion of the minimal
form of the binary τ�representation (9.68) of the number N into a Ternary
τ�Representation of the same integer N.

Let us consider the τ�representation of number 5 that is represented in
minimal form:

4 3 2 1 0 1 2 3 4

5 0 1 0 0 0 1 0 0 1

− − − −
= . (10.21)

Convert the binary τ�representation (10.21) into the ternary τ�representa�
tion of the same number 5. With this purpose we can apply the code transforma�
tion (10.20) simultaneously to all digits that are binary numerals 1 and have odd
indices (k=2m+1). We can see that the transformation (10.20) can be applied in
the situation (10.21) only to the 3rd and (�1)�th digits that are the binary nu�
merals of 1. As the result of such a transformation, we obtain the following terna�
ry representation of the number 5:

4 3 2 1 0 1 2 3 4

5 1 0 1 0 1 0 1 0 1

− − − −
= .

(10.22)

We can see from (10.22) that all digits with odd indices (k=2m+1) are
identically equal to 0. However, the digits with even indices can take the
ternary values from the set 1 0 1, , .{ }  This means that all digits with odd

indices are “non�informative” because their values are identically equal to 0
and they do not influence the value of the number 5. Omitting in (10.22) all
the “non�informative” digits, we obtain the following ternary representa�
tion of number 5:

4 2 0 2 4

5 1 1 1 1 1

− −
= .

(10.23)
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This means that number 5 can be represented by using only the even
digits in the form of the following sum:

5 1 1 1 1 14 2 0 2 4 4 2 0 2 4= × + × + × + × + × = − + − +− − − −τ τ τ τ τ τ τ τ τ τ . (10.24)

If we transform the binary τ�representation (9.68), that is represented only
in the minimal form, into the ternary τ�representation according to the above
rule, after omitting the “non�informative” digits we obtain the following sum:

N b i
i

i

= ∑ 2
2τ , (10.25)

where b2i 
is the ternary numeral of the (2i)�th digit.

We can make the following digit enumeration for the ternary representa�
tion (10.25). Each ternary digit b2i is replaced by the ternary digit ci. As a result
of such enumeration, we obtain the expression (10.25) in the following form:

N ci
i

i

= ∑ τ2 , (10.26)

where ci is the ternary numeral of the i�th digit; τ2i is the weight of the i�th digit;
and τ2 is the base or radix of the numeral system (10.26). With regard to the ex�
pression (10.26) the ternary representation (10.23) takes the following form:

2 1 0 1 2

5 1 1 1 1 1

− −
= . (10.27)

This is the ternary τ�representation of the number 5.
The conversion of the binary τ�representation (9.68) of the natural

number N into the ternary τ�representation (10.26) of the same natural
number N can be carried out by using a simple combinative logic circuit
that transforms the next three binary digits a2i+1 a2i a2i�1 of the initial bina�
ry τ�representation that is represented in the minimal form into a ternary
informative digit b2i

=c
i of the ternary τ�representation in accordance with

Table 10.4.
Note that Table 10.4 uses only 5 binary code

combinations from the 8 possible binary code com�
binations because the initial binary τ�representation
of the kind (10.21) is represented in minimal form
and the code combinations 011, 110, 111 are prohib�
ited for the minimal form.

The code transformations given by the 2nd and
4th rows of Table 10.4 are trivial. The code trans�
formations given by the 3rd, 5th and 6th rows of
Table 10.4 follow directly from the rule (10.20). For
instance, the code transformation of the 6th row
101 0→  means that the negative unit of 1 that

a a a c
i i i i2 1 2 2 1

0 0 0 0

0 0 1 1

0 1 0 1

1 0 0 1

1 0 1 0

+ − →

→

→

→

→

→

Table 10.4. Conversion of
the binary τ�representation

to a ternary τ�representation
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appears in accordance with (10.20) from the left�hand binary digit a2i+1=1
to the digit a2i is summed with the positive unit of 1 that appears from the
right�hand binary digit a2i�1=1 to the digit a2i

. It follows from this consider�
ation that their sum is equal to the ternary numeral ci=0.

10.5.2. Ternary F� and L�Representations

Above we have introduced the so�called F� and L�codes (9.77) and (9.80).
Let us remember that these unusual representations are the equivalent of the
τ�code (9.68) of the same natural number N. By using the ternary τ �representa�
tion of the natural number N given by (10.26), it is easy to write the ternary
F� and L�representations of the same natural number N in the following forms:

N c Fi i
i

= +∑ 2 1 (10.28)

N c Li i
i

= +∑ 2 1. (10.29)

Note that the values of the ternary digits in the representations (10.26),
(10.28) and (10.29) coincide. It follows from this consideration that the ter�
nary τ� F�, L�representations of the number 5 given by the example (10.27)
have three different numerical interpretations:

(a) The ternary τ�representation:

5 1 1 1 1 1

5
2

5
2

1
5

2

4 2 0 2 4

4 4 2 2 2 2

= × + × + × + × + ×

= + − + + − + +

− −

− −

τ τ τ τ τ

L F L F L F L−− −+

= − + = − +

4 4

4 2

5
2

1 7 3 1

F

L L .

(b) The ternary F�representation:

5 1 1 1 1 1 5 2 1 1 25 3 1 1 3= × + × + × + × + × = − + − +− −F F F F F .
(c) The ternary L�representation:

5 1 1 1 1 1 11 4 1 1 45 3 1 1 3= × + × + × + × + × = − + + −− −L L L L L .

10.5.3. The Representation of Negative Numbers

Similar to the ternary�symmetrical numeral system (10.1), the possi�
bility of representation of both positive and negative numbers in the “di�
rect” code is a most important advantage of the numeral system (10.26).
The ternary code representation of a negative number (�N) can be ob�
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tained from the ternary τ�representation (10.26) of the initial N by means
of the application of the “ternary inversion” rule (10.3). By applying this
rule to the ternary τ�representation (10.27) of the number 5, we obtain
the ternary τ�representation of the negative number (�5):

2 1 0 1 2

5 1 1 1 1 1

− −
− = .

10.5.4. Mirror�Symmetrical Property of Integer Representation

Considering the ternary τ�representation of the number 5 given by (10.27),
we find one unusual property of the
ternary representation (10.27). We
see that the left�hand part 1 1( )  of
the ternary τ�representation (10.27)
is mirror�symmetrical to its right�
hand part 1 1( )  with respect to the
0�th digit. This property of the “mir�
ror symmetry” of the numeral sys�
tem (10.26) is a general property of
integers that appears at their repre�
sentation in (10.26). Table 10.5 dem�
onstrates this property for some ini�
tial natural numbers.

Thus, thanks to this simple ob�
servation, we have discovered one
more fundamental property of in�
tegers called the Mirror�Symmetri�
cal Property of integers. Based
upon this fundamental property,
the “ternary numeral system” giv�
en by (10.26) is named the Ternary
Mirror�Symmetrical Numeral Sys�
tem [104].

10.5.5. The Radix of the Ternary Mirror�Symmetrical Numeral System

It follows from (10.26) that the radix of this ternary numeral system is
the square of the golden mean, that is,

i

F

L

i

i

i

3 2 1 0 1 2 3

13 5 2 1 1 2 5

29 11 4 1 1

2 6 4 2 0 2 4 6

2 1

2 1

− − −

− −

− − −

+

+

τ τ τ τ τ τ τ τ

44 11

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

2 0 0 1 1 1 0 0

3 0 0 1 0 1 0 0

4 0 0 1 1 1 0 0

−

↓ ↓ ↓ ↓ ↓ ↓ ↓N

.

.

.

.

.

55 0 1 1 1 1 1 0

6 0 1 0 1 0 1 0

7 0 1 0 0 0 1 0

8 0 1 0 1 0 1 0

9 0 1 1 1 1 1 0

10 0 1 1 0 1 1 0

.

.

.

.

.

.

Table 10.5. Mirror�symmetrical property
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τ2 3 5 2 2 618= +( ) = . .

This means that the numeral system (10.26) is a number system with an
irrational radix. The radix of the numeral system (10.26) has the following tradi�
tional representation:

τ2=10.

10.5.6. Comparison of Number in the Ternary Mirror�Symmetrical
Numeral System

Let us consider the set of weights for the (2n�1)�th ternary mirror�symmet�
rical representation (10.26):

τ τ τ τ τ τ τ τ2 2 1 2 0 2 4 2 1 2n n n n, , ..., , , , , ..., , .−( ) − − − −( ) −{ }
It is easy to prove that the weight of the n�th digit of the representation

(10.26) is always strictly more than the sum of the rest weights of the rep�
resentation (10.26). It follows from this fact that the highest significant
digit of the representation (10.26) contains in itself the information about
the sign of the ternary mirror�symmetrical number. If the numeral of the
highest significant digit of the ternary mirror�symmetrical representation
is equal to 1, it follows that the ternary mirror�symmetrical number is pos�
itive. If the numeral of the highest significant digit of the ternary mirror�
symmetrical representation is equal to 1 , it follows that the ternary mir�
ror�symmetrical number is negative.

The very simple method of comparison of the two ternary mirror�sym�
metrical numbers A and B follows from this consideration. The comparison
begins with the highest digits of the comparable numbers and continues un�
til obtaining the first pair of non�coincident ternary digits a

k
 and b

k
. If

a bk k> > > >1 0 1 1 0 1, , ,( )  then A>B. In the opposite case: A≤B.
Hence, we have found two important advantages of the ternary mirror�sym�

metrical representation (10.26):

1. Similar to the classical ternary symmetrical representation (10.1), the
highest significant digit of the representation (10.26) determines the sign
of the ternary mirror�symmetrical number given by (10.26).

2. A comparison of the numbers is fulfilled by analogy with the classi�
cal ternary�symmetrical representation (10.1), that is, by beginning
with the highest digits until obtaining the first pair of non�coincident
ternary digits.
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10.6. The Range of Number Representation and Redundancy of the Ter�
nary Mirror�Symmetrical Numeral System

10.6.1. The Range of Number Representation

Let us now consider the range of number representation in the numeral
system (10.26). Suppose that the ternary τ�representation (10.26) has
2 1m + ternary digits. In this case, by using (10.26), we can represent all inte�
gers in the range from the maximal number

N
m m

max ... . ...= 11 11 11 1� � (10.30)

 to the minimal number

N
m m

min ... . ... .= 1 1 1 1 1 1 1��� ��� (10.31)

It is clear that the minimal number Nmin is the ternary inversion of the
maximal number Nmax, that is, we have:

N Nmin max .=
It follows from this examination that by using 2m+1 ternary digits, we

can represent in the numeral system (10.26)

2Nmax+1 (10.32)

integers from Nmin to Nmax including the number of 0.
For the calculation of Nmax we can interpret (10.30) as the ternary L�code

(10.29). Then we can interpret the ternary representation (10.30) as follows:

Nmax=L2m+1+L2m�1+…+L3+L1+L�1+L�3+…+L�2m+1. (10.33)

For the odd indices i=2k�1, we have the following property for Lucas num�
bers [28]:

L�2m+1= L2m�1. (10.34)

Taking into consideration property (10.34), we obtain the following val�
ue of the sum (10.33):

Nmax=L2m+1. (10.35)

Taking into consideration (10.32) and (10.35), we can formulate the fol�
lowing theorem.

Theorem 10.2. By using (2m+1) ternary digits, we can represent in the
ternary mirror�symmetrical numeral system (10.26) 2L2m+1+1 integers in the
range from (�L2m+1) to (+L2m+1), where L2m+1 is Lucas number.
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10.6.2. The Redundancy of Ternary Mirror�Symmetrical Representation

Now, let us compare the ternary numeral system (10.1) with the ternary�
symmetrical numeral system (10.26).

According to Theorem 10.1 we can represent in the ternary�symmetrical
numeral system (10.1) 3n integers in the range from N n

min ( ) /= − −3 1 2  up to
N n

max ( ) / .= −3 1 2

For the representation of numbers in the range given by Theorem 10.2 in
the n�digit ternary�symmetrical numeral system (10.1), we need to fulfill the
following condition:

3 2 1 22 1 2 1
n

m mL L≥ + ≈+ + . (10.36)

Using the Binet formula for Lucas numbers given by (2.67), we can write
the following approximate formula for the calculation of the Lucas number
L2m+1:

L m
m

2 1
2 1

+
+≈ τ . (10.37)

Substituting (10.37) into (10.36) and taking the logarithm with the base
3 of both parts of the inequality (10.36), we obtain the following inequality:

n m≥ +( ) +2 1 23 3log log .τ (10.38)

By increasing m, the inequality (10.38) transforms into the following ap�
proximate equality:

n m≈ +( )2 1 3log .τ (10.39)

The expression (10.39) can be used for calculation of the code redundan�
cy of the ternary mirror�symmetrical numeral system (10.26). The relative
redundancy R is calculated according to the formula:

R
k n

n
k
n

= − = −1,

where k and n are the digit numbers of the redundant and non�redundant nu�
meral systems for the representation of the same range of numbers.

If we choose k=2m+1 digits for the ternary mirror�symmetrical repre�
sentation (10.26), then we need n digits for the representation of the same
range of numbers in the non�redundant numeral system (10.1). Then, from
this consideration we can write the following expression for the calculation
of the relative code redundancy of the ternary mirror�symmetrical numeral
system (10.26):

R = − = =1
1 283 128 33

3

log
log

. . %.
τ

τ (10.40)
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Thus, the relative redundancy of the ternary mirror�symmetrical num�
ber system (10.40) is sufficiently large. However, we should take into
consideration the number of essential advantages of this numeral system,
in particular, the unique possibility to check arithmetical operations in
the given numeral system.

10.7. Mirror�Symmetrical Summation and Subtraction

10.7.1. Mirror�Symmetrical Summation

The following identities for the golden mean powers underlie the mirror�
symmetrical summation:

2 2 2 1 2 2 1τ τ − τ + τk k k k= +( ) −( ) (10.41)

3 02 2 1 2 1τ τ + + τk k k= +( ) −( ) (10.42)

4 2 2 1 2 2 1τ τ + τ + τk k k k= +( ) −( ) , (10.43)

where k=0,±1,±2,±3,… .
The identity (10.41) is a mathematical base for

the mirror�symmetrical summation of two single�
digit ternary digits and gives a rule of the carry�
over formation (Table 10.6).

The main peculiarity of Table 10.6 consists of
the rule of summation of two ternary units with
equal signs, i.e.

a b c s ck k k k k+ =
+ =
+ =

1 1 1 1 1

1 1 1 1 1
We can see that at the mirror�symmetrical summation of ternary units

with the same sign, the intermediate sum sk with opposite sign and the carry�
over c

k
 with the same sign appear. However, the carry�over from the k�th digit

is spreading simultaneously to the adjacent two digits, namely to the adja�
cent left�hand, that is, (k+1)�th digit, and to the adjacent right�hand, that is,
(k�1)�th digit.

Table 10.6 describes an operation of the simplest ternary mirror�sym�
metrical summator called the Single�Digit Ternary Mirror�Symmetrical Half�

b a
k k

/ 1 0 1

1 11 1 1 0

0 1 0 1

1 0 1 1 11

Table 10.6. Mirror�
symmetric summation

a
k
+b

k
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Summator. This half�summator is a combinative logic circuit that has two
ternary inputs ak and bk and two ternary outputs sk and ck. It operates in
accordance with Table 10.6 (Fig. 10.6�a).

As the carry�over from the k�th digit is spreading to the left�hand and to
the right�hand digits, it means that the full mirror�symmetrical single�digit
summator has to have two additional inputs for the carry�overs that come
from the (k�1)�th and (k+1)�th digits to the k�th digit. Thus, the full mirror�
symmetrical single�digit summator is a combinative logic circuit that has 4
ternary inputs and 2 ternary outputs (Fig. 10.6�b). Let us denote by 2Σ the
mirror�symmetrical single�digit half�summator that has 2 inputs and by 4Σ
the mirror�symmetrical single�digit full summator that has 4 inputs.

Now, let us describe the logical operation of the mirror�symmetrical full
single�digit summator of the kind 4Σ. First of all, we note that the number of all
possible 4�digit ternary input combinations of the mirror�symmetrical full sum�
mator in Fig. 10.6�b is equal to 34=81. The values of the output variables sk and ck

are some discrete functions of the algebraic sum S of the input ternary variables
ak, bk , ck�1, ck+1, that is,

S=ak+bk+ck�1+ck+1. (10.44)

The sum (10.44) takes the values from the set {�4,�3,�2,�1,0,1,2,3,4}.
The operation rule of the mirror�symmetrical full summator of the kind
4Σ (Fig. 10.6�b) consists of the following. The summator forms the out�
put ternary code combinations c

k
s

k
 in accordance with the value of the

sum (10.44) as follows:

− = − = − = − = = = = = =4 1 1 3 1 0 2 1 1 1 0 1 0 0 0 1 01 2 1 1 3 10 4 11; ; ; ; ; ; ; ; .

Figure 10.6. Mirror�Symmetric single�digit summa�
tors: (a) half�summator; (b) full summator.

bk ak

b) ck �1ck+1

cksk

k+1     k�1

bkak

a) 

cksk

k+1       k�1

2∑ 4∑
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The lower digit of such 2�digit ternary representations are values of the
intermediate sum sk and the higher digit are the values of the carry�over ck that
is spreading to the neighboring (the left�hand and the right�hand) digits.

Note that the functioning rule of the ternary mirror�symmetrical sum�
mator in Fig. 10.6�b fully coincides with the functioning rule of the classical
ternary�symmetrical summation. This means that we can use the logical com�
binative circuit in Fig. 10.3 for designing the ternary mirror�symmetrical
summator in Fig. 10.6�b.

10.7.2. Ternary Mirror�Symmetrical Multi�Digit Summator

The multi�digit combinative mirror�symmetrical summator (Fig. 10.7)
that carries out the addition of two (2m+1)�digit mirror�symmetrical num�
bers is a combinative logic circuit that consists of (2m+1) ternary mirror�
symmetrical summators of the kind 4Σ (Fig. 10.6�b).

We can see from Fig. 10.7 that the main peculiarity of the multi�digit terna�
ry mirror�symmetrical summator consists in the fact that the carry�over from
each digit is spreading symmetrically to the adjacent digits to the left and to
the right. Two mirror�symmetrical numbers A and B enter the multi�digit in�
put of the summator. The single�digit adder 4 0Σ  separates the summator into
two parts: the single�digit summators 4 4 41 2 3Σ Σ Σ, , for the highest digits and
the single�digit summators 4 4 41 2 3Σ Σ Σ− − −, , for the lowest digits.

 Example 10.5. Sum up two ternary mirror�symmetrical numbers 5+10:
5 0 1 1 1 1 1 0

10 0 1 1 0 1 1 0
0 1 0 1 0 1 0
1 1 1 1

15 1 1 1 1 1 1 1

1

1

=
=
=

↔ ↔
=

.

.

.

.

.S
C

Note that the symbol ↔  marks the process of carry�over spreading.
We can see that the addition process for this example consists of two

steps. The first step is forming the first multi�digit intermediate sum S1 and
the first multi�digit carry�over C1 according to Table 10.6. The second step is

Figure 10.7. Ternary mirror�symmetric multi�digit summator

 4Σm 4Σ2 4Σ1 4Σ0 4Σ�1 4Σ�2 4Σ�m
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the summation of the numbers S1+C1 according to Table 10.6. As for this case
the second multi�digit intermediate carry�over C1=0, meaning that the summa�
tion is over and the sum S1+C1=15 is the summation result. It is important to
emphasize that the summation result

15 1 1 11 1 1 1= . (10.45)

is represented in mirror�symmetrical form.
As noted above, the possibility of summing up all integers (positive and neg�

ative) in the “direct” code is an important advantage of the ternary mirror�sym�
metrical numeral system (10.26), that is, we do not use the notions of inverse
and additional codes.

Example 10.6. Sum up the negative mirror�symmetrical number (�24)
and the positive mirror�symmetrical number 15:
− =

=

= ↓ ↔ ↓
= ↔ ↔

− =

24 1 1 0 1 0 1 1
15 1 1 1 1 1 1 1

0 1 1 1 1 1 0
1 1

1 1 1 1
9 1 1 1

1

1

1

.

.

.S
C
C

′

″

11 1 1 1.

We can see that the summation process consists of two steps. The first
step is forming the first multi�digit intermediate sum S1 and the first multi�
digit carry�over C C C1 1 1= +′ ″ according to Table 10.6. The second step is to
sum up the numbers S C C1 1 1+ +′ ″.  Here, we use the functioning rule of the
ternary mirror�symmetrical single�digit summator in Fig. 10.6�b. As for this
case the second multi�digit intermediate carry�over S1=0, meaning that the
summation is over and the sum S C C1 1 1 9+ + = −′ ″  is the summation result. It is
important to emphasize that the summation result

− =9 1 11 1 11 1. (10.46)

is negative number because the ternary mirror�symmetrical representation
(10.46) begins with the negative unit 1 . In addition, the summation result (10.46)
is represented in mirror�symmetrical form which allows one to check the pro�
cess of summation.

10.7.3. Mirror�Symmetrical Subtraction

Subtraction of two mirror�symmetrical numbers N1�N2 transforms to
summation if we represent their difference in the form of the following sum:

N1�N2=N1+(�N2). (10.47)
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It follows from (10.47) that until a subtraction we have to take the terna�
ry inversion of the subtrahend N2 according to (10.3). The above example of
the summation of the numbers (�24)+15 can be considered as the subtraction
of the numbers (�24)−(�15), where

− =15 1 1 1 1 1 1 1. . (10.48)

It is clear that until the subtraction we have to apply the “ternary inver�
sion” rule (10.3) to the number (10.48) to obtain the number 15:

15 1 1 11 1 1 1= . .

10.7.4. The “Swing” Phenomenon

Now, let us sum up two equal numbers 5+5 represented in the numeral
system (10.26):

5 0 1 1 1 1 1 0
5 0 1 1 1 1 1 0

0 1 1 1 1 1 0
1 1

1 1 1 1
1 1

1 1
1 1 0 0 0 1 1

1 1
1

=
=

↓ ↔ ↓
↔ ↔

↔ ↓
↔

↔

.

.

.

.

↔↔ ↓
↓ ↔
↔ ↔

↔
↔ ↓

↓ ↔
↔ ↔

1
1 1

1 1 1 1
0 1 1 1 1 1 0

1 1
1 1

1 1
1 1 1 1

.

It follows from this example that we have found a special summation case
called Swing. If the summation process goes on, then since at some step the
process of the carry�over formation begins to reiterate, and it follows that
the process of summation becomes infinite. The “swing”�phenomenon is a
variety of the “races” that appear in digit automatons, when the electronic
elements switch over.

In order to eliminate the “swing”�phenomenon, we use the following ef�
fective “technical” method [104]. The “swing”�phenomenon appears in the
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ternary mirror�symmetrical summator in Fig. 10.7 because the carry�overs
come at the same time from two adjacent single�digits adders. A “technical”
solution of this phenomenon is to delay the input signals of the single�digit
summators with odd indices k = ± ± ±( )1 3 5, , ,... by one summation step. For
this situation at the first step of the summation only the summators with the
even indices k = ± ± ±( )0 2 4 6, , , ,...  operate and they form the intermediate sums
and corresponding carry�overs to the single�digit summators with the odd
indices. Then, at the second summation step the carry�overs that were formed
at the first step are summarized with the corresponding ternary variables of
the odd digits of the summable numbers. Thanks to such an approach, the
“swing”�phenomenon is eliminated.

Now, let us demonstrate the above method to eliminate the “swing”�phe�
nomenon at the summation of the numbers 5+5:

5 0 1 1 1 1 1 0
5 0 1 1 1 1 1 0

1 1 1

1 1
1 1 1 1

10 1 1 0 1 0 1 1

1

1

1

=
=
=

↓ ↓ ↓
↓ ↔ ↓
↔ ↔

=

.

.

.

.

S

C
C

′

″

The first step of the mirror�symmetrical summation is to summarize all
the input ternary numerals with even indices (2,0,�2). The ternary numerals
of all digits with odd indices (3,1,�1,�3) are delayed at the first step. The sec�
ond step is the summation of all the carry�overs, which appear at the first
step, with the input ternary numerals of the digits with odd indices. It is
important to emphasize that the result of the summation

10 1 1 0 1 0 1 1= . (10.49)

is a positive number because the ternary representation (10.49) begins with
the positive unit 1 and the result of the summation (10.49) is represented in
mirror�symmetrical form.

An analysis of all the above examples of ternary mirror�symmetrical sum�
mation shows that both the final result of the summation and all intermediate
results are mirror�symmetrical numbers, that is, the property of mirror sym�
metry is an invariant of mirror�symmetrical summation. This means that mir�
ror�symmetrical summation (and subtraction) possesses the important math�
ematical property of “mirror symmetry” which allows one to check the terna�
ry mirror�symmetrical summation.
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10.7.5. The “Doubling” Mirror�Symmetrical Summator

Note that the summator in Fig. 10.7 consists of two mirror�symmetrical
parts with respect to the 0th single�digit summator 4 0Σ . The left�hand part
of the summator in Fig. 10.7 acts as if “performing” the main numerical
loading. However, its right�hand part is used for checking the output in�
formation according to the principle of “mirror symmetry.” There is the
possibility of decreasing the “structural redundancy” of the summator in
Fig. 10.7 if we use the “doubling” interpretation of the ternary mirror�
symmetrical summators as is shown in Fig. 10.8.

The ternary mirror�symmetrical summator in Fig. 10.8 consists of two
parts. Each part has its own adder of the kind 4 0Σ . Then, the carry�over out�
put of the single�digit summator 4 1Σ  in the left�hand part of the summator is
connected with two inputs of the single�digit summator 4 0Σ  and the carry�
over output of the single�digit summator 4 1Σ− of the right�hand part of the
summator is connected with two inputs of the “doubling” single�digit sum�
mator 4 0Σ . This can provide the correct mirror�symmetrical summation in
the left�hand and right�hand parts of the summator.

This means that we can use only one part of the summator in Fig. 10.8
for the ternary mirror�symmetrical computations. At the concluding stage
of computations we can restore the final ternary mirror�symmetrical rep�
resentation according to the principle of “mirror symmetry.” This means
also that the summator in Fig. 10.8 is fault�tolerant mirror�symmetrical
summator. Theoretically the lost of the right�hand or left�hand parts of
the summator in Fig. 10.8 does not influence on the correct functioning of
the summator because all information from the lost part can be restored
according to the property of “mirror symmetry.”

We can point to a number of the important advantages of the mirror�
symmetrical summation and subtraction from the “technical” point of view:

1. The mirror�symmetrical subtraction comes to the mirror�symmetrical
summation by the use of the rule (10.47).

Figure 10.8. The “doubling” interpretation of the ternary mirror�symmetric summator
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2. The mirror�symmetrical summation is performed in the “direct” code,
that is, without the use of the notions of the “inverse” and “additional”
codes.
3. The sign of the summable numbers is defined automatically because it
coincides with the sign of the highest significant ternary numeral of the ter�
nary mirror�symmetrical representation of the summation result.
4. The summation result is always represented in mirror�symmetrical
form that allows one to check the process of ternary mirror�symmetrical
summation.
5. There is a possibility to design the fault�tolerant mirror�symmetrical sum�
mator that allows one to design fault�tolerant arithmetical devices on the
basis of ternary mirror�symmetrical arithmetic.

 10.8. Mirror�Symmetrical Multiplication and Division

10.8.1. Mirror�Symmetrical Multiplication

The following trivial identity for the golden mean powers underlies the mir�
ror�symmetrical multiplication:

τ2n×τ2n=τ2(n+m). (10.50)

A rule for mirror�symmetrical multiplication of two single�digit ternary
mirror�symmetrical numbers is given in Table 10.7.

The comparison of Table 10.7 and Table 10.2 shows that the rule of terna�
ry mirror�symmetrical multiplication coincides with the rule of classical ter�
nary�symmetrical multiplication.

The ternary mirror�symmetrical multiplication
is carried out in “direct” code. The general algorithm
for multiplication of two multi�digit mirror�symmet�
rical numbers results in the formation of the partial
products in accordance with Table 10.7 and their
summation in accordance with the rule for mirror�
symmetrical summation.

Example 10.7. Multiply the negative mirror�sym�
metrical number − =6 1 01 01. by the positive mirror�symmetrical number
2 1 1 1= . :

b a
k k

/ 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

Table 10.7.
Mirror�symmetric

multiplication a b
k k

×
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1 0 1 0 1
1 1 1
1 0 1 0 1

1 0 1 0 1
1 0 1 0 1
1 1 0 1 0 1 1

.

.

.

.

.

.

The multiplication result in Example 10.7 is formed through the sum of
three partial products. The first partial product 1 0 10 1.  is the result of mul�
tiplication of the mirror�symmetrical multiplier − =6 1 01 01.  by the lowest
positive unit 1 of the mirror�symmetrical multiplier 2 1 1 1= . , the second par�
tial product 10 1 01.  is the result of multiplication of the same number
− =6 1 01 01.  by the middle negative unit 1  of number 2 1 1 1= . , and, lastly,
the third partial product 1 010 1.  is the result of multiplication of the same
number − =6 1 01 01. by the highest positive unit 1 of number 2 1 1 1= . .

Note that the product − =12 1 10 1 01 1. is represented in mirror�sym�
metrical form! As its highest digit is a negative unit 1 , it follows that the
product is a negative mirror�symmetrical number.

10.8.2. Mirror�Symmetrical Division

The ternary mirror�symmetrical division is carried out in accordance with
the division rule of the classical ternary�symmetrical number system (see
Section 10.3). The general algorithm for the ternary mirror�symmetrical di�
vision amounts to the sequential subtraction of the shifted divisor that is
then multiplied by the next ternary numeral of the quotient.

Example 10.8. Divide the ternary mirror�symmetrical number
24 110 1 011= .  (the dividend) by the ternary mirror�symmetrical number
2 1 1 1= .  (the divisor).

The first step of the division consists of shifting the divisor 2 1 1 1= .  four
digits to the left. As the outcome of this shift, we obtain the shifted divisor in
the form 1 1 10 0 0 0. .  By comparing the dividend with the shifted divisor,
that is, the numbers 110 1 011.  and 1 1 10 0 0 0. ,  we conclude that the signs of
the compared numbers are the same. In this case we have to write the positive
unit 1 to the 3rd digit of the quotient. After that we have to subtract the
shifted divisor from the dividend. The subtraction of two numbers amounts
to the summation by means of ternary inversion of the subtrahend, that is,
the shifted divisor 1 1 10 0 0 0. .  Hence, at the first step we add the two terna�
ry numbers, namely the ternary�symmetrical dividend and the ternary in�
verse shifted divisor, as follows:
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1 1 0 1 0 1 1
1 1 1 0 0 0 0
0 1 1 1 0 1 1
1 1
1 1 0 1 0 1 1

100 0

1

1

.

.

.

.

