.ﬂ.gilE IAgile Database Techniques—Effective Strategies for the Agile Software

Database |peveloper
Techniques
e B8 IAgile Database Techniques: Effective Strategies for the Agile Software Developer
e
e ’ by Scott W. Ambler

John Wiley & Sons © 2003

Table of Contents
Agile Database Techniques—Effective Strategies for the Agile Software Developer
Foreword by Jon Kern
Foreword by Douglas K. Barry
Introduction
Part One - Setting the Foundation
Chapter 1 - The Agile Data Method
Chapter 2 - From Use Cases to Databases — Real-World UML
Chapter 3 - Data Modeling 101
Chapter 4 - Data Normalization
Chapter 5 - Class Normalization
Chapter 6 - Relational Database Technology, Like It or Not
Chapter 7 - The Object-Relational Impedance Mismatch
Chapter 8 - Legacy Databases — Everything You Need to Know But Are Afraid to Deal With
Part Two - Evolutionary Database Development
Chapter 9 - Vive L’ olution
Chapter 10 - Agile Model-Driven Development (AMDD)
Chapter 11 - Test-Driven Development (TDD)
Chapter 12 - Database Refactoring
Chapter 13 - Database Encapsulation Strategies
Chapter 14 - Mapping Objects to Relational Databases
Chapter 15 - Performance Tuning
Chapter 16 - Tools for Evolutionary Database Development
Part Three - Practical Data-Oriented Development Techniques
Chapter 17 - Implementing Concurrency Control
Chapter 18 - Finding Objects in Relational Databases
Chapter 19 - Implementing Referential Integrity and Shared Business Logic
Chapter 20 - Implementing Security Access Control
Chapter 21 - Implementing Reports
Chapter 22 - Realistic XML
Part Four - Adopting Agile Database Techniques
Chapter 23 - How You Can Become Agile
Chapter 24 - Bringing Agility into Your Organization
Appendix - Database Refactoring Catalog
References and Suggested Reading

Index

List of Figures
List of Tables
List of Examples

Agile Database Techniques—Effective
Strategies for the Agile Software Developer

Scott W. Ambler

Vice President and Publisher: Joseph B. Wikert
Executive Editor: Robert M. Elliott

Development Editor: James H. Russell

Editorial Manager: Kathryn A. Malm

Senior Production Editor: Angela Smith

Text Design & Composition: Wiley Composition Services

Copyright © 2003 by Wiley Publishing, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8700. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc., and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product
or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-20283-5

Printed in the United States of America
10987654321

To my parents, Bill and Loreen.
Thanks muchly.

Acknowledgments

I'd like to thank the following for their ideas and, more importantly, for their skepticisms: Dave
Astels, Philippe Back, Francois Beauregard, Graham Berrisford, Charles Betz, Chris Britton,
Steven Brown, Steve Cohen, Mike Colbert, Warren Cotton, Dale Emery, Neal Fishman, Adam
Geras, Steven Gordon, Jason Gorman, Michael M. Gorman, David C. Hay, Michael Haynes,
Mats Helander, Daniel Honig, Ron Jeffries, Jon Kern, Jan Emil Larsen, Kevin Light, Floyd
Marinescu, Les Munday, John Nalbone, Pan Wei Ng, Paul Oldfield, Oscar Pearce, Chris
Roffler, Dave Rooney, John Roth, Adrian Rutter, Yonn M. Samuels, Dwight W. Seeley, Paul
Tiseo, Jason P. Tryon, Patrick Vanhuyse, Micheal Vizdos, Michael Vorburger, Sebastian Ware,
David Waters, Gary Williams, Dawn M. Wolthuis, and Michael Zimmer.

I'd also like to thank my editors at John Wiley & Sons, Inc., including James H. Russell, Angela
Smith, Terri Hudson, Kathryn A. Malm, and Robert M. Elliott.

About the Author

Scott W. Ambler is a senior consultant with Ronin International, Inc. (www._ronin-intl.com), a
firm specializing in helping organizations to adopt new software-development techniques.
Scott is a senior contributing editor with Software Development (www.sdmagazine.com) and
the (co)author of numerous books, including Agile Modeling, Mastering EJB, Second Edition,
and The Object Primer. In his spare time Scott is an avid photographer and matrtial artist,
studying karate, tai chi, and yoga. Scott lives just north of Toronto, Canada, although he
travels all around the world to work with clients (as far as he’s concerned the more exotic the
locale the better).

Foreword by Jon Kern

“Got database?” Then get agile!

The agile movement was given shape in the shadows of 11,000-foot peaks of Snowbird, Utah,
in February 2001. Ever since, people and pundits alike have been talking and practicing agility.
Many development groups, tired of the failed promise of heavyweight processes and death
marches towards uncertain goals in uncertain timeframes, are finding comfort in a
“human-readable” set of development philosophies and principles.

Scott Ambler has a strong voice in the agile community, founding the Agile Modeling Forum in
February 2001. To all who “know” Scott, it is clear that he is passionate about helping
development teams succeed for their stakeholders and, ultimately, their customers.

There are many resources that address object modeling, agile techniques, UML (Unified
Modeling Language), language-specific intricacies, database design, SQL, and so on. Many
good books present information on how to develop a good object-oriented application.
Likewise, there are excellent tomes on techniques for developing and tuning databases. It is
less likely that you will run across books that describe an evolutionary, agile approach to
data-oriented development.

In this book, Scott addresses this key area of application development — the database. He
extends the reach of agile techniques across the application team, from developer to database
architect, demonstrating that agile techniques are no longer the sole domain of the
development folks. The DBA can also apply the same principles to the database — developing
incrementally and iteratively, just as developers do with their code base. Now, DBAs will be
able to understand the agile methodologies as applied to data-oriented development. They will
gain insight and learn how to fit into the larger team, how to leverage their extensive
experience with a given DBMS, and how to effectively — and efficiently — support the team’s
persistence needs. Even if you work on a small team without “designated” DBAs, this book will
be very helpful for its insights into the critical techniques for addressing the common
persistence problems facing all development teams.

*With apologies to the National Dairy Council

For those of us who have had the pleasure of introducing development teams to
object-oriented methodologies, the data-modeling aspect is always an interesting topic. On the
one hand, good object models look a lot like well-formed entity-relationship diagrams (if yours
don't, well, get mentored on object modeling!) and many object modelers drive the database
design from their class diagrams. On the other hand, some database experts will insist the
world revolves around the database (especially where legacy databases have been driving the
business for the last decade). Both positions have merit — yet neither is entirely correct. Scott
presents a give-and-take, evolutionary methodology that establishes balance within the team.
He points out that real-world applications often have more than one option for addressing data
concerns throughout the development iterations.

Most modern development methodologies are iterative in nature and require an evolutionary
approach. Most hard-core data modelers may be more familiar with a waterfall approach with
big, up-front design. This can sometimes cause friction within the team and result in turf

warfare. This book will teach the developer about database basics and teach the DBA the
needed skills to be a member of an agile development project. Effectively intertwining agile
object development and agile database development can only help teams in their quest for
success.

I wish | had a book like this eight years ago when | was developing my first major thin-client,
object-oriented application with a data management layer and all the associated other ilks that
come along for the ride. You will be able to avoid many of the lessons from the school of “hard
knocks” by using this book. If you have ever considered “dirty flags,” two-phase commits in a
distributed environment, or the struggle between “who” is in charge of referential integrity (the
database or the objects), then you will benefit greatly from this work. And, if you aren’t sure
what these terms mean, then you really must consider this book!

Because almost every (business) application-development project confronts the need for data
storage, this book will be an invaluable resource to most development teams. You'll want to be
sure to have enough copies for both your development and database folks. Developers
enhance their skills by learning about agile database techniques, and DBAs learn how to orient
their database development techniques along more agile lines — more effectively supporting
the development effort. In short, everybody stands to win. So grab a stimulating cup of
something, study up, and then let the collaboration begin!

Jon Kern

Coauthor, Agile Manifesto

Foreword by Douglas K. Barry

| want everyone reading this foreword to turn immediately to Chapter 23 of this book. Look at
the table containing recommendations on how to become more agile. Do the entries in the
table make you feel a little uncomfortable? Good. Do you think these recommendations are
unnecessary? Why is that? Take my advice: You really need to do what Scott is suggesting.
These are the first steps you can take to improve the chances you will have a successful
project. And they may just be very uncomfortable steps to take.

Some mental discomfort is good for people who want to make a change. There is no question
that change is needed in how we build (or fail to build) our software systems. This includes our
databases. If all we do is what we find to be comfortable, then there is little chance for change.

To me, Scott is suggesting in Chapter 23 that it is good to stand in the other people’s shoes for
a while. Really stand. Talking with other people and expressing empathy for their situation is
good, but not good enough. Actually trying to do another person'’s job is a very different
experience.

| know, because | have stood in many people’s shoes. Early in my career, | was a
data-modeling guru at a large corporation. Then, | got involved in software design and had to
deal with other people’s database designs. After that, | was the CIO of a startup database
company. That was followed by many years in database-related standards development. At

the same time, | started helping people to understand what is likely to be the best architecture
for their needs — which is what | am currently doing. Let me tell you, it has been an education,
and | have often felt uncomfortable. But | think | am better off for it. Based on my experience, it
appears that Scott is showing you a good way to start on your own path.

Throughout this book, Scott includes practical suggestions for using agile techniques in
database development. You might not always agree, but it will possibly challenge your thinking.
And that is good as well.

Scott also offers common-sense design suggestions for developing a database and for the
mapping of data between different types of systems. These suggestions are important, and
you do not always find them in the basic modeling texts.

The uncommon suggestions for becoming agile and the common-sense design suggestions
make this a good, all-around book for someone looking to go beyond a basic modeling text.
You will find workable, real-world advice here.

Douglas K. Barry
Founder and Principal, Barry & Associates, Inc.
(www.barryandassociates.com)

Introduction

An Agile Introduction: This is a really good book. Buy it. Read it. Spread the word.

Since the early 1990s, I've been working with both object and relational database (RDB)
technologies to build business applications, and since the mid-1990s I've done a fair bit of
writing on the subject. These writings have appeared in Software Development
(www.sdmagazine.com), in several of my books (in particular Building Object Applications
That Work and The Object Primer), and on my personal Web site (www.ambysoft.com). The
two white papers at my site, one on mapping objects to RDBs and the other describing the
design of a persistence layer, have proven to be incredibly popular, with several hundred
thousand downloads over the years. The persistence layer paper has even been used as the
basis for several open source products. Although it's been very rewarding for me to share my
ideas through these writings, | never took the time to collect this work in one place, nor have |
written everything that | have to say about the topic. This book rectifies this situation.

As a consultant, I've worked with object and data professionals, their related technologies, and
of course their techniques. In doing so, I've worked in traditional environments that take a
near-serial approach to development as well as more modern environments that take an agile
and evolutionary approach to development. Over time, I've worked on many different project
teams in various roles. Data-oriented issues were important, and sometimes even critical, to
the success of each project. Although traditional project teams seemed to have a handle on
how to deal with data issues the more agile ones often struggled — in part because the data
professionals in those organizations preferred to take a serial approach and in part because
the object developers didn't appreciate the importance of data-oriented issues. Being an

ex-data-specialist (oh no, my horrible secret is out!) and being experienced in object
technology, | often found ways for the two groups to work together. My experience was that
data professionals were often overly focused on data to the exclusion of the wide variety of
challenges faced by object developers and similarly object developers had little or no
data-related experience. So, | would help the two groups find ways to work together, to mentor
them in each other’s techniques, and to help them overcome what is known as the
object-relational impedance mismatch. For these two groups to work together effectively, they
each need to understand and appreciate what the other group is focused on, and | would even
call into question the wisdom of having separate groups to begin with. This book describes the
skills that both data professionals and object professionals require in order to build
modern-day software.

As a methodologist | have actively tried to find ways to develop software effectively, and over
the years have run the gambit from prescriptive approaches such as my work with process
patterns (www.ambysoft.com/processPatternsPage.html) and the Enterprise Unified Process
(EUP) (www.enterpriseunifiedprocess.info) to agile approaches such as Agile Modeling (AM)
(www.agilemodeling.com) and now agile database techniques. In part, this book is an
extension of AM to help describe how data professionals can take an evolutionary (iterative
and incremental) approach to development. Although many people within the data community
are adamantly opposed to evolutionary approaches, interestingly enough I've often found that
those opposed to it have never actually tried it; the reality is that agile software development is
real and here to stay. For data professionals to remain relevant, they must be prepared to work
in an agile manner, otherwise project teams will very likely find ways to work around them (I
suspect you see this sort of thing happen within your organization all of the time). My
experience, on actual projects, is that you can in fact be very successful by taking an agile
approach to data-oriented activities if you choose to do so. Many people will tell you that it
won't work, but all they’re really saying is that they either can’t make it work or they don’t want
to. This book describes numerous, proven techniques that support evolutionary data-oriented
development.

When | first started writing this book, | intended its focus to be on the agile data (AD) method
(www.agiledata.org). This method, summarized in Chapter 1, describes how data
professionals and application developers can work together effectively on agile projects. It also
describes how enterprise professionals, such as enterprise architects and data administrators,
can support agile development teams effectively. Because | was taking an iterative and
incremental approach to the development of the book, | quickly realized that the real value lay
in detailed development techniques instead of yet another methodology. So | refocused.

The Audience for This Book

Who is the audience for this book? The simple answer is anyone who is part of, or at least
interacting with, an agile software-development team. The more complicated answer is:

Agile/extreme programmers. Chances are pretty good that the software that you're building
manipulates data: therefore, you'll need to adopt many of the techniques described in this
book.

Database administrators. This book describes how you can succeed working on an agile
software-development team. Read it from cover to cover.

Data administrators. You'll need to support more and more agile development teams as
times goes on, and therefore you need to understand how they work and why they work this
way. This book will provide the insight that you require to help these teams be effective.

Architects. Agile, evolutionary development is quickly becoming the norm in most
organizations. This book describes techniques that you can adopt to work effectively on these
teams.

Team leads/coaches/managers. To lead an agile software-development team effectively,
you must understand the techniques that your team uses, why they apply those techniques,
and the implications of doing so. This book not only describes these techniques but also
discusses their trade-offs, enabling you to help your team make intelligent decisions.

Why the Focus on Agile DBAS?

Although most of the skills that | describe in this book are applicable to both application
developers and database administrators (DBAs), | choose to present them from the point of
view of an agile DBA. An agile DBA focuses on data-oriented issues, including traditional
database administration as well as any application development involving data. Agile DBAs
will also collaborate with enterprise professionals to ensure that the efforts of the project team
reflect enterprise realities. The important thing is that they do this work in an agile manner. The
role of agile DBA can be held by several people on your project, can be shared on a rotating
basis by several people, or can be held by a single person. Although the skillset of an agile
DBA can seem formidable, and it is, you'll find that you can gain these skills over time by
working with others who already have skills that you're missing, by training, and by simply
trying them out for yourself.

An Overview

This book is organized into four parts. The first part sets the foundation by describing the
fundamental skills and philosophies that all IT professionals require to be effective at
data-oriented activities. The second part describes techniques that enable evolutionary
database development, showing that it is possible to take an iterative and incremental
approach to data-oriented development. The third part provides an overview of detailed
implementation techniques for effectively using object technology, relational database
technology, and XML (Extensible Markup Language) technology together. The fourth part
wraps up with a discussion of how to successfully adopt the concepts described in this book.

Part |

A significant problem in the IT industry is that most data books do not cover object-oriented
development issues, and most object books seem to ignore data issues. This needs to stop.
Part | describes the fundamental skills and knowledge that everyone on an agile project team
should have. This includes the basics of object orientation, relational databases, the
object-relational impedance mismatch, data modeling, and how to deal with legacy data issues.
Without this common base of knowledge it is very difficult for application developers and data
professionals to work together effectively.

Part Il

Part Il focuses on how to take an evolutionary approach to data. This section sets the
foundation for a model-driven development (MDD) approach, or more accurately, an agile
model-driven development (AMDD) approach where your application code and database
schemas are based on agile models. This isn’t the only way to work; you may decide to take a
test-driven development (TDD) approach instead, or better yet, combine it with AMDD. Both
methods support evolutionary development but because MDD is very common within the data
community, | suspect that developers will gravitate more towards an AMDD approach rather
than a TDD approach. However, some agile developers, particularly extreme programmers,
prefer TDD over AMDD. Luckily, the two approaches work very well together, so it really
doesn’t matter which you choose. The implication is that TDD will become more important to
data professionals in the coming years. This part also describes database refactoring, an
evolutionary technique that enables you to improve your database design in small steps. In
many ways, database refactoring is normalization after the fact. Chapters describing mapping
objects to relational databases, performance tuning, database encapsulation, and supporting
tools are included in this part because they enable evolutionary development.

Part Il

Part Ill focuses on implementation techniques and strategies such as concurrency control,
security access control, finding objects in relational databases, referential integrity, and the
effective use of XML. An important observation is that many of these topics are traditionally
thought of as data issues, but as you'll see there is far more to them than this — it isn't a
black-and-white world.

Part IV

Part IV describes strategies for adopting agile database techniques. This chapter provides
advice for individuals who want to become agile software developers and for organizations
that want to adopt agile techniques.

Part One: Setting the Foundation

Chapter List

Chapter 1: The Agile Data Method

Chapter 2: From Use Cases to Databases — Real-World UML
Chapter 3: Data Modeling 101

Chapter 4: Data Normalization

Chapter 5: Class Normalization

Chapter 6: Relational Database Technology, Like It or Not
Chapter 7: The Object-Relational Impedance Mismatch

Chapter 8: Legacy Databases — Everything You Need to Know But Are Afraid to Deal With

Part Overview

This part describes fundamental skills and knowledge that everyone on an agile project team
should have. Why should you invest your time reading these chapters? Without this common
base of knowledge it is very difficult for application developers and data professionals to work
together effectively. A significant problem in the IT industry is that most data books do not
cover object-oriented development issues and most object books seem to ignore data issues.
Furthermore, leading agile books have all but ignored data and enterprise issues until now. |
think it's time that we all decide to start investing the time to learn about the wide range of
issues that we commonly face on a daily business. Although you may feel that you have a very
good understanding of one or more of these topics my advice is to skim the chapters
describing your areas of expertise because | suspect I've presented many new insights on
these “old topics”.

Chapter 1: The Agile Data Method. Explores how application developers, database
administrators (DBAS), enterprise architects, and data administrators can work together
effectively in an agile environment.

Chapter 2: From Use Cases to Databases — Real-World UML. Object technology is the
norm for modern projects; therefore, it is critical for everyone to understand the basics of
object orientation and the Unified Modeling Language (UML) 2.x (including UML data
modeling).

Chapter 3: Data Modeling 101. Data modeling is a fundamental skill that all software
professionals, including object professionals, require if they wish to store data effectively.

Chapter 4: Data Normalization. Normalization is a collection of design strategies that ensure
data is stored in one place and one place only, promoting the design of highly cohesive and
loosely coupled data schemas.

Chapter 5: Class Normalization. The concepts of normalization can be applied to object
schemas, a complementary technique for designing patterns and programming idioms.

Chapter 6: Relational Database Technology, Like It or Not. Relational databases (RDBs)
have been the dominant technology for persisting business objects and will likely remain so;
therefore, you need to understand the technology.

Chapter 7: The Object-Relational Impedance Mismatch. Object technology and relational
technology are based on different paradigms, presenting a technical impedance mismatch that
must be overcome. Worse yet is the cultural mismatch between object professionals and data
professionals, which must also be bridged.

Chapter 8: Legacy Databases — Everything You Need to Know But Are Afraid to Deal
With. Virtually every project team finds that it needs to work with legacy data sources, and
when doing so quickly discovers serious data quality, database design, and data architecture
problems that it needs to overcome.

Chapter 1. The Agile Data Method

Overview

It is possible to take an agile approach to data-oriented development. The first step is to
choose to work this way.

Data is clearly an important aspect of software-based systems — something we’'ve all known
for decades — and yet many organizations still struggle with their approach to data-oriented
issues within their software processes.

The goal of the agile data (AD) method is to define strategies that enable IT professionals to
work together effectively on the data aspects of software systems. This isn’t to say that AD is a
“one size fits all” methodology. Instead, consider AD as a collection of philosophies that will
enable software developers within your organization to work together effectively when it comes
to the data aspects of software-based systems. Although the focus of this book is proven
techniques for agile software development, it's critical to define an underlying methodological
foundation.

In this chapter, | help you understand the AD method by exploring the following topics:

= Why working together is currently difficult
= The agile movement
= The philosophies of agile data

= Agile data in a nutshell

. Does agile data address our problems?

Why Working Together Is Currently Hard

In many organizations, the relationship between data professionals and developers is often
less than ideal. Yes, there are some organizations where these two communities work
together quite well, but there are always tensions — some healthy tension exists between
groups, and from these your organization can benefit, but when the tension isn’t healthy these
differences often lead to conflicts. The challenges that data professionals and developers must
overcome can include:

Different visions and priorities. Developers are often focused on the specific needs of a
single project and often strive to work as much as possible in isolation from the rest of the
organization. Database administrators (DBAs) focus on the database(s) that they are
responsible for, often “protecting” the databases by minimizing changes to them. Data
administrators and data architects focus on the overall data needs of the enterprise,
sometimes to the virtual exclusion of the immediate needs of project teams. Clearly, the scope
of each group is different, their priorities are different, and the issues that the groups deal with
are different. To make matters worse, your project stakeholders, including direct users all the
way up to senior management, have varying priorities and visions as well.

Overspecialization of roles. Specialists have a tendency to become too narrowly focused;
they can work so hard to know everything there is to know about a small slice of software
development that they can become oblivious of everything else. For example, it's quite
common to find senior Java developers that have never heard about data hormalization
(discussed in Chapter 4), or even understand why you would want to do such a thing, and data
architects who can’t read a Unified Modeling Language (UML) state chart diagram (discussed
in Chapter 2). Because these roles are overly specialized, the people in those roles often have
difficulties relating to others. At the other end of the spectrum are generalists who understand
the big picture but don’t have any concrete skills to offer a development team. We need to find
the sweet spot between these two extremes. An underlying philosophy of Agile Modeling
(Ambler 2002a) is that software developers should have a general understanding of the overall
software process and have one or more specialties. Because agile modelers are generalists,
they understand the broad range of issues pertinent to the “software game” and yet they still
have specific, valuable skills to offer to their team.

Process impedance mismatch. One of the few things that processes such as the Unified
Process (Kruchten 2000; Ambler 2001b), Extreme Programming (XP) (Beck 2000), Scrum
(Beedle and Schwaber 2001), DSDM (Stapleton 1997), Crystal Clear (Cockburn 2001b),
feature-driven development (FDD) (Palmer and Felsing 2002), and Agile Modeling (AM) have
in common is that they all work in an evolutionary (iterative and incremental) manner.
Unfortunately, many within the data community still view software development as a serial or
near-serial process. Clearly, there is an impedance mismatch here, indicating that the data
community needs to rethink its approach. You will see in Part Il of this book that it is possible to
take an evolutionary approach to data, a change that will require cultural and organizational
adjustments to succeed.

Technology impedance mismatch. Developers work with objects and components, whereas
data professionals work with databases and files. Software-engineering principles form the
underlying foundational paradigm for objects and components, whereas set theory forms the
underlying foundational paradigm for relational databases (by far the most popular database
technology). Because the underlying paradigms are different, the technologies don’t work
together perfectly, and an impedance mismatch exists. This mismatch can be overcome,
although doing so requires a significant skillset (this topic is covered in Chapter 7).

Ossified management. The technology and techniques used by software developers change
rapidly, a fact that we all know very well. As people progress up the corporate hierarchy, they
deal less with technology and more with people issues, the end result being that many
managers have lost their technical edge. The implication is that management’s previous
development experiences, on which they base technical decisions, may no longer be
applicable. We experienced this when we moved from procedural to object-oriented
technologies — what may have been a good decision on a COBOL project often proves to be
the kiss of death to a Java project. We're clearly seeing this problem once again as we move
to agile software processes. Management needs to change with the times.

Organizational challenges. Common problems, such as poor communication or politics
among individuals and groups, hurt the data aspects of software development just as badly as
they hurt other efforts, by preventing everyone from working together effectively.

Poor documentation. Most documentation seems to be at one of the following extremes: little
or no documentation or overly complex documentation that nobody reads. Mutually agreed-to
development standards and guidelines, legacy system documentation, legacy database
documentation, and enterprise models can be valuable resources when written well. Chapter
10 presents agile strategies for writing documentation.

Ineffective architectural efforts. Most organizations face significant challenges when it
comes to enterprise architecture, the most common of which being that they don’t know where
to start. Biased enterprise architectures that overly focus on one view of the enterprise lead to
architectures that do not adequately address the real needs of an organization. As the
Zachman Framework (ZIFA 2002; Hay 2003) indicates, there are many potential views that
you want to consider. These views are data/structure, function/process, network, people, time,
and motivation. Ivory tower architectures — those formulated by teams that have removed
themselves from the day-to-day realities of project teams — look good on paper but
unfortunately fail in practice. Furthermore, developers need to accept that their efforts must
reflect and conform to the constraints imposed on them by their organization’s environment.

Ineffective development guidelines. Many organizations struggle to come to a collection of
development guidelines that all software developers will work to. There are a large number of
causes for this, including people not understanding the need to follow such guidelines, people
unwilling to follow someone else’s guidelines, overly complex guidelines, overly simplistic
guidelines, a “one size fits all” attitude that leads to inappropriate guidelines for a specific
platform, and an unwillingness to evolve guidelines over time. When you have an effective
collection of guidelines available to you, and (this is key) everyone understands and applies

them appropriately, you can dramatically improve the productivity of your software
development efforts.

Ineffective modeling efforts. This is often the result of several of the previously identified
problems. People focused on a specific aspect of development will often produce models that
wonderfully reflect the priorities of that narrow view but fail to take into account the realities of
other views. An enterprise data model may present an excellent vision of the data required by
an organization, but an enterprise model that reflects the data, functional, usage, and technical
requirements of an organization is likely to be far more useful. A UML class diagram may
reflect the needs of a single project, but if it doesn't reflect the realities of the legacy data
sources that it will access then it is of little value in practice. Modelers, and software
developers in general, need to work together and look at the full picture to be truly effective.

Detecting That You Have a Problem

It is very easy for organizations to deny that they have a problem. It can be very difficult for
senior management to detect problems until it’s too late because the bad news that they need
to hear is filtered out long before it gets to them. Similarly, it can be difficult for people
elsewhere in the organization to detect problems — perhaps everything is going quite well in
their opinion — unfortunately the value system that they’re using to judge the situation isn’t
ideal, making them blind to the problems that they are causing.

As a consultant | have the privilege of working in a wide range of organizations, and it seems
to me that about one in ten organizations is reasonably successful with its approach to
data-oriented activities, about six in ten think they’re doing well but really aren’t, and the
remaining three in ten know that they have a problem but don’t know what to do about it. It
doesn’t have to be this way.

So how do you know you've got a problem? Enterprise data professionals, including both data
architects and data administrators, will be frustrated by the fact that project developers on
project teams ignore their advice, standards, guidelines, and enterprise models. Worse yet,
application developers often don’t even know about these people and things in the first place.
Developers will be frustrated by what they perceive (often rightfully so) to be the glacial pace of
enterprise data professionals to make or authorize seemingly simple changes. DBAs often find
themselves stuck in between these two warring factions, trying to get their work done, while
struggling to keep the peace. If one or more of these problems is common within your
organization you've got a problem.

The following is a list of potential symptoms that may indicate that your organization has one or
more challenges that the agile data method may help you address:

= People are significantly frustrated with the efforts, or lack thereof, of one or more
groups.
= Software is not being developed, or if it is it is taking far too long or is much too

expensive.

= Finger pointing occurs such that you hear things like “the data administrators are
holding up progress” or “the developers aren't following corporate guidelines.” Worse yet,
the finger pointer typically doesn’t perceive that he or she is also part of the problem.

Ll Political issues are given higher priority than working together to develop, maintain,
and support software-based systems.

= Ongoing feuds exist between people and groups. Phrases that start with “you always”
and “you never” are good indicators of this.

= Well-known problems within your organization are not being addressed. Furthermore,
suggestions for improvements appear to be ignored, nothing happens, and no reason for
rejection is provided.

. People are working excessively long hours with little or no reward.

= Decisions affecting teams — in particular project teams — are made in an apparently
arbitrary and arrogant fashion.

We need to find a way to work together effectively. There are clear differences between the
data and development communities as well as between the project and enterprise
communities. The fact that we're talking about different communities is also part of the problem,
arguably one of the root causes. You have a fundamental decision to make: Should you use
these differences as an excuse to exacerbate existing problems within your organization or
should you revel in these differences and find a way to take advantage of them? | prefer the
latter approach. My experience is that the values and principles of the agile movement form
the basis for an effective approach to working together.

The Agile Movement

To address the challenges faced by software developers an initial group of 17 methodologists
formed the Agile Software Development Alliance (www.agilealliance.org), often referred to
simply as the Agile Alliance, in February 2001. An interesting thing about this group is that the
members all came from different backgrounds, and yet they were able to come to an
agreement on issues that methodologists typically don’t agree upon (Fowler 2001a). This
group of people defined a manifesto for encouraging better ways of developing software, and
then, based on that manifesto, formulated a collection of principles that defines the criteria for
agile software development processes such as AM.

The Manifesto for Agile Software Development

The manifesto (Agile Alliance 2001a) is defined by four simple value statements — the
important thing to understand is that while you should value the concepts on the right-hand
side, you should value the things on the left-hand side even more. A good way to think about
the manifesto is that it defines preferences, not alternatives, encouraging a focus on certain
areas but not eliminating others. The Agile Alliance values are as follows:

Individuals and interactions over processes and tools. Teams of people build software
systems, and to do that they need to work together effectively — teams include but are not
limited to programmers, testers, project managers, modelers, and customers. Who do you

think would develop a better system: five software developers with their own tools working
together in a single room or five low-skilled “hamburger flippers” with a well-defined process,
the most sophisticated tools available, and the best offices money could buy? If the project
were reasonably complex, my money would be on the software developers, wouldn’t yours?
The point is that the most important factors that you need to consider are the people and how
they work together; if you don't get that right the best tools and processes won't be of any use.
Tools and processes are important, don’t get me wrong, it's just that they’re not as important
as working together effectively. Remember the old adage, a fool with a tool is still a fool. This
can be difficult for management to accept because they often want to believe that people and
time, or men and months, are interchangeable (Brooks 1995).

Working software over comprehensive documentation. When you ask a user whether he
or she would want a fifty-page document describing what you intend to build or the actual
software itself, what do you think that person will pick? My guess is that 99 times out of 100,
the user will choose working software, assuming of course that he or she expects that you can
actually deliver. If that is the case, doesn't it make more sense to work so that you produce
software quickly and often, giving your users what they prefer? Furthermore, | suspect that
users will have a significantly easier time understanding any software that you produce than
complex technical diagrams describing its internal workings or describing an abstraction of its
usage. Documentation has its place, written properly, it is a valuable guide for people’s
understanding of how and why a system is built and how to work with the system. However,
never forget that the primary goal of software development is to create software, not
documents — otherwise, it would be called documentation development wouldn't it?

Customer collaboration over contract negotiation. Only your customer can tell you what
they want. No, they likely do not have the skills to exactly specify the system. No, they likely
won't get it right at first. Yes, they’ll likely change their minds. Working together with your
customers is hard, but that's the reality of the job. Having a contract with your customers is
important, but, while having an understanding of everyone’s rights and responsibilities may
form the foundation of that contract, a contract isn’t a substitute for communication. Successful
developers work closely with their customers, they invest the effort to discover what their
customers need, and they educate their customers along the way.

Responding to change over following a plan. People change their priorities for a variety of
reasons. As work progresses on your system, your project stakeholders’ understanding of the
problem domain and of what you're building changes. The business environment changes.
Technology changes over time and not always for the better. Change is a reality of software
development, a reality that your software process must reflect. There is nothing wrong with
having a project plan; in fact, | would be worried about any project that didn’t have one, but a
project plan must be malleable; that is, there must be room to change it as your situation
changes; otherwise, your plan quickly becomes irrelevant.

The interesting thing about these value statements is that almost everyone will instantly agree
to them, and yet rarely do people adhere to them in practice. Senior management always
claims that its employees are the most important aspect of the organization, and yet often they
follow ISO-9000-compliant processes and treat their staff as replaceable assets. Even worse,

management often refuses to provide sufficient resources to comply with the processes that
they insist project teams follow — the bottom line: management needs to eat its own dog food.
Everyone will readily agree that the creation of software is the fundamental goal of software
development, yet many people still insist on spending months producing documentation
describing what the software is and how it is going to be built instead of simply rolling up their
sleeves and building it. You get the idea — people often say one thing and do another. This
has to stop now. Agile modelers do what they say and say what they do.

The Principles for Agile Software Development

To help define agile software development, the members of the Agile Alliance refined the
philosophies captured in their manifesto into a collection of 12 principles (Agile Alliance 2001b)
that methodologies, including agile data (AD), should conform to. These principles are:

= Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

= Welcome changing requirements, even late in development. Agile processes harness
change for the customer’'s competitive advantage.

= Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference for the shorter time scale.

= Business people and developers must work together daily throughout the project.

= Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

= The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

= Working software is the primary measure of progress.

= Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

= Continuous attention to technical excellence and good design enhances agility.

= Simplicity — the art of maximizing the amount of work not done — is essential.

= The best architectures, requirements, and designs emerge from self-organizing
teams.

= At regular intervals, the team reflects on how to become more effective and then tunes

and adjusts its behavior accordingly.

Stop for a moment and think about these principles. Is this the way that your software projects
actually work? Is this the way that you think projects should work? Reread the principles again.
Are they radical and impossible goals as some people would claim? Are they meaningless
motherhood and apple pie statements? Or are they simply common sense? My belief is that
these principles form a foundation of common sense upon which you can base successful
software-development efforts, a foundation that can be used to direct the data-oriented efforts
of software developers.

The Philosophies of Agile Data

First and foremost, the agile data method subscribes to the values and principles of the Agile
Alliance. Although this advice is a very good start, it needs to be extended with philosophies
that reflect the realities faced by data professionals. The philosophies of agile data are:

Data. Data is one of several important aspects of software-based systems. Most, if not all,
applications are based on moving, utilizing, or otherwise manipulating some kind of data, after
all.

Enterprise issues. Development teams must consider and act appropriately regarding
enterprise issues. Their applications must fit into the greater scheme of things by conforming
to the common enterprise architecture (or at least to the future agreed-upon architecture), by
following common development standards, and by reusing existing legacy assets wherever
possible.

Enterprise groups. Enterprise groups exist to nurture enterprise assets and to support other
groups, such as development teams, within your organization. These enterprise groups should
act in an agile manner that reflects the expectations of their customers and the ways in which
their customers work.

Every project is unique. Each development project is unique, requiring a flexible approach
tailored to its needs. One software process does not fit all, and therefore the relative
importance of data varies based on the nature of the problem being addressed.

Teamwork. Software developers must work together effectively, actively striving to overcome
the challenges that make it difficult to do so.

Sweet spot. You should actively strive to find the “sweet spot” for any issue, avoiding the
black and white extremes to find the gray that works best for your overall situation.

Interestingly, most of these philosophies aren’t specific to data; instead, they are applicable to
software-development efforts in general. As the first principle implies, you need to look at the

overall picture and not just data; therefore, data-specific principles very likely won'’t serve you

very well. Heresy? No. Just common sense.

Agile Data in a Nutshell

The best way to understand the AD method is to explore its four roles — agile DBA,
application developer, enterprise administrator, and enterprise architect — and how they
interact with each other. The first two roles, the focus of this book, are project-level
development roles. The second two roles, which are featured prominently throughout the book
due to their importance, are enterprise-level support roles. An agile software developer can
take on one or more of these roles, although his or her focus will very likely be on one or both
of the project-level roles.

Let's explore each role in greater detail.

Agile DBAs

An agile DBA (Schuh 2001) is anyone who is actively involved with the creation and evolution
of the data aspects of one or more applications. The responsibilities of this role include, but are
not limited to, the responsibilities typically associated with the traditional roles of database
programmers, database administrators (DBAs), data testers, data modelers, business
analysts, project managers, and deployment engineers. This is the type of role that a DBA
within a small organization typically finds himself or herself in: a sort of “data jack of all trades.”

The primary customers of agile DBAs are application developers, although enterprise
administrators and enterprise architects are very close seconds. When agile DBAs are asked
to support the business community, their primary customers will also include direct end users
and their managers. This is particularly true when agile DBAs support applications that are
data focused, in particular reporting applications.

An agile DBA will work closely with application developers, typically supporting a single larger
team or several smaller teams as the case may be. Agile DBAs can often be responsible for
several data sources (for example, databases, files, XML structures, and so on) or at least be
coresponsible for them. For example, if two development teams access the same database
and each of them has its own agile DBA, those two people will then need to work together to
evolve that database over time. This is slightly different from Schuh’s original vision of an agile
DBA — his focus was on how a DBA can be effective on a single team, whereas the AD
method looks at the entire enterprise. The important thing is that you work in a manner
appropriate to your environment.

The biggest potential change for traditional DBAs in becoming an agile DBA is that they will
need to learn to work in an evolutionary manner. Modern development processes such as the
Unified Process (UP) or Extreme Programming (XP) don’t provide detailed requirements up
front nor do they focus on detailed models (and certainly not detailed data models up front).
Instead they evolve their models over time to reflect their changing understanding of the
problem domain as well as the changing requirements of their stakeholders. Some project
teams may choose to work in a more serial manner, they may even choose to produce a
detailed conceptual data model early in the project’s life cycle, but those teams will be few and
far between (although you will be expected to support them too). Agile DBAs will need to
communicate the constraints imposed by legacy data sources (discussed in Chapter 8),
working with application developers to understand those constraints and work appropriately.

Agile DBAs will evolve their legacy data schemas over time, applying common database
refactorings (discussed in Chapter 12) as appropriate and working with new tools to evolve
and migrate their data schemas over time. This is a difficult but necessary task. Agile DBAs will
also need to work with application developers to model their data needs, working with
UML-based artifacts such as class diagrams with some project teams and conceptual data
models with other teams. Agile DBAs will work with application developers to write and test
database code such as stored procedures, data-oriented code within applications that
interacts with their data sources, and even aid in mapping the application schema to the data

schema. Performance tuning (discussed in Chapter 15), both of the database and mappings to
the database, is an important aspect of the job.

Agile DBAs commonly work with enterprise administrators, who are responsible for
maintaining and evolving the corporate meta data describing the enterprise and the corporate
development standards and guidelines. Agile DBAs will use this information and follow the
standards and guidelines, as well as provide valuable feedback. Agile DBAs will also interact
with enterprise administrators and other agile DBAs to evolve the various enterprise data
sources over time, including critical meta data.

Agile DBAs also work with enterprise architects to ensure that their work fits into the overall
picture and to help evolve the enterprise architecture over time.

Much of the material presented in this book is presented from the point of view of agile DBAs
and application developers. | wrote it this way to remain both as consistent and as simple as
possible.

Application Developers

For the sake of the agile data method an application developer is anyone who is actively
involved with the creation and evolution of the nondata aspects of a software application
(remember, any given person could take on several roles). The primary focus of an application
developer is on the single system or product line that he or she is assigned to. The
responsibilities of this role can include the responsibilities traditionally associated with the
“traditional roles” of programmers, modelers, testers, team leads, business analysts, project
managers, and deployment engineers.

As noted earlier, application developers work very closely with agile DBAs who are
responsible for working on the data aspects of one or more applications. The primary
customers of application developers include the potential users of their system, their managers,
and the operations and support group(s) within their organization. Secondary customers
include other project stakeholders such as senior management, enterprise administrators, and
enterprise architects.

It is important for application developers to recognize that although their primary focus is
fulfilling the current needs of direct project stakeholders, their project exists within the larger
scope of the organization. This philosophy reflects AM’s (discussed in Chapter 10) principles
Software Is Your Primary Goal and Enabling The Next Effort Is Your Secondary Goal — in this
case part of the next effort is ensuring that your project conforms to the overall enterprise
vision. Application developers are best served by recognizing that they are working on one
project of many within their organization, that many projects came before theirs, that many
projects will come after theirs, and that, therefore, they need to work with people in the other
roles to ensure that they do the right thing.

Application developers will adopt and follow agile software development processes such as
FDD, DSDM, and XP. When it comes to modeling and documentation, they are likely to

enhance these processes with the principles and practices of AM. All three of these processes,
being agile, implore developers to work closely with their project stakeholders. An implication
is that developers are responsible for helping to educate their stakeholders, including both
users and managers, in the basics of software development to help them make more informed
decisions when it comes to technology.

An organization’s legacy systems, including legacy data sources (discussed in Chapter 8), will
constrain the efforts of application developers. These systems will often be very difficult to
evolve, and if they can evolve it will often happen very slowly. Luckily, agile DBAs will be able
to help application developers deal with the realities imposed upon them by legacy data
sources, but they will need to work with enterprise administrators and more so with enterprise
architects to ensure that their efforts reflect the long-term needs of your organization. Like
agile DBAs, application developers will also need to recognize that they need to follow their
organization’s development practices, including the guidelines and standards supported by
enterprise administrators. Application developers are expected to provide feedback regarding
the standards and guidelines; everyone in the organization should do so and be prepared to
work with the enterprise administrators to develop guidelines for development environments
that are new to the organization.

Application developers also need to work closely with enterprise architects to ensure that their
project takes advantage of existing enterprise resources and fits properly into the overall
enterprise vision. The enterprise architects should be able to provide this guidance and will
work with your team to architect and even build your system. Furthermore, application
developers should expect to be mentored in “senior” skills such as architecture and modeling.
This approach makes it easy for your team to support enterprise efforts and helps keep the
enterprise architects grounded because they quickly discover whether their architecture
actually works in practice.

Enterprise Administrators

An enterprise administrator is anyone who is actively involved in identifying, documenting,
evolving, protecting, and eventually retiring corporate IT assets. These assets include
corporate data, corporate development standards/guidelines, and reusable software such as
components, frameworks, and services. The responsibilities of this role potentially include, but
are not limited to, the responsibilities associated with traditional roles of data administrators,
network administrators, reuse engineers, and software process specialists. Enterprise
administrators work closely with enterprise architects, although their primary customer teams
are senior management and project teams. In many ways enterprise administrators are the
“keepers of the corporate gates,” supporting project teams, while at the same time guiding
them to ensure that the long-term vision of the enterprise is fulfilled. An important goal is to
guard and improve the quality of corporate assets, including but not limited to data. Good
enterprise administrators are generalists with one or more specialties, one of which could be
data administration, who understand a wide range of issues pertinent to the enterprise.

Enterprise administrators recognize that there is more to this job than data administration and
will work in an evolutionary manner when supporting agile software-development teams. This
is because enterprise administrators work closely with agile DBAs, and to a lesser extent
application developers, who work in this manner. Enterprise administrators work with agile
DBAs to ensure that their databases reflect the overall needs and direction of the enterprise.
Enterprise administrators will find ways to communicate the importance of their role to agile
DBAs and application developers, and the best way to do this is to focus on things that will
make them more effective in their jobs — few people refuse a helping hand. Trying to impose
your will through onerous processes or management edicts very likely won’t work.

Enterprise administrators work with both agile DBAs and application developers to ensure that
these folks understand the corporate standards and guidelines that they should follow.
However, their role is to support the standards and guidelines, not enforce them. A good rule
of thumb is that if you need to act as the “standards police,” then you have lost the battle.
Furthermore, this failure is very likely your fault because you didn’t communicate the standards
well, didn’t gain support, or tried to enforce unrealistic guidelines. If the standards and
guidelines make sense, they’re written well, and they're easy to conform to, data and
application developers will be willing to follow them. However, when this is not the case, when
the standards and guidelines aren't appropriate or place an inordinate burden on projects,
enterprise administrators should expect pushback. Yes, some individuals may chaff at
following standards and guidelines but that's something that project coaches/managers will
need to deal with.

When pushback occurs, an enterprise administrator works with the project team(s) to explore
and address the problem. They are prepared to evolve the standards and guidelines over time
to reflect lessons learned and the changing realities of the organization. One size will not fit all
— your relational database naming conventions may be very different from your Java naming
conventions and that's okay because those are two different environments with two different
sets of priorities.

Enterprise administrators work closely with enterprise architects to communicate the
constraints imposed by the current environment to the architects. More importantly, the
enterprise administrators need to understand the future direction envisioned by the enterprise
architects to ensure that their efforts support the long-term direction of the organization.

Enterprise Architects

An enterprise architect is anyone who is actively involved in the creation, evolution, and
support/communication of the enterprise architecture. The architecture will often be described
as a collection of models. These models describe a wide variety of views, one of which may be
data oriented, although network/hardware views, business process views, usage views, and
organizational structure views (to name a few) are equally as valuable. The responsibilities of
this role includes, but is not limited to, the responsibilities associated with the traditional roles
of enterprise data architects, enterprise process architects, enterprise network architects, and
S0 on.

As with the role of enterprise administrator, the role of enterprise architect has a greater scope
than just that of dealing with data — instead they look at the entire enterprise picture. The
enterprise architect's main job is to look into the future, to attempt to identify a direction in
which the organization is going, and hence to determine how its IT infrastructure needs to
evolve. Enterprise architects are naturally constrained by the current situation the organization
finds itself in, its environment, and its ability to evolve. Enterprise architects work closely with
enterprise administrators to ensure that they understand the current environment and to
communicate their vision for the future. The primary customers of enterprise architects are the
organization’s senior management, including both IT management and business management,
whom they work with to evolve the enterprise vision. The project teams are also primary
customers because their work should reflect the overall enterprise architecture and because
they provide critical feedback to that architecture.

Enterprise architects focus on a wide variety of architectural issues, data being only one of
them. Their main goal is to develop and then support enterprise architectural models. It isn’'t
sufficient for an enterprise architect to produce good models, he or she must evangelize those
models, work with development teams, and educate senior management in the implications of
the architecture of system-related issues in general. In addition to the CIO and CTO of your
organization, your enterprise architects are likely to have the most visibility with senior
management; therefore, they need to be prepared to aid senior management to make strategic
decisions.

Enterprise architects work with agile DBAs and with application developers. The most
important thing that enterprise architects can do is to “walk the talk” and roll up their sleeves
and get actively involved with the project. This will earn the respect of the developers,
dramatically increasing the chance that they’ll actually understand and follow the vision of the
enterprise architecture. The advantage of this approach is that it provides immediate and
concrete feedback as to whether the architecture actually works and provides valuable insights
for how the architecture needs to evolve.

Enterprise architects need to be prepared to work in an iterative and incremental manner.
They are ill advised to try to create an all-encompassing set of enterprise models up front.
Instead, create an initial, high-level architecture, and then work closely with one or more
development teams to make sure that it works. AM includes a practice called Model In Small
Increments that is based on the premise that the longer you model without receiving concrete
feedback, such at that provided by an actual project, the greater the chance that your model
doesn't reflect the real-world needs of your organization. Agile enterprise architects avoid
ivory-tower architectures this way. An agile approach to enterprise architecture is described at
the following Web page: www.agiledata.org/essays/enterpriseArchitecture.html.

Agile Software Developers

An underlying assumption of the AD method is that your organization wants to take an agile

approach to software development. Agile software development reflects a shift of mindset, a
new way of thinking. To succeed at the AD method, people in the four roles described earlier
must have this mindset, a mindset that is characterized by the following traits:

Teamwork. Agile software developers recognize the importance of working together
effectively with others and will act accordingly. They have the humility to respect and
appreciate the views and abilities of others; without this humility, they are unlikely to willingly
choose to collaborate with others. A critical implication is that everyone is going to have to
rethink the way that they work and be willing to change for the greater good. The attitude that
“my group is the center of the universe and everyone has to conform to our vision and follow
our process” doesn’'t work well.

Common, effective processes. Agile software developers actively seek to define an overall
approach that everyone agrees to. My experience is that processes imposed from the top are
very likely to fail because all it takes is one group to reject the process and “go rogue.” A better
process-improvement strategy is to organically grow a workable software process that reflects
the needs of everyone involved. Because software developers are intelligent people with
valuable skills, you are likely to find that a collection of principles that everyone agrees to is
often the most important part of an effective process. In the case of the AD method these are
the values and principles of agile software development as well as the AD philosophies.

Co-location. Agile software developers are willing to co-locate with others as needed. You
might need to give up your comfortable cubicle or office for a while to work in a shared team
space, or even have someone share your office to work with you on a project. This reflects the
fact that communication and collaboration are critical to your success; you are much more
effective working with others than you are working alone.

Generalizing specialists. Agile software developers are generalists with one or more
specialties. The implication is that everyone needs to have a wide range of skills and be willing
to work with others to improve upon existing skills and to learn new ones. (Chapter 23 explores
this concept in greater detail.)

