

Agile Software Development

Evaluating the Methods for Your Organization

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.

Agile Software Development

Evaluating the Methods for Your Organization

Alan S. Koch

Artech House
Boston • London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
Koch, Alan S.

Evaluating Agile software development: Methods for your organization.—(Artech House computing library).
1. Computer software—Development 2. Computer software—Evaluation
I. Title
005.1

ISBN 1-58053-842-8

Cover design by Yekaterina Ratner

“CMM® ” and “Capability Maturity Model” are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.
SM “PSP,” “TSP,” “Personal Software Process,” and “Team Software Process” are sales marks of Carnegie Mellon
University.

“PMBOK Guide”® and “Project Management Body of Knowledge” are registered trademarks of the Project Man-
agement Institute.

© 2005 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-842-8

10 9 8 7 6 5 4 3 2 1

To you, the war-weary software professional who just seeks a rational way
to develop software.

And to Laurie, my wife, who always believes in me and supports my work,
even when she wishes I was planting a tree!

.

Contents

Foreword by Kent Beck xxi

Foreword by Mark Paulk xxiii

Preface xxvi

Part I
Adoption Considerations 1

1 Introducing the Agile Methods 3

Historical and background information 3

The Agile methods, generally 4

Agility 5

Change 5

Planning 5

Communication 6

Learning 6

The Agile methods, specifically 7

Reference 8

2 Considering Your Organizational Culture 9

Hierarchical versus cooperative organizations 9

Hierarchical organizations 10

Cooperative organizations 10

Considerations: Hierarchical versus cooperative 10

Controlling change versus reacting to it 11

Controlling change 11

Reacting to change 12

Considerations: Controlling versus reacting 12

The role of organizational culture 13

vii

3 Considering Your Customers. 15

Contracts and statements of work 15

Establishing and changing requirements 16

Expectations about collaboration 18

Your customers 19

4 Considering Your Projects 21

Size of project teams 21

Colocation of team members 22

Criticality of projects 23

Safety and security requirements 24

Multiple teams 25

Subcontractors 26

Integration with hardware and other software components 26

5 Considering Your Tools and Processes 29

Requirements Management 29

Project Management 31

Configuration Management 32

Code control 33

Document control 33

Baseline maintenance 33

Configuration Item identification 34

Change control 34

Build and release management 34

Your tools and processes 35

6 Considering Your Staff 37

Superstars 37

Changing work patterns 38

Making changes stick 39

Making the right change 39

Building buy-in 40

Changing the reward system 41

Your staff 41

7 Using This Book to Make Your Adoption Decisions . 43

Structure of this book 43

The “Evaluating Agile Methods” Workbook 45

viii Contents

Evaluating the practices 46

Compiling the results 48

Final steps 49

Part II
Value: “Individuals and Interactions over
Processes and Tools” 51

8 About People, Processes, and Tools 53

People versus processes versus tools 53

The role of people 54

The role of processes 55

The role of tools 57

Balancing people, process, and tools 58

9 Motivated Individuals and Self-Organizing Teams . 61

Agile Principles 61

Motivated individuals 61

Self-organizing teams 62

Agile practices 62

Adaptive Software Development 63

The Adaptive Conceptual Model: Project stakeholders as
independent agents 63

The Adaptive Development Model: Speculate: Project initiation and
adaptive planning 63

The Adaptive (Leadership-Collaboration) Management Model 64

Dynamic System Development Method (DSDM) 64

Principle 2: DSDM teams must be empowered to make decisions 64

Extreme Programming (XP) 64

The Planning Game 64

Collective ownership 65

Feature-Driven Development 65

Class (code) ownership 65

Feature teams 65

Lean Software Development (LD) 66

Empower the Team: Tool 13, Self-determination 66

Empower the Team: Tool 14, Motivation 66

Scrum 66

Scrum teams 66

Adoption implications 67

Trusting the technical team 67

Staffing with “motivated individuals” 68

Contents ix

Team structure and roles 68

Pair Programming 69

Chief Programmer 69

Method Coach 70

Project Manager 71

Motivated individuals and self-organizing teams 71

10 Face-to-Face Communication 73

Agile Principle 73

Face-to-face communication 73

Agile practices 74

Extreme Programming 74

Facilities Strategy 74

Pair Programming 75

On-Site Customer 76

The Planning Game 76

Scrum 76

Daily Scrum Meetings 76

Adoption implications 77

Richness 77

Memory 79

Persistence 79

Availability 80

Communication 81

11 Sustainable Pace 83

Agile Principle 83

Sustainable pace 83

Agile practices 84

Extreme Programming (XP) 84

40-hour week 84

Adoption implications 84

Overtime versus the Agile methods 85

Initial analysis 85

Incremental development 86

Testing 87

Integration 87

A sustainable pace 88

12 The Unstated Principle: Appropriate Processes
and Tools 89

x Contents

Agile practices 90

Feature-Driven Development (FDD) 90

Configuration Management 90

Lean Software Development (LD) 90

Amplify Learning: Tool 5, Synchronization 90

Deliver as Fast as Possible: Tool 10, Pull Systems 92

Deliver as Fast as Possible: Tool 11, Queuing Theory 92

Deliver as Fast as Possible: Tool 12, Cost of Delay 92

See the Whole: Tool 21, Measurements 93

Adoption implications 93

Processes 93

Configuration Management 94

Code control 94

Establishing baselines 95

Change requests 95

Configuration integrity 96

Build automation 96

Test automation 97

Processes and tools 97

Reference 97

Part III
Value: “Working Software over Comprehensive
Documentation” 99

13 The Role of Documentation in a Software Project . 101

Purpose of a document 101

Audience for a document 102

Value of a document versus its cost 103

Avoiding waste in documentation 104

14 Incremental Delivery of Working Software . . . 105

Agile Principles 105

Early and continuous delivery 105

Deliver working software frequently 106

Working software: Primary measure of progress 107

Agile practices 107

Adaptive Software Development 107

The Adaptive Life Cycle 107

Learn: Quality Review: Customer Focus Group Reviews 109

Dynamic Systems Development Method 109

Contents xi

3) Frequent delivery 109

4) Fitness for business purpose 109

5) Iterative and incremental development 110

Extreme Programming 110

Small releases 110

Continuous integration 110

Feature-Driven Development 111

Developing by feature 111

Regular build schedule 111

Reporting/Visibility of results 111

Lean Software Development 112

Amplify Learning: Tool 3, Feedback 112

Amplify Learning: Tool 4, Iterations 112

Scrum 113

Sprint 113

Sprint Review 113

Adoption implications 114

Time-boxed development 114

Continuous integration 115

Incremental delivery 115

Incremental development versus hacking 116

Deliver working software to whom? 116

Minimizing documentation 117

Incremental development 118

Reference 118

Part IV
Value: “Customer Collaboration over Contract
Negotiation” 119

15 Defining the Customer Relationship 121

Types of customers 121

Role of contracts 122

Role of ongoing collaboration 123

Balancing contracts and collaboration 124

16 Daily Collaboration of All Stakeholders 127

Agile Principle 127

All Stakeholders Must Work Together Daily 127

Agile practices 128

Adaptive Software Development (ASD) 128

xii Contents

Project stakeholders as independent agents 129

Adaptive (Leadership-Collaboration) Management Model 129

Dynamic Systems Development Method (DSDM) 129

Active user involvement 130

Collaborative and cooperative approach 130

Extreme Programming (XP) 130

On-site customer 130

Lean Software Development (LD) 131

Build Integrity In: Tools 17 and 18, Perceived and Conceptual Integrity 131

See The Whole: Tool 22, Contracts 131

Scrum 131

Product Backlog 131

Adoption implications 132

Establishing requirements 132

Managing requirements changes 133

Ensuring product quality 133

Acceptance 134

The reluctant customer 135

Project course corrections 135

Contract as a weapon 136

Customer collaboration 137

Reference 137

Part V
Value: “Responding to Change over Following
a Plan” 139

17 Understanding Change in Software Projects . . 141

The nature of change 141

External changes 142

Internal change: customers learn 143

Internal change: developers learn 143

Capitalizing on what we learn 144

Planning for change 144

Change happens 145

18 Welcome Changing Requirements 147

Agile Principle 147

Welcome changing requirements 147

Agile practices 148

Adaptive Software Development (ASD) 148

Contents xiii

Adaptive Life Cycle 148

Dynamic Systems Development Method (DSDM) 148

All changes are reversible 148

Requirements are baselined at a high level 149

Extreme Programming (XP) 150

Metaphor 150

Refactoring 150

Feature-Driven Development (FDD) 151

Domain Object Modeling 151

Lean Software Development (LD) 151

Decide as Late as Possible: Tool 7, Options Thinking, Tool 8, The
Last Responsible Moment, Tool 9, Making Decisions 152

Build Integrity In: Tool 19, Refactoring 152

Scrum 153

Sprint Planning Meeting 153

Adoption implications 153

Incremental planning 154

Tracking and reporting progress 154

When the project deviates from the plan 155

Handling customer change requests 155

Changes injected by the development team 156

Welcoming change 156

Reference 157

Part VI
The Unstated Value: Keeping the Process Agile . 159

19 Maintaining the Process 161

Agile is not antiprocess 161

You are using a process 162

Process efficiency and effectiveness 162

Mary, Mary, quite contrary, how does your [process] grow? 163

Continuous process improvement 164

20 Technical Excellence 165

Agile Principle 165

Continuous attention to technical excellence and good design 165

Agile practices 166

Adaptive Software Development (ASD) 166

Learn: Quality Review: Software inspections 166

Dynamic Systems Development Method (DSDM) 167

xiv Contents

Testing throughout the life cycle 167

Extreme Programming (XP) 168

Test First 168

Coding Standards 169

Feature-Driven Development (FDD) 170

Inspections 170

Lean Software Development (LD) 170

Amplify Learning: Tool 6, Set-Based Development 170

Empower the Team: Tool 15, Leadership 170

Empower the Team: Tool 16, Expertise 171

Build Integrity In: Tool 20, Testing 171

Scrum 172

Scrum Master 172

Adoption implications 172

Project roles 173

Developers’ attention to quality 174

Technical excellence 174

Reference 175

21 Simplicity 177

Agile Principle 177

Simplicity: Maximizing work not done 177

Agile practices 177

Extreme Programming (XP) 178

Simple Design 178

Lean Software Development (LD) 178

Eliminate Waste: Tool 1, Seeing Waste and Tool 2, Value Stream
Mapping 179

Adoption implications 180

Object-Orientation 180

Identifying the expendable 181

Simplicity 182

Reference 182

22 Retrospectives 183

Agile Principle 183

Regular team retrospectives 183

Agile practices 184

Adaptive Software Development (ASD) 184

Learn: Quality Review: Postmortems 184

Adoption implications 185

Contents xv

When to hold a retrospective 185

How to capitalize on a retrospective 186

Process change in mid-project 186

Conclusion 187

Part VII
The Adoption Decision 189

23 Making the Adoption Decision 191

Compiling your “Evaluating Agile Methods Workbook” data 191

Conclusions about Agile Values and Principles 192

We have come to value individuals and interactions over processes
and tools 193

We have come to value working software over comprehensive
documentation 195

We have come to value customer collaboration over contract negotiation 196

We have come to value responding to change over following a plan 197

The unstated value: Keeping the process agile 198

Agile Values in your organization 200

Conclusions about the Agile Methods and Practices 200

Adaptive Software Development 200

Dynamic Systems Development Method 201

Extreme Programming 202

Feature-Driven Development 203

Lean Software Development 203

Scrum 205

The Agile Methods in your organization 205

Marketing your conclusions in your organization 206

Agreeing together on an action plan 207

24 Adopting New Practices 209

Three critical things to do: communicate, communicate, communicate 209

1. Communicate while making the decision. 210

2. Communicate about the decision you made. 210

3. Communicate regularly about the status of the change effort. 211

Crafting your custom Agile Method 212

Training those who will be affected 213

Pilot testing the new method 214

Just-in-time training 214

Expert on call 214

Celebrate project milestones 214

Improving the Agile Method 215

xvi Contents

Rolling it out to the whole organization 215

25 Evaluating the Effects of Your Agile Method . . 217

Project performance 217

Management acceptance 219

Customer relationship 220

Team satisfaction 221

Continuously improving your Agile Method 222

Appendix Introduction 223

Appendix A
The Agile Manifesto 225

Reference 226

Appendix B
The 12 Principles of Agile Methods 227

The 12 Principles of Agile Methods 227

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software. 228

Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage. 228

Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter time scale. 229

Business people and developers must work together daily throughout
the project. 229

Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done. 229

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation. 229

Working software is the primary measure of progress. 230

Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely. 230

Continuous attention to technical excellence and good design enhances
agility. 230

Simplicity—the art of maximizing the amount of work not done —is
essential. 230

The best architectures, requirements, and designs emerge from self-
organizing teams. 231

At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly. 231

Agile Principles 231

Contents xvii

Appendix C
Adaptive Software Development 233

The Adaptive Life Cycle 233

Speculate: Project initiation 234

Learning Loop 234

Speculate: Adaptive Cycle Planning 235

Collaborate: Concurrent component engineering 235

Learn: Quality Review 235

Learn: Final Q/A and release 236

ASD’s conceptual framework 236

Project stakeholders as independent agents 236

The Adaptive (Leadership-Collaboration) Management Model 236

ASD 238

References 238

Appendix D
Dynamic Systems Development Method 239

The DSDM process 239

Nine principles of DSDM 241

Principle 1: Active user involvement is imperative. 241

Principle 2: DSDM teams must be empowered to make decisions. 241

Principle 3: The focus is on frequent delivery of products. 241

Principle 4: Fitness for business purpose is the essential criterion for
acceptance of deliverables. 242

Principle 5: Iterative and incremental development is necessary to
converge on an accurate business solution. 242

Principle 6: All changes during development are reversible. 242

Principle 7: Requirements are baselined at a high level. 242

Principle 8: Testing is integrated throughout the life cycle. 243

Principle 9: A collaborative and cooperative approach between all
stakeholders is essential. 243

Reference 243

Appendix E
Extreme Programming 245

XP’s 12 practices 245

The Planning Game 245

Small releases 245

Metaphor 246

Simple design 246

Test First 246

Refactoring 247

xviii Contents

Pair Programming 247

Collective ownership 247

Continuous integration 247

40-hour week 248

On-site customer 248

Coding standards 248

The XP Facilities Strategy 248

References 248

Appendix F
Feature-Driven Development 249

FDD practices 249

Domain Object Modeling 249

Developing by feature 249

Class (code) ownership 250

Feature teams 250

Inspections 251

Regular build schedule 251

Configuration Management 251

Reporting/Visibility of results 251

References 252

Appendix G
Lean Software Development. 253

Lean Software Development principles and tools 253

Eliminate Waste 253

Amplify Learning 254

Decide as Late as Possible 254

Deliver as Fast as Possible 255

Empower the Team 255

Build Integrity In 256

See the Whole 256

References 256

Appendix H
Scrum 257

Scrum practices 257

The Scrum Master 257

Product Backlog 258

Scrum Teams 258

Daily Scrum Meetings 259

Sprint Planning Meeting 259

Contents xix

Sprint 259

Sprint Review 260

References 260

Glossary 261

About the Author 267

Index 269

xx Contents

Foreword by Kent Beck

I was ready to dislike this book from the first. It begins with the false dichot-
omy of agility versus discipline. Would you ask a gymnast if they were agile
or if they were disciplined? No. Gymnasts are agile to precisely the same
degree they are disciplined. So it is with software development. Agility in
software requires iron discipline—absolutely fixed time schedules, rigid and
high-quality goals, and a devotion to collaboration and communication
even when communicating with those who have very different perspectives
than your own.

Once I got beyond my initial reaction, though, I found myself enjoying
my reading. Here is my work and that of my community seen through a
very different set of eyes than mine. The parts of Extreme Programming that
have been hard for those in large organizations to apply are presented fairly.
However, this book clarifies the difficulties some have with practices such as
full-time customer involvement in projects. The book makes the case for
such practices’ value even while presenting their drawbacks.

The other theme I learned from this book was the comparison and con-
trast of the various “agile” methods. Different methods are quite different,
and readers should be able to choose wisely from the discussion here which
path to take towards agility.

In the end, agility is simply a measure of software development. How
agile is yours? Not very, taking years to respond to change? Very, respond-
ing in hours or days? Your software development lives somewhere on the
continuum already. You don’t get to pick “agile” or “not agile.”

The question is, is your agility enough for your organization and if not,
what are you going to do about it? This book presents the alternatives for
improvement fairly and impartially.

Kent Beck
Three Rivers Institute

Merlin, Oregon
October 2004

xxi

.

Foreword by Mark Paulk

I have been involved with software process improvement since 1987. I led
the team at the Software Engineering Institute that wrote the Capability
Maturity Model® for Software, which formalized Watts Humphrey’s vision
for transforming software organizations. I have had the pleasure of seeing
the Software CMM® become a de facto standard for the software commu-
nity—and I have seen it abused in ways that astonished and saddened me.

There have been many debates over “software process.” In the early
days, we debated whether software projects could be managed or whether
software was a creative, artistic endeavor that could not be constrained by
plans and budgets; in recent days, we debated whether software processes
could be placed under statistical process control.

I like to think that “my” side has won these debates over the years, but
one thing that I have repeatedly observed is that some people stake out
extremist positions when discussing controversial issues. One of the more
controversial topics to arise in recent years is agile methods. Some of its pro-
ponents have taken the extreme position that “we don’t need no stinkin’
processes around here!” Some of its opponents have taken the extreme
position that agile methodologists are just hackers who are unwilling—and
perhaps unable—to do the hard work necessary to build high-quality soft-
ware. Unfortunately, both extremes can find justification in the opposing
camp for their extremism.

Perhaps we live in a time of polarization, when extremism is the norm. If
so, I choose to live in the middle ground. In my work, I have attempted to
steal the best ideas from everyone—whether they come from project man-
agement, statistical process control, or the agile methods.

One of the virtues of the agile methods is that they have taken good
engineering and management practices to an extreme implementation. Fur-
ther, the agile methodologists have identified a “sweet spot” of small teams,
colocated, working on small-to-medium-sized systems, with active cus-
tomer collaboration, with high requirements volatility, and stated that this
is where the agile methods are the methods of choice. With the exception
of volatile requirements, this sounds like nirvana to most software

xxiii

professionals! This may be the source of some of the resistance to agile
methods—they’ve taken over the territory most of us would like to work in!

Why would we challenge the principles of the agile methodologies? The
values expressed in the agile manifesto should be captured in any modern
software project, even if the implementation may differ radically in other
environments. Customer satisfaction, communication, working software,
simplicity, and self-reflection may be stated in other terms, but without
them, nontrivial projects face almost insurmountable odds against success.

The problem, of course, is that enlightened folks like Kent Beck, Bob
Martin, and Ken Schwaber are the exception rather than the rule. Bob Mar-
tin told a story at XP Universe about running into someone who said his
organization was using Extreme Programming. Bob asked how pair pro-
gramming was viewed... and the reply was, “We don’t do that.” Bob asked
how refactoring was working out… and the reply was, “We don’t do that.”
Bob asked how well the planning game was working… and the reply was,
“We don’t do that.” “Well,” Bob asked, “then what are you doing?” “We
don’t document anything!” was the answer. Success carries the seeds of fail-
ure, and the agile methodologists are concerned that some adopting these
new ideas do not really understand what an agile methodology is—and it is
not ad hoc, chaotic programming.

We have had the same problem in the software process world, and I must
admit to some amusement at watching the agile methodologists struggle with
the abuses of their methods, just as I have struggled with those who abuse
the Software CMM®. The cruel reality in using any model or method is that
they have to be applied with common sense and good professional judgment.
If the day ever comes when that is no longer true, then humans won’t be
needed anymore to build software because we can just automate the process!

Much of the controversy with respect to the technical issues centers on
what happens as projects scale up. Practices that rely on tacit knowledge
and highly competent professionals may break down in larger teams with
their rapidly expanding communication channels and coordination chal-
lenges, and replacing those practices with ones appropriate for large teams
may result in losing the emergent properties of the agile methodology.

My conclusion is that the middle ground is the most profitable place to
stand—pick the agile methods most pertinent to your problems; take advan-
tage of their good ideas; adapt them as necessary; and don’t try to tailor
them beyond something recognizable as “agile.” I hope that sounds like
good (and obvious) advice. The problem lies in implementing that advice.

That’s where Alan’s book, Agile Software Development: Evaluating the Meth-
ods for Your Organization comes in. There are a number of good books on
Extreme Programming and Scrum. There are only a handful of books that I
would recommend on comparing and evaluating agile methods. Barry
Boehm and Richard Turner have written an excellent book, Balancing Agility
and Discipline, that takes a risk-oriented view of the agile methods. I would
also recommend Craig Larman’s Agile and Iterative Development: A Manager’s
Guide.

xxiv Foreword by Mark Paulk

Alan views agile methods as a new process that organizations need to
learn how to make work, building on the insights gained from the software
process world. The element missing from the agile methodologies, which is
crucial for the Software CMM®, is the concept of establishing the culture
that “this is the way we do things around here.” Although implicit in some
agile practices, such as the peer pressure implicit in pair programming, “cul-
ture” is crucial to the adoption of the agile methods.

Organizations considering the agile methods should read Alan’s section
on hierarchical versus cooperative cultures closely. Different cultures have
different strengths and weaknesses. Any substantive process improvement
involves cultural change—including the adoption of agile methods. Alan
compares and contrasts six different agile methods; selecting the agile
method (if any) that best fits an organization’s needs and business environ-
ment is the first step to successful adoption. It is also vital to the disciplined
change management that underlies true process maturity.

The cultural changes required by the agile methods extend beyond the
team and the organization employing the methods. One of the crucial
aspects of dealing with volatile requirements proactively is customer col-
laboration—and folding the customer into the cultural shift required for
implementing agile methods can be daunting. The greatest challenge in tak-
ing advantage of the virtues of the agile methods may lie in convincing cus-
tomers to “step up to the plate” and use them where appropriate. We have
to decide where to place the “balance point” in documentation and plan-
ning to alleviate the concerns of the stakeholders (and regulatory require-
ments) while achieving the flexibility and benefits promised in the agile
philosophy.

Many of the practices in the agile methodologies are good practices that
should be thoughtfully considered for any environment. While the merits of
any of these practices can be debated in comparison with other ways of
dealing with the same issues, none of them should be arbitrarily rejected.
Perhaps the biggest challenge in dealing effectively with both agile and
plan-driven methodologies is dealing with extremists in both camps who
refuse to keep an open mind. Alan’s book can be a useful tool for making
informed decisions about the appropriateness of agile methods in your envi-
ronment and maintaining a strong position in the middle ground.

Mark Paulk
Carnegie Mellon University

Pittsburgh, Pennsylvania
October 2004

Foreword by Mark Paulk xxv

.

Preface

Are you interested in using an Agile method for developing software? Or
are others lobbying you to approve the use of one? Or is your interest more
casual; perhaps you are merely wondering if an Agile method is worth con-
sidering? Whichever is the case, this book is for you.

I come from the “disciplined process” world. After 13 years at the Soft-
ware Engineering Institute (SEI) and a few years running ASK Process, Inc.,
I received a query from a prospect who asked about Extreme Programming
(XP). To answer that query, I began researching XP, and that turned into
research into the Agile methods in general. So began my foray into the Agile
world.

The more research I did, the more I became intrigued with the Agile
methods. Far from being a license to hack (as I, like many of my “disciplined
process” colleagues believed), these methods have some interesting prac-
tices that make a whole lot of sense to me. There are ways in which they are
not so very different from the disciplined methods I have come to respect so
much, like the Capability Maturity Model (CMM)® and the Team Software
ProcessSM (TSP)SM. But there are other ways in which they are dramatically
different — different in ways that solve problems that are so common in
software organizations. I told myself, “There is a lot that we can learn from
the Agile methods!”

The Agile and the disciplined process communities have not gotten along
well. You are likely to hear process-philes disparaging the Agile methods. At
the same time, you are likely to hear the Agilists crying about the terrors of
disciplined process. The truth, of course, is somewhere between those two
extremes. Disciplined processes are good and necessary, as long as they do
what processes should do: support the work of professionals and make them
more effective. And agility — the ability to move quickly and adapt to
changing realities while maintaining one’s balance — is also critical, as long
as it remains focused on meeting the customer’s needs in a way that also
meets the needs of the development organization.

The Agile methods and the disciplined processes share a common objec-
tive: making all software projects as successful as they possibly can be. They

xxvii

differ only in the means they employ and their guiding philosophies. Nei-
ther of them is completely correct. Each has good recommendations, and
each leaves opportunities for its users to abuse it and cause problems. Each
can learn from the other, and indeed, so they must.

This book had its genesis in my research. I came to realize that execu-
tives, managers, and software practitioners alike are faced with making deci-
sions about the Agile Methods, but hear only the voices of those two
extremes to guide them. Must they trust one and discard the other? Must
they embrace one and throw the other out with the trash? What is needed
is a middle perspective. A voice that is neither enamored of the Agile meth-
ods nor repulsed by them. A voice that points out both the good and bad
things about the Agile methods. A voice that is believable and can help peo-
ple like you make a well-informed decision based on unbiased information.

This book provides that unbiased, balanced view of the Agile methods. It
does not blindly advocate for them (though it does identify what is good and
noteworthy). It also does not automatically malign them (though it does
identify potential problems of which one should beware.) It provides infor-
mation in a form that can be read, digested, and used. And there is a work-
book that you can download and use to organize your thoughts and draw
conclusions. (See Chapter 7 for more on the workbook.)

It is arranged so you can either read it straight through to get a complete
picture of the Agile methods, or you can let the Table of Contents guide you
to the chapters that are particularly relevant to your needs. It talks about the
considerations you should keep in mind while thinking about the possibility
of adopting an Agile method, it is structured around the Agile Manifesto
(which enumerates the values on which the Agile methods are based), and
it includes a short description of each Agile method in the appendixes.

This book is designed for you. Use it (and the supporting workbook) in
any way that makes sense to you, to help you make a sound and well-
founded decision about whether your organization should adopt an Agile
method.

xxviii Preface

Adoption Considerations

In the first part of this book, we lay the foundation for your
evaluation of the Agile methods.

Chapter 1 provides a brief introduction to the Agile meth-
ods. Each of the next five chapters discusses a dimension of
your organization that you will want to keep in mind as you do
your evaluation. They are:

◗ Chapter 2: Considering Your Organizational Culture;

◗ Chapter 3: Considering Your Customers;

◗ Chapter 4: Considering Your Projects;

◗ Chapter 5: Considering Your Tools and Processes;

◗ Chapter 6: Considering Your Staff.

Chapter 7 (the final chapter in Part I) contains guidance on
how to use the information in this book and the available
“Evaluating Agile Methods Workbook” to reach a decision
about using Agile methods at your organization.

P A R T

I

.

��������	�
 ���
	�� �������

���� �����	
 �
���	� � �
�	� �� ����� ���
������� �� ��	 ����	

�	����� �� �� 	����	 �� �
���	 � ������� ��������� ��
 ��	

����	��� �� ���� ���� ��� ���� �������� �����	
� �� ���
�	� ��

��
	 �����	�	 ����
������ ��
 ����	 ���	
	��	 �� ���	�������

��� ��	� ��
	 		����

�	����	��� ��� ����
�����

	�������	��

�������� ���	 �� ��	 ����	 �	���� ���	 	����	 �� ��	 ��
�

�
 �����	
 ��
 � 	��	 �
 ��� ��
	�����	 	�� �� ��	 ������
	

�����	���� ��	 �	
� ����	 !	���" ��� ����	 ��
	
	�	�����

�� #	�
��
� $%%&� �� &'
&

�� ��	 �	���� 	�	���	
� �� �
����

�	��� �� ���� �	
	 ��	� ����� �� ��	 �����" �	��������	��

��	�	 �	���	 �	� �� �		 ��	��	
 ��	
	 ��� �������� �� ����

��� ����� ��	 ��
���� ����� �	��������	�" (&)� ��	 �		����

	����	 �� ���
 �	�	�� �� ��
		�	�� ����� ��
����������

�� ��	
	 �� � �		 ��
 �	���� 	����	 ��
	���� �� �����	

�
��� ������
	 �
�*	���� #�
��	
� ��	� ����	 ��	 �	
�

 ����	" �� �	����� ����	 �	����� ��	� ��
		 ���� ��	

�	
� �����" ��� ��� ���
��
���	 �	����	 �	
���� �
�*	���

�	���� ����	 ���� ���� �
��
���	
� �
 ����	 ���� 	�	���

���	����
������ ������
	� ���� ��� 	����� � �����" �	���

������ ��� ���� �����
	+��
	 ��������

�� ��	 �	��� �	�	� �� ��
		�	����� �� ��	 ���
 ����	�	��� ��

��	 ����	 !����	���"�
$

��	�	 ���
 ����	�	��� �����
	 ��	

�

�
��������

Historical and background
information

The Agile methods, generally

The Agile methods, specifically

� � � � � �

&� ��	 &' �	���	 �	
	 ,	�� -	��� !��	 -		�	� �
�	 ��� -	��	���� �������

.�����
�� /�
 .���������� !�
��� #���	
� 0��	� 1
	������ 0��

2��������� ��
	� 2���� 3�� 0	��
�	�� 0�� ,	
�� -
��� !�
���� 3��	
� .�

!�
���� 4�	��	� 0� !	���
� ,	� 4�����	
� 0	�� 4���	
���� �� 5��	

�������

$� ��	 ����	 !����	��� �� +���	 �� ������	 �� ���	��� ��

core values on which all of the Agile methods are built, as well as the
spirit in which they should be implemented. The Agile Manifesto
states:

We are uncovering better ways of developing software by doing it and
helping others to do it. Through this work we have come to value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items
on the left more.

3. The next level of agreement was on a set of 12 Agile Principles.3 In
these statements, the values are fleshed out in more detail and given
more concrete meaning.

4. The final level of agreement was that agreement at a more detailed
level (e.g., actual activities or tactics for running projects) was be-
yond their grasp at the time. They were content to leave that fourth
level for each of the Agile methods to define in its own way.

Since that meeting, the Agile methods have become a popular topic in
software development circles, giving rise to much confusion and contention.
The Agile Alliance4 has grown to become the voice of the Agile methods.
Their Web site is an active forum for practitioners to share their experiences
and the practical matters related to using the Agile methods. The Web site is
probably the best source of up-to-date information about the Agile
methods.

This book is designed to cut through the partisan positions of the various
factions in the Agile method debate. It presents a balanced view of the Agile
methods to give you the information you need to make an adoption deci-
sion based on an analysis of facts and consideration of your organization’s
needs.

The Agile methods, generally
The suspicion that led to that February 2001 meeting where the Agile Mani-
festo was developed was confirmed. These methods do, in fact, have much
in common. The commonalities revolve mainly around the topics of agility,
change, planning, communication, and learning.

4 Introducing the Agile Methods

3. The 12 principles are quoted and discussed in Appendix B.

4. Refer to http://www.AgileAlliance.org.

Agility

The name that they adopted, “Agile,” pinpoints one of the key attributes
that these methods share. What image does the word “agile” bring to your
mind? Perhaps it makes you think of a gymnast’s performance, or a moun-
tain goat navigating steep rocky crags, or a gazelle running in the wild.
Someone who is agile is able to move quickly but decisively, to react to
changing situations with speed and grace, to change direction while main-
taining his or her balance and poise.

This image contrasts sharply with the more traditional software develop-
ment methods, which more closely resemble a large military encampment.
These methods commit to a war plan and then steadfastly march forward
toward the stated goal, all the while controlling and mitigating any outside
effects, as opposed to accommodating them.

That the Agile methods are designed to be able to move quickly and react
to change is clear. What is less clear is the extent to which they can do these
things with speed and grace … with balance and poise. The concern many
people have about these methods is the cost that may be incurred in order
to achieve agility. What must be given up to achieve those ends? And is the
achievement worth the cost?

Change

The philosophy of agility shows up most pointedly in the methods’
approaches to change. The Agile methods treat change as an equal partner
in the project. Change is welcomed to the table and encouraged to shed new
light and introduce new information continually throughout the project.
These methods are designed not just to accept change, but also to welcome it
and capitalize on it.

The traditional methods treat change as the enemy. They accept that it
cannot be avoided, so they spend significant effort to control it and mitigate
its effects. Far from welcoming change, most methods shackle it in Change
Request systems and try it in the court of Configuration Control Boards
(CCB). Each change is interrogated and examined in an effort to determine
what should be done about it.

An appropriate position on the subject of change is a point of contention
that we will discuss in some detail in Part V. For most projects, neither of the
two extremes described is optimal; rather, some middle ground is more
likely to be to the project’s advantage.

Planning

Although planning is as central to the Agile methods as to any traditional
method, the Agile methods treat deviations from plan very differently.
When an Agile project does not progress as planned, the methods treat the
deviation as new information about the project, and they generally replan
in light of that new information. Their goal is to bring the plan into confor-
mance with reality.

The Agile methods, generally 5

The more traditional methods view deviations from the plan as undesir-
able events. Therefore, they react to deviations by adopting corrective
actions. In extreme situations, the “corrective action” may involve replan-
ning, but these methods much prefer to bring reality back into conformance
with the plan.

So, should reality be molded to the likeness of the plan? Or should the
plan be reworked to match reality? Clearly, neither position is optimal.
Rather, each deviation should be evaluated and an appropriate reaction
adopted. This subject will also be discussed in Part V.

Communication

All of the Agile methods are designed to optimize communication among
the various stakeholders. They strongly favor face-to-face communications
and tend to de-emphasize written documents, except where those docu-
ments provide real-time support for the more favored face-to-face commu-
nication. Although none of these methods actually intends to eliminate all
documentation, they do militate against documentation that is primarily
archival in purpose. They all pay primary attention to communication
among project team members and between the team and the customer (in
whatever way the word “customer” is defined).

The traditional methods do not argue against communication; rather,
they tend to assume that appropriate communication will result from the
prescribed activities and documents. Unfortunately, this assumption some-
times remains unmet as each party does what is required of them and reads
their own biases into documents, only to find that misunderstandings sur-
face later in the project.

While the Agile methods’ emphasis on communication is welcome,
their tendency to not document the results of those communications can
cause problems. People’s memories are often faulty, and two people can
have very different memories of the same exchange. So, a more appropri-
ate philosophy might state, “If something is worth talking about, then it is
also worth recording what was said.” These topics will be addressed in Parts
II and III.

Learning

Each of the Agile methods treats a project as a learning experience. They
acknowledge that, at the beginning of the project, neither the customers nor
the developers have a complete understanding of what must be built. There-
fore, the following occurs:

◗ The methods foster copious communication among stakeholders to
accelerate the learning that will take place.

◗ The new learning results in changes to the requirements for the system,
the technical constraints on it, and the ways in which it will be used.

6 Introducing the Agile Methods

◗ Those changes become the basis for evolving plans, as the project
adapts to the new information.

The traditional methods regiment learning into the project life cycle. It is
assumed that all that is needed to plan the project is available during the
planning phase, that all of the requirements are understood during the
Requirements phase, and so on. When this turns out not to be the case, the
resulting deviation is documented, and corrective action is taken.

The reality is that every stakeholder in every project continually learns
throughout the life of the project. To expect that this will not be the case is
to expect miracles. But at the same time, (as discussed in the “Change” and
“Planning” sections) not everything that is learned is necessarily beneficial
to the project. Each new piece of information should be evaluated and inte-
grated into the project only if it provides value. These topics will be
addressed in Parts IV and V.

The Agile methods, specifically
This book focuses on the following six5 major Agile methods:

◗ Adaptive Software Development (ASD), as discussed in Appendix C, is
based on Complex Adaptive Systems theory and treats software
development as a collaborative learning exercise. ASD is based on the
“Adaptive Life Cycle” (which continually cycles through three phases
named “Speculate,” “Collaborate,” and “Learn) and the “Adaptive
Management Model” (also called “Leadership-Collaboration” man-
agement).

◗ Dynamic System Development Method (DSDM), as discussed in Appendix D,
is not properly a “method” because it does not provide guidance about
how development projects should be run. Rather, it is mainly a philoso-
phy about system development that consists of nine principles. DSDM
focuses on system development and does not get into the details of writ-
ing software, so it can be used in conjunction with any of the more
software-intensive Agile methods, like XP.

◗ Extreme Programming (XP), as discussed in Appendix E, is a collection of
12 practices that focus specifically on the mechanics of developing soft-
ware. These practices include such topics as The Planning Game, Pair
Programming, Refactoring, and Testing.

◗ Feature-Driven Development (FDD), as discussed in Appendix F, treats
software development as a collection of features that are implemented
one at a time. Unlike the other Agile methods, FDD includes upfront

The Agile methods, specifically 7

5. These six methods were chosen because they are widely recognized as being Agile methods and there was

enough published information about them at the time of this writing to support evaluation. Absence of any

particular method from this list should not be interpreted as a judgment of that method. It is merely an

artifact of the available information at this time.

architectural analysis, such as the development of a Domain Object
Model, which becomes the basis for planning the project iterations. It
also includes a unique (among the Agile methods) mechanism for
objectively reporting progress against plan.

◗ Lean Software Development (LD), as discussed in Appendix G, is not really
a software development method. Based on the principles of lean manu-
facturing, LD provides a set of seven principles for making software
development more efficient, and it amplifies those principles with 22
tools.

◗ Scrum, as discussed in Appendix H, is primarily a product develop-
ment method. Its seven practices focus on planning and managing a
development project but do not address any specifics about software.
Therefore, it can be used in conjunction with any software develop-
ment method.

Each of these six methods embodies the philosophies of the Agile Mani-
festo. Each is widely recognized as an Agile method. And each provides a
good basis for the discussions in this book.

Reference

[1] Cockburn, A., Agile Software Development, Reading, MA: Addison-Wesley, 2002,
p. 215.

8 Introducing the Agile Methods

����������	
��� ��	��������
�������

��� ������� 	
 �	�� 	�������	� �� ����� ���������� 	
 ���

������ �	 ����� �� ����� �	� ������ ���� ��������

����	��� �	�� ������� �� �� ������� ���� ����� �� ��	�

�� �	������� �

	��� �	� ���� �		��� ����	���� �	�� �������

��	��� �� �	�������� ������ ��� ������� �	� ��� �	�� �� ���

	�� ���	 ����� �� ����� �� �	�� �	
���� �����	�����

����	�� ���� �� ���������

�	��	��� ������� �� ���
����� �	�� 	
 ����� �� ����

�	� �������� ����� �� ����
	��� 	� ��� �����
�� ���� 	
 �	��

������� ��� �� ������� �	 ��� ����� ����	��� ����� �������

�������� ���	��� �	��� ������ ���� � ������	� 	
 ����	�������

��� �� ���	����� ����� 	
 �	��������	�� �� �	� ����� ��

������� �	� ���� ��������	�� �� ���� ������ ��� �	��� ���	 ��	

��	� ����	�	����! ���������� ������ �		������� 	������

��	��� �� ��	�� ��� �	���	� ����� ������ ������� �	 ���

����	��� �	�� 	�������	���
	��� ��������� ����� ����

����� �������� ���� �� �	� ���� ��� ���� "�������� �������

�������
	��� 	�������	� �� ������� �� ��� ������ 	
 ����

������ ������ ������ �	� �#����� ���� ���������� 	�����

���	� �������� ���	 �	�� �		������� ���������� �� ���� ���

�����
���� ���� $������ ����%
	� ��� ������� �	 ������ ���� ���

���
	��� ���������� �����
	��� � �	� �	������ �	�� �	��	�

��� �������� �� ���� �	
	��� 	� �	� ��	��� ������ ����� ��

����� �	��� � 	��	��� �	 ��
	��� ��������� �	� ���

�	���� 	� �	� �	� ������
	� ���� �	 ����� �� ������

���������� ������ ����������
��	��������

���� ����	�	�� ���� ���� ��� ��� �� ����� ��	��� �� 	����

���� �� �	�������� ������ ��� 	�������	��

�

�
��������

Hierarchical versus
cooperative organizations

Controlling change versus
reacting to it

The role of organizational
culture

�������

Hierarchical organizations

In hierarchical organizations, there are clear divisions of responsibility and
authority, with specific positions being responsible for discrete activities. For
example, some companies have a project management organization whose
members provide planning and management services to all projects. Figure
2.1 pictures this environment, where work processes (gray arrows) tend to
look very much like an assembly line, with each individual receiving items
or information or assignments from his or her predecessor, performing the
required operations on them, and then passing them forward to the next
position on the line.

Communication paths in these organizations (boxed arrows in Figure
2.1) tend to be clearly defined and restrictive. That is, the communication
paths required to perform normal activities are predefined and well under-
stood. When communication outside of the normal channels is required, it
generally must flow up the hierarchical chain and back down again follow-
ing the existing communication channels. Communication across the hier-
archy, or skipping over levels of the hierarchy, is generally seen as a breach
of etiquette and may even be considered insubordination and punished
accordingly.

Cooperative organizations

In cooperative organizations, as shown in Figure 2.2, both work patterns
and communications (shown by boxed arrows) are fluid. When something
needs to be done, a group of relevant people will (sometimes spontane-
ously) form an ad hoc team. The composition of that team will likely not be
constrained by people’s job titles or place in the organization; rather, it will
be driven by the needs of the job at hand and the skill sets of the available
people. This team would then work closely together and draw any needed
information directly from its source, within or outside of the organization.

Considerations: Hierarchical versus cooperative

Start-up organizations tend to be more cooperative in the beginning and
then grow more hierarchical as they become established and grow in size.
In a highly cooperative organization, you may even find the company presi-
dent wrestling with the compiler or banging test cases against the latest

10 Considering Your Organizational Culture

Role
Work flow

Superior

Subordinate

Communication
Role

Superior

Subordinate

Role

Superior

Subordinate

Figure 2.1 Hierarchical organization.

version of the software. No such things could happen in a hierarchical
environment.

Each of the Agile methods has many elements that are clearly coopera-
tive. They tend to assume that the project team is composed of the appropri-
ate people who are drawn from all parts of the organization to work
together on the project. In addition, they all stress the need for copious com-
munication both within and outside of the project team.

But the Agile methods also have some hierarchical elements. For exam-
ple, they tend to define the constitution of the development team and how
it interacts with others in a hierarchical way. Some of the methods even
define a hierarchy and responsibilities within the project team.

Therefore, any of the Agile methods could present challenges to your
organization, regardless of where it falls on the hierarchical-to-cooperative
continuum. Adopting an Agile method could require your organization to
stretch in either the hierarchical or the cooperative direction, or possibly in
both.

Controlling change versus reacting to it
This dichotomy deals with how an organization addresses change or devia-
tions from plans.

Controlling change

An organization that controls change tends to value continuity and confor-
mance to plans and requirements. When any deviation from those plans or
requirements is presented to such an organization, it is captured, cataloged,
and scrutinized, and then corrective actions are adopted.

Controlling change versus reacting to it 11

Role

Role

Role

Ad hoc
team

Role

Work flow
and

communication

Figure 2.2 Cooperative organization.

These organizations generally have well-defined procedures and tools in
place to capture, track, and manage the changes and deviations that come
along, as shown in Figure 2.3. They would be happiest if no changes were
encountered, but because changes are inevitable, they carefully manage
those changes to mitigate their effect on the project.

Reacting to change

Organizations that react to change tend to value the satisfaction of their cus-
tomers (or whomever is deemed to be in power and important). When this
type of organization encounters a change (either suggested by the customer
or deemed by the organization to be instrumental in satisfying the cus-
tomer), it is adopted as a matter of course, with little regard for the cost. As
shown in Figure 2.4, the changes tend to drive this sort of project.

These organizations tend not to keep close track of the changes they
adopt. Instead, they are more likely to have well-tuned mechanisms for tak-
ing the pulse of the customer and quickly reacting to any problems or opin-
ions that the customer may express. Because they count the costs of change
as normal costs of doing business, projects’ budgets and schedules can
become unpredictable when trying to please a fickle or demanding
customer.

Considerations: Controlling versus reacting

A controlling type of organization might face some challenges in adopting
an Agile method, because these methods tend toward being reactive to
change. The projects’ plans and initial requirements are often treated as
approximations, with the assumption that as the project moves forward,
both the customer and the development team will learn about it. Many of
the Agile methods use time-boxing1 to control schedule and rely on the cus-
tomer to prioritize functionality that will be delivered. Clearly, a cooperative
customer2 is the key to making this arrangement work.

12 Considering Your Organizational Culture

Change

Project’s change
control mechanisms

Figure 2.3 Controlling change.

1. “Time-boxing” is a method for managing projects that sets hard begin and end dates for the project or project

iterations and allows the delivered functionality to change in order to complete work within the specified

period. Refer to the description of “Sprint” in Scrum (Appendix H) for an example of how an Agile method

might use time-boxing.

2. See Chapter 3 (“Considering Your Customers”) for more discussion about your customers.

The role of organizational culture
The culture of your organization has grown up over a long period of time
and is based on the challenges your organization faces and the people who
have been instrumental in its success. Although culture does change over
time, that change is a very slow process because it requires members of the
organization to learn new behaviors and adopt new ways of interacting with
each other. As anyone who has ever tried to lose weight knows, changing
ingrained behavior is very difficult to do.

It is virtually guaranteed that some of the practices of any Agile Method
you may choose to adopt will clash with your existing organizational cul-
ture. The members of the organization will find it difficult to change their
behaviors to align with those clashing practices because it will require them
to act in a way that is counter to what has made them successful over the
years. For example, managers who have been successful in a highly hierar-
chical organizational structure are likely to have great difficulty operating in
a more cooperative environment. Even if an individual manager wants to
adopt cooperative methods, his or her past experience will make it difficult
to actually do it.

Do not underestimate the role of organizational culture in defining how
people behave. Beware of the behavior changes that adopting an Agile
Method may require of your staff. In cases where those changes are counter
to an organizational norm, people will be reticent to change. And even
when behaviors are changed, the underlying cultural norm will exert pres-
sure to revert to old behaviors for a long time into the future (possibly for
years). The only way to succeed in such a change is through a conscious
program of continual reinforcement of the desired behaviors until they
become a natural and automatic part of daily business.

The role of organizational culture 13

Project Change

Change

Change

Change

Figure 2.4 Reacting to change.

.

Considering Your Customers

This chapter provides insight into how the customers you serve
will affect your decision to adopt an Agile method.

The Agile Manifesto1 includes the value statement: “Cus-
tomer collaboration over contract negotiation.” This value pro-
vides a snapshot of the Agile methods’ approach toward
customers. They assume that customers are willing to accept a
fluid relationship that is defined less by up-front agreements and
more by ongoing collaboration and cooperation. This assump-
tion about the customer is consistent with these methods’ phi-
losophy of projects as learning experiences for all involved.

There are three main parts of your relationships with your
customers that will be affected by adoption of an Agile method;
the nature of the contractual terms, how requirements are
established and maintained, and the type and intensity of
interactions your customers have with your development
teams. Each item will be discussed in this chapter.

Contracts and statements of work
While the Agile methods acknowledge that contracts and other
forms of agreement must exist, they do not explicitly identify
what those agreements should or should not contain. This
omission is unfortunate, but from these methods’ treatment of
the customer’s role in Agile projects, it becomes clear that they
do not expect these vehicles to fully and precisely define what
is to happen on the project. Rather, the customer and the
developers are treated as colearners who work together to fig-
ure out the project’s results as it progresses.

Traditional project managers, contract administrators, and
lawyers generally want agreements to fully specify the roles

15

Contents

Contracts and statements of
work

Establishing and changing
requirements

Expectations about
collaboration

Your customers

C H A P T E R

3

1. The Agile Manifesto describes the four values behind the Agile Methods. It

is described in Appendix A.

and expectations of all parties, as well as the budget and schedule to be
adhered to and the functionality and quality to be delivered. They are often
uncomfortable with open-ended agreements because they perceive risk in
them. As depicted in Figure 3.1, the traditional view often uses contracts to
protect the parties from each other.

The Agile methods acknowledge the risks involved in more open-ended
agreements, but rather than trying to avoid them through careful specifica-
tion upfront, they seek to mitigate the risks through close collaboration with
the customer. These methods are all based on the assumption that not all
project parameters can be known ahead of time. They generally establish
some of them, then set goals for others, allowing them to change as the
project progresses. For example, the use of time-boxing usually means that
budget and schedule are held constant, whereas the delivered functionality
is allowed to vary. In this sort of project, the functionality to be delivered
cannot be known with certainty before the project is complete.

A contract for an Agile project must of necessity be different from those
we normally see, because it acts as a platform for collaboration, as depicted
in Figure 3.1. Its mix of “shalls” and “shoulds” must be based on the prac-
tices of the specific Agile method being employed, and it must be explicit
about those terms that are targets rather than guarantees. In addition, it
must clearly establish how the product requirements will be managed over
time, as well as the nature and extent of customer involvement required.
These last two items are significant considerations and will be discussed in
the remainder of this chapter.

Establishing and changing requirements
Traditional project management holds that the requirements for the system
being developed should be baselined at some relatively early stage in the
project. That is, the customer and development team should agree that the

16 Considering Your Customers

Customer
Development

team

Development
team

Traditional: contract as barrier

Agile: contract as platform

Contract

C
on

tr
ac

t

Customer

Collaboration

Figure 3.1 Contracts: barrier versus platform.

requirements as documented at that point in time are an accurate descrip-
tion of what will be delivered. This agreement becomes the basis for the
developers’ work, as well as the customer’s acceptance activities. Once this
agreement has been reached, the baselined requirements take on the for-
mality of a contract, requiring explicit negotiation and mutual agreement
before they can be changed or added to. The net result of this, as shown in
Figure 3.2, is that the early requirements baseline defines the bulk of the
work that will be done, and changes to that baseline are controlled so that
they represent a (hopefully) small part of the project.

The Agile methods treat the system requirements as one more aspect of
the project about which both the developers and the customer will learn
over time. So they tend to call for specification of initial requirements only
at a very high level, leaving much room for interpretation and adaptation as
the project moves forward. They expect that both the customer and the
developers will propose changes to the requirements throughout the proj-
ect. But the authority to approve, disapprove, and prioritize the ever-
changing requirements vests solely with the customer (with technical input
from the developers). The net result of this, as shown in Figure 3.2, is that
the initial requirements form a base upon which the system requirements
grow by accretion over the life of the project. Its intent is to ensure that the
functionality that is delivered will satisfy the customer’s needs.

As an example of the difference in approach between the traditional and
the Agile methods, consider a system for managing customer data:

◗ A traditional requirements baseline would likely comprise hundreds
of pages that would include such details as a full entity-relation dia-
gram for the database, identification of all fields on each user interface
screen, and the content, structure, and layout for all reports the sys-
tem will produce. Once this baseline is established, there is an expec-
tation that changes to it will be limited in scope and impact.

Establishing and changing requirements 17

Baselined requirements

Approved
changes

Traditional: change controlled

Agile: change welcomed

Initial requirements

Accreted
changes

Figure 3.2 Requirements change: controlled versus welcomed.

◗ An Agile project would begin with a much less complete description
of the requirements, perhaps a dozen pages, or as little as one page.
This description would identify the users of the system and its
intended use but leave the majority of the details undefined. Then, as
each detail needs to be addressed during the project, the development
team would work with the customer to determine what those details
should be.

So, Figure 3.2 depicts the two key differences between how the tradi-
tional and Agile methods manage requirements: 1) the level of detail with
which the requirements are initially specified; and 2) the response to
requirements changes. Where the traditional methods seek to establish a
baseline and then control changes, the Agile methods actually encourage and
welcome continuing evolution of the requirements. This manner of manag-
ing requirements demands an actively engaged customer (which can be its
own problem), which we will discuss next.

Expectations about collaboration
Traditional projects tend to use contracts, gatekeepers, and requirements
specifications to mediate between the development team and the customer,
as shown in Figure 3.1. In many organizations, developers are not allowed
to meet the end users, let alone interact with them regularly. Even when
interaction is allowed, the contracts and gatekeepers often circumscribe it so
that its potential results are limited.

The Agile methods all depend on regular and significant interaction
between the development team and the customer. Most of these methods
define “customer” to be either an end user or a representative of the end
users who has direct and regular contact with them. Because the customer
representative has such a central role in the project (for example, see the
previous discussion of requirements), some Agile methods prescribe that
this person be available to the project team significant amounts of the time.
The most extreme example is XP, as described in Appendix E, which pre-
scribes that the customer representative actually be a member of the project
team and be continuously collocated with the team.