. .
↔

=

→ =

D

Q

Hence, the outcome of division in the first step results in the first interme�
diate quotient Q1 10 0 0= .  and the first intermediate dividend D1 1 1 0 1 011= . .

The second step of the division is a repetition of the first step for the first
intermediate dividend D1 1 1 0 1 011= . .  Note that number D1  contains a pos�
itive unit in the same highest digit as the initial dividend. This means that the
divisor has to be shifted four digits to the left and then number D1 has to be
compared with the shifted divisor 1 1 10 0 0 0. .  Since the signs of the com�
pared numbers are the identical, we can form the following intermediate quo�
tient of the kind Q2 10 0 0= .  in the second step and after that carry out the
summation of the number D1 1 1 0 1 011= .  with the new ternary inverse shift�
ed divisor. Hence, the second step results in the following:

1 1 0 1 0 1 1
1 1 1 0 0 0 0
0 0 1 1 0 1 1

100 0
2

2

.

.

.
. .

D
Q

=
→ =

Hence, with the outcome of the division at the second step, we obtain
the second intermediate quotient Q2 10 0 0= .  and the second intermediate
dividend D2 0 0 1 1 011= . . As the higher significant numeral of number
D2 0 0 1 1 011= . is a negative unit 1 , it means that the number D2 is negative.

The third step consists of the following. By comparing the negative num�
ber D2 1 1 011= .  with the divisor 2 1 1 1= .  (the positive number), we can
form the third intermediate negative quotient Q3 1 0= . .  After that we
should subtract the divisor 2 1 1 1= . multiplied by the negative unit 1 , that
is, number − =2 1 1 1. ,  from the number D2. Taking into consideration the
fact that the ternary subtraction is the summing of the ternary inverse num�
ber − =2 1 1 1. ,  meaning that in the case of a negative quotient the next step
of the division amounts to the summation of the divisor with the preceding
intermediate dividend D2, that is,

1 1 0 1 1
1 1 1
0 1 1 1 1
1 1
1 1 0 1 1

1 0

3

3

.

.

.

.

. .
↔

=

→ =

D

Q
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The fourth step:
1 1 0 1 1
1 1 1
0 0 1 1 1

1 0

4

4

.

.

.
. .

D
Q

=
→ =

Q4 1 0= .

The fifth step:

0 1 1 1
0 1 1 1
0 0 1 0

1 1
0 1 1 1

0 01

5

5

.

.

.

.

. .
↔

=

→ =

D

Q

The sixth step:

0 1 1 1
0 1 1 1
0 0 0 0

0 016

.

.

.
. .→ =Q

The division is over. The result of the division is formed by means of the
summing of the intermediate quotients Q1+Q2+Q3+Q4+Q5+Q6 as follows:

1 0 0 0
1 0 0 0

1 0
1 0
0 0 1
0 0 1

1 0 1 0 1
1 1

1 1 1 1
1 1 0 1 0 1 1

.

.

.

.

.

.

.

.

↓ ↔ ↓
↔ ↔

Note that the division result 12 1 1 01 0 1 1= .  is represented in mirror�
symmetrical form.

10.8.3. The Main Arithmetical Advantages of Mirror�Symmetrical
Multiplication and Division

We can formulate all arithmetical advantages of mirror�symmetrical mul�
tiplication and division as follows:
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1. Mirror�symmetrical multiplication and division is reduced to mirror�sym�
metrical summation.
2. Mirror�symmetrical multiplication and division are performed in the “di�
rect” code, that is, without the use of the notions of the “inverse” and “addi�
tional” codes.
3. The sign of the results of mirror�symmetrical multiplication and
division is automatically determined because it is equal in sign with
the highest significant ternary numeral of the ternary mirror�sym�
metrical representation of the result of mirror�symmetrical multipli�
cation and division.
4. The results of mirror�symmetrical multiplication and division are al�
ways represented in mirror�symmetrical form which allows one to check
the process of ternary mirror�symmetrical multiplication and division.
5. We can design the fault�tolerant summator on the basis of the ternary
mirror�symmetrical multi�digit summator (see Fig. 10.8) and the mir�
ror�symmetrical multiplication and division amount to mirror�symmet�
rical summation, meaning that we can design a fault�tolerant arithmet�
ical device on the basis of ternary mirror�symmetrical arithmetic.

10.9. Typical Devices of Ternary Mirror�Symmetrical Processors

10.9.1. A Converter for Binary “Golden” Code to Ternary Mirror�
Symmetrical Representation

The simplicity of the rule for conversion of binary golden representations to
ternary mirror�symmetrical representations is
one of the important technical advantages of
ternary mirror�symmetrical representation.
The combinatorial circuit for this conversion is
shown in Fig. 10.9.

The converter in Fig. 10.9 consists of iden�
tical logic circuits of the kind LCi. The logic cir�
cuit LC

i
 transforms the binary 3�digit golden

code combination ai+1 ai ai�1 represented in min�
imal form into the ternary numeral bi accord�
ing to Table 10.8.

a a a b b b
i i i i i i+ − → =

→ =
→ =
→ =
→ =
→ =

1 1

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 1 0 1

1 0 0 1 1 0

1 0 1 0

′ ″

00 0

Table 10.8.
Conversion of a binary golden

representation to a ternary mirror�
symmetrical representation
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If we use the binary numerals b bi i
"′  for encoding ternary numerals, we ob�

tain the following simple logical equalities describing the functioning of logic
circuits of the kind LCi:

b   a a ai i+ i i�
′ = ∧ ∧1 1

b   a a a a a ai i� i i� i� i i�
″ = ∧ ∧( ) ∨ ∧( )1 1 1 1 . 

10.9.2. Technical Realization of Mirror�Symmetrical Checking

It is well�known that the ternary mirror�symmetrical representation of
the integer

N=bm bm�1 … b2 b1 b0. b�1 b�2 … b�(m�1) b�m (10.51)

consists of two parts, where bi equals the ternary numerals 1 0 1, , .{ }
In accordance with the property of “mirror symmetry,” the left�hand part

of the ternary mirror�symmetrical representation (10.51) is a mirror reflection
of its right�hand part with respect to the 0�th digit b0. This means that for the
ternary representation (10.51), the following “checking equalities” are valid:

b b
b b

b b

m m

m m

=
=

=

−

− − −( )

−

1 1

1 1

... . (10.52)

Let us now introduce the “double” digit b0
′  with index 0. Then, we may

write one more “checking equality”:

b b0 0
′ = . (10.53)

Figure 10.9. The combinative circuit for conversion of binary golden repre�
sentations to ternary mirror�symmetric representations

ai+3 ai+2 ai+1 ai ai�1 ai�2 ai�3

b
i+1 b

i
b

i�1

LCi+1 LCi LCi�1
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The logical circuit for the parallel check of the ternary mirror�symmetri�
cal number (10.51) according to mirror�symmetrical properties (10.52) and
(10.53) is shown in Fig. 10.10.

The combinative circuit for checking mirror�symmetrical representation
(10.51) consists of (m+1) identical logic circuits of the kind LCi (i=0,1,2,3,…,m)
and the logic element OR (Fig. 10.10). The output of element OR is the check�
ing output for the combinatorial circuit in Fig. 10.10.

Figure 10.10. The combinatorial circuit for the checking of mirror�symmetrical
representation

  

bm

c0b0c1

LCm

b�1cm�1b�(m�1)cmb�m

b0b1bm�1

.  .  . LC0LC1LCm�1

OR

Check output

Figure 10.11. The binary realization of the logic circuit LCi

OR

b‘
 i

ci

b”
 �ib”

 ib‘
 �i

⊕ ⊕
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If we use binary code in the representation of ternary numerals, that is,
1 10 0 00 1 01= = =, , ,
we can represent the logic circuit LCi as a Boolean logic circuit that amounts
to two summators in modulo 2 and the logic element OR (Fig. 10.11).

10.9.3. Technical Realization of Ternary Mirror�Symmetrical Arithmetic

Comparing ternary�symmetrical arithmetic based upon the following
property of ternary numbers:

3 3 3 3 1 1 1 11n n n+ n+ = � = + = (10.54)
with ternary mirror�symmetrical arithmetic based upon the following gold�
en mean property

τ τ τ τ τ2 2 2 1 2 2 1 1 1 1 1 1n n (n+ ) n (n� )+ � + += = = , (10.55)
we see the similarity between (10.54) and (10.55) from a technical point of
view. It is true that the rule for formation of an intermediate sum and carry�
over at the summation of two ternary single�digit mirror�symmetrical num�
bers follows from (10.55). This rule amounts to the following. The identity
(10.55) displays the rule for formation of intermediate sum 1  and carry�over 1
at the summation of 1+1. In accordance with (10.55) at the summation of 1+1,
the intermediate sum equal to 1 and the carry�over equal to 1 appear. Howev�
er, carry�over 1 is spreading to the left�hand and right�hand digits with respect
to the initial digit. We can see that the rules of the formation for intermediate
sum and carry�over at the addition of the ternary symmetrical and ternary
mirror�symmetrical single�digit numbers coincide. The only difference is in the
spreading of the carry�over. For the case (10.54) the carry�over is spreading to
the left, that is, to the side of the higher digit, for the case (10.55) the carry�over
is simultaneously spreading symmetrically with respect to the initial digit, that
is, to the left�hand and right�hand adjacent digits.

A very important technical conclusion follows from this examination,
namely that the logic circuits for the realization of the single�digit trans�
formation of ternary�symmetrical arithmetic and ternary mirror�symmet�
rical arithmetic are identical.

10.9.4. Ternary Mirror�Symmetrical Accumulator

In Fig. 10.7 above we developed the ternary mirror�symmetrical multi�
digit summator. This summator is the basis for the mirror�symmetrical ac�
cumulator (Fig. 10.12), that is, the main device of the ternary mirror�sym�
metrical processor.



Chapter 10
561

Ternary Mirror�Symmetrical Arithmetic

The accumulator has a traditional
structure and consists of a ternary mirror�
symmetrical multi�digit summator AD, an
intermediate ternary register RG1, which
memorizes the sum S1+A that appears at
the AD�output and at the accumulating
ternary register RG2.

The ternary mirror�symmetrical ac�
cumulator in Fig. 10.12 is a universal de�
vice of a ternary mirror�symmetrical
processor and underlies the mirror�sym�
metrical counter, summator, subtractor,
multiplier and divisor. By using these ad�
ditional devices, we can design the fol�
lowing computer devices:

(a) If we send the positive (1) or neg�
ative ( 1 ) units sequentially to input A, we turn the accumulator into a
summing or subtracting mirror�symmetrical counter.
(b) If we place the ternary inverter before input A, we turn the accumulator
into a mirror�symmetrical subtractor.
(c) If we place the device for the formation of partial products Ab

i
τi before

input A, we turn the accumulator into a multiplier.
(d) As the mirror�symmetrical division is tantamount to the shift of the
divisor and its subtraction from the dividend, the accumulator can be
used for the performance of ternary mirror�symmetrical division.

10.10. Matrix and Pipeline Mirror�Symmetrical Summators

10.10.1. Matrix Mirror�Symmetrical Summator

It is well known that digital signal processors put forward high demands
on the speed of arithmetical devices. The different special structures (matrix,
pipeline, etc.) are elaborated for this purpose. We can show that ternary mir�
ror�symmetrical arithmetic gives rise to interesting possibilities for the de�
sign of fast arithmetic processors.

 Now let us examine the matrix ternary multi�digit mirror�symmetrical sum�
mator in Fig. 10.13. Each cell of the summator in Fig. 10.13 is a full single�digit

Figure 10.12. Mirror�symmetric
accumulator

A

Si+A

RG1

AD

Si

RG2
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ternary�symmetrical summator that has 4 inputs and 2 outputs (see
Fig. 10.6�b). The matrix summator in Fig. 10.13 consists of 21 single�digit full sum�
mators that are disposed in the form of a 7×3�matrix. Each ternary single�digit sum�
mator has the designation, where the number 4 means that the summator has 4
ternary inputs, the indexes i and k mean that the summator  belongs to the i�th digit
of the ternary mirror�symmetrical representation (10.26) and that the summator is
placed in the k�th row of the matrix summator in Fig. 10.13.

Inputs of the single�digit summators 4 43
1

3
1Σ Σ− � in the first row are the multi�

digit input of the matrix ternary�symmetrical summator in Fig. 10.13. The output
of the intermediate sum of each single�digit summator is connected with the corre�
sponding input of the adjacent single�digit summator in the same column.

The outputs of the intermediate sum of single�digit summators

4 4 4 4 4 4 43
1

2
1

1
1

0
1

1
1

2
1

3
1Σ , , , , , ,  Σ Σ Σ Σ Σ Σ− − −

of the last row build up the multi�digit output of the matrix mirror�symmet�
rical summator.

The main peculiarity of the matrix mirror�symmetrical summator in Fig.
10.13 consists of the special design of the connections between carry�over out�
puts of the single�digit summators with inputs of the adjacent single�digit sum�
mators. The carry�over outputs of all the single�digit summators with the even
lower�indices (2, 0, �2) are connected with the corresponding inputs of the
adjacent single�digit summators placed in the same row. However, the carry�over

 

1
34 ∑ 1

24 ∑ 1
14 ∑ 1

04 ∑ 1
14 −∑ 1

24 −∑ 1
34 −∑

2
34 ∑ 2

24 ∑ 2
14 ∑ 2

04 ∑ 2
14 −∑ 2

24 −∑ 2
34 −∑

3
34 ∑ 3

24 ∑ 3
14 ∑ 3

04 ∑ 3
14 −∑ 3

24 −∑ 3
34 −∑

Figure 10.13. Matrix ternary mirror�symmetric summator
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outputs of all the single�digit summators with the odd lower�indices (3, 1, �1, �3)
are connected with the corresponding inputs of adjacent single�digit summators
placed in the lower row. Note that such organization of the carry�over connec�
tions allows for the elimination of the above “swing” phenomenon.

Let’s examine the operation of the matrix mirror�symmetrical summator for the
case of the summation of two equal ternary mirror�symmetrical numbers:

A = 0 1 1 1. 1 1 0 and B = 0 1 1 1. 1 1 0.

The addition is carried out in 2 stages. Each stage consists of using only one
row of the single�digit summators and two steps.

10.10.1.1. The first stage

 In accordance with Fig. 10.13 the first step of the first stage is the following:
the single�digit summators in the first row with the even lower�indices
( 4 4 42

1
0
1

2
1Σ Σ Σ, , � ) form the intermediate sums, which enter the inputs of the sum�

mators in the second row, and the carry�overs, which enter the corresponding
inputs of the single�digit summators with odd lower�indices in the first row

( 4 4 4 43
1

1
1

1
1

3
1Σ Σ Σ Σ, , ,� � ). Such transformation of the code information can be repre�

sented in the following form:

0 1 1 1 1 1 0
0 1 1 1 1 1 0

1 1 1
1 1

1 1 1 1

.

.

↓ ↔ ↓
↔ ↔

.

Hence, the first step is the formation of intermediate sums and carry�overs
at the outputs of single�digit summators with even lower�indices (2, 0, �2).

In the second step of the first stage, the single�digit summators with odd
lower�indices (3, 1, �1, �3) begin to operate. In accordance with the entered car�
ry�overs, they form intermediate sums and carry�overs, which enter the single�
digit summators in the lower row, that is,

0 1 1 1 1 1 0
0 1 1 1 1 1 0

1 1 1
1 1

1 1 1 1
1 1 1 1 1 1 1

1 1
1 1

.

.

.

↓ ↔ ↓
↔ ↔

↔ ↓
↔

.
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The first stage is finished. We see that the results of the first stage are
composed of some intermediate sums and carry�overs, which enter the sum�
mators in the lower row.

10.10.1.2. The second stage

The single�digit summators of the second row with even lower�indices
( 4 4 42

2
0
2

2
2Σ Σ Σ, , � ) form intermediate sums, which enter the corresponding inputs

of the summators in the lower row, and the carry�overs, which enter the corre�
sponding inputs of summators in the same row with odd lower�indices
( 4 4 4 43

2
1
2

1
2

3
2Σ Σ Σ Σ, , ,� � ), that is,

1 1 1 1 1 1 1
1 1

1 1
1 0 1 1 1 0 1

.

.

↔ ↓
↔

As all carry�overs formed in this stage become equal to 0, it means that the
summation is finished with the second stage (note: this is valid only for the giv�
en case). The sum obtained enters the inputs of the summators in the lower row
4 43

3
3

3Σ Σ  − �  and then appears at the output of the matrix summator.

10.10.2. Pipeline Mirror�Symmetrical Summator

There are two directions for the extension of the functional possibilities of the
matrix mirror�symmetrical summator in Fig. 10.13. If we set the ternary registers,
which consist of the flip�flop�flaps (see Fig. 10.5�b) between the adjacent rows of
the single�digit summators, then the above matrix summator turns into the Pipe�
line Ternary Mirror�Symmetrical Summator. In fact, the code information from the
preceding rows of the single�digit summators is memorized in the corresponding
registers. After that, summators of the preceding row become prepared for further
processing. Then, summators of the lower row process the code information, which
enters the summators of the lower row. However, simultaneously, summators of
the top row start processing new input code information. “This means that since
the given moment we start to obtain the sums of the numbers A1+B1, A2+B2, …,
A

n
+B

n
, which enter the input of the summator during the time period 2Δτ,

where Δτ is the delay time of the single�digit summator.”

10.10.3. Pipeline Mirror�Symmetrical Multiplier

Another possible extension of functional possibilities of the pipeline sum�
mator is as follows. We can see in Fig. 10.13 that all single�digit summators of
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the lower rows have “free” inputs. We can use these inputs as the new multi�
digit inputs of the pipeline summator. By using these multi�digit inputs, we
can turn the pipeline summator into the pipeline multiplier. In this case the
mirror�symmetrical multiplication of two mirror�symmetrical numbers
A(1)×B(1) is carried out in the following manner. The summators of the first
row summarize the first two partial products P P1

1
2
1+ . This code information

enters the summators in the second row. If we send the 3rd partial product
P3

1  to the “free” inputs of the summators in the second row, we obtain the sum
P P P1

1
2
1

3
1+ + on the outputs of the summators in the second row. In this case

the first row can start adding the first two partial products of the next pair of
multiplied numbers A(2)×B(2). The “free” inputs of the summators in the 3rd
row are used to receive the next partial product P4

1 of the first pair of the
multiplied numbers A(1)×B(1), etc. We can now see that the pipeline summa�
tor in Fig. 10.13 allows multiplying many mirror�symmetrical numbers in the
pipeline regime. In this connection the multiplication speed is determined by
the time 2Δτ, where Δτ is the delay time of the single�digit summator.

10.11. Ternary Mirror�Symmetrical Digit�to�Analog Converter

10.11.1. The “Golden” Resistor Divider for Ternary Mirror�Symmetrical
Representation

In chapter 9 we examined different variants of the “golden” resistor dividers.
All these dividers are based upon the electrical circuit in Fig. 9.1. The difference
between the dividers consists of the choice of resistance values of different resis�
tors of the circuit in Fig. 9.1. In this Section we will observe a new kind of “gold�
en” divisor that is connected with ternary mirror�symmetrical representation
(10.26). Choose the resistors of the divisor in Fig. 9.1 as follows:

R R R R1 2 3= =; ,τ (10.56)

that is, all resistors which form the divisor in Fig. 9.1 have equal resistance R,
except the end resistors with resistance R R3 = τ , where τ  = +( ) /1 5 2 , which
is of course the golden mean.

It is easy to calculate the equivalent resistances Re1 and Re2 of the resistive
circuits to the left and to the right of the “connecting points” 0,1,2,3,4 and also
the equivalent resistance Re3 of the divider in the “connecting points” 0,1,2,3,4:

R
R R
R R

Re1
1= ×

+
= −τ

τ
τ (10.57)
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R R R Re2
1= + =−τ τ (10.58)

R
R R
R R

Re3

1

1

1
2

= ×
+

=
−

−

τ τ
τ τ

. (10.59)

Further it is easy to show that if we connect the electrical generator I to
some “connecting point,” we form at this point the electrical voltage U that is
transmitted to the adjacent “connecting point” with voltage transmission coeffi�
cient τ−2,  that is, the electrical voltage in the adjacent points is equal to

U / .τ2 (10.60)

10.11.2. Ternary Mirror�Symmetrical Digit�to�Analog Converter

The golden resistor divider based upon the resistors (10.56) can be used for
designing the ternary mirror�symmetrical digit�to�analog converter (DAC) rep�
resented in Fig. 10.14. This DAC consists of 5 digits (n in the general case). The
middle point C corresponds to the 0th digit a0 of the input “golden” mirror�
symmetrical representation a2 a1 a0. a�1 a�2 (am am�1 … a0. a�1 a�2 …, a�m in general
case of the number N). The ternary digits a

i
 i = ± ± ±( )0 1 2 3, , , ,...  control the

special circuits I0, which are connected with the corresponding connection
points of the “golden” mirror�symmetrical divider. The circuit I0 consists of
the standard electrical generator I0 and the 3�position electrical key that are
controlled by the ternary digits ai according to the following rule. If ai = 1,
then the standard electrical current is switched on to the corresponding point
of the “golden” mirror�symmetrical resistor divider in the “positive,” that is,

Figure 10.14. The golden mirror�symmetrical DAC

a2 a�2a�1a0a1I0 I0I0I0I0

U2U1

τR

RRRRR

τRRRRR
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+I0. If ai = −1,  then the standard electrical current is switched on to the cor�
responding point of the golden mirror�symmetrical resistor divider in the
“negative,” that is, �I0. At last, if ai = 0,  then the standard electrical current I0

is not switched on to the corresponding connection point.
The golden mirror�symmetrical DAC has two mirror�symmetrical out�

puts, U1 and U2. Taking into consideration the basic properties (10.57)�(10.59)
of the golden mirror�symmetrical divider, we can prove that the mirror�sym�
metrical outputs U1 and U2 are connected with the golden mirror�symmetri�
cal input code a a a a a a am m o m− − − −1 1 1 2... . ...  as follows:

U U
I

ai
i

i m

m

1 2
0 2

2
= =

=−
∑ τ . (10.61)

The fundamental checking property of the “golden” mirror�symmetrical
DAC is the following:

U1=U2. (10.62)

A breach of the equality (10.62) is an indication of errors in the DAC. Thus,
the golden mirror�symmetrical DAC in Fig. 10.14 is a self�checking DAC that
allows for persistent checking of the DAC operation according to (10.62).

10.12. Conclusion

1. On the one hand, at the dawn of the computer era the problem of choos�
ing the “optimal” number system for electronic computers was brilliantly solved
by eminent American physicist and mathematician John von Neumann, who
gave emphatic preference to the binary system in electronic computers. The
famous “John von Neumann Principles” include three basic ideas, which un�
derlie all modern electronic computers: the Binary System, Binary (Boolean)
Logic, and the Binary Memory Element (“Flip�Flop”).

2. On the other hand, the outstanding Soviet engineer Nikolay
Brousentsov suggested another fundamental principle for computer de�
sign [180]. This principle was called the “Brousentsov Ternary Principle”
[104] because it was based upon the “ternary” approach: theTernary�Sym�
metrical Numeral System, Ternary Logic, and the Ternary Memory Element
(“Flip�Flap�Flop”). That idea was used in the first ternary “Setun” comput�
er designed at Moscow University in 1958. The ternary�symmetrical nu�
meral system has a number of essential advantages in comparison to the
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binary system. The Russian scientist Dmitry Pospelov and American scien�
tist Donald Knuth each expressed an opinion that one day the replacement
of “flip�flop” by “flip�flap�flop” would occur.

3. In 2002, Alexey Stakhov developed the so�called Ternary Mirror�Sym�
metrical Arithmetic based upon Ternary Mirror�Symmetrical Representation
[104]. This numeral system is an original synthesis of the classical ternary�
symmetrical system and Bergman’s system [86]. This is a positional numeral
system using the ternary numerals {1, 0, �1} for number representation. How�
ever, its radix is the irrational number τ2 3 5 2= +( ) .  In this numeral sys�

tem all integers are represented in Mirror�Symmetrical Form. This means that
at the representation of integers, the 0th digit divides the number represen�
tation into two mirror�symmetrical parts. When increasing a number, its ter�
nary mirror�symmetrical representation widens symmetrically both to the
left and to the right with respect to the 0th digit. This unique mathematical
property creates a very simple method of checking numbers in computers. It
is demonstrated that the mirror�symmetrical property is invariant with re�
spect to arithmetic operations, that is, the results of all arithmetic operations
have mirror�symmetrical forms. This means that mirror�symmetrical arith�
metic can be used for designing fault�tolerant processors and computers.

4. In conclusion the author would like to express his gratitude to the out�
standing scientists of contemporary computer science, Dr. Donald Knuth,
Emeritus Professor at Stanford University and author of the famous book The
Art of Computer Programming [181], and Dr. Nikolay Brousentsov of Mos�
cow University, the designer of the first ternary computer “Setun.” They were
the first scientists to congratulate this author on his publication of the article
“Brousentsov’s Ternary Principle, Bergman’s Number System and Ternary Mir�
ror�Symmetrical Arithmetic” [104]. High appreciation for ternary mirror�sym�
metrical arithmetic [104] by these outstanding computer specialists gives hope
that it will become a source for new computer projects in the near future.
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A New Coding Theory Based on a Matrix
Approach

11.1. A History of Coding Theory

11.1.1. Types of Coding

We can find definitions of the notions of “code,” “coding,” “encoding/de�
coding” in Wikipedia, the Free Encyclopedia. In communications, Code or Cod�
ing is a rule for converting a piece of information (for example, a letter, word
or phrase) into another form or representation, not necessarily of the same
type. In communications and information processing, Encoding is a process,
by which information from a source is converted into symbols to be communi�
cated or transmitted. Decoding is the reverse process that converts these code
symbols back into information understandable to a receiver. The three basic
purposes for using coding in information systems are: Compression of Infor�
mation, Detection and Correction of Errors in Information Channels and Ensur�
ing Confidentiality. Accordingly, there are three types of coding:

1. Source Coding (Data compression)
2. Channel Coding (Error detection and correction)
3. Cryptographic Coding (Ensuring confidentiality)
The first, Source Coding, compresses the data from a source in order to

transmit it more efficiently. We see this practice every day on the Internet
where the common “Zip” data compression is used to reduce the network load
and to make files smaller. The second, Channel Coding, adds extra bits, com�
monly called Redundancy Bits, to data bits to protect the transmission of data
from noise that is present on the transmission channel. The third, Crypto�
graphic Coding, is used for ensuring the confidentiality of communications.

11.1.1.1. Claude Elwood Shannon

The source coding theory is a part of Information Theory created by Amer�
ican scientist Claude Shannon [151].
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Claude Elwood Shannon, an American
electrical engineer and mathematician, was
called “the father of information theory.” He
was also the founder of a practical theory for
designing digital circuits.

In 1932 Shannon entered the University
of Michigan, where he took a course that ac�
quainted him with the work of George Boole.
Graduating in 1936 with two bachelor’s de�
grees, electrical engineering and mathemat�
ics, he then began graduate study at the Mas�
sachusetts Institute of Technology, where he
worked on Vannevar Bush’s differential ana�
lyzer, an analog computer. While studying the
complicated circuits of the differential ana�
lyzer, Shannon saw that Boole’s concepts
could be employed with great utility. An ar�

ticle drawn from his 1937 master’s thesis, A Symbolic Analysis of Relay and
Switching Circuits, was published in the 1938 issue of Transactions of the Amer�
ican Institute of Electrical Engineers. Here Shannon proved that Boolean alge�
bra and binary arithmetic can be used for simplification of circuits on electro�
mechanical relays then used in telephone routing switches. He also proved that
it is possible to use relay circuits to solve Boolean algebra problems. By using
this property of electrical switches, he proved that Boolean logic is the basic
concept underlying all electronic digital computers. Shannon’s work became
the foundation for the practical design of digital circuits.

11.1.1.2. Mathematical Theory of Communication

In 1948 Shannon published the article A Mathematical Theory of Communi�
cation in two parts in the July and October issues of the Bell System Technical
Journal. This work focused on the problem of how to best encode the informa�
tion a sender wants to transmit. In this fundamental work he used probability
theory in introducing Information Entropy as a measure of indeterminacy. In�
formation entropy became known as the dominant concept of “information the�
ory.” The book, The Mathematical Theory of Communication co�authored with
Warren Weaver, is accessible to non�specialists. Shannon’s concepts were also
popularized in John Robinson Pierce’s Symbols, Signals, and Noise. Another
notable paper Shannon published in 1949 is Communication Theory of Secrecy
Systems, a major contribution to the development of the mathematical theory

Claude Elwood Shannon
(1916�2001)
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of cryptography. He is also credited with introducing Sampling Theory, con�
nected with representing a continuous�time signal by a discrete set of samples.

Information Theory is a discipline in applied mathematics involving the
quantification of data with the goal of enabling as much data as possible to be
reliably stored on a medium and/or transmitted over a channel. The measure
of data, known as Information Entropy, is usually expressed by the average
number of bits needed for storage or communication. Applications of funda�
mental topics of information theory include ZIP files, lossless data compres�
sion, and DSL (channel coding). It is a field at the crossroads of mathematics,
statistics, computer science, physics, and electrical engineering, whose impact
was crucial to the invention of the CD, the feasibility of mobile phones, the
development of the Internet, the study of linguistics and of human percep�
tion, amongst numerous other fields.

The main concepts of information theory can be grasped by examination
of the most widespread means of human communication: language. Two im�
portant aspects of a good language are as follows: First of all, the most wide�
spread words (e.g., “a,” “the,” “I”) should be shorter than less wide�spread words
(e.g., “benefit,” “generation,” “mediocre”), so that sentences will not be too
long. Such a tradeoff in word length is analogous to data compression and is
the essential aspect of source coding. Source coding and channel coding are
the fundamental concepts of information theory.

The decisive event, which established the discipline of information theo�
ry and brought it to immediate worldwide attention, was the publication of
Claude E. Shannon’s (1946) classic article, A Mathematical Theory of Com�
munication, in the Bell System Technical Journal in July and October of 1948.
In this revolutionary and groundbreaking article (work which Shannon had
substantially completed at Bell Labs by the end of 1944), Shannon for the
first time introduced the quantitative model of communication as a statistical
process underlying information theory.

11.1.2. Error�Correction Codes

Error�Correction Code or ECC is a code in which each data signal conforms
to specific rules of construction so that deviations from this construction in
the received signal can generally be automatically detected and corrected [177,
182]. It is used in computer data storage, for example in dynamic RAM, and in
data transmission. Some examples include Hamming code, Reed�Solomon
code, Reed�Muller code, Binary Golay code, convolution code, turbo code
[182]. The simplest error�correction codes, for example Hamming codes, can
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correct single�bit errors (single error correction) and detect double�bit errors
(double error detection). Other codes can detect or correct multi�bit errors.
ECC memory provides greater data accuracy and extended system uptime by
protecting against “soft errors” in computer memory.