Process flexibility. Agile software developers are also prepared to tailor their approach to
meet the needs of the projects they are involved with. For example, a project team working on
a reporting database may very well take a different approach than one working on an online
application written in Java or C#. No single approach suits all situations.

Sufficient documentation. Agile software developers recognize that documentation is a
necessity in their jobs, something they can be very effective at if they choose. For example,
enterprise architects recognize that the goal of enterprise modeling is to produce effective
models that meet the needs of their audience, not to produce reams of documentation. They
recognize that many traditional architectural efforts fail because developers are not willing to
invest the time to wade through the documentation to learn the architecture. Application
developers realize that system documentation is required to support future enhancement
efforts and agile DBAs realize that documentation is required that describes the data sources
that they support. Agile software developers will take an agile approach to documentation
(discussed in Chapter 10) and produce well-written and concise documents that are just barely
good enough.

Does Agile Data Solve Our Problems?

An important question to ask is whether the philosophies and suggested cultural changes
discussed in this book address the problems that organizations face when it comes to the data
aspects of software development. The following list shows that this in fact is the case,
discussing each of the potential problems mentioned earlier in the chapter and the solution
suggested by the AD method.

Different visions and priorities. Agile data implores software developers to work together
and to understand and respect the viewpoints of their coworkers.

Overspecialization of roles. Agile data asks software developers to find the “sweet spot”
between the extremes of being a generalist and being a specialist, ideally by becoming a
generalist with one or more specialties.

Process impedance mismatch. Agile data makes it clear that enterprise and data
professionals must to be prepared to work following an incremental and iterative approach, the
norm for most modern development and the defacto standard for agile software development.
It also makes it apparent that application developers must recognize that the existing
environment, and future vision for the organization, places constraints on their efforts.

Technology impedance mismatch. Agile data requires that software developers work
together closely, learning from each other as they do so. Agile DBAs have the skills to map the
application schema to the data schema, to write data-oriented code, and to performance tune
their work.

Ossified management. Agile data asks enterprise architects to work with senior management
and educate them in the realities of modern software development. Similarly, application
developers should work with and help educate all levels of management.

Organizational challenges. Agile data requires software developers to work with one another
and with your project stakeholders, to respect them, and to actively strive to work together
effectively.

Poor documentation. Agile data directs software developers to follow the principles of Agile
Documentation (discussed in Chapter 10).

Ineffective architectural efforts. Agile data advises enterprise architects to take a
multiview/model approach to architecture and to actively work on a project team to support and
prove that their architecture works. The feedback from these efforts should then be reflected in
future iterations of the architecture.

Ineffective development guidelines. Agile data implores enterprise administrators to write
clear, effective, and applicable standards and guidelines and to be prepared to act on
feedback from the development teams.

Ineffective modeling efforts. Agile data directs software developers to follow the principles
and practices of the AM methodology (discussed in Chapter 10).

Summary

The heart of the agile data method is its philosophies and the changes that those philosophies
imply for the way that software developers approach their jobs. The first step is to recognize
that you have a problem; many organizations have a serious problem with respect to how their
application developers and data professionals work together on one level, as well as how
project team members work together with enterprise team members on another level.
However, it isn’t enough for the agile data method to merely present a collection of
philosophies, it must also describe real-world, proven techniques that software developers can
apply on the job. You should consider these techniques, select the ones that sound like they’ll
benefit you, tailor them, and apply them appropriately within your environment. Software
developers can work together effectively, but they must choose to do so.

Chapter 2: From Use Cases to Databases —
Real-World UML

Overview

The shift to agile software development techniques is equivalent to the shift to the
object-oriented paradigm.

The prevalence of programming languages such as Java, C++, Object Pascal, C#, and Visual
Basic make it incredibly clear that object-oriented technology has become the approach of
choice for new development projects. Agile software developers, be they application
developers or agile DBAs, must have an understanding of object orientation if they are to be
effective on modern software projects. This includes understanding basic concepts such as
inheritance, polymorphism, and object persistence. Furthermore, they must have experience
with the industry-standard Unified Modeling Language (UML). A good starting point is to
understand what | consider to be the core UML diagrams — use-case diagrams, sequence
diagrams, and class diagrams — although, as | argue in Chapter 10, you must be willing to
learn more models over time.

One of the advantages of working closely with other software developers is that you learn new
skills from them, and the most effective developers will learn and adapt fundamental concepts
from other disciplines. An example is class normalization, the object-oriented version of data
normalization, which is a collection of simple rules for reducing coupling and increasing
cohesion within your object designs (data normalization and class normalization are the topics
of Chapters 4 and 5, respectively).

This chapter is aimed at agile DBAs who want to gain a basic understanding of the object
paradigm, allowing them to understand where application developers are coming from. The
primary goal of this chapter is to provide agile DBAs with a sufficient understanding of objects

to provide a basis from which to communicate with application developers. Everyone on a
project team must share a common base of knowledge if they are to understand and work with
their colleagues effectively. Similarly, other chapters in Part | provide an overview of
fundamental data concepts, such as relational database technology and data modeling, that
application developers need to learn so that they understand where agile DBAs are coming
from. This chapter presents:

Ll An overview of fundamental object-oriented concepts and techniques
Ll An introduction to the Unified Modeling Language (UML)
= A profile for data modeling using UML notation

An Overview of Object-Oriented Concepts

Agile software developers, including agile DBASs, need to be familiar with the basic concepts of
object-orientation. The object-oriented (OO) paradigm is a development strategy based on the
concept that systems should be built from a collection of reusable components called objects.
Instead of separating data and functionality, as is done in the structured paradigm, objects
encompass both. Although the object-oriented paradigm sounds similar to the structured
paradigm, it is actually quite different. A common mistake that many experienced developers
make is to assume that they have been “doing objects” all along just because they have been
applying similar software-engineering principles. To succeed with the OO paradigm you must
recognize how the OO approach is different from the structured approach.

Consider the design of an information system for an order-entry system. Taking the structured
approach, you would define the layout of a database and the design of a program to access
that data. In the database, there would be information about customers, orders, order items,
and items. The program would allow users to make orders, search for items, define shipping
instructions, and so on. The program would access and update the database, in effect
supporting the day-to-day business of the company.

Now, consider the university information system from an object-oriented perspective. In the
real world, there are customers, orders, order items, and items. All of these things would be
considered objects. In the real world, customers know things (they have names, addresses,
telephone numbers, and so on), and they do things (make orders, search for items, and pay
invoices). From a systems perspective orders also know things (the date they were created,
the applicable taxes, and so on), and they do things (calculate totals and calculate taxes).
Similarly, order items know things (the type and number of items ordered) and should be able
to do things too (such as tell you their subtotal). Items also know things (their unit price and
current stock level) and should be able to do things (calculate their shipping volume).

To implement this system, we would define a collection of classes (a class is a generic
representation of similar objects; that is, a class is to objects as tables are to rows) that interact
with each other. For example, we would have Customer, Order, Orderltem, and Item classes.
The collection of these classes would make up our application, which would include both the
functionality (the program) and the data.

The OO approach results in a completely different view of what an application is all about.
Rather than having a program that accesses a database, we have an application that exists in
what is called an object space. The object space is where both the program and the data for
the application logically reside. However, many people will choose to persist their data in
relational databases, mapping their classes to the data tables within the database (see
Chapter 14). The implication is that when you start to bring physical implementation issues into
account, such as the need to persist objects, that there is a significant need for application
developers and agile DBAs to work together effectively.

To understand OO you need to understand common object terminology. The critical terms to
understand are summarized in Table 2.1, and you can find a much more detailed explanation
of these terms in The Object Primer (Ambler 2001a). Some of these concepts you will have
seen before, and some of them you haven't. Many OO concepts, such as encapsulation,
coupling, and cohesion come from software engineering. These concepts are important
because they underpin good OO design. The main point is that you do not want to deceive
yourself — just because you have seen some of these concepts before doesn’'t mean you
were using OO, it just means you were using good design techniques. Although good design is
a big part of OO, there is still a lot more to it than that.

Agile DBAs need to understand the terms presented in Table 2.1 because the application
developers whom you work with will use these terms, and many others, on a regular basis. To
communicate effectively with application developers, you must understand their vocabulary
and they must understand yours. Another important aspect of learning the basics of OO is to
understand each of the diagrams of UML — you don’t need to become a UML expert, but you
do need to know the basics.

Table 2.1: Common Object-Oriented Terms

Term Description

Abstract class A class that does not have objects instantiated
from it.

Abstraction The identification of the essential characteristics
of an item.

Aggregation Represents “is part of” or “contains” relationships

between two classes or components.

Aggregation hierarchy A set of classes that are related through
aggregation.

Association Objects are related to (associated with) other
objects.

Attribute Something that a class knows (data/information).

Class A software abstraction of similar objects, and a

template from which objects are created.

Table 2.1: Common Object-Oriented Terms

Term Description

Cohesion The degree to which the aspects of an
encapsulated unit (such as a component or a
class) are related to one another.

Composition A strong form of aggregation in which the

“whole” object is completely responsible for its
parts, and each “part” object is only associated
to the one “whole” object.

Concrete class

A class that has objects instantiated from it.

Coupling

The degree of dependence between two items.

Encapsulation

The grouping of related concepts into one item,
such as a class or component.

Information hiding

The restriction of external access to attributes.

Inheritance

Represents “is a,” “is like,” and “is a kind of”
relationships. When class “B” inherits from class
“A,” it automatically has all of the attributes and
operations that “A” implements (or inherits from
other classes).

Inheritance hierarchy

A set of classes that are related through
inheritance.

Instance An object is an instance of a class.

Instantiate We instantiate (create) objects from classes.

Interface The definition of a collection of one or more
operation signatures that defines a cohesive set
of behaviors.

Message Either a request for information or a request to
perform an action.

Messaging In order to collaborate, classes send messages

to each other.

Multiple inheritance

When a class directly inherits from more than
one class.

Multiplicity

A UML concept combining the data-modeling
concepts of cardinality (how many) and
optionality.

Table 2.1: Common Object-Oriented Terms

Term

Description

Object

A person, place, thing, event, concept, screen, or
report.

Object schema

The structure of your object-oriented software.

Object space

Main memory plus all available storage space on
the network, including persistent storage such as
a relational database.

Operation Something a class does (similar to a function in
structured programming).

Override Sometimes you need to override (redefine)
attributes and/or methods in subclasses.

Pattern A reusable solution to a common problem, taking

relevant forces into account.

Persistence

The issue of how objects are permanently
stored.

Persistent object

An object that is saved to permanent storage.

Polymorphism

Different objects can respond to the same
message in different ways, enabling objects to
interact with one another without knowing their
exact type.

Single inheritance

When a class directly inherits from only one
class.

Stereotype Denotes a common usage of a modeling
element.

Subclass If class “B” inherits from class “A,” we say that
“B” is a subclass of “A.”

Superclass If class “B” inherits from class “A,” we say that

“A” is a superclass of “B.”

Transient object

An object that is not saved to permanent
storage.

An Introduction to the Unified Modeling Language (UML)

The goal of this section is to provide you with a basic overview of UML,; it is not to teach you

the details of each individual technique nor how to create each type of diagram. To present a

consistent set of examples | work through a simple order entry system.

Tip Fowler and Scott's (1999) UML Distilled is your best bet if you're looking for a
brief overview of the UML. Craig Larman’s (2002) Applying UML and Patterns
is likely the best book available if you're looking for a detailed tutorial on UML.
The Object Primer (Ambler 2001a) is a good “in between” solution that
describes the entire object development life cycle, covering non-UML models
(data models, change cases, essential models, and so on) and non-modeling
topics. If you want a comprehensive book, check out Tom Pender’s (2003)
UML Bible. The URL www.agilemodeling.com/artifacts/index.htm leads to a
wide variety of model overviews.

Tip Start simple when learning UML. You don't need to learn the entire UML
notation available to you (and believe me there’s a lot), only the notation that
you'll use in practice. The examples presented in this section use the core
UML, and there is one for each UML diagram. As you look at each diagram
focus on learning the core notation first, and then later focus in on the other

notation as necessary.

Core UML Diagrams

The following sections describe what | consider to be the three core UML diagrams for
developing business software: UML use-case diagrams, UML sequence diagrams, and UML

class diagrams. These are the diagrams that you will see used the most in practice: use-case

diagrams to provide an overview of usage requirements, sequence diagrams to analyze the
use cases and map to your classes, and class diagrams to explore the structure of your

object-oriented software (what I like to refer to as your object schema). These three diagrams

will cover 80 percent of your object-modeling needs when building a business application
using object technology.

Use Case Diagrams

According to the UML specification a use-case diagram is “a diagram that shows the
relationships among actors and use cases within a system.” Use-case diagrams are often
used to:

Ll Provide an overview of all or part of the usage requirements for a system or
organization in the form of an essential (Constantine and Lockwood 1999) model or a
business model (Rational Corporation 2001).

Ll Communicate the scope of a development project.

Ll Model the analysis of your usage requirements in the form of a system use-case
model (Cockburn 2001; Ambler 2001a).

Figure 2.1 depicts a simple use-case diagram that depicts several use cases, actors, their
associations, and an optional system boundary box. A use case, which is represented in

diagrams as a horizontal ellipse, is a sequence of actions that provides a measurable value to

an actor. An actor, which is represented in diagrams as a stick figure, is defined as a person,

organization, or external system that plays a role in one or more interactions with your system.

Use-case diagrams illustrate associations between actors and use cases, a relationship exists
whenever an actor is involved in an interaction that is described by a use case. Associations
between actors and use cases are modeled as lines connecting them to one another, with an
optional arrowhead on one end of the line indicating the direction of the initial invocation of the
relationship. Associations also exist between use cases in system use-case models and are
depicted using dashed lines with the UML stereotypes of <<extend>> or <<include>>. It is also
possible to model inheritance between use cases, as you can see Ship International Order
inherits from Ship Order. The rectangle around the use cases is called the system boundary
box, and as the name suggests, it delimits the scope of your system. Anything within the box is
implemented by your system; anything outside of the box isn't.

"'.
= -, - _e
= Create Order | Manage [terms b 1
i P P
— ‘: — - - h
i Administrator
oexiend =imciudes 105 1= (15 [
. —— - s -
" Create e
et s=arch F
International pf wErch For 5
e Order S Itemms 4
. . 0
5 Fa "
s 1l ship Crder = 1
a_‘,.-"' i - ___. /, ,
_!
Customer Shipper
“" Ship T,
| International)
M, Order

Figure 2.1: AUML 2.x use-case diagram.

A use-case model comprises one or more use-case diagrams and any supporting
documentation such as use-case specifications and actor definitions. Within most use-case
models the use-case specifications tend to be the primary artifact with use-case diagrams
filling a supporting role as the “glue” that keeps the requirements model together. Use-case
models should be developed from the point of view of your project stakeholders and not from
the (often technical) point of view of developers.

Although Extreme Programming (XP) projects will work with user stories and acceptance test
cases as their primary requirements artifacts, it is still valuable for XP developers to have a
grasp of use-case modeling. First, the initial requirements for your project may have been
defined via use cases. This can happen when a project starts out following another process,
perhaps the Rational Unified Process (RUP), only to decide part way through to take an XP
approach instead. Second, you may find yourself working with developers who understand use
cases very well but who are new to user stories — if you understand both, you'll be able to
relate user stories to them more easily.

Sequence Diagrams

UML Sequence diagrams are a dynamic modeling technique, as are UML
communication/collaboration diagrams and, arguably, UML activity diagrams. UML sequence
diagrams are typically used to:

Validate and flesh out the logic of a usage scenario. A usage scenario is exactly what its
name indicates — the description of a potential way that your system is used. The logic of a
usage scenario may be part of a use case, perhaps an alternate course; one entire pass
through a use case, such as the logic described by the basic course of action or a portion of
the basic course of action plus one or more alternate scenarios; or a pass through the logic
contained in several use cases, for example a customer places an order and then cancels
another order made earlier in the day.

Explore your design. Sequence diagrams provide a way for you to visually step through the
invocation of the operations defined by your classes.

To detect bottlenecks within an object-oriented design. Message flow analysis can give
you an idea of where you need to change your design to distribute the load within your system,
a feature automated by some CASE tools.

To indicate complex classes in your application. This implies that you may need to draw
state chart diagrams for them.

For example, Figure 2.2 models a portion of the basic course of action for the “Create Order”
use case. The boxes across the top of the diagram represent classifiers or their instances,
typically use cases, objects, classes, or actors. Because you can send messages to both
objects and classes (objects respond to messages through the invocation of an operation, and
classes do so through the invocation of static operations), it makes sense to include both on
sequence diagrams. Because actors initiate and take an active part in usage scenarios they
are also included in sequence diagrams. Objects have labels in the standard UML format
“name: ClassName,” where name is optional (objects that have not been given a name on the
diagram are called anonymous objects). Classes have labels in the format ClassName, for
example SecurityLogon and OrderCreator, and actors have names in the format Actor Name,
for example Online Customer — both common naming conventions (Ambler 2003).

Figure 2.2: AUML 2.x sequence diagram.

Class Diagrams

UML class diagrams show the classes of the system, their interrelationships, and the
operations and attributes of the classes. Class diagrams are typically used, although not all at

once, to:

= Explore domain concepts in the form of a domain model

= Analyze requirements in the form of a conceptual/analysis model

Ll Depict the detailed design of object-oriented or object-based software

A class model comprises one or more class diagrams and the supporting specifications that
describe model elements, including classes, relationships between classes, and interfaces.
Figure 2.3 depicts an example of an analysis-level UML class diagram. Classes are shown as
boxes with three sections — the top for the name of the class, the middle for the attributes, and
the bottom for the operations. Associations between classes are depicted as lines between
classes. Associations should include multiplicity indicators at each end, for example 0..1
representing “zero or one” and 1..* representing “one or more.” Associations may have roles
indicated, for example the mentors association, a recursive relation that professor objects
have with other professor objects, indicates the roles of advisor and associate. A design class
model would show greater detail. For example, it is common to see the visibility and type of
attributes depicted on design class diagrams as well as full operation signatures.

Tip What happens if you're not developing business applications, are there
different core diagrams? Yes. For real-time or embedded systems, the core
diagrams are typically UML state chart diagrams, UML communication/
collaboration diagrams (or UML sequence diagrams, depending on your
team’s preference), and UML class diagrams. For architectural efforts, the
core diagrams are often UML deployment and UML component diagrams.

et -
Soudent Termerar . [T

Prafasar
o ¥TE
"
5 b
iy dadreia T Tiponde] -
n
v Pt Datshangs
i v bty
ale L o
T -
ne I L
N
ivy '

T

rf N e

Figure 2.3: AUML 2.x class diagram.

Supplementary UML Diagrams

In addition to the core diagrams, there are also five other diagrams — UML activity diagrams,
UML communication/collaboration diagrams, UML component diagrams, UML deployment
diagrams, and UML state chart diagrams — defined by UML. These diagrams are still valuable

in the right situations, but they aren’t used as much as the core diagrams. All agile software
developers should learn how to work with these diagrams at some point in their careers, but
they likely aren’t the first model types that you'll learn.

Activity Diagrams

UML activity diagrams are the object-oriented equivalent of flowcharts and data-flow diagrams
(DFDs) from the structured development model (Gane and Sarson 1979). In UML 1.x, UML
activity diagrams were a specialization of UML state chart diagrams, although in UML 2.x they
are full-fledged artifacts. UML activity diagrams are used to explore the logic of:

= A complex operation

= A complex business rule
= A single use case

. Several use cases

. A business process

. Software processes

Figure 2.4 depicts a UML activity diagram, showing the logic of how someone logs on to the
system and creates an order. The filled circle represents the starting point of the activity
diagram, effectively a placeholder, and the filled circle with a border represents the ending
point. The rounded rectangles represent processes or activities that are performed. The
activities in this diagram map reasonably closely to use cases, although activities can also be
much finer grained — | could have chosen to document the logic of a method instead of a
high-level business process. The diamonds represent decision points; although in this
example the decision point had only two possible outcomes, it could just as easily had many
more. The arrows represent transitions between activities, modeling the flow order between
the various activities. The text on the arrows represent conditions that must be fulfilled to
proceed along the transition and are always described using the format [condition]. The thick
bars represent the start and end of potentially parallel processes — after you are successfully
enrolled in the university, you must attend the mandatory overview presentation as well as
enroll in at least one seminar and pay at least some of your tuition. It is possible to exit an
activity in several ways, as you see with the Log on to System activity.

L]
J L i ' T,
Logon to |[incerecd legonl | Odfer to emall Logonand |
"-u'j“-ul &=m | F:lil'u‘u\.\'ﬂl o creabe sn ordes
: | 1 |
[timeaut] | [correct
logon)
Vidate)
| CUSLOMmr's
\ credit rating |
B ; A "
Add and
o PEmIoVe [tems 5 .
[good credit | toTren order i’
¥ i /
A, rating] - -
> = = Schedule order |
[beaed rlr|--:1|r _,'I,J|:.‘|r||: shipping) \,
ratingj and hilling
. imfarmation
{w

Figure 2.4: AUML 2.x activity diagram.

This activity diagram is interesting because it potentially cuts across the logic of several use
cases — at least one for logging on to the system and another for creating an order. This is a
good thing use-case models do not communicate the time ordering of processes well. For
example, although the use-case diagram presented in Figure 2.1 gives you a very good idea
as to the type of functionality this system performs, it offers no definitive answer as to the order
that these use cases might occur in. The activity diagram in Figure 2.4, however, does. Each
UML diagram has its strengths and weak nesses, so remember to follow Agile Modeling’'s
practice Apply the Right Artifact(s) and use each one appropriately.

Communication/Collaboration Diagrams

UML communication diagrams, formerly called collaboration diagrams, (like UML sequence
diagrams) are used to explore the dynamic nature of your software. Communication diagrams
show the message flow between objects in an OO application, and also imply the basic
associations (relationships) between classes. Communication diagrams are often used to:

= Provide a bird’'s-eye view of a collection of collaborating objects, particularly within a
real-time environment.

Ll Allocate functionality to classes by exploring the behavioral aspects of a system.

Ll Model the logic of the implementation of a complex operation, particularly one that
interacts with a large number of other objects.

= Explore the roles that objects take within a system, as well as the different

relationships they are involved with when in those roles.

Figure 2.5 presents a simplified communication diagram for creating an order invoice. The
rectangles represent the various objects involved that make up the application, and the lines
between the classes represent the relationships (associations, aggregation, composition,
dependencies, or inheritance) between them. The same notation for classes and objects used
on UML sequence diagrams are used on UML communication diagrams, an example of the
consistency of the UML. The details of your associations, such as their multiplicities, are not
modeled as this information is contained on your UML class diagrams. Messages are depicted
as a labeled arrow that indicates the direction of the message, using a notation similar to that
used on sequence diagrams. You may optionally indicate the sequence number in which the
message is sent (for example, 2.1), indicate an optional return value, and indicate the method
name and the parameters (if any) passed to it.

1: number :=getOrderNumber()
2: getCustomerData()

3. petTaxes()
4: getTotals() 3.1: getName{) |
ol e 5 getOrderiterns() 3.2 gethddress() |
I | , N O i g ';._ Customer

aReport

*: B.n: getDescription()

Orderltem

*: 5.n.1: getPrice()
* " 5.n.71: getMame()

I

Figure 2.5: AUML 2.x collaboration diagram.

In Figure 2.5 you see that the Invoice class collaborates with the order object to obtain the
information needed to display its information. It first invokes the getter method to obtain the
number of the order, you know that this is the first message invoked because its sequence
number is one. The next thing that happens is the request for customer data to the order object.
To fulfill this responsibility the order collaborates with its corresponding customer object.
Notice how | chose to indicate the return value in the description of the first message but not
the second: A good rule of thumb is that if it is obvious what the return value is, then you
should not clutter your diagram by indicating the return value. | broke this rule to provide an
example of how to model return values. Also notice the numbering scheme that | used. It is
clear that the invocation of getPrice() and getName() on the item object is the result of invoking
getDescription() on the order item object. To display the list of order items that appear on the
order, the order object loops through the instances of Orderltem to get the appropriate
information. This is indicated with the *: notation in front of the message name.

Component Diagrams

Component-based development (CBD) and object-oriented development go hand in hand, and
it is generally recognized that object technology is the preferred foundation from which to build
components. UML includes a component diagram that shows the dependencies among
software components, including the classifiers that specify them such as implementation
classes, and the artifacts that implement them such as source code files, binary code files,
executable files, scripts and tables.

UML component diagrams, along with UML activity diagrams, are arguably one of the
“forgotten” UML diagrams. Few books invest much time discussing them; | suspect the primary
reason for this is because many methodologists appear to relegate them to low-level design
diagrams for specifying the configuration of your software. UML component diagrams become
much more useful when used as architectural-level artifacts, either to model your technical
infrastructure or your business/domain architecture (Ambler 1998, Herzum and Sims 2000).

Figure 2.6 depicts a business architecture component model for the order entry system. The
UML 2.x notation for components is a rectangle with a <<Component>> stereotype (or as you

see in the diagram a stereotype depicting the 1.x component shape). Components implement

one or more interfaces, modeled using the same “lollipop” notation that UML class diagrams

use. Components have dependencies on the interfaces of other components, modeled using
the standard UML dependency notation. The diagram shows two Ul components, perhaps
implemented as a collection of JavaServer Pages (JSPs) or as Visual Basic graphical user

interface (GUI) screens, that interact with several large-scale business/domain components

such as Customer and Catalog. These components would encapsulate many business

classes; for example, complex components could be built from several hundred classes. The

classes within these business components, in turn, interact with infrastructure components for

basic services such as security, messaging, and persistence.

Table 2.5: Stereotypes for Associations

STEREOTYPE VISUAL DIAGRAM CORE APPLI CATION
STEREOTYP TYPE NOTATIO
E N
<<Aggregation>> Hollow All No Indicates an
diamond: aggregation
Aggregation relationship
between two
entities. Note that
aggregation is no
longer supported
in UML 2.0 so
this notation
should be
avoided.
<<Composition>> Filled All No Indicates a
diamond: composition
Composition relationship
between two
entities.
<<Dependency>> Dashed line Physical Yes Indicates a
with open dependency of a
arrowhead: view or index on
Dependency the schema of a
table.
<<lIdentifying>> None Physical No Indicates an
identifying
relationship

between two
dependent tables
(the child table

Table 2.5: Stereotypes for Associations

STEREOTYPE VISUAL DIAGRAM CORE APPLI CATION
STEREOTYP TYPE NOTATIO
E N
cannot exist
without the
<<Non-Identifying>> None Physical No Indicates a
non-identifying
relationship
between two
independent
tables.
<<Subtype>> Inheritance All Yes Indicates
arrow: subtype/supertyp
Subtyping e or inheritance
relationships
between two
entities.
<<Uni-directional>> Open All No Indicates that the
arrowhead: relationship
Unidirectional between two
entities should
only be traversed
ina
Ciatafccma i
'..:_' \ . n'r'hir'::.:. Cedan 1 m;.l-.r::-..‘.-:L .--4.-. |..:Ia.
pr— Tisky Accrds, Caslag =} .r:':"
Sia b pye e ! Laang. Pt s |

Figure 2.6: A UML 2.x component diagram.

Deployment Diagrams

A UML deployment diagram depicts a static view of the runtime configuration of hardware
nodes and the software components that run on those nodes. UML deployment diagrams
show the hardware for your system, the software that is installed on that hardware, and the
middleware used to connect the disparate machines to one another. You create a deployment
model to:

= Explore the issues involved with installing your system in production.

Ll Explore the dependencies that your system has with other systems that are currently
in, or planned for, your production environment.

Ll Depict a major deployment configuration of a business application.
Ll Design the hardware and software configuration of an embedded system.
= Depict the hardware/network infrastructure of an organization.

Figure 2.7 depicts a UML deployment diagram for the customer order application. The
three-dimensional boxes represent nodes such as computers or switches and connections
between nodes are represented with simple lines. As you would expect software components,
interfaces, and dependencies are indicated using the standard UML notations. Stereotypes
indicate that the connection between the browser and the application server uses the
Internet’s standard HTTP protocol and that Java’s Remote Method Invocation (RMI) protocol is
used across the connection between the application server and the data server. As you might
expect, the components have the same type of stereotypes that they do on the UML
component diagram in Figure 2.6.

State Chart Diagrams

UML state chart diagrams depict the dynamic behavior of an entity based on its response to
events, showing how the entity reacts to various events, depending on the current state that it
is in. Create a UML state chart diagram to:

= Explore the complex behavior of a class, actor, subsystem, or component.

= Model real-time systems.

Figure 2.8 presents an example state chart diagram for the Order class. The rounded
rectangles represent states: You see that instances of Order can be in the Definition,
Scheduled, Shipping, and Shipped states. An object starts in an initial state, represented by
the closed circle, and can end up in a final state, represented by the bordered circle. The
arrows represent transitions, progressions from one state to another. For example, when an
order is in the Scheduled state, it can either be reopened for update, marked for shipping, or
canceled. Transitions can also have guards on them, conditions that must be true for the
transition to be triggered. An example of a guard is shown on the transition from the Shipping
to the Fulfilled states — this transition only occurs if no more items need to be shipped. The
UML notation for this is in the format [guard description]. It is also possible to indicate the
invocation of methods on your transition, for example notifyCustomer() is invoked on the
above mentioned transition. Operations can also be invoked while an object is in a given state,
as you can see in the Shipping state.

Figure 2.7: AUML 2.x deployment diagram.

S ifoms
NI IEEmS
add Moy Fesman

| - (i

snip [Shipping

B Definitan = Schoeduled | = chocknmveniony

K
canca cancel sheip ilams

na order iterms remain| £
L ! oty Custames)

Figure 2.8: AUML 2.x state chart diagram.
A UML Profile for Data Modeling

This section summarizes the UML data-modeling notation that | apply in this book. The
notation is defined as a profile for UML class diagrams. In this profile, | follow the philosophy of
separating core notation — specifically the roughly 20 percent of the notation that you are
likely to use in practice — from supplementary notation that isn’t as common although still
needed in some situations.

So why does the UML need a data-modeling profile? For several reasons:

= Object developers need to model how their data will be persisted.

= There currently is no industry standard for data modeling notation (there are several
common notations, however).

= Tool vendors need guidance as to how to implement this type of model in their tools,
otherwise we will have interoperability problems between tools.

= A data-modeling profile would help to bring data modeling onto the radar scopes of the
multitude of writers who limit themselves to UML (which makes you wonder whether they
actually build software).

= For object developers and data professionals to communicate with one another
effectively they need a common ground, a UML data-modeling profile could help with this.

This profile is discussed in detail in the following sections, which are organized by usage and
present answers to common “How do | model XYZ?” questions in priority order. These
guestions are:

= How do | indicate the type of model or storage mechanism?
= How do | model tables, entities, and views?

= How do | model relationships?

= How do | model data attributes and columns?

= How do | model keys?

= How do | model constraints and triggers?

= How do | model stored procedures?

= How do | model sections within a database?

= How do | model everything else?

Note The notation presented here isn’t perfect but | truly believe that it's the
best source available to you today. Nor is this profile complete — for the

most part it focuses on the physical modeling of a relational database,
although it does cover other aspects of data modeling as needed. This
profile also strays into style issues, something UML profiles usually
don’t do, issues that in my opinion are critical to successful modeling
(Ambler 2003).

Note At the time of this writing | don’t have the benefit of simply adopting an
industry standard, something that Agile Modeling (AM)'s Apply
Modeling Standards practice advises, so I'm forced to present my own
solution here. The Unified Modeling Language (UML) does not yet
cover data modeling, even though persistence-related issues are
clearly an important aspect of an object-oriented software project. For
several years, | have argued that UML needs a data model (Ambler
1997, Ambler 1997b, Ambler 2001a, Ambler 2002a) and have
vacillated between various ways that it should be done. Other
methodologists have argued the same (Naiburg and Maksimchuk 2001,
Rational Corporation 2000, Muller 1999) because they too recognize
the clear need for a data-modeling profile. Unfortunately, we have all
developed slightly different modeling notations, a problem that the
Object Management Group (OMG) may choose to address in a future
version of UML. Until then, ongoing work on this profile is posted at
www.agiledata.org/essays/umiDataModeling_Profile.html. Who knows?
Perhaps this profile will become a “grass roots” defacto standard.

Indicating the Type of Model or Storage Mechanism

The type of model should be indicated either using the appropriate stereotype listed in Table
2.2 or simply as free-form text in a UML note. In the case of a physical data model, the type of
storage mechanism should be indicated with one of the stereotypes listed in Table 2.3.

Table 2.2: Stereotypes to Indicate Model Types (Core Notation)

Stereotype Model Type

<<Class Model>> Object-oriented or object-relational model
<<Conceptual Data Model>> Conceptual data model

<<Logical Data Model>> Logical data model (LDM)

<<Physical Data Model>> Physical data model (PDM)

Table 2.3: Stereotypes for Various Persistent Storage Mechanisms (Supplementary

Notation)

Stereotype Storage Mechanism Type
<<File>> File

<<Hierarchical Database>> Hierarchical database

Table 2.3: Stereotypes for Various Persistent Storage Mechanisms (Supplementary
Notation)

Stereotype Storage Mechanism Type
<<Object-Oriented Database>> Object-oriented database (OODB)
<<Object-Relational Database>> Object-relational database (ORDB)
<<Network Database>> Network database

<<Relational Database>> Relational database (RDB)

<<XML Database>> XML database

Modeling Tables, Entities, and Views

Tables, entities, and views are all modeled using class boxes, as you see in Figure 2.9 and
Figure 2.10, and the appropriate stereotypes are listed in Table 2.4. Class boxes that appear
on conceptual and logical data models are by definition entities, so the stereotype is optional.
Similarly, on a physical data model for a relational database, it is assumed that any class box
without a stereotype is a table. In Figure 2.10, you see that views have dependencies on the
table structures.

HRE Domain Maodel
sLogical Data Model-
Last Updated: 02/03/2003

Employee Position
Given Name: string 0.° hodse 7| Tite
Middle Name: string = Description
Surname: string Salary Range
Salutation: string
Salary
Hire Date Employee Event
0.1 |1 s for 0.7 e
authorizer - ga:-, El‘;“ad
authorized by . N?:ati'::n B
Ja)
Course Training Vacation
1 0.° [
Title Mark Destination
Number

Figure 2.9: Alogical data model.

Cmplayes

Employre POIDT CHART S1=F o Surmogme:
----- se_Pisrmber N P AR [k 1

I

Wmployes s il cegee
—index- =indax -
It pes
= Vimpls
Crmipicrpes_ b INT2E {..J.m
Empiopce_ Nultibed: M 124 [aidal od By " (tsbunc
Fuil_ v Wi O Esrpiyee i
Ba i v WRERTH A T,
Gapinl Sacuwity Muries CHGASY N0 Lavl Upsitatond 1000 1300
ok Phone INTIE

-oll_Phesiec N4 Pryislal Dl e

Figure 2.10: A physical data model for a relational database.

Indices, shown in Figure 2.10, are also modeled using class boxes. They are optionally
dependent either on the table for which they are an index or on the actual columns that make
up the index (this is more accurate, although it can be more complex to depict when the index
implements a composite key). In the model, you see that IEmployeel is dependent on the
Employee POID column, whereas IEmployee?2 is dependent on just the table, requiring you to
list the columns for the index when you follow this style. As you can see, the notation used for
IEmployee?2 is wordier but less clumsy — if you're going to model indices this should be your
preference with respect to style issues. IEmployee3, like IEmployeel, is dependent on a single
column, in this case Social_Security Number.

Tip Don’'t model indices. The existence of an index is implied by the fact that you
have indicated the primary key column(s) and any alternate key columns — in
relational databases keys are implemented via indices. By also modeling the
indices you unnecessarily clutter your diagrams.

Table 2.4: Stereotypes for Classes

STEREOTYPE DIAGRAM CORE APPLICATION
TYPE NOTATIO
N
<<Aggregate>> Physical No Apply this to

aggregate tables
used to store
denormalized data
(often for reporting

purposes).
<<Associative Physical Yes Apply this to
Table>> associative tables in
a PDM for a

relational database.

<<Entity>> Logical, No This is optional
Conceptual notation that is
implied by the model

type.

<<Index>> Physical No Apply this when you
are modeling an
index that
implements a table
key within a
relational database.
Doing so indicates a
dependency from
the index to the table
or to the key
column(s) that the
index implements.

<<Lookup Physical No Apply this to
Table>> relational tables that
are used for simple
lookup lists.
<<Stored Yes Apply this to a class
Procedures>> that contains only

the operation
signatures for the
stored procedures of
the database.

<<Table>> Physical No Optional notation
that is implied by the
model type.

<<View>> Physical Yes Apply this when you

are modeling a view
to a table. Indicate a
dependency to each
table involved in the
definition of the

view.

Modeling Relationships

Relationships are modeled using the notation for associations as you can see in Figure 2.9
and Figure 2.10. Standard multiplicity (e.g. 0..1, 1..*, and 2..5) notation may be applied, as can
roles. Table 2.5 lists the potential stereotypes that you may apply to relationships, some of
which have a common visual representation as well as a textual one.

Note The notation for qualifiers shouldn’t be used. Although it would be a valid
option to model foreign keys, in practice this often proves confusing when a
single table is involved in many relationships.

Modeling Data Attributes and Columns

Data attributes on conceptual and logical data models, as well as columns on physical data
models, are modeled using the standard attribute notation. Modeling the type of an attribute on
a conceptual or logical data model is optional, although in practice this is often done.
Stylistically, if the model is being used to model data requirements then the type should be
indicated only when it is an actual requirement. For example, if a customer number must be
alphanumeric, then indicate it as such; otherwise, if it is optional how this attribute is
implemented, do not indicate the type.

Constraints, such as a column being not null, should be modeled using hormal UML
constraints.

Derived data, the result of denormalization, should be preceded by the standard “/” symbol.
Note The notation for visibility shouldn’t be used — the assumption is that the
data is publicly accessible. Although visibility symbols could be used to
indicate the need to indicate access control, this is better done using
constraints because access control issues are often very complex.

Modeling Keys

In my opinion, the modeling of keys is the most complicated issue addressed by this profile.
This is done for several reasons:

Ll An entity can have several candidate keys, each of which may be a composite.

= A table can have a primary key and several alternate keys, each of which can be a
composite.

Ll The order in which the columns appear in table keys can be important.

Ll Traditional data models typically don’t have a good way of distinguishing which key an

attribute or column is a part of; this information is often left for supporting documentation.

As you can see in Figure 2.11, the notation for indicating keys can get quite complex.
Minimally, you should mark the attribute or column with one of the stereotypes in Table 2.6.

Crder_ID: CHAR{16)=PK= «FK= «sAK={hey = PK. order

Order ltem

Cirder_Item_Sequence: INT24«PK={order = 2}
Crder_ltern_ID: INT24=AK=[key = AK-2}

Iltem_ID: INT24=FK= sAK={key = AK-1, order

Order
Crder ID: CHAR{16)«P¥=

Order_Date: DATE {after Jan 1 2000}
<FK={mot null)

Customer_POID:; CHAR(TE)

insertOrder(...)=Trigger= {after insert)
deleteCrder(.. J=Trigger= [before insert}

T
'“.}

1} (key = AK-1, order = 2}

1} {key = FK, table = itern)

{ Order delots

p—

Orderitam.delata |

| HR Database «Stored Proceduress |

QeOrderTotallorderlD: CHAR(10)): FLOAT

ulﬂ{'ﬂlrdq:r\.[m.l\lnn‘r'f POID: CHAR{18]): RESLILTSET

Figure 2.11: Modeling constraints and behavior in a physical data model.

Note

Although | would normally prefer stereotypes such as <<Primary Key>> over

<<PK>>, | chose the abbreviated version because it reflects existing norms
within the data community for indicating keys. Furthermore, because some

columns can be involved with several keys the longer form of the stereotype

would become cumbersome. Finally, this is also the stereotype suggested
by Rational Corporation (2000).

Table 2.6: Stereotypes for Modeling Keys

STEREOTYPE

DIAGRAM
TYPE

CORE
NOTATION

APPLICATION

<<AK>>

Physical

No

Indicates that a
column is part of
an alternate key,
also known as a
secondary key, for
atable.

<<Auto
Generated>>

Physical

No

Indicates that the
column value is
automatically
generated by the
database.

<<CK>>

Conceptual,
Logical

Yes

Indicates that an
attribute is part of a
candidate key for
an entity.

<<FK>>

Physical

Yes

Indicates that a
column is part of a
foreign key to
another table.

<<Natural>>

All

No

Indicates that an

attribute or column
is part of a natural
key.

<<PK>> Physical Yes Indicates that a
column is part of a
primary key for a
table.

<<Surrogate>> Physical No Indicates that a

columnis a
surrogate key.

You can optionally model the detailed information pertaining to keys using UML named values
(described in Table 2.7). For example, in Figure 2.11 you see that:

= The Order_ID column is the first element of the primary key.

= Order_ltem_Sequence is the second element of the primary key.

= Order_ID is part of several keys: therefore, | needed to indicate additional information
where appropriate. For example, Order_ID is the second element of the first alternate key.

= Because Order_ltem_Sequence is part of a single key, I didn't need to indicate the
order.

= Item_ID is the first element of the first alternate key.

= Item_ID is also a foreign key to the Item table.

In Figure 2.10 | indicated that Employee_POID is a surrogate key to provide an example of
how to do this (had it been a natural key, | would have applied the stereotype <<Natural>>

instead).

Tip | generally prefer to indicate whether a key is autogenerated, natural, or
surrogate in the documentation instead of on the diagrams — this is an option
for you although in my opinion this sort of information adds too much clutter.

Table 2.7: Named Values for Modeling Keys (Supplementary Notation)

VALUE

APPLICATION

EXAMPLES

key

Indicates which candidate or alternate key an
attribute/column belongs to. When the column
is part of several keys (for example if it is part
of two different foreign keys), then you need to
indicate which one you are referring to. In the
second example, the column is part of the third
alternate key.

key = FK
key = AK-3

order

Indicates the order of appearance in which an
attribute appears when it is part of a composite
key. In the example the column would be the
fourth column in the key.

order =4

table Indicates the table that a foreign key refers to. table =
This is optional because it can often be inferred Customer
from the diagram.

Modeling Constraints and Triggers

Most constraints (domains, columns, tables, and databases) can be modeled using the UML'’s
Object Constraint Language (OCL) where appropriate. Examples of this are depicted in Figure
2.11, a domain constraint on the Order_Date is defined indicating that it must be later than
January 1, 2000. A column constraint is also defined, the Customer_POID column must not be
null. Table and database constraints, not shown, could be modeled the same way. For
example, Figure 2.11 depicts how a referential integrity (RI) constraint can be modeled
between two tables using OCL notation. Notice that when an order is deleted the order items
should also be deleted. Although this is implied by the fact that there is an aggregation
relationship between the two tables, the constraint makes this explicit. However, too many Rl
constraints can quickly clutter your diagrams; therefore, supporting documentation for your
database design might be a better option for this information — remember AM’s Depict Models
Simply practice.

In Figure 2.10 the Salary table includes an access control constraint, only people in the Human
Resources (HR) department are allowed to access this information. Other examples in this
diagram include the read-only constraint on the VEmployee view and the ordered by constraint
on Employee_Number in this view.

Triggers are modeled using the notation for operations. In Figure 2.11 you see that the
stereotype of <<Trigger>> was applied and value of “after insert” and “before delete” were
modeled to show when the triggers would be fired.

Modeling Stored Procedures

Stored procedures should be modeled using a single class with the stereotype <<Stored
Procedures>>, as shown in Figure 2.11. This class lists the operation signatures of the stored
procedures using the standard UML notation for operation signatures. Stylistically, the name of
this class should either be the database or the name of the package within the database.
Note Although it is standard UML practice for stereotypes to be singular, in this
case the plural form makes the most sense. The other alternative is to apply
the stereotype <<Stored Procedure>> to each individual operation
signature, something that would unnecessarily clutter the diagram.

Modeling Sections within a Database

Many database-management systems provide the ability to segregate your database into
sections. In Oracle, these sections are called tablespaces, and other vendors call them
partitions or data areas. Regardless of the term, you should use a standard UML package with
a stereotype that reflects the terminology used by your database vendor (for example,
<<Tablespace>>, <<Partition>>, and so on).

Modeling Everything Else

There is far more to data modeling than what is covered by this profile. The approach that I've
taken is to identify the type of information that you are likely to include on your diagrams, but
this is only a subset of the information that you are likely to gather as you're modeling. For
example, logical data attribute information and descriptions of relationships can be important
aspects of logical data models. Similarly, replication info (for example, which tables get
replicated, how often, and so on), sizing information (average number of rows, growth rate,
and so forth), and archiving information can be critical aspects of your physical data model.
Complex business rules are applicable to all types of models. Although this information is
important, in my opinion it does not belong on your diagrams but instead in your
documentation. Follow AM'’s practice of Depict Models Simply by keeping this sort of
information out of your diagrams.

Summary

This chapter presented a very brief overview of object-orientation (OO), the Unified Modeling
Language (UML), and a proposed profile for data modeling using the UML. The goal of this
chapter is to help provide all agile developers with a common language, in this case the
language of OO and the UML, which they can communicate with each other. As Alistair
Cockburn (2002) likes to say, software development is a communication game. It's incredibly
hard to communicate effectively without a common language.

Chapter 3. Data Modeling 101

Overview

Software development is a lot like swimming; it is very dangerous to do it alone.

My personal philosophy is that every IT professional should have a basic understanding of
data modeling. They don't need to be experts at data modeling, but they should be prepared to
be involved in the creation of such a model, be able to read an existing data model,
understand when and when not to create a data model, and appreciate fundamental data
design techniques. At the same time, data modeling skills alone are not enough to be
successful in this day and age — as | argued in Chapter 1, you need to be a generalizing
specialist with a wide range of skills.

This chapter presents an overview of fundamental data modeling skills that all developers
should have, skills that can be applied to both traditional projects that take a serial approach
and on agile projects that take an evolutionary approach. The primary audience for this
chapter is application developers who need to gain an understanding of some of the critical
activities performed by an agile DBA. This understanding should lead to an appreciation of
what agile DBAs do and why they do them, and it should help to bridge the communication gap
between these two roles. To achieve these goals, this chapter covers the following topics:

= The role of the agile DBA

Ll What is data modeling?
= How to model data
. How to become better at data modeling

The Role of the Agile DBA

Although you wouldn't think it, data modeling can be one of the most challenging tasks that an
agile DBA can be involved with on an agile software-development project. The approach to
data modeling will often be at the center of any controversy between the agile software
developers and the traditional data professionals within your organization. Agile software
developers will lean toward an evolutionary approach, where data modeling is just one of
many activities, and traditional data professionals will often lean toward a “big design up front
(BDUF)” approach, where data models are the primary artifacts, if not the artifacts. This
problem results from a combination of the cultural impedance mismatch described in Chapter
7 and “normal” political maneuvering within an organization. As a result, agile DBAs often find
that navigating the political waters is an important part of their data modeling efforts.

Additionally, when it comes to data modeling, agile DBAs will:

= Mentor application developers in fundamental data modeling techniques.

= Mentor experienced enterprise architects and administrators in evolutionary data
modeling techniques.

= Ensure that the team follows data modeling standards and conventions.

= Develop and evolve the data model(s), in an evolutionary (iterative and incremental)

manner, to meet the needs of the project team.
= Keep the database schema(s) in sync with the physical data model(s).

What Is Data Modeling?

Data modeling is the act of exploring data-oriented structures. Like other modeling artifacts,
data models can be used for a variety of purposes, from high-level conceptual models to
physical data models. From the point of view of an object-oriented developer, data modeling is
conceptually similar to class modeling. With data modeling you identify data entities, whereas
with class modeling you identify classes. Data attributes are assigned to data entities just as
you would assign attributes and operations to classes. There are associations between entities,
similar to the associations between classes — relationships, inheritance, composition, and
aggregation are all applicable concepts in data modeling.

Data modeling is different from class modeling because it focuses solely on data — class
models allow you to explore both the behavior and data aspects of your domain, but with a
data model you can only explore data issues. Because of this focus data modelers have a
tendency to be much better at getting the data “right” than object modelers.

How Are Data Models Used in Practice?

Although methodology issues are covered at the end of this chapter, right now we need to
discuss how data models can be used in practice to better understand them. You are likely to
see three basic styles of data model:

Conceptual data models. These models, sometimes called domain models, are typically
used to explore domain concepts with project stakeholders. Conceptual data models are often
created as the precursor to logical data models (LDMs) or as alternatives to LDMs.

Logical data models (LDMs). LDMs are used to explore the domain concepts, and their
relationships, of your problem domain. This can be done for the scope of a single project or for
your entire enterprise. LDMs depict the logical data entities, typically referred to simply as data
entities, the data attributes describing those entities, and the relationships between the
entities.

Physical data models (PDMs). PDMs are used to design the internal schema of a database,

depicting the data tables, the data columns of those tables, and the relationships between the

tables. The focus of this chapter is on physical modeling.