The Agile methods prescribe a significant amount of interaction between
the customer and the development team to engender a positive working
relationship. The philosophy is that this collaborative relationship should
result in a smoother-running project that ultimately produces a product that
satisfies the customer’s needs.

But these methods also place demands on the customer, demands that
will be foreign to most customers’ experience. Most organizations contract
for software development because they do not have the resources to do the
job themselves. The Agile methods demand that the customer commit as
much as a full-time person to a project. This demand could be a burden that
a customer would not able or willing to assume. If you are not able to secure

18 Considering Your Customers

the required level of involvement from your customer, then the success of
your Agile project will be threatened.

Your customers
Adopting an Agile method will have a noticeable impact on your relation-
ships with your customers. It will change the nature of the contractual
terms, the way in which requirements are established and managed, and
the degree of customer involvement on your projects. Success with any
Agile Method will depend on your customer’s willingness to embark with
you on this new way of doing business.

Your customers 19

.

Considering Your Projects

This chapter discusses a number of project attributes you need
to keep in mind when anticipating adopting an Agile method.

Some Agile methods provide guidance about the types of
projects for which they are best suited. For example, XP as
described in Appendix E explicitly states it is best suited to
experimental projects that require a small colocated develop-
ment team. Others provide no such guidance. But even in
cases where guidance is provided, proponents of the various
methods generally say there is no reason why their methods
should not work for almost any type of project.

In fact, in recent years the Agile methods have been used
in a variety of project environments. The discussion groups
associated with the Agile Alliance Web site (http://www.
AgileAlliance.org) include anecdotal reports of results on
many kinds of projects. At the time of this writing, there does
not appear to be any statistically significant data that can guide
us in determining the types of projects most likely to succeed
with an Agile method. Therefore, you would do well to seek
out the most recent information available on the Internet.

With this cacophony of voices as a background, we will dis-
cuss some attributes of your projects that are particularly perti-
nent to the Agile methods.

Size of project teams
All Agile methods seem best suited to small project teams, that
is, teams that do not exceed 10–15 individuals. Although some
methods do not explicitly place a limit on team size, their pref-
erence for face-to-face communication over written documen-
tation places a practical limit on size, as shown in Figure 4.1.
Only a limited number of people can actively participate in a
meeting, and regardless of whether a method calls for regular

21

Contents

Size of project teams

Colocation of team members

Criticality of projects

Safety and security
requirements

Multiple teams

Subcontractors

Integration with hardware and
other software components

C H A P T E R

4

team meetings or not, each Agile method requires continuous communica-
tion among all team members.

When a project’s scope mandates a larger team, the Agile methods are
not necessarily inappropriate. In any project of 50 people or more, individu-
als are almost always grouped into smaller subteams (as shown in Figure
4.2) for practical purposes. Each subteam will often operate somewhat inde-
pendently of the others and integrate its work products at appropriate mile-
stones. In such an environment, one or more (or even all) of the subteams
could use an Agile method for its work. (For more on this idea, refer to the
“Multiple teams” section later in the chapter.)

Colocation of team members
The Internet and technologies that enable it have resulted in the growth of
distributed teams. Many organizations have found that with the appropriate
tools in place, there is no longer a hard requirement for team members to be
colocated. Sometimes one or two members are remote from the rest of the
team, and in other cases team members are widely dispersed.

The Agile methods have a bias against distributed teams. Some (like XP)
explicitly specify that the team should be colocated (although recent discus-
sions of experiences with XP seem to contradict this restriction). As with
team size (previously discussed), the communication assumptions of all
Agile methods are easiest to meet when all team members work in the same
location.

22 Considering Your Projects

Large

Te
am

si
ze

Medium

Small

Candidate for Agile Methods?

Yes Maybe No

?

Figure 4.1 Team size.

Medium

Su
b-

te
am

si
ze

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

A
gi

le
ca

nd
id

at
e

Small

Large project

Yes

Maybe

Figure 4.2 Subteams in large projects.

As depicted in Figure 4.3, one of the primary features of a location in
which people work is a communication bubble. A location’s communication
bubble is saturated with a tremendous amount of verbal and nonverbal
communication that goes on constantly. This communication includes for-
mal documents and meetings, in addition to the casual hour-to-hour con-
tact that team members have with one another. A telephone call opens a
temporary portal between two locations and can transmit a relatively small
amount of information between them. And while a teleconference portal
has a much greater bandwidth than a telephone call, it is still temporary and
quite limited when compared with the regular communication within
either location.

Yes, a distributed team could use an Agile method, but such a situation
would present communications challenges that would have to be addressed
in order for the team to operate as the methods intend. Some recent
advances in teleconferencing might be able to partially mitigate the commu-
nications problems. For example, some teleconferencing systems provide
not just audio and video links but also the ability to share computer screens,
whiteboards, and other communication devices. When the bandwidth
becomes great enough, the teleconferencing experience begins to approxi-
mate face-to-face interaction. But even in such cases, this relatively rich
communication is still temporary and not a complete substitute for the com-
munication bubble of colocation.

Criticality of projects
How important is your project to the organization? If the project fails, what
will be lost? Convenience? Information? Capability? Money? A customer?
An industry? The company? As indicated in Figure 4.4, every project falls
somewhere along a continuum from “The project does not matter” to “Fail-
ure is not an option.” The level of criticality for a particular project is an
important driver for many decisions about it. Generally, the more critical a
project is, the more important it is to mitigate risk by using appropriate
techniques, tools, and methods. But how do you determine what is
appropriate?

The first consideration is the experience of the organization. Generally, it
is ill advised to try out a new method or tool on a critical project. The first
use of a tool or method is usually attended by surprises as people learn how
to use it, and the organization works to figure out how it meshes with (or
does not mesh with) existing organizational mechanisms and norms.

Criticality of projects 23

Location A Location B

Telephone

Teleconference

Communication
bubble

Communication
bubble

Figure 4.3 Multiple location communication.

Adaptation to a new tool or method will often require more effort and time
than anyone can foresee, and at times, the surprises are severe enough to
jeopardize the entire project. Trying an Agile method for the first time
would represent a significant risk to a project.

This does not mean you should not use an Agile method on a critical
project, or even that a critical project should not be the test case. The risk of
trying an Agile method on a project must be balanced against other risks to
determine an appropriate course.

For example, suppose that your critical project is exploring new ground
(like an application domain in which you have no experience or a technol-
ogy that is new to the organization). If your existing methods have already
proven to be ineffective on that sort of project, then using them would con-
stitute a substantial risk to the project. In such a case, it may be appropriate
to use an Agile method to mitigate the risk of that project.

Safety and security requirements
Safety and security requirements are special cases of system requirements.
These requirements necessitate a special class of product features — features
that are nonnegotiable and which absolutely must work correctly.

As discussed in Chapter 3 in “Establishing and changing requirements,”
the Agile methods often allow the functionality that is to be delivered to
change over time. This tendency means that although an Agile project has
general goals, many of its exact deliverables are not known until they have
been delivered. But this does not mean that an Agile method cannot be used
where some features are nonnegotiable. Each Agile method contains a
mechanism for prioritizing functionality, and so these critical features can
simply be assigned the highest priorities. By doing this, you can ensure that
the nonnegotiable features will be implemented, even while following the
Agile method’s normal processes.

The need for absolute correctness of these features could be a reason to
prefer using an Agile method (depending on your normal method’s track
record in ensuring correctness). All of the Agile methods have a strong focus
on developing high-quality software. For example, XP prescribes that
the tests for a feature be written first, then the code developed to fully sat-
isfy the tests. It requires that all tests for all features run 100% correctly
before integration of a feature is considered successful. In addition to their
focus on developing high-quality software, all of the Agile methods are fully

24 Considering Your Projects

Project
does not
matter

Failure
is not an
optionProject criticality

Pr
oj

ec
t

C

Pr
oj

ec
t

B

Pr
oj

ec
t

A

Figure 4.4 Project criticality.

compatible with independent Verification and Validation, which would fur-
ther boost confidence in the product.

Safety and security requirements, like business criticality, may prompt
you to either embrace an Agile method or avoid it. Your decision must be
based on an analysis of the relative risks of your available options.

Multiple teams
The Agile methods simply do not address the special requirements of proj-
ects in which multiple separate teams collaborate. Rather, they make the
assumption that a system is being developed by a single cohesive team of
individuals that is answerable to a single customer.

As discussed in “Size of project teams,” breaking a larger team into rela-
tively independent subteams can allow one or more (or even all) of those
subteams to use an Agile method. But that does not answer some important
questions about the project. For example, how would the work of all those
subteams be managed and coordinated? And with all of the interaction
among the various teams, who would have the role of the single customer
to whom each team is responsive?

One example of a paradigm that could work is shown in Figure 4.5. In
this example, a project management office that would manage the overall
project would play this coordination and customer role. This office would
have to include a customer representative, but it might also provide other
resources that would be needed at the global-project level. (These resources
could include a professional project manager, requirements analyst, con-
figuration manager, and independent acceptance testers.)

The relationship between the subteams and this program office might be
modeled after the chosen Agile method’s customer-interaction model, but it
would likely have to be extended to provide the level of support and coordi-
nation required to meld several successful Agile subprojects together into a
single successful project.

While this example is only one option, it shows the degree to which an
Agile method would have to be adapted and augmented to be used success-
fully in a multiteam environment. Clearly, the challenges would be signifi-
cant, and while they are not insurmountable, making them work effectively
will require innovation and flexibility.

Multiple teams 25

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

Su
bt

ea
m

Program office

Large project

Figure 4.5 Multiteam example.

Subcontractors
The subject of managing subcontractors1 is not addressed by any of the Agile
methods. They all operate under the assumption that the system is being
developed entirely in-house. Although any part of a system that is subcon-
tracted must of necessity be discrete and self-contained, it must also inte-
grate cleanly with the rest of the system. The two greatest risks in
subcontracted software revolve around; (1) integration of the subcontracted
work with the in-house developed software, and (2) ensuring that the sub-
contractor will deliver software of the required quality by the date needed.

The integration points are significant sources of risk when different parts
of a system are development by different teams. So, if an Agile method is
used in such a case, the details of the integration points would have to be
treated in much the same way as safety and security requirements (as previ-
ously discussed). They would have to be defined and prioritized in such a
way that their integrity in the software developed in-house could be
ensured.

Managing the relationship with the subcontractor would add a dynamic
to the project that is not anticipated by any of the Agile methods. Figure 4.6
shows that, where the Agile methods define interactions between two enti-
ties (customer and developers), the subcontractor would be a new type of
entity, requiring a new set of interactions. Working out the details of the
subcontractor interaction in the context of an Agile method would require
significant adaptation and innovation.

It may be advisable to avoid using an Agile method on a project that
includes subcontracted work unless the project’s needs require it and the
organization is able and willing to make the requisite adaptations and
innovations.

Integration with hardware and other software
components

An Agile project might operate in the context of a larger system develop-
ment effort, developing a software component that must integrate with
other software or hardware components. This is feasible because in that type
of environment, there is almost always an over-arching program office that
coordinates the development of all of the components by the different proj-
ect teams. (This sort of arrangement was discussed under “Multiple teams
and depicted in Figure 4.5.)

26 Considering Your Projects

1. As used in this book, the term “subcontractor” refers to an organization to which a discrete part of the

software development work is delegated. Commonly, such subcontractors manage their own work and treat

the prime contractor as their customer, receiving requirements from them and delivering a finished product

(or product increments) to them.

We do not use the term “subcontractor” to refer to contract (or 1099) employees or temporary help

provided by an agency. Generally those individuals will work and be managed in-house by the contracting

organization and will function as members of the project team.

In this context, the program office is the Agile project’s “customer.” It
will provide the project’s requirements and maintain ongoing interaction
with the project. The program office will generally include a CCB that will
act as a forum for resolving any integration issues that will arise among the
components. In short, the program office serves all of the functions of the
customer in an Agile project.

Integration with hardware and other software components 27

Agile
project

Customer

Subcontractor

Defined
by agile
methods

Not addressed
by agile
methods

Figure 4.6 Subcontractor interactions.

.

Considering Your Tools and
Processes

This chapter discusses some assumptions that the Agile meth-
ods make about the tools and processes used in your software
development organization. In some cases, these methods
assume relatively mature tools and processes, and in others,
they require a level of informality that may be a source of chal-
lenge. The three classes of tools and processes we will discuss
are Requirements Management, Project Management, and
Configuration Management (CM).

Requirements Management
Requirements Management systems in software organizations
run the gamut from completely informal to rigorously formal.
At the first extreme, the product is developed on the basis of
little more than a flow of phone calls and e-mails. At the other
extreme, the agreed-upon requirements are documented in a
tool that traces their implementation to specification sections
and product components and modules. In this case, a sophisti-
cated change management system is generally used to record
every proposed new requirement or change to one, so that it
can be tracked, deliberated over, and formally approved (or
disapproved) by a Configuration Control Board. For any
change that is approved, a corrective action system is used to
track all of the necessary activities to closure.

Some Agile methods specifically address Requirements
Management, and those that do not assume a system much
like those that are specified. The best example of such a system
is described in Scrum, as described in Appendix H, which man-
ages requirements this way:

29

5
Contents

Requirements Management

Project Management

Configuration Management

Your tools and processes

C H A P T E R

◗ Each and every requirement is documented as one item in the “Prod-
uct Backlog.” The Product Backlog includes both user requirements
and technical or implementation requirements.

◗ Any person can add an item to the Product Backlog at any time.

◗ The customer has sole responsibility for prioritizing the Product Back-
log items.

◗ For each iteration of development (each Sprint), the team chooses
items from the Product Backlog to constitute the “Sprint Backlog”
(using the items’ priorities as one consideration in their choices).

◗ The Sprint Backlog is not allowed to change during a Sprint.

◗ At the end of each Sprint, the customer determines which Product
Backlog items have been satisfied, and those items are removed from
the Product Backlog.

You can see from this description and from Figure 5.1 that the Agile
methods tend to need a system for managing requirements that is some-
where in the middle of the range described above.

Agile Requirements Managment includes the following:

◗ Requirements are written down.

◗ Tracing from those requirements to components is never suggested.

◗ The customer actively manages the set of requirements.

◗ Although new requirements as well as changes to them are usually
accepted without deliberation, the changes are documented just as
the original requirements were. But because no traceability is main-
tained, determining the impact of each requirements change is left up
to the development team.

If your organization has already adopted a requirements methodology or
a tool that enforces certain levels of documentation and activities, you will

30 Considering Your Tools and Processes

Document requirements

Trace requirements

Control by customer

Control changes

Document changes

Rigorous

Agile

None

RigorousNone

None Complete

Rigorous

Rigorous

None

None

Rigorous

Agile

None

RigorousNone

None Complete

Rigorous

Rigorous

None

None

Figure 5.1 Agile Requirements Management.

need to examine the nature of the tool’s imposed restrictions to determine if
an Agile method will fit within them. You may also want to explore the
extent to which an Agile method can be adapted to your existing ways of
managing requirements.

If your organization has no set methods or tools for managing require-
ments, or if your existing tool or methodology is not compatible with the
Agile method you intend to adopt, then you will want to identify the extent
to which an Agile method will demand changes to the way requirements
are managed. Will you need to also adopt a new requirements tool? Will the
Agile method require more rigor in managing requirements than your staff
is prepared to exercise?

Project Management
Like requirements management, project management systems in software
organizations run the gamut from completely informal to rigorously formal.
At the first extreme, the team is given an objective and expected to do
whatever is necessary to achieve that objective. At the other extreme,
detailed estimates and plans are assembled, and then the project’s progress
against those plans is assessed regularly. When actual performance varies
from the plan, corrective actions are taken to bring the plans and the actual
performance back in line with each other.

As you can see in Figure 5.2, the Agile methods tend toward the less rig-
orous end of that continuum.

Agile Project Managment includes the following:

◗ Estimates of product attributes such as size are not generally made.

◗ However, the effort and schedule for the project (and especially for the
current iteration) are estimated to some intermediate level of detail.

Project Management 31

Estimate product attributes

Estimate effort and schedule

Document the plans

Track progress against plan

Handle deviations from plan

Document changes to plan

Agile

DetailedNone

None

None

None Detailed

DetailedNone

None

None Detailed

None Rigorous

Change Plan

None Detailed

Corrective action

Figure 5.2 Agile Project Management.

◗ The plans are not generally documented in any great detail.

◗ While the project’s progress is tracked against the plans with relatively
great care, corrective action is almost never taken. Instead, deviations
from the plan are treated as a fact, and the plans are changed to conform
to the newly understood reality.

◗ Those changed plans are documented to the same degree as the origi-
nal plans were.

These attributes of Agile project management may or may not fit well
with the norms in your organization. For example, if your projects usually
produce large Ghant charts that lay out tasks and dependencies in great
detail, then an Agile method’s plans will seem inadequate to many people.
Or, if status is carefully compared with plan, and corrective actions imple-
mented when there is a deviation, then an Agile method’s tacit acceptance
of plan changes will be a major shock (or perhaps a welcome relief).

Conversely, if your organization’s projects tend to run “by the seat of the
pants,” then an Agile method will represent a new level of detail and rigor
that will be foreign to your staff. Even so, the light nature of Agile project
management should not present a great challenge to even the most undisci-
plined project managers.

Configuration Management
CM covers a variety of topics, some of which are addressed by most organi-
zations’ processes and tools, and others that tend to be totally overlooked in
all but the most rigorously formal organizations. The Agile methods do not
explicitly discuss any aspect of CM. But from the practices involved in each
of them, it is clear that certain levels of CM process and tool support are

32 Considering Your Tools and Processes

Control code versions

Control document versions

Establish/maintain baselines

Identify configuration items

Control baseline changes

Manage builds, releases

Rigorous

Agile

None

RigorousNone

None Rigorous

Detailed

None Rigorous

None Rigorous

None

Figure 5.3 Agile Configuration Management.

assumed. This level of support is depicted in Figure 5.3 and discussed in the
following sections.

Code control

Most organizations have a code control tool that automatically maintains
file versions as they are updated and prevents two people from updating the
same code at the same time. The Agile methods clearly require good version
control for program code. Many expect continuous and uncoordinated
changes to be made to code throughout the project. Some explicitly say that
changes should be made freely, because any change can be undone. These
practices and this philosophy would not be possible without a good auto-
mated version control system.

Document control

Automated control of documents (such as specifications and plans) is much
less common than code control. At one extreme, project managers are left to
devise their own methods for controlling documents, and many do so in a
barely adequate way. At the other extreme, a few organizations purchase
specialized systems to provide rigorous control of documentation.

The Agile methods explicitly de-emphasize the role of documents, so
implementation of an Agile method would require little in the way of docu-
ment management practices or tools. By the same token, if you currently
use a sophisticated method or tool for managing documents, there is little
reason that your Agile projects could not easily use those methods and
tools.

Baseline maintenance

Although the term “baseline” is never used in any of the Agile methods, the
concept is central to their practices. All of the Agile methods rely on incre-
mental development processes, with each increment resulting in a working
product or other substantial deliverable that becomes the basis for future
increments. Because the Agile methods’ increments are quite short (a cou-
ple of weeks to a couple of months), this product baseline is established
early and updated on a regular basis.

The Agile methods dictate no formality in the baselining process, so the
required level of baseline control can be satisfied by relatively simple build
and release management tools and processes (as later described in “Build
and release management”). If your organization currently uses specific
processes and tools to establish and maintain your baselines, then there
appears to be no reason why those processes and tools could not be used on
your Agile projects, provided they are agile enough to meet the speed
demands of those projects.

Configuration Management 33

Configuration Item identification

As with baselining, Configuration Item (CI) identification is not explicitly
addressed by any Agile method, yet its principles are assumed to be in place.
Some Agile methods call for collective ownership of all code and other arti-
facts produced by the project. This practice would not be feasible without
mechanisms for each project member to be able to identify what each
source code file is for, what it is named, where it is stored, and which ver-
sion is the current one.

Any reasonably robust code management system includes features that
support CI identification, and it appears that the Agile methods assume the
use of those facilities. If your projects do not use such a robust system, or if
they fail to use the CI identification features of the system, then adopting an
Agile method will require some changes.

Change control

Classical CM practices treat changes as if they are an enemy to be cataloged,
held for interrogation, and finally dispatched. Even projects that do not
employ formal classical CM tend to treat changes as unwelcome intruders
on their projects, tolerating them if they must, but ignoring them when they
can. The Agile methods, on the other hand, treat change as an ally to be
welcomed or as an honored guest. (Refer to Chapter 18, “Welcome Chang-
ing requirements,” for further discussion of this dichotomy.) It is likely that
regardless of how formal or informal your change control processes may be,
adopting an Agile method will require a significant shift in philosophy as
well as action.

Build and release management

Each Agile method has specific practices for managing builds and releases of
products, specifying when they are done, how they are accomplished, and
what is done with them. The build and release cycles in Agile projects are
generally much more rapid than most organizations are used to. (Some
Agile methods call for daily or even “continuous” builds. And because Agile
iterations are generally short, releases are expected every month or two.)
Although this pace will likely be foreign to your organization, builds and
releases are such a natural part of the Agile methods that they are not likely
to cause adoption problems.

However, there may be reason for concern over whether your configu-
ration management tools and processes can adequately track and control
such fast build and release cycles. As with CI identification, any robust code
control tool will have the necessary facilities. But many people may
need training to ensure that they can manage Agile builds and releases
easily.

34 Considering Your Tools and Processes

Your tools and processes
Regardless of how rigorously you use processes and tools, adopting an Agile
method will most certainly impact how you use them. In some cases it may
lead you to abandon a process or tool, and in others you may need to
acquire a new tool or learn to better use the capabilities of a tool you already
have. In all cases, it is well worth your time to carefully consider how an
Agile method will affect and be affected by your processes and tools.

Your tools and processes 35

.

Considering Your Staff

In this chapter, we will discuss attributes of your programming
staff that will affect adoption of an Agile method. Specifically,
we will look at the variety of expertise they possess and how
they are likely to react to the changes in their work environ-
ment that adoption of an Agile method would necessitate.

Superstars
All of us try to hire only the best and brightest people, and we
will often tell them so to stroke their egos and inspire them to
extraordinary effort. But, in truth, most organizations have a
relatively average mix of software professionals who have a
relatively average mix of talent and motivation, with a few
superstars, and a few disappointments. For most of us, our
average programmer is only average, and about half of our staff
members are below average.1 Your current method of choosing
members for teams and assigning tasks to people is based on
the mix of talents and skills in your organization.

A change to an Agile method has the potential to upset
your organizational balance. Most Agile methods make the
assumption (some explicitly) that the Agile project is staffed by
technically expert and highly motivated individuals. They tend
to place the project team members in empowered positions,
expect them to identify the correct path to follow, and then
take the necessary steps on their own.

Proponents of the Agile methods point out that these meth-
ods do not just empower the programmers but also build their
professional capabilities at the same time. For example,
Feature-Driven Development’s, as described in Appendix F,
“Chief Programmer,” XP’s, as described in Appendix E,

37

6
Contents

Superstars

Changing work patterns

Making changes stick

Changing the reward system

Your staff

C H A P T E R

1. Yes, I know that mean and median are not necessarily the same! But for the

sake of rhetorical effect, I am assuming a normal distribution.

“Coach,” and Scrum’s, as described in Appendix H, “Scrum Master” are all
technical experts and mentors to other project team members. So, over
time, it is expected that your staff of merely average professionals will grow
to become extraordinary, if not superstars.

But, of course, as with any learning, if this improvement in your staff’s
capabilities does in fact take place, it will not happen immediately. There
will be some period of time when your Agile projects will be staffed with
mere mortals. Unless your software shop is truly populated with exceptional
individuals, you will want to carefully consider the assumptions that any
Agile method makes about the staff’s ability to innovate and self-motivate.
Be sure that you are not setting your staff up for failure by placing responsi-
bilities on them that they are not yet ready or willing to accept.

Changing work patterns
How comfortable is your programming staff with their existing work pat-
terns? Do they have a history of doing things in a certain way from which
they would be loath to deviate? Or are they chafing under the stress of work
patterns that they despise? Even if the impetus for exploring the adoption of
an Agile method is coming from the ranks of your programming staff, you
still must consider whether the clamor is coming from a vocal few or if there
is a general sense of dissatisfaction with the status quo.

Adoption of any of the Agile methods will mean significant changes to
how your software projects work. Everyone’s job will change (including
yours), and for some people that change will be significant. For example,
self-managing teams require less management oversight and depend on the
team members themselves to make decisions that were once the purview of
managers alone. Will those changes be exciting to those people? Or will
they add stress and anxiety?

Significant changes in the work environment can cause surprising reac-
tions among your employees. They can experience a sense of loss as the old
ways of working slip into the past. Even individuals who are glad to see the
old ways go may display the symptoms of grief and loss. Figure 6.1 shows
the stages that people tend to go through while dealing with changes in the
work environment.

38 Considering Your Staff

High

Low

Time

Status quo

En
er

gy
le

ve
l

Denial

Resistance

Bargaining

Compliance

Testing

Acceptance

Figure 6.1 Responses to change.

These stages include:

◗ Status Quo—This is the steady state that exists before the change, and
to which you will want to return after the change has been fully
implemented.

◗ Denial — Initial reactions to change are often a hope or expectation that
the change is not permanent, and things will return to “normal” if the
change is simply ignored.

◗ Resistance—This is an active lashing out against the change, often in the
form of either overt or covert attempts to stop or even sabotage the
change.

◗ Bargaining—When it becomes clear that the change cannot be avoided,
attempts may be made to evade its direct impact, for example, by seek-
ing exemption from it.

◗ Compliance — When resistance and bargaining fail to stop the change, a
sullen compliance can set in. People may comply with the change, but
they do it grudgingly, and productivity often suffers.

◗ Testing—After some time of bare compliance, people may begin to actu-
ally test out the meaning and extent of the change to discover how it
can benefit them.

◗ Acceptance—Finally, the change is accepted as the new status quo
when people decide that it is not as bad as they had feared, and that it
provides some benefit to them.

While not every person will go through these exact responses, they form
a pattern that you are likely to observe within your organization any time
significant change is introduced.

Making changes stick
Most organizations have a history of failed change efforts. People’s “denial”
reaction (as discussed above) is often well founded, because they have seen
that strategy work in the past. They have found that if they ignore changes,
those changes often will go away! Making a change successful over the long
term is a complex topic about which much has been written.2 In this section,
we will discuss a few dimensions of this topic that are particularly pertinent
to adopting an Agile method.

Making the right change

The first point is probably the most obvious. The most important part of
assuring that a change will be successful is to make a good decision about

Making changes stick 39

2. If you search the Internet or your local library for “managing organizational change,” you will find a wide

range of books and other resources on this subject.

the change in the first place. Too often, changes are adopted based on very
little information and analysis. This results in a bad decision and, ultimately,
in a failed change effort.

The fact that you are reading this book indicates that you are intent on
avoiding this pitfall. You are collecting the information you need to be sure
that adopting an Agile method is indeed the right thing to do in your organi-
zation. In this book, Part I, Chapter 7 “Using This Book to Make Your Adop-
tion Decisions,” and Part VII: “The Adoption Decision” will guide you in
getting the greatest value from this book and making the right decision.

As you will see in Chapter 23, making this decision should not be a solo
activity. Your staff members will have unique perspectives on the subject on
which you will want to capitalize. If you are being lobbied to adopt an Agile
method by some of your staff, it would be prudent to find out if others dis-
agree with that position. When you have collected enough information
(e.g., after completing most of this book), it would be healthy to engage all
parties in a debate of the question. Their viewpoints will provide valuable
information that you can use to make this decision, which is ultimately your
responsibility.

If you decide that adopting an Agile method is the right thing for your
organization, then you will surely continue your research by gaining an
intimate knowledge of the method you decide to adopt through further
reading and by hiring a consultant or employees with the requisite exper-
tise. Understanding the details of that method will be critical to successfully
making it part of your organization’s way of doing business.

Building buy-in

Because a successful change effort requires effort and cooperation by many
people throughout the organization, you have to take steps to ensure that
those people “buy into” the decision. That is, that they understand the deci-
sion and will do their part to make it successful, even if they do not fully
agree with it.

Even if you are the most senior executive, you still need to “sell” the
adoption decision to others within your organization. Although you can
command compliance, remember (from the “Responses to change” section)
that bare compliance is not your goal. Your goal is to reach a new state of
status quo. And this can only be achieved when your staff embraces the
change as the new norm for the organization.

Engaging people during the adoption decision (as discussed in “Making
the right change”) is an important first step. But it must be followed
with continuing communication to the entire staff about the change,
including:

◗ Regular reinforcement of the reasons for the change;

◗ Discussion of the plans for implementing the change;

◗ Regular reporting on the progress of the implementation effort;

40 Considering Your Staff

◗ Descriptions of problems that have come up (as they surely will), and
how they have been dealt with;

◗ Celebrations of successes.

This topic is discussed in much more detail in Chapter 24.

Changing the reward system
Your organization has a reward system. It may not be formal, and it may not
be administered centrally, but it exists. Every employee has a clear under-
standing of which behaviors are rewarded and which behaviors are not, and
the vast majority of employees will practice those behaviors that are
rewarded. The reward system in your organization has grown over time to
encourage behavior that seems to enhance the organization’s success.

The adoption of an Agile method will significantly alter the behaviors
required of many of your employees. Some behaviors that used to be desir-
able will no longer be appropriate, and other new behaviors will need to
take their place. If the reward system is not changed, then your staff’s
behavior will resist change as they continue to act in ways that are
rewarded.

For this reason, you must look carefully at the behaviors that are encour-
aged and discouraged by your reward system and take decisive action to
change that system. This topic is also discussed in more detail in Chapter 24.

Your staff
Considerations about your staff are nearly the most important ones you
should make. After your organizational culture, your staff and their abilities
and attitudes about adopting an Agile method will be critically important to
the success of any adoption effort you undertake.

Changing the reward system 41

.

Using This Book to Make Your
Adoption Decisions

In this final chapter of Part I, we change our focus from the
Agile methods and how they may affect your organization to
the nuts and bolts of how to get the greatest value out of this
book. This chapter first discusses the structure and order of the
book’s parts and chapters. It then provides instructions for
downloading and using the supporting workbook that is
designed to provide an easy mechanism for you to record your
thoughts as you read, then analyze and draw reasonable con-
clusions from them.

Structure of this book
Figure 7.1 illustrates that this book is structured to facilitate
your rapid understanding of the Agile values, principles, and
practices so you can assess how adopting an Agile method
might affect your organization. This book consists of seven
parts and eight appendixes.

Part I: Adoption Considerations sets the stage for the remain-
der of the book with a brief introduction to the Agile methods,
discussions of considerations you should keep in mind as you
read the remainder of the book, and pointers to maximize the
value you derive from the time you are investing.

◗ Chapter 1: Introducing the Agile Methods.

◗ Chapter 2: Considering Your Organizational Culture.

◗ Chapter 3: Considering Your Customers.

◗ Chapter 4: Considering Your Projects.

◗ Chapter 5: Considering Your Tools and Processes.

◗ Chapter 6: Considering Your Staff.

43

7
Contents

Structure of this book

The “Evaluating Agile Methods”
Workbook

Final steps

C H A P T E R

◗ Chapter 7: Using This Book to Make Your Adoption Decisions.

Parts II–VI are the meat of this book. They are structured around the
value statements of the Agile Manifesto, the principles that amplify them,
and the practices by which each Agile method implements them.

Part II: Value: “Individuals and Interactions Over Processes and Tools” discusses
the Agile Principles and Practices that support the first value from the Agile
Manifesto.

◗ Chapter 8: About People, Processes, and Tools.

◗ Chapter 9: Motivated Individuals and Self-Organizing Teams.

◗ Chapter 10: Face-to-Face Communication.

◗ Chapter 11: Sustainable Pace.

◗ Chapter 12: Supporting Processes and Tools.

Part III: Value: “Working Software Over Comprehensive Documentation” dis-
cusses the Agile Principles and Practices that support the second value from
the Agile Manifesto.

◗ Chapter 13: The Role of Documentation in a Software Project.

◗ Chapter 14: Incremental Delivery of Working Software.

Part IV: Value: “Customer Collaboration Over Contract Negotiation” discusses
the Agile Principles and Practices that support the third value from the Agile
Manifesto.

◗ Chapter 15: Defining the Customer Relationship.

◗ Chapter 16: Daily Collaboration of All Stakeholders.

44 Using This Book to Make Your Adoption Decisions

Agile manifesto values

Individuals and interactions
over processes and tools.

Working software
over comprehensive
documentation.

Customer collaboration
over contract negotiation.

Responding to change
over following a plan.

Motivated individuals (support and trust)
Self-organizing teams
Face-to-face communication
Sustainable pace

Early and continuous delivery
Deliver working software frequently
Working software = progress

Daily collaboration of all stakeholders
Welcome changing requirements

Technical excellence
Simplicity: maximize work not done
Regular team retrospectives

Evaluating agile methods
for your organization

Part 1
Adoption considerations

Part 2
Individuals and Interactions

Part 3
Working software

Part 4
Customer collaboration

Part 5
Responding to change

Part 6
Keeping the process agile

Part 7
The adoption decision

12 agile principles

Figure 7.1 Structure of this book.

Part V: Value: “Responding to Changoever Following a Plan” discusses the
Agile Principles and Practices that support the last value from the Agile
Manifesto.

◗ Chapter 17: Understanding Change in Software Projects.

◗ Chapter 18: Welcome Changing Requirements.

Part VI: The Unstated Value: Keeping the Process “Agile” discusses the Agile
Principles and Practices that, although they are not related to one of the four
values from the Agile Manifesto, are nonetheless critical to the Agile
methods.

◗ Chapter 19: Maintaining the Process.

◗ Chapter 20: Technical Excellence.

◗ Chapter 21: Simplicity: Maximize Work Not Done.

◗ Chapter 22: Regular Team Retrospectives.

Part VII: The Adoption Decision wraps up the book with a discussion of how
to use the information and impressions you have gained to make your
adoption decision.

◗ Chapter 23: Making the Adoption Decision.

◗ Chapter 24: Adopting the New Practices.

◗ Chapter 25: Evaluating the Effects of Your Agile Method.

Finally, the appendixes provide more detailed information on the Agile
Manifesto, the 12 Agile principles and the Agile methods, including refer-
ences for further information.

The “Evaluating Agile Methods” Workbook
To assist you in deriving the greatest value from this book, we have pro-

vided a workbook for your use. As Figure 7.2 shows, this workbook matches
the book’s structure. It provides mechanisms for you to record your obser-
vations as you read this book and then roll them up for a summarized view
afterwards.

You can download this workbook from the author’s Web site, as shown
in Figure 7.3.

◗ Go to http://www.ASKProcess.com/eval-agile.

◗ Scroll down to the “Supporting Workbook” section.

◗ Click “Download the workbook” and follow the instructions.

Refer to the “Instructions” page of the workbook for detailed instructions
on its use.

The “Evaluating Agile Methods” Workbook 45

Evaluating the practices

As you read each part of this book, you should use a different page of the
workbook to record your observations. For example, as shown in Figure 7.4,
while reading Part II: Value: “Individuals and Interactions Over Processes
and Tools,” you should use the “Individuals” tab of the workbook to record
your notes.

The chapters of Parts II–VI (after the initial chapter of each part) corre-
spond with the Agile principles listed on the appropriate page of the work-
book. Figure 7.4 shows that Chapter 9 corresponds with the first two
Principles on the “Individuals” worksheet. (Scroll down on this worksheet
to see the sections for Chapters 10–12.) Associated with each Agile Principle
are places for you to record your ratings and notes about each of the Agile
Practices discussed in the book’s relevant chapter.

For each Agile Practice, the workbook provides places for you to record
your thoughts and impressions about the following topics:

46 Using This Book to Make Your Adoption Decisions

Evaluating agile methods
for your organization

Part 1
Adoption considerations

Part 2
Individuals and Interactions

Part 3
Working software

Part 4
Customer collaboration

Part 5
Responding to change

Part 6
Keeping the process agile

Part 7
The adoption decision

Figure 7.2 The “Evaluating Agile Methods” Workbook.

Figure 7.3 Download the workbook.

◗ Considerations about culture—This refers to the considerations about
how well the Agile practices will fit with your organization’s current
culture. Since organizational culture is slow to change, adopting an
Agile method will result in some friction within your organization.
These were discussed in Chapter 2.

◗ Considerations about customers—This refers to the considerations about
how the Agile practices will affect your relationship with your custom-
ers. The Agile methods prescribe much more customer involvement in
software development projects than most people are used to. These
were discussed in Chapter 3.

◗ Considerations about projects—This refers to the considerations about
how well the Agile practices will work on the types of projects your
organization undertakes. Different types of projects have different
needs, and the Agile Methods were designed with certain types of proj-
ects in mind. These were discussed in Chapter 4.

◗ Considerations about tools and processes—This refers to the considerations
about how the Agile practices will affect (or be affected by) the processes
and tools your organization uses. Since processes and tools must support
the methods being used, adopting an Agile method may necessitate
changes to processes and tools (eliminating some, adding others, or
changing how they are used). These were discussed in Chapter 5.

◗ Considerations about staff—This refers to the considerations about how
well your staff may adapt to the Agile practices. Any change will
require people to operate differently from the way they have in the
past, and some may be more willing to make those changes than oth-
ers. These were discussed in Chapter 6.

The “Evaluating Agile Methods” Workbook 47

Figure 7.4 Using the workbook.

As you evaluate each Agile practice, you are encouraged to assign each
consideration a numeric value between zero and five to indicate increasing
suitability of that practice to your organization. If you believe that the con-
sideration is not important to your decision (be careful about believing this),
or that you are unable to make a valid judgment, then leave that considera-
tion blank, and the workbook will ignore it. (Zero and blank entries are
treated differently.)

The valid ratings are as follows. If you make any entry other than the six
listed below, it could affect the workbook’s summary computations. How-
ever, you are free to use the workbook in any way that you see fit.

◗ 0—The Practice absolutely could not work with this consideration in our
organization.

◗ 1—The Practice is unlikely to work with this consideration in our
organization.

◗ 2—The Practice would be difficult to do with this consideration in our
organization.

◗ 3—The Practice probably can be done with this consideration in our
organization.

◗ 4—The Practice would be easy to do with this consideration in our
organization.

◗ 5—The Practice is already in place with this consideration in our
organization.

Finally, there is a place for you to make notes about each Agile Practice.
It would be good to record the reasoning behind the ratings you assign,
especially any ratings of zero or one. You can enter as much or as little infor-
mation in these areas as you like. The notes areas are for you to use in any
way you like.

Compiling the results

As you enter your ratings of each Agile Practice/Consideration, the work-
book will keep running summaries of these entries, as shown in Figure 7.5,
including:

◗ Practice Summary—A summary of your ratings for all Considerations
for a single Practice.

◗ Principle Summary—A summary of your ratings for all the Agile Prac-
tices for each Consideration, and a summary of those Consideration
Summaries for a single principle.

◗ Value Summary—A summary of the Principle Summaries for a single
value (worksheet).

48 Using This Book to Make Your Adoption Decisions

You should watch these summary values as you enter your ratings. If
they do not appear to reflect your opinion about a particular Consideration,
Practice, Principle, or Value, then you should check your individual entries
to be sure they are accurate. A data entry mistake could lead you to inaccu-
rate conclusions.

However, you may also find that your initial assumptions are not sup-
ported by the analysis this book is leading you through. The intent of the
workbook is to provide a place for you to record your detailed impressions.
If you have recorded well-thought-out ratings, then you should let your
own data guide you in making rational decisions and revising your initial
assumptions, if needed.

Final steps
The Summary page of the workbook copies all the Principle and Value Sum-
maries together onto a single page. This provides you with a summary view
of all the ratings you made. After you have completed Parts II–VI and
recorded all your impressions about the Agile Practices, you can use the
Summary page to help draw conclusions about the Agile Methods.

Part VII leads you through the decision-making process using this data.
Refer to Chapter 23 for a complete discussion of using the workbook’s Sum-
mary page.

Final steps 49

Principle summaries Practice summaries

Value summary

Figure 7.5 Workbook summaries.

.

Value: “Individuals and
Interactions over Processes and
Tools”

In this part of the book, we will explore the implications of the
first Agile value, which states, “We have come to value indi-
viduals and interactions over processes and tools.” We will
begin this exploration with a general discussion in Chapter 8,
“About People, Processes, and Tools,” regarding the relative
roles of people, processes, and tools and how they are interre-
lated. We will then look at several Agile Principles that embody
this value.

◗ Chapter 9: “Motivated Individuals and Self-Organizing
Teams” discusses the two people-related Agile Principles;

◗ Chapter 10: “Face-to-Face Communication” discusses
communication in Agile projects;

◗ Chapter 11: “Sustainable Pace” discusses avoiding the
overuse of overtime.

Finally, Chapter 12, Supporting Processes and Tools, dis-
cusses how the Agile methods affect and are affected by the
processes and tools you use. We refer to this as the “Unstated
Principle” because several practices of the Agile Methods relate
to this topic and it is important to all of the Agile methods,
even though none of the 12 Agile Principles addresses it.

P A R T

II

.

About People, Processes, and
Tools

This first chapter of Part II lays the foundation for our explora-
tion of the Agile Principles that embody the Agile value, “Indi-
viduals and interactions over processes and tools.” The
following chapters in Part II will each delve into one or more of
those principles.

People versus processes versus tools
The very first value in the Agile Manifesto draws a line in the
sand. In it, the Agilists clearly state their belief that people are of
greater importance in determining software project success
than are processes or tools. Naturally, this is an overstatement
of their case. As we will see in Chapter 12, all of the Agile meth-
ods depend on good processes and tools to enable the project’s
people.

Agile Manifesto:
We have come to value…
Individuals and interactions
over processes and tools

The Agilists are not alone in their emphasis on people; it has
been with us in the software industry for decades. Many people
believe that if you compose your team of the right people, and
you attend to their needs, then those people will be able to suc-
ceed no matter what. Some go so far as to say that disciplined
processes and structured tools can get in the way of project
success.

While toolmakers would not be likely to argue against the
importance of people, they naturally place their main emphasis
on tools. They focus on the tasks that their tools are designed to

53

8
Contents

People versus processes versus
tools

The role of people

The role of processes

The role of tools

Balancing people, process, and
tools

C H A P T E R

do, and work hard to make their tools complete and robust. Unfortunately,
there are many cases where toolmakers do not consider the needs and abili-
ties of the people who will use their tools. For example, although “usability”
is a critical feature of any tool, many tools are difficult for the novice user to
learn. And in addition to the requisite training, tools often assume specific
knowledge that is not always present in an organization. For example, some
design tools demand the use of predicate logic; something all programmers
should know but with which many are not proficient.

The other trouble with tools is that they often dictate the processes that
must be adopted in order to use them. For example, Requirements tools
generally embody a requirements definition process, so that adopting the
tool requires that the organization also adopt the tool’s process. If the
organization already uses a compatible process, this may not be a problem.
But in the more common case, the tool may dictate that the organization
adopt a new process that differs from the way they normally manage
requirements, and in the worst case that new process may not be appropri-
ate to the organization’s needs.

The software process community generally acknowledges the impor-
tance of people, but the processes they build do not always reflect such a
belief. Like the toolmakers, the writers of processes often focus so closely on
the completeness and robustness of the processes themselves that the ability
of people to follow them is compromised. For example, a person may find
that the role he or she is assigned by the process may require activities
beyond his or her skills, abilities, or time constraints. Compounding this
problem, when people cannot see the value of the work products or activi-
ties that a process prescribes, they will consciously or unconsciously under-
mine or circumvent that process.

Process writers also tend to pay little attention to tools. While they
acknowledge that the right tools can make any process more efficient, they
do not routinely consider the available tools when designing processes. In
light of this discussion about the effects of tools on process, such a lack of
attention can have serious negative effects as the organization attempts to
integrate a new process with an incompatible tool set.

So we see that of people, process, and tools, all are important to our proj-
ects’ success. As Figure 8.1 shows, they are the three legs on which projects
stand. To make one leg longer or shorter than the other two would make
the project unstable, and eliminating any of the three would cause the proj-
ect to fail. The success of our projects depends on all three. In this chapter,
we explore the importance of each of these three success factors and iden-
tify how they interact with each other to bring about the success of our soft-
ware development projects.

The role of people
Our people are our most precious resource. In the business of creating intel-
lectual property, people have a preeminent role, as seen in Figure 8.2.

54 About People, Processes, and Tools

Processes cannot create. Tools cannot exercise intellect. Turning ideas into
working software requires people. People imagine, people interpret, people
envision what they expect to build, and then people turn that vision into
reality. Without people, software cannot be written.

But as we can also see in Figure 8.2, people have shortcomings. People
make mistakes that result in defective software. People forget things so that
their solutions are incomplete. People envision the future imprecisely so
that their plans and estimates may be poor. People can keep only a limited
amount of information in their minds at one time, so they may miss the
consequences of their decisions. People misinterpret what others say so that
information is lost in communication. People remember imprecisely so that
facts are subject to dispute. People are expensive and may work slowly so
that projects run over budget and schedule. People are bored by repetition
so that some tasks are ignored or performed poorly.

Because of all these things and more, people by themselves are insuffi-
cient to ensure a successful software project. A team of even the best people
in the software industry will have an uncertain likelihood of success. All
people need the support that is provided by processes and tools to mitigate
for their shortcomings so they can do their best work.

The role of processes
Every software development project follows processes, even if they are not
recognized as such, and even when the project “team” consists of only one

The role of processes 55

Creativity
vision
intellect

People

Errors
omissions
imprecision

Figure 8.2 People as a project success factor.

Project

Pr
oc

es
se

s

Pe
op

le

To
ol

s

Figure 8.1 People, processes, and tools.

person. It is not a matter of having or not having processes; rather, it is a
question of how consistently those processes are followed, and how well
those processes meet the needs of the people who use them.

Processes identify the roles of the people on the project, the actions those
people will take, and the work products those people will produce. In fact,
the Agile Manifesto’s contention that interaction among individuals is more
important than “process” belies a misunderstanding of the nature of process.
After all, it is the process that is being followed that determines who will
interact with whom, under what conditions the interaction will take place,
what will be the subject of that interaction, and what will be its result.
Indeed, “interaction” cannot be more important than “process,” because
interaction is, itself, part of the process!

The importance of process lies precisely in the shortcomings of people, as
we already discussed and can see in Figure 8.3. People make mistakes, so
their processes include checks and balances. People forget things, so their
processes remind them of what needs to be done. People are imprecise, so
their processes identify where precision is needed. And people are limited,
so they rely on their processes to keep the important facts before them.
Processes that do these things provide the support people need to mitigate
for their shortcomings.

The most critical attribute of a good process is that it meets the needs of
those who use it. A key complaint of many people is that processes inflict
undue burden on projects, making people inefficient and endangering the
project schedule or other objectives. This complaint reflects problems with
the specific processes those people have experienced rather than a problem
with processes in general. As we have observed, the appropriate role of
process is to make people more effectual in their work. Like any other sup-
porting function, properly designed and executed processes are nearly
invisible, doing their intended jobs without calling attention to themselves
or their requirements. But processes that are ineffective become painfully
obvious to those who must endure them. Thus, our focus must not be to
minimize or eliminate process. Rather, it should be to identify those
processes that are burdensome and correct or replace them with processes
that are actually helpful.

The other critical issue is how consistently the processes are followed. A
process that is inconsistently followed will produce inconsistent results. But
one that is followed faithfully will produce predictable results. This consis-
tency is not necessarily related to the process’s formality, or even to it being
documented in writing. Most of us follow a consistent morning routine

56 About People, Processes, and Tools

Creativity
vision
intellect

People

Process

Figure 8.3 Processes as a project success factor.

(process), even though we may never have thought through its steps and
procedures and have almost certainly never written them down. Because
we are consistent in following this invisible process, it produces predictable
results. On those few days when our routine is upset, the results can be
embarrassing!

People often do not write their processes down on paper or illustrate
them with flow charts, because that level of formality is not of value to most
individuals. But when many people must work together, process documen-
tation becomes more important. As organizations evolve, they follow a pre-
dictable pattern. In the beginning, the founders often base their work on a
mutual understanding with one another, finding little necessity for docu-
menting their processes and procedures. But then, as they grow and begin
to hire people, they find that certain things simply must be written down.
As the company grows, so does the need to document the processes that
members are to follow to ensure that things run smoothly. The growing
need for formality in process documentation arises from the simple fact that
consistency in following a process becomes progressively more difficult to
achieve as more and more people are involved.

Processes are essentially nothing more than tools that mitigate for peo-
ple’s shortcomings. Good processes make people able to harness their intel-
lectual abilities and effectively apply them to solving problems. When
consistently applied, good processes produce predictable results. And docu-
menting those processes allows multiple people to share them and work
together toward common goals.

The role of tools
All software projects use tools. At the very least, they use an interpreter or
compiler and linker. Most also use a code control system and something to
track bugs.

The main purpose of tools is to make processes more efficient and people
more productive. Many labor-intensive tasks can be done more efficiently
by either replacing human effort with a tool (such as when we run auto-
mated tests) or by supplementing human effort (as is the case when the
compiler converts source code we have written into object code). Repetitive
tasks that produce boredom in people (and the resultant errors) can often be
relegated to tools. The key to ensuring that a tool is effective lies in making
sure that it supports the people who do the work as well as the processes
those people use, as shown in Figure 8.4.

A tool supports the process when it makes that process less labor-
intensive and easier to follow. Implementing a tool will generally require
process changes to incorporate any tool-specific steps into the process. For
example, a code control tool will require the addition of special steps to the
coding task (steps like check out and check in). But these steps are fairly
nonobtrusive, and they certainly do not change the nature of the coding
process that programmers follow. An example of a tool not supporting a

The role of tools 57

process might be the case where implementing a requirements tool forced
an organization to discard an effective requirements development process
because it did not work with the tool. In that case, the tool would be dictat-
ing the process, rather than supporting it.

A tool supports the people when those who are affected by it can use it
without undue effort or consternation. Implementing a tool almost always
requires that people be trained in its use, after which they should become
proficient with it in a reasonable amount of time. For example, in order to
use a bug tracking system, the programmers will need to learn to enter bugs,
change their state, and close them out. An example of a tool not supporting
the people would be a design tool that requires mastery of predicate logic in
an organization where the designs are developed by average coders who are
not proficient with predicate logic.

In order to be worth implementing, a tool must make life on the project
team better. After reasonable implementation and training time, the tool
must earn its keep by supporting the team’s processes and making the team
members more efficient at their intellectual tasks.

Balancing people, process, and tools
People, processes, and tools: No one of these is more important than the
others. Each has an important role to play in ensuring the success of our
projects. None can be eliminated or de-emphasized without having an
adverse effect on the project.

Our people are the source of the creativity, intellect, and vision that is
required to build software. These key strengths make people indispensable
to the task of creating software. But people’s shortcomings can jeopardize
our projects’ success. Errors, oversights, miscommunication, and the like are
common human frailties. People have come to depend on processes to miti-
gate for these shortcomings and make success more achievable. Individuals
rarely document their processes and often do not recognize that they follow
them. But in organizations, attention to and documentation of process is the
key to ensuring that the processes are followed consistently and modified
when necessary so they remain beneficial to the organization. Finally, tools
make both the people and their processes more efficient by leveraging peo-
ple’s effort and taking over some of the more mundane (though critical)
activities in our processes.

58 About People, Processes, and Tools

Creativity
vision
intellect

People

Process

Tools

Figure 8.4 Tools as a project success factor.

To be sure, there is a clear hierarchy: People require the support of
processes, and tools must support both people and processes. But to claim
that any one of them is more important than the others is to add unneces-
sary risk to our projects.

Balancing people, process, and tools 59

.

Motivated Individuals and
Self-Organizing Teams

In this chapter, we will discuss the first two Agile Principles
that support the value about “individuals and interactions” and
the practices of the various Agile methods that embody them.

Agile Manifesto:
We have come to value…
Individuals and interactions
over processes and tools

Agile Principles
The two Agile Principles1 that relate most directly to the first
Agile value about “individuals and interactions” are the ones
that deal with motivated individuals and self-organizing teams.

