

Table of Contents

1. Introduction.
 Software Is New Product Development.

 What's Next?

 Web Resources.

2. Iterative & Evolutionary.
Iterative Development. Risk-Driven and Client-Driven Iterative Planning. Timeboxed Iterative Development.
During the Iteration, No Changes from External Stakeholders. Evolutionary and Adaptive Development.
Evolutionary Requirements Analysis. Early Top Ten High-Level Requirements and Skillful Analysis. Evolutionary
and Adaptive Planning. Incremental Delivery. Evolutionary Delivery. The Most Common Mistake? Specific
Iterative & Evolutionary Methods. What's Next? Recommended Readings.

3. Agile.
Agile Development. Classification of Methods. The Agile Manifesto and Principles. Agile Project Management.
Embrace Communication and Feedback. Programming as If People Mattered. Simple Practices and Project Tools.
Empirical vs Defined & Prescriptive Process. Principle-Based versus Rule-Based. Sustainable Discipline: The
Human Touch. Team as a Complex Adaptive System. Agile Hype? Specific Agile Methods. What's Next?
Recommended Readings.

4. Story.
What's Next?

5. Motivation.
The Facts of Change on Software Projects. Key Motivations for Iterative Development. Meeting the Requirements
Challenge Iteratively. Problems with the Waterfall. What's Next?

6. Evidence.
Summary. Research Evidence. Early Historical Project Evidence. Standards-Body Evidence. Expert and Thought
Leader Evidence. A Business Case for Iterative Development. The Historical Accident of Waterfall Validity? What

's
Next? Recommended Readings.

7. Scrum.
Method Overview. Lifecycle. Workproducts, Roles, and Practices. Values. Common Mistakes and
Misunderstandings. Sample Projects. Process Mixtures. Adoption Strategies. Fact versus Fantasy. Strengths versus
Other. History. What's Next? Recommended Readings.

8. Extreme Programming.
Method Overview. Lifecycle. Workproducts, Roles, and Practices. Values. Common Mistakes and
Misunderstandings. Sample Projects. Process Mixtures. Adoption Strategies. Fact versus Fantasy. Strengths versus
Other. History. What's Next? Recommended Readings.

9. Unified Process.
Method Overview. Lifecycle. Workproducts, Roles, and Practices. Values. Common Mistakes and
Misunderstandings. Sample Projects. Process Mixtures. Adoption Strategies. Fact versus Fantasy. Strengths versus
Other. History. What's Next? Recommended Readings.

10. Evo.
Method Overview. Lifecycle. Workproducts, Roles, and Practices. Values. Common Mistakes and
Misunderstandings. Sample Projects. Process Mixtures. Adoption Strategies. Fact versus Fantasy. Strengths versus
Other. History. What's Next? Recommended Readings.

11. Practice Tips.
Project Management. Environment. Requirements. Test.

12. Frequently Asked Questions.
Question List. Questions and Answers.

13. Bibliography.

Back Cover
Agile/iterative methods: From business case to successful implementation

This is the definitive guide for managers and students to agile and iterative development methods: what they are,
how they work, how to implement themand why you should.

Using statistically significant research and large-scale case studies, noted methods expert Craig Larman presents the
most convincing case ever made for iterative development. Larman offers a concise, information-packed summary
of the key ideas that drive all agile and iterative processes, with the details of four noteworthy iterative methods:
Scrum, XP, RUP, and Evo. Coverage includes:

 Compelling evidence that iterative methods reduce project risk
 Frequently asked questions
 Agile and iterative values and practices
 Dozens of useful iterative and agile practice tips
 New management skills for agile/iterative project leaders
 Key practices of Scrum, XP, RUP, and Evo

Whether you're an IT executive, project manager, student of software engineering, or developer, Craig Larman will
help you understand the promise of agile/iterative development, sell it throughout your organizationaeand transform
the promise into reality.

Author
CRAIG LARMAN is known throughout the international software community as an expert and passionate advocate
for object-oriented technologies and development, and iterative and agile development methods. He serves as Chief
Scientist at Valtech, a global consulting and skills transfer company, where he has led the adoption of iterative and
agile methods. Larman also authored Applying UML and Patterns, the world's best-selling text on object-oriented
analysis and design, and iterative development.

Chapter 1. Introduction

Logic is the art of going wrong with confidence.

—Joseph Wood Krutch

OVERVIEW

 What's in this book?

 Predictable versus new product development.

What value will you get from studying this book, an introduction to iterative and agile methods?

First, you will know the key practices of four noteworthy methods, Scrum, Extreme Programming
(XP), the Unified Process (UP), and Evo (one of the original iterative methods). This is a "Cliffs
Notes" summary, each chapter has something useful to you as a manager, developer, or student of
development methods.

Scrum

XP

UP

Evo

Second, your learning curve will be shortened, as this is a distilled learning aid. The four method
chapters have the same structure, to speed comprehension and compare-contrast. There's a FAQ
chapter, a "tips" chapter of common practices, and plenty of margin pointers to related pages—paper
hyperlinks.

FAQ

tips

Third, you will know motivation and evidence. Some organizations accept the value of iterative
development, but others are still reluctant. If you need to make a case for an iterative project
experiment, you will find in this book the key reasons, research, examples of large projects,
standards-body acceptance, a business case, and promotion by well-known thought leaders through
the decades. The research and history sections are also of value to students of software engineering
methods.

motivation

evidence

Note that agile methods are a subset of iterative methods; this book covers both types.

The chapters may be read in any order; the big picture is this:

1. Introduction, and predictable vs.
inventive development.

5–6. Motivation and evidence chapters for iterative and
agile methods; useful for some.

2. Basic iterative and evolutionary
method practices.

7–10. Four method summaries on Scrum, XP, UP, and Evo.
Note: practices can be mixed.

3. Summary of agile principles and
methods.

11. A tips chapter that expands on some of the method
practices, plus others.

4. An agile project story to pull some
ideas together.

12. A frequently asked questions (FAQ) chapter.

Finally, people trump process. Every process book should probably include this standard disclaimer:

Process is only a second-order effect.[1] The unique people, their feelings, qualities, and
communication are more influential.

Some problems are just hard, some people are just difficult. These methods are not salvation.

[1] A quote from the agile methodologist Alistair Cockburn.

Software Is New Product Development

Consider building mobile phones on an assembly line: It is possible to unambiguously define the
specifications and construction steps. After building some phones and measuring things, it is possible
to reliably estimate and schedule the building of future phones.

A different problem: Build a custom house. The owner wants to use new environmentally friendly
materials and methods, but isn't exactly sure what they want, and is going to change or clarify their
decisions as they see the house, costs, and weeks unfold.

At one end of the spectrum, such as manufacturing phones, there are problems with low degrees of
novelty or change, and high rates of repeated identical or near-identical creation—mass manufacturing
or predictable manufacturing.

At the other end, there are problems with high degrees of novelty, creativity, and change, and no
previous identical cases from which to derive estimates or schedules. This is the realm of new product
development or inventive projects.

The development process, management values, planning and estimation models appropriately
associated with these two domains are different (Table 1.1).

Table 1.1. predictable vs. inventive projects

Predictable Manufacturing New Product Development

It is possible to first complete specifications,
and then build.

Rarely possible to create up-front unchanging and
detailed specs.

Near the start, one can reliably estimate
effort and cost.

Near the beginning, it is not possible. As empirical data
emerge, it becomes increasingly possible to plan and
estimate.

It is possible to identify, define, schedule,
and order all the detailed activities.

Near the beginning, it is not possible. Adaptive steps
driven by build–feedback cycles are required.

Adaptation to unpredictable change is not
the norm, and change-rates are relatively
low.

Creative adaptation to unpredictable change is the
norm. Change rates are high.

Of course, the point is,

Most software is not a predictable or mass manufacturing problem. Software development is new
product development.

Plus, many projects use new and buggy technologies that exacerbate the degree of novelty and
unpredictability. Note also it is a new product for the inexperienced even if it has been done before.

Since predictable manufacturing is the wrong paradigm for software, practices and values rooted in it
are not helpful.

This mismatch lies at the heart of many of the challenges associated with traditional
approaches to running a software project.

A "waterfall" lifecycle, big up-front specifications, estimates, and speculative plans
applicable to predictable manufacturing have been misapplied to software projects, a
domain of inventive, high-change, high-novelty work.

Factors [CP86] preventing reliable up-front specifications include:

 The clients or users are not sure what they want.

 They have difficulty stating all they want and know.

 Many details of what they want will only be revealed during development.

 The details are overwhelmingly complex for people.

 As they see the product develop, they change their minds.

 External forces (such as a competitor's product or service) lead to changes or enhancements
in requests.

This deep appreciation—that building software is complex, new product development with high change
rates, and not predictable manufacturing—is at the heart of the motivation for agile and iterative
methods.

Certainly, another driving force is the desire to compete and win. Iterative and agile methods foster
flexibility and maneuverability—a competitive advantage. In Agile Competitors and Virtual
Organizations [GNP97] the authors examine the limitations of the mass manufacturing model and the
need for agility:

Agility […] is about succeeding and about winning: about succeeding in emerging competitive arenas,
and about winning profits, market share, and customers in the very center of the competitive storms
many companies now fear.

What's Next?

The next two chapters summarize basic practices and ideas of iterative, evolutionary, and agile
methods. After that, a story chapter illustrates these practices with a concrete scenario.

Web Resources

Related book or journal article suggestions are given in their respective chapters. Web resource
suggestions include:

Broad Link or Article Sites

 www.agilealliance.com — Collects many articles specifically related to agile methods, plus
links.

 www.cetus-links.org — The Cetus Links site has specialized for years in object technology
(OT). Under "OO Project Management—OOA/D Methods" it has many links to iterative and
agile methods, even though they are not directly related to OT.

 www.bradapp.net — Brad Appleton maintains a large collection of links on software
engineering, including iterative methods.

 www.iturls.com — The Chinese front page links to an English version, with a search engine
referencing iterative and agile articles.

More Specific Sites

 c2.com/cgi/wiki?FindPage — This important, vast Wiki site was the home ground where
many of the agile leaders (and design pattern leaders) held their original discussions on XP
and other agile methods.

 www.extremeprogramming.org — Don Wells' (an early XP leader) introduction to XP.

 www.xprogramming.com — Ron Jeffries' (an early XP leader) introduction to XP.

 www.agilemodeling.com — Scott Ambler's site contains many articles related to agile
modeling practices.

 sunset.usc.edu — Associated with the work of Dr. Barry Boehm, a long-time researcher into
iterative (e.g., Spiral) methods. Articles related to iterative methods.

 www.cutter.com — Cutter's site has an Agile Project Management specialty area.

 www.martinfowler.com — Martin Fowler is an early agile methods thought leader (XP
method). Articles and links.

 www.jimhighsmith.com — Jim Highsmith is an early agile methods thought leader
(Adaptive Software Development method). Articles and links.

 alistair.cockburn.us — Alistair Cockburn is an early agile methods thought leader (Crystal
methods). Articles and links.

 www.controlchaos.com — Ken Schwaber is an early agile methods thought leader (Scrum
method). Articles and links.

 jeffsutherland.com — Jeff Sutherland is an early agile methods thought leader (Scrum
method). Articles and links.

 www.gilb.com — Tom Gilb is one of the very earliest iterative and evolutionary thought
leaders (Evo method). Articles and links.

 www.craiglarman.com — My site. Articles and links.

 www.objectmentor.com — Company led by Robert C. Martin, an early agile thought leader
(XP related). Articles and links.

 www.nebulon.com — Company led by Jeff De Luca, an early agile thought leader (Feature-
Driven Development method). Articles and links.

 www.dsdm.org — Official site for the DSDM method.

 www.rational.com — Official site for the Rational Unified Process (RUP) iterative method.

 name.case.unibz.it — Network for Agile Methodologies Experience (NAME). A European site
that describes research into agile methods, and with links to other sites.

Chapter 2. Iterative & Evolutionary

Experience is that marvelous thing that enables you to recognize a mistake when you make it again.

—F. P. Jones

OVERVIEW

 Basic practices of iterative and evolutionary methods, including timeboxing and adaptive
planning.

 A common mistake adopting iterative methods.

 Specific iterative and evolutionary methods, including Evo and UP.

Iterative and evolutionary development is a foundation not only of modern software methods, but—as
the history section of the "Evidence" chapter shows—of methods used as far back as the 1960s. Agile
methods are a subset of iterative and evolutionary methods. This chapter summarizes key practices:

history

iterative development evolutionary development

risk-driven and client-driven evolutionary requirements

timeboxing adaptive planning

Iterative Development

Iterative development is an approach to building software (or anything) in which the overall
lifecycle is composed of several iterations in sequence. Each iteration is a self-contained mini-project
composed of activities such as requirements analysis, design, programming, and test. The goal for the
end of an iteration is an iteration release, a stable, integrated and tested partially complete system.
To be clear: All the software across all the teams is integrated into a release each iteration. Most
iteration releases are internal, a baseline primarily for the benefit of the development team—they are
not released externally. The final iteration release is the complete product, released to the market or
clients. See Figure 2.1.

Figure 2.1. iterative and incremental development

iterative planning tips

Although an iteration can in theory be only for clean-up or performance tuning, usually the partial
system grows incrementally with new features, iteration by iteration; in other words, incremental
development. The concept of growing a system via iterations has been called iterative and
incremental development (IID), although simply "iterative development" is common. Some older
process literature [Wong84] used the term "incremental development" to mean a combination of
frozen up-front specifications followed by iterative development of the features, but there is no
widespread agreement on usage. In this era, most development methods are IID methods. And, IID is
at the core of all the agile methods, including Scrum and XP.

Most projects have at least three iterations before a final public release; I've seen a two-year Valtech
project composed of close to 20 iterations averaging around four weeks each, and I know of at least
one long project with 45 iterations.

In modern iterative methods, the recommended length of one iteration is between one and
six weeks.

Each iteration includes production-quality programming, not just requirements analysis, for example.
And the software resulting from each iteration is not a prototype or proof of concept, but a subset of
the final system.

More broadly, viewing an iteration as a self-contained mini-project, activities in many disciplines
(requirements analysis, testing, and so on) occur within an iteration (see Figure 2.2).

Figure 2.2. disciplines across iterations

Risk-Driven and Client-Driven Iterative Planning

What to do in the next three-week iteration? IID methods promote a combination of risk-driven and
client-driven[1] priorities. Risk-driven iterative development chooses the riskiest, most difficult
elements for the early iterations. For example, maybe the client says "I want the Web pages to be
green and the system to handle 5,000 simultaneous transactions." Green can wait. In this way, the
highest risks are surfaced and mitigated early rather than late. Risk is a broad concept—maybe you
are making a new 3D modeling tool and market research shows that what will capture market interest
is a novel, much easier user interface metaphor. The high risk is not getting the UI right.

[1] Throughout this book, client or customer could mean a proxy, such as a marketing or product
manager for a consumer software product, true end-users for an internal application, etc.

risk-driven

ranking risks

Dima
Note
In modern iterative methods, the recommended length of one iteration is between one and sixweeks.

Интересно, а какова длительность итерации сейчас в Дубне?

first iteration

use cases and iteration planning

Client-driven iterative development implies that the choice of features for the next iteration comes
from the client—whatever they perceive as the highest business value to them. In this way, the client
steers the project, iteration by iteration, requesting the features that they currently think are most
valuable. Note that the customer adaptively plans the choice for the next iteration, shortly before it
starts, based on their latest insight, rather than speculatively at the start of the project. The customer
has ongoing control and choice, as fresh information arises.

adaptive and client-driven planning

Apply both schemes. Clients do not always appreciate what is technically hard or risky. Developers do
not always appreciate what has high business value.

mixing and ranking iteration goals

Timeboxed Iterative Development

Iteration timeboxing is the practice of fixing the iteration end date and not allowing it to change. An
overall project may be timeboxed as well. If it eventually appears that the chosen requests (the
scope) for the iteration can't be met within the timebox, then rather than slip the iteration end date,
the scope is reduced (placing lower priority requests back on the wish-list), so that the partial,
growing system always ends in a stable and tested state on the original planned iteration end date.
See Figure 2.3.

Figure 2.3. timeboxing

multi-site timeboxed iterations

overlapping activities across timeboxes

It is important that timeboxing is not used to pressure developers to work longer hours to
meet the soon-coming deadline. If the normal pace of work is insufficient, do less.

In most IID methods, not all timebox lengths need be equal. The first iteration may be four weeks,
the second iteration three weeks, and so forth. On the other hand, the Scrum method recommends
that each timebox be exactly 30 calendar days. As mentioned, most IID methods recommend an
iteration timebox between one and six weeks.

iteration length

what day to end a timebox?

A three-month or six-month timeboxed "iteration" is extraordinarily long and usually misses the point
and value; research shows that shorter steps have lower complexity and risk, better feedback, and
higher productivity and success rates. That said, there are extreme cases of projects with hundreds of
developers where a three-month iteration is useful because of the overhead.

All the modern IID methods (including Scrum, XP, and so forth) either require or strongly advise
timeboxing the iterations.

During the Iteration, No Changes from External Stakeholders

Iterative and agile methods embrace change, but not chaos. In a sea of constant change, a point of
stability is necessary. In IID methods this is achieved with the rule:

Once the requests for an iteration have been chosen and it is underway, no external stakeholders may
change the work.

One week into a three-week iteration, the product manager should not come along, and ask, "Can you
do this too?" They wait for the next iteration. However, the team itself can reduce the scope of an
iteration if the timebox deadline cannot otherwise be met.

scope reduction: primary and secondary iteration goals

Evolutionary and Adaptive Development

Evolutionary iterative development implies that the requirements, plan, estimates, and solution
evolve or are refined over the course of the iterations, rather than fully defined and "frozen" in a
major up-front specification effort before the development iterations begin. Evolutionary methods are
consistent with the pattern of unpredictable discovery and change in new product development.

evolutionary requirements

adaptive planning

Adaptive development is a related term. It implies that elements adapt in response to feedback
from prior work—feedback from users, tests, developers, and so on. The intent is the same as
evolutionary development, but the name suggests more strongly the feedback-response mechanism in
evolution.

Some methods or methodologists emphasize the term "iterative" while others use "evolutionary" or
"adaptive." The ideas and intent are similar, although strictly speaking, evolutionary and adaptive
development does not require the use of timeboxed iterations.

Evolutionary Requirements Analysis

In evolutionary and adaptive development, it is not the case that the requirements are forever
unbounded or always changing at a high rate. Rather, most requirements discovery and refinement
usually occurs during early iterations, and the earliest attention is given to understanding the most
architecturally significant or high-business-value requirements. For example, on an ultimately 20-
iteration project, it is likely that most requirements will be discovered and refined within the first three
or four iterations (that include, in parallel, early software development).

evolutionary requirements tips

In each iteration, there is a one- or two-day requirements workshop in which the specifications
expand and refine, in response to further analysis and feedback from the system under development.
See Figure 2.4. For example, the first workshop focuses on detailed analysis of 20% of the most
architecturally significant and risky requirements; this gives the software architect enough meaningful
input to start development and test in short cycles.

Figure 2.4. evolutionary and iterative requirements

workshops

Note as a design comment, that it is not true that 100% of the functional requirements need be
known to start building an excellent core architecture. The architect needs to know most nonfunctional
or quality requirements (e.g., load, internationalization) and a much smaller representative subset of
functional requirements.

Early "Top Ten" High-Level Requirements and Skillful Analysis

It is a misunderstanding to equate evolutionary requirements analysis with "no early requirements" or
sloppy requirements practices. Modern IID methods encourage the early creation and baselining of
vision statements, "top ten" high-level requirements lists, and early analysis of architecturally
influential factors, such as load, usability, and internationalization. Further, these methods encourage
many skillful analysis techniques during early iterations, such as a series of requirements workshops
involving both target users and developers, writing use cases, and much more.

vision boxes

product sheets

use cases

various elicitation methods

Evolutionary and Adaptive Planning

As with evolutionary requirements, with evolutionary and adaptive planning it is not the case that
estimates and schedules are forever unbounded or unknown. Yet, due to early requirements change
and other factors, there is an initial phase of high uncertainty, which drops as time passes and
information accumulates. This has been called the cone of uncertainty (Figure 2.5) [McConnell98].

Figure 2.5. cone of uncertainty

adaptive planning and related tips

The iterative response to this uncertainty is to defer an expectation of semi-reliable
estimates for cost, effort or schedule until a few iterations have passed. Perhaps 10% to
20% into a project.

This is consistent with management practice in other new product development domains, where an
initial exploratory phase is common. Further, the practice of adaptive planning is encouraged rather
than predictive planning. That is, a detailed schedule is not created beyond a relatively short time
horizon, so that the level of detail and commitment is commensurate with the quality of information.

adaptive and predictive planning

Fixed-Price Contracts

With respect to fixed-price bidding and evolutionary estimates, some IID methods (such as the UP)
recommend running projects in two contract phases, each of multiple timeboxed iterations.

The first phase, a relatively short fixed-time and fixed-price contract, has the goal of completing a few
iterations, doing early but partial software development and evolutionary requirements analysis. Note
the key point that partial software is produced, not merely documents.

The outputs of phase one—including the software base—are then shared with bidders for a phase two
fixed-price contract. The evolutionary refinement of specifications and code in phase one provides
higher quality data for phase two estimators, and advances the software for the project (Figure 2.6).

Figure 2.6. two contract phases

Incremental Delivery

Incremental delivery is the practice of repeatedly delivering a system into production (or the
marketplace) in a series of expanding capabilities (Figure 2.7). The practice is promoted by IID and
agile methods. Incremental deliveries are often between three and twelve months.

Figure 2.7. incremental delivery with iterations

Incremental delivery is often confused with iterative development. A six-month delivery cycle could be
composed of 10 short iterations. The results of each iteration are not delivered to the marketplace,
but the results of an incremental delivery are.

Evolutionary Delivery

Evolutionary delivery is a refinement of the practice of incremental delivery in which there is a
vigorous attempt to capture feedback regarding the installed product, and use this to guide the next
delivery. Naturally, the evolutionary goal is to best meet some difficult-to-predict need, such as the
most frequently requested new features. Uniquely, the Evo method promotes—when possible—very
short evolutionary delivery cycles of one or two weeks, so that each iteration delivers something
useful to stakeholders.

The Evo method and evolutionary delivery

To contrast "pure" incremental delivery with evolutionary delivery, in the former a plan is defined of
several future deliveries—feedback is not driving the delivery plan. In evolutionary delivery, there is
no plan (or at least no fixed plan) of future deliveries; each is dynamically created based on emerging
information. In practice, a marriage of some future prediction and feedback is obvious and common,
and the two terms are used interchangeably.

The Most Common Mistake?

Iterative and agile process coaches often see scenarios like this:

Jill: Sure, we don't apply the waterfall—everyone knows it doesn't work. We've adopted <iterative
method X> and are into our first project. We've been at it for two months and have the use case
analysis nearly finished, and the plan and schedule of what we'll be doing in each iteration. After
review and approval of the final requirements set and iteration schedule, we'll start programming.

This profound misunderstanding, still superimposing waterfall-inspired, big up-front analysis and
planning (predictable manufacturing) values onto iterative methods, is one of the most common
mistakes that new iterative and agile method adopters make.

Specific Iterative & Evolutionary Methods

Specific agile methods are summarized in the next chapter. This section mentions some iterative
methods (Evo and UP) that predate most agile methods; they may or may not be considered agile.

Of all the methods mentioned in this book (Scrum, XP, Evo, UP, OPEN, DSDM, ...) the UP or its
variation the Rational Unified Process (RUP) is perhaps the most widely used. It is found in thousands
or tens of thousands of development organizations worldwide. This does not mean it is well applied or
well understood.

Evo

Evo was perhaps the first iterative and evolutionary method, starting in the 1960s. Evo recommends
short 1–2 week iterations, and uniquely, evolutionary delivery each iteration. Evo adaptively plans
iterations by highest value-to-cost ratio, and strongly promotes the unambiguous definition of quality
requirements (such as load) with quantified and measurable statements.

Evo details

Unified Process

The UP or RUP, first developed in the mid-1990s, brings together the knowledge of many experienced
large-system architects and process-leaders at Rational Corp., and their customers, into a well-defined
IID method. One key UP theme is risk-driven development in the early iterations, focusing on creation
of the core architecture and driving down the high risks. The UP also includes the definition of
common project workproducts, such as the Vision, Software Architecture Document, and Risk List.

UP details

Other Methods

In addition to UP and Evo, other IID methods include:

 The Microsoft Solutions Framework process, available from Microsoft Education. It is a
description of best practices used by Microsoft.

 The OPEN process from Henderson-Sellers, Firesmith, and Graham [FH01].

 WinWin Spiral Model and MBASE Spiral Model from Barry Boehm (creator in the 1980s of
the well-known iterative Spiral Model) and colleagues [BEKPSM98], [BP01].

What's Next?

The next chapter summarizes agile method practices and values. After that, a story chapter illustrates
these practices with a concrete scenario.

Recommended Readings

 Rapid Development, by Steve McConnell. Examines variations of iterative development, citing
plenty of research data.

 The Mythical Man-Month, by Frederick Brooks. The silver-anniversary edition of this classic
discusses the advantages of IID, in addition to many timeless lessons.

Chapter 3. Agile

Health is merely the slowest possible rate at which one can die.

—anonymous

OVERVIEW

 Basic ideas and principles of agile methods.

 Classification of methods.

 Agile hype?

 Specific agile methods, including Scrum and XP.

Agile Development

Agile development methods apply timeboxed iterative and evolutionary development, adaptive
planning, promote evolutionary delivery, and include other values and practices that encourage
agility—rapid and flexible response to change. If agile methods have a motto, it is embrace change.[1]

If agile methods have a strategic point, it is maneuverability.

[1] The subtitle of the first book on XP, Extreme Programming Explained: Embrace Change, by Kent
Beck.