Tip Data models aren’t the only structural models. Although the focus of this

chapter is data modeling, there are often alternatives to data-oriented artifacts
(see Agile Modeling’s Multiple Models principle described in Chapter 10). For
example, when it comes to conceptual modeling, ORM diagrams aren’t your
only option: in addition to LDMs it is quite common for people to create UML
class diagrams and even Class Responsibility Collaborator (CRC) cards
instead. In fact, my experience is that in some situations CRC cards are
superior to ORM diagrams because it is very easy to get project stakeholders
actively involved in the creation of the model. Instead of a traditional,
analyst-led drawing session, you can instead facilitate stakeholders through
the creation of CRC cards (Ambler 2001a).

Although LDMs and PDMs sound very similar, and they in fact are, the level of detail that they
model can be significantly different. This is because the goals for each diagram are different —
you can use an LDM to explore domain concepts with your stakeholders and the PDM to
define your database design. Figure 3.1 presents a simple LDM and Figure 3.2 a simple PDM,
both modeling the concept of customers and addresses as well as the relationship between
them. Both diagrams apply the Barker (1990) notation, which is summarized in Figure 3.4. The
LDM depicts the two business entities, in this case Customer and Address, their logical
attributes, and the relationship between the two entities. Notice how implementation details are
not shown.

The PDM shows greater detail than the LDM, including an associative table required to
implement the association as well as the keys needed to maintain the relationships. PDMs
should also reflect your organization’s database naming standards, in this case an
abbreviation of the entity name is appended to each column name and an abbreviation for
“Number” was consistently introduced. A PDM should also indicate the data types for the
columns, such as integer and char(5). Although Figure 3.2 does not show them, lookup tables
for how the address is used as well as for states and countries are implied by the attributes
ADDR_USAGE_CODE, STATE_CODE, and COUNTRY_CODE.

An important observation about Figures 3.1 and 3.2 is that I'm not slavishly following Barker’s
approach to naming relationships. For example, between Customer and Address there really
should be two names “Each CUSTOMER may be located in one or more ADDRESSES” and
“Each ADDRESS may be the site of one or more CUSTOMERS.”Although these names
explicitly define the relationship | personally think that they’re visual noise that clutter the
diagram. | prefer simple names such as “has” and then trust my readers to interpret the name
in each direction. I'll only add more information where it's needed, in this case | think that it isn't.
However, a significant advantage of describing the names the way that Barker suggests is that
it's a good test to see if you actually understand the relationship — if you can’t name it then you
likely don’t understand it.

Customer Address
Custormer Number Sireet
Social Security Number | has | City
First Name Tt State
surname County
Salutation Zip Code
Phone Number

Figure 3.1: A simple logical data model (Barker notation).

TELRTONLE ICIIOME ADDELYS
HE: e #ICLAT M
Ch char! | # ACCH T
ALTRY (FACE CODE ek

cuET
T
T

Figure 3.2: A simple physical data model (Barker notation).

Data models can be used effectively at both the enterprise level and at the project level.
Enterprise architects will often create one or more high-level LDMs that depict the data
structures that support your enterprise, models typically referred to as enterprise data models
or enterprise information models. An enterprise data model is one of several critical views that
your organization’s enterprise architects may choose to maintain and support — other views
may explore your network/hardware infrastructure, your organization structure, your software
infrastructure, and your business processes (to name a few). Enterprise data models provide
information that a project team can use both as a set of constraints and to provide important
insights into the structure of their system.

Project teams will typically create LDMs as a primary analysis artifact when their
implementation environment is predominantly procedural in nature, for example when they are
using structured COBOL as an implementation language. LDMs are also a good choice when

a project is data-oriented in nature, perhaps a data warehouse or reporting system is being
developed. However, in my experience LDMs are often a poor choice when a project team is
using object-oriented or component-based technologies (because they’'d rather work with
object and component models) or simply when the project is not data-oriented in nature (for
example, you're building embedded software). As Agile Modeling (AM) advises, follow the
practice Apply The Right Artifact(s). Or, as your grandfather likely advised you, use the right
tool for the job.

When a relational database is used for data storage, project teams are best advised to create
a PDM to model its internal schema. My experience is that a PDM is often one of the critical
design artifacts for business-application-development projects.

Halpin (2001) points out that many data professionals prefer to create an Object-Role Model
(ORM), as depicted in Figure 3.3, instead of an LDM for a conceptual model. The advantage is
that the notation is very simple, something your project stakeholders can quickly grasp; the
disadvantage is that the models become large very quickly. ORMs enable you to first explore
actual data examples instead of simply jumping to a potentially incorrect abstraction — for
example, Figure 3.3 examines the relationship between customers and addresses in detail.
For more information about ORM, visit www.orm.net.

Customer ™,

| ! ' Kﬁddress\,
\‘x (name) : /

_ (street) f,:'

Lives at l

lohn Smith | 123 Main St.

Sally Smith | 123 Main 5t
Sally Smith | 456 Elrm 5t
- | 789 Oak 5t.

Bob Jones | 333 Birch St

Figure 3.3: A simple object-role model.

Tip Expanding your modeling skills enables you to reduce documentation. My
experience is that people will capture information in the best place that they
know. As a result, | typically discard ORMs after I'm finished with them. |
sometimes use ORMs to explore the domain with project stakeholders but
later replace them with a more traditional artifact such as an LDM, a class
diagram, or even a PDM. As a “generalizing specialist” (Ambler 2003b),
someone with one or more specialties who also strives to gain general skills
and knowledge, this is an easy decision for me to make; | know that this
information that I've just “discarded” will be captured in another artifact — a
model, the tests, or even the code — that | understand. Specialists who only
understand a limited number of artifacts and therefore “hand off” their work to
other specialists don’t have this option. Not only are they tempted to keep the
artifacts that they create but also to invest even more time to enhance the
artifacts. Therefore, | typically find that generalizing specialists are more likely
than specialists to travel light.

Notation 101: How to Read Data Models

Figure 3.4 presents a summary of the syntax of four common data modeling notations:
Information Engineering (IE), Barker, IDEFX1, and the Unified Modeling Language (UML).
This diagram isn’t meant to be comprehensive, instead its goal is to provide a basic overview.
Furthermore, for the sake of brevity | wasn't able to depict the highly detailed approach to
relationship naming that Barker suggests. A brief discussion of each notation can be found in
the following list. Chapter 2 gives you more detailed information on UML, and for more
information on IE, Barker, and IDEFX1, | highly suggest David Hay's (1999) paper “A
Comparison of Data Modeling Techniques,” which can be found at
www.essentialstrategies.com/publications/modeling/compare.htm.

IE. The IE notation (Finkelstein 1989) is simple and easy to read, and is well suited for
high-level logical and enterprise data modeling. The only drawback of this notation, arguably
an advantage, is that it does not support the identification of attributes of an entity. The
assumption is that the attributes will be modeled with another diagram or simply described in
the supporting documentation.

Barker. Barker is one of the more popular notations, being supported by Oracle’s toolset, and
is well suited for all types of data models. The only real drawback (although, granted, no
notation is perfect) is that its approach to subtyping can become clunky with hierarchies that
go several levels deep.

IDEFX1. This notation is overly complex. It was originally intended for physical modeling but
has been misapplied for logical modeling as well. Although popular within some U.S.
government agencies, particularly the Department of Defense (DoD), this notation has been all
but abandoned by everyone else. Avoid using it if you can.

UML. This is not yet an official data modeling notation. Although several suggestions for a data
modeling profile for the UML exist, including Naiburg and Maksimchuk’s (2001) and my own
(Chapter 2), none are complete, and more importantly they are not “official” UML yet. Having
said that, considering the popularity of UML, the other data-oriented efforts of the Object
Management Group (OMG), and the lack of a notational standard within the data community, it
is only a matter of time until a UML data modeling notation is accepted within the software
industry.

infermation Barker

Duotatisn Enginsering Notation IEFXY L

Multiplitios
o
Feo of one u !
O canly
o g
Lo of o auls 1
O O e E— | '—< — —1
Specihic range MA M Mk
AlEnbEartes
B armes A Atfriests Name: Type]| sttnibube-name: Type | stirbutetlame: Trps
Promary [attrituste- nama) R
vy kit A # Mitribuio Hama | —— j | wrinuAck .. i
idferdifor et}
Foneagn c BnribuE Mesns =R
Rty FA Hi& sl it rawmn [FK) s batdoname]
Fonorialions
Labwds
Cruantity rskes WA MR PR
Subilypng T o — | |] =40 T T - o =
A oGt [] o || [fp=
L | Fi

Composition [foz=s][bep Fa I} D =} P p—
Cormirmnl | 1 Mk Mk

l s Oy I 1 1 -
Exclunive O | NY& L

(HOR) Consurmni

Figure 3.4: Comparing the syntax of common data modeling notations.

How to Model Data

Now that you've seen how data models can be used and have been introduced to common
notations, the next step is to learn how to model data. As pointed out earlier, the focus is on
physical data models although most of these skills are applicable to conceptual and logical
modeling as well. When you are data modeling, the following tasks are performed in an
iterative manner:

= Identify entity types

= Identify attributes

= Apply naming conventions
= Identify relationships

= Apply data model patterns
= Assign keys

Tip Very good practical books about data modeling include Joe Celko’s Data
& Databases (Celko 1999) and Data Modeling for Information
Professionals (Schmidt 1998) because they both focus on practical
issues with data modeling. The Data Modeling Handbook (Reingruber
and Gregory 1994) and Data Model Patterns (Hay 1996) are both

excellent resources once you've mastered the fundamentals. An
Introduction to Database Systems (Date 2001) is a good academic
treatise for anyone wishing to become a data specialist.

Identify Data Entities

An entity type is similar conceptually to object-orientation’s concept of a class — an entity type
represents a collection of similar entities. An entity type could represent a collection of people,
places, things, events, or concepts. Examples of entity types in an order entry system would
include Customer, Address, Order, Item, and Tax. If you were performing class modeling, you
would expect to discover classes with the exact same names. However, the difference
between a class and an entity type is that classes have both data and behavior, whereas entity
types just have data.

Ideally an entity type should be “normal”, the data modeling world’s version of cohesive. A
normal entity type depicts one concept, just as a cohesive class models one concept. For
example, customer and order are clearly two different concepts; therefore, it makes sense to
model them as separate entities. (Data normalization is described further in Chapter 4.)

Identify Attributes

Each entity type will have one or more data attributes. For example, in Figure 3.1 you saw that
Customer has attributes such as First Name and Surname and in Figure 3.2 that the
TCUSTOMER table had corresponding data columns CUST_FIRST_NAME and
CUST_SURNAME (a column is the implementation of a data attribute within a relational
database).

Attributes should also be cohesive from the point of view of your domain, something that is
often a judgment call. In Figure 3.1, | decided that | wanted to model the fact that people had
both first and last names instead of just a name (for example, “Scott” and “Ambler” versus
“Scott Ambler”), whereas | did not distinguish between the sections of an American zip code
(for example, 90210-1234-5678). Getting the level of detail right can have a significant impact
on your development and maintenance efforts. Refactoring a single data column into several
columns can be quite difficult (database refactoring is described in detail in Chapter 12),
although overspecifying an attribute (for example, having three attributes for zip code when
you only needed one) can result in overbuilding your system and cause you to incur greater
development and maintenance costs than you actually needed.

Apply Data-Naming Conventions

Your organization should have standards and guidelines applicable to data modeling,
something you should be able to obtain from your enterprise administrators (if they don’t exist
you should lobby to have some put in place). These guidelines should include naming

conventions for all types of data modeling, the logical naming conventions should be focused
on human readability, whereas the physical naming conventions will reflect technical
considerations. You can clearly see that different naming conventions were applied in Figures
3.1and 3.2.

Agile Modeling (AM), which | discuss in Chapter 10, includes the Apply Modeling Standards
practice. The basic idea is that developers should agree to and follow a common set of
modeling standards on a software project. Just as there is value in following common coding
conventions (clean code that follows your chosen coding guidelines is easier to understand
and evolve than code that doesn't), there is similar value in following common modeling
conventions.

Identifying Relationships

In the real world, entities have relationships with other entities. For example, customers place
orders, customers live at addresses, and line items are part of orders. Place, live at, and are
part of are all terms that define relationships between entities. The relationships between
entities are conceptually identical to the relationships (associations) between objects.

Figure 3.5 depicts a partial LDM for an online ordering system. The first thing to notice is the
various styles applied to relationship hames and roles — different relationships require
different approaches. For example, the relationship between Customer and Order has two
names, places and is placed by, whereas the relationship between Customer and Address has
one. In this example, having a second name on the relationship, the idea being that you want
to specify how to read the relationship in each direction, is redundant — you're better off to find
a clear wording for a single relationship name, decreasing the clutter on your diagram.
Similarly, you will often find that by specifying the roles that an entity plays in a relationship will
often negate the need to give the relationship a name (although some CASE tools may
inadvertently force you to do this). For example, the role of billing address and the label billed
to are clearly redundant; you really only need one. As an example, the role part of that Line
Item has in its relationship with Order is sufficiently obvious without a relationship name.

You also need to identify the cardinality and optionality of a relationship (the UML combines
the concepts of optionality and cardinality into the single concept of multiplicity). Cardinality
represents the concept of “how many,” whereas optionality represents the concept of “whether
you must have something.” For example, it is not enough to know that customers place orders.
How many orders can a customer place? None, one, or several? Furthermore, relationships
are two-way streets: not only do customers place orders, but orders are placed by customers.
This leads to questions such as: How many customers can be enrolled in any given order and
is it possible to have an order with no customer involved? Figure 3.5 shows that customers
place one or more orders and that any given order is placed by one customer and one
customer only. It also shows that a customer lives at one or more addresses and that any
given address has zero or more customers living at it.

oq CUSLOM Soreid Prodisct

places | & placed by L

i L g B2

Address [DR . feder L s Liree ibem e
al

&
Bikng Fart ol detonber

I acdres
shipping i &
il T ped b

Figure 3.5: Alogical data model (Information Engineering notation).

Although UML distinguishes between different types of relationships — associations,
inheritance, aggregation, composition, and dependency — data modelers often aren’t as
concerned with this issue as much as object modelers are. Subtyping, one application of
inheritance, is often found in data models, an example of which is the is a relationship between
Item and its two subtypes Service and Product. Aggregation and composition are much less
common and typically must be implied from the data model, as you see with the part of role
that Line Item takes with Order. UML dependencies are typically a software construct and
therefore wouldn't appear on a data model, unless of course it was a very highly detailed
physical model that showed how views, triggers, or stored procedures depended on the
schema of one or more tables.

Apply Data Model Patterns

Some data modelers will apply common data model patterns. David Hay’s (1996) book Data
Model Patterns is the best reference on the subject, just as object-oriented developers will
apply analysis patterns (Fowler 1997; Ambler 1997) and design patterns (Gamma et al. 1995).
Data model patterns are conceptually closest to analysis patterns because they describe
solutions to common domain issues. Hay's book is a very good reference for anyone involved
in analysis-level modeling, even when you're taking an object approach instead of a data
approach, because his patterns model business structures from a wide variety of business
domains.

Assign Keys

First, some terminology. A key is one or more data attributes that uniquely identify an entity. A
key that is made up of two or more attributes is called a composite key. A key that is formed of
attributes that already exist in the real world is called a natural key. For example, U.S. citizens
are issued a Social Security number (SSN) that is unique to them. SSN could be used as a
natural key, assuming that privacy laws allow it, for a Person entity (assuming that the scope of
your organization is limited to the United States). An entity type in a logical data model will
have zero or more candidate keys, also referred to simply as unique identifiers. For example, if
we only interact with American citizens then SSN is one candidate key for the Person data
entity and the combination of name and phone number (assuming the combination is unique)
is potentially a second candidate key. Both of these keys are called candidate keys because
they are candidates chosen to be the primary key, an alternate key (also known as a

secondary key), or perhaps not even a key at all, within a physical data model. A primary key is
the preferred key for an entity type, whereas an alternate key (also known as a secondary key)
is an alternate way to access rows within a table. In a physical database a key would be
formed of one or more table columns whose value(s) uniquely identify a row within a relational
table.

Figure 3.6 presents an alternate design to that presented in Figure 3.2; in this case, a different
naming convention was adopted and the model itself is more extensive. In Figure 3.6, the
Customer table has the CustomerNumber column as its primary key and
SocialSecurityNumber as an alternate key. This indicates that the preferred way to access
customer information is through the value of a person’s customer number, although your
software can get at the same information if it has the person’s Social Security number. The
CustomerHasAddress table has a composite primary key, the combination of
CustomerNumber and AddressID. A foreign key is one or more attributes in a data entity that
represent a key, either primary or secondary, in another data entity. Foreign keys are used to
maintain relationships between rows. For example, the relationships between rows in the
CustomerHasAddress table and the Customer table are maintained by the CustomerNumber
column within the CustomerHasAddress table. The interesting thing about the
CustomerNumber column is the fact that it is part of the primary key for CustomerHasAddress
as well as the foreign key to the Customer table. Similarly, the AddressID column is part of the
primary key of CustomerHasAddress as well as a foreign key to the Address table to maintain
the relationship with rows of Address.

Adddrersiieageloatup Counlrglooksp ¥ Tlalel coliup
B A el | T P g e oF UMD)
B sl hr (e 4| L M Ch (40 i =yl

[r— L : [T R rR—
o 1 =hmocistine Tabdes

Figure 3.6: A simple physical data model (UML notation).

Tip The only type of key that you model on conceptual and logical data models is
candidate keys, if you choose to model them at all. Candidate keys are
generally not modeled on physical models, instead primary, alternate, and
foreign keys are.

There are two strategies for assigning keys to tables. The first is to simply use a natural key,
one or more existing data attributes that are unique to the business concept. For the Customer
table, there were two candidate keys, in this case CustomerNumber and
SocialSecurityNumber. The second strategy is to introduce a new column to be used as a key.
This new column is called a surrogate key, a key that has no business meaning, an example of
which is the AddressID column of the Address table in Figure 3.6. Addresses don't have an
“easy” natural key because you would need to use all of the columns of the Address table to
form a key for itself; therefore, introducing a surrogate key is a much better option in this case.
The primary advantage of natural keys is that they exist already, you don’'t need to introduce a

new “unnatural” value to your data schema. However, the primary disadvantage of natural
keys is that because they have business meaning it is possible that they may need to change if
your business requirements change. For example, if your users decide to make
CustomerNumber alphanumeric instead of numeric, then in addition to updating the schema
for the Customer table (which is unavoidable), you would have to change every single table
where CustomerNumber is used as a foreign key. If the Customer table instead used a
surrogate key, then the change would have been localized to just the Customer table itself
(CustomerNumber in this case would just be a nonkey column of the table). If you needed to
make a similar change to your surrogate key strategy, perhaps adding a couple of extra digits
to your key values because you've run out of values, then you would have the exact same
problem. This points out the need to set a workable surrogate key strategy. There are several
common options:

Key values assigned by the database. Most of the leading database vendors — companies
such as Oracle, Sybase, and Informix — implement a surrogate key strategy called
incremental keys. The basic idea is to maintain a counter within the database server, writing
the current value to a hidden system table to maintain consistency, and then assign a value to
newly created table rows. Every time a row is created the counter is incremented and that
value is assigned as the key value for that row. The implementation strategies vary from
vendor to vendor, sometimes the values assigned are unique across all tables, whereas
sometimes values are unique only within a single table, but the general concept is the same.

MAX() + 1. A common strategy is to use an integer column, start the value for the first record at
1, then for a new row set the value to the maximum value in this column plus one, using the
SQL MAX function. Although this approach is simple it suffers from performance problems with
large tables and only guarantees a unique key value within the table. You potentially have
problems when you delete the row with the greatest key value because you will now “reuse” its
key value for the next inserted row.

Universally unique identifiers (UUIDs). UUIDs are 128-bit values that are created from a
hash of the ID of your Ethernet card, or an equivalent software representation, and the current
datetime of your computer system. The algorithm for doing this is defined by the Open
Software Foundation (www.opengroup.org).

Globally unique identifiers (GUIDs). GUIDs are a Microsoft standard that extend UUIDs,
following the same strategy if an Ethernet card exists, and if not then they hash a software 1D
and the current datetime to produce a value that is guaranteed unique to the machine that
creates it.

High-low strategy. The basic idea is that your key value, often called a persistent object
identifier (POID) or simply an object identified (OID), has in two logical parts: A unique HIGH
value that you obtain from a defined source and an n-digit LOW value that your application
assigns itself. Each time that a HIGH value is obtained, the LOW value will be set to zero. For
example, if the application that you’re running requests a value for HIGH, it will be assigned
the value 1701. Assuming that n (the number of digits for LOW) is four, then all persistent
object identifiers that the application assigns to objects will be a combination of

17010000,17010001, 17010002, and so on until 17019999. At this point, a new value for HIGH
is obtained, LOW is reset to zero, and you continue again. If another application requests a
value for HIGH immediately after you, it will be given the value of 1702, and the OIDs that will
be assigned to objects that it creates will be 17020000, 17020001, and so on. As you can see,
as long as HIGH is unique, then all POID values will be unique. An implementation of a
HIGH-LOW generator can be found at www.theserverside.com.

Tip | advise that you prefer surrogate keys, but be realistic. The fundamental
issue is that keys are a significant source of coupling within a relational
schema, and as a result they are difficult to change. The implication is that
you want to avoid keys with business meaning because business meaning
changes. However, at the same time, you need to remember that some data
is commonly accessed by unique identifiers, for example customers via their
customer number, American employees via their Social Security number
(SSN), and states via their state code (for example, CA for California). In
these cases you may want to use the natural key instead of a surrogate key
such as a UUID or POID. Or you may simply want to support alternate keys.
Keys are one of the religious issues within the data community. Some people
prefer all natural keys whereas others prefer all surrogate keys. Both “camps”
are extremists in my opinion. You are much better advised to find the sweet
spot for your environment and use a combination of natural and surrogate
keys as appropriate.

How can you be effective at assigning keys? Consider the following tips:

Avoid “smart” keys. A “smart” key is one that contains one or more subparts that provide
meaning. For example, the first two digits of a U.S. zip code indicate the state that the zip code
is in. The first problem with smart keys is that they have business meaning. The second
problem is that their use often becomes convoluted over time. For example some large states
have several codes, California has zip codes beginning with 90 and 91, making queries based
on state codes more complex. Third, they often increase the chance that the strategy will need
to be expanded. Considering that zip codes are nine digits in length (the following four digits
are used at the discretion of owners of buildings uniquely identified by zip codes), it's far less
likely that you'd run out of nine-digit numbers before running out of two-digit codes assigned to
individual states.

Consider assigning natural keys for simple “lookup” tables. A lookup table is one that is
used to relate codes to detailed information. For example, you might have a lookup table listing
color codes to the names of colors. For example the code 127 represents “Tulip Yellow.”
Simple lookup tables typically consist of a code column and a description/name column,
whereas complex lookup tables consist of a code column and several informational columns.

Natural keys don’t always work for lookup tables. Another example of a lookup table is one
that contains a row for each state, province, or territory in North America. For example there
would be a row for California, a U.S. state, and for Ontario, a Canadian province. The primary
goal of this table is to provide an official list of these geographical entities, a list that is
reasonably static over time (the last change to it would have been in the late 1990s when the

Northwest Territories, a territory of Canada, was split into Nunavut and the Northwest
Territories). A valid natural key for this table would be the state code, a unique two-character
code — for example, CA for California and ON for Ontario. Unfortunately this approach doesn’t
work because Canadian government decided to keep the same state code, NW, for the two
territories.

Your applications must still support “natural key searches.” If you choose to take a
surrogate key approach to your database design keep in mind that your applications must
continue to support searches on the domain columns that still uniquely identify rows. For
example, your Customer table may have a Customer_POID column used as a surrogate key
as well as a Customer_Number column and a Social_Security_Number column. You would
likely need to support searches based on both the customer number and the Social Security
number. (Searching is discussed in detail in Chapter 18.)

How to Become Better at Modeling Data

How do you improve your data modeling skills? Practice, practice, practice. Whenever you get
a chance, you should work closely with agile DBAs, volunteer to model data with them, and
ask them questions as the work progresses. Agile DBAs will be following the AM practice
Model With Others and so should welcome the assistance as well as the questions — one of
the best ways to really learn your craft is to have someone ask “Why are you doing it that
way?” You should be able to learn physical data modeling skills from agile DBAs, and often
logical data modeling skills as well.

Similarly, you should take the opportunity to work with the enterprise architects within your
organization. Chapter 1 argues they should be taking an active role on your project, mentoring
your project team in the enterprise architecture (if any), mentoring you in modeling and
architectural skills, and aiding in your team’s modeling and development efforts. Once again,
volunteer to work with them and ask questions when you are doing so. Enterprise architects
will be able to teach you conceptual and logical data modeling skills as well as instill and an
appreciation for enterprise issues.

You also need to do some reading. Although this chapter is a good start, it is only a brief
introduction. | listed several good books earlier in the chapter although a better approach is to
simply ask the agile DBAs that you work with what they think you should read.

Summary

All professional software developers should understand the fundamentals of data modeling. In
this chapter, you saw that data models can be used to explore the conceptual problem domain,
to explore the logical data structures that support your problem domain, and to design your
database schema. Although you have alternatives for conceptual and logical modeling, in my
experience data models are best suited for physical data modeling (particularly when you're
using relational database technology).

Data modeling is a valuable skill to have and has been since the 1970s. Data modeling
provides a common framework within which you can work with agile DBAs, and may even

prove to be the initial skill that enables you to make a career transition into becoming a
full-fledged agile DBA.

Chapter 4. Data Normalization

Overview

Normalization produces highly cohesive and loosely coupled data schemas. Denormalization
improves performance. Make the trade-offs wisely.

Data normalization is a process in which data attributes within a data model are organized to
increase the cohesion of entity types and to reduce the coupling between entity types. The
goal of data normalization is to reduce, or even eliminate, data redundancy. This is an
important consideration for application developers because it is incredibly difficult to store
objects in a relational database if a data attribute is stored in several places.

To explore the techniques of data normalization, this chapter addresses the following topics:

= The first three normal forms
= Why data normalization?

= The role of the agile DBA

= First normal form (1NF)

= Second normal form (2NF)
= Third normal form (3NF)

= Beyond 3NF

Why Data Normalization?

The advantage of having a highly normalized data schema is that information is stored in one
place and one place only, reducing the possibility of inconsistent data. Furthermore, highly
normalized data schemas in general are closer conceptually to object-oriented schemas
because the object-oriented goals of promoting high cohesion and loose coupling between
classes results in similar solutions (at least from a data point of view). This generally makes it
easier to map your objects to your data schema.

Unfortunately, normalization usually comes at a performance cost. With the data schema of
Figure 4.1 all the data for a single order is stored in one row (assuming orders of up to nine
order items), making it very easy to access. With the data schema of Figure 4.1, you could
quickly determine the total amount of an order by reading the single row from the OrderONF
table. To do so with the data schema in Figure 4.5, you would need to read data from a row in
the Order table, data from all the rows from the Orderltem table for that order, and data from
the corresponding rows in the Item table for each order item. For this query, the data schema
of Figure 4.1 very likely provides better performance. Performance tuning, including
denormalization, is covered in Chapter 15.

OrderONF

Orderld: integer <<PR=>
DateDrdered: date
Datefulfilled: date
Fayment1Amount: currency
Payment1Type: char(4)
Payment1Description: char(40)
Payment2Amount: cunmency
Payment2Type: char(4)
Paymenl2 Description: char(40)
TaxFederal: currency

TaxState: currency

TaxLocal: currency
SubtotalBeforeTax: currency
ShipToMName: char(45)
ShipToStreet: char(40)
ShipToCity: char(20)
ShipToState: char(20)
ShipToCountry: char{20}
ShipTeZipCode: char{20)
ShipToPhone: char{20)
BillToMame: char(45)
BillToStreet: char(40)
BillToCity: char(20)
BillToState: char(20)
BillToCountry: char({20)
BillToZipCode: char{20)
BillTaPhone: char{20)
ltemMName1: char{40)
MNumberOrdered: integer
InitialitermPrice: currency
TotalPriceExtended1: currency
ItemMamez: char{40)
MumberOrdered2: integer
InitialitermnPrice?: currency
TotalFriceExtended?2: currency

ltermMame9: char(40)
MumberOrdered2: integer
InitialltermPriced: currency
TotalPriceExtendedd: currency

Figure 4.1: An initial data schema for order (UML notation).

The Role of the Agile DBA

When it comes to data normalization agile DBAs must be prepared to mentor their coworkers
in this technique and to help them apply data normalization techniques where appropriate.
This includes helping developers to:

Normalize operational databases. Operational databases, also called operational data
stores (ODSs), are where your application typically saves its data. The more normalized a
database is, the easier this task becomes. This is different from reporting databases,
described in Chapter 21, which are often denormalized to support a wide variety of reports.

Take an evolutionary approach to normalization. Although normalization is often applied
within the scope of a near-serial process the fact is that you can apply the rules of
normalization within an evolutionary process as well. You can normalize very small sections of
a data model at a time, as | will show in this chapter. Evolutionary development is covered in
Part Il of this book.

Denormalize for performance. It is quite common to denormalize data schemas to improve
the performance of a database. Techniques for performance tuning are described in Chapter
15.

The Rules of Data Normalization

Table 4.1 summarizes the three most common normalization rules that describe how to put
entity types into a series of increasing levels of normalization. Higher levels of data
normalization (Date 2000) are beyond the scope of this book — the important thing is to
remember that you want to store data in one place and one place only. With respect to
terminology, a data schema is considered to be at the level of normalization of its least
normalized entity type. For example, if all of your entity types are at second normal form (2NF)
or higher, then we say that your data schema is at 2NF.

Data normalization rules are typically applied to physical data models although there is nothing
stops you from applying them to conceptual and logical models as well. However, the goal of
conceptual modeling is to facilitate understanding of the domain between you and your
stakeholders, and the act of applying design-oriented rules that your stakeholders may not
understand will likely defeat that purpose. Normalization of logical models is a matter of
preference.

Table 4.1: First Three Data Normalization Rules

Level Rule

First normal form (1NF) An entity type is in 1INF when it contains no
repeating groups of data.

Second normal form (2NF) An entity type is in 2NF when itis in INF
and when all of its nonkey attributes are
fully dependent on its primary key.

Third normal form (3NF) An entity type is in 3NF when it is in 2NF
and when all of its attributes are directly
dependent on the primary key.

First Normal Form (1NF)

An entity type is in first normal form (1NF) when it contains no repeating groups of data. For
example, in Figure 4.1 you see that there are several repeating attributes in the data OrderONF
table (semantically each column is in fact unique in a relational table; however, logically you
see that the same groups of data attributes do in fact repeat) — the ordered item information
repeats nine times and the contact information is repeated twice, once for shipping information
and once for billing information. Although this initial version of orders could work, what
happens when an order has more than nine order items? Do you create additional order
records for them? What about the vast majority of orders that only have one or two items? Do
we really want to waste all that storage space in the database for the empty fields? Likely not.
Furthermore, do you want to write the code required to process the nine copies of item
information, even if it is only to marshal it back and forth between the appropriate number of
objects? Once again, likely not.

Figure 4.2 presents a reworked data schema where the order schema is put into first normal
form. The introduction of the Orderltem1NF table enables us to have many, or a few, order
items associated with an order, increasing the flexibility of our schema while reducing storage
requirements for small orders (the majority of our business). The Contactinformation1NF table
offers a similar benefit, when an order is shipped and billed to the same person (once again
the majority of cases), you could use the same contact information record in the database, to
reduce data redundancy. OrderPayment1NF was introduced to enable customers to make
several payments against an order — OrderONF could accept up to two payments, the type
being something like “MC” and the description “MasterCard Payment.” although with the new
approach far more than two payments could be supported. Multiple payments are accepted
only when the total of an order is large enough that a customer must pay via more than one
approach, perhaps paying some by check and some by credit card.

Order1NF Orderltem1NF
Crderld: integer <<PRe Crdderldd; intpger <<PRe> cof Ko
DateOrdered: date IemSequence: inteéger <Pk
Datef ulfilled: date . 1..° | lnermManse: char{40

FaymentType: char{20) il | MumberQOrdered: | LE]
TaxFederal: currency InstialitemPrice: Currency

Tax5State: cusrency TotalPriceE xtended: cumency
TaxLocal: currency - -
SubtotaBeforeTax: curency

ShipToContactiD: integer <<FK=

BillToCaontactiD integer £afKs»

1 0..% 0.1
mli:;‘r(ll:l shipped to 1 | Contactinformation1MNF
ik Contactid intecer < PE»=
| billed 1o 1|6 d: inbiger coFK=s
o.* : | Mamse: char{45)
OrderPayment1NF | Street: char{40)
| City: char(20] |
Orderld: integer <<Pe> <<FKa State; char(20)
PaymentMumiber: integer <<PKs: | Cauntry: char(20)
FaymentType: char(4) | ZipCode: char{2d)
P-'l:f""ﬁ'l'ltrJl"ul'.r ption: char(40) Phone: char|20)

Figure 4.2: An order data schema in 1NF (UML notation).

An important thing to notice is the application of primary and foreign keys in the new solution.
Order1NF has kept OrderlD, the original key of OrderONF, as its primary key. To maintain the
relationship back to Order1NF, the Orderltem1NF table includes the OrderID column within its
schema, which is why it has the stereotype <<FK>>. When a new table is introduced into a
schema, in this case Orderltem1NF, as the result of first normalization efforts, it is common to
use the primary key of the original table (OrderONF) as part of the primary key of the new table.
Because OrderID is not unique for order items, you can have several order items on an order,
the column ItemSequence was added to form a composite primary key for the Orderltem1NF
table. A different approach to keys was taken with the Contactinformation1NF table. The
column Contact- ID, a surrogate key that has no business meaning, was made the primary key
— OrderID is needed as a foreign key to maintain the relationship back to Order1NF. A good
rule of thumb is that if the tables are highly related to one another (there is an aggregation
relationship between OrderlNF and Orderltem1NF), then it is likely that it makes sense to
include the primary key of the original table as part of the primary key of the new table. If the
two tables are not as strongly related (there is merely a relationship between Order1INF and
Contactinformation1NF), then a surrogate key may make more sense; however, because
each row of Contactinformation1NF is associated with only one row of Order1NF, keeping
OrderlD as the key would be a valid (and easier) approach to take.

Second Normal Form (2NF)

Although the solution presented in Figure 4.2 has improved over that of Figure 4.1, it can be
further improved. Figure 4.3 presents the data schema of Figure 4.2 in second normal form
(2NF). An entity type is in second normal form (2NF) when it is in INF and when every nonkey
attribute (that is, any attribute that is not part of the primary key) is fully dependent on the
primary key. This was definitely not the case with the Orderltem1NF table; therefore, we need
to introduce the new table Item2NF. The problem with Orderltem1NF is that item information,
such as the name and price of an item, does not depend upon an order for that item. For
example, if Bob orders three widgets and Doug orders five widgets, the facts that the item is
called a “widget” and that the unit price is $19.95 is constant. This information depends on the
concept of an item, not the concept of an order for an item, and therefore should not be stored
in the order items table — for this reason, the Item2NF table was introduced. Orderltem2NF
retained the TotalPriceExtended column, a calculated value that is the number of items
ordered multiplied by the price of the item. The value of the SubtotalBeforeTax column within
the Order2NF table is the total of the values of the total price extended for each of its order

items.
Order2NF OrderltemzZNF
Ordefld: integor Pk Orderld: integer coPKs» cofKan
DateOvdered: date ItermSequence: teger <<PKax
Datefulfilled: date . 1.." | NumberOrdered: integer
TaxFederal: currency i | TotalPriceExtended: cusrency
Tax5tabe: curmendcy T
TaxLocal: currency 0.t
subtotaiseions [ax CLITency
ShipToContactlD: integer <<FK>=
BillToContactiD: integer <<FKs> desciibes
1| 0.1 0.1
1
shipped o PamZhF
ltemMo: integer <<PK=>
IternMams: char{40])
made ItemPrica: currency
against
i
i ContactinformationZNF
Contacthd: intedger <- PHas
billed to 1 | Orderld integer « <FK==
0.7 ihil"r? char(45)
OrderPayment2NF Street: char(40]
IS vy air il il City: char{20)
Orderld: integer <PKe> cof ke Sate; char(20)
I-".l:,l"'t::lll:r-l.lr"l:l:l mleger <« P [':|:||'|'.':, char[20)
Armount; curmency | FipCode: char{20)
FaymentDescription: char(40) Phore: char{20)

Figure 4.3: An order in 2NF (UML notation).

Third Normal Form (3NF)

An entity type is in third normal form (3NF) when it is in 2NF and when all of its attributes are
directly dependent on the primary key. A better way to word this rule might be that the
attributes of an entity type must depend on all portions of the primary key; therefore, 3NF is an
issue only for tables with composite keys. In this case, there is a problem with the
OrderPayment2NF table, the payment type description (such as “Mastercard” or “Check”)
depends only on the payment type, not on the combination of the order ID and the payment

type. To resolve this problem the PaymentType3NF table was introduced, as shown in Figure

4.4, containing a description of the payment type as well as a unique identifier for each
payment type.

Order3NF Orderltem3NF
Owderld; inbager «ofPE> = Orclerld: inleged <oPEs>» coFK»>
Datedrdered: date ltermSequence: nteger coPlas
Dratef ullilled: date i 1.7 | MumberQredersd: inlegges
TaxFederal: curmency il TodalPricek st ended: cusrency

Y 0.*
BeforeTax: curency
ShipToContactiD: inleger <<Fis»
EBillloContactiD: inteqger <<Fks>

describes

1 0.0 |0
1
shipped 1o ItemINF
ItemMNG;: Intéger <<PK=x

ItemMName: char{40)

e ItemPrice: currency

aggainsl

i

1| contactinformationane |

billad 10 1

Streat: chuar{4)
City: char(20)
State: char(20)
Country: char{20)
ZipCode: char{20)
Phona: char{20)

i
OrderPaymentsNF |

PaymentType3NF
Urde—rh;_m:gg.:—- cePHr> ceFK>> . r — A |
PaymantMumber; integer <<PH=> | 9. paidvia 1| PaymentType: char(4) <<PK>»

PaymentType: char(d) c«<FKsx» [rescripteon: char{20)
Armaunt; currency

Figure 4.4: An order in 3NF (UML notation).

Beyond 3NF

The data schema of Figure 4.4 can still be improved upon, at least from the point of view of
data redundancy, by removing attributes that can be calculated or derived from other ones. In
this case, we could remove the SubtotalBeforeTax column within the Order3NF table and the
TotalPriceExtended column of Orderltem3NF, as you see in Figure 4.5. The point is that
although the first three rules of normalization are important to understand, they’re only a very

good start. Further forms are normalization are described in An Introduction to Database
Systems (Date 2000).

Order Orderitem

Dirdarld; intnger <Pm= Orderld: integer <Kz cofKns
Datelvdered: date ItemSequence: integer <P
Dratef ulfilled: date . 1..° | MumbserOrderad InTecper
TaxFederal: currency i L - -

TaxStale: CuETCRCY 0.

TaxLocal: currency
Sllll.ll::.'i.'ll'lldd.'“_;l Ineger Ll
BillToContactiD imeger £xFK=»

desenibes
1 0.1 oA

1
shipped 1o fham
ItemMo: integer <«PK=s
ItemMamne: char{40)
fmads: IermPrice: currency
agalnst

k&
1 Contastinfermation

Contacthd: imeger <<PKs>
billed to 1| Mame: char{45)

Street: char{40)

City: char(20)

Hate: char(20)

Country: char{20)

FipCoca: char{20)

Phore: char{20]

o

OrderPayment
| PaymentType

Orderld: integer <<P:>»> <<Flz=
Paymenthumber: integer <<PKs: 0.° paidvia 1| PaymentType: char(d) <<PK>=
PaymontType: char(4) <<FKs» Descripbion: char{20)

Armount: currency

Figure 4.5: An order without calculated values (UML notation).

Summary

This chapter provided an overview of the first three rules of data normalization, showing you
how to apply them in practice. The first rule of data normalization motivates you to introduce a
new table for repeating information. The second rule of normalization motivates you to improve
the cohesion of tables by ensuring that data columns depend on the key to that table. Finally,
the third rule of normalization motivates you to introduce tables for data that only depend on a
portion of a composite (multicolumn) key. How do you remember these rules? Through a
clever play on words: a data attribute will depend upon the key, the whole key, and nothing but
the key so help me Codd. (E. F. Codd is considered to be the “father” of relational databases.)

Chapter 5: Class Normalization

Overview

Good designs are highly cohesive and loosely coupled. The more ways that you have to reach
this goal the better.

In Chapter 4, you saw that data normalization is a technique by which you organize data in
such a way as to reduce and even eliminate data redundancy, effectively increasing the
cohesiveness of your data schema. Can the rules of data normalization be applied to object
schemas? Yes, but you need to modify them a bit. The rules of data normalization aren't ideal
for objects because they only address data and not behavior. You need to consider both when
normalizing an object schema. Class normalization (Ambler 1997) is a process by which you

reorganize the structure of your object schema in such a way as to increase the cohesion of
classes while minimizing the coupling between them.

To explore the techniques associated with class normalization, the following topics are
discussed in this chapter:

= How does class normalization relate to other object-oriented design practices?
= The role of the agile DBA

Ll First object normal form (1ONF)

. Second object normal form (20NF)

Ll Third object normal form (30ONF)

Ll Beyond 30ONF

How Does Class Normalization Relate to Other Object Design

Practices?

Fundamentally class normalization is a technique for improving the quality of your object
schemas. The exact same thing can be said of the application of common design pattern, such
as those defined by the “Gang of Four (GoF)” in Design Patterns (Gamma et. al. 1995). Design
patterns are known solutions to common problems, examples of which include the Strategy
pattern for implementing a collection of related algorithms and the Singleton pattern for
implementing a class that only has one instance. The application of common design patterns
will often result in a highly normalized object schema, although the overzealous application of
design patterns can result in you overbuilding your software unnecessarily. As Agile Modeling
(AM) suggests (Chapter 10), you should follow the practice the Apply Patterns Gently
approach and ease into a design pattern over time. In my opinion, the most important benefit
of class normalization over design patterns is that the concept is familiar to data professionals
and thus provides a bridge for them to help learn object techniques (at least that's been my
experience). Another common approach to improving object schemas is refactoring (Fowler
1999), an approach overviewed in Chapter 12. Refactoring is a disciplined way to restructure
code by applying small changes to your code to improve its design. Refactoring enables you to
evolve your design slowly over time. Class normalization and refactoring fit together quite well
— as you're normalizing your classes you will effectively be applying many known refactorings
to your object schema. A fundamental difference between class normalization and refactoring
is that class normalization is typically performed to your class models, whereas refactorings
are applied to your source code.

Do you need to understand all three techniques? Yes. It is always beneficial to have several
techniques in your intellectual toolkit. What would you think of a carpenter with only one type of
saw, one type of hammer, and one type of screwdriver? My guess would be that he or she
wouldn't be as effective as one with a selection of tools. The same thing can be said of agile
software developers.

The Role of the Agile DBA

Class normalization is an important technique for agile DBAs, as well as application
developers, to have in their intellectual toolbox. Be prepared to work with your teammates to
apply these design rules.

The Rules of Class Normalization

The rules of class normalization are summarized in Table 5.1 and are discussed further in the
following sections.

Table 5.1: Class Normalization Rules

Level Rule

First object normal form (LONF) A class is in first object normal form (LONF) when
specific behavior required by an attribute that is
actually a collection of similar attributes is
encapsulated within its own class.

Second object normal form A class is in second object normal form (20NF)
(20NF) when it is in first object normal form (LONF) and
when “shared” behavior required by more than one
instance of the class is encapsulated within its own
class(es)

Third object normal form (30ONF) A class is in third object normal form (30ONF) when it
is in second object normal form and when it
encapsulates only one set of cohesive behavior.

First Object Normal Form (1ONF)

A class is in first object normal form (LONF) when specific behavior required by an attribute
that is actually a collection of similar attributes is encapsulated within its own class. An object
schema is in 1ONF when all of its classes are in 10NF.

Consider the class Student in Figure 5.1. You can see that it implements the behavior for
adding and dropping students to and from seminars. The attribute seminars is a collection of
seminar information, perhaps implemented as an array of arrays, that is used to track what
seminars a student is assigned to. The operation addSeminar() enrolls the student into
another seminar, whereas dropSeminar() removes the student from one. The operation
printSchedule() produces a list of all the seminars the student is enrolled in so that the student
can have a printed schedule. The operations setProfessor() and setCourseName() make the
appropriate changes to data within the seminars collection. This design is clearly not very
cohesive — this single class is implementing functionality that is appropriate to several
concepts.

Student

studentNumber
name

address
phoneNumber
seminars

addSeminar()
dropSeminar()
printSchedule()
setProfessor()
setCourseName()
getSeminarLength()

Figure 5.1: The Student class in OONF.

Figure 5.2 depicts the object schema in LONF. Seminar was introduced, with both the data
and the functionality required to keep track of when and where a seminar is taught, as well as
who teaches it and what course it is. It also implements the functionality needed to add
students to the seminar and drop students from the seminar. By encapsulating this behavior in
Seminar, you have increased the cohesion of the design — Student now does student kinds of
things and Seminar does seminar types of things. In the schema of Figure 5.1 Student did
both.

It should be clear that 1ONF is simply the object equivalent of data’s first normal form (1NF) as
discussed in Chapter 4 — with 1NF you remove repeating groups of data from a data entity,
and with 1ONF you remove repeating groups of behavior from a class.

Second Object Normal Form (20NF)

A class is in second object normal form (20NF) when it is in first object normal form (1ONF)
and when “shared” behavior required by more than one instance of the class is encapsulated
within its own class(es). An object schema is in 20NF when all of its classes are in 20NF.

Consider Seminar in Figure 5.2. It implements the behavior of maintaining both information
about the course that is being taught in the seminar and about the professor teaching that
course. Although this approach would work, it unfortunately doesn’t work very well. When the
name of a course changes you'd have to change the course name for every seminar of that
course. That's a lot of work. Figure 5.3 depicts the object schema in 20NF. To improve the
design of Seminar, we have introduced two new classes, Course and Professor, which
encapsulate the appropriate behavior needed to implement course objects and professor
objects. As before, notice how easy it is to introduce new functionality to our application.

Course now has methods to list the seminars that it is being taught in (needed for scheduling
purposes) and to create new seminars because popular courses often need to have additional
seminars added at the last moment to meet student demand. The Professor class now has the
ability to produce a teaching schedule so that the real-world person has the information
needed to manage his or her time.

Student Seminar
studentNumber serminarlD
name 0.° takes 1. | seminarLocation
address startDate
phoneMumber endDate

time
professoriD
professorName
courseMame
courseMumber

addStudent()
dropStudent()
setProfessor()
setCourseMame()
getSerminarLength()

addSeminar(]
dropSeminar()
printSchedule()

Figure 5.2: The object schema in 1ONF.

Stsdent

sl uSrat B il ser
T

phonet umber
acrress

Course

(=T
[EE

" pllewing of B= 1 | getSemenarLetl
eroaleSornica|
I Sarrero)
drospSermanai]]
primtScheduled) Profsssor
Y peaches 1 | name
" | wmpdoyecil

[FathaasH R

Figure 5.3: The object schema in 20NF.

Third Object Normal Form (BONF)

Although putting the object schema in 20NF is definitely a step in the right direction, we can
still improve the design further. A class is in third object normal form (30ONF) when it is in
second object normal form and when it encapsulates only one set of cohesive behavior. An
object schema is in 30ONF when all of its classes are in 30ONF.

In Figure 5.3 the Student class encapsulates the behavior for both students and addresses.
The first step would be to refactor Student into two classes, Student and Address. This would
make the design more cohesive and more flexible because there is a very good chance that
students aren’t the only things that have addresses. However, this isn't enough because
Address still needs to be normalized. Specifically, there is behavior that is associated only with
zip codes, formatting, and validation. For example, based on the zip code it should be possible
to determine whether or not the city and state of an address are valid. This realization leads to
the class diagram presented in Figure 5.4, which implements addresses as four distinct
classes: Address, ZipCode, City, and State. The advantage of this approach is twofold — first
of all the zip code functionality is implemented in one place, increasing the cohesiveness of the
model. Second, by making zip codes, cities, and states their own separate classes, you can
now easily group addresses, based on various criteria, for reporting purposes, increasing the

flexibility of the application. The main drawback is that to build a single address you have to
build it from four distinct objects, increasing the code that you have to write, test, and maintain.

You're still not done, because the Seminar class of Figure 5.3 implements “date range”
behavior — it has a start date and an end date, and it calculates the difference between the
two dates. Because this sort of behavior forms a cohesive whole, and because it is more than
likely needed in other places, it makes sense to introduce the class DateRange, as shown in

Figure 5.4.
i T R
Student Serminar Courss
it smina i e
J 1 Tins r rumhar
N TR
geiSemenaLy
1 5 il [Ef R
T
[s poe T i
it o iamn(Erachey
- Prood ericastst
1 4 T
Arsaren - Tiptade bl s
Rin e 1
mwr e sughl gtk de)
et T —— g
il .:-.- _— Dhave Mg
ik P
Fate bukoizan
1 conkars
== il v guilengthiy
b 3 g *

city
ank

T —

Figure 5.4: The object schema in 3SONF.