Motivated individuals

Build projects around motivated individuals. Give them the environ-

ment and support they need, and trust them to get the job done.

This principle highlights the Agile methods’ reliance on the
motivation of each team member to achieve project success.
Most of the practices of these methods make the assumption
that team members are going far beyond simply following
orders and doing what was assigned. They expect that each
person is exercising his or her professional judgment to take
the path that he or she believes is best at each juncture of the

61

9
Contents

Agile Principles

Agile practices

Adaptive Software
Development (ASD)

Dynamic System Development
Method (DSDM)

Extreme Programming (XP)

Feature-Driven Development
(FDD)

Lean Software Development

Scrum

Adoption implications

Motivated individuals and
self-organizing teams

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

project, or at least to raise questions and concerns to be discussed with the
team, management, and the customer.

But the Agile methods do not just expect motivated individuals to
appear. The second sentence of this principle highlights a few conditions
that the Agile Manifesto authors believe are important to building a moti-
vated team: an appropriate environment, support for them as professionals,
and trust that they will indeed exercise good professional judgment.

These things highlight the Agile methods’ differences from the more
conventional command-and-control mode for managing projects. The tradi-
tional methods assume that intrinsic motivation is rare, and so they enforce
specific behaviors. The Agile methods build an environment where each
individual is challenged to build his or her capabilities and where motiva-
tion is an expected outcome of the environment.

Perhaps a better way to state this principle would be, “Build project envi-
ronments that generate motivated individuals.” This statement aligns more
readily with the way the Agile methods are engineered.

Self-organizing teams

The best architectures, requirements, and designs emerge from self-organizing teams.

The Agile methods embrace the recent movement toward self-managed,
self-directed, or (as this principle says) self-organizing teams. This philoso-
phy is a movement away from traditional command-and-control manage-
ment and toward one that counts the team as an entity that has its own
knowledge, perspective, motivation, and expertise. In this environment, the
team is treated as a partner with management and the customer, capable of
providing insight, affecting decisions, and negotiating commitments.

The Agile Manifesto sees this structure not only as a way to achieve a
more motivated team but also (as this Principle states) as a way to achieve
technical excellence. The Agile methods each count on the team itself to
keep the technical issues under control and “on the radar scope” when proj-
ect decisions are being made.

Agile practices
The two Agile Principles already discussed describe a certain type of project
environment in which the development team is challenged to learn from
one another, develop their capabilities, maintain their own motivation,
direct their own activities, and act as an equal partner in the project with
management and the customer.

All of the Agile methods have specific practices that directly sup-
port these two Principles and the Agile value about “individuals and inter-
actions.” We will briefly discuss each of those practices, one method at a
time.

62 Motivated Individuals and Self-Organizing Teams

Adaptive Software Development (ASD)
Three of ASD’s philosophies bear directly on the Agile Principles about indi-
viduals and teams: project stakeholders as independent agents, speculation
about project mission and adaptive plans, and the Leadership-Collaboration
Management Model. ASD is described in Appendix C.

The Adaptive Conceptual Model: Project stakeholders as
independent agents

ASD, discussed in Appendix C, makes the most explicit statements among
the Agile methods about the role of the software development team as an
agent that is in the position of directing itself and negotiating with manage-
ment and the customer. It states that as a “complex adaptive system,” a soft-
ware project “is an ensemble of independent agents” and the development
group is one of those independent agents.

This radical-sounding philosophy levels the playing field by remov-
ing any idea of precedence or hierarchy among the “agents” and making the
technical team an equal partner with management and the customer in the
quest for achieving the project mission. With no superior power over
the team to organize and direct it, the team is expected to capitalize on the
freedom to self-organize and self-motivate.

The Adaptive Development Model: Speculate: Project
initiation and adaptive planning

As an outgrowth of its philosophy about software projects being “complex
adaptive systems,” ASD replaces the idea that the project’s results can be
predetermined with the concept of “emergent results.” That is, the agents’
expectations about what the project will produce are expected to grow and
change over the life of the project. This view of a project results in the activ-
ity we would normally call “plan” being renamed “speculate.”

The project mission is established as the various independent agents of
the project speculate together about the overarching parameters that will
guide their work. They establish a vision and set of values for the project
and speculate about the product that will emerge.

Adaptive planning is done at the beginning of the project, as the inde-
pendent agents speculate together about what development cycles will be
required to achieve the Project Mission. It is then revisited at the beginning
of each development cycle, as they refine that speculation based on project
history to date.

This all means that the project mission and plan are not dictated to the
technical team. As equal partners with management and the customer,
they work together to negotiate the project’s critical parameters. In this
way, the ASD team has a strong hand in organizing and managing the
project environment in which they will work, which is expected to moti-
vate them to meet the commitments to which they have agreed.

Adaptive Software Development (ASD) 63

The Adaptive (Leadership-Collaboration) Management Model

A natural result of adopting the concepts of independent agents and specu-
lation is the rejection of traditional command-and-control management in
favor of “leadership-collaboration” management.

In this philosophy, the role of the manager is to lead (as opposed to
direct), and to foster an environment in which the various independent
agents can collaborate to produce the project’s emergent results and ulti-
mately achieve the Project Mission. Again, this is expected to result in a
self-organizing team that is highly motivated.

Dynamic System Development Method (DSDM)
DSDM’s second principle (empowered teams), directly relates to the Agile
Principles about individuals and teams. DSDM is described in Appendix D.

Principle 2: DSDM teams must be empowered to make
decisions

DSDM takes a more traditional view than does ASD of the relationships
among the technical team, management, and the customer. But it stresses
that the team must be given wide latitude to make technical decisions that
are congruent with the direction already agreed to by all parties to the proj-
ect (including the team itself).

DSDM envisions that the customer, management, and team collaborate
in establishing overall goals and directions for the project (including func-
tionality, budget, and schedule). Then the technical team is empowered to
do what team members believe is necessary to satisfy those goals, appealing
to management and the customer only when they discover that some aspect
of the agreed-upon goals must be renegotiated.

With this empowering of the team to negotiate with management and
the customer and of individual team members to exercise their professional
judgment, DSDM establishes an environment in which the team can self-
manage and self-motivate.

Extreme Programming (XP)
Two of XP’s practices address the Agile Principles about individuals and
teams: The Planning Game and collective ownership. XP is described in
Appendix E.

The Planning Game

XP’s Planning Game is an ongoing collaborative activity that includes all
stakeholders in the project, including the technical team and the “business

64 Motivated Individuals and Self-Organizing Teams

people” (which includes management and the customer). In this game, each
party is expected to bring its own unique perspective to bear on the job of
planning the work to be done. The customer knows what he or she wants,
management knows the project’s constraints, and the technical team knows
the technical limitations and how quickly they can work.

As with other Agile methods, the Planning Game results in the technical
team being treated as a collaborator with management and the customer,
rather than being subservient to them. This is a key part of self-management
and a key motivational aspect of XP.

Collective ownership

Within an XP project, each pair of programmers is empowered to take any
actions that they agree is necessary to reach the desired result. To make this
happen, XP declares that there is no ownership of code. Every pair is
encouraged to make any changes that are needed to any code at any time,
with the only requirement being that they do not cause the existing auto-
mated test suites to fail. This empowerment to make significant decisions is
expected to be a motivating factor for XP team members.

Feature-Driven Development (FDD)
Two of FDD’s practices (class ownership and feature teams) illustrate
the Agile Principles about individuals and teams. FDD is described in Appen-
dix F.

Class (code) ownership

FDD takes code ownership to the opposite extreme from XP; it establishes a
single owner for every class and mandates that the owner be the only one to
ever change that class. This philosophy is designed to motivate each individ-
ual to assume full responsibility for the correct operation of his or her
classes.

By itself, class ownership does not differ much from normal practice in
the software industry. But it is important when taken in combination with
the next practice, feature teams.

Feature teams

An FDD project revolves around implementing the identified features. Each
feature is implemented by a team that consists of the owners of all the
classes affected by implementing that feature. Therefore, the FDD project
team is continuously, dynamically reorganizing itself into feature teams.

As work progresses, various feature teams are established, do their work,
and then disband. Every project member will be a member of one or more
feature team at any point in time. Each feature team has full authority to do

Feature-Driven Development (FDD) 65

what is necessary to implement their feature. This includes augmenting the
team with owners of classes not originally identified as being affected by the
feature.

This FDD practice is the essence of self-organization. No one tells FDD
team members who should work with whom. Each feature team forms as
team members see the need, and within the feature team, each individual is
expected to take responsibility for his or her classes.

Lean Software Development (LD)
Two of the tools under LD’s Empower the Team principle (self-
determination and motivation) address the Agile Principles about individu-
als and teams. LD is described in Appendix G.

Empower the Team: Tool 13, Self-determination

LD states that the people who do the work are in the best position to deter-
mine how that work should be done. This philosophy means that a software
project team should be free to identify its methods, determine the processes
it will use, and determine for itself if those methods and processes are meet-
ing its needs. This LD practice is essentially the same as the Agile Principle
about self-organizing teams.

Empower the Team: Tool 14, Motivation

LD defines “motivation” by focusing on the supportiveness of the environ-
ment in which individuals work. It asks questions about team members
such as: “Do they share a goal they believe in?” “Do they feel that they
belong?” “Do they feel safe from punishment?” “Do they feel able to accom-
plish their work?” “Can each person sense regular progress?” This LD prac-
tice is essentially the same as the Agile Principle about motivated
individuals.

Scrum
Scrum’s practice, “Scrum teams,” deals with the Agile Principles about indi-
viduals and teams. Scrum is described in Appendix H.

Scrum teams

The members of the Scrum development team are key participants in Sprint
(development cycle) planning in a Scrum project. They participate fully
along with other stakeholders in planning each Sprint, and their commit-
ment to achieving the Sprint goals is a key criterion for an acceptable Sprint
plan.

66 Motivated Individuals and Self-Organizing Teams

During each sprint, the Scrum team has full authority to do whatever
they believe is necessary to achieve the Sprint goals. They even have the
authority to abort the Sprint if they discover that the agreed-upon goals
cannot be met. Thus, the Scrum team self-manages and (it is expected) also
self-motivates.

Adoption implications
As we can see from descriptions of the various Agile practices, all Agile
methods address the Agile Principles of motivated individuals and self-
organizing teams in essentially similar ways. There are some differences in
degrees (e.g., ASD’s conception of the team as an independent agent versus
DSDM’s treatment of the team as part of a hierarchy), and even some differ-
ences in approach (e.g., XP’s collective ownership versus FDD’s class owner-
ship by individuals), but the basic philosophies of these methods are
remarkably similar.

Trusting the technical team

For most organizations, adopting any of the Agile methods will mean sig-
nificant changes to the way project teams are managed. ASD’s “Leadership-
Collaboration” Management Model describes the sort of management under
which any Agile method would thrive: abandonment of command-and-
control style management; replacing it with clear respect for the team:

◗ Include the team in all deliberations about the project.

◗ Give them unfettered access to the customer.

◗ Seek their input on all technical issues.

◗ Believe their concerns about schedule goals.

◗ Expect them to learn (along with everyone else) as the project
progresses.

◗ Gain their willing commitment to all plans.

◗ Negotiate with them to reach acceptable plans.

◗ Empower them with broad authority.

◗ Provide the tools and support they need.

◗ Trust them to exercise their best professional judgment in all
circumstances.

This essentially means entrusting the development team with the
authority to self-organize and self-manage. How big a change would this be
in your organization? How collaborative is your current environment? How
strongly entrenched is the command-and-control management style? To
what degree are your technical staff believed, respected, and trusted to

Adoption implications 67

exercise professional judgment? Take a moment to consider these things
and jot down some notes.2

Staffing with “motivated individuals”

You may be asking yourself, “Where am I going to find all of these moti-
vated people?” “And what will I do with the unmotivated lumps I am stuck
with now?”

It is true; most of your staff members are not superstars. In fact, most of
them are pretty average. The point behind the Agile methods is not that you
must find a whole bevy of highly motivated and technically expert people.
Rather, it is that by adopting an Agile Method and what ASD calls the
“leadership-collaboration” management style, you can motivate most of
your current staff to behave more like superstars.

Behavioral psychology has long told us that people tend to live up to (or
down to) the expectations placed on them. This is as true with your techni-
cal staff as with any other population. The average person, in an environ-
ment where his or her expertise and knowledge is valued, will not only
bring those attributes to bear on the topic at hand but will also seek to
improve them, to make himself or herself more capable of rising to such
challenges in the future.

This is not to say that every person will pleasantly surprise you. Just as
you have a small minority of superstars, you also have a small minority of
career nonperformers. But in the context of a self-organizing team of moti-
vated individuals, these people will stand out in ways that they will not
appreciate. So, they will be likely to either find ways to operate as a produc-
tive member of the team, or they will find a position somewhere where they
will not stand out so much. Either way, the effectiveness of your teams will
be enhanced.

Are you willing to put the Agile management theories to the test? Would
you be able to place such trust in your heretofore average staff? Do you fear
that developing their abilities and confidence would make them more likely
to be spirited away by your competitors? Or would they be so pleased with
the environment that they would be less likely to leave it? Take a moment
to consider these things and jot down some notes.

Team structure and roles

The various Agile methods present a variety of new roles as well as new
definitions for some existing roles. In this section, we will explore some of
the role changes that may affect your adoption decision.

68 Motivated Individuals and Self-Organizing Teams

2. You are encouraged to use the “Evaluating Agile Methods Workbook” that is available to support this book.

Refer to Chapter 7 for information on downloading and using this workbook.

Pair Programming

XP’s practice of “Pair Programming” is unique and foreign to almost all
organizations. It states that pairs of individuals working together perform all
technical work. These pairs are expected to form and trade partners from
time to time. All designing, test case development, coding, and testing is
done in pairs. While one member of a pair is “driving” the computer, the
other is watching, assessing the partner’s work, and asking questions. The
pair switches roles on a regular basis.

Although this practice sounds wasteful of your most precious resource
(your engineers’ time), XP’s proponents claim just the opposite. They claim
that a pair working together can be as much as 50% more productive than
the two individuals would be if they worked separately. This is expected for
a variety of reasons:

◗ The real-time review being done by the observing partner results in
many defects being discovered and corrected within minutes of being
created, instead of showing up later in tests when the diagnosis and
correction could be more time-consuming.

◗ The person in the observer role tends to think about the big picture,
making him or her more likely to identify architecture, design, or test-
ing issues early, so they can be corrected before much rework would be
required.

◗ The constant interaction between the individuals allows them to learn
from each other, sharpening both of their skills and making each of
them more capable.

◗ Because two individuals become intimately familiar with every part of
the system, the loss of any one person cannot cripple the project.

◗ It provides a way for any new project member (even a recruit fresh
out of school) to become a contributing member of the project very
quickly.

Pair Programming should be quite motivational for programmers who
benefit from its use. While we know of no wide-based studies of the produc-
tivity improvement claims, many organizations that have tried Pair Pro-
gramming swear by it. Do you believe it would be worth experimenting
with? Take a moment to consider this and jot down some notes.

Chief Programmer

FDD includes a Chief Programmer role. This role is generally reserved for
highly respected team members who have superior technical knowledge. By
placing such individuals into this role, FDD seeks to capitalize on their
expertise and reputation to strengthen the skills of the rest of the team.

In addition to their normal technical tasks, Chief Programmers act as
coaches and mentors on technical matters, being a resource to team

Adoption implications 69

members who have questions about the work they are contemplating. Is this
a good design? Is there a cleaner way to code this? What have I overlooked?
Why does this seem too hard? … or too easy?

But can you really afford to tax one of your best people with this role?
Would it not be better for him or her to be designing and coding all the
time? In most projects, we tend to overload our best people, because we
trust them to do better work than most of their peers. But if we structure
our projects so these experts can share the wealth of their knowledge with
their teammates, then it is no longer so critical that these people actually do
the hard jobs themselves.

No matter who is working on a hard problem, a Chief Programmer will
likely have a hand in it and able to bring his or her expertise to bear on it.
Not only will the hard job be done well, but also the person who benefited
from the Chief Programmer’s input will have learned how to approach a
problem that may have been beyond his or her capabilities before. In this
way, Chief Programmers contribute directly to continuously improving the
team’s capability to self-manage, self-motivate, and produce excellent work.

Who among your staff would be good Chief Programmers? What would
be the effect of having these people available to mentor the rest of the staff?
Can you see how the work you now pile on this person will get done? Take
a moment to consider this and jot down some notes.

Method Coach

Some Agile methods (e.g., XP and Scrum) recommend that the project have
a person whose job is to coach the team in using the method. This is a good
recommendation in any environment where the team is being asked to
change how they do their work. Changing old habits can be difficult, and a
coach may be indispensable in helping people recognize old habits and
exchange them for new ones.

But even after the “new” method becomes your team’s normal way of
doing their work, a coach can still add great value. Your technical folks will
always be immersed in the technical job at hand. The method they use and
how well they enact it will usually be secondary to them (if they think of it
at all).

A coach can keep things running efficiently by being the person who is
always concerned about the method and how well it is serving the project’s
needs. And, of course, when team members do become aware of the method
(because it is impeding their work), the coach will be prepared to help them
work through the problem and come up with ways of working that serve
the team better. The Coach ensures that the Method you have adopted is
indeed creating a project environment in which the team can self-motivate
and self-manage.

How useful would a coach be to your team if you adopt a new develop-
ment method? What about after the team reaches a new steady state? Take
a moment to consider this and jot down some notes.

70 Motivated Individuals and Self-Organizing Teams

Project Manager

If you adopt an Agile method, the role of the project manager is likely to
change dramatically. Instead of planning the project, the manager would
now collaborate with the team to establish the plan. Instead of assigning
work to people, the manager would collaborate with them to identify what
should be done, when, and by whom. Instead of telling each person what
they will have done when, the manager will negotiate that with them.

Many project managers will feel like all of their power is being stripped
away and given to the technical team. In a way, this is the case, because
what most managers do by themselves, an Agile team will do collabora-
tively. But the Leadership-Collaboration Model has another side—the
“leadership” side. And that is where the project manager’s new influence
will lie.

As the leader, the manager will always focus on the project mission,
articulate a vision that will motivate the team’s best effort, build a culture of
collaboration, and provide the support the team needs. Rather than com-
manding that tasks be done, a leader points out the direction and encour-
ages the team to tackle the tasks by his or her own example. This change in
behavior is a key step in building an environment in which Agile project
teams can thrive and realize the benefits of motivation and self-
management.

Changing the nature of the manager’s role from commanding to leading
is difficult. It requires that the manager learn a whole new set of behaviors
and interact with the project team in whole new ways. For many, it is not
an easy transition, and for some it is impossible. How will your project man-
agers adapt to the Leadership-Collaboration Management Model? How will
you adapt to it? What will it take to make the transition? What will you have
to do to support it? Take a moment to consider this and jot down some
notes.

Motivated individuals and self-organizing teams
Motivated individuals and self-organizing teams are critical principles
behind all of the Agile methods. These things do not happen automatically.
If you are going to adopt an Agile method, then beginning to follow these
two principles will require dedicated work, both on your part and on the
parts of all your managers and staff.

Deciding if your organization is up to this challenge is an important
consideration.

Motivated individuals and self-organizing teams 71

.

Face-to-Face Communication

In this chapter, we will discuss the third Agile Principle that
supports the value about “individuals and interactions” and the
practices of the various Agile methods that embody it.

Agile Manifesto:
We have come to value…
Individuals and interactions
over processes and tools

Agile Principle
The third Agile Principle1 that relates directly to the first Agile
value about “individuals and interactions” is the one about
face-to-face communication.

Face-to-face communication

The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

The Agile methods all prefer personal face-to-face conversation
over any other form of communication, especially written
documents. This preference does not mean that any of these
methods completely dispenses with documents. Every one of
them acknowledges that written communication has its place
in a software project. They just stress the importance of per-
sonal communication, for reasons we will now discuss.

The Agile methods take this position to counteract their per-
ception that many organizations place too much stock in written
documents and not enough in face-to-face conversation. Have

73

Contents

Agile Principle

Agile practices

Extreme Programming

Scrum

Adoption implications

Communication

C H A P T E R

10

1. All 12 Agile Principles are quoted and discussed in Appendix B.

they carried this reaction too far in overemphasizing conversation and de-
emphasizing documents? That is a matter of interpretation, so you will have
to decide for yourself.

Agile practices
All of the Agile methods make heavy use of face-to-face communication
and minimize written documents to varying degrees. However, only two
have practices that address this principle, Scrum’s Daily Meeting and XP,
with several of its practices.

Extreme Programming
The Agile Principle about face-to-face communication shows up in four
ways in XP as discussed in Appendix E: in its “Facilities Strategy,” (which is
not one of its 12 practices), and in its practices of Pair Programming, The
Planning Game, and On-Site Customer.

Facilities Strategy

Although XP does not call it out as one of its 12 practices, its Facilities Strategy
is the clearest embodiment of face-to-face communication in any of the Agile
Methods. An ideal XP work environment for an eight-person team, as articu-
lated by Kent Beck (XP’s author), is depicted in Figure 10.1. Each piece of this
facility is designed to enhance the team’s face-to-face communication.

◗ The Pair Programming workstations table at the center of the room is
the locus of activity. Most of the time, each pair of programmers is
busy collaborating at a workstation.

74 Face-to-Face Communication

Pair
programming
workstations

Communal area

Food,
coffee

Walls lined with whiteboards

Walls lined with whiteboards

W
al

ls
lin

ed
w

ith
w

hi
te

bo
ar

ds

Pr
iv

at
e

cu
bb

ie
s

(o
ne

p
er

p
er

so
n)

Figure 10.1 XP Facilities Strategy.

◗ The communal area is a meeting place used for relaxation and dis-
cussion. It has a table, chairs, and a couch and is stocked with coffee,
food, and toys.

◗ All available wall space is covered with whiteboards. They are one of
the best facilitators of face-to-face conversation and can also be used as
information radiators. (See “Availability” near the end of this chapter
for more on “information radiators.”)

◗ Finally, there is a small cubby for each programmer, where he or she
can keep personal stuff and can go for privacy (e.g., to make a phone
call). But work is usually not done in the cubby.

◗ There are no private offices or even cubical walls; the only door is the
door to the room.

This strategy is designed to maximize face-to-face conversation within
the team. It also facilitates “accidental communication,” as people overhear
what other pairs are discussing. Some people could interpret this “accidental
communication” as annoying or distracting noise. But, even though pro-
grammers (like any other workers) prize private office space as prestigious,
XP proponents report that programmers actually like this sort of working
environment because of the richness of the communication that it fosters.

How different is XP’s Facilities Strategy to the working environment in
your organization? What would it take to try this sort of arrangement?
What would be your technical staff’s reaction to such an arrangement? Take
a moment to consider these things and jot down some notes.2

Pair Programming

XP’s Pair Programming is face-to-face conversation taken to the extreme. It
states that pairs of people working together do all technical work. This
includes designing, creating test cases, coding, testing, and building and
integrating the system.

Of course, a computer has only one keyboard and mouse, so members of
each pair take turns “driving” the computer. The individual who is not driv-
ing is reviewing the work his or her peer is doing, considering the wider
ramifications of the direction the work is taking, and asking questions of the
driver to be sure they both understand and agree about the reasons for each
action. This practice results in a continual dialog between the pair and is said
to result in higher productivity, fewer defects, and better technical work as
the two pool their expertise and knowledge to attack the problem at hand.

Do these arguments make sense to you? What opportunities might you
have to try Pair Programming? How might your technical staff members
react to it? Take a moment to consider these things and jot down some
notes.

Extreme Programming 75

2. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

On-Site Customer

XP is the extreme among the Agile methods when it comes to the cus-
tomer’s role in the project. XP requires that a customer representative be
located on-site with the development team at all times. The point behind
this is to use face-to-face communication as a means of ensuring that the
project team’s work is steadily progressing toward a conclusion that will sat-
isfy the customer.

With the customer so easily accessible, the technical team is not likely to
make assumptions about what is needed. Questions will be posed to this
person as they arise, and they will be answered with a timeliness that will
ensure that progress on the project is not impeded. And there is less possibil-
ity of misunderstanding because the communication is face-to-face, and the
customer can observe what the developers are doing as a result of what he
or she said.

In addition, just as “accidental communication” helps programmers stay
informed about what their peers are doing, it also keeps this resident cus-
tomer informed. This will result in the customer remaining better informed
about the project status, and it allows the customer to raise questions if some
part of the project appears to be moving in the wrong direction. The on-site
customer uses face-to-face communication to keep the project on track.

The Planning Game

XP’s Planning Game is yet another exercise in face-to-face communication.
This “game” is “played” in a workshop setting that brings all of the project
stakeholders together to plan the next project iteration. They work face-to-
face to adjust overall project expectations based on progress so far, make
changes to the Project Metaphor and Stories as needed, and determine what
will be delivered to the customer at the end of the planned iteration.

Because all stakeholders do this in a workshop environment, the Plan-
ning Game is the prime opportunity for those who are not part of the pro-
ject’s day-to-day activity to work with the project team face-to-face. It is
here that questions should be raised and disagreements settled, while all of
the key people are together in one room.

By doing the project planning face-to-face, XP works to keep communi-
cation flowing among all project stakeholders.

Scrum
Scrum’s practice, “Daily Scrum Meetings,” supports the Agile Principle
about face-to-face communication. Scrum is described in Appendix H.

Daily Scrum Meetings

Scrum’s practice of daily stand-up meetings takes the standard team meet-
ing concept to a whole new level. Although daily stand-ups are not unique

76 Face-to-Face Communication

to Scrum (or even to Agile methods), they are not widely practiced in the
software industry.

The Daily Scrum Meeting is a time when each team member briefly
shares status and concerns with the team. The meeting is supposed to be
quite short, with a target of 15 minutes or less. Because the meeting hap-
pens every business day, each person can generally provide a complete-
enough status in a minute or two, allowing the team to finish within the
time limit on most days. Usually, these meetings are done while standing to
encourage brevity (hence the common moniker, “daily stand-up”).

Although problems and roadblocks may be mentioned during the Daily
Scrum Meeting, there is a strict policy of not solving them, or even discuss-
ing them during the meeting itself. The team leader generally takes action
items to correct any roadblocks outside of the meeting. And a few interested
team members usually will address issues that need to be discussed after the
meeting so the remainder of the team can get back to work.

The Daily Scrum Meeting is designed to maximize information exchange
while minimizing disruption to the technical work. It also serves to highlight
problems so they can be addressed later, and to stimulate discussions of
issues, again, outside of the meeting. How does this practice compare with
your teams’ methods of sharing status? Could a daily stand-up improve
your teams’ effectiveness? Take a moment to consider these things and jot
down some notes.

Adoption implications
The Agile methods are right to highlight communication as a key issue in
software projects (actually, in any projects). Any project will thrive with the
right communication in the right amounts and will slowly die when com-
munication is withheld or done in ineffective ways. Face-to-face communi-
cation has a number of beneficial attributes (which is why the Agile
methods focus on it), but it also has some drawbacks.

In this section, we will discuss some critical issues surrounding commu-
nication so you can consider the effectiveness of your current communica-
tion modes, along with those proposed by the Agile methods.

Richness

“Richness” refers to the amount of information that a particular communi-
cation method can transmit. The Agile methods prefer face-to-face conver-
sation precisely because it is about as rich a mode of communication as there
is. This richness derives from the variety of clues that are available to help
the listener understand the speaker’s intent.

◗ Words—When we think of communication, we generally think of
words. Most of the modes we use in business make use of words in
either spoken or written form. Although the words tend to be the

Adoption implications 77

heart of what we hope to communicate, they are too often misunder-
stood. That is why the other clues that follow are so important. They
help the listener understand the speaker’s intent more readily.

E-mail wars are common mainly because it is so easy to misconstrue
written words when they are absent from other communication clues.

◗ Voice inflections—The ways we inflect our voices add a tremendous
amount of information to our message, often more than we would sus-
pect. Try saying the same sentence several times, but putting the
emphasis on a different word each time. For example:

◗ “You were wrong,” can imply that others were right.

◗ “You were wrong,” can imply that you may not be wrong now.

◗ “You were wrong,” can imply that one of us thought you were right.

The importance of these sorts of clues is what makes a speech more
valuable than a document. From the lectern, the speaker uses his or her
voice to make the message clearer.

◗ Clarifications—Two-way communication adds richness by allowing lis-
teners to communicate the need for more explanation, or to test their
understanding. Asking questions about the speaker’s intent or feeding
back your understanding to the speaker are important ways to ensure
that the message you received was what the speaker intended to send.
Even something as simple as a quizzical or confused look can be impor-
tant to accurate communication.

This is why a Q&A session after a speech can be so important, or why
a phone call is richer than a voice-mail message.

◗ Body language—How we move our body also adds to the message we
communicate. Often this level of communication is unconscious, and at
times it can contradict the spoken words (giving us insight into the
speaker’s real thoughts). Take, for example, the sentence, “Tell me
what you think.”

◗ If it is said across a large desk by a person with his arms folded and a
mocking look on his face, you might get the impression that the
request is not sincere.

◗ But if the speaker comes alongside you as he says it, gestures with an
open hand, and has a friendly but concerned expression on his face,
you will be more likely to take it as a sincere request.

◗ The added richness of body language is why a face-to-face conversa-
tion provides more information than a phone call.

◗ Illustrations—When words are augmented with pictures, comprehen-
sion goes up significantly. The images act as thought-holders and
become handy references as the conversation goes on. They can also
show relationships among ideas by their relative positioning and by
lines that connect or separate them.

78 Face-to-Face Communication

◗ XP highly recommends that copious amounts of whiteboard space be
available to the team, because the whiteboard is such a powerful addi-
tion to face-to-face conversation.

Memory

We humans can have difficulty accurately recalling things from the past.
(Some of us have more difficulty than others!) What we remember and how
accurately we remember it is affected by a variety of influences, including
our perceptions about the importance of the information, its relevance to
our tasks at hand, and our beliefs about how it can be applied. For this rea-
son, it is not uncommon for two people to have significantly different
memories of an interaction in which they both participated.

Although a face-to-face conversation in front of a whiteboard may be
very rich, it is also fleeting. The spoken words slip into our memories, and
the markings on the whiteboard are soon distorted or erased. For casual
interactions, this may not be important. But in a software project, we inter-
act in order to share knowledge, bring multiple people’s expertise to bear,
examine alternatives, and make decisions. These are all very important
things, and our ability to accurately recall their results is important to the
smooth functioning of the project.

Persistence

Because human memory is of uncertain reliability, we also need modes of
communication that are persistent; that is, they are available to be reviewed
after the fact. Contrast a verbal interchange with a written document, which
can be stored away and referred to in the future when the need arises. The
document’s content will remain unchanged over time, and it will serve to
remind you of things you may have forgotten in the mean time.

Because of the importance of our project-related communications, many
interactions on our projects deserve some form of persistence. Practitioners
of the Agile methods use the software work products themselves as the per-
sistent records of their face-to-face communications. For example:

◗ Test cases “document” the expected functionality of the product.

◗ The program code itself “documents” implementation decisions.

◗ Comments that are embedded in the program code provide additional
information to clarify the code itself.

While these are important records of decisions made along the way, the
amount of information they convey can be highly variable. Where one per-
son’s program may be quite readable, and the comments may provide key
information, another’s program may not. And even in the best of cases, the
information contained in these vehicles is compressed and encoded so that

Adoption implications 79

it records not what was said but how the implementer interpreted what was
said. And, as we previously observed, those two can be quite different.

Contrast those things with meeting minutes, which are designed to cap-
ture what was said and agreed upon during face-to-face communication.
Minutes, when done well, can be documented quickly and scanned by
meeting participants to ensure a common understanding by all participants
before any of them acts on a faulty understanding, wasting time and effort.

Availability

Most communication modes suffer from limitations to their availability.
Face-to-face communication is rich for an instant, and then it is gone
(except for our memories). Whiteboards get erased. Books are loaned and
not returned, and documents are filed away (often never to be seen again).
Information that cannot be accessed easily is of little use to your project.
Although some vendors sell tools that they claim will correct many of these
problems, a few of the Agile methods advocate a simple low-tech method
called “information radiators.”

Information radiators are displays of useful information that are posted
around the team’s work area. They are more persistent than conversation,
more up-to-date than your memory, and easier to locate than any docu-
ment. Your staff can ignore them when they do not need them, and they
can instantly find them when they do. And you can find out how the proj-
ect is progressing at a glance, without interrupting someone’s train of
thought to ask them about it.

An example of an information radiator is shown in Figure 10.2. This
simple wall chart shows the current status of the project by allowing each
team member to record what he or she is doing. The team, the manager, or
anyone else can understand the exact status of the current iteration simply
by looking at this information radiator.

80 Face-to-Face Communication

Story Pair Start Finish Comments
1. Dhfkdhflrhkj John/Sue 1/12 1/15
2. Oirejijgoihrgr Joe/Bill 1/17
3. Srjghghwohrgtwg Joe/Barb 1/12 1/17 Beware of class “Clown”
4. Hfhferkj
5. Rwiogfjoirjgoirioj John/Sue 1/15
6. Whrghker
7. ;w’erjgjrepjr
8. Woivmslvjd ; Bill/Sean 1/12 1/13
9. Leifjeijerkil

10. Owepjgk[work
11. Opwpeopjrgjp Bill/Sean 1/13 1/17
12. Oritrjgpowjero
13. Dskjfh9erihoe
14. Lkfjrioeihgrhgel Barb/Sean 1/18

Figure 10.2 Information radiator.

Communication
Communication is the lifeblood of your projects. There are many ways that
we may choose to communicate on our projects, and each has its strengths
and weaknesses. There is no single communication mode that is best in
every situation. In spite of the Agile methods’ focus on face-to-fact commu-
nication, it too has limitations and must be augmented with other forms to
be effective.

Consider the communication modes currently used on your projects.
Are there persistence problems? Miscommunication? Availability problems?
What can you learn from the Agile methods to make your projects’ commu-
nication more effective? Take a moment to consider these things and jot
down some notes.

Communication 81

.

Sustainable Pace

In this chapter, we will discuss the fourth Agile Principle that
supports the value about “individuals and interactions” and the
practices of the various Agile methods that embody them.

Agile Manifesto:
We have come to value…
Individuals and interactions
over processes and tools

Agile Principle
The fourth Agile Principle1 that relates directly to the Agile
value about “individuals and interactions” is the one about
maintaining a sustainable pace on software projects.

Sustainable pace

Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

The Agile methods are all designed around an incremental
development approach. They each suggest (or require) that
each increment of the project be relatively short (2 weeks to 2
months), and that it result in the delivery of some recognizable
value. Such an approach means that these methods establish a
consistent rhythm of work that makes regular progress appar-
ent, and avoids alternating downtimes and frantic headlong
rushes toward deadlines.

83

11
Contents

Agile Principle

Agile practices

Extreme Programming (XP)

Adoption implications

A sustainable pace

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

That is why this principle states that a sustainable pace is not just a laud-
able goal; rather, it is a natural result of adopting an Agile method.

Agile practices
Although all of the Agile methods will result in a sustainable level of effort
because of their use of incremental development, only XP has a practice that
directly addresses this Principle.

Extreme Programming (XP)
XP’s practice about the 40-hour workweek addresses the Agile Principle
about maintaining a sustainable pace. XP is described in Appendix E.

40-hour week

XP’s 40-hour week practice states that overtime should be rare on a soft-
ware project. It goes on to state that when overtime is worked, it is allowed
only one week at a time. In other words, if a person worked overtime last
week, it is not allowable for that person to do it again this week.

Although putting “40-hour” in the name of this practice makes it sound
restrictive, XP clarifies what is meant by saying that people should work
their normal number of hours, however many that may be. For most people,
that will be some number in the vicinity of 40 hours, but there are unusual
individuals for whom 40 hours a week would seem like an unreasonable
limit.

In one shop I was a member of, when the director told us, “I want to
eliminate overtime. Each of you should work only 40 hours every week,” a
hand immediately shot up. “Sir,” ventured the twenty-something with the
long ponytail and sandals, “Do you mean that I’m not allowed to be here any
more than that?” The rest of us smiled, as we imagined him clawing at the
walls of his apartment while he waited for “working hours” to return.

Just as our director clarified, XP has no trouble with someone working as
much as he or she wants to work, even if it is 60, 80, or more hours a week.
What XP is precluding is most forced overtime.

Adoption implications
The elimination of most overtime work represents quite a change from busi-
ness as usual in many shops. For too many programmers, their bosses
expect that overtime is a normal part of the job, especially when a deadline
is approaching. There is often a stigma attached to not working overtime, as
if a person who avoids overtime work somehow lacks commitment to the
company or project.

84 Sustainable Pace

Overtime versus the Agile methods

Overtime work is common in many businesses because of the peaks and
valleys in the workflow. No company wants to pay people to sit on the
bench when there is little work for them to do. But that is precisely what
would happen if they kept the number of people on staff that they need
during peak times. So instead of staffing for the peak, they staff for the norm
and require their staff to work overtime during busy times.

As Figure 11.1 shows, many traditional projects require significant
amounts of overtime during the final testing and release phases, pushing
their effort requirements above what is sustainable for the long haul. The
Agile methods work actively to ramp up quickly, then smooth out the peaks
and valleys in a software development project by changing the workflow
dynamics. In the following sections, we look at various project phases to see
how the Agile methods achieve this effect.

Initial analysis

Figure 11.2 illustrates that many of our projects begin with an extended
period of analysis and planning. During this phase of the project, only a few
of our most experienced people are involved in establishing the project’s
parameters and plans.

The Agile methods, as Figure 11.2 also indicates, eliminate much of this
upfront analysis. They assume that it is unreasonable to expect that you can
establish a detailed understanding of the system at the beginning of the
project. So, this initial analysis is replaced with an incremental development
approach that allows the project team (as well as the customer) to learn and
discover as the project progresses. This includes discovering both the details
of the system as it is being built, and what must happen on the project as it
unfolds.

Adoption implications 85

Agile project

Time

Sustainable

Le
ve

lo
fe

ffo
rt

Traditional project

Time

Figure 11.1 Level of effort.

Agile project

Time

Sustainable

Le
ve

lo
fe

ffo
rt

Time

Traditional project

Figure 11.2 Initial analysis.

Any analysis that is undertaken is done by the entire project team, usu-
ally in collaboration with the customer. The Agile methods teach that each
team member has a valuable perspective to contribute to any deliberations
about the project. Also, because of their strong focus on learning, these
methods view such full-team work as a critical method for strengthening
the team by building each team member’s experience base and knowledge
about the project.

Incremental development

Although it is unusual for software projects not to be iterative in some way,
most do not practice incremental development, as Figure 11.3 depicts. And
those that do incremental development do not take it to the same extremes
as the Agile methods. Where we might be comfortable with delivering
increments every 3 months to a year or more, the Agile methods explicitly
minimize the length of each increment. Many of us find it difficult to believe
that the Agile methods’ guidelines of 2 weeks to a maximum of 2 months
for each increment can be effective.

◗ By keeping the time frame for each increment very short, the Agile
methods help the team maintain a reasonable level of pressure almost
continually. Since the end of the current increment is always close,
the end-of-the-project pressure is always present. But because the
goals for each increment are relatively modest, the pressure is not
excessive, and the work that needs to be finished in that time frame is
rarely overwhelming.

◗ The short time frames also result in measurable achievements on a
regular basis, even as often as several times each month. This not only
helps maintain the enthusiasm of the project team, but it also gives
management and the customer a good level of comfort about the pro-
ject’s progress.

◗ Testing is generally the project phase that can stretch beyond expecta-
tions, resulting in forced overtime. The Agile methods’ small incre-
ments mean that only a limited amount of new functionality is
being tested at any one time. With a limited scope, testing can be
more easily managed, and fixing defects is less likely to become a
bottleneck.

86 Sustainable Pace

Agile project

Sustainable

Le
ve

lo
fe

ffo
rt

TimeTime

Traditional project

Figure 11.3 Development.

Testing

Figure 11.4 shows that in the Agile methods, “testing” is not a phase at the
end of the project. Instead, it is an activity that the entire development team
is engaged in throughout the life of the project.

Each Agile method has a unique view of testing and other quality activi-
ties. They all place the responsibility for quality squarely in the hands of the
developers. None of the Agile methods even addresses the concept of inde-
pendent verification and validation (V&V) beyond the customer’s accep-
tance test (although there is no reason why independent V&V cannot be
done on an Agile project).

◗ Testing by the developers is integrated into the development activities
in most Agile methods. This establishes a whole new definition for
“coding complete.” Instead of feeling that they are done when the
code compiles and a cursory unit test of some kind succeeds, the Agile
methods expect developers to perform a complete set of tests on their
code. XP’s “test first” practice calls for developers to write their test
cases first, then develop code to pass the tests. But even after complet-
ing a full battery of tests, the developers’ work is still not done.

◗ Peer reviews are a common element of the Agile methods. Although
each method addresses this subject differently, the result is that (in the
methods that include peer reviews), the developer’s code must clear
this additional hurdle in order to be “done.”

◗ Finally, integration testing is also the responsibility of each developer,
as we will discuss next.

Integration

Integration is also changed by most Agile methods. Figure 11.5 shows that,
rather than being done after all of the code for an increment has been writ-
ten, the system is integrated continuously. Some Agile methods refer to
“daily” or even “continuous” builds. But regardless of the details, they all
boil down to this: Integration testing is not a separate phase at the end of
each increment. Rather, it is an ongoing activity that is done continuously.

Most Agile methods call for developers to integrate their own code into
the growing system immediately, as soon as the code is ready. If anything
they have written causes problems when integrated into the system, then

Adoption implications 87

Agile project

Sustainable

Le
ve

lo
fe

ffo
rt

TimeTime

Traditional project

Figure 11.4 Testing.

their work is not yet complete. Only after their code has been fully tested
(both at the unit level and during integration) is the developer’s work on
that code considered complete.

A sustainable pace
A sustainable pace is not just a goal to seek. The Agile methods build a proj-
ect environment that is likely to result in the project maintaining a sustain-
able pace. What effect would such a change have in your organization? Is
overtime a basis for rewards? Is it a badge of honor? Or is it an evil of which
most people would like to rid themselves? What would it take to make the
Agile Methods’ philosophy (of overtime being rare) an accepted part of your
organization? Take a moment to consider these things and jot down some
notes.2

88 Sustainable Pace

Agile project

Sustainable

Le
ve

lo
fe

ffo
rt

TimeTime

Traditional project

Figure 11.5 Integration.

2. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

The Unstated Principle:
Appropriate Processes and Tools

In this chapter, we will discuss the unstated Agile Principle that
supports the value about “individuals and interactions” and the
practices of the various Agile methods that embody it.

Agile Manifesto:
We have come to value…
Individuals and interactions
over processes and tools

To say that “appropriate processes and tools” supports this
value may seem contradictory, since the value explicitly down-
plays “processes and tools.” But when you look at the specifics
of the practices of the Agile methods (as we will in this chap-
ter), the picture becomes much clearer. Far from saying that
processes and tools are bad, the authors of the Agile methods
recognize that processes and tools are absolutely necessary to
the success of the Agile methods.

Actually, this principle is not entirely unstated. It is buried
within the first Agile Principle that we discussed in Chapter 9.
That Principle says:

Build projects around motivated individuals. Give them the environ-

ment and support they need, and trust them to get the job done.

For purposes of the discussion in this chapter, the key
phrase is the one in the middle, “give them the environment
and support they need.” Indeed, one of the most critical aspects
of the project environment is the processes and tools that are
available to support the team.

89

12
Contents

Agile practices

Feature-Driven Development
(FDD)

Lean Software Devlopment
(LD)

Adoption implications

Processes and tools

C H A P T E R

Agile practices
Almost all of the Agile methods specify a development process that is to be
followed. We will not spend time discussing each of those processes, as they
are all touched on throughout this book and explained in some detail in the
appendixes. Instead, we will discuss the practices of the Agile methods that
bear directly on processes and tools. Then, in the “Adoption implications”
section of this chapter, we will look at some process and tool assumptions
that are apparent in all of the Agile methods.

FDD and LD have specific practices that directly support the unspoken
Principle about processes and tools. We will briefly discuss each of those
practices, one method at a time.

Feature-Driven Development (FDD)
FDD’s Configuration Management practice illustrates the unspoken Agile
Principle about processes and tools. FDD is described in Appendix F.

Configuration Management

FDD is alone in stating what is unmentioned but assumed by all of the other
Agile methods; that good, reliable CM is important to the health of an Agile
project. FDD raises the subject of CM but does not specify the depth or
breadth of the CM practice that should be exercised. It merely points out
that in addition to source code, documents (e.g., requirements and design
specifications, test cases, and results) are worth controlling.

We will discuss CM in considerable depth later in this chapter.

Lean Software Development (LD)
LD has the strongest focus on processes and tools among the Agile methods.
Fully five of LD’s tools deal with these subjects. These tools fall under the
three LD principles: Amplify Learning, Deliver as Fast as Possible, and See
the Whole. LD is described in Appendix G.

Amplify Learning: Tool 5, Synchronization

Whenever more than one person is involved in developing software, syn-
chronization issues are likely. What those issues might be, and how they
might manifest themselves, will differ depending on the nature of the devel-
opment methodology being used and the size and dispersion of the project
team. For example, a four-person XP team (adhering to XP’s collective own-
ership) working in a single room will have different synchronization chal-
lenges than a geographically dispersed multiteam project. XP is discussed in
Appendix E.

90 The Unstated Principle: Appropriate Processes and Tools

This LD tool discusses synchronization in general terms and suggests a
number of processes and tools that could be used, depending on the needs
of the project.

Code ownership policies affect synchronization issues. FDD recommends
that each class be owned by a single individual, so it uses “feature teams” to
synchronize the work. XP, on the other hand, calls for collective ownership
of the code, in which each pair of programmers should change whatever
code they deem necessary to implement their story, so it uses the build
process to work out synchronization issues.

The build process can be done in a variety of ways depending on the size
and complexity of both the system being developed and the project compo-
sition. Continuous or daily builds are a great synchronization mechanism
and are prominent in most Agile methods.

Smoke tests can be the quickest way to uncover synchronization issues.
Simple tests are run to ensure that the software will work at some basic
level. It is good practice to make smoke tests a regular part of your build
process, so that if a smoke test fails, then the build is considered unsuccess-
ful. (The term “smoke test” comes from the hardware practice of leaving a
device turned on for some period of time to see if it starts smoking.)

Stubs and harnesses are tools that can speed up the build and smoke test
processes for very large systems that take multiple hours to build or test.
“Stubs” are stand-ins for parts of a system. They have a functioning inter-
face, but do not actually do anything, and are usually used to allow system
testing before the stubbed-out part has been developed. “Harnesses” are
stand-ins for an entire system. They have functioning interfaces for one or
more components, but do not actually do anything, and are usually used to
allow component testing before the rest of the system has been developed.
LD suggests that stubs and harnesses can also be used to reduce the system’s
size (to make builds run faster) or to increase the system’s speed by remov-
ing slow operations (to make tests run faster).

Automated test tools are an important way to speed up the testing process.
Manual testing is not only intellectually taxing, but it is also slow. Automat-
ing successful tests allows the project team to rerun them often to ensure
that previously working code has not been “broken” by the continuing
work. Using automated testing tools to perform the smoke test as a part of
the build process is commonly recommended by the Agile methods.

Automated build tools go one step further in speeding up the build process.
Not only do such tools allow the build and smoke test to be done with a sim-
ple click of a button, but they also ensure that the builds are done correctly
each time so that time is not wasted by build errors.

The Matrix development approach is especially useful with geographically
dispersed multiteams. In this approach, the system is partitioned among the
various teams, and the interfaces among the parts of the system are devel-
oped and tested first, ensuring that any synchronization problems are
worked out early.

Lean Software Development (LD) 91

Deliver as Fast as Possible: Tool 10, Pull Systems

In “Pull Systems,” what is done and when it is done is determined by
demand. The most recognizable example of this is “just-in-time” manufac-
turing or delivery, which reduces most requirements to carry inventory by
making the manufacturing and delivery processes more sensitive to product
demand.

In applying this concept to software development, LD focuses on ensur-
ing that each project team member maintains a clear understanding of
exactly what needs to be done at any point in time. Several suggestions are
made for accomplishing this, and they all revolve around communication.1

◗ The short increments recommended by all Agile methods can result in
greater focus for team members. The increment goals tend to be
clearly articulated, and the activities required to complete the incre-
ment are usually obvious. For example, in XP, a set of Story cards is
selected for implementation during a particular increment. So each
pair knows that when they finish work on a Story, they should just
choose another one and get right back to work.

◗ All of the Agile methods advocate regular face-to-face communication.
The most obvious of this is Scrum’s daily stand-up meetings. This sort of
regular communication helps keep everyone on the project working
productively. Scrum is described in Appendix H.

◗ Information radiators serve to keep key information in front of every-
one at all times. If anyone is unsure of what comes next, they can just
glance at the chart on the wall to refresh their minds about current
priorities.

Deliver as Fast as Possible: Tool 11, Queuing Theory

LD recommends using queuing theory to analyze and remedy bottlenecks in
the software development process. For example, if the group that does inde-
pendent testing is a bottleneck, you can use queuing theory to analyze the
arrival rate and processing rate of work. This analysis can result in sugges-
tions for changes to the development life cycle or division of responsibilities
that could reduce overall cycle time.

Deliver as Fast as Possible: Tool 12, Cost of Delay

This tool revolves around using financial analysis to make trade-off deci-
sions. Specifically, it says that a financial analyst can normalize any project-
related information by restating it in terms of money. That way, project per-
sonnel can make decisions by comparing the financial value of each option.
For example, to answer the question, “Should we buy this tool?” you can

92 The Unstated Principle: Appropriate Processes and Tools

1. Each of the communication topics touched on in this chapter is discussed in more detail in Chapter 10.

restate the benefit of the tool in terms of dollars saved over time, allowing
you to compare the purchase and support costs with the financial benefits.

As the authors of LD say, “How can a developer decide if it is better to
save a week, save $10,000, or add new features? If all of these decisions are
expressed in dollars—or Euros, or yen—the decision will be more straight-
forward” [1].

See the Whole: Tool 21, Measurements

LD’s Measurements tool is focused not so much on encouraging measure-
ment of the development process as it is on warning of the dangers inherent
in doing so. This is not to say that LD encourages dispensing with measure-
ment. On the contrary, it encourages a variety of measures, so long as they
are carefully engineered to avoid significant dangers.

LD states the maxim that “You get what you measure.” Since software
development is an inherently complex activity, it should be clear that we
can measure only a small subset of this activity’s important attributes. So
there is a real danger that the measurements we make are likely to cause
suboptimization. For example, if programmers are rated according to the
number of lines of code they produce per hour worked, then you are likely
to get bloated systems of uncertain quality.

LD’s conclusion is that the least dangerous measurements are those
aggregated at a relatively high level. For example, rather than measuring
people’s productivity at their individual jobs, measure the amount of time it
takes for the team to make the trek from a customer’s need to an acceptable
solution. This is more likely to provide useful information, and less likely to
result in suboptimization.

Because all of the Agile methods recommend development in relatively
short increments of 2–8 weeks, there is little need for measuring individual
attributes in an Agile project. Instead, every month or so, you have an incre-
ment of completed code that can be measured against the requirements for
a good understanding of project progress. Other measures tend to provide
details behind this one primary measure: working programs.

Adoption implications
The Agile methods are mainly silent on the topic of processes and tools, and
the Agile Manifesto discounts their value. This, however, belies their impor-
tance to the successful implementation of any of the Agile methods. Let’s
take some time to think about their roles.

Processes

Though it may be obvious, it goes unsaid that each Agile method (with the
exception of LD) prescribes its unique software development process. A
process structure and flow is defined, the various roles are identified, and

Adoption implications 93

the steps that should be followed in running the project are enumerated.
Many include specific planning steps and status reporting methods. And
they all spend significant effort defining the process for managing the cus-
tomer requirements. Finally most warn that their process must be followed
strictly (at least at first) to gain the advertised benefits.

The Agile methods do indeed focus on processes. What distinguishes
them from more rigorous methods is the level of detail in the process
descriptions, and the weight of documentation required by the process.
While rigorous methods tend to be heavy in those things, Agile methods
are, by design, much lighter. (Before the term “Agile” was adopted, they
were referred to as the “Light” software development methods.)