11.1.2.1. Codes Predating Hamming

A number of simple error�detection codes were used prior to Hamming codes.
Parity. Parity adds a single bit that indicates whether the number of bits

in the preceding data was even or odd. If a single bit is changed in transmis�
sion, the message will change parity and the error can be detected at this point.
(Note that the bit that changed may have been the parity bit itself!) The most
common convention is that a parity value of 1 indicates that there is an odd
number of 1’s in the data, and a parity value of 0 indicates that there is an even
number of 1’s in the data. In other words, the data and the parity bit together
should contain an even number of 1’s. Parity checking is not very robust, since
if the number of bits changed is even, the check bit will be valid and the error
will not be detected. Moreover, parity does not indicate which bit contained
the error, even when it can detect error. Thus, the data must be discarded
entirely, and re�transmitted from the source.

Two�out�of�five code. In the 1940s Bell used a slightly more sophisticat�
ed code known as the two�out�of�five code. This code ensured that every block
of five bits (known as a 5�block) had exactly two 1’s. The computer could tell
if there was an error if in its input there were not exactly two 1’s in each block.
Two�of�five was still only able to detect single bits; if one bit flipped to 1 and
another to 0 in the same block, the two�of�five rule remained true and the
error would go undiscovered.

Repetition. Another code in use at the time repeated every data bit sev�
eral times in order to ensure that it got through. For instance, if the data bit to
be sent was a 1, an n=3 Repetition Code would send “111.” If the three bits
received were not identical, an error occurred. If the channel were clean enough,
most of the time only one bit would change in each triple. Therefore, 001, 010,
and 100 each corresponded to a 0 bit, while 110, 101, and 011 corresponded to
a 1 bit, as though the bits counted as “votes” towards what the original bit
was. A code with this ability to reconstruct the original message in the pres�
ence of errors is known as an error�correction code. However, such codes can�
not correctly repair all errors. In our example, if the channel flipped two bits
and the receiver got “001,” the system would detect the error, but conclude
that the original bit was 0, which is incorrect. If we increase the number of
times we duplicate each bit to four, we can detect all two�bit errors but can�
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not correct them (the votes “tie”); at five, we can correct all two�bit errors,
but not all three�bit errors.

11.1.2.2. Richard Wesley Hamming

Richard Wesley Hamming was an American mathematician whose work
had numerous implications for computer
science and telecommunications.

Richard Wesley Hamming was a pro�
fessor at the University of Louisville dur�
ing World War II, and left to work on the
Manhattan Project in 1945, programming
one of the earliest electronic digital com�
puters to calculate the solution to equa�
tions provided by the project’s physicists.
The objective of the program was to dis�
cover if the detonation of an atomic bomb
would ignite the atmosphere. The result
of the computation was that this would
not occur, and so the United States used
the bomb, first in a test in New Mexico,
and then twice against Japan.

Later he worked at the Bell Telephone Laboratories from 1946 to 1976,
where he collaborated with Claude E. Shannon. In July 1976 he moved to the
Naval Postgraduate School, where he worked as an Adjunct Professor until
1997, when he became Professor Emeritus.

11.1.2.3. Hamming Code

In telecommunication, a Hamming Code is a linear error�correction code
named after its inventor, Richard Hamming. Hamming codes can detect and
correct single�bit errors, and can detect (but not correct) double�bit errors.
In contrast, the simple parity code cannot detect errors where two bits are
transposed, nor correct the errors it finds. If more error�correction bits are
included with a message, and if those bits can be arranged in such a way that
different incorrect bits produce different error results, then bad bits could be
identified. In a 7�bit message, there are seven possible single bit errors, so
three error control bits could potentially specify not only that an error had
occurred, but also which bit caused the error.

Hamming studied the existing coding schemes, including two�of�five, and
generalized their concepts. To start with he developed a nomenclature to de�

Richard Wesley Hamming
(1915 – 1998)
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scribe the system, including the number of data bits and error�correction bits
in a block. For instance, parity includes a single bit for any data word, so as�
suming ASCII words with 7�bits, Hamming described this as an (8,7)�code,
with eight bits in total, of which 7 are data. The repetition example would be
a (3,1)�code, following the same logic.

Hamming also noticed the problems with flipping two or more bits, and
described this as the “distance” (it is now called the Hamming Distance, after
him). Parity has a distance of 2, as any two bit flips will be invisible. The (3,1)
repetition has a distance of 3, as three bits need to be flipped in the same triple
to obtain another code word with no visible errors. A (4,1) repetition (each
bit is repeated four times) has a distance of 4, so flipping two bits in the same
group will no longer go undiscovered.

11.1.2.4. General Principles of Error Detection and Correction

The main idea of the Hamming code and other error�correction codes
(Reed�Solomon code, Reed�Muller code, Golay code, and so on) is set forth
in [177, 182] and consists of the following. First consider the initial code com�
bination that consists of n data bits. We add to the initial code combination m
error�correction bits and build up the k�digit code combination of the error�
correction code, or (k,n)�code, where k=n+m. The error�correction bits are
formed from the data bits as the sums by module 2 of certain groups of data
bits. It is clear that there are 2n different k�digit binary combinations of error�
correction code a1 a2 a3 … an. These binary combinations are referred to as
Allowed Binary Combinations. By using k digits we can form 2k=2n+m different
binary combinations. Then we divide them into two non�crossing groups, the
2n Allowed Binary Combinations and the 2k�2n Prohibited Binary Combinations.
We can send to a channel one of the 2n allowed binary combination. Under
influence of noise in the channel, this binary combination can turn into one of
the 2k possible binary combinations. This means that there are N=2n2k possi�
ble transitions. A principle of error detection is based on the fact that the
allowed binary combination becomes the prohibited binary combination. The
number of detectable transitions is Nd=2n(2k�2n). If we calculate the ratio
N

d
/N, we obtain the first numerical parameter of the error�correction code,

called the Coefficient of Potential Detection Ability:

S
N
Nd

d
n k n

n k m= = − = −2 2 2
2 2

1
1

2
( )

,  (11.1)

where m is the number of error�correction bits.
A principle in error correction consists of the following. All the 2k�2n pro�

hibited binary combinations are divided into the 2n non�crossing sets M1, M2,
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M3, … , Mn, where 2n is the number of allowed binary combinations. Every
allowed binary combination is assigned to one of the 2n sets: a1→M1, a2→M2,
a3→M3, ... . The principle of error correction consists of the following. If we
receive the prohibited code combination, which belongs to the set Mi, we as�
sume that the allowed binary combination ai has been transmitted. This means
that we correct all erroneous binary combinations of the set Mi , if they are
formed from the allowed binary combinations ai. In the opposite case, a cor�
rection of the error is fulfilled incorrectly. It is clear that the number of the
correctable erroneous transitions N

c
 is equal to the number of all prohibited

combinations, that is, Nc=2k�2n.
The Coefficient of Potential Correction Ability is calculated as a ratio

of all the correctable erroneous transitions N
c
 to all the detectable transi�

tions, that is,
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,  (11.2)

where n is a number of data bits in the code combination of error�correction
code.

The coefficients (11.1) and (11.2) characterize the potential ability of the
error�correction code to detect and correct errors. Besides these important
coefficients, for the characterization of error�correction code abilities, we can
use the concept of Minimal Code Distance or Hamming Distance dmin. As is
well known, a code distance between the binary combinations a

i
 and a

j
 char�

acterizes the degree of difference between them and is equal to the number of
distinct bits. For example, the code distance between binary combinations
a

i
=100101 and a

j
=110110 is equal to d=3. If we compare in pairs all code com�

binations of the given error�correction code and calculate the code distances
between them, we can find the minimal code distance or Hamming distance
dmin. The Hamming distance characterizes the ability of the error�correction
code to guarantee detection and correction of certain errors. If we denote the
numbers of the guaranteed detectable and correctable errors in the code com�
bination by r and t, respectively, then there are the following simple correla�
tions between r, t and the Hamming distance dmin:

d rmin = +1  (11.3)

d tmin = +2 1 .  (11.4)

The correlation (11.3) means that the error�correction code with the Ham�
ming distance (11.3) can detect (with guarantee) all errors of length r or less.
The correlation (11.4) means that the error�correction code with the Ham�
ming distance (11.4) can correct with guarantee all errors of length t or less.
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A possibility to detect and correct is provided due to the redundancy of
error�correction code. An Absolute Redundancy of an error�correction code is
determined by the number m of error�correction bits. The Relative Redun�
dancy of an error�correction code is determined by the ratio

R
m
k

k n
k

n
k

= = − = −1 .  (11.5)

Note that this reasoning is valid for all error�correction codes, that is, the
results (11.1)−(11.5) have a fundamental character for all error�correction
(k,n)�codes.

Let us consider the application of the correlations (11.1)−(11.5) for char�
acterization of the redundancy, detection and correction abilities of the known
error�correction codes. The “parity” code has the following parameters: m=1
and d

min
=2. This means that the coefficient of potential detecting ability (11.1)

for the “parity” code is Sd=0.5 (or equal to 50%) and this code guarantees
detection of all single errors in the code combination (r=1). The Hamming
(15,11)�code is characterized by the following numerical parameters: k=15,
n=11, m=4, dmin=3. This means that the coefficient of potential detection abil�
ity (11.1) of this code is equal to Sd=0.9375 (93.75%), this code guarantees
the detection of all single and double errors in the code combination (r=2)
and the correction of all single errors (t=1) in the 15�digit code combination
of the Hamming (15,11)�code. If we use the correlation (11.2) we can calcu�
late that the potential correction ability of this code is S

c
=0.0004882

(0.04882%). According to (11.5) the relative redundancy of the Hamming
(15,11)�code is R=0.267 (26.7%).

11.1.2.5. The Main Shortcomings of the Existing Error�Correction Codes

Formula (11.1) shows that the coefficient of potential detection ability of
the error�correction code increases very quickly and aims at 100% with the
increase of m. And this fact confirms the high effectiveness of the error�cor�
rection codes to detect errors. However, the formula (11.2) shows that the
coefficient of potential correction ability diminishes with the increase of the
data bits n. For example, the Hamming (15,11)�code allows one to detect
211(215�211)=62,914,560 erroneous transitions; it can correct only 215�211=30,720
of these erroneous transitions, that is, it can correct only 30,720/
62,914,560=0.0004882 (0.04882%) erroneous transitions from the general
number of transitions. There is a real question here about practical use of codes
with such a low potential correction ability. The experts in the field of coding
theory cannot answer this question. However, in all textbooks on coding the�
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ory, they describe the above example of the Hamming (15,11)�code as one of
its achievements. As the formula (11.2) has a general character for all existing
error�correction codes, we can conclude from this consideration that all exist�
ing error�correction codes have very low correction ability.

Another more fundamental shortcoming of all known error�correction
codes is the fact that the very small information elements (i.e. bits and their
combinations) are themselves objects of detection and correction. There is
the question: is it possible to create a theory of error�correction codes in which
the larger information elements, for example, numbers or even files, are the
objects of detection and correction?

Author of this book developed  a new coding theory based on the matrix
approach in his book [44] and article [113]. One of the main purposes of this
present chapter is to develop in detail a new coding theory that differs funda�
mentally from the classical algebraic coding theory [177, 182].

11.1.3. Cryptographic Coding

11.1.3.1. What is Cryptography?

The word Cryptography arises from the Greek kryptуs (“hidden”) and
grapho (“write”). At present, cryptography is considered a branch of Informa�
tion Theory. It is a central contributor to several fields: information security and
related issues, particularly, authentication, and access control. One of cryptog�
raphy’s primary purposes is to hide the meaning of the transmitted messages. At
present, cryptography also contributes to computer science. Cryptography is
central to the techniques used in computer and network security for such things
as access control and information confidentiality. Cryptography is also used in
many applications in everyday life; the security of ATM cards, computer pass�
words, and electronic commerce � all depend on cryptography.

Also cryptography at present refers almost exclusively to Encryption, the
process of converting ordinary information (Plaintext) into something unintel�
ligible (Ciphertext). Decryption is the reverse procedure that allows transfor�
mation of the unintelligible ciphertext into plaintext. A Cipher is a pair of algo�
rithms, the one performing encryption and the other decryption. The detailed
operation of a cipher is controlled both by the algorithm and, in each instance,
by a Key. This is a secret parameter (known only to the communicants) for the
cipher algorithm. Keys are important since ciphers without variable keys are
trivially breakable and therefore not useful. Historically, ciphers were often used
directly for encryption or decryption without additional procedures.
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Until the modern era, cryptography was connected solely with message
confidentiality (i.e. encryption) � conversion of messages from a comprehen�
sible form into an incomprehensible one, and back again at the other end, ren�
dering it unreadable by interceptors or eavesdroppers without secret knowl�
edge (namely, the key needed for decryption). In recent decades, the field has
expanded beyond confidentiality concerns to include techniques for authen�
tication of message integrity or sender/receiver identity, digital signatures,
interactive proofs, and computation security.

11.1.3.2. Symmetric�Key Cryptography

There are two kinds of cryptography, Symmetric�Key Cryptography and
Public�Key Cryptography. Symmetric�key cryptography refers to encryption
methods, in which both the sender and receiver share the same key (or, less
commonly, in which their keys are different, but related in an easily comput�
able way). This was the only kind of encryption publicly known until publica�
tion of Diffie and Hellman’s 1976 paper [183].

The modern study of symmetric�key ciphers relates mainly to the study of
Block Ciphers and Stream Ciphers and their applications. A block cipher takes
a block of plaintext and a key as an input, and a block of ciphertext of the same
size as an output. The Data Encryption Standard (DES) is a block cipher,
which has been designated as the cryptography standard by the U.S. govern�
ment. Despite its deprecation as an official standard, DES remains quite pop�
ular; it is used across a wide range of applications, from ATM encryption to e�
mail privacy and secure remote access.

In cryptography, a Stream Cipher is a symmetric cipher where plaintext
bits are combined with a pseudorandom cipher bit stream (keystream), typi�
cally by an exclusive�or (xor) operation. In a stream cipher the plaintext dig�
its are encrypted one at a time, and the transformation of successive digits
varies during the encryption.

11.1.3.3. Public�Key Cryptography

A significant shortcoming of symmetric ciphers is the key management. Each
distinct pair of communicating parties must, ideally, share a different key. The
number of keys required increases by the square of the number of network mem�
bers, which very quickly requires complex key management schemes to keep
them all straight and secret. The difficulty of establishing a secret key between
two communicating parties, when a secure channel does not already exist be�
tween them, also presents a chicken�and�egg problem, which is a considerable
practical obstacle for cryptography users in the real world.
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In a groundbreaking 1976 paper [183], Whitfield Diffie and Martin Hell�
man proposed the concept of Public�key (also, more generally, called Asym�
metric�key) cryptography in which two different but mathematically related
keys are used � a Public Key and a Private Key. A public key system is so con�
structed that calculation of the private key from the public key is computa�
tionally impractical, even though they are necessarily related. Instead, both
keys are generated secretly, as an interrelated pair.

In public�key cryptosystems [183�186] the public key may be freely dis�
tributed, while its paired private key must remain secret. The public key is typ�
ically used for encryption, while the private or secret key is used for decryption.
Diffie and Hellman showed that public�key cryptography was possible by pre�
senting the Diffie�Hellman key exchange protocol. In 1978, Ronald Rivest, Adi
Shamir, and Len Adleman invented RSA, another public�key system.

 Public�key algorithms are most often based on the computational com�
plexity of “hard” problems, often from number theory. The “hardness” of RSA
is related to the Integer Factorization Problem, while Diffie�Hellman and DSA
are related to the Discrete Logarithm Problem. More recently, Elliptic Curve
Cryptography was developed. Elliptic curve cryptography is based on theo�
retical problems involving elliptical curves. Because of the complexity of the
underlying problems, most public�key algorithms involve operations such as
Modular Multiplication and Exponentiation, which are much more computa�
tionally expensive than the techniques used in most block ciphers, especially
with typical key sizes.

11.2. Non�singular Matrices

 11.2.1. A Definition of Non�singular Matrices

It is known that a square matrix A is called non�singular, if its determi�
nant is not equal to zero, that is

det A ≠ 0 .  (11.6)

In linear algebra [144], the non�singular square n n×( ) �matrix is called
invertible because every non�singular matrix A has inverse matrix A�1, which is
connected with the matrix A with the following correlation:

AA In
− =1 ,  (11.7)

where I
n
 is identity n n×( ) �matrix.
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11.2.2. Non�singular (2×××××2)�matrices

Let us consider a square non�singular (2×2)�matrix

A
a a
a a

= 





11 12

21 22
,  (11.8)

where a a a a11 12 21 22, , ,  are some real numbers. It is clear that the determinant
of the non�singular matrix A is equal:

det A a a a a= − ≠11 22 12 21 0 .  (11.9)

Inversion of this matrix can be done easily as follows [190]:

A
a a
a a A

a a
a a

−
−

= 





= −
−







1 11 12

21 22

1
22 12

21 11

1
det . (11.10)

As is well known, determinant of a square matrix equals to the product
of its eigenvalues [189]. Note that the eigenvalues of the matrix (11.8) can
be obtained as follows [189]. Let us consider a square (2×2)�matrix con�
structed from the matrix (11.8):

A I
a a
a a

a a
a a

− = 





− 





= −
−







λ λ λ
λ

11 12

21 22

11 12

21 22

1 0
0 1 , (11.11)

where I is an identity (2×2)�matrix and λ  is continuous variable.
Determinant of the matrix (11.11) is called characteristic polynomial of

the matrix A:
det A I a a a a

a a a a a a

−( ) = −( ) −( ) −

= − +( ) + −

λ λ λ

λ λ
11 22 12 21

2
11 22 11 22 12 211( ) (11.12)

Notice that the characteristic polynomial (11.12) can be written in terms
of the trace tr A a a( ) = +11 22  and the determinant det A a a a a( ) = −11 22 12 21  of
the matrix A as follows:

det detA I A A−( ) = − ( ) + ( )λ λ λ2 tr . (11.13)

It follows from the polynomials (11.12) and (11.13) that a characteristic
equation of the matrix A

λ λ λ λ2
11 22 11 22 12 21

2 0− +( ) + −( ) = − ( ) + ( ) =a a a a a a A Atr det . (11.14)

Two roots of the equation (11.14)

λ1 2
11 22 11 22

2

12 21 11 222 4
1
2

4

,

det

= + ±
+( ) + − +

= ( ) − ( )

a a a a
a a a a

A Atr 
(11.15)

is called eigenvalues of the matrix A.
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Of course, we can study more general class of nonsingular (n×n)�matrices
of the kind

A

a a a
a a a

a a a

n

n

n n nn

=

















11 12 1

21 22 2

1 2

"
"

# # % #
"

(11.16)

with

det A ≠ 0 . (11.17)

Note that all Fibonacci matrices (6.2), (6.4), (6.28), (6.30), (6.70), (6.72),
(6.95), (6.97) and “golden” matrices (6.128), (6.129), (6.148), (6.149), stud�
ied in Chapter 6, are particular cases of the nonsingular matrices of the kind
(11.8) and (11.16). We would remind that the determinants of all Fibonacci
matrices (6.2), (6.4), (6.28), (6.30), (6.70), (6.72), (6.95), (6.97) and “gold�
en” matrices (6.128), (6.129), (6.148), (6.149) are equal only to (+1) or (�1),
which corresponds to the main properties of nonsingular matrices given by
(11.9) and (11.17).

11.3. Fibonacci Encoding/Decoding Method Based Upon Matrix
Multiplication

11.3.1. The Fibonacci Encoding/Decoding Method Based on the
Qp,m�Matrices

 Consider the following encoding/decoding method based upon the ap�
plication of the Fibonacci matrices. We can use the direct Fibonacci matrices
of the kind (6.2), (6.4), (6.28), (6.30), (6.70), (6.72), (6.95), (6.97) as encod�
ing matrices. Now, let us represent the initial message M in the form of the
square 2×2�matrix for the cases (6.2), (6.4), (6.28), (6.30) or in the form of the
square (p+1)×(p+1)�matrix for the cases (6.70), (6.72), (6.95), (6.97). The
only condition that the matrix M should be non�singular matrix with the de�
terminant det M≠0. As is known [190], each nonsingular matrix A has its in�
vertible matrix A�1. All Fibonacci matrices of the kind (6.2), (6.4), (6.28), (6.30),
(6.70), (6.72), (6.95), (6.97) have inverse matrices.

The Fibonacci encoding amounts to the multiplication of the initial ma�
trix M by the encoding matrix of the kind (6.2), (6.4), (6.28), (6.30), (6.70),
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(6.72), (6.95), (6.97). A code matrix E appears as the result of this multiplica�
tion. The Fibonacci decoding amounts to the multiplication of the code ma�
trix E by the decoding Fibonacci matrices inverse to (6.2), (6.4), (6.28), (6.30),
(6.70), (6.72), (6.95), (6.97). For the case of the Q�matrix (6.4), the Fibonac�
ci inverse matrices are given by (6.66), (6.67). For the case of the Gm�matrix
(6.72) the inverse matrices are given by (6.93) and (6.94).

For the case of the Fibonacci Qp,m�matrices (6.97), the Fibonacci encod�
ing/decoding method is given by Table 11.1.

Note that the Fibonacci encoding/decoding
method given by Table 11.1 for the cases p>0
and m>0 gives infinite variants of the Fibonacci
encoding/decoding methods because every Fi�
bonacci Qp,m�matrix Qp m

n
,  and its inverse matrix

Qp m
n
,

−  “generate” their own Fibonacci encoding/
decoding method.

11.3.2. Fibonacci Encoding/Decoding Method Based on the Gm and Q�
Matrices

We can use the above Fibonacci G
m
�matrices to design a new variant of

the matrix encoding/decoding method. As mentioned above, for this case the
initial information is represented in the form of
the non�singular data (2×2)�matrix M. The direct
matrix Gm

n  given by (6.72) is used as the encod�
ing matrix and the inverse matrices (6.93) or
(6.94) are used as the decoding matrices. For this
case the Fibonacci encoding/decoding method is
given in Table 11.2.

Note that for the case m=1 the Fibonacci G
m
�matrix (6.72) becomes the

classical Fibonacci Q�matrix (6.4). Also the Fibonacci Qp,m�matrix (6.97) for
the case m=1 and p=1 becomes the classical Fi�
bonacci Q�matrix (6.4). This means that for these
cases the Fibonacci encoding/decoding methods
given by Tables 11.1 and 11.2 coincide and they
become the simplest Fibonacci encoding/decod�
ing method given by Table 11.3.

Here the encoding matrix Qn is given by (6.4),

that is, Q
F F
F F

n n n

n n
= 





+

−

1

1
,  and the decoding matrix Q�n is given by (6.66) or

Encoding Decoding

M G E E G M
m

n

m

n× = × =−

Table 11.2. Fibonacci
encoding/decoding method

based on the G
m
�matrices

Encoding Decoding

M Q E E Q M
p m

n

p m

n× = × =−
, ,

Table 11.1. Fibonacci
encoding/decoding method
based on the Q

p,m
�matrices

Encoding Decoding

M Q E E Q Mn n× = × =−

Table 11.3. Fibonacci
encoding/decoding method

based on the Q�matrix
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(6.67), that is, Q
F F

F F
k k k

k k

− −

+
= −

−






2 2 1 2

2 2 1
 or Q

F F
F F

k k k

k k

− − +

+ +
= −

−






2 1 2 2 1

2 1 2 2
, respectively.

11.3.3. An Example of the Fibonacci Encoding/Decoding Method Based
on the Q�Matrix

First of all, we study the simplest Fibonacci encoding/decoding method
given in Table 11.3. Represent the initial message M in the form of the square
(2×2)�matrix:

M
m m
m m

= 





1 2

3 4
. (11.18)

We would remind that the matrix (11.18) should be non�singular or in�
vertible matrix [190]. This means that its determinant

det .M m m m m= − ≠1 4 2 3 0 (11.19)

If the initial message M is represented in the form of the binary n�digit
code

M a a a an= 1 2 3... , (11.20)

we should divide the binary code (11.20) into the four parts m m m m1 2 3 4 so that
the condition (11.19) is fulfilled. Below we suppose that the matrix (11.18) is
always non�singular.

Suppose that we have chosen the Fibonacci matrix Q5 as the encoding
matrix, that is:

Q 5 8 5
5 3

= 



 . (11.21)

According to Table 6.1 its inverse matrix has the following form:

Q − = −
−







5 3 5
5 8

. (11.22)

Then the Fibonacci encoding of the matrix (11.18) consists in its multi�
plication by the direct encoding matrix (11.21), that is:

M Q
m m
m m

m m m m
m m m m

× = 





× 





= + +
+ +

5 1 2

3 4

1 2 1 2

3 4 3

8 5
5 3

8 5 5 3
8 5 5 3 44

1 2

3 4







= 





=e e
e e

E, (11.23)

where

e m m e m m

e m m e m m
1 1 2 2 1 2

3 3 4 4 3 4

8 5 5 3

8 5 5 3

= + = +
= + = +

;

; . (11.24)

Then, the code message E=e1, e2, e3, e4 is sent to the channel.
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The decoding of the code message E given by (11.23) is carried out in the
following manner. The code matrix E (11.23) is multiplied by the inverse ma�
trix (11.22):

e e
e e

e e e e
e e

1 2

3 4

1 2 1 2

3 4

3 5
5 8

3 5 5 8
3 5







× −
−







=
−( ) + + −( )
−( ) + 55 83 4

1 2

3 4e e
e e
e e+ −( )









 = 








′ ′

′ ′ . (11.25)

By calculating the entries of the matrix (11.25) and by taking into ac�
count the formulas (11.24), we obtain:

e e e m m m m m1 1 2 1 2 1 2 13 5 3 8 5 5 5 3′ = −( ) + = −( ) × +( ) + × +( ) = .

By analogy, we can calculate:

e m e m e m2 2 3 3 4 4
′ ′ ′= = =; ; ,

that is,
e e
e e

m m
m m

M1 2

3 4

1 2

3 4

′ ′

′ ′














= = .

11.4. The Main Checking Relations of the Fibonacci Encoding/Decoding
Method

11.4.1. Determinants of the Code Matrix

We mentioned above that the code matrix E is the outcome of the Fi�
bonacci encoding for the matrix methods given by Tables 11.1, 11.2 and 11.3.
We can write the code matrices for Tables 11.1, 11.2 and 11.3 respectively as
follows:
E M Qp m

n= × , (11.26)

E M Gm
n= × (11.27)

E M Q n= × . (11.28)

By using a general matrix property for the determinants [158]

det det detA B A B× ×( ) = ,

we can write the following expressions for the determinants of the matrices
(11.26) � (11.28):

det det[ ] det det, ,E M Q M Qp m
n

p m
n= × = × (11.29)

det det[ ] det detE M G M Gm
n

m
n= × = × (11.30)

det det[ ] det det .E M Q M Qn n= × = × (11.31)
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By using the identities (6.5), (6.76) and (6.119), we can rewrite the for�
mulas (11.29) � (11.31) as follows:
det det ,E M

pn
p m= × −( ) ( )1 for the  � matrixQ (11.32)

det detE M
n

m= × −( ) ( )1 for the � matrixG (11.33)

det detE M
n= × −( ) ( )1 for the  � matrixQ . (11.34)

Our examination resulted in some quite unexpected properties of the Fi�
bonacci encoding/decoding methods given by Tables 11.1, 11.2 and 11.3. It
turns out that very strict mathematical relations (11.32)�(11.34) connect the
data matrix M and the code matrix E for the Fibonacci encoding/decoding
methods given by Tables 11.1�11.3. It is clear that the identities (11.32) �
(11.34) can be used as the main “checking relations” of the Fibonacci coding/
decoding methods given by Tables 11.1, 11.2 and 11.3. According to (11.32) �
(11.34) the determinant of the code matrix E is determined entirely by the
determinant of the data matrix M.

11.4.2. Connections between the Elements of the Code Matrix

Besides the identities (11.32)�(11.34), other mathematical correlations
between the elements of the code matrix E exist. Now, let us consider the
simplest Fibonacci coding/decoding method for the case p=1 (Table 11.3).
For this case we can represent the code matrix E as follows:

E M Q
m m
m m

F F
F F

e e
e e

n n n

n n
= × = 





× 





= 





+

−

1 2

3 4

1

1

1 2

3 4
, (11.35)

where the elements e1, e2, e3, e4 are equal to

e F m F mn n1 1 1 2= ++ (11.36)

e F m F mn n2 1 1 2= + − (11.37)

e F m F mn n3 1 3 4= ++ (11.38)

e F m F mn n4 3 1 4= + − . (11.39)

After the Fibonacci decoding, the data matrix M can be represented as
follows:

M
m m
m m

E Q
e e
e e

Qn n= 





= × = 





×− −1 2

3 4

1 2

3 4
. (11.40)

For the case n=2k+1 we can use the inverse matrix (6.67), that is, the

matrix Q
F F
F F

n n n

n n
n k− −

+
= −

−






= +1

1
2 1,  as the decoding matrix and then the for�

mula (11.40) takes the following form:
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M
m m
m m

e e
e e

F F
F F

n n

n n
= 





= 





× −
−







−

+

1 2

3 4

1 2

3 4

1

1
. (11.41)

It follows from (11.41) that the elements of the matrix (11.41) can be
calculated according to the following formulas:

m F e F en n1 1 1 2= − +−
(11.42)

m F e F en n2 1 1 2= − +
(11.43)

m F e F en n3 1 3 4= − +−
(11.44)

m F e F en n4 3 1 4= − +
(11.45)

As the elements m m m m1 2 3 4  of the data matrix (11.18) are always non�

negative integers, we can write the equalities (11.42)�(11.45) as the following
non�equalities:

− +−F e F en n1 1 2 0≥ (11.46)

F e F en n1 1 2 0− + ≥ (11.47)

− +−F e F en n1 3 4 0≥ (11.48)

F e F en n3 1 4 0− + ≥ . (11.49)

We can rewrite the non�equalities (11.46) and (11.47) as follows:
F
F

e e
F

F
en

n

n

n

+

−

1
2 1

1
2≤ ≤ . (11.50)

By analogy, we can rewrite the non�equalities (11.48) and (11.49) as
follows:
F
F

e e
F

F
en

n

n

n

+

−

1
4 3

1
4≤ ≤ . (11.51)

As the ratio of the adjacent Fibonacci numbers aims for the golden mean,
the following approximate equalities, which connect the elements of the code
matrix (11.35), come from (11.50) and (11.51):

e e1 2≈ τ (11.52)

e e3 4≈ τ , (11.53)

where τ = +( )1 5 2  is the golden mean.
By analogy, for the case n=2k we can use the inverse Fibonacci matrix

(6.66) as a decoding matrix and then we can write the approximate equalities
that are similar to (11.52) and (11.53) and connect the pairs of the adjacent
elements e1 and e3, e2 and e4 of the code matrix (11.35).