Beyond 30NF

Good object-oriented designs are loosely coupled and highly cohesive. The first three rules of
class normalization describe common ways to rework your designs to help ensure this.
However, you can achieve these same goals through refactoring and the proper application of
design patterns. My advice is to apply normalization rules first to get your design most of the
way there, then apply other techniques as needed.

Summary

This chapter presented an object-oriented design technique called class normalization, the OO
equivalent of data normalization. To put a class into first object normal form (1ONF), you
refactor repeating data structures into their own class. A class is in second object normal form
(20NF) when “shared” behavior required by several entities is encapsulated within its own
class. A class is in third object normal form (30ONF) when it implements a single, cohesive set
of behaviors.

Although the techniques of class normalization aren’t yet as popular as refactoring or the
application of design patterns, | believe that they are important because they provide a very
good bridge between the object and data paradigms. The rules of class normalization provide
advice that effective object designers have been doing for years, so there is really nothing new
in that respect. More importantly, they describe basic object design techniques in a manner
that data professionals can readily understand, helping to improve the communication within
your project team.

Chapter 6: Relational Database Technology, Like
It or Not

Overview

Sometimes you need to accept the devil that you know.

A relational database is a persistent storage mechanism that enables you to both store data
and optionally implement functionality. The goal of this chapter is to provide an overview of
relational database (RDB) technology and to explore the issues applicable to its use in modern
organizations. RDBs are used to store the information required by applications built using
procedural technologies such as COBOL or FORTRAN, object technologies such as Java and
C#, and component-based technologies such as Visual Basic. Because RDBs are the
dominant persistent storage technology, it is critical that all software professionals understand
at least the basics of RDBs, the challenges surrounding the technology, and when it is
appropriate to use RDBs.

In this chapter, | discuss the following topics:

= Relational database technology

= Simple features of relational databases

= Advanced features of relational databases

= Coupling: your greatest enemy

= Additional challenges of relational databases

= Encapsulation: your greatest ally

= Beyond relational databases: you actually have a choice

Relational Database Technology

Let's begin with an overview of some common terminology. Relational databases store data in
tables. Tables are organized into columns, and each column stores one type of data (integer,
real number, character strings, date, and so on). The data for a single “instance” of a table is
stored as a row. For example, the Customer table could have columns such as
CustomerNumber, FirstName, and Surname, and a row within that table might look something
like {1701, “James”, “Kirk"}. Tables typically have keys; a key is one or more columns that
uniquely identify a row within the table. In the case of the Customer table, the key would be
CustomerNumber.

To improve access time to a data table, you define an index on the table. An index provides a
quick way to look up data based on one or more columns in the table, just like the index of a
book enables you to find specific information quickly.

Simple Features of Relational Databases

The most common use of relational databases is to implement simple CRUD — create, read,
update, and delete — functionality. For example, an application could:

Ll Create a new order and insert it into your database.

Ll Read an existing order and work with the data.

. Update the database with the new information.

= Delete an existing order (if a customer has canceled it, for example).

The vast majority of your interaction with an RDB will likely be to implement basic CRUD
functionality.

The easiest way to manipulate a database is to submit Structured Query Language (SQL)
statements to it. The following code depicts a simple data model using the proposed UML
data-modeling notation described in Chapter 2. (Data modeling is described in Chapter 3.)

INSERT INTO Seminar

(SEMINAR_ID, COURSE_ID, OVERSEER_ID, SEMINAR_NUMBER)
VALUES

(74656, 1234, “THX00011387, 2)

To create a row in the Seminar table, you would issue an INSERT statement, an example of
which is shown in the preceding code.

SELECT * FROM Seminar
WHERE SEMINAR_ID = 1701

Similarly, the following shows an example of how to read a row by issuing a SELECT
statement:

SELECT * FROM Seminar
WHERE SEMINAR_ID = 1701

Sermvinar Course
SEMIMNAR WY inbigjis' «<<PRs2 o
SEMIMAR WUMBER: infis |
COURSE_ID: integer <oFK»
OVERSEER_PROFESSOR_ID: char(14) «<FKsx»

COAMSE _IDE intide <<M¥as
o DOURSE_MUMEER- char[10]
DESCRPTION: chan[40)

HTerireg of 1

Figure 6.1: A simple UML data model.

The following code shows how to update an existing row via an UPDATE statement:
UPDATE Seminar
SET OVERSEER_ID = “NCC0001701~, SEMINAR_NUMBER = 3
WHERE SEMINAR_ID = 1701

Finally, the following code shows how to delete a row with a DELETE statement:
DELETE FROM Seminar
WHERE SEMINAR_ID > 1701

AND OVERSEER_ID = “THX0001138~

All four of these examples were adapted, as well as the data model, from The Object Primer
Second Edition (Ambler 2001a). A very good resource for learning SQL is SQL Queries for
Mere Mortals by Michael J. Hernandez and John L. Viescas (Hernandez and Viescas 2000).

Advanced Features of Relational Databases

There are several advanced features of relational databases that developers learn once
they've familiarized themselves with basic CRUD functionality. Each of these features is so
important, and often so complex, that they require their own chapters to cover them properly.
So for now, | will introduce you to the concepts and will cover the details in Part 1ll, which
include:

Object storage. To store an object in a relational database you need to flatten it — create a
data representation of the object — because relational databases only store data. To retrieve
the object you would read the data from the database and then create the object — often
referred to as restoring the object — based on that data. Although storing objects in a
relational database sounds like a simple thing to achieve, practice has shown that it isn’t. This
is due to the object-relational impedance mismatch, the fact that relational database
technology and object technology are based on different underlying theories, a topic discussed
in Chapter 7. To store objects successfully in relational databases, you need to learn how to
map your object schema to your relational database schema, a subject covered in detail in
Chapter 14.

Implementing behavior within the database. Behavior is implemented in a relational
database via stored procedures and/or stored functions that can be invoked internally within
the database and often by external applications. Stored functions and procedures are
operations that run within an RDB, the difference being what the operation can return and
whether it can be invoked in a query. The differences aren’t important for our purposes so the
term stored procedure will be used to refer to both stored functions and stored procedures. In
the past, stored procedures were written in a proprietary language, such as Oracle’s PL/SQL,
although Java is quickly becoming the language of choice for database programming. A stored
procedure typically runs some SQL code, massages the data, and then hands back a
response in the form of zero or more records, a response code, or a database error message.

Concurrency control. Consider an airline reservation system. There is a flight with one seat
left on it, and two people are trying to reserve that seat at the same time. Both people check
the flight status and are told that a seat is still available. Both enter their payment information
and click the reservation button at the same time. What should happen? If the system is
working properly only one person should be given a seat and the other should be told that
there is no longer one available. Concurrency control is what makes this happen. Concurrency
control must be implemented throughout your object source code and within your database,
something that is discussed in detail in Chapter 17.

Transaction control. A transaction is a collection of actions on your database — such as the
saving of, retrieval of, or deletion of data — which form a work unit. A flat transaction takes an
“all-or-nothing” approach, where all the actions must either succeed or be rolled back
(canceled). A nested transaction takes an approach where some of the actions are
transactions in their own right. These subtransactions are committed once successful and are
not rolled back if the larger transaction fails. Transactions may be short-lived, running in
thousandths of a second, or long-lived, taking hours, days, weeks, or even months to complete.
Transaction control is discussed in Chapter 17.

Enforcing referential integrity. Referential integrity (RI) is the assurance that a reference
from one entity to another entity is valid. For example, if a customer references an address,
that address must exist. If the address is deleted, all references to it must also be removed or
your system must not allow the deletion. Contrary to popular belief, Rl isn't just a database
issue, it's an issue for your entire system. A customer is implemented as an object within a
Java application and as one or more records in your database — addresses are also
implemented as objects and as rows. To delete an address, you must remove the address
object from memory, any direct or indirect references to it (an indirect reference to an address
would include a customer object knowing the value of the AddressID, the primary key of the
address in the database), the address row(s) from your database, and any references to it (via
foreign keys) in your database. To complicate matters, if you have a farm of application
servers that address object could exist simultaneously on several machines. Furthermore, if
you have other applications accessing your database, then it is possible that they too have
representations of the address in their memory as well. Worse yet, if the address is stored in
several places (for example, different databases) you should also consider taking this into
account. Strategies for implementing referential integrity are described in Chapter 19.

Table 6.1 describes the common technical features found in relational database products,
possible ways that developers will use them, and the potential drawbacks associated with their
use.

Table 6.1: Comparing Types of Persistence Mechanisms

MECHANISM ADVANTAGES DISADVANTAGES COMMON PRODUCTS
Flat File = Supports a Ad hoc access difficult N/A
simple

approach to
persistence

. Good
solution for
smaller
systems

- Most

development
languages
have built-in

Table 6.1: Comparing Types of Persistence Mechanisms

MECHANISM ADVANTAGES DISADVANTAGES COMMON PRODUCTS
support for file
streams
= No licensing
costs
Hierarchical Supports Not in common use for IBM’'s ISAM
Database transaction-oriented development of new (www.ibm.com)
applications applications IBM's VSAM
(www.ibm.com)
Object = “Pure” Not well accepted Computer
Databases approach to in the market place Associate’s Jasmine
persisting No single (www.ca.com)
objects dominant vendor Versant Developer
= Existing Suite

vendors have
survived the
market
shakeout and
are likely here
to stay

= Excellent
option for an
application-spe
cific database
(for example,
the best-case
scenario of
Figure 6.2)
when
object-technolo
gy is used

= Provides
uniformity of
approach
toward
application and
data storage

= Facilitates
refactoring

DefinedStandards,
such as Object
Query Language
(OQL), are still
evolving

(www.versant.com)

Object Design’s
ObjectStore
(www.objectdesign.co
m)

Obijectivity/DB
(www.objectivity.com)

Poet
(www.poet.com)

Table 6.1: Comparing Types of Persistence Mechanisms

MECHANISM ADVANTAGES DISADVANTAGES COMMON PRODUCTS
(Chapter 14)
because
everything is
an object
Object/Relational L] Relational L] Not well accepted " Cloudscape
Databases vendors are in the marketplace (www.ibm.com)
slowly adopting L] No single " Cincom UniSQL
object-relationa dominant vendor (www.cincom.com)
| features
L] Emerging " Relational vendors
- Less of an standards, such as listed above
impedance SQL3, are not yet
mismatch with widely adopted
objects
L] Small experience
base
Prevalence = Transparent = Emerging Prevayler
Layer persistence of technology (www.prevayler.org)
objects . Significant RAM
= Performance required on server
(sometimes
several orders
of magnitude
over relational
databases)
= Simplicity
Relational L] Mature L] Object-relational " Oracle
Databases technology impedance mismatch (www.oracle.com)
L] Dominate (Chapter 7) can be a " Sybase
the persistence significant problem (www.sybase.com)
mechanism L] Mapping objects . IBM DB2
market to relational (www.ibm.com)
. Several databases can be a

well-establishe
d vendors

= Standards,
such as SQL
and JDBC, well
defined and

difficult skill to learn
(see Chapter 14)

. Microsoft SqlServer
(www.microsoft.com)

Table 6.1: Comparing Types of Persistence Mechanisms

MECHANISM ADVANTAGES DISADVANTAGES COMMON PRODUCTS
accepted
= Significant
experience
base of
developers
XML Databases L] Native L] Emerging " OpenLinkSoftware’s
support for technology Virtuoso
persisting XML . Standards. for (www.openlinksw.com
data structures example, the XML)
(notjustas a equivalent of SQL, " Software AG’s
BLOB) are not yet in place Tamino
L] For for XML data access (www.softwareag.com
XMI_.—lnt.ensn{e . Not well-suited for)
applications it transactional " X-Hive/DB
removes the systems (www.x-hive.com)
need for
marshalling

between XML
structures and
the database

structure

Database cursors. A database cursor is effectively a handle to the results of a SQL query,
enabling you to move forward and backward through the result set one or more records at a
time. Benefits include accessing large results sets in smaller portions enables your application
to display initial results earlier, increasing response time. Performance is improved when a
portion of a result set is required because less data is transmitted across the network.
Potential drawbacks include application developers needing to understand that the underlying
data can change between the times that data records are accessed via the cursor; previously
retrieved records may have been deleted, records may have been inserted into previously
retrieved portions of the result set, or previously retrieved records may have been modified.
Not all cursors are created equal. Some cursors only allow forward scrolling. Cursors are a
resource drain on the database because they are memory intensive.

Java. Most database vendors support a Java VM within the database. Potential benefits
include the development of relatively platform-independent behavior in the database,
development of data-intensive behavior that results in a relatively small return value,
encapsulation of database access to support security access control to information, and
implementation of shared behavior required by many applications. Potential drawbacks
include different versions of VMs on the application server and the database server, which

increases the complexity of development, and that behavior implemented in the database can
easily become a bottleneck.

Triggers. A trigger is a procedure that is run either before or after an action (such as a create,
update, or delete) is performed on a row in a database table. Potential benefits include enforce
referential integrity (see Chapter 19 for details) within your database. These types of triggers
can often be automatically generated by your data modeling or database-administration tool.
Often a lowest common denominator for implementing referential integrity constraints. Perform
handcrafted audit logging. Potential drawbacks include the fact that handcrafted, or
hand-modified, triggers can be difficult to maintain and will increase your dependency on your
database vendor. Triggers are typically implemented in a proprietary language, requiring an
extra skillset on your team. Because triggers are automatically invoked, they can be very
dangerous (such as “uncontrolled” cascading deletions resulting from chained delete triggers).
Behavior implemented in the database can easily become a bottleneck if your database
doesn’t scale well.

Coupling: Your Greatest Enemy

Coupling is a measure of the degree of dependence between two items — the more highly
coupled two things are, the greater the chance that a change in one will require a change in
another. Coupling is the root of all evil when it comes to software development, and the more
things that your database schema is coupled to, the harder it will be to maintain and to evolve
your software. Relational database schemas can be coupled to:

Your application source code. When you change your database schema, you must also
change the source code within your application that accesses the changed portion of the
schema. Figure 6.2 depicts the best-case scenario — when it is only your application code that
is coupled to your database schema. This situation is traditionally referred to as a stovepipe.
These situations do exist and are often referred to as standalone applications, stovepipe
systems, or greenfield projects. Count yourself lucky if this is your situation because it is very
rare in practice.

Your
Application

N
N

"--..____________________...-"

Your
Database

‘-..______________________...-"

Figure 6.2: The best-case scenario.

Other application source code. Figure 6.3 depicts the worst-case scenario for relational
databases — a wide variety of software systems are coupled to your database schema, a
situation that is quite common with existing production databases. It is quite common to find
that in addition to the application that your team is currently working on other applications,
some of which you know about and some of which you don't, are also coupled to your
database. Perhaps an online system reads from and writes to your database. Perhaps a
manager has written a spreadsheet, unbeknownst to you, that reads data from your database
that she uses to summarize information critical to her job.

.'"..-—-\\.
‘ Your
—e Application —
= — | - —_
/—ﬁ\\l \ \. i A
| Oither) - A Other Y
. P Applications
Applications 1 You Don't
You Know About | | !
\ _;Jf . Know About }/

iy r
e e e
Persistence L

: Yolar Other
[-—L”' Database —I// Databases

Drata

Data
Imiports Extracts

Data LI Data
File File
Test
Code

Figure 6.3: The worst-case scenario.

Data load source code. Data loads from other sources, such as government-provided tax
tables or your own test data, are often coupled to your database schema.

Data extract source code. There may be data extraction scripts or programs that read data
from your database, perhaps to produce an XML data file or simply so your data can be loaded
into another database.

Persistence frameworks/layers. A persistence framework encapsulates the logic for
mapping application classes to persistent storage sources such as your database. When you
refactor your database schema, you will need to update the meta data, or the source code as
the case may be, which describes the mappings.

Itself. Coupling exists within your database. A single column is coupled to any stored
procedure that references it, other tables that use the column as a foreign key, any view that
references the column, and so on. A simple change could result in several changes throughout
your database.

Data migration scripts. Changes to your database schema will require changes to your data
migration scripts.

Test code. Testing code includes any source code that puts your database into a known state,
that performs transactions that affect your database, and that reads the results from the
database to compare it against expected results. Clearly, this code may need to be updated to
reflect any database schema changes that you make.

Documentation. Some of the most important documentation that you are likely to keep
pertains to your physical database schema, including, but not limited to, physical data models
and descriptive meta data (see Chapter 14). When your database schema changes, the
documentation describing it will also need to change. Although Agile Modeling (AM) implores
you to Update Only When It Hurts, because your documentation doesn't have to be perfectly in
synch with your schema at all times, the reality is that you will need to update your docs at
some point.

Additional Challenges with Relational Databases

Coupling isn’t the only challenge that you face with relational databases, although it is clearly
an important one. Other issues that you will face include:

Performance issues are difficult to predict. When you are working with a shared database,
as in the situation implied in Figure 6.3, you may find that the performance characteristics of
your database are hard to predict because each application accesses the database in its own
unigue way. For example, perhaps one legacy application updates information pertaining to
items for sale sporadically throughout the month, enabling a human operator to add new items
or update existing ones, an activity that doesn’t really affect your application’s performance in
a meaningful way. However, this same application also performs batch loads of items
available for sale via other companies that you have partnered with, items that you want to
carry on your Web site as soon as they are available. These batch loads can take several

minutes, during which period the Item table is under heavy load and thus your online
application is potentially affected.

Data integrity is difficult to ensure with shared databases. Because no single application
has control over the data, it is very difficult to be sure that all applications are operating under
the same business principles. For example, your application may consider an order as fulfilled
once it has been shipped and a payment has been received. The original legacy application
that is still in use by your customer support representatives to take orders over the phone may
consider an order fulfilled once it has been shipped, the payment received, and the payment
deposited into your bank account. A slight difference in the way that a fundamental business
rule has been implemented may have serious business implications for any application that
accesses the shared databases. Less subtly, imagine what would happen if your online
order-taking application calculates the total for an order and stores it in the order table,
whereas the legacy application calculates the subtotals only for order items but does not total
the order. When the order fulfillment application sees an order with no total it calculates the
total, and appropriate taxes, whereas if a total already exists it uses the existing figure. If a
customer makes an order online and then calls back a few hours later and has one of your
customer service representatives modify the existing order, perhaps to add several items to it,
the order total is no longer current because it has not been updated properly. Referential
integrity issues such as this are covered in detail in Chapter 19.

Operational databases require different design strategies than reporting databases. The
schemas of operational databases reflect the operational needs of the applications that access
them, often resulting in a reasonably normalized schema with some portions of it denormalized
for performance reasons. Reporting databases, on the other hand, are typically highly
denormalized with significant data redundancy within them to support a wide range of
reporting needs. Data normalization techniques are described in Chapter 4 and
denormalization techniques in Chapter 15.

Encapsulation: Your Greatest Ally

Encapsulation is a design issue that deals with how functionality is compartmentalized within a
system. You should not have to know how something is implemented to be able to use it. The
implication of encapsulation is that you can build anything anyway you want, and then you can
later change the implementation and it will not affect other components within the system (as
long as the interface to that component did not change).

Your Other Your

Appdication Apphcations | |, Application
I\ y
s K
< 5
M y e 1 |
Encagrsudation Stratgy | Encapsulation Stratgy
z'{ \'-. .-/ N
ra & r
G gl e , =
.-"l | '.\. I.
our Yo - 1 Oither
Database Database i Applications |
I 1)
“Best Case" "Worst Case"”

Figure 6.4: The scenarios revisited.

Things aren’t quite so ideal for the worst-case scenario. Although it is possible that all
applications could take advantage of your encapsulation strategy, the reality is that only a
subset will be able to. Platform incompatibility can be an issue in any of the following scenarios,
just for example:

Ll Your data access objects are written in Java but some legacy applications are written
using technologies that can't easily access Java.

= You've chosen not to rework some of your legacy applications to use the database
encapsulation strategy.

= Some applications already have an encapsulation strategy in place (if so, you might

want to consider reusing the existing strategy instead of building your own).
= You want to use technologies, such as a bulk load facility, that require direct access to
the database schema.

The point is that a portion of your organization’s application will be able to take advantage of
your encapsulation strategy and a portion won't. There is still a benefit to an encapsulation
strategy: you are reducing coupling and therefore reducing your development costs and
maintenance burden, but unfortunately the problem is that you aren’t fully realizing the benefits
of encapsulation.

Another advantage of encapsulating access to a database is that it gives you a common place,
in addition to the database itself, to implement data-oriented business rules.

Beyond Relational Databases: You Actually Have a Choice

Because there are some clear problems with relational database technology, you may decide
to use another technology. Yes, RDBs are the most commonly used type of persistence
mechanism but they are not the only option available to you. Your options are as follows:

Object/relational databases. Object/relational databases (ORDBS), also known as
object/relational database management systems (ORDBMSs), add new object storage
capabilities to relational databases. ORDBs, add new facilities to integrate management of

traditional fielded data, complex objects such as time-series and geospatial data, and diverse
binary media such as audio, video, images, and (sometimes) Java applets. ORDBs basically
add to RDBs features such as defined data types; for example, you could define a data type
called SurfaceAddress that has all of the attributes and behaviors of an address, as well as the
ability to navigate objects. This is in addition to an RDB's ability to join tables. By implementing
objects within the database, an ORDB can execute complex analytical and data manipulation
operations to search and transform multimedia and other complex objects. ORDBs support the
robust transaction and data-management features of RDBs and at the same time offer a
limited form of the flexibility of object-oriented databases. Because of ORDBs relational
foundation, database administrators work with familiar tabular structures and data definition
languages (DDLs) and programmers access them via familiar approaches such as SQL3,
JDBC (Java Database Connectivity), and proprietary call interfaces.

Object databases. Object databases (ODBs), also known as object-oriented databases
(OODBSs) or object-oriented database management systems (OODBMSS), nearly seamlessly
add database/persistence functionality to object programming languages. In other words,
full-fledged objects are implemented in the database. They bring much more than persistent
storage of programming language objects: ODBs extend the semantics of Java to provide
full-featured database programming capability via new class libraries specific to the ODB
vendor, while retaining native language compatibility. A major benefit of this approach is the
unification of the application and database development into a seamless model. As a result,
applications require less code and use more natural persistence modeling, and code bases
are easier to maintain. Object-oriented developers can write complete database applications
with a modest amount of additional effort without the need to marshal their objects into
flattened data structures for storage. As a result, you forgo the marshalling overhead inherent
with other persistence mechanism technologies (such as RDBs). This one-to-one mapping of
application objects to database objects provides higher performance management of objects
and enables better management of the complex interrelationships between objects.

XML databases. Native XML databases store information as XML documents following one of
two approaches: First, a native XML database will either store a modified form of the entire
XML document in the file system, perhaps in a compressed or preparsed binary form. Second,
a native XML database may opt to map the structure of the document to the database, for
example mapping the Document Object Model (DOM) to internal structures such as Elements,
Attributes, and Text — exactly what is mapped depends on the database. The most important
difference between these approaches, from the point of view of an application developer, is the
way they are accessed: with the first approach the only interface to the data is XML and
related technologies such as XPath (a language design specifically for addressing parts of an
XML document, visit www.w3.org for details) or the DOM. With the second approach the
database should be accessible via standard technologies such as JDBC. The important thing
to understand about native XML databases is that they work with the internal structures of the
XML documents, but they don’t store them as a binary large object (BLOB) in the database.

Flat files. Flat files, such as .txt or. CSV (comma separated value) files, are commonly used to
store data. A single file can be used to store one type of data structure, such as customer

information or sales transaction information, or through a coding and formatting strategy of the
structures of several types of data structures. One approach to flat file organization is either to
have data values separated by a predefined character, such as a comma or tag such as
</FirstName> in an XML document. Another common approach is to delimit data values by
size — the first 20 characters of the row represent the first name of the customer, the next 20
characters represent the surname, and so on.

Hierarchical databases. Hierarchical databases link data structures together like a family tree
such that each record type has only one owner; for example, an order is owned by only one
customer. Hierarchical structures were widely used in the first mainframe database
management systems and are still a very common source of data in many large organizations.
Hierarchical databases fell out of favor with the advent of relational databases due to their lack
of flexibility because it wouldn't easily support data access outside the original design of the
data structure. For example, in the customer-order schema, you could only access an order
through a customer, you couldn’t easily find all the orders that included the sale of an item
because the hierarchical database schema isn't designed to handle that.

Prevalence layer. Klaus Wuestefeld defines prevalence as “transparent persistence,
fault-tolerance and load-balancing of the execution of the business logic of an information
system through the use of state snapshots as well as command and query queuing or
logging.” A prevalence layer is effectively a simple persistence framework that serializes
objects and writes them to log files. From the point of view of developers, all objects are
cached in memory, and the persistence of the objects is truly treated as a background task that
the developers don’t need to worry about.

Table 6.1 presents a comparison of the various types of persistence mechanisms and
provides references to vendors where applicable. Table 6.2 presents suggestions for when
you might use each type of technology. Large organizations will find that they are using
several types of persistence mechanisms and will even install the products of several different
vendors. Not only do you have a choice, but you might be forced to work with a wide range of
databases whether you want to or not.

Table 6.2: Potential Applications for Types of Persistence Mechanisms

MECHANISM POTENTIAL APPLICATIONS

Flat Files " Simple applications, particularly those with a
“read all the information, manipulate it for a
while, and save it to disk” paradigm such as
word processors or spreadsheets, where a
relational database would be gross overkill

" Persistence of configuration information

" Sharing of information with other systems
Audit logging/reporting

Hierarchical Databases . Transaction-oriented applications

Table 6.2: Potential Applications for Types of Persistence Mechanisms

MECHANISM POTENTIAL APPLICATIONS
" Common source of legacy data
Object Databases . Complex, highly interrelated data structures

(for example, CAD/CAM parts inventory)

. Complex and low-volume transactions (for
example, Computer-Aided
Design/Computer-Aided Manufacturing
(CAD/CAM), Geographical Information Systems
(GIS) applications)

. Simple, high-volume transactions (for
example, point of sale systems)

. Single-application, or single application
family, software products

Object/Relational Databases

" Complex, highly interrelated data structures
(for example, CAD/CAM parts inventory)

" Complex and low-volume transactions (for
example, CAD/CAM, GIS applications)

" Simple, high-volume transactions (for
example, point of sale systems)

" Single-application, or single application
family, software products

Prevalence Layer

. Complex object structures

. Single-application, or single application
family, software products

Relational Databases

" High-volume applications

" Transaction-oriented applications

" Simple-to-intermediate complexity of data
" Data-intensive applications

" Shared, operational database

" Reporting database

XML Databases

Ideally suited for XML-intensive applications such as
enterprise integration portals or online reporting
facilities

Summary

Relational database technology isn’t perfect, no technology is. The reason why | have spent so
much effort discussing the drawbacks of this technology is that it is important that you
understand what it is that you're working with. Many writers will focus on the benefits of
relational databases, and there are clearly many benefits, but ignore the drawbacks. Other
writers will focus on academic issues such as the concept that there is no “true relational
database” that fulfills all of E. F. Codd’s original 12 features, not to mention the more finely
defined features of his later writings. That's an interesting issue to discuss over beer but |
prefer to focus on the practical issues that developers face day to day when working with this
technology.

Coupling is a serious issue for all IT professionals, including both application developers and
agile DBAs. Encapsulating access to your database can help to alleviate the problems of
coupling but it is only a partial solution. It is also important to recognize that relational
databases are only one of several choices that you have available to you to persist your data.
Nonrelational approaches are viable solutions for some situations and should be given
appropriate consideration. Having said this, my assumption throughout the rest of this book is
that you will be working with relational databases to make your data persistent.

Chapter 7: The Object-Relational Impedance

Mismatch

Overview

The differences make us stronger, as long as they don’t divide us in the process.

Object-oriented technologies support the creation of applications out of classes that implement
both data and behavior. Relational technologies support the storage of data in tables and the
manipulation of that data via a data manipulation language (DML). The Structured Query
Language (SQL) is the traditional DML implementation language although some relational
databases now internally support objects as well, a trend that will only grow stronger over time.
It is clear that object technologies and relational technologies are in common use in most
organizations, that both are here to stay for a while, and that both are being used together to
build complex software-based systems. It is also clear that the fit between the two
technologies isn't perfect; in the early 1990s, the difference between the two approaches was
labeled the object-relational impedance mismatch, (or the impedance mismatch for short), a
term that is still in common use today.

Much of the conversation about the impedance mismatch focuses on the technical differences
between object and relational technologies, and rightfully so because there are significant
differences. Unfortunately, there has been less attention spent on the cultural differences
between the object-oriented community and the data community. These differences are often

revealed when object professionals and data professionals argue with each other regarding
the approach that should be taken by a project team.

This chapter explores:

= The role of the agile DBA

= The technological impedance mismatch

= Deceptive similarities

= Subtle differences

Ll The cultural impedance mismatch

Ll Strategies for overcoming the impedance mismatch

The Role of the Agile DBA

On the technical side, it is the job of an agile DBA to work with application developers to make
object and relational technologies work together. On the cultural side, agile DBAs will often find
themselves in the role of mediator, typically between agile software developers and traditional
data professionals. In short, agile DBAs act as bridges between both the object and data
worlds and between the agile and traditional worlds.

The Technological Impedance Mismatch

Why does a technological impedance mismatch exist? The object-oriented paradigm is based
on proven software engineering principles. The relational paradigm, however, is based on
proven mathematical principles. Because the underlying paradigms are different, the two
technologies do not work together seamlessly.

The impedance mismatch becomes apparent when you look at the preferred approach to
access: With the object paradigm you traverse objects via their relationships, whereas with the
relational paradigm you join rows of tables. This fundamental difference results in a nonideal
combination of object and relational technologies, although when have you ever used two
different things together without a few hitches?

Why is this a problem? The greater the mismatch between your object and data schemas, the
more code you will need to write, test, and maintain to resolve the mismatch. Furthermore,
your code is likely to run slower due to the greater complexity required to coordinate the
differing schemas.

To succeed using objects and relational databases together you need to understand both
paradigms and their differences, and then make intelligent trade-offs based on that knowledge.
Chapter 6 provided an overview of relational databases, and Chapter 3 described the basics of
data modeling, together providing you with sufficient background to understand the relational
paradigm. Similarly, Chapter 2 provided an overview of object orientation and UML, explaining
the basics of the object-oriented paradigm. Until you understand both paradigms and gain
real-world experience working in both technologies, it will be very difficult to see past the
deceptive similarities between the two.

Deceptive Similarities

Figure 7.1 depicts a physical data model (PDM) using the UML data-modeling notation
described in Chapter 2. Figure 7.2 depicts a UML class diagram. On the surface they look like
very similar diagrams, and when you only look at the surface, in fact they are. It's how you
arrive at the two diagrams that can be very different.

Cuntomer | Address

amerMo: INT24 <<PKae AddressiD: INT24 =< PK>>
Mame: VARCHAR{20) Stroet: VINRCHAR{20)

Surna | City: VARCHAR(20)
! | ststeCode: VARCHAR(2) <<FK
FipCoade: INT24
CustomerAddress e
cofinsoeiative Tabloxx
| Customerio: INTZ4 <<Piss eafiss I
AdressiCh: INT24 <<Plss <<Flas | 1.° [Fta |
UsteCode; VARCHAR(?) «cPKan
<Physical Data Mac _F\.'..r.n-'\.l.n'u:n- YARRGHARSO)
Figure 7.1: A physical data model (UML notation).

Customer Rddress

® | - el Sl

s bowsisp St ol lalel o) SLaly

Figure 7.2: AUML class diagram.

Let's consider the deceptive similarities between the two diagrams. Both diagrams depict
structure, the PDM shows four database tables and the relationships between them, whereas
the UML class diagram shows four classes and their corresponding relationships. Both
diagrams depict data: the PDM shows the columns within the tables, and the class model
shows the attributes of the classes. Both diagrams also depict behavior; for example, the
Customer table of Figure 7.1 includes a delete trigger and the Customer class of Figure 7.2
includes two operations. The two diagrams also use similar notations, something that | did on
purpose to make matters worse.

| think you can see how easy it is for an experienced data professional to claim that a class
model is merely a data model with behavior. Another common mistake is to assume that a
class model is simply the combination of a data model and a process model. The reality is that
a class model depicts structure, and within that structure data and behavior are both depicted.
Business processes, such as those depicted by a data flow diagram (DFD) or perhaps a
use-case model, are not shown on class models. Class models can be very deceptive in this
regard, particularly if you haven't spent a lot of time working with object technology.

You can also see how an experienced object-oriented developer can claim that a data model
is merely a subset of a class model. Both of these attitudes are a mistake, because they
provide a false justification for not learning more about the other technique. What is worse is
that these attitudes are prevalent in much of the literature on the subject. People who write
about data techniques rarely delve into object techniques, other than perhaps to claim that

object developers need to learn more about data modeling (a philosophy that | adhere to).
Object writers are just as bad, often claiming that you merely need to apply a handful of
stereotypes to a UML class model if you want to model data. Chapter 2 shows that there is a
little more to it than that.

Subtle Differences

Agile software developers realize that there are subtle differences between data modeling and
class modeling. First, an address is implemented as a single table in Figure 7.1 but as two
classes, Address and ZipCode, in Figure 7.2. The ZipCode class was created to encapsulate
the logic of validating a zip code number and formatting it appropriately for mailing labels. For
example, you can determine if a zip code is in a given state by looking at its first two digits. To
prepare it for printing on a label, hyphens should be inserted in the appropriate places. The
bottom line is that the ZipCode class encapsulates cohesive behavior. However, in the PDM of
Figure 7.1 this behavior isn't relevant, therefore a zip code can map to a single column in the
Address table. It's interesting to note that in this case two dissimilar classes will map to one
table (the basics of mapping objects to relational databases is covered in Chapter 14).

Differences in your modeling approaches will result in subtle differences between the object
schema and the data schema:

= Modelers create different structures in class models, which take into account both data
and behavior, than in data models, which only consider data.
= Data normalization (Chapter 4) encompasses different strategies than class

normalization (Chapter 5).

= The application of data analysis patterns (Hay 1996) as opposed to object-oriented
analysis patterns (Fowler 1997, Ambler 1997) and design patterns (Gamma et. al. 1995)
results in differences.

There are differences in the types of relationships that each model supports, with class
diagrams being slightly more robust than physical data models for relational databases. For
example, you see that there is a many-to-many relationship between Customer and Address in
Figure 7.2, a relationship that was resolved in Figure 7.1 via the CustomerAddress associative
table. Object technology supports this type of relationship but relational databases do not,
which is why the associative table was introduced.

Consider the relationship between Address and ZipCode in Figure 7.2. On the surface, it looks
like it has been modeled wrong, but | argue that it hasn’t. In the real world, an address can be
in several zip codes, for example very large warehouses. A zip code will typically have zero or
more addresses in it, a new subdivision may not have any houses built in it yet but could have
been assigned a zip code. The multiplicities on this association are clearly wrong, if you
assume that our goal was to model reality. However, our goal was to model the requirements
for the system, not reality. The requirements don’t necessitate that we traverse the relationship
in both directions; hence it's unidirectional. We don'’t have to deal with large warehouses so
our object doesn’t have to support addresses with several zip codes. We choose to indicate a
multiplicity of 1 beside Address, allowing us to have several ZipCode objects representing the

same concept, for example the 90210 zip code, in memory at once. We don’t need to traverse
from ZipCode to Address so why bother to write the extra code to ensure that we only have
one representation in memory at a time? Do the simplest thing possible.

Figure 7.2 also depicts a unidirectional association between Address and ZipCode, something
that relational databases do not natively support. Relationships are implemented via foreign
keys in relational databases, effectively allowing for a join in either direction. For example, you
could write SQL code to join the State table with the Address table to obtain the name of the
state for an address. Or you could join the Address table with the State table to define a list of
all the addresses in a single state. To my knowledge, you never see any writings within the
data community discussing the directionality of joins like this because it really isn’t an issue.
However, directionality is an important issue in class models. Figure 7.3 depicts a fully
attributed class model that includes the scaffolding code and data required to implement
associations. For example, the Customer class implements a vector (Java is the
implementation language) named addresses in which it stores references to Address objects.
It also implements getAddresses() and setAddresses() accessor operations and addAddress()
and removeAddress() operations to maintain the association with Address. Address
implements similar data and operations to maintain the association in the other direction. You
also see that Address implements similar things to generate the association that it has with
ZipCode, but that ZipCode doesn’t need to implement similar code because the association is
unidirectional. Therefore, there is less code to write, test, and maintain — so unidirectional
associations can be very good things.

Another advantage is that the code will truly reflect the requirements, something that the
maintenance developers in the future will appreciate. Part of maintenance is the removal of
functionality that is no longer required. When you overbuild your software, it becomes very
difficult to determine what portions of a system are actually needed, even if comprehensive
documentation exists, and therefore it makes the maintenance effort that much harder.

Figure 7.3 also hints at a schism within the object community. It is common practice to not
show keys on class diagrams (Ambler 2003), for example there aren’t any shown on Figure
7.2. However, the reality is that when you are using a relational database to store your objects,
each object must maintain enough information to be able to successfully write itself, and the
relationships it is involved with, back out to the database. This is something that | call “shadow
information,” which you can see has been added in Figure 7.3 in the form of attributes with
implementation visibility (no visibility symbol is shown). For example, the Address class now
includes the attribute addressID, which corresponds to AddressID in the Address table (the
attributes customers, state, and zipCode are required to maintain the relationships to the
Customer, State, and ZipCode classes, respectively).

el o] dringg]

Figure 7.3: Fully attributed UML class diagram.

The schism is that the object community has a tendency to underestimate the importance of
object persistence. Symptoms of this problem include:

Ll The lack of an official data model in the UML (see Chapter 2).

Ll The practice of not modeling keys on class diagrams.

Ll The misguided belief that you can model the persistent aspects of your system by
applying a few stereotypes to a UML class diagram.

Ll Many popular object-oriented analysis and design (OOA&D) books spend little or no

time discussing object persistence issues.

Yet in reality, object developers discover that they need to spend significant portions of their
time making their object persistent, perhaps because they’ve run into performance problems
after improper mappings (Chapter 14) or because they've discovered that they didn't take
legacy data constraints (Chapter 8) into account in their design. My experience is that
persistence is a significant blind spot for many object developers, one that promotes the
cultural impedance mismatch discussed in the next section.

You can see that there are deceptive similarities and subtle differences between data models
and class models. To be effective using object and relational technologies together, you need
to understand this and act accordingly. A very common mistake is to think that you've done
this before, that the types of models are basically the same thing. On the surface they are, but
that's only the surface.

The Cultural Impedance Mismatch

The cultural impedance mismatch, something that | call the “object-data divide” (Ambler 2000a,
Ambler 2000Db), refers to the politics between the object community and the data community.
These often consist of the dysfunctional politics between the two communities that occur within
software organizations and even the software industry itself — problems that the agile data
(AD) method strives to overcome. Symptoms of the object-data divide include object
developers that claim relational technology either shouldn’t or can’t be used to store objects
and data professionals that claim that object/component models must be driven by data
models. Like most prejudices, neither of these beliefs are even remotely based on fact: in

Chapter 6 you saw that relational databases are used to store a wide range of data, including
the data representing objects, and in Chapter 9 you will see are several ways to approach
development in addition to a data-driven approach.

To understand why our industry suffers from the object-data divide you need to consider the
history of object technology. Object technology was first introduced in the late 1960s and
adopted by the business community in the late 1980s and early 1990s — even now many
organizations are just starting to use it for mission-critical software. As with most other new
technologies, there was spectacular hype surrounding objects at the start:

Everything is an object.

Object technology is a silver bullet that solves all of our problems.
Objects are easier to understand and to work with.

Object technology is the only thing that you'll ever need.

In time reality prevailed and these claims were seen for what they were, wishful thinking at
best. Unfortunately, one bit of hype did serious damage, the idea that the pure approach
supported by objectbases would quickly eclipse the “questionable” use of relational
technologies. This mistaken belief, combined with the findings of several significant research
studies that showed that object techniques and structured techniques (for example, SQL) don’t
mix well in practice, led many within the object community to proclaim that objects and
relational databases shouldn’t be used together.

At the same time, the data community was coming into its own. Already important in the
traditional mainframe world, data modelers found their role in the two-tier client server world
(the dominant technology at the time for new application development) to be equally critical.
Development in both of these worlds worked similarly: the data professionals would develop
the data schema and the application developers would write their program code. This worked
because there wasn't a lot of conceptual overlap between the two tasks — data models
showed the data entities and their relationships whereas the application/process models
showed how the application worked with the data. From the point of view of data professionals,
very little had changed in their world. Then object technology came along. Some data
professionals quickly recognized that the object paradigm was a completely new way to
develop software; | was among them, and joined the growing object crowd. Unfortunately,
many data professionals either believed the object paradigm to be another fad doomed to fail
or merely another programming technology and therefore remained content with what they
perceived to be the status quo.

Unfortunately both communities got it wrong. Objectbases never proved to be more than a
niche technology, to the dismay of object purists, whereas relational databases have
effectively become the defacto standard for storing data. Furthermore, the studies of the late
80s and early 90s actually showed that you shouldn’t use structured models for object
implementation languages such as C++ or Smalltalk, or object models for structured
implementation languages such as COBOL or BASIC. Neither addressed the idea of melding

object and structured modeling techniques. In fact, practice has shown that it is reasonably
straightforward to map objects to relational databases (see Chapter 14).

To the dismay of data professionals, object modeling techniques, particularly those of the
Unified Modeling Language (UML), are significantly more robust than data modeling
techniques and are arguably a superset of data modeling (Muller 1999). The object approach
had superceded the data approach, in fact there was such a significant conceptual overlap that
many data professionals mistakenly believed that class diagrams were merely data models
with operations added in because they hadn’t recognized the subtle differences. What they
didn’t realize was that the complexity of modeling behavior requires more than just class
diagrams — there is a reason why the UML defines a collection of diagrams — and that their
focus on data alone was too narrow for the needs of modern application development. Object
techniques proved to work well in practice — not only isn’t object technology a fad, but it has
become the dominant development platform, and the status quo has changed to the point that
most modern development methodologies devote more than a few pages to data modeling (to
their detriment).

The object-data divide produces dire consequences:

IT project teams fail to produce software on time and on budget. Granted, there are many
factors affecting this problem, but there is little hope if your staff is unable to effectively work
together.

The technical impedance mismatch is exacerbated. When object modelers and your data
modelers do not work together, you risk having a significant mismatch between your object
schema and your data schema.

Data models often prove to be poor drivers for object models. A common mistake that
organizations make is to take a data-driven approach to development even on object-oriented
projects, often for the simple reason that this is the way that they know how to work. They think
this approach works because they have been fooled by the deceptive similarities between data
models and class diagrams, not realizing the implications of the subtle differences. With an
evolutionary approach to development (discussed in Part 1) you discover that you iterate
between different types of models, you don't let one blindly drive another.

Increased staff turnover. The political infighting resulting from the object-data divide typically
leads to the frustration of everyone involved, application developers and data professionals
alike, leading to higher-than-average staff turnover.

Summary

Object and relational technologies are real and are both here to stay. Unfortunately, the two
technologies differ, these differences being referred to as “the object-relational impedance
mismatch.” In this chapter you learned that there are two aspects to the impedance mismatch:
technical and cultural.

The technical mismatch can be overcome by ensuring that project team members, including
both application developers and agile DBAs, understand the basics of both technologies.
Furthermore, you should actively try to reduce the coupling that your database schema is
involved with by encapsulating access to your database(s) as best you can (Chapter 13), by
designing your database well (Chapter 3), and by keeping the design clean through database
refactoring (Chapter 12).

Overcoming the cultural impedance mismatch is much more difficult. Everyone needs to
recognize that the problem exists and needs to be overcome. Object and data professionals
have different skills, different backgrounds, different philosophies, and different ways that they
prefer to work. Instead of finding ways to work together that takes advantages of these
differences, many software shops instead have chosen to erect communication and political
barriers between the two groups of professionals. These barriers must be removed, something
that the adoption of the agile data (AD) method can help with. An important first step is to
recognize that different projects require different approaches, that one “process size” does not
fit all (see Chapter 9), and to manage accordingly. It isn’t sufficient for the data group to be
right, or the application group to be right, they need to be right together. In short: stop playing
political games and instead find ways to work together.

Chapter 8: Legacy Databases — Everything You
Need to Know But Are Afraid to Deal With

Overview

What is the difference between a data architect and a terrorist? You can negotiate with a
terrorist.

David C. Hay

Sometimes you are in a position to develop your data schema from scratch when you are
developing a new system using object-oriented technologies. If so, consider yourself among
the lucky few because the vast majority of developers are often forced to tolerate one or more
existing legacy data designs. Worse yet, it is often presumed that these data sources cannot
be improved because of the corresponding changes that would be required to the legacy
applications that currently access them. The problems presented by legacy data sources are
often too difficult to fix immediately, therefore you have to learn to work around them.

The goal of this chapter is to introduce both application developers and agile DBAs to the
realities of working with legacy data. For our purposes, any computer artifact, including, but not
limited to, data and software, is considered to be a legacy asset once it is deployed and in
production. For example, the C# application and its XML database that you deployed last week
are now considered to be legacy assets even though they are the built from the most modern
technologies within your organization. A legacy data source is any file, database, or software
asset (such as a Web service or business application) that supplies or produces data and that

has already been deployed. For the sake of brevity we will only focus on the data aspects of
legacy software assets.

The topics covered in this chapter are:

= The role of the agile DBA

Ll Sources of legacy data

Ll Common problems encountered when working with legacy data
Ll Strategies for working with legacy data

= Data integration technologies

The Role of the Agile DBA

The tasks that an agile DBA performs with respect to working with legacy data (depicted in
Figure 8.1) are as follows:

Identify legacy data sources. Your organization’s enterprise professionals, including both
enterprise administrators and enterprise architects, should have knowledge of legacy data
sources. This is particularly true of enterprise administrators because they are responsible for
supporting and evolving these data sources over time. A good agile DBA will have a general
knowledge of what data sources exist, and more importantly will work with the enterprise
professionals to identify the right data. It isn’t enough to know that customer data is stored in
17 places; a good agile DBA will know (or determine) the differences between the 17 sources
and will be able to identify the best source(s) for the team.

.-/ \"".

Legacy Systern Crwners o " o "Lnlerr."m- Adminstrators
i b i and Architects
\ rd v
Data Source 4
Delinitions Data Sournce
[Contract Maodels) & Suggestions

Access Rights |

Change]
Requests & | pa
Application i ..I. Micta Data

Requirerments ¢ P

_,". T

Agila DBA

Do op b Legacy

Diata [=ata

Converters | Mentoring
=

L
Application Programimers

Figure 8.1: The role of the agile DBA.

Obtain access to the legacy data. Agile DBAs will work with the owner(s) of the legacy data
to obtain access to both the data and to the documentation, if any, describing it. Ideally the
agile DBA will already have a good working relationship with these people; otherwise, he or

she will need to begin building one. It is often the unofficial relationships between people,
instead of the official lines of reporting within an organization, that smooth the way to obtaining
access to both the legacy data as well as the corresponding documentation. You may discover
that no documentation exists, or that it is out of date, and, therefore, you will need to work with
the owners to ensure that it is put in place. The documentation describing a legacy data source
is effectively a contract model, an Agile Modeling (AM) concept as described in Chapter 10.

Develop data converters with the application developers. Legacy data commonly suffers
from serious data-quality and data-design problems, as described below. As a result, agile
DBAs will need to work with the application developers to write one or more data converters to
access the legacy data, putting it into a format that either the database or the application
requires. You may need to convert in both directions, sharing your updated data with the
original source.

Mentor application developers in legacy data. Most application developers will not
understand the legacy data sources, the problems with the data, or the implications of those
problems. Agile DBAs will need to work closely with application programmers to transfer the
skills and knowledge that are required to work effectively with the legacy data.

Submit change requests to the legacy system owners. Agile DBAs may find opportunities
to improve the quality of the legacy data source, although if they are not the owner of that data
source then they are not in a position to fix the problem. Therefore, they will want to submit
change requests to the owner(s), either through a formal change request process or informally
in an appropriate manner (in conversation, via an email, or whatever), in the hope that the
problem will be resolved in the future.

Evolve meta data with enterprise administrators. In some cases, your team will find itself
working with legacy data sources that are well documented. Sometimes, the contract models
supplied by the legacy system owners will be supported by detailed meta data, including
logical data definitions, maintained by your organization’s enterprise administrators. At other
times, you will discover that the legacy data sources are not yet mapped to organization-level
meta data or that they are partially mapped. In these cases, agile DBAs may find themselves
working with the enterprise administrators and legacy system owners to define and evolve the
relevant meta data. Although it is important for you to support efforts such as this, remember
that your first priority is your project team — don’t allow this to needlessly affect your project
schedule.