It is not possible to exactly define agile methods, as specific practices vary. However, short
timeboxed iterations with adaptive, evolutionary refinement of plans and goals is a basic practice
various methods share. Thus, the book title and opening material includes iterative development,
which lies at the heart of agile methods.

iterative development

In addition, they promote practices and principles that reflect an agile sensibility of simplicity,
lightness, communication, self-directed teams, programming over documenting, and more.

agile principles

Example practices from Scrum include working in a common project room and self-directed teams
that coordinate through a daily stand-up meeting with special questions each member answers.
Example practices from XP include using terse notes on paper story cards to summarize requirements,
programming in pairs, and working in a common project room with full-time participation by
requirement donors so that detailed written requirements can be replaced with ongoing verbal
explanations.

Scrum practices

XP practices

As a distinct software process concept, agile is newer than iterative. Most older IID methods (such as
Evo and UP) were not strongly agile in their original definition, although many methods can be applied
in an agile spirit with the right understanding.

Although it is possible to imagine truly un-agile IID methods, as a practical matter they are rare or are
quickly adopting agile values and practices—it is hard to find someone promoting un-agility!

Classification of Methods

Having raised the issue of variations in methods, one classification is their degree of ceremony—the
amount of method weight in terms of documentation, formal steps, review, and so forth. Another
classification is their cycles—the number and length of iterations. For example, single-pass waterfall
has no iterations; at the other end, an Evo project could have very many—one iteration per week.
Figure 3.1 illustrates four methods categorized by this scheme.

Figure 3.1. methods by ceremony and cycles

other classification schemes

As hinted in Figure 3.1, XP recommends 1–4 weeks, and the UP 2–6 weeks. Some would say the lower
left quadrant (many short iterations, low ceremony) describes the agile methods, but this is not quite
accurate. For example, Scrum is silent on the question of ceremony—or more precisely leaves the
question to the discretion of the team. A better way to describe agile methods in terms of ceremony is
their promotion of barely sufficient ceremony. That could be high in some case, such as for a USA
Food and Drug Administration (FDA) regulated device.

The Agile Manifesto and Principles

In 2001 a group interested in iterative and agile methods (coining the term) met to find common
ground. Out of this came the Agile Alliance (www.agilealliance.com) with a manifesto and statement of
principles. Worth study! Most of the many concrete practices described throughout this book reflect
these principles. Agile project management is guided by these principles.

The Agile Manifesto

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The Agile Principles

1. Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

8. Agile processes promote sustainable
development.

2. Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

9. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

3. Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

10. Continuous attention to technical excellence
and good design enhances agility.

4. Business people and developers must work
together daily throughout the project.

11. Simplicity—the art of maximizing the
amount of work not done—is essential.

5. Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

12. The best architectures, requirements, and
designs emerge from self-organizing teams.

6. The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

13. At regular intervals, the team reflects on
how to become more effective, then tunes and
adjusts its behavior accordingly.

7. Working software is the primary measure of
progress.

Agile Project Management

The Scrum and XP chapters include specific agile project management practices for those methods.
Other authors present generalizations with common themes: manager promotes the vision, more
communication, avoid command-control, and so on. This section summarizes two well-known
descriptions.

Scrum practices

XP practices

Jim Highsmith, an Agile Alliance founder and creator of the Adaptive Software Development method,
summarizes nine principles for the agile project manager [Highsmith02]:

1. Deliver something useful to the client; check
what they value.

6. Use short timeboxed iterations to quickly
deliver features.

2. Cultivate committed stakeholders. 7. Encourage adaptability.

3. Employ a leadership-collaboration style. 8. Champion technical excellence.

4. Build competent, collaborative teams. 9. Focus on delivery activities, not process-
compliance activities.

5. Enable team decision making.

Augustine andWoodcock, two managers with experience in XP-oriented projects, recommend six
practices [AW02]:

1. Guiding Vision – Establish a guiding vision for the
project and continuously reinforce it through words
and actions.

4. Open Information – Provide visible and
open access to project management and other
information.

2. Teamwork & Collaboration – Facilitate
collaboration and teamwork through relationships and

5. Light Touch – Apply just enough control to
foster emergent behavior in a self-directed

1. Guiding Vision – Establish a guiding vision for the
project and continuously reinforce it through words
and actions.

4. Open Information – Provide visible and
open access to project management and other
information.

community. team.

3. Simple Rules – Establish and support the team's
set of guiding practices, such as Scrum or XP.

6. Agile Vigilance – Reinforce the vision,
follow or adapt the rules, listen to the people.

A theme of agile project management in Scrum and XP is the devolution of both control and planning
to the entire team, not the manager. The manager does not create a work breakdown structure,
schedule, or estimates; this is done as a team. The manager does not (usually) tell people what to do.
The manager does not define and assign many detailed team roles and responsibilities.

Rather, the project manager role emphasizes coaching, servant-leadership, providing resources,
maintaining the vision, removing impediments, promoting agile principles, etc. Thus, managers more
used to control and rule-based methods or project management have some challenge adopting agile
methods.

Embrace Communication and Feedback

If the agile Prime Directive is embrace change, a close second is embrace communication and
feedback. The manifesto and principles, and agile methods have a theme of working to increase
communication, especially face-to-face conversation. This is illustrated in practices such as the daily
Scrum meeting and XP's requirement to have onsite customers sitting full-time in the common project
room.

daily Scrum

Agile methods are adaptive, requiring feedback to guide direction. Beyond just conversation, they
seek out early and frequent feedback through early testing, early demos, and much more.

Programming As If People Mattered

People are more important than any process. Good people with a good process will outperform good
people with no process every time. — Grady Booch [Booch96]

The first value in the Agile Manifesto is Individuals and interactions over processes and tools. It
reminds us that programming is a human activity. For example, XP champions the importance of
happy developers for sustainable development. Mindful of the impact of overwork on the ability to
program well or maintain a healthy social or family life, XP has the rule of sustainable pace—avoiding
working overtime. Agile Principle 8 states, Agile processes promote sustainable development.

Also, research shows that individual developer contributions vary enormously, with studies illustrating
10 times more productive from best to worst [Boehm81]. This does not imply promotion of
(unsustainable) heroic individual programming, but the right knowledge and work habits play a
significant productivity role—thus the value of ongoing education and mentoring for developers. XP
encourages deep skills transfer through the practice of pair programming.

pair programming

The primacy of people and interactions over process is also promoted in agile methods by their
emphasis on communication, especially face-to-face conversations. Scrum's daily meeting and
common project room, and XP's pair programming and whole team together are examples.

daily Scrum

Simple Practices and Project Tools

Agile Principle 11 is Simplicity is essential. Most agile methods embrace do the simplest thing that
could possibly work—an XP aphorism. This applies not only to software design, but to all project
practices. Can requirements and tasks be tracked with paper cards in different piles (not done, done)?
And so forth.

Most agile methods promote a "low-tech, high-touch" approach to project and management tools. Of
course, low-tech is relative: If the simplest thing that could possibly work is a Web tool, then so be it.

It is a misunderstanding to equate agile methods with sloppiness. Simplicity and lightness
does not imply lack of skill or self-discipline. A project applying all the XP practices has
plenty of structure and discipline. But—and this is perhaps a key point in agile methods—
the "disciplined" practices are very delivery-oriented or quality-code-oriented. Developers
quickly see benefit.

Empirical vs. Defined & Prescriptive Process

In general, agile methods promote empirical rather than defined processes, a categorization used by
industrial process experts [OR94]. A defined process (also known as a prescriptive process) has
many predefined and ordered activities to be followed during development. Defined processes are
suitable for predictable manufacturing domains. Empirical processes are used for high-change and
unstable domains; rather than many sequenced activities, they are based on frequent measurement
and dynamic response to variable events. This approach is reflected in Agile Principles 12 and 13.

agile principles

For example, Scrum is silent on the activities of an iteration, other than the daily Scrum meeting as
the measurement and response mechanism. The UP, on the other hand, strikes a middle way; it lists
common activities (e.g., Write Release Notes), but the team is welcome to ignore or do them in any
order.

Agile methodologists understand that the degree of "method weight" and predefinition of ordered
activities are functions of the project type. An agile method or project lies on a continuum of more or
less empirical, driven by need. A medical device under FDA approval requires more formal, predefined
activities.

Principle-Based versus Rule-Based

Similar to empirical versus prescriptive methods, a related way to describe agile methods is as more
principle-based than rule-based. Rather than a predefined set of rules regarding the many roles, team
organization, responsibilities, relationships, and activities, the team and manager are primarily guided
by the principles embodied in the Agile Manifesto and Principles. Agile project management is more
than a set of practices—it is a mindset.

Sustainable Discipline: The Human Touch

There is no shortage of stories on attempts to adopt methods requiring significant discipline and
effort, only to find compliance drop off dramatically shortly after its introduction. The psychological
and social factors necessary for sustained adoption are missing. The agile methodologist Alistair
Cockburn asks people and teams, "Would you do these practices again?" This is arguably a more
important question than the inherent value of the practice.

The creators of a few agile methods (e.g., XP and Crystal) recognized that human factors such as
enjoyment, simplicity, short-term reward, peer pressure, and lots of gain for the pain are important
ingredients to create fertile soil for sustainable self-discipline with practices. Not surprisingly, XP
practices rate well in response to Cockburn's question [Cockburn02].

For example, test-driven development reveals its payoff quickly to those who try it; developers enjoy
the small win of making a test pass and the design clarification that comes from writing the tests
before writing the code to be tested.

test-driven development

Team as a Complex Adaptive System

Some agile methods (including Scrum and Adaptive Software Development) speak of a healthy
development team as a complex adaptive system (CAS). A classic CAS example is a flock of birds.
Each bird has relatively local and simple rules of behavior, yet at the macro-scale the flock exhibits
order and a collective emergent behavior. It is as though there is an overlaying flock-level plan, but
there isn't. This is in contrast to a command-control management system where team and individual
activities are decided and directed by higher-level managers.

The agile methods promote the value that, for creative inventive projects, a CAS-inspired culture of
self-organizing teams is more valuable than control or planning by managers. This is reflected in Agile
Principle 12. For example, Scrum teams are self-organizing (no management assignment of roles or
tasks); team-level organization and adaptation is enabled by the daily Scrum meeting with its special
questions that provide each member with the information to make collective decisions.

agile principles

Scrum meeting questions

Agile Hype?

"Be adaptable, collaborative, delivery driven, people oriented, customer focused, guided by a vision;
develop in short iterations; manager is coach" and most other "agile" messages are hardly new. And
iterative development had replaced the waterfall on major projects by the 1970s. So is this just
hype—recycling old ideas? Yes and no. Many so-called agile messages are repetition from trends of
prior decades.

early iterative projects

But, viewing as a whole all the principles and practices of Scrum or XP (for example), these methods
have a fresh flavor; they push the envelope of embracing changing requirements, communication,
self-organizing teams, adaptive planning, and so forth.

adaptive planning

Plus, some practices—such as test-driven development and continuous integration—are relatively new.

test-driven

continuous integration

Agile Methods Did Not Invent Iterative Development

There is misinformation stating that what is revolutionary about XP and other agile methods is their
abandonment of the waterfall model and invention of iterative and evolutionary development. Not
true—iterative and evolutionary methods that eschewed the waterfall and applied short iterations with
adapting plans and specifications have been around since the 1960s.

early methods

Specific Agile Methods

Scrum and XP are widely applied agile methods—the two most common, according to at least one
survey [Shine03]. However, there is anecdotal evidence indicating some "XP" adoption is
misunderstood as simply "not the waterfall" and the teams are merely practicing iterative and
evolutionary development or "programming without documentation" and calling this XP.

see misunderstanding XP:

Scrum

Scrum's distinctive emphasis among the methods is its strong promotion of self-organizing teams,
daily team measurement, and avoidance of following predefined steps. Some key practices include a
daily stand-up meeting (the Scrum meeting) with special questions, 30-calendar-day iterations, and a
demo to external stakeholders at the end of each iteration.

Scrum details

XP

XP is probably the most well known agile method; it emphasizes collaboration, quick and early
software creation, and skillful development practices. It is founded on four values: communication,
simplicity, feedback, and courage. It includes 12 core practices, including the whole team working
together in a common room, pair programming, constant refactoring, and test-driven development.

XP details

Crystal Methods

The Crystal family of agile methods were developed by Alistair Cockburn [Cockburn02]. While
acknowledging the necessity of an iterative lifecycle, in this group of methods Cockburn stresses the
primacy of "peopleware" issues over process: communication, education, and so on. His definition of
software development shows this emphasis: "…a cooperative game of invention and communication."

Different versions of Crystal (Clear, Yellow, …) contain increasing method weight (or process
ceremony in terms of defined and ordered steps, documents, reviews, etc.) as a function of staff
size, criticality, and project priority. You choose size and criticality, and this maps to a particular
version of Crystal with a recommended method weight. Cockburn has created a scale to illustrate
matching method configurations to these factors (Figure 3.2). For example, E6 means a project of 1–6
people, where the worst that can happen from a system failure is loss of essential money. Subsequent
chapters refer to this classification model, to classify Scrum, XP, UP, and Evo.

Figure 3.2. Cockburn scale

Agile Modeling

Agile Modeling is not a complete process or agile method, but a set of principles and practices for
modeling and requirements analysis that complement most any IID method [Ambler02]. Scott Ambler
summarizes best practices (Figure 3.3) that skilled iterative modelers apply. Briefly, Agile Modeling
promotes the collaborative "low-tech, high-touch" creation of barely good enough, disposable models
to aid understanding and communication. Practices encourage speed, simplicity, and creative flow.

Figure 3.3. some agile modeling practices

Scenario

The project room walls are exposed (no furniture against them) and covered in whiteboards and
static-cling-sheet whiteboard material. It's Monday, at the start of a three-week iteration. The team of
eight developers has decided to spend two or three hours at the walls to better understand and
communicate some ideas. Afterwards, they will start programming. They split into groups. Group 1
explores the object design for the main scenario. On one half of one wall, they sketch UML sequence
diagrams. It isn't perfect UML; liberties are taken for sketching. After 15 minutes, they move to the
other half of the wall, and sketch a class diagram that complements the sequence diagram. Over three
hours, they move back and forth, developing two complementary diagrams. Finally, they take
pictures, print them, and erase the boards. When programming later, the printouts provide some
inspiration—some design ideas in code are inspired by the prior thought, and some not.

Other Methods and Practices

In addition to Scrum, XP, and the Crystal methods, there are now a host of other agile-oriented
practices or methods in use or publication:

 Adaptive Software Development (ASD) from Jim Highsmith [Highsmith00]; inspired by
the complex adaptive systems viewpoint, Rapid Application Development methods, and more.

 Dynamic Solutions Delivery Model (DSDM) from a group of 16 Rapid Application
Development (RAD) experts [Stapleton97] (originally called Dynamic Systems Development
Method). It continues to be refined by a member consortium.

 Feature-Driven Development (FDD) primarily from Jeff De Luca, with contributions by
Peter Coad [PF02].

 Lean Development from Mary and Tom Poppendieck [Poppendieck03].

 Pragmatic Programming from Andy Hunt and Dave Thomas is not a complete method, but
contains development practices sympathetic to an agile development approach. See
www.pragmaticprogrammer.com.

What's Next?

The next chapter illustrates iterative and agile practices with a concrete story. After that, two related
chapters on motivation and evidence. Then, four related chapters on well-known methods: Scrum, XP,
UP, and Evo.

Recommended Readings

 Peopleware, by DeMarco and Lister. Discusses critical people-side issues in development, a
key concern of agile methods.

 Agile Software Development, by Alistair Cockburn. Emphasizes the principles and theory
underlying agile methods, with a special focus on communication.

 Agile Software Development Ecosystems, by Jim Highsmith. Includes interesting interviews
with several agile method founders, in addition to a survey of several methods and key
principles.

Chapter 4. Story

I find that the harder I work, the more luck I seem to have.

—Thomas Jefferson

OVERVIEW

 Story of an agile project to relate some practices. This example illustrates a variety of Scrum,
XP, UP, and Evo principles and practices.

It is Monday, January 2. The government Border Information Group (BIG) needs a biometrics tracking
system for non-citizens entering the country, the Biometric Recording Or Tracking Hazardous External
Radicals (BROTHER). BIG has a long list of requests, and Martin, the development manager, has
convinced BIG management to use timeboxed iterative development and timeboxed evolutionary
delivery. Thus, they will deliver the highest priority features possible by October 1. There is a wish list
of features for the first release, and everyone has agreed it may vary, but the release date will not
vary.

evolutionary delivery

The plan is that after one or two months in operation at two low-volume airports, feedback from the
border guards and travelers will be used to help decide refinements and features for the second
release six months later, with a wider rollout.

Following a Scrum practice, Martin and his team of seven developers also commit to demo to the
Minister of BIG "running, integrated and tested software every three or four weeks, starting next
week."

Scrum demo

The project will use a combination of practices from Scrum, XP, and UP that Martin and the developers
have decided make sense for the team. They organize their physical space: Rather than separate
offices or cubicles with dividers, they take over a large room at one of the test airports, FooBarKhan
International, near the border guards' office area. Four cubicles are set up near the project room that
people can use when they need private time. The common project room is a Scrum and XP practice.

XP whole team together

caves and common room

All furniture against the walls is removed. Tables for computers are placed near the center. The walls
are covered in giant whiteboards, and whiteboard-like static-cling sheets are used as wallpaper
elsewhere. This will support the practice of Agile Modeling.

Agile Modeling

The responsible BIG manager, Domina, moves into the project room, along with Itchy, a long-time
border guard. Itchy will be dedicated full-time to the BROTHER project, and Domina agrees to be
around "most mornings." This is the XP practice of onsite clients.

onsite customer

On Thursday, January 5, they get together and hold a two-day requirements and planning workshop,
a UP practice. In addition to receiving a 20-page wish list from senior BIG management, many "agile
requirement analysis" techniques are applied the first morning. After lunch (beer and cake,
FooBarKhan's national foods), Martin poses this request: From the high-level requirements we've
generated, choose the 20% most architecturally significant, risky, and valuable items. They use dot-
voting to prioritize the items.

workshop

agile requirements tips

dot voting

They spend the remaining afternoon and Friday morning analyzing the 20% items in detail. For
functional requirements, they apply the UP practice of writing a few use cases, in the Cockburn style.
For the nonfunctional quality requirements, they apply the Evo practice of clearly quantified and
measurable goals; the vague "fast response" and "easy to use" goals in the original BIG wish list were
not acceptable.

Evo specifications

On Friday after lunch, Martin moves the team on to planning, even though some of the team want to
spend more time detailing and clarifying specifications. Martin poses this challenge to the group: "We
start developing next Monday, January 9. By Thursday, January 26, in 13 working days, we need to
have a partial running system hooked up to at least one of the biometric readers. There will be a
demo that morning to the BIG minister. What should we realistically do in the next 13 days from the
20% list we explored in detail? And, no overtime." No overtime or "sustainable pace" is an XP
practice.

XP sustainable pace

The group picks a common "happy path" scenario from one of the use cases that will force them to
touch on many architectural factors and components (a UP practice), some other features, and spends
the afternoon analyzing and estimating the related fine-grained tasks in an XP-style Planning Game.
Note that the manager does not create the work breakdown structure, schedule or estimates; the
team does this. Eventually, they discover that their first set of goals is too much work, so they scale
back some of the features until the estimates match their available Ideal Engineering Hours budget
(an XP practice). They wrap the meeting. Martin enters the task items into a Scrum Sprint Backlog
spreadsheet.

scenarios and iterations

Planning Game

Ideal Engineering Hours

Sprint Backlog

On Monday, January 9, the first iteration starts.

On Monday morning at 9:30, and all subsequent mornings, they hold a 20-minute daily stand-up
Scrum meeting. Martin reminds the team of the overall vision, and the specific goals of the iteration.
They are standing beside the whiteboard where all the iteration tasks are written. After the Scrum
questions, team members start volunteering for tasks, writing their name beside them.

Scrum meeting

Afterwards, the entire group listens to a presentation by Rebecca, the chief architect. Having a chief
architect is recommended in UP. Rebecca spent the prior week investigating and considering
architectural issues and designs, given the basic information she had. She lays out her vision of the
big pieces and problems, to provide a starting point for decomposition of work by large components.
Group discussion refines the ideas. Mid-morning, three subgroups head for the walls, doing Agile
Modeling for different subcomponents, reviewing the written use case. The team reserved all of
Monday as creative "wall time" to explore and coordinate design ideas during this "fuzzy front end"
exploratory phase. Rebecca spends time rotating through all the groups, building a synergy of ideas.
Digital snapshots of all the wall notes and UML-ish sketches are taken.

Agile Modeling

On Tuesday, January 10, teamwork starts at 9:30 with the Scrum meeting. New tasks and
impediments are written on the adjacent whiteboard. Martin reminds the team of the vision and
iteration goals. More tasks are volunteered for. As previously agreed, they will start programming this
morning, even though many design points and coordination issues are fuzzy.

Most of the developers decided they didn't want to try pair programming, so that XP practice was
bypassed, although Martin encouraged pairing by anyone who wanted to try it. However, they all
agree to the XP practices of test-driven development and continuous integration. The team is using an
IDE with great refactoring tools, and Martin frequently encourages the team to not just cut code, but
keep it clean and simple by regularly applying refactorings, another XP practice. The developers
occasionally look at the wall sketches or printouts of the snapshots for some inspiration. Some
developers head for the walls for 30 minutes to UML-sketch some design ideas, then back to their
development stations.

test-driven development

continuous integration

As the day progresses, questions about the features and happy path scenario arise, and Domina and
Itchy talk with the developers to clarify and decide the requirements. These two also work with the
developer Girija to create acceptance tests—an XP practice.

acceptance testing

As developers complete their classes, they check them and their unit tests in to the version control
server. Girija checks in completed acceptance tests. A separate build machine is running these tests
within a continuous integration service 24/7, every 15 minutes. Thus, bugs and integration problems
are quickly surfaced and resolved. Continuous integration is an XP practice.

Girija also volunteers to be daily tracker, another XP practice. So, each morning, she takes a few
minutes to sit with each developer to learn the remaining estimate of effort on their tasks. She
updates the Scrum Sprint Backlog spreadsheet with these estimates, and crosses out completed tasks
on the whiteboard.

daily tracker

Sprint Backlog

The first few days are rough and confusing. But, by being forced early to develop a very small amount
of code and integrate it with the other developers coordination emerges and a small seed of the
overall system starts to take shape and be integrated. Hour by hour, more unit and acceptance tests
and production code are added to the build.

Fast forward to mid-iteration, Wednesday January 18. The team meets in a sanity check to discuss if
they can really meet their original goals by the end of the following Wednesday (in preparation for the
Thursday morning demo), or if they need to scale back. Following the timeboxing practices of UP, XP
and Scrum, they won't extend the deadline or work longer hours to meet the deadline, but may defer
work until a future iteration. However, things have gone well and the Sprint Backlog shows the total
remaining effort estimate is within budget. So, no changes.

ending iterations on Wednesday

Next week on Thursday morning, January 26, the BIG minister shows up for the end-of-iteration
demo, a Scrum practice. The iris scan demo doesn't do very much, but it runs and doesn't crash. The
minister has never seen an iterative project before and is impressed that three weeks into a new
project, the team has some software to show. She's used to waiting six months. In addition to
encouraging the team with future efforts, the minister shares this: I just attended a cabinet meeting
where the Prime Minister enthused about a TV report she saw on automated face recognition in
crowds, being used in Grepland. She wants it, as soon as possible! This is a matter of national pride;
we FooBarKhans can't be outdone by the Greplanders!

Thursday afternoon and Friday are reserved for a second requirements workshop and iteration 2
planning session. Multiple requirements workshops across early iterations is a UP practice. Since the
team is applying the Evo, Scrum, and XP practice of adaptive planning, they had not previously
decided what to do in iteration 2, although they had some likely ideas based on the iteration 1
planning session. Rather, they deferred the decision until this time, using their latest information to
decide what would be most valuable. With the unexpected overhead and novelty of buying, learning,
and integrating a third-party face recognition system, the team decides the next iteration needs more
slack and should be four weeks rather than three. The team is very clear what should happen at the
iteration 2 demo.

adaptive planning

What's Next?

The next two chapters present motivation for adopting iterative and agile methods and evidence. The
evidence chapter is a relatively large summary of the research, history, case studies, and more.

Then, four related chapters describe Scrum, XP, UP, and Evo. The book concludes with a chapter on
some detailed practice tips and a FAQ chapter.

Chapter 5. Motivation

If you are going through hell, keep going.

—Sir Winston Churchill

OVERVIEW

 The facts of change on software projects.

 Key reasons to adopt iterative and agile development.

 Meeting the requirements challenge iteratively.

 Problems with the waterfall.

Some have no need to justify iterative development. Others need to make a case; this information can
help.

If It Ain't Broke, Don't Fix It

If your organization is applying a waterfall-oriented (or any other) process and has high success rates,
productivity, and so forth, don't change. Adopting an iterative or agile method should be motivated by
a challenge, not method-du-jour fads.

The average case within organizations is relatively high failure rates and other undesirable project
qualities [Standish00]; it is in this context that IID methods are worth considering.

failure research

Failure has several meanings. For example, at Symantec (now adopting XP on some projects), the
company was attempting a waterfall model. Tight project management resulted in delivering a product
on time and in budget, but it was the wrong product [Bowers02]. They adopted XP, which led to a
better targeted product; productivity and defect rates also improved.

Project failure can mean not only a cancelled or very late project, but one in which the
product did not hit the mark.

The Facts of Change on Software Projects

The Uncertainty Principle in software [ZR97]: Uncertainty is inherent and inevitable in software
projects and processes.

The data summarized in Figure 5.1, based on a large study of software projects [Jones97], illustrates
that software development is a domain of inventive high-change projects.