So, adopting an Agile method will not mean that your organization will
avoid processes. Rather it will mean focusing on a new process and learning
how to make it work. A few Agile methods recommend having a coach for
the project team to help them follow the processes effectively.

What effect would such a process change have in your organization?
How difficult would it be for your staff to adopt new processes for doing
their work? Take a moment to consider these things and jot down some
notes.2

Configuration Management

As previously discussed, CM is a discipline that is of great importance to the
Agile methods, in spite of being practically ignored by them. Each Agile
method prescribes incremental development and expects continuous
changes to the requirements and code throughout the project. Many also
describe unique code management modes (like XP’s collective ownership).
All of these things require solid CM processes and a good CM tool.

CM is a lot more than just version control of code; it includes several top-
ics, each of which is important to the success of any Agile method. We will
discuss each of them.

Code control

The most primary CM topic is simple version control of code and other files.
This is so basic that most organizations have at least a simple tool for doing
code control, and those few that do not have one institute code manage-
ment processes and naming conventions to keep everything under control.

Although code control is critical on any software project, the Agile meth-
ods make it even more important. This is because changes to the code are
likely to be happening more dynamically, and (as with XP’s collective own-
ership) the likelihood of collisions from different people changing the same
code at the same time is increased. Without a version control tool to main-
tain the code’s integrity, an Agile project would become very chaotic.

94 The Unstated Principle: Appropriate Processes and Tools

2. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

Establishing baselines

Although they do not use the word “baseline,”3 the Agile methods’ incre-
mental development makes heavy use of them. A baseline is nothing more
than a “line in the sand.” It is a stable basis from which the development
work proceeds. The essential characteristics of baselines are:

◗ They are established after some level of verification proves the system
is ready.

◗ They are available to appropriate groups to use in the project.

◗ They are often the basis for releases to the customer (e.g., for accep-
tance testing).

◗ They are periodically updated to reflect changes and enhancements
that have taken place.

◗ Such updates are done in a controlled manner with the approval of
the governing body.

This describes how any of the Agile methods uses incremental develop-
ment; building an increment, verifying it, establishing it as the basis for
ongoing work, and then updating it to form the next increment.

In such an environment, the best way to manage the baselines is with a
tool that is a bit more capable than the simple tool required for version con-
trol of code. A good tool for baselining would also provide the facilities for
identifying which version of each code module is included in each baseline,
easily building an older baseline after new versions have been checked in,
and store information about each baseline so that it can be uniquely identi-
fied and fallen back to, if necessary.

Change requests

The Agile methods do a better job of managing changes (bug reports as well
as enhancement requests) than they seem to at first glance. People’s initial
reaction is that changes are wholly unmanaged in the Agile methods. But,
in fact, handling change is what the agility of these methods all about.

What the Agile methods do not do is control changes. They accept and
embrace changes throughout the project’s life. And in order to do this, they
must also track and manage those changes.

Each Agile method defines a process for documenting changes, and in
most cases, the customer is given the authority to prioritize the changes and
determine when they will be implemented. Since these methods do not
envision change requests being screened and rejected, they do not discuss
change requests and CCBs. They simply document each change as a
new requirement that is added to and prioritized with all other system
requirements.

Adoption implications 95

3. DSDM does use the term “baseline” but only in reference to establishing the initial high-level requirements

for the project.

Therefore, each Agile method describes a change request process that
needs, as its only tool, the mechanism used to document requirements. And
in some of the methods (like XP), that mechanism is as simple as 3×5 cards.

Configuration integrity

The last CM topic is the one that ensures the integrity of the system being
built. CM is really just insurance. That is, if nothing ever went wrong there
would be no reason to bother with it. But things do go wrong; people make
mistakes, computers crash, and disasters happen. And when they do, the
integrity of your CM system is the key to recovery.

CM practice ensures integrity is two ways, baseline auditing and status
reporting.

When a baseline is established, it usually consists of a number of differ-
ent components put together in a particular way. The baseline audit verifies
that the baseline is correct; that it:

◗ Is composed of all of the correct pieces;

◗ Contains the right version of each piece;

◗ Has no unwanted pieces;

◗ Was built and assembled correctly;

◗ Was described accurately.

Status reporting is a less obvious method of ensuring the integrity of
baselines, yet it is equally important with auditing. By reporting the infor-
mation about each baseline to all affected parties, two things are ensured.
First, each person becomes aware of the exact status of the system and the
fact that the new baseline is now available for use. Second, each person rep-
resents one more opportunity to check that the baseline was in fact correctly
established and documented.

Baseline audits and status reporting are easy steps to skip, but when (not
“if”, but “when”) the project must recover from a mishap, the integrity of
your baselines will be the main factor in the length of your recovery time.

The Agile methods do not explicitly address these integrity issues. Auto-
mated regression testing of every build can detect many (but not all) build
mistakes that could happen. But this is only a secondary effect of the build
process, so you would do well to add appropriate steps to any Agile method
to actively ensure the integrity of your baselines.

Will your organization’s Configuration Management tools and processes
provide adequate support for Agile projects? What will need to be done to
provide the CM support that Agile projects will need? Take a moment to
consider these things and jot down some notes.

Build automation

Because most Agile methods call for builds to be done often (daily, or even
continuously), it is a good idea to automate the build process. There are

96 The Unstated Principle: Appropriate Processes and Tools

various tools available to do this, and although the initial setup can be
time-consuming, the benefits of build automation are well worth the
investment.

The obvious benefit of automating the build process is to speed up the
build process. If your developers are doing builds all the time, making the
build a one-click procedure makes a lot of sense. But the other benefit is
consistency. Since it is likely that a different person will be doing the build
each time, automation ensures that it is done the same way each time. This
will make the whole development process smoother by avoiding most mis-
takes in the build process.

Is your build process automated? If not, what will it take to automate it?
Take a moment to consider this and jot down some notes.

Test automation

The Agile methods place a unique focus on testing. Developers are made
responsible for the quality of their code (more so than with more traditional
methods), and they are expected to do significant testing, as well as retest-
ing. When things change (as they are expected to do often in an Agile proj-
ect), regression testing is the only way to be sure that the changes have not
invalidated parts of the system that worked previously. And automation is
the only reasonable way to do any significant amount of regression testing.

XP mandates automated testing. It states that a pair is not done imple-
menting their Story until all of the tests run 100% clean — this includes the
tests for the new Story as well as the tests for all of the other stories that
have already been integrated into the system. As the project progresses, this
rule can be feasible only when all of these tests have been automated.

Do you have the capability to automate testing? Have your developers
been trained to use the testing tools you have? What would it take for your
developers to create and use automated tests routinely? Take a moment to
consider these things and jot down some notes.

Processes and tools
Processes and tools are important support mechanisms for the Agile meth-
ods. Although these methods value “individuals and interactions” over
processes and tools, they are, nonetheless, dependent on good processes and
tools for efficient projects. Adopting an Agile method may necessitate
enhancing your organization’s process and tool sets.

Reference

[1] Poppendieck, M., and T. Poppendieck, Lean Software Development: An Agile
Toolkit, Reading, MA: Addison-Wesley, 2003, p. 91.

Processes and tools 97

.

Value: “Working Software Over
Comprehensive Documentation”

In this part of the book, we will explore the implications of the
second Agile value, which states, “We have come to value
working software over comprehensive documentation.” We
will begin this exploration with a general discussion in Chapter
13, “The Role of Documentation in a Software Project,” about
documentation and how it should be used on projects. We will
then look at three Agile Principles that embody this value in
Chapter 14, “Incremental Delivery of Working Software.”

P A R T

III

.

The Role of Documentation in a
Software Project

This first chapter of Part III lays the foundation for our explora-
tion of the Agile Principles that embody the Agile value,
“Working Software over Comprehensive Documentation.”
Chapter 14 will delve into those three principles.

Purpose of a document
Why do we produce documents? The short answer is, “To com-
municate information.” I am writing this book because I have
important information for you. And you are reading it because
you want to use that information for some purpose.

Documents are not the only way of communicating infor-
mation. In Chapter 10, we discussed the Agile methods’ prefer-
ence for face-to-face communication and saw that each of the
different modes of communication has its own benefits and
drawbacks.

We concluded that documents as a form of communication
are limited by the amount of information they can convey,
because they consist merely of words and have no other cues to
help the reader understand them. There is no body language,
no inflection of the voice, no eye contact, and usually no oppor-
tunity to ask clarifying questions. Using documents as a primary
communication mode on projects is problematic because of
readers’ penchant for misinterpreting the writer’s intent.

The value of a document lies in its persistence. Where any
form of person-to-person communication is fleeting, a docu-
ment can be reread at any time by any person, and the words
will be exactly the same each time. This is not to say that the
readers will interpret the words the same each time (they will
not), but the words on the page persist unchanged from one
reading to the next. There are two project-related purposes for
which written documents excel:

101

13
Contents

Purpose of a document

Audience for a document

Value of a document versus
its cost

Avoiding waste in
documentation

C H A P T E R

◗ The first purpose is to provide information in preparation for person-
to-person interaction. Whether the information is historical, techni-
cal, or proposals of discussion topics, a written document can help
participants achieve a more productive interchange than might have
occurred if they had not had the opportunity to prepare. When used
for this purpose, documents’ shortcomings are mitigated, because par-
ticipants can correct any misinterpretations when the interaction
takes place.

◗ The other purpose is to record the results of person-to-person interac-
tions. When used for this purpose, the document’s strengths act to
mitigate the shortcomings of person-to-person interaction. Specifi-
cally, it allows participants to reflect after the fact on what was said to
be sure that everyone’s understanding and memory of it is accurate. It
also serves as a corporate memory, so that the results of the interac-
tion will be less likely to come into dispute in the future, when peo-
ple’s memories have faded.

Audience for a document
So, if a document’s purpose is to communicate information, then an impor-
tant question becomes, “To whom is the document addressed?” No docu-
ment can be all things to all people. The writer must make assumptions
about the reader’s knowledge and experience, the amount of time the
reader will be able to invest in reading the document, and how the reader
will use the information the document contains. These assumptions will
affect not only the document’s content but also the way in which the infor-
mation is grouped, packaged, and presented.

For example, many technical reports begin with an executive overview.
Such an overview serves both of the likely audiences of the document,
though in different ways.

◗ Most busy executives will count on the executive overview to contain
all of the document’s salient points in a concise and compact form. In
many cases, they will not continue reading the rest of the document
because their information needs will have been satisfied.

◗ For technical people, the executive overview serves to frame the
document’s content and provide a preview of the conclusions toward
which it is driving. As they read the body of the document, their
memory of the overview helps them understand the overall message
and how the details fit together.

Only by identifying a document’s audience and their information needs
can a writer ensure that a document will satisfy its purpose.

102 The Role of Documentation in a Software Project

Value of a document versus its cost
Agile Manifesto:
We have come to value…
Working software
over comprehensive documentation

The Agile value that is the subject of this part of the book uses the adjective
“comprehensive” in its discounting of documentation. This word is key to
our understanding of this value. None of the Agile methods dispenses with
documentation completely. Rather, they each seek to avoid wasting time
and effort in producing documentation.

When does producing documentation become a waste of time and
effort? When the documentation:

◗ Does not have a clear purpose;

◗ Does not have a clear audience;

◗ Is overengineered (or underengineered) for its purpose and audience;

◗ Is maintained beyond its useful life.

It may seem strange to think of comprehensiveness as being wasteful,
but too many organizations waste significant resources on documentation in
the name of being “comprehensive.” Any time a document’s purpose, audi-
ence, and useful life are not kept in mind, waste is a distinct possibility.

For example, what is the purpose, and who is the audience for the
Requirements Specification that your projects produce? There are actually
several possible answers to this question.

◗ One is that the Requirements Specification is to nail the customer
down concerning exactly what the project will produce. In this case,
the customer is the audience, so the document should not be written
to satisfy your designers’ or coders’ needs. You will likely want to use
a professional editor to ensure that the document projects a profes-
sional image to your customer. Also, it should record the results of
deliberations between the producer and customer, rather than substi-
tuting for them.

◗ A second possibility is that the Requirements Specification fleshes out
the details of the customer’s requirements statements so that the
designers and coders can implement what is intended. In this case, the
audience would include the designers, coders, and testers, so the docu-
ment should be focused on their needs. Professional editing would not
be worth the cost, as long as the content is clear to these technical read-
ers. Again, it should record the results of deliberations between the pro-
ducer and customer, rather than substituting for them.

◗ Yet another possibility is that the Requirements Specification will pro-
vide important historical information for the people who will

Value of a document versus its cost 103

ultimately support and enhance the system after it has been pro-
duced. The audience and their needs will be similar (but not identical)
to those in the second possibility. And in this case, the useful life for
the document begins at the end of the development project, instead of
ending there.

Avoiding waste in documentation
The costs of writing and maintaining documents is significant, so you will
want to apply this simple test before spending any effort writing or updating
a document.

◗ What is the purpose of the document? If there is not a clear purpose
or use for the document, then producing it is likely to be wasteful.

◗ Who is the audience for the document? If the audience consists of mul-
tiple roles, then consider whether a single document can meet the
needs of all of them. If there is not a clear audience, or if the audience is
too diverse for the document to be practical, then producing it is likely
to be wasteful.

◗ Does this document record the results of interpersonal communication
(or prepare for it)? If not, then it is likely to be wasteful, because words
absent from the benefits for face-to-face communication (as discussed
in Chapter 10) are a poor communication mode.

◗ Is the document still needed? Maintaining a document beyond the time
when its audience can use it for its purpose is wasteful.

◗ What is the minimum amount of effort necessary to ensure that the
document can fulfill its purpose for its audience during the time when
it is needed? Overengineering is clearly wasteful. But underengineer-
ing is also wasteful, since it results in a document of questionable
utility.

Because the costs of writing and maintaining documents are significant,
the Agile methods are right to try to avoid wasting them. Whether they go
too far in avoiding documentation is a matter of interpretation and opinion.
But the intent is entirely appropriate, and it is something we should take to
heart whether we implement an Agile method or not.

104 The Role of Documentation in a Software Project

Incremental Delivery of Working
Software

In this chapter, we will discuss the Agile Principles that support
the second Agile value statement.

Agile Manifesto:
We have come to value…
Working software
over comprehensive documentation

Agile Principles
There are three Agile principles1 that support the second Agile
value about working software. Because these three principles
are so closely related, we will discuss all of them in this chapter.

Early and continuous delivery

Our highest priority is to satisfy the customer through early and con-

tinuous delivery of valuable software.

The Agile methods all have a strong customer orientation. As
this Principle points out, satisfying the customer is the highest
priority. As we will see in Part IV, this is not just marketing
blather, as some companies practice; the Agile methods truly
hold this as the highest priority.

This principle identifies three specific ways that the Agile
methods work to satisfy the customer, by delivering early,
delivering often, and delivering value.

“…satisfy the customer through early…delivery of … software.”
The Agile methods are highly suspect of people’s ability to do

105

Contents

Agile Principles

Agile practices

Adaptive Software
Development (ASD)

Dynamic Systems Development
Method (DSDM)

Extreme Programming (XP)

Feature-Driven Development
(FDD)

Lean Software Development
(LD)

Scrum

Adoption implications

Incremental Development

C H A P T E R

14

1. All 12 Agile Principles are quoted and discussed in Appendix B.

significant abstract analysis at the beginning of a project. Therefore they will
generally lay a minimal foundation for the project, then begin to produce
working software as early as possible.

While the early increments may be only minimally functional, they will,
nonetheless, provide both the development team and the customer with a
concrete example of the beginnings of the system being built. With this basis
in place, deliberations about the details of what is to be built can be more
productive. In most cases, the Agile methods prefer producing a working
example or prototype to doing abstract analysis.

“…satisfy the customer through…continuous delivery of … software.” The
Agile methods not only deliver early, they also deliver often. Regular deliv-
ery of software provides a continually growing basis for the team and cus-
tomer as they work out the details of the system being built. An Agile
project is a learning experience for both the customer and team, and each
software increment that is delivered provides new insights to all parties and
accelerates the learning.

“…satisfy the customer through…delivery of valuable software.” In most Agile
methods, the customer has a strong hand in identifying the functionality
that is to be delivered. For example, in XP, as described in Appendix E, the
customer makes the decisions (with input on feasibility from the technical
team). And in Scrum, as described in Appendix H, the customer prioritizes
the Product Backlog, and those priorities are a major consideration for the
team as they choose which items to include in each increment.

By attempting to deliver value (in the customer’s eyes) with each incre-
ment, the Agile methods hope to maximize the likelihood that the project
will result in a highly satisfied customer.

Deliver working software frequently

Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time scale.

This principle builds on the prior one by defining what “continuous” deliv-
ery means. It specifies a range of 2–8 weeks for each increment, and then
takes the concept to the extreme by expressing a preference for shorter
time frames. Even at 8 weeks, these increments come much frequently
more than most of us have experienced. Can 2-week increments really be
worthwhile?

The Agile methods prefer to break the project into many, many baby-
sized steps. As previously discussed, the point behind incremental delivery is
to ensure that the project is progressing toward customer satisfaction. The
smaller the steps and the more often the customer can see what is being
built, the less likely it will be that the project will go off course.

106 Incremental Delivery of Working Software

Working software: Primary measure of progress

Working software is the primary measure of progress.

The prior two principles referred to “valuable software” and “working soft-
ware,” and this one drives that point home. We can and do measure many
different things on software projects to try to gauge progress. Of course,
working software is our primary objective, but in most traditional projects,
the time between increments is too long for this to be an effective way to
track progress.

Because most Agile projects deliver software at least once within the
status-reporting window that most of us use (monthly), they are uniquely
positioned to use this primary measure (working software) for regular status
checking. The best examples of status reporting among the Agile methods
are described in Scrum and FDD.

Scrum, as described in Appendix H, uses changes in the number of items
in the Product Backlog to gauge progress. Items are added to the Product
Backlog as the team or customer learns about the project and better under-
stands what needs to be built. Then, items are removed from it as they are
completed. So the rate of growth or shrinkage of the Product Backlog
becomes Scrum’s primary method for determining project status.

FDD, as described in Appendix F, uses its feature list in a way that is
similar to Scrum’s use of the Product Backlog. But FDD goes further by
identifying milestones for each feature, like Design complete, Code Inspec-
tion complete and Promote to Build. Each milestone is assigned a weight
based on the project team’s performance so far on the project, so the team
can compute the status of partially completed features, as well as the fully
complete ones.

Agile practices
Each Agile Method has practices that directly support these principles. We
will look at 16 different practices, one method at a time.

Adaptive Software Development (ASD)
Two of ASD’s practices support these principles—The “Adaptive Life Cycle,”
which defines how an ASD project progresses, and “Customer Focus Group
Reviews,” which explicitly collect customer feedback on each increment of
the evolving product. ASD is described in Appendix C.

The Adaptive Life Cycle

ASD prescribes an iterative life cycle, as shown in Figure 14.1. The heart of
ASD’s “Adaptive Life Cycle” is referred to as the “Learning Loop.” Notice

Agile practices 107

that this loop continuously cycles through the Speculate, Collaborate, and
Learn phases of the Adaptive Development Model. That is, each iteration
consists of a planning step, an engineering step, and a review step.

As the name indicates, the point behind each iteration of the “Learning
Loop” is to learn about the system that is being built. This learning is
achieved by speculating about what will go on during the cycle (most of us
call this “planning”), building some things, then reviewing what was built
and feeding what was learned into the speculation step for the next
iteration.

The key to learning is the Quality Review step, which includes three dif-
ferent kinds of reviews: Customer Focus Group Reviews, software inspec-
tions, and the postmortem.

◗ By “software inspection,” ASD does not necessarily mean a formal
Fagan2 inspection. It is, however, a relatively rigorous peer review
activity that is undertaken to detect and correct defects in the soft-
ware. In addition to removing defects, this review ensures that the
entire software team is familiar with what each person has built dur-
ing the iteration.

◗ The postmortem is a review of the development activities that went on
during the cycle. Its purpose is to identify what worked well for the
team and what could be improved in later cycles. This review allows the
team to continually improve its development practices.

◗ The Customer Focus Group Reviews are discussed next.

108 Incremental Delivery of Working Software

Adaptive life-cycle

Speculate Collaborate Learn

Learning loop

Project
initiation

Final
Q/A and
release

Adaptive
cycle
planning

Concurrent
component
engineering

C1
C2 3

C

Quality
review

Figure 14.1 Adaptive Life Cycle. (From: [1]. © 2000 Dorset House Publishing Co.
Inc. Reprinted with permission.)

2. Michael Fagan developed a rigorous formal software inspection method while he was at IBM in the 1970s.

This method has come to be known by his name, and it has been written about extensively. Although this

inspection method is more expensive than any other peer review method, many studies have concluded that

the return on this extra investment is substantial because of the high proportion of defects it can remove

before testing begins.

Learn: Quality Review: Customer Focus Group Reviews

The key part of the Quality Review is the Customer Focus Group Reviews.
These reviews allow the customer to see what has been built to date and try
the evolving system out to see how it works. The word “reviews” is plural
because there may be any number of different customer focus groups
involved, depending on the nature of the functionality that was added dur-
ing the cycle (e.g., data entry clerks, financial analysts, and the chief finan-
cial officer).

This practice is key because its purpose is to ensure that the system as it is
evolving will actually meet customers’ needs and expectations. If the devel-
opment team has not understood a requirement as the customer does, the
differences will become clear relatively early in the project, as the system
begins to take shape. When this happens, the “learning” phase has done its
job by fostering an environment where misunderstandings can be uncov-
ered and corrected before the correction becomes too costly.

Dynamic Systems Development Method (DSDM)
Although DSDM gives projects great latitude in how its principles are imple-
mented, we can see the importance it places on incremental development.
Three of its nine Principles deal directly with incremental development. The
third, fourth, and fifth principles are Frequent Delivery, Fitness for Business
Purpose, and Iterative and Incremental Development. DSDM is described in
Appendix D.

3) Frequent delivery

Principle 3: The focus is on frequent delivery of products.
As with the other Agile methods, delivering software to the customer

frequently is a hallmark of DSDM. Frequent delivery allows the project’s
progress to be visible, not only to the customer but also to the team mem-
bers and management.

4) Fitness for business purpose

Principle 4: Fitness for business purpose is the essential criterion for acceptance of
deliverables.

Notice that this DSDM Principle does not say “Satisfaction of Require-
ments.” DSDM, like the other Agile methods, distrusts the stated require-
ments as an indicator of what needs to be built. Although the requirements
serve as a guide for the project team, the ultimate test is whether the cus-
tomer believes the system will serve the need.

If what was built satisfies the requirements, but does not satisfy the cus-
tomer’s need, then it is not a success, and rework is needed. On the other
hand, if the system satisfies the customer’s business purpose, then any
deviation from the requirements is not considered a problem.

Dynamic Systems Development Method (DSDM) 109

5) Iterative and incremental development

Principle 5: Iterative and incremental development is necessary to converge on an
accurate business solution.

At the beginning of a project, each of the parties involved is likely to
have a different idea about the project’s final outcome. That is, not only will
the customer see things differently from the development team, but differ-
ent members of the customer organization may see things differently from
each other. (And the same is likely within the development team.)

DSDM uses incremental development to foster convergence of those
varying ideas toward the ultimate “accurate” solution. Figure 14.2 illustrates
that as each increment is delivered, everyone’s ideas about the system are
adjusted and true differences of opinion are highlighted so they can be
worked out. The result is that each increment of the project brings partici-
pants one step closer to full convergence with each other, and, ultimately,
they converge on an accurate business solution.

Extreme Programming (XP)
Two of XP’s 12 practices support incremental delivery—small releases and
continuous integration. XP is described in Appendix E.

Small releases

XP forces increments to be as short as possible by limiting the content of
each release. Each release is supposed to demonstrate one small thing that
has value for the customer. Because of this rule, the customer has many
opportunities to see the project’s progress and to guide the team in building
the right product.

Continuous integration

In spite of XP’s small releases, its build cycle is even shorter. By “continu-
ous” integration, this principle means that code for each Story is integrated
into the evolving system as soon as it is ready. When a pair of programmers

110 Incremental Delivery of Working Software

Customer

Developers

Management

Business
solution

1 2 3 4 5Project iterations 6 7 8 9 10

Figure 14.2 Convergence on the business solution.

finishes writing a story, they immediately integrate it into the product. With
several pairs of programmers concurrently working on stories, this results in
integration going on almost all the time.

The value in this practice is that it provides the fastest possible feedback
to the pair on the story they just implemented. If it does not integrate
cleanly with the existing system, then they simply continue working on it.
Since the system worked before they integrated their Story, there is no
doubt about where the problem lies; that pair has more work to do.

This is preferable to the common practice of holding all of the code for
one large integration step at the end of the iteration. When the integration
test yields unexpected results, it can be difficult to identify the cause of the
problem. Then, when the cause has been identified, someone must go back
to code that was written weeks or months ago, remember how it was
designed, and figure out what needs to be changed.

Continuous integration makes diagnosing integration problems much
more straightforward and facilitates learning by the programmers.

Feature-Driven Development (FDD)
Three of the practices support incremental development: developing by fea-
ture, regular build schedule, and reporting/visibility of results. FDD is
described in Appendix F.

Developing by feature

In FDD, the product is developed one feature at a time. As with XP, this
results in very small iterations and short feedback cycles, giving the team
and customer insight into the evolving product on a regular basis.

Regular build schedule

FDD does not prescribe any particular frequency for builds, only that they
are done regularly. “Regular” could mean weekly, daily, or continuously
depending on what the project team thinks would be most advantageous for
the project. The intent of this practice is that each new feature is integrated
into the product as soon as is practical after it is written.

This avoids problems with more traditional build schedules previously
discussed under XP’s “continuous integration.” But it also acknowledges
that some circumstances may necessitate integration less often than “con-
tinuously” or even “daily.” For example, if the system takes many hours to
build, then it may be best to schedule builds for specific times or days.

Reporting/Visibility of results

FDD makes use of the “developing by feature” practice previously described
to create a unique method for reporting project status. The project identifies

Feature-Driven Development (FDD) 111

milestones for each feature, and a weight is assigned to each milestone
based on the relative effort it requires. A fully completed feature counts as
“1,” and a partially completed one counts some fraction, based on the mile-
stones it has passed. The project status is computed as the sum of the values
earned divided by the total current feature count for the project.

This reporting mechanism avoids the 90% syndrome (90% of the project
being 90% complete 90% of the time) by accumulating value only when
milestones have been passed. Because the features are small and milestones
happen so often, it provides a real-time measure of progress.

Lean Software Development (LD)
LD’s “Amplify Learning” principle focuses on the Agile principles discussed
in this chapter. This LD Principle makes explicit the pattern we have
already observed in the other Agile methods—that learning is a central
theme on Agile projects. Two of the four Lean Tools under this LD Principle
address these things directly: feedback and iterations. LD is described in
Appendix G.

Amplify Learning: Tool 3, Feedback

LD’s feedback tool focuses on providing information to every project stake-
holder as often as possible to facilitate learning. This includes the customer
and management, as well as the developers.

There are a variety of ways to provide frequent feedback to developers.
Examples already discussed in this chapter with the other Agile methods
include frequent builds, continuous testing, peer reviews, and customer
evaluations. This tool urges the Lean Development team to be creative in
finding ways to provide feedback to the development team as often as possi-
ble, and in as many ways as possible.

The most obvious way to provide regular feedback to the customer (and
management) is to complete development increments as often as possible.
This allows these stakeholders to see the results of their directions to the
development team and to make adjustments when the results are not what
they expected. Again, the more often this can happen, the more likely it will
be that the project will regularly progress toward a satisfactory end.

Amplify Learning: Tool 4, Iterations

Directly related to Tool 3 is this tool about iterative development. LD recom-
mends iterative time-boxing to manage the project. That is, each increment
should have a specific start and end date. Although targets may be set for
the functionality to be implemented during the iteration, the time-box is
inviolable. That means that during the time specified for the iteration, the
work that can be completed is done, and anything that cannot be completed
is deferred to a later increment.

112 Incremental Delivery of Working Software

Time-boxing is a good mechanism for managing the ramifications of
development difficulties. Rather than allowing the iteration to drag on, this
mechanism forces the end of the iteration on schedule. Then any problem-
atic features can be discussed and replanned in light of the new information
that has been learned. Even if the problem is nothing more than an estima-
tion error, this mechanism provides the opportunity to replan based on the
new knowledge about the project.

Scrum
Scrum implements incremental development using practices it refers to as
the Sprint and the Sprint Review. Scrum is described in Appendix H.

Sprint

Each increment of a Scrum project is developed in a “Sprint.” A Sprint is a
time-boxed development increment that is generally set at 30 days in
length. The Sprint is characterized by its goal and a set of functionality that it
is expected to deliver.

After the Sprint has been planned, the development team has complete
autonomy. They are empowered to do whatever it takes to reach the Sprint
goal within the time-box. Although this idea is focused on giving the team
the liberty to pursue whatever strategies they believe are best, it also allows
them to make any change they believe they should make to achieve the
Sprint goal. They may even change the details of the functionality to be
delivered as long as they believe they will still achieve the Sprint goal.

If they become convinced that the Sprint goal is beyond reach, they are
empowered to abort the Sprint, which would immediately result in a new
Sprint Planning session. By doing so, they will force the other project stake-
holders to reassess the new information they have learned so they can all
work together to set a new, achievable Sprint goal to get the project back on
track.

As with the other Agile methods, Scrum’s time-boxed increments pro-
vide a mechanism for all project stakeholders to learn about the system
being built on a regular basis. In the case of Scrum, this happens every 30
days.

Sprint Review

Each 30-day Sprint ends with a Sprint Review meeting in which all stake-
holders come together to review what was developed during the Sprint.
This review includes the entire development team, the customer,
and management, and it allows each person to learn from what was devel-
oped during the Sprint and to prepare for the planning session for the next
one.

Scrum 113

Adoption implications
Incremental development is often a very good idea. Consider how rarely we
really use the waterfall life cycle. In real life, we almost always build in
phases. Whether we call it “spiral,” “incremental,” “cyclical,” or “waterfall
with feedback loops,” we still do it more often than not. The Agile methods
have recognized this fact and built incremental development into their basic
assumptions.

Time-boxed development

Time-boxing is an interesting concept that turns our development priorities
around. Usually, we set a functionality goal and then keep hammering away
at the job until we achieve it. If we are late, we work overtime and get it
done as close as possible to the scheduled end date. Essentially, when things
do not go as planned, the schedule is what gives, although, as Figure 14.3
shows, both the schedule and the functionality are liable to change.

With time-boxing, as Figure 14.3 shows, the schedule is immovable. If
things do not go as planned, then the functionality is what changes. We may
simplify a function, or drop one, or redefine the extent to which it must
work in this increment. There are many options for “slipping” a function,
but the schedule does not slip.

Although this is not a common mode of operation, there are many cases
where time-boxing makes sense. By completing an increment on time (but
with a function missing), we are able to provide all of the other functions to
the users as planned. If the functionality is prioritized appropriately, this
should cause little in the way of problems for the customer, and may please
them more than a slipped schedule. And if the deliveries take place fre-
quently (as the Agile methods all recommend), then the delayed functional-
ity will not be delayed for long.

In what circumstances would time-boxing be appropriate for your proj-
ects? Would your customers prefer full functionality delivered late? Or par-
tial functionality delivered on time? Take a moment to consider these things
and jot down some notes.3

114 Incremental Delivery of Working Software

Fixed

Adjust to fit

Functionality

Adjust
both

Time-boxed Traditional

ScheduleSchedule

Functionality

Figure 14.3 Time-boxing.

3. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

Continuous integration

Why not implement continuous integration in your projects? Are there
technical reasons why this would not be feasible? How long does it take to
build the systems you are developing? If it is under 15 minutes, then there is
no technical reason to preclude continuous integration. If it takes more like
an hour or two, then daily may be as often as you can integrate. Even for
the biggest systems, is there really any technical reason not to integrate at
least once each week?

Think about the problems with “big bang” integration. Thousands of
lines of new code are thrown together for the first time, and when (not “if,”
but “when”) it does not work, it takes your best engineers days to sort
through the mess and figure out what to do. And you hold your breath hop-
ing that there are no serious issues that will take weeks to fix!

When integration goes on regularly throughout the project, the scope of
each integration test is small, and the realm of possible problems is very con-
strained. Also, the impact of any individual problem that is uncovered is
going to be much smaller because of the constrained scope of the software
being integrated.

The only complication introduced by continuous integration is the
demand it places on your CM system. Both the CM tools you use and the
processes you employ must work flawlessly. Your people must be trained in
how to keep everything straight, and they must do it diligently.

Consider the technical, tool, or personnel issues you may run into with
continuous integration. Are they serious? What will it take to correct them?
Take a moment to consider these things and jot down some notes.

Incremental delivery

Will your customers accept the idea of incremental delivery, as shown in Fig-
ure 14.4? Or are their basic assumptions still wrapped up in the waterfall life
cycle? Do they want to see a Requirements sign-off, followed in a few months
by the Critical Design Review, followed in several more months by Integra-
tion Readiness Review, followed many more months later by Acceptance
Readiness Review? Or could they be comfortable with receiving increments
of software in place of all those reviews? Would they be able to begin using
the system before all the functions are available? Would they welcome the
opportunity to begin migrating to the new system earlier, rather than later?

Even if they will not be able to actually put a partial system into opera-
tion, most customers welcome the opportunity to try out a system as it is

Adoption implications 115

Plan Build Deliver

Incremental Waterfall

Plan

Build

Deliver

Hacking

Build

?

Figure 14.4 Incremental delivery versus waterfall versus hacking.

being built. It allows them to allay their fears about the development project
going wrong. They can assure themselves that the system you are building
really will satisfy their needs. And, of course, if there are surprises, they can
raise the issues while work is still ongoing, instead of after the fact.

Are there any reasons why incremental delivery (either for real use or
for trial use) would not work with your customers? Take a moment to con-
sider these things and jot down some notes.

Incremental development versus hacking

Do your developers want to do real incremental development? Or are they
expecting to just hack away at coding while merely calling what they do
“Agile” and “incremental.” True incremental development is planned and
managed, as Figure 14.4 shows. The project is laid out as a series of incre-
ments, and although we expect to learn as we go through the project, we
intend to build those certain increments with some semblance of the func-
tionality we initially intended.

Each Agile method is a well-thought-out process with specific practices
and requirements. They are not a license to hack. Is that what your people
expect? Take a moment to consider these things and jot down some notes.

Deliver working software to whom?

All of the Agile methods advocate incremental delivery of software, but they
do not generally indicate to whom those increments should be delivered for
evaluation. From the methods’ points of view this is appropriate, because
the target for delivery will differ from one project to another. But because
this subject remains unaddressed, it would be easy to overlook its
importance.

If the population of end users for the system being developed is small
and homogenous, then it will be relatively easy to determine to whom to
deliver each increment. An individual who can represent the entire popula-
tion will likely be easy to identify and, in some cases, delivering it to every
interested end user could be feasible.

But often, determining whom to involve in the project as the “customer”
is not straightforward. The larger the population of users, the less likely it
will be that a single individual can adequately represent all of them. Also,
large populations tend to be more diverse, exacerbating the problem. And,
of course, as the population grows, involving all of them becomes entirely
infeasible.

If you are developing a system under contract for another company,
then access to true end users may be a particular challenge. It is not uncom-
mon that the gatekeepers in such situations are unfamiliar with the details
of how end users will actually use the product. So your access to end users
may be blocked by individuals who do not have the appropriate knowledge
or experience to stand in for them.

116 Incremental Delivery of Working Software

The most extreme case is when the system will be sold as a commercial
off-the-shelf product. In that case, the target population is large and likely to
be quite diverse, and no true end users may be available while the system is
under development. In this case, a surrogate for the users (e.g., a marketing
manager or customer support representative) may be the only option
available.

Regardless of your specific situation, careful thought must be given to
the question of who is the “customer” for the system that will be developed.
That question must take into consideration the size and diversity of the
population of end users, access to them, and the feasibility of involving mul-
tiple “customers” in the project. The logistics for your projects will be
affected by the answers to these questions.

Who is the customer for the systems you produce? Who are the true end
users? How large and diverse is the end-user community? How accessible
are they? Is there any single individual who can adequately represent all the
end users on an Agile project? What complications does this issue raise for
your organization? Take a moment to consider these things and jot down
some notes.

Minimizing documentation

Before we leave this chapter, and this part of the book, we need to discuss
documentation. The Agile value we are focusing on says, “We have come to
value… working software over comprehensive documentation.” None of
the Agile principles says anything about documentation, and none of the
Agile methods has a practice about it either. But if we delve into the details
of the Agile methods, we will find that this value statement does indeed play
out in significant ways.

Each Agile method specifies how requirements are to be documented.
And some also discuss other things, like designs. In every case, the level of
documentation and detail that the Agile methods call for is far less than
what many of us would generally expect.

For example, XP documents requirements in the form of a Metaphor
and a set of Stories. The Metaphor—the overarching concept that guides the
project—is a simple one-sentence statement, or no more than a paragraph.
Each Story—feature—is written on a 3×5 card. So, the sum total of the
requirements documentation in an XP project is likely to be no more words
than many of us write in the introduction to our requirements documents!

XP also stresses that the best way to communicate is face to face with a
whiteboard to scribble on. The closest XP comes to any lasting record of
these interactions is taking a photograph of the whiteboard before it is
erased. Meeting minutes are not even considered worth discussing.

While the intent of making projects more efficient by eliminating unnec-
essary documentation is laudable, many of us have serious concerns about
the degree to which documentation is minimized in all of the Agile meth-
ods. The industry has settled on the documentation we normally produce
because it has been found to be useful in various circumstances. While it is

Adoption implications 117

true that there are cases where some documents carry no value, care must
be taken when eliminating documentation. Lacking information that is
needed can be much more wasteful than producing documents that are not
needed.

Consider the documentation that your organization produces. Can you
identify a clear purpose and audience for each one? Are some of your docu-
ments overengineered? Could they be smaller and more concise? Can you
identify documents that have never provided value to the organization? If
you implement an Agile method, carefully consider the documents that it
may suggest that you dispense with or significantly reduce. Do such changes
make sense for you projects? Take a moment to consider these things and
jot down some notes.

Incremental development
Incremental development is the hallmark of all of the Agile methods. We
have seen in this chapter that it is prominently featured in every Agile
method. The purpose for incremental development is clearly tied to the
learning that goes on in the project. The Agile methods fully expect that
everyone associated with a development project is continually learning,
including the customer, the developer, and management. By developing in
increments, these methods provide an environment where learning can
continually go on. And as the stakeholders learn, the project can adjust to
the new knowledge that is generated.

The Agile methods also minimize the role of documentation on develop-
ment projects. While there are certainly cases when unnecessary documen-
tation wastes project resources, care must be taken to ensure that
documentation that is eliminated truly is of no value, either to the project or
to the long-term support of the system being built.

Reference

[1] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House, 2000, p. 84.

118 Incremental Delivery of Working Software

Value: “Customer Collaboration
over Contract Negotiation”

In this part of the book, we will explore the implications of the
third Agile value, which states, “We have come to value
customer collaboration over contract negotiation.” We will
begin this exploration with a general discussion in Chapter 15,
“Defining the Customer Relationship,” about the different types
of relationships that you might have with your customers. We
will then look at the Agile Principle that embodies this value in
Chapter 16, “Daily Collaboration of All Stakeholders.”

P A R T

IV

.

Defining the Customer
Relationship

This first chapter in Part IV lays the foundation for our explora-
tion of the Agile Principle that embodies the Agile value, “Cus-
tomer collaboration over contract negotiation.” Chapter 16 will
delve into that principle.

Agile Manifesto:
We have come to value…
Customer collaboration
over Contract Negotiation

Types of customers
As is common in business, the Agile methods (as well as this
book) use a broad definition for the word “customer.” A cus-
tomer need not be an individual or a company that is distinct
from the organization producing the software. Your customer
may be another division or department in your company, or
another person within your department. You may even be
your own customer (although in that degenerate case, both
contracts and collaboration become a moot point)!

We will talk about two broad classes of customers in this
book: external customers and internal customers (and we will
ignore the case where you are writing software for yourself).

◗ An external customer is one that is part of a legal entity
that is distinct from your organization. This includes any
governmental unit (assuming you are not a part of that
unit), any part of a totally separate company, and any part
of a company that owns or is owned by your company.
Relationships with external customers are almost always
defined by a contract (and the ones that are not, should

121

Contents

Types of customers

Role of contracts

Role of ongoing collaboration

Balancing contracts and
collaboration

C H A P T E R

15

be)! When separate legal entities are involved in a business transac-
tion, a contract is necessary to define exactly what each party should
expect of the other party.

◗ An internal customer is one that is part of the same legal entity as
your organization. This includes other divisions of your company,
other departments within your division, and even other people
within your department. When the business relationship is within a
legal entity, a contract is often not written. This is a mistake, because
even in the simplest of cases, it is still necessary to define exactly what
each party should expect of the other party. And, as we will describe
in the next section, that is the primary function of a contract.

The details of your contracts with internal customers will differ from
those with external customers (e.g., no need to address intellectual property
rights or noncompetition). But the key point of the contract, to define
exactly what each party should expect of the other party, is every bit as
important with internal customers as with externals ones.

Role of contracts
As with any other document1 a contract has a purpose and an audience.
Actually, contracts have two purposes and three distinct audiences.

The primary purpose of a contract is to define exactly what each party
should expect of the other party. And so, the primary audience consists of
both the supplier organization and the customer. As such, the contract must
address the things that each organization values. For example, the customer
is likely to care about the ultimate cost of the work and the functionality to
be delivered. On the other hand, the supplier will probably be concerned
about controlling changes in the scope of the work and being paid in a
timely manner. If the customer is external to the supplier, both will proba-
bly be concerned about the system’s intellectual property rights and disclo-
sure of privileged information.

Beyond these things, there is a secondary purpose for any contract—to
provide a framework for resolving disputes between the parties. The audi-
ence for this secondary purpose consists of the other people who will
become involved when a dispute takes place. For internal customers, this
may be some higher level of management that is common to the two
organizations. For external customers, it will include lawyers, arbiters,
judges, and, in the worst cases, juries.

So, we see that contracts have a number of important roles. The ques-
tion, then, is not whether we need a contract, but how extensive it needs to
be and what it should contain. As with any document, the contract’s pur-
pose and audience drive the answers to these questions.

122 Defining the Customer Relationship

1. See Chapter 13 for a discussion of the role of documentation in a software project.

Role of ongoing collaboration
Software projects run the gamut from continuous collaboration to almost
none at all. The Agile methods tend to be at the high end of the collabora-
tion scale, with XP as discussed in Appendix E carrying the extreme posi-
tion, requiring that a customer representative be on-site and actively
working with the development team every day. At the other end of the
spectrum are customers who prefer very little collaboration. Aside from
receiving periodic status reports, they prefer not to be involved in the devel-
opment effort at all.

The most common situation falls in the middle of the continuum. In
most projects, the customer and contractor collaborate at a few carefully
selected milestones throughout the project. For example, they may schedule
a Requirements sign-off, Critical Design Review, and a few other points in
the project when the customer receives a full briefing about decisions made
to date, perhaps a demonstration of a prototype or of the actual system, and
the expected directions the project will take as it moves forward. During
these few interaction points, the customer dedicates significant resources to
the collaboration exercise and then leaves the contractor to move forward
with the project as agreed upon.

Why do most projects engage in some level of collaboration? It all comes
back to the key point of Part III: learning. As the development team begins
to work through the details of the project, they learn about it, and their
original assumptions are replaced with knowledge. Often, this new knowl-
edge is different from the initial assumptions and may result in adjustments
to their assumptions about details they have not yet addressed. When cus-
tomers hear what developers have learned, and see what has been devel-
oped to date, their assumptions are likewise replaced with knowledge that is
likely to change their future assumptions.

Often, the result of this learning is totally new ideas about what the sys-
tem can (or should) do. This learning process is the genesis of project scope-
creep as the customer, developer, and often both generate new ideas about
what the ultimate system should include. So is collaboration good or bad?
Scope-creep is almost universally listed as a top problem on software proj-
ects. Should we be encouraging it through collaboration? Or should we
limit it by limiting collaboration?

The Agile methods mitigate the problem of scope-creep in two ways.
First, because the collaboration between developer and customer is so much
closer, both parties maintain a clearer understanding of both the evolving
system and the customer’s needs than would be the case on a traditional
project. This results in features and functions being removed and replaced
nearly as often as they are added. So, although the requirements may be
fluid, they tend not to expand as much as one would expect.

When the scope of an Agile project does expand, the Agile methods have
a second mitigating strategy: they place the responsibility for addressing the
expanding scope on the customer’s shoulders. The collaboration on Agile
projects is not limited to technical direction and functionality. Most Agile

Role of ongoing collaboration 123

methods involve the customer in planning and prioritizing activities as well.
This means that when someone comes up with an idea for a new feature or
an extension to a planned feature, the customer is called on to make the
hard choices. Does the schedule slip? Does the budget get inflated? Do some
other features get cut? The choice is the customer’s to make (with input
from the technical team on feasibility and costs of the various options).

The Agile methods use close collaboration to ensure the greatest level of
customer satisfaction possible. When customers have a strong voice in the
project, they are more able to ensure that it results in the system they need
at a price they can afford.

If collaboration has this much beneficial effect, then why would my cus-
tomer not want to be so involved in our projects? In a word: cost. Your cus-
tomers pay you a lot of money to develop the system, and their own people
have other jobs to do. The more collaboration you require of them, the
higher the cost of the project is to them. For example, using XP’s on-site
customer practice will require that, in addition to what they pay you, your
customers must carry the cost of the additional employee who is nearly
dedicated to the project.

Of course, this additional investment in the project is likely to pay divi-
dends in the form of a project that produces a better result more quickly
than it otherwise might have. But depending on the customer’s constraints
and the degree to which that customer believes in the efficacy of using an
Agile method, he or she may be unwilling to take the gamble on it.

In reality, the level of collaboration your project team will have with
your customers must be negotiated. Since the collaboration is an expense
for them more than for you, and it is likely to result in a more satisfactory
system, your goal is likely to be to obtain as much collaboration as you can
get from them. This negotiation will hinge on the extent to which they
believe the value of the “better” system exceeds the cost of the additional
collaboration.

Balancing contracts and collaboration
So, your contract says one thing, but through collaboration, you decide on
something else. Now what? We need to modify the contract yet again, get
our contract administrator involved, the lawyers, and higher-level manage-
ment, too. This could open a whole new set of issues that we thought were
already settled!

The key to balancing contracts with collaboration is to contract for the
level of collaboration that you and your customer agree to. Not only must
your customer agree to provide the personnel to participate in the project,
but you both must also agree to the extent to which the project costs, sched-
ule, and functionality can be altered without requiring a contract
modification.

The contract for an Agile project should acknowledge that learning will
take place over the life of the project, and that learning may result in

124 Defining the Customer Relationship

changes to the key issues of cost, schedule, and functionality. Agreeing to
this and identifying any applicable limits at the outset can free you and your
customer to engage in open and frequent collaboration and take action
based on the learning that results.

Balancing contracts and collaboration 125

.

Daily Collaboration of All
Stakeholders

In this chapter, we will discuss the Agile Principles that support
the third Agile value statement.

Agile Manifesto:
We have come to value…
Customer Collaboration
over Contract Negotiation

Agile Principle
This third Agile value about collaboration versus contracts is
supported by the Agile principle1 about stakeholder
collaboration.

All Stakeholders Must Work Together Daily

Business people and developers must work together daily throughout the

project.

The wording of this principle is based on a partitioning of the
project stakeholders common to all Agile methods but not
explicitly described. That partitioning puts the project stake-
holders into two broad groups, as shown in Figure 16.1: devel-
opers and business people.

◗ “Developers” are the members of the technical team that is
developing the software. In addition to the programmers and
technical experts like system architects, this group includes
the technical lead and supporting roles like testers or

127

16
Contents

Agile Principle

Agile practices

Adaptive Software
Development (ASD)

Dynamic Systems Development
Method (DSDM)

Extreme Programming (XP)

Lean Software Development
(LD)

Scrum

Adoption implications

Customer collaboration

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

technical writers. Essentially, “developers” are the people to whom
the Agile methods apply directly.

◗ “Business people” are everyone else. This includes:

◗ The entire management structure, including senior and middle
management and possibly the project manager (if he or she is not a
technical contributor);

◗ Supporting services like human resources, finance, contracts, and
information technology;

◗ The customer, including their management, technical liaisons, and
contracts people;

◗ The end user (who may or may not be part of the customer’s organi-
zation).

The term “business people” refers to everyone with whom the Agile
project interacts.

With this understanding of the Agile methods’ partitioning of stakehold-
ers, we can restate this principle as “All of the project stakeholders must
work together with the development team daily throughout the project.” In
other words, this principle is all about broad-scale collaboration.

Agile practices
Five of the six Agile Methods have practices that directly support this princi-
ple. (FDD is the one Agile method that does not have such a practice. FDD is
described in Appendix F.) We will look at eight different practices, one
method at a time.

Adaptive Software Development (ASD)
Two of ASD’s practices support this principle—“Independent Agents,”
which defines how ASD views the roles of the various stakeholders, and the
“Adaptive Management Model,” which discusses the ASD management phi-
losophy. ASD is described in Appendix C.

128 Daily Collaboration of All Stakeholders

Management
Customer
End-users
Everyone else

Business people
Programmers

System architect
Technical lead

Technical writers
etc.

Developers

Figure 16.1 Partitioning of Agile project stakeholders.

Project stakeholders as independent agents

There are no hierarchies in the ASD view of software projects. Management is
not “over” the development team. The customer is not all-powerful. The
development team is neither a more important nor a less important player. As
shown in Figure 16.2, ASD sets up all the stakeholders in the project as peers.

Each of these peers, or “independent agents,” brings value to the project.
Each has a unique perspective, each has special knowledge, and different
things motivate each. As the project progresses, ASD expects that these
agents will self-organize as each situation requires, with each agent being
sometimes the learner, sometimes the teacher, sometimes the leader, and
sometimes the follower.

The essence of Adaptive Software Development is that the eventual
product (of which none of the stakeholders has a complete understanding to
begin with) will naturally emerge from an environment (an “ecosystem”) in
which these independent agents freely interact with each other.

Adaptive (Leadership-Collaboration) Management Model

As you might guess from the discussion of independent agents, the Adaptive
Management Model bears no resemblance to the traditional command and
control management model. While, like any other manager, the ASD proj-
ect manager is responsible for keeping the project on track, his or her peer
relationship with those being managed necessitates a different approach.

In this environment, leadership is critical because it is the only way the
manager can influence the team’s behavior. He or she establishes an envi-
ronment for collaboration, then leads the way in that collaboration. The
manager’s modeling of behavior gives the team and all of the other stake-
holders direction and momentum. And, assuming the manager leads in the
right direction and the others follow that lead, the project will progress
toward a successful conclusion.

Dynamic Systems Development Method (DSDM)
Two of DSDM’s Principles deal directly with collaboration. The first one
addresses the role of the end user in a DSDM project, and the ninth speaks
in general on the topic of collaboration. DSDM is described in Appendix D.

Dynamic Systems Development Method (DSDM) 129

Customers

Developers Management

Peer relationships

Figure 16.2 ASD—independent agents.

Active user involvement

Principle 1: Active user involvement is imperative.
Its position as the first principle in DSDM, along with the use of the word

“imperative,” makes it clear that, as with XP, as described in Appendix E the
end user is a critical participant in a DSDM project. This is true because of
DSDM’s primary focus on the fitness of the system being developed for the
purpose to which it will be put.

Ultimately, only the user of the system can judge fitness for purpose. So
DSDM stresses that the users must be actively involved in the system’s
development each step of the way. The users give the project team direc-
tion, and they validate the results of each project increment. The users
direct the progression of the project, and the other stakeholders work to sat-
isfy the users’ needs.

Collaborative and cooperative approach

Principle 9: A collaborative and cooperative approach between all stakeholders is
essential.

Like the other Agile methods, DSDM is essentially a model for collabora-
tion. It establishes a flat (two-level) hierarchy by placing the end user in the
prime position and making all of the other stakeholders collaborators (with
the end user and with each other) in pursuit of the product that is fit for its
intended business purpose.