Communicate application requirements. You will often communicate your application
requirements to the legacy system owners to give them a better understanding of the changing
needs within your organization. This communication will often consist of simple conversations
because the legacy system owners likely do not have the time, nor the interest, to read your
requirements artifacts.

Avoid known data quality, design, and architecture problems. This chapter describes a
wide range of common problems with legacy data sources, problems that agile DBAs will help
their project team to avoid in their work.

Sources of Legacy Data

Where does legacy data come from? Virtually everywhere. Figure 8.2 shows that there are
many sources from which you may obtain legacy data. This includes existing relational
databases, as well as hierarchical, network, object, XML, dimensional databases, and
object/relational databases. Files, such as XML documents, or “flat files,” such as configuration
files and comma-delimited text files, are also common sources of legacy data. Software,
including legacy applications that have been wrapped (perhaps via CORBA [Common Object
Request Broker Architecture]) and legacy services such as Web services or CICS (complex
instruction set computer) transactions, can also provide access to existing information. The
point is that there is often far more to gaining access to legacy data than simply writing an SQL
guery against an existing relational database.

—_—— - S -~ PR |
Object Cither
RDBs DBs s
ML | ol 1) .""_ k> 4 £ Application
Docs [, ATl T Vs e J| Wrappers
! } . \ l_- ’ 1/
[t
Comeerter(s)
| k
Flat W= ¥ =T s e I, SR
Files |r 1 AP 5 3 ¥ Services
e "_ =3 - = -
iuLar Your

[] Applicaton

Figure 8.2: Common legacy data sources.

Understanding Common Problems with Legacy Data

The need to work with legacy data constrains a development team. Following are the major
problems that legacy data can cause:

L] It reduces the team’s flexibility because they cannot easily manipulate the source data
schema to reflect the needs of their object schema (see Chapter 14).

L] Legacy data often doesn’t provide the full range of information required by the team
because the data does not reflect their new requirements.

. Legacy data is often constrained itself by the other applications that work with it;
constraints that are then put on the team.

L] Legacy data is often difficult to work with because of a combination of quality, design,

architecture, and political issues.

It is important to understand the potential problems you may encounter with legacy data for
several reasons:

= You will know what to look for

L] You will have strategies to address known problems

= You can avoid making the same mistakes in your own work

There are three technical issues to be concerned with when dealing with legacy data, including
data quality challenges, database design problems, data architecture problems, and one
nontechnical issue: process-related challenges.

Data Quality Challenges

Table 8.1 lists the most common data-quality problems that you may encounter. The third
column summarizes the potential impact on your application code if the problem is not
resolved, and the fourth column lists potential database refactorings (see Chapter 12 and the
Appendix) that you could apply to resolve the problem. It is important to understand that any
given data source may suffer from several of these problems, and sometimes a single data
column/field may even experience several problems.

Agile DBAs will work with application programmers to identify the data needs of the
functionality they are currently working on, to then identify potential sources for that data, and
in the case of legacy data to help them access that data. Part of the job of accessing the data
is to help application developers to transform and cleanse the data to make it usable. Agile
DBAs will be aware of the potential problems summarized in Table 8.1 and will work closely
with the application programmers to overcome the challenges.

Database Design Problems

The second type of problems with legacy data sources that agile DBAs need to be aware of is
fundamental design problems. Existing data designs, or even new data designs, are rarely
perfect and often suffer from significant challenges. Table 8.2 summarizes common data
design problems you will likely discover. These design problems may be the result of poor
database design in the first place, perhaps the designers did not have a very good
understanding of data modeling (Chapter 3). Sometimes the initial design of a data source was
very good but over time the quality degraded as ill-advised schema changes were made,
something referred to as schema entropy.

Once again, the agile DBA will need to work closely with application programmers to overcome
these problems. Their past experience dealing with similar design problems, as well as their
personal relationship with the owners of the legacy data source(s), will prove to be a valuable
asset to the project team.

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS

A single column is Additional = One or more " Split Column

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS

used for several information for attributes of your (to Notes)
purposes. an inventory objects may

item is stored need to be

in the Notes mapped to this

column. field, requiring a

Additional complex parsing

information algorithm to

will be one or determine the

more of a proper usage of

lengthy the column.

description of . Your objects

the item, may be forced to

storage implement a

requirements, similar attribute

or sa_fety instead of

requirements implementing

when several attributes

handling the as your design

item. originally

described.

The purpose of a If the value of L] A potentially " Remove

column is
determined by the
value of one or
more other
columns.

DateType is
17, then
PersonDate
represents the
date of birth of
the person. If
the value is
84, then
PersonDate is
the person’s
date of
graduation
from high
school. If the
value is
between 35
and 48, then it

complex
mapping is
required to work
with the value
stored in the
column.

Unused Column
(to remove
DateType)

" Split Column
(to PersonDate)

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
is the date the
person
entered high
school.
There are The = Your Introduce
inconsistent data AgelnYears application will Trigger(s) for
values. column for a need to Calculated
person implement Column
contains the validation code (between
value to ensure that BirthDate and
negative 3. Or the base data AgelnYears)
the values are Remove
AgelnYears correct. Redundant
colun"!n L] Strategies to Column (to
contains 7, replace incorrect AgelnYears)
although the values may need
BirthDate is to be defined and
August 14, implemented.
1967 and the
current date is : An
October 10, error-handling
2001, strategy will
need to be
developed to
deal with bad
data, see
“Strategies for
Working with
Legacy Data”
later in this
chapter.
There is The name of a = Parsing code Introduce
inconsistent/incorre person is will be required Common
ct data formatting. stored in one to both retrieve Format
table in the and store the
format data as
“Firstname appropriate.

Surname,” yet

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
in another
table as
“Surname,
Firstname.”
There is missing The date of L] See strategies " N/A
data. birth of a for dealing with
person has Inconsistent data
not been values.
recorded in
some records.
Columns are You need the = You may need " N/A
missing. middle name to add the
of a person column to the
but a column existing legacy
for it does not schema.
exist. = You might
need to do
without the data.
= Identify a
default value
until the data is
available.
= An alternate
source for the
data may need to
be found.
There are additional The Social = If the columns " Introduce
columns. Security are required for Default Value to
number for a other a Column
person is applications, you . Remove
stored in the may be required Redundant
database, and to implement Column
you don't them in your
need it. objects to ensure

that the other
applications can
use the data your

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM

EXAMPLE

POTENTIAL
IMPACT ON YOUR
APPLICATION

POTENTIAL
DATABASE
REFACTORINGS

application
generates.

= You may need
to write the
appropriate
default value to
the database
when inserting a
new record.

= For database
updates, you
may need to
read the original
value and then
write it back out
again.

Multiple sources
exist for the same
data.

Customer
information is
stored in three
separate
legacy
databases or
customer
name is
stored in
several tables
within the
same
database.

L] Identify a
single source for
your information
and use only
that.

L] Be prepared
to access
multiple sources
for the same
information.

L] Identify rules
for choosing a
preferred source
when you
discover the
same information
is stored in
several places.

" N/A

Important entities,
attributes, and
relationships are

A notes text
field contains
the

= Develop code
to parse the
information from

" Replace Blob
With Table

" Split Column

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
hidden and floating information the fields.
in text fields. (“C_Iark and . Do without the
Lois Kent, information.
Daily Planet
Publications”).
Data values that The maiden L] You need to " Split Column
stray from their field name column update the

descriptions and is being used documentation to
business rules. to store a reflect the actual
person’s usage.
fabric L] Developers
preference for that took the
clothing. documentation at
face value may
need to update
their code.
L] Data analysis
should be
performed to
determine the
exact usage in
case different
applications are
using the field for
different
purposes.
Various key One table = You need to " Consolidate
strategies exist for stores be prepared to Key Strategy
the same type of customer access similar For Entity
entity. information data via several
using SSN as strategies,
the key, implying the
another uses need for similar
the client ID finder operations
as the key, in some classes.

and another
uses a

- Some
attributes of an

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
surrogate key. object may be
immutable; that
is, their value
cannot be
changed,
because they
represent part of
a key in your
relational
database.
Unrealized A customer L] Data may be " Introduce
relationships exist has a primary inadvertently Explicit
between data home and a replicated, Relationship
records. summer eventually a new
home, both of address record is
which are inadvertently
recorded in created (and the
your relationship now
database, but defined) for the
there is no summer home
relationship even though one
stored in the already exists.
database = Additional
regarding this code may need
fact. to be developed
to detect
potential
problems.
Procedures for
handling the
problems will
also be required.
One attribute is The Person = Potentially " Combine
stored in several class requires complex parsing Columns
fields. a single name code may be Representing a
field whereas required to Single Concept

it is stored in
the columns

retrieve and then
save the data.

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
FirstName
and Surname
in your
database.
There is A date uses L] Complexity of " Introduce
inconsistent use of hyphens to parsing code
special characters. separate the increases.
year, month, = Additional
and day, documentation is
whereas a required
nhumerical indicating
value st.ored character usage.
as a string
uses hyphens
to indicate
negative
numbers.
Different data types A customer ID = You may need " Apply

exist for similar
columns.

is stored as a
number in one
table and a
string in
another.

to decide how
you want the
data to be
handled by your
objects and then
transform it
to/from your data
source(s) as
appropriate.

= If foreign keys
have a different
type than the
original data they
represent then
table joins, and
hence any SQL
embedded in
your objects,
become more
difficult.

Standard Types
to Similar Data

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM

EXAMPLE

POTENTIAL
IMPACT ON YOUR
APPLICATION

POTENTIAL
DATABASE
REFACTORINGS

Different levels of
detail exist.

An object
requires the
total sales for
the month, but
your database
stores
individual
totals for each
order, or an
object
requires the
weight of
individual
components
of an item,
such as the
doors and
engine of a
car, but your
database only
records the
aggregate
weight.

= Potentially
complex
mapping code
may be required
to resolve the
various levels of
detail.

] Introduce
Calculated
Column

" Replace
Column

Different modes of
operation exist.

Some data is
a read-only
shapshot of
information,
whereas other
data is
read-write.

L] The design of
your objects
must reflect the
nature of the
data they are
mapped to.
Objects may be
based on
read-only data
and therefore
you cannot
update or delete
them.

] Separate
Read-Only Data

Varying timeliness
of data

The Customer
data is

. Your
application must

] Separate
Data Based on

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS

current, reflect, and Timeliness

Address data potentially report,

is one day out the timeliness of

of date, and the information

the data that they are

pertaining to based on.

countries and

states is

accurate to

the end of the

previous

quarter

because you

purchase that

information

from an

external

source.
Varying default Your object L] You may need " Introduce
values exist. uses a default to negotiate a Default Value to

of Green for a new default a Column

given value value with your

yet another users.

application . You may not

has been be allowed to

using Yellow, store your

resulting in a default value

preponderanc (that is, Green

e (inthe may be an illegal

opinion of value in the

your users) of database).

yellow values

stored in the

database.
Various The day of the = Translation " Apply
representations of week is stored code that goes Standard Codes
data exist. as T, Tues, 2, back and forth

and Tuesday

between a

. Apply
Standard Types

Table 8.1: Typical Quality Problems with Legacy Data

PROBLEM EXAMPLE POTENTIAL POTENTIAL
IMPACT ON YOUR DATABASE
APPLICATION REFACTORINGS
in four common value to Similar Data
separate that your
columns. object(s) use will
need to be
developed.

Table 8.2: Database Design Problems

PROBLEM

EXAMPLE(S)

IMPLICATIONS

A database
encapsulation scheme
exists, but it's difficult
to use.

Access to the
database is provided
only through stored
procedures, for example
to create a new
customer you must
invoke a specified
stored procedure.

Access to views on
the database is
permitted; direct table
access is denied.

The database must
be accessed via an API
(application
programming interface)
implemented by a C or
COBOL wrapper that in
turn accesses the
database directly.

The database must
be accessed via
predefined data
classes/objects, often
because of underlying
data quality problems.

The encapsulation
scheme must be made to
look like a data source
that your objects can
work with.

The encapsulation
scheme may increase
the response time of
database access if it is
not well built.

The individual
components of the
encapsulation scheme
may not be able to be
included as a step in a
transaction.

Naming conventions
are inconsistent.

Your database(s)
may follow different
naming conventions

Team members will
need to understand all
relevant naming

Table 8.2: Database Design Problems

PROBLEM EXAMPLE(S) IMPLICATIONS
from one another and conventions.
likely do not follow = Political pressure may

common coding haming
conventions.

be put on your team to
follow corporate
data-naming
conventions that are
inappropriate for use
with your objects.
Instead follow
data-naming
conventions in your
database and
object-naming
conventions in your
application source code.

There is inadequate
documentation.

The documentation
for your database is
sparse, nonexistent, or
out of date.

L] A significant legacy
data analysis effort will
be required to determine
the proper usage of each
table, column, and
stored procedure within
your database.

Original design goals
are at odds with

current project needs.

The legacy database
was built for internal use
by data entry clerks to
capture customer
orders in batch mode,
whereas you are
building a 24/7 order
entry application to be
deployed over the
Internet.

Your application
considers phone
numbers to be
full-fledged entities,
whereas the database
stores them as a
column of the Customer

= A new database may
need to be created with a
data
conversion/replication
facility put in place
between the various data
sources.

Table 8.2: Database Design Problems

strategy exists.

natural keys for some
tables, surrogate keys
in others, and different
strategies for surrogates
keys when they are
used.

PROBLEM EXAMPLE(S) IMPLICATIONS
table.
An inconsistent key . Your database uses L] Developers must

understand and then
appropriately code
support for the various
key strategies for their
objects.

L] Key generation code
increases in complexity
to support the various
strategies.

= Additional source
code to validate that
natural keys are in fact
unigue will be required.

L] Relationship
management code
increases in complexity
because it needs to
support a wide range of
keys.

Data Architecture Problems

Agile DBAs need to be aware of the problems with the data architecture within your enterprise,

information that they will often gain through discussions with enterprise architects. These
problems typically result from project teams not conforming to an enterprise architectural

vision, often because such a vision seldom exists. Or perhaps the project team simply wasn’t

aware of data architectural issues. Table 8.3 summarizes some of the potential data
architecture problems that you may discover (Ulrich 2002). A common implication of these

architecture problems is that you need to put an effective data-access approach in place such
as introducing a staging database or a robust data encapsulation strategy. Staging databases
are discussed in the “Introduce a Staging Database For Complex Data Access” section later in

this chapter, and encapsulation strategies are covered in Chapter 13.

Process Mistakes

The technical challenges associated with legacy data are bad enough, but unfortunately
nontechnical ones often overshadow them. The most difficult aspect of software development
is to get people to work together effectively, and dealing with legacy data is no exception.
Organizations will often hobble development teams because they are unable, or unwilling, to
define and then work toward an effective vision. When it comes to working with legacy data
there are several common process-oriented mistakes that | have seen organizations make:

Working with legacy data when you don’t need to. Many applications can in fact work quite
well as standalone systems; they don't need to share data with other systems. Yes, in an ideal
world every system that you build would work with a common database, or set of databases,
and there wouldn’t be any concerns about redundant data. It isn’t an ideal world. Sometimes, it
is easier to live with redundant data than it is to work with existing legacy data. Remember
AM’s advice (Chapter 10) to Maximize Stakeholder Investment, and choose the most effective
strategy available to you — sometimes that means you'll build a standalone system even when
you don’t want to.

Data design drives your object model. When you have to work with them, legacy data
schemas are clearly a constraint on the design of any new application. But that doesn’'t mean
that the existing data schema needs to drive the design of your application. Do you really want
to make the existing mess any bigger than it needs to be? Shouldn’t the requirements for your
application drive its design instead? Chapter 9 argues that you should always strive to take the
most appropriate approach to building a system, sometimes a data-driven approach is your
best bet but very often it isn't.

Legacy data issues overshadow everything else. As the first philosophy of the agile data
method points out, data is clearly an important aspect of any system but it is only one of many.
Allowing one issue to dominate your project, or even your organization, is simply poor
management.

Table 8.3: Data Architecture Problems

PROBLEM EXAMPLE IMPLICATION(S)
Applications are Known data quality " Your team will likely
responsible for data problems are addressed need to take the same
cleansing. through data cleansing approach.

code in all of the
applications that access it.

" You may be able to
reuse some of the data
cleansing code.

" Database refactoring
(Chapter 12) should be
considered to evolve the

database schema.

Table 8.3: Data Architecture Problems

PROBLEM

EXAMPLE

IMPLICATION(S)

Different database
paradigms exist.

Some of your data is
stored in a relational
database (for example,
Sybase), some in a
hierarchical database (for
example, IMS), some in a
network database (for
example, IDMS), and
some in an object
database (for example,
Versant).

] An effective data access
approach is required.

Different hardware
platforms exist.

Data is stored on
mainframes, mid-tier
servers, desktop
computers, and hand-held
devices

] An effective data access
approach is required.

Different storage
devices exist.

Some of your data is
stored in an online
database supporting direct
access, whereas other
data is stored on magnetic
tape.

] An effective data access
approach is required.

Fragmented data
sources exist.

Basic name and address
data for customers is
stored in one database,
preference information in
another, and order history
in yet another.

] An effective data access
approach is required.

Inaccessible data
exists.

Data pertaining to
corporate customers is
stored in a standalone
database that is not
connected to your
corporate network.

" The agile DBA will need
to negotiate access to the

data.

" The application team
may need to do without
some data.

" A new

application-specific
database may need to be
introduced.

Table 8.3: Data Architecture Problems

PROBLEM

EXAMPLE

IMPLICATION(S)

Inconsistent semantics
exist.

Employee start date
indicates the day that the
person started working
within the company in one
database, the date they
started working in their
current division in another,
and the date that they
started working in their

current position in another.

In the short term, the
inconsistencies may need
to be accepted by the team
or a single definition
chosen and any data not
conforming to that
definition is ignored.

In the long term, the
proper semantics should
be defined and the
databases refactored
where appropriate.

The architecture is
inflexible.

All mission-critical data
must be stored on the
mainframe. Furthermore,
changes to the mainframe
database schema must go
through an arduous
change control process.

The application team
may need to accept the
inflexible architecture.

The application team
may choose to introduce
their own
application-specific
database for some or all
data.

In the long term, the
inflexibility should be
addressed.

There is a lack of event
notification.

Your application needs to
know when customer data
is changed by other
applications, but these
applications only update
their own data sources,
and the changes are fed
into a shared database in
batch at night.

Your team may need to
introduce a way to accept
and reject incoming
changes from other
applications.

You may need to
introduce an event
notification architecture
that other teams can
reuse.

Redundant data
sources exist.

Customer data is stored in
17 databases.

An effective data access
approach is required.

Security is inefficient.

Users require a separate
logon ID for each of the

A complex approach to
security may need to be

Table 8.3: Data Architecture Problems

PROBLEM

EXAMPLE

IMPLICATION(S)

eight major platforms
within your organization.

supported by the
application team.

The application team
may choose to forgo
accessing some
databases.

In the long term, your
enterprise architects and
enterprise administrators
should rework the security
scheme.

Security is lacking.

With the exception of a
subset of human
resources-related data (for
example, salary), users
have unfettered access to
all data within your
organization. No sort of
audit logging is performed
to record who makes
changes to the source
data.

In the short term, the
application team should
implement, as best they
can, the level of security
required by their
stakeholders.

In the long term, your
enterprise architects and
enterprise administrators
should rework the security
scheme.

The timeliness of data
sources varies.

Customer data is updated
by a daily batch job that
runs at 4 A.M., inventory
information is updated
several times throughout
the day, and orders are
placed in real time.

Effective data access
approach required.

win the long term, your
enterprise architects
should strive to move to a
24/7 (near) real-time
environment.

Application developers ignore legacy data issues. As | pointed out earlier, legacy data
schemas are an important constraint on your application design, one that you ignore at your
peril. Working with legacy data can be very difficult, but it isn't going to get any easier by
sticking your head in the sand.

You choose to not (eventually) fix the legacy data source. Instead of fixing a legacy data
schema, perhaps via database refactoring (Chapter 12), some organizations instead choose
to leave the data schema alone and encapsulate it with data-translation code which
applications then work with. Although this is a step in the right direction, it is only one of several

steps (see below). You are effectively giving up when you choose not to fix a legacy data
schema, a strategy that will only lead to failure in the long run.

Politics. Data is a critical resource. Smart politicians know that anyone who controls access to
a critical resource can wield significant power within an organization. Therefore the owners of
legacy data may be unwilling to grant your application team access to the data, the
documentation describing the data, or both. They may even insist on building any data
access/conversion code themselves, which is a good thing if they're able to work to your
schedule, but unfortunately this is seldom the case. The owners of a legacy data source can
easily put your project at risk if they choose to do so, something that underlines the importance
of agile DBAs building a good working relationship with them.

You don’t see the software forest for the legacy data trees. Do not allow legacy data
access/conversion efforts to take on a life of their own. Agile software developers will stay
focused on fulfilling the highest priority requirements of their project’s stakeholders, and part of
doing so may entail obtaining access to some legacy data. In other words, agile software
developers will take an iterative and incremental approach to accessing and converting legacy
data, they don't do it simply for the sake of doing it.

You don’t put contract models in place. AM implores you to put contract models in place
describing integration points with other systems. Any time your system accesses a legacy data
source, you effectively have an integration point that you should describe with permanent
documentation. This style of documentation is referred to as a contract model because there is
an implicit contract between you and the owner of the legacy data — they won't change the
data schema without negotiating the change with you. Adopting the philosophy of putting
contract models in place is important to the long-term success of your application because it
reduces maintenance risk to your team.

Strategies for Working with Legacy Data

My assumption in this section is that your project needs to access one or more sources of
legacy data but that it is not responsible for an organization-wide data conversion effort, for
example, you are not working on an enterprise application integration (EAI) project. That isn’t
to say that the advice presented below couldn’t be modified for such a situation. However,
because the focus of this book is on philosophies and techniques that agile DBAs and
application developers can apply when developing business applications, this section will
remain consistent with that vision.

Tip I highly recommend that you check out Michael Feathers’ (2002) paper
“Working Effectively with Legacy Code,” which provides some interesting
insights into the issues surrounding the refactoring of legacy systems.
Although he deals with code and not data, his ideas are definitely
complementary to those presented here.

Try to Avoid Working with Legacy Data

The simplest solution is to not work with legacy data at all. If you can avoid working with legacy
data, and therefore avoid the constraints that it places on you, then do so. Table 8.4
summarizes strategies that your team may try to apply in order to avoid working with legacy
data, or to at least avoid a complex conversion effort. The strategies are presented in order
from the simplest to the most complex.

Warning Taking the big design up front (BDUF) approach to development forces
legacy schemas on you. That is, in cases such as when your database
schema is created early in the life of your project, you are effectively
inflicting a legacy schema on yourself. Don’t do this.

Develop a Data-Error-Handling Strategy

It should be clear by now that you are very likely to discover quality problems with the source
data. When this happens, you will want to apply one or more of the following strategies for
handling the error:

Convert the faulty data. Apply one or more of the strategies described below to fix the
problem, if possible.

Drop the faulty data. When faulty data cannot be fixed, you may decide to simply ignore it
and continue working without it. This is the simplest approach available to you but does not
address the underlying problem(s) with the data.

Log the error. A simple approach for addressing the actual problem(s) is to record the error in
an audit log that is then shared with the appropriate people, typically the legacy data owners
and potentially even enterprise administrators.

Fix the source data. This requires write access to the source data, as well as the trust of the
legacy data owners. Another access point is through integration with a system that can make
the update.

Work Iteratively and Incrementally

Agile software developers work in an iterative and incremental manner. It is possible for data
professionals to also work in this manner but that they must choose to do so. Agile developers
will not attempt to write the data access/conversion code in one fell swoop. Instead, they will
write only the data-oriented code that they require for the business requirements that they are
currently working on. Therefore their data-oriented code will grow and evolve in an iterative
and incremental fashion, just as the code for the rest of the application evolves.

Working with legacy data, and in particular converting it into a cleaner and more usable design,
is often viewed by traditional developers as a large and onerous task. They’re partially right —

it is an onerous task — but it doesn’t have to be a large one; instead you can break the
problem up into smaller portions and tackle each one at a time. It's like the old adage “How do
you eat an elephant? One bite at a time.” Chapter 12 describes database refactoring, a
technique for improving the design of a database schema in such a manner.

Yes, many data professionals are more comfortable taking a serial approach to development
but this is simply not an option for modern development efforts. Choose to try new ways to
work.

Prefer Read-Only Legacy Data Access

It can be exceptionally difficult to address many of the data-quality problems summarized in
Table 8.1 and the database-design problems of Table 8.2 when you simply have to read the
data. My experience is that it is often an order of magnitude harder to support both reading
from and writing to a legacy data source as compared to just reading from it. For example, say
both legacy data value X and value Y both map to “fixed” value A. If your application needs to
update the legacy value, what should A be written back as, X or Y? The fundamental issue is
that to support both read and write data access you need to define conversion rules for each
direction. Writing data to a legacy data source entails greater risk than simply reading it
because when you write data you must preserve its semantics — semantics that you may not
fully comprehend without extensive analysis of the other systems that also write to that
database. The implication is that it is clearly to your advantage to avoid updating legacy data
sources whenever possible.

Table 8.4: Strategies for Avoiding Legacy Data Access/Conversions

STRATEGY ADVANTAGES DISADVANTAGES
Create your own, " Most flexible approach " Likely does not fit in
stand-alone from the point of view of well with your
database. developers because you can enterprise
create a database schema architecture.
that reflects your actual . Likely to require
needs. double input on the
part of your
stakeholders — they
will have to input the
same datainto existing
legacy systems as
well as your new
system.
Reprioritize/drop " Your development effort is . It is rare to have
functionality that greatly simplified. only one or two
requires legacy data . For functionality that is requirements that

access. Your depend on legacy

Table 8.4: Strategies for Avoiding Legacy Data Access/Conversions

STRATEGY

ADVANTAGES

DISADVANTAGES

stakeholders may
decide to forgo
some functionality
that requires legacy
data access when
they realize the cost
of achieving that
access.

reprioritized, another data
conversion effort might
address the data that you
require in the meantime.

data access.

" You may simply be
putting off a high-risk
effort to a later date.

Accept legacy data
asis. Your team
chooses to directly
access the data
without a
conversion effort.

" Your objects work with the
legacy data sources.

] No data conversion code is
required.

. Significant redesign
and coding of your
objects is likely
required for this to
work. The burden has
simply shifted to the
application code.

" The actual
problem, a poor
database design, is
not addressed and will
continue to affect
future projects. May
not be feasible
depending on the
extent of the
mismatch between
the legacy database
design and the
requirements for your
application.
Performance is likely
to be significantly
affected because of
mapping problems
(see Chapter 14).

" The use of a
persistence
layer/framework (see
Chapter 13) is likely
not an option if the
mappings between

Table 8.4: Strategies for Avoiding Legacy Data Access/Conversions

STRATEGY ADVANTAGES DISADVANTAGES

your objects and the
legacy data schema
are too complex.

Refactor the legacy " You have a clean database . This may not occur
data source. The design to work with. in time for your project
legacy system " Your database schema team.
owners improve the can be redesigned to reflect . This is very difficult
quality of the legacy the current needs of your to achieve in practice.
data source, T~

organization as well as . Legacy

allowing your team - ;
modern object-oriented and applications will need

tc? work W.ith component-based to be updated to
high-qualty legacy technologies. reflect the new data
data.
schema.
] Database

refactoring is a
continuous process,
requiring a cultural
change among the
data professionals
within your
organization. It is not
a one-time-only effort.

Encapsulate Legacy Data Access

As Chapter 13 discusses in detail, you want to encapsulate access to databases. This is true
for the database(s) you are responsible for, and it is true of legacy data sources. By
encapsulating database access, you reduce coupling with a database and thus increase its
maintainability and flexibility. You also reduce the burden on your application developers; they
only need to know how to work with the encapsulation strategy and not with all of the individual
data sources. Encapsulating access to a legacy data source is highly desirable because you
do not want to couple your application code to data-oriented code that will need to evolve as
the legacy data sources evolve. This can be particularly true when you need to support both
read and write access to legacy data sources and/or when multiple data sources exist.

Introduce Data Adapters for Simple Legacy Access

In simple situations, you have to work with one legacy data source, you only need a subset of
the data, and the data is relatively clean. In this case, your best option is to introduce a class
that accesses the legacy data. For example, assume that you need access to customer data
stored in a legacy database. The data that you currently require is stored in two different tables,
there are several minor problems with the quality of the data, and there is one relatively
complicated data quality issue. You decide to create a class called CustomerDataAdapter that
encapsulates all of the functionality to work with this legacy data. This class would include the
code necessary to read the data, and write it as well if required. It would also implement the
functionality required to convert the legacy data into something usable by your business
classes, and back again if need be. When a customer object requires data it requests it via
CustomerDataAdapter, obtaining the data it needs at the time. If another type of business
class required legacy data, for example the Order class, then you would implement an
OrderDataAdapter to do this — one data adapter class per business class.

= All of the data access code for a business entity is implemented in a single class.

= You have complete control over how the legacy data is accessed; you simply have to
code it.

Ll As the data needs for the business class changes, due to new requirements, you can

easily change the data-oriented code because it's in one place.

Ll The code can easily be refactored to work as part of a more comprehensive
data-conversion strategy at some point in the future, perhaps to fill a staging database
(see the next section).

There are also several disadvantages:

= You will potentially have a large number of data adapter classes, one for each
business class, to implement and maintain.

= Your business classes may need to maintain information about the legacy keys (see
Chapter 3), information often referred to as “shadow information” required as part of your
mapping effort (see Chapter 14), in order for your data adapter to access the legacy data.

= It can be difficult to take advantage of commercial tools that are architected for
full-fledged data conversion efforts.

Introduce a Staging Database for Complex Data

Access

As your project progresses, you may discover that the data adapter approach isn't sufficient.
Perhaps your application requires better performance that can only be achieved through a
batch approach to converting the legacy data. Perhaps there is another data-conversion effort
in progress within your organization that you want to take advantage of, one that is based on
introducing a new database schema. Perhaps your legacy data needs are so complex that it
becomes clear to you that a new approach is needed.

Figure 8.3 depicts the concept of a staging database, a database that is introduced for the sole
purpose of providing easy access to legacy data. The idea is that data converters are written,
perhaps by refactoring your data adapters, to access the data of a single legacy data source,
cleanse the data, and finally write it into the staging database. If the legacy data needs to be
updated, then similar code needs to be written to support conversion in the opposite direction.
The main advantage of this approach is that legacy data problems can be addressed without
your application even being aware of them — from the point of view of your application it's
working with nice, clean legacy data. The main disadvantage is the additional complexity

inherent in the approach.

There are several issues that you need to decide upon when introducing a legacy database.

Is the staging database a physically separate database or is it a virtual database that
is simply implemented as a different set of tables within your application database? This
decision will be driven by your organization’s architecture standards and the abilities of
your database technology (sometimes it's significantly easier to have a single database).

In the case of two physical databases, does your application code directly work with
both the staging database and your own database (if any)? If so, the complexity of your
database encapsulation strategy (Chapter 13) increases because it needs to work with
two databases. If not, then you will need to develop a strategy for moving data between
the two databases.

You need to determine the “database of record” for critical information. The database
of record is the database that is considered the official source for information. This very
likely was the legacy database(s) that you're accessing and very likely this will remain the
case for as long as those databases exist. This issue is important whenever you store
information in several places — in this case, the legacy source(s), the staging database,
and your application database — because the data may not always be referentially
consistent (see Chapter 19).

—

Legacy .'/. I] Data Yoaur
DB{s) "\ Convertier |7 Applicaticn
| | \

25
A P’ A

R i g S
iy 1 P -1

YA B L
- | Data ™ I Staging | \) Your
Files f 1| Converter [—1#| Database 1+ Database

Legacy _.-"-) Data II : ’
SErice(s) g _,' CoavyirTof

Figure 8.3: Introduce a staging database.

Tip Convert the data once. That is, strive to write you data conversion code
so that it detects whether a legacy data record has already been
converted; if so, then it should skip that record and continue to the next.
To do this successfully you need a way to compare the time of last
update of the legacy data with the time that it was last converted.

Adopt Existing Tools

Your organization may have existing tools and facilities in place that you can use to access
legacy data. For example, you may have a corporate license for one or more
Extract-Transform-Load (ETL) tools that are typically used for large-scale data conversion
projects. Perhaps other application teams have already written data adapters or data
converters that your team can reuse. In short, follow AM’s practice of Reuse Existing
Resources whenever possible.

Data Integration Technologies

There are several important technologies available to you for integrating legacy data sources.
My goal here is to make you aware that they exist. These technologies include:

Service-based technology. This is a programmatic approach to data access where a
common business transaction is implemented as a single function call. Examples include Web
services, remote procedure calls (RPCs), and CICS transactions. The basic idea is that a
client invokes the service, the service is performed, and the result returned. Services can be
used to wrap access to legacy data sources via the Data Adapter pattern to implement an
interface to the data source that can be invoked by a wide range of applications.

Consolidated database(s). This is a data-oriented solution where the legacy data sources
are converted and then combined into one or more databases. This is effectively the staging
database concept taken one step further — the staging database becomes the source of
record for the data, and the individual legacy sources are removed over time.

Messaging-based approaches. This is a programmatic approach where access to the legacy
data is wrapped, and then the wrappers are invoked via a common messaging platform. |
explore various wrapping techniques in Building Object Applications That Work (Ambler 1997).
Requests for data are sent to a messaging system, perhaps IBM’'s MQSeries product
(www.ibm.com) or Tibco’s Active-Enterprise (www.tibco.com), and the responses are returned
to the caller via the messaging system when available. Provided that the wrappers have been
written the messaging system provides a common interface to legacy data for application
programmers.

Common Warehouse Metamodel (CWM). The CWM is a specification defined by the Object
Management Group (www.omg.org) that describes meta data interchange among
data-warehousing, business-intelligence, knowledge-management, and portal technologies.
This specification is important to integration efforts because it provides a standard for the
exchange of descriptive information regarding data sources. This standard enables developers
to programmatically determine the nature of a data source (something commonly called
reflection) and potentially simplifies your enterprise administrators’ meta data-management
efforts.

Extensible Markup Language (XML). XML is a common format used to share data in a
platform-independent manner. XML is discussed in detail in Chapter 22.

When choosing data-integration technologies for your project, the most important thing that an
agile DBA can do is to work with your enterprise architects and administrators to ensure that
your team’s choices reflect the long-term architectural vision for your organization. Ideally this
vision is well known already. However, when you are working with new technologies or when
your organization is in the process of defining the vision, you may discover that you need to
work with enterprise personnel closely to get this right.

Summary

Working with legacy data is a common, and often very frustrating, reality of software
development. There are often a wide variety of problems with the legacy data, including data
quality, data design, data architecture, and political/process-related issues. This chapter
explored these problems in detail, giving you the background that you require to begin dealing
with them effectively.

You were also introduced to a collection of strategies and technologies for working with legacy
data. The first one is to avoid working with it if possible. Why needlessly suffer problems? You
saw that working iteratively and incrementally is a viable approach for dealing with legacy data.
The hardest part is choosing to work this way. Technical solutions were also identified,
including the development of data adapters and staging databases.

Working with legacy data is a difficult task, one that | don’t wish on anyone. Unfortunately, we
all have to do it, so it’s better to accept this fact, gain the skills that we need to succeed, and
then get on with the work. This chapter has laid the foundation from which to gain the skills that
you require to do so.

Part Two: Evolutionary Database Development

Chapter List

Chapter 9: Vive L’ Evolution

Chapter 10: Agile Model-Driven Development (AMDD)
Chapter 11: Test-Driven Development (TDD)

Chapter 12: Database Refactoring

Chapter 13: Database Encapsulation Strategies
Chapter 14: Mapping Objects to Relational Databases
Chapter 15: Performance Tuning

Chapter 16: Tools for Evolutionary Database Development

Part Overview

This part describes how to take an evolutionary (iterative and incremental) approach to
data-oriented development. You likely need to read all the material in this part. The best
approach is to start with Chapter 9 for an overview and then read the rest of the chapters in the
order that makes the most sense to you. Experienced agile modelers might choose to skip
Chapter 10. Developers experienced with database encapsulation, mapping objects, and
performance tuning may choose to skim these chapters but should expect to discover several
new ideas that they haven't considered before. The bottom line is that the “let’s create a data
model early in the life cycle, baseline it, and then force developers to follow a strict
change-management process” is no longer acceptable (if it ever was) — data professionals
need to change their approach and this part describes techniques for doing exactly that.

Chapter 9: Vive L’ Evolution. This chapter argues that agile software development is real
and here to stay, that data is an important aspect of most systems, and that all agile
methodologies take an evolutionary approach to development. Therefore, if data professionals
wish to remain relevant, they must embrace evolutionary development.

Chapter 10: Agile Model-Driven Development (AMDD). Agile Modeling (AM) is a chaordic
collection of practices for the effective development of models and documents. AM defines a
streamlined approach to evolutionary modeling for agile developers.

Chapter 11: Test-Driven Development (TDD). Test-driven development (TDD) is a
development approach whereby developers add a test before they add new functional code.
This minimizes the feedback loop, while providing developers with the confidence to proceed
in small, evolutionary steps.

Chapter 12: Database Refactoring. A database refactoring is a small change to a database
schema that improves its design. The process of database refactoring enables you to evolve
your data schema in step with the evolution of the systems that access that data.

Chapter 13: Database Encapsulation Strategies. Encapsulating access to data sources
enables developers to evolve both the data schema and their application schemas
independently of one another.

Chapter 14: Mapping Objects to Relational Databases. When working with object and
relational technologies, you must map your object schema to your database schema, evolving
it over time as your two schemas evolve.

Chapter 15: Performance Tuning. The need to ensure sufficient system performance is often
a primary motivator of evolutionary changes late in the life cycle for traditional projects. On
agile projects, it motivates changes almost from the beginning.

Chapter 16: Tools for Evolutionary Database Development. There is a quickly emerging
collection of tools, many of which are available for free, that support agile database
techniques.

Chapter 9: Vive L’ Evolution

Overview

Agile software development is evolutionary, not serial. Deal with it.

Would you use the same methodology to create a Web page describing your family and the
embedded software for a NASA space probe? Of course not. Would you take the same
approach with a team of six people that you would with a team of 600 people? Once again,
likely not. Different situations obviously call for different approaches, and in the two situations
I've described this is clearly true.

Unfortunately, many people struggle when the differences aren’t so clear. Should you follow
the same process for a building an n-tiered Web application as you would for a data
warehouse? Should you follow the same process for building an online version of your
customer ordering system that you successfully followed 10 years ago when you built the
existing system that your internal customer service representatives now use? The answer to
both questions is no. An n-tiered application requires a different set of primary artifacts than a
data warehouse — different technologies are best modeled and built using different
techniques. The requirements for an online customer ordering system aren’t clear, as you may
have noticed from the wide variety of e-commerce strategies in the past few years, when
compared to your internal system built years ago. The implication is that the near-serial
process that you followed years ago, a process that is very likely resistant to change, isn’t up
to the dynamic nature of today’s environment.

In this chapter, | discuss:

= The need for methodological flexibility

= Why you should beware of data-oriented BDUF

= Evolutionary development on a project

= The “natural order of things” and evolutionary development

The Need for Methodological Flexibility

As an example of the need to be flexible with methodological requirements, imagine this
situation: Senior management within your company has decided to adopt the ICONIX
methodology (Rosenberg and Scott 1999) as the official software process that all development
teams will follow from now on. The ICONIX methodology is based on the idea that you'll
iteratively and incrementally identify requirements via use cases, analyze those use cases with
robustness diagrams, and then design your software using UML sequence diagrams and UML
class diagrams. The class diagram is then used to develop your physical database schema
and code. Figure 9.1 depicts this process, the large arrows representing the main flow of work
and the small arrows representing iterative feedback. ICONIX is well suited for project teams
that build business applications using object- or component-based technologies.

ICONIX sounds great, doesn't it? Perhaps to your Java developers, but what about the people
working on your data-warehousing project? A data-warehousing project would be better
served by a data-oriented approach along the lines of the one depicted in Figure 9.2. How
successful do you think a data-warehousing project would be if you forced the developers to
follow ICONIX? Now, let’s turn it around; how successful do you think an n-tiered Java project
would be if you forced the data-oriented approach of Figure 9.2 on those responsible for it?
Not as successful as they could have been, certainly. Yet, surprisingly enough, this is exactly
what many organizations do. They desperately want to find a “one size fits all” approach to
software development, presumably for consistency and ease of management, but in doing so
they put the projects at risk. Just as you need to use the right tool for a job you need to follow
the right process for a software development project.

- - : —
¥ o

LML IHI r1|
el
Use Case bl "o gy Sequence Class 3 J:'hi“”
Diagram 4 Deagram n; '|-:|r AMm

—¥ Source Code

Figure 9.1 Modeling an object onented busmess appllcatlon.

Conceptual Logical Physical
Data Model Data Model Data Model

Figure 9.2: Modellng a data warehouse.

To succeed at software development, you need to be flexible in your choice of
software-development methodology. There are several reasons why it is important to be so:

Different technologies require different techniques. Object-oriented methodologies are
best suited for projects using object-oriented technologies, whereas data-oriented
methodologies are best suited for data-oriented applications.

Every individual is unique. People are not replaceable parts. Each person has a different
background, different preferences for the way in which they work, and different cognitive styles
(for example, are they visual or nonvisual thinkers?). An approach that works incredibly well for
you might be difficult for me to grasp, and vice versa.

Every team is unique. Because teams are made up of unigue individuals, each team requires
a unique way to work in order to maximize its potential. Several teams could follow ICONIX but
each will need its own version tailored to meet their exact needs.

Your external needs vary. Some projects must conform to government regulations. Some
projects are highly dependent on suppliers, such as technology vendors or
software-development outsourcers, and therefore must tune their processes to reflect the
ways that their suppliers need to work. Many projects are affected by neither of these issues.

Project categories vary. An online system used by your customers will be built in a different
manner than an internal application used by a junior account, which will be built differently than
an internally used data warehouse. Similarly, the building of a new “Greenfield” application will
be different from the refurbishment of an existing, legacy application. Different types of
projects require different approaches because each category has different priorities and goals.

Beware of Data-Oriented BDUF

A common approach within traditional organizations is what | like to call a data-oriented big
design up front (BDUF) approach. This strategy is based on two concepts:

= Your primary modeling artifacts are conceptual, logical, and physical data models.
Data is a critical asset and therefore should be a primary driver of your development
efforts.

= You need to develop and baseline these models early in your project. The goal is to

think through the major issues at the beginning of the project and thereby prevent any
“surprises” later in the project. This will enable you to proceed in parallel; that is, the data
group can focus on data-oriented activities and the development team can build the
application. Many organizations will go so far as to insist on having the physical data
model in place before coding starts to provide a point of commonality — the database —
between the groups. A change-management process is put in place to allow changes to
be made to the primary artifacts (the data models).

Unfortunately, many data professionals believe that you need to get your data models “mostly
right” reasonably early in a project. This misconception is often the result of:

Prevailing organizational culture. Many organizations still follow a traditional, near-serial
software process based on a BDUF approach to modeling. Because they haven't made the
shift to agile software development yet, they haven’'t come to the realization that they need to
change their mindset. An interesting observation is that slow-moving organizations want to
freeze everything and that faster organizations don’'t — perhaps the reason why your
organization takes so long to get anything done is your penchant for BDUF?

Prevailing professional culture. The data community is just beginning to assess agile
techniques and has not yet had a chance to absorb the evolutionary mindset of agile
developers. Agile software development is new; for the most part it's coming out of the object
community, and until this book, very little attention has been given to agile database
techniques. Worse yet, many within the data community are still struggling with
object-orientation, let alone agility.

Lack of experience with evolutionary technigues. Many data professionals haven't had the
opportunity to try an evolutionary approach, and because they haven't seen it with their own
eyes they are justifiably skeptical (but that doesn’t mean you should go into a state of denial
either). If you don’t yet have experience with evolutionary data modeling, you can at least read
about the experiences of others. Fowler and Sadalage (2003) describe their efforts on a
multisite, 100+ person project that followed a collection of techniques very similar to those
described in this book.

Prescriptive processes. Many organizations have well-defined, prescriptive processes in
place that make it difficult to change your data models once they've been accepted. The need
to review and baseline models dramatically slows you down, and the need to “accept” a model
indicates a command-and-control mindset; this is very likely hampering your efforts. Agile
Modeling (AM)’s practices of Model with Others, Active Stakeholder Participation, and
Collective Ownership go a long way to removing the need for reviews. When all you know is a
prescriptive process, it's very difficult to imagine that another, significantly faster and more
effective way is possible.

Lack of supporting tools. Tools are generally behind methods, although with the open
source movement and recent consolidations among development tool vendors we're starting
to see very good progress. Chapter 16 describes the current state of tools for evolutionary
data-oriented development.

There are several serious problems with a data-oriented DBUF approach to development:

One size does not fit all. This approach assumes that a data-oriented process works well for
all types of projects, which we saw in the previous section is not true.

Itisn’t just about data. Although this approach deals with data quite effectively, it is blind to
many other important development issues. When | build a system, not only do | have to worry
about data issues but | also have to worry about user interface design, the way my users work
with the system, business rules, hardware architecture, middleware, reusable components,
object structure, and object collaborations, which are also important issues (among many). A
data-oriented approach is too narrowly focused to meet today’s needs.

You can't think everything through at the start. Have you ever decorated a living room?
Perhaps you decided to think things through first by sketching out a design; after all, who
wants to move furniture around needlessly or purchase things that don’t match one another?
So, did you redecorate your living room according to plan, step back to look at it, and say, “Yep,
that's perfect”? Chances are good that you, or your spouse, really said something like,
“Perhaps the couch would look better over here as long as we angle the television this way
and” The point is that if you can’t think through the design of a living room up front, what
makes you think that you can think through the design of a software-based system, which is
many orders of magnitude more complex? The BDUF approach, even with a “change
management” process in place, simply isn't realistic.

It doesn’t easily support change. When you go through the effort of thinking everything
through up front, of reviewing and accepting the models, then splitting the work off to several
teams working in parallel, the last thing you want is for the models to change. Therefore, you
put a change-management process in place that makes it difficult to change the shared data
models. You force people to submit change requests, you review the change requests, you
perform an impact analysis of the change requests, then maybe sometime later you'll actually
make the change. Sounds more like a change prevention process to me.

It doesn’t support close interpersonal interactions. Software development is a
communication game (Cockburn 2002), yet when you have several groups working in parallel

on “their own things,” you're effectively erecting barriers to communication. Having a separate
group of data specialists working on the data and another group of application specialists
working on the code may seem like a good idea but it actually increases the risk to your project.
This is because these people aren’'t working together as closely as possible, thus making it
likely that they will either repeat the work of each other or even worse do work that contradicts
the efforts of one another. Attending meetings with one another, reviewing the work of each
other, sharing documents via email doesn’t hold a candle to working side by side. Are you
really trying to make software development more efficient by assigning work to different groups
or are you merely reinforcing the political power bases of the managers of those groups?

Data-oriented BDUF is a viable way to build software. But it's certainly not agile, and it
certainly doesn't reflect the realities of most modern application-development efforts. It might
have worked for you 20 years ago, although | doubt it was your best option back then either (|
was naively working like this in the 1980s, by the way), but it isn’t appropriate now. It is time to
rethink your approach to data-oriented development and adopt evolutionary techniques.

Evolutionary Development on a Project

Evolutionary development is an iterative and incremental approach to software development.
Instead of creating a comprehensive artifact, such as a requirements specification, that you
review and accept before creating a comprehensive design model (and so on), you instead
evolve the critical development artifacts over time in an iterative manner. Instead of building
and then delivering your system in a single “big bang” release, you instead deliver it
incrementally over time. In short, evolutionary development is new to many existing data
professionals, and many traditional programmers as well.

| have three very important observations to share with you:

Modern software processes take an evolutionary approach to development. Consider
the leading software processes: Extreme Programming (XP) (Beck 2000), Feature-Driven
Development (FDD) (Palmer and Felsing 2002), the Rational Unified Process (RUP) (Kruchten
2000), Dynamic Systems Development Method (DSDM) (Stapleton 2003), and Scrum (Beedle
and Schwaber 2001). What do they have in common? They're all iterative and incremental.
Every single one of them takes an evolutionary approach to development. The only popular
methodology that does not take an evolutionary approach to development is IEEE 12207
(www.ieee.org) and at the time of this writing the IEEE is in the process of defining a
“standard” evolutionary life cycle. The writing is on the wall, like it or not.

Most leading processes are agile. With the exception of IEEE 12207 and the RUP all of
these software processes are agile. Yes, it is possible to instantiate an agile version of the
RUP (I've even been involved with a few) but my experience is that it rarely occurs in practice.