Figure 5.1. rates of change on software projects

The X axis plots project size in function points, a language-independent measure of system
complexity. The Y axis plots the estimate of overall change or creep in requirements.

function points see www.ifpug.org

Even medium sized projects have change rates around 25%; on very large projects it is 35% or more.

These are high change rates and are at the heart of the motivation for agile and iterative
methods.

Further, this data is consistent with another study by Boehm and Papaccio showing that a typical
software project experienced a 25% change in requirements [BP88].

This data illustrates that a process, management practice, or value based on the
assumption of low change and stability—including "reliable" up-front specifications,
estimates, and schedules—is inconsistent with the nature of software projects.

Key Motivations for Iterative Development

Iterative development is lower risk; the waterfall is higher risk. Most practically, the
motivation to adopt an iterative lifecycle rather than the waterfall is that research now shows the
former is associated with lower risk and better success, productivity, and defect rates. It is these
results that have led large and experienced software procurement organizations such as the USA
Department of Defense (DoD) to promote the use of IID methods rather than the waterfall.

research

DoD evidence

Early risk mitigation and discovery. Risk-driven iterative development forces tackling the hardest,
riskiest problems first, such as architecture, integration, and so on. And, early development iterations
exercise and reveal the true nature of the team and individual skills, the tools, and third-party
software. Finally, the truth of the risks emerges: Perceived risks prove not to be, and unsuspected
issues are forced into the open.

Accommodates and provokes early change; consistent with new product development. IID
methods work with rather than fight against the high-change nature of software projects.

Manageable complexity. Failure rates are higher and productivity lower with high complexity
software projects. Iterative development decomposes complex projects or phases into small and
bounded mini-projects of manageable complexity.

size research

Confidence and satisfaction from early, repeated success. Short iterations lead to a quick and
repeating sense of completion, competency, and closure. These psychological factors are important for
individual satisfaction and building team confidence. This also builds customer confidence in the
team—they see early visible progress in the direction they care about.

Early partial product. Not only does early visible progress with an integrated and tested partial
product increase client confidence, it provides new business opportunities. Earlier demos are possible.
And for whatever reason, the product can ship sooner—with fewer features.

Relevant progress tracking; better predictability. Following the waterfall can give a false sense of
progress during the early, easier phases, but with low reliability in predicting later phase schedules,
which vary widely. A more meaningful progress indicator—tested software—is provided each iteration
when using IID methods. That's Agile Principle 7. Further, since work in each iteration exercises most
disciplines and each iteration is a similar mini-project, there is earlier and more representative
progress data useful for future extrapolation and estimation.

tracking

agile principles

Higher quality; less defects. IID methods require testing early, often, and realistically, in all
possible dimensions: load, performance, usability, and so forth. And the tests themselves can be
evaluated and refined over the iterations.

defect research

Final product better matches true client desires. Through early evaluation and feedback from
clients or prospective users, the product is more likely to hit the mark. This is a refinement of "higher
quality."

Early and regular process improvement. A common practice in IID methods is a per-iteration
assessment—for example, a 15-minute discussion to discover a couple of concrete actions to take in
the next iteration to address a problem or improve the living process. Broad-spectrum process
improvement is enabled by IID, since work in many disciplines (programming, requirements, test,
etc.) occurs each iteration.

Communication and engagement required. Failure research reveals that lack of client or end-user
engagement is a major factor in software project failure. Likewise with lack of coordination and
collaboration between members or sub-teams. Developing in iterations forces early integration,
coordination, and communication between development team members. A per-iteration demo that
requires the presence and feedback of clients increases their engagement, as does their participation

in a per-iteration planning meeting in which they contribute to the choice of requirements for the next
iteration.

failure research

IKIWISI required. There's a well-known human-nature related problem in software specifications,
especially user-interface oriented: IKIWISI, or I'll Know It When I See It. The complexity, many
degrees of freedom in solutions, and intangibility of software seem to demand concrete and cyclic
feedback from people evaluating prototypes or partially built systems to clarify and refine their vision.

Timeboxing Benefits

Research shows that timeboxing itself brings benefits in terms of increased productivity. One reason is
focus. Steve McConnell summed it up best in his book Rapid Development, "It's amazing how much
you can get done the day before a vacation." The psychological focus promoted by a fixed end date
only three weeks away is very different than if the team's next visible milestone is three months
away. Timeboxing may be viewed as an antidote to Parkinson's Law: "Work expands so as to fill the
time available for its completion" [Parkinson58].

Another value in timeboxing, both of iterations and of the entire project, is a quirk of human nature:
People remember slipped dates, not slipped features. Delay a project three months from its
original end date to include 100% of the desired feature set, and the "failure" will be remembered.
Deliver on time with 75% of the most important features, and it's a success.

Another reason is being forced to tackle small levels of complexity. With a short two-week
timeboxed iteration, the team takes on manageable complexity, gets realistic about what they can do,
and has the ability to reduce the scope if it appears the deadline can't be met. Data shows that lower-
complexity steps are done more productively.

productivity research

A more subtle benefit of timeboxing is its effect on early forcing of difficult decisions and trade-
offs. For example, on a Scrum project, you have just committed to a 30-day timeboxed iteration.
During the iteration planning meeting, the team has to be very realistic about what gets done and
what gets deferred. Since the demo to the client is definitely in 30 days, there is no latitude to be
fuzzy about the short-term goals and priorities. Stakeholders are forced to seriously consider
priorities, early.

Meeting the Requirements Challenge Iteratively

Some interesting statistics:

 In a study of over 8,000 projects [Standish94], 37% of the factors on challenged projects
were related to requirements (see Figure 5.2).

Figure 5.2. factors on challenged projects

 A study of defects by category [SKTYBE92] found that the largest category was in
requirements — 41%.

 Boehm [BP88] showed that the cost of fixing a requirement defect increased non-linearly from
early to late in the project.

 Requirements change 25% or more [Jones97, BP88].

Thus, we have the requirements challenge,

We want the requirements to be stable, but they aren't.

Attempts to face this challenge by early detailed requirements analysis and freeze can rarely succeed,
given the high rates of change. In a study of failure factors on over 1,000 software projects
[Thomas01], such practices were associated with the largest contributing factor for failure, being cited
in 82% of the projects as the number one problem.

It is also instructive to learn how valuable early specified features really are: As mentioned previously,
research of many projects [Johnson02] showed that 45% of features were not used—with an
additional 19% rarely used (Figure 5.3).

Figure 5.3. actual use of requested features

Even so, some waterfall requirements advocates have used the above-mentioned cost-of-change
research by Boehm [BP88] to continue justifying the practice. It is noteworthy that the creator of this
cost data, Boehm himself, was an early and active advocate of evolutionary IID methods, rather than
the waterfall, to solve this problem [Boehm85, Boehm96].

Thus, another approach, evolutionary requirements, is now recommended to meet the requirements
challenge.

The heart of why IID with evolutionary requirements works:

It provokes the inevitable change early.

Since requirements will change, IID provokes more of the change early on via early
development iterations with feedback and practices such as multiple requirements
workshops.

The reality of how people handle the requirements challenge is indeed becoming more iterative. In a
study of 107 projects [CM95] only 18% of the projects tried to complete the requirements in a single
early step; 32% used two cycles of requirements refinement (with programming in between); and in
50% of the projects the requirements analysis was completed over three or more iterations.

Problems with the Waterfall

Although the original description is more iterative than many know (see p. 102), in common usage the
waterfall or sequential lifecycle model meant the following development steps:

1. Define up front, in detail, the requirements.

2. Define the "design" (text and diagrammatic descriptions of the software and hardware elements).

3. Implement the system (programming, and so forth).

4. Integrate and test the components.

In the 1970s this was taught as the ideal approach to software development, in response to ad hoc
code-and-fix programming in the 1960s. Many books, consulting companies, and teachers promoted
the method as ideal, unaware of the accumulating evidence of its problems. Research now shows it is
associated with higher risk, failure, and lower productivity.

evidence

The underlying reason for the difficulties of the waterfall is that it requires a low-change, low-novelty,
and low-complexity problem. It is unsuitable for complex or inventive projects. Interestingly—and
unknown to many—the author of a key waterfall paper (Winston Royce) said the idea was only
applicable for the most straightforward un-novel projects; and most interesting, he was himself a
proponent of iterative and evolutionary development.

Royce

The waterfall lifecycle pushes many high-risk and difficult elements toward the end of a project, while
IID methods, run by risk-driven iterations, surface and resolve the hardest and riskiest elements early
(Figure 5.4). For example, programming and testing the core architecture, integrating its major
components and clarifying the interfaces, is tackled in the earliest iterations.

Figure 5.4. risk profile: waterfall

Figure 5.5. risk profile: iterative

The waterfall also aggravates complexity overload and analysis paralysis. Large steps with
overwhelming degrees of complexity are attempted.

At some level, we need to know specifications before programming. On the scale of three or six weeks
(an iteration or short project), the waterfall works. The breakdown occurs as complexity grows,
change rates increase, and feedback is delayed; it works less and less well as a single step stretches
from weeks to months to years.

As a historical footnote, in the 1970s and 1980s the DoD promoted the waterfall. In 1994, in response
to failure and evidence of its unsuitability for software projects, the DoD changed its standards to
remove the waterfall bias, and promote iterative and evolutionary development.

DoD standards

Senior executives within software organizations often received their software engineering and
management education in the 1970s or 1980s, when the waterfall model was usually taught as
"ideal." Therefore, it is understandable and common for some to be unaware of more recent evidence
that this was not true.

Thus, sometimes the challenge in moving an organization to adopt IID methods is the
reluctance of leadership that still believes in the waterfall.

Other problems with the waterfall and the misapplication of its values on IID projects include the
following points:

Problem: "Complete" Up-front Specifications with Sign-off

It isn't that IID proponents wouldn't like correct and detailed up-front specifications that do not need
to change—if they could be successfully and efficiently created, very good. Yet, research shows it is
rarely possible [CM95], and interestingly, a large study showed that 45% of features created from
early specifications were never used—with an additional 19% "rarely" used [Johnson02]. A different
approach—evolutionary requirements—is needed.

Problem: Late Integration and Test

I recall working with a defense contractor in the mid-1990s; a large project failure had just wound
down. The prime reason? After two years of distributed multi-site development involving over 200
developers, the last stage of the project was to integrate all the software components and do system
testing. Characteristically, the integration effort overwhelmingly failed; fundamental
misunderstandings and wrong assumptions in the communications, components, and how they would
collaborate did not surface until this late stage. The problem was so intractable that the project was
cancelled.

Problem: "Reliable" Up-front Schedules and Estimates

When adopting an iterative or agile method, at the start of a project before programming and the first
iteration, do not attempt to create a reliable plan or schedule that lays out all the iterations, what will
happen in each and when, or all the detailed activities sequenced in a PERT chart. Similarly, do not
attempt (at the start) to reliably estimate the overall cost or effort, or milestones of intermediate
completion points, or the end date.

Such early attempts at predictive planning are more successful on repetitive manufacturing projects
of low change and complexity, but not on inventive projects—where the full requirements and risks
are not reliably known at the start, and high rates of change are the norm. As with up-front
specifications, it isn't that IID practitioners wouldn't welcome reliable up-front estimates and
schedules. But in domains of high change, complexity, and novelty, it is premature, risky, and
unrealistic. Adaptive risk-driven or client-driven planning implies the scheduling of goals to iterations
can and should change as better information and new priorities arise.

predictive planning

risk- and client-driven planning

Still, the demand for premature up-front commitments happens all the time. This doesn't invalidate
applying an iterative or agile approach—it's just not ideal. Early estimates can be improved with the
iterative estimation technique of Wideband Delphi. The iterative and agile practice of early visible
progress and client-driven iterations can win the customer's confidence so that they eventually
appreciate their dynamic steering control, and adopt adaptive planning, ceasing to care if the team
is doing, week by week, what they were originally forced to speculate and schedule.

Wideband Delphi

adaptive planning

By developing in risk-driven iterations, the team will earlier discover the depth of their predicament
and can react with mitigating actions, such as hiring specialists.

The waterfall has been called a fail-late lifecycle; one can have the illusion of an accurate schedule
during the early, easier phases. This is because the hard and risky elements (like integration and test)
are pushed towards the end. Then, halfway through the schedule—as the real complexity and difficult
elements surface—pow! The schedule falls apart. It's like the story of the guy who fell off the cliff:

As he was hurtling down, someone yelled, "How are you doing?" The guy replied, "So far, so good!"

Problem: "Plan the Work, Work the Plan" Values

The old management maxim of "plan the work, work the plan" is suitable advice—for predictable
manufacturing. For high-change, novel, inventive domains such as software development, it has
limited value except at the highest level of very coarse-grained activities or milestones. The maxim is
associated with the values of waterfall development, predictive planning, command-control
management, up-front specifications, and so forth. This is inconsistent with the agile method
principles of adaptive planning, self-organizing and self-directed teams, and evolutionary
development.

Of course, this does not imply that agile methods avoid planning or preparation. But the degree of
detail, and commitment to plan are more light and flexible. Plus, the devolution of decision making
and task assignment to the team itself rather than the manager changes the tone and goals of
management planning.

What's Next?

The next chapter presents evidence illustrating problems with the waterfall, advantages of iterative
development, case studies, thought leader advice, and more. Then, four related chapters discuss
noteworthy IID methods: Scrum, XP, UP, and Evo.

Chapter 6. Evidence

Q: What are the most exciting, promising software engineering ideas or techniques on the horizon?

A: I don't think that the most promising ideas are on the horizon. They are already here and have
been for years, but are not being used properly.

—David L. Parnas

OVERVIEW

 Research, historical, and other evidence related to IID.

 Evidence of waterfall risks.

 Business case for skills transfer to adopt IID.

Some have no need to justify iterative development. Others need to make a case; this material can
help.

For students of software engineering methods or those needing to motivate an iterative experiment,
this chapter provides some data, in several categories:

research evidence expert thought leader advice

early large projects business case

standards-body advice waterfall problems

IID practices have been entrenched for years in some development markets, yet some government
standards still promote single-pass, document-driven, waterfall development, as do some larger IT
and consulting organizations, government and military service suppliers, engineering curriculums, and
many requirements texts. For example, the Call For Papers in the 2002 Time-Constrained
Requirements Engineering workshop stated:

In general, requirements engineering literature has been working with the assumption that a system
should be clearly specified before its design and implementation can start.

Summary

Research evidence— Data shows that iterative and evolutionary development is correlated with
lower risk, higher productivity, and lower defect rates than waterfall projects.

Early large project evidence— Major and life-critical systems have been developed iteratively
rather than using the waterfall. Examples include the USA Space Shuttle flight control software,
developed in 17 iterations, and the new Canadian air traffic control system. In the 1970s, the IBM
Federal Systems Division conceived and widely applied the method Integration Engineering, an
iterative lifecycle process.

Standards-body evidence— In the 1980s the USA Department of Defense promoted a waterfall
lifecycle in DOD-STD-2167. It was associated with high failure rates. In 1987 a recommendation was
made to prefer iterative and evolutionary methods. This occurred in 1994 with the adoption of MIL-
STD-498. NATO, the FDA, and other bodies have similar stories.

Expert thought leader evidence— Many prominent software engineering thought leaders have
recommended avoiding the waterfall and adopting iterative development, including Harlan Mills,
Frederick Brooks, Barry Boehm, James Martin, Tom DeMarco, Ed Yourdon, and more.

Business case— Iterative development is correlated with lower failure rates; the opposite is true of
the waterfall. Each year, 23% of projects, averaging $1.1 million USD, fail. A two-year ROI analysis of
investing $100,000 in iterative skills transfer could show an NPV of $700,000 with IRR of 200%.

Waterfall problems— The original "waterfall paper" was misinterpreted and seldom read, its author
actually endorsed iterative and evolutionary development, the waterfall was associated with high
risks, and the creator of the waterfall DOD-STD-2167 standard retrospectively says he would have
promoted an iterative rather than waterfall lifecycle.

Why still waterfall promotion?— There are at least seven reasons why the waterfall continued to
be promoted, including lack of awareness of the growing evidence that it was not ideal, its simple
definition, and the allure of simple progress tracking (such as "requirements complete").

The remainder of the chapter is detail behind the summaries.

Exhaustive data can make for exhausting reading :-) This chapter is probably best spot-read as a
reference.

Research Evidence

Iterative and Evolutionary Research

Evidence on the question of IID and evolutionary delivery comes from several studies by Alan
MacCormack and others at Harvard Business School. In the first study [MacCormack01, MVI01] the
question, "Does evolutionary development, rather than the waterfall model, result in better success?"
was explored in a two-year in-depth analysis of projects. The report's conclusion?

Now there is proof that the evolutionary approach to software development results in a speedier
process and higher-quality products. … The iterative process is best captured in the evolutionary
delivery model proposed by Tom Gilb.

Tom Gilb's Evo.

And specifically on evolutionary feedback-based requirements and design,

… our research suggests a clear agenda for managers: Get a low-functionality version of the product
into customers' hands at the earliest possible stage and thereafter adopt an iterative approach to
adding functionality.

… projects in which most of the functionality was developed and tested prior to releasing a beta
version performed uniformly poorly. In contrast, the projects that performed best were those in
which a low-functionality version of the product was distributed to customers at an early stage.
[emphasis added]

The study identified four practices that were statistically correlated with the most successful projects:

1. An iterative lifecycle with early release of the evolving product to stakeholders for review and
feedback.

2. Daily incorporation of new software and rapid feedback on design changes (daily builds with
regression testing).

3. A team with broad-based experience of shipping multiple projects.
4. Early attention to an overall architecture of modular and loosely coupled components.

Practices 1 and 2 are associated with all modern IID methods. Practice 4 is a key element in the UP.

architecture in UP

In a follow-up study [MKCC03], MacCormack and colleagues examined the effect of eight practices on
productivity and defects (reported by customers), including IID and releasing a partial system early
for evaluation and evolutionary design. The projects ranged from application software to embedded
systems, with median values of nine developers and a 14-month duration; 75% used iterative and
evolutionary development, 25% the waterfall. A key conclusion of the study:

In this study, we find that releasing [the result of an iteration] at an earlier stage of development
appears to contribute to both a lower defect rate and higher productivity.

Given this measure consistently predicts several different dimensions of performance across different
samples of projects we conclude that it represents a software development "best" practice.

In contrast, early detailed design specifications were not particularly valuable:

We find a weak relationship (p = 0.0781) between the completeness of the detailed design
specification and a lower defect rate.

And detailed design specs did not improve productivity. However, design reviews with peers did
significantly reduce defect rates.

In the multivariate model of defect factors, the following iterative-related practices and their
magnitude of impact were significant:

 Releasing a partial system (for evaluation, not operation) when 20% of the functionality is
complete as opposed to waiting until 40% (the sample median) is associated with a decrease
in the defect rate of 10.

by "10" is meant 10 defects per month per million lines of code

 Integration and regression testing at code check-in (the XP practice of continuous integration)

is associated with a reduction in the defect rate of 13.

Similarly, in the model of productivity factors, over 50% of the variation in productivity was related to
just two factors, both related to iterative practices:

 Releasing the partial product earlier with less functionality (early iteration internal release for
review) was better than waiting for more functionality. An increase in productivity of eight
occurred when released at the 20% rather than 40% complete level.

by "8" is meant 8 more lines of source code per person-day

 The use of daily builds with integration and regression testing is associated with a productivity

improvement of 17.

In a study of productive software organizations [HC96], researchers at Bell Labs found a consistent
pattern on highly successful projects:

 Iterative development with customer evaluation and feedback each iteration.

 Simple organizational structure; fewer roles than average.

 Even distribution of communication among people, more direct involvement of developers with
other stakeholders, and more overall communication sharing.

A study published in 2001 summarized the results of research into over 400 projects spanning 15
years [CLW01]. Less than 5% of the code was actually useful or used. This high "software pollution"
rate (reflecting un-useful requirements and over-engineering within a waterfall lifecycle) was
significantly reduced by adopting iterative, short evolutionary delivery cycles—as in the Evo method—
reducing releases from about six months on average to about two weeks.

In a survey of agile method results [Shine03], 88% of organizations cited improved productivity, and
84% improved quality. The most frequently used agile methods were Scrum and XP. Regarding cost of
development, 46% stated no change and 49% stated it was less expensive with agile methods. One of
the more interesting results—predictable in terms of agile method claims—was the increase in
business satisfaction with the new software: Overall 83% claimed higher satisfaction and 26% overall

claimed "significantly better satisfaction." The most frequently cited positive feature of agile methods
(48%) was "respond to change rather than follow a predefined plan."

Another large study [Standish98] illustrating the value of iterative-related practices is the Standish
Group's CHAOS study of project failure and success factors, analyzing 23,000 projects in the 1998
version. In the CHAOS TEN list of the top ten factors for success, at least four of the top five factors
are strongly related to IID practices (Table 6.1).

Table 6.1. top five project success factors

Success Factor Weight of Influence

User involvement 20

Executive support 15

Clear business objectives 15

Experienced project manager 15

Small milestones 10

High user involvement is central to IID methods; short iterations with demos, reviews, evolutionary
requirements refinement, and client-driven iterations are key practices.

Executive support is promoted by these practices and especially through the demonstration of early,
tangible results; people like to be associated with projects that show quick value and progress.

Clear business objectives is supported by adaptive client-driven iteration planning. By asking each
iteration "What is most valuable?" and building it, the business objectives are clarified and realized,
and the project aligned with them.

client-driven planning

Of course, small milestones are at the heart of iterative methods.

To quote the study,

We have long been convinced that shorter time frames, with delivery of software components early
and often, increase the success rate. Shorter time frames foster an iterative process of design,
prototype, develop, test, and deploy small elements. "Growing" (instead of "developing") software
engages the user earlier and confers ownership.

Size Research

There is significant size research indicating smaller (and thus, less complex) projects are more
successful and productive. This is not direct proof of the value of iterative development, but is very
relevant to the IID practice of decomposing large projects into a series of small, short sub-project
iterations.

A large study [Thomas01] of failure and success factors in over 1,000 UK IT projects found that 90%
of the successful projects were less than 12 months duration; indeed, that 47% were less than 6
months. To quote,

This is not to say that projects over 12 months should not be started but that they should be broken
into smaller projects within a programme of change whenever possible.

The trend that the larger the project, the more likely it will fail, has been corroborated in a number of
other studies. For example, in a study [Jones96] large sample set data show 48% of 10,000 function
point (FP) projects are cancelled, as are 65% of 100,000 FP ones.

Going back to early, fundamental size issues, exploration of general systems theory in the 1950s by
von Bertalanfy, Bateson, and others led to this fundamental conclusion [Bertalanfy68]:

The larger the system the harder it is to predict its behavior.

More straightforward evidence that small is beautiful comes from a 23,000 project study [Standish98].
For example, project success versus duration, see Figure 6.1.

Figure 6.1. success vs. duration Success was defined as "The project is completed on time
and on budget, with all features and functions as originally specified."

This trend was confirmed in a follow-up study spanning 35,000 projects [Standish00], regarding cost
(another size measure) versus success (Table 6.2).

Table 6.2. success vs. cost

Cost (USD) < $0.5M 0.5M-3M 3M-6M 6M-10M > 10M

Success 68% 22% 9% 1% 0%

And, to reiterate a portion of the Standish conclusion,

… shorter time frames, with delivery of software components early and often, increase the success
rate.

Another interesting research note on size in the Standish research was the declining project failure
rates, from 31% in the 1994 study to 23% in the 2000 study. This was correlated with smaller,
shorter projects and smaller teams.

Direct smaller-size and evolutionary delivery evidence was presented in a previously cited study
[CLW01]. The percentage of developed code that was ultimately found to be useful increased when
the delivery cycle was reduced from around six months to about two weeks, as recommended in Evo.

Change Research

For cohesion, this section summarizes and repeats research introduced in an earlier chapter.

A study by Boehm and Papaccio showed that a typical software project experienced a 25% change in
requirements [BP88]. This trend is corroborated in another large study; as illustrated in Figure 6.2
[Jones97], software development is a domain of inventive high-change projects.

Figure 6.2. rates of change on software projects

Another measure of change is to investigate how much use is actually made of implemented features
defined in early specifications. A large study [Johnson02] showed that 45% of features were never
used (Figure 6.3).

Figure 6.3. actual use of requested features

Evolutionary requirements to address change is becoming more widespread. A study of 107 projects
[CM95] showed that only 18% of the projects tried to complete the requirements in a single early
step; 32% used two cycles of requirements refinement (with programming in between); and in 50%
of the projects the requirements analysis was completed over three or more iterations.

The data in this section demonstrates that software development is a high-change domain. Practices
or values that encourage early "complete" specifications or schedules are incongruous. Iterative and
evolutionary practices that emphasize adaptability and steps to provoke early change are consistent
with this research.

Waterfall Failure Research

In a study of failure factors on 1,027 IT projects in the UK [Thomas01] (only 13% didn't fail), scope
management related to attempting waterfall practices (including detailed up-front requirements) was
the single largest contributing factor for failure, being cited in 82% of the projects as the number one
problem, with an overall weighted failure influence of 25%. To quote the study's conclusion,

This suggests that … the approach of full requirements definition followed by a long gap before those
requirements are delivered is no longer appropriate.

The high ranking of changing business requirements suggests that any assumption that there will be
little significant change to requirements once they have been documented is fundamentally flawed,
and that spending significant time and effort defining them to the maximum level is inappropriate.

Other significant evidence of failure applying the waterfall comes from one of its most frequent users
in the past, the USA Department of Defense (DoD). Most DoD projects were required—by the standard
DOD-STD-2167—to follow a waterfall lifecycle. A report on failure rates in a sample of earlier 2167-era
DoD projects concluded that 75% of the projects failed or were never used [Jarzombek99].
Consequently, a task force was convened, chaired by Dr. Frederick Brooks, the well-known software
engineering expert. The report recommended replacing the waterfall with IID [DSB87]:

DOD-STD-2167 likewise needs a radical overhaul to reflect modern best practice. … In the decade
since the waterfall model was developed, our discipline has come to recognize that [development]
requires iteration between the designers and users.