Thus, we have found the additional mathematical relations (11.52) and
(11.53) that connect the elements of the code matrix (11.35). Note that
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the code matrix (11.35) corresponds to the simplest case p=1. It is clear
that we can find similar approximate mathematical correlations that con�
nect the code matrix E for the Fibonacci encoding/decoding methods giv�
en by Tables 11.1 and 11.2.

We can estimate the absolute value of the maximal relative “approxima�
tion error” for the equalities (11.52) and (11.53). For this purpose we should
estimate the absolute value of the difference

∆ = − = −

−

+ + −

−

F
F

F
F

F F F
F F

n

n

n

n

n n n

n n1

1
2

1 1

1

. (11.54)

For the simplification of the formula (11.54) we can use the Cassini for�
mula (6.6), that is,

detQ F F Fn
n n n

n= − = −( )− +1 1
2 1

 and the Binet formula (2.68) for the classical Fibonacci numbers, that is,

F
n k

n k
n

n n

n n=

+ = +

− =










−

−

τ τ

τ τ
5

2 1

5
2

for

for
.

According to (6.6) the absolute value of the expression (6.6) is equal:

F F Fn n n
2

1 1 1− =+ − . (11.55)

According to the Binet formula (2.68) we can write the following approx�
imate formulas for the calculation of the Fibonacci numbers Fn�1 and Fn:

Fn

n

−

−

≈1

1

5

τ
and Fn

n

≈ τ
5

. (11.56)

Then, using (11.55) and (11.56), after simple transformations of (11.54)
we can write the  formula for the maximal relative “approximation error” ∆:

∆ = =− −
5 5

1 6182 1 2 1τ n n( . ) . (11.57)

The values of the “approximation error” ∆ for different n are given by Ta�
ble 11.4. We can see from (11.57) and Table 11.4 that the maximal relative
“approximation error” ∆  given by (11.57) is decreasing quickly when n in�
creases. For example, for the case n=7 the relative “approximation error”
∆=0.0096 (about 1%). This means that for a “large enough” n (n≥7) the “ap�
proximate” equalities (11.52) and (11.53) approach “precise” equalities.

Table 11.4. Relative “approximation error” ∆

n 1 2 4 6 8 10

3 09023 1 18041 0 17223 0 02513 0 00367 0 00054∆ . . . . . .
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11.5. Error Detection and Correction

11.5.1. A Notion of “Errors”

The notion of “errors” for the above Fibonacci encoding/decoding meth�
od differs from the similar notion in the classical theory of error�correction
codes [177, 182]. As is known, a “single” error is a transition of a bit into an
opposite state (1→0 or 0→1). In our coding theory a “single” error is the tran�
sition of any element of the code matrix E into an “erroneous” state. If, for
example, the “true” element e1 is the 2�digit decimal number 17, then the “sin�
gle” error in the element e1 is the transition of the number 17 into one of the
decimal numbers 0�16 or 18�99. It is clear that there are four C4

1 4=( )  variants
of the “single” errors in the code matrix (11.35):

x e
e e

e y
e e

e e
z e

e e
e v

2

3 4

1

3 4

1 2

4

1 2

3

























; ; ; , (11.58)

where x, y, z, v are the “erroneous elements” of the code matrix E.
Note that if the data message M is represented in the form of the binary

code, then the notion of a “single error” in the code matrix element, represent�
ed by the binary combinations of length k, corresponds to the notion of the
“group error” used in the classical error�correction code theory [177, 182].

Now, let us consider the case of “double” errors. There are six C4
2 6=( )

variants of the “double” errors:
x y
e e

x e
z e

x e
e v

x y
z e

e y
z e3 4

2

4

2

3 4

1

4

























; ; ; ;

















; ; .
e y
e v

e e
z v

1

3

1 2 (11.59)

It is clear that there are four C4
1 4=( )  variants of the “triple” errors:

x y

z e

e y

e v

x e

z v

e y

z v4

1

3

2 1





































; ; ; (11.60)

and one variant of the “fourfold” error:
x y
z v





 . (11.61)

It is clear that in total we have 15 possible “errors” in the code matrix (11.35).

11.5.2. Detection of “Errors”

Thus, following the above reasoning we may regard the Fibonacci encod�
ing/decoding method given by Table 11.3 (also in general by Tables 11.1 and
11.2) as a transformation of the data matrix M into the code matrix E by means
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of the multiplication of the data matrix M by the encoding matrix Qn (6.4) (in
the general case by Qp m

n
,  or Gm

n ). This transformation results in the appear�
ance of the strict “checking relations” (11.32), (11.33), (11.34), (11.52) and
(11.53) that connect the elements of the code matrix E. These “checking rela�
tions” allow for detection and correction of “errors” in code matrix E.

Let us examine the application of “checking relations” (11.34), (11.52)
and (11.53) to the detection of “errors” in the code matrix (11.35). For verifi�
cation of the “checking relation” (11.34) we must calculate the determinant
of the data matrix (11.18) according to the formula (11.19) and then send the
det M to the “channel.” Remember that the matrix M is non�singular and its
determinant (11.19) is not equal to zero. As shown below, the element det M
is the main “checking element” for the Fibonacci encoding/decoding method.

The “recipient” receives the elements e1, e2, e3, e4 of the code matrix (11.35)
together with the “checking element” det M and then calculates the determi�
nant of the code matrix (11.35) according to the formula:

det .E e e e e= × − ×1 4 2 3 (11.62)

After the calculation of det E by the formula (11.62), the “recipient” ver�
ifies the “checking relation” (11.34) by means of comparison of the det E (11.62)
with det M received from the channel. If the “checking relation” (11.34) is
valid, it means that the transmission of the code matrix E via the “channel”
was carried out correctly and we can decode the code matrix E according to
(11.41). If the “checking relation” (11.34) is disturbed, this means that some
“errors” appear in the elements e1, e2, e3, e4 of the code matrix (11.35) or the
“checking element” det M in the process of their transmission via the channel.
In this case, we can use the additional “checking relations” (11.52) and (11.53)
for verification of “errors” in the code matrix E. If the “checking relations”
(11.52) and (11.53) are fulfilled with sufficient exactness, the “recipient” can
decide that the “errors” are in the “checking element” det M, however, the
code matrix E is correct. In this case, the code matrix E can be decoded ac�
cording to (11.41).

However, we should give specific attention to the protection of the
“checking element” det M from noise, in particular, to the detection of er�
rors in the det M, because the det M plays a role of the “main checking ele�
ment” for the Fibonacci method of encoding/decoding. If the “checking re�
lation” (11.34) is disturbed, it is important to know the cause of this, wheth�
er it is the det M or the elements e1, e2, e3, e4 of the code matrix E. This is why,
it is desirable to use classical error�correction codes for the additional pro�
tection of the det M. We mentioned above that the classical error�correc�
tion codes [177, 182] have a high degree of detection ability. For example,



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

590

the “parity” code with only one error correction bit allows the detection of
50% of possible errors. If we are convinced in the correctness of det M, we
can proceed to the correction of errors. If det M is not correct, we should
again repeat the transmission of det M.

11.5.3. Correction of “Single” Errors
Let us examine the case when det M is correct and the code matrix

E
e e
e e

= 





1 2

3 4
 has possible errors. In order to verify errors in the code matrix E,

the “recipient” needs to calculate det M by the formula (11.62) and then to
compare it with det M received from the channel according to the “checking
relation” (11.34). If our verification shows a presence of errors in the code
matrix E, then we should try to correct those errors.

For the correction of errors we form different hypotheses about possible
errors in the code matrix E and then check these hypotheses. The first step
is to check the hypothesis about the possible “single” errors of the kind
(11.58). Note that in the general case we do not know what element of ma�
trix E is “erroneous.” In the case of “single” errors, we have to verify the four
error situations given by (11.58). For checking the “erroneous situations”
(11.58), we can write the following algebraic equations based on the “check�
ing relation” (11.34):

xe e e M e
n

4 2 3 11− = −( ) det ( )is erroneous (11.63)

e e ye M e
n

1 4 3 21− = −( ) det ( )is erroneous (11.64)

e e e z M e
n

1 4 2 31− = −( ) det ( )is erroneous (11.65)

e v e e M e
n

1 2 3 41− = −( ) det ( ).is erroneous (11.66)

It follows from (11.63)�(11.66) the four different formulas for calculation
of the possible “single” errors:

x
M e e

e

n

= − +( ) det1 2 3

4
(11.67)

y M e e
e

n

= − − +( ) det1 1 4

3
(11.68)

z M e e
e

n

= − − +( ) det1 1 4

2
(11.69)

v
M e e

e

n

= − +( ) det
.

1 2 3

1
(11.70)
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Formulas (11.67)�(11.70) give four possible variants for the calculation
of “single” errors. However, we know that the elements e1, e2, e3, e4 of the code
matrix (11.35) have to be integers! And we must choose the correct solutions
to the equations (11.63)�(11.66) solely from amongst the cases of integer so�
lutions x, y, z, v of the kind (11.67)�(11.70). If we have several integer solu�
tions (11.67)�(11.70), we must choose that solution, which satisfies the addi�
tional “checking relations” (11.52) and (11.53). If the calculations by formu�
las (11.67)�(11.70) do not result in integer solutions, we have to conclude
that our hypothesis about “single” errors in the code matrix E is incorrect and
therefore the matrix E has “double” or “triple” errors.

11.5.4. A Numerical Example of “Single” Error Correction

Let us examine a numerical example of the Fibonacci coding/decoding meth�
od based on the application of the classical Fibonacci Q�matrix. Suppose that the
sequence of “bytes” (8 bits) is the initial message transmitted via the channel.

Suppose we need to transmit via the channel the binary code combina�
tions of a length of 4 bytes (32 bits). Then for Fibonacci encoding/decoding
we divide the initial code combination into four parts of equal length by one
byte representing the initial code combination in the form of a data (2×2)
matrix of the kind (11.18). In this case every 1�byte element of the matrix
(11.18) is equal to the 8�bit binary number that takes its values in the range
[0÷(28�1)]. Suppose, the data matrix (11.18) has the following numerical form:

M = 





200 26
166 150 . (11.71)

Note that the maximal value of every element of the matrix (11.71) is
equal to 255.

We mentioned above that we can use different Qn�matrices (n=1,2,3, …).
We use the Fibonacci matrices (11.21) and (11.22) as encoding and decoding
matrices, respectively.

The Fibonacci encoding then consists of the following stages:
1. Multiply the initial matrix (11.71) by the encoding matrix (11.21):

E M Q= × = 





× 







 = 









5 200 26
166 150

8 5

5 3

1730 1078

2078 1280
.. (11.72)

2. Calculate the determinant of the data matrix (11.71):

det .M = ×( ) − ×( ) =200 150 166 26 25684 (11.73)

3. Send the four elements of the code matrix (11.72) to the channel to�
gether with the “checking element” det M given by (11.73).
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Now, let us consider three variants of the message including a possible
“single” error that can be received from the channel:

(a) The elements e1, e2, e3, e4 of the matrix (11.72) and the “checking ele�
ment” det M (11.73) do not have “errors”
(b) The det M  is received with the “error” and has, for example, the value
det M=20325; however, all elements e1, e2, e3, e4 of the matrix (11.72) are
received without “errors”
(c) The det M is received without “error,” the element e3 2078=  of the
matrix (11.72) is received with “error” and has the “erroneous” value
e3 3705= .
Let us consider how the “recipient” acts for each situation.

11.5.4.1. Situation (a)

1. Calculate the det .E = × − × = −1730 1280 1078 2078 25684
2. Compare the det E = −25684  with the det M = 25684  according to the
“checking relation” (11.34). Remember that for this case the power of the
encoding matrix (11.21) is equal to n=5. This means that the “checking
relation” (11.34) for the case n=5 has the following form:

det det .E M= − (11.74)

In fact, the “checking relation” (11.74) is valid for this case because
25684 25684= − −( ) . This means that the code matrix (11.72) is correct for
situation (a) and we can decode the code matrix (11.72) by means of its mul�
tiplication by the decoding matrix (11.22):

1730 1078
2078 1280

200 26
166 150

3 5

5 8














 = 





=
−

−
× M . (11.75)

11.5.4.2. Situation (b)

For situation (b), we have the “error” in the det M because the “errone�
ous” value of det M=20325, which differs from its true value as given by (11.73).
For situation (b), the action of the “recipient” is as follows:

1. Calculate the det E =−25684.
2. By comparing the det E =−25684 with the det M = 20325 , we can see
that the “checking relation” (11.74) is disturbed because −25884 ≠−20325.
This means that we have an “error” in the elements of code matrix E or in
the “checking element” det M. We mentioned above that we should pro�
vide additional measures for the protection of the det M  by using the
classical error�correction codes. If the det M has an “error,” it means that
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we can apply the additional “checking relations” (11.52) and (11.53) to
the code matrix E.
3. Check code matrix E according to the additional “checking relations”
(11.52) and (11.53). With this purpose we calculate the ratios of adjacent
row elements of the code matrix (11.72):

1730 1078 1 6 2078 1280 1 62: . ; : . .= = (11.76)

It follows from (11.76) that these ratios are near to the golden mean 1.618.
This means that the “checking relations” (11.52) and (11.53) are valid for this
case and we may conclude that we have an “error” only in the “checking ele�
ment” det M but the elements e1, e2, e3, e4 of the code matrix E do not have
“errors.” Hence, we can decode the message e1, e2, e3, e4 according to (11.75).
However, if the “checking relations” (11.52) and (11.53) are not valid, we
should repeat transmission of det M until the “checking element” det M is
transmitted without “error.”

 11.5.4.3. Situation (c)

Remember that for this hypothetical situation the element e3 has been
received with an “error” and has the “erroneous” value e3 3705= . However,
assume that we do not know this. Then the code matrix E, which is received
from the channel, has the following “erroneous” form:

E = 





1730 1078
3705 1280

. (11.77)

For situation (c) the action of the “recipient” is as follows:
1.  Calculate det .E = × − × = −1730 1280 1078 3705 1779590
2.  By comparing det E =−1779590 with det M =25684, received from the
channel, we can see that the checking relation (11.74) is disturbed. This
means that we have “errors” in the elements of the code matrix E.
3.  Check code matrix E according to the additional checking relations
(11.52) and (11.53) by means of the calculation of the ratios of adjacent
row elements of the matrix (11.76):

1730 1078 1 6 3705 1280 2 89: . ; : . .= = (11.78)

We can see from (11.78) that the checking relation (11.53) is disturbed
for this case and therefore the possible “single” error is in the elements of
the code matrix E. It is most probable that we have “single” errors in the
elements e3=3705 or e4=1280, that is, one of the elements e3 or e4 is distort�
ed. It is also possible that both the elements e3 and e4 are distorted (a case
of “double” errors).
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4. In this case the “recipient” can use the formulas (11.67)�(11.70) for the
calculation of the erroneous elements. Remember that the “recipient”
should verify different hypotheses about the possible “single” errors given
by (11.58). Verification of these hypotheses is carried out by calculation
of the possible values of elements e1, e2, e3, e4 according to the formulas
(11.67)�(11.70).
Let’s calculate the formulas (11.67)�(11.70) taking into account the “real”

values of the elements e1=1730, e2=1078, e3=3705, e4=1280 and det M=25684,
received from the channel:

x = − + × = =25684 1078 3705
1280

3968306
1280

3100 239. (11.79)

y = + × = =25684 1730 1280
3705

2240084
3705

604 61106. (11.80)

z = + × = =25684 1730 1280
1078

2240084
1078

2078 (11.81)

v = − + × = =25684 1078 3705
1730

3968306
1730

2293 8184. . (11.82)

Let us analyze the results of the calculations given by (11.79) � (11.82).
Only for the case (11.81) we have obtained a positive integer number; all the
remaining solutions are fractions. This means that our hypothesis about a pos�
sible “single” error is true only in the case of (11.81), and therefore, we have a
“single error” in element e3. By substituting the calculated value z=2078 for
the “erroneous” element e3=3705 in the matrix (11.77) we can correct the
“single” error in the element e3.

After correction of the error, our code matrix E can be represented in the
following form:

E = 





1730 1078
2078 1280

. (11.83)

We can check the accuracy of our correction by using the checking rela�
tion (11.74). Indeed, the determinant of the matrix (11.83) is equal to

det .E = × − × = −1730 1280 1708 2078 25684 (11.84)

By comparing det E=−25684 with det M=25684, received from the chan�
nel, we conclude that the checking relation (11.74) is true. This means that
restoration of the “erroneous” element e3 was done correctly.
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11.5.5. Correction of “Double” Errors

Now let us consider the situations (11.59) when two matrix elements have
been received with “errors.” We examine two characteristic cases of “double”
errors in the code matrix E:

(a) The erroneous elements are diagonal elements of the matrix (11.72).
(b) The erroneous elements are in the same row or in the same column of
the code matrix (11.72).
Suppose that the code matrix E (11.72) is “destroyed” by the “diagonal”

manner

E x
v= 





1078
2078 , (11.85)

by the “column” manner

E x
z= 





1078
1280 , (11.86)

or by the “row” manner

E x y= 



2078 1280 . (11.87)

Then using the checking relation (11.74) for the case n=5, we can write
the following equations for the determinants of the matrices (11.85) � (11.87):

xv − × = −2078 1078 25684 (11.88)

1280 1078 25684x z− = − (11.89)

1280 2078 25684x y− = − . (11.90)

Note that, if our hypothesis about the “double” errors is valid, the Diophan�
tine equations (11.88) � (11.90) have at least one integer solution.

Let us analyze the Diophantine equation (11.88). We can represent equa�
tion (11.88) in the form:

xv = 2214400. (11.91)

Taking into account the additional checking relations (11.52) and (11.53),
we will search the integer solutions to the Diophantine equation (11.91) among
integers that are near to the following numbers:

x = × =1 618 1078 1744 204. . (11.92)

and

v = × =0 618 2079 1284 294. . . (11.93)
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It is easy to calculate the following pair of integer solutions to (11.91), the
integers 1730 and 1280, which are near to the numbers (11.92) and (11.93)
and satisfy equation (11.91):

1730 1280 2214400× = .
This means that our hypothesis about “double” errors of the kind (11.85)

is true and we can correct the “double” error in the code matrix (11.85), if we
take the calculated values of the elements x and v as follows:

x v= =1730 1280; . (11.94)

We can verify the validity of our correction because our restored code
matrix has the form of the code matrix (11.83) that satisfies the checking rela�
tion (11.74).

Now let us examine the case of the “double” error given by (11.86). For
this case, we can write the following Diophantine equation:

1280 2078 25684x z− = − . (11.95)

Note that according to the additional checking relations (11.52) and
(11.53) we have to search the integer solutions to the Diophantine equation
(11.95) among the integers that are near to the following numbers:

x = × =1 618 1078 1744 204. . (11.96)

and

z = × =1 618 1280 2071 04. . . (11.97)

By solving the Diophantine equation (11.95), we can find the following
pair of integers

x z= =1730 2078; , (11.98)

which are near to the numbers (11.96) and (11.97), respectively, and are inte�
ger solutions to the Diophantine equation (11.95):

1280 1730 1078 2078 25684× − × = − .
For the case (11.87) the Diophantine equation has the following form:

1280 2078 25684x y− = − . (11.99)

It is easy to find the following integer solutions to equation (11.99):

x y= =1730 1078; . (11.100)

Note that the solution (11.100) satisfies the approximate equality (11.52)
because the ratio

x y: : .= =1730 1078 1 6048

is close to the golden mean 1.618. Similar to the preceding cases, the integer
solution (11.100) satisfies the main “checking relation” (11.74).
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Thus, by using numerical examples, we have proven that we can correct
all “double” errors in the code matrix (11.83), if our hypothesis about possible
“double” errors is valid. By analogy, we can prove that we can correct all pos�
sible “double” errors for all situations given by (11.59).

11.5.6. Correction of “Triple” Errors

There are four cases of “triple” errors given by (11.60). Let us consider the
“triple” errors in the matrix (11.83) of the following kind:

x y
z 1280





 . (11.101)

By using the checking relations (11.74), (11.52) and (11.53), we can write
the following equalities that connect the elements of the matrix (11.101):

x y z M× − × = −1280 det (11.102)

x y≈ ×τ (11.103)

z e≈ ×τ 4, (11.104)

where τ=1.618 is the golden mean.
By solving the Diophantine equation (11.102) and taking into account

the additional checking relations (11.103) and (11.104), we can find the cor�
rect values of x=1730, y=1078 and z=2078 that satisfy the checking relation
(11.74). This means that the Fibonacci encoding/decoding method allows for
correction of all possible “triple” errors of the kind (11.60).

11.6. Redundancy, Correction Ability, and the Advantages of the Fibonacci
Encoding/Decoding Method

11.6.1. Redundancy of the Fibonacci Encoding/Decoding Method

For the estimation of code redundancy we can use the concept of absolute
and relative redundancy [177]. Absolute redundancy is calculated as the dif�
ference:

r=s�l, (11.105)

where s is the number of bits in the code message and l is the number of bits in
the initial (or data) message. Then the relative redundancy can be calculated
by the formula:

R=(s�l)/s. (11.106)
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Suppose that l=4t. As for the Fibonacci encoding, the initial message is
represented in the form of data matrix (11.18), which means that each ele�
ment of the data matrix (11.18) consists of t bits.

Now let us consider a general case where the encoding matrix Q n  has the

form (6.4), that is, Q
F F
F F

n n n

n n
= 





+

−

1

1
. In this case the code matrix takes the

form (11.35).
The code message, entering the channel, consists of the five elements, the

“checking element” det M and the four elements e1, e2, e3, e4 given by (11.36)�
(11.39). The “checking element” det M is the main source of redundancy of
the code message entering the channel.

We need to calculate the number of bits necessary for the representation
of the det M. With this purpose in mind, let us calculate the maximal value of
the det M given by (11.19).

It is clear that the determinant (11.19) can reach its maximal value in that
case when the product m m1 4×  reaches its maximal value and the product
m m2 3×

 reaches its minimal value. If we neglect the minimal product m m2 3×
in comparison to the maximal product of m m1 4×

 and take the maximal value
of m1 and m4 equal to 2t, we can then estimate the maximal value of the det M
as follows:

det .
max

M t t t( ) ≈ × =2 2 22 (11.107)

It follows from (11.107) that we need 2t bits for the binary representation
of the det M.

The code matrix (11.35) is redundant with respect to the data matrix
(11.18). By comparing the code matrix elements e1, e2, e3, e4, which are given
by (11.36)�(11.39), with the data matrix elements m1, m2, m3, m4, we may con�
clude that for the case n≥1, the numerical values of the code matrix elements
e1, e2, e3, e4 are more than the numerical values of the data matrix elements m1,
m2, m3, m4. This means that for the binary representation of the code matrix
elements e1, e2, e3, e4 we need no less than l=4t bits.

In order to obtain the lowest estimate of the redundancy of the Fibonacci
coding/decoding method, we can use the following reasoning. Above we found
that we needed 2t bits for the representation of the “checking element” det M.
On the other hand, we need no less than 4t bits for the representation of the
code matrix (11.35). It follows from this consideration that for the represen�
tation of the code message, entering the channel, we need no less than 6t bits.
The ratio of the number of the “checking bits” (2t) to the general number of
bits (6t) is the lowest estimation of the relative redundancy of the Fibonacci
encoding/decoding method:
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RFC=2t/6t=1/3=0.333 (33.3%). (11.108)

It is clear that the real relative redundancy of this method exceeds the
estimation of 33.3% because the lowest estimation (11.108) does not include
the redundancy that is caused by the code matrix (11.35). It is clear that for
the diminution of redundancy we should choose the coding matrix with the
minimal value of n (for example n=1). However, for this case (according to
Table 11.4) the equalities (11.52) and (11.53) become very approximate and
we cannot use these checking relations for error detection and correction. If n
increases, then according to Table 11.4 the equalities (11.52) and (11.53) be�
come more and more “precise” and the “correction ability” of the Fibonacci
method will increase. Thus, for each individual case we should decide what
value of n is optimal for our application from the point of view of necessary
redundancy and the required correction ability of the method.

11.6.2. Correction Ability of the Fibonacci Encoding/Decoding Method

Now, let us estimate the correction ability of the Fibonacci encoding/de�
coding method for two cases of n: (1) n=1 and (2) n>>1.

For the case n=1 the Fibonacci encoding/decoding method has a minimal
relative redundancy given by (11.108). However, we can use only one check�
ing relation (11.34) for this case. By using the checking relation (11.34), we
can only correct the “single” errors given by (11.58). It is clear that there are

15 different errors in the code matrix E e e
e e= 





1 2

3 4
 including “single,” “dou�

ble,” “triple” and “fourfold” errors, and we can only correct four of them (the
“single” errors). Then we can estimate for this case the correction ability of
the Fibonacci encoding/decoding method as follows:

Scor = = =4
15

0 2667 26 67. . %. (11.109)

If we compare this estimation with the potential correction ability of the
Hamming (15,11)�code

Sc=0.0004882 (0.04882%), (11.110)

we can see that the correction ability of the Fibonacci encoding/decoding
method given by (11.109) exceeds the potential correction ability of the Ham�
ming code given by (11.110) by more than 500 times. Remember too that the
relative redundancy of the Hamming (15,11)�code and the Fibonacci encod�
ing/decoding method are equal to 0.267 (26.7%) and 0.333 (33.3%), respec�
tively, that is, their relative redundancies are comparable.
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We should also  recall that the potential correction ability of the classical
error�correction codes given by (11.2) do decrease exponentially with the in�
crease of the data bits n. For example, for n=20, the coefficient of the potential
correction ability of the error�correction code is equal to Sc=1/220=0.0000009
(0.00009%). For this case, the advantage of the Fibonacci encoding/decoding
method in comparison to the classical error�correction code is still more im�
pressive (by about 300,000 times).

However, for the case n>>1, we can use the additional checking relations
given by (11.52) and (11.53). Above we have proved that for this case we can
correct with guarantee the “single,” “double,” and “triple” errors in the code

matrix E e e
e e= 





1 2

3 4
. It is clear that for this case the correction ability of the

Fibonacci encoding/decoding method is defined by the ratio:

Scor = = ( )14
15

0 9333 93 33, , % . (11.111)

It is clear that for the case  n>>1, the correction ability of the Fibonacci
encoding/decoding method given by (11.111) exceeds the potential correc�
tion ability of the Hamming (15,11)�code (11.110) by about 2,000 times.
However, for the case n=20, the advantage of the Fibonacci encoding/decod�
ing method in comparison to the classical error�correction code is more im�
pressive (by more than 1,000,000 times).

11.6.3. Advantages of the Fibonacci Encoding/Decoding Method

Comparing the classical error�correction codes [177, 182] with the Fibonacci
error�correction codes based on the matrix approach, we may note the follow�
ing. A theory of error�correction codes developed by prominent American re�
searcher Richard Wesley Hamming and others [177, 182] is one of the most
important theoretical achievements in computer science. However, the exist�
ing error�correction codes have a number of fundamental shortcomings:

1. The very low potential correction ability of all existing error�cor�
rection codes is the first shortcoming. For example, the potential cor�
recting ability of the Hamming (15,11)�code, which allows one to correct
all “single” errors in the 15�digit code combination, is equal to 0.04882%.
This means that the Hamming code can correct only about 0.05% of all
possible errors that can appear in the code combination.
2. It is well known that very small information elements, bits and their
combinations, are the objects of detection and correction. This is next
essential shortcoming of all existing error�correction codes. The exist�
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ing error�correction codes are at times named Algebraic Codes as they are
based on modern algebra. Unfortunately, modern mathematical theory,
such as matrix theory, is insufficiently used in modern coding theory.
The Fibonacci error�correction codes based on the matrix approach pos�

sess a number of essential peculiarities and advantages in comparison to clas�
sical error�correction codes:

1. The use of the matrix theory for designing new error�correction codes
is the first peculiarity of the Fibonacci encoding/decoding method.

2. The large information units, in particular, matrix elements, are objects
of detection and correction of errors in the Fibonacci encoding/decoding meth�
od. This fact is the first advantage of the Fibonacci encoding/decoding meth�
od in comparison to the classical error�correction codes [177, 182]. Note that
there are no theoretical restrictions for the value of the numbers that can be
matrix elements.

3. However, the most important advantage of the Fibonacci encoding/
decoding method is the very high correction ability in comparison to the clas�
sical error�correction codes. As is demonstrated above, the correction ability
of the Fibonacci error�correction codes exceeds the correction ability of the
classical error�correction codes by more than 1,000,000 times. What is the
basis for such high correction ability? Probably the main cause is a fundamen�
tally new approach to coding theory. For the detection and correction of er�
rors we use not only the “checking relations” (11.32)�(11.34), (11.52) and
(11.53) but also the property of matrix elements to be integer numbers. This
allows for effective application of the theory of Diophantine equations for er�
ror correction. In general, the combination of matrix theory with the Diophan�
tine equation theory results in the creation of a new class of error�correction
codes that exceed by more than 1,000,000 times the classical error�correction
codes in their correction ability.

11.7. Matrix Cryptography

The idea of a Matrix Approach for the creation of a new theory of error�
correcting codes [44, 113] can be used in the development of new crypto�
graphic algorithms. First, in this section we discuss an application of Matrix
Cryptography for Digital Signals, which allows an increase in the speed of en�
cryption/decryption and its application as a cryptographic method for pro�
tection of communication systems operating in real time. Second, we discuss



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

602

one modification of Matrix Cryptography called “Golden” Cryptography, which
allows for the checking of informational processes in cryptographic systems.

11.7.1. The Concept of Hybrid Cryptosystems

In this study we are talking about cryptographic protection of Digital Sig�
nals. The term digital signal refers to discrete�time signals that have a dis�
crete number of levels. Digital signals are digital representations of discrete�
time signals, which are often derived from analog signals. In the Digital Revo�
lution, the use of digital signals has increased significantly. Many modern media
devices, especially the ones that connect with computers, use digital signals
to represent signals that were traditionally represented as continuous�time
signals: examples include measurement systems, mobile phones, music and
video players, personal video recorders, and digital cameras.

Let us represent a digital signal X in the form of a sequence of samples,
that is,

X x x x x x x x x x x x xn n n n= { }+ + + +1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , ,..., , , , ,... . (11.112)

It is clear that for many cases there is a problem with the cryptographic
protection of the digital signal (11.112). First of all, it is important to protect
mobile phones from forbidden eavesdropping. It is also necessary to protect
music or video information from forbidden access. And it is very important to
protect many measurement systems from forbidden access, and so on. Such
problems exist for video recorders and digital cameras.

It is well�known that a majority of continuous�time signals are signals
representing information in real time. Of course, cryptographic algorithms
used for cryptographic protection of digital signals must be sufficiently fast�
acting algorithms.