Data is still important. | also argued in Chapter 1 that data is a critical aspect of most
business applications, a belief that is captured in the first philosophy of the agile data (AD)
method.

The implication is that if data professionals are to remain relevant, they also need to take an
evolutionary approach to development. Is this possible? Absolutely, but they have to choose to
work this way. Figure 9.3 depicts a high-level overview of the relationships among critical
development techniques. Instead of showing them in the near-serial style of Figures 9.1 and
9.2, the diagram instead shows a collection of fully connected activities. It is interesting to note
that there is no starting point, nor is there an ending point, instead you iterate back and forth
between activities as required. Furthermore, this diagram isn’t complete. For example, it
doesn’t include activities for project management, acceptance testing, or installation to name a
few. My focus for now is on data-oriented development activities.

;”"f ~.
& = N
{ Model the
| Ohbject II
\ Schema /
N
.
= AR =
il YT —~ e
__.-"/ \\ __.--"J.. ;_f \"x K“‘-.__\.. _g"/ \"'.
[Performance |~ N, ~. Modelthe }
l Tune K= 4 A —A soka
\ AN, {.f N /N Schema |
\ i " & bl il | /
\“\._‘__ i _.—-"/ \-__‘"' ___{- l""""ﬂ-.___ ..-..____.-.--" \.__\ ‘__ff l“\w__ - _,-"/
_/){ _.:-?"H 3 .-:;{-.
i g -‘--\"\. F ___ = ""'-._\ _."'r g i
4 \\\. / ’_,.\3"‘{ P % \\'\ / \\‘*.
-' VN [N M
| Refactor M= "\ . —# Objects to
\)_rl T \ i - \k Data f.*
% ” M, ! ~
2 S e Tl I % Y
i '~._‘__~.. Y ___-"’ .--_J,--' g S
p= s
™
[Test-Driven |
\ Development |
.\\\ J

S a—

Figure 9.3: Evolutionary development on a project.
How does the process of Figure 9.3 work? Let’'s work through it a task at a time:

Modeling. There are two modeling-oriented activities, object modeling and data modeling,
both of which would naturally be supported by normalization techniques. Neither object
modeling nor data modeling is agile by itself; it's how you apply these techniques that counts.
Chapter 10 describes AM and how models can be used to drive your development efforts in an
agile manner, something | like to call Agile Modeling-Driven Development (AMDD).

Mapping. Because you're using object technology and relational databases (RDBs) together,
you need to understand how to overcome the impedance mismatch between the two. That's
what mapping (described in Chapter 14) is all about. Because you are developing your object
and data schemas in an evolutionary manner, you will clearly need to evolve your mappings
over time. Similarly, difficulties in mapping may motivate changes to either your object or data
schemas, perhaps even to both at once.

Test-driven development (TDD). TDD is an approach where you write a new test, you watch
it fail, then you write the little bit of functional code required to ensure that the test is passed.

You then proceed iteratively, as Chapter 11 describes, programming in an evolutionary
manner. TDD is a very common approach for agile application developers and is being
considered for database development. TDD dovetails well with both AMDD and refactoring.

Refactoring. A code refactoring is a small improvement to your source code that improves its
design without adding new functionality. A database refactoring, the topic of Chapter 12, is a
small improvement to your database schema that doesn’t change its functional or
informational semantics. Database refactoring, like code refactoring, enables you to evolve
your design over time to help you to meet the new needs of your stakeholders. Database
refactoring is made significantly easier when access to a database is encapsulated and good
tools are utilized. When you refactor your code design you are effectively evolving your object
schema, and when you refactor your database design you effectively evolve your data schema;
therefore refactoring may motivate changes to your corresponding models.

Performance tuning. Because modern systems use several technologies, including both
object technology and RDBs, developers must be prepared to tune both these technologies
and the interactions between them. Because you're delivering working software incrementally
— perhaps monthly, weekly, or even daily — you must tune system performance (see Chapter
15) on an ongoing basis. The implication is that performance tuning may motivate changes to
your object schema, your data schema, or to your mappings between the two. Furthermore,
changes to any of these things may have a performance impact on your system, which in turn
could motivate an iterative change to another aspect of your system. It's all interconnected.

Let's consider a typical scenario. Your project has been organized into two-week long
“iterations.” At the beginning of the iteration, your team pulls two-week’s worth of work from the
top of your requirements stack, effectively giving you the highest-priority functionality to work
on. You divvy up the work between your teammates, perhaps forming pairs as you would on
an XP team project or feature teams as you would on an FDD team, and begin to work. Each
subteam will explore the requirement they are working on in greater detail, creating new (or
evolving existing) object-oriented models as appropriate. For example, an FDD team will have
an object-oriented domain model that they evolve throughout the project, whereas an XP team
may have a collection of CRC cards that they work with. They'll also evolve their data model(s)
or maybe just update data definition language (DDL) scripts that they use to refactor the
database schema. They’ll implement their code, hopefully taking a TDD approach, and
refactor both the code and database schema as needed. They may discover that they need to
do some more modeling to think through some complicated issues, then they’ll go back to
implementation. The team will update their models, code, and mappings as part of their overall
performance-tuning efforts while this is happening.

The important thing to understand is that they’re quickly iterating back and forth between these
tasks as required. The models, code, tests, and mappings all evolve together. With an
evolutionary approach to development your models, including data-oriented ones, are
developed over time. There is no “requirements phase” or “design phase”; instead modeling is
performed as needed throughout your project in a continuous manner.

The “Natural Order” of Things and Evolutionary Development

Although evolutionary development may seem chaotic, and to people not familiar with it then it
very likely is, but the reality is that in fact it's chaordic (Hock 2000). Chaordic is a word coined
by Dee Hock to represent the idea that order can come from seeming chaos. The process of
Figure 9.3 certainly appears chaotic, yet many people are building great software by taking this
type of approach. How does it work? People still do things in an intelligent order, albeit taking
much smaller steps doing so.

For example, on a project using object technology and relational databases together, a good
strategy is to do analysis/domain/conceptual modeling before design-object modeling, which in
turn leads to physical-data-design modeling, then mapping the two models, then refactoring
them in conjunction with performance tuning. This is the overall order, something that Figures
9.1 and 9.2 imply with their big arrows, yet you still iterate back and forth as needed.

Let's go at it from a slightly different point of view. Figure 9.4 depicts a high-level process
diagram for evolutionary development that makes data-oriented activities a little more explicit.
First, notice how the arrows are two-way, implying that you iterate back and forth between
activities. Second, as with Figure 9.3, there is no starting point. Although you may choose to
start with your enterprise model, then do some conceptual modeling, then let your conceptual
model drive your object and data schemas, this doesn’t have to be the case. Depending on the
nature of your project, you could start with a project-level conceptual model (you may not have
an enterprise model) or you may start first with traditional object modeling activities such as
use-case modeling. It doesn’t really matter because agile software developers will iterate to
another activity as required. Third, notice how | use the term “enterprise structural modeling”
and not “enterprise data modeling” — many organizations are choosing to use UML class
models or even UML component models (Herzum and Sims 2000; Atkinson et. al. 2002)
instead of data models for structural modeling. One of my biggest beefs with the Zachman
Framework (ZIFA 2002; Hay 2003) is that its first column, labeled “Data,” biases you toward
data-oriented artifacts, whereas “Structure” would be more inclusive. Regardless of the type of
artifacts you choose, the same fundamental goals are being achieved, albeit by different
means. An advantage of occasionally referring to an enterprise model during your project-level
efforts, or better yet working closely with an enterprise architect, is that it provides a good
opportunity to see if your system reflects the needs of the enterprise (or it indicates that the
enterprise model is in need of updating). Fourth, I've combined the notions of conceptual and
domain modeling into one model because they're often commingled anyway (if they’re done at
all).

Conceplual
D in

Modilin
¥

& L
e L =
Oibsject Phiysical Data
Mesdelng
Yata

MHearrrsli#Faton

= 1 -
Code | Tuming o Datshasa |~
Refactoning Refactuing

7 |

Figure 9.4: Evolutionary development.

The basic idea is that your models evolve over time, changing to reflect the new requirements
that you are working on in the current development iteration (typically a period ranging from
one to several weeks). An FDD project typically starts by developing an initial object domain
model that the team evolves over time as they work on features. This is something that
Stephen Palmer refers to as the JEDI (just enough design initially) approach — they do
enough modeling to get the lay of the land and then iteratively add content and refinement
based on the features. An XP team will very likely forgo this step and instead evolve their
object and data schemas as they work on user stories. There’s nothing stopping an XP team
from developing other models, including conceptual/domain models, but it's not an explicit part
of the process. Each new requirement may motivate one or more changes to your models,
code, and other development artifacts. You'll make these changes, test them, fix things as
required, integrate your work into the overall project, and iterate as required. Because agile
requirements are typically granular, features can often be implemented in several hours and
user stories in a couple of hours or days, and you are able to safely and quickly evolve your
development artifacts to meet the current needs of your project stakeholders.

The secret is to adopt AM’s Model with a Purpose principle — once a model has fulfilled its
purpose, for the moment, stop working on it and move on to something else. Your models
don't have to be perfect; they don’t have to be complete; they just need to be barely good
enough.

Summary

In this chapter, you saw that evolutionary approaches to software development are not only
supported by leading software-development processes, they are in fact the norm for agile
processes. You also learned that there are some significant problems with the near-serial,
BDUF approaches favored by many traditional data professionals. Most importantly, you
discovered that it is possible to take an evolutionary approach to data-oriented development
activities, techniques that are described in greater detail in following chapters. The bottom line
is that if you want to work with an agile team, you need to be prepared to work in an
evolutionary manner. It is a choice to work in this way, just as it's a choice to not do so. Agile
software developers embrace change and therefore decide to work in an evolutionary manner.

Chapter 10: Agile Model-Driven Development
(AMDD)

Overview

Models and documents don’t need to be perfect, they just need to be barely good enough.

Modeling and documentation are an important part of any software developer’s job.
Developers may choose to create a wide range of requirements models, architectural models,
and design models for their systems. Agile DBAs may choose to create both logical and
physical data models in the course of their work. Enterprise architects will also create a wide
variety of models to describe an organization’s environments and so will enterprise
administrators. Modeling and documentation are critical aspects of the jobs of all agile
software developers; therefore, it makes sense to ask how you can be effective creating them.
Luckily there is an answer: Agile Modeling (AM).
Note This chapter provides a brief discussion of agile modeling; for more in-depth
coverage of AM, see my companion book Agile Modeling: Effective
Practices for Extreme Programming and the Unified Process (Ambler
2002a).

In this chapter, we will explore:

= The role of the agile DBA

= What is Agile Modeling?

= When is a model agile?

= What is Agile Model-Driven Development (AMDD)?
= Agile documentation

The Role of the Agile DBA

Agile DBAs apply the values, principles, and practices of AM to evolve their understanding of
both the problem domain and of the solution space. They work closely with their teammates,
creating models with them and learning new modeling techniques from them. They will create
agile models to work through complicated issues or to communicate their work to others.

What Is Agile Modeling?

Agile Modeling (AM) is a practice-based methodology for effective modeling and
documentation of software-based systems. The AM methodology is a collection of practices,
guided by principles and values, that is meant to be applied by software professionals on a
day-to-day basis.

AM is not a prescriptive process; that is, it does not define detailed procedures for how to
create a given type of model, but instead provides advice for how to be effective as a modeler.
AM is chaordic (Hock 2000) in that it blends the “chaos” of simple modeling practices with the

“order” inherent in software modeling artifacts. AM is not about less modeling; in fact, many
developers will find that they are doing more modeling than they did before being introduced to
AM. AM is “touchy-feely”; that is, it's not a bunch of hard-and-fast rules — think of AM as an art,
not a science.

An agile modeler is anyone who models following the AM methodology, applying AM’s
practices in accordance with its principles and values.

AM has three main goals:

= To define and show how to put into practice a collection of values, principles, and
practices pertaining to effective, light-weight modeling. What makes AM a catalyst for
improvement isn’t the modeling techniques themselves — such as use-case models,
class models, data models, or user-interface models — but how they are applied.

= To address the issue of how to apply modeling techniques on software projects, taking
an agile approach such as Extreme Programming (XP). Sometimes it is significantly more
productive for a developer to draw some bubbles and lines to think through an idea, or to
compare several different approaches to solving a problem, than it is to simply start
writing code. This is the danger in being too code-centric — sometimes a quick sketch
can help you avoid significant reworking when you are coding.

= To address how you can improve your modeling activities by following a “near-agile”
approach to software development, and in particular uwsing project teams that have
adopted an instantiation of the Unified Process such as the Rational Unified Process
(RUP) (Kruchten 2000) or the Enterprise Unified Process (EUP) (Ambler 2001b).
Although you must be following an agile software process to truly be agile modeling, you
may still adopt and benefit from many of AM’s practices on nonagile projects.

AM Values

The values of AM provide a philosophical foundation upon which its principles are based,
providing the primary motivation for the method. AM’s values include those of XP and extends
it with a fifth one, humility. Briefly, those values are:

Communication. It is critical to have effective communication within your development team
as well as with and between all project stakeholders.

Simplicity. Strive to develop the simplest solution possible that meets all of your needs.
Feedback. Obtain feedback regarding your efforts often and early.
Courage. Have the courage to make and stick to your decisions.

Humility. Have the humility to admit that you may not know everything, that others have value
to add to your project efforts.

AM Principles

The principles of AM flesh out the philosophical foundation defined by its values. You use AM’s
principles to guide your application of its practices. The principles are:

Assume simplicity. As you develop, you should assume that the simplest solution is the best
solution.

Content is more important than representation. Any given model could have several ways
to represent it. For example, a Ul specification could be created using Post-it notes on a large
sheet of paper (an essential or low-fidelity prototype), as a sketch on paper or a whiteboard, as
a “traditional” prototype built using a prototyping tool or programming language, or as a formal
document including both a visual representation and a textual description of the Ul.

Embrace change. Accept the fact that change happens. Revel in it, for change is one of the
things that make software development exciting.

Enabling the next effort is your secondary goal. Your project can still be considered a
failure even when your team delivers a working system to your users — part of fulfilling the
needs of your project stakeholders is to ensure that your system is robust enough so that it can
be extended over time. As Alistair Cockburn (2002) likes to say, when you are playing the
software development game, your secondary goal is to set up to play the next game.

Everyone can learn from everyone else. Agile modelers have the humility to recognize that
they can never truly master something; there is always opportunity to learn more and to extend
your knowledge. They take the opportunity to work with and learn from others, to try new ways
of doing things, and to reflect on what seems to work and what doesn't.

Incremental change. To embrace change, you need to take an incremental approach to your
own development efforts; that is, to change your system a small portion at a time instead of
trying to get everything accomplished in one big release. You can make a big change as a
series of small, incremental changes.

Know your models. Because you have multiple models that you can apply as an agile
modeler you need to know their strengths and weaknesses to be effective in their use.

Local adaptation. It is doubtful that you will be able to apply AM “out of the box”; instead, you
will need to modify it to reflect your environment, including the nature of your organization,
your coworkers, your project stakeholders, and your project itself.

Maximize stakeholder investment. Your project stakeholders are investing resources —
time, money, facilities, and so on — to have software developed that meets their needs.
Stakeholders deserve to invest their resources the best way possible and to not have them
frittered away by your team. Furthermore, stakeholders deserve to have the final say in how
those resources are invested or not invested. If it were your money, would you want it any
other way?

Model with a purpose. If you cannot identify why and for whom you are creating a model,
then why are you bothering to work on it all?

Multiple models. You have a wide range of modeling artifacts available to you (many of which
are summarized in the Appendix). These artifacts include, but are not limited to, the diagrams
of the Unified Modeling Language (UML), structured development artifacts such as data
models, and low-tech artifacts such as essential user interface models and CRC cards
(Ambler 2001a).

Open and honest communication. People need to be free, and to perceive that they are free,
to offer suggestions. Open and honest communication enables people to make better
decisions because the information that they are basing them on is more accurate.

Quality work. Agile developers understand that they should invest the effort to make
permanent artifacts, such as source code, user documentation, and technical system
documentation of sufficient quality.

Rapid feedback. Feedback is one of the five values of AM, and because the time between an
action and the feedback on that action is critical, agile modelers prefer rapid feedback over
delayed feedback whenever possible.

Software is your primary goal. The primary goal of software development is to produce
high-quality software that meets the needs of your project stakeholders in an effective manner.

Travel light. Traveling light means that you create just enough models and documentation to
get by.

Work with people’s instincts. As you gain experience developing software your instincts
become sharper, and what your instincts are telling you subconsciously can often be an
important input into your modeling efforts.

Agile Modeling Practices

To model in an agile manner, software developers will apply AM’s practices appropriately.
Fundamental practices include:

Active stakeholder participation. Project success often requires a significant level of
involvement by project stakeholders — senior management needs to publicly and privately
support your project, operations and support staff must actively work with your project team
toward making your production environment ready to accept your system, other system teams
must work with yours to support integration efforts, and maintenance developers must work to
become adept at the technologies and techniques used by your system.

Apply modeling standards. Developers should agree to and follow a common set of
modeling standards on a software project.

Apply patterns gently. Effective modelers learn and then appropriately apply common
architectural, design, and analysis patterns in their models. However, both Martin Fowler
(2001b) and Joshua Kerievsky (2001) believe that developers should consider easing into the
application of a pattern, to apply it gently.

Apply the right artifact(s). This practice is AM’s equivalent of the adage “use the right tool for
the job”; in this case, you want to create the right model(s) to get the job done. Each artifact —
such as a UML state chart, an essential use-case, a source code, or a data-flow diagram (DFD)
— has its own specific strengths and weaknesses, and therefore is appropriate for some
situations but not others.

Collective ownership. Everyone can work on any model, and ideally any artifact on the
project, if they need to.

Consider testability. When you are modeling you should be constantly asking yourself, “How
are we going to test this?” because if you can't test the software that you are building you
shouldn’t be building it.

Create several models in parallel. Because each type of model has its strengths and
weaknesses, no single model is sufficient for your modeling needs. By working on several at
once, you can easily iterate back and forth between them and use each model for what it is
best suited for.

Create simple content. You should keep the actual content of your models — your
requirements, your analysis, your architecture, or your design — as simple as you possibly can
while still fulfilling the needs of your project stakeholders. The implication is that you should not
add additional aspects to your models unless they are justifiable.

Depict models simply. Use a subset of the modeling notation available to you — a simple
model that shows the key features that you are trying to understand, perhaps a class model
depicting the primary responsibilities of classes and the relationships between them, often
proves to be sufficient.

Discard temporary models. The vast majority of the models that you create are
temporary/working models — design sketches, low-fidelity prototypes, index cards, potential
architecture/design alternatives, and so on — which are models that fulfill their purpose but
then no longer add value once they have done so.

Display models publicly. This supports the principle of fostering open and honest
communication on your team, because all of the current models are quickly accessible to them,
as well as with your project stakeholders because you aren’t hiding anything from them.

Formalize contract models. Contract models are often required when an external group
controls an information resource that your system requires, such as a database, legacy
application or information service. A contract model is formalized when both parties mutually
agree to it and are ready to mutually change it over time if required.

Iterate to another artifact. Whenever you find you are having difficulties working on one
artifact (perhaps you are working on a use case and find that you are struggling to describe the
business logic), that's a sign that you should iterate to another artifact. By iterating to another
artifact, you immediately become “unstuck” because you are making progress working on that
other artifact.

Model in small increments. With incremental development, you model a little, code a little,
test a little, deliver a little, and then repeat as needed. No more big design up front (BDUF),
whereby you invest weeks or even months creating models and documents.

Model to communicate. One reason why you model is to communicate with people external
to your team or to create a contract model that describes the interface with another system.

Model to understand. The most important application of modeling is to explore the problem
space, to identify and analyze the requirements for the system, or to compare and contrast
potential design alternatives to identify the potentially simplest solution that meets the
requirements.

Model with others. Software development is a lot like swimming, it's very dangerous to do it
alone because if you make a mistake it can be a long time before you discover it.

Prove it with code. A model is an abstraction, one that should accurately reflect an aspect of
whatever you are building. To determine if it will actually work you should validate that your
model works by writing the corresponding code.

Reuse existing resources. There is a wealth of information that agile modelers can take
advantage of by reusing resources such as existing enterprise models, modeling style
guidelines (Ambler 2003), and common design patterns (Gamma et. al. 1995).

Update only when it hurts. You should update an artifact, such as a model or document, only
when you absolutely need to, when not having the model updated is more painful than the
effort of updating it.

Use the simplest tools. The vast majority of models can be drawn on a whiteboard, on paper,
or even the back of a napkin. Note that AM has nothing against CASE (computer-aided
software engineering) tools — if investing in a CASE tool is the most effective use of your
resources, then by all means do so and then use it to the best of its ability.

When Is a Model Agile?

At its core, AM is simply a collection of techniques that reflects the principles and values
shared by many experienced software developers. If there is such a thing as agile modeling,
then are there also agile models? Yes. An agile model is a model that is just barely good
enough. But how do you know when a model is good enough? Agile models are good enough
when they exhibit the following traits:

= They fulfill their purpose and no more.

= They are understandable.

= They are sufficiently accurate.

= They are sufficiently consistent.
= They are sufficiently detailed.

= They provide positive value.

Ll They are as simple as possible.

An interesting implication is that an “agile model” is potentially more flexible than what many
people perceive a model to be. A Class Responsibility Collaborator (CRC) model is a
collection of index cards. An essential user interface prototype can be created from flip-chart
paper and Post-it notes. A screen sketch or a UML class diagram can be drawn on a
whiteboard. A user-interface prototype can be created using an HTML (Hypertext Markup
Language) editor. A UML class diagram could be created using a drawing tool such as Visio
(www.microsoft.com) or a sophisticated modeling/CASE tool such as TogetherCC
(www.borland.com) that supports the generation and reverse engineering of source code. All
of these models could be considered agile models if they meet the criteria listed above. The
tools — index cards, paper, whiteboards, CASE — that you use to create a model don’t
determine whether it's agile or not, the way that you use the model does. Big difference.

What Is Agile Model-Driven Development (AMDD)?

Model-Driven Development (MDD) is an approach to software development whereby
extensive models are created before source code is written. A primary example of MDD is the
Object Management Group (OMG)’s Model-Driven Architecture (MDA) standard, which is
based on the concept that you create formal models using sophisticated modeling tools from
which code is generated (Kleppe, Warmer, & Bast 2003).

With MDD a serial approach to development is often taken. MDD is quite popular with
traditionalists, although as the Rational Unified Process (RUP) (Kruchten 2000; Ambler 2001b)
shows, it is possible to take an iterative approach with MDD. AgileModel-Driven Development
(AMDD) is the agile form of MDD — instead of creating extensive models before writing source
code you instead create agile models, which are just barely good enough.

Is agile MDA possible? Yes, and in its most effective form, it would simply be a sophisticated
version of AMDD. As long as you're working closely with others, including your stakeholders,
and focusing on delivering working software on a regular basis, then it makes sense to me.
Yes, agile MDA would require a collection of complex modeling tools and developers that
know how to work with them effectively. | have no doubt that this will in fact occur in a small
number of situations, but | expect it to be a very small number.

Agile Documentation

Agile developers recognize that documentation is an intrinsic part of any system, the creation
and maintenance of which is a “necessary evil” to some and an enjoyable task for others.
Documentation is an aspect of software development that can be made agile when you
choose to do so. Like agile models, agile documents are just barely good enough. A document
is agile when it meets the following criteria:

Agile documents maximize stakeholder investment. The benefit provided by an agile
document is greater than the investment in its creation and maintenance, and ideally the
investment made in that documentation was the best option available for those resources. In
other words, documentation must at least provide positive value and ideally provides the best
value possible.

Agile documents are “lean and mean.” An agile document contains just enough information
to fulfill its purpose, in other words it is as simple as it can possibly be. For example, portions of
an agile document could be written in point/bullet form instead of prose — you're still capturing
the critical information without investing time to make it look pretty; remember, content is more
important than representation. Agile documents will often provide references to other sources
of information. When writing an agile document also remember simplicity — that the simplest
documentation will be sufficient — and create simple content whenever possible. One way to
keep agile documents that are lean and mean is to follow pragmatic programming’s (Hunt and
Thomas 2000) “DRY” — which stands for don't repeat yourself — principle. Redundant,
convoluted material that repeats information again and again is tedious to deal with to say the
least. Also, work with your document’s audience — what is lean and mean for you may be
completely insufficient for them.

Agile documents fulfill a purpose. Agile documents are cohesive; that is, they fulfill a single,
defined purpose. If you do not know why you are creating the document, or if the purpose for
creating the document is questionable, then you should stop and rethink what you are doing.

Agile documents describe information that is not likely to change. The greater the
chance that information will change the less value there is in investing significant time writing
external documentation about it — the information may change before you're finished writing,
and it will be difficult to maintain over time. For example, your system architecture, once it has
stabilized, will change slowly over time so, it's a good candidate for external documentation.

Agile documents describe “good things to know.” Agile documents capture critical
information, information that is not readily obvious such as design rationale, requirements,
usage procedures, or operational procedures. Agile documents do not capture obvious
information.

Agile documents have a specific customer and facilitate the work efforts of that
customer. System documentation is typically written for maintenance developers, providing
an overview of the system’s architecture and potentially summarizing critical requirements and
design decisions. User documentation often includes tutorials for using a system written in
language that your users understand, whereas operations documentation describes how to
run your system and is written in language that operations staff can understand. Different
customers require different types of documents and very likely different writing styles. You
must work closely with the customer for your documentation, or potential customer, if you want
to create something that will actually meet their needs. When you don’t you're at risk of
creating too much documentation or unnecessary documentation and hence becoming less
agile.

Agile documents are sufficiently accurate, consistent, and detailed. Have you ever
learned how to use new software by using a book describing a previous version of that
software? Did you succeed? Likely. Was it a perfect situation? Likely not. Did it cover all the
new features of the software? Of course not, but it still got you up and running with the
software package. Were you willing to spend your own money, perhaps on the order of $30, to
purchase the latest version of the book you needed? Likely not, because it wasn't worth it to
you. Agile documents do not need to be perfect, they just need to be good enough.

Agile documents are sufficiently indexed. Documentation isn't effective if you cannot easily
find the information contained in it. Would you purchase a reference manual without an index
or table of contents? Your indexing scheme should reflect the needs of a document’s audience.
Luckily, word processors include features to easily create tables of contents, and an index, and
even lists of figures and tables.

The following list summarizes additional points about agile documentation from Chapter 14 of
Agile Modeling (Ambler 2002a):

= The fundamental issue is effective communication, not documentation.

= Models are not necessarily documents, and documents are not necessarily models.

= Documentation is as much a part of the system as the source code.

= The benefit of having documentation must be greater than the cost of creating and
maintaining it.

= Never trust the documentation.

= Each system has its own unique documentation needs. One size does not fit all.

= Ask whether you need the documentation, and why you believe you need the
documentation, not whether you want it.

= The investment in system documentation is a business decision, not a technical one.

= Create documentation only when you need it — don’t create documentation for the
sake of documentation.

. Update documentation only when it hurts.

= The customer, not the developer, determines whether documentation is sufficient.

Summary

AM not only streamlines your modeling and documentation efforts, it is also an enabling
technique for evolutionary development. The collaborative environment fostered by AM
promotes communication and cooperation between everyone involved on your project. This
helps to break down some of the traditional barriers between groups in your organization and
to motivate all developers to learn and apply the wide range of artifacts required to create
modern software — there’s more to modeling than data models.

The reality is that agile software development is evolutionary in nature and your data-oriented
activities are no exception. AM lays the foundation for an evolutionary approach to database
development that | call Agile Model-Driven Development (AMDD). AMDD is the evolutionary
alternative to traditional MDD.

Chapter 11: Test-Driven Development (TDD)

Overview

You can build very large and complex systems that work without doing any modeling at all.

Test-driven development (TDD) (Beck 2003; Astels 2003), also known as test-first
programming or test-first development, is an evolutionary approach to development whereby
you must first write a test that fails before you write new functional code. What is the primary
goal of TDD? One view is that the goal of TDD is specification and not validation (Martin,
Newkirk, and Koss 2003). In other words, it's one way to think through your design before your
write your functional code. Another view is that TDD is a programming technique. As Ron
Jeffries likes to say, the goal of TDD is to write clean code that works. | think that there is merit
in both arguments, although I leave it for you to decide.

This chapter discusses the following topics:

= The steps of TDD

= TDD and traditional testing

= TDD and documentation

= Test-driven database development

= TDD and Agile Model-Driven Development (AMDD)
= How does TDD work?

How Does TDD Work?

A significant advantage of TDD is that it enables you to take small steps when writing software.
This is a practice that | have promoted for years (Ambler 2001a; Ambler 1998a) because it is
far more productive than attempting to code in large steps. For example, assume that you add
some new functional code, compile, and test it. Chances are pretty good that your tests will be
broken by defects that exist in the new code. It is much easier to find and then fix those defects
if you've written two new lines of code than two thousand. The implication is that the faster
your compiler and regression test suite, the more attractive it is to proceed in smaller and
smaller steps. | generally prefer to add a few new lines of functional code, typically less than
10, before | recompile and rerun my tests.

| think Bob Martin says it well (Martin, Newkirk, and Koss 2003):

The act of writing a unit test is more an act of design than of verification. It is also more an act
of documentation than of verification. The act of writing a unit test closes a remarkable number
of feedback loops, the least of which is the one pertaining to verification of function.

The first reaction that many people have to agile techniques is that they're okay for small
projects, perhaps involving a handful of people for several months, but that they wouldn’t work
for “real” projects that are much larger. That's simply not true. Beck (2003) reports working on
a Smalltalk system taking a completely test-driven approach, which took 4 years and 40
person years of effort, resulting in 250,000 lines of functional code and 250,000 lines of test
code. There are 4,000 tests running in under 20 minutes, with the full suite being run several
times a day. Although there are larger systems out there (I've personally worked on systems

where several hundred person years of effort were involved), it is clear that TDD works for
good-sized systems.

The Steps of TDD

An overview of the steps of TDD is provided in the UML activity diagram in Figure 11.1. The
first step is to quickly add a test, basically just enough code to fail. Next, you run your tests,
often the complete test suite, although for sake of speed you may decide to run only a subset
to ensure that the new test does in fact fail. You then update your functional code to make it
pass the new tests. The fourth step is to run your tests again. If they fail, you need to update
your functional code and retest it. Once the tests are passed, the next step is to start over (you
may also want to refactor any duplication out of your design as needed).

Add a test
\“-_
N

I

—

Run the tests

[Pass]

[Fail)

Y

Make a little
change
it

[Development
continues]

[Fail]
Run the tests

[Development
stops]
L J

Figure 11.1: The process of TDD.

TDD completely turns traditional development around. Instead of writing functional code first
and then your testing code as an afterthought, if you write it at all, you write your test code
before your functional code. Furthermore, you do so in very small steps — one test and a
small bit of corresponding functional code at a time. A programmer taking a TDD approach
refuses to write a new function until there is first a test that is failed because that function isn'’t
present. In fact, such a developer refuses to add even a single line of code until a test exists

for it. Once the test is in place, the developer then does the work required to ensure that the
test suite is now passed (your new code may break several existing tests as well as the new
one). This sounds simple in principle, but when you are first learning to take a TDD approach,
it proves to require great discipline because it is easy to “slip” and write functional code without
first writing a new test. One of the advantages of pair programming (Williams and Kessler 2002)
is that the other member of your pair helps you to stay on track.

An underlying assumption of TDD is that you have a unit-testing framework available to you.
Agile software developers often use the xUnit family of open source tools, such as JUnit
(www.junit.org) or VBUnit (www.vbunit.org), although commercial tools are also viable options.
Without such tools, TDD is virtually impossible. Figure 11.2 presents a UML state chart
diagram for how people typically work with the xUnit tools.

Refactor code

[Tests unbroken] I

1
|

.

o
I

_ Refactor code ~ .
™ [Test(s) broken] Red N
| Green Fix functional cod w [One clu.r{mcure
ix functional code :
._ [All tests pass] K 9 tests fail] |
7 ey

&

-

Can't think of |
any more tests ; Write failed test

Figure 11.2: Testing via the xUnit framework.

Note This diagram was suggested to me by Keith Ray whose TDD blog can be
found at homepage.mac.com/keithray/blog/index.html.

Kent Beck, who popularized TDD in Extreme Programming (XP) (Beck 2000), defines two

simple rules for TDD (Beck 2003). First, you should write new business code only when an

automated test has failed. Second, you should eliminate any duplication that you find. Beck

explains how these two simple rules generate complex individual and group behavior:

Ll You design organically, with the running code providing feedback between decisions.

Ll You write your own tests because you can’t wait 20 times per day for someone else to
write them for you.

= Your development environment must provide rapid response to small changes (for
example, you need a fast compiler and regression test suite).

= Your designs must consist of highly cohesive, loosely coupled components (for
example, your design is highly normalized) to make testing easier (this also makes
evolution and maintenance of your system easier too).

For developers, the implication is that they need to learn how to write effective unit tests.
Beck’s experience is that good unit tests:

Ll Run fast (they have short setups, run times, and breakdowns).

Ll Run in isolation (you should be able to reorder them).

Ll Use data that makes them easy to read and to understand.

Ll Use real data (for example, copies of production data) when they need to.
Ll Represent one step toward your overall goal.

Tip Two really good books have been written recently about TDD. The first
one is Test Driven Development: By Example by Kent Beck (Beck 2003)

and the second is Test Driven Development: A Practical Guide by Dave
Astels (Astels 2003). A good online resource is Brian Marick’s Agile
Testing home page, www.testing.com/agile/, which provides a very good
collection of links. Another interesting read is Jeff Langr’'s white paper,
“Evolution of Test and Code Via Test-First Design,” which is posted at
www.objectmentor.com/resources/_articles/tfd.pdf.

TDD and Traditional Testing

TDD is primarily a programming technique with the side effect of ensuring that your source
code is thoroughly unit tested. However, there is more to testing than this. You'll still need to
consider traditional testing techniques such as functional testing, user-acceptance testing,
system-integration testing, and so on. Much of this testing can also be done early in your
project if you choose to do so (and you should). In fact, in XP the acceptance tests for a user
story are specified by the project stakeholder(s) either before or in parallel to the code being
written, giving stakeholders the confidence that the system does in fact meet their
requirements.

With traditional testing a successful test finds one or more defects. It is the same with TDD;
when a test fails, you have made progress because you now know that you need to resolve
the problem. More importantly, you have a clear measure of success when the test no longer
fails. TDD increases your confidence that your system actually meets the requirements
defined for it, that your system actually works, and therefore that you can proceed with
confidence.

As with traditional testing, the greater the risk profile of the system the more thorough your
tests need to be. With both traditional testing and TDD you aren't striving for perfection;
instead, you are testing to the importance of the system. To paraphrase Agile Modeling (AM),
you should “test with a purpose” and know why you are testing something and to what level it
needs to be tested. An interesting side effect of TDD is that you achieve 100 percent coverage
test — every single line of code is tested — something that traditional testing doesn’t
guarantee (although it does recommend it). In general | think it's fairly safe to say that TDD
results in significantly better code testing than do traditional techniques.

TDD and Documentation

Like it or not, most programmers don't read the written documentation for a system; instead,
they prefer to work with the code. And there’s nothing wrong with this. When trying to
understand a class or operation, most programmers will first look for sample code that already
invokes it. Well-written unit tests do exactly this — they provide a working specification of your
functional code — and as a result unit tests effectively become a significant portion of your
technical documentation. The implication is that the expectations of the prodocumentation
crowd need to reflect this reality.

Similarly, acceptance tests can form an important part of your requirements documentation.
This makes a lot of sense when you stop and think about it. Your acceptance tests define

exactly what your stakeholders expect of your system; therefore, they specify your critical
requirements.

Are tests sufficient documentation? Very likely not, but they do form an important part of it. For
example, you are likely to find that you still need user, system overview, operations, and
support documentation. You may even find that you require summary documentation providing
an overview of the business process that your system supports. When you approach
documentation with an open mind, | suspect that you will find that these two types of tests
cover the majority of your documentation needs for developers and business stakeholders.

Test-Driven Database Development

At the time of this writing an important question being asked within the agile community is “can
TDD work for data-oriented development?” When you look at the process depicted in Figure
19.1, it is important to note that none of the steps specify object-oriented programming
languages, such as Java or C#, even though those are the environments TDD is typically used
in. Why couldn’t you write a test before making a change to your database schema? Why
couldn’t you make the change, run the tests, and refactor your schema as required? It seems
to me that you only need to choose to work this way.

My guess is that in the near term database TDD won’t work as smoothly as application TDD.
The first challenge is tool support. Although unit-testing tools, such as DBUnit
(www.dbunit.org), are now available they are still an emerging technology at the time of this
writing. Some DBAs are improving the quality of the testing they do, but | haven't yet seen
anyone take a TDD approach to database development. One challenge is that unit-testing
tools are still not well accepted within the data community, although that is changing, so my
expectation is that over the next few years database TDD will grow. Second, the concept of
evolutionary development is new to many data professionals and as a result the motivation to
take a TDD approach has yet to take hold. This issue affects the nature of the tools available to
data professionals — because a serial mindset still dominates within the traditional data
community, most tools do not support evolutionary development. My hope is that tool vendors
will catch on to this shift in paradigm, but my expectation is that we’ll need to develop open
source tools instead. Third, my experience is that most people who do data-oriented work
seem to prefer a model-driven, and not a test-driven approach. One cause of this is likely
because a test-driven approach hasn’t been widely considered until now, another reason
might be that many data professionals are likely visual thinkers and therefore prefer a
modeling-driven approach.

TDD and Agile Model-Driven Development (AMDD)

How does TDD compare with Model-Driven Development (MDD), or more to the point Agile
Model-Driven Development (AMDD) — discussed in Chapter 10? | believe:

L] TDD shortens the programming feedback loop, whereas AMDD shortens the modeling
feedback loop.
L] TDD provides detailed specification (tests), whereas AMDD can provide traditional

specifications (data models).

= TDD promotes the development of high-quality code, whereas AMDD promotes
high-quality communication with your stakeholders and other developers.

Ll TDD provides concrete evidence that your software works, whereas AMDD supports
your team, including stakeholders, in working toward a common understanding.

= TDD “speaks” to programmers, whereas AMDD “speaks” to data professionals.

= TDD provides very finely grained concrete feedback on the order of minutes, whereas

AMDD enables verbal feedback on the order minutes (concrete feedback requires
developers to follow the practice Prove It with Code and thus becomes dependent on
non-AM techniques).

Ll TDD helps to ensure that your design is clean by focusing on creation of operations
that are callable and testable, whereas AMDD provides an opportunity to think through
larger design/architectural issues before you code.

= TDD is non-visually-oriented, whereas AMDD is visually oriented.

Ll Both techniques are new to traditional developers and therefore may be threatening to
them.

Ll Both technigues support evolutionary development.

Which approach should you take? The answer depends on your, and your teammates’,
cognitive preferences. Some people are primarily “visual thinkers,” also called spatial thinkers,
and they may prefer to think things through via drawing. Other people are primarily
text-oriented, nonvisual, or nonspatial thinkers, who don’t work well with drawings, and
therefore they may prefer a TDD approach. Of course, most people land somewhere in the
middle of these two extremes, and as a result they prefer to use each technique when it makes
the most sense. In short, the answer is to use the two techniques together so as to gain the
advantages of both.

How do you combine the two approaches? AMDD should be used to create models with your
project stakeholders to help explore their requirements and then to explore those requirements
sufficiently in architectural and design models (often simple sketches). TDD should be used as
a critical part of your build efforts to ensure that you develop clean, working code. The end
result is that you will have a high-quality, working system that meets the actual needs of your
project stakeholders.

Summary

Test-driven development (TDD) is a development technique where you must first write a test
that fails before you write new functional code. TDD is being quickly adopted by agile software
developers for development of application source code and may soon be adopted by agile
DBAs for database development. TDD should be seen as complementary to Agile
Model-Driven Development (AMDD) approaches, and the two can and should be used
together. TDD does not replace traditional testing; instead, it defines a proven way to ensure
effective unit testing. A side effect of TDD is that the resulting tests are working examples for
invoking the code, thereby providing a working specification for the code. My experience is that
TDD works incredibly well in practice, and it is something that all agile software developers
should consider adopting.

Chapter 12: Database Refactoring

Overview

That's one small step for [a] man, one giant leap for mankind.
Neil Armstrong

You learned in Chapter 1 that agile methodologies such as Extreme Programming (XP) (Beck
2000) and DSDM (Stapleton 2003) take an iterative and incremental approach to software
development. Application developers on XP and DSDM projects typically forsake big design
up front (BDUF) approaches in favor of emergent approaches where the design of a system
evolves throughout the life of the project. On an agile development project, the final design
often isn’t known until the application is ready to be released. This is a very different way to
work for many experienced IT professionals.

The implication is that the traditional approach of creating a (nearly) complete set of logical
and physical data models up front isn’t going to work — if it ever did. The main advantage of
this approach is that it makes the job of the traditional database administrator (DBA) much
easier: the data schema is put into place early and that's what people use. However, there are
several disadvantages. First, it requires the designers to get it right early, forcing you to identify
most requirements even earlier in the project, and therefore forcing your project team into
taking a serial approach to development. Second, it doesn’t support change easily. As your
project progresses your project stakeholders understanding of what they need will evolve,
motivating them to evolve their requirements. The business environment will also change
during your project, once again motivating your stakeholders to evolve their requirements. In
short, the traditional way of working simply doesn’t work well in an agile environment. If agile
DBAs are going to work on and support project teams that are following agile methodologies,
they need to find techniques that support working iteratively and incrementally. My experience
is that one critical technique is what | call database refactoring.

This chapter covers:

= Refactoring

= Database refactoring

= Why database refactoring is hard

= How to refactor your database

= Common database refactoring smells

= Adopting database refactoring within your organization
= Database refactoring best practices

Refactoring

Martin Fowler (1999) describes a programming technique called refactoring, a disciplined way
to restructure code. The basic idea is that you make small changes to your code to improve

your design, making it easier to understand and to modify. Refactoring enables you to evolve
your code slowly over time, to take an iterative and incremental approach to programming.

A critical aspect of refactoring is that it retains the behavioral semantics of your code, at least
from a black box point of view. For example, there is a very simple refactoring called Rename
Method, perhaps from getPersons() to getPeople(). Although this change looks easy on the
surface, you need to do more than just make this single change; you must also change every
single invocation of this operation throughout all of your application code to invoke the new
name. Once you've made these changes, you can say you've truly refactored your code
because it still works as before.

It is important to understand that you do not add functionality when you are refactoring. When
you refactor, you improve existing code; when you add functionality, you are adding new code.
Yes, you may need to refactor your existing code before you can add new functionality. Yes,
you may discover later on that you need to refactor the new code that you just added. The
point to be made is that refactoring and adding new functionality are two different but
complementary tasks.

Refactoring can be dangerous. Even though you're making a small change to your code, you
still run the risk of introducing a defect. For example, when you are renaming getPersons() to
getPeople(), it wouldn't be sufficient for you to simply read all of your Java class files into a text
editor and do a global search and replace on “getPersons.” What would happen if another of
your Java classes also implemented an operation called getPersons(), an operation that was
also invoked within your code, that you didn’t want to rename? What would happen if your
code was invoking getPersons() implemented by a class within a third-party library that you
don't have the source code for? Even worse, what if that very same third-party class also
implemented getPeople()? Suddenly, you would have introduced some very subtle bugs into
your application without knowing it.

Clearly, you need to be very systematic in the way that you refactor and use tools and
techniques that support this technique. Most modern integrated development environments
(IDEs) now support code refactoring to some extent, which is a good start. To make
refactoring work in practice, however, you also need an up-to-date regression-testing suite that
you can run against your code to validate that it still works. A typical approach is to refactor
your code, compile it, and run your regression tests.
Tip The book Refactoring: Improving the Design of Existing Code by Martin

Fowler (1999) is your best starting point when it comes to refactoring. The site

www.refactoring.com includes links to new writings and www.agilealliance.org

includes some links to good refactoring papers as well.

Database Refactoring

In the February 2002 issue of Software Development (www.sdmagazine.com), | described a
technique that | called data refactoring (Ambler 2002d). This article described my preliminary
experiences at something that should more appropriately have been called database
refactoring in hindsight — hence the new name. From this point forward I'll use the term

refactoring to refer to traditional refactoring as described by Fowler to distinguish it from
database refactoring.

Let's start with some definitions. A database refactoring is a simple change to a database
schema that improves its design while retaining both its behavioral and informational
semantics. For the sake of this discussion a database schema includes both structural aspects,
such as table and view definitions, and functional aspects such as stored procedures and
triggers. An interesting thing to note is that a database refactoring is conceptually more difficult
than a code refactoring; code refactorings only need to maintain behavioral semantics, while
database refactorings also must maintain informational semantics.

Database refactoring, the process, is the act of making the simple change to your database
schema. One way to look at database refactoring is that it is a way to normalize your physical
database schema after the fact.

There is a database refactoring (the Appendix presents a catalog of database refactorings)
named Split Column, where you replace a single table column with two or more other columns.
For example, you are working on the Person table in your database and discover that the
FirstDate column is being used for two distinct purposes — when the person is a customer this
column stores their birth date, and when the person is an employee it stores their hire date.
Your application now needs to support people who can be both a customer and an employee,
S0 you've got a problem. Before you can implement this new requirement, you need to fix your
database schema by replacing the FirstDate column with BirthDate and HireDate columns. To
maintain the behavioral semantics of your database schema, you need to update all source
code that accesses the FirstDate column to now work with the two new columns. To maintain
the informational semantics, you will need to write a migration script that loops through the
table, determines the type, then copies the existing date into the appropriate column. Although
this sounds easy, and sometimes it is, my experience is that database refactoring is incredibly
difficult in practice.

Preserving Semantics

Informational semantics refers to the meaning of the information within the database from the
point of view of the users of that information. To preserve the informational semantics implies
that when you change the values of the data stored in a column, the clients for that information
shouldn’t be affected by the improvement. Similarly with respect to behavioral semantics, the
goal is to keep the black box functionality the same — any source code that works with the
changed aspects of your database schema must be reworked to accomplish the same
functionality as before.

For example, assume that you have a FullName column with values such as “John Smith” and
“Jones, Sally” and decide to apply Introduce Common Format and reformat it so that all names
are stored as “Jones, Sally.” You're still storing the name as a string, the same data is there,
and one of the original formats is still being used, although one of the formats is no longer
supported. Any application source code that cannot process the new standardized format

would need to be reworked to do so. In the strict sense of the term, the semantics have in fact
changed (you'’re no longer supporting the older data format) but from a business point of view
they haven't changed — you're still successfully storing the full name of a person. In my mind,
semantics boils down to your level of abstraction, and from the point of view of the users of
your application(s), everything still seems to work as before. Therefore, the informational and
behavioral semantics pertaining to the FullName column have been preserved.

What Database Refactorings Aren’t

A small transformation to your schema to extend it, such as the addition of a new column or
table, is not a database refactoring because the change extends your design. A large number
of small changes simultaneously applied to your database schema, such as the renaming of
10 columns, would not be considered a database refactoring because this isn't a single, small
change. Database refactorings are small changes to your database schema that improve its
design while preserving the behavioral and informational semantics. That's it. | have no doubt
that you can make those changes to your schema, and you may even follow a similar process,
but they’re not database refactorings.

Note The point to take home is that a database refactoring is a simple change to a
database schema that improves its design while retaining both its behavioral
and informational semantics. Database refactorings do not add new
features to a database.

Categories of Database Refactorings

To date, | have identified five categories of database refactorings. There are two major
categories, data quality and structural, as well as three subcategories of structural refactorings.
These categories are:

Data quality. These are database refactorings that focus on improving the quality of the data
within a database. Examples include Introduce Column Constraint and Replace Type Code
with Booleans.

Structural. As the name implies, these types of database refactorings change your database
schema. Examples include Rename Column and Separate Read-Only Data. A database
refactoring is considered “just” a structural refactoring when it doesn't fall into one of the
following subcategories (architectural, performance, or referential integrity).

Architectural. This is a kind of structural database refactoring whereby one type of database
item (for example, a column or table) is refactored into another type (for example, a stored
procedure or view). Examples include Encapsulate Calculation with a Method and
Encapsulate Table with a View.

Performance. This is a kind of structural database refactoring whereby the motivation behind
the refactoring is to improve your database performance (performance tuning is described in

detail in Chapter 15). Examples include Introduce Calculated Data Column and Introduce
Alternate Index.

Referential integrity. This is a kind of structural database refactoring where the motivation
behind the refactoring is to ensure referential integrity (which is described in detail in Chapter
19). Examples include Introduce Cascading Delete and Introduce Trigger(s) for Calculated
Column.