Evolutionary development is best technically, and it saves time and money.

See "Standards-Body Evidence"

In another study of 6,700 projects, it was found that four out of the five key factors contributing to
project failure were associated with and aggravated by the waterfall model [Jones95], including
inability to deal with changing requirements, and problems with late integration.

In 1996 Barry Boehm published a well-known paper summarizing failures of the waterfall [Boehm96],
with advice to use a risk-reducing IID approach combined with three milestone anchor points around
which to plan and control; this advice was eventually adopted in the UP.

UP phases

There are several studies (covering thousands of projects) that shed light on the value of large, up-
front specifications in a waterfall-oriented lifecycle.

One study [Jarzombek99] cited a 1995 DoD software project study (of over $37 billion USD worth of
projects) showing that 46% of the systems so egregiously did not meet the real needs (although they
met the specifications) that they were never successfully used, and another 20% required extensive
rework to meet the true needs (rather than the specifications) before they could be used.

As mentioned earlier, another study [Johnson02] showed that 45% of features were never used—with
an additional 19% rarely used.

In the previously cited study of over 400 waterfall-oriented projects [CLW01] averaging six-month
cycles, only 10% of the developed code was actually deployed, and of that, only 20% was used. The
prime reasons included:

 Users couldn't provide much feedback before delivery.

 Changes in the business since the requirements phase.

 Requirements and business operations were misunderstood.

Productivity Research

There is a productivity motivation to apply short iterations, even if there were up-front requirements.

A study [Solon02] against a sample set (43,700 projects) showed the following productivity
differences between IID and waterfall:

Rigorous IID or Evolutionary Prototyping Rigorous Waterfall

570

function points per full-time equivalent developer

480

Interestingly, the same study showed that among the waterfall projects, those that applied it only
"loosely" were significantly more productive than those that applied it "rigorously," indicating the
negative effect that it has on productivity.

Another relevant study [Jones00] showed that as the size of project decreases (measured in
language-independent function points), the monthly productivity of staff increases (Figure 6.4).

Figure 6.4. productivity vs. size

This data illustrates the motivation of organizing a project into small mini-project iterations with low
function points per iteration, as the most dramatic productivity drop occurs in the lower function point
range (under 1,000).

Timeboxing by itself has been shown to have a productivity effect. Dupont, one of the earliest timebox
pioneers, found developer productivity around 80 function points per month with timeboxed iterations,
but only 15 to 25 function points for other methods [Martin91].

Note the rate of 80 function points per month at Dupont compared to a high of 12 function points per
month in Figure 6.4. This suggests that the combination of a low-complexity step with timeboxing has
a higher productivity impact than simply a small step without timeboxing.

In another study [Jones00], 47 factors that increase or decrease productivity were identified, including
project complexity:

Low complexity High complexity

+ 13% in productivity – 35%

productivity was measured in function points per person-month

This indicates a productivity advantage by organizing projects in low-complexity mini-project
iterations.

To reiterate the results of a study on productivity and iterative development [MKCC03], their
conclusion was,

In this study, we find that releasing [the result of an iteration] at an earlier stage of development
appears to contribute to both a lower defect rate and higher productivity.

Quality and Defect Research

Broadly, defect reduction comes from avoiding defects before they occur (Deming's Total Quality
Management principle) and from feedback (tests, evaluations, and so forth). IID methods can address
both. For example, several methods promote a per-iteration simple process assessment or reflection
by the team, to encourage regular process improvement and defect avoidance. Feedback is enabled

by the emphasis on early development of the riskiest elements, per-iteration demos, and a test-early,
test-often approach. The association of lower defect rates with iterative development is consistent
with Deming's predictions, as IID illustrates the Deming/Shewhart Plan-Do-Study-Act (PDSA) cycle,
and supports a culture of continuous improvement by measuring, reflecting, and adjusting each
iteration.

Specifically, the study [MKCC03] showed that IID was correlated with lower defects. In other research
[MVI01], it was shown that as the time lag between coding and testing decreased, defect rates
likewise decreased. A study by Deck [Deck94] also shows a statistically significant reduction in defects
using an iterative method. Large case-study research [Jones00] showed that defect rates increase
non-linearly as project size grows (Figure 6.5).

Figure 6.5. defects vs. size

Although not statistically reliable, there are several single-case study reports of lower defect densities
associated with iterative methods (e.g., [Manzo02]).

Early Historical Project Evidence[1]

[1] Some material is adapted from [LB03].

The usual citation style is replaced with inline citations in this section, as a goal is showing the
references in context.

This section emphasizes a history of early published iterative projects; there were surely many
hundreds or thousands more that applied IID in the 1960s and 1970s. IID projects from the late
1980s forward are not emphasized, as by that time they were common.

Pre-1970

Although IID in software is in the ascendancy as the "modern" approach to replace ad hoc or waterfall
development, its practiced and published roots go back surprisingly far—at least as far back as the
late 1950s, as a contemporary alternative to the nascent waterfall model, perhaps first described as
the "stagewise model" for the USA air defense SAGE project by H. D. Benington in "Production of
Large Computer Programs," Proceedings of the ONR Symposium on Advanced Program Methods for
Digital Computers, June 1956.

See "The Historical Accident of Waterfall Validity?"

Early roots for IID are found in the work of Walter Shewhart, the quality expert at Western Electric
who proposed, in the 1930s, a series of PDSA cycles (the Shewhart Cycle or Deming Wheel) for
quality improvement, an idea promoted by quality guru Edward Deming, starting in the 1940s. The
application of iterative PDSA to software was explored by Zultner in "The Deming Approach to Quality
Software Engineering," Quality Progress, 21(11) 1988.

A milestone 1950s project applying IID was the X-15 hypersonic jet (see W. H. Dana, "The X-15
Lessons Learned," NASA Dryden Research Facility, 1993):

A major contributor to the X-15's success over the long run was its emphasis on incremental
development.

Although not a software project, the X-15 is mentioned because some personnel (and hence,
incremental experience) seeded NASA's 1961–63 Project Mercury, which did apply IID in software—
and some of the latter project's personnel seeded the IBM Federal Systems Division (FSD), another
early IID proponent.

Project Mercury was run with short half-day iterations. There was a technical review of all changes,
and—interestingly—the Extreme Programming practice of test-first development was applied: Tests
were planned and written in advance of each micro-increment, and then the code was written to pass
the tests. Each mini-iteration required integration of all code and passing of tests.

The Project Mercury description came from the software engineering thought leader, Gerald M.
Weinberg, who provided a window onto IID versus waterfall attitudes during this period, especially on
the highly visible Project Mercury system [LB03]:

We were doing incremental development as early as 1957, in Los Angeles, under the direction of
Bernie Dimsdale [at IBM's Service Bureau Corporation]. He was a colleague of John von Neumann, so
perhaps he learned it there, or assumed it as totally natural. I do remember Herb Jacobs (primarily,
though we all participated) developing a large simulation for Motorola, where the technique used was,
as far as I can tell, indistinguishable from XP.

When much of the same team was reassembled in Washington, DC, in 1958 to develop Project
Mercury, we had our own machine and the new Share Operating System, whose symbolic modification
and assembly allowed us to build the system incrementally, which we did, with great success. Project
Mercury was the seed bed out of which grew the IBM Federal Systems Division. Thus, that division
started with a history and tradition of incremental development.

All of us, as far as I can remember, thought waterfalling of a huge project was rather stupid, or at
least ignorant of the realities.

Since the early 1960s, Weinberg has been a well-known consultant and author, is an inductee of the
Computer Hall of Fame, and has written classics such as Psychology of Computer Programming and
Secrets of Consulting.

1970s

Early practice of IID comes from the leadership of Mike Dyer, Bob McHenry, and Don O'Neill (and
many others) during their tenure at the IBM FSD, which was responsible for building many aerospace
and defense systems.

What is fascinating about the FSD story is the extent and success of IID use on large, life-critical DoD,
space, and avionic systems during the 1970s.

The first major FSD documented application of IID (I could find) was in 1972. This was a major, high-
visibility, life-critical system of over one million lines of code: the command and control system for the
first USA Trident submarine. The project included Dyer, McHenry, and O'Neill as project manager.
O'Neill conceived and planned the use of IID (later called Integration Engineering at FSD) on this
project; it was a key success factor, and he was awarded an IBM Outstanding Contribution Award for
it. Note the visible approval by IBM leadership for IID methods.

To underline this point: IBM FSD created the IID method Integration Engineering, and it
was a well-known practice on major FSD projects in the 1970s.

The Trident project could not be late: The system had to be delivered by a certain date; otherwise,
FSD faced a $100,000 per day late penalty. The project was organized in four timeboxed iterations of
about six months each. There was still a significant up-front specifications effort, and the iteration
length was longer than normally recommended today. Although there was some feedback-driven
evolution in the requirements, the IID approach was seen also as a way to manage the complexity
and risks of development. See O'Neill, "Integration Engineering Perspective," The Journal of Systems
and Software, No. 3, 1983.

Also in 1972, and outside of the IBM FSD, another major project that applied IID comes from an FSD
competitor: TRW.

It applied incremental development on the $100 million TRW/Army Site Defense software project for
ballistic missile defense. The project began in February 1972 and developed the system in five
iterations. Iteration 1 did tracking of a single object, and by iteration 5, a couple of years later, the
system was complete. The iterations were not strictly timeboxed, and there was significant up-front
specifications work, but they were also refined in response to each iteration's feedback. See Williams,
"Managing the Development of Reliable Software," Proceedings, International Conference on Reliable
Software, ACM/IEEE, April 1975.

As with IBM FSD, TRW was another early adopter of IID practices. Indeed, Barry Boehm, the
originator of the famous IID "spiral model" in the mid-1980s, served at TRW as Chief Scientist.
Another key TRW employee relevant to this story was Winston Royce, author of the most frequently
cited original paper on the waterfall. As will be explored later in "The Historical Accident of Waterfall
Validity?" section on page 102, his message was misunderstood, and he was in fact a proponent of IID
rather than the sequential waterfall, as it has come to be known.

Another early (mid-1970s), successful, and large application of IID at FSD was the USA Navy
helicopter-ship system LAMPS. A four-year 200 person-year effort involving millions of lines of code, it
was evolutionarily delivered in 45 timeboxed iterations (one month per iteration). This is the earliest
project example I found where the length of iteration was in the range commonly recommended by
today's IID methods. The project was quite successful. To quote,

Every one of those deliveries was on time and under budget.

It is described by the noted 1970s thought leader Harlan Mills in "Principles of Software Engineering,"
IBM Systems Journal, Vol 19(4), 1980.

Although unknown to most software professionals, another early and strikingly impressive example of
an IID success is the heart of the NASA Space Shuttle software itself: the Primary Avionics Software
System. This was built by FSD from 1977 to 1980, applying IID in a series of 17 iterations over 31
months, averaging around 8 weeks per iteration (see Madden and Rone, "Design, Development,
Integration: Space Shuttle Flight Software System," Communications of the ACM, Sept. 1984). Their
motivation for IID?

[The waterfall lifecycle was not suitable because] the requirements on the Shuttle program evolved
during the software development process.

(How unique). Ironically—in hindsight of the research evidence— the authors sound almost apologetic
in having to forego the "ideal" waterfall for an IID approach,

Due to the size, complexity, and evolutionary [changing requirements] nature of the program, it was
recognized early that the ideal software development lifecycle (the waterfall model) could not be
strictly applied. … However, an implementation approach (based on small incremental releases) was
devised for STS-1 which met the objectives by applying the ideal cycle to small elements of the overall
software package on an iterative basis.

This Shuttle project exhibited classic IID practices: timeboxed iterations in the eight-week range,
feedback-driven refinement of specifications, and so forth.

The IBM IID method Integration Engineering was so successful that it was incorporated into the FSD
Software Engineering Practices (SEP) in 1977 and disseminated to the 2,500 FSD software engineers
(see O'Neill, "The Management of Software Engineering," IBM Systems Journal, 19(4), 1980). The
idea of IID stimulated substantial interest within IBM's commercial divisions, senior customer ranks,
and among competitors, and presentations by SEP representatives on the value of IID, rather than the
waterfall to visitors was not uncommon during this period.

Another early story and paper often cited on the subject of iterative development is "A Successful
Software Development," by Wong, in IEEE Transactions on Software Engineering, No. 3, 1984. It
describes an air defense system project that ran from 1977 to 1980 that combined significant up-front
specifications followed by iterative development. The project was ostensibly meant to fit within DoD
single-pass waterfall standards, with testing and integration in the last phase. However, Wong
comments on the unrealism of this approach, and their need for and advantages using IID:

The [waterfall] model was adopted because software development was guided by DoD standards. … In
reality, software development is a complex, continuous, iterative, and repetitive process. The
[waterfall model] does not reflect this complexity.

1980s and Later

The earliest 1980s reference I could find to a large application successfully built via IID is the 1982
$100 million USD command and control project. See Tamanaha, "An integrated rapid prototyping
methodology for command and control systems: Experience and insight," ACM SIGSOFT Software
Engineering Notes, Dec. 1982.

From 1984 to 1988, Magnavox Electronic Systems built a large field artillery command and control
system for the USA Army, ultimately a 1.3 million line Ada project. Under the methodology leadership
of Don Firesmith, and with some consulting from Grady Booch, it ran as a successful IID project
composed of five iterations. The first iteration emphasized building the core architecture. The project
had twice the productivity and three times the usual quality measures compared to other Magnavox
projects [Firesmith87].

Dozens or hundreds more large IID projects in the 1980s can be discovered, but I'll close this brief
early history of IID for large, risky projects with two related case studies started in the mid-1980s:
the attempted next-generation USA and Canadian air traffic control (ATC) systems.

The attempted USA ATC project started in 1983 and ran as a classic and massive big-bang waterfall
project: It was a herculean attempt to define the requirements before programming, a consequential
lack of stakeholder feedback, analysis paralysis, complexity overload, and so on. The conclusion: In
1994 the government cancelled the project after having spent $2.6 billion USD, with nothing to show
for it [GAO98]. The project was restarted in the late 1990s with an IID approach. To quote:

[in the new approach] FAA and the aviation community agreed to (1) use an incremental approach to
modernizing the National Airspace System, referred to as the "build a little, test a little" approach; …
These practices differ from those of the past in which FAA tried to deploy large, complex projects all at
once, known as the "big bang" approach. [GAO99]

Similarly, in 1989, a new Canadian ATC project—CAATS—was started as a waterfall project, following
guidance from the USA DoD waterfall-promoting standard 2167A. In 1992, after several hundred
million dollars spent, requirements paralysis, and little progress deemed valuable, the Canadian
government was considering cancelling the project. But, rather than abandon the effort, the project
was restarted under the process leadership of Philippe Kruchten, an IID-experienced architect (and
later, chief architect of the Rational Unified Process). Kruchten ran it as an iterative project, averaging
six-months per iteration with a staff of several hundred, and CAATS re-surfaced as a successfully
evolving system with early visible progress, ultimately with over one million lines of source code,
mostly Ada. See Kruchten et al., "Modernizing ATC through Modern Software Methods," 1993
Proceedings of the Air Traffic Control Association.

2167A, unsuccessful, has since been replaced.

By the 1990s, IID use was relatively widespread, probably in the tens of thousands of projects
worldwide, though varying adoption trends in different domains and cultures could be seen.
Predictably, company and national cultures that emphasized hierarchical management and control,
and detailed predictive planning, were the slowest adopters.

Standards-Body Evidence

The transition of the USA DoD standards from waterfall to iterative and evolutionary is instructive. In
1980s a DoD standard for software development or procurement was released, DOD-STD-2167, based
on a waterfall model and document-driven approach.[2]

[2] It also had an influence on standards set by other governments. The story is explored in the "The
Historical Accident of Waterfall Validity?" section on page 102.

As mentioned earlier, the DoD was experiencing failure in the acquisition of software based on a
waterfall approach and the 2167 standard. For example, a 1995 report on failure rates in a sample of
earlier DoD projects drew grave conclusions: Out of a total cost of $37 billion USD for the sample set,
75% of the projects failed or were never used, and only 2% were used without extensive modification
[Jarzombek99].

Thus, there was a motivation to improve the 2167 standard. In the latter 1980s, Firesmith, motivated
from the stultifying influence of 2167 on the Magnavox project, helped lead the Ada community's
promotion of IID to replace 2167 with a new IID-friendly 2167A standard. In collaboration with Lt.
Colin Gylleat (who was deeply involved in producing 2167A), they were able to remove the legal
requirements for functional decomposition and the waterfall development cycle. However, the original
single-step waterfall diagrams remained in the updated 2167A from 2167, because (in the words of
Firesmith):

Although the waterfall diagrams did not have any legal impact, I could not get them removed because
the military logistics people would not agree with my assessment that they would continue to foster
the waterfall mindset.

Magnavox project

His assessment would prove correct. Shortly thereafter, another push to replace the waterfall with
evolutionary IID was made in a task force report [DSB87], chaired by Dr. Frederick Brooks. The report
recommended to replace the waterfall, disproved on many large DoD projects, with iterative
development:

DOD-STD-2167 likewise needs a radical overhaul to reflect modern best practice. Draft 2167A is a
step, but it does not go nearly far enough. As drafted, it continues to reinforce exactly the document-
driven, specify-then-build approach that lies at the heart of so many DoD software problems.

And on incremental acquisition and development:

In the decade since the waterfall model was developed, our discipline has come to recognize that
[development] requires iteration between the designers and users.

Finally, in the section titled Professional Humility and Evolutionary Development (humility that it
should be accepted that the waterfall goals of getting the specifications or design accurate without
evolutionary implementation and feedback are rarely possible):

Experience with confidently specifying and painfully building mammoths has shown it to be simplest,
safest, and even fastest to develop a complex software system by building a minimal version, putting
it into actual use, and then adding functions [and other qualities] according to the priorities that
emerge from actual use.

Evolutionary development is best technically, and it saves time and money.

The updated DOD-STD-2167A (Feb. 1988), which is often viewed by both DoD overseers and
contractors as the epitome of a waterfall specification, was ironically actually an amendment promoted
by Firesmith and Gylleat (and others) to allow lifecycle neutrality, to encourage IID alternatives to the
waterfall:

This standard is not intended to specify or discourage the use of any particular software development
method. The contractor is responsible for selecting software development methods (for example, rapid
prototyping) that best support the achievement of contract requirements.

Despite this intent, the new standard was interpreted—with justification—by many to still contain an
implied preference for the waterfall model, due to its document-driven milestone approach.

Due to ongoing failure with waterfall projects, and to re-emphasize replacing the waterfall with IID for
DoD projects, a Report of the Defense Science Board Task Force on Acquiring Defense Software
Commercially, June 1994, was issued that stated:

DoD must manage programs using iterative development.

Apply evolutionary development with rapid deployment of initial functional capability.

As a consequence, 2167A was superseded by MIL-STD-498 in December 1994. In "Changes from
DOD-STD-2167A to MIL-STD-498," Crosstalk: The Journal of Defense Software Engineering, April
1995, Maj. George Newberry summarizes the changes to encourage "evolutionary acquisition" and IID
in the section Removing the Waterfall Bias:

MIL-STD-498 describes … incremental builds. Each build implements a specified subset of the planned
capabilities. The process steps are repeated for each build, and within each build, steps may be
overlapping and iterative.

The MIL-498 standard explains and promotes evolutionary requirements and design; for example:

If a system is developed in multiple builds, its requirements may not be fully defined until the final
build. … If a system is designed in multiple builds, its design may not be fully defined until the final
build.

In 2000 the DoD 5000.2 acquisition "instruction" was released, that again recommended evolutionary
delivery and the use of IID:

There are two approaches, evolutionary and single step [waterfall] to full capability. An evolutionary
approach is preferred. … [In this] approach, the ultimate capability delivered to the user is divided into
two or more blocks, with increasing increments of capability.

… software development shall follow an iterative spiral development process in which continually
expanding software versions are based on learning from earlier development.

See also the scanned memo in Figure 6.6 that clearly communicates the DoD preference for
evolutionary and "spiral" (iterative) development.

Figure 6.6. scanned memo

Thus, the DoD—perhaps the world's largest and most experienced procurement agency for software—
started with the assumption that a waterfall model and up-front specifications was best (codified in
2167), and then—based on the experience of high rates of project failures—adopted iterative and
evolutionary methods, demoting the waterfall.

The practice of IID is important to the DoD. For example, there is now an annual conference on the
subject, Evolutionary Acquisition & Spiral Development, organized by the Institute for Defense and
Government Advancement. See www.idga.org.

Unfortunately (for taxpayers worldwide) STD-2167 influenced the definition of standards in other
countries, who did not keep up with the fact that the DoD later abandoned 2167 and the waterfall;
many of these standard bodies still impose single-pass, document-driven processes.

The DoD is not the only standards group to make this shift. In 2002 the USA Food and Drug
Administration (FDA) updated their prior waterfall model requirements [FDA97] for software
development of FDA approved devices (e.g., medical devices) with a new standard that promotes
iterative development [FDA02]. To quote,

Most software development models will be iterative. This is likely to result in several versions of both
the software requirements specification and software design specification.

Although a number of European standards are still waterfall oriented, promising signs of change have
emerged, such as the 2002 Bonn Germany NATO Symposium on Evolutionary Software Development.

Expert and Thought Leader Evidence

This section concentrates on some of the earliest and most well known software development thought
leaders; many other experts reiterate their views. Where possible, the material is organized by date of
publication.

Harlan Mills

The earliest iterative-promoting reference I could find from a prominent expert came in 1970 from
Harlan Mills, who worked at the IBM FSD. Mills was perhaps the most well-known software
engineering thought leader of the 1970s, winner of the DPMA and Warnier Prizes for lifetime
contributions to information sciences, an inventor or contributor to structured programming, top-down
design and programming, chief programmer teams, the Cleanroom Method, and incremental
development.

In his well-known "Top-down Programming in Large Systems" he promotes iterative development. See
Debugging Techniques in Large Systems, Prentice-Hall (reprinted in Mills' collected papers, Software
Productivity, Dorset House, 1988). In addition to the paper's primary advice to develop starting from
top-level control structures downwards, Mills gives the related lifecycle advice of building the system
via "iterated expansions."

… it is possible to generate a sequence of intermediate systems of code and functional
subspecifications so that at every step, each [intermediate] system can be verified to be correct, …

In 1976, after seeing the many successes with IID on IBM FSD projects, Mills reiterated and
strengthened his IID message. In the widely read "Software Development," IEEE Transactions on
Software Engineering, December 1976, he writes:

Software development should be done incrementally, in stages with continuous user participation and
replanning, and with design-to-cost programming within each stage.

In the context of analyzing a failed three-year inventory control system project, he goes on to
challenge the waterfall:

…there are dangers, too, particularly in the conduct of these [waterfall] stages in sequence, and not in
iteration—i.e., that development is done in an open loop, rather than a closed loop with user feedback
between iterations. The danger in the sequence [waterfall approach] is that the project moves from
being grand to being grandiose, and exceeds our human intellectual capabilities for management and
control.

Exasperated at the failures applying the waterfall, contrasted with IID at FSD, Mills asks:

…why do enterprises tolerate the frustrations and difficulties of such [waterfall] development?

And this complaint in 1976.

Further, Mills' Cleanroom Method included IID as part of the method.

Tom Gilb

In 1976 there was the (published) arrival of a long-standing and passionate voice promoting iterative
and evolutionary methods: Tom Gilb. This was the first clear IID-promoting book reference I could
find, in Gilb's Software Metrics, Studentlitteratur AB (Sweden). Some examples:

Evolution [or "Evo," the name of Gilb's iterative method] is a technique for producing the appearance
of stability.

A complex system will be most successful if it is implemented in small steps and if each step has a
clear measure of successful achievement as well as a "retreat" possibility to a previous successful step
upon failure.

The advantage is that you cannot have large failures. You have the opportunity of receiving some
feedback from the real world before throwing in all resources intended for a system, and you can
correct possible design errors before they become costly live systems.

Gilb also wrote Evo articles in the 1978–79 issues of Computer Weekly. And in 1985, he published one
of a growing number of articles questioning the sequential lifecycle, in "Evolutionary Delivery versus
the Waterfall Model" ACM Sigsoft Software Requirements Engineering Notes, July 1985.

Evo chapter

Gilb has been developing and consulting since 1960, is the creator of one of the earliest iterative
methods, Evo, and author of popular texts such as Principles of Software Engineering Management,
Addison-Wesley, 1988, in which he expands on Evo in several chapters.

Frederick Brooks

In 1986 there was the release of a popular article in software engineering, one of whose main themes
is the demotion of the waterfall and promotion of IID. It was "No Silver Bullet" by Frederick Brooks,
published in Proceedings of the IFIP Tenth World Computing Conference (and reprinted in IEEE
Computer, April 1987). In this classic paper, Brooks criticizes the waterfall as undesirable, and extols
the advantages of IID:

Nothing in the past decade has so radically changed my own practice, or its effectiveness [as iterative
development].

He rejects waterfall advice and the promotion by requirements engineering advocates of detailed up-
front specifications, and lays the blame for much software failure on it:

Much of present-day software acquisition procedures rests upon the assumption that one can specify a
satisfactory system in advance, get bids for its construction, have it built, and install it. I think this
assumption is fundamentally wrong, and that many software acquisition problems spring from that
fallacy.

Like Mills, Brooks was another famous software engineering thought leader. He was manager of the
landmark IBM OS/360 operating system project, author of arguably the most widely read software
engineering text, The Mythical Man-Month (Addison-Wesley, 1985), chair of the mid-1980s DoD study
into software project failure (and what to change), and recipient of the highest awards in computer
science and software engineering (the ACM Turing award, the IEEE John Von Neumann Medal, and the
President's National Medal of Technology).

In the Silver Anniversary edition of The Mythical Man-Month Brooks tried to make it more plain by
simply stating, The waterfall model is wrong!