Extreme Programming (XP)
XP’s on-site customer practice speaks directly to customer collaboration.

On-site customer

By “customer,” XP is actually referring to the end user of the system, or at
least someone who can speak authoritatively for that person. The point of
this practice is to ensure that any questions about functionality, priority of
various features, or the appropriateness of what is being built will be
answered by this “customer.”

This XP practice wants such a person to be physically located with the
development team during the entire life of the project. It is assumed that
this person’s full-time attention to the project will not be required, so he or
she should expect to be able to devote some time to “normal” work. But his
or her physical presence is required because of XP’s preference for face-to-
face communication.

By being in the same room with the developers, this customer will
engage in informal conversation with them, overhear their deliberations,
participate in both scheduled and ad-hoc meetings, validate each Story as it
is implemented, and be available at a moment’s notice to clarify the intent

130 Daily Collaboration of All Stakeholders

of a Story or make critical decisions about the product. In short, this “on-
site” customer provides prime direction for the project team.

Lean Software Development (LD)
In LD’s “Build Integrity In” principle, the tools on perceived and conceptual
integrity discuss the customer’s role in assuring integrity. Also, its contracts
tool, under the “See The Whole” principle, is the only example among the
Agile methods of a discussion of contracts. LD is described in Appendix G.

Build Integrity In: Tools 17 and 18, Perceived and Conceptual
Integrity

These two LD tools focus on the two kinds of integrity that a system can
have. Conceptual integrity refers to the system being built well, including
that it is architected well and is easy to use. Perceived integrity is the degree
to which the system as it was built is the correct system. The word “per-
ceived” is used because the only judge of this type of integrity is the user. If
the user perceives that the system is right, then it is.

So, these two LD tools (especially Tool 17, Perceived Integrity) highlight
LD’s customer focus. Only the ultimate user of the system can determine if
integrity has indeed been built in.

See The Whole: Tool 22, Contracts

The last LD tool (number 22) is the only mention of contracts among the
Agile methods. This tool does not suggest certain types of contractual terms
or customer relationships. Rather, it explores several common contractual
arrangements and comments on the effects each might have on an Agile
project.

Scrum
The Scrum practice that highlights customer collaboration is the Product
Backlog. Scrum is described in Appendix H.

Product Backlog

The Product Backlog is the main mechanism by which a Scrum project is
managed. The Backlog is the list of all the work that remains to be done in
the Scrum project. Although any stakeholder in the project can add items to
the backlog, the Product Owner has the sole responsibility for prioritizing
Backlog items.

This Product Owner is the primary customer representative to the Scrum
project. By setting priorities on Backlog items, this person defines the

Lean Software Development (LD) 131

project’s direction and strongly influences the order in which the team
delivers functionality. This person is also the primary judge of whether the
functionality that is delivered actually satisfies the intent of a Backlog item.

Thus, the Product Backlog is the main point of customer collaboration
on a Scrum project.

Adoption implications
Emphasizing customer collaboration over contract negotiation will affect
your software projects in a variety of ways that revolve around require-
ments management, customer acceptance, and, of course, the contractual
relationship itself.

Establishing requirements

Most of us are used to establishing the requirements for the system being
developed before too much work takes place. This is arguably one of the
major ways in which Agile methods differ from more traditional ones.

All Agile methods operate under the assumption that a full and complete
specification of requirements cannot be made at the beginning of the proj-
ect. They expect that every stakeholder in the project, including the cus-
tomer or end user, will be learning and gaining insight into the system’s
requirements throughout the project. Thus, the requirements specification
activities at the beginning of Agile projects are designed to be high-level and
incomplete. These initial system requirements are designed to provide a
broad understanding of the system to be built and a general direction for the
project, but not to constrain or exhaustively identify what will be built.

Although experience tells us it is true that all stakeholders learn about the
product throughout the project, actually operating based on this truism can
be traumatic, both for the developers and their customers. A “complete”
requirements specification provides a feeling of security to all parties. The cus-
tomer feels that he or she “knows” what will be delivered, and the developers
feel that they “know” what the project will entail. Although an honest
appraisal will confirm that these perceptions of security are ill founded, aban-
doning that perception of security will leave us feeling vulnerable.

Making the transition to an Agile method will require a strong dose of
realism on the part of both you and your customer, to openly admit that the
project will be a learning experience. It will also require a new level of trust
that the other party will operate ethically in this environment of uncer-
tainty. (We will explore this in more detail under the section “Contract as a
Weapon.”) How will your customers react to this new way of working?
How will your developers adapt to it? Take a moment to consider these
things and jot down some notes.2

132 Daily Collaboration of All Stakeholders

2. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

Managing requirements changes

Because upfront specification of requirements is virtually discarded by the
Agile methods, it follows that the way in which changes to requirements are
managed will be affected as well. With the assumption that the initial
requirements are only an approximation of what the system will finally look
like, the role of requirements changes becomes quite different.

In traditional projects, requirements changes are a destabilizing factor.
Where the requirements specification had given us an initial feeling of secu-
rity, any suggestion that they must change upsets that security. That is why
requirements changes must be controlled. We must determine how each
change will affect our initial assumptions and try to determine if we want to
embrace or reject it. By thus controlling changes, we maintain our illusion
of security.

Because Agile projects do not expect that the initial requirements are
complete or correct, they treat changes to the requirements as new informa-
tion that will likely contribute to stability. Since we admit that our initial
conception of the requirements was incomplete, this new information is
obviously filling a need and moving us toward the final product.

The main concern with requirements changes is that they can lead to
scope-creep and result in cost and schedule overruns. The Agile methods
mitigate this very real risk by placing the responsibility for scope control
squarely on the customer’s shoulders. With each change to the require-
ments (with the developers’ input on what they believe it will take to imple-
ment), the customer is the one who prioritizes its relationship to other
features and determines if it will be done at the expense of schedule, cost, or
other functionality.

This new approach to requirements management can be nearly as diffi-
cult to embrace as the new approach to requirements specification that
necessitates it. What effects will it have on your customer and your develop-
ers? Take a moment to consider these things and jot down some notes.

Ensuring product quality

The traditional approach to ensuring product quality is to anoint the
requirements specification as the ultimate arbiter of correctness. As soon as
the specification is signed off, the testers begin to develop their test plans
and test cases based on its content. They work in parallel with the develop-
ers so that when the testing phase comes around, a complete test plan will
be ready.

This traditional approach tends to segregate responsibilities in a way that
can be detrimental to the ultimate goal of achieving a high-quality product.
That is, the developers are seen as being responsible for producing code, and
the quality assurance (QA) people are viewed as being responsible for the
quality of that code. This has resulted in a generation of programmers who
do a poor job of testing (if they test at all) and generally poor relationships
between the programmers and testers in many organizations.

Adoption implications 133

The Agile methods change the ground rules on which the traditional
approach to QA is based by making the requirements specification a moving
target. This moving target necessitates the new definition of product quality
that is explicitly discussed by some Agile methods and implicitly embraced
by others: fitness for business purpose as judged by the customer or end
user. The authority now vests with people rather than a document.

Each Agile method makes this new definition work by stressing the
importance of direct customer (or end-user) involvement in the project, and
by placing explicit responsibility on the programmers for the quality of their
code. The customer is responsible for validation (ensuring that the right
product is built), and the programmers are responsible for verification
(ensuring that the product is build right).

None of the Agile methods discusses the role of independent verification
and validation (IV&V), but as the community is working out the details of
how to use these methods, the role of testers is being addressed. Indeed they
can have an important role to play, albeit a measurably different role than in
traditional projects. In general, internal testers become an important ally of
the programmers to help them fulfill their responsibility to produce good
code. And independent testers become an ally to the customer to help them
fulfill their responsibility to validate that what is produced meets their
needs. The testing and Agile communities are currently still wrestling with
the role of testers on Agile projects and whether their independence is criti-
cal or detrimental to project success.

The Agile methods radically alter the quality assurance landscape by
moving responsibility for quality to the developers and customer and by
defining a new supporting role for the QA professional. Much work remains
to be done in fleshing out how this new landscape will work. How will it
play out in your organization? Will it be difficult to determine the appropri-
ate role for the testers in your shop? Take a moment to consider these things
and jot down some notes.

Acceptance

In traditional projects, “acceptance” is a phase that takes place at the end of
the project. After all of the development work is complete, the candidate
product is delivered to the customer for acceptance testing. This phase gen-
erally results in scores of defect reports and many re-releases of fixed code.
It also often gives rise to serious disputes about the meaning of the require-
ments specification statements that had served as a security blanket
throughout the project.

On Agile projects, acceptance is done many times throughout the proj-
ect. In XP, for example, each 2-week increment culminates with delivery of
a product to the customer for evaluation, and possibly for use. In this way,
the customer (who is the ultimate judge of acceptability) provides a steady
stream of feedback to the project, which is likely to guide the project toward
an acceptable final result.

134 Daily Collaboration of All Stakeholders

This is a fundamental shift in the role of acceptance in software projects.
Rather than being a protracted wrestling match at the end of the project, it
becomes part of the project’s natural learning cycle. We plan a little, code a
little, then accept a little. And when what was written turns out to be unac-
ceptable in some way, it is not a big problem. The necessary corrections are
simply added to the list of things to be done in the next increment.

How will this new way of performing acceptance be received by your
customers? How will your developers react to it? Take a moment to consider
these things and jot down some notes.

The reluctant customer

You have undoubtedly noticed that customers must have a much more
active role in an Agile project than in most traditional projects. They are
expected to:

◗ Participate in project and increment planning (to different extents in
different Agile methods);

◗ Regularly evaluate the interim versions of the product;

◗ Provide feedback and requirements changes on a regular basis;

◗ Evaluate and prioritize the expected parade of requirements changes;

◗ Do other specific things for different Agile methods (for example, XP
expects a customer staff member to be on-site with the developers at
all times).

These expectations raise the question of how much effort your custom-
ers are ready or willing to expend on the projects they hired you to do. Most
customers expect the contractor to provide the lion’s share of the project’s
effort, and they, as customers, will have to do little other than check its
status and do a final acceptance test.

Will your customers accept these new demands on their time? How will
this alter the relationships you have built with your clients? Take a moment
to consider these things and jot down some notes.

Project course corrections

Traditional projects begin with a Requirements Specification and a plan and
schedule. The project is expected to track to those documents and only devi-
ate when something is wrong that requires corrective action. In this envi-
ronment, most projects progress in a relatively straight-line fashion with a
few sometimes-significant course corrections.

Agile methods manage projects the way we drive cars. Kent Beck begins
his chapter, “Learning to Drive” with this statement:

We need to control the development of software by making many small

adjustments, not by making a few large adjustments, kind of like driving a

Adoption implications 135

car. This means that we will need the feedback to know when we are a little

off, we will need the opportunities to make corrections, and we will have to

be able to make those corrections at a reasonable cost [1].

Adopting an Agile method will mean accepting this metaphor of driving
your software projects as you drive a car, expecting to use the fast feedback
loops to make course corrections on a regular basis. How well will this mode
of operation be accepted by your projects’ stakeholders? Take a moment to
consider these things and jot down some notes.

Contract as a weapon

Contracts are weapons. For some among us they are offensive weapons, for
most of us they are defensive. But their role as weapons is clear when you
consider that their purpose is to protect and enforce the interests of the par-
ties involved. Perhaps this rather negative image of weapons is the reason
why the Agile Manifesto discounts contract negotiation in favor of the more
positive value of collaboration.

Agile Manifesto:
We have come to value…
Customer Collaboration
over Contract Negotiation

Although the Agile Manifesto frames the issue as one over the other, in
reality you must deal with both. Any project will involve customer collabo-
ration (Agile projects simply require more of it), and so the inevitable con-
tract negotiation must take the expected level of collaboration into account.
The challenge is to make the inherently adversarial activity of contract
negotiation a tool to achieve the more positive result of collaboration.

The implications of the practices we discussed in this chapter bear
directly on your contractual relationships with your clients. Adopting an
Agile method will certainly require that your contracts be structured differ-
ently in a variety of ways, including definitions of the expected product,
cost, and schedule constraints, and the types and levels of interaction that
will take place between contractor and client.

Since the Agile methods make the assumption that the details of the
expected product cannot be known ahead of time with certainty, the con-
tract for an Agile project must be built on that same assumption. It should
identify the broad goals for the project and the success criteria, but it should
avoid detailed enumeration of features and functions (or references to docu-
ments that do that).

Most contracts establish strict cost and schedule constraints, but this may
not be most appropriate in an Agile project. Clearly, the customer’s require-
ments will drive the degree to which these things are constrained, but strict
specification of both cost and schedule will circumscribe the degree to which
the expected learning about the product can be translated into functionality.

136 Daily Collaboration of All Stakeholders

Without cost or schedule flexibility, the only choice available to the cus-
tomer will be to abandon previously identified features to make room for
newly understood functionality.

Whatever Agile method you may choose to adopt, there will be specific
expectations about the customer’s (or end user’s) role in the project.
Because of the criticality of these collaborations to the success of an Agile
project, they must be identified upfront so clients understand what you will
need from them and what they should expect from you.

All of these things mean that negotiating a contract for an Agile project
will entail different and new considerations than you or your customer may
be used to. Take a moment to consider these things and jot down some
notes.

Customer collaboration
Adopting an Agile method will alter the types and amounts of collaboration
that will go on between you and your clients. While these new collabora-
tions will likely have positive effects on your projects’ ability to produce
products that satisfy your clients, the details of those changes may be diffi-
cult of adopt. They are also likely to be challenging to formalize in your
contracts.

Reference

[1] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley
Longman, Inc., 2000, p. 27.

Customer collaboration 137

.

Value: “Responding to Change
over Following a Plan”

This is the fourth of five parts of this book in which we discuss
the implications of the Agile practices. In this part, we examine
those practices that support the value, “Responding to change
over following a plan.” We will begin with a general discussion
in Chapter 17, “Understanding Change in Software Projects,”
about the nature and role of change in software projects. We
will then look at the Agile Principle that embodies this value in
Chapter 18, “Welcome Changing Requirements.”

P A R T

V

.

Understanding Change in
Software Projects

This first chapter of Part V lays the foundation for our explora-
tion of the Agile Principle that embodies the Agile value,
“Responding to change over following a plan.” Chapter 18 will
delve into that principle.

Agile Manifesto:
We have come to value…
Responding to change
over Following a plan

The nature of change
Change is generally held to be an impediment to software proj-
ects. We specify requirements and estimate and plan carefully.
Then, as we are blissfully executing against our plans, some-
thing changes. What used to be true is no longer the case, and
now all of our well-thought-out plans are worthless. We must
replan, and when we do, we discover that the project can no
longer meet the original needs for the agreed-upon budget or
on the original schedule. We have been foiled by change, yet
again.

Why do things always change? Why can’t they remain sta-
ble long enough for us to follow our plan and produce what we
promised? Change should not be unexpected. We experience
change in all parts of business and have generally learned to
adapt to it and even capitalize on it. When the marketplace
shifts, we recognize it as an opportunity to gain market share.
When new technology comes along, we look for ways to
exploit it.

Change is a fact on software projects, just as much as in any
other part of business. If we are honest with ourselves, we will
see that change has been a factor on almost every project on

141

17
Contents

The nature of change

External changes

Internal change: customers
learn

Internal change: developers
learn

Capitalizing on what we learn

Planning for change

Change happens

C H A P T E R

which we have embarked. The Agile methods recognize the pervasiveness
of change. They are designed to change our views about change in the con-
text of software development, to bring them more in line with the ways we
view it in other contexts.

Figure 17.1 shows us that changes come from two general directions. The
first is from external sources. These would include such things as regulatory
changes, economic turmoil, and marketplace shifts. While there is little we
can do about those sorts of changes other than react to them or try to antici-
pate them, we have great latitude to choose how we deal with the other
source of change, the learning that goes on among project participants.

External changes
Time passes from the time we contract to develop a system until we deliver
it. As that time passes, the world does not remain static; it continues to
move forward, to evolve, and to change even as we are focusing on the proj-
ect at hand. The longer it takes us to complete our project, the greater the
likelihood that some change in the environment will impact the system we
are building.

There is little or nothing we can do to affect these externally generated
changes. They are simply risks that we should identify, monitor, and plan
for as part of our project. But how we react to those changes is fully under
our control.

If our objective is to produce a system that fully meets our customer’s
needs, then these environmental changes are important considerations. For
example, if new regulatory requirements alter how the customer can use
the system, then adapting the system to those changes is critical to its ability
to satisfy the customer’s needs. Or if some technological advance renders
our approach to the project inadequate, then capitalizing on that change
will improve the system we build. In other words, reacting in a positive way
to external changes can be just as important to project success as is respond-
ing to the customer’s new understanding of his or her own needs.

142 Understanding Change in Software Projects

Developers Customers

Software requirements

Product being
developed

External sources

Learning Learning

ChangesChanges
Changes Changes

Figure 17.1 External and internal changes.

Internal change: customers learn
Our customers contract with us to develop software for them because they
have identified a need. The whole focus of our initial contracting and
requirements elicitation activities is to gain insight into exactly what it is
that they need so we can structure a project that will produce it. The unar-
ticulated but pervasive assumption in these activities is that customers have
a full and complete understanding of their needs, and our job is to draw the
requisite information out of them and document it in a way that will allow
both parties to understand it and agree on it.

This assumption, however, is only partly true. While customers have
quite definite ideas about what they need, they also realize that there are
gaps in their understanding. This can lead them to ask for everything they
can possibly think of (whether they ultimately need it or not), because they
realize that the initial requirements specification is their only opportunity to
do so. This can result in bloated requirements that (in spite of their size) are
still incomplete and may even include contradictory demands.

The Agile methods seek to change this customer-developer dynamic by
allowing the requirements to change throughout the project. Unreasonable
expectations about customers’ initial understanding of their needs, and the
pressure on customers that attend these expectations, are replaced with an
acknowledgement that change is expected and should be welcomed. The
Agile methods hope to keep customers focused on what they do need (as
opposed to what they might need), so the customer-developer relationship
can evolve in a more realistic way.

Even the most technically savvy customers will experience shifts in their
understanding of their needs as the project progresses. These shifts are not
generally a matter of fickleness or indecision; more often, they are a natural
and understandable result of the learning that they experience as the project
progresses. With each project activity, the customer learns about the prod-
uct you are building. Negotiating the requirements specification, reviewing
the architectural structure, approving the user interface prototypes, discuss-
ing the details of business rules, and many other activities are all two-way
interactions. Yes, the customer is providing you with critical information
but, at the same time, is gaining new insights into the product.

With these new insights comes a deeper understanding of both the needs
themselves and the options for satisfying those needs. So we should expect
that as customers interact with us throughout the project, they will continu-
ally gain these sorts of insights. And we should further expect that these
insights will result in changes to their understanding of the system and, ulti-
mately, to changes in their requirements.

Internal change: developers learn
At the same time that the customer is learning, we are learning too. In fact,
every step of the software development process is a learning activity.

Internal change: customers learn 143

Requirements elicitation, architectural design, detailed design, and coding
are all step-wise refinements of our understanding of the system being built
and the technical details it embodies.

While the focus and intent of this learning is step-wise refinement, the
result is not always so orderly. Often we learn something that invalidates
our prior assumptions. Architectural analysis may reveal that a set of
requirements is mutually exclusive. Detailed design may show that the
architecture has unexpected limitations. Prototypes may illuminate com-
plexities that the user interface storyboards could not capture. And at any
time, we may discover that a simpler solution will provide more value for
the customer while requiring less effort on our part.

So, while the customer’s learning is generating new or refined functional
requirements, we find that the developer’s learning is generating new or
refined technical requirements. And these changes to technical requirements
will often have impacts on the customer’s requirements, just as their
requirements changes will obviously impact the technical ones. This inter-
play means that learning on the part of the customer can accelerate the
developers’ learning, and vice-versa.

Capitalizing on what we learn
The Agile methods all recognize the importance of the learning that both
the customer and developers experience. The resulting refinement of cus-
tomers’ understanding of their own needs allows them to express those
needs in progressively more concrete ways to developers. And the resulting
refinement of developers’ understanding of the technical details of the prod-
uct allows them to guide the customer toward a solution that meets those
needs in the most straightforward way possible.

The Agile methods are structured to maximize the learning opportuni-
ties for both the customer and developers. This learning then provides the
foundation for capitalizing on their growing common understanding about
the product to ensure that it provides the greatest possible value for the cus-
tomer. As the Agile Principle that we will discuss in Chapter 18 says, “Wel-
come changing requirements…” because they mean you are converging on
the final product.

Planning for change
So, if change is a constant, then what should we do about plans? Watts
Humphrey tells us, “If you can’t plan accurately, then plan often.” As Figure
17.2 shows, the Agile methods all take this advice to heart by making incre-
mental planning a part of their incremental life cycles.

Each Agile method begins with an initial planning activity, but none
stops there. This initial plan provides a high-level overview of the project as
it is expected to unfold, as well as a more detailed plan for the initial

144 Understanding Change in Software Projects

increment. Each subsequent increment of the project begins by revisiting
the project plan. Adjustments are made to the overall project expectations
based on what was learned to date, and the detailed plans for the new incre-
ment are laid out.

Because the increments in Agile projects are short (2–8 weeks), this
planning is most certainly being done often. By revisiting the overall project
plan so often, the Agile project avoids the big surprises that are too common
on software projects. New understandings and assumptions are discussed on
about a monthly basis, and changes to functionality, cost, or schedule are
worked out.

If hard decisions must be made, then the stakeholders, including the cus-
tomer, the development team, and management come together to explore
the problem from all sides and adopt a new project plan that best meets all
stakeholders’ needs. In this way, Agile projects can “welcome changing
requirements” while keeping the project as reasonably on track as is possible
so it is most likely to result in a product that meets the customer’s needs.

Change happens
Far from being unexpected, change on software projects should be expected
and anticipated. Just as in the other parts of our businesses, our software
development projects must accept that change will happen. We must
change our attitude toward change; rather than hiding from it and wishing
it would go away, we should be looking for opportunities to capitalize on it
to make our projects and our businesses more successful.

Change happens 145

Plan
project Plan

Develop

Deliver

Increments

Postmortem
Project
postmortem

Figure 17.2 Incremental planning.

.

Welcome Changing
Requirements

In this chapter, we will discuss the Agile Principle that supports
the fourth Agile value statement.

Agile Manifesto:
We have come to value…
Responding to Change
over Following a Plan

Agile Principle
This fourth Agile value about responding to change is sup-
ported by the Agile principle1 about welcoming change.

Welcome changing requirements

Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive advantage.

As this principle states, the Agile methods are specifically
designed to make the most of change. Since change is a given
in our projects, the developers of the Agile methods have taken
the stance that it should not just be tolerated or accounted for,
but that it should be embraced.

To welcome change is a significant departure from the more
traditional mode of controlling change. It represents a 180-
degree shift in our thinking and attitude. Such a shift may be a
challenge to make, but according to the Agile methods, it is the
key to harnessing change for competitive advantage.

147

18
Contents

Agile Principle

Agile practices

Adaptive Software
Development (ASD)

Dynamic Systems Development
Method (DSDM)

Extreme Programming (XP)

Feature-Driven Development
(FDD)

Lean Software Development
(LD)

Scrum

Adoption implications

Welcoming change

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

Agile practices
All six Agile Methods have practices that directly support this principle. We
will look at nine different practices, one method at a time.

Adaptive Software Development (ASD)
ASD’s Adaptive Life Cycle practice supports this principle. ASD is described
in Appendix C.

Adaptive Life Cycle

The core of ASD is the Adaptive Life Cycle, shown in Figure 18.1. And the
core of the Adaptive Life Cycle is the “Learning Loop,” which is ASD’s
mechanism for harnessing change.

During each increment of an ASD project, all stakeholders are learning2

about the product that is being produced. That learning results in changes to
their assumptions and expectations, and especially to the customer’s
requirements. The Learning Loop feeds all of this information back to the
Adaptive Cycle Planning phase that marks the beginning of the project’s
next increment. In this way, changes are continually being generated, wel-
comed, and harnessed for the customer’s benefit.

Dynamic Systems Development Method (DSDM)
Two of DSDM’s Principles deal directly with change. Principle 6 teaches us
not to fear change, and principle 7 addresses the requirements baseline.
DSDM is described in Appendix D.

All changes are reversible

Principle 6: All changes during development are reversible.
This principle states the obvious (assuming we have a minimally func-

tional code control system). And yet we rarely act as if we believe it. Why
are we reticent to make changes to code that works, and even less willing to
reverse those changes later?

The primary reason we do not like making or reversing changes is that it
seems wasteful of our time. And changes sometimes result in unexpected
consequences that require us to “waste” even more effort to fix. Would it not
be better to spend our effort writing more code, rather than changing what is
already there?

The Agile methods teach us that code that is implemented well is valu-
able, whereas code that only marginally meets the need can endanger our
project’s agility by making it more difficult to do further development. Code

148 Welcome Changing Requirements

2. See Chapter 17 for a more complete discussion of the role of learning in a software project.

that works on a marginal level or is not structured appropriately to support
development as it moves forward is targeted for rework as a way to ensure
that the project’s agility is maintained.

If we are learning throughout the project, then we should expect the
need to change our code. By giving us permission to make changes and
reverse them, DSDM provides an environment that welcomes change rather
than shunning it.

Requirements are baselined at a high level

Principle 7: Requirements are baselined at a high level.
This is the only practice among the Agile methods that addresses the

question of a requirements baseline. The other Agile methods operate under
the assumption that requirements are always in play and are liable to be
changed any time during the project.

DSDM circumscribes this idea by calling for a requirements baseline. The
baseline’s intent is to provide a stable basis for moving forward with project
activities. Changes can be made to a baseline, but only with careful delibera-
tion and consensus among stakeholders. Therefore, the baseline is likely to
rarely change, resulting in a stable basis for the project.

But DSDM qualifies this statement by saying that the requirements base-
line should be “at a high level.” That is, the protection from ad-hoc
change should be extended only to the overarching ideas that give the
requirements their form. The details of how the requirements will look and
act in practice should be left for the stakeholders to work out as the project
progresses.

Changes to lower-level requirements on a DSDM project can thus be
welcomed just as with any other Agile method. But changes to the baselined
higher-level requirements will be welcomed less readily and subjected to
more traditional control.

Dynamic Systems Development Method (DSDM) 149

Adaptive life-cycle

Speculate Collaborate Learn

Learning loop

Project
initiation

Final
Q/A and
release

Adaptive
cycle
planning

Concurrent
component
engineering

C1
C2 3

C

Quality
review

Figure 18.1 Adaptive Life Cycle. (From: [1]. © 2000 Dorset House Publishing Co.
Inc. Reprinted with permission.)

Extreme Programming (XP)
Two of XP’s practices speak to changing requirements—Metaphor discusses
how requirements are managed, and Refactoring discusses changing the
program’s design. XP is described in Appendix E.

Metaphor

XP projects document requirements in two ways prior to implementation,
the Metaphor and Stories. The Metaphor describes (using similes to readily
recognizable objects or concepts) the product that the project is expected to
create. It describes in broad terms what the project is attempting to achieve.
This statement is meant to be broad enough that it will remain consistent
throughout the project, even as the details of what is being built evolve.

There is no guarantee that an XP project’s metaphor will not change, but
it is expected to provide a stable vision for the project. The Metaphor is sup-
posed to be a touchstone for the project stakeholders, to ensure that as they
are welcoming changes, the project nonetheless continues to track toward
its agreed-upon goal.

The detailed requirements for the project are described in Stories. Each
Story describes a single feature of the system in prose that fits on a 3x5-inch
card. This level of brevity is designed to provide guidance to the program-
ming pair implementing the Story, while still leaving room for experimenta-
tion and innovation. Ultimately, only the on-site customer can determine if
the code has actually captured the intent of the Story it implemented.

The Stories are the elements of an XP project designed to welcome
change. It is expected that Stories will be added to and deleted from the slate
on a regular basis, and that the descriptions of the Stories will change, some-
times even after they have been implemented. As the project progresses, the
growing understanding of the ultimate product is documented in the Stories
that describe its ultimate functionality.

Refactoring

Refactoring is XP’s primary means of encouraging programmers to make
changes to code that is already working. Welcoming change (in addition to
XP’s “Simple Design” practice) can result in the original structural assump-
tions of a class or method (or even a whole subsystem) being far removed
from what it ultimately ends up being. Refactoring is a matter of bringing all
the information that has been learned since the code was written to bear on
it, and reworking it to best suit its use.

A second effect of Refactoring is to eliminate a phenomenon that we
refer to as “brittle code.” Code (like metal) becomes “brittle” after it has
been changed, bent, and twisted over and over again. After the code has
been changed enough times, it becomes subject to breakage from even
minor manipulation. (Many of us have observed this phenomenon in sys-
tems that have been maintained over a long period of time.) Code that is

150 Welcome Changing Requirements

showing signs of becoming brittle is a prime candidate for refactoring to
restore its structural integrity.

In XP projects, Refactoring is a critical part of welcoming change. It
encourages programmers to improve the way the code is implemented
when they see the opportunity. And it ensures that the system that is ulti-
mately produced remains structurally sound by eliminating “brittle code”
along the way.

Feature-Driven Development (FDD)
FDD balances the benefits of a stable basis for the project and welcoming
changes through its Domain Object Modeling practice. FDD is described in
Appendix F.

Domain Object Modeling

Each FDD project begins with the creation of a Domain Object Model that
identifies all the objects the project team expects to build and how they will
relate to each other. This up-front analysis seems to contradict the general
assumption among the Agile methods that you cannot figure it all out
upfront. But in reality, this modeling activity is not done just once; it is
revisited regularly throughout the project.

The purpose of the initial attempt at modeling the objects is to provoke
analysis by the project stakeholders, both the developers and customer. This
exercise requires careful thought about the boundaries of the system to be
built and the capabilities that are to comprise it. By modeling objects at the
beginning of the project, the FDD project team can generate not only an ini-
tial conception of the product but also the feature list, which becomes the
basis for planning and managing the project.

The project team initiates each project increment by revisiting the
Domain Object Model. Like the other Agile methods, FDD expects that
development of each increment will result in new insights into the product.
So the first step in each increment is to consolidate what has been learned
and update the Domain Object Model to reflect the new higher level of
understanding.

Thus, the Domain Object Model is a living document that is maintained
consistent with the learning that each project stakeholder experiences. And
as the project progresses, this model is slowly transformed from an initial
approximation into an accurate depiction of the objects in the system.

Lean Software Development (LD)
LD’s principle, “Decide as Late as Possible” embodies in its three tools LD’s
approach to welcoming change. Its Refactoring tool, under “Build Integrity

Feature-Driven Development (FDD) 151

In,” provides a mechanism for accommodating change. LD is described in
Appendix G.

Decide as Late as Possible: Tool 7, Options Thinking, Tool 8,
The Last Responsible Moment, Tool 9, Making Decisions

This LD principle and the three tools that support it embody LD’s method
for welcoming change. Essentially, change is destabilizing when it invali-
dates prior decisions. So, LD seeks to mitigate that risk, not by shunning
change but by employing decision-making strategies that make change less
disruptive. The principle’s wording states the sum total of the three tools:
“Decide as late as possible.” That is, by postponing decisions, we can avoid
having many of them invalidated by changes that may take place in the
interim.

LD’s Tool 9, “Making Decisions,” discusses using appropriate rules to
narrow the options in any decision you have to make. It suggests that for an
Agile software project, the LD principles provide a good set of rules for mak-
ing decisions. If decisions are kept consistent with these principles, then the
project will progress on a more consistent basis.

But when should those decisions be made? LD defines “The Last Respon-
sible Moment” (Tool 8) as that point in time when indecision results in a
decision perforce, because one of the alternatives is about to disappear.
Delaying a decision until that Last Responsible Moment means that more
information will be available to us, and many changes that might have
affected the decision will have already occurred. So we can be surer that it
will be the correct decision, and it will be less likely to be impacted by
changes.

By “Options Thinking” (Tool 7), LD refers to a decision-making mode
used in the financial markets to delay the Last Responsible Moment. Besides
the obvious choices of “yes” or “no,” there is sometimes a third choice avail-
able: “decide later.” This third choice is often marked by the purchase of the
option to say “yes” or “no” at some future date. Then, when that future date
arrives, the decision-maker can choose to use the option or to not use it. He
has delayed the decision until that later date. Software development, like
financial markets, can sometimes provide this third choice. By making some
small investment, we can sometimes hold off on choosing between “yes”
and “no” for some period of time, The Last Responsible Moment for making
a decision can be delayed by purchasing and exercising options.

So LD’s Tools 7, 8, and 9 work together to help Agile projects mitigate
the effects of change on their decisions by applying an appropriate set of
rules and delaying the ultimate decision until the latest date possible.

Build Integrity In: Tool 19, Refactoring

Like XP, LD uses Refactoring both to encourage regular changing of code
and mitigate the effects of it. Please refer to the discussion of Refactoring

152 Welcome Changing Requirements

under XP (earlier in this chapter) for information about how Refactoring
can lead to better code.

Scrum
Scrum both welcomes and constrains change through its Sprint Planning
Meeting. Scrum is described in Appendix H.

Sprint Planning Meeting

A Scrum project consists of a series of Sprints. Each Sprint is a 30-day incre-
ment of development that implements some items from the Product
Backlog.

After the Sprint has begun, the development team is protected from
external changes. If anyone comes up with new ideas or changes, those
items are added to the Product Backlog, but they do not affect the progress
of the current Sprint. This allows the team to focus on the Sprint Goal with-
out being distracted by the many changes going on around them.

The team is free to adopt any change they believe will facilitate their
achievement of the Sprint Goal. But if a development team member gener-
ates an idea for a change that is not relevant to the Sprint Goal, then
that idea is added to the Product Backlog, just as anyone else’s ideas would
be.

So, the Product Backlog is Scrum’s parking lot for changes. Then, during
the Sprint Planning Meeting, the Product Backlog provides the basis for
decisions the stakeholders make about the next Sprint. They agree on a
Sprint Goal, and they constitute a Sprint Backlog as the subset of the Prod-
uct Backlog that will be addressed during the Sprint.

Thus, at the beginning of each Sprint, the stakeholders take stock of their
new understanding of the product and project and plan how they should
move forward for the next 30 days. In this way, changes are welcomed into
the project in a controlled way.

Adoption implications
Welcoming change is a key attribute of Agile projects. Although this wel-
coming brings with it a number of risks, the Agile methods mitigate those
risks both through many of their practices and by changing how change
itself is perceived. For example, Refactoring encourages regular changing
of code, while at the same time keeping it from becoming brittle. And the
customer is encouraged to continually rethink requirements but is also
made responsible for reconciling those requirements changes with avail-
able resources. What will be the effects of the Agile practices on our
projects?

Scrum 153

Incremental planning

All of the Agile methods do some form of incremental planning. Figure 18.2
shows that as each increment begins, they revisit their high-level plans for
the project, making whatever adjustments may be necessary based on what
has been learned to date. Then they do more detailed planning for the
upcoming increment.

None of the Agile methods does exhaustive planning at the beginning of
the project. Although different methods address high-level planning differ-
ently, they share the fact that high-level planning is treated as only a rough
estimate, and that the details may end up being different from what was first
anticipated. By the same token, even the more detailed plans for the current
increment are treated more as targets than guarantees.

Because Agile increments are relatively short (2–8 weeks), the Agile
methods update their plans on a regular basis. This has the benefit of keep-
ing the plans in synch with the latest understanding of the project, but it
also means that the project plans are a constantly moving target. This could
make it difficult to gain and keep sponsors’ commitment to the project
because of constantly shifting expectations. Would this be an issue in your
organization? Take a moment to consider these things and jot down some
notes.3

Tracking and reporting progress

Short increments have the benefit that everyone can see material progress
on the project on a regular basis. Every 2–8 weeks, some material thing
(usually functional code) is delivered for evaluation. This gives developers a
set of regular victories, and it provides both management and the customer
with a concrete sense of progress.

Some Agile methods give us mechanisms for tracking progress during an
increment. For example, XP tracks the numbers of Stories completed and

154 Welcome Changing Requirements

Plan
project Plan

Develop

Deliver

Increments

Postmortem
Project
postmortem

Figure 18.2 Incremental planning.

3. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

waiting for work. And FDD includes a mechanism for tracking each feature
as it progresses through the development life cycle.

The real trick to understanding the status of an Agile project comes in
dealing with the constant flow of changes that are expected. Progress during
an increment, and even delivering code, do not give us a clear understand-
ing of when the project is likely to finish if the backlog of work is expanding
at the same time.

Scrum is unique among the Agile methods in that it includes a mecha-
nism for judging progress toward actual completion of the project. Although
its Product Backlog is expected to grow in the early Sprints of the project,
Scrum expects the growth will soon level off and the backlog will begin to
shrink. Once a pattern of backlog shrinkage is established by working off
more backlog items than are added in each Sprint, the rate of shrinkage can
be projected forward to determine when the backlog will be exhausted.
Based on this information, stakeholders can take specific actions to acceler-
ate backlog shrinking, if it is needed.

How well would Agile projects fit into your project tracking and over-
sight mechanisms? Would the Agile methods’ way of tracking progress
work in your organization? Take a moment to consider these things and jot
down some notes.

When the project deviates from the plan

(That’s “when,” not “if”!) All projects deviate from their plans in some ways.
Incremental planning (as previously discussed) is the mechanism used by
Agile projects precisely because they do not expect to conform to their plans.

The traditional project management methods hold plans to be a goal to
be achieved. When a project deviates from its plan, they take corrective
action to remedy the problem. At times, that corrective action includes
replanning, but more often, it involves some action designed to bring actual
performance back in line with the original plan.

The Agile methods take the opposite tack. When actual performance
deviates from the plan, they assume that the plan was wrong and simply
change it to match “reality.” There is no concept of “corrective action”
(except for replanning). How would this philosophy work in your organiza-
tion? Take a moment to consider these things and jot down some notes.

Handling customer change requests

Agile methods expect and even encourage customers to regularly change
their expectations for the product being developed. As we have discussed in
this chapter and in Chapter 17, the learning that is constantly going on is
expected to result in changes to their requirements.

Because of this, the Agile methods do not even have the concept of
“change requests.” The customer does not request changes (with the con-
comitant expectation that those requests may or may not be granted).
Rather, the customer is anointed with authority to direct what is being

Adoption implications 155

developed. As customers’ perception of what they need changes, they are
expected to articulate those changes and so affect what is being built.

This is not to say that they are given carte blanche to demand what they
will. At all points during the project, the development team is responsible
for keeping the customer fully apprised of the technical, schedule, and cost
implications of those changes. This means that when the customer wants to
add a requirement for the project, he or she must decide to cut some other
functionality, increase project cost, stretch the schedule, or some combina-
tion of these options.

Placing so much authority in the customer’s hands is uncommon. Would
it work in your organization? How would your customers react to this? Take
a moment to consider these things and jot down some notes.

Changes injected by the development team

In addition to the customer, the development team is also expected to regu-
larly adjust the project’s technical requirements and make the code better.
Again, this is because as they work through more and more details, they
learn about the product, and that learning results in a better understanding
of the limitations and benefits of the courses taken.

The Agile methods expect the development team to be proactive in
changing both the technical requirements and the code as the system pro-
gresses. At times this may mean that previously expected functionality can-
not be delivered within the planned cost and schedule constraints. When
this happens, the results are supposed to be very much like when the cus-
tomer makes changes. There should be an open discussion between the
development team and the customer of the new issues, with the customer
deciding whether functionality, cost, or schedule must be sacrificed to
account for the new information.

This kind of equal footing between the development team and customer
is unique to the Agile methods. How would your developers adapt to such
an arrangement? How would your customers react? Take a moment to con-
sider these things and jot down some notes.

Welcoming change
The Agile methods welcome changing requirements. This is in stark contrast
to the traditional methods, which control change and try to avoid it when
possible. Adopting an Agile method will require considerable adjustment in
your people’s thinking about change. It will also alter the balance of power
within your projects, empowering both the customer and technical team to
take actions they deem appropriate.

The effects of constant change in projects are many, and the Agile methods
include many practices designed to mitigate those effects. These include incre-
mental planning, refactoring, and delaying decisions to the Last Responsible
Moment. All of these practices may present challenges to any organization.

156 Welcome Changing Requirements

But the benefits of embracing change include an increased likelihood
that the final product will indeed satisfy the customer’s needs and be fit for
the business purpose to which it will be put.

Reference

[1] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House, 2000, p. 84.

Welcoming change 157

.

The Unstated Value: Keeping the
Process Agile

This is the last of five parts in which we discuss the implications
of the Agile practices. In this part, we examine those practices
not directly related to any of the four values of the Agile Mani-
festo but nonetheless important to the Agile methods. The
three Agile principles we will discuss and the practices that
underlie them are all focused on ensuring that the processes
that Agile projects use support the goal of Agility.

We will begin with a general discussion in Chapter 19,
“Maintaining the Process,” about the fact that all methods,
especially Agile ones, rely on processes. We will then look at
three Agile Principles:

◗ Chapter 20: “Technical Excellence” discusses the importance
of high-quality work on Agile projects.

◗ Chapter 21: “Simplicity: Maximize Work Not Done” discusses
the Agile methods’ quest to avoid unnecessary (wasteful)
work.

◗ Chapter 22: “Regular Team Retrospectives” discusses how the
Agile methods have adopted and changed the project
postmortem.

P A R T

VI

.

Maintaining the Process

This first chapter in Part VI lays the foundation for our explora-
tion of the Agile Principles that focus on maintaining the agility
of software development processes. Chapters 20, 21, and 22
will discuss each of those three Principles and the Agile prac-
tices that underlie them.

Agile is not antiprocess

“We don’t need no stinkin’ process!”

—Anonymous software developer

There is a common misconception within the software devel-
opment community that the Agile methods are antiprocess.
Many developers, like the one quoted above, push for adopting
Agile methods because they believe these methods will free
them from the constraints of following a defined process. And
many in the process community disparage the Agile methods
for exactly the same reason.

To be sure, most Agile methods do not use the word
“process” (except when they complain about the evils of
process-for-process’s-sake). Books and articles about the Agile
methods tend to make a habit out of depreciating disciplined
process, but when you pay attention to their tirades, it becomes
clear that they are really complaining about the abuse of
process. For example:

◗ Process that does not support people in doing good and effi-
cient work.

◗ Process that drains the organization of enthusiasm and
excitement.

◗ Process that gobbles up more value than it will ever return to
the organization.

161

19
Contents

Agile is not antiprocess

You are using a process

Process efficiency and
effectiveness

Mary, Mary, quite contrary,
how does your [process] grow?

Continuous process
improvement

C H A P T E R

These things represent undisciplined process — process that is out of
control and not performing its vital role of supporting the development
work. We in the disciplined process community aught join the chorus and
rail against such abuses!

The analysis we have been doing in this book should make it clear that,
far from being antiprocess, each Agile method prescribes its own process. In
fact, as you read the books about each Agile method, you will find not only
explicit processes, procedures, inputs, and outputs but also dire warnings
that if the benefits of that particular method are to be realized, you must fol-
low the prescribed process faithfully!

You are using a process
The fact is we all use processes for anything we do on a regular basis. What
is your process for reading this kind of a book?

◗ Did you start at the beginning and work straight through to this
point?

◗ Did you skip the front matter but otherwise read the book in order?

◗ Did you go directly to the table of contents and select this, among other
parts of the book, to read?

◗ Or did you just happen to flip the book open to this spot and start
reading?

Process is important shorthand that frees us from paying attention to the
mundane or repetitive so we can focus on the important things. Our morn-
ing process gets us from the pillow to the coffee pot so we can get started
with actually living out our day. In the same way, the process your organi-
zation uses to develop software (hopefully) frees your developers to focus
on the truly interesting and demanding work of designing solutions and
reducing them to working code.

The question is not whether or not you should follow a software devel-
opment process, but whether or not the process you do follow serves your
needs.

Process efficiency and effectiveness
To be worth following, processes must be both efficient and effective.

◗ Your processes are effective when they ensure that you do the right
things. They are ineffective when they add little or no discernable
value toward achieving the organization’s goals.

◗ Your processes are efficient when they prompt you to do the right
things in ways that are as unobtrusive and effortless as possible. They

162 Maintaining the Process

are inefficient when they require inordinate amounts of effort to fol-
low, so that their cost rivals their value to the organization.

People chafe against processes that are either inefficient or ineffective, or
both. On the other hand, processes that are both efficient and effective tend
to become invisible; we follow them automatically without thinking about
them and can even be unaware of the processes themselves.

Efficient and effective processes do not happen automatically. They
require care in their establishment and regular tuning to ensure that their
value to the organization grows over time. And they may need to be elimi-
nated, replaced, or changed after a time, as the organization’s needs change.

Mary, Mary, quite contrary, how does your [process]
grow?

Processes, like gardens, tend to grow in one of four ways, and the way that
processes grow in any particular organization is a direct result of the actions
(or inactions) of the people tending them. Some gardens are carefully
tended on a regular basis, others receive occasional new plantings and
maybe some water or fertilizer every once in a while but little else, a few are
overplanted and become overgrown, and the rest are left to grow wild.

Most of us have not thought critically about the processes that have
evolved in our organizations. Our process garden has essentially grown
wild. Seeds of new processes blow in on the wind, sometimes from a neigh-
bor’s beautiful flowers, sometimes from a briar patch. These seeds may or
may not take root. And those that do take root might last only for a season,
they might grow alongside our other processes, or they might take over the
whole garden, choking out everything else. While natural selection has a
certain logical elegance to it, an untended garden rarely produces beautiful
flowers or healthy vegetables, just as untended processes are rarely efficient
and effective.

Many of us attend to our processes only when things go wrong. When
there is a crisis, we examine the problem to determine where the fault lies.
Then we dig around our process garden, remove the dead processes, plant
new ones, pull those obnoxious weeds, till in some fertilizer, and water it …
for a while. Once the crisis is past, our attention turns elsewhere, and our
garden is left to fend for itself. The new processes may bloom, or they may
not. And the weeds are certain to make a comeback sooner or later. While
irregular tending may result in some of the processes we need actually tak-
ing root, it is unlikely to produce processes that are healthy, beautiful, effec-
tive, or efficient.

Some organizations hire gardeners and give them the tools and supplies
they need. But if the gardeners do not have a firm grasp of the organiza-
tion’s needs and constraints, they may view the processes themselves as
being their goal. So they plant processes in every available space, pull every
weed, and fertilize and water them copiously. Without thinning or pruning,

Mary, Mary, quite contrary, how does your [process] grow? 163

the processes become overgrown and choke the garden, making it neither
efficient nor effective.

A few organizations carefully tend their processes. They hire gardeners
and give them the tools and supplies as well as the perspective they need to
keep their processes efficient and effective. And they plant processes that
will protect their other processes from their natural enemies, much as mari-
golds among the tomatoes may protect them from certain bugs. The right
amount of appropriate attention will ensure that your garden blooms with
efficient, effective processes.

Continuous process improvement
Continuous process improvement is the term that we in the process com-
munity use to denote a well-tended process garden. As the term implies,
maintaining efficient, effective processes requires continuous attention to
them, along with adopting changes when opportunities for improvement
are identified.

The essence of continuous process improvement is to explicitly evaluate
your processes on some regular basis. If a process has become ineffective
(that is, it no longer produces the desired result or it has some unintended
side effect), then you might search for an alternative process that will pro-
duce the desired results while avoiding the undesirable ones. If a process has
become inefficient (that is, it requires a disproportionate amount of time or
effort when compared with the benefit it produces), then you might seek
ways to streamline it so you can realize the benefits without undue
investment.

While all of this is very much a part of the disciplined process world, you
may be surprised to learn that it is also a key part of the Agile methods. As
we will see in this part of the book, all of the Agile methods include practices
specifically designed to ensure that their processes remains Agile.

164 Maintaining the Process

Technical Excellence

In this chapter, we will discuss the first of three Agile Principles
directed at keeping the process Agile.

Agile Principle
The first Agile Principle1 that deals with keeping the process
Agile is about technical excellence.

Continuous attention to technical excellence and
good design

Continuous attention to technical excellence and good design

enhances agility.

This principle states that technical excellence is a prerequisite
to agility. That is, in order for a project to be able to move
quickly and react to change, it must produce technically excel-
lent products. At first blush, this may sound exactly backward.
We tend to equate technical excellence with excessive cost and
time. After all, improving quality usually requires more
reviews, more testing, more analysis, more, more, and more.
So how can these things be said to result in agility?

But the Agile methods take a different route to technical
excellence. Instead of taking what the programmers produce
and trying to make it excellent, they focus on programming
practices that will result in higher quality code in the first place.
If they can achieve that end, then the project will require much
less rework, including less retesting and fewer re-reviews. And
when changes are required (for example, incorporating a new

165

20
Contents

Agile Principle

Agile practices

Adaptive Software
Development (ASD)

Dynamic Systems Development
Method (DSDM)

Extreme Programming (XP)

Feature-Driven Development
(FDD)

Lean Software Development
(LD)

Scrum

Adoption implications

Technical excellence

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

requirement), well structured, cleanly implemented programs will be easier
to change.

At the same time, the practices that the Agile methods use to focus on
technical excellence have tremendous potential for upgrading each pro-
grammer’s capability to do excellent work. We will see as we examine the
practices in this chapter that each of them sets the stage for programmers
to learn while they improve product quality. This will result not only in
technically excellent products but also in an ever-increasing capability
of the development team to do even better work for the remainder of this
project, and in the future. This is technical excellence breeding technical
excellence.

So we see that technical excellence is a key part of all Agile methods and
part of the reason why they are able to be as agile as they are.

Agile practices
All six Agile Methods have practices that directly support this principle of
technical excellence. We will look at nine different practices, one method at
a time.

Adaptive Software Development (ASD)
ASD’s Quality Review practice supports this principle. ASD is described in
Appendix B.

Learn: Quality Review: Software inspections

ASD’s Quality Review practice includes three separate facets. The one that
supports technical excellence, software inspections, is a relatively rigorous
method for software developers to review each other’s work, similar to for-
mal “Fagan” inspections mentioned in an earlier chapter.

The primary reason for software inspections is to find defects in designs
or code so they can be corrected before they can cause other problems. By
doing these inspections at the end of each increment, ASD ensures that the
code base on which the next increment will be built is a clean as it can possi-
bly be.

However, an inspection has other benefits besides this primary one.

◗ First, it is an opportunity for every development team member to gain
familiarity with code on which he or she has not worked. This is good
for a variety of reasons. For example, writing code that must interface
with code you have inspected is easier because you have a much bet-
ter understanding of that code’s capabilities and how it must be used.

◗ Another benefit of inspections is that more experienced team members
may identify design or coding inefficiencies. This allows all code that is

166 Technical Excellence

produced by the team to benefit from the expertise of those members
without making them a bottleneck on the project.

◗ Related to that benefit is the fact that all team members will learn
from more experienced ones. When they have the opportunity to
review code written by more experienced people, they can see how a
truly expert person approaches the problem at hand. And when a
more experienced person reviews their code, the less-experienced
people will see the kinds of concerns that an expert has and what he
or she looks for.

So, we can see that software inspections improve the technical excel-
lence of the team’s work in several different but related ways, improving
not just the designs and code themselves but also the technical capabilities
of the team as a whole.

Dynamic Systems Development Method (DSDM)
DSDM’s Principle 8 deals directly with technical excellence. DSDM is
described in Appendix D.

Testing throughout the life cycle

Principle 8: Testing is integrated throughout the life cycle.
DSDM (like many people in the software industry) uses the word “test-

ing” to refer to any verification or validation activity, not just to the execu-
tion of a program to see if it works properly. So this principle says that
verification or validation is done during each step of the development
process.

We usually think of V&V as a series of activities that take place at the end
of the project, for example, unit test, integration, and acceptance. But in
reality, V&V can (and should) take place at every phase of a project. Figure
20.1 shows how this can work.

◗ Plan—After planning the project and after planning each increment:

◗ Verify: Is the plan consistent with itself and with the team’s
capability?

◗ Validate: Are we planning to achieve the objectives for the project or
increment?

◗ Requirements—After both high-level and detailed requirements
activities:

◗ Verify: Are the requirements complete, consistent, achievable?

◗ Validate: Do the requirements reflect what the customer wants and
needs?