Why Database Refactoring Is Hard

Database refactoring is a difficult process because of coupling. Coupling is a measure of the
degree of dependence between two items — the more highly coupled two things are, the
greater the chance that a change in one will require a change in another. Coupling is the “root
of all evil” when it comes to database refactoring; the more things that your database schema
is coupled to, the harder it is to refactor. In Chapter 13 you'll learn that relational database
schemas are potentially coupled to a wide variety of things:

= Your application source code

= Other application source code
= Data load source code

= Data extract source code

= Persistence frameworks/layers
= Your database schema

= Data migration scripts

= Test code

= Documentation

As you can see, coupling is a serious problem when it comes to database refactoring. To make
matters worse, the concept of coupling is virtually ignored within database theory circles.
Although most database theory books will cover data normalization in excruciating detail (in
Chapter 4 | argued that normalization is the data community’s way of addressing cohesion),
there is often very little coverage of ways to reduce coupling. My experience is that coupling
becomes a serious issue only when you start to consider behavioral issues (for example,
code), something that traditional database theory chooses not to address.

Figure 12.1 depicts the best-case scenario for database refactoring — when it is only your
application code that is coupled to your database schema. This situation is traditionally
referred to as a stovepipe. These situations do exist and are often referred to as standalone
applications, stovepipe systems, or greenfield projects. Count yourself lucky if this is your
situation because it is very rare in practice. Figure 12.2 depicts the worst-case scenario for
database refactoring efforts, where a wide variety of software systems are coupled to your
database schema, a situation that is quite common with existing production databases. It is
guite common to find that in addition to the application that your team is currently working on
that other applications, some of which you know about and some of which you don't, are also
coupled to your database. Perhaps an online system reads from and writes to your database.
Perhaps a manager has written a spreadsheet, unbeknownst to you, that reads data from your

database that she uses to summarize information critical to her job. These applications will
potentially need to be refactored to reflect the database refactorings that you perform.

Your
Application

2%
A

"--..____________________...-“

Your
Database

"-..______________________...-’
Figure 12.1: The best-case scenario.
FE Ty

‘ Yo

I— Application —

= \ = -

/) \] - N

/ | e £ / \
Cither A Other \1

Applications A‘E'ﬁljl r.r;:ll:-l]r[w
You Know Abn-ul ,‘

e T Know About }/
“’\

Persistence L
Frameworks ¢—lf

Yolar Other
Database Databases
Data

g ‘&_
Imports 3

Data
File

Figure 12.2: The worst-case scenario.
Note The point to take home here is that the greater the coupling of your
database to external items, even within the database itself, the harder it is to

Drata
Extracts

refactor your database schema.

For the sake of simplicity, throughout the rest of this chapter the term “application” will refer to
all external systems, databases, applications, programs, and test suites that are coupled to
your database.

How to Refactor Your Database

Before | describe the steps for refactoring a database | need to address a critical issue —
Does the simple situation depicted in Figure 12.1 imply that you'll do different things than the
highly coupled one of Figure 12.2? Yes and no. The fundamental process itself remains the
same although the difficulty of implementing individual database refactorings increases
dramatically as the amount of coupling that your database is involved with increases. | have
personally only attempted database refactoring in relatively simple situations in which the
database was coupled at most to a handful of applications. | have yet to attempt database
refactoring in situations where the legacy database was coupled to tens or hundreds of
applications for the simple reason that | have yet to work in an organization with the technical
and cultural environment required to support this technique. That's not to say that it's
impossible, my belief is that you could build an organization from the ground up that could
easily support database refactoring within a complex environment. | also believe, as | describe
later in this chapter, that it is possible to evolve your environment over time to support
database refactoring regardless of how high the coupling is, although I’'m the first to admit that
this evolution would be very difficult.

This section is written under the assumption that your technical and cultural environments are
organized to support database refactoring. Although this sounds like a big assumption, and it
is, | will describe what you need to do to get to the point where these environments are in fact
in place. Anything less would be inappropriate.

| like to think of database refactoring as a three-step process:
1. Startin your development sandbox.
2. Implement the code in your integration sandbox(es).
3. Install the code in production.

The following sections discuss each of these steps in detail.

Step 1: Start in Your Development Sandbox

Your development sandbox is the technical environment where your software, including both
your application code and database schema, is developed and unit tested. The need to
refactor your database schema is typically identified by an application developer who is trying
to implement a new requirement or who is fixing a defect. For example, a developer may need
to extend an application to accept Canadian mailing addresses in addition to American
addresses. The main difference is that Canadian addresses have postal codes such as R2D
2C3 instead of zip codes such as 90210-1234. Unfortunately the ZipCode column of the
SurfaceAddress table is numeric and, therefore, will not currently support Canadian postal
codes. The application developer describes the needed change to one of the agile DBA(S) on
the project and the database refactoring effort begins.

To perform the database refactoring, the agile DBA and application developer will typically
work through some or all of the following steps:

Ll Verify that a database refactoring is required.

. Choose the most appropriate database refactoring.
Ll Determine data cleansing needs.

= Write unit tests.

= Deprecate the original schema.

= Implement the change.

. Update the database management scripts.

= Run regression tests.

. Document the refactoring.

= Version control the work.

Verify That a Database Refactoring Is Required

The first thing that the agile DBA does is try to determine if the database refactoring is the right
one and if it even needs to occur. Perhaps the required data structure does exist but the
application developer is not aware of it. For example, perhaps an InternationalSurfaceAddress
table exists that does support Canadian postal codes. Perhaps a PostalCode column exists in
the SurfaceAddress table that the developer doesn’t know about. Because the agile DBA
should have a better knowledge of the project team’s database and other corporate databases,
and will know whom to contact about issues such as this, he or she will be in a good position to
determine the best approach to solving this problem. Unfortunately, in this case the data does
not exist elsewhere.

The second thing that the agile DBA does is internally assess the likelihood that the change is
actually needed. This is usually a “gut call” based on the agile DBA’s previous experience with
the application developer. Does the application developer have a good reason for making the
schema change? Can he explain the business requirement that the change supports and does
the requirement feel right? Has this application developer suggested good changes or has he
changed his mind several days later? Depending on this assessment, the agile DBA may
suggest that the application developer think the change through some more or may decide to
continue working with the application developer but wait for a greater period of time before
actually applying the change in the project-integration environment (Step 2) if the agile DBA
feels that the change will need to be reversed.

The next thing the agile DBA does is to assess the overall impact of the refactoring. In the
simple situation in Figure 12.1, this is fairly straightforward because the agile DBA should have
an understanding of how the application is coupled to this part of the database. When this isn’t
the case the agile DBA needs to work with the application developer to do so. In the complex
case in Figure 12.2, the agile DBA will need to have an understanding of the overall technical
infrastructure within the organization and how the other applications are coupled to the
database. This is knowledge that he or she will need to build up over time by working with the
enterprise architects, enterprise administrators, application developers, and even other agile
DBAs. When the agile DBA isn’t sure of the impact, he or she will either need to decide to

make a decision at the time and go with a gut feeling or decide to advise the application
developer to wait while they talk to the right people. The goal of this effort is to ensure that you
do not attempt a database refactoring that you aren't likely going to be able to do — if you are
going to need to update, test, and redeploy 20 other applications to make this refactoring, then
it likely isn’t viable for you to continue.
Tip Points to take home from this discussion include:
= Make a go/no-go decision early in the database refactoring process —
only attempt refactorings that you will be able to implement in production.
= To support agile development, an agile DBA needs to be empowered to
determine whether a database refactoring is viable, but be prepared to
back out of that decision if enterprise administrators later deny the
change.
= Agile DBAs need to support iterative and incremental development efforts
by making required database schema changes in a timely manner but
must balance this by ensuring that they minimize the number of
unnecessary or trivial changes.

Choose the Most Appropriate Database Refactoring

An important skill that agile DBAs require is the understanding that there are typically several
choices for implementing new data structures and new logic within a database. For example,
in this case, you could decide to add a new column to store the postal code, you could
implement a new table for this new type of address, or you could modify the existing column to
accept the new type of data. In this instance, assume that you decide to apply the Replace
Column database refactoring, a structural refactoring, to implement a new column called
PostCode that can handle both zip codes and postal codes.

Determine Data Cleansing Needs

When you are implementing a structural database refactoring, or one of the subcategories you
need to first determine if the data itself is sufficiently clean to be refactored. Depending on the
quality of the existing data, you may quickly discover the need to cleanse the source data. This
would require one or more separate data quality refactorings before continuing with the
structural refactoring. Data-quality problems are quite common with legacy database designs
that have been allowed to degrade over time. Chapter 8 explores the issues surrounding
legacy databases and describes common data quality problems that you are likely to face.

To identify any relevant data quality problems, you decide to take a quick look at the values
contained in the ZipCode column. Most of the values in the column are four-and five-digit
values, both of which are valid because states such as New Jersey contain zip codes such as
08809 whereas California has 90345. However, you also discover six- and seven-digit zip
codes, which are clearly not legal, and a few eight- and nine-digit codes (88091234 would be
translated to 08809-1234 and similarly 903451234 to 90345-1234). Needless to say there is a
problem with some of the zip codes, which you record so you can deal with it at a future date.

Write Your Unit Tests

Like code refactoring, database refactoring is enabled by the existence of a comprehensive
test suite — you know you can safely change your database schema if you can easily validate
that the database still works after the change. The XP community suggests that you write your
tests before you write your business code, or in this case your database code. If you do not
have unit tests for the part of the database that you are currently modifying, then you should
write the appropriate tests now. Even if you do have a unit test suite in place, you will discover
that many database refactorings, particularly structural ones, will break your tests and force
you to update your testing code.

Unfortunately, unit tests do not exist for this portion of the database, a possible explanation for
the existence of the data-quality problems. You need to make an architectural decision as to
the best place to implement your unit tests. For example, you should clearly verify that zip
codes are valid. Does this belong in your application unit tests or in your database unit tests?
Checking for a valid value could be seen as a business rule issue, therefore motivating you to
write a unit test for your business code, or as a simple data issue and therefore motivate you to
write a database unit test. Here’s my advice:

Ll Your primary goal is to ensure that the tests exist.

= You should try to have each test implemented once, either at the application level or at
the database level but not both.

= Some unit tests will be at the application level and some at the database level, and
that's okay.

= Go for the lowest common denominator — if the database is accessed by several

applications then any data-related tests should appear in your database test suite, helping
to ensure they're tested once.

= When you have a choice, implement the test at the level where you have the best
testing tools (often at the application level). Testing tools are discussed in Chapter 16.

An important part of writing database tests is the creation of test data. You have several
strategies for doing so:

Have source test data. You can simply maintain a database instance or file filled with test
data that application teams test against. Developers would need to import data from this
instance to populate the databases in their sandbox, and similarly you would need to load data
into your project-integration and test/QA sandboxes. These load routines would be considered
another application that is coupled to your database along the lines of what is described in
Figure 12.2. The implication is that you will need to refactor these load routines, and the
source data itself, as you refactor your database.

Test data creation scripts. This would effectively be a miniapplication that would clear out
and then populate your database with known information. This application would need to
evolve in step with your database.

Self-contained test cases. Your individual tests can set up the data that they require. A good
strategy is for an individual test to put the database into a known state, to run against that state,
and then to back out any changes afterwards so as to leave the database as it was found. This
approach requires discipline on the part of anyone writing unit tests but has the advantage that
it simplifies your analysis efforts when the test results aren’t what you expect.

These approaches to creating test data can be used alone or in combination. A significant
advantage of writing creation scripts and self-contained test cases is that it is much more likely
that the developers of that code will place it under configuration management (CM) control
(see below). Although it is possible to put test data itself under CM control, worst case you
generate an export file that you check in; this isn't a common practice and therefore may not
occur as frequently as required. Choose an approach that reflects the culture of your
organization.

Deprecate the Original Schema (Structural Refactorings Only)

An effective technique that Pramod Sadalage and Peter Schuh (2002) promote is a
deprecation period for the original portion of the schema that you're changing. They observe
that you can’t simply make a structural change to your database schema instantly, that instead
you need to work with both the old and the new schema in parallel for a while to provide time
for the other application teams to refactor and redeploy their systems. Although this isn't really
an issue right now when you’re working in the developer’s sandbox, it very likely will be once
you promote your code into the other environments. This parallel running time is referred to as
the deprecation period, a period that must reflect the realities of the sandboxes that you're
working in. For example, when the database refactoring is being deployed in your
development sandbox, the deprecation period may only be a few hours, just enough time to
test that the database refactoring works. When it's in your project-integration sandbox, it may
be a few days, just enough time for your teammates to update and retest their code. When it's
in your test/QA and production sandboxes, the deprecation period may be several months or
even several years. Once the deprecation period has expired the original schema, plus any
scaffolding code that you needed to write to support the deprecated schema, needs to be
removed and retested. Once that is done, your database refactoring is truly complete.

Figure 12.3 shows how this idea would work when we apply the Replace Column database
refactoring to ZipCode. Notice the changes between the original schema and the schema
during the deprecation period. PostCode has been added as a column, exactly what you would
expect. The ZipCode column has been marked as deprecated — you know this because a
removal date has been assigned to it using a UML named variable. A trigger was also
introduced to keep the values contained in the two columns synchronized, the assumption
being that new application code will work with PostCode but should not be expected to keep
ZipCode up-to-date, and that older application code that has not been refactored to use the
new schema won't know to keep PostCode up to date. This trigger is an example of database
scaffolding code, simple and common code that is required to keep your database “glued
together.” This code has been assigned the same removal date as ZipCode.

Why don’t data quality refactorings such as Introduce Column Constraint and Introduce
Common Format require you to deprecate your original schema? Because they simply
improve the data quality by narrowing the acceptable values within a column. As long as these
values reflect the existing business rules within the applications that access them, there is no
need to run parallel versions of the same data.

Note An interesting thing to notice about Figure 12.3 is the addition of the Country
column to Address. Wait a minute, there isn't an Add Column database
refactoring in the catalog. Have we found a new type of database
refactoring? No. Database refactorings are small changes to database
schemas that improve their design, not simply change the design. Adding a
new column is a change to the schema but not a design improvement to it.
Although this is clearly a very small nuance, | believe that it's an important
one.

Addr e Addres Addeery
oo Tailibiice s =< Tabilas e < Tk

Figure 12.3: Refactoring the Address table.

Implement the Change

The application developer(s) and agile DBA work together to make the changes within the
development sandbox. The strategy is to start each refactoring simply; by performing the
refactoring within the development sandbox first, you are effectively putting yourself in the
situation described in Figure 12.1. As you perform the initial database refactoring, you will also
need to refactor your application code to work with the new version of the database schema.

Furthermore, at this point in time, you should perform an initial performance analysis to
determine the potential impact of the change — for some refactorings, you may decide to back
out at this point because of poor performance. An advantage of this approach is that the agile
DBA will gain an initial feel for how the application will be affected by the refactoring, providing
insight into potential changes required by other applications.

An important part of implementing the change is ensuring that the changed portion of your
database schema follows your corporate database development guidelines. These guidelines
should be provided and supported by your enterprise administration group, and at a minimum
should address naming and documentation guidelines. In short, always remember to follow
Agile Modeling’s Apply Modeling Standards practice.

Update Your Database Management Script(s)

A critical part of implementing a database refactoring is updating your database management
scripts. These scripts are used to modify your database schema and should be written so that
they can be applied in any of your sandboxes. Let's explore how you use each script:

Database change log. This script contains the source code implementing all database
schema changes in the order that they were applied throughout the course of a project. When
you are implementing a database refactoring, you include only the immediate changes in this
log. When applying the Replace Column database refactoring, we would include the DDL for
adding the PostCode column and the DDL to implement the trigger(s) to maintain the values
between the PostCode and ZipCode columns during the deprecation period.

Update log. This log contains the source code for future changes to the database schema that
are to be run after the deprecation period for database refactorings. In the example, this would
be the source code required to remove the ZipCode column and the triggers we introduced.

Data migration log. This log contains the data manipulation language (DML) to reformat or
cleanse the source data throughout the course of your project. In our example, this would
include any code to improve the quality of the values in the ZipCode column.

Run Your Regression Tests

Once the changes to your application code and database schema have been put in place, you
then need to run your regression test suite. This effort should be as automated as you can
make it, including the installation or generation of test data, the actual running of the tests
themselves, the comparison of the actual test results with the expected results, and the
resetting of the database back the way you found it. Because successful tests find problems,
you will need to rework things until you get it right. A significant advantage of database
refactorings’ being small changes is that if your tests do in fact break you've got a pretty good
idea where the problem lies — in the application code and database schema that you just
changed. The larger your changes are, the more difficult it becomes to track down problems,
and therefore the slower and less effective your development efforts are. You'll find that
developing in small, incremental steps works incredibly well in practice.

Document the Refactoring

Because your database is a shared resource (at minimum, it is shared within your application
development team if not by several application teams), the agile DBA needs to communicate
the changes that have been made. At this point in time, your goal is to communicate the
changes within your team; later you will need to communicate the suggested changes to all
interested parties. This initial communication might be a simple update at your regular team
meeting or a simple email (you may want to consider creating an internal mailing list
specifically for the purpose of announcing database changes that anyone who is interested

can subscribe to). Another aspect of this communication will be updating any relevant
documentation. This documentation will be critical later on when you promote your changes
into your test/QA sandbox and later into production because other teams need to know how
the database schema has evolved. This documentation will likely be required by enterprise
administrators so they can update the relevant meta data (better yet, the agile DBA should
update this meta data as part of the refactoring effort). Chapter 10 presents an overview of
how to write documentation in an agile manner.

If you haven't already done so, you should update the physical data model (PDM) for your
database. | personally have a tendency to model the new schema in a PDM tool such as
ERWin and then generate the initial DDL that I'll then modify and include in my database
change scripts. There are several good modeling tools available that support this type of
functionality and | find it easier than manually writing the DDL myself.

Version Control Your Work

A critical skill for agile developers is the habit of putting all of their work under configuration
management (CM) control by checking it into a version-control tool. In the case of database
refactoring, this includes any DDL that you've created, change scripts, data-migration scripts,
test data, test cases, test-data-generation code, documentation, and models. This is in
addition to the application-oriented artifacts that you would normally version — treat your
database-oriented artifact the exact same way that you'd treat other development artifacts and
you should be okay.

Step 2. Implement the Code in Your Integration

Sandbox(es)

After several days have passed, you will be ready to implement your database refactoring
within your project-integration sandbox. The reason why you need to wait to do so is to give
your teammates time to refactor their own code to use the new schema. Note that on an XP
team you could very well have been the person reworking the code due to XP’s practice of
collective ownership. On a Feature-Driven Development (FDD) team, however, because
individual feature teams own their own portions of the code these other teams may be required
to implement necessary changes themselves (Palmer & Felsing 2002). Each agile
development methodology has its own way of doing things.

Teams that have chosen to encapsulate access to their database via the use of a persistence
framework (see Chapter 13 for a discussion) will find it easier to react to database schema
changes and therefore may find they can tighten up the period between implementing a
database refactoring within a development sandbox and in their project-integration sandbox.
This is due to the fact that the database schema is represented in meta data; therefore, many
database schema changes will only require updates to the meta data and not to the actual
source code.

To deploy the code into each sandbox, you will need to both build your application and run
your database management scripts. The next step is to rerun your regression tests to ensure
that your system still works — if not, you will need to fix it in your development environment,
redeploy it, and retest it. Chapter 16 describes how you deploy code from your development
sandbox into your project-integration sandbox and from there into your organization’s test/QA
sandbox. The goal in your project-integration sandbox is to validate that the work of everyone
on your team works together, whereas your goal in the test/QA sandbox is to validate that your
system works well with the other systems within your organization.

A critical part of deploying database refactorings into your test/QA sandbox (I'm using the
plural now because you typically introduce several database factors into this environment at
once) is communication. Long before you change your database schema, you need to
communicate and negotiate the changes with the owners of all of the other applications that
access your database. Your enterprise administrators will be involved in this negotiation; they
may even facilitate the effort to ensure that the overall needs of your organization are met.
Luckily the process that you followed in your development sandbox has made this aspect of
database refactoring easier:

= The agile DBA only allowed database refactorings that can realistically be
implemented — if another application team isn’t going to be able to rework their code to
access the new schema then you can’t make the change.

Ll Even if it's only a brief description of each change, the documentation that the agile
DBA wrote is important because it provides an overview of the changes that are about to
be deployed.

Ll The new version physical data model (PDM), which was updated as database
refactorings were implemented, serves as a focal point for the negotiations with other
teams. AM would consider the PDM to be a “contract model” that your team has with the
other application teams, a model that they can count on to be accurate and that they can
count on being actively involved in negotiating changes to.

= It is interesting to note that AM’s Formalize Contract Models practice can aid in your
communication efforts because it provides a list of people that you need to communicate
with. | discussed in Chapter 10 that a contract model defines an interface to an application.
For example, the contract model for a relational database might be a physical data model
and any supporting documentation, whereas the contract model for an XML data feed into
an application might be an XML schema definition. It's called a contract model because it
effectively defines a contract between you and any project teams that use the defined
interface to your database. If you want to change an aspect of the interface, you must first
negotiate that change, or at least at a minimum inform people of the pending change and
give them time to rework their applications.

Step 3: Install the Code in Production

Installing the code in production is the hardest part of database refactoring, particularly in the
complex situation in Figure 12.2. You will need to:

=

Deploy your new database schema. You will need to run your database change and
your data migration logs against the existing production schema to evolve the schema,
to cleanse the data, to migrate the data, and to initialize the data within any new tables.
2. Deploy all affected applications. Every application affected by the changes will

potentially need to be deployed as well. If you are supporting the original schema as
well as the new schema during a defined deprecation period then these applications
will only need to be redeployed before the end of the deprecation period, enabling you
to gradually install updated versions over time. This reduces the risk to your
organization.

3. Test, test, test. You need to test both the database and the applications that access
the database. All applications should have been tested in your test/QA sandbox,
illustrating the need for a robust regression test suite for every application (more on this
later). In production, everything needs to be retested to verify that it is operating
correctly.

4. Remove the deprecated schema. Once the deprecation period has ended, the update
log needs to be run to remove the remnants of the previous schema and any
deprecation scaffolding code that supported it. This step may occur months, or even
years, after the original deployment. It is quite common to include this step as part of a
future database deployment.

5. Retest, retest, retest. If you remove the deprecated schema outside the scope of

another full-fledged database deployment, then you'll need to retest the database and

applications to ensure that they work.

Common Database Refactoring Smells

In Refactoring: Improving the Design of Existing Code (Fowler 1999), Martin Fowler likes to
talk about “code smells,” things that he sees in source code that often “smell” of a problem with
that code. My experience is that just as there are common smells that reveal the potential need
to refactor your code, there are similarly common smells pertaining to potential data
refactorings. These smells include:

Multipurpose columns or tables. Whenever something exhibits low cohesion (in other words,
it is used for several purposes), you know you have a potential problem. Examples would be a
table that is used to store information about people and corporations, or a column used to
store either someone’s birth date if that person is a customer or that person’s start date as an
employee. If something is being used for several purposes, it is very likely that extra code
exists to ensure that the data is being used the “right way,” and worse yet you are very likely
constrained in the functionality that you can now support. For example, how would you store
the birth date of an employee?

Redundant data. You saw in Chapter 4 that redundant data is a serious problem in
operational databases. Database refactorings can be applied to normalize your database after
it has been released into production.

Large tables (many columns, many rows). Large tables are indicative of performance
problems, low cohesion, and/or redundant data.

“Smart” columns. A “smart column” is one in which different positions within the data
represent different concepts. Examples include U.S. zip codes, in which the first two digits
indicate the state, and client numbers in which the first four digits indicate the client's home
branch. Smart columns often prove to be bad design decisions in the long term, forcing you to
make schema changes at some point.

Fear that if you change it you might break it. This is a very good indication that you have a
serious technical risk on your hands, one that will only get worse the longer you leave it. By
putting a framework in place to refactor your database, including both tools and process, you
will reduce this risk to your organization.

It is important to understand that these smells don’t guarantee that you need to refactor your
database, it is just that they are an indication that you need to look into the pertinent portion of
your database.

Adopting Database Refactoring within Your Organization

Although the adoption of effective tools (discussed in Chapter 16) is an important part of
enabling database refactoring, it is only the tip of the iceberg — database refactoring requires
a significant cultural change within your organization. Because database refactoring is an
enabling technique of the agile data method many of the cultural issues for adopting database
refactoring are the same ones that you face adopting the agile data method in general. These
cultural issues include a serial mindset within many data professionals, resistance to change,
and political inertia. The following approach should help you to overcome these challenges:

Start simple. Database refactoring is easiest in greenfield environments where a new
application accesses a new database, and the next easiest situation is when a single
application accesses a legacy database. Both of these scenarios are typified by Figure 12.1.
By starting simple, you provide yourself with an environment in which you can learn the basics,
once you understand the basics, you are in a much better position to tackle the situations
typified by Figure 12.2.

Accept that iterative and incremental development is the norm. Modern software
development methodologies take an iterative and incremental approach to software
development. This includes agile methodologies such as XP and DSDM as well as rigorous
methodologies such as the Rational Unified Process (Kruchten 2000), the Enterprise Unified
Process (Ambler 2001b), and the OPEN Process (Graham, Henderson-Sellers, and Younessi
1997). Although serial development is often the preferred approach by many data
professionals, unfortunately it doesn’t reflect the current way that application developers work.
Time to change.

Accept that there is no magic solution to get you out of your existing mess. Many IT
environments are a morass of poorly designed, poorly documented, and generally inconsistent
systems and databases. Even those systems that started out in good shape have degraded
over time due to entropy. Life’s tough. Your organization created this problem, and you're
going to have to help get out of it. The problem isn’t going to get better by itself; in fact, it will

only get worse. It is naive to sit back and wait for a magic tool to come along that will fix
everything for you; the cold reality is that you're going to have to roll up your sleeves and do a
lot of hard work to get yourself out of the mess you're currently in. Database refactoring is very
likely your least risky option (Table 12.1 compares and contrasts the strategies available to

you).

Adopt a 100 percent regression testing policy. For database refactoring to work, and in
general for iteratively and incremental development to work, you need to be effective at
regression testing. To be successful at database refactoring, you need to not only be able to
regression test the database itself but any application that is coupled to your database. The
implication is that you require regression test suites for every single application, something you
very likely do not have. Although it is unlikely that you will be allowed to stop all other
development efforts for a couple of years to build a comprehensive set of tests, the reality is
that you need to start somewhere. The following is a good policy:

1. Write the regression tests for your database.

2. Asyou need them, develop regression tests for the parts of the applications that you
refactor in response to a database refactoring. Although this will slow your efforts down
initially, over time this investment will pay off in increased quality and increased ability
to respond to new changes.

3. Lobby for a corporate policy that requires developers to create tests for any new code
that they develop and for any existing code that they update.

This policy will ensure that you build up the test suite that you need to succeed, although it will
likely take several years to do so.

Try it. | have no doubt that you can create a long list of reasons why database refactoring
won’'t work in your environment. So what? Database refactoring is very likely significantly
different from what you're doing today. So what? In legacy environments, database refactoring
can be very difficult. So what? It takes courage to change, and you may even fail in the attempt.
So what? If you don'’t try, you'll never know if you can become more effective, if you can
decrease development time and costs, and if you can slowly improve the quality of your data
assets within your organization. Try database refactoring on a pilot project and see what
happens. You will likely find that Michael Feathers’ (2002) advice regarding legacy refactoring
to be valuable.

Database refactoring works in practice, it isn’t simply just another academic theory. For the
vast majority of organizations, this is a new, “bleeding edge” technique. One of the problems
with an innovative technique such as this is that you've never tried it before.

Database Refactoring Best Practices

Fowler (1999) suggests a collection of best practices for code refactoring, practices that |
recast below for database refactoring:

Refactor to ease additions to your schema. You often find that you have to add a new
feature to a database, such as a new column or stored procedure. Unfortunately, you may find

that the database schema does not easily support that new feature. Start by refactoring your
database schema to make it easier to add the feature, and then add the feature.

Ensure that the test suite is in place. Before you start database refactoring ensure that you
have a solid suite of regressions tests for the database and all systems that access that
database. These tests can be self-checking.

Take small steps. Database refactoring changes the schema in small steps; each refactoring
should be made one at a time. The advantage is that if you make a mistake it is easy to find
the bug because it will likely be in the part of the schema that you just changed.

Program for people. Any fool can create a schema that the database will understand. Good
agile DBAs develop database schemas that human beings can understand.

Don’t publish data models prematurely. The more applications that are coupled to your

data schema, the harder it is to change. When you first create a portion of a schema, it will
very likely be in flux, evolving at first but then stabilizing over time. Therefore to reduce the
number of code refactorings motivated by database refactorings, you should wait until your
new schema is reasonably stable before announcing it to the world.

The need to document reflects a need to refactor. When you find that you need to write
supporting documentation to describe a table, column, or stored procedure that is a good
indication that you need to refactor that portion of your schema to make it easier to understand.
Perhaps a simple renaming can avoid several paragraphs of documentation. The cleaner your
design, the less documentation you will require.

Test frequently. If you have good regression test suites in place for your database and every
application coupled to it, it becomes much safer for you to make a database refactoring
because when you rerun the tests you’ll know right away if you've broken anything.
Tip The point to carry away from this discussion is, to paraphrase Neil Armstrong,
that database refactoring is “one small change for a database, one giant leap
for software development practices.”

Database Refactoring in the Real World

Database refactoring supports an incremental approach to the evolution of your database
schema, one of the three fundamental strategies summarized in Table 12.1. Each strategy has
its unique strengths and weaknesses. | suspect that many organizations, perhaps because of
a serial mindset, have either tried the big-bang release approach or have been too scared to
do so and have now given up. It doesn’t have to be this way. Yes, it will likely take a significant
effort for your organization to put the culture and technologies in place to support database
refactoring across your enterprise, but in the long run this is likely far more palatable than your
other alternatives.

Table 12.1: Database Evolution Strategies

STRATEGY STRENGTHS WEAKNESSES

Table 12.1: Database Evolution Strategies

STRATEGY

STRENGTHS

WEAKNESSES

Give up

Easy to accept in the short
term.

" Your database schema
won'’t get better on its own
and will very likely get
worse.

" The magical tool that will
come along and solve all of
your problems won't.

" New application designs
will need to be bastardized
to conform to your poor
database schema.

" It will become
increasingly difficult to
support new functionality.

Big-bang release

Delivers a new database
schema.

" High risk approach
because you need to
rewrite everything and then
release it at once,
something your
organization is not used to
attempting.

" Very difficult to attempt in
parallel with development of
new functionality.

" Requires sophisticated
testing infrastructure and
supporting process.

Incremental
releases

] Delivers a new
database schema.

" Provides a
mechanism to continue
to evolve your database
schema as needed.

" Reduces risk to your
organization by defining
a continuous change
process.

" Requires sophisticated
testing infrastructure and
supporting process.

" Organizational culture
may need to change to
support incremental
development processes.

Table 12.1: Database Evolution Strategies

STRATEGY STRENGTHS WEAKNESSES

" Relatively easy to
implement in parallel
with development of
new functionality.

Summary

Database refactoring is a work in progress. Although this chapter presents the fundamentals of
the process, the Appendix, which lists known database refactorings, is also a work in progress
— one that | will likely follow up with a new book within a couple of years. The list isn’t
comprehensive nor does it provide detailed examples.

Chapter 13: Database Encapsulation Strategies

Overview

Coupling is your greatest enemy. Encapsulation is your greatest ally.

Encapsulation is a software-design issue that deals with how functionality is
compartmentalized within a system. The main concept behind encapsulation is that you should
not have to know how something is implemented to be able to use it. Some people say that
encapsulation is the act of painting the box black — you are defining how something is going
to be done, but you are not telling the rest of the world how you're going to do it. For example,
consider your bank. Do they keep track of your account information on a mainframe, a mini, or
a PC? What database do they use? What operating system? The answer is that it doesn’t
matter to you; the bank has encapsulated the way in which they perform account services. You
just walk up to a teller and perform whatever transactions you wish.

The implication of encapsulation in terms of software development is that you can build the
separate components of a given application in any way you want and then later change the
implementation without affecting other system components (as long as the interface to that
component did not change).

This chapter explores:

. Database encapsulation layers

. The role of the agile DBA

. Encapsulation layer architectures

. Encapsulation layer implementation strategies
. Marshaling and data validation

. Error handling

Database Encapsulation Layers

A database encapsulation layer hides the implementation details of your database(s),
including their physical schemas, from your business code. In effect, it provides your business
objects with persistence services — the ability to read data from, write data to, and delete data
from data sources — without the business objects having to know anything about the database
itself. Ideally, your business objects should know nothing about how they are stored; it just
happens.

Database encapsulation layers aren’t magic, and they aren’t academic theories; database
encapsulation layers are commonly used in both simple and complex applications. Database
encapsulation layers are important for every agile software developer to be aware of and
prepared to use.

An effective database encapsulation layer will provide several benefits:

= Reduces the coupling between your object schema and your data schema, thereby
increasing your ability to evolve either one and thus better support an
emergent/evolutionary approach to design. Note that your business code will still be
coupled to the database-encapsulation layer. You can’t completely remove the coupling,
but you can dramatically reduce it.

= Implements all data-related code in one place, including the data bindings that
implement the mappings between your object and data schemas, making it easier to
support any database schema changes that occur or to support performance-related
changes.

= Simplifies the job of application programmers. With a database-encapsulation layer in
place, the application programmers only have to deal with program source code (for
example, Java) and not program source code plus SQL code.

= Enables application programmers to focus on the business problem and agile DBA(S)
to focus on the database. Both groups still need to work together of course, but each can
focus in on its own jobs better.

= Gives you a common place, in addition to the database itself, to implement
data-oriented business rules.

= Takes advantage of specific database and features, increasing application
performance.

There are potentially several disadvantages of database-encapsulation layers:

= They require some kind of investment, whether that investment be money or time and
effort. You either need to build, buy, or download a data-encapsulation layer.

= They often require reasonably clean mappings. A data encapsulation layer can
flounder when the mappings between your object and data schemas (Chapter 14)
become complex.

= They can provide too little control over database access. Some data-encapsulation
strategies, such as Enterprise JavaBeans’ container-managed persistence (CMP)
approach (Roman, Ambler, and Jewell 2002), overencapsulate database access. For
example, with CMP you have no control over when an object is saved — it's typically done

automatically whenever the values of an object’s attributes change even though you may
want to wait before updating.

The Role of the Agile DBA

Figure 13.1 depicts the role of an agile DBA with regard to encapsulation layers. There are
three main activities that an agile DBA will be involved with:

Determine encapsulation strategy. You will work with enterprise architects and application
programmers to determine an appropriate encapsulation strategy. This strategy will be based
on the current approach within your organization; perhaps there is a database encapsulation
layer(s) in place already or at least an existing vision. You may choose to forgo a
database-encapsulation strategy at this time, deciding to take a brute-force approach for now
(see the section Brute Force), trusting that you can revisit this decision at a later date if need
be.

Develop an encapsulation layer. You will work with the application programmers to
implement your chosen encapsulation strategy. This could be something as simple as
installing an existing layer, perhaps a commercial package that your organization has
purchased, an open source software (OSS) package that you have downloaded, or a package
built by another project team. You may also discover that your project team has decided to
build its own solution, an effort that you may choose to be involved with because of your
database expertise. You may discover that you need to mentor some application programmers
in the use of the database encapsulation layer, and even in the concept of using one.

Implement database access. You will work with the application programmers on an ongoing
basis to implement database access within their business objects. Depending on the
implementation strategy of your layer (see the following section), this could range from helping
them to write SQL code to something as simple as helping them to administer the metadata of
a persistence framework.

E N
Agile DEA
&
- = . = = &
Tt | [W
lr.LI:E; -xrll:l1|::1|i-1 F_r.g.:_.:ihfl_’.. Implement
Aprsula sulatio ek
L Strategy Layer . DB Access)
T % —
r T *
- . X
o -
AN P
Enterprise Architects Application Programimers

Figure 13.1: The role of the agile DBA.

Encapsulation-Layer Architectures

Figure 13.2 depicts the simplest architecture for encapsulating access to a relational database
— a single application working with a single database. In this situation, there is the greatest

potential for flexibility, so your team should be able to choose the implementation strategy,
such as data access objects or a persistence framework, that best fits your situation.
Furthermore, you should be in a position to evolve both your object schema and your database
schema as you implement new requirements.

Your
Application

DB Encapsulation Layer

\-.._________—________...--‘

Your
Database

l‘--..__‘_‘____—____._,_,_.---"'

Figure 13.2: Single-application, single-database architecture.

A far more realistic situation to be in is depicted in Figure 13.3, which shows a
multiple-application, single-database architecture. This architecture is common in
organizations that have a centralized legacy database (see Chapter 8) with which all
applications work. Another realistic situation is shown in Figure 13.4, where there are multiple
applications working with multiple databases. In this case, you are likely accessing both your
database(s), if you have any at all, as well as one or more legacy data sources.

Other Your
Applications Application

DB Encapsulation Layer

L

5/ Shared
Database

"'-.._______—______,..-'
Figure 13.3: Multiapplication, single-database architecture.

Other Your
Applications Application

"

DB Encapsulation DB Encapsulation
Layer(s) Layer

Your
Database

Other
Database(s)

Figure 13.4: Multiapplication, multidatabase architecture.

One interesting observation about both of these diagrams is that some applications may not

take advantage of the encapsulation layer(s) and will instead directly access data. There are

several reasons that this may be the case:

= Your data encapsulation layer is written in a language that some legacy applications
can't easily access.

Ll You've chosen not to rework some of your legacy applications to use the
database-encapsulation layers.

= You want to use technologies, such as a bulk load facility or a reporting framework,
that require direct access to the database schema. Note that this may motivate your team
to sometimes go around the encapsulation layer.

The point is that some applications will be able to take advantage of your encapsulation layer(s)
and some won't. There are still benefits because you are reducing coupling and therefore
reducing your development costs and maintenance burden.

Figure 13.4 makes it clear that some applications have an encapsulation layer in place already.
If this is the case, you might want to consider reusing the existing approach instead of
developing your own. By having a single encapsulation layer that all applications use to access
all data sources (where appropriate), you potentially reduce the effort it takes to evolve your
database schemas via database refactoring because there is only one encapsulation layer to
update. If you've purchased the encapsulation layer, you may be able to reduce overall
licensing fees by dealing only with one vendor. The potential disadvantage is that the team
responsible for maintaining the encapsulation layer could become a bottleneck if they are
unable or unwilling to work in an agile manner.

Encapsulation-Layer Implementation Strategies
Regardless of whether you intend to purchase, build, or download a database-encapsulation

layer, it's critical for both agile DBAs and application developers to understand the various
implementation strategies. There are four basic strategies that you should consider using,

including:

= Brute force

= Data access objects

= Persistence frameworks
= Services

In the following sections, | provide an overview of each strategy, describe how to read a single
object from a database using that strategy, and discuss the development implications of taking
that approach.

Note In the following sections, | describe how to read an object from the database
because it often involves the most effort. First, a query must be formulated
and submitted to the database. The result set is then converted into an
object, an activity called unmarshaling. Inserts, updates, and deletes are
less interesting because they only require the formulation and submission of

a query. Error handling — including the detection of error codes returned
from the database, the reporting of problems to users, and the potential
logging of the error — will be ignored (for now) for the sake of simplicity.
Error handling is discussed at the end of this chapter.

Brute Force (the Encapsulation Strategy That Isn’t

One)

The brute-force approach isn’t a database-encapsulation strategy; it's what you do when you
don’t have a database-encapsulation layer. However, it is a valid option for database access
and therefore | discuss it here along with the “real” encapsulation strategies. Furthermore, the
brute-force strategy is by far the most common approach because it is simple and provides
programmers with complete control over how their business objects interact with the database.
Because of its simplicity this is a very good approach to take at the beginning of a project when
your database access requirements are fairly straightforward. As your database access needs
become more complex, encapsulation strategies such as data access objects or persistence
frameworks are likely to become better options.

The basic strategy behind the brute-force approach is that business objects access data

sources directly, typically by submitting SQL or Object Query Language (OQL) code to the

database. In Java applications, this is done via the Java Database Connectivity (JDBC) class

library and via the Open Database Connectivity (ODBC) API in Microsoft-based applications.

Note Microsoft has newer approaches, such as the ActiveX Data Object (ADO)

and Microsoft Data Access Component (MDAC) libraries, that encapsulate
and extend ODBC. Other environments, such as COBOL or Ruby, have
their own native APIs that often take advantage of existing ODBC or JDBC
database drivers.

Figure 13.5 depicts a UML sequence diagram showing the basic logic for reading a single
object from the database. Upon receiving a request to read itself, the business object creates
an SQL Select statement (or the equivalent in whatever access language you're using) and
submits it to the database. The database processes the statement and returns a result set.
The object then marshals the data by removing it from the result set and updating its own
attributes with the read-in values.

Customer: Database

™\ Build
1Select
Statement
o
Select Statement .

OB REE i

=4

T\ Set
IData

Values
'lu\?_

Figure 13.5: Reading an object via brute force.

There is an underlying assumption that the business object already contains sufficient
information to identify itself. This information will exist if the object was previously read in from
the database, perhaps as the result of a search query. When the object has a surrogate key,
one that has no business meaning, the attributes of that key will be maintained as “shadow
data” in the object so that you have sufficient information to identify that object. If you are
reading the object in for the first time, one possible technique is to create a new instance,
assign it sufficient information to uniquely identify it in the database, and then use that data to
formulate the query. In the case of a Customer object, this might be the customer number or a
combination of the name and telephone number.

The brute-force approach can be reasonably straightforward, although time-consuming, for an
agile DBA to support. You may have to mentor application programmers in the basics of query
languages such as SQL and OQL, database access APIs such as JDBC andODBC, and error
handling. Remember, because it's brute force the application programmers are writing all of
the database access code. Because you'll be helping with testing and performance tuning of
the database access code, you'll need to become intimately familiar with the development
environment (likely something that will happen anyway). You'll also want to help develop a
standard way to do things — such as having read(), delete(), and save() operations in each
business object — and help to set query-language coding standards.

Data Access Objects

Data access objects (DAOs) encapsulate the database access logic required of business
objects. The typical approach is for there to be one data access object for each business
object, for example the Customer class would have a Customer_Data class. The

Customer_Data class implements the SQL/OQL/ . . . code required to access the database,
similarly to the brute-force approach. The main advantage of data access objects over the
brute-force approach is that your business classes are no longer directly coupled to the
database; instead, the data access classes are. It is quite common to simply develop your own
data access objects, although you may also choose to follow industry-standard approaches
such as Java Data Object (JDO, see www.jdocentral.com) and ActiveX Data Object (ADO, see
www.microsoft.com .
Note ADO is, arguably, more of an implementation platform on which to build
DAOs within the Microsoft environment; it's also arguable that ADO is
clearly not as sophisticated as the newer JDO because it does not abstract
access to the database as fully.

Figure 13.6 depicts the logic for a Customer object to read itself from the database. You can
see that the Customer_Data has hidden the details of the database access from the business
object.

1. The first step is for the business object to pass itself as a parameter to the DAO.

2. The DAO then obtains the value(s) for the primary key within the database; if this
information is not known, the DAO needs to obtain sufficient information from the
business object to identify it in the database.

3. The DAO then builds the query, invokes it on the database, and marshals the data in
the resulting set by updating the business object.

— ' 1

!":.' Istames f"""’.-.‘.‘"'*-"-"“.. Dt b
Read(customer) . |
L gQetKeyValues |
Keyvalue(s) |
™, Build
[Select
L/ Statement
Select SLaterment &
LT
L. Set Dt Values

Figure 13.6: Reading an object via data access objects.

DAOs are slightly easier for an agile DBA to support than the brute-force approach because
the database access logic is concentrated in one place. The application programmers will still
need similar levels of mentoring, and you'll still need to help set coding standards.

Persistence Frameworks

A persistence framework, often referred to as a persistence layer, fully encapsulates database
access from your business objects. Instead of writing code to implement the logic required to
access the database, you instead define meta data that represents the mappings. So, if the
Customer class maps to the T_Customer table, then part of the meta data would represent this

mapping. Meta data representing the mappings of all business objects, as well as the
associations between them, also needs to exist. Based on this meta data, the persistence
framework generates the database access code it requires to persist the business objects.
Depending on the framework, several of which are listed in Table 13.1, this code is either
generated dynamically at run time or generated statically in the form of data access objects,
which are then compiled into the application. The first approach provides greater flexibility,
whereas the second provides greater performance.

Persistence frameworks will have a variety of features. Simple ones will support basic create,
read, update, delete (CRUD) functionality for objects as well as basic transaction and
concurrency control. Advanced features include robust error handling, database connection
pooling, caching, XML support, schema and mapping generation capabilities, and support for
industry-standard technology such as EJB.

Figure 13.7 depicts a high-level architecture for persistence frameworks. When you buy or
download a persistence framework, it should include an administration facility that enables you
to maintain the mapping metadata. This facility typically uses the persistence framework itself,
when you install the application it will write out the metadata that it requires to describe the
mapping between the metadata repository and the administration facility. The mapping meta
data repository is typically a relational database, although in less-sophisticated tools this
“repository” can be something as simple as an XML document or even a simple text file (when
this is the case the “administration facility” is often a text editor). One easy-to-use
administration facility is an important tool for an agile DBA who is responsible for maintaining
the mapping meta data (more on this in a moment). Luckily, most commercial and OSS
frameworks come with a GUI or HTML-based administration facility.

e — ——
=3l -
—— —

Meta Data Pearsistence |

Thine T “.] Mapping
Administration [, QUL 3 o ks [~ S0 phes Dala
Facility ; ; ; * | Repaository
p
- -ﬁ ” -
sy
e o
g S— Parsistence —_—l M
i b ; CHhject b FIT. Vour
Application(s) |, — /| Frameworks e 1 Database

Figure 13.7: Architecture of a persistence framework.

The persistence framework reads the mapping meta data into memory and creates a
collection of “map objects” from it. It uses these map objects to create the code required to
access the database. These map objects often form something referred to as a SQL
generation engine within the persistence framework. In the case of dynamic generation, the
persistence framework caches the map objects and collaborates with them each time the
database is to be accessed (advanced frameworks will cache common portions of SQL code).
For static generation of data access objects, the persistence framework only requires the map
objects at code-generation time, although it will obviously need the data access objects at
application run time.

An important issue with the design of persistence frameworks is whether persistence is implicit
or explicit. With an implicit approach, the framework automatically persists the business
objects without their knowledge; that is, they don’t need to request to be saved, read, or
whatever; it just happens. A perfect example is the Enterprise JavaBean (EJB) concept of
persistence containers: to be automatically persisted, an entity bean needs to implement a
standard interface (a collection of operations) and be described in the deployment descriptor
(an XML document containing meta data).

With an explicit approach, which is by far the most common, objects need to indicate (or have
something else indicate) when they should be saved. An example of an explicit and dynamic
approach is depicted in Figure 13.8.

Customers | Persmtenca Maps Your
Customes | PermstenceF ramissso [E Pp '1|__|l:] Database

Read |;r| 1stamer)

L ﬂr1r‘:.1l.'|'l.l'.'.:|,|H
cpthdaps |

[, Build
Ernet

 Statement
I

Select Statermnent N
L. 5et Data Values

Figure 13.8: Reading an object via persistence frameworks.
1. Asyou can see from the figure:
2. The customer object tells the persistence framework to read itself.
3. The framework collaborates with its collection of map objects to dynamically generate
the SQL statement to be invoked on the database.

The important thing to notice is that the business object only needs to interact with the
framework, most frameworks typically have a class called Database, PersistenceFramework,
or PeristenceBroker that implements its public interface.

The persistence framework approach makes the job of an agile DBA a little more complex but
a lot less onerous. You will be expected to install, if necessary, the persistence framework.
You will also need to work with the administration facility to define and maintain the mapping
meta data. In the case of explicitly controlled persistence frameworks, application
programmers will need mentoring in the use of the framework, often a very simple task.

Table 13.1: Sample Products

PRODUCT PLATFORM DESCRIPTION URL

Castor Java OSS persistence http://castor.exolab.org
framework with
support for XML,
JDO, DSML
(Directory Service

Table 13.1: Sample Products

PRODUCT PLATFORM DESCRIPTION URL

Markup
Language),
caching,
two-phase
commit, OQL to
SQL mappings,
ability to create
base mapping,
support for EJB
containers, and

the ability to

create an XML

schema.
CocoBase Java Commercial www.thoughtinc.com
Enterprise persistence
O/R framework that

creates maps from
objects to tables,
tables to objects,
existing objects
with existing
tables, existing
object models
using transparent
persistence, and
UML/XMI object
models.
Generates Java
code a variety of
approaches data
objects, EJB
CMP/BMP
(containermanage
d persistence/
bean-managed
persistence) entity
beans, EJB
session beans,
JSPs, and
servlets.

Table 13.1: Sample Products

PRODUCT PLATFORM DESCRIPTION URL

Deklarit .NET Commercial www.deklarit.com
development
environment that
allows you to
describe business
objects and rules
in a declarative
way, with no
programming, and
it generates the
database schema
and the ADO.NET
strongly typed
DataSets and
DataAdapters
necessary to
support them.