Barry Boehm

Another well-known mid-1980s landmark in IID publications from an experienced expert comes with
Barry Boehm's "A Spiral Model of Software Development and Enhancement," Proceedings of an
International Workshop on Software Process and Software Environments, March 1985 (although more
frequently cited in ACM SIGSOFT Software Engineering Notes, August 1986). Boehm's spiral model
description promotes iterative and evolutionary development with a strong risk-driven emphasis. To
quote:

A primary source of difficulty with the waterfall model has been its emphasis on fully-elaborated
documents as completion criteria for early requirements and design phases. For some classes of
software, such as compilers …, this is the most effective way to proceed. But it does not work well for
many classes of software, particularly interactive end-user applications.

Boehm, having ties to the DoD community, was successful in introducing the spiral model and its
refinement, MBASE, on DoD projects, with a 90% rate of "highly satisfactory products" over several
hundred projects. See, for example, "Balancing Discipline and Flexibility with the Spiral Model and
MBASE," Crosstalk: The Journal of Defense Software Engineering, Dec. 2001.

Boehm has been involved in software development since the mid-1950s, has served as Chief Scientist
for TRW (an experienced large systems contractor), Director of the USA DARPA Technology Office, and

Chair of the Air Force Scientific Advisory Board. He is the creator of the well-known COCOMO
estimation model, and has won the Warnier Prize, the NSIA Grace Murray Hopper Award, and the ACM
Distinguished Research Award in Software Engineering.

James Martin

James Martin learned of iterative development and timeboxing from Scott Shultz at Dupont, where the
practice was first given the name "timebox methodology" or "Rapid Iterative Production Prototyping"
(RIPP). It was widely applied at Dupont in the early 1980s under Shultz's guidance.

Seeing its success, Martin started in the late 1980s to also promote development by timeboxed
iterations for use both within and outside of the practice of rapid application development (RAD). See
Martin, Information Engineering: Design and Construction, Prentice-Hall, 1990. Based on its success
with his customers, all subsequent method advice from James Martin promoted iterative development,
rather than a sequential waterfall. He writes:

It is desirable [to use an iterative lifecycle] because the traditional lifecycle [the waterfall] is very
slow. The traditional lifecycle often fails to meet the needs of end users. … The traditional lifecycle
prevents exploratory design and programming which is necessary to creative areas. … Evolutionary
development is needed in which systems continually grow.

And:

While simple systems can be designed in one step, complex or subtle systems become understood
only by attempting to build a [an evolutionary production-grade] prototype, learning from it, [and
repeating]. The prototypes are improved a stage at a time until they converge to what the end users
agree is a valuable system.

The creators of DSDM, another popular iterative method, were RAD developers who were influenced
by Martin's promotion of timeboxing and iterative development.

Martin has been involved in software development since the early 1960s, and was ranked by
Computerworld among the top ten most influential people in the world of computing. He has served on
the DoD Software Scientific Advisory Board, is an inductee of the Computer Hall of Fame, consulted to
hundreds of organizations for decades, and is the author of over 100 texts on software development
and technology.

Tom DeMarco

Tom DeMarco is a long-time practitioner and student of skillful software development practices,
emphasizing people rather than lifecycle issues in his (and Tim Lister's) popular PeopleWare (Dorset
House, 1987). In response to my question about his views on iterative development, he wrote
(personal communication, email),

Craig, I have been a passive advocate of iterative methods since ever, but never wrote on the subject
that I remember (my bag is the people side of management). However, my new book ["Waltzing With
Bears: Managing Risk on Software Projects," Dorset House, 2003] with co-author Tim Lister has a
whole part on iteration as a (read THE) risk mitigation technique.

In their book, DeMarco writes:

The best bang-per-buck risk mitigation strategy we know is incremental delivery.

DeMarco was winner of the 1986 Warnier Prize for "lifetime contribution to the field of computing" and
the 1999 Stevens Award for "contribution to the methods of software development."

Ed Yourdon

In the early 1970s, with Larry Constantine and Tom DeMarco, Ed Yourdon founded Structured Analysis
and Design, with a waterfall emphasis. But by the mid-1980s, Yourdon (and his colleagues) had
shifted course and has since been a promoter of iterative development in many articles and books—for
example, "The Future of Software: Best of Times, Worst of Times," IEEE Software, January 1998,

It's also easy to be optimistic when we look at the advances we've made in the "discipline" of our
field. [New tools] have led many organizations to an iterative development approach that generally
leads to more successful results than the waterfall development approach that was partly necessitated
by the older generation of batch, mainframe tools.

Yourdon has been in the field since 1964, is the author of dozens of books, was named one of the ten
most influential people in the software field in Crosstalk: The Journal of Defense Software Engineering,
and in 1997 was inducted into the Computer Hall of Fame.

A Business Case for Iterative Development

As the evidence sections show, there is data to support the assertions that the waterfall is more
failure-prone for software-intensive projects and that disciplined IID with evolutionary requirements
and design is correlated with lower rates of failure and defects, and higher rates of productivity.

Thus, a business case can be made based on several factors, including:

 productivity

 quality (of both the product and the process)

 failure, delay, or cost-overruns

 fit of product to the true demand

This analysis draws special attention to reduced failure rates. Projects fail for many reasons, but
evidence [e.g., Thomas01] has shown that waterfall practices rather than IID were associated with
the most significant failure factors.

Figure 6.7 shows research on failure rates [Standish00] across 35,000 projects. On average, 23% of
projects failed and were cancelled before completion in 2000.

Figure 6.7. success rates

In addition, the average cost of these projects is:

Large Company Medium Small

$1.2M USD $1.1M $0.6M

Taking the average project cost for medium-sized companies, $1.1 million USD (let's round to $1
million), and the average year 2000 failure rate of 23%, if the organization attempts 20 projects in a

year (a $20 million budget), it loses (conservatively rounding down) $4 million USD on four failed
projects.

If—modestly—adopting IID leads to a slightly reduced failure rate of 17% (vs. 23%) then for every 20
projects attempted, one more succeeds—and roughly $1 million is saved.

In this case, even a substantial investment in education and consulting expertise to transition to IID
pays off handsomely.[3] If a medium sized company with 10 projects per year and an annual $10
million project budget invested $100,000 in IID skills transfer, then—on average—in two years one
more $1 million project will be successful. Assuming a two-year analysis and a 10% discount rate, this
investment gives a (rounding) NPV of $700,000 with an IRR of 200%, not to mention reclaiming the
lost opportunity cost of putting that $1 million project to work.

[3] Using experienced mentors to coach IID pilot projects is an adoption best practice.

In summary, although goals such as productivity and quality improvement are associated
with IID, a primary, costly issue is reducing the expensive rate of failure of software
projects—and IID is strongly correlated with the major factors to reduce failure and
increase success. The opposite is true for waterfall practices.

The Historical Accident of Waterfall Validity?

The waterfall model was a response to ad hoc code-and-fix development in the 1960s. Note—as has
been explored in the "Early Historical Project Evidence" section on page 79—disciplined IID did exist
as a contemporary alterative. It was not inevitable that the waterfall be widely promoted (rather than
IID) starting in the 1970s; it has a bit of an accidental quality to it, as I discovered in my historical
research.

Misunderstanding started early, with the article and author most often cited for the waterfall:
"Managing the Development of Large Software Systems" by Winston Royce, in Proceedings of IEEE
Westcon, 1970.

In this article—sometimes (incorrectly) identified as the paragon of single-pass waterfall—Royce
actually recommends an approach different than what devolved into the popular notion of waterfall,
with its strict single-pass sequence of requirements analysis, design, and development phases. He
recommends to "do it twice." To quote:

If the computer program in question is being developed for the first time, arrange matters so that the
version finally delivered to the customer for operational deployment is actually the second version
insofar as critical design/operations areas are concerned.

He goes on to suggest that a 30-month project might have a 10-month throw-away "pilot model" and
justifies its necessity when there are novel elements and unknown factors (hardly a unique case).

Winston's son Walker Royce described what his (deceased) father felt about the misinterpretation of
the waterfall that was attributed to him, and the widespread promotion of a document-driven single-
pass approach [LB03]:

He was always a proponent of iterative, incremental, evolutionary development. His paper described
the waterfall as the simplest description, but that it would not work for all but the most
straightforward projects. The rest of his paper describes [iterative practices] within the context of the
60s/70s government contracting models (a serious set of constraints).

It is ironic that the author of the seminal waterfall paper was a proponent of iterative and evolutionary
development, that his paper was only describing a process for the most straightforward projects, and
that Royce did not subscribe to the simplified single-pass waterfall, as it is often described.

Note also that the paper was not based on research into various successful lifecycle choices for large,
novel projects. It did not cite any evidence, trends, or other projects. Indeed, the paper opens with
this sentence:

I am going to describe my personal views about managing large software development.

Even by the time DOD-STD-2167 was adopted in the 1980s there was a growing body of experience
and recommendations by thought leaders to avoid rather than embrace the (misunderstood) waterfall,
but this knowledge did not find its way into the 2167 standard. Why? One part of the reason is that
these standards were usually combined with and influenced by MIL-STD-1521B, another standard that
required a series of document-driven reviews, such as a requirements review. I found another part of
the answer in Boston.

In 1996 I visited the Boston area and had lunch with the principal author of 2167. He expressed
regret for the creation of the rigid single-pass waterfall standard. He said he was influenced by
common knowledge and practice of the time, plus other standards (e.g., 1521B). He was not familiar
with the practice of timeboxed iterative development and evolutionary requirements at the time, and
in hindsight, said he would have made a strong IID recommendation, rather than what was in 2167.

It is no small irony that 2167 was then used as input to other standards, both within the United States
and internationally. For example, the British JSP-188, German V-Model (also the basis of the Austrian
and Swiss standards), and the French GAM-T-17 were influenced by 2167, with an emphasis on
single-pass waterfall phases, and early large, signed-off specifications before construction.

Although DoD reports started to publicly caution against 2167 and the waterfall in 1987, and 2167
was replaced with an IID-promoting standard in 1994, other governments and standards bodies that
had drawn from 2167 did not likewise update their standards, apparently unaware of the changes
afoot.

As I uncovered these stories, I was struck by the unintended influence a small number of individuals
had on a world of standards and projects. And, how the misunderstanding and speculation that
actually lay behind these standards led to a kind of accidental perception of validity for the waterfall,
making of it a mirage as the "obvious tried-and-true" best practice for large, novel, complex projects,
when in fact this was not the case.

Why Did Waterfall Promotion Continue?

H. L. Mencken quipped, "For every complex problem, there is a solution that is simple, neat, and
wrong." In the history of science it is normal that lesser ideas first hold the dominant position, even in
the absence of results. Western cosmology's Earth-centric universe dominated Europe for over a
millennium until enough evidence and brave souls accumulated to depose the model. Software
development is a young field, so it is no surprise the simple formula of "requirements, design,
implementation" held sway during the first attempts to create a skillful development process. Other
reasons for the early and ongoing adoption of the single-pass waterfall idea include:

 Few actually read Royce's original waterfall paper [Royce70]. Its iterative flavor was lost, and
it devolved from the nuanced evolutionary description he gave, to a simple single-step
lifecycle. This is seen in the many third-party diagrams supposedly depicting "Royce's
waterfall," that do not correctly correspond to the original iterative picture Royce gave.

 Few realized that, as in the words of Royce's son, "[My father] was always a proponent of
iterative, incremental, evolutionary development. His paper described the waterfall as the
simplest description, but that it would not work for all but the most straightforward projects."

 The single-pass waterfall had simplicity of explanation and recall ("do the requirements, then
design, and then implement"); IID is more complex to understand and describe. Note that
even Royce's original two-iteration waterfall immediately devolved into a single step model by
other adopters and writers.

 As discussed in the opening chapter, software projects have been inappropriately associated
with a predictable manufacturing paradigm (such as mobile phones) that can be predictably
specified and planned, rather than a new product development paradigm.

 Single-pass waterfall has been favored by some management because it gives the illusion of
an orderly, predictable, accountable, and measurable process, with simple document-driven
milestones (such as "requirements complete"). There is a special irony in choosing a simple-
to-track process that yields higher levels of risk.

 Waterfall values and big up-front specification goals continued to be promoted by
requirements engineering (and other groups) as appropriate or even ideal decades after large
project experience, research, standards bodies, and the criticism of leading experts advised

against it. Perhaps this was due to unfamiliarity with the evidence or with how disciplined
iterative and evolutionary requirements could be made to work.

 The Capability Maturity Model (CMM) from the Software Engineering Institute (SEI)
influenced some software process engineers in the late 1980s and 1990s towards gated,
document-driven, waterfall practices [SEI03]. Although an IID-approach can be certified as
CMM-mature, early CMM discussions had a tone of document and plan-driven, phase-oriented,
and predictive planning. Many CMM certifiers and consultants had a background in waterfall
values and practices and prescriptive process, without experience in iterative and adaptive
methods. More recently, SEI CMM thought leaders have promoted IID and agile methods
[Paulk01].

see www.sei.cmu.edu

CMM defines levels of process maturity. Level 1 is chaotic, heroic effort. Level 5 is a
reflective, constantly improving system.

prescriptive process

 The Project Management Institute (PMI) educates and certifies managers, and influences

management values via its Project Management Body of Knowledge (PMBOK). The PMI and
PMBOK have valuable contributions, and acknowledge iterative and evolutionary methods. Yet,
some early PMBOK content had a tone of "plan the work, work the plan," phases, and
predictive planning more consistent with predictable manufacturing projects and the waterfall,
than with evolutionary methods for high-change inventive projects.

see www.pmi.org

problems with "plan the work, work the plan"

What's Next?

Next are four related method chapters that explain the practices of Scrum, XP, UP, and Evo. After
that, the book concludes with a practice tips chapter and a FAQ chapter.

Recommended Readings

The many cited papers within this chapter are the place to go for more details, although in some cases
I had to contact the original people to help fill in the story. Many older IEEE and ACM journal papers,
and some older IBM Systems Journals, are now available on the Web.

Chapter 7. Scrum

Ours is too great and too complex a nation for even such as I to direct and lead every action.

—Attila the Hun

OVERVIEW

 Classification of Scrum.

 Workproducts, roles, and practices.

 Common mistakes, adoption and process mixtures, strengths and weaknesses.

Scrum appears simple, yet has practices that deeply influence the work experience and that capture
key adaptive and agile qualities. Scrum's distinctive emphasis among the methods is its strong
promotion of self-directed teams, daily team measurement, and avoidance of prescriptive process.
Some key practices include:

prescriptive process

 self-directed and self-organizing team

 no external addition of work to an iteration, once chosen

 daily stand-up meeting with special questions

 usually 30-calendar day iterations

 demo to external stakeholders at end of each iteration

 each iteration, client-driven adaptive planning

Method Overview

Classification

In terms of cycles and ceremony, Scrum classification is illustrated in Figure 7.1. Scrum is uniquely
precise on the length of iterations: usually 30 calendar days, a more-or-less common length compared
to other IID methods.[1]

[1] Shorter is legal, but 30-day iterations are encouraged.

Figure 7.1. Scrum on the cycles and ceremony scale

cycles and ceremony

Scrum is flexible on the ceremony scale; discussion of what and how many workproducts is outside its
scope, as is how much rigor is required. As a guiding principle, the Scrum founders would say, "as
little ceremony as possible." Also on a Scrum project, the whole team—not a manager—will decide
how much is appropriate.

High levels for a medical device are acceptable, as are low levels for a casual-information read-only
Web site.

In terms of scope on the Cockburn scale, Scrum covers the cells shown in Figure 7.2. Although one
Scrum team should be seven or less, multiple teams may form a project. It has been used on both
small projects and those involving hundreds of developers. Since Scrum practices include working in a
common project room, it scales via a "scrum of scrums" where small teams work together and hold a
daily stand-up meeting, and representatives from each those teams likewise meet daily. Scrum is
complementary enough to other practices that it may be applied across all domains of software
applications, from life-critical to more casual—and it has.

Figure 7.2. Scrum on the Cockburn scale

Cockburn scale

Introduction

Scrum [SB02] is an IID method that emphasizes a set of project management values and practices,
rather than those in requirements, implementation, and so on. As such, it is easily combined with or
complementary to other methods.

A key Scrum theme is its emphasis on empirical rather than defined process. Ken Schwaber, one of
the Scrum founders, tells a noteworthy story in this context [SB02]:

empirical and defined methods

I wanted to understand why my customers' [waterfall and detailed-defined] processes didn't work for
my [software] company, so I brought several methodologies to process theory experts at the DuPont
Experimental Station in 1995. These experts, led by Babatunde Ogannaike, are the most highly
respected theorists in industrial process control.[2]

They inspected the systems development processes that I brought them. I have rarely provided a
group with so much laughter. They were amazed and appalled that my industry [software], was trying
to do its work using a completely inappropriate process control model. They said systems
development had so much complexity and unpredictability that it had to be managed by a process
control model they referred to as "empirical." They said this was nothing new, and all complex
processes that weren't completely understood [or had changing inputs] required the empirical model
[and not the defined process model].

… [Ogannaike] said my business was an intellectually intensive business that required too much
thinking and creativity to be a good candidate for the defined approach. … He was particularly amused
that the tasks were linked together with dependencies [in a PERT chart], as though they could
predictably start and finish just like a well-defined industrial process.

[2] Ogannaike has written one of the primary university textbooks on industrial process control; see
[OR94].

Ogannaike's words echo Deming and Shewhart's industrial process control emphasis on cyclic Plan-
Do-Study-Act for complex, changing systems and environments.

Shewhart and Deming

Lifecycle

The Scrum lifecycle is composed of four phases: Planning, Staging, Development, and Release. The
following example illustrates a Scrum project and the lifecycle: Jeff Sutherland, one of the Scrum
founders, serves at an organization that applies Scrum to build a hand-held medical system. Their
evolutionary delivery release cycle is three months, composed of three Scrum Sprints (iterations). As
this is a relatively mature and ongoing project, the vision-oriented Planning phase is bypassed (its
goals having already been satisfied), and each release begins with Staging—addition and prioritization
of items to work on in the first of the three Sprints. During the prior three-month release cycle, some
subject matter experts were involved in enough requirements analysis to kick-start the release. In
collaboration with the architect and some other team members, the new items are assigned tentative
estimates, with no item larger than three person-days of effort. Staging is followed by three iterations
of the Development phase. Quality assurance (QA) occurs in each, but the third Sprint has a special
focus on QA, with less new development.

Workproducts, Roles, and Practices

Roles

Practices

Core Practices

Practice Description

Pre-game
planning and
staging

During Pre-game Planning, all stakeholders can contribute to creating a list of
features, use cases, enhancements, defects, and so forth, recorded in the Product
Backlog. One Product Owner is designated its owner, and requests are mediated
through her. During this session, at least enough work for the first iteration is
generated, and likely much more.

Starting at these meeting and evolving over time, is identification of the Release
Backlog, the subset of the Product Backlog that will make the next operational or
product release.

Sprint planning Before the start of each iteration—or Sprint—two consecutive meetings are held. In
the first, stakeholders meet to refine and re-prioritize the Product Backlog and
Release Backlog, and to choose goals for the next iteration, usually driven by
highest business value and risk. In the second meeting, the Scrum Team and
Product Owner meet to consider how to achieve the requests, and to create a Sprint
Backlog of tasks (in the 4–16 hour range) to meet the goals. If estimated effort
exceeds resources, another planning cycle occurs.

As the iteration proceeds, the Sprint Backlog is updated, often daily during the early
part of the iteration, as new tasks are discovered. As a history of many Sprint
Backlogs grows, the team improves their creation of new ones.

Practice Description

Sprint Work is usually organized in 30-calendar-day iterations; each is called a Sprint.

Self-directed
and self-
organizing
teams

During an iteration, management and the Scrum Master do not guide the team in
how to fulfill the iteration goals, solve its problems (other than to make decisions
when requested, and remove reported blocks), nor plan the order of work. The team
is empowered with the authority and resources to find their own way, and solve
their own problems.

This hands-off approach for 30 days, except to provide resources and remove
blocks, is perhaps the most personally challenging aspect for management adopting
Scrum.

Scrum meeting Each workday at the same time and place, hold a meeting with the team members
in a circle, at which the same special Scrum questions are answered by each team
member.

Details are described in the next section.

Don't add to
iteration

During an iteration, management does not add work to the team or individuals.
Uninterrupted focus is maintained. In the rare case something has to be added,
something else should ideally be removed.

But, before each new iteration, the Product Owner and Management have the right
and responsibility to re-prioritize the Product Backlog, and indicate what to do in the
next iteration, as long as the work request estimates don't exceed the resources.

Scrum master
firewall

The Scrum Master looks out to ensure the team is not interrupted by work requests
from other external parties, and if they occur, removes them and deals with all
political and external management issues.

The Scrum Master also works to ensure Scrum is applied, removes reported blocks,
provides resources, and makes decisions when requested. She also has to take
initiative when she sees during the meeting that someone isn't completing work, if
the team doesn't speak up.

Decision in one
hour

Blocks reported at the Scrum Meeting that require decisions by the Scrum Master
are ideally decided immediately, or within one hour.

The value of "bad decisions are better than no decisions, and they can be reversed"
is promoted.

Blocks gone in
one day

Blocks reported at the Scrum Meeting are ideally removed before the next meeting.

Chickens and
pigs

During the Scrum Meeting, only the Scrum Team can talk (the pigs). Anyone else
can attend, but should remain silent (the chickens), even the CEO.

An exception is management (e.g., CEO) feedback on survival points or explanation
of the business relevance of the team's work. The Scrum needs to be a vehicle for
communicating the product vision and organization goals.

From this story: A pig and chicken discussed the name of their new restaurant. The
chicken suggested Ham n' Eggs. "No thanks," said the pig, "I'd be committed, but
you'd only be involved!"

Teams of seven Scrum can scale to large projects, but recommends one team have a maximum of
seven members. Larger projects are multi-team.

Common room
(preferred)

Ideally, the team work together in a common project room, rather than separate
offices or cubes. Separate, private space is still available for other activities.

However, teams composed of geographically spread members, participating by
speakerphone in the Daily Scrum, have reported success.

Practice Description

Daily build At least one daily integration and regression test across all checked-in code for the
project.

The XP practice of Continuous Integration is even better.

Sprint review At the end of each iteration, there is a review meeting (maximum of four hours)
hosted by the Scrum Master. The team, Product Owner, and other stakeholders
attend. There is a demo of the product. Goals include informing stakeholders of the
system functions, design, strengths, weaknesses, effort of the team, and future
trouble spots.

Feedback and brainstorming on future directions is encouraged, but no
commitments are made during the meeting. Later at the next Sprint Planning
meeting, stakeholders and the team make commitments.

"Power Point" presentations are forbidden. Preparation emphasis is on showing the
product.

The Scrum Meeting: Details

The Scrum Meeting—or scrum—is the heartbeat of Scrum and the project. Each workday at the same
time and place, hold a meeting with the team members standing in a circle, at which time the same
special questions are answered by each member:

1. What have you done since the last Scrum?
2. What will you do between now and the next Scrum?
3. What is getting in the way (blocks) of meeting the iteration goals?

I've added two more questions—since shortly after starting to apply Scrum in 1998—that have been
useful:[3]

[3] These additional questions have been reviewed and approved by Schwaber and Sutherland, the
Scrum founders.

4. Any tasks to add to the Sprint Backlog? (missed tasks, not new requirements)
5. Have you learned or decided anything new, of relevance to some of the team members?

(technical, requirements, …)

The last question provides an efficient forum for a continuously improving and learning group—vital to
agile development—and is often an interesting way to end the reports, increasing their perceived
value.

Other points:

 The meeting is ideally held in a stand-up circle to encourage brevity.

 On average, 15 or 20 minutes for 7–10 people. Longer meetings are common near the start of
an iteration.

 Non-team members (chickens) are outside the circle.

 It is held next to a whiteboard at which all the tasks and blocks are written when reported.

 The Scrum Master erases blocks only once they've been removed.

 There is a speaker-phone for offsite member participation—which is required.

 The Scrum Master ensures the rules are followed and prepares the location for an efficient
meeting.

 Must start on time. Late fines collected by the Scrum Master and donated to charity are a
popular rule.

 Chickens and Pigs rule enforced: Non-team members don't talk or ask questions. An exception
is management feedback on survival points or explanation of the business relevance of the
team's work. The Scrum needs to be a vehicle for communicating the product vision and
organization goals.

 No other discussion is allowed beyond the three (or five) questions. The Scrum Master has
authority to refocus the discussion.

 If other issues need discussion, secondary meetings immediately after the Scrum Meeting
occur, usually with subsets of the team. For example, during the Scrum meeting, I may say to
Jill, during her answer report, "We need to talk about that. Let's meet after the Scrum."

The Value of the Scrum Meeting

Value: Since there is a self-directing and organizing team, with no manager directing workers or
solving problems (unless asked) during an iteration, the Scrum Meeting creates the daily mechanism
to quickly inform the team about the state of the project and people. Then, people can take action.
External people can observe the daily Scrums to get an accurate, timely, and information-rich
measure of progress and issues. It supports openness and allows resolution of dependencies and
conflicts in real time to maximize throughput.

Value: When a person reports on what they are doing for the next day, they are expressing a kind of
social promise to the team. This increases responsibility and follow-through.

Value: Scrum is based on the insight that software development is creative and unpredictable new
product development, and therefore empirical rather than defined methods are needed. The Scrum
Meeting provides the frequent measuring and adaptive response mechanism that empirical methods
require.

Value: Project risks include not accounting for all tasks, poor estimates, and not quickly resolving
blocks. The Scrum Meeting provides a daily forum to update tasks, and surface and remove
impediments.

Value: It is important to have people (and teams) that are continuously improving and learning. The
Scrum Meeting supports this, especially with the addition of Question 5. Unspoken (or tacit)
information and knowledge becomes spoken and shared.