Let us consider from this point of view Public�key Algorithms [183] used
widely in modern cryptographic praxis. Many recognized specialists are criti�
cally evaluating the advantages of public�key cryptography and are paying close
attention to the shortcomings of public�key cryptography. For example, Rich�
ard A. Molin writes [187]: “Public�key methods are extremely slow compared with
symmetric�key methods. In latter discussions we will see how both the public�key
and symmetry�key cryptosystems come to be used, in concert, to provide the best of
all worlds combining the efficiency of the symmetric�key ciphers with the increased
security of public�key ciphers, called hybrid systems.” As noted in [188] “ we have
symmetric key algorithms that are very fast and strong, but are really bad at key
management. We have asymmetric key algorithms that are really good at key man�
agement, but are terribly slow. Real�world systems are usually hybrids, using each
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technology, symmetric and asymmetric, where it is strong. Normally, these hybrid
systems will use asymmetric key cryptography to do the key management, and use
symmetric key cryptography to do bulk encryption/decryption.”

The concept of a Hybrid Cryptosystem is a new direction in cryptography
[187]. The main goal is to combine the high security of a public�key crypto�
system with the high speed of a symmetric�key cryptosystem. A hybrid cryp�
tosystem can be constructed using two separate cryptosystems:

� a public�key cryptosystem for the transmission of cryptographic keys,
� a symmetric�key cryptosystem for data transmission.
Such approach increases interest in the development of hybrid cryp�

tography based upon new cryptographic algorithms, particularly, Matrix
Cryptography.

11.7.2. General Principle of Matrix Cryptography

Let us consider a non�singular (n×n)�matrix E and its inverse matrix
E�1, which are connected by the identity:

E E In× − =1 , (11.113)

where In  is identity (n×n)�matrix.
Note that the matrices E and E�1 play the role of encryption and decryption

matrices for matrix cryptography.
Now let us consider a data square matrix X (plaintext) with the same size as

the matrix E. Then we can write the product of the matrices E and X as follows:

Y E X= × . (11.114)

The procedure (11.114) is called Matrix Encryption. As a result of the matrix
encryption we get a Code Matrix Y (ciphertext).

If we now multiply the code matrix Y by a Decryption Matrix E�1, we get:

E Y E E X E E X I X Xn
− − −× = × ×( ) = ×( ) × = × =1 1 1 . (11.115)

The procedure (11.115) is called Matrix Decryption.
The identities (11.114) and (11.115) give rise to a general principle, which

can be used in coding theory and cryptography. This principle, for the first
time, was formulated in the book [44].

Consider the sequence xi i

N{ } =1
, representing data for a one�dimensional

digital signal. The elements of this sequence can be rearranged in the form of
(m×m)�matrices. This results in a sequence of square matrices:

x x

x x

x x

x x

m

m m m

m m m

m m m

1

1

1

2 1 22 2

2 2

2 2

"
# % #

"

"
# % #

"− +

+ +

− +
















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






,…  . (11.116)
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The elements of this new sequence are defined by:

X
x x

x x
k

k m k m m

km m km

=














− + − +

− +

( ) ( )1 1 1

1

2 2

2 2

"
# % #

" . (11.117)

The sequence of square matrices Xk k

K{ } =1
 contains the same data as se�

quence xi i

N{ } =1
. To encrypt the sequence xi i

N{ } =1
, it can be reformulated to

build a sequence of square matrices.
Let us consider the formation of encryption and decryption matrices E

and E�1. For the simplest case, the encryption matrix E can be chosen random�
ly from some set of encryption matrices. The decryption matrix E�1 is comput�
ed from the encryption matrix E according to a special algorithm for calcula�
tion of Inverse Matrices [190]. For example, we can use the formula (11.10)
for computation of the invertible (2×2) matrix.

In the generalized case, we can use different encryption and decryption
matrices Ek  and Ek

−1  for the encryption/decryption of every element of the
sequence (11.116). Such a method increases the cryptographic power of ma�
trix cryptography.

Suppose that Ek k

K{ } =1
 is a sequence of encrypted non�singular square ma�

trices of the same size as the data matrix (11.117). Multiplication of Ek  and
Xk  yields:

Y E Xk k k= (11.118)

and thus the sequence of Yk k

K{ } =1
 is defined. In inverting the operations done

in Eq. (11.115) to create matrix sequence Xk k

K{ } =1
, the matrix sequence Yk k

K{ } =1

is transformed into scalar sequence yi i

N{ } =1
. This new sequence is an encrypted

form of the original sequence xi i

N{ } =1
. The cryptographic key, which is used

here, is the sequence of non�singular matrices Ek k

K{ } =1
. Some methods for de�

fining this encryption sequence of non�singular matrices are discussed below.

11.7.3. Matrix Cryptography of Digital Sound Signals

In this section we use the scientific results obtained by a follower of the
author, the Iranian researcher Mostapha Kalami Heris (Ferdowsi University
of Mashhad).

One possible way to define non�singular matrices in the encryption se�

quence Ek k

K{ } =1
 is to define these matrices as real powers of a non�singular

matrix, named a Kernel Matrix.
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Assume that B is a kernel non�singular matrix. Let us prove that any real
power p ≠ 0  of the kernel non�singular matrix B with det B ≠ 0 , that is, the
matrix Bp  is also non�singular. Indeed, we can represent the determinant of
the matrix Bp  as follows:

det detB Bp p( ) = ( ) . (11.119)

It follows from (11.119) that for cases det B ≠ 0  and p > 0

det Bp( ) ≠ 0 , (11.120)

that is, the matrix Bp  is also non�singular.
So the matrices Bp  and B p− can be used to create a sequence of encryp�

tion and decryption non�singular matrices. Assume that the encryption se�
quence has the form of Ek k

K{ } =1
. Suppose pk k

K{ } =1
 is a sequence of real numbers.

Then elements of the encryption sequence can be defined by:

E Bk
pk= , (11.121)

which is the definition of an encryption sequence with the real powers of a
non�singular kernel matrix B.

A Digital Sound Signal is an example of a one�dimensional data signal. Note
that if the signal is recorded in a multi�channel mode, any channel of this sound
is one�dimensional. In this subsection, a single channel of sound is studied and
the cryptographic algorithm is applied to a single channel. Digital sound signals
are saved and stored in many formats in the computers. The amplitudes of sam�
ples are saved in the file as data, and later the sound will be played back by
audio hardware. When all amplitudes of sound are multiplied or divided by a
constant, the volume of sound is the only thing which is changing. If the rela�
tive value of amplitudes remains unchanged, the sound is unchanged. Since the
value of amplitudes has to lie in the range of [�1,1], all sounds in the algorithm
are normalized to have the largest absolute value of amplitudes equal to 1.

Suppose x[n] is a digital signal represented as the sequence form xi i

N{ } =1 .
To apply the matrix cryptography to this signal, the following non�singular
matrix is used, for example, as kernel matrix:

B = −
−







0 2 1
1 0 5
.

. . (11.122)

The powers of this matrix are computed where powers are real numbers,
in the range of [�5, 5].

A block diagram of the encryption/decryption process is shown in Fig.
11.1. The input signal x[n] is passed through an encryption process which
yields the Encrypted Signal y[n]. Also, the latter signal is passed through the
decryption process yielding the Recovered Signal [ ]x̂ n .
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Encryption

Decryption

[ ]x n [ ]y n

[ ]y n ˆ[ ]x n

Original Signal Encrypted Signal 

Recovered Signal 

Figure 11.1. Block diagram of encryption and decryption processes

According to the size of B, the elements of sequence xi i

N{ } =1
 corresponding

to the samples of sound signal, must be reformed to build a sequence of (2×2)

square matrices, like to Xk k

K{ } =1
. N and K are appropriate numbers and in this

particular problem, N=4K. The elements of the power sequence pk k

K{ } =1
 are

randomly generated with a uniform distribution over the range [5,5]. The se�

quence of encryption matrices Ek k

K{ } =1
is computed by the rule E Bk

pk= . The

encrypted matrix sequence Yk k

K{ } =1
 is an element�by�element multiplication

of the encryption sequence Ek k

K{ } =1
 and data sequence Xk k

K{ } =1
. Flattening the

elements of matrix sequence Yk k

K{ } =1
 yields the numerical sequence of the en�

crypted data yi i

N�{ }
=1

. This sequence may be assumed to be a representation of
an encrypted sound signal having the same duration as the original sound

signal. As mentioned earlier, the amplitude of digital sounds are bounded in
the range [�1, 1], and the elements of yi i

N�{ }
=1

 may not lie in this range. Hence,
the sequence yi i

N�{ }
=1

must be normalized to obtain the sequence yi i

N{ } =1
. The

elements of this sequence are defined by:

y
y

y
i

i

j N j

=
≤ ≤

�
�max

.

1
(11.123)

The resulting sequence is an original sound signal in an encrypted form.
Due to the non�singularity of all encryption matrices, the original data can be
recovered completely from the encrypted data. The decryption algorithm is
just like the encryption algorithm. The only difference is the sequence of pow�
ers. In the decryption phase, the negated form of the power sequence of the
encryption phase must be used.
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As is well�known, the binary representation used in digital computers can�
not represent all real numbers accurately and round�off errors are unavoid�
able. The numbers appearing in this encryption/decryption algorithm are real
numbers in general, and most of them cannot be represented using a finite
number of bits. Because of the already mentioned round�off error, the recov�
ered signal and original signal are not necessarily equal and there exists an
encryption/decryption error in the algorithm. The existence of this error is
one of the limitations in the implementation of matrix cryptographic algo�
rithms in digital computers, and restricts the application of this algorithm to
fields which do not require exact recovery of encrypted data.

11.7.4. Matrix Cryptography of Digital Images

In this subsection we discuss the application of matrix cryptography to
digital images. This application was developed by Mostapha Kalami Heris.
Images are 2�dimensional signals and the digital image can be represented as a
2�dimensional sequence of color data. One useful color coding approach used
in digital computers is RGB coding. This coding is based upon the fact that
every color can be represented as a linear combination of three base light beams:
Red, Green and Blue. Digital images are saved in digital computers as a 2�
dimensional array of color data. Each element of this array is called a pixel.
Every pixel in a digital image has a color composed of three elements: red,
green and blue. Each element of a color in the 24�bit color coding standard,
has 8 bits of data. So the elements of a 24�bit RGB color are represented as
positive integers ranging from 0 to 255. It is standard practice to scale this
range into the range of real numbers between 0 and 1. The decomposition of
color of every pixel in a digital image into its corresponding red, green and
blue elements yields three numerical 2�dimensional arrays. Each array is in
the form of x[i, j] where i=1,2,...,M  and j=1,2,...,N.  M and N are the vertical
and horizontal sizes of the picture, respectively. It is assumed that values of
elements of this array are normalized to be in the range [0, 1].

To apply matrix encryption to a sample image, the method of the previous
subsection is used to create an encryption sequence. Note that all sequences
in this subsection are assumed to be 2�dimensional and have the appropriate
size and number of elements. The example of kernel matrix, which is used in
this subsection, is given by (11.124).

This matrix is non�singular and has non�negative eigenvalues. So all of its
real powers are real matrices which can be used as encryption matrices. To use
this matrix as a kernel, the data in the original image must be reformed into
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(8×8)�matrices. Simply put, the original image is divided into (8×8)�image
blocks and the corresponding data for each block is used to create the source
matrix sequence. The sequence of powers is generated as a random variable,
uniformly distributed in the range [�10, 10]. Such a cryptography algorithm,
based upon the non�singular kernel matrix of the kind of (11.124), can be
used for a cryptographic protection of images.

B =

−
− − − −
− − −

0 2 1 0 0 1 0 3 0 0 0 2
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0 0 2 0 3 1 0 0 1 0 1 0
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 . (11.124)

11.7.5. The Problem of Checking Information in Cryptosystems

Studying applications of cryptosystems in communication systems, one
sometimes loses sight of an important problem, one which exists in practically
all communication systems. We are talking about the problem of protecting
the information processing from malfunctions and failures in the encoder and
decoder, as well as, from noises in the communication channel itself. This prob�
lem is especially important for special communication systems, for example,
for cosmic or military communication systems.

It is well�known that existing cryptographic methods and algorithms [183�
187] were created for “ideal conditions” when one assumes that the encoder,
the communication channel, and the decoder operate “ideally,” that is, the
coder carries out an “ideal” transformation of plaintext into ciphertext, the
communication channel “ideally” transmits a ciphertext from the encoder to
the decoder, and the latter performs an “ideal” transformation of ciphertext
into plaintext. It is clear that the slightest breach of the “ideal” transforma�
tion or transmission is a catastrophe for the cryptosystem because the true
message cannot be delivered to the “recipient.”

Consider for a moment the transformation of plaintext into ciphertext. Be�
fore sending the ciphertext to the communication channel we must be con�
vinced that the ciphertext is consistent with the plaintext. We can be con�
vinced of this by means of an inverse transformation of the ciphertext into the
plaintext. In symmetric�key cryptosystems we can perform an inverse trans�
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formation because the “sender” knows the cryptographic key. However, we
cannot make this inverse transformation in a public�key cryptosystem because
the secret key is not known to the “sender.” It follows from this reasoning that
public�key cryptosystems are the most vulnerable for errors that may ap�
pear in the encoder. This means that the basic advantage of the public�key
cryptosystem becomes a shortcoming when we are talking about designing
reliable cryptosystems. Despite the extraordinary importance of protecting
cryptosystems from “noises,” “malfunctions,” and “failures,” this problem is
not adequately highlighted in modern cryptographic literature [183�187].
Sending a ciphertext through a communication channel in public�key crypto�
systems, we must rely on the good will of God!

11.7.6. “Golden” Cryptography

Let us consider the application of so�called “golden” Q� and Gm�matrices
introduced in Chapter 6 for the creation of a new cryptographic method called
“golden” cryptography [114, 118]. Recall (see Chapter 6) that the “golden” Q�
matrices are the following matrices:

Q cFs x sFs x
sFs x cFs x

x2 2 1 2
2 2 1

= +
−







( ) ( )
( ) ( )

Q x sFs x cFs x
cFs x sFs x

2 1 2 2 2 1
2 1 2

+ = + +
+







( ) ( )
( ) ( ) . (11.125)

The first peculiarity of the “golden” Q�matrices (11.125) is the fact that the
symmetric hyperbolic Fibonacci sine and cosine given by (5.16) and (5.17), that

is, the functions sF x x x( ) = ( )−τ − τ2 2 5  and cF x x x( ) = ( )+ − +( )τ + τ2 1 2 1 5 ,

where τ = +( )1 5 2/ is the golden mean, are in fact elements of the “golden” Q�
matrices. This means that the “golden” Q�matrices (11.125) are functions of the
continuous variable x. The second peculiarity of the “golden” matrices (11.125)
is the fact that their determinants are equal to 1 and �1:

det detQ Qx x2 2 11 1= = −+and . (11.126)

It follows from (11.126) that the “golden” Q�matrices (11.125) are non�
singular or invertible matrices. Their inverse matrices (see Chapter 6) are the
following:

Q

Q

x

x

cFs x sFs x
sFs x cFs x

sFs

−

− −

=

=

− −
− +







−

2

2 1

2 1 2
2 2 1
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(22 2 1
2 1 2 2
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) ( )
( ) ( )

.
+

+ − +




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(11.127)

The “golden” Gm�matrices (see Chapter 6) are the following matrices:
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G
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(11.128)

The first peculiarity of the “golden”  Gm�matrices (11.128) is the fact
that hyperbolic Fibonacci m�sine and m�cosine given by (5.103) and

(5.104), that is, the functions sF x
m

m
m
x

m
x

( ) = −
+

−Φ Φ
4 2

 and cF x
m

m
m
x

m
x

( ) = +
+

−Φ Φ
4 2

,

where Φm m m= + +( )4 22 /  is the metallic mean, are elements of the

“golden” Gm�matrices. This means that the “golden” Gm�matrices (11.128)
are functions of the continuous variables x and m>0. The second pecu�
liarity of the “golden” G

m
�matrices (11.128) is the fact that their deter�

minants are equal to 1 and �1:

det detG Gm
x

m
x2 2 11 1= = −+and . (11.129)

It follows from (11.129) that the “golden” G
m
�matrices (11.128) are non�

singular or invertible matrices. Their inverse matrices (see Chapter 6) have
the following form:
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(11.130)

The idea of “golden” cryptography is similar to that of the Fibonacci en�
coding/decoding method described in Section 11.6. Let us here represent plain�
text in the form of a non�singular square (2×2)�matrix M:

M
a a
a a

= 





1 2

3 4
. (11.131)

Note that there are 4 4 3 2 1 24! = × × × =  variants (permutations) to form
the matrix (11.131) from the four elements a1, a2, a3, a4 . Let us designate
the i�th permutation by Pi (i=1, 2, …, 24). The first step of cryptographic
protection of the plaintext a1, a2, a3, a4 is a choice of the permutation P

i
 .

Then we choose the direct “golden” matrices (11.125) or (11.128) as en�
cryption matrices and their inverse matrices (11.127) or (11.130) as de�
cryption matrices.

Let us now consider the following encryption/decryption algorithms based
on matrix multiplication (see Table 11.5 and Table 11.6).



Chapter 11
611

A New Coding Theory Based on a Matrix Approach

Here M is the plaintext (11.130) that is formed according to the permuta�
tion Pi ; E x E x1 2( ) ( ), , E x m E x m3 4, , ,( ) ( ) are code matrices or ciphertexts;
Q Qx x2 2 1, ,+ G Gm

x
m

x2 2 1, + are encryption matrices; Q Qx x− − −2 2 1, , G Gm
x

m
x− − −2 2 1,  are

decryption matrices. For the encryption/decryption method given in Table
11.5 we can use the variable x as a cryptographic key. For the encryption/
decryption method given in Table 11.6 we can use the variables x and m>0  as
components of a cryptographic key. This means that in dependence on the val�
ue of the keys x and m there are an infinite number of transformations of a
plaintext M into a ciphertext E(x) or E(x,m).

In general the cryptographic key K consists of three components: permu�
tation Pi and the variables x and m, that is,

K = {P, x, m}.

11.7.7. Checking Information in the “Golden” Cryptosystem

11.7.7.1. The Main Checking Relations for the “Golden” Cryptography

In order to protect information in cryptosystems from “noise,” “malfunc�
tion,” and “failure,” we really should provide for information “checking” at all
stages of the transformations, that is, we should provide for checking

(1) a transformation of plaintext into ciphertext in the encoder
(2) a transmission of the ciphertext in communication channels
(3) a transformation of ciphertext into plaintext in the decoder.
For the “golden” cryptography we can use the following identities, which

connect determinants of plaintext and ciphertext. Let us calculate determi�
nants of the code matrices E x E x E x m E x m1 2 3 4( ) ( ) ( ) ( ), , , , , :

det det det ; det det det ;

det , det

E x M Q E x M Q

E x m

x x
1

2
2

2 1

3

( ) = ( ) =

( ) =

+× ×

MM G E x m M Gm
x

m
x× ×det ; det , det det .2

4
2 1( ) = + (11.132)

Taking into account (11.126) and (11.129), we can rewrite the formulas
(11.132) as follows:

Table 11.5. Encryption/decryption
algorithm based on the “golden” Q�

matrices

Encryption Decryption

M Q E x E x Q M

M Q E x E

x x

x

× ×
×

2
1 1

2

2 1
2 2

= =
=

( ) ( )
( )

−

+ xx Q Mx( ) − − =× 2 1

Table 11.6. Encryption/decryption
algorithm based on the “golden” Gm�

matrices

Encryption Decryption

M G E x m E x m G M

M G
m

x
m

x

m
x

× ×
×

2
3 3

2

2 1

= =
=

( ) ( ) −

+

, ,

EE x m E x m G M
m

x
4 4

2 1, ,( ) ( ) − − =×
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det det ; det det ;

det , det ; det , d

E x M E x M

E x m M E x m

1 2

3 4

( ) = ( ) = −

( ) = ( ) = − eet .M (11.133)

The identities (11.133) play a major role in the “main checking relations”
for “golden” cryptography.

 11.7.7.2. Checking Encoder

For “checking” an encoder we can use the fundamental identities (11.133).
For this purpose we first compute the determinant of the plaintext (11.131):

det M a a a a= −1 4 2 3 . (11.134)

Then we compute the determinants det E of the code matrices E1(x), E2(x),
E3(x,m), E4(x,m) and then compare the determinants det E  and det M accord�
ing to (11.133). If the identity (11.133) is valid, it means that the “golden”
encryption is valid and we can send the code matrix E via the channel. In the
contrary case, one must begin anew the “golden” encryption.

 11.7.7.3. Checking Channel and Decoder

For “checking” the channel we will use the determinant det M taken by mod�
ule k, that is, det

mod
M

k[ ] . Then we send det
mod

M
k[ ]  to the channel after the

ciphertext E. After receiving the code matrix E from the channel we should com�
pute the determinant det E and perform the module k operation, that is, calculate
det

mod
E

k[ ] . By comparing det
mod

E
k[ ] with det

mod
M

k[ ]  received from the chan�
nel, we can check for the correctness of the transmission of the ciphertext E via the
channel. If det det

mod mod
E M

k k[ ] = [ ] , then the ciphertext E is correct and the de�
coder can transform the ciphertext E into the plaintext M. After the transforma�
tion E→M, we should calculate det M according to (11.134) and then compare it
with det E. If one of the identities (11.133) is valid, it means that the transforma�
tion E→M is correct. Thus, all information transformations in the cryptosystem
can be checked and the reliability of the cryptosystem is increased.

11.7.8. Project for a Cryptographic Mobile Phone

A mobile phone (also known as a wireless phone or cellular phone) is an
electronic device used for mobile voice or data communication over a net�
work of specialized base stations known as cell sites. In addition to the stan�
dard voice function of a mobile phone, telephone, current mobile phones may
support many additional services, and accessories, such as SMS for text mes�
saging, email, packet switching for access to the Internet, gaming, camera with
video recorder, MMS for sending and receiving photos and video and so on.



Chapter 11
613

A New Coding Theory Based on a Matrix Approach

We can suggest a project for the Mobile Phone based on a hybrid matrix
cryptosystem. In addition to all traditional electronic components, a new Cryp�
tographic Mobile Phone should contain a hybrid cryptosystem, consisting of a
public�key cryptosystem and symmetric�key cryptosystem based on matrix
cryptography for sound signals and images. This approach provides crypto�
graphic protection of all important information, in particular, voice and video
information by using a hybrid cryptosystem based on matrix cryptography,
and also protects all text information (SMS, email and so on) by using a pub�
lic�key cryptosystem. It is clear that the Cryptographic Mobile Phone protects
human rights and the freedom of the individual more effectively than our ex�
isting cryptographic systems.

11.8. Conclusion

1. The theory of information and error�correction codes developed by Amer�
ican researchers Claude Shannon, Richard Wesley Hamming and others is
one of the most important theoretical achievements in computer science.
However, existing error�correction codes have a number of fundamental short�
comings. The first one is the very low potential correction ability of error�
correction codes. For example, the potential correction ability of the Ham�
ming (15,11)�code, which allows for correction of all single errors in the 15�
digit code combination, is equal to 0.04882%. This means that the Hamming
code can correct only about 0.05% of all errors that can appear in the code
combination. The next shortcoming is the fact that the very small informa�
tion elements, bits and their combinations, are the objects of detection and
correction. The existing error�correction codes are sometimes named Alge�
braic Codes because they are based on modern algebra. Unfortunately, impor�
tant modern theories like matrix theory are insufficiently employed in mod�
ern coding theory.

2. The Fibonacci Q�matrix was developed in the work of American math�
ematician Verner Hoggatt [16], and is considered to be one of the foremost
achievements in contemporary Fibonacci number theory. Recently the author,
Alexey Stakhov, generalized the concept of the Fibonacci Q�matrix and in�
troduced the notion of generalized Fibonacci matrices [103, 113] based upon
the Fibonacci p�numbers [20], Fibonacci m�numbers [118] and Fibonacci
(p,n)�numbers [154].
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3. A new theory of error�correction codes based upon the generalized Fi�
bonacci matrices [113, 118] has the following advantages compared with the
algebraic error�correction code theory [177, 182]: (1) the Fibonacci coding/
decoding method amounts to matrix multiplication, that is, to the well�known
algebraic operation that is carried out very efficiently in modern computers;
(2) the main practical feature of the Fibonacci encoding/decoding method is
the fact that large information units, in particular, matrix elements, are ob�
jects of error detection and correction; (3) the simplest Fibonacci coding/
decoding method (where p=1) can guarantee the restoration of all “errone�
ous” (2×2)�code matrices having “single,” “double” or “triple” errors; (4) the
potential correction ability of this method for the simplest case p=1 is equal
to 26.67% (for n=1) or 93.33% (for n>>1) which exceeds essentially (in thou�
sands and millions times) the potential correction ability of all well�known
algebraic error�correction codes (0.04882% for the Hamming code). This
means that the new coding theory based on the matrix approach is of great
practical importance for modern computer science.

4. There are two directions in cryptography, Symmetric Cryptosystems
with a Secret Key and Asymmetric Cryptosystems with Public and Secret Keys.
Since publication of an article by W. Diffie and M. E. Hellman titled New
Directions in Cryptography [183], the topic of Public�Key Cryptosystems [183�
186] has attracted a great deal of attention and become a basis for the devel�
opment of modern cryptosystems. Unfortunately, Richard A. Molin’s opin�
ion [187] that “public�key methods are extremely slow compared with sym�
metric�key methods” makes their application for informational systems op�
erating in real time (for example, telephone systems) much more difficult.
Concepts of the Hybrid Cryptosystem [187, 188] and Matrix Cryptography
developed in this present book can lead to the design of a Cryptographic
Mobile Phone. This approach provides cryptographic protection to all voice
and video information. The Cryptographic Mobile Phone in turn protects
human rights and the freedom of the individual to communicate under se�
cure conditions more effectively than existing cryptographic systems. And
such a Cryptographic Mobile Phone could become a very important step in
the creation of a Harmonic Society based on the Principles of Harmony and
the Golden Section already developed in ancient science.



Epilogue Clarifying the Origins and  Development of Mathematics
615

Epilogue

Dirac’s Principle of Mathematical Beauty and the
Mathematics of Harmony:
Clarifying the Origins and Development of Mathematics

E.1. Introduction

In the Epilogue, we try to give a review of the basic results obtained in the
present book from the point of view of Dirac’s Principle of Mathematical Beauty.
For convenience of the readers, we have duplicated in the Epilogue some of
the most important formulas of the Mathematics of Harmony. Also we have
included a number of the newest mathematical results, which were obtained
on the concluding stage of preparing the camera�ready manuscript. First of
all, we mention the scientific results obtained by the author together with the
outstanding Russian mathematician Samuil Aranson – Fibonacci�Lorenz trans�
formations, which have direct relation to special theory of relativity, and the
solution to Hilbert’s Fourth Problem, one of the unsolved Hilbert’s problems
[191].

E.1.1. Dirac’s Principle of Mathematical Beauty

Recently the author studied the contents of a public lecture: The complex�
ity of finite sequences of zeros and units, and the geometry of finite functional
spaces [192] by eminent Russian mathematician and academician Vladimir
Arnold, presented before the Moscow Mathematical Society on May 13, 2006.
Let us consider some of its general ideas. Arnold says:

1. In my opinion, mathematics is simply a part of physics, that is, it is an
experimental science, which discovers for mankind the most important and
simple laws of nature.
2. We must begin with a beautiful mathematical theory. Dirac states: “If
this theory is really beautiful, then it necessarily will appear as a fine
model of important physical phenomena. It is necessary to search for
these phenomena to develop applications of the beautiful mathemati�
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cal theory and to interpret them as predictions of new laws of phys�
ics.” Thus, according to Dirac, all new physics, including relativistic and
quantum, develop in this way.
At Moscow University there is a tradition that the distinguished visiting�

scientists are requested to write on a blackboard a self�chosen inscription.
When Dirac visited Moscow in 1956, he wrote “A physical law must possess
mathematical beauty.” This inscription is the famous Principle of Mathemati�
cal Beauty that Dirac developed during his scientific life. No other modern
physicist has been preoccupied with the concept of beauty more than Dirac.

Thus, Dirac’s Principle of Mathematical Beauty is the primary criterion
for a mathematical theory to be considered as a model of physical phenomena.
Of course, there is an element of subjectivity in the definition of the “beauty”
of mathematics, but the majority of mathematicians agrees that “beauty” in
mathematical objects and theories nevertheless exist. Let’s examine some which
have a direct relation to the theme of this book.

E.1.2. Platonic Solids

 We can find the beautiful mathematical objects in Euclid’s Elements. As
is well known, the Book XIII of Euclid’s Elements was devoted to a geometric
theory of 5 regular polyhedrons called Platonic Solids (Fig. 3.4). And really
these remarkable geometrical figures got very wide applications in theoreti�
cal natural sciences, in particular, in crystallography (Shechtman’s quasi�crys�
tals), chemistry (fullerenes), biology and they are brilliant confirmation of
Dirac’s Principle of Mathematical Beauty.

E.1.3. Binomial Coefficients, the Binomial Formula, and Pascal’s
Triangle

 For the given non�negative integers n and k, there is the following beau�
tiful formula that sets the binomial coefficients:

C
n

k n kn
k =

−
!

!( )! ,   (E.1)

where n!=1×2×3×…×n is a factorial of n.
One of the most beautiful mathematical formulas, the binomial formula, is

based upon the binomial coefficients:

a b a C a b C a b C a b C ab
n n

n
n

n
n

n
k n k k

n
n n+( ) = + + + + + + +− − − − −1 1 2 2 2 1 1... ... bbn .   (E.2)

There is a very simple method for calculation of the binomial coefficients
based on their following graceful properties called Pascal’s rule:
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C C Cn
k

n
n

n
k

+
−= +1

1 . (E.3)

Using the recursive relation (E.3) and taking into consideration that
C Cn n

n0 1= =  and C Cn
k

n
n k= − , we can construct the following beautiful table of

binomial coefficients called Pascal’s triangle (see Table E.1).

Table E.1. Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 11
1 9 36 84 126 126 84 36 9 1

Here we attribute “beautiful” to all the mathematical objects above. They
are widely used in both mathematics and physics.

E.1.4. Fibonacci and Lucas Numbers, the Golden Mean and Binet
Formulas

Let us consider the simplest recurrence relation:

Fn=Fn�1+Fn�2 , (E.4)

where n=0,±1,±2,±3,… . This recurrence relation was introduced for the first
time by the famous Italian mathematician Leonardo of Pisa (nicknamed Fi�
bonacci). For the seeds

F0=0 and F1=1   (E.5)

the recurrence relation (E.4) generates a numerical sequence called the Fi�
bonacci numbers (see Table E.2).

