Cryptography

Module 18

Engineered by Hackers. Presented by Professionals.

Types of Cryptography

Symmetric Encryption

Symmetric encryption (secret-key, shared-key, and private-key) uses the same key for encryption as they do for decryption

Asymmetric Encryption

Asymmetric encryption (public-key) uses different encryption keys for encryption and decryption. These keys are known as public and private keys

Hash Function

Hash function (message digests or one - way encryption) uses no key for encryption and decryption

Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Data Encryption Standard (DES)

The DSA and Related Signature Schemes

Digital Signature Algorithm

The DSA has become a U.S. Federal Information Processing Standard (FIPS 186) called the Digital Signature Standard (DSS)

Digital Signature

It is the first digital signature scheme recognized by any government

Each entity creates a public key and corresponding private key

- 1. Select a prime number q such that $2^{159} < q < 2^{160}$
- 2. Choose t so that $0 \le t \le 8$
- 3. Select a prime number p such that $2^{511+64t} with the additional property that <math>q$ divides (p-1)
- 4. Select a generator α of the unique cyclic group of order q in Z_n^*
- 5. To compute α , select an element g in Z^*_p and compute $g^{(p-1)/q} \mod p$
- 6. If $\alpha = 1$, perform step five again with a different g
- 7. Select a random a such that $1 \le a \le q-1$
- 8. Compute $y = \alpha^a \mod p$

The public key is (p, q, α, y) . The private key is a.

Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Example of RSA Algorithm

```
<= first prime number (destroy this after computing E and D)
Q = 53 <= second prime number (destroy this after computing E and D)</p>
PQ = 3233 <= modulus (give this to others)
           <= public exponent (give this to others)
D = 2753 <= private exponent (keep this secret!)</pre>
Your public key is (E,PQ).
Your private key is D.
The encryption function is: encrypt(T) = (T^E) mod PQ
                                        = (T^17) \mod 3233
The decryption function is: decrypt(C) = (C^D) \mod PQ
                                        = (C^2753) \mod 3233
To encrypt the plaintext value 123, do this:
encrypt(123) = (123^17) \mod 3233
             = 337587917446653715596592958817679803 mod 3233
             = 855
To decrypt the cipher text value 855, do this:
decrypt(855) = (855*2753) \mod 3233
```


Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

The RSA Signature Scheme

Algorithm Key generation for the RSA signature scheme

SUMMARY: each entity creates an RSA public key and a corresponding private key. Each entity A should do the following:

- 1. Generate two large distinct random primes p and q, each roughly the same size.
- 2. Compute n = pq and $\phi = (p-1)(q-1)$.
- 3. Select a random integer e, $1 < e < \phi$, such that $gcd(e, \phi) = 1$.
- 4. Use the extended Euclidean algorithm (Algorithm 2.107) to compute the unique integer d, $1 < d < \phi$, such that $ed \equiv 1 \pmod{\phi}$.
- 5. A's public key is (n, e); A's private key is d.

Algorithm RSA signature generation and verification

SUMMARY: entity A signs a message $m \in \mathcal{M}$. Any entity B can verify A's signature and recover the message m from the signature.

- 1. Signature generation. Entity A should do the following:
 - (a) Compute $\widetilde{m} = R(m)$, an integer in the range [0, n-1].
 - (b) Compute $s = \tilde{m}^d \mod n$.
 - (c) A's signature for m is s.
- 2. Verification. To verify A's signature s and recover the message m, B should:
 - (a) Obtain A's authentic public key (n, e).
 - (b) Compute $\widetilde{m} = s^e \mod n$.
 - (c) Verify that $\tilde{m} \in \mathcal{M}_R$; if not, reject the signature.
 - (d) Recover $m = R^{-1}(\widetilde{m})$.

Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) is a set of hardware, software, people, policies, and procedures required to create, manage, distribute, use, store, and revoke digital certificates

Certification Authorities

http://www.comodo.com

http://www.thawte.com

http://www.entrust.net

Copyright © by EG-Gounci All Rights Reserved. Reproduction is Strictly Prohibited.

Digital Signature

- Digital signature used asymmetric cryptography to simulate the security properties of a signature in digital, rather than written form
- Digital signature schemes involve two algorithms; a private key for signing the message and a public key for verifying signatures

Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

SSL (Secure Sockets Layer)

- SSL is an application layer protocol developed by Netscape for managing the security of a message transmission on the Internet
- It uses RSA asymmetric (public key) encryption to encrypt data transferred over a SSL connection

Code Breaking Methodologies

Trickery and Deceit

It involves the use of social engineering techniques to extract cryptography keys

Brute-Force

Cryptography keys are discovered by trying every possible combination

One-Time Pad

A one-time pad contains many nonrepeating groups of letters or number keys, which are chosen randomly

Frequency Analysis

It is the study of the frequency of letters or groups of letters in a ciphertext

It works on the fact that, in any given stretch of written language, certain letters and combinations of letters occur with varying frequencies

Copyright © by **EC-Counci**

All Rights Reserved. Reproduction is Strictly Prohibited.

Meet-in-the-Middle Attack on Digital Signature Schemes

- The meet-in-the-middle attack breaks a cipher into two parts, works against each separately, and compares results
- It can be used for forging signatures on mixed-type digital signature schemes, and takes less time than an exhaustive attack
- The attack works by encrypting from one end and decrypting from the other end, thus meeting in the middle

Module Summary

- Using Public Key Infrastructure (PKI), anyone can send a confidential message using public information, which can only be decrypted with a private-key in the sole possession of the intended recipient
 RSA encryption is widely used and is a de-facto encryption standard
 The MD5 algorithm is intended for digital signature applications, where a large
- ☐ SHA algorithm takes a message of arbitrary length as input and outputs a 160-bit message digest of the input
- Secure Sockets Layer, SSL is a protocol for transmitting private documents via the Internet
- RC5 is a fast block cipher designed by RSA Security

file must be compressed securely before being encrypted

Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