Value: Shared language, values, and practices help a development team. This is created and
reinforced in the daily Scrum.

Workproducts

In addition to the workproducts illustrated on p. 114, Scrum allows any other workproducts of value to
the project. For example, it can be combined with some UP practices, and one can create a Vision or
Risk List, using UP terminology.

Product Backlog— A sample, partial Product Backlog is shown in Figure 7.3. Note that all
conceivable items go in the backlog and are prioritized by the Product Owner. The estimates (in
person-hours of effort) start as rough guidelines, refined once the team commits to an item.

Figure 7.3. sample Product Backlog

Sprint Backlog— A sample Sprint Backlog is shown in Figure 7.4. Note the daily estimate of work
remaining for each task; these columns also show the date (e.g., 6 of Jan) and total hours remaining
on each day (e.g., Jan 6, 362 hours). It is updated daily by the responsible members or by a daily
tracker who visits each member. New estimates are allowed to increase above the original estimate.
The simplest (and thus preferred) tool is a spreadsheet; Sutherland uses a customized version of the
open-source GNU GNATS tracking tool, with a Web interface.

Figure 7.4. sample Sprint Backlog

Sprint Backlog Graph— A Sprint Backlog Graph is shown in Figure 7.5. It is a visual summary of
estimated task hours remaining in the Sprint Backlog. In Scrum, this is considered the most critical
project data to track. Recommended: Post an updated version of this each day on the wall by the
Scrum meeting.

Figure 7.5. sample Backlog Graph

Other Practices and Values

 Workers daily update the Sprint Backlog— Once tasks are underway, individuals are
responsible for daily updates estimating the time remaining for their tasks.

 No PERT charts allowed— A PERT chart is built on the assumption that the tasks of a
project can be identified, ordered, and reliably estimated, that there is minimal change and
noise in the system, and in general that a defined process can be applied. This is inconsistent
with the recognition in iterative and agile methods that software is semi-chaotic new product
development with high degrees of change and noise, and defined processes can't apply.

 Scrum Master reinforces vision— She needs to daily share and clarify the overall project
vision, and goals of the Sprint, perhaps at the start of the Scrum meeting.

 Replace ineffective Scrum Master— The manager/Scrum Master is the servant of the
developers, not vice versa. If Scrum Master is not removing blocks promptly, acting as a
firewall, and providing resources, the Scrum founders encourage replacing the Scrum Master.

Values

The Scrum values are described in [SB02]:

 Commitment— The Scrum Team commits to a defined goal for an iteration, and is given the
authority and autonomy to decide themselves how best to meet it. Management and the
Scrum Master commits to not introduce new work during an iteration, avoid directing the
team, and work to provide the resources and quickly remove blocks that the team reports in
their daily Scrum meeting. The Product Owner commits to define and prioritize the Product
Backlog, guide choice of the next iteration's goals, and review and provide feedback on the
result of each iteration.

 Focus— The Scrum Team has to be able to focus on the stated goals of the iteration, without
distraction. Thus, management and the Scrum Master focus on providing the team with
resources, removing blocks, and avoiding interrupting the team with additional work requests.

 Openness— The openly accessible Product Backlog makes visible the work and priorities. The
Daily Scrums make visible the overall and individual status and commitments. Work trend and
velocity are made visible with the Backlog Graph.

 Respect— Or, team responsibility rather than scapegoating. The individual members on a
team are respected for their different strengths and weaknesses, and not singled out for
iteration failures. The whole team rather than a manager, through self-organization and
direction, adopts the attitude of solving "individual" problems through group exploration of
solutions, and is given the authority and resources to react to challenges, such as hiring a
specialist consultant to compensate for missing expertise.

 Courage— Management has the courage to plan and guide adaptively and to trust individuals
and the team by avoiding telling them how to get the iteration done. The team has the
courage to take responsibility for self-direction and self-management.

Error: Not a self-directed team; managers or Scrum Master direct or organize the team—
The urge may be strong during an iteration to tell or suggest to team members how to work, or solve
a problem. Many managers are used to an emphasis on directing and planning, rather than their role
in Scrum: To quickly remove blocks, provide resources, act as a firewall to the rest of the
organization, and otherwise stay out of the way. This is especially true for the Scrum Master during
the Scrum Meeting, when there is a natural tendency for the team to look to a leader for direction and
solutions.

Error: No daily update of the Sprint Backlog by members or daily tracker— Self-explanatory.

Error: New work added to iteration or individual— In a sea of constant change, some stability is
required. Not changing the requirements for an iteration, once begun, is Scrum's point of control.

Error: Product Owner isn't involved or doesn't decide— Scrum is customer driven; the Product
Owner needs to decide what the Product Backlog priorities are and choose the requirements for the
next iteration.

Error: No Sprint Review— Feedback and adaptation drive Scrum; the demo and review are needed
to inform the customers, so they can steer the next iteration.

Error: Many masters— Scrum requires one voice on the Product Backlog requirements, priorities,
and work for the next iteration: the Product Owner.

Error: Documentation is bad— Scrum isn't anti-documentation; discussion of project workproducts
is simply outside the scope of its definition. As with all agile methods, non-code workproducts are
expected to add real value, rather than be created for the sake of following a process formula.

Error: Design or diagramming is bad— Scrum is pragmatic rather than doctrinaire on the team's
approach to design: If they find value in some pre-programming design or diagramming work during
an iteration, it's done.

Error: Full team (including customers and management) not briefed in Scrum and its
values— Self-explanatory.

Error: Scrum Meeting too long or unfocused— Keep it below 20 minutes, and focused on the
Scrum questions.

Error: Iteration doesn't end in an integrated and tested partial product— An iteration doesn't
just finish on the end date. The goal is that all the software has been integrated, tested, and
baselined.

Error: Each iteration ends in a production release— Although a Scrum iteration may end in a
production release, it is not a requirement. It may require many iterations before readiness.

Error: Predictive planning; PERT chart planning— As with all IID methods, it is a
misunderstanding to create a plan laying out exactly how many iterations there will be for a long
project and what will occur in each, or to create a PERT chart identifying many tasks, their order and
estimated duration.

You Know You Didn't Understand Scrum When...

Some of the key misunderstandings expressed as a checklist:

 You think a manager or Scrum Master should tell the team what to do, or how to solve its
problems.

 Customers are not involved in each iteration, not prioritizing requirements, not attending each
demo, and are not choosing the highest business value set for the next iteration.

 New requirements or extra-project tasks are added to team members during an iteration.

 You create a plan laying out how many iterations there will be for the project, and what will
occur in each, and think you can enforce it.

 You create a PERT chart or a plan of dependent, ordered tasks, with estimated durations.

Sample Projects

The following projects had significant Scrum influence:

Large— IDX Web-enabled benefits suite

- One year, 330 people across multiple related projects, an E300 project on the Cockburn
scale, [SB02]

- A suite of 15 related applications were developed within one year of adopting Scrum, after
three years of struggle to deliver one application.

- Prime developer: IDX.

Medium— Caremark

- Four months, 20 people, an E20 project, [SB02]

- After two years of struggle, 160 staff at its height, and no delivery, Scrum was introduced
with a reduced team size of 20 developers (10 new hires). In four months, a successful
production release was created.

- Prime developer: Caremark and consultants.

Small— Individual Personal NewsPage

- One month, eight people, a C20 project [SB02]

- After nine months without delivery, Scrum was adopted, and a usable production release
emerged after one 30-day iteration. After five months of releases, most of the original goals
were achieved.

- Prime developer: Individual Inc.

Process Mixtures

Scrum + Evo

Some Evo practices are compatible with Scrum. Scrum does not discuss specific specification
methods, and thus Evo's Planguage is applicable. Evo's measurement emphasis is compatible; indeed,
Sutherland, one of the Scrum creators, takes a strong interest in measurement when applying Scrum.

Evo

Planguage

Scrum's 30-day iteration length is not consistent with Evo—too long.

Scrum + UP

The Scrum practices are either equal to or specializations of UP practices, or are consistent additions.
If some workproducts are required on a Scrum project, using the UP versions is reasonable. The
Product Backlog is an acceptable portion of the UP Project Plan, and the Sprint Backlog is an
acceptable version of the UP Iteration Plan.

UP

One area of different emphasis is the presence in the UP of optional but predefined activities; the UP
describes a set of possible activities related to requirements analysis, testing, and so forth. And, the
UP indicates some dependent ordering of these optional activities; for example, that a project vision is
created before a detailed requirement is described. Scrum's rejection of defined process and
predictable steps is inconsistent with this structure, if the UP activities are viewed as a required
formula. But, if the activities are treated as optional advice, performable in any order, and without
attempt to schedule their order and duration on a project, it is within Scrum.

See "UP as a Heavy, Defined Process versus an Agile UP Approach"

Scrum + XP

Most Scrum practices are compatible with XP or refinements, such as the Scrum Meeting. Indeed,
Kent Beck borrowed the XP stand-up meeting idea from Scrum.

XP

The Scrum practice of a demo to external stakeholders at the end of each iteration enhances XP's
feedback and communication goals. The Scrum Backlog and progress tracking approaches are minor
variations of XP practices, and so simple that they are well within the XP spirit of "do the simplest
thing that could possibly work."

Scrum's 30-day timeboxed iteration length is not completely consistent with XP, which prefers
shorter—even one-week—iterations.

Mike Beedle, one of the original Scrum contributors, has developed XBreed—a combination of Scrum
and XP practices applied (at least originally) to the creation of reusable components in the context of a
concurrent multi-project development.

see www.xbreed.net

Adoption Strategies

As always, coaching by an experienced method expert on the first project is recommended.

1. In contrast to the recommended gentle, pilot-project adoption strategy of UP (for example),
the Scrum creators encourage organizations to first adopt it on their single most difficult and
critical project. This brave advice underscores the Scrum creators' view that it is strong
medicine with a high success rate. They feel the crucible of a critical project best spurs real
change to the new values and practices of Scrum.

2. After the first project is underway, but not before the second iteration (so that all the practices
have been practiced), extra-project management and potential customers may be invited to
observe Scrum Meetings, Sprint Planning, and Sprint Reviews.

3. Second-generation Scrum projects can start before the completion of the first, although the
first should be given some time to "ripen," such as three completed iterations. The Product
Owner, Scrum Master, and some team members of the new projects will benefit from
attending some of the first project's meetings (daily, planning, review) shortly before
embarking on their new project. Coaching is useful—during the first iteration—for the new
Product Owner and Scrum Master by those on the first project.

4. Jeff Sutherland, one of the Scrum creators and a VP Engineering or CTO at several
organizations, recommends ultimately expanding Scrum practices to the highest levels of the
development organization. Every level is team based. Projects hold daily Scrums, including a
daily Scrum of Scrums among Scrum Masters of subsystem teams. Project representatives in
a product line family meet weekly for a Scrum, and upper management holds monthly
Scrums.

Fact versus Fantasy

First, a standard disclaimer:

Process is only a second-order effect. The unique people, their feelings and qualities, are more
influential.

Scrum practitioners do not report significant variation from the ideals of Scrum compared to its
concrete use, presumably due to the relatively small and unambiguous set of practices. The most
commonly reported reality checks are the encroachment of non-iteration work on to team members,
and attempts by management to direct or organize the team, or solve—unasked—its problems.

Scrum iterations have also failed when the Scrum Master does not regularly reinforce the project
vision and Sprint goals, and the team drifts.

Strengths versus "Other"

Strengths

 Simple practices and management workproducts.

 Individual and team problem solving and self-management.

 Evolutionary and incremental requirements and development, and adaptive behavior.

 Customer participation and steering.

 Focus.

 Openness and visibility.

 Easily combined with other methods.

 Team communication, learning, and value-building.

 Team building via the daily Scrum, even if not in common project room.

Other[4]

[4] Could be viewed as a weakness, strength, or deliberate desirable exclusion, depending on point of
view.

 Minimal guidance within disciplines other than project management (e.g., programming). That
is, Scrum's emphasis is the lifecycle and project management aspects of development, rather
than—for example—software or requirements engineering techniques.

- For example, the Product Owner has the domain knowledge and requirements vision. But,
they will describe a function in only brief terms in the Product Backlog. How to transfer and
expand this domain knowledge or requirement? Scrum does not address such issues related to
workproducts, requirements analysis, and so forth.

 Many projects will need some documents. Scrum does not define what these may be, and thus
each project may create ones with similar intent, but varying names and content. In other

words, no common, standard workproducts that are shareable with common names across
projects. This impedes reuse of workproducts and impedes a common workproduct vocabulary
in larger organizations.

History

The roots of Scrum are found in a well-known article summarizing common best practices in 10
innovative Japanese companies, "The New New Product Development Game," Harvard Business
Review, Jan 1986, by Takeuchi and Nonaka. It introduced the terms Sashimi (slices) for IID, and
Scrum for the adaptive and self-directed team practices. The name was taken from the game of
rugby, for the adaptive team behavior moving a ball up the field.

Jeff Sutherland is one of the Scrum creators and was VP at Easel Corporation in 1994 when he
introduced some of its practices; he had read the article. He was also influenced by a report on a
hyper-productive project at Borland Corporation that effectively used structured daily meetings
[Coplien94]. In 1995 Ken Schwaber worked with Sutherland at Easel on the formalization of Scrum.
Their results were described in a workshop paper [Schwaber95]. In 1996 Sutherland joined Individual
Inc., and asked Ken Schwaber to assist in the adoption of Scrum ideas. Schwaber refined and
extended Scrum, in collaboration with Sutherland, into the versions ultimately described in [BDSSS98]
and [SB02].

What's Next?

The next chapter covers XP, another popular agile method. That's followed by chapters on UP and Evo.
Finally, there are chapters on more practice tips and a FAQ.

Recommended Readings

The bible of Scrum is Agile Software Development with Scrum, primarily by Schwaber, with
contributions from Beedle and Sutherland.

Several books and articles influenced the Scrum creators, and are worth mention as recommended
readings because of their widespread or seminal influence:

 "The New New Product Development Game," Harvard Business Review, Jan 1986, by Takeuchi
and Nonaka. Discusses common best practices of innovative Japanese companies.

 Wicked Problems, Righteous Solutions, by DeGrace. Discusses why the waterfall is unsuitable
for most software projects, and explores various iterative feedback-based practices for
development.

 Hidden Order: How Adaptation Builds Complexity, 1995, and Emergence: From Chaos to
Order, 1998, by Holland. Both discuss the dynamics and value of adaptive, self-organizing
groups to solve problems.

Chapter 8. Extreme Programming

It's easy to have a complicated idea.

It's very very hard to have a simple idea.

—Carver Mead

OVERVIEW

 Classification of XP.
 Workproducts, roles, and practices.
 Common mistakes, adoption and process mixtures, strengths and weaknesses.

Extreme Programming (XP) is a well-known agile method; it emphasizes collaboration,
quick and early software creation, and skillful development practices. It is founded on four
values: communication, simplicity, feedback, and courage. In addition to IID, it
recommends 12 core practices:

1. Planning Game 7. pair programming

2. small, frequent releases 8. team code ownership

3. system metaphors 9. continuous integration

4. simple design 10. sustainable pace

5. testing 11. whole team together

6. frequent refactoring 12. coding standards

Method Overview

Classification

In terms of cycles and ceremony, XP classification is illustrated in Figure 8.1. For average
projects, the recommended length of a timeboxed iteration is between one and three
weeks—somewhat shorter than for UP or Scrum.

Figure 8.1. XP on the cycle and ceremony scale.

cycles and ceremony

XP is low on the ceremony scale; it has only a small set of a predefined, informal
workproducts, such as paper index cards for summarizing feature requests, called story
cards.

A refreshing quality of the original XP description was the statement of known applicability:
It had been proven on projects involving roughly 10 developers or fewer, and not proven for
safety-critical systems. Nevertheless, it has been more recently applied with larger teams.
Consequently, in terms of the Cockburn scale, XP perhaps covers the cells shown in Figure
8.2.

Figure 8.2. XP on the Cockburn scale

Cockburn scale

Introduction

XP[1] [Beck00], created by Kent Beck, is an IID method that stresses customer satisfaction
through rapid creation of high-value software, skillful and sustainable software development
techniques, and flexible response to change. It is aimed at relatively small team projects,
usually with delivery dates under one year. Iterations are short—usually one to three
weeks.

[1] Some writers capitalize the full name as "eXtreme Programming" but Beck does not.

As the word programming suggests, it provides explicit methods for programmers, so they
can more confidently respond to changing requirements, even late in the project, and still
produce quality code. These include test-driven development, refactoring, pair
programming, and continuous integration, among others. In contrast to most methods,
some XP practices truly are adopted by developers—they sense its practical programmer-
relevant techniques.

XP is very communication- and team-oriented; customers, developers, and managers form
a team working in a common project room to quickly deliver software with high business
value.

XP is distinctive in not requiring detailed workproducts except for program code and tests.
However, it doesn't disallow other detailed workproducts. Although all evolutionary methods
avoid detailed up-front specifications and plans that span the entire release cycle, most of
these methods encourage writing down details for at least the next iteration. In contrast, XP
emphasizes oral communication for requirements and design. For example, a feature is
summarized "Find lowest fare" on a handwritten paper index story card. Then, when work
starts on the feature, the programmers learn details by talking with the customers working
full-time in the project room. This may sound disorganized or naive, but Beck is experienced
and well aware of the implications of sloppy requirements. Instead, XP is posing this
interesting question:

Is there a sane and disciplined way to quickly succeed—on typical small projects—by
focusing on code and tests, while avoiding most other documentation overhead?

XP's premise isn't hacker code-and-fix programming; rather, its premise is that there is a
new, structured, and sustainable way to succeed with a focus on rapid code production and
oral communication, while avoiding most other overhead. To reiterate, XP is not hacking.
Quite the contrary, an XP project involves constant practice of highly disciplined—yet agile—
software development practices and values.

XP consultant Don Wells explains the influence of the XP values [Wells01]:

XP improves a software project in four essential ways; communication, simplicity, feedback,
and courage. XP programmers communicate with their customers and fellow programmers.
They keep their design simple and clean. They get feedback by testing their software
starting on day one. They deliver the system to the customers as early as possible and
implement changes as suggested. With this foundation XP programmers are able to
courageously respond to changing requirements and technology.

There is a considerable set of practices in XP: 12 core practices and many ancillary ones.
Speaking of these, Wells writes [Wells01]:

It is a lot like a jig saw puzzle. There are many small pieces. Individually the pieces make
no sense, but when combined together a complete picture can be seen.

Many of these practices work in synergy, and thus it is risky to customize XP by removing
some elements. For example, XP aims to produce software quickly by—in part—avoiding
detailed requirements documentation. But, this is compensated by the practice of onsite
customers sitting in the project room to fill in the details.

The word extreme in XP comes from Beck's conviction that it is hard to have too much of a
good thing in software development. That is, take known good practices and "turn the dial
up to 10," or to extreme levels. For example:

 Testing is good, so write unit tests for (almost) all code, and acceptance tests for all
features.

 Code reviews are good—even better close to creation date—so do code reviews in
real time and all the time via pair programming.

 Frequent integration of code across all team members is good, so do it 24/7 with an
automated, continuous integration process on a dedicated build machine.

 Short iterations and early feedback are good, so make iterations one or two weeks
long, if possible.

 More customer involvement is good, so bring customers into the project full-time,
sitting in the common project room.

 Communication is good, so have everyone sit together, pair program, include onsite
customers, and involve the customer frequently in planning, steering, and
evaluation.

Lifecycle

Some comments on the XP lifecycle phases defined by Beck:

1. Like many projects, XP can start with exploration. Some story cards (features) may
be written, with rough estimates.

2. In the Release Planning Game, the customers and developers complete the story
cards and rough estimates, and then decide what to do for the next release.

3. For the next iteration, in the Iteration Planning Game, customers pick stories to
implement. They choose stories—and thus steer the project—based on current
status, and their latest priorities for the release. Developers then break the stories
into many short, estimated tasks. Finally, a review of the total estimated task-level
effort may lead to readjustment of the chosen stories, as XP does not allow
overworking the developers with more than they can do based on "family-friendly"
work days, such as an eight-hour day. Overtime is seriously discouraged in XP; it is
viewed as a sign of a dysfunctional project, increasingly unhappy people, and
dropping productivity and quality.

4. Developers implement the stories within the agreed timeboxed period, continually
collaborating with customers (in the common project room) on tests and
requirement details.

5. If not finished for release, return to step 3 for the next iteration.

Workproducts, Roles, and Practices

Roles

Practices

Core Practices

Practice Description

Whole team, or
Onsite customers

The whole team—programmers and customers—work together in a
common project room. One or more customers sit more-or-less full
time with the team; they are expected to be subject matter experts
and empowered to make decisions regarding requirements and their
priority.

The customer contribution includes detailed explanation—to the
programmers—of the features briefly summarized on story cards,
Planning Game participation, clarification, and writing acceptance tests
in collaboration with a programmer.

The purpose is in response to the consistent project failure research
indicating that more customer involvement is paramount to successful
projects.

The first release of XP spoke of only one onsite customer; this has
been recently revised to emphasize a group of customers.

Small, frequent
releases

Evolutionary delivery. Not applicable to all projects. Not to be confused
with organizing one release cycle into many short iterations.

Practice Description

Testing: Acceptance
testing & Customer
tests

Testing practices in XP are very important. All features must have
automated acceptance (functional) tests. All tests (acceptance
and unit) must run with a binary pass/fail result, so that no human
inspection of individual test results is required. The acceptance tests
are written with collaboration of the customer—they define a testable
statement of what acceptance means. This is called Customer Tests
in XP.

Testing: Test-driven
development and
unit testing

Unit tests are written for most code, and the practice of test-driven
development (and test-first development) is followed. This
includes the practice that the unit test is written by the programmer
before the code to be tested. It is a cycle of test Õ code, rather than
code Õ test. Usually, the open-source XUnit testing framework family
(such as JUnit) is applied (see www.junit.org). All acceptance and unit
tests are automatically run repeatedly in a 24/7 continuous integration
build and test cycle.

See p. 292 for a detailed example.

Release planning
game

The Release Planning Game goal is to define the scope of the next
operational release, with maximum value (to the customer) software.
Typically a half-day one-day session, customer(s) write story cards to
describe features, and developers estimate them. There may also exist
story cards from prior exploration phase work. The customer then
chooses what's in the next release by either 1) setting a date and
adding cards until the estimate total matches the time available, or 2)
choosing the cards and calculating the release date based on their
estimates.

Iteration planning
game

The Iteration Planning Game goal is to choose the stories to
implement, and plan and allocate tasks for the iteration. It happens
shortly before each new iteration (1–3 weeks in length). Customer(s)
choose the story cards for the iteration. For each, programmers create
a task list (on cards or whiteboard) that fulfill the stories. This is
followed by a volunteering step in which the programmers choose a set
of tasks. They then estimate their task lengths. If tasks are not
estimated in the half-day to two-day range, they are refactored.

Simple design Avoid speculative design for possible future changes. Avoid creating
generalized components that are not immediately required. The design
should avoid duplicate code, have a relatively minimal set of classes
and methods, and be easily comprehensible.

Pair programming All production code is created by two programmers at one computer;
they rotate using the input devices periodically. Pairs may change
frequently, for different tasks. The observer is doing a real-time code
review, and perhaps thinking more broadly than the typist, considering
tests and so forth.

Certainly, team productivity is not simply a function of the number of
hands typing—it is more nuanced. The XP claim is that the combination
of cross learning, the peer pressure of more disciplined practice
observance and more hours actually programming than
procrastinating, defect reduction due to real-time code review, and the
stamina and insight to carry on when one programmer is stuck, all add
up to an overall team improvement.

Frequent Refactoring in the XP context is the continual effort to simplify the fine-

Practice Description

refactoring grained code and larger design elements, while still ensuring all tests
pass. That is, cleaning the code and design, without changing
functionality. There is supposed to be "lots" of refactoring in XP. This
practice is also known as continuous design improvement.

The goal is minimal, simple, comprehensible code. It is achieved by
small change steps, verifying tests after each, and ideally the use of
refactoring tools, now available in some IDEs.

Team code
ownership

Any pair of programmers can improve any code, and the XP value
system is that the entire team is collectively responsible for all the
code. The value of "it's her code, and her problem" is not endorsed;
rather, if a problem or chance to improve is spotted, it's the spotter's
responsibility. A related goal is faster development by removing the
bottleneck associated with change requests in an individual code
ownership model.

The obvious danger of modifying code one did not originally write is
ameliorated in XP by some of the other practices: The guaranteed-
present unit and acceptance tests running within an automated
continuous integration build process inform you if you broke the code,
your pairing partner brings another set of eyes to the change, and
common adherence to coding standards ensures all the code looks the
same.

Continuous
integration

All checked-in code is continuously re-integrated and tested on a
separate build machine, in an automated 24/7 process loop of
compiling, running all unit tests and all or most acceptance tests.
There are several open-source tools for this, built on the ubiquitous
Ant technology, including CruiseControl and Anthill.

Sustainable pace Frequent overtime is rightly considered a symptom of deeper
problems, and doesn't lead to happy, creative developers, healthy
families, or quality, maintainable code. XP doesn't support it—rather, it
promotes "no overtime."

Coding standards With collective code ownership, frequent refactoring, and regular
swapping of pair programming partners, everyone needs to follow the
same coding style.

System metaphors To aid design communication, capture the overall system or each
subsystem with memorable metaphors to describe the key
architectural themes. For example, the C3 payroll system was
described in terms of an assembly line of checks with posting rule
"machines" operating on them, extracting money from different "bins."

Many have reported this the least necessary practice.

Workproducts

Story Cards— Figure 8.3 shows a simple story card: A handwritten note on a paper index
card. During the Planning Game, many of these are written. This spartan example was
chosen to emphasize the minimalist approach to recorded requirements that XP
encourages.[2]

[2] In fact, when XP expert Ron Jeffries reviewed this chapter, he felt even the number "3"
on this real-example card was excessive.