Hibernate Java OSS persistence http://hibernate.bluemars.net
framework that
generates code
dynamically at
system startup
time. Supports an
ODMG 3 interface

as well as a

custom API.
JC Visual Basic OSS persistence http://sourceforge.net/projects/jcframework/
Persistent 6 framework that
Framework manages

transactions in a
transparent
manner to most

relational

databases.
Osage Java OSS persistence http://osage.sourceforge.net
Persistenc framework

e Plus XML

that features
JDBC-based

Table 13.1: Sample Products

PRODUCT PLATFORM DESCRIPTION URL

object-relational
mapping that
allows
experienced Java
developers to
quickly implement
database access
in their
applications. It
generates SQL for
retrieving, saving,
and deleting
objects. Supports
object
relationships and
can automatically
generate keys.

Pragmatier Visual Basic Commercial WwWWw.pragmatier.com
6, .NET persistence
framework/code

generator that
generates the
code for DAO
objects with full
CRUD + filter/sort
capabilities on the
MS platforms.
Includes
development
environment that
enables you to
map data access
objects that you
create to your
existing database,
or you can let the
framework create
the database for
you (or a mix
thereof). Support
for distributed

Table 13.1: Sample Products

PRODUCT PLATFORM DESCRIPTION URL

transactions and
object caching,
XML serialization,
and traversable
data model.

Versant Java Commercial www.versant.com
Enjin persistence
framework that
provides
transparent
persistence for
Java objects
within the
application server
and web server
tiers. EnJin stores
objects
transactionally in
the middle tier and
distributes these
objects on
demand to local
caches in the
application and
Web servers.

Webware Python OSS suite of http://webware.sourceforge.net
for Python software
components for
developing
object-oriented,
Web-based
applications
including an object
to relational

mapper.

As you can see in Table 13.1, there are many persistence frameworks available for download
or purchase, and a much longer list is maintained at:
www.ambysoft.com/_persistencelLayer.html.

This URL also includes a white paper describing the design of a persistence layer. If you
discover that a persistence framework does not exist on your platform, or that the ones
available do not meet your needs, then you might decide to build your own. If you do decide to
build, then you might find the design ideas presented in the aforementioned white paper useful.
Furthermore, Fowler et al. (Fowler, Rice, Foemmel, Hieatt, Mee, and Stafford 2003) describe
several patterns — Active Record, Data Mapper, Identity Map, Inheritance Mappers,
Repository, and Unit of Work — that may be useful.
Tip If at all possible, avoid building your own persistence framework. Having built

several myself, | highly recommend against building yet another framework.

Although | have to admit that it's a great learning experience, it's also a heck

of a lot of work.

Services

For the sake of discussion, a service is an operation offered by a computing entity that can be
invoked by other computing entities. At the time of this writing, the most popular architectural
strategy is Web services (McGovern et al. 2003); however, as you see in the following list, it is
only one of several common strategies available to you. Services are typically used to
encapsulate access to legacy functionality and data, and there is a clear preference within the
industry to build new applications following a Web-services-based architecture to facilitate
reuse via system integration.

Common Object Request Broker Architecture (CORBA). CORBA (www.corba.org) was
popularized in the early 1990s as the preferred approach for implementing distributed objects
on non-Microsoft platforms. Today CORBA is used, for the most part, as a wrapping
technology around legacy computing assets (it is even used to wrap access to DCOM
applications).

Customer Information Control System (CICS) Transaction. CICS
(www-3.ibm.com/software/ts/cics/) was a transaction processor (TP) monitor popularized by
IBM in the 1970s. Today, it is still a growing technology platform for mission-critical business
applications.

Distributed Component Object Model (DCOM). DCOM
(www.microsoft.com/_com/tech/DCOM.asp) was popularized in the early 1990s as the
preferred approach for implementing distributed components within Microsoft environments.
DCOM is a protocol that enables software components to communicate directly over a network
in a reliable, secure, and efficient manner. DCOM is still an important part of the Microsoft
platform.

Electronic data interchange (EDI). EDI is the standardized exchange of electronic
documents between organizations, in an automated manner, directly from a computer
application to another. EDI was popularized in the mid-1980s by large manufacturers, and
their suppliers, and still forms the basis of many mission-critical applications today. It appears
that EDI is slowly being replaced by Web services.

Stored procedures. Stored procedures implement functionality, typically a collection of SQL
statements, within a database. Stored procedures were popularized in the mid-1980s and are
still a valid implementation technology today.

Web Services. Web services (www.w3.0rg/2002/ws/) are self-contained business functions,
written to strict specifications, which operate over the Internet using XML (see Chapter 22).
Common Web-service platforms are Microsoft .NET (www.gotdotnet.com) and Sun ONE
(www.sun.com/software/sunone/) technology.

Figure 13.9 depicts how a service could provide access to customer data, as follows:

— o - — o = |

Customer ReadCustomers Wrappead Diakabase
Custormer Service Code

Read (1) . |
ReadCustomer(10) |
™, Basld
Gelect
A staterment

Select Statement _ |

L Result Sat

Customer Data

|Build
JXML

[XML
W, -;'n.'t

Liata
/ Vallues

Figure 13.9: Reading an object via services.
1. The customer object invokes the read customer service, passing the customer ID to
identify which customer to retrieve.
The service uses this data to invoke a wrapped legacy application.
The legacy application, in turn, reads the data from the database.
The customer data is returned to the service.
The service creates an XML document and returns it to the object.
The object unmarshals the data from the XML document and updates itself.
Note Notice that the service didn’t have to access a wrapped legacy
application, it could just as easily accessed the database directly or
other functionality as required. Also note that the use of XML was

o oA~ wDN

simply a design choice, that other ways to transport the information
could have been used.

Services will likely require agile DBAs to have an understanding of what services are available.
This information should be available from your enterprise administrators and/or enterprise
architects, and better yet should be freely available through a reuse repository (such as
Flashline’s www.flashline.com). For services that encapsulate data access, an agile DBA will
likely be expected to work with application developers to write code to invoke that service.

When to Use Each Strategy

In this section, you have seen that there are several common architectural strategies for
encapsulating access to a database. As you see in Table 13.2, each one has its advantages
and disadvantages, and as a result there are times when one approach is more appropriate
than the others. The implication is that both agile DBAs and application programmers need to
understand each strategy and be prepared to work with each. One size does not fit all.

Transitioning between Strategies

As your application grows, you often discover that the simpler encapsulation strategies need to
be replaced with more sophisticated approaches. How do you ensure that this transition is
relatively easy to accomplish? A good start is to follow common strategies such as applying
coding standards, writing classes that are highly cohesive and loosely coupled, and applying
common architectural and design patterns. Table 13.3 summarizes design strategies that can
be used to improve the quality of each type of encapsulation strategy.

Table 13.2: Comparing the Strategies

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO USE
Brute force ' Very simple . Directly . At beginning of
approach. couples your a project when
. Can develop object schema your persistence
code very to your data approach is still in
quickly. schema. flux.
. Can support . Application . For small

access to very

developers
need to learn

applications (less
than 20 business

bad data
designs database classes) and/or
(although access prototypes.
performance language (for
may suffer). example, SQL).
" Database
refactoring
(Chapter 12)
impeded due to
high coupling.
Difficult to
reuse database
access code.
Data access " Database " Object " Medium-sized
objects access code schema still application (20 to

Table 13.2: Comparing the Strategies

STRATEGY

ADVANTAGES

DISADVANTAGES

WHEN TO USE

encapsulated
into its own set
of classes.

Business
classes no
longer coupled
to database.

Database
refactoring
easier due to

coupled to your
data schema,
via the data
access objects.

Application
developers
need to learn
SQL.

Often
platform-specifi

100 business
classes).

lowered C.
coupling. Can
support access
to very bad data
designs
(although
performance
may suffer).
Possible to
reuse data
access objects.
Persistence Application Perceived Medium-sized
framework programmers do performance and large
not need to know impact on your applications.
the data applications (if When it is
schema. the framework common practice
Application is poorly built). within your
programmers Requires organization to
don't even need reasonably use a persistence
to know where clean data framework.
the data is designs
stored. because the
Frameworks framework may
reflect not support the
performance overly complex

expertise of its
builders(unless
you’re an expert,
your

mappings.

Often
platform-specifi
C.

Table 13.2: Comparing the Strategies

STRATEGY

ADVANTAGES

DISADVANTAGES

WHEN TO USE

“brute-force”
code likely isn’t
as good as the
framework’s
generated code).

Administration
facility can ease
database
refactoring
because it
simplifies impact
analysis by
tracing columns
to object
attributes.

Administration
facility aids
performance
tuning because it
makes it easy to
change
mappings.

Possible to
reuse framework
and mapping
meta data
between
applications.

Services

Potential to
create platform
independent
services.

Web services
quickly
becoming an
industry
standard.

Supports
reuse between

Web
services
standards and
tools still
evolving.

Performance
becomes a
problem when
combining
several
services in

Medium to
large sized
applications.

Whenever an
appropriate
service already
exists that you can
reuse.

Table 13.2: Comparing the Strategies

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO USE

applications. serial or simply
when services
are invoked
across a
network.

Table 13.3: Design Approaches for Each Encapsulation Strategy

ENCAPSULATION COMMON TRANSITIONS
STRATEGY

DESIG N STRATEGIES

Brute Force = To Data Access
Objects

. To Persistence
Framework

. To Services

Implement a common
persistence interface across
business objects. For
example, each object
implements retrieve(),save(),
and delete()operations.

Refactor common database
access functionality, such as
session pooling and
marshaling code, into common
classes.

Copy and paste database
access code examples
between classes to help
implement a common
approach.

Data Access = To Persistence

Objects (DAOS) Framework
" To Services

Implement a common
interface across all data
access objects.

Use existing, standard
approaches such as JDO and
ADO.

Each DAO should persist a
single business class.

Refactor common database
access functionality, such as
session pooling and
marshaling code, into common
classes.

Table 13.3: Design Approaches for Each Encapsulation Strategy

ENCAPSULATION
STRATEGY

COMMON TRANSITIONS

DESIG N STRATEGIES

" Copy and paste database
access code examples
between DAOSs to help
implement a common
approach.

Persistence
Framework

= To Services

" Include the ability to access
a wide variety of data sources,
including relational databases,
XML data sources, and
nonrelational databases.

" Implement wrappers to
legacy data sources (see
Chapter 8) to make them
appear similar.

" Support both synchronous
and asynchronous invocation.

" Support ability to manage
complex transactions
(discussed in Chapter 15).

Services

] To Persistence
Framework

" Implement a common
approach to passing data to,
and receiving responses from,
each service. Implement
database access code in a
common manner, ideally using
one of the other encapsulation
strategies.

Marshaling and Data Validation

Marshaling is the conversion of an object into a data structure such as an XML document or a
data set. Unmarshaling is the corresponding conversion of data to objects. However, it is
common to refer to both types of conversion simply as marshaling.

Do you validate the data at all? You don't always need to validate data. Perhaps you know
that the data comes from a clean source. Perhaps there are no applicable validation rules

against which to check the data. Perhaps the performance characteristics of your application
simply don’t allow for validation to occur.

Where is validation performed? Do your business objects validate the data? Does your
database validate the data, perhaps through constraints, triggers, and stored procedures? If
you're working with XML documents, do you use your parser to check its document type
definition (DTD) or schema definition? A specialized data validation facility? A combination
thereof?

Do you validate data automatically? XML parsers, as well as some persistence frameworks,
offer the ability to automatically validate data as it is being unmarshaled. The advantage is that
this is very easy and convenient for developers; the problem is that performance is affected
because you're always validating the data.

What do you do when you find a problem? You will need to define an effective
error-handling strategy (see the next section).

Error Handling

An important feature of a database-encapsulation layer is its ability to handle database errors
appropriately. Whenever the encapsulation layer interacts with a data source there is a
potential for an error to occur. Common types of database-oriented errors include:

= The database is not available.

= The network is not available.

= The request you made to the database is not correct (for example, it is improperly
formulated SQL code, or you're trying to invoke a stored procedure that doesn't exist).

= You are trying to work with data that doesn’t exist (for example, trying to update a
deleted record).

= You are trying to insert existing data.

= The data you want to access is locked (for example, you want to update a record that

another user has write-locked).

The list described above is nowhere near complete, you only have to look at the list of
error codes in the manuals for your database to see this, but it is a good start. The point is
that errors happen, and you need to be prepared to act on them. A good encapsulation
layer should be able to:

= Detect database-oriented errors and continue processing.

= Log the details pertaining to the error (error information returned by the database, date
and time of the error, user ID, application/service affected, and so on). This should be at
the option of the invoking application.

= Report the error to the invoking application in an intelligible manner, converting DB
vendor’s error code 1701 to a more generic “Cannot Update Deleted Record” error
message.

You will want a common approach to these error messages, something that your
enterprise administrators may even set corporate standards for.

Summary

By encapsulating access to your database(s), you improve your overall architecture through
the reduction of coupling. This makes your system easy to develop and to maintain, supporting
agile development techniques such as evolutionary design through database refactoring. An
effective database-encapsulation layer becomes an enabler for agile database development.

Chapter 14: Mapping Objects to Relational

Databases

Overview

You are playing a losing game if you need to “use a stick” to motivate someone to do things
your way.

Most modern business application development projects use object technology, such as Java
or C#, to build the application software and relational databases to store the data. This isn't to
say that you don't have other options; there are many applications built with procedural
languages such as COBOL, and many systems will use object databases or XML databases to
store data. However, because object and relational technologies are by far the norm that's
what | assume you're working with in this chapter. If you're working with different storage
technologies then many of the concepts are still applicable, albeit with modification (Chapter
22 provides an overview of mapping issues pertaining to objects and XML).

In Chapter 7, | discussed the impedance mismatch between object and relational technology,
both of which are technologies that project teams commonly use to build software-based
systems. It is quite easy to overcome this impedance mismatch; the secret to doing so is
twofold: you need to understand the process of mapping objects to relational databases, and
you need to understand how to implement those mappings. In this chapter, the term mapping
will be used to refer to how objects and their relationships are mapped to the tables, and the
relationships between them in a database. As you'll soon find out, it isn’'t quite as
straightforward as it sounds — although it isn't too bad either.

This chapter focuses on mapping and touches on implementation issues. Specific
implementation details are addressed in following chapters. The topics covered in this chapter

are:
L] The role of the agile DBA

L] Basic mapping concepts

L] Mapping inheritance structures

L] Mapping associations

L] Mapping class-scope properties

L] The implementation impact on your objects

L] Implications for the Model Driven Architecture (MDA)

. Patternizing the mappings

The Role of the Agile DBA

Figure 14.1 shows the role that an agile DBA plays when it comes to mapping objects to
relational databases. There are three primary activities that we are interested in:

Mapping. The basic goal is to determine an effective strategy for persisting object data. This
includes saving both the data attributes of individual objects and the relationships between
objects, while respecting the inheritance structures between classes.

Implementing mappings. Once a mapping is defined, you need to implement it within your
system, something often referred to as performing data bindings. Chapter 13 presents several
basic strategies for doing this, including embedding Structure Query Language (SQL)
statements in your objects (brute force), using data access objects, using persistence
frameworks, and using services.

Performance tuning. Because mappings define how your objects interact with the database,
they become a significant factor in the performance tuning of your system. Agile DBAs
recognize this and work closely with application developers to tune all three aspects of a
system — objects, mappings, and the database — involved with database access. Database
tuning is only one aspect of data access performance tuning (Chapter 15 discusses
performance tuning in detail).

¥ Mapping

Implerment Tk T
-+
Mappings &L

&
N —
-

.l'k-;;ull:- (1 T i - Ai;:-;:.ll-:nl,lr_:.- Pr-'_:-i]':rr"r-e'u

Petlormance
Tunimg

Figure 14.1: The role of the agile DBA in mapping.

As you can see from Figure 14.1, agile DBAs and application developers work together on all
three of these activities; although the agile DBA may be responsible for ensuring that the
mappings are effective, he or she is not solely responsible for the actual effort. Working with
others, not working alone, is the secret to success in agile software development.

Basic Mapping Concepts

When you are learning how to map objects to relational databases, the place to start is with the
data attributes of a class. An attribute will map to zero or more columns in a relational
database. Remember, not all attributes are persistent; some are used for temporary
calculations. For example, a Student object may have an averageMark attribute that is needed
within your application but isn't saved to the database because it is calculated by the
application. Because some attributes of an object are objects in their own right — for example,
a Customer object likely has an Address object as an attribute — this really reflects an
association between the two classes that would likely need to be mapped, and the attributes of

the Address class itself will need to be mapped. The important thing is that this is a recursive
definition: At some point, the attribute will be mapped to zero or more columns.

First off, let's get some basic mapping terminology out of the way:

Mapping. (v) The act of determining how objects and their relationships are persisted in
permanent data storage, in this case relational databases. (n) The definition of how an object’s
property or a relationship is persisted in permanent storage.

Property. A data attribute, either implemented as a physical attribute, such as the string
firstName, or implemented as a virtual attribute via an operation, such as getTotal(), which
returns the total of an order.

Property mapping. A mapping that describes how to persist an object’s property.

Relationship mapping. A mapping that describes how to persist a relationship (association,
aggregation, or composition) between two or more objects.

It may help you to think that classes map to tables; in a way they do, but not always directly.
Except for very simple databases, you will never have a 100 percent pure one-to-one mapping
of classes to tables, something you will see in the “Mapping Inheritance Structures” section
later in this chapter. However, a common theme that you will see throughout this chapter is
that a one-class-to-one-table mapping is preferable for your initial mapping (performance
tuning may motivate you to refactor your mappings).

For now, let's keep things simple. Figure 14.2 depicts two models: a UML class diagram and a
physical data model that follows the UML data-modeling profile described in Chapter 2. Both
diagrams depict a portion of a simple schema for an order system. You can see how the
attributes of the classes could be mapped to the columns of the database. For example, it
appears that the dateFulfilled attribute of the Order class maps to the DateFulfilled column of
the Order table and that the numberOrdered attribute of the Orderltem class maps to the
NumberOrdered column of the Orderltem table.

<«<Class Model>= <«<Physical Data Model> >
Order Order
dateOrdered: Date Orderid: INT24 PR
dateFulfilled: Date DateOrdered: Date
- lederalTax: Currency Dratedf ulidled: Date
- stateTax: Currency Tan: Float
localTax: Currency SubtotalBeforeTax: Float
subtotalBeloreTax: Currency ShipToContactlD: INT24 < <FE==
BillToContactlD; INT24 <<FK=z
+ cancel) LastUpdate: TimeStamp
o gt Taxes(): Vector
+ gatTotal(): Currency
+ shipd{]
- calculateTaxes()
- schedulebhipment ()
"

i
¥

{orderad) | 1,.°

Orderltem
fordered} | 1..” Orderid: INT24 <aPos cofKas
Orderlitem lemSequence: INT24 <oPK=x
1 Itembeg: INT24 <<FK==
= nimberDrdered:; int NumberCrdered: INT24
« gatTotal(): Currency LestUpdate: TimeStamp

Figure 14.2: A simple mapping example.

Tip The easiest mapping you will ever have is a property mapping of a single
attribute to a single column. It is even simpler when each have the same basic
types, for example, they’re both dates, the attribute is a string and the column
is a char, or the attribute is a number and the column is a float.

Note that these initial property mappings were easy to determine for several reasons:

= Similar naming standards were used in both models, an aspect of the Agile Modeling
(AM) Apply Modeling Standards practice.
Ll Itis very likely that the same people created both models. When people work in

separate teams it is quite common for their solutions to vary, even when the teams do a
very good job, because they make different design decisions along the way.

Ll One model very likely drove the development of the other model. In Chapter 9, |
argued that when you are building a new object-oriented system your object schema
should drive the development of your database schema, a practice that | discuss later in
this chapter.

Even though the two schemas depicted in Figure 14.2 are very similar, there are differences.
These differences mean that the mapping isn’t going to be perfect. The differences between
the two schemas are:

Ll There are several attributes for tax in the object schema yet only one in the data
schema. The three attributes for tax in the Order class presumably should be added up
and stored in the tax column of the Order table when the object is saved. When the object
is read into memory, however, the three attributes would need to be calculated (or a lazy
initialization approach would need to be taken, and each attribute would be calculated
when it is first accessed). A schema difference such as this is a good indication that the
database schema needs to be refactored to split the tax column into three.

Ll The data schema indicates keys, whereas the object schema does not. Rows in tables
are uniquely identified by primary keys, and relationships between rows are maintained
through the use of foreign keys. Relationships to objects, on the other hand, are
implemented via references to those objects not through foreign keys. The implication is
that in order to fully persist the objects and their relationships, the objects need to know
about the key values used in the database to identify them. This additional information is
called “shadow information” and is discussed in greater detail in the next section.

= Different types are used in each schema. The subTotalBeforeTax attribute of Order is
of the type Currency, whereas the SubTotalBeforeTax column of the Order table is a float.
When you implement this mapping, you will need to be able to convert back and forth
between these two representations without loss of information.

Shadow Information

Shadow information is any data that objects need to persist themselves above and beyond
their normal domain data. This typically includes primary key information, particularly when the
primary key is a surrogate key that has no business meaning and concurrency control
markings such as timestamps or incremental counters (see Chapter 17). For example, in

Figure 14.2 you can see that the Order table has an OrderID column used as a primary key
and a LastUpdate column, which is used for optimistic concurrency control that the Order class
does not have. To persist an order object properly, the Order class would need to implement
shadow attributes that maintain these values.

Figure 14.3 shows a detailed design class model for the Order and Orderltem classes. There
are several changes from Figure 14.2. First, the new diagram shows the shadow attributes that
the classes require to properly persist themselves. Shadow attributes have an implementation
visibility, there is a space in front of the name instead of a minus sign, and they are assigned
the stereotype <<Persistence>> (this is nhot a UML standard). Second, it shows the scaffolding
attributes required to implement the relationship of the two classes. Scaffolding attributes,
such as the orderltems vector in Order, also have an implementation visibility. Third, a
getTotalTax() operation was added to the Order class to calculate the value required for the
tax column of the Order table. This is why | use the term property mapping instead of attribute
mapping — what you really want to do is map the properties of a class, which are sometimes
implemented as simple attributes and other times as one or more operations, to the columns of
a database.

Oirderitam

FINTI N (Rl

lrtlipdate: DateTime < <Pershbencess

it allan]): Lurfecdy Firunlaences >

Figure 14.3: Including “shadow information” on a class diagram.
Tip Itis a common style convention in the UML community to not show shadow
information, such as keys and concurrency markings, on class diagrams
(Ambler 2003). Similarly, the common convention is to not model scaffolding
code. The idea is that everyone knows you need to do this sort of thing, so
why waste your time modeling the obvious?

One type of shadow information that | have not discussed yet is a Boolean flag to indicate
whether an object currently exists in the database. The problem is that when you save data to
a relational database, you need to use a SQL update statement if the object was previously
retrieved from the database and a SQL insert statement if the data does not already exist. A
common practice is for each class to implement an isPersistent Boolean flag, not shown in
Figure 14.3, that is set to true when the data is read in from the database and set to false when
the object is newly created.

Shadow information doesn’t necessarily need to be implemented by the business objects,
although your application will need to take care of it somehow. For example, with Enterprise
JavaBeans (EJBs) you store primary key information outside of EJBs in primary key classes,
the individual object references a corresponding primary key object. The Java Data Object
(JDO) approach goes one step further and implements shadow information in the JDOs and
not the business objects.

Mapping Meta Data

Figure 14.4 depicts the meta data representing the property mappings required to persist the
Order and Orderltem classes of Figure 14.3. Meta data is information about data. Figure 14.4
is important for several reasons. First, we need some way to represent mappings. We could
put two schemas side by side, as you see in Figure 14.2, and then draw lines between them
but that gets complicated very quickly. Another option is a tabular representation that you see
in Figure 14.4. Second, the concept of mapping meta data is critical to the functioning of
persistence frameworks, discussed in Chapter 13, which are a database encapsulation
strategy that can enable agile database techniques.

The naming convention that I'm using is reasonably straightforward: Order.dataOrdered refers
to the dataOrdered attribute of the Order class. Similarly Order.DataOrdered refers to the
DataOrdered column of the Order table. Order.getTotalTax() refers to the getTotalTax()
operation of Order and Order.billTo.personID is the personID attribute of the Person object
referenced by the Order.billTo attribute. Likely the most difficult property to understand is
Order.orderltems.position(orderltem), which refers to the position within the Order.orderltems
vector of the instance of Orderltem that is being saved.

Figure 14.4 hints at an important part of the technical impedance mismatch (Chapter 7)
between object technology and relational technology: classes implement both behavior and
data, whereas relational database tables just implement data. The end result is that when
you're mapping the properties of classes into a relational database, you end up mapping
operations such as getTotalTax() and position() to columns. Although it didn’t happen in this
example, you often need to map two operations that represent a single property to a column —
one operation to set the value, for example, setFirstName(), and one operation to retrieve the
value, for example, getFirstName(). These operations are typically called setters and getters,
respectively, or sometimes mutators and accessors.

Property Column
Order.orderlD Ordes. OrderlD
Order.dateOrderaed Order. DateOrdered
Order.dateFulfilled Order DateFulfilled
Order.getTotalTax () Crder, Tax
Order.subtotalBeforeTax Order.SubtotalBeforeTax
Order.shipTo.personiD Order.ShipToContactiD
Order. billTo. personlD Order BillToContactiD
Order. lastUpdate Order LastUpdate
Qrderltern, ordered Orderitem, OrderlDy
Order.orderitems, position(orderitem) | Orderitem. itemSequence
Orderltem.item. number Orderltem. ltemNo
Orderltem.numberOrderad Orderltermn. MumberOrdered
Orderltern. lastUpdate Orderltern. LastUpdate

Figure 14.4: Basic mapping meta data for Order and Orderltem.

Tip Whenever a key column is mapped to a property of a class, such as the
mapping between Orderltem.ltemSequence and
Order.orderltems_.position(orderltem), this is really part of the effort of
relationship mapping that's discussed later in this chapter. This is because
keys implement relationships in relational databases.

Mapping Inheritance Structures

Relational databases do not natively support inheritance, forcing you to map the inheritance
structures within your object schema to your data schema. Although there is somewhat of a
backlash against inheritance within the object community, due in most part to the fragile base
class problem, my experience is that this problem is mostly due more to poor encapsulation
practices among object developers than with the concept of inheritance (Ambler 2001a). Put
another way, the fact that you need to do a little bit of work to map an inheritance hierarchy into
a relational database shouldn’t dissuade you from using inheritance where appropriate.

The concept of inheritance throws in several interesting twists when you are saving objects

into a relational database. How do you organize the inherited attributes within your data model?
In this section, you'll see that there are three primary solutions for mapping inheritance into a
relational database, and a fourth supplementary technique that goes beyond inheritance
mapping. These techniques are:

= Map the entire class hierarchy to a single table.
= Map each concrete class to its own table.

= Map each class to its own table.

= Map the classes into a generic structure.

To explore each technique, | will discuss how to map the two versions of the class hierarchy
presented in Figure 14.5. The first version depicts three classes: Person, an abstact class, and
two concrete classes, Employee and Customer. You know that Person is abstract because its
name is shown in italics. In older versions of UML, the constraint “{abstract}” would have been
used instead. The second version of the hierarchy adds a fourth concrete class to the
hierarchy, Executive. The idea is that you have implemented the first class hierarchy and are
now presented with a new requirement to support giving executives, but not nonexecutive
employees, fixed annual bonuses. The Executive class was added to support this new
functionality.

Person Person
marme narme
Customer Employee Customer Employee
preferences salary preferences salary
L
Executive
bonus

Figure 14.5: Two versions of a simple class hierarchy.

For the sake of simplicity, | have not modeled all of the attributes of the classes, nor have |
modeled their full signatures or any of the operations. This model is just barely good enough
for my purpose; in other words, it is an agile model. Furthermore, these hierarchies could be

approved by applying the Party analysis pattern (Fowler 1997) or the Business Entity (Ambler
1997) analysis pattern. | haven’t done this because | need a simple example to explain
mapping inheritance hiearchies, not to explain the effective application of analysis patterns — |
always follow the AM principle Model with a Purpose.
Tip Inheritance can also be a problem when it's misapplied — for example, the
hierarchy in Figure 14.5 could be better modeled via the Party (Hay 1996,
Fowler 1997) or the Business Entity (Ambler 1997) patterns. For instance, if
someone can be both a customer and an employee, you would have two
objects in memory for them, which may be problematic for your application.
I've chosen this example because | needed a simple, easy-to-understand
class hierarchy to map.

Map Entire Class Hierarchy to a Table

This approach is often called the “one table per hierarchy” strategy. Following this strategy,
you store all the attributes of the classes in one table. Figure 14.6 depicts the data model for
the class hierarchies of Figure 14.5 when this approach is taken. The attributes of each of the
classes are stored in the Person table, a good table-naming strategy is to use the name of the
hierarchy’s root class in a very straightforward manner. The majority of the effort to support
executives was the addition of the Person.Bonus column.

Person Person
PersonPOID <<PKs> > ~ PersonPOID <<PKs>>
PersonType [% | PersonType
Name L~ Name
Preferences Preferences
Salary Salary

Bonus

Figure 14.6: Mapping the class hierarchy to one table.

Two columns have been added to the table — PersonPOID and PersonType — above and
beyond the business attributes of the classes. The first column is the primary key for the table
(you know this because of the <<PK>> stereotype), and the second is a code indicating
whether the person is a customer, an employee, or perhaps both. PersonPOID is a persistent
object identifier (POID), often simply called an object identifier (OID), which is a surrogate key.
| could have used the optional stereotype of <<Surrogate>> to indicate this but chose not to
because POID implies this; thus, indicating the stereotype would only serve to complicate the
diagram (follow the AM practice Depict Models Simply). Chapter 3 discusses surrogate keys in
greater detail.

The PersonType column is required to identify the type of object that can be instantiated from
a given row. For example, the value of E would indicate the person is an employee, C would
indicate customer, and B would indicate both. Although this approach is straightforward, it
tends to break down as the number of types and combinations begin to grow. For example,
when you add the concept of executives, you need to add a code value, perhaps X, to
represent this. Now the value of B, representing both, is sort of goofy. Furthermore, you might

now have combinations involving executives; for example, it seems reasonable that someone
can be both an executive and a customer, so you'd need a code for this. When you discover
that combinations are possible, you should consider applying the Replace Type Code with
Booleans database refactoring guideline, as you see in Figure 14.7.

Person Person
PersonPOID «<PKs=> PersonPOID <<PK>>
IsCustomer I > IsCustomer
IsEmployee IsEmployee
MName IsExecutive
Preferences Marme
Salary Preferences

Salary
Bonus

Figure 14.7: Alternate version of mapping a class hierarchy to one table.

For the sake of simplicity, | did not include columns for concurrency control, such as the time
stamp column included in the tables of Figure 14.3, nor did | include columns for data
versioning.

Map Each Concrete Class to Its Own Table

With this approach, a table is created for each concrete class, each table including both the
attributes implemented by the class and its inherited attributes. Figure 14.8 depicts the
physical data model for the class hierarchy of Figure 14.5 when this approach is taken. There
are tables corresponding to each of the Customer and Employee classes because they are
concrete (objects are instantiated from them), but not Person because it is abstract. Each table
was assigned its own primary key, customerPOID and employeePOID, respectively. To
support the addition of Executive, all | needed to do was add a corresponding table with all of
the attributes required by executive objects.

Al PO 2 [s P POHLE <P Cuviormag POID) < 4N Crployesb A0 << Pa
Marme Hiare hisrme M
dmamaeny 4 Frferrion ebary

Easdiitive

Figure 14.8: Mapping each concrete class to a single table.

Map Each Class to Its Own Table

Following this strategy, you create one table per class, with one column per business attributes
and any necessary identification information (as well as other columns required for
concurrency control and versioning). Figure 14.9 depicts the physical data model for the class
hierarchy of Figure 14.5 when each class is mapped to a single table. The data for the
Customer class is stored in two tables, Customer and Person; therefore, to retrieve this data
you would need to join the two tables (or perform two separate reads, one to each table). To
support the concept of executives, all | needed to do was add an Executive table that

contained the new Bonus column and a primary key column to maintain its inheritance
relationship to Employee.

Class Mod ek Physcal Cata Model

ripCoda: string Addreis

Rodristic: INT24 <<P%
iy RCHARIAD

retPoas Mate b umber [int
oeSE st eNumben) Ml

Usfddress

ket string
ity Siring

ata; ring

- sl i

Internationaliddress

preE———
Figure 14.9: Mapping each class to its own data entity.

The application of keys is interesting. Notice how personPOID is used as the primary key for
all of the tables. For the Customer, Employee, and Executive tables, the personPOID is both a
primary key and a foreign key. In the case of Customer, personPOID is its primary key and a
foreign key is used to maintain the relationship to the Person table. This is indicated by
application of two stereotypes: <<PK>> and <<FK>>. In older versions of UML, it wasn’t
permissible to assign several stereotypes to a single model element but this restriction was
lifted in UML version 1.4,

A common modification that you may want to consider is the addition of a type column, or
Boolean columns as the case may be, in the Person table to indicate the applicable subtypes
of the person. Although this is additional overhead, it makes some types of queries easier. The
addition of views is also an option in many cases, an approach that | prefer over the addition of
type or Boolean columns because views are easier to maintain.

Map Classes to a Generic Structure

A fourth option for mapping inheritance structures into a relational database is to take a
generic, sometimes called metadata-driven, approach to mapping your classes. This approach
isn’'t specific to inheritance structures; it supports all forms of mapping. In Figure 14.10, you
see a data schema for storing the value of attributes and for traversing inheritance structures.
The schema isn’t complete; it could be extended to map associations, for example, but it's
sufficient for our purposes. The value of a single attribute is stored in the Value table; therefore,
to store an object with 10 business attributes, there would be 10 records, one for each attribute.
The Value.ObjectPOID column stores the unique identifier for the specific object (this
approach assumes a common key strategy across all objects; when this isn’t the case, you'll
need to extend this table appropriately). The AttributeType table contains rows for basic data

types such as data, string, money, integer, and so on. This information is required to convert
the value of the object attribute into the varchar stored in Value.Value.

Wl Clats
EitectPOiED <<PK ClyeBOID <P IE: 2" Imheritance
A, 0 Moo <FK B ccfinociative Tabless
| alue: WARCHAR12) Em ' SpaCRIPOID <Pk ¥
SalrCinnlPOED <<PRx > <<FK:
e
1
Brhr i ™ -

P —— ccLookup Tabls>

S 0. 1| Aftrduste TypePtiD <<PK

ALnributeTyy D <<Flns | | Adlrkute e

APHE < <K v ASRCTion

Figure 14.10: A generic data schema for storing objects.

Let's work through an example of mapping a single class to this schema. To store the
Orderltem class in Figure 14.3, there would be three records in the Value table. One to store
the value for the number of items ordered, one to store the value of the OrderPOID that this
order item is part of, and one to store the value of the ItemPOID that describes the order item.
You may decide to have a fourth row to store the value of the lastUpdated shadow attribute if
you're taking an optimistic locking approach to concurrency control (which is discussed in
Chapter 17). The Class table would include a row for the Orderltem class, and the Attribute
table would include one row for each attribute stored in the database (in this case either three
or four rows).

Now, let's map the inheritance structure between Person and Customer, shown in Figure 14.5,
into this schema. The Inheritance table is the key to inheritance mapping. Each class would be
represented by a row in the Class table. There would also be a row in the Inheritance table; the
value of Inheritance.SuperClassPOID would refer to the row in Class representing Person, and
Inheritance.SubClassPOID would refer to the row in Class representing Customer. To map the
rest of the hierarchy, you require one row in Inheritance for each inheritance relationship.

Comparing the Mapping Strategies

None of these mapping strategies is ideal for all situations, as you can see in Table 14.1. My
experience is that the easiest strategy to work with is to have one table per hierarchy at first,
then refactor your schema accordingly if you need to. Sometimes, I'll start by applying the
one-table-per-class strategy, whenever my team is motivated to work with a “pure design
approach,” | stay away from using one table per concrete class because it typically results in
the need to copy data back and forth between tables, forcing me to refactor it reasonably early
in the life of the project anyway. | rarely use the generic schema approach because it simply
doesn’t scale very well.

Table 14.1: Comparing the Inheritance Mapping Strategies

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO
USE

One table per " Simple " Coupling within the Thisis a

Table 14.1: Comparing the Inheritance Mapping Strategies

performance when
accessing a single
object’s data.

class, you would
need to add columns
to the Customer,
Employee, and

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO
USE
hierarchy approach. It's easy class hierarchy is good
to add new classes; increased because all strategy for
you just need to classes are directly simple
add new columns coupled to the same and/or
for the additional table. A change in shallow
data. one class can affect class
Supports the table, which can hierarchies
polymorphism by then affect the other where
simply changing the classes in the there is
type of the row. hierarchy. little or no
Data access is Space is Everlap
fast because the potentially wasted in etween
data is in one table. the database. th_e t_ypes
within the
Ad hoc reporting Indicating the type hierarchy.
is very easy becomes complex
because all of the when significant
data is found in one overlap t_)etween
table. types exists.
A table can grow
quickly for large
hierarchies.
The resulting table
suffers from low
cohesion because
several concepts are
stored in one table.

L] One Ad hoc reporting When you modify When
table per is easy because all a class, you need to changing
concrete the data you need modify its table and types
class about a single class the table of any of its and/or

is stored in one subclasses. For overlap
table. example, if you were between
Good to add height and types is
weight to the Person rare.

Table 14.1: Comparing the Inheritance Mapping Strategies

STRATEGY

ADVANTAGES

DISADVANTAGES

WHEN TO
USE

Executive tables.

= Whenever an
object changes its
role (say if you hire
one of your
customers), you need
to copy the data into
the appropriate table
and assign it a new
POID value (or
perhaps you could
reuse the existing
POID value).

. It is difficult to
support multiple roles
and still maintain data
integrity. For
example, where
would you store the
name of someone
who is both a
customer and an
employee?

One table per
class

] Easy to
understand
because of the
one-to-one
mapping.

] Supports
polymorphism very
well because you
merely have
records in the
appropriate tables
for each type.

] Very easy to
modify
superclasses and

" There are many
tables in the
database, one for
every class (plus
tables to maintain
relationships).

" Potentially takes
longer to read and
write data using this
technique because
you need to access
multiple tables. This
problem can be
alleviated if you
organize your
database intelligently

When
there is
significant
overlap
between
types or
when
changing
types is
common.

Table 14.1: Comparing the Inheritance Mapping Strategies

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO
USE
add new by putting each table
subclasses within a class
because you hierarchy on different
merely need to physical disk-drive
modify/ add one platters (this
table. assumes that the
. Data size grows disk-drive heads all
in direct proportion operate
to growth in the independently).
number of objects. " Ad hoc reporting
. The resulting on your database is
data structure is difficult, unless you
highly add views to simulate
denormalized, the desired tables.
typically third
normal form (3NF)
or better.
L] Generic " Works very well " Very advanced For
schema when database technique that can be complex
access is difficult to implement application
encapsulated by a at first. s that work
robust peristence . It only works for with small
framework(see small amounts of amounts of
Chapter 13). data because you data or for
" It can be need to access many application
extended to provide database rows to s where
meta data to build a single object. your data
support a wide " You will likely want f';lc?ess
range of mappings, to build a small st very
including administration common ot
relationship application to youcan
mappings. In short, maintain the meta pl’e|0fid
it is the start at a data. data into
mapping meta data . _ caches
engine. . Reporting against (see
this data can be very Chapter
" [Itisincredibly difficult due to the 15).

flexible, enabling
you to quickly

need to access
several rows to obtain

Table 14.1: Comparing the Inheritance Mapping Strategies

STRATEGY ADVANTAGES DISADVANTAGES WHEN TO
USE
change the way the data for a single
that you store object.

objects because
you merely need to
update the meta
data stored in the
Class, Inheritance,
Attribute, and
AttributeType
tables accordingly.

Mapping Multiple Inheritance

Until this point, | have focused on mapping single-inheritance hierarchies. Single inheritance
occurs when a subclass such as Customer inherits directly from a single parent class such as
Person. Multiple inheritance occurs when a subclass has two or more direct superclasses,
such as Dragon, directly inheriting from both Bird and Lizard in Figure 14.11. Multiple
inheritance is generally seen as a questionable feature of an object-oriented language — since
1990, | have only seen one domain problem where multiple inheritance made sense — and as
a result most languages choose not to support it. However, languages such as C++ and Eiffel
do support it, so you may find yourself in a situation where you need to map a
multiple-inheritance hierarchy to a relational database.

Class Maodial Possibie Priysical Daca Modols

Croaturs
CreaturePOID c< PR
Marme
FireCapacity
Masirmum s pesd
WingSpan
i i bar CHC Lveys:
ScakeColors

Bird | Lizard [= Dragon
maximumipened| | nurmberOfCkws | BrdPOID <<PR>> OragonPOID <<Pkss |
wingipan 1 seninColors MaximumSpesd Mame

— — = — Wingspan FireCapacity

T i MaximumSpeod
. i - Lizard WinpSpan
| Dragen LizarclPOID <<PHo= .?“‘!'LE"D:;'“&L’"'""
FUATHE Numbaer i lrws - .
fireCapacity Scaleolors

Bird | Lizard
i |
CreaturaPOID <<PKs» CrepbiasPOID <<PEss
KlamimumSpeed i bar CHIC Lanars.
Wingspan | ScakeCalan
i i

s T
Dfmn —
CroaturePOID cxPKs» cxFEsx
Mama
FireCapacity

Figure 14.11: Mapping multiple inheritance.

Mapping Object Relationships

In addition to property and inheritance mapping, you need to understand the art of relationship
mapping. There are three types of object relationships that you need to map: association,
aggregation, and composition. For now, I'm going to treat these three types of relationships the
same — they are mapped the same way, although in Chapter 19 you will learn that there are
interesting nuances when it comes to referential integrity. In this section, | will discuss the
following topics:

= Types of relationships

= How relationships are implemented between objects

= How relationships are implemented in relational databases
= Relationship mappings

= Mapping ordered collections

= Mapping reflexive/recursive associations

Types of Relationships

There are two categories of object relationships that you need to be concerned with when
mapping. The first category is based on multiplicity and includes three types:

One-to-one relationships. This is a relationship where the maximum of each of its
multiplicities is one, an example of which is the holds relationship between Employee and
Position in Figure 14.12. That is, an employee “holds” one and only one position, and a
position may be “held” by only one employee (some positions go unfilled).

Figure 14.12: Relationships between objects.

One-to-many relationships. Also known as a many-to-one relationship, this occurs when the
maximum of one multiplicity is one and the other is greater than one. An example is the works
in relationship between Employee and Division. An employee works in one division, and any
given division has one or more employees working in it.

Many-to-many relationships. This is a relationship where the maximum of both multiplicities
is greater than one, an example of which is the assigned relationship between Employee and
Task. An employee is assigned one or more tasks, and each task is assigned to zero or more
employees.

The second category is based on directionality, and it contains two types: unidirectional
relationships and bidirectional relationships.

Unidirectional relationships. A unidirectional relationship occurs when an object knows
about the object(s) it is related to but the other object(s) do not know of the original object. An
example of this is the holds relationship between Employee and Position in Figure 14.12,
which is indicated by the line with an open arrowhead on it. Employee objects know about the
position that they hold, but Position objects do not know which employee holds them (there
was no requirement to do so). As you will soon see, unidirectional relationships are easier to
implement than bidirectional relationships.

Bidirectional relationships. A bidirectional relationship exists when the objects on both end
of the relationship know of each other, an example of which is the works in relationship
between Employee and Division. Employee objects know what division they work in, and
Division objects know what employees work in them.

It is possible to have all six combinations of relationship in object schemas. However one
aspect of the impedance mismatch between object technology and relational technology is
that relational technology does not support the concept of unidirectional relationships — in
relational databases all associations are bidirectional.

How Relationships Are Implemented between Objects

Relationships in object schemas are implemented by a combination of references to objects
and operations. When the multiplicity is one (for example, 0..1 or 1), the relationship is
implemented with a reference to an object, a getter operation, and a setter operation. For
example, in Figure 14.12, the fact that an employee works in a single division is implemented
by the Employee class via the combination of the attribute division, the getDivision() operation
(which returns the value of division), and the setDivision() operation (which sets the value of
the division attribute). The attribute(s) and operations required to implement a relationship are
often referred to as scaffolding.

When the multiplicity is many (for example, N, 0..*, 1..*) the relationship is implemented via a
collection attribute, such as an Array or a HashSet in Java, and operations to manipulate that
array. For example, the Division class implements a HashSet attribute named employees,
getEmployees() to get the value, setEmployees() to set the value, addEmployee() to add an
employee into the HashSet, and removeEmployee() to remove an employee from the
HashSet.

When a relationship is unidirectional, the code is implemented only by the object that knows
about the other object(s). For example, in the unidirectional relationship between Employee

and Position, only the Employee class implements the association. Bidirectional associations,
on the other hand, are implemented by both classes, as you can see with the many-to-many
relationship between Employee and Task.

How Relationships Are Implemented in Relational

Databases

Relationships in relational databases are maintained through the use of foreign keys. A foreign
key is a data attribute(s) that appears in one table that may be part of or is coincidental with the
key of another table. With a one-to-one relationship, the foreign key needs to be implemented
by one of the tables. In Figure 14.13, you see that the Position table includes EmployeePOID,
a foreign key to the Employee table, to implement the association. | could easily have
implemented a PositionPOID column in Employee instead.

Positicn Emgpiloyes Tark
PostonPOiD: BNT24 <P 1 = Ansosiilive Tablass T
ErmpyeslCHD: INT28 < oFIs Ernpcoal Ol INTEE <% FE [1 | TEPOID: TS PR
Withe: VARLHARI S0 TPy INT24 <P i ripbon: WARCHARIDG
hoids & ¥
Employee
- . Duwinsan
R ot e LU P M —
= CovmionPOHD: INT24 <o FKs DisveborOi 0 T2 «PK
SaiT: VARCHARTAL] Wi VRBCHARTE]

Figure 14.13: Relationships between tables.

To implement a one-to-many relationship, you implement a foreign key from the “one table” to
the “many table.” For example, Employee includes a DivisionPOID column to implement the
works in relationship to Division. You could also choose to overbuild your database schema
and implement a one-to-many relationship via an associative table, effectively making it a
many-to-many relationship.

There are two ways to implement many-to-many associations in a relational database. The
first one is to implement in each table the foreign key column(s) to the other table several times.
For example to implement the many-to-many relationship between Employee and Task, you
could have five TaskPOID columns in Employee and the Task table could include seven
EmployeePOID columns. Unfortunately, you run into a problem with this approach when you
assign more than five tasks to an employee or more than seven employees to a single task. A
better approach is to implement what is called an associative table, an example of which is
EmployeeTask in Figure 14.13, which includes the combination of the primary keys of the
tables that it is associated with. With this approach, you could have 50 people assigned to the
same task, or 20 tasks assigned to the same person, and it wouldn't matter. The basic “trick” is
that the many-to-many relationship is converted into two one-to-many relationships, both of
which involve the associative table.

Because foreign keys are used to join tables, all relationships in a relational database are
effectively bidirectional. This is why it doesn’t matter in which table you implement a
one-to-one relationship, the code to join the two tables is virtually the same. For example, with

the existing schema in Figure 14.13 the SQL code to join across the holds relationship would
be:

SELECT * FROM Position, Employee

WHERE Position.EmployeePOID = Employee.EmployeePOID

Had the foreign key been implemented in the Employee table, the SQL code would be:
SELECT * FROM Position, Employee

WHERE Position.PositionPOID = Employee.PositionPOID

Now that you understand how to implement relationships in each technology, let's see how
you map them. In the next section, | will describe the mappings from the point of view of
mapping the object relationships into the relational database.
Note Remember that in some cases you have design choices to make. Once
again, beware of the “magic CASE tool button” that supposedly automates
everything for you.

Relationship Mappings

A general rule of thumb with relationship mapping is that you should keep the multiplicities the
same. Therefore, a one-to-one object relationship maps to a one-to-one data relationship, a
one-to-many maps to a one-to-many, and a many-to-many maps to a many-to-many. The fact
is that this doesn’t have to be the case; you can implement a one-to-one object relationship
with a one-to-many, or even a many-to-many, data relationship. This is because a one-to-one
data relationship is a subset of a one-to-many data relationship, and a one-to-many
relationship is a subset of a many-to-many relationship.

Figure 14.14 depicts the property mappings between the object schema of Figure 14.12 and
the data schema of Figure 14.13. Note how | have only had to map the business properties
and the shadow information of the objects, but not scaffolding attributes such as
Employee.position and Employee.tasks. These scaffolding attributes are represented via the
shadow information that is mapped into the database. When the relationship is read into
memory, the values stored in the primary key columns will be stored in the corresponding
shadow attributes within the objects. At the same time, the relationship that the primary key
columns represent will be defined between th