◗ Design and develop—After each development activity:

Dynamic Systems Development Method (DSDM) 167

◗ Verify: Is the component complete, self-consistent, defect-free?

◗ Validate: Does the component accurately implement the
requirements?

◗ Integrate and test—After each integration and test activity:

◗ Verify: Were all tests run and all defects corrected?

◗ Validate: Do the tests verify all requirements (business and
technical)?

◗ Deliver—After delivering an increment (or the whole system) to the
customer:

◗ Verify: Is the software complete, self-consistent, defect-free?

◗ Validate: Does the software do what the customer wants and needs?

By working in this rather mature way, DSDM ensures that the highest-
quality work has been done at each step of the project.

Extreme Programming (XP)
Two of XP’s practices speak to technical excellence. Test First places the
responsibility for code quality squarely on the shoulders of each program-
ming pair, and Coding Standards provide guidelines for producing quality
code. XP is described in Appendix E.

Test First

In most organizations, programmers are responsible for producing code, and
the QA people are responsible for ensuring that code’s quality. This is an
unfortunate division of labor, because it has allowed the programming com-
munity to come to regard quality as not part of their responsibility. But the
QA people cannot produce high-quality code; they can only measure the
quality of what was already produced. If programmers have not built high-
quality code in the first place, it will still be no better than mediocre quality

168 Technical Excellence

Plan
project

High-level
requirements

V&V V&V

Plan

V&V V&V

Design and
develop

V&V

Integrate
and test

V&V

Deliver

V&V

Requirements

Figure 20.1 Integrated verification and validation.

after testing (because even the best tests catch and remove only about half
of the defects that exist in a program).

XP turns the tables by placing the primary responsibility for quality
squarely on the shoulders of the pair of programmers writing the code. This
is not to say that there is no place for independent testing in XP, only that
testing by developers takes on much greater importance.

XP’s “Test First” adds a unique twist to the testing equation. It forces pro-
grammers to think about quality by having them write all the tests for the
Story they are implementing before they write any code. This means pro-
grammers must think about how the code can break before they begin to
think about how to make it work. This twist gives them special insights into
the code they are about to write that naturally results in better code that is
freer of defects in the first place.

Then, as they are writing the code, the pair member who is not typing is
(among other things) watching what is written to be sure that the tests they
developed will fully test what they are writing. If not, then they stop and
add the required tests to their test suite before continuing with the coding
task. Finally, the pair uses the test suite to determine when they are finished
with their programming tasks. If any of the tests fails, they have more work
to do. When all their tests pass, they are ready for integration.

But Test First does not stop there. It is the driving factor during integration
as well. When the pair adds their code to the growing baseline, they also add
their tests to the testing baseline, which includes all the tests for each Story
that has already been integrated. If all the tests (their own and all the others)
run with no problems, then the integration was successful. If not, they must
back their code and tests out of the baseline and continue working.

XP’s strong quality focus gives it good mechanisms for ensuring the techni-
cal excellence of the system, whether any independent testing is done or not.

Coding Standards

XP also establishes Coding Standards to keep the technical excellence of the
code high. Coding Standards are important because they facilitate many of
the quality-related XP practices. For example:

◗ Pair Programming will only work well when both members of every
pair share a common approach to coding. (Pair Programming is essen-
tially a continuous real-time peer review, making it a strong quality-
related activity.)

◗ Collective ownership requires that any pair be able to pick up code that
is written by any other pair and quickly understand it to the point that
they can make changes to it. (Collective ownership is designed to give
each pair full ownership of any code they touch, encouraging the
highest-quality work.)

◗ Refactoring (redesign of already-implemented code) will work best if
the pair that is doing the refactoring can understand the existing code

Extreme Programming (XP) 169

with ease and make changes to it with confidence. (Refactoring sup-
ports quality by encouraging programmers to improve on their work
and by keeping code from becoming brittle due to continuous change.)

Although Coding Standards are a good addition to ensure technical
excellence with any development method, they are especially important to
XP because they support several of XP’s other practices.

Feature-Driven Development (FDD)
FDD enhances technical excellence through inspections. FDD is described in
Appendix F.

Inspections

FDD’s Inspection practice is similar to ASD’s Quality Review practice. They
are both similar to Fagan inspections and provide significant benefits in
achieving technical excellence. (Please refer to ASD’s Quality Reviews, dis-
cussed earlier in this chapter, for more information on this topic.)

Lean Software Development (LD)
Four of LD’s tools deal with technical excellence: Set-Based Development,
Leadership, Expertise, and Testing. LD is described in Appendix G.

Amplify Learning: Tool 6, Set-Based Development

Set-Based Development is a unique way to identify the best options for solv-
ing the hard technical challenges presented by system development. This
method postpones the decision, focusing instead on identifying and analyz-
ing the set of solution options that may be applicable. The team brainstorms
as many solutions to the problem as they can. They then analyze each
option to see how well it suits the problem at hand as well as the system as a
whole. Only after all the relevant information has been considered is the
optimal solution selected for implementation.

This approach is superior to standard practice because it abrogates our
tendency to commit to the first solution we think of. It replaces that ten-
dency with a mechanism to engage the entire team in identifying the most
technically excellent solution, resulting in a higher-quality system.

Empower the Team: Tool 15, Leadership

LD makes an important distinction that is often overlooked in business—
that management and leadership are two distinct activities that require

170 Technical Excellence

different skill sets. We often expect leaders to manage and managers to lead
and are often disappointed because it is a rare individual who can excel at
both tasks.

Management is a matter of ensuring that all of the project’s pieces are in
place. Managers ensure that resources are obtained and deployed at the
right times and in the right amounts. They make sure that the supporting
structures (like finance, human resources, and information technology)
provide the required services to the project. They document plans, produce
budgets, report status, and initiate corrective actions when things are not
going as planned.

Leadership, on the other hand, keeps the project moving in the right
direction. Leaders develop a vision of the result they hope to achieve, and
they communicate that vision in a way that makes it real in the team mem-
bers’ imaginations. They inspire loyalty to the project and create an envi-
ronment of teamwork. And they remain out front, showing the team not
just by word and vision but also by their actions that they are committed to
the project’s success.

In short, the leader blazes the trail, and the manager paves it.
LD focuses on the important role of Leadership to make sure that the

project is not just progressing, but that it is indeed progressing in the correct
direction.

Empower the Team: Tool 16, Expertise

Just as Leadership and Management are important roles in the project, there
are also a variety of technical roles that vary depending on the project’s
demands. And just as it is important that the leader and manager both have
the requisite expertise, LD stresses that each of these other roles requires
special expertise.

Therefore, LD urges that the project identify all the different types of
expertise required to produce a technically excellent product and ensure
that each of them is available to the project in one way or another (e.g., by
adding full- or part-time team members or through training and mentoring
existing members).

With all the required expertise available to the team, the project is much
more likely to produce a technically excellent product.

Build Integrity In: Tool 20, Testing

Like DSDM’s Principle 8, LD’s Tool 20 puts a strong focus on verification
and validation during each and every step of development. And like DSDM,
LD uses the word “testing” to refer to all of the many V&V activities in
which we might engage. By engaging in V&V throughout the life of the
project instead of just at the end, the team will be more likely to build tech-
nical excellence into the product. (Please refer to DSDM’s Principle 8 earlier
in this chapter for a complete discussion of this topic.)

Lean Software Development (LD) 171

Scrum
Scrum addresses technical excellence through the role of the Scrum Master.
Scrum is described in Appendix H.

Scrum Master

Scrum attempts to ensure technical excellence through the unique role of
the Scrum Master. Although similar to LD’s Leadership tool (see LD Tool 15,
earlier in this chapter), the Scrum Master has a slightly different focus.
Scrum states, “The Scrum Master is responsible for the success of Scrum”
[1]. This is clearly a leadership role but with a strong focus on process.

When you investigate the specific things the Scrum Master is expected to
do, you find that he or she mainly focuses on keeping the Scrum process
tuned so it is effective and efficient for the project and on keeping all the
project stakeholders faithfully following the Scrum practices. This includes
the technical team, as well as management and the customer. The other
main focus is communication among all stakeholders. The Scrum Master
ensures that all information that should be shared among project partici-
pants is in fact shared.

Scrum ensures technical excellence by assigning this special kind of
process leadership to the Scrum Master, operating on the assumption that if
the project follows the Scrum process, they will be successful!

Adoption implications
Who can be against technical excellence? It is something to which we all
aspire, and none of us is likely to want to avoid. Our question is not,
“Should we seek excellence?” It is more likely to be, “How much excellence
can we afford?” But even that is not the right question. That question is
based on the assumption that producing technical excellence will result in
higher costs; the more excellent the results we seek, the higher the costs we
expect.

The Agile methods are based on a reality that the quality and process
communities have been preaching for decades: That many of the quality-
improvement activities we can engage in, far from increasing costs, will
actually result in projects that are more efficient, both with money and time.
As we observed while exploring the Agile practices in the first half of this
chapter:

◗ Focusing the programmers’ attention on excellence results in better
code in the first place.

◗ Testing (V&V) at every step of the process corrects problems early and
efficiently.

◗ Inspections improve the code upon which future increments will be
built.

172 Technical Excellence

◗ Leaders keep the project moving toward its goals.

◗ And all these things build the team’s capability for producing even
more excellent work.

So, rather than asking yourself if you can afford to seek technical excel-
lence as the Agile methods propose, ask rather if you want to experience the
quality and time and money benefits that some of these practices will pro-
vide. Take a moment to consider these things and jot down some notes.

Project roles

In addition to the roles we usually expect on software projects (project man-
ager, software developers, and testers), the Agile methods urge us to involve
others. These include the customer, end user, special technical experts, a
project leader (as opposed to a manager), and, in the case of Scrum, a
process leader.

While the addition of each role represents some incremental cost to the
project, that cost must be weighed against the benefit that each should be
expected to generate for the project.

◗ Involving a customer or end user can mean building a product that thrills
the customer, leading to repeat business. It will also likely significantly
reduce the amount of rework that must be done during the project’s
Acceptance phase and will almost certainly avoid the worst case of
litigation over project results.

◗ Having appropriate technical experts available to the team can help them
avoid costly implementation errors. It can also mean that the product is
structured in a more elegant way, leading to easier development and
lower maintenance costs later.

◗ A project leader (distinct from the project manager) will keep the whole
team inspired and focused on reaching the project goals. This will
undoubtedly mean that the project will progress more rapidly toward
its objectives as each team member works more effectively with his or
her peers.

◗ And including a process leader on the team will ensure that the team is
making the best use of the practices they adopted and that they are
tuning them to their needs. This will result in a smoother project that
progresses more rapidly toward successful completion.

How might you implement each of these roles on your projects to
increase its technical excellence? And if you do that, then what significant
savings can you expect, either by doing things correctly the first time or by
avoiding the high cost of rework? Will there be people in your organization
who might resist establishing any of these new roles? Will anyone rejoice?
Take a moment to consider these things and jot down some notes.

Adoption implications 173

Developers’ attention to quality

All the Agile methods bring a new quality focus to the software developers
themselves. Besides just designing and coding, each Agile method includes
practices that have developers reviewing or inspecting each other’s work,
developing test cases for their own code, and doing a significant amount of
testing (much more than most programmers generally do).

These methods seek to redefine the programmers’ idea about when they
have finished their work. Instead of defining their jobs in terms of coding
and compiling, the Agile methods place specific requirements on program-
mers to produce code that does the right things in customers’ eyes (valida-
tion) and to ensure that the code operates correctly (verification).

This may seem like a semantic difference, but for most programmers, it is
very real. When programmers are measured by the amount of code they
produce and how quickly they can get it into test (read, “throw it over the
wall to the testers”), then the quality of that code becomes of secondary
importance to them. But when programmers are measured by how well
they satisfy the customer, quality becomes their primary goal. Fewer defects
and oversights will remain after programmers are finished, avoiding much
of the rework and wasted effort common on traditional projects. This means
that the project can progress more quickly and costs will actually be
reduced, even as quality improves!

Although none of the Agile methods addresses the subject of independ-
ent testers, there is no reason why those professionals could not still be
included in your projects. The expectation, however, should be that because
they will find fewer defects, they will be able to do a better and more com-
plete job of testing, allowing you to have greater confidence in the products
you ship to your customers.

Consider how the practices of the Agile methods will alter how your
developers think about their jobs and their responsibility toward quality.
How would this affect the quality of their code, and how might that affect
your project schedule and costs? How would the adoption of an Agile
method affect your testers? Take a moment to consider these things and jot
down some notes.

Technical excellence
The first and most important Agile Principle that serves to keep the process
Agile is that of technical excellence. Each Agile method includes practices
that are aimed at excellence, and as we have discussed, when they are
implemented properly, they will indeed result in more benefits beyond the
technical excellence itself. They will also result in improving the team’s
capability to build excellent products and, at the same time, ensure that the
project progresses more quickly toward its goal, and likely at lower cost.

Technical excellence does indeed enhance Agility.

174 Technical Excellence

Reference

[1] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper
Saddle River, NJ: Prentice-Hall, 2002, p. 31.

Technical excellence 175

.

Simplicity

In this chapter, we will discuss the second of three Agile Princi-
ples directed at keeping the process Agile.

Agile Principle
The second Agile Principle1 that deals with keeping the process
Agile is about simplicity.

Simplicity: Maximizing work not done

Simplicity—the art of maximizing the amount of work not done—is

essential.

In addition to technical excellence (discussed in Chapter 20),
the Agile methods avoid waste by adopting a philosophy of
simplicity. As this principle states, simplicity means “maximiz-
ing the amount of work not done.”

It seems obvious that you can improve your projects’ per-
formance by avoiding doing unnecessary work. But the trick
lies in identifying activity that can be safely eliminated and dif-
ferentiating it from activities that add value, either by directly
contributing to achieving the project’s goals or by mitigating
project risks.

Agile practices
Although simplicity is a general theme of all Agile Methods,
only two have practices that directly support this principle. We
will look at three different practices, one method at a time.

177

21
Contents

Agile Principle

Agile practices

Extreme Programming (XP)

Lean Software Development
(LD)

Adoption implications

Simplicity

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

Extreme Programming (XP)
XP’s Simple Design practice addresses the Agile principle of Simplicity. XP is
described in Appendix E.

Simple Design

Kent Beck, the author of XP, tells us, “If you believe that the future is uncer-
tain, and you believe that you can cheaply change your mind, then putting
in functionality on speculation is crazy” [1].

On an XP project, each pair of programmers implements one Story at a
time. The Simple Design practice dictates that the pair must avoid taking
anything into consideration that is not part of the Story they are implement-
ing. Even if they “know” that some other Stories that will be implemented
later will require a certain design, they are expected not to act on that infor-
mation. They design their code in the simplest way possible to meet the
requirements of only the current Story. They use the simplest design that
will satisfy the immediate requirements.

This rule may seem wasteful. After all, why implement something with
full knowledge that it will have to be changed later? Is it not always better to
“do it right the first time”?

But XP’s philosophy is that this rule saves far more effort than it wastes,
because our anticipation of future needs is quite often inaccurate. Even
when we “know” that a future Story will require a certain design, later
when we are implementing that other Story, we are likely to find that our
prior assumptions about the design had been inaccurate in one way or
another. That will necessitate making changes to the code we wrote, and
possibly to other code that has been written since that time. This kind of
rework can be expensive, as it involves changing how an existing structure
works.

But if XP’s rule prevailed and we did not implement the faulty design we
thought was needed, then we have avoided most of that rework. Yes, imple-
menting the new Story may involve some rework of existing code, but in all
likelihood, that rework will be less extensive, since it will be a matter of add-
ing capability, not changing existing capability.

Because of this philosophy that it saves more effort than it spends, XP
highlights Simple Design as a key practice for keeping the process Agile.

Lean Software Development (LD)
LD’s first principle and first two tools deal with simplicity: The principle is
“Eliminate Waste” and the tools are Seeing Waste and Value Stream Map-
ping. LD is described in Appendix G.

178 Simplicity

Eliminate Waste: Tool 1, Seeing Waste and Tool 2, Value
Stream Mapping

This LD principle and these two tools come directly from LD’s roots in lean
manufacturing. LD instructs us to look for waste in each and every step of
our processes and to seek more efficient ways to do the work. These tools
prompt us to look in several specific places for the waste in our processes.

◗ Partially Done Work—This is very similar to XP’s Simple Design practice
previously discussed. When applied to software development, par-
tially done work is usually found in the form of unimplemented or
partially implemented designs. And the source of these designs is
often anticipation of features we expect to implement later. Like XP,
LD cautions us not to engage in such behavior.

◗ Extra Processes—This caution links directly to Tool 2, Value Stream Map-
ping. It leads us to identify all the steps in our processes that actually add
value; that is, they directly contribute to production of the final prod-
uct. The steps that do not add value should be considered for elimina-
tion. This is not to say that they should be eliminated, because some of
these non-value-added steps are included in the process to mitigate
risks. But you should consciously decide if these sorts of steps are really
warranted or if they are merely wasteful.

◗ Extra Features—We in software development often provide things that
the customer did not ask for. In our zeal to please the customer, we sub-
stitute our judgment for their specifications and deliver functionality
they never wanted and will not use. This is wasteful, not just because of
the effort we put into these useless features but also because of the
increased complexity of the product and the testing and debugging it
requires.

◗ Task Switching—People in software development are often assigned to
multiple projects. Management does this in many cases because there is
more work to do than people to do it, so rather than making the hard
decision not to do some of the work, they spread existing people out
over too much work. Often this results in overloading these people,
which has negative impacts on their productivity. But even when that
is not the case, such multitasking of people is still wasteful.

When a computer switches tasks, it is simply a matter of moving data
in and out of memory, resulting in a small overhead cost. But task
switching is much more disruptive for people. Each time people switch
tasks, they must not only shuffle papers but also must rebuild the con-
text of what they are working on in their own memory. Not only does
this result in a sizable overhead cost, it often results in mistakes and
oversights due to errors in rebuilding that context.

◗ Waiting—Software projects are just like any other activity in that much
time can be wasted while people wait for others to provide the neces-
sary inputs. While it is most likely that a person will have other work

Lean Software Development (LD) 179

they can do in the mean time, this will require task switching, the
wastefulness of which we discussed in the prior bullet.

◗ Motion—This is somewhat related to the second bullet (about extra
processes) but is aimed more at how individual tasks are carried out. Do
some of the tasks your people do require extra steps that do not add
value? Can some of that motion be automated? (For example, instead
of the engineer printing a report, walking to the printer to fetch it, then
delivering it to the reviewer’s mailbox, could the system detect that the
report has been generated and automatically e-mail it to the reviewer?)

◗ Defects—The biggest waster of time and effort in software develop-
ment, as with many activities, is defects. Each and every defect must
be recognized, logged, managed and tracked, corrected, closed out,
and the corrected product delivered. Every defect incurs significant
cost, and that cost escalates as the development life cycle progresses. It
is always worthwhile to avoid generating defects. But those defects
that cannot be avoided need to be caught and corrected as soon as
possible, before major waste has been incurred.

Eliminating waste from your development processes will directly con-
tribute to achieving an Agile process.

Adoption implications
Adopting the philosophy of Simplicity is not simple.

Object-Orientation

All the Agile methods assume the use of Object-Oriented (OO) design and
construction. This is an important part of their focus on Simplicity because
OO, when done well, results in code that is modularized and compartmen-
talized in ways that facilitate programmers’ ability to easily use it and mod-
ify it as the system grows.

By Object-Orientation, we do not mean merely using an OO program-
ming language (although that is critical). We mean actually understanding
and using the principles of Object-Oriented design to build Classes and Meth-
ods that truly stand on their own. Too often, people call what they are doing
“Object-Oriented” when in reality they are using an OO language to imple-
ment a nonobject design. (How many programs that were written in C++
could have been written in C just as easily?) True OO design includes the
use of concepts such as information hiding and cohesiveness in identifying
and building Classes.

Becoming proficient with Object-Oriented design takes more than going
to a class on an OO programming language. It requires education in the
principles behind OO design and mentoring by professionals who have
already mastered this technology. To make the best use of any Agile

180 Simplicity

method, you will need to ensure that your programmers are fully versed in
true OO design and that you have at least one expert in OO on your team.

Does your staff make good use of OO design? Or do they need training
and mentoring to become proficient? How well would their current level of
expertise with OO support the adoption of an Agile method? Take a
moment to consider these things and jot down some notes.2

Identifying the expendable

We all want to embrace activities that produce value and avoid wasteful-
ness. But identifying those activities that can be eliminated without danger
can be a challenge.

Value Stream Mapping (as described by LD) can be a good way to iden-
tify those activities that add value to your product and determine if the
value added is worth the effort expended in those activities. But should you
really eliminate an activity just because it does not show up in your value
stream? Is there such a thing as an activity that does not directly add value
to the product but is critically important?

Clearly, we must do many things that do not directly add value. Here are
some examples of activities that do not directly add value, and yet many of
them are expected by the Agile methods, not to mention being common
practice on most projects.

◗ Planning the project;

◗ Updating the project plan at the beginning of each project increment;

◗ Establishing and maintaining a code control system;

◗ Reporting status to management and the customer;

◗ Managing risks and mitigating them;

◗ Defining project processes and ensuring that they are effective.

These and many other kinds of activities, though they do not add value,
are important to the health of our projects, and so we do not hesitate to do
them. Some keep important stakeholders informed about project progress.
Others help us keep the project moving forward. And still others serve as
insurance against things going wrong.

So, how can we identify activities that are truly expendable? What
activities on our projects neither add direct value nor provide sufficient indi-
rect value to justify doing them? This, of course, becomes a judgment call.
And this question is at the heart of most of the arguments between the pro-
ponents of Agile methods and the proponents of traditional methods.

For many project activities, strong arguments can be made for either
side. And the final decision about whether they are expendable or not will

Adoption implications 181

2. You may want to use the “Evaluating Agile Methods Workbook” that is available to support this book. Refer

to Chapter 7 for information on obtaining and using this workbook.

hinge more on the strength of the proponents’ arguments and the predispo-
sition of the decision makers than on any specific facts.

But the degree to which the decision is arguable does not mean it is
unimportant. Indeed, just as there is waste involved in unnecessary activity,
there is danger in not performing activities that actually are important. Are
there activities on your projects that are clearly expendable? Are there oth-
ers that are arguable? Take a moment to consider these things and jot down
some notes.

Simplicity
Simplicity is a laudable goal. But it is not easy to identify those activities that
are truly expendable. Careful consideration must be given to each activity
that you may contemplate doing away with. What will be the ramifications
of eliminating such an activity? Is the savings you realize from not doing it
worth the cost or risk you incur?

Reference

[1] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley
Longman, 2000, p. 57.

182 Simplicity

Retrospectives

In this chapter, we will discuss the last of three Agile Principles
directed at keeping the process Agile.

Agile Principle
The last Agile Principle1 that deals with keeping the process
Agile is about retrospectives.

Regular team retrospectives

At regular intervals, the team reflects on how to become more effec-

tive, then tunes and adjusts its behavior accordingly.

Project retrospectives, also known as “postmortems” and by a
few other names, have been well known but little used in soft-
ware projects. A retrospective is a meeting of all project partici-
pants to consider how well the project’s processes worked.
Retrospectives are designed to answer the following questions:

◗ What worked particularly well in this project? What do
we want to ensure that we replicate the next time?

◗ What did we try that did not work at all? What should we
avoid next time?

◗ What risks were realized on this project? How could we
have been better prepared for them?

◗ How were we inefficient on this project? What changes
would make the next project more efficient?

◗ What made this project enjoyable? How can we keep
morale high on future projects?

183

22
Contents

Agile Principle

Agile practice

Adaptive Software
Development (ASD)

Adoption implications

Conclusion

C H A P T E R

1. All 12 Agile Principles are quoted and discussed in Appendix B.

◗ What made this project burdensome to work on? How can we make
future projects more attractive to participants?

It is generally recognized that a retrospective can provide valuable
insight into what worked well and what did not on a project. But we find it
difficult to take the time to do them amid all the other priorities.

Generally, the end of a project is a sprint toward the goal, and the fre-
netic pace of activity squeezes out anything that does not directly contribute
to delivering the software. Also, it makes the most sense to hold the retro-
spective after this critical project phase so its lessons can be collected along
with others. But after the product has been delivered, stakeholders are
immediately drawn off into other projects. Getting everyone together for a
retrospective meeting after product delivery becomes a logistical impossibil-
ity as project participants scatter to their new work.

The Agile principle that is the subject of this chapter, and the one prac-
tice of an Agile method that implements it, solve this problem in an innova-
tive way. The principle refers to holding retrospectives “at regular intervals”
and ASD is more specific than that.

Agile practice
Of the Agile Methods, only ASD has a practice that supports this Agile prin-
ciple about retrospectives.

Adaptive Software Development (ASD)
ASD’s Postmortems practice supports this principle about retrospectives.
ASD is described in Appendix C.

Learn: Quality Review: Postmortems

ASD defines “at regular intervals” to be at the end of each increment. This
solves both of the scheduling problems previously sighted by making retro-
spectives a regular project activity, rather than a one-time thing that is really
unrelated to the project itself. And since they happen at the end of each
increment, this analysis is going on approximately monthly!

Besides ensuring that the retrospectives are actually held, timing them
this way has a second benefit. Project members can learn from their own
experiences and make changes to their processes while those changes can
still have a positive impact on the project itself. They are no longer forced to
wait until the next project to try doing things differently. The retrospectives
become very relevant to project participants because they are their opportu-
nity to correct problems they are currently experiencing.

When a single retrospective meeting is held at the end of a project, it is
generally a half- or full-day workshop. But when they are held often (as in

184 Retrospectives

ASD), the time required for each one is generally much less. When things
are going well on the project, the retrospective could be a half-hour or less,
just enough time to brainstorm why things are going well.

Even when there are problems, it is unlikely that more than an hour will
be required to identify them and brainstorm potential fixes. Lengthy delib-
erations are not really necessary, as any potential fix for a problem can be
tried out in the project’s next increment. If it works, the next retrospective
will show that. If not, the team can seek other fixes for that problem with
the additional information gained in the intervening increment.

Examining the effectiveness of the project’s practices at the end of each
project increment (every 2–8 weeks), rather than once at the end of the
project provides a variety of benefits, including the increased likelihood that
retrospectives will actually take place and the opportunity for project stake-
holders to benefit from adjustments to their processes during the current
project.

Adoption implications
Project retrospectives do not generally have any negative sides. Even from
the most routine projects, there are plenty of things that can be learned and
many opportunities for improving processes’ effectiveness and efficiency.
The difficulty, as discussed at the beginning of this chapter, is in deciding
when to hold retrospectives so that they actually take place and can provide
significant benefits.

When to hold a retrospective

To be effective, a retrospective must take place (as the name implies) after
the fact. Therefore, they should be scheduled to coincide with a natural
break point in the project. This allows project participants to look back over
a specific time period and consider how well things worked during the
activities they just completed.

While a retrospective can review activities of almost any length, one
should keep in mind the natural limitations of human memory. If a retro-
spective is held once at the end of an 18-month project, participants are
much more likely to remember and discuss things that happened recently
than those that took place a year or more in the past. While it would be dif-
ficult to set a particular limit on the length of time a retrospective should
cover, it seems clear that the shorter the period, the more complete people’s
memories will be.

This leads us to see that ASD’s practice of holding a retrospective at the
end of each increment (every 2–8 weeks) has the effect of ensuring that
people’s memories are fresh. When you are discussing things that have gone
on in the past month or so, you will be unlikely to forget about anything
that was particularly good or bad about how the work was done.

Adoption implications 185

Have your projects held retrospectives? Would your staff embrace retro-
spectives, especially if they are done on a regular basis throughout the proj-
ect? Take a moment to consider these things and jot down some notes.

How to capitalize on a retrospective

Often, a company will try holding project retrospectives, then abandon the
practice because they see little benefit from them. Causal analysis will gen-
erally reveal that the information from the retrospectives that were held
was rarely taken into consideration when new projects were being formed.
When retrospectives are done only after a project is finished, there must be
mechanisms in place to ensure that others (who may not have been
involved in the first project) will consider the information.

ASD’s practice of doing retrospectives throughout the project solves a big
part of this problem. Because the project will continue after the retrospec-
tive, ideas for improvements can be easily incorporated into the project’s
processes. If the fixes work, then project members will be likely to continue
to use the new practices on their next project, simply because they have
actual experience with them, as opposed to having just thought about them.

This does not solve the problem of sharing the learning of one group of
people with other groups within the organization. But that problem will be
more tractable because as each project finishes, personnel will shift to other
projects. People will take their experiences with them, and when their new
project experiences similar problems as their old one, they will remember
how that problem was solved last time. In this way, the information will be
likely to diffuse through the organization. Even so, it makes sense for you to
identify ways to encourage cross-pollination of process improvement ideas
among project teams.

What opportunities are there for your project teams to learn from one
another? What would it take to put the right mechanisms in place to ensure
that process improvement information is shared readily? Take a moment to
consider these things and jot down some notes.

Process change in mid-project

This entire discussion and ASD’s practice make the assumption that adopt-
ing improvements to the project’s processes is always a good idea. While
improvement generally is good, one must keep in mind the fact that any
change can disrupt project activities. One must consider if the disruption
that is caused by the process change is worth the benefit it will bring.

Clearly, making a few minor adjustments from time to time will not be
of any concern. But if the project is grappling with any significant issues, or
if a proposed process change is significant, then it will be worthwhile to con-
sciously compare the costs of making the changes with the benefits that are
expected to accrue. For example, you may want to think about these sorts of
questions:

186 Retrospectives

◗ Will the process change require rework to already completed work
products? If so, how much effort will that rework consume?

◗ Will the process change require significant behavior change for one or
more people? If so, how adaptable are those people? And how willing
are they to adopt these changes?

◗ Have you already made significant process changes on the project? If so,
will the requirement for more change be a burden to the team
members?

◗ Will the benefit you expect from the process change be significant? Is
there a clear benefit to making people change right now?

Process change is always a two-edged sword. While it may provide sig-
nificant benefit, it will also undoubtedly incur some cost. How accepting is
your organization toward changes in process? How difficult would it be for
your projects to make process adjustments in mid-project? Take a moment
to consider these things and jot down some notes.

Conclusion
An important part of keeping your process Agile is to regularly take a critical
look at how well that process is working and make adjustments to make it
more effective. As suggested by the Agile principle about retrospectives, this
is best done regularly throughout the project, rather than once at the end.
This allows not only for maximum learning but also for the opportunity to
tune the processes while the project is ongoing. While mid-project process
changes may not always be optimal, there will be many cases when they are
an appropriate step to take.

Conclusion 187

.

The Adoption Decision

In this last part of the book, we will finish up with a discussion
about using what you learned as you read this book to make
the right decision about the Agile methods for your
organization.

In Chapter 23, “Making the Adoption Decision,” we walk
through the process of compiling the information you collected
as you have been reading this book. We show how to use the
“Evaluating Agile Methods Workbook” (if you have been
recording your observations there) to roll up your collected
data. And we discuss working with others in your organization
to get their perspectives on this decision and lay the ground-
work for the successful adoption of an Agile method.

In Chapter 24, “Adopting the New Practices,” we walk
through the adoption process itself. This includes customizing
an Agile method to your organization’s specific needs, training
people in how to use it, pilot testing the method, and rolling it
out to the whole organization.

Finally, in Chapter 25, “Evaluating the Effects of Your Agile
Method,” we discuss how to evaluate the results of adopting an
Agile method. This includes both how well your projects per-
form using the new method and how well all the various play-
ers have adapted to their new roles.

P A R T

VII

.

Making the Adoption Decision

Now that you have read about all the ways in which the Agile
methods will affect your organization, it is time to compile all
the information you have gathered and make some sense out
of it. Because there are so many things to consider and so many
ways in which the uniqueness of your organization comes into
play, it is important that you take a careful approach to this
decision.

Like a family deciding to adopt a child, an organization will
do well to carefully consider the implications of adopting a new
way of working. It will result in some degree of disruption for
everyone in the organization, and it will require each person to
make changes that they may or may not be ready to make.
Your job is to weigh all the advantages you hope to realize from
the adoption against the costs of making it work, and make the
decision that is best for the organization’s future projects.

In this chapter, we will walk through the steps you should
take in making this important decision for your organization.
These steps include doing your analysis, drawing conclusions,
seeking the opinions of other key individuals in your organiza-
tion, and creating an action plan for success.

Compiling your “Evaluating Agile
Methods” workbook data
This section makes the assumption that you have been using
the “Evaluating Agile Methods Workbook” introduced in
Chapter 7. If you have not been using that tool, it may make
sense for you to download the workbook and use it as you con-
sider all the information you have collected and make your
adoption decision. (Refer to Chapter 7 for instructions on
downloading the workbook from the author’s Web site.)

191

23
Contents

Compiling your “Evaluating
Agile Methods” workbook data

Conclusions about Agile Values
and Principles

Conclusions about the Agile
Methods and Practices

The Agile Methods in your
organization

Marketing your conclusions
in your organization

Agreeing together on an
action plan

C H A P T E R

Refer to the Instructions page of the workbook for more detailed infor-
mation on how to use it. If you need more help, send e-mail to EvalAgile@
ASKProcess.com.

Before you begin to draw conclusions from your data, check each of the
five pages of the workbook that correspond to Parts II–VI (i.e., Individuals,
WorkingSW, CustCollab, RespChange, and Unstated). Make sure that the
data are complete and correct, and that they reflect your appraisal after
reading the prior parts of this book.

◗ For each practice, have you rated all the considerations about which
you are able to make reasonable judgments? (Leave any considera-
tion rating blank if you feel you cannot or should not make a judg-
ment about it.)

◗ Are all the consideration ratings digits between zero and five? (If not,
are you purposely using the workbook in a way that is different from its
designed intent?)

◗ Do the consideration ratings for each practice agree with any notes you
have made about it?

◗ Do the Practice Summaries reflect the individual Consideration ratings
from which they are derived? And do they reflect how well you believe
the practices would work in your organization?

◗ Do the Principle Summaries reflect the individual Consideration ratings
from which they are derived? And do they reflect how well you believe
the Agile Principles would fit into your organization?

◗ Does the Value Summary reflect the Principle Summaries from which
it is derived? And does it reflect how well you believe the Agile Value
would fit into your organization?

Do not move ahead with drawing conclusions until you are sure that all
the data you have entered in the first five pages of the workbook are com-
plete and correct and that they reflect your appraisal after reading this book.

Conclusions about Agile Values and Principles
The ValueSum page of your workbook is designed to help you draw conclu-
sions about the Agile Values and Principles from the data you entered, so
they can guide you in making your adoption decision. That page copies the
Principle Summaries and Value Summaries from the first five pages of the
workbook into one place and provides places for you to make notes about
each Principle and Value, and about all of them in general.

We will now take one last look at each Principle and Value so you can
review each of your ratings to draw conclusions about how well they would
work in your organization.

192 Making the Adoption Decision

We have come to value individuals and interactions over
processes and tools

Build projects around motivated individuals. Give them the environment and sup-

port they need, and trust them to get the job done.

We discussed this Principle in Part II, Chapter 9. It speaks to building teams
of professionals who have the requisite technical strength and providing an
environment for them that motivates them to their best work. The point
behind this Principle is that it enables the next one: Good people and a moti-
vating environment are prerequisites for a team to begin to self-organize
and produce the best possible software.

What would it take in your organization to motivate software profes-
sionals to this sort of activity? What changes in management (yourself and
others) would be required? And how difficult might it be to make those
changes? How well does this principle fit with your organization?

The best architectures, requirements, and designs emerge from self-organizing teams.

We discussed this Principle in Part II, Chapter 9. The various Agile meth-
ods use a variety of terms to describe this phenomenon, including “inde-
pendent agents,” “self-determination,” and “empowered teams.” ASD even
includes a management model for this environment called “leadership-
collaboration.” The essence of this model is that self-organizing teams do not
need to be managed (in the classic command-and-control sense). Rather,
they need leadership and an environment that encourages collaboration
among all the players, including the technical team, management, and the
customer.

How much of a challenge would it be to establish the “leadership-
collaboration” management model in your organization? What would it
take for your management team to adapt to this totally new way of interact-
ing with their project teams? And how would technical team members react
to this new environment? How well does this principle fit with your
organization?

The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

We discussed this Principle in Part II, Chapter 10. Its essence is that the
richest form of communication takes place face to face, and so your projects
should have a strong bias to that mode. But we also discussed the drawbacks
to this communication mode, the most serious of which is that it is not per-
sistent. And we discussed the importance of supplementing face-to-face
communication with persistent records of those exchanges.

To what degree is communication in your organization face to face, as
opposed to telephone, e-mail, written, and other less rich modes? To what

Conclusions about Agile Values and Principles 193

degree can the Agile ideal of face-to-face communication be realized in your
environment? And to what degree are persistent records of interactions
used in your organization? How well does this principle fit with your
organization?

Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

We discussed this Principle in Part II, Chapter 11. This principle is aimed
at avoiding the all-too-common fact of burnout among technical staff due to
the overuse of overtime. But our examination of this principle showed us
that the Agile methods tend to achieve this result because of their leveling
effect on the demands on project team members.

The Agile methods tend to include analysis, design, coding, testing, and,
sometimes, even acceptance and delivery in each increment. Therefore,
they ramp up to full force in a matter of a week or two and then continue at
a steady pace through final delivery. The projects do not include the rela-
tively slow analysis phase at the beginning or the frenetic testing phase at
the end, so the pace becomes much more stable and sustainable.

What benefits would maintaining a sustainable pace bring to your
organization? Would it bring any negative effects? For instance, is signifi-
cant overtime considered by some people in your organization to be a badge
of importance or loyalty? Are there factors in your organization that might
make it difficult to cultivate or achieve the ideal of a sustainable pace? How
well does this principle fit with your organization?

The unstated principle: Appropriate processes and tools

We discussed this unstated principle in Part II, Chapter 12. In spite of the
fact that the first Agile Value downplays the value of processes and tools, all
the Agile methods assume the support of appropriate processes and tools.
The most important of these for the Agile methods are CM and automation
of the build and testing processes. In Chapter 12, we discussed a variety of
processes and tools that the Agile methods assume are in place.

To what degree will the processes and tools being used in your organiza-
tion support an Agile method? Are there processes or tools that would have
to be significantly altered or eliminated to accommodate an Agile method?
And are there processes or tools that you would need to adopt to make an
Agile method work well in your organization? How well does this unstated
principle fit with your organization?

We have come to value individuals and interactions over processes and tools.

We discussed the relative importance of people, processes, and tools in
Part II, Chapter 8. In doing so, we saw that although people are our organi-
zations’ most important assets, processes and tools are no less important.

194 Making the Adoption Decision

This is true because people need the support of the appropriate processes
and tools to do their best work. Therefore, we concluded that people,
processes, and tools are all equally important.

After considering the four Agile Principles (and the one unstated princi-
ple) that support this first Agile Value, to what degree do you believe it
could become a guiding value in your organization?

We have come to value working software over comprehensive
documentation

Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

We discussed this Principle in Part III, Chapter 14. Its focus is on satisfying
customers, and the chosen mechanism for doing so is to deliver software to
them. What makes the Agile methods unique is their time frame for deliv-
ery “early and continuous.”

The Agile methods are all built on the assumption that the best way to
ensure that customers will be satisfied is to deliver increments to them
often. This provides customers with the opportunity to provide feedback to
the project team, and thus to direct them toward a final product that will
indeed satisfy their needs.

How would the “early and continuous delivery of valuable software”
work in your projects? How would you have to change the structure of your
projects to do this? And what would be the effect of such a change on your
relationships with your customers? How well does this principle fit with
your organization?

Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time scale.

We discussed this Principle in Part III, Chapter 14. It amplifies the prior
Principle by specifying how short the development cycles are expected to be.
At approximately one month, Agile project cycles are significantly shorter
than most of us are used to seeing. But at the same time, such short cycles
would enhance our ability to manage Agile development, because they
would allow us to take corrective actions on approximately a monthly basis.

What effect would such very short cycles have on your projects? What
adjustments would this mode of operation require, both within your organi-
zation’s management and in your relationship with your customers? How
well does this principle fit with your organization?

Working software is the primary measure of progress.

We discussed this Principle in Part III, Chapter 14. We use many indirect
measures on our software projects to judge our progress toward our true

Conclusions about Agile Values and Principles 195

objective of achieving working software. We need to do this because, on tra-
ditional projects, we do not deliver software often enough to use the pri-
mary objective as our measure of regular progress.

But the prior Principle corrects that problem. Since an Agile project
delivers software approximately monthly, it would allow us to dispense
with the indirect measures we generally use and simply track our primary
objective: the software itself.

What would it take to change the way your organization thinks about
progress on software projects? What impediments would there be to aban-
doning indirect measures of progress in favor of the direct objective itself?
Can you identify any negative effects such a change would cause, either
within your organization or in your relationship with your customer? How
well does this principle fit with your organization?

We have come to value working software over comprehensive documentation.

We discussed the role of documents in software projects in Part III, Chap-
ter 13. We saw that although the software itself is our primary objective, there
are important roles that documentation plays. Depending on the nature of
the project and the expected longevity of the software being built, some types
of documentation may be nearly as important as “working software.”

After considering the three Agile Principles that support this second
Agile Value, to what degree do you believe it could become a guiding value
in your organization?

We have come to value customer collaboration over contract
negotiation

Business people and developers must work together daily throughout the project.

We discussed this Principle in Part IV, Chapter 16. We observed that the
term “business people” is used broadly in this principle to refer to everyone
outside of the technical team itself. The effect of this is that this principle
calls for the technical team to interact “daily” with management, the cus-
tomer, and any other stakeholder on the project. Essentially, it calls for open
and regular communications on an ongoing basis.

The main way in which the Agile methods implement this is through
soliciting feedback from the stakeholders (especially the customer) on every
increment of software that is built. At a minimum, this would result in for-
mal feedback no less often than bimonthly. Some Agile methods prescribe
interaction much more frequently, with XP taking the extreme position of
requiring a customer representative to be colocated with the development
team continuously throughout the project.

How different would this level of collaboration be from your software
projects’ normal mode of operation? How willing would various stakeholders
(especially your customers) be to invest in significantly more interaction than

196 Making the Adoption Decision

they have in the past? What costs would this principle incur for each stake-
holder? How well does this principle fit with your organization?

We have come to value customer collaboration over contract negotiation.

We discussed the roles of customers, contracts, and collaboration in Part
IV, Chapter 15. We first explored the different types of customers you may
be working for. We observed that different customers may have different
levels of toleration for running a project on the basis of collaboration versus
contracts. Then we explored the relative roles of collaboration versus con-
tracts in software projects and different ways in which the two must be bal-
anced for success in any environment.

After considering the Agile Principle that supports this third Agile Value,
to what degree do you believe it could become a guiding value in your
organization?

We have come to value responding to change over following a
plan

Welcome changing requirements, even late in development. Agile processes harness

change for the customer’s competitive advantage.

We discussed this Principle in Part V, Chapter 18. We observed that the
Agile methods are structured with this specific thought in mind: Changes
are to be expected on a software project, so the methods we use should
make responding to those changes as easy as possible.

Each Agile method approaches the subject of requirements incremen-
tally. That is, they define overall requirements only at a very broad level,
with additional detail to be provided later. The details of a particular
requirement are either worked out when planning the increment in which
it will be implemented or left to the programmers who develop it. No matter
how the requirements are defined, customers always have the sole author-
ity to decide if the software meets their needs of not.

To what degree are the requirements for the software your projects
develop identified in detail at the beginning of the project? And to what
degree do those requirements tend to change over the life of the project?
Would this sort of clear acceptance of change make sense in your projects?
How would your customers react to projects with only high-level require-
ments defined upfront? How well does this principle fit with your
organization?

We have come to value responding to change over following a plan.

We discussed the nature of change in software projects in Part V, Chap-
ter 17. We determined that the most common root source of change on soft-
ware projects is the learning that takes place as the project progresses.

Conclusions about Agile Values and Principles 197

As customers see the increments of software, they gain a stronger under-
standing of their own needs and what it will take to satisfy them, and they
grow in their understanding of what can and should be done with the soft-
ware. By the same token, developers also learn as they go through the work
of building each increment. They learn about what will and will not work
and which things satisfy the customer’s needs. They gain insight into the
ramifications of their own decisions, and they discover assumptions that
have turned out to be incorrect.

This learning is a natural part of the intellectual work of developing soft-
ware. And ideas for changes to be made are a natural outgrowth of this
learning.

After considering the Agile Principle that supports this fourth Agile
Value, to what degree do you believe it could become a guiding value in
your organization?

The unstated value: Keeping the process agile

Continuous attention to technical excellence and good design enhances agility.

We discussed this Principle in Part VI, Chapter 20. All Agile methods put a
high premium on ensuring the technical excellence of the software they
produce. This is done through a variety of practices, including reviews and
inspections, rigorous testing by developers, and leadership roles of profes-
sional experts.

The unique feature of a number of Agile methods is the degree to which
developers are made responsible for the quality of their software. Rather
than being responsible merely for writing software and delivering it to inde-
pendent testers, Agile developers are responsible for delivering high-quality
software. (Although none of the Agile methods provides explicitly for inde-
pendent verification and validation, there is no reason why they cannot be
used in that kind of an environment.)

How radical will be the shift in your developers’ responsibilities if you
adopt an Agile method? What will it take for them to adopt a new quality
ethic in their work and not count on someone else to find problems with
their software? How would this change developers’ relationships with test-
ers or other supporting groups? How well does this principle fit with your
organization?

Simplicity — the art of maximizing the amount of work not done — is essential.

We discussed this Principle in Part VI, Chapter 21. We observed that the
concept of avoiding wasteful activity makes perfect sense but identifying
activities that are expendable is problematic. The activities we include in our
development process are all there because someone at some point believed
they added value.

198 Making the Adoption Decision

Before eliminating any particular activity, we must take care to under-
stand why it is there and what will be the ramification of eliminating it. We
must take care to realize that while some activities directly contribute to
producing software, other equally important activities serve insurance pur-
poses. That is, they are designed to mitigate either the probability of some-
thing going wrong or the impact to the project if something does go wrong.
(For example, most configuration management activities guard against lost
work in one way or another.)

How can your projects simplify (that is, maximize the amount of work
not done)? Are there obviously wasteful activities on your projects? Are
there activities that some people would classify as being wasteful but that
serve some important purpose? How difficult would it be to put simplicity
into practice? How well does this principle fit with your organization?

At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

We discussed this Principle in Part VI, Chapter 22. Project retrospectives
are generally embraced in theory but rarely are they actually held for soft-
ware projects. The key problem tends to be related to timing: After the proj-
ect is finished, when a retrospective makes the most sense, many of the
project’s participants have already moved on to other projects and are not
available for a workshop.

The Agile methods correct this problem by calling for retrospectives
“regularly” throughout the project. The easiest way to implement this
would be to hold a retrospective at the end of each increment (approxi-
mately monthly). Besides ensuring that project participants are available for
meetings, this schedule has the added benefit of producing process improve-
ment ideas while the project can still benefit from them.

Does your organization currently hold project retrospectives? Would the
Agile recommendation of holding retrospectives “regularly” throughout the
project work in your organization? How well does this principle fit with
your organization?

The unstated value: Keeping the process agile.

We discussed maintaining the effectiveness of our processes in Part VI,
Chapter 19. We observed that we are usually following processes. The only
question is whether we are thinking about them consciously and if they are
serving our needs as well as they should. Keeping our processes effective
requires some level of attention to them, which is why the Agile methods
take steps to keep their processes Agile (in spite of the fact that the first Agile
Value downplays the importance of process).

After considering the three Agile Principles that support this unstated
Agile Value, to what degree do you believe it could become a guiding value
in your organization?

Conclusions about Agile Values and Principles 199

Agile Values in your organization

We have just stepped through the four Agile Values (and the one unstated
value) and examined the extent to which you believe each would work in
your organization. What conclusion does this bring you to?

◗ Does it seem that the Agile Values and Principles can be made to work
in your organization?

◗ Will any one of those Values or Principles be particularly troublesome?

◗ If you see challenges in any of them, can you envision how they can
be overcome?

If it seems reasonable to adopt some form of an Agile Method in your
organization, then you should continue with the next section to decide
which Agile method you should embrace.

Conclusions about the Agile Methods and Practices
The last six pages of your workbook are designed to help you draw conclu-
sions about each Agile Method from the data you entered. Each page copies
your individual Practice ratings for a particular Agile Method from the first
five pages of the workbook into one place and provides a place for you to
make notes about that method.

We will now take one last look at each Agile Method so you can review
each of your ratings to draw conclusions about how well they would work
in your organization.

Adaptive Software Development (ASD)

Your ratings for the practices of Adaptive Software Development are com-
piled on the ASD page of your workbook. ASD is described in Appendix C.

Project Stakeholders as Independent Agents—On an ASD project, there is no
hierarchy. The development team, management, and customer are treated
as peers.

Adaptive (Leadership-Collaboration) Management Model—Because of the
independent agent practice (just described), management of an ASD project
is a matter of leadership and collaboration, as opposed to the more tradi-
tional command and control.

Adaptive Life Cycle—ASD’s incremental development process is character-
ized by the Learning Loop, which cycles through the Speculate, Collaborate,
and Learn phases.

Speculate: Project Initiation and Adaptive Cycle Planning—ASD calls planning
“Speculation.” Initial planning involves setting the project mission and
vision and then each increment of the project begins with “speculation”
about what will be done during that increment.

200 Making the Adoption Decision

Learn: Quality Review: Customer Focus Group Reviews—The first step in the
Quality Review phase of each increment of an ASD project is this review,
during which the customer determines what of value has been developed
during the just-finished increment of the project.

Learn: Quality Review: Software Inspections—The second step in the Quality
Review phase of each increment of an ASD project is this review, during
which the development team inspects each other’s work.

Learn: Quality Review: Postmortems—The last step in the Quality Review
phase of each increment of an ASD project is this review, during which
stakeholders discuss the process they are using and determine how it may
be improved.

After considering ASD’s practices, how appropriate do you believe this
Agile method would be for your organization?

Dynamic Systems Development Method (DSDM)

Your ratings for the practices of Dynamic Systems Development Method are
compiled on the DSDM page of your workbook. DSDM is described in
Appendix D.

Principle 1: Active user involvement is imperative.—DSDM projects require
more involvement by the true end users of the system being developed than
do most traditional projects.

Principle 2: DSDM teams must be empowered to make decisions.—The DSDM
development team is given broad authority to make the day-to-day deci-
sions on the project.

Principle 3: The focus is on frequent delivery of products.—Delivering product
to the customer on a regular basis is a key part of DSDM.

Principle 4: Fitness for business purpose is the essential criterion for acceptance of
deliverables.—The customer is the final authority on whether or not the
product as it was delivered is appropriate to his or her needs.

Principle 5: Iterative and incremental development is necessary to converge on an
accurate business solution.—Because it assumes that system details cannot be
known upfront, DSDM uses incremental development as the means for
developers and the customer to arrive at a satisfactory product.

Principle 6: All changes during development are reversible.—DSDM encour-
ages developers to improve code at any time by reminding them that
changes can always be backed out.

Principle 7: Requirements are baselined at a high level.—DSDM is the only
Agile method that establishes a requirements baseline, but that baseline
consists only of a broad description of the project’s goals. The detailed
requirements are left for the customer and developers to work out during
incremental development.

Principle 8: Testing is integrated throughout the life cycle.—Verification and
validation should take place during all phases of a DSDM project, not just at
the end.

Conclusions about the Agile Methods and Practices 201

Principle 9: A collaborative and cooperative approach between all stakeholders is
essential.—In order for DSDM to work as designed, the development team,
customer, and management must collaborate closely.

After considering DSDM’s practices, how appropriate do you believe this
Agile method would be for your organization?

Extreme Programming (XP)

Your ratings for the practices of Extreme Programming are compiled on the
XP page of your workbook. XP is described in Appendix E.

The Planning Game—The development team, customer, and management
collaborate at the beginning of each increment of development to plan that
increment.

Small Releases—Each increment of an XP project should be small, deliver-
ing a little functionality and taking as short a period of time as possible (2–8
weeks).

Metaphor—This overall idea of what the system under development will
be like is as close to a requirements statement as XP gets. Each feature is
described by a Story that fits on a 3x5-inch card.