Figure 8.3. sample story card

The story cards record user stories: features, fixes, or nonfunctional requirements that the
user wants. There can even be a story card to create documentation. Stories are usually in
the one-day to three-week range of estimated duration. Contrary to some
misunderstanding, XP stories are not use cases or scenarios. They usually represent
features. Note that XP prefers a feature-driven approach to describing requirements rather
than the use-case-driven approach that UP promotes.

In XP, oral communication is preferred, and the story card purpose is not to detail the user
story, but to jot a summary, make references to other documents, and in general, to view
the card as "a promise to talk" (in Alistair Cockburn's words) with the customer who wrote
it, by the developers implementing it. Since whole team together is an XP practice, the card
donor should be readily available. XP coaches vary on their advice regarding granularity for
estimation. Some say stories can be in the two-day to two-week range of effort, others
recommend stories be estimated in units of one, two, or three weeks, but not in finer
person-day units.

Task List— During an Iteration Planning Game, the team convenes around a whiteboard,
and generates a list of tasks for all the stories chosen for the iteration. Another popular
alternative is to generate individual task cards. Once a task is chosen by a volunteer, they
enter an effort estimate (in ideal engineering hours)—tasks should be in the 1–2 day range.

Visible Graphs— The idea is to easily communicate—to the team—something they find
useful to measure. Measure at least one thing. XP doesn't mandate what that should be,
though known examples include acceptance tests defined and passing, story progress, and
task progress.

Other Practices and Values

 Onsite customer proxies— Many groups wishing to apply XP cannot find full-time
"ultimate" customers to work in the project room. For example, consider a new
internal system for (very busy) commodity traders. And this problem is common for
commercial products for an external market. The common solution is to designate
customer proxies that do join the team in the project room, have good (though not
as ideal as true customer) knowledge of the domain and requirements, and that
represent the ultimate customers. If proxies are used, it is important that the true
customers at least participate in end-of-iteration demos, and preferably, in the
Planning Games.

 Customer on call— When the onsite customer is not present, arrange matters so
that the customer representative is committed to fast access, such as via a mobile
phone.

 Embrace change— The overarching attitude that XP promotes is to embrace rather
than fight change, in the requirements, design, and code, and be able to move
quickly in response to change.

 Only by volunteering (accepted responsibility)— Tasks are not assigned to
people. Rather, during the Iteration Planning Game, people choose or volunteer for
tasks. This leads to a higher degree of commitment and satisfaction in the self-
accepted responsibility, as has been explored in [DL99].

 Very light modeling— XP encourages programming very early and does take to
"extreme" the avoidance of up-front design work. Any more than 10 or 20 minutes of
design thinking (e.g., at the whiteboard with sketches or notes) before programming
is considered excessive. Contrast this with Scrum or the UP, for example, where a
half-day of design thought near the start of an iteration is acceptable.

 Minimal or "just enough" documentation— With the goal of getting to code fast,
XP discourages writing unnecessary requirements, design, or management
documents. The use of small paper index cards is preferred for jotting brief
descriptions, as are verbal communication and elaboration. Note that the practice of
"avoiding documentation" is compensated by the presence of an onsite customer. XP
is not anti-documentation, but notes it has a cost, perhaps better spent on
programming.

 Metrics— XP recommends daily measurement of progress and quality. It doesn't
mandate the exact metrics, but to "use the simplest ones that could work." Examples
include numbers of completed tasks and stories, and number and success rate of
running tests.

 Visible wall graphs— The collected metrics are daily updated on wall graphs for all
to easily see.

 Tracking and Daily Tracker— The regular collection of task and story progress
metrics is the responsibility of a tracker. This is done with a walk-about to all the
programmers, rather than email; commenting on this—and very telling of the XP
attitude—Ron Jeffries (one of the XP founders) said, "XP is about people, not
computers." Test metrics can be automatically collected by software.

 Incremental infrastructure— XP recommends (as do the other iterative
processes) that the back-end infrastructure (for example, a persistence layer) not be
the main focus of implementation in the early iterations, but rather, only enough is
implemented to satisfy the user-functional requirements of each iteration.

 Common project room— XP projects are run in a common project room rather
than separate offices. Pair programming tables are in the center of the room, and
the walls are clear for whiteboard and poster work. Of course, people may have a
private space for private time, but production software development is a team sport
in XP.

 Daily stand-up meeting— As in Scrum, there is a daily short stand-up (to keep it
short) meeting of status.

 Ideal engineering hours (IEH)— Task estimates—and possibly story estimates—
are done in terms of IEH, or uninterrupted, dedicated, focused time to complete a
task.

 Story estimates— To estimate larger stories, some XP practitioners recommend
using only coarse values of one, two, or three week durations rather than IEH or
day-level estimates.

Values

Beck's XP description is noteworthy in the process world for being perhaps the first to
explicitly state the values that underly the attitude and practices on a healthy XP project. To
quote Beck on the relationship of values and practices:

The [practices] are what you do. The values are how you decide if you are doing it right.

They are:

 Communication— XP accepts the widely appreciated observation that problems in
communication underly most project difficulties. Communication between
programmers is promoted through pair programming, the daily stand-up meeting,

and the Planning Game. Communication is promoted through customer involvement
in writing acceptance tests and the Planning Game.

 Simplicity— or, "Do the simplest thing that could possibly work." This applies not
only to the design of software, but to other things such as requirements and project
management "tools." For example, XP encourages the use of simple paper index
cards to write a brief description of feature and task requests, if more formal
artifacts can be avoided. In terms of software design, XP avoids speculative design
for possible change ("future proofing") or the creation of more generalized
components that aren't immediately justified by current requirements.

 Feedback— This value drives quality and adaptation. Feedback in the short term is
driven by the XP practice of test-first development with unit tests. It also comes
from the practice of continuous integration; a broken build tells the story. When a
customer writes a story card (a feature description), programmers immediately
estimate it, so the customers know the effort. The practice of daily tracker provides
feedback to the team and customer on progress for the iteration. On a longer scale,
the customer written acceptance tests provide feedback. Short iterations give the
customer the chance to see (and perhaps operate) an incrementally evolved partial
system, and clarify or redirect the requirements. And the practice of frequent
operational releases generates feedback from production users.

 Courage— The courage to develop fast, and make changes fast emerges from the
support of the other values and practices, and modern technologies. For example,
without a massive set of unit tests, acceptance tests, and continuous integration,
making deep "architectural" changes in the code base is tricky business—difficult to
tell what will break. But the presence of these, combined with a simple design, very
clean code refined from frequent refactoring, and modern automated refactoring
tools provided by many IDEs enables more rapid and radical change.

Common Mistakes and Misunderstandings

or, How to Fail with Extreme Programming

Error: No onsite customer; rather, use specifications written for the next
iteration— It is normal and acceptable to create written specifications for the iteration (for
example, two use cases) if the adopted method is Scrum, UP, Evo, etc. An iterative or agile
project that takes this approach can work well, but is better characterized as being based
on another method (e.g., the UP) that allows written evolutionary requirements. It is a
cornerstone of XP to avoid detailed specifications, use oral communication of the
requirements, and onsite customers.

Error: Applying a subset of uncompensated practices; customizing before trying—
Many XP practices work as a synergistic whole, and it is a mistake to remove one that
compensates or supports another. For example, collective code ownership isn't feasible
without testing, continuous integration, and coding standards. Minimal requirements
documentation isn't possible without an onsite customer. Frequent refactoring doesn't work
without the tests. That is why Beck, while not wishing to be rigid, in general recommends
adoption of all or most of the core practices. To quote Beck, "Do all of XP before trying to
customize it."

Error: XP is just iterative development + minimal documentation + unit testing—
Although there is some flexibility in what practices must be present to define an XP project,
it is more than this—common to several IID methods. One could run a Scrum, UP, DSDM, or
other evolutionary methods primarily with just these practices. XP is characterized by a
larger set of practices, including pair programming, onsite customers, customer written
acceptance tests, and more.

Error: Not writing the unit tests first— Test-first development has a more subtle
dimension than first glance, and is an important XP practice. Writing the tests first
influences how one conceives, clarifies, and simplifies the design. Test-first has an

interesting psychological quality of satisfaction: I write the test, and then I make it succeed.
There is a feeling of accomplishment that sustains the practice.

Error: Customer doesn't decide— XP is customer driven; they need to decide what the
acceptance criteria are (via tests), and what stories go in a release and iteration.

Error: No customer-owned tests— Ron Jeffries has said, "The failure to have customer-
owned acceptance tests [in each iteration] is one of the most common mistakes in XP."

Error: Minimal refactoring— The XP avoidance of design thought before programming is
meant to be compensated by a relatively large refactoring effort, such as 25% of total effort
applied to refactoring. Beck's point is that one can't avoid both design thought before
programming and refactoring; it's either/or.

Error: Must have only one onsite customer— The original XP books talked of one onsite
customer in the project room. Beck and the XP leaders have since refined this to emphasize
that the customer team needs to be considered as a whole, with requirements coming from
perhaps many customers participating in the Planning Games. Thus, they have replaced the
practice "onsite customer" with "whole team together."

Error: Many fine-grained task cards— Most task cards should be in the one or two-day
range of effort. Most in the "few hours" range creates unnecessary information
management.

Error: Pairing with one partner too long— XP pairing changes frequently, often in two
days or less. Variation also helps spread the learning.

Error: Customer or manager is tracker— Programmers will feel awkward reporting slow
progress.

Error: Not integrating the QA team— Many organizations have a separate Quality
Assurance team, used to having a completed system "thrown over the wall" to them. One or
more dedicated QA people need to be brought onto the project full-time—the whole team
practice—usually to write the acceptance tests in collaboration with the customer.

Error: Post-development design documentation is wrong— XP isn't anti-
documentation, but prefers programming if that's sufficient to succeed. XP can support the
creation of design documentation to reflect the existing code base, once the program is
complete. As always, the simplest approach that can work is the goal, such as video
recording an explanation.

Error: Diagramming is bad— Although XP advice is minimal modeling or diagramming,
such as 15 minutes before programming, a very little is acceptable.

Error: Only young pair programmers— Some XP projects have suffered in the pair
programming practice when most of the developers were quite young, without the patience
or maturity to handle working closely with others.

Error: Pairing newbies— One of the two partners should have pair programmed before.

Error: One partner going too fast— When pair programming, the quicker or more
experienced partner needs to be sensitive to the speed or comprehension differential of
their partner, and slow down their activities and explanations.

Error: Observer can't easily see the monitor— Self-explanatory, but a surprisingly
frequent problem.

Error: Not willing to learn; not willing to explain— For successful pair programming,
an attitude of openness to learning and of explaining yourself is required.

Error: Full team (including customers) not briefed in XP and its motivations— Self-
explanatory.

Error: Dissenter on team— XP is about communication and collaboration, and a culture of
development; lone programmers who don't wish to accept it can impair the team culture
and project progress.

Error: Stand-up meeting too long or unfocused— Keep it below 20 minutes, and on
status of tasks, not a discussion of design and requirements.

Error: Lumping into one big "bug fix" story— As defects accumulate, don't group them
into one task or story card; keep them with their original related cards.

Error: No dedicated acceptance tester— One is needed to work with the customer on
transforming their acceptance criteria into runnable tests. An exception is very small
projects—the tester may fulfill that role part-time.

Error: Onsite customer and Big Boss aren't aligned— XP talks of the Big Boss, or the
person ultimately owning or responsible for the project goals and milestones. These two
stakeholders need to be in agreement.

Error: Customer writing acceptance tests isn't the reviewer of their execution— A
classic problem of serving different masters.

Error: Iterations too long— XP iterations should be 1–3 weeks.

Error: Iterations aren't timeboxed— It is a misunderstanding to let the iteration length
expand when it appears the goals can't be met within the original time frame. Rather, the
preferred strategy is usually to remove or simplify goals for the iteration. And, analyze why
the estimates were off.

Error: Iteration doesn't end in an integrated and tested baseline— An iteration
doesn't just successfully end on the end date. The goal is that all the software has been
integrated, tested, and baselined.

Error: Each iteration ends in a production release— The baselined software produced
at the end of an iteration is an internal release rather than shippable code. It represents a
subset of the final production release, which may only be ready after a dozen or more short
iterations. It is true that in iterative development one goal is that each iteration release is
stable enough to potentiality release to production, if necessary. However, this is not the
normal intent of an iteration release.

Error: Predictive planning— It is a misunderstanding to create, at the start of the
project, a believable plan laying out exactly how many iterations there will be for a long
project, their lengths, and what will occur in each. This is contrasted with the agile
approach: adaptive planning. The XP team and customer plans the next iteration, and then
planning adapts iteration by iteration, based on current feedback.

You Know You Didn't Understand XP When...

Some of the key misunderstandings expressed as a checklist:

 You think you should customize the choice of practices without having first applied
them all.

 You think "doing XP" means to avoid the waterfall model and develop iteratively, or
just to avoid documentation, or just to write some unit tests.

 Customers are not involved in the Planning Game, creating acceptance tests, or
reviewing the iteration results.

 You create a plan laying out how many iterations there will be for the project, their
lengths, and what will occur in each.

Sample Projects

The following projects had significant XP influence:

Large— Atlas leasing system

- Three years, 60+ people, Java technologies, an E100 project, [Schuh01]

- Fully adopted practices: simple design, testing, frequent refactoring, collective code
ownership, continuous integration

- Pair programming was attempted, but did not stick. There was no onsite customer.

- Prime developer: ThoughtWorks.

Medium— Orca security incident-response

- One year, 25 people, a D40 project, [Morales02]

- Fully adopted practices: most practices, with the exception of small, frequent
releases as this was a commercial product.

- Prime developer: Symantec.

Small— C3 payroll

- One year, 10+ people, an E20 project [C3Team98]

- Fully adopted practices: This was the original project that defined XP, coached by
Kent Beck and Ron Jeffries. All practices were adopted.

- Prime developer: Chrysler.

Process Mixtures

XP + Evo

XP values and spirit regarding specifications is not compatible with Evo. XP's value of
avoiding written or precise requirements, and preferring oral communication between
developers and requirement donors is very different than Evo's emphasis that when a
specification is required, it be done so with clarity and measurable qualities.

Evo

Evo specifications

On the other hand, many XP development practices may be consistently applied with Evo,
such as test-driven development, pair programming, and so forth.

XP's client-driven adaptive planning is also consistent with Evo. The XP stand-up meeting,
common project room, and whole team together supports Evo's feedback goals.

adaptive planning

XP's 1–3 week iteration length is relatively consistent with Evo, which prefers 1–2 week
iterations.

XP + Scrum

Most Scrum practices are compatible with XP. The Scrum meeting is a refinement of the XP
stand-up meeting (in fact, Beck got the idea from Scrum), using special questions. Both
recommend a common project room. The Scrum practice of a demo to external
stakeholders at the end of each iteration enhances XP's feedback and communication goals.
The Scrum Backlog and progress tracking approaches are minor variations of XP practices.

Scrum

Scrum meeting

Scrum's 30-day iteration length is not consistent with XP—too long.

A Scrum practice is to have only one customer representative, the Product Owner, who is
ultimately responsible for the requirements and priorities. But in recent updates to XP, there
is an emphasis on collaborating with a group of customers—avoiding just a single person. It
is nice to have a single customer voice, and it is useful to know and resolve multiple
people's goals. XP and Scrum tackle this tension differently, shifting whether development
or business is responsible for resolving the conflict.

Mike Beedle, one of the early Scrum practitioners, has explored combinations of XP and
Scrum under the name "XBreed."

see www.xbreed.net

XP + UP

Most XP practices are either equal to or specializations of UP practices, and many XP
practices can be applied in the context of an overarching UP project. For example, test-first
development is a specialization of the UP continuously verify quality best practice. The UP
does not require or promote unnecessary document creation—all artifacts are optional—and
so it is a misunderstanding to assume the methods are fundamentally incompatible.
Although speaking of some XP within UP can have conceptual integrity, the opposite is not
true, as there are some differences in style and emphasis.

UP

UP practices

One area of difference is in the accepted degree of up-front modeling (diagramming, etc.).
For example, within a UP project and a two-week iteration, it is considered acceptable to
spend a half-day near the start to consider design ideas "at the whiteboard" before
programming. In XP, no more than 10 or 20 minutes before programming is considered
suitable.

Another difference is in the goal of the early iterations. In the UP the goal is to identify and
drive down the high risks: technical, political, satisfying the customer, and so forth.
Although this may happen in the XP, it is not an explicit guiding principle.

A third difference is in requirements specifications. The UP allows and supports the creation
of relatively detailed specifications (evolutionarily, over a series of iterations), assuming
that an onsite customer is not going to be present. These will usually take the form of use
cases and an associated nonfunctional specifications document, created in a series of
timeboxed requirements workshops. The idea in the UP is, during the early programming
iterations, to have a parallel track of requirements analysis where the majority of
requirements are being written, while the development team is also programming
something critical. The programming work is meant, in part, to help clarify the requirements
work.

XP stories are normally features, rather than use cases. Thus, XP promotes a feature-driven
approach to requirements. On the other hand, the UP promotes a use-case-driven
approach, although the UP accepts and allows features rather than use cases.

Adoption Strategies

As always, coaching by an experienced method expert on the first project is recommended.

Similar to Scrum, but in contrast to the recommended gentle, pilot-project adoption
strategy of UP (for example), XP recommends adoption like this:

1. Pick the worst project or problem.

2. Apply XP until solved.

3. Repeat.

If all the XP practices can't be swallowed at once, Beck recommends starting with:

 whole team together in a common project room
 test-first development
 acceptance tests written/owned by customers
 Planning Game
 pair programming

That said, there are dangers in only adopting a few of the practices, especially if one does
not understand how they support each other. Avoidance of up-front design (even on a per-
iteration basis) is compensated by frequent refactoring. Frequent refactoring is supported
by continuous integration, and test-first development. And so forth.

Introducing customers to this new engaged approach is a challenge. The key is to help them
see the early, tangible business value that they want, and emphasize that they will be

steering the team to meet their needs in short cycles. An XP goal is to so delight the
customer with this new-found control and responsiveness, that after a few iterations they
will love the process.

On the common problem of customers wanting more and more in an iteration, one
technique is to exploit the physical nature of story cards: Once the cards have been
estimated and chosen for an iteration—and therefore consuming all available development
resources—they are laid out on a table. Clearly, with the "no overtime" rule of XP, adding a
new card means an existing one must be physically removed. This visual and tangible
impact teaches a clear lesson.

If you can't get a customer into the room, what to do? First, look for another related
representative, such as a product manager. If no luck, establish the closest possible
communications. Visit them frequently, use a mobile phone, spend time at their job, have
them use an instant messenger service to simulate the feel of close communication, have
them attend the Planning Games, and show lots of demos.

Programmers will adopt most of the practices without concern, except pair programming. XP
recommends not inviting programmers opposed to the idea to an XP project. Do not put
only young programmers together; the maturity and patience of some older developers is
necessary to make pairing work. Ensure the pairs mix regularly, the typing developer
rotates frequently, and that people are learning from each other; i.e., sharing with their
partners what they know, and what they are thinking. If pairs aren't frequently talking
together, something isn't working.

For XP, the physical environment must change: open common room with development
stations near the center, and the walls exposed for visible graphs, sketching, and so forth.
And, the stations need to support pair programming. Ensure the non-typing partner can
easily see the monitor.

Since pair programming implies lots of talk, a culture of quiet talking needs to be
encouraged.

Fact versus Fantasy

Reading the XP method practices can create the impression that they are a silver bullet, but
of course, they are not. As always,

Process is only a second-order effect. The unique people, their feelings and qualities, are
more influential.

One fantasy regarding XP adoption is found in groups that believe by just adopting iterative
and evolutionary development and avoiding up-front specifications, they are "doing XP."
Likewise with unit testing, working in a common project room, and so forth. Although data
is still sketchy, it seems that many of the projects claiming to be doing XP are simply
applying some iterative and evolutionary practices common to many IID methods (such as
short iterations), and the group mistakenly believes these are unique XP ideas.

Probably the most common XP fantasy is getting onsite customers. It seems to be rare as
hen's teeth to achieve this. Also, there is no shortage of so-called "XP" projects one
investigates that could not arrange pair programming, which Beck considers one of the
basics of an XP project.

Resistance to pair programming is perhaps the most common issue among developers.
Some just don't want to do it.

It is also rare to find a common project room, or enough whiteboards.

Test-first development, early acceptance tests defined with customers, constant refactoring,
and continuous integration are all widely confirmed as sustainable, excellent practices.

Strengths versus "Other"

Strengths

 Practical, high-impact development techniques, many of which are easily and
sustainably adopted by developers (e.g., continuous integration, test-driven
development).

 Emphasizes customer participation and steering.
 Evolutionary and incremental requirements and development, and adaptive behavior.
 Programmers estimate the tasks they have chosen, and the schedule follows this,

not vice versa (i.e., scheduling is rational).
 Emphasizes communication between all stakeholders.
 Emphasizes quality through many practices. Test-first development, continuous

integration, and team code ownership are examples.
 Clarifies what is an acceptable system by requiring the customer to define the

acceptance tests.
 Daily measurement, and developers are involved in measuring and defining what to

measure.
 Every iteration, developers get practice (during the Planning Game) identifying tasks

and estimating them, leading to improvement in these vital skills.
 Frequent, detailed reviews and inspections, as all significant work is done in pairs.

Inspection is strongly correlated with reduced defect levels.

Other[3]

[3] Could be viewed as a weakness, strength, or deliberate desirable exclusion, depending on
point of view.

 Requires the presence of onsite customers (or proxies). This is often not possible,
and their absence makes difficult or impossible the practice of "oral requirements"
and using short story cards. XP has no standard solution for written requirements.
That takes us back to other methods, such as the UP, which have a mechanism for
iteratively recording detailed requirements.

 Relies on oral history for knowing the design and requirements details. This has
limitations related to quickly helping new members, or scaling to larger projects.

 The XP practices are interdependent and mutually supporting. It isn't really a pick-
and-choose process; most need to be done. Yet, people avoid some in the urge to
avoid "unnecessary" steps, and thus failure ensues. Then, XP is unfairly criticized.

 No standard way to describe or document the software design as a learning aid.
 Some developers do not want to do pair programming.
 Many projects will need a set of documents other than code. XP does not define what

these may be, and thus each project may create ones with similar intent, but varying
names and content. In other words, no common, standard workproducts that are
shareable with common names across projects. This impedes reuse of workproducts
and impedes a common workproduct vocabulary in larger organizations.

 Lack of architecture-oriented emphasis in the early iterations. Lack of architectural
design methods. XP advocates claim simple design and refactoring lead to the same
goal.

History

In the mid-1980s, Kent Beck and Ward Cunningham worked together in a research group at
Tektronix. They founded the idea of CRC cards and (the seminal contribution of) design
patterns, while building many Smalltalk systems. The roots of XP come from this
collaboration. Eventually, Beck branched into private consulting, slowly (re-)discovering the

various XP practices, such as the value of working in a common room. Cunningham went on
to create the popular and unique Web concept of Wiki Webs.

In the mid-1990s, Beck was retained by Chrysler to help with a new Smalltalk-based payroll
system, the C3 project. One aim of the project was the education of the staff in object-
technology skills; a successful payroll system was desirable, but not the only goal. Beck
introduced the majority of practices that became XP, and brought in Ron Jeffries to daily
lead and coach the team. Martin Fowler was also invited for some consulting. Primarily led
by the vision of Beck, the XP practices coalesced on this project.

Beck says that at its heart, XP is expressing what he learned with and from Cunningham.

There has been some mis-information that the C3 project "failed." In fact, management felt
that the team received good object-technology education, and the C3 payroll system did
successfully go into production for several thousand employees, but was eventually phased
out and the team reassigned, as management—with direction from the new Daimler
owners—developed different ideas for handling payroll at the new-found DaimlerChrysler
company.

What's Next?

The next chapter presents the practices of the UP, an iterative method with a somewhat
different emphasis than XP. Following that, Evo is introduced—one of the first evolutionary
methods.

Recommended Readings

There are many XP books but only a few essentials. Extreme Programming Explained by
Kent Beck is required reading. A good practical companion by three members of the original
C3 team is Extreme Programming Installed.

Supporting or related texts that are recommended include:

 Test-Driven Development: By Example, by Kent Beck. Teaches the essentials of this
key XP practice.

 Refactoring: Improving the Design of Existing Code, by Martin Fowler. The bible on
refactoring skills.

 Peopleware, by Tom DeMarco and Tim Lister. Discusses some of the people-side
issues that inspired Beck in XP.

 The Deming Management Method, by W. Edwards Deming and Mary Walton.
Discusses the critical role of personal pride in workmanship. This also influenced
Beck and XP.

 Toyota Production System: Beyond Large-Scale Production, by Taiichi Ohno. This
book—by the creator of the Toyota method—on "lean manufacturing" is something of
the physical-goods equivalent to XP for software. Although Beck did not read this
work until after creating XP, he has since highly praised it for capturing many of his
goals and values in XP.

 "Episodes: A Pattern Language for Competitive Development" in Pattern Languages
of Program Design 2. Article by Ward Cunningham, edited by John Vlissides.
Cunningham presents some of the key ideas that became XP.

Chapter 9. Unified Process

The true measure of a man is how he treats someone who can do him absolutely no good.

—Samuel Johnson

OVERVIEW

 Classification of UP.
 Workproducts, roles, and practices.
 Common mistakes, adoption and process mixtures, strengths and weaknesses.

The Unified Process (UP) is a popular iterative process framework, particularly its
refinement in the Rational Unified Process or RUP. Some of the UP key practices and
guidelines illustrate its spirit:

UP versus RUP

 Develop in short timeboxed iterations.

practice details

 Develop the high-risk and high-value elements (for example, the core architecture)
in early iterations, preferring re-use of existing components.

 Ensure that you deliver value to your customer.
 Accommodate change early in the project.
 Work together as one team.