Table E.2. Fibonacci and Lucas numbers

n

F

F

L

n

n

n

0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 3 5 8 13 21 34 55

0 1 1 2 3 5 8 13 21 34 55

2 1 3

− − − − − −

44 7 11 18 29 47 76 123

2 1 3 4 7 11 18 29 47 76 123L
n− − − − − −



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

618

In the 19th century the French mathematician Francois Edouard Anatole
Lucas (1842�1891) introduced the so�called Lucas numbers (see Table E.2)
given by the recurrence relation
Ln=Ln�1+Ln�2 (E.6)
with the seeds
L0=2 and L1=1. (E.7)

It follows from Table E.2 that the Fibonacci and Lucas numbers build up
two infinite numerical sequences, each possessing graceful mathematical prop�
erties. As can be seen from Table E.2, for the odd indices n k= +2 1 the ele�
ments Fn  and F n− of the Fibonacci sequence coincide, that is, F Fk k2 1 2 1+ − −= ,
and for the even indices n k= 2  they are opposite in sign, that is, F Fk k2 2= − − .
For the Lucas numbers Ln  all is vice versa, that is, L L L Lk k k k2 2 2 1 2 1= = −− + − −; .

In the 17th century the famous astronomer Giovanni Domenico Cassini
(1625�1712) deduced the following beautiful formula, which connects three
adjacent Fibonacci numbers in the Fibonacci sequence:

F F Fn n n
n2

1 1
11− = −− +

+( ) .   (E.8)

This wonderful formula evokes a reverent thrill, if one recognizes that it is
valid for any value of n (n can be any integer within the limits of −∞ to +∞).
The alternation of +1 and �1 in the expression (E.8) within the succession of
all Fibonacci numbers results in the experience of genuine aesthetic enjoy�
ment of its rhythm and beauty.

If we take the ratio of two adjacent Fibonacci numbers F Fn n/ −1  and di�
rect this ratio towards infinity, we arrive at the following unexpected result:

lim
n

n

n

F
F→∞ −

= = +

1

1 5
2

τ ,   (E.9)

where τ is the famous irrational number, which is the positive root of the alge�
braic equation:
x2=x+1. (E.10)

The number τ has many beautiful names – golden section, golden number,
golden mean, golden proportion, and the divine proportion. See Olsen, p. 2 [54].

Note that formula (E.9) is sometimes called Kepler’s formula after Johannes
Kepler (1571�1630) who deduced it for the first time.

In the 19th century French mathematician Jacques Philippe Marie Binet
(1786�1856) deduced the two magnificent Binet formulas:

Fn

n n n

= − − −τ τ( )1

5
. (E.11)

Ln
n n n= + − −τ τ( )1 . (E.12)
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The golden section or division of a line segment in extreme and mean ratio
descended to us from Euclid’s Elements. Over the many centuries the golden
mean has been the subject of enthusiastic worship by outstanding scientists
and thinkers including Pythagoras, Plato, Leonardo da Vinci, Luca Pacioli,
Johannes Kepler and several others. In this connection, we should recall Ke�
pler’s saying concerning the golden section:

“Geometry has two great treasures: one is the Theorem of Pythagoras; the
other, the division of a line into extreme and mean ratio. The first, we may
compare to a measure of gold; the second we may name a precious stone.”

Alexey Losev, the Russian philosopher and researcher into the aesthetics
of Ancient Greece and the Renaissance, expressed his delight in the golden
section and Plato’s cosmology in the following words:

“From Plato’s point of view, and generally from the point of view of all
antique cosmology, the universe is a certain proportional whole that is subor�
dinated to the law of harmonious division, the Golden Section... This system
of cosmic proportions is sometimes considered by literary critics as a curious
result of unrestrained and preposterous fantasy. Total anti�scientific weak�
ness resounds in the explanations of those who declare this. However, we can
understand this historical and aesthetic phenomenon only in conjunction with
an integral comprehension of history, that is, by employing a dialectical and
materialistic approach to culture and by searching for the answer in the pecu�
liarities of ancient social existence.”

We can ask the question: in what way is the “golden mean” reflected in
contemporary mathematics? Unfortunately, the answer forced upon us is �
only in the most impoverished manner. In mathematics, Pythagoras and Pla�
to’s ideas are considered to be a “curious result of unrestrained and prepos�
terous fantasy.” Therefore, the majority of mathematicians consider study
of the golden section as a mere pastime, which is unworthy of the serious
mathematician. Unfortunately, we can also find neglect of the golden sec�
tion in contemporary theoretical physics. In 2006 “BINOM” publishing
house (Moscow) published the interesting scientific book Metaphysics: Cen�
tury XXI [57]. In the Preface to the book, its compiler and editor Professor
Vladimirov (Moscow University) wrote:

“The third part of this book is devoted to a discussion of numerous exam�
ples of the manifestation of the ‘golden section’ in art, biology and our sur�
rounding reality. However, paradoxically, the ‘golden proportion’ is not re�
flected in contemporary theoretical physics. In order to be convinced of this
fact, it is enough to merely browse 10 volumes of Theoretical Physics by Lan�
dau and Lifshitz. The time has come to fill this gap in physics, all the more



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

620

given that the “golden proportion” is closely connected with metaphysics and
‘trinitarity’ [the ‘triune’ nature of things].”

During several decades, the author has developed a new mathematical
direction called The Mathematics of Harmony [20, 21, 24, 51, 55, 84, 87�119].
For the first time, the name of The Mathematics of Harmony  was introduced
by the author in 1996 in the lecture, The Golden Section and Modern Harmony
Mathematics [100], presented at the session of the 7th International confer�
ence Fibonacci Numbers and Their Applications (Austria, Graz, July 1996).

E.2. The “Strategic Mistakes” in the Development of Mathematics

 E.2.1. Mathematics: The Loss of Certainty

The book Mathematics: The Loss of Certainty [6] by Morris Kline (1908�
1992) is devoted to the analysis of the crisis of 20th century mathematics.
Kline wrote:

“The history of mathematics is crowned with glorious achievements but
also a record of calamities. The loss of truth is certainly a tragedy of the first
magnitude, for truths are man’s dearest possessions and a loss of even one is
cause for grief. The realization that the splendid showcase of human reason�
ing exhibits a by no means perfect structure but one marred by shortcomings
and vulnerable to the discovery of disastrous contradictions at any time is
another blow to the stature of mathematics. But these are not the only grounds
for distress. Grave misgivings and cause for dissension among mathematicians
stem from the direction which research of the past one hundred years has tak�
en. Most mathematicians have withdrawn from the world to concentrate on
problems generated within mathematics. They have abandoned science. This
change in direction is often described as the turn to pure as opposed to ap�
plied mathematics.”

Further we read:
“Science had been the life blood and sustenance of mathematics. Mathe�

maticians were willing partners with physicists, astronomers, chemists, and
engineers in the scientific enterprise. In fact, during the 17th and 18th centu�
ries and most of the 19th, the distinction between mathematics and theoreti�
cal science was rarely noted. And many of the leading mathematicians did far
greater work in astronomy, mechanics, hydrodynamics, electricity, magne�
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tism, and elasticity than they did in mathematics proper. Mathematics was
simultaneously the queen and the handmaiden of the sciences.”

Kline notes that our great predecessors were not interested in the prob�
lems of “pure mathematics,” which were put forward in the forefront of the
20th century mathematics. In this connection, Kline writes:

“However, pure mathematics totally unrelated to science was not the main
concern. It was a hobby, a diversion from the far more vital and intriguing
problems posed by the sciences. Though Fermat was the founder of the theory
of numbers, he devoted most of his efforts to the creation of analytic geome�
try, to problems of the calculus, and to optics .... He tried to interest Pascal
and Huygens in the theory of numbers but failed. Very few men of the 17th
century took any interest in that subject.”

Felix Klein (1849 –1925), who was the recognized head of the mathemat�
ical world at the boundary of the 19th and 20th centuries, considered it nec�
essary to protest against striving for abstract, “pure” mathematics:

“We cannot help feeling that in the rapid developments of modern thought,
our science is in danger of becoming more and more isolated. The intimate
mutual relation between mathematics and theoretical natural science which,
to the lasting benefit of both sides, existed ever since the rise of modern anal�
ysis, threatens to be disrupted.”

Richard Courant (1888�1972), who headed the Institute of Mathemati�
cal Sciences of New York University, also treated disapprovingly the passion
for “pure” mathematics. He wrote in 1939:

“A serious threat to the very life of science is implied in the assertion that
mathematics is nothing but a system of conclusions drawn from the definition
and postulates that must be consistent but otherwise may be created by the free
will of mathematicians. If this description were accurate, mathematics could
not attract any intelligent person. It would be a game with definitions, rules,
and syllogisms without motivation or goal. The notion that the intellect can
create meaningful postulational systems at its whim is a deceptive half�truth.
Only under the discipline of responsibility to the organic whole, only guided by
intrinsic necessity, can the free mind achieve results of scientific value.”

At present, mathematicians turned their attention to the solution of old
mathematical problems formulated by the great mathematicians of the past.
Fermat’s Last Theorem is one of them. This theorem can be formulated very
simply. Let us prove that for n>2 any integers x, y, z do not satisfy the correla�
tion xn + yn = zn. The theorem was formulated by Fermat in 1637 in the mar�
gins of Diophantus of Alexandria’s book Arithmetica along with a postscript
that the witty proof he found was too long to be placed there. Over the years
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many outstanding mathematicians (including Euler, Dirichlet, Legandre and
others) tried to solve this problem. The proof of Fermat’s Last Theorem was
completed in 1993 by Andrew Wiles, a British mathematician working in the
United States at Princeton University. The proof required 130 pages in the
Annals of Mathematics.

Johann Carl Friedrich Gauss (1777 –1855) was a recognized specialist in
number theory, confirmed by the publication of his book Arithmetical Research�
ers (1801). In this connection, it is curious to find Gauss’ opinion about Fer�
mat’s Last Theorem. Gauss explained in one of his letters why he did not study
Fermat’s problem. From his point of view, “Fermat’s hypothesis is an isolated
theorem, connected with nothing, and therefore this theorem holds no inter�
est” [6]. We should not forget that Gauss treated with great interest all 19th
century mathematical problems and discoveries. In particular, Gauss was the
first mathematician who supported Lobachevski’s researchers on non�Euclid�
ean geometry. Without a doubt, Gauss’ opinion about Fermat’s Last Theorem
somewhat diminishes Wiles’ proof of this theorem. In this connection, we can
ask the following questions:

1. What significance does Fermat’s Last Theorem hold for the develop�
ment of modern science?
2. Can we compare the solution of Fermat’s problem with the discovery of
Non�Euclidean geometry in the first half of the 19th century and other
mathematical discoveries?
3. Is Fermat’s Last Theorem an “aimless play of intellect” and its proof
merely a demonstration of the imaginative power of human intellect � and
nothing more?
Thus, following Felix Klein, Richard Courant and other famous mathe�

maticians, Morris Kline asserted that the main reason for the contemporary
crisis in mathematics was the severance of the relationship between math�
ematics and theoretical natural sciences that is the greatest “strategic mis�
take” of 20th century mathematics.

E.2.2. The Neglect of the “Beginnings”

Eminent Russian mathematician Andrey Kolmogorov (1903 � 1987) wrote
a preface to the Russian translation of Lebegue’s book About the Measurement
of Magnitudes [3]. He stated that “there is a tendency among mathematicians
to be ashamed of the origin of mathematics. In comparison with the crystal
clarity of the theory of its development it seems unsavory and an unpleasant
pastime to rummage through the origins of its basic notions and assumptions.
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All building up of school algebra and all mathematical analysis might be con�
structed on the notion of real number without any mention of the measure�
ment of specific magnitudes (lengths, areas, time intervals, and so on). There�
fore, one and the same tendency shows itself at different stages of education
and with different degrees of inclination to introduce numbers possibly soon�
er, and furthermore to speak only about numbers and relations between them.
Lebegue protests against this tendency!”

 In this statement, Kolmogorov recognized a peculiarity of mathemati�
cians � the diffident attitude towards the “origins” of mathematics. However,
long before Kolmogorov, Nikolay Lobachevski (1792–1856) also recognized
this tendency:

“Algebra and Geometry have one and the same fate. Their very slow suc�
cesses followed after the fast ones at the beginning. They left science in a state
very far from perfect. It probably happened, because mathematicians turned
all their attention towards the advanced aspects of analytics, and have ne�
glected the origins of mathematics by being unwilling to dig in the field al�
ready harvested by them and now left behind.”

However, just as Lobachevski demonstrated by his research that the “ori�
gins” of mathematical sciences, in particular, Euclid’s Elements are an inexhaust�
ible source of new mathematical ideas and discoveries. Geometric Researches on
Parallel Lines (1840) by Lobachevski opens with the following words:

“I have found some disadvantages in geometry, reasons why this science
did not until now step beyond the bounds of Euclid’s Elements. We are talk�
ing here about the first notions surrounding geometric magnitudes, measure�
ment methods, and finally, the important gap in the theory of parallel lines ....”

Thankfully, Lobachevski, unlike other mathematicians did not neglect
concern with “origins.” His thorough analysis of the Fifth Euclidean Postu�
late (“the important gap in the theory of parallel lines”) led him to the cre�
ation of Non�Euclidean geometry – the most important mathematical dis�
covery of the 19th century.

E.2.3. The Neglect of the Golden Section

Pythagoreans advanced for the first time the brilliant idea about the
harmonic structure of the Universe, including not only nature and people,
but also everything in the entire cosmos. According to the Pythagoreans,
“harmony is an inner connection of things without which the cosmos can�
not exist.” At last, according to Pythagoras, harmony had numerical ex�
pression, that is, it is connected with the concept of number. Aristotle
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(384 BC – 322 BC) noticed in his Metaphysics just this peculiarity of the
Pythagorean doctrine:

“The so�called Pythagoreans, who were the first to take up mathematics,
not only advanced this study, but also having been brought up in it they
thought its principles were the principles of all things ... since, then, all other
things seemed in their whole nature to be modeled on numbers, and numbers
seemed to be the first things in the whole of nature, they supposed the ele�
ments of numbers to be the elements of all things, and the whole cosmos to be
a harmony and a number.”

The Pythagoreans recognized that the shape of the Universe should be
harmonious and all its “elements” connected with harmonious figures. Pythag�
oras taught that the Earth arose from cube, Fire from pyramid (tetrahedron),
Air from octahedron, Water from icosahedron, the sphere of the Cosmos (the
ether) from dodecahedron.

The famous Pythagorean doctrine of the “harmony of spheres” is of course
connected with the harmony concept. Pythagoras and his followers held that
the movement of heavenly bodies around the central world fire creates a won�
derful music, which is perceived not by ear, but by intellect. The doctrine
about the “harmony of the spheres,” the unity of the microcosm and macro�
cosm, and the doctrine about proportions � unified together provide the basis
of the Pythagorean doctrine.

The main conclusion, following from Pythagorean doctrine, is that har�
mony is objective; it exists independently from our consciousness and is ex�
pressed in the harmonious structure of the Universe from the macrocosm down
to the microcosm. However, if harmony is in fact objective, it should become
a central subject of mathematical research.

 The Pythagorean doctrine of numerical harmony in the Universe influ�
enced the development of all subsequent doctrines about nature and the es�
sence of aesthetics. This brilliant doctrine was reflected and developed in the
works of great thinkers, in particular, in Plato’s cosmology. In his works, Plato
(428/427 BC – 348/347 BC) developed Pythagorean doctrine and especially
emphasized the cosmic significance of harmony. He was firmly convinced that
harmony can be expressed by numerical proportions. This Pythagorean influ�
ence was traced especially in his Timaeus, where Plato, after Pythagoras, devel�
oped a doctrine about proportions and analyzed the role of the regular polyhe�
dra (Platonic Solids), which, in his opinion, underlie the Universe itself.

The golden section, which was called in that period the “division in ex�
treme and mean ratio,” played a special role in ancient science, including Pla�
to’s cosmology. Above we presented Kepler’s and Losev’s statements about
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the role of the golden section in geometry and Greek culture. Kepler’s asser�
tion raises the significance of the golden section up to the level of the Pythagore�
an Theorem � one of the most famous theorems of geometry. As a result of the
unilateral approach to mathematical education each school�child knows the
Pythagorean Theorem, but has a rather vague concept of the golden section �
the second “treasure of geometry.” The majority of school textbooks on geom�
etry go back in their origin to Euclid’s Elements. But then we may ask the
question: why in the majority of them is there no real significant mention of
the golden section, described for the first time in Euclid’s Elements? The im�
pression created is that “the materialistic pedagogy” have thrown out the gold�
en section from mathematical education onto the dump heap of “doubtful sci�
entific concepts” together with astrology and other so�called esoteric scienc�
es (where the golden section is widely emphasized). We consider this sad fact
to be one of the “strategic mistakes” of modern mathematical education.

Many mathematicians interpret the above Kepler’s comparison of the gold�
en section with Pythagorean Theorem as a great overstatement regarding the
golden section. However, we should not forget that Kepler was not only a bril�
liant astronomer, but also a great physicist and great mathematician (in con�
trast to the mathematicians who criticize Kepler). In his first book Mysterium
Cosmographicum (The Cosmographic Mystery), Kepler created an original mod�
el of the Solar System based on the Platonic Solids. He was one of the first scien�
tists, who started to study the “Harmony of the Universe” in his book Har�
monices Mundi (Harmony of the World). In Harmony, he attempted to explain
the proportions of the natural world – particularly the astronomical and astro�
logical aspects –in terms of music. The Musica Universalis or Music of the Spheres,
studied by Ptolemy and many others before Kepler, was his main idea. From
there, he extended his harmonic analysis to music, meteorology and astrology;
harmony resulted from the tones made by the souls of heavenly bodies – and in
the case of astrology, the interaction between those tones and human souls. In
the final portion of the work (Book V), Kepler dealt with planetary motions,
especially relationships between orbital velocity and orbital distance from the
Sun. Similar relationships had been used by other astronomers, but Kepler –
with Tycho’s data and his own astronomical theories – treated them much more
precisely and attached new physical significance to them.

Thus, the neglect of the “golden section” and its associated “idea of
harmony” is one more “strategic mistake” in not only mathematics and
mathematical education, but also theoretical physics. This mistake result�
ed in a number of other “strategic mistakes” in the development of mathemat�
ics and mathematical education.
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E.2.4. The One�sided Interpretation of Euclid’s Elements

Euclid’s Elements is the primary work of Greek mathematics. It is devoted
to the axiomatic construction of geometry, and led to the “axiomatic approach”
widely used in mathematics. This view of the Elements is widespread in con�
temporary mathematics. In his Elements Euclid collected and logically ana�
lyzed all achievements of the previous period in the field of geometry. At the
same time, he presented the basis of number theory. For the first time, Euclid
proved the infinity of prime numbers and constructed a full theory of divisibil�
ity. At last, in Books II, VI and X, we find the description of a so�called geo�
metrical algebra that allowed Euclid to not only solve quadratic equations,
but also perform complex transformations on quadratic irrationals.

Euclid’s Elements fundamentally influenced mathematical education.
Without exaggeration it is reasonable to suggest, that the contents of mathe�
matical education in modern schools is on the whole based upon the mathe�
matical knowledge presented in Euclid’s Elements.

However, there is another point of view on Euclid’s Elements suggested
by Proclus Diadochus (412�485), the best commentator on Euclid’s Elements.
The final book of Euclid’s Elements, Book XIII, is devoted to a description of
the theory of the five regular polyhedra that played a predominate role in
Plato’s cosmology. They are well known in modern science under the name
Platonic Solids. Proclus did pay special attention to this fact. As is generally
the case, the most important data are presented in the final part of a scientific
book. Based on this fact, Proclus asserts that Euclid created his Elements
primarily not to present an axiomatic approach to geometry, but in order
to give a systematic theory of the construction of the 5 Platonic Solids, in
passing throwing light on some of the most important achievements of
Greek mathematics. Thus, “Proclus’ hypothesis” allows one to suppose that
it was well�known in ancient science that the “Pythagorean Doctrine about
the Numerical Harmony of the Cosmos” and “Plato’s Cosmology,” based on
the regular polyhedra, were embodied in Euclid’s Elements, the greatest Greek
work of mathematics. From this point of view, we can interpret Euclid’s El�
ements as the first attempt to create a “Mathematical Theory of Harmo�
ny” which was the primary idea in Greek science.

This hypothesis is confirmed by the geometric theorems in Euclid’s Ele�
ments. The problem of division in extreme and mean ratio described in Theorem
II.11 is one of them. This division named later the golden section was used by
Euclid for the geometric construction of the isosceles triangle with the angles
72°, 72° & 36° (the “golden” isosceles triangle) and then of the regular pentagon
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and dodecahedron. We ascertain with great regret that “Proclus’ hypothesis”
was not really recognized by modern mathematicians who continue to consider
the axiomatic statement of geometry as the main achievement of Euclid’s Ele�
ments. However, as Euclid’s Elements are the beginnings of school mathemati�
cal education, we should ask the question: why do the golden section and Pla�
tonic Solids occupy such a modest place in modern mathematical education?

The narrow one�sided interpretation of Euclid’s Elements is one more “stra�
tegic mistake” in the development of mathematics and mathematical educa�
tion. This “strategic mistake” resulted in a distorted picture of the history of
mathematics.

E.2.5. The One�sided Approach to the Origin of Mathematics

The traditional approach to the origin of mathematics consists of the fol�
lowing [1]. Historically, two practical problems stimulated the development
of mathematics on its earlier stages of development. We are referring to the
count problem and measurement problem. The count problem resulted in the
creation of the first methods of number representation and the first rules for
the fulfillment of arithmetical operations (including the Babylonian sexagec�
imal number system, Egyptian decimal arithmetic). The formation of the con�
cept of natural number was the main result of this long period in the mathe�
matics history. On the other hand, the “measurement problem” underlies the
creation of geometry (“Measurement of the Earth”). The discovery of incom�
mensurable line segments is considered to be the major mathematical discov�
ery in this field. This discovery resulted in the introduction of irrational num�
bers, the next fundamental notion of mathematics following natural numbers.

The concepts of natural number and irrational number are the major funda�
mental mathematical concepts, without which it is impossible to imagine the
existence of mathematics. These concepts underlie “Classical Mathematics.”

Neglect of the harmony problem and golden section by mathematicians
has an unfortunate influence on the development of mathematics and math�
ematical education. As a result, we have a one�sided view of the origin of
mathematics which is one more “strategic mistake” in the development of
mathematics and mathematical education.

E.2.6. The Greatest Mathematical Mystification of the 19th Century

The “strategic mistake” influenced considerably on the development of
mathematics and mathematical education, was made in the 19th century. We



Alexey Stakhov       THE  MATHEMATICS  OF  HARMONY

628

are talking about Cantor’s Theory of Infinite Sets. Recall that George Cantor
(1845 –1918) was a German mathematician, born in Russia. He is best known
as the creator of set theory, which has become a fundamental theory in math�
ematics. Unfortunately, Cantor’s set theory was perceived by the 19th centu�
ry mathematicians without proper critical analysis.

The end of the 19th century was a culmination point in recognizing of Can�
tor’s set theory. The official proclamation of the set theory as the mathematics
fouindation was held in 1897: this statement was contained in Hadamard’s speech
on the First International Congress of Mathematicians in Zurich (1897). In his
lecture the Great mathematician Jacques Hadamard (1865�1963) did empha�
size that the main attractive reason of Cantor’s set theory consists of the fact
that for the first time in mathematics history the classification of the sets was
made on the base of a new concept of “cardinality” and the amazing mathemat�
ical outcomes inspired mathematicians for new and surprising discoveries.

However, very soon the “mathematical paradise” based on Cantor’s set
theory was destroyed. Finding paradoxes in Cantor’s set theory resulted in the
crisis in mathematics foundations, what cooled enthusiasm of mathematicians
to Cantor’s set theory. The Russian mathematician Alexander Zenkin finished
a critical analysis of Cantor’s set theory and a concept of actual infinity, which
is the main philosophical idea of Cantor’s set theory.

After the thorough analysis of Cantor’s continuum theorem, in which Alex�
ander Zenkin gave the “logic” substantiation for legitimacy of the use of the
actual infinity in mathematics, he did the following unusual conclusion [168]:

1. Cantor’s proof of this theorem is not mathematical proof in Hilbert’s
sense and in the sense of classical mathematics.
2. Cantor’s conclusion about non�denumerability of continuum is a “jump”
through a potentially infinite stage, that is, Cantor’s reasoning contains the
fatal logic error of “unproved basis” (a jump to the “wishful conclusion”).
3. Cantor’s theorem, actually, proves, strictly mathematically, the po�
tential, that is, not finished character of the infinity of the set of all “real
numbers,” that is, Cantor proves strictly mathematically the fundamen�
tal principle of classical logic and mathematics: “Infinitum Actu Non
Datur” (Aristotle).
However, despite so sharp critical attitude to Cantor’s theory of infinite

sets, the theoretic�set ideas had appeared rather “hardy” and were applied in
modern mathematical education. In a number of countries, in particular, in
Russia, the revision of the school mathematical education on the base of theo�
retic�set approach was made. As is well known, the theoretic�set approach as�
sumes certain mathematical culture. A majority of pupils and many mathe�
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matics teachers do not possess and cannot possess this culture. What as a re�
sult had happened? In the opinion of the known Russian mathematician, aca�
demician Lev Pontrjagin (1908�1988) [193], this brought “to artificial com�
plication of the learning material and unreasonable overload of pupils, to the
introduction of formalism in mathematical training and isolation of mathe�
matical education from life, from practice. Many major concepts of school
mathematics (such as concepts of function, equation, vector, etc.) became dif�
ficult for mastering by pupils... The theoretic�set approach is a language of
scientific researches convenient only for mathematicians�professionals. The
valid tendency of the mathematics development is in its movement to specific
problems, to practice. Therefore, modern school mathematics textbooks are a
step back in interpretation of this science, they are unfounded essentially be�
cause they emasculate an essence of mathematical method.”

Thus, Cantor’s theory of infinite sets based on the concept of “actual
infinity” contains “fatal logic error” and cannot be considered as mathe�
matics base. Its acceptance as mathematics foundation, without proper
critical analysis, is one more “strategic mistake” in the mathematics de�
velopment; Cantor’s theory is one of the major reasons of the contempo�
rary crisis in mathematics foundations. A use of theoretic�set approach in
school mathematical education has led to artificial complication of the
learning material, unreasonable overload of pupils and to the isolation of
mathematical education from life, from practice.

 E.2.7. The Underestimation of Binet Formulas

In the 19th century a theory of the “golden section” and Fibonacci num�
bers was supplemented by one important result. This was with the so�called
Binet formulas for Fibonacci and Lucas numbers given by (E.11) and (E.12).

The analysis of the Binet formulas (E.11) and (E.12) gives one the oppor�
tunity to sense the beauty of mathematics and once again be convinced of the
power of the human intellect! Actually, we know that the Fibonacci and Lu�
cas numbers are always integers. But any power of the golden mean is an irra�
tional number. As it follows from the Binet formulas, the integer numbers Fn

and Ln can be represented as the difference or sum of irrational numbers, namely
the powers of the golden mean! We know it is not easy to explain to pupils the
concept of irrationals. For learning mathematics, the Binet formulas (E.10)
and (E.11), which connect Fibonacci and Lucas numbers with the golden mean
τ, are very important because they demonstrate visually a connection between
integers and irrational numbers.
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Unfortunately, in classical mathematics and mathematical education the
Binet formulas did not get the proper kind of recognition as did, for example,
“Euler formulas” and other famous mathematical formulas. Apparently, this
attitude towards the Binet formulas is connected with the golden mean, which
always provoked an “allergic reaction” in many mathematicians. Therefore,
the Binet formulas are not generally found in mathematics textbooks.

However, the main “strategic mistake” in the underestimation of the Binet
formulas is the fact that mathematicians could not see in the Binet formulas a
prototype for a new class of hyperbolic functions – the hyperbolic Fibonacci
and Lucas functions. Such functions were discovered roughly 100 years later by
Ukrainian researchers Bodnar [52], Stakhov, Tkachenko, and Rozin [98, 106,
116, 118, 119]. If the hyperbolic functions on Fibonacci and Lucas had been
discovered in the 19th century, hyperbolic geometry and its applications to the�
oretical physics would have received a new impulse in their development.

E.2.8. The Underestimation of Felix Klein’s Idea Concerning the
Regular Icosahedron

The name Felix Klein is well known in mathematics. In the 19th century
Felix Klein tried to unite all branches of mathematics on the base of the regu�
lar icosahedron dual to the dodecahedron [58].

Klein interprets the regular icosahedron based on the “golden section” as a
geometric object, connected with 5 mathematical theories: Geometry, Galois
Theory, Group Theory, Invariant Theory, and Differential Equations. Klein’s main
idea is extremely simple: “Each unique geometric object is connected one way
or another with the properties of the regular icosahedron.” Unfortunately, this
remarkable idea was not developed in contemporary mathematics, which is
one more “strategic mistake” in the development of mathematics.

E.2.9. The Underestimation of Bergman’s Number System

One “strange” tradition exists in mathematics. It is usually the case that
mathematicians underestimate the mathematical achievements of their contem�
poraries. The epochal mathematical discoveries, as a rule, in the beginning go
unrecognized by mathematicians. Sometimes they are subjected to sharp criti�
cism and even to gibes. Only after approximately 50 years, as a rule, after the
death of the authors of the outstanding mathematical discoveries, the new math�
ematical theories are recognized and take their place of worth in mathematics.
The dramatic destinies of Lobachevski, Abel, and Galois are very well�known.
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In 1957, the American mathematician George Bergman published the ar�
ticle A number system with an irrational base [86]. In this article Bergman
developed a very unusual extension of the notion of the positional number
system. He suggested that one use the golden mean τ = +1 5 2/  as the basis
of a special positional number system. If we use the sequences τ i

i = ± ± ±( )0 1 2 3, , , ,...  as “digit weights” of the “binary” number system, we get
the “binary” number system with irrational base τ:

A ai
i

i

=
=−∞

+∞

∑ τ , (E.13)

where А is a real number, a
i
 are binary numerals 0 or 1, i = 0, ± 1, ± 2, ± 3, …, τi

is the weight of the i�th digit, τ is the base of the number system (E.13).
Unfortunately, Bergman’s article [86] was not noticed by mathematicians

of that period. Only the journalists were surprised by the fact that George
Bergman made his mathematical discovery at the age of 12! In this connec�
tion, TIME Magazine published an article about mathematical talent in Amer�
ica. In 50 years, according to “mathematical tradition” the time had come to
evaluate the role of Bergman’s system for the development of contemporary
mathematics.

The “strategic” importance of Bergman’s system is the fact that it over�
turns our ideas about positional number systems, moreover, our ideas about
correlations between rational and irrational numbers.

As is well known, historically natural numbers were first introduced, after
them rational numbers as ratios of natural numbers, and later – after the dis�
covery of the “incommensurable line segments” � irrational numbers, which
cannot be expressed as ratios of natural numbers. By using the traditional
positional number systems (binary, ternary, decimal and so on), we can repre�
sent any natural, real or irrational number by using number systems with a
base of (2, 3, 10 and so on). The base in Bergman’s system [86] is the golden
mean. By using Bergman’s system (E.13), we can represent all natural, real
and irrational numbers. As Bergman’s system (E.13) is fundamentally a new
positional number system, its study is very important for school mathemati�
cal education because it expands our ideas about the positional principle of
number representation.