Simple Design—XP requires programmers to use the simplest possible
design that will meet the current need. They should not account for future
needs.

Test First—Before a pair of programmers writes any code, they must first
write the automated tests that will be required to verify it.

Refactoring—XP encourages programmers to redesign programs any time
they recognize an opportunity to improve them.

Pair Programming—All technical work is done by two people working
together.

Collective Ownership—Individuals do not own code, rather all team mem-
bers change any code they believe they need to change when implementing
a Story.

Continuous Integration—As each pair of programmers completes work on
each Story, they integrate it into the growing system, so integration is going
on almost continuously.

40-Hour Week—Overtime should be rare and can never happen two
weeks in a row.

On-Site Customer—A customer representative who is authorized to make
decisions about the project must be on-site with the development team at all
times.

Coding Standards—The XP team should adopt coding standards to facili-
tate other practices (e.g., Pair Programming, collective ownership).

Facilities Strategy—The XP team should be located together in a single
room with appropriate spaces for Pair Programming and regular interaction
among team members.

After considering XP’s practices, how appropriate do you believe this
Agile method would be for your organization?

202 Making the Adoption Decision

Feature-Driven Development (FDD)

Your ratings for the practices of Feature-Driven Development are compiled
on the FDD page of your workbook. FDD is described in Appendix F.

Domain Object Modeling—An FDD project begins with the construction of
a model of the objects in the system to be built, then each increment of
development revisits the model and updates it based on what has been
learned.

Developing by Feature—Development is done one feature at a time. Each
increment of development is defined by the list of features to be included in
that increment.

Class (Code) Ownership—A single programmer owns each class, and that
person is the only one who is allowed to change it.

Feature Teams—Each feature is developed by the owners of all the classes
that will be affected by implementation of that feature.

Inspections—All development work products are inspected by other team
members.

Regular Build Schedule—Builds of the growing system are done on a regu-
lar basis (though FDD does not prescribe how often that should be).

Configuration Management—FDD reminds us that good CM tools and
processes are important to project success.

Reporting/Visibility of Results—An FDD team reports progress as the
number of features completed versus the number remaining and objectively
computes percent-complete for partially-completed features.

After considering FDD’s practices, how appropriate do you believe this
Agile method would be for your organization?

Lean Software Development (LD)

Your ratings for the practices of Lean Software Development are compiled
on the LD page of your workbook. LD is described in Appendix G.

Eliminate Waste

Tool 1: Seeing Waste—Look for waste in all parts of your development process.
Tool 2: Value Stream Mapping—Identify all the steps in your process that

add value to the product (and those that do not).

Amplify Learning

Tool 3: Feedback—Design your process to provide feedback as often as
possible.

Tool 4: Iterations—Use iterative time-boxed development.
Tool 5: Synchronization—Use appropriate mechanisms to synchronize peo-

ple’s work.
Tool 6: Set-Based Development—When dealing with a problem, think about

the solution space instead of specific solutions.

Conclusions about the Agile Methods and Practices 203

Decide as Late as Possible

Tool 7: Options Thinking—By incurring some added cost, you can sometimes
delay making decisions.

Tool 8: The Last Responsible Moment—Delay commitment to a decision
until the moment at which failing to make a decision eliminates an impor-
tant alternative.

Tool 9: Making Decisions—Make decisions by applying an appropriate set
of rules.

Deliver as Fast as Possible

Tool 10: Pull Systems—Establish an environment that provides automatic
prompting for what people should do.

Tool 11: Queuing Theory—Use queuing theory to analyze all bottlenecks in
your software process and determine ways to minimize the cycle time.

Tool 12: Cost of Delay—Use financial models to allow all stakeholders to
make appropriate trade-off decisions.

Empower the Team

Tool 13: Self-Determination—The people who do the work are in the best posi-
tion to improve their processes and eliminate waste.

Tool 14: Motivation—Motivating a project team to perform well has many
dimensions.

Tool 15: Leadership—A successful team needs both project management
and technical leadership.

Tool 16: Expertise—Every software project requires a variety of expertise.

Build Integrity In

Tool 17: Perceived Integrity—Does the customer perceive the system to be use-
ful and well designed?

Tool 18: Conceptual Integrity—An important component of Perceived
Integrity. Was the system built correctly?

Tool 19: Refactoring—Redesign of the system to improve its structure and
avoid brittle code.

Tool 20: Testing—Both validation (ensuring the right system is built) and
verification (ensuring the system is built right) must be done throughout
the development process.

See the Whole

Tool 21: Measurements—Avoid measurement dysfunction and focus measure-
ment at higher-level aggregations of data.

Tool 22: Contracts—A variety of contractual arrangements are possible,
and each has good and bad points.

After considering LD’s practices, how appropriate do you believe this
Agile method would be for your organization?

204 Making the Adoption Decision

Scrum

Your ratings for the practices of Scrum are compiled on the Scrum page of
your workbook. Scrum is described in Appendix H.

The Scrum Master—This individual has a leadership role in ensuring that
the team is making the best use of Scrum and that the processes are tailored
to the team’s needs.

Product Backlog—The list of features waiting to be implemented is a good
measure of progress as it grows and shrinks during the project.

Scrum Teams—The development team freely commits to the goals of the
project and to the goal of each Sprint.

Daily Scrum Meetings—Short (15 minute) stand-up team meetings to syn-
chronize everyone’s work are held each day.

Sprint Planning Meeting—A meeting of all stakeholders to establish the
goal and backlog for a Sprint is the first step of each Sprint.

Sprint—A 30-day increment of the project that has a goal and a backlog
of features to be implemented.

Sprint Review—A meeting of the project stakeholders to examine and dis-
cuss the results of a Sprint is the last step of each Sprint.

After considering Scrum’s practices, how appropriate do you believe this
Agile method would be for your organization?

The Agile Methods in your organization
We have just stepped through the six Agile Methods and examined the
extent to which you believe each would work in your organization. What
final conclusion does this bring you to?

◗ Are you ready to adopt one of the Agile methods?

◗ Have you identified a specific Agile Method that would be best for your
organization?

◗ Do you need to customize one of the Agile methods to meet your
organization’s constraints and needs?

◗ Would you have to “roll your own” Agile method by choosing from the
Practices of the various Agile methods we have explored?

◗ Would an Agile method not make sense for your organization at this
time?

The decision about adopting an Agile method is not an easy one because
there are so many variables to consider and there is a wide spectrum of
options available to you. Take your time to settle on a decision that you
believe is best for your organization.

The Agile Methods in your organization 205

Marketing your conclusions in your organization
Although making your adoption decision is difficult, it is not the end of the
matter. You will need to get input and support for your decision from the
knowledgeable and influential people in your organization. This includes
the managers above and below you in the hierarchy, your peer managers
(to the extent they are affected by the changes), and members of your tech-
nical teams.

Changing the way an organization works is never as straightforward as
we expect it to be. Even if you are the most senior executive in the com-
pany, simply decreeing “thou shalt” goes only so far. People will raise con-
cerns and questions that you have not yet considered. And there will be
resistance to the change from people whom you expected would embrace it.
For these reasons (and many more), our first step is to “market” our deci-
sion to everyone in the organization.

Just as with marketing a new product, marketing a change to an organi-
zation involves identifying who is the “buyer” and what is the “value propo-
sition.”

◗ The “buyer” in any organizational change effort is each and every per-
son who must change his or her behavior as a result of the change.
Adopting an Agile method will result in a large number of “buyers,”
including members of management, the technical staff, and even
some individuals at your customers’ organizations. You must take
care to address each buyer in a way that will generate interest in and
support for the new Agile method.

◗ The “value proposition” describes the way in which each buyer will
derive value from adopting the change. You can postulate the value
that you expect each buyer will derive, but only each person can decide
what is of value to him or her. So identifying the true value proposi-
tion for each person will involve a bit of “market research.”

This “market research” takes the form of seeking their input on the deci-
sion. Even if you already have made up your mind, the best approach is to
present the decision as a work-in-progress. “I believe this is what we should
do. This is why I believe this. What do you think about it? Did I miss any-
thing in my analysis?”

By asking for their input in this way, you will do several things.

◗ First, you will give them a stake in the decision. Rather than some-
thing that was forced on them, it is now a decision into which they
had input. (You do not have to do what they say for them to feel that
they had input.)

◗ Second, you will undoubtedly learn a lot. It is unlikely that you have
thought of everything in your analysis, so the questions and concerns
people raise could be important points for you to consider. You may
even find that you will change your decision in some way due to this

206 Making the Adoption Decision

input. (This is good, because it results in a better decision for the organi-
zation!)

◗ Third, you will learn about each person’s value proposition. You will
see if your assumptions about what is of value to them is correct, and, if
not, you will get important insight into their values.

◗ Then, because of the first three points, you will gain more of their
support for the decision. Because they felt involved, provided input
that you found valuable, and gave you an understanding of how they
might find value in it, they will embrace the change more readily than
might have been the case.

This “marketing” of your decision is not magic. It will not prevent prob-
lems or resistance to the changes that must be made. But it will result in a
much higher likelihood that your decision will be the right one and that it
will be accepted in the organization.

Agreeing together on an action plan
The final step is to create an action plan for adopting the new Agile method.
This plan fleshes out all the steps you must take to move from where you
are (having just made a decision) to successful implementation of an Agile
method. As with “marketing” the change to the organization, this plan is
best created with the participation and input of the people who will be
implementing it.

Refer to Chapters 24 and 25 for suggestions about all the things that this
plan should take into consideration. Then work with all the stakeholders in
the organization to come up with an action plan that they can support and
execute against. Then all of you can work together to make your vision of
adopting an Agile method a reality.

Agreeing together on an action plan 207

.

Adopting New Practices

Once the decision to adopt a new way of working has been
made, all that is left is to “just do it,” right? Yes, but this phase
of your journey may turn out to be the most challenging of all.
At this point, you will move beyond words and ideas and con-
cepts, to begin to change what people actually do on a daily
basis. Even when support for such a change is strong, actually
following through with it can still be difficult.

In this chapter, we discuss all the activities that will be
required to be successful in making the changes you have
decided to make. We will discuss customizing your chosen
Agile method to the specific needs of your organization, train-
ing the people who will be affected by the change, running
pilot tests to determine how well the new method performs,
and finally rolling the change out to your entire organization.
But first, we will address an overarching topic, probably the
single most important activity of them all: communication.

Three critical things to do:
communicate, communicate,
communicate
With all the activity that will be going on, and with so many
people being affected in one way or another, the success of
your change effort will hinge on how well, and how often, you
share information with everyone who eventually will be
affected by it. People need to know that the effort is real, what
it is all about, why it is happening, and how it will affect them.
In addition, they will need to hear about it again and again so
that they remember it is happening, see that progress is being
made, see the benefits that have accrued so far, and anticipate
how they will next be affected.

209

24
Contents

Three critical things to do:
communicate, communicate,
communicate

Crafting your custom Agile
Method

Training those who will be
affected

Pilot testing the new method

Rolling it out to the whole
organization

C H A P T E R

1. Communicate while making the decision.

The first phase of communication was discussed in Chapter 23, when we
talked about marketing the decision to the organization by soliciting peo-
ple’s input to it. This phase is critical to the organization’s initial acceptance
of the change because it gives everyone a sense of ownership in the deci-
sion. When I have been asked to provide my opinion on something, I am
more likely to support the resulting decision, even if some of my suggestions
were ultimately not used.

This phase of communication lays the groundwork for successful imple-
mentation by providing two key ingredients:

◗ Information you may not have considered (resulting in a better
decision;

◗ Buy-in to the decision by the people who were involved in making it
(the people who will be key in making it work).

2. Communicate about the decision you made.

The second phase of communication is to announce that the decision has
been made. This works best as a big splashy event, much like the announce-
ment you might make about a product your company will soon put on the
market. Like a big marketing splash, the purpose of such an event is to gen-
erate buzz within the organization and get everyone excited about the
change. To achieve this, you may want to include in the event things such
as these:

◗ Make it special. If your company has a way of celebrating special
events, then use a similar mechanism for this announcement. If you
have no such traditions, then develop a unique approach, something
that the organization has never done before. Maybe hold a two-hour
picnic lunch in the parking lot (provide the food from company funds
and count the extra hour as regular work time for everyone who
attends).

◗ Include everyone. Anyone who will be even marginally affected by the
change must be invited. And since it may be difficult to imagine all the
secondary impacts of the change, you should err on the side of inviting
people who will actually not be affected by it. It may even make sense to
invite everyone in the department, the division, or the company. That
way you will not miss anyone, and everyone will know that this really is
a big deal!

◗ Express enthusiasm. You have made this decision because you believe it is
important to the organization. Wear your enthusiasm on your sleeve.
Let your excitement show. Talk about it, both in your formal address to
the staff and in your casual conversations with them. Try to excite
enthusiasm for the change in everyone else.

210 Adopting New Practices

◗ Explain why. You have just spent significant effort coming to a well-
reasoned conclusion. Make it clear to everyone what your reasoning
was, so they can join you in supporting the decision. Will it solve prob-
lems? Will it make the company more competitive? Will it shorten
development time? Will it reduce overtime? Will it improve profitabil-
ity? Will it provide competitive advantage? Will it please shareholders?
Is it responsive to the staff’s suggestions? Will it make their jobs more
secure? Will it keep the company in business? Provide them with as
many reasons as possible to evoke their support for the decision.

◗ Tell them what to expect. Outline the plan to the extent that it is known,
and explain what you expect will happen as the effort progresses. Pro-
vide a reasonable level of detail as it is currently known, and if you have
yet to complete the detailed planning, tell them when the plan will
finally be available. Do not get bogged down in excessive detail; provide
a general picture of the effort and let them know where they can get
more detail if they so desire.

◗ Allay their fears. Making any significant change will raise questions and
fears in people’s minds. You may already know what some of those
fears are, so directly address them now. But you most assuredly do not
know about all of them, so tell them how they will be involved in the
change process, where they can get more information, where to
express their fears, and how to provide suggestions for the effort. Most
critically, make it clear that you intend for this change to be beneficial
for everyone, and you want to address all concerns they might have
about it.

◗ Celebrate. Make the event fun and memorable for everyone. You want
them to have a positive impression of the change that will be taking
place, so start it off with a positive experience.

◗ Document the event. Create a lasting record of the announcement event.
(An intranet Web page with pictures and the text of all speeches
would be a great way to do this!) This will provide a touchstone for
those who attended — a place to which they can return whenever
they want to relive the event and remind themselves about why the
change effort is being done. But this also provides a way for those
who could not attend the event to experience some of the celebration
and read about what is happening and why. This will be invaluable
for those who were traveling or out sick the day of the event, or for
people who are hired after it takes place.

3. Communicate regularly about the status of the change
effort.

If you allow any significant period of time to pass without talking about the
change effort, people will either forget about it altogether or begin to won-
der if it has been dropped or if some other priority has overtaken it in your

Three critical things to do: communicate, communicate, communicate 211

mind. Therefore, you should establish a schedule (e.g., monthly) and pro-
vide status updates on that regular schedule.

These status updates need not be elaborate. They should communicate
where the effort stands against the plan. And if the plan or any other signifi-
cant element of the effort has been revised, the pertinent information
should be shared.

You should post the status information along with any new plans or
other updates in the same way you documented the original announce-
ment. Provide a place where any interested person can go to find the most
current information about the effort.

When something important takes place in the change effort, do not wait
until the next scheduled status update to tell everyone about it. Celebrate
every victory and savor every step forward. And by all means, praise the
effort that each contributor has made, and thank key individuals for their
actions. If the progress is significant, show your excitement and seek to
rekindle that excitement among the staff.

When you achieve a critical milestone (and especially at the end of the
effort), celebrate again. Hold an event like the original announcement and
thank all the contributors for their contributions to the effort’s success. Be
liberal in your praise for work well done, and make it clear that you are
celebrating a significant milestone for the organization.

Crafting your custom Agile Method
Even if you decide to implement one of the Agile methods “off the shelf,”
there will still be ways you will have to customize it to meet your organiza-
tion’s needs. This customization must be done carefully to enhance the
method’s likelihood of success in your organization.

Customization will require the participation of a number of key players.

◗ An expert. You will want to involve someone who has experience with
applying the method you have chosen in a real organization. This per-
son will bring his or her prior experience to the project and provide a
perspective that most of those who are involved will lack. Whether
this person is an external consultant, a newly hired person, or an
existing employee, his or her active participation in the effort is
critical.

◗ Management. Both you as the sponsoring manager and the other
affected managers will need to be involved to ensure that the customi-
zations that are implemented will work with the organization’s con-
straints. In addition, each of you must verify that he or she is ready and
able to change the management activities as required by the new way of
working. (This is not an insignificant point, so all the managers must
consider it carefully!)

212 Adopting New Practices

◗ Technical staff. Naturally, the people who will be most strongly affected
by an Agile method will be the teams of technical people who develop
the software. Appropriate members and opinion leaders must be
involved in ensuring that development projects will operate as effi-
ciently as you hope they will.

◗ Customer. It is unusual to include any customer personnel in an inter-
nal change effort. But in this case, a customer representative must be
involved because adopting an Agile method will affect them as well.
You need to be sure that the ways in which your relationship and
interactions with your customers will change will be acceptable to
them.

Although the customization step is important, everyone who is involved
must keep in mind that it represents only the beginning of the process. The
Agile method as you decide to implement it will be pilot tested (see the next
section), and many changes will likely be adopted as a result of what is
learned. The purpose of the customization step is merely to provide a viable
method to pilot test.

When the customization step is complete, celebrate the milestone by
announcing to the organization that this important activity was successful
and that the pilot test will soon begin. Identify the pilot group(s) and give
them credit for the effort they will expend in this test of the new method.
You are making progress; celebrate this first significant step!

Training those who will be affected
Before the pilot test can begin, all the individuals who will be involved must
be trained in the new method. Although the details of the training will differ
depending on each person’s role in the Agile method, this training should
follow a similar pattern for everyone:

1. Reiterate a summary of the information from the initial announce-
ment (discussed at the beginning of this chapter). Provide context for
what they are about to learn, and show where the change effort
stands against the plan. Make it clear that the training is for a pilot
test, and that you expect the participants to make suggestions for
improvements as a part of that test.

2. Provide a high-level overview of the development process that will
be used. Contrast it to the existing process, and highlight what will
change and what will remain the same.

3. Point out where the people who perform each role are involved in
the new process. What will they do? What information will they
handle? What are their responsibilities and authority? With whom
will they interact in doing these things?

Training those who will be affected 213

4. Instruct each person in the details of his or her new responsibilities.
Give them step-by-step instructions, explain why each step is impor-
tant, and answer every question they may have.

5. Assure them that an appropriately knowledgeable individual will be
available to answer their inevitable questions and provide guidance
as they perform their new tasks the first few times.

6. Give everyone a written copy of all that they have learned in the
training. Provide reference materials that will help them become
proficient in their new tasks as quickly as possible.

Then, begin to use the new method immediately after the training.
Allow people to gain practical experience with using the information they
received before they can forget it.

Pilot testing the new method
A successful pilot test will involve many activities.

Just-in-time training

It is often best to provide “just-in-time” training in conjunction with the first
trial of an activity. For example, if you are adopting XP, then the training
session on the Planning Game may be done as part of the first Planning
Game that the pilot team holds. The trainer would begin by providing
detailed explanations about what the team will be doing, and then he or she
might observe or actively coach the Planning Game meeting. Finally, the
trainer could provide feedback about the parts of the meeting that went well
and those that could be improved the next time.

Expert on call

As the organization uses the new method, a knowledgeable person should
regularly touch base with all those involved to see how the method is work-
ing out, provide encouragement in its use, and answer questions and pro-
vide pointers on its use. This person should also encourage individuals to
think about ways in which the method could be improved and submit any
such ideas for consideration. A key source of these improvement ideas
would be the retrospectives or postmortem reviews that the Agile projects
should be holding on a regular basis.

Celebrate project milestones

As each pilot project achieves a milestone in using the new method, cele-
brate their achievement. Tell the organization about the progress they are
making and discuss any benefits they have experienced. Use each success to
reinforce the organization’s commitment to the new method.

214 Adopting New Practices

Improving the Agile Method

As suggestions for improvements are made, be sure they are captured and
recorded. On some regular basis, a group of people should deliberate about
each one and select those that merit implementation. Some changes should
be tried out on the ongoing pilot projects. But others (the more major ones)
should wait until the pilot is finished to avoid disrupting the project.

At the end of the pilot test, the organization must decide on the next
steps to take, based on the experiences of the pilot project(s). Refer to Chap-
ter 25 for suggestions about the things you may want to consider in making
this decision. You may decide to take actions like these:

◗ Roll the new method out to the whole organization as it was tested, or
with minor changes.

◗ Make some major changes to the method and run another pilot test
(after the necessary re-training).

◗ Change direction (e.g., switching to a different Agile method) and back-
track to the customization phase.

◗ Abandon the change effort altogether.

Rolling it out to the whole organization
Successful completion of the pilot test phase means you are ready to use the
new method in all the organization’s software projects. This calls for cele-
bration of yet another important milestone! All the preliminary work is
done; we are ready to embrace our new method completely!

This rollout phase looks very much like the training and pilot test phases
we just discussed, but it is done on a much larger scale and may have to be
phased over time (depending on the size and scope of the organization). The
first step is to plan the rollout. It is unlikely that all your software groups will
be ready and able to adopt a new method at the same time, so you must
establish a schedule for when the method will be rolled out to each group.
This plan must provide for training, coaching, and all the other support that
each project will require in a way that will avoid overloading those who
provide these services.

The next job is to rework the training from the training phase. The first
part of the training (setting the context for it) should be retained, but, natu-
rally, it should be updated to indicate the actual status of the change effort.
(After the rollout phase is complete, this part of the training can be removed
or significantly modified to provide the appropriate context for new
employees joining an organization that uses an Agile method.) The remain-
der of the training may need to be revised to make it more effective or
accommodate changes to the method.

As each software group is ready to switch to the new method, they must
be trained, coached, and supported in much the same way as the pilot proj-
ects were (described in the previous section). As with the pilot projects,

Rolling it out to the whole organization 215

these groups should also be encouraged to think about how the method can
be improved to better meet their needs. As we will discuss at the end of
Chapter 25, continuously improving your Agile method will be the key to
ensuring that is remains effective.

Finally, when all the projects have adopted the new method and are
using it to develop software, you are ready for your final celebration. As we
said in step 3 of the Communication section, this is a time for real celebra-
tion. The organization took on an important and difficult project to change
the way it works, and that project has now come to fruition. Celebrate this
major success. You and your entire staff deserve it!

216 Adopting New Practices

Evaluating the Effects of Your
Agile Method

This final chapter discusses the things you should take into
consideration as you evaluate the effectiveness of the Agile
method you have adopted. As suggested in Chapter 24, you
may want to use these criteria at the end of the pilot test phase
to decide if you will go forward with rolling the new method
out to the whole organization. But you should also perform
this evaluation after the Agile method has been integrated into
how your organization works, as well as on a regular basis
thereafter.

Project performance
The most important criterion for success is the new method’s
effect on how well your projects perform. There are a variety of
ways in which project performance can be measured, and for
each organization, each one holds a different significance. You
must decide which of these performance questions is most
important in your organization.

How has your adoption of an Agile method affected these
measures?

◗ Schedule performance. (See equation in Figure 25.1.) Has your
Agile method helped your projects deliver software more in
line with scheduled expectations? If you adopted time box-
ing, has this mechanism worked well for you? Have any of
the Agile practices been particularly helpful or problematic

from a schedule perspective?

◗ Budget performance. (See equation in Figure 25.2.) Has your
Agile method helped your projects stay within their budget
constraints? Have any of the Agile practices been particularly
helpful or problematic from a budget perspective?

217

25
Contents

Project performance

Management acceptance

Customer relationship

Team satisfaction

Continuously improving your
Agile Method

C H A P T E R

◗ Quality performance. (See equation in Figure 25.3.) Has your Agile
method improved the quality of the software your projects produce?
Has independent testing (or customer acceptance testing) encountered
fewer or less serious problems? Have problem reports from the field
been reduced in number or severity? Have any of the Agile practices
been particularly helpful or problematic from a quality perspective?

◗ Cycle time. (See equation in Figure 25.4.) Has your Agile method
reduced the time your projects require to transform a concept into
delivered software? Are your projects able to move quickly toward a
good solution? Have any of the Agile practices been particularly helpful
or problematic from a cycle-time perspective?

◗ Productivity. (See equation in Figure 25.5.) Has your Agile method
improved productivity on your projects? Are your technical staff
members wasting less time in administrative work and rework? Are

218 Evaluating the Effects of Your Agile Method

Schedule performance

SP 1.00 –> Schedule overrun
SP 1.00 – Exactly on schedule
SP 1.00 – Schedule underrun

=
<

SP =
Planned project length in weeks

Actual project length in weeks

Figure 25.1 Schedule performance equation.

Budget performance

BP 1.00 – Cost> overrun
BP 1.00 – Exactly on budget
BP 1.00 – Cost underrun

=
<

BP =
Planned project cost

Actual project cost

Figure 25.2 Budget performance equation.

Quality performance

*Possible size measurements:
-Lines of code
-Function points
-Web pages

QP =
Size of product*

Defects reported in 1st year of use

Figure 25.3 Quality performance equation.

they able to produce more software with the same resources? Have
any of the Agile practices been particularly helpful or problematic
from a productivity perspective?

Which measures of project performance are most important in your
organization? Have those particular measures benefited from your Agile
method? If not, are there actions you can take to bring your projects’
performance more in line with your expectations and the organization’s
needs?

Management acceptance
How well have you and the rest of the management team adjusted to the
new way of running projects? Are you and they able to understand the
status of projects on a timely basis? And is appropriate information available
to be able to take corrective action when things are going wrong?

◗ Have project teams embraced their new empowerment and shown
the ability to self-organize and self-manage?

◗ Have managers been willing to cede authority to project teams and
allow them to self-manage?

◗ How well has incremental planning worked? Do project plans evolve
appropriately over time?

Management acceptance 219

Cycle time

*Possible size measurements:
-Lines of code
-Function points
-Web pages

CT =
Size of product*

Actual project length in weeks

Figure 25.4 Cycle time equation.

Productivity

*Possible size measurements:
-Lines of code
-Function points
-Web pages

Pr =
Size of product*

Actual project effort in person-weeks

Figure 25.5 Productivity equation.

◗ Does defining requirements only at a high level provide an appropriate
basis for managing the project? Have requirements changes been a
destabilizing factor?

◗ Has incremental development worked well? What has been the effect
of the short cycles or time-boxing on your ability to manage projects?

◗ Has the bias toward face-to-face communication and away from docu-
ments had a positive or negative impact on project management?

◗ Are staffing levels easier to manage? Has project demand for staff effort
leveled off? Are your people working less overtime?

◗ Have your management tools and processes worked well with the new
methods? If you eliminated or reworked some of them, have there been
any negative effects?

◗ Have regular project retrospectives or postmortems provided insights
into how management practices can be improved?

Have the new management structure and mechanisms produced the
benefits that had been anticipated? Are there ways in which they can be
made more effective in the organization?

Customer relationship
How have your organization’s relationships with customers changed? Has
the Agile method resulted in better working relationships?

◗ Have your customers been willing to engage in the additional interac-
tion with the projects that may have been required? Have they expe-
rienced benefits from doing so?

◗ How comfortable are your customers with the idea of defining require-
ments only at a high level, and then working out the details during the
project?

◗ How have your customers reacted to the changes in your organization’s
willingness to embrace requirements changes throughout the life of the
project? Have you seen an increase in the volume of changes?

◗ Have your customers accepted the incremental planning model? Are
they comfortable with the level of planning being done on your
projects?

◗ Has incremental development, short development cycles, or time-
boxing provided benefits to your customers?

◗ Do your customers like being able to view and provide feedback on
product increments so often?

◗ Have your customers noticed improvements in the quality of the pro-
grams you deliver to them?

220 Evaluating the Effects of Your Agile Method

◗ Have regular project retrospectives or postmortems provided insights
into how your customer relationships can be improved?

Have the changes you made resulted in happier customers and better
customer satisfaction?

Team satisfaction
How have your technical personnel adapted to the new working
environment?

◗ Have they embraced the opportunity to self-organize and self-
manage? Have they done a good job of taking control of their projects
and making them work well?

◗ Has your more collaborative management model motivated them to
greater ownership of their projects? (This assumes your managers have
successfully adopted such a model!)

◗ Has incremental planning helped them maintain control over their
projects?

◗ Have they embraced incremental development, short cycles, time-
boxing, and continuous integration and exploited them for their proj-
ects’ benefit?

◗ Do they find that closer interaction with the customer has helped them
do a better job?

◗ Does the customer’s evaluation of each increment help the team pro-
duce a product that satisfies the customer?

◗ Has defining requirements only at a high level, then working out the
details during the project proven to be effective for them?

◗ Has more face-to-face communication and fewer documents helped
them be more efficient?

◗ Have they worked less overtime?

◗ Have the tool and process changes (e.g., CM) been helpful to them?

◗ If they have used Pair Programming or a new code ownership model,
have these things worked well?

◗ Has refactoring been used effectively? Has it resulted in better software?

◗ Have they accepted greater responsibility for the quality of their soft-
ware? Have they become effective testers of their own code?

◗ Have regular project retrospectives or postmortems provided insights
into how your teams can become more effective?

Have all these things contributed to greater job satisfaction among your
technical staff?

Team satisfaction 221

Continuously improving your Agile Method
Adopting a new Agile method has (hopefully) produced many benefits for
your organization. But those benefits do not mark the end of the road.
Regardless of how positive your experience has been, there remain ways in
which your development processes can be improved. There are opportuni-
ties to improve the satisfaction of your customers, managers, and staff. You
can improve the quality of the software you produce. And there are many
ways that you can reduce costs and improve schedule performance.

Establishing a culture of continuous process improvement is not difficult.
Holding retrospectives on your projects on a regular basis is an important
start, because they tend to lead your staff to think about the processes they
use, and how to make them better. But you must build on that start by
embracing what you learn through them. Retrospectives that result in no
improvements will become extinct very quickly. But using them to make
life better for your project teams will ensure that they continue to be a
source of great ideas.

The other part of a culture of continuous improvement lies in how you
react to disasters. Our normal reaction is to try to find out who was at fault,
assign blame, and fix the person (or fire them). A different approach will
yield much sweeter fruit. In this approach, you focus not on the people, but
on the processes. Find out which process was at fault and fix the process.
This way, each disaster will result in a smoother-operating organization
with fewer opportunities for things to go wrong.

Whether you have adopted a new Agile method, decided to adopt a
more traditional method, or even stay with what you currently use, the
attention you have paid to the questions raised in this book will yield big
returns. And as you continue to pay attention to these things, your software
development projects will grow more and more effective.

222 Evaluating the Effects of Your Agile Method

Introduction

These appendixes provide information about each of the Agile
Methods that the reader may find useful.

The first two appendixes provide the full text of the Agile
Manifesto and its underlying principles. They include some
clarifying commentary on those topics, along with references
where the interested reader may find additional information.

◗ Appendix A: The Agile Manifesto.

◗ Appendix B: The 12 Principles of Agile Methods.

Each of the remaining appendixes provides a high-level
description of one of the Agile Methods. These descriptions are
designed to provide a broad understanding of each method and
the practices that comprise it. Each appendix also includes ref-
erences where the interested reader may find additional
information.

◗ Appendix C: Adaptive Software Development.

◗ Appendix D: Dynamic Systems Development Method.

◗ Appendix E: Extreme Programming.

◗ Appendix F: Feature-Driven Development.

◗ Appendix G: Lean Software Development.

◗ Appendix H: Scrum.

A P P E N D I X

.

The Agile Manifesto

This appendix provides the full text of the Agile Manifesto
along with some commentary and references where the inter-
ested reader may find additional information.

The Agile Manifesto
We are uncovering better ways of developing software
by doing it and helping others to do it.
Through this work we have come to value:
Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.
That is, while there is value in the items on the right,
we value the items on the left more.

The Agile Manifesto provides a good focal point for examining
the Agile methods and understanding the basis on which they
were built. It was developed in February 2001 by 171 of the
leading developers and users of Agile methods.2 These people
met, according to Alistair Cockburn, “to see whether there was
anything in common among the various light methodologies”
[1]. The Manifesto documents the common values that those
people identified.

The concluding sentence in the Manifesto is important. The
authors of the Manifesto were not saying that processes, tools,
documentation, contracts, and plans are worthless. To the con-
trary, each Agile method addresses these items (with the

225

A
Contents

The Agile Manifesto

A p p e n d i x

1. The 17 people were Kent Beck, Mike Beedle, Arie van Bennekum, Alistair

Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim

Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C.

Martin, Stephen J. Mellor, Ken Schwaber, Jeff Sutherland, and Dave

Thomas.

2. The Agile methods represented were ASD, Crystal, DSDM, XP, FDD, Scrum,

and “pragmatic programming.”

exception of contracts) and specifies how they should be managed and used.
Rather than discounting the value of those items, the Manifesto attempts to
elevate the value of other things, which the authors felt are important but
overlooked.

The four statements of the Agile Manifesto are simple (if not overstated).
The first and third are about communication. They focus on the fact that
because people develop software, communication among those people is a
primary success factor. The second and fourth statements are pragmatic
views of what constitutes success in a software project; it must produce soft-
ware that meets the (changing) needs of the ultimate users.

The four statements of the Agile Manifesto are quite high level and
abstract. They leave a lot of room for interpretation and do not provide
much in the way of guidance. The 12 principles (enumerated and discussed
in Appendix B) flesh out the ideas expressed in the Manifesto. They provide
a much more concrete view of the types of activities that comprise the vari-
ous Agile software development methods.

For more information about the Agile Manifesto, visit www.Agile
Alliance.org.

Reference

[1] Cockburn, A., Agile Software Development, Boston, MA: Pearson Education, Inc.,
2002, p. 215.

226 The Agile Manifesto

The 12 Principles of Agile
Methods

This appendix provides the full text of the 12 Principles of Agile
Methods, along with some commentary and references where
the interested reader may find additional information.

These 12 principles were documented during the February
2001 meeting during which the Agile Manifesto was written.
(Refer to Appendix A for more information on that meeting.)

The Agile Manifesto (quoted and discussed in Appendix A)
is quite high level and abstract. It leaves a lot of room for inter-
pretation and does not provide much in the way of guidance.
The 12 principles discussed in this appendix flesh out the ideas
expressed in the Manifesto. They provide a much more con-
crete view of the types of activities that comprise the various
Agile software development methods.

The 12 Principles of Agile Methods

Our highest priority is to satisfy the customer through early and con-

tinuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile

processes harness change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a cou-

ple of months, with a preference to the shorter time scale.

Business people and developers must work together daily throughout

the project.

Build projects around motivated individuals. Give them the environ-

ment and support they need, and trust them to get the job done.

227

B
Contents

The 12 Principles of Agile
Methods

Agile Principles

A p p e n d i x

The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity — the art of maximizing the amount of work not done — is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

Few of us would argue that satisfying the customer is unimportant. The dis-
tinctive feature of this principle is the means by which the Agile methods
pursue that goal.

“… through early … delivery of … software.” Agile methods tend to shun
long upfront requirements development and design activities. Rather, after
laying an appropriate foundation (“appropriate” being defined differently
for each method), they seek to develop working software as quickly as pos-
sible. In essence, these methods replace the traditional requirements and
design phases of development with early proof-of-concept activities. The
Agile methods look very much like prototyping projects but with the dis-
tinction that the resulting product is delivered for use, instead of being
thrown away.

“… through … continuous delivery of … software.” Agile methods all
assume an incremental development strategy. They seek to mitigate risk by
delivering increments quickly and often (every couple of weeks to every
couple of months) so that the customer can validate the project’s decisions
and assumptions and verify the utility of the resulting software.

“… through … delivery of valuable software.” Most Agile methods allow
the customer to define what is most valuable and give the customer a sig-
nificant role in establishing the order in which features are delivered.

Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s
competitive advantage.

This is the core principle on which the Agile methods are built and the rea-
son why the name “Agile” was adopted. This principle acknowledges the

228 The 12 Principles of Agile Methods

fact that change is inevitable and establishes the philosophy that encourag-
ing regular change is an advantage of the Agile methods for their customers.
Rather than trying to suppress or control change, the Agile Methods are
designed to allow—even encourage—change throughout the project’s life.

Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter time
scale.

This principle expands on the “continuous delivery” phrase from the first
principle. It is explicit that the increments on Agile projects should be as
short as possible and goes so far as to say that a week or two is not too short
for an increment. It also sets an upper limit that might be surprising to
many, since development phases of fewer than three months are generally
not seen.

Business people and developers must work together daily
throughout the project.

The Agile methods all require collaboration between the development team
and the other stakeholders in the project. A most crucial role in Agile proj-
ects is given to the customer (or the ultimate user of the system being devel-
oped). But all other stakeholders (identified by these technophiles as
“business people”) have important roles and are expected to interact with
the team on a regular basis.

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

The Agile methods are all built on the assumption that development team
members are all competent, motivated, supported by the organization, and
empowered to do their jobs. At the same time, each method builds an envi-
ronment that is intrinsically motivating to the technical staff and has the
natural effect of building each staff member’s capability to self-motivate and
self-manage.

The most efficient and effective method of conveying
information to and within a development team is face-to-face
conversation.

This is the principle that explains why the Agile methods tend to have few
written documents. They all favor face-to-face communication as the pri-
mary means of sharing information, often supplementing it with tools such
as whiteboards. The results of communication are often documented in the
form of “information radiators,” which are visually available postings of
information to which people can refer whenever it is needed.

The 12 Principles of Agile Methods 229

Working software is the primary measure of progress.

This principle is another way in which the Agile methods strike against
documentation. Most software projects will identify the acceptance of a
requirements or design specification as a milestone showing significant
progress. Many Agile methods (though not all) reject that idea. They tend to
place little value on the project’s interim products and focus almost entirely
on the resulting software. Of course, since working software is delivered so
often on an Agile project (see the third principle), it becomes a reasonable
measure of progress.

Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

In many organizations, overtime is the norm, and in some it is routinely
required. The Agile methods rebel against those norms and argue instead for
“sustainable” schedules (generally meaning something in the vicinity of 40
hours per week). And by this they do not mean to plan for 40 hours per
week, then work 80; rather, they mean to change the expectation of what
can be accomplished so that overtime is rare. But as this principle states, the
nature of the Agile methods tends to level out the demands on the project
team so that a more sustainable pace is naturally maintained.

Continuous attention to technical excellence and good design
enhances agility.

This is perhaps the most valuable principle of the Agile methods. Each Agile
method has a strong focus on ensuring that the quality of the technical work
is maintained at a high level. The different methods do this in different
ways, but each has a strong quality component.

This principle provides a refreshing counterpoint to the all-too-common
perception that the developers’ job is to write the software and someone
else is responsible for making sure it works. In the Agile methods, develop-
ment teams take on the primary responsibility to be sure that what is deliv-
ered is correct and that the software satisfies the customer’s needs.

This focus does not mean that independent verification and validation is
unnecessary; rather, it means that the software that is delivered for IV&V
will be of higher quality and generally more ready for final testing.

Simplicity—the art of maximizing the amount of work not done
—is essential.

Before the Agile Manifesto was written, the methods that fall under the
“Agile” umbrella were generally referred to as “light” methods. The term
“light” was dropped out of recognition that certain application domains
require heavier processes (e.g., developing software for safety-critical

230 The 12 Principles of Agile Methods

systems). Even so, the Agile methods always stress using the lightest possi-
ble processes.

The best architectures, requirements, and designs emerge
from self-organizing teams.

Self-management is a hallmark of Agile methods and a backlash against the
command-and-control methods used to manage many software projects.
There is growing evidence that self-managed teams are in fact quite
effective.

But moving toward self-managed teams requires significant changes
throughout the organization. The most significant change occurs in the
ranks of management, where managers’ roles must evolve toward coaching
and leading, as engineers’ roles grow to include self-management. These
changes are difficult to effect and require that many people learn new skills
and behaviors, but they can have significant positive results.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

The concept of retrospective or postmortem analysis is well known in the
industry (if not widely practiced). The Agile methods adopt this important
activity as their primary means of improving their processes. Some Agile
methods take this to an extreme by doing these analyses at the end of each
increment of development, resulting in lessons learned and process
improvements many times each year.

Agile Principles
The 12 Principles of Agile Methods provide a much more concrete picture of
the shared intent of those methods than one can gain from the Manifesto
alone. From these principles we can see that Agile methods embrace a
number of ideas that are significantly different from those embodied by
more traditional methods.

How well each of these principles fits into the context of your organiza-
tion is an important decision for you to make. It seems clear that some prin-
ciples would be worth the effort and organizational pain required for
adoption. Others may be of more questionable utility. These adoption deci-
sions must be based on the needs and constraints of your organization, and
making the decision is the focus of this book.

For more information about the 12 Principles of Agile Methods, visit
http://www.AgileAlliance.org.

Agile Principles 231

.

Adaptive Software Development

Jim Highsmith’s ASD arose out of his understanding of Com-
plex Adaptive Systems theory. He views a software project
team as a complex adaptive system that consists of agents
(team members and other stakeholders), environments
(organizational, technological, process), and emergent out-
comes (the product being developed).

At the highest level, ASD is based on a collaborative learn-
ing cycle, as shown in Figure C.1. While most of us would label
the three components of this model “Plan,” “Build,” and
“Review,” Highsmith chose words that fit more closely with his
understanding of how Complex Adaptive Systems emerge:
“Speculate,” “Collaborate,” and “Learn.”

The Adaptive Life Cycle
In Highsmith’s Adaptive Life Cycle (shown in Figure C.2), we
see how his Adaptive Development Model expands into a soft-
ware development life cycle.

ASD’s Adaptive Life Cycle is composed of five steps. The ini-
tial step of “project initiation” is done once at the beginning of
the project, and the final step of “final Q/A and release” is done
once at the end.

The other three steps (adaptive cycle planning, concurrent
component engineering and Quality Review) form the “Learn-
ing Loop” or “Adaptive Cycles” that are the heart of ASD.
These Adaptive Cycles are described as:

◗ Mission-driven—each cycle must make progress toward the
project mission;

◗ Component-based—more centrally focused on building
things than on performing tasks;

◗ Iterative—going through the learning loop repeatedly is the
key to progress;

233

C
Contents

The Adaptive Life Cycle

ASD’s conceptual framework

ASD

A p p e n d i x

◗ Time-boxed—the entire project as well as each cycle of the project is
completed within a prescribed time period (with the developed func-
tionality expanding or contracting to fit);

◗ Risk-driven—focusing on the highest-risk items first;

◗ Change-tolerant—designed to accommodate changes in each cycle.

Speculate: Project initiation

The project’s first step in speculation is an initiation workshop, from a few
days to a few weeks in length, depending on the project’s size and scope.
During initiation, the entire project team and the project sponsor or cus-
tomer determine the project’s guiding parameters, including the project
mission, objectives and constraints, the organization for the project, the sys-
tem requirements, initial estimates of product size and scope, and key risks
to the project.

Learning Loop

The initiation practice lays the groundwork for the project’s “Learning
Loop.” This loop sees the project continually cycling from speculation to

234 Adaptive Software Development

Speculate

LearnCollaborate

Figure C.1 Adaptive Development Model. (From: [1]. © 2000 Dorset House
Publishing Co. Inc. Reprinted with permission.)

Adaptive life-cycle

Speculate Collaborate Learn

Learning loop

Project
initiation

Final
Q/A and
release

Adaptive
cycle
planning

Concurrent
component
engineering

C1
C2 3

C

Quality
review

Figure C.2 Adaptive Life Cycle. (From: [2]. © 2000 Dorset House Publishing Co.
Inc. Reprinted with permission.)

collaboration, to learning as the product emerges incrementally from the
adaptive cycles (an iterative approach).

Speculate: Adaptive Cycle Planning

The first cycle of the project begins with the speculative practice we nor-
mally call “planning.” This includes these steps:

◗ Determine the project time-box.

◗ Determine the optimal number of cycles and the time-box for each.
(Each cycle is usually established to be from a couple of weeks to a cou-
ple of months in length.)

◗ Write an objective statement for each cycle.

◗ Assign primary components to cycles.

◗ Assign technology and support components to cycles.

◗ Develop a project task list.

In each successive project cycle, Adaptive Cycle Planning consists of
revisiting and revising these things as necessary, based on progress to date
and what has been learned in earlier cycles.

Collaborate: Concurrent component engineering

This is where the real work gets done. The content of this phase of each
cycle is planned in the Adaptive Cycle Planning phase and done to the
extent possible within the planned time-box. Trade-offs may have to be
made as the end of the time-box constrains what can be accomplished. This
phase is shown as multiple boxes because team members or subteams are
generally working concurrently and integrating their work products.

Learn: Quality Review

The end of each cycle is marked by learning activities, where the project
team gains insight into progress to date and collects the information they
need to perform any replanning at the start of the next cycle. Highsmith
specifically recommends three learning activities:

Customer Focus Group Reviews—Because the objective of an ASD project is
to converge on a system that meets its business purpose, evaluating the
results of each cycle by the ultimate users is a critical learning activity.
Highsmith recommends using a joint application development (JAD)-style
facilitated workshop to collect input from the user community at the end of
each cycle. During this workshop, developers would demonstrate and
explain what has been built so far. Then users would try using the software
and give developers their reactions to it.

Software Inspections—By this, Highsmith does not necessarily mean formal
Fagan inspections (although the process he recommends is very similar to

The Adaptive Life Cycle 235

Fagan’s). The primary objective of these inspections is to detect defects in the
work products of the cycle, but they have a secondary benefit of ensuring that
each team member is familiar with all the code that has been written.

Postmortems—The final step in each cycle is the postmortem, where team
members evaluate the effectiveness of the processes they have been using as
well as the project’s performance against its plan. If they identify problems,
they also brainstorm ideas for solving those problems. The results of the
postmortem are fed back (via the Learning Loop) to the planning phase for
the next cycle.

Learn: Final Q/A and release

This phase is the final hand-off to the customer. Its focus is to put both the
product and all pertinent information about it into the customer’s hands
before disbanding the project team.

ASD’s conceptual framework
The steps in the Adaptive Life Cycle are relatively obvious. But the key to
understanding ASD lies in the conceptual framework on which it is built.

Project stakeholders as independent agents

Highsmith describes the participants in an ASD project not as managers,
employees, customers, and the like (which would connote a structure or
hierarchy), but as a collection of independent agents who collaborate to facili-
tate the emergence of the ultimate product. He paints this picture for us:

“… an ensemble of independent agents:

◗ Who interact to create an ecosystem;

◗ Whose interaction is defined by the exchange of information;

◗ Whose individual actions are based on some system of internal rules;

◗ Who self-organize in nonlinear ways to produce emergent results;

◗ Who exhibit characteristics of both order and chaos;

◗ Who evolve over time” [3].

The unique effect of this view of a project is that it establishes the techni-
cal team, management, and customer as peers to one another. Each brings
unique knowledge and perspective to the project, and none of them is
“over” the others.

The Adaptive (Leadership-Collaboration) Management Model

ASD projects are not managed; they are led. Because the project team oper-
ates as an organism, and the project results emerge in an organic way, the

236 Adaptive Software Development

project cannot be managed in the traditional “command and control” sense.
Rather, the project manager’s role is to set the direction for the project
(lead) and provide the environment in which the various agents can
collaborate.

Highsmith’s management philosophy is best understood by contrasting
the two diagrams in Figure C.3. On the top is his view of how a traditional
“mechanistic system” is managed, and on the bottom an “organic system,”
such as an ASD project.

Although the structure of these two models is almost the same, many
labels have changed, indicating a shift in the focus of activities.

◗ Along with “expected inputs,” there are also “unexpected inputs.”

◗ The system follows a “pattern” (person-oriented) rather than a
“process” (mechanistic).

◗ Along with “expected results,” there are also “emergent results.”

ASD’s conceptual framework 237

Action Controller

Expected
inputs

Expected
results

Organic management system

Mechanistic management system

Feedback
measurement

Process

Mental models
+Values
+Beliefs

+Assumptions

Unexpected
inputs

Expected
results

Emergent
results

Assessment

Learner

Pattern

Influence

Expected
inputs

Figure C.3 Adaptive Management Model. (From: [4]. © 2000 Dorset House
Publishing Co. Inc. Reprinted with permission.)

◗ The “controller” is reclassified as a “learner” (a person).

◗ The learner’s information comes from “assessment” as opposed to
“measurement.”

◗ The learner applies “mental models (values + beliefs + assumptions).”

◗ The learner exercises “influence” rather than taking “action.”

While these changes appear to be mainly semantic, their intent is to
highlight the different kind of management model that ASD advocates.

ASD
Although ASD includes a development life cycle with clearly described
steps, it seems clear that adopting ASD would require far more than merely
following those steps. Adopting ASD would require substantial learning
about the conceptual basis Highsmith has built around his understanding of
Complex Adaptive Systems theory and adoption of his Leadership-
Collaboration Management Model.

References

[1] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House Publishing, 2000, p. 41.

[2] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House Publishing, 2000, p. 84.

[3] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House Publishing, 2000, p. 15.

[4] Highsmith, J. A., III, Adaptive Software Development, A Collaborative Approach to
Managing Complex Systems, New York: Dorset House Publishing, 2000, p. 230.

238 Adaptive Software Development

Dynamic Systems Development
Method

DSDM is not specifically about software. Unlike some other
Agile methods (most notably XP), DSDM leaves the details of
software writing relatively undefined and instead focuses on
system development. As we can see in Figure D.1, the DSDM
process includes steps for assessing feasibility, studying the
business needs, and functional modeling. Programming is bur-
ied in the “Design and Build” step.

The DSDM process
Like other Agile methods, DSDM assumes an iterative life
cycle. But the DSDM process diagram in Figure D.1 can leave
one wondering exactly what is included in each iteration. The
“Functional Model Iteration” phase is pictured as four steps
that are iterated, as are the Design and Build Iteration” and
“Implementation” phases. But the Feasibility and Business
Study phases are not shown that way, and the feed-forward
(black) and feedback (gray) arrows make it unclear how the
smaller iterative phases fit into the larger picture of an iterative
system development life cycle.

The answer to this riddle is that Figure D.1 is designed to
leave these questions unanswered. The intent of DSDM is for
each project to define how the iterating will be done so that the
needs of the project are met. Presumably, the three iterative
wheels would generally be turning concurrently (though not
necessarily at the same rates), and feedback from “Implemen-
tation” and “Design and Build Iteration” to the other phases
could happen during any iteration.

The DSDM process provides a structured set of activities
with feed-forward and feedback loops, but it allows a large

239

D
Contents

The DSDM process

Nine principles of DSDM

A p p e n d i x

2
4

0
D

y
n

a
m

ic
S

y
ste

m
s

D
e

v
e

lo
p

m
e

n
t

M
e

th
o

d

Feasibility

Business study

Functional
model iteration

Implementation

Design and build
iteration

Agree schedule

Identify
functional
prototype

Review prototype

Create
functional
proto type

Create design prototypes

Identify design prototypes

Agree
schedule

Review
design
prototypes

Implement

Review
business

User approval and
user guidelines

Train
users

Figure D.1 DSDM process diagram. (From: [1]. © 2003 Pearson Education. Reprinted with permission.)

degree of freedom for any particular project to define exactly how those
activities are assembled to define the project’s life cycle.

Nine principles of DSDM
For purposes of the analysis we are doing in this book, the important part of
DSDM is not the process flow itself but the set of nine principles on which
that process was built. These nine principles, more than anything else,
define the impact that this method would have on an organization that
adopts it.

Principle 1: Active user involvement is imperative.

DSDM’s strong focus on the business purpose of the system being developed
(refer to principles 4 and 5) requires that the ultimate users of the system be
involved throughout the development project. This is because the system
attributes that will make it fit for its purpose cannot be understood well
enough in the project’s early stages to commit them to a detailed specifica-
tion (see principle 7). Therefore, the only way to make appropriate detailed
decisions and know that the evolving system is converging on the ideal of
“fitness” is to fully involve the users throughout the project.

Principle 2: DSDM teams must be empowered to make
decisions.

This principle does not give the team free reign to do whatever they wish.
Rather, it advocates that the team be delegated the authority to make most
of the day-to-day decisions as the project progresses. With active user
involvement (see principle 1), such delegation can result in the team being
able to move quickly and steadily toward system delivery. However, when a
decision that must be made falls outside the team’s authority (e.g., cost
overruns), DSDM recognizes the importance of raising such decisions to the
appropriate authority.

Principle 3: The focus is on frequent delivery of products.

This principle means that the project’s progress should be measured by the
production of tangible products, rather than by mere activity. The phrase
“delivery of products” does not refer only to the incremental delivery of a
working system to an end user (though that is included). Products in this
sense include any sort of work product that may be produced as the project
moves forward (e.g., a specification, a throwaway prototype, a design docu-
ment); and delivery could be simply within the project team. DSDM
requires that as the project moves forward, it must produce artifacts that
prove that progress is being made.

Nine principles of DSDM 241

Principle 4: Fitness for business purpose is the essential
criterion for acceptance of deliverables.

This principle (along with principle 7) is the practical manifestation of
DSDM’s belief that specifying detailed requirements upfront is not helpful.
By placing fitness for purpose above satisfaction of requirements, and by
involving users consistently (refer to principle 1), DSDM zeroes in on the
end user as the only one who can say whether or not the system as it is
evolving is acceptable.

Principle 5: Iterative and incremental development is
necessary to converge on an accurate business solution.

In an environment where it is assumed that the project’s end result cannot
be foreseen in great detail, incremental development is the best insurance
against the project going terribly awry. Incremental development is essen-
tially an exercise in trial and error, where each new increment is presented
to the user who validates (or invalidates) the direction the team has taken.
“Converge” is the key word in the principle. It is assumed that the most
direct path to the end product is not likely to be known, so DSDM engages
in constant checking and correcting of the path to bring the project to a sat-
isfactory end as quickly as is reasonably possible.

Principle 6: All changes during development are reversible.

This principle goes hand-in-hand with principle 5. If we agree that the proj-
ect is practicing trial and error, then we must expect that there will indeed
be errors from time to time. This principle gives us permission to discard
erroneous work when necessary. Surely, we will try to salvage the good
from a mistake, but we must recognize that there will be times when the
most efficient path is to discard some work and try again.

Principle 7: Requirements are baselined at a high level.

The first three words of this principle, “Requirements are baselined,” repre-
sent a departure of DSDM from some other Agile methods. DSDM recog-
nizes the importance to the project of stability in scope and direction. By
baselining (freezing) the requirements at some level, stakeholders are estab-
lishing a stable basis for the team’s work. This does not mean that this base-
line will not change; rather, it requires that serious deliberation precede any
such change so that all stakeholders understand and agree to what would
become the new requirements baseline.

The last four words, “at a high level,” is the part of this principle that
makes it agile. It leaves the details of what the requirements mean to be
worked out between the team and user (see principles 1 and 4).

242 Dynamic Systems Development Method

Principle 8: Testing is integrated throughout the life cycle.

Testing does not show up as a step in the DSDM life cycle because, like other
Agile methods, DSDM promotes a strong quality-consciousness by all team
members. Every task should include an appropriate verification or valida-
tion step like a review or test by a team member or user. This principle
works together with principles 1, 4, and 5 to continually check the project’s
progress toward its goal of a system fit for its business purpose.

Principle 9: A collaborative and cooperative approach between
all stakeholders is essential.

This last principle is little more than the sum of the first eight. The only way
that principles 1–8 can be applied successfully on a project is if all stakehold-
ers accept DSDM and their roles as DSDM defines them. If any stakeholder
does not agree (especially an influential stakeholder), then DSDM cannot
work in that environment.

Reference

[1] Stapleton, J., DSDM: Business Focused Development, London, England: Pearson
Education, 2003, p. 4.

Nine principles of DSDM 243

.

Extreme Programming

XP is probably the most widely recognized of the Agile meth-
ods. Since Kent Beck first publicized it, XP has been talked
about consistently and has come to embody the Agile methods
in many people’s minds.

XP’s 12 practices
XP’s 12 practices are its defining features. Organizations that
implement XP are adopting these 12 practices as their way of
developing software.

The Planning Game

In XP, planning (characterized as “The Planning Game”) is both
iterative and collaborative. It is iterative in that the “game is
played” at the beginning of each increment of development. It
is collaborative in that it is played among the technical team
members and the customer and management (referred to as
the business people).

During the Planning Game for each increment, the business
people and the technical people negotiate to establish an
achievable plan that best meets the business needs. During this
negotiation, the customer identifies what system features
would be most valuable to develop next, the technical team
determines the feasibility and effort for developing that func-
tionality, and management ensures that the project stays
within any relevant parameters (e.g., cost).

Small releases

An XP project team develops the system in the smallest reason-
able chunks that provide demonstrable value for the customer.
Because each increment should take only a few weeks to

245

E
Contents

XP’s 12 practices

The XP Facilities Strategy

A p p e n d i x

develop, the functionality that can be developed in that time is very con-
strained. But even when it is not feasible to actually release an increment
for use, that increment is still demonstrated for customers so they can verify
that it is progressing toward meeting their needs and appears to be usable.

Metaphor

An XP project’s Metaphor is the overall concept of the system that the team
will build. The Metaphor uses similes to describe what the system will be
like, in terms that are readily recognizable to both the development team
and customer. This very high-level vision is the XP project’s overall require-
ment, and there is an expectation that it will remain relatively stable
throughout the project.

The actual descriptions of the system features are documented separately
in “Stories.” Each feature is documented in a separate Story that describes
the feature’s essential attributes and actions. These descriptions are also
quite brief, comprising only the text that can be written on a 3x5-inch card.
The stories on an XP project tend to change dynamically as the development
team and customer learn about the product they are building and gain a bet-
ter understanding of the customer’s needs.

The Stories, taken together with the project’s Metaphor, form the
requirements from which the system is planned and developed.

Simple design

This practice is the heart of XP’s value of “Simplicity.” It advises that pro-
grammers avoid designing for the features that they “know” are coming
(even if they will be implemented within the current increment). Instead,
they must use the simplest possible design that will allow the current Story
to be implemented.

XP is based on the philosophy that this “simple design” practice will
result in less rework than designing for the future. This is because we are
often wrong when we design for the future, and when we are, the rework
can be significant. Beck sums up this practice: “If you believe that the future
is uncertain, and you believe that you can cheaply change your mind, then
putting in functionality on speculation is crazy” [1].

Test First

One of XP’s defining philosophies is “Test First.” This philosophy states that
before a pair of programmers writes a single line of code, they must imple-
ment the automated tests that will be required to verify the Story they are
about to write. In addition, customers also develop a set of functional tests
to verify the Story according to their own needs.

Coding the XP way consists of code a little, test a little, code a little, test a
little—with the test results being the programmers’ measure of progress on
the Story at hand. Work on the Story is not complete until all the tests run

246 Extreme Programming

100% clean. Successful integration is also defined in terms of these auto-
mated tests. (See “Continuous Integration” below.)

Refactoring

XP’s Refactoring practice prompts each pair of programmers to ask them-
selves before they begin work on a Story if there is a way to redesign the
system so that the final result “is the simplest thing that could possibly
work” [2]. Then, after they have completed work on the Story, Refactoring
prompts them to ask the same question again. In either case, if the answer
is, “Yes,” then the redesign is implemented as part of the work on that Story.
Refactoring is used to ensure that the “simple” designs that programmers
start with do not grow into needless complexity as more Stories are added.

Pair Programming

The most visible practice of XP is Pair Programming. This practice calls for all
technical work (from design to coding to test) to be done by a pair of pro-
grammers working together at a single workstation. Pairs form and change
dynamically throughout the project according to the needs of each story.

The member of each pair who is not typing has a very special job. That
person is to be thinking about the wider impacts of what is being imple-
mented—to be continuously asking questions like, “Is there a simpler way
to do this?” “Do we need tests that we did not yet create?” “Are there
defects in this code?” “Will this strategy work?”

Pair Programming has been called the ultimate in peer reviews, because
it entails a continuous, real-time review of everything that is done. This is
one more example of XP’s strong emphasis on technical excellence.

Collective ownership

XP takes a position on code ownership that is quite different from the stan-
dard model of assigning responsibility for each code module to a specific
person. XP goes to the opposite extreme—stating that code should never be
“owned” by any individual. When anyone identifies a need to change any
code, it is that pair’s responsibility to implement that change. Every member
of the team owns all code collectively.

Continuous integration

XP goes beyond the concept of daily builds to require that integration of the
product being built goes on continuously. As a pair completes each Story,
their last step is to integrate their new and changed code (along with their
automated tests) into the baseline system. They then run the entire test
suite — all of their own automated tests, as well as those for all the Stories
that are already part of the system. If any test fails, the new Story and tests
are backed out, and the pair must resolve the problems before they can try

XP’s 12 practices 247

again. When all the tests run 100% clean, the Story has been successfully
integrated and becomes part of the project baseline. Because there are sev-
eral pairs of programmers working on different Stories at all times, this prac-
tice results in someone integrating something almost all the time.

40-hour week

XP calls for overtime to be rare. It explicitly suggests that overtime should
not be worked 2 weeks in a row. The intention with this practice is to keep
everyone fresh so they can continue indefinitely on an aggressive but sus-
tainable pace.

On-site customer

One of the key members of an XP project team is the on-site customer. This
is a person who will be a real user of the system being built, or some other
person who can authoritatively stand in for the customer/user. This practice
ensures that an appropriately knowledgeable person is continuously avail-
able to the team to review work, try things out, answer questions, and make
implementation decisions when they are needed.

Coding standards

Several other XP practices (most notably Pair Programming and collective
ownership) give rise to the importance of good coding standards. In a team
that is collaborating this closely, appropriate standards are the only way to
maintain order.

The XP Facilities Strategy
While it is not one of its 12 practices, XP’s Facilities Strategy is illuminating.
Because XP is designed to make optimal use of face-to-face communication,
it recommends that all project members work together in a single room.
There should be no doors, no offices, and not even separate cubicles. In his
book Extreme Programming Explained, Kent Beck describes the optimal XP
workspace to facilitate collaboration among team members. Refer to Figure
10.1 and the accompanying descriptions in Chapter 10 for more information
about XP’s Facilities Strategy.

References

[1] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley
Longman, Inc., 2000, p. 57.

[2] Beck, K., Extreme Programming Explained, Reading, MA: Addison-Wesley
Longman, Inc., 2000, p. 30.

248 Extreme Programming

Feature-Driven Development

FDD differs from other Agile methods in its focus on upfront
design and planning. As can be seen from the FDD process dia-
gram in Figure F.1, the Object Model, feature list, and planning
are done once at the beginning of the project, and iterations are
essentially an incremental building of identified features. This
is not to say that the model, feature list, and plans never
change; rather, it indicates that evolution of those items is not
an inherent part of this method.

FDD practices
Like other Agile methods, the impact of FDD on an organiza-
tion is better gauged from its practices than its process flow.
FDD is defined by these eight practices.

Domain Object Modeling

FDD begins with the construction of a relatively detailed object
model for the system to be built. This model is not intended to
provide all the design details for the features. Rather, its inten-
tion is to force all stakeholders’ assumptions out into the open
and provide a road map for the project.

Although the initial Object Model is built at the beginning
of the project, each increment of development results in
updates to it as details are filled in and corrections are made.
Thus, the Object Model is a continually evolving picture of the
product, as it is currently understood.

Developing by feature

The Object Model identifies all the expected classes in the sys-
tem, but development is not done class by class. Rather FDD
requires that development be done a feature at a time. FDD

249

F
Contents

FDD practices

A p p e n d i x

defines a feature this way. “A feature is a small, client-valued function
expressed in the form: <action><result> <object> with the appropriate
prepositions between the action, result, or object” [2]. An example of a fea-
ture might be, “Retrieve the medical records of a patient.”

As can be seen from the example, a feature is small and can normally be
developed in a few hours or days. FDD defines the upper limit on feature
size at 2 weeks.

Because developing a feature can require additions or changes to several
classes, the next two practices are included in FDD to define how this activ-
ity is managed.

Class (code) ownership

FDD prescribes that a single developer owns each class. This is diametrically
opposed to XP’s practice of “collective ownership” and grows from a differ-
ent philosophical basis. FDD depends on the class owner to have a full and
detailed understanding of all that his or her class does and contains. The phi-
losophy is that such an individual will be more efficient at making changes
to a class than anyone else on the project team. Of course, the danger in this
practice is that the loss of a team member can be catastrophic. (To see
how FDD mitigates this risk, refer to the “Inspections” section later in this
appendix.)

This class ownership practice essentially requires that the class owner be
directly involved in the development of each feature that affects his or her
class. The next practice (feature teams) defines how this requirement is
managed.

Feature teams

Each feature is implemented by a team of project members, consisting of the
feature owner (a Chief Programmer) and the owners of all the classes
affected by the feature. With direct participation of the expert on each class
involved in the feature, that feature should be implemented not only very
quickly but also in the most effective way. If, during a feature implementa-
tion, the team determines that another class must change, the owner of that
class is simply added to the feature team.

Thus, feature teams are a dynamic part of FDD, forming and disbanding
on a daily or weekly basis as the development of each feature is undertaken

250 Feature-Driven Development

Develop
an overall
model

Build a
features
list

Plan by
feature

Design by
feature

Build by
feature

Figure F.1 FDD process diagram. (From: [1]. © 2002 Pearson Education. Reprinted
with permission.)

and completed. Multiple feature teams will likely be operating at any one
point in time, and each individual may be operating on more than one fea-
ture team at a time. A feature team has not completed its work until it has
verified its feature and integrated it into the current product baseline. (See
the “Inspections,” “Regular build schedule,” and “Reporting/Visibility of
results” sections later in this appendix.)

Inspections

FDD makes heavy use of Inspections to ensure the quality of the designs and
code that are built. Although FDD does not specify formal Fagan inspec-
tions, the rigor described in the guidelines for feature team members is simi-
lar to that of formal inspections.

The primary purpose of an inspection is to detect defects in designs and
code, but FDD identifies two other critical results of inspections. First, it
mitigates the risks involved in the class ownership practice by ensuring that
many team members have a good understanding of each class. And second,
it is a forcing function to ensure that the project’s coding standards are
adhered to consistently.

Regular build schedule

FDD does not prescribe any particular timing for builds, only that they be
“regular.” How often builds are done must be defined for each project based
on the project’s needs and constraints and the environment. Even so, FDD
envisions that builds are done no less often than weekly, and possibly daily
or continuously.

Regular builds are done to maintain an up-to-date system comprised of
all the features that have been developed to date. This current system then
can be used as the baseline for testing each new feature, as a basis for writers
to develop documentation, and as a continually available demonstration for
customers and project sponsors.

Configuration Management

This FDD practice acknowledges the importance of good CM to the success
of an FDD project. The dynamism of the feature teams and regular build
schedule make it critical that the project carefully manage its artifacts. But
FDD does not prescribe any specifics about CM. It simply directs that the
project team practice a level of CM rigor that is appropriate to the project
size, complexity, and scope.

Reporting/Visibility of results

FDD uses a unique mechanism for tracking and reporting the project’s
status so that the common “90% complete” syndrome is avoided. This

FDD practices 251

mechanism uses the project’s feature list and feature development mile-
stones along with some weighting factors for those milestones.

FDD defines the milestones for each feature to be:

◗ Domain walkthrough—complete;

◗ Design—ready for inspection;

◗ Design inspection—and any rework and reinspection complete;

◗ Code—ready for inspection;

◗ Code inspection—and any rework and reinspection complete;

◗ Promote to build—all feature code checked in and ready for the next
build.

Each FDD project team uses its historical data to assign a weight to each
milestone. For example, if their data shows that they average 4% of their
time in design walkthroughs, then that milestone is given a weight of 0.04
for every feature in the project.

Figure F.2 shows that the project status becomes both objective and easy
to compute. It is simply the sum of the weights of every milestone that has
been reached, divided by the number of features. On a project with 285 fea-
tures, if the sum of the completed milestone weights is 201, then the project
is 70.5% complete.

References

[1] Palmer, S. R., and J. M. Felsing, A Practical Guide to Feature-Driven Development,
Upper Saddle River, NJ: Prentice-Hall, 2002, p. 57.

[2] Palmer, S. R., and J. M. Felsing, A Practical Guide to Feature-Driven Development,
Upper Saddle River, NJ: Prentice-Hall, p. 41.

252 Feature-Driven Development

Feature value Sum(weights of completed milestones)=

Value of a Feature not yet worked on = 0.00
Value of a Feature that is complete = 1.00
Value of a Feature in progress is between 0 and 1

Project status =
Sum(Feature Value) for all features

Total # features in the product

Figure F.2 Project status equation.

Lean Software Development

Lean Software Development is not a software development
method. Rather, it is a set of principles and tools that an organi-
zation can employ in making its software development projects
more lean. The principles behind LD are drawn from the world
of lean manufacturing, and although some LD tools relate
directly to lean manufacturing principles, many do not.

Lean Software Development
principles and tools
LD is characterized by seven lean principles that are elaborated
into 22 Lean Software Development tools.

Eliminate Waste

Tool 1: Seeing Waste—The authors suggest looking for waste in
these parts of your development process:

◗ Partially done work (e.g., unimplemented designs);

◗ Extra processes (steps in your process that do not add
value);

◗ Extra features (things for which the customer did not ask);

◗ Task switching (people assigned to multiple projects);

◗ Waiting (for hand-offs);

◗ Motion (hand-offs);

◗ Defects.

Tool 2: Value Stream Mapping—Identify all the steps in your
process that add value to the product, and for each of those
steps, identify how much time is required to add the value and
how much time is wasted in waiting. Note that some steps that

253

G
Contents

Lean Software Development
principles and tools

A p p e n d i x

do not directly add value are necessary (e.g., Configuration Management
mitigates risks).

Amplify Learning

Tool 3: Feedback—Design your process so that participants receive feedback as
often as possible. For example:

◗ Test early and often;

◗ Show users the evolving system;

◗ Prototype instead of analyzing.

Tool 4: Iterations—Iterative time-boxed development is the best way to
converge on the ultimate solution. Often this results in negotiation of proj-
ect scope or duration. But such negotiation is good if done early in the proj-
ect, when adjustments are less painful.

Tool 5: Synchronization—Every development method results in synchroni-
zation problems (e.g., collective code ownership can result in multiple peo-
ple changing the same program at the same time.) The authors recommend
several synchronization mechanisms for software projects.

Tool 6: Set-Based Development—When faced with a difficult problem, it is
often good to think about the solution space instead of specific solutions. The
authors recommend these steps:

◗ Develop multiple options (e.g., brainstorming ideas);

◗ Communicate constraints;

◗ Let the solution emerge.

Decide as Late as Possible

Tool 7: Options Thinking—In financial markets, you can purchase options
that, for a price, allow you to delay making a decision until a later date. The
same model can be used in Agile software development. By incurring some
added cost, options can be held open, allowing decisions to be delayed until
more information is available.

Tool 8: The Last Responsible Moment—Options Thinking (Tool 7) delays
commitment to a decision until the last responsible moment. The authors
define that as “the moment at which failing to make a decision eliminates
an important alternative” [1].

Tool 9: Making Decisions—Good decisions are more likely to be made
when the options can be narrowed by the application of a set of rules.
The authors recommend that decisions in software development always
be made in light of the seven lean principles (the major headings in this
appendix).

254 Lean Software Development

Deliver as Fast as Possible

Tool 10: Pull Systems—The best way to ensure that each team member knows
exactly what he or she should do each day is to ensure that the environ-
ment provides automatic prompting. For example:

◗ Short iterations with well-defined deliverables provide near-term tar-
gets for people to work toward.

◗ Daily stand-up meetings keep everyone aware of progress toward that
target.

◗ Information radiators [2] (publicly posted charts) keep everyone
aware of the big picture.

Tool 11: Queuing Theory—Much waste can be attributed to people waiting
for constrained resources. The authors suggest using queuing theory to ana-
lyze all bottlenecks in your software process and determine ways to mini-
mize the cycle time.

Tool 12: Cost of Delay—In many software projects, the cost of delaying
delivery (even when it is significant) is often invisible to the project team
and sometimes to managers. The authors recommend developing a financial
model for the project that will allow all stakeholders to make appropriate
trade-off decisions, especially when cost and delivery date are in conflict.

Empower the Team

Tool 13: Self-Determination—The people who do the work are in the best posi-
tion to improve their processes and eliminate waste. Although Quality Cir-
cles have fallen out of favor, this philosophy still has value in guiding
process improvement efforts.

Tool 14: Motivation—Motivating a project team to perform well has many
dimensions. The authors stress that the team must have:

◗ Purpose—A shared goal that they all believe in.

◗ Belonging—They feel that each person is a part of the team.

◗ Safety—Mistakes are corrected without punishing people.

◗ Competence—The team feels they able to complete their tasks.

◗ Progress—Each person can see regular progress on the project.

Tool 15: Leadership—Project management and technical leadership are
two distinct skill sets. A successful team needs both, and it is rare for those
two attributes to exist in the same person.

Tool 16: Expertise—Every software project requires a variety of expertise
(e.g., domain, user interface, database, project management, writing). This
tool is about identifying communities of expertise and ensuring that they
are available to the project.

Lean Software Development principles and tools 255

Build Integrity In

Tool 17: Perceived Integrity—Perceived Integrity is the system’s integrity from
customers’ viewpoint. Do they perceive it to be useful and well designed?
With appropriate interaction between the team and customer, the team can
be sure they build the right system.

Tool 18: Conceptual Integrity—Conceptual Integrity is an important compo-
nent of Perceived Integrity (Tool 17). Building the system right (as differen-
tiated from building the right system) involves such concepts as
architecture, consistency, and elegance. (See Tool 19, Refactoring.)

Tool 19: Refactoring—Programmers should improve the software any time
they see the opportunity to do so. Refactoring refers to redesign of the sys-
tem to improve the program’s Perceived and Conceptual Integrity (Tools 17
and 18).

Also, after many changes have been made to software, it tends to
become brittle. (That is, over time, it becomes more and more difficult to
make any changes to the software without breaking it in unforeseen ways.)
Brittle code is a Conceptual Integrity problem that Refactoring remedies.

Tool 20: Testing—Testing provides an important feedback mechanism.
(See Tool 3.) Both validation (ensuring the right system is built) and verifi-
cation (ensuring the system is built right) must be done throughout the
development process, not just at the end. That way, the team gets the feed-
back they need to ensure their system’s integrity, both Perceived (Tool 17)
and Conceptual (Tool 18).

See the Whole

Tool 21: Measurements—The authors focus on the various problems associated
with measurement (e.g., suboptimization) and their sources. In essence, this
tool is about focusing measurement where it is effective: at higher-level
aggregations of data. This focus has the dual benefit of protecting individual
engineers from management’s abuse of their personal data and focusing
attention on data that is useful to the organization as a whole.

Tool 22: Contracts—Contracts are a fact any time the supplier and cus-
tomer are different companies. Because these relationships can be so com-
plex and varied, the authors discuss a variety of contractual arrangements
and the positive and negative effects of each.

References

[1] Poppendieck, M., and T. Poppendieck, Lean Software Development: An Agile Toolkit,
Reading, MA: Addison-Wesley, Inc., 2003, p. 57.

[2] Cockburn, A., Agile Software Development, Reading, MA: Addison- Wesley, Inc.,
2002, pp 84–88.

256 Lean Software Development

Scrum

Scrum is not primarily about software development. It is a
method for managing product development that can be
wrapped around any specific technology, including software.
Scrum as it exists today grew from its beginnings in Japan in
the mid-1980s [1]. The name “Scrum” is from the game of
rugby and refers to a strategy used to get a ball back into play.

The Scrum process, shown in Figure H.1, is incremental,
just as with other Agile methods.

Scrum practices
As with other Agile methods, Scrum is defined not so much by
its process as by the practices that comprise it. Each practice is
described here.

The Scrum Master

“The Scrum Master is responsible for the success of Scrum” [3].
Although Scrum defines this as a new role, in traditional proj-
ects its responsibilities are often taken on by an existing posi-
tion such as project manager or team leader. The primary
responsibilities of the Scrum Master are to:

◗ Ensure that the Scrum practices are followed and that
the values behind Scrum drive enactment of the process.

◗ Work with management and the customer to identify the
individual who will take on the role of “Product Owner.”
(Refer to the Product Owner’s role under the “Product
Backlog,” “Sprint Planning,” and “Sprint Review” prac-
tices, later in this appendix.)

257

H
Contents

Scrum practices

A p p e n d i x

◗ Facilitate each of the other practices, as described later in this appendix.

◗ Be the interface point among management, the customer, and the
Scrum team. Of primary importance are:

◗ Communicating project status;

◗ Removing impediments to progress (see “Daily Scrum Meetings”
later in this appendix).

Product Backlog

“Product Backlog is an evolving, prioritized queue of business and technical
functionality that needs to be developed into a system” [4]. The Product
Backlog is the sum total of the work that remains to be done on the project
and includes everything from major features to bug fixes. (Contrast this
with the “Sprint Backlog” described in the “Sprint Planning” and “Sprint”
practices, later in this appendix.) Any stakeholder in the project can contrib-
ute to the Product Backlog at any time, but it is the Product Owner who has
the primary responsibility for determining the priority of backlog items.

The primary measure of progress in a Scrum project is the change in the
number of items in the Product Backlog over time. It may grow in early
Sprints as stakeholders gain an understanding of the system being built, but
ultimately, a pattern of steady decrease in the size of the Product Backlog is
expected. If this does not materialize, or if it is not fast enough, then hard
decisions must be made about the project’s scope.

Scrum Teams

“A team commits to achieving a Sprint goal. The team is accorded full
authority to do whatever it decides is necessary to achieve the goal” [5].
Almost all software development involves teams. The key difference with
Scrum is that the team freely commits to what they believe they can pro-
duce during each Sprint, and they are empowered to make whatever deci-
sions they must to fulfill those commitments. (Refer to “Sprint Planning
Meeting” and “Sprint,” below.) This level of autonomy is foreign to most
organizations.

258 Scrum

Business
conditions and
requirements

Product
backlog

Sprint
planning
meeting

Sprint
backlog

Standards,
conventions
guidelines

Executable
product
increment

Sprint

Daily
scrum

Figure H.1 Scrum process diagram. (From: [2].© 2002 Pearson Education.
Reprinted with permission.)

Daily Scrum Meetings

“Software development is a complex process that requires lots of communi-
cations. The Daily Scrum meeting is where the team comes to communi-
cate” [6]. The Daily Scrum (the defining feature of Scrum) is a short
15-minute meeting that takes place every working day. It is the forum
where team members exchange information and others may come to listen
—but not speak. To keep the meeting short, all deliberation and discussion
is relegated to meetings of interested people after the Daily Scrum. During
the Daily Scrum, each team member answers three questions:

◗ What have you done since the last Scrum?

◗ What will you do between now and the next Scrum?

◗ What got in your way of doing work?

The third question provides the Scrum Master with the information he
or she needs to be effective in removing impediments to progress and ensur-
ing the team continues to be productive.

Sprint Planning Meeting

“Customers, users, management, the Product Owner, and the Scrum Team
determine the next Sprint goal and functionality at the Sprint Planning
meeting. The team then devises the individual tasks that must be performed
to build the product increment” [7].

Each 30-day Sprint begins with this planning meeting. The critical out-
puts of this meeting are:

◗ Sprint Goal—The objective that is to be achieved during this Sprint.

◗ Sprint Backlog—The subset of the Product Backlog that will be com-
pleted during the Sprint.

The Product Owner is the sole arbiter of the priority of the Product Back-
log items. But only the Scrum Team can commit themselves to completing
specific work. The Sprint Planning meeting is the forum where lobbying and
negotiation take place. At its conclusion, all stakeholders will have agreed to
a Sprint Goal and Sprint Backlog to which the Team is willing to commit.

Sprint

“The team works for a fixed period of time called a Sprint” [8]. After the
negotiations of the Sprint Planning meeting, the Scrum Team has full
authority to complete the 30-day Sprint by doing whatever they feel is nec-
essary. During the Sprint, the team self-organizes and self-directs, and their
authority even extends to being able to:

◗ Change the functionality to be delivered by the Sprint — as long as
the Sprint Goal is still achieved.

Scrum practices 259

◗ Abort the Sprint if new information leads them to believe its Goal or
Backlog is no longer achievable or relevant.

Assuming the team does not abort the Sprint, it ends with the delivery of
the promised executable product increment.

Sprint Review

“The Sprint Review meeting is a four-hour informational meeting. During
this meeting, the team presents to management, customers, users, and the
Product Owner the product increment that it has built during the Sprint”
[9]. This meeting provides a concrete picture of the progress achieved dur-
ing the Sprint and lays the foundation for the next Sprint Planning meeting.

References

[1] Takeuchi, H., and I. Nonaka, “The New New Product Development Game,”
Harvard Business Review, January 1986, pp. 137–146.

[2] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 8.

[3] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 31.

[4] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, pp. 32.

[5] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 35.

[6] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 40.

[7] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 47.

[8] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 50.

[9] Schwaber, K., and M. Beedle, Agile Software Development with Scrum, Upper Saddle
River, NJ: Prentice-Hall, 2002, p. 54.

260 Scrum

Glossary

Acceptance A review or test that is done by customers or system end
users to determine if the system meets their needs

Adaptive Software Development One of the Agile Methods (see
Appendix C)

Agile Able to think and act quickly and in a well-coordinated way

Agile Alliance A loose on-line federation of practitioners of the Agile
Methods who share their experiences in an attempt to promote the use of
those methods (refer to www.AgileAlliance.org)

Agile Manifesto A set of four statements that reflect the core values
on which each Agile Method is based (see Appendix A)

Agile Method Any development method characterized by the Agile
Manifesto and its 12 Agile Principles (see Appendices C–H)

Agile Principles Twelve statements that provide concrete interpreta-
tion of the meaning of the Agile Manifesto (see Appendix B)

Agilists People who promote and use the Agile Methods

ASD See Adaptive Software Development

Baseline “A specification or product that has been formally reviewed
and agreed upon, that thereafter serves as the basis for further develop-
ment, and that can be changed only through formal change control proce-
dures.” (IEEE-STD-610)

Brainstorming Listing as many ideas as a group can generate without
assessing the validity or goodness of each idea. (This mechanism is
designed to generate as many ideas as possible and is always followed by
an evaluation exercise in which the ideas are screened and prioritized.)

Business People Everyone outside of the Agile software development
team with whom the team interacts (e.g., managers, human resources,
information technology, the customer, end users)

CCB See Configuration Control Board

Change Request A document that records a suggestion for some
manner of change (e.g., to correct a defect, enhance system capability, or

261

change a requirement)

CI See Configuration Item

Colocated Team A team in which all members are located in the same
place (usually in the same part of a single building, sometimes in the same
room)

Configuration Control Board A formal group that is empowered
with the authority to manage configurations for a project or organization.
This authority includes:

◗ Approving the establishment or updating of baselines;

◗ Assuring the integrity of baselines (including acting on the results of
Baseline audits);

◗ Approving or disapproving proposed changes to baselined CIs;

◗ Approving the release of CIs outside of the project.

Configuration Item “An aggregation of hardware, software, or both
that is designated for configuration management and treated as a single
entity in the configuration management process.” (IEEE-STD-610)
Examples of configuration items are:

◗ A single source code file;

◗ A single program consisting of multiple source files and includes;

◗ A completed increment consisting of multiple programs and their
related specifications;

◗ A finished system consisting of operational software, user documenta-
tion, and specifications.

Configuration Management “A discipline applying technical and
administrative direction and surveillance to identify and document the
functional and physical characteristics of a configuration item, control
changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified require-
ments.” (IEEE-STD-610)

Convergence Movement of various entities toward a common result
or conclusion. (Dynamic Systems Development Method uses this term to
describe how the stakeholders in a software project arrive at the system
that is ultimately delivered.)

Cooperative Organization An organization characterized by people
working or acting together willingly for a common purpose and without
regard for rank or position (contrast with Hierarchical Organization)

Corrective Action Any action initiated to remediate an undesirable
state (e.g., project performance deviating from the plan)

CR See Change Request

262 Glossary

Culture The sum total of the ways of working and interacting with
each other built up by an organization over time and informally transmit-
ted to new employees during their indoctrination

Cycle Time The total time it takes to go through a complete develop-
ment project (from concept to deployment)

Documentation Any written form of communication. (Agile meth-
ods tend to prefer simple documentation like information radiators and
multiple-use documents like self-documenting code.)

DSDM See Dynamic Systems Development Method

Dynamic Systems Development Method One of the Agile Methods
(see Appendix D)

Entity-Relation Diagram A diagram that shows all the tables and
columns that exist in a relational database and uses lines and notations to
indicate the relationships among them

Extreme Programming One of the Agile Methods (see Appendix E)

FDD See Feature-Driven Development

Feature-Driven Development One of the Agile Methods (see
Appendix F)

Ghant Chart A graphical representation of a project schedule that
shows each task and the dependencies among tasks using boxes and
arrows.

Harness A stand-in for an entire system. (It has functioning interfaces
for one or more components but does not actually do anything and is usu-
ally used to allow testing of a component before the rest of the system is
available.)

Hierarchical Organization An organization characterized by a sys-
tem of persons or roles ranked one above another (contrast with Coopera-
tive Organization)

Incremental Development To develop a system in stages, extending
the functionality of each installment to form the next one

Independent Verification and Validation Verification and valida-
tion performed by a group or individual that is independent of and sepa-
rate from the development team

Information Radiator A publicly posted document that can gener-
ally be read from a distance to be used by the team as reference (e.g., status
of work being done)

Inspection See Software Inspection

IV&V See Independent Verification and Validation

LD See Lean Software Development

Lean Software Development One of the Agile Methods (see Appen-
dix G)

Glossary 263

Life cycle The steps or phases through which a project progresses

Manifesto A public declaration of intentions, opinions, objectives, or
motives (see Agile Manifesto in Appendix A)

Object-Oriented A method for designing and implementing
programs

OO See Object-Oriented

Pilot Test To test something in a limited environment. (When imple-
menting any significant process change, it is best to use the change on one
or two projects before introducing it to an entire organization.)

Postmortem See Retrospective

Process “A sequence of steps performed for a given purpose, for exam-
ple, the software development process.” (IEEE-STD-610)

Program Office The group that manages the overall project when
that project consists of multiple development teams (for example, when
both hardware and software development is involved)

Refactoring Redesigning software after it has been partially
developed

Regression Test A test that is performed after a change (fix or
enhancement) has been implemented to ensure that the system has not
regressed. (It ensures that previously working functionality still works.)

Retrospective A meeting in which participants in a project review
how the project’s processes and methods have been working to identify
opportunities to improve them. (The Agile Methods promote holding ret-
rospectives regularly throughout the project, instead of once at the end, as
is common practice.)

Rollout Introducing something that is new to a large context. (After
the Pilot Test is completed, the process change can be rolled out to the
entire organization.)

Scope-Creep The tendency of a software project’s scope (e.g., func-
tionality to be delivered) to expand as the project progresses

Scrum One of the Agile Methods (see Appendix H)

Self-Documenting Code Program code that is written in such a way
that it also serves to describe its own requirements, design, and imple-
mentation (as opposed to recording those things in separate documents)

Smoke Test Simple tests that are run to ensure that the software will
work at some basic level. (This term comes from the hardware practice of
leaving a device turned on for some period of time to see if it starts smok-
ing.)

Software Inspection A relatively rigorous peer review activity
undertaken to detect and correct defects in the software. (Michael Fagan,
while he was at IBM in the 1970s, developed a rigorous formal software
inspection method that has come to be known by his name and has been

264 Glossary

written about extensively. Although this inspection method is more
expensive than any other peer review method, including those advocated
by the Agile methods, many studies have concluded that the return on
this extra investment is substantial because of the high proportion of
defects it can remove before testing begins.)

Stub A stand-in for a system component. (It has a functioning inter-
face but does not actually do anything and is usually used to allow testing
of a system before the stubbed-out component has been developed.)

Testing See Verification and Validation. (Agile methods use this term
to refer to any V&V activities like reviews, not just the manual or auto-
mated execution of a program to see how well it works.)

Time-boxing A method for managing projects that sets hard begin
and end dates for the project or project iterations and allows the delivered
functionality to change in order to complete work within the specified
period (e.g., refer to Scrum in Appendix H)

Validation Checking (usually by testing or review) to ensure that the
system as built or specified is appropriate to the need (contrast with
Verification)

Verification Checking (usually by testing or review) to ensure that
the system has been built or specified accurately and with integrity (con-
trast with Validation)

V&V See Verification and Validation

XP See Extreme Programming

Glossary 265

.

About the Author

Alan S. Koch PMP, is a speaker and writer on effective project managment
methods. He is a certified project management professional and presiden of
ASK Process, Inc. ASK Process helps companies improve the return on
their software investment by focusing on the quality of both their software
products and the processes they use to develop them. ASK Process provides
consulting, training, coaching, and mentoring services related to both Agile
Methods and disciplined processes (including CMMI®, PSP/TSPSM,
PMBOK®, the Software Engineering Body of Knowledge (SWEBOK), and
IEEE standards).

Mr. Koch consults with a variety of software organizations in their
process improvement programs, has contributed to the accomplishment of
several successful process improvement efforts, speaks in numerous venues
on process, quality, and related topics, has written many articles on software
development processes and software quality, has taught as an adjunct pro-
fessor of computer science, and has mentored students in Carnegie Mellon
University’s Master of Software Engineering Program. He is also a member
of the Project Management Institute, has developed and maintained numer-
ous software systems, has performed software QA and testing, established
and managed a QA department, and was a member of the technical staff at
the Software Engineering Institute at Carnegie Mellon University.

Mr. Koch welcomes your questions and comments about this book
or other related topics. He can be contacted through http://www.
ASKProcess.com.

267

.

Index

A
Acceptance, 134
Accidental communication, 75
Action plan, 207
Adaptive software development (ASD), 7, 200,
233
Adaptive management model, 64, 129, 200, 236

Adaptive life cycle, 107, 148, 200, 233
Collaborate: concurrent component

engineering, 235
Conceptual framework, 236
Independent agents, 63, 129, 200, 236
Leadership-collaboration. See Adaptive

management model
Learn

Final Q/A and release, 236
Quality review, 235
Customer focus-group reviews, 109,

201, 235
Postmortems, 108, 184, 201, 236
Software inspections, 108, 166, 201,

235
Project mission, 63

Speculate
Adaptive cycle planning, 63, 200, 235
Project initiation, 63, 200, 234

Agile alliance, 4, 21
Agile manifesto, 3, 225
See Agile values
Agile methods, history, 3
Agile principles, 4, 227

Deliver working software frequently, 106,
195, 229

Early and continuous delivery, 105, 195, 228
Face-to-face conversation, 73, 193, 229
Motivated individuals, 61, 68, 193, 229
Regular team retrospectives, 183, 199, 231
Self-organizing teams, 62, 193, 231

Simplicity, maximizing work not done, 177,
198, 230

Stakeholders collaborate daily, 123, 127,
196, 229

Sustainable pace, 83, 194, 230
Technical excellence, 165, 171, 198, 230
Unstated principle: appropriate processes and

tools, 161, 194
Welcome changing requirements, 147, 197,

228
Working software: primary measure of

progress, 107, 195, 230
Agile values. See agile manifesto

Customer collaboration over contract
negotiation, 196

Individuals and interactions over processes
and tools, 193

Responding to change over following a plan,
197

Unstated value: keeping the process agile,
198

Working software over comprehensive
documentation, 195

Agility, defined, 5
Agreements, 15
ASD. See Adaptive software development

B
Balance

Contracts and collaboration, 124
People, processes and tools, 53

Baseline. See Configuration management,
baselines

Beck, Kent, 245
Build process, 91

Automation, 96
Business people, definition, 128
Buy-in for a new method, building, 40, 206,

209

269

C
Change requests. See configuration

management, change requests
Change, 5
Controlling. See configuration management,

change control
External, 142
From customer, 143, 155
From developers, 143, 156
Learning causes change, 142
Nature of, 141
Planning for, 144
Reacting to, 12, 38

Code ownership, 91
Collaboration, 18, 123

Balance with contracts, 124
Customer expectations concerning, 135

Communication, 6, 209
Accidental, 75
Face-to-face, 73
Information radiators, 80
Memory, 79
Persistence, 79
Richness, 77

Configuration management, 32, 94
Baseline, 33, 144

Audit, 96
Establishing, 95
Status reporting, 96

Build management, 34
Change requests, 34, 95, 155
Code control, 11, 33, 94
Configuration integrity, 96
Configuration identification, 34
Document control, 33
Release management, 34

Continuous integration, 115
Contracts, 15, 122

As a weapon, 136
Balance with collaboration, 124

Controlling change. See configuration
management, change control

Convergence, 110
Cooperative organizations, 10
Corrective action, 155
Culture, organizational, 9
Customer, 15, 121, 173

Collaboration expectations, 135
External, 121
Internal, 122
Relationship with, 220
Who is the? 116

Customize an agile method, 212

D
Defects, source of waste, 180
Developers, definition, 127
Documentation, 6

Audience, 102
Avoiding waste, 104
Minimizing, 117
Purpose, 101
Value, 103

Dynamic system development method (DSDM),
7, 201, 239

Empowered teams, 64
Principle 1: active user involvement, 130,

201, 241
Principle 2: empowered teams, 201, 241
Principle 3: frequent delivery of products,

109, 201, 241
Principle 4: fitness for business purpose, 109,

201, 242
Principle 5: iterative and incremental

development, 110, 201, 242
Principle 6: all changes are reversible, 148,

201, 242
Principle 7: requirements are baselined at a

high level, 149, 201, 242
Principle 8: testing is integrated

throughout the lifecycle, 167, 201,
243

Principle 9: a collaborative and co-operative
approach, 130, 202, 243

Process, 239

E
End user, 173
Expendable activity, identifying, 181
Extra features, source of waste, 179
Extra processes, source of waste, 179
Extreme programming (XP), 7, 202, 245

40-Hour Week, 84, 202, 248
Coach, 37, 70
Coding standards, 169, 202, 248
Collective ownership, 65, 91, 202, 247
Continuous integration, 110, 202, 247
Facilities strategy, 74, 202, 248
Metaphor, 150, 202, 246
On-site customer, 76, 130, 202, 248
Pair programming, 69, 74, 75, 202, 247
Planning game, 65, 76, 202, 245
Refactoring, 150, 202, 247
Simple design, 178, 202, 246
Small releases, 110, 202, 245
Stories, 150, 202, 246
Test first, 168, 202, 246

270 Index

F
Fagan inspections. See Software inspections
Feature-driven development (FDD), 7, 203, 249

Chief programmer, 37, 69
Class (code) ownership, 65, 91, 203, 250
Configuration management, 90, 203, 251
Developing by feature, 111, 203, 249
Domain object modeling, 151, 203, 249
Feature teams, 65, 203, 250
Inspections, 170, 203, 251
Regular build schedule, 111, 203, 251
Reporting/visibility of results, 111, 203, 251

H
Hacking, 116
Hardware, integrating with, 26
Harnesses, 91
Hierarchical organizations, 10

I
Incremental delivery, 115
Incremental development, 86
Incremental planning, 144, 154
Independent verification and validation, 134,

174
Information radiators, 80
Inspections. See software inspections
Integrating with hardware, 26

L
Lean software development (LD), 8, 203, 253

Amplify learning,
Tool 3: feedback, 112, 203, 254
Tool 4: iterations, 112, 203, 254
Tool 5: synchronization, 90, 203, 254
Tool 6: set-based development, 170, 203,

254
Build Integrity In,

Tool 17: perceived integrity, 131, 204,
256

Tool 18: conceptual integrity, 131, 204,
256

Tool 19: refactoring, 152, 204, 256
Tool 20: testing, 171, 204, 256

Decide as late as possible,
Tool 7: options thinking, 152, 204, 254
Tool 8: the last responsible moment, 152,

204, 254
Tool 9: making decisions, 152, 204, 254

Deliver as fast as possible,
Tool 10: pull systems, 92, 204, 255
Tool 11: queuing theory, 92, 204, 255
Tool 12: cost of delay, 92, 204, 255

Eliminate waste,
Tool 1: seeing waste, 179, 203, 253
Tool 2: value stream mapping, 179, 203,

253
Empower the team,

Tool 13: self-determination, 66, 204, 255
Tool 14: motivation, 66, 204, 255
Tool 15: leadership, 170, 204, 255
Tool 16: expertise, 171, 204, 255

See the whole,
Tool 21, measurements, 93, 204, 256
Tool 22: contracts, 131, 204, 256

Learning to drive, 135
Learning, 6, 144

As a source of change, 142
Lifecycles,

Incremental, 115
Waterfall, 115

M
Marketing your conclusions about agile

methods, 206
“Mary, Mary, quite contrary…,” 163
Matrix development, 91
Motion, source of waste, 180
Motivated individuals, 61, 68
Multiple teams, 25

O
Object-oriented, 180
Organizational culture, 9
Organizations, cooperative vs. hierarchical, 10
Overtime, 84, 85

P
Partially done work, source of waste, 179
People,

Balance with processes and tools, 53
Project success factor, 54

Pilot testing and agile method, 214
Planning, 5

Incremental, 144, 154
Re-planning, 155

Postmortems. See retrospectives
Process, 93, 161

As a garden, 163
Balance with people and tools, 53
Change, 186

Management acceptance of, 214
Efficiency and effectiveness, 162
Extra processes, a source of waste, 179
Improvement, continuous, 164, 222
Leader, 173

Index 271

Process (continued)
Project success factor, 55

Program office, 25
Project

Corrective action, 155
Course corrections, 135
Criticality, 23
Deviations from plans, 155
Leader, 173
Management, 31, 67
Manager, 71
Performance. See budget, cycle-time,
productivity, quality, schedule

Phases,
Acceptance, 134
Delivery, 115
Development, 86
Initial analysis, 85
Integration, 87, 115
Testing, 87

Progress, tracking and reporting, 154
Roles, 173
Team

Colocation, 22
Distributed, 22
Satisfaction, 221
Self-organizing, 62
Size, 21

Time-boxed development, 114

Q
Quality

Affordable, 172
Assurance, 133
Developers’ role, 174

R
Reacting to change, 12
Requirements

Baseline, 149
Establishing, 16, 132
Managing changes, 16, 29, 133

Retrospectives, 108, 183
Capitalize on, 186
When to hold, 185

Reward system, 41
Rolling out a new method, 215

S
Safety requirements, 24
Scope-creep, 123
Scrum, 8, 205, 257

Daily scrum meetings, 76, 205, 259
Product backlog, 131, 205, 258
Scrum master, 38, 70, 172, 205, 257
Scrum teams, 66, 205, 258
Sprint, 113, 205, 259
Sprint planning meeting, 153, 205, 259
Sprint review, 113, 205, 260

Security requirements, 24
Self-organizing teams, 62
Smoke tests, 91
Software inspections, 108, 166
Staff,

Considerations about, 37
Motivated individuals, 61, 68
Superstars, 37

Statements of work, 15
Stubs, 91
Subcontractors, 26
Synchronization, 90

T
Task switching, source of waste, 179
Team. See Project, team
Technical experts, 173
Test automation, 91, 97
Testers, 133, 174
Time-boxed development, 114
Tools,

Balance with people and processes, 53
Project success factor, 57

Training, 213

V
Value proposition, 206
Verification and validation, 167

W
Waiting, source of waste, 179
Waterfall lifecycle, 115
Workbook, evaluating agile methods, 45, 191

Downloading, 45
Notes, 48
Ratings, 48
Summaries, 48

Practice summary, 48
Principle summary, 48
Summary worksheet, 49
Value summary, 48

Using, 46

X
XP. See Extreme Programming

272 Index

Recent Titles in the Artech House
Computing Library

Achieving Software Quality through Teamwork, Isabel Evans

Action Focused Assessment for Software Process Improvement, Tim Kasse

Advanced ANSI SQL Data Modeling and Structure Processing, Michael M. David

Advanced Database Technology and Design, Mario Piattini and Oscar Díaz, editors

Agent-Based Software Development, Michael Luck, Ronald Ashri, and
Mark d’Inverno

Agile Software Development: Evaluating the Methods for Your Organization,
Alan S. Koch

Building Reliable Component-Based Software Systems, Ivica Crnkovic and
Magnus Larsson, editors

Business Process Implementation for IT Professionals and Managers,
Robert B. Walford

Data Modeling and Design for Today’s Architectures, Angelo Bobak

Developing Secure Distributed Systems with CORBA, Ulrich Lang and
Rudolf Schreiner

Discovering Real Business Requirements for Software Project Success,
Robin F. Goldsmith

Future Codes: Essays in Advanced Computer Technology and the Law,
Curtis E. A. Karnow

Global Distributed Applications with Windows® DNA, Enrique Madrona

A Guide to Software Configuration Management, Alexis Leon

Guide to Standards and Specifications for Designing Web Software, Stan Magee
and Leonard L. Tripp

Implementing and Integrating Product Data Management and Software
Configuration, Ivica Crnkovic, Ulf Asklund, and Annita Persson Dahlqvist

Internet Commerce Development, Craig Standing

Knowledge Management Strategy and Technology, Richard F. Bellaver and
John M. Lusa, editors

Managing Computer Networks: A Case-Based Reasoning Approach, Lundy Lewis

Metadata Management for Information Control and Business Success, Guy Tozer

Multimedia Database Management Systems, Guojun Lu

Practical Guide to Software Quality Management, Second Edition, John W. Horch

Practical Insight into CMMI®, Tim Kasse

A Practitioner’s Guide to Software Test Design, Lee Copeland

The Requirements Engineering Handbook, Ralph R. Young

Risk-Based E-Business Testing, Paul Gerrard and Neil Thompson

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Software Fault Tolerance Techniques and Implementation, Laura L. Pullum

Strategic Software Production with Domain-Oriented Reuse, Paolo Predonzani,
Giancarlo Succi, and Tullio Vernazza

Successful Evolution of Software Systems, Hongji Yang and Martin Ward

Systematic Process Improvement Using ISO 9001:2000 and CMMI®, Boris Mutafelija
and Harvey Stromberg

Systematic Software Testing, Rick D. Craig and Stefan P. Jaskiel

Testing and Quality Assurance for Component-Based Software, Jerry Zeyu Gao,
H. -S. Jacob Tsao, and Ye Wu

Workflow Modeling: Tools for Process Improvement and Application
Development, Alec Sharp and Patrick McDermott

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our

In-Print-Forever® (IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at: www.artechhouse.com

	Agile Software Development: Evaluating The Methods For Your Organization
	Cover

	Contents
	Foreword by Kent Beck
	Foreword by Mark Paulk
	Preface
	Part I Adoption Considerations
	1 Introducing the Agile Methods
	2 Considering Your Organizational Culture
	3 Considering Your Customers.
	4 Considering Your Projects
	5 Considering Your Tools and Processes
	6 Considering Your Staff.
	7 Using This Book to Make Your Adoption Decisions

	Part II Value: "Individuals and Interactions over Processes and Tools".
	8 About People, Processes, and Tools
	9 Motivated Individuals and Self-Organizing Teams
	10 Face-to-Face Communication
	11 Sustainable Pace
	12 The Unstated Principle: Appropriate Processes and Tools

	Part III Value: "Working Software over Comprehensive Documentation"
	13 The Role of Documentation in a Software Project
	14 Incremental Delivery of Working Software

	Part IV Value: "Customer Collaboration over Contract Negotiation"
	15 Defining the Customer Relationship
	16 Daily Collaboration of All Stakeholders.
	17 Understanding Change in Software Projects
	18 Welcome Changing Requirements

	Part VI The Unstated Value: Keeping the Process Agile
	19 Maintaining the Process
	20 Technical Excellence
	21 Simplicity
	22 Retrospectives

	Part VII The Adoption Decision
	23 Making the Adoption Decision
	24 Adopting New Practices
	25 Evaluating the Effects of Your Agile Method

	Appendix Introduction
	Appendix A The Agile Manifesto.
	Appendix B The 12 Principles of Agile Methods
	Appendix C Adaptive Software Development
	Appendix D Dynamic Systems Development Method
	Appendix E Extreme Programming
	Appendix F Feature-Driven Development
	Appendix G Lean Software Development.
	Appendix H Scrum

	Glossary.
	About the Author
	Index.
	Team DDU