The UP organizes iterations within four phases. The elaboration phase iterations
emphasize programming the risky, core architecture, construction phase iterations build
the remainder.

Method Overview

Classification

In terms of cycles and ceremony, UP classification is illustrated in Figure 9.1. For average
projects, the recommended length of a timeboxed iteration is between two and six weeks—
somewhat longer than XP, for example.

Figure 9.1. UP on the cycles and ceremony scale.

cycles and ceremony

Perhaps the most noteworthy quality of the UP, in comparison with other popular IID
methods, is its ability to scale up and down on the ceremony spectrum, with optional
support for higher degrees of formality and documentation. Contrary to some
misunderstanding, the UP encourages a relatively light footprint in terms of ceremony,
although in general it recommends more documentation and modeling than in XP. It offers a
set of around 50 optional workproducts for many contingencies.

In terms of the Cockburn classification, the UP covers all cells. See Figure 9.2.

Figure 9.2. UP covers all cells on the Cockburn scale

Cockburn scale

The UP can be applied to small three-person projects with no more than loss of comfort,
and up to hundreds of developers working on life-critical systems. For example, the core UP
practices were applied on the Canadian Air Traffic Control System project, involving many
hundreds of developers.

Introduction

The UP [JBR99] is an iterative process framework—a general process description that
can and should be refined into a more detailed process description for an organization or
project, such as the RUP [Kruchten00].[1] A UP specialization may itself be a more detailed
process framework (as is the RUP) or a concrete process description for one particular
project.

[1] IBM bought Rational in 2003, maintaining the "RUP" branding.

The UP is more of a defined process, and more broad and ambitious than the other iterative
processes described in this text. However, all activities and workproducts, and their
ordering, are optional and arbitrary.

See "UP as a Heavy, Defined Process versus an Agile UP Approach"

The RUP refinement of the UP is both a process framework (for creating specific processes),
and a licensed product. As a product, it is a set of around 100 core Web pages of process
description—with several thousand detailed supporting pages—and with templates for its
artifacts. A customizing "RUP Builder" tool can configure the set of Web pages to describe
your organization's specific tailoring of the RUP. Many organizations purchase and install a
version on their intranet as a learning aid, quality assurance aid, and template resource.
See Figure 9.3. It is not required to own the RUP product to adopt and apply the UP's
general ideas or practices.

Figure 9.3. sample Web page from the RUP product

The UP defines a set of approximately 50 optional (non-software) artifacts (workproducts),
such as the Vision. A particular project may create zero or more, and "less is better" is a
guiding rule, although a couple of workproducts are usually recommended, including a
Vision and Risk List. Note that workproducts in the UP are information abstractions rather
than necessarily computer documents; for example, the Risk List could be realized with a
poster on the wall of the project room. Nevertheless, the RUP product includes document
templates (for example, in HTML) for those wishing to use them.

The workproducts are organized within disciplines—such as the Requirements discipline—
that define major areas of concern and activity on a software project. See Table 9.1 for a
sample.

Table 9.1. sample UP disciplines and workproducts

Discipline Workproduct Comment

Vision Summary of stakeholders' key needs and features.Requirements

Use-Case Model The set of use cases describing the intended functions and
environment.

Design Model An object model describing the hardware and software
realization of the use cases in terms of collaborating
objects.

Design

Software Architecture
Document

A system overview or learning aid that includes several architectural
views.

Table 9.1. sample UP disciplines and workproducts

Discipline Workproduct Comment

Iteration Plan The goals and tasks for the current or next iteration.Project
Management

Risk List A list of prioritized risks with associated mitigation
plans.

In terms of disciplines and iterations, the UP envisions a project approximating Figure 9.4.
In each iteration, activity occurs in most disciplines, though the relative efforts vary over
time.

Figure 9.4. sample UP disciplines and iterations

The UP requires that it be tailored for each project; that is, choosing the set of practices
and UP workproducts to create, from the large but optional set available. This unique
tailoring is called the Development Case of the project; a simple example is shown in
Table 9.2. In general, "less is better" is the guideline, and a Development Case is
encouraged to contain the minimal set of workproducts needed to address the risks and
goals of the project.

Table 9.2. Sample partial UP Development Case

Artifact Incep. Elab. Const. Trans.Discipline Techniques

Iteration I1 E1..En C1..Cn T1..Tn

Vision S[a] rRequirements one-day timeboxed
requirements workshops,
prototypes, paper-based UI
mock-ups.

Supplementary
Specification

S r

Design Model s rDesign Pair designing doing
whiteboard sketches
captured with camera, test-
first design, reverse
engineering.

SW Architecture
Document

s

Project Mgmt All Scrum management
practices

Risk List S r r r

Implementation Pair programming, test-first
development, continuous
integration

code, graphics,
etc.

S r r r

Table 9.2. Sample partial UP Development Case

Artifact Incep. Elab. Const. Trans.Discipline Techniques

Iteration I1 E1..En C1..Cn T1..Tn

… …

[a] s = start. r = refine.

Lifecycle

1. Inception is ideally short, such as a few days. Iterations are possible, but rare.
Activities could include a short requirements workshop, 10% of the requirements
captured in detail (the most architecturally influential ones), a "top ten" high-level
requirements list, and a first draft of the vision and business case for the project. If
this phase is long, it is usually a sign of excessive up-front specifications or planning.

2. In elaboration, the core, architecturally significant elements are programmed and
tested in a series of short timeboxed iterations, and by its end a semi-reliable plan
and estimate is possible. This phase includes programming work, not only
requirements or design modeling. In addition to development, with feedback from
the growing system, there may be a series of short requirements workshops (one
per iteration) to refine most of the requirements. This is a step of discovery and
creativity; when complete, the core of the system and most requirements have
stabilized through an iterative, evolutionary process.

3. In construction, the remainder of the system is built—in short iterations—on top of
the solid foundation laid in elaboration. Requirements may still change, but ideally
the big surprises were provoked and discovered earlier in elaboration. Other

activities include alpha testing, performance tuning, and document creation (for
example, user aids).

4. In transition, the system is ultimately deployed. First, a release candidate is
exposed for review and feedback. This may occur in several iterations. Finally, there
is deployment, that may include distribution over various channels, education,
parallel run with an older system, data conversion, and so on.

The UP identifies milestone objectives in a project that define the boundaries of these
phases. These come from the work of the Barry Boehm, in [Boehm96].[2] Boehm called the
end of inception the Life Cycle Objectives (LCO) milestone. The end of elaboration was
called the Life Cycle Architecture (LCA) milestone.

[2] Boehm and the UP creators have a long history of collaboration.

Each phase may contain multiple iterations. The milestone goals of each phase are
described in Table 9.3, and an example of phases and iterations is shown in Figure 9.5.

Figure 9.5. UP phases; the size of the relative effort in each discipline is
suggestive, not literal

Table 9.3. UP phases

Phase Milestone Goals Comments

Inception Agreement on scope, vision,
and priorities.

Some risks identified.

A plan to start elaboration
exists.

Establish a common vision.

Typically a very short phase, such as a few
days or weeks.

A first requirements workshop might be held.

Elaboration The vision, requirements, and
architecture are stabilized.

The core executable
architecture is implemented;
major risks are mitigated.

The majority of requirements
are defined.

Estimates and coarse-grained
plan are defined.

Build and test the risky core.

This phase contains significant production
programming and testing, combined with
evolutionary requirements and design work.

Usually composed of several iterations. In
addition to programming, perhaps a series of
requirements workshops; one per iteration.

Semi-reliable plans and estimates at end of
elaboration.

Table 9.3. UP phases

Phase Milestone Goals Comments

Construction System is believed ready to
be deployed.

Stakeholders are ready for
deployment.

Build and test the rest.

Typically the largest set of iterations. As in
elaboration, major testing occurs in each
iteration.

Transition System is deployed.

Users are satisfied.

Deploy.

Beta testing, release candidate evaluation,
training.

Figure 9.5 shows an example of iterations across the phases: three iterations in elaboration
and 10 in construction. As usual, iterations are not necessarily the same length. Often, early
elaboration iterations are longer (e.g., three weeks) due to the demands of creative and
unpredictable discovery. Later construction iterations could be one or two weeks long. The
resources or staffing also varies. Ideally, the elaboration phase is staffed by a small,
cohesive, co-located team who shape the core. During construction, larger teams and more
parallel development may occur. See Figure 9.6.

Figure 9.6. resources across phases; the size of the relative resource use is
suggestive, not literal

Workproducts, Roles, and Practices

Roles

Practices

Core Practices

To be called a UP project, it arguably should illustrate at least the following:

 Follow the UP guidelines and best practices.
 Create at least a couple of UP artifacts, such as the Vision and Risk List.

- Conform to the UP workproduct names rather than use other or prior names, to
establish a common vocabulary.

 Organize the iterations and milestone goals according the goals of inception,
elaboration, construction, and transition.

UP Guidelines

Although the original UP creators had in mind a preference for a relatively light approach to
process, this was not well communicated in their early learning aids. In their more recent
material, this has improved. For example, [KK03] presents the "spirit of the RUP" guidelines
for success—core attitudes to hold on a UP/RUP project:

 Attack risks early and continuously, or they will attack you.
 Deliver value to your customer—early and often.

 Stay focused on developing executable software in early iterations, not specifications
or other documents.

 Accommodate change early in the project. Provoke and managing change via early
development, multiple requirements workshops, change management tools, and so
on.

 Baseline an executable architecture early.
 Prefer component-oriented architectures and the reuse of existing components.
 Work together as one team (e.g., cross-functional teams)
 Quality is a way of life, not an afterthought.

The Six Best Practices

The UP is not really limited to only six best practices, but these are an important minimal
set to focus on. UP adopters should understand these practices, and most or all should be
applied on UP projects:

1. The most important of the UP practices is to develop using timeboxed iterations,
recommended between two and six weeks. In other words, do not apply a waterfall
lifecycle or attempt to do thorough requirements analysis first. Rather—as with all
iterative lifecycle processes—start programming early, when only a portion of the
most significant requirements are understood in detail. Refine the requirements and
design based on feedback and adaptation from the programming effort instead of
attempting large, up-front requirements analysis or speculative "Power Point
architectures."

2. Emphasize programming the high-risk and high-value elements, and a cohesive
architecture in early iterations, and strive to re-use existing components—large
and small—to reduce new code and defects. For large projects, ideally the
requirements analysis and core architecture is developed by a co-located small
team; later, the early team members divide into subproject leaders coaching
subteams doing parallel development.

3. Continuously verify quality. Test early, often, and realistically by integrating and
testing all the software each iteration—unit, system, and load testing. This best
practice includes techniques such as test-driven development and continuous
integration, both promoted in XP. Plus, it extends beyond code to include early
verification of usability, the quality of non-code artifacts (such as requirements), and
of the process itself via regular team meetings to reflect on the value or lack thereof
in different activities.

4. Before starting programming in an iteration, do at least a little visual modeling,
such as sketching at the whiteboard for an hour, to explore and communicate
creative design ideas while ignoring low-level code details. Oftentimes, sketches will
be loosely based on the industry-standard Unified Modeling Language (UML).
Practices promoted by Agile Modeling, such as creating multiple visual models in
parallel, using digital cameras to capture sketches, and so on, are applicable to this
best practice. Sometimes, CASE tools for visual modeling can add value, to regularly
reverse engineer the growing code base into UML diagrams that offer a big-picture
view of the software.

5. Manage requirements through skillful means to find, organize, and track them.
Find and refine requirements iteratively and incrementally rather than via major up-
front analysis—for example, through a series (once per iteration) of short timeboxed
one-day requirements workshops in the early phases of the project. Where suitable,
find functional requirements by writing use cases to record functional requirements,
rather than older-style function lists. Using a tool, organize requirements with
attributes, such as risk, priority, and status (e.g., new, assigned), and with
traceability to other dependent requirements, so that they can be analyzed; using a
tool for this task is especially valuable on large projects where it is difficult for any
one person to envision and reason about all the requirements. And using a tool,
track the status of requirements so that we know what's finished, underway, and so
forth.

6. Manage change through disciplined configuration management and version control,
a change request protocol, and baselined releases at the end of each iteration.

Workproducts

The workproduct diagram (p. 184) shows a subset of common UP workproducts (artifacts).
There are approximately 50 in total. The details are outside the scope of this introduction;
see [Larman01] for many examples, or the RUP product.

Important overarching points regarding the UP workproducts:

 Unfair criticism?— Some have criticized the UP as having too many workproducts
in comparison with some other IID methods. Yet, when you examine the full UP list,
it contains workproducts such as Release Notes, Bill of Materials, Training Materials,
and so forth. These are workproducts that a team makes for many products,
regardless of method. It is just that the UP has identified them, whereas XP and
Scrum, for example, have not. And, all are optional.

 Common vocabulary— For larger organizations, especially those with hundreds of
developers or multiple offices, it is useful to have a common vocabulary of
workproducts (Vision, Software Architecture Document, etc.). It helps
communication between people and offices. It helps during scavenging for reusable
artifacts from prior projects.

 Information abstractions— The UP artifacts are information abstractions rather
than concrete computer documents, although the RUP product provides sample
document templates. The Risk List can be a poster on the wall; the Software
Architecture Document can be a video; the Design Model can be UML-ish whiteboard
sketches captured on a digital camera.

Other Practices and Values

Absorbing practices— The UP is a broad and general IID process definition. It defines or
endorses many detailed practices, both "local" to the UP or adopted from other methods,
such as XP testing or Scrum meetings. Note that many practices, such as XP's test-driven
development, are specializations or variations of the UP practices, such as continuously
verify quality. If the RUP product is used, the "RUP Builder" can configure the process
definition to include documentation on absorbed practices.

Use-case driven— The UP does not require the application of use cases to capture
functional requirements; feature lists and feature-driven development are possible.
However, when use cases are suitable for the problem domain, their use is encouraged in
the UP. In that case, the UP recommends organizing iterations by scenarios of use cases,
tackling the most architecturally significant, risky, and highest business value scenarios
early. Then, one designs and implements to fulfill use case scenarios. Further, the UP
recommends basing system-level acceptance tests on these scenarios. Thus, use cases
drive the iterative development and acceptance testing.

iteration planning with use cases and scenarios

Values

In contrast to XP and Scrum, the UP does not make explicit a set of underlying values,
although some can be inferred. And whereas the XP values emphasize human and
communication qualities, the UP values emphasize a project-oriented rather than people-
oriented focus. These include:

 It is important to apply the UP guidelines and best practices. Some UP values
logically follow from this, such as iterative is better than waterfall, having a cohesive
architecture is good, change control must be formalized, and so forth.

 Be risk- and value-driven. That is, in early iterations, identify and drive down the
high risks and build elements deemed of highest value to the stakeholders.

 It is important to define a clear vision (in the UP Vision workproduct) for the project
that summarizes the stakeholders' real needs.

 It is critical that the UP process be tailored to the unique needs of each project while
still observing the best practices. Plus, be tailored to the minimal set of workproducts
and activities that add value.

 It is useful to have a well-defined process that provides guidance on activities, on
what artifacts to create, and on the tasks of individuals and the team.

UP as a Heavy, Defined Process versus an Agile UP Approach

It is this last value that is a point of contention in the UP compared to the classic agile
methods. Some in the agile process community have dismissed off-handedly the idea that a
defined process such as the UP is useful, and that it is too "heavyweight," but the issue is
more nuanced.

for a discussion of defined vs. empirical methods

First, the UP creators did not intend the process to be applied or adopted in a rigid or
heavyweight manner; they are experienced and practical software developers who also
appreciate simplicity and agility. They view the UP as a suite of options to pick from, within
the constraints of adopting its spirit and best practices.

Another perspective on this issue is offered by Cockburn, who describes three levels of
behavior and listening as people mature in learning a subject [Cockburn02]: 1) following, 2)
detaching, and 3) fluent. He relates this to literature and guidance for software methods by
noting that Level-3 advice such as terse "work in a common project room and deliver usable
software every four weeks" may be suitable for the fluent master, but not for the novice
following developer. The detailed defined process aspects of the UP are aimed especially at
a Level-1 audience, and in that context are of some value for learning, and as quality
assurance checklists.

Level-2 and Level-3 developers may ignore the prescriptive and defined aspects of the UP,
such as what tasks to do in what order, and instead focus more simply on choosing a set of
UP workproducts to create, applying the best practices, and realizing these according to the
creative judgment of the team in a more empirical process spirit.

A second issue in the value of defined processes is repeatability and avoiding re-invention.
There are at least a few predictable, repeatable, useful steps in deploying a system to
production, such as writing release notes. The UP makes explicit this advice (which is
especially useful for the Level-1 audience), whereas the agile methods do not.

A third point in the value of defined processes is having a common vocabulary for artifacts,
such as the UP Vision and Design Model. The UP provides such a vocabulary, which removes
the need for each project to recreate one, and promotes communication across projects and
organizations.

The issue of defined versus empirical processes for software projects boils down to a matter
of balance and moderation. Certainly, rigid command-control sequencing of fine-grained,
predefined activities is not skillful on most software projects, but on the other hand, some
aspects of defined processes add value and can be applied in an agile and empirical spirit,
as some activities are predictable—for example, many related to deployment.

Given a set of iteration goals, a self-directed team doing daily Scrum meetings can be
characterized as applying the UP if it creates a few UP workproducts and follows its best
practices, but is driven by the dynamic and creative judgment of the team, rather than by
following a UP recipe of ordered activities.

In summary, the UP—although a semi-defined process—can be and is applied by some in an
agile style.

Common Mistakes and Misunderstandings

or, How to Fail with the Unified Process

There are internal IT organizations, books, Web pages, articles, consulting organizations,
and speakers that demonstrate these misunderstandings. Be cautious in receiving UP advice
or hiring consultants, and apply the tests in the "Signs the UP "Expert" Is Not an Iterative
Expert" section on page 198.

Superimposing Waterfall Ideas

The most common of the significant UP misunderstandings, and a quick sign that the UP
"expert" actually is not, is to describe the four phases akin to the waterfall phases
(requirements, design, implementation, test):

1. Inception— requirements analysis, detailed specifications.

THIS IS INCORRECT; it is a sign of misinformation by those not truly
understanding the UP

2.
3. Elaboration— more detailed requirements analysis, modeling, and design work.
4. Construction— programming the design.
5. Transition— testing.

This incorrect description of the UP phases illustrates the most common misunderstanding:
superimposition of waterfall phases onto the UP. A corollary of misapplying the waterfall
phases includes other common waterfall mistakes in UP adoption:

 Attempting to do most requirements analysis or design before programming.
 Deferring major testing or QA till near the end of the project.

Other Common Misunderstandings

Error: Iterations too long— It is usually a misunderstanding to define iterations of several
months long. The UP recommends an iteration length between two and six weeks, excluding
massive projects involving hundreds of people and many subteams. Skilled iterative project
leaders strive towards shorter timeboxed iterations in the two to four-week range, all other
things being equal. One project may be composed of dozens of short iterations.

Error: Iterations aren't timeboxed— It is a misunderstanding to let the iteration length
expand when it appears the goals can't be met within the original timeframe. Rather, the
usual expert strategy is to remove or simplify goals for the iteration.

Error: Iteration doesn't end in an integrated and tested baseline— An iteration is not
properly complete unless all the software, across all or most subteams, has been
integrated, tested, and baselined. It is a misunderstanding to think an iteration simply ends
arbitrarily on the end date; the goal is to pull everything together.

Error: Each iteration ends in a production release— It is a misunderstanding to think
each iteration must end in a production release. Although this is possible (especially during
maintenance) it is less common than requiring many iterations before a production release.

Error: Elaboration phase goal is to create a throwaway prototype— Prototypes are
perfectly acceptable in the UP (usually during inception), but the goal of elaboration is not a
throwaway prototype but rather a production subset of the final system. Some have
misunderstood this (and some UP books have misadvised on this point) because the original
UP and RUP literature itself used the unfortunate choice of phrase "architectural prototype"
in a few places to describe the output of elaboration. This confusing term was meant to
imply "architectural subset of the final production system" but many interpreted "prototype"
to invariably mean throwaway code.

Error: Development Case too complex; too many workproducts— It is a
misunderstanding to define a Development Case with dozens of UP workproducts, when
fewer will suffice. The guideline is "less is better." This is not advice to avoid demonstrably
useful documentation, or the forethought that accompanies its creation; the UP
recommends creating workproducts that really add value, and abandon make-work or low-
value document or model creation.

Error: Predictive planning— It is a misunderstanding to create, near the start of the
project, a believable plan laying out exactly how many iterations there will be for a long
project, their lengths, and what will occur in each.

Error: The team should do lots of modeling and UML diagrams, and use a CASE
tool— The UP contains several optional models, with many opportunities to apply the UML
for diagramming speculative designs before programming. However, these are optional, and
if a team can successfully and easily develop software with little or no prior diagramming,
they may. Modeling and UML diagramming in the UP are aids to help with complexity and
creativity, no more. And it is certainly not necessary to use a CASE or UML drawing tool
while modeling on a UP project. The Agile Modeling approach that recommends the simplest
possible tool—perhaps whiteboard hand sketches and digital cameras—is perfectly suitable.

Error: Need many tools— It is a misunderstanding to think many software tools need to
be applied on an UP project. Rather, it can be run as low-tech, high-touch as paper cards,
wall posters, and whiteboards, combined with a sprinkling of CVS, Anthill (for continuous
integration), and Bugzilla (for issue and defect tracking).

Error: Software Architecture Document (SAD) "finished" before end of
elaboration— The UP SAD is a learning aid that summarizes the big ideas and motivation
in the architecture. It is a misunderstanding to create the final SAD before the end of
elaboration, as that would imply major up-front design, and speculative definition of the
architecture without programming. In the UP, the architecture evolves iteration by iteration
through an interplay of some educated guesses combined with programming and testing.
The architecture is not stabilized until the end of elaboration, after significant programming
to build and prove it. Thus, the SAD, which summarizes the architecture, cannot be finished
until elaboration is over.

Error: Not conforming to the official UP workproduct names or phase names— One
purpose of the UP is to establish a common vocabulary, both within an organization and
globally across UP-conforming teams, for workproducts and major lifecycle phases. For an
organization that is adopting the UP to replace a prior process, it is a misunderstanding to
rename the UP workproduct to the older familiar names, rather than surrender to the new
terms.

You Know You Didn't Understand the UP When...

Some of the key misunderstandings expressed as a checklist:

 You think a sequence of requirements design implementation express the way to run
a UP project.

 You think inception is like requirements analysis, elaboration is like design and
detailed requirements analysis, construction is like programming after the design,
and transition is a testing phase.

 You want to do most requirements analysis or design before programming.
 You defer the major testing until near the end of the project.
 You define iterations months long rather than weeks long.
 You create the SAD before the end of elaboration.

Signs the UP "Expert" Is Not an Iterative Expert

UP consultants, authors, and speakers from both major well-known consulting organizations
and small shops may exhibit a misunderstanding of the UP and iterative development. Here
are some of the key ones illustrated in the behavior of a UP "expert":

 Describes the UP phases similar to waterfall phases; recommends doing most
requirements or design before programming; encourages creation of more and more
detailed specifications and plans, before starting development work.

 Suggests iterations more than six weeks long. Does not strive towards short
iterations.

 Recommends an inception phase that is weeks (or worse, months) long, involving
major planning and analysis; is not encouraging a rapid transition to early
programming in an elaboration phase.

 Is not stressing the importance of early programming starting in the first elaboration
iteration, well before all requirements, plans, and design are known.

 Recommends creating many UP artifacts, rather than seeking ways to reduce the
number. Some UP consultants do this out of ignorance; others out of a justification
for their presence and guidance in the creation of these and handling a more
complex process.

 Builds only a throwaway prototype in the elaboration phase.
 Defers unit, load, usability, or acceptance testing until near the end of the project.
 Insists that the team follow the UP activities "by the book."
 Insists on the team using UML CASE tools to draw many diagrams, whereas hand

sketches on whiteboards, or simply bypassing drawing and just programming, would
suffice.

 Creates the "final" SAD before the end of elaboration and before significant
programming has occurred.

 Near the start, defines a "believable" plan laying out how many iterations there will
be for the project, their lengths, and what will occur in each (i.e., predictive
planning).

 If hired as an UP auditor to verify the team is skillfully applying the UP, encourages
more or more thorough workproduct creation or more detailed planning, rather than
early programming, evolutionary requirements, and adaptive planning.

Sample Projects

The following projects applied many of the values and practices that characterize a UP
project:

Large— Canadian Automated Air Traffic Control System

- Ten years, 400 people, Ada and C++, an L400 life-critical project, [PKT93].

- This was a large test bed for the practices that were later refined as the RUP. The
chief architect was Dr. Kruchten (who drove the adoption of these practices), also
the lead architect of the RUP. It was first attempted as a waterfall project, failed, and
then was restarted under the new process direction of Kruchten as an iterative

project. As a successful iterative ATC project, it is an instructional contrast to the
failed attempt (after 11 years and $2.6 billion USD) to replace the USA ATC, which
was unsuccessfully run as a waterfall project [GAO98].

- Prime developer: Raytheon Systems Canada. Originally, Hughes Canada Systems
Division.

Medium— Ogre Nextgen Economic Modeling System

- Two years, 15 people, Java technologies, an E20 project.

- A Java technology decision support system used by oil/gas asset holders (e.g.,
potential oil fields). Development involved 19 iterations that on average were four
weeks. Included the Scrum practice of a demonstration to external stakeholders at
the end of each iteration.

- Prime developer: Valtech USA.

Small— QUICKcheck point-of-sale

- One year, six people, Java technologies, [Evans01].

- A self-checkout POS system for grocery stores.

- Prime developer: Kyrus.

Process Mixtures

UP + Evo

The UP is especially for software development, and usually for projects involving multiple
iterations before production delivery. Consequently, the UP could be applied to Evo
backroom development work. However, Evo's very frequent evolutionary delivery and
project management style is not exactly in