The “strategic mistake” of 20th century mathematicians is that they
took no notice of Bergman’s mathematical discovery, which can be con�
sidered as the major mathematical discovery in the field of number sys�
tems (following the Babylonian discovery of the positional principle of
number representation and also decimal and binary systems).
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E.3. Three “Key” Problems of Mathematics and a New Approach to the
Mathematics Origins

The main purpose of the “Harmony Mathematics” is to overcome the “stra�
tegic mistakes,” which arose in mathematics in the process of its development.

We can see that three “key” problems – the “count problem,” the “mea�
surement problem,” and the “harmony problem” � underlie the origin of math�
ematics (see Fig. I.1). The first two “key” problems resulted in the creation
of two fundamental notions of mathematics – natural number and irrational
number that underlie classical mathematics. The harmony problem connect�
ed with the division in extreme and mean ratio (Theorem II.11 of Euclid’s
Elements) resulted in the origin of Harmony Mathematics – a new interdisci�
plinary direction of contemporary science, which is related to contempo�
rary mathematics, theoretical physics, and computer science. This approach
leads to a conclusion, which is startling for many mathematicians. It proves
to be, in parallel with classical mathematics, one more mathematical direc�
tion – the Harmony Mathematics – already developing in ancient science.
Similarly to the Classical Mathematics, the Harmony Mathematics has its
origin in Euclid’s Elements. However, the Classical Mathematics focuses its
attention on the “axiomatic approach,” while the Harmony Mathematics is
based on the golden section (Theorem II.11) and Platonic Solids described
in Book XIII of Euclid’s Elements. Thus, Euclid’s Elements is the sourсe of
two independent directions in the development of mathematics – the Clas�
sical Mathematics and the Harmony Mathematics.

For many centuries, the main focus of mathematicians was directed to�
wards the creation of the “Classical Mathematics,” which became the Czarina
of Natural Sciences. However, the forces of many prominent mathematicians �
since Pythagoras, Plato and Euclid, Pacioli, Kepler up to Lucas, Binet, Voro�
byov, Hoggatt and so forth � were directed towards the development of the
basic concepts and applications of Harmony Mathematics. Unfortunately,
these important mathematical directions developed separately from one oth�
er. The time has come to unite “Classical Mathematics” and “Harmony Math�
ematics.” This unusual union can lead to new scientific discoveries in mathe�
matics and the natural sciences. Some of the latest discoveries in the natural
sciences, in particular, Shechtman’s quasi�crystals based on Plato’s icosahe�
dron and fullerenes (Nobel Prize of 1996) based on the Archimedean truncat�
ed icosahedron do demand this union. All mathematical theories should be
united for one unique purpose: to discover and explain Nature’s Laws.
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A new approach to the mathematics origins (see Fig. I.1) is very impor�
tant for school mathematical education. This approach introduces in a very
natural manner the idea of harmony and the golden section into school math�
ematical education. This provides pupils access to ancient science and to its
main achievement – the harmony idea – and to tell them about the most im�
portant architectural and sculptural works of ancient art based upon the golden
section (including pyramid of Khufu (Cheops), Nefertiti, Parthenon, Dory�
phorus, Venus).

E.4. The Generalized Fibonacci Numbers and the Generalized Golden
Proportions

E.4.1. The Generalized Fibonacci P�numbers, the Generalized
P�proportions, the Generalized Binet Formulas and the Generalized
Lucas P�numbers

Pascal’s triangle is recognized as one of the most beautiful objects of math�
ematics. And we can expect further beautiful mathematical objects stemming
from Pascal’s triangle. In the recent decades, many mathematicians found a
connection between Pascal’s triangle and Fibonacci numbers independent of
each other. The generalized Fibonacci p�numbers, which can be obtained from
Pascal’s triangle as its “diagonal sums” [20] are the most important of them.
For a given integer р=0, 1, 2, 3, ... , they are given by the recursive relation:

F
p
(n) = F

p
(n�1) + F

p
(n�p�1); F

p
(0)=0, F

p
(1)= F

p
(2)=...= F

p
(p)=1. (E.14)

It is easy to see for the case р=1 that the above recursive formula is re�
duced to the recursive formula for classical Fibonacci numbers:

F1(n) = F1(n�1) + F1(n�2); F1(0)=0, F1(1)=1. (E.15)

It follows from (E.14) that the Fibonacci р�numbers express more com�
plicated “harmonies” than the classical Fibonacci numbers given by (E.15).
Note that the recursive formula (E.14) generates an infinite number of differ�
ent recursive numerical sequences because every p generates its own recur�
sive sequences, in particular, the binary numbers 1, 2, 4, 8, 16, … for the case
p=0 and the classical Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, … for the case p=1.

It is important to note that the recursive relation (E.14) expresses some
deep mathematical properties of Pascal’s triangle (the “diagonal sums” of Pas�
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cal’s triangle). The Fibonacci p�numbers are represented by the binomial co�
efficients as follows [20]:

F n C C C C Cp n n p n p n p n kp
k+( ) = + + + + + +− − − −1 0 1

2
3

4
4 ... ... , (E.16)

where the binomial coefficient Cn kp
k
− = 0 for the case k>n�kp.

Note that for the case p=0 the formula (E.16) is reduced to the well�known
formula of combinatorial analysis:

2 0 1n
n n n

nC C C= + + +... . (E.17)

It is easy to prove [4] that in the limit n → ∞( )  the ratio of the adjacent

Fibonacci p�numbers F
p
(n)/F

p
(n�1) aims for some numerical constant, that is,

lim ,
n

p

p
p

F n

F n→∞

( )
−( ) =

1
τ (E.18)

where τp is the positive root of the following algebraic equation:

xp+1 = xp + 1, (E.19)

which for р=1 is reduced to the “golden” algebraic equation (E.10) given by
the classical golden mean (E.9).

Note that the result (E.16) is a generalization of Kepler’s formula (E.9)
for classical Fibonacci numbers (p=1).

The positive roots of Eq. (E.17) were named the golden р�proportions [20].
It is easy to prove [20] that the powers of the golden р�proportions are con�
nected between themselves by the following identity:
τ τ τ τ τp

n
p
n

p
n p

p p
n= + = ×− − − −1 1 1

 , (E.20)

that is, each power of the golden р�proportion is connected with the preced�
ing powers by the “additive” relation τ τ τp

n
p
n

p
n p= +− − −1 1  and by the “multiplica�

tive” relation τ τ τp
n

p p
n= × −1 (similar to the classical golden mean).

It is proved in [111] that the Fibonacci p�numbers can be represented in
the following analytical form:
F n k x k x k xp

n n
p p

n( ) = ( ) + ( ) + + ( )+ +1 1 2 2 1 1... , (E.21)

where n=0,±1,±2,±3,..., x1, x2, …, xp+1 are the roots of Eq. (E.19), and k1, k2, …, kp+1

are constant coefficients that depend on the initial elements of the Fibonacci
p�series, and are solutions to the following system of algebraic equations:
F k k k
F k x k x k
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Note that for the case p=1, the formula (E.21) is reduced to the Binet
formula (E.11) for the classical Fibonacci numbers.

In [111] the generalizid Lucas p�numbers are introduced. They are repreen�
ted in the following analytical form:

L n x x xp
n n

p

n( ) = ( ) + ( ) + + ( )+1 2 1... , (E.22)

where n=0,±1,±2,±3,..., x1, x2, …, x
p+1 are the roots of Eq. (E.19).

Note that for the case p=1, the formula (E.22) is reduced to the Binet
formula (E.12) for the classical Lucas numbers.

Directly from (E.22) we can deduce the following recurrence relation

Lp(n)= Lp(n�1)+Lp(n�p�1), (E.23)

which at the seeds

L
p
(0)=p+1 and L

p
(1)=L

p
(2)=…=L

p
(p)=1 (E.24)

produces a new class of numerical sequences – Lucas p�numbers. They are a
generalization of the classical Lucas numbers for the case p=1.

Thus, a study of Pascal’s triangle produces the following beautiful mathe�
matical results:

1. The generalized Fibonacci p�numbers are expressed through binomial
coefficients by the graceful formula (E.16).
2. A new class of mathematical constants τp (p=0, 1, 2, 3, …), express some
important mathematical properties of Pascal’s triangle and possess unique
mathematical properties (E.20).
3. A new class of algebraic equations (E.19), which are a wide generaliza�
tion of the classical “golden” equation (E.10).
4. A generalization of Binet formulas for Fibonacci and Lucas p�numbers.
Discussing applications of Fibonacci p�numbers and golden p�propor�

tions to contemporary theoretical natural sciences, we find two important
applications:

1. Asymmetric division of biological сells. The authors of [171] proved
that the generalized Fibonacci p�numbers can model the growth of biolog�
ical cells. They conclude that “binary cell division is regularly asymmetric
in most species. Growth by asymmetric binary division may be represented
by the generalized Fibonacci equation …. Our models, for the first time at
the single cell level, provide a rational basis for the occurrence of Fibonacci
and other recursive phyllotaxis and patterning in biology, founded on the
occurrence of the regular asymmetry of binary division.”
2. Structural harmony of systems. Studying the process of system self�
organization in different aspects of nature, Belarusian philosopher Edu�
ard Soroko formulated in [25] the “Law of Structural Harmony of Sys�
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tems” based on the golden p�proportions: “The generalized golden pro�
portions are invariants that allow natural systems in the process of their
self�organization to find a harmonious structure, a stationary regime for
their existence, and structural and functional stability.”

E.4.2. The generalized Fibonacci λλλλλ�numbers,“Metallic Means” by Vera
Spinadel, Gazale Formulas and  General Theory of Hyperbolic Functions

Another generalization of Fibonacci numbers was introduced recently by
Vera W. Spinadel [42], Midchat Gazale [45], Jay Kappraff [47] and other
scientists. We are talking about the generalized Fibonacci λ�numbers that for
a given positive real number λ>0 are given by the recurrence relation:

F n F n F n F Fλ λ λ λ λλ( ) = −( ) + −( ) ( ) = ( ) =1 2 0 0 1 1; , . (E.25)

Notice that here we use λ as in the article [191] instead m as in Section 4.12.
First of all, we note that the recurrence relation (E.25) is reduced to the

recurrence relation (E.4) for the case λ=1. For other values of λ, the recur�
rence relation (E.25) generates an infinite number of new recurrence numer�
ical sequences.

The following characteristic algebraic equation follows from (E.25):

x x2 1 0− − =λ , (E.26)

which for the case λ=1 is reduced to (E.10). A positive root of Eq. (E.26) gen�
erates an infinite number of new “harmonic” proportions – “Metallic Means”
by Vera Spinadel [42], which are expressed by the following general formula:

Φλ
λ λ= + +4

2

2

. (E.27)

Note that for the case λ=1 the formula (E.27) gives the classical golden

mean Φ1
1 5

2
= +

. The metallic means possess the following unique mathe�

matical properties:

Φλ λ λ λ= + + +1 1 1 ...       

Φλ λ
λ

λ
λ

= +
+

+
+

1
1

1
...

, (E.28)

which are generalizations of similar properties for the classical golden mean
Φ τ λ1 1= =( ) :

τ = + + +1 1 1 ... ;     

τ = +
+

+
+

1
1

1
1

1
1

1 ...

. (E.29)
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Note that the expressions (E.27), (E.28) and (E.29), without doubt, satis�
fy Dirac’s “Principle of Mathematical Beauty” and emphasize a fundamental
characteristic of both the classical golden mean and the metallic means.

Recently, by studying the recurrence relation (E.25), the Egyptian math�
ematician Midchat Gazale [45] deduced the following remarkable formula
given by Fibonacci λ�numbers:

F n
n n n

λ
λ λ

λ
( )

( )= − −

+

−Φ Φ1

4 2 , (E.30)

where λ>0 is a given positive real number, Φλ is the metallic mean given by
(E.27), n = ± ± ±0 1 2 3, , , ,... . The author of the article [118] named the formula
(E.30) in [118] formula Gazale for the Fibonacci λ�numbers after Midchat Gazale.
The similar Gazale formula for the Lucas λ�numbers is deduced in [118]:

L n n n n
λ λ λΦ Φ( ) = + −( ) −1 . (E.31)

First of all, we note that “Gazale formulas” (E.30) and (E.31) are a wide
generalization of Binet formulas (E.11) and (E.12) for the classical Fibonacci
and Lucas numbers λ =( )1 .

The most important result is that the Gazale formulas (E.30) and (E.31)
result in a general theory of hyperbolic functions [118].

Hyperbolic Fibonacci λ�sine

sF x
x x

x

λ
λ λ

λ λ

λ λ λ λ
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 (E.32)

Hyperbolic Fibonacci λ�cosine

cF x
x x

x

λ
λ λ

λ λ

λ λ λ λ
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 (E.33)

Hyperbolic Lucas λ�sine

sL x x x

x x

λ λ λ
λ λ λ λ

( ) = − = + +








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(E.34)

Hyperbolic Lucas λ�cosine

cL x x x

x x

λ λ λ
λ λ λ λ

( ) = + = + +



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


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
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

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
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−

−

Φ Φ 4
2

4
2

2 2

. (E.35)

Note that the hyperbolic Fibonacci and Lucas λ�functions coincide with
the Fibonacci and Lucas λ�numbers for the discrete values of the variable
x n= = ± ± ±0 1 2 3, , , ,... , that is,
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F n
sF n n k

cF n n k

L n
cL n n k

sL n

λ
λ

λ

λ
λ

λ

( ) =
( ) =

( ) = +


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( ) =
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,
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2 1
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,, n k= +





 2 1

. (E.36)

The formulas (E.32)�(E.35) provide an infinite number of hyperbolic mod�
els of nature because every real number λ originates its own class of hyperbol�
ic functions of the kind (E.32)�(E.35). As is proved in [118], these functions
have, on the one hand, the “hyperbolic” properties similar to the properties of
classical hyperbolic functions, and on the other hand, “recursive” properties
similar to the properties of the Fibonacci and Lucas λ�numbers (E.30) and
(E.31). In particular, the classical hyperbolic functions are a partial case of
the hyperbolic Lucas λ�functions (E.34) and (E.35). For the case
λe e e= − ≈1 2 35040238/ . ... , the classical hyperbolic functions are connected
with hyperbolic Lucas λ�functions by the following simple relations:

sh x
sL x

( )
( )= λ

2
 and ch x

cL x
( )

( )= λ

2
. (E.37)

Note that for the case λ=1, the hyperbolic Fibonacci and Lucas λ�functions
(E.32)�(E.35) coincide with the symmetric hyperbolic Fibonacci and Lucas func�
tions introduced by Alexey Stakhov and Boris Rozin in the article [106]:

Symmetrical hyperbolic Fibonacci sine and cosine

sFs x
x x

( ) ;= − −τ τ
5

 cFs x
x x

( ) = + −τ τ
5

(E.38)

Symmetrical hyperbolic Fibonacci sine and cosine

sLs x x x( ) = − −τ τ ; cLs x x x( ) = + −τ τ (E.39)

where τ = +1 5
2

.

In the book [37], the Ukrainian researcher Oleg Bodnar used Stakhov
and Rozin’s symmetric hyperbolic Fibonacci and Lucas functions (E.38) and
(E.39) for the creation of a graceful geometric theory of phyllotaxis. This means
that the symmetrical hyperbolic Fibonacci and Lucas functions (E.38) and
(E.39) and their generalization – the hyperbolic Fibonacci and Lucas λ �
functions (E.32)�(E.35) – can be ascribed to the fundamental mathemati�
cal results of modern science because they “reflect phenomena of Nature,”
in particular, phyllotaxis phenomena [37]. These functions set a general the�
ory of hyperbolic functions that is of fundamental importance for contempo�
rary mathematics and theoretical physics.



Epilogue Clarifying the Origins and  Development of Mathematics
639

We propose that hyperbolic Fibonacci and Lucas λ�functions, correspond�
ing to the different values of λ, can model different physical phenomena. For
example, when λ=2 the recursive relation (E.25) is reduced to

F2(n) = 2F2(n�1) + F2(n�2); F2(0)=0, F2(1)=1, (E.40)

which gives the so�called Pell numbers: 0, 1, 2, 5, 12, 29, ... . In this connection,
the formulas for the golden λ�proportion and hyperbolic Fibonacci and Lucas
λ�numbers take for the case λ=2 the following forms, respectively:

Φ2 1 2= + (E.41)

sF x
x x x x

2
2 2

8

1

2 2
1 2 1 2( ) = − = +( ) − +( )





− −Φ Φ
(E.42)

cF x
x x x x

2
2 2

8

1

2 2
1 2 1 2( ) = + = +( ) + +( )





− −Φ Φ
(E.43)

sL x x x x x

2 2 2 1 2 1 2( ) = − = +( ) − +( )− −
Φ Φ (E.44)

cL x x x x x

2 2 2 1 2 1 2( ) = + = +( ) + +( )− −
Φ Φ . (E.45)

It is appropriate to give the following comparative table (Table E3), which

Table E3. Connection of the Golden Mean with Metallic Means

The Golden Mean ( = 1) The Metallic Means ( 0)λ λ
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gives a relationship between the golden mean and metallic means as new math�
ematical constants of Nature.

Table E4.The main formulas for the "golden" Fibonacci goniometry

Formulas for the classical 
hyperbolic  functions 

Formulas ffor the hyperbolic 
Fibonacci  functions »λ −
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A beauty of these formulas is charming. This gives a right to suppose that
Dirac’s “Principle of Mathematical Beauty” is fully applicable to the metallic
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means and hyperbolic Fibonacci and Lucas m�functions. And this, in its turn,
gives hope that these mathematical results can become a base of theoretical
natural sciences.

Another table (See Table E4) gives the basic formulas for the hyperbolic
Fibonacci λ�functions sF xλ ( )  and cF xλ ( )  in comparison with corresponding
formulas for the classical hyperbolic functions sh x( )  and ch x( ) .

Remark. For the hyperbolic Lucas λ�functions sL xλ ( ) and cL xλ ( )  the
corresponding formulas can be gotten by multiplication of the hyperbolic Fi�
bonacci λ�functions sF xλ ( )  and cF xλ ( ) by constant factor 4 2+ λ  according
to the correlations (41).

The  table for  the  hyperbolic Fibonacci λ�functions sF xλ ( )  and cF xλ ( ) ,
with regard to the above remark for the hyperbolic Lucas λ�functions sL xλ ( )
and cL xλ ( ) , makes up a base of the “Golden” Fibonacci goniometry [192].

This table is very convincing confirmation of the fact that we are talking
about a new class of hyperbolic functions, which keep all well�known proper�
ties of the classical hyperbolic functions sh x( )  and ch x( ) ,  but, in addition,
they posses additional (“recursive”) properties, which unite them with remark�
able numerical sequences – Fibonacci and Lucas λ�numbers F nλ ( )  and L nλ ( ) .

 E.5. A New Geometric Definition of Number

 E.5.1. Euclidean and Newtonian Definition of Real Number

The first definition of a number was made in Greek mathematics. We are
talking about the “Euclidean definition of natural number”:

N
N

= + + +1 1 1... . (E.46)

In spite of the utmost simplicity of the Euclidean definition (E.46), it played
a decisive role in mathematics, in particular, in number theory. This defini�
tion underlies many important mathematical concepts, for example, the con�
cept of prime and composite numbers, and also divisibility that is one of the
major concepts of number theory. Over the centuries, mathematicians devel�
oped and defined more exactly the concept of a number. In the 17th century,
that is, in the period of the creation of new science, in particular, new mathe�
matics, a number of methods for the study of “continuous” processes were
developed and the concept of a real number again moves into the foreground.
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Most clearly, a new definition of this concept was given by Isaac Newton, one
of the founders of mathematical analysis, in his Arithmetica Universalis (1707):

“We understand a number not as a set of units, but as the abstract ratio of
one magnitude to another magnitude of the same kind taken for the unit.”

This formulation gives us a general definition of numbers, rational and
irrational. For example, the binary system

A ai
i

i

=
=−∞

+∞

∑ 2 (E.47)

is an example of Newton’s definition, when we choose the number of 2 for the
unit and represent a number as the sum of the powers of number 2.

E.5.2. Number Systems with Irrational Radices as a New Definition of
Real Number

Let us consider the set of the powers of the golden p�proportions:

S p ip
i= { } = = ± ± ±τ , , , , ,...; , , , ,....0 1 2 3 0 1 2 3 (E.48)

Using (E.48), we can construct the following method of positional repre�
sentation of real number A:

A ai p
i

i

=
=−∞

+∞

∑ τ , (E.49)

where a
i
 is the binary numeral of the i�th digit; τp

i  is the weight of the i�th digit;

τp is the radix of the numeral system (E.47), p = 0 1 2 3, , , ,...;  i = ± ± ±0 1 2 3, , , ,... .
The positional representation (E.49) is called code of the golden p�propor�
tion [24].

Note that for the case p=0 the sum (E.49) is reduced to the classical bina�
ry representation (E.47). For the case p=1, the sum (E.49) is reduced to Berg�
man’s system (E.13). For the case p→∞, the sum (E.49) strives for the expres�
sion similar to (E.46).

In the author’s article [105], a new approach to geometric definition of
real numbers based on (E.49) was developed. A new theory of real numbers
based on the definition (E.49) contains a number of unexpected results con�
cerning number theory. Let us study these results as applied to Bergman’s
system (E.13). We shall represent a natural number N in Bergman’s system
(E.13) as follows:

N ai
i

i

=
=−∞

+∞

∑ τ . (E.50)

The following theorems are proved in [105]:
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1. Every natural number N can be represented in the form (E.50) as a
finite sum of the golden powers τi i = ± ± ±( )0 1 2 3, , , ,... . Note that this theorem
is not a trivial property of natural numbers.

2. Z�property of natural numbers. If we substitute in (E.50) the Fibonac�
ci number Fi for the power of the golden mean τi i = ± ± ±( )0 1 2 3, , , ,... , then the
sum that appears as a result of such a substitution is equal to 0 independent of
the initial natural number N, that is,

a Fi i
i

=
=−∞

+∞

∑ 0. (E.51)

3. D�property of natural numbers. If we substitute in (E.50) the Lucas
number Li for the power of the golden mean τi i = ± ± ±( )0 1 2 3, , , ,... , then the
sum that appears as a result of such a substitution is equal to the double sum
(50) independent of the initial natural number N, that is,

a L Ni i
i

=
=−∞

+∞

∑ 2 . (E.52)

4. F�code of natural number N. If we substitute in (E.50) the Fibonacci
number F

i+1 for the power of the golden mean τi i = ± ± ±( )0 1 2 3, , , ,... , then the
sum that appears as a result of such a substitution is a new positional repre�
sentation of the same natural number N called the F�code of natural number N,
that is,

N a F ii i
i

= = ± ± ±( )+
=−∞

+∞

∑ 1 0 1 2 3, , , ,... . (E.53)

5. L�code of natural number N. If we substitute in (E.50) the Lucas num�
ber Li+1 for the power of the golden mean τi i = ± ± ±( )0 1 2 3, , , ,... , then the sum
that appear as a result of such substitution is a new positional representation
of the same natural number N called L�code of natural number N, that is,

N a L ii i
i

= = ± ± ±( )+
=−∞

+∞

∑ 1 0 1 2 3, , , ,... . (E.54)

Note that similar properties are proved for the code of the golden p�pro�
portion given by (E.49).

Thus, we have discovered new properties of natural numbers (Z�proper�
ty, D�property, F� and L�codes) that confirm the fruitfulness of such an ap�
proach to number theory [105]. These results are of great importance for com�
puter science and could become a source for new computer projects.

As the study of the positional binary and decimal systems are an important
part of mathematical education, the number systems with irrational radices given
by (E.13) and (E.49) are of general interest for mathematical education.
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E.6. Fibonacci and “Golden” Matrices

E.6.1. Fibonacci Matrices

For the first time, a theory of the Fibonacci Q�matrix was developed in the
book [16] written by the eminent American mathematician Verner Hoggatt
– founder of the Fibonacci Association and The Fibonacci Quarterly.

The article [158] devoted to the memory of Verner E. Hoggatt contained
a history and extensive bibliography of the Q�matrix and emphasized Hog�
gatt’s contribution to its development. Although the name of the Q�matrix
was introduced before Verner E. Hoggatt, he was the first mathematician who
appreciated the mathematical beauty of the Q�matrix and introduced it into
Fibonacci number theory. Thanks to Hoggatt’s work, the idea of the Q�ma�
trix “caught on like wildfire among Fibonacci enthusiasts. Numerous papers
appeared in ‘The Fibonacci Quarterly’ authored by Hoggatt and/or his stu�
dents and other collaborators where the Q�matrix method became the central
tool in the analysis of Fibonacci properties” [158].

The Q�matrix

Q = 





1 1
1 0 (E.55)

is a generating matrix for Fibonacci numbers and the following wonderful
properties:

Q
F F

F F
n n n

n n

= +

+











1

1
(E.56)

det .Q F F Fn
n n n

n= + + − = −( )1 1
2 1 (E.57)

Note that there is a direct relation between the Cassini formula (E.8) and
the formula (E.57) given for the determinant of the matrix (E.56).

In article [103], the author introduced a generating matrix for Fibonacci
p�numbers called Qp�matrix (p=0, 1, 2, 3, …):

Q p =










1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

















. (E.58)
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The following properties of Fibonacci p�numbers are proved in [103]:

Q

F n F n F n p F n p
F n p F n p F n

p
n

p p p p

p p p

=

+ − + − +
− + − −

( ) ( ) ( ) ( )
( ) ( ) (

1 2 1
1 2pp F n p

F n F n F n p F n p
F n F

p

p p p p

p p

+ − +

− − − − −

2 2 1

1 2 1

) ( )

( ) ( ) ( ) ( )
( ) (( ) ( ) ( )n F n p F n pp p− − + −



















1 1

(E.59)

det Qp
n pn= −( )1 , (E.60)

where p=0, 1, 2, 3, ... ; and n=0, ±1, ±2, ±3, ... .

The generating matrix Gλ  for the Fibonacci λ�numbers F nλ ( )

Gλ
λ= 





1
1 0 (E.61)

was introduced in [118]. The following properties of the Gλ�matrix (E.61) are
proved in [118]:

G
F n F n

F n F n
n
λ

λ λ

λ λ
=

+
−











( ) ( )

( ) ( )

1

1 (E.62)

det Gn n
λ = −( )1 . (E.63)

The general property of the Fibonacci Q�, Qp�, and Gλ �matrices consists
of the following. The determinants of the Fibonacci Q�, Qp�, and Gλ �matrices
and all their powers are equal to +1 or �1. This unique property emphasizes
mathematical beauty in the Fibonacci matrices and unites them into a special
class of matrices, which are of fundamental interest for matrix theory.

E.6.2. The “Golden” Matrices

Integer numbers – the classical Fibonacci numbers, the Fibonacci p� and
m�numbers � are elements of Fibonacci matrices (E.56), (E.59) and (E.62). In
[114] a special class of the square matrices called “golden” matrices was in�
troduced. Their peculiarity is the fact that the hyperbolic Fibonacci functions
(E.38) or the hyperbolic Fibonacci λ�functions (E.32) and (E.33) are elements
of these matrices. Let us consider the simplest of them [114]:

Q cFs x sFs x
sFs x cFs x

x2 2 1 2
2 2 1

= +
−







( ) ( )
( ) ( ) ; Q x sFs x cFs x

cFs x sFs x
2 1 2 2 2 1

2 1 2
+ = + +

+






( ) ( )
( ) ( ) . (E.64)

If we calculate the determinants of the matrices (E.64), we obtain the
following unusual identities:
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det

det

Q cFs x cF x sFs x

Q sFs x

x

x

2 2

2 1

2 1 2 1 2 1

2 2

= +( ) × −( ) − ( )  =

= +( )+ ×× ( ) − +( )  = −sF x cFs x2 2 1 1
2

.
(E.65)

The “golden” matrices based on hyperbolic Fibonacci λ�functions (E.32)
and (E.33) take the following form [118]:

G
cF x sF x

sF x cF x
x

λ
λ λ

λ λ

2 2 1 2
2 2 1

= +
−







( ) ( )
( ) ( ) ; G

sF x cF x
cF x sF x

x
λ

λ λ

λ λ

2 1 2 2 2 1
2 1 2

+ = + +
+







( ) ( )
( ) ( ) . (E.66)

It is proved [118] that the “golden” Gλ �matrices (E.67) possess the fol�
lowing unusual properties:

det ; detG Gx x
λ λ
2 2 11 1= = −+ . (E.67)

The mathematical beauty of “golden” matrices (E.64) and (E.66) are con�
firmed by their unique mathematical properties (E.65) and (E.67).

E.7. Applications in Computer Science: the “Golden” Information
Technology

E.7.1. Fibonacci Codes, Fibonacci Arithmetic and Fibonacci Computers

The concept of Fibonacci computers suggested by the author in a speech
Algorithmic Measurement Theory and Foundations of Computer Arithmetic given
to the joint meeting of Computer and Cybernetics Societies of Austria (Vien�
na, March 1976) and described in the book [20] is one of the more important
ideas of modern computer science. The essence of the concept amounts to the
following: modern computers are based on a binary system (E.57), which rep�
resents all numbers as sums of the binary numbers with binary coefficients, 0
and 1. However, the binary system (E.47) is non�redundant and does not al�
low for detection of errors, which could appear in the computer during the
process of its exploitation. In order to eliminate this shortcoming, the author
suggested [20] the use of Fibonacci p�codes

N = a
n
F

p
(n) + a

n�1Fp
(n�1) + ... + a

i
F

p
(i) + ... + a1Fp

(1), (E.68)

where N is a natural number, ai∈{0, 1} is a binary numeral of the i�th digit of
the code (E.68); n is the digit number of the code (E.68); Fp(i) is the i�th digit
weight calculated in accordance with the recurrence relation (E.14).

Thus, Fibonacci p�codes (E.68) represent all numbers as the sums of Fi�
bonacci p�numbers with binary coefficients, 0 and 1. In contrast to the classical
binary number system, the Fibonacci p�codes (E.68) are redundant positional
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methods of number representation. This redundancy can be used for checking
different transformations of numerical information in the computer, including
arithmetical operations. A Fibonacci computer project was developed by the
author in the former Soviet Union from 1976 right up to the disintegration of
the Soviet Union in 1991. 65 foreign patents in the U.S., Japan, England, France,
Germany, Canada and other countries are official juridical documents, which
confirm Soviet priority in Fibonacci computers.

E.7.2. Ternary Mirror�Symmetrical Arithmetic

Computers can be constructed by using different number systems. The ter�
nary computer “Setun” designed in Moscow University in 1958 was the first
computer based not on a binary system but on a ternary system [180]. The ter�
nary mirror�symmetrical number system [104] is an original synthesis of the
classical ternary system [180] and Bergman’s system (E.13) [86]. It represents
integers as the sum of golden mean squares with ternary coefficients {�1, 0, 1}.
Each ternary representation consists of two parts that are disposed symmetri�
cally with respect to the 0th digit. However, one part is mirror�symmetrical to
another part. At the increase of a number, its ternary mirror�symmetrical repre�
sentation is expanding symmetrically to the left and to the right with respect to
0�th digit. This unique mathematical property produces a very simple method
for checking numerical information in computers. It is proved [104] that the
mirror�symmetric property is invariant with respect to arithmetical operations,
that is, the results of all arithmetical operations have mirror�symmetrical form.
This means that the mirror�symmetrical arithmetic can be used for designing
self�controlling and fault�tolerant processors and computers.

Stakhov’s article Brousentsov’s Ternary Principle, Bergman’s Number System
and Ternary Mirror�Symmetrical Arithmetic [104] published in The Computer Jour�
nal (England) got a high approval from two outstanding computer specialists �
Donald Knuth, Professor�Emeritus of Stanford University and the author of the
famous book The Art of Computer Programming, and Nikolay Brousentsov, Pro�
fessor at Moscow University, a principal designer of the first ternary computer
“Setun.” And this fact gives hope that the ternary mirror�symmetrical arithmetic
[104] can become a source of new computer projects in the near future.

E.7.3. A New Theory of Error�Correcting Codes Based upon Fibonacci
Matrices

The error�correcting codes [177, 182] are used widely in modern comput�
er and communication systems for the protection of information from noise.
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The main idea of error�correcting codes consists in the following [177, 182].
Let us consider the initial code combination that consists of n data bits. We
add to the initial code combination m error�correction bits and build up the k�
digit code combination of the error�correcting code, or (k,n)�code, where k =
n+m. The error�correction bits are formed from the data bits as the sums by
module 2 of certain groups of the data bits. There are two important coeffi�
cients, which characterize an ability of error�correcting codes to detect and
correct errors [177].

The potential detection ability

Sd m= −1
1

2
 . (E.69)

The potential correction ability

Sc n= 1
2

, (E.70)

where m is the number of error�correction bits, n is the number of data bits.
The formula (E.70) shows that the coefficient of potential correcting abil�

ity diminishes potentially to 0 as the number n of data bits increases. For ex�
ample, the Hamming (15,11)�code allows one to detect 211×(215 � 211) =
62,914,560 erroneous transitions; at that rate it can only correct 215 � 211 =
30,720 erroneous transitions, that is, it can correct only 30,720/62,914,560 =
0.0004882 (0.04882%) erroneous transitions. If we take n=20, then according
to (E.70) the potential correcting ability of the error�correcting (k,n)�code
diminishes to 0.00009%. Thus, the potential correcting ability of the classical
error�correcting codes [177, 182] is very low. This conclusion is of fundamen�
tal importance! One more fundamental shortcoming of all known error�cor�
recting codes is the fact that the very small information elements, bits and
their combinations are objects of detection and correction.

The new theory of error�correcting codes [44, 113] that is based on Fi�
bonacci matrices has the following advantages in comparison to the existing
theory of algebraic error�correcting codes [177,182]:

1. The Fibonacci coding/decoding method is reduced to matrix multipli�
cation, that is, to the well�known algebraic operation that is carried out so
well in modern computers.
2. The main practical peculiarity of the Fibonacci encoding/decoding
method is the fact that large information units, in particular, matrix ele�
ments, are objects of detection and correction of errors.
3. The simplest Fibonacci coding/decoding method (p=1) can guarantee
the restoration of all “erroneous” (2×2)�code matrices having “single,”
“double” and “triple” errors.
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4. The potential correcting ability of the method for the simplest case p=1
is between 26.67% and 93.33% which exceeds the potential correcting
ability of all known algebraic error�correcting codes by 1,000,000 or more
times. This means that a new coding theory based upon the matrix ap�
proach is of great practical importance for modern computer science.

E.7.4. Matrix and “Golden” Cryptography

Matrix and “golden” cryptography developed by the author together with
Iranian researcher Mostapha Kalami Heris is a new cryptographic method,
which provides cryptographic protection of informational systems operating
in real scale of time. A new Cryptographic Mobil Phone should contain hybrid
cryptosystem, which consists of public�key cryptosystem and symmetric�key
cryptosystem based on matrix cryptography for sound signals and images. Such
an approach provides an cryptographic protection of all important informa�
tion, in particular, voice and video information by using hybrid cryptosystem
based on matrix cryptography and also all text information (SMS, email and
so on) by using public�key cryptosystem. It is clear that Cryptographic Mobil
Phone allows protecting human rights and freedom of individual more effec�
tively than existing cryptographic systems.

E.8. Fundamental Discoveries of Modern Science Based Upon the Golden
Section and “Platonic Solids”

E.8.1. Shechtman’s Quasi�Crystals

It is necessary to note that right up to the last quarter of the 20th century
the use of the golden mean in theoretical science, in particular, in theoretical
physics, was very rare. In order to be convinced of this, it is enough to browse
10 volumes of Theoretical Physics by Landau and Lifshitz. We cannot find any
mention about the golden mean and Platonic solids. The situation in theoret�
ical science changed following the discovery of Quasi�crystals by the Israel
researcher Dan Shechtman in 1982 [148].

One  type of quasi�crystal was based upon the regular icosahedron de�
scribed in Euclid’s Elements! Quasi�crystals are of revolutionary impor�
tance for modern theoretical science. First of all, this discovery is the mo�
ment of a great triumph for the “icosahedron�dodecahedron doctrine,”
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which proceeds throughout all the history of the natural sciences and is a
source of deep and useful scientific ideas. Secondly, the quasi�crystals shat�
tered the conventional idea that there was an insuperable watershed be�
tween the mineral world where the “pentagonal” symmetry was prohibit�
ed, and the living world, where the “pentagonal” symmetry is one of most
widespread. Note that Dan Shechtman published his first article about the
quasi�crystals in 1984, that is, exactly 100 years after the publication of
Felix Klein’s Lectures on the Icosahedron … (1884) [58]. This means that
this discovery is a worthy gift to the centennial anniversary of Klein’s book
[58], in which Klein predicted the outstanding role of the icosahedron in
the future development of science.

E.8.2. Fullerenes (Nobel Prize for Chemistry of 1996)

The discovery of fullerenes is one of the more outstanding scientific dis�
coveries of modern science. This discovery was made in 1985 by Robert F.
Curl, Harold W. Kroto and Richard E. Smalley. The title “fullerenes” refers
to the carbon molecules of the type С60, С70, С76, С84, in which all atoms are
on a spherical or spheroid surface. In these molecules the atoms of carbon
are located at the vertexes of regular hexagons and pentagons that cover the
surface of a sphere or spheroid. The molecule C60 plays a special role amongst
fullerenes. This molecule is based upon the Archimedean truncated icosahe�
dron. The molecule C60 is characterized by the greatest symmetry and as a
consequence is of the greatest stability. In 1996 Robert F. Curl, Harold W.
Kroto and Richard E. Smalley won the Nobel Prize in chemistry for this
discovery.

  E.8.3. El�Naschie’s E�infinity Theory

Prominent theoretical physicist and engineering scientist Mohammed
S. El Naschie is a world leader in the field of golden mean applications to
theoretical physics, in particular, quantum physics [60] – [72]. El Nasch�
ie’s discovery of the golden mean in the famous physical two�slit experi�
ment — which underlies quantum physics — became the source of many
important discoveries in this area, in particular, of E�infinity theory. It is
also necessary to note that the important contribution of Slavic research�
ers in this area. The book [53] written by Belarusian physicist Vasyl Per�
trunenko is devoted to applications of the golden mean in quantum phys�
ics and astronomy.
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E.8.4. Bodnar’s Geometry

According to the law of phyllotaxis the numbers on the left�hand and right�
hand spirals on the surface of phyllotaxis objects are always adjacent Fibonacci
numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... . Their ratios 1/1, 2/1, 3/2, 5/3, 8/5, 13/
8, 21/13, ... are called a symmetry order of phyllotaxis objects. The phyllotaxis
phenomena excited the best minds of humanity during the centuries since
Johannes Kepler. The “puzzle of phyllotaxis” consists of the fact that a major�
ity of bio�forms change their phyllotaxis orders during their growth. It is
known, for example, that sunflower disks that are located on different levels
of the same stalk have different phyllotaxis orders; moreover, the greater the
age of the disk, the higher its phyllotaxis order. This means that during the
growth of the phyllotaxis object, a natural modification (increase) in symme�
try happens and this modification of symmetry obeys the law:

2
1

3
2

5
3

8
5

13
8

21
13

→ → → → → → ... . (E.71)

The law (E.71) is called Dynamic Symmetry.
Recently Ukrainian researcher Oleg Bodnar developed a very interesting

geometric theory of phyllotaxis [37]. He proved that phyllotaxis geometry is
a special kind of non�Euclidean geometry based upon the “golden” hyperbolic
functions similar to hyperbolic Fibonacci and Lucas functions (E.38) and
(E.39). Such approach allows one to explain geometrically how the “Fibonac�
ci spirals” appear on the surface of phyllotaxis objects (for example, pine cones,
ananas, and cacti) in the process of their growth and thus dynamic symmetry
(E.71) appears. Bodnar’s geometry is of essential importance because it con�
cerns fundamentals of the theoretical natural sciences, in particular, this dis�
covery gives a strict geometrical explanation of the phyllotaxis law and dy�
namic symmetry based upon Fibonacci numbers.

E.8.5. Petoukhov’s “Golden” Genomatrices

The idea of the genetic code is amazingly simple. The record of the genetic
information in ribonucleic acids (RNA) of any living organism, uses the “al�
phabet” that consists of four “letters” or the nitrogenous bases: Adenine (A),
Cytosine (C), Guanine (G), Uracil (U) (in DNA instead of the Uracil it uses
the related Thymine (T)). Petoukhov’s article [59] is devoted to the descrip�
tion of an important scientific discovery—the golden genomatrices, which af�
firm the deep mathematical connection between the golden mean and the
genetic code.
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E.8.6. Fibonacci�Lorenz Transformations and “Golden” Interpretation
of the Universe Evolution

As is known, Lorentz’s transformations used in special relativity theory
(SRT) are the transformations of the coordinates of the events (x, y, z, t) at
the transition from one inertial coordinate system (ICS) K to another ICS
K ′ , which is moving relatively to ICS K with a constant velocity V.

The transformations were named in honor of Dutch physicist Hendrik
Antoon Lorentz (1853�1928), who introduced them in order to eliminate the
contradictions between Maxwell’s electrodynamics and Newton’s mechanics.
Lorentz’s transformations were first published in 1904, but at that time their
form was not perfect. The French mathematician Jules Henri Poincare (1854�
1912) brought them to modern form.

In 1908, that is, three years after the promulgation of SRT, the German
mathematician Hermann Minkowski (1864�1909) gave the original geometri�
cal interpretation of Lorentz’s transformations. In Minkowski’s space, a geomet�
rical link between two ICS K and K ′  are established with the help of hyperbolic
rotation, a motion similar to a normal turn of the Cartesian system in Euclidean
space. However, the coordinates of x′  and t′  in the ICS K ′ are connected with
the coordinates of x and t of the ICS K by using classical hyperbolic functions.

Thus, Lorentz’s transformations in Minkowski’s geometry are nothing as the
relations of hyperbolic trigonometry expressed in physics terms. This means that
Minkowski’s geometry is hyperbolic interpretation of SRT and therefore it is a
revolutionary breakthrough in geometric representations of physics, a way out
on a qualitatively new level of relations between physics and geometry.

Alexey Stakhov and Samuil Aranson put forward in [191] the following
hypotheses concerning the SRT :

1. The first hypothesis concerns the light velocity in vacuum. As is well
known, the main dispute concerning the SRT, basically, is about the principle
of the constancy of the light velocity in vacuum. In recent years a lot of scien�
tists in the field of cosmology put forward a hypothesis, which puts doubt the
permanence of the light velocity in vacuum � a fundamental physical con�
stant, on which the basic laws of modern physics are based[194]. Thus, the
first hypothesis is that the light velocity in vacuum was changed in the
process of the Universe evolution.

2. Another fundamental idea involves with the factor of the Universe self�
organization in the process of its evolution [195, 196]. According to modern
view [196], a few stages of self�organization and degradation can be identified
in process of the Universe development: initial vacuum, the emergence of su�

′
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perstrings, the birth of particles, the separation of matter and radiation, the birth
of the Sun, stars, and galaxies, the emergence of civilization, the death of Sun,
the death of the Universe. The main idea of the article [196] is to unite the fact
of the light velocity change during the Universe evolution with the factor of its
self�organization, that is, to introduce a dependence of the light velocity in
vacuum from some self�organization parameter ψ , which does not have di�
mension and is changing within: −∞ < < +∞( )ψ . The light velocity in vacuum
c is depending on the “self�organization” parameter ψ ∞ ψ ∞− < < +( )  and this
dependence has the following form:
c c c c= =( ) ( )ψ ψ

0 . (E.72)

As follows from (E.72), the light velocity in vacuum is a product of the two
parameters: c0 and c ( )ψ . The parameter c0=const, having dimension [m.sec�1],
is called normalizing factor. It is assumed in [191] that constant parameter c0

is equal to Einstein’s light velocity in vacuum 2 988 10 8 1. .sec×( )− −m  divided by
the golden mean τ ≈= +( )1 5 2 1 61803/ . . The dimensionless parameter
c ( )ψ is called non�singular normalized Fibonacci velocity of light in vacuum.

3. The “golden” Fibonacci goniometry is used for the introduction of the
Fibonacci�Lorentz transformations, which are a generalization of the classical
Lorentz transformations. We are talking about the matrix

Ω ψ
ψ ψ

ψ ψ
( ) =

− −
−











cFs sFs

sFs cFs

( ) ( )

( ) ( )

1 2

1 , (E.73)

whose elements are symmetric hyperbolic functions sFs, cFs, introduced by
Alexey Stakhov and Boris Rozin in [106]. The matrix Ω ψ( )  of the kind (E.73)
is called non�singular two�dimensional Fibonacci�Lorentz matrix and the trans�
formations

ξ ψ ψ
ψ ψ

ξ′
x

cFs sFs

sFs cFs x1 1

1 2

1








 =

− −
−









 ′










( ) ( )

( ) ( )

are called non�singular two�dimensional Fibonacci�Lorentz transformations.
The above approach to the SRT led to the new (“golden”) cosmological

interpretation of the Universe evolution before, in the moment, and after the
bifurcation, called Big Bang. Based on this approach, Alexey Stakhov and
Samuil Aranson have obtained in [191] new cosmological model of the Uni�
verse evolution (Stakhov�Aranson’s model), beginning with the Big Bang (T=0)
both to positive direction of increasing time T (material Universe) and with a
turn of the time arrow to inverse direction, that is, to increasing the time T to
the negative direction (anti�material Universe).

According to [191], at the process of the evolution of the material Uni�
verse (increasing the time T into positive direction) the two “bifurcations”
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appeared. The first “bifurcation” corresponds to the Big Bang. The second
“bifurcation” corresponds to the origin of light and transition of the Universe
from Dark Ages to Shining Period, when the first stars lighted up the Universe
appeared. The light velocity immediately after the second “bifurcation” was
very high, much higher than its modern value. As the Universe evolution, the
light velocity begun to drop and with the further increase in the time T in the
positive direction the light velocity slowly (as if “freezing”) seeks to the limit
value 300 000 [km.sec−1].

 As the anti�material Universe, Stakhov and Aranson’s model consists of
the fact that immediately after the first “bifurcation” – the Big Bang (the time
T is negative and close to zero), the light velocity is also close to zero. Then, as
the anti�material Universe evolution (increasing the time T in a negative di�
rection), the light velocity is slowly seeking to the limit value equal to
300000 2 1/ secΦ km. −  , where Φ is the golden mean.

Thus, the “golden” model of the Universe evolution based on Fibonacci�
Lorentz transformations (Stakhov�Aranson’s model) [191] differs essentially
from the classical model of the Universe evolution based on classical Lorentz
transformations in the following:

1. In Stakhov�Aranson’s model [191] the light velocity in vacuum was
changed in process of the Universe evolution.
2. Stakhov�Aranson’s model [191] singles out the two directions of the
Universe evolution after the Big Bang – the evolution of the material Uni�
verse (the time T increases in positive direction) and the evolution of anti�
material Universe (the time T increases in negative direction). In the pro�
cess of the material Universe evolution after the Big Bang (the first “bifur�
cation”) the second “bifurcation” appears. This “bifurcation” corresponds
to the origin of light and transition of the Universe from Dark Ages to
Shining Period.
3. The light velocity immediately after the second “bifurcation” was very
high, however, as the Universe evolution, the light velocity slowly seeks
to the limit value 300 000 [km.sec−1]. As the anti�material Universe evolu�
tion (increasing the time T in a negative direction), the light velocity is
slowly seeking to the limit value equal to 300000 2 1/ secΦ km. −  , where
Φ is the golden mean.

E.8.7. Hilbert’s Fourth Problem

In the lecture Mathematical Problems presented at the Second Interna�
tional Congress of Mathematicians (Paris, 1900), David Hilbert (1862�1943)
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had formulated his famous 23 mathematical problems. These problems deter�
mined considerably the development of mathematics of 20th century. This
lecture is a unique phenomenon in the mathematics history and in mathemat�
ical literature. The Russian translation of Hilbert’s lecture and its comments
are given in the works [197�199]. In particular, Hilbert’s Fourth Problem is
formulated in [197] as follows:

 “Whether it is possible from the other fruitful point of view to construct
geometries, which with the same right can be considered the nearest geometries
to the traditional Euclidean geometry.”

 Note that Hilbert considered that Lobachevski’s geometry and Riemanni�
an geometry are nearest to the Euclidean geometry.

In mathematical literature Hilbert’s Fourth Problem is sometimes consid�
ered as formulated very vague what makes difficult its final solution. The fa�
mous German mathematician Georg Hamel (1877�1952) [200] was the first
one who tried to solve Hilbert’s Fourth Problem.

In [198] American geometer Herbert Busemann analyzed the whole range
of issues related to Hilbert’s Fourth Problem and also concluded that the ques�
tion related to this issue, unnecessarily broad. Note also the book [199] by
Alexei Pogorelov (1919�2002) is devoted to a partial solution to Hilbert’s
Fourth Problem. The book identifies all, up to isomorphism, implementations
of the axioms of classical geometries (Euclid, Lobachevski and elliptical), if
we delete the axiom of congruence and refill these systems with the axiom of
“triangle inequality.”

In spite of critical attitude of mathematicians to Hilbert’s Fourth Problem,
we should emphasize great importance of this problem for mathematics, par�
ticularly for geometry. Without doubts, Hilbert’s intuition led him to the con�
clusion that Lobachevski’s geometry and Riemannian geometry do not exhaust
all possible variants of non�Euclidean geometries. Hilbert’s Fourth Problem
directs attention of researchers at finding new non�Euclidean geometries, which
are the nearest geometries to the traditional Euclidean geometry.

The most important mathematical result presented in [191] is a new ap�
proach to Hilbert’s Fourth Problem based on the hyperbolic Fibonacci λ�func�
tions (32) and (33). The main mathematical result of this study is a creation of
infinite set of the isometric λ�models of Lobachevski’s plane that is directly
relevant to Hilbert’s Fourth Problem.

 As is known [201], the classical model of Lobachevski’s plane in pseudo�
spherical coordinates u v u v, , ,( ) < < +∞ − ∞ < < +∞0 with the Gaussian curva�
ture K=−1 (Beltrami’s interpretation of hyperbolic geometry on pseudo�
sphere) has the following form:
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ds du sh u dv( ) = ( ) + ( )( )2 2 2 2 , (E.74)

where ds is an element of length and sh(u) is the hyperbolic sine.
Based on the hyperbolic Fibonacci λ�functions (E.32) and (E.33), Alexey

Stakhov and Samuil Aranson deduced in [191] the metric  λ�forms of Lobachev�
ski’s plane given by the following formula:

ds du sF u dv( ) = ( )( ) + + ( )  ( )2 2 2
2 2 24

4
ln Φ λ

λ λ , (E.75)

where Φλ = + +λ λ4
2

2
 is the metallic mean and sF uλ ( )  is hyperbolic Fibonacci

λ�sine (E.32).
Let us study partial cases of the metric λ�forms of Lobachevski’s plane cor�

responding to the different values of λ:
1. The golden metric form of Lobachevski’s plane. For the case λ = 1  we

have Φ1
1 5

2
1 61803= + ≈ .  – the golden mean, and hence the form (E.75) is

reduced to the following:

ds du sFs u dv( ) = ( )( ) + ( )  ( )2 2 2 2 25
4

ln Φ1 (E.76)

where ln ln .2
1

2 1 5
2

0 231565Φ( ) = +







 ≈  and sFs u

u u

( ) =
− −Φ Φ1 1

5
is symmetric

hyperbolic Fibonacci sine (E.38).

 2. The silver metric form of Lobachevski’s plane. For the case λ = 2 we
have Φ2 1 2 2 1421= + ≈ .  � the silver mean, and hence the form (E.74) is re�
duced to the following:

ds du sF u dv( ) = ( )( ) + ( )  ( )2 2
2

2
2

2 2
2ln Φ , (E.77)

where ln .2
2 0 776819Φ( ) ≈  and sF u

u u

2
2 2

2 2
( ) = − −Φ Φ

.

3. The bronze metric form of Lobachevski’s plane. For the case λ = 3  we

have Φ3
3 13

2
3 30278= + ≈ .  � the bronze mean, and hence the form (E.75) is

reduced to the following:

ds du sF u dv( ) = ( )( ) + ( )  ( )2 2 2 2 213
4

ln Φ3 3 (E.78)

where ln .2
3 1 42746Φ( ) ≈  and sF u

u u

3
3 3

13
( ) = − −Φ Φ

.
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4. The cooper metric form of Lobachevski’s plane. For the case λ = 4  we
have Φ4 2 5 4 23607= + ≈ . � the cooper mean, and hence the form (E.75) is
reduced to the following:

ds du sF u dv( ) = ( )( ) + ( )  ( )2 2 2
4

2 2
5ln Φ4 , (E.79)

where ln .2
4 2 08408Φ( ) ≈  and sF u

u u

4
4 4

2 5
( ) = − −Φ Φ

.

5. The classical metric form of Lobachevski’s plane. For the case
λ λ= = ( ) ≈e sh2 1 2 350402.  we have Φλe

e= ≈ 2 7182.  � Napier number, and

hence the form (E.75) is reduced to the classical metric forms of Lobachevski’s
plane given by (E.74).

Thus, the formula (E.75) sets an infinite number of metric forms of Lo�
bachevski’s plane. The formula (E.74) given the classical metric form of Lo�
bachevski’s plane is a partial case of the formula (E.75). This means that there
are infinite number of Lobachevski’s “golden” geometries, which “can be con�
sidered the nearest geometries to the traditional Euclidean geometry” (David
Hilbert). Thus, the formula (E.75) can be considered as a solution to Hilbert’s
Fourth Problem.

E.9. Conclusion

The following conclusions come from this study:

E.9.1. The First Conclusion

 The first conclusion touches on a question of the origins of mathematics
and its development. This conclusion can be much unexpected for many math�
ematicians. We affirm  that since the Greek period, the two mathematical
doctrines – the Classical Mathematics and the Harmony Mathematics –
begun to develop in parallel and independent of one another. They both
originated from one and the same source – Euclid’s Elements, the greatest math�
ematical work of the Greek mathematics. Geometric axioms, the beginnings
of algebra, theory of numbers, theory of irrationals and other achievements of
the Greek mathematics were borrowed from Euclid’s Elements by the Classi�
cal Mathematics. On the other hand, a problem of division in extreme and mean
ratio (Theorem II.11) called later the golden section and a geometric theory of
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regular polyhedrons (Book XIII), expressed the Harmony of the Cosmos in
Plato’s Cosmology, were borrowed from Euclid’s Elements by the Mathemat�
ics of Harmony. We affirm that Euclid’s Elements were the first attempt to
reflect in mathematics the major scientific idea of the Greek science, the
idea of Harmony. According to Proclus, the creation of geometric theory
of Platonic Solids (Book XIII of Euclid’s Elements) was the main purpose
of Euclid’s Elements.

E.9.2. The Second Conclusion

The second conclusion touches on the development of number theory. We
affirm that the new constructive definitions of real numbers based on Berg�
man’s system (E.13) and the codes of the golden p�proportion (E.49) over�
turn our ideas about rational and irrational numbers [105]. A special class
of irrational numbers – the golden mean and golden p�proportions � becomes a
base of new number theory because all rest real numbers can be reduced to
them by using the definitions (E.13) and (E.49). New properties of natural
numbers (Z�property (E.51), F�code (E.53) and L�code (E.54)), following from
this approach, confirm a fruitfulness of this approach to number theory.

E.9.3. The Third Conclusion

The third conclusion touches on the development of hyperbolic geometry.
We affirm that a new class of hyperbolic functions – the hyperbolic Fibonacci
and Lucas λ�functions (E.32)�(E.35) [118] – can become inexhaustible source
for the development of hyperbolic geometry. We affirm that the formulas
(E.32)�(E.35) give an infinite number of hyperbolic functions similar to
the classical hyperbolic functions, which underlie Lobachevski’s geome�
try. This affirmation can be referred to one of the main mathematical results
of the Mathematics of Harmony. A solution to Hilbert’s Fourth Problem [191]
confirms a fruitfulness of this approach to hyperbolic geometry.

E.9.4. The Fourth Conclusion

The forth conclusion touches on the applications of the Mathematics of
Harmony in theoretical natural sciences. We affirm that the Mathematics of
Harmony is inexhaustible source of the development of theoretical natural sci�
ences. This confirms by the newest scientific discoveries based on the golden
mean and Platonic Solids (quasi�crystals, fullerenes, golden genomatrices, E�
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infinity theory and so on). The Mathematics of Harmony offers for theoret�
ical natural sciences a tremendous amount of new recurrence relations,
new mathematical constants, and new hyperbolic functions, which can be
used in theoretical natural sciences for the creation of new mathematical
models of natural phenomena and processes. A new approach to the rela�
tivity theory and Universe evolution based on the hyperbolic Fibonacci and
Lucas functions is a confirmation of fruitfulness of this approach.

E.9.5. The Fifth Conclusion

The fifth conclusion touches on the “golden” model of the Universe evo�
lution based on Fibonacci�Lorentz transformations (Stakhov�Aranson’s mod�
el) [191]. Stakhov�Aranson’s model [191] singles out the two directions of
the Universe evolution after the Big Bang – the evolution of the material
Universe (the time T increases in positive direction) and the evolution of
anti�material Universe (the time T increases in negative direction). In the
process of the material Universe evolution after the Big Bang (the first “bi�
furcation”) the second “bifurcation” appears. This “bifurcation” corresponds
to  the origin of light and transition of the Universe from Dark Ages to Shin�
ing Period. The light velocity immediately after the second “bifurcation” was
very high, however, as the Universe evolution, the light velocity slowly seeks
to the limit value 300 000 [km.sec−1]. As the anti�material Universe evolu�
tion (increasing the time T in a negative direction), the light velocity is slowly
seeking to the limit value equal to 300000 2 1/ secΦ km. −  , where Φ is the
golden mean.

E.9.6. The Sixth Conclusion

The sixth conclusion touches on the applications of the Mathematics of
Harmony in computer science. We affirm that the Mathematics of Harmony
is a source for the development of new information technology – the “Gold�
en” Information Technology based on the Fibonacci codes (E.68), Beg�
man’s system (E.13), codes of the golden p�proportions (E.49), “golden”
ternary mirror�symmetrical representation [104] and following from them
new computer arithmetic’s: Fibonacci arithmetic, “golden” arithmetic, and
ternary mirror�symmetrical arithmetic, which can become a source of new
computer projects. Also this conclusion is confirmed by the new theory of
error�correcting codes based on Fibonacci matrices [113] and the matrix and
“golden” cryptography [114, 118].
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E.9.7. The Seventh Conclusion

The seventh conclusion touches on the applications of the Mathematics of
Harmony in modern mathematical education. We affirm that the Mathemat�
ics of Harmony should become a base for the reform of modern mathemat�
ical education on the base of the ancient idea of Harmony and golden sec�
tion. Such an approach can increase an interest of pupils to studying mathe�
matics because this approach brings together mathematics and natural sci�
ences. A study of mathematics turns into fascinating search of new mathemat�
ical regularities of Nature.

E.9.8. The Eighth Conclusion

The eighth conclusion  touches on the general role of the Mathematics of
Harmony in the progress of contemporary mathematics. We affirm that the
Mathematics of Harmony can overcome a contemporary crisis in the devel�
opment of the 20th century mathematics what resulted in the severance of
the relationship between mathematics and theoretical natural sciences [6].
The Mathematics of Harmony is a true “Mathematics of Nature” incarnated in
many wonderful structures and phenomena of the Universe (pine cones, pine�
apples, cacti, heads of sunflowers, quasi�crystals, fullerenes, genetic code, Uni�
verse evolution and so on) and it can give birth to new scientific discoveries.
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Page 1. Symmetry in Nature
Page 2. Pentagonal Symmetry in Nature
Page 3. Golden Spirals in Nature
Page 4. Fibonacci Numbers and Phyllotaxis
Page 5. Proportionality in Architecture

1. United Nations Building
2. The Pentagon
3. Smolny Cathedral in St. Petersburg
4. St. Andrew Cathedral in Kiev
5. San Pietro in Montorio
6. Notre Dame in Paris
7. Cathedral of Our Lady of Chartres
8. Parthenon
9. Great pyramids of Giza
10. The Great Pyramid of Khufu

Page 6. Canons of Proportionality in Sculpture
1. Nefertiti profile
2. David by Michelangelo
3. Doryphoros by Polykleitos
4. Apollo Belvedere by Leochares
5. Venus de Milo by Alexandros of Antioch
6. Bust of Nefertiti from Agyptisches Museum Berlin

Page 7. Golden Section in Painting
1. Last Supper by Salvador Dali
2. Near the Window by Konstantin Vasilyev
3. Mona Lisa by Leonardo da Vinci
4. Holy Family by Michelangelo
5. Ship’s Grove by Ivan Shishkin
6. Appearance of  Christ by Alexander Ivanov
7. The Crucifixion by Raffaello

Page 8. Golden Section in Contemporary Abstract and Applied Art
1. Polyhedral Universe by Teja Krasek
2. From Cosmic Measures collection by Astrid Fitzgerald
3. Nine by Marion Drennen
4. Double Pentagram Pentagons by John Michell
5. Cosmic Gems by Teja Krasek
6. Pentagonal Hexagons by John Michell
7. From Constructions collection by Astrid Fitzgerald
8. Life, the Universe, and Everything by Teja Krasek
9. From All is Number: Number is All collection by Astrid Fitzgerald
10. One by Marion Drennen
11. Four by Marion Drennen
12. From Constructions collection by Astrid Fitzgerald
13. Homage to Pythagoras  by Marion Drennen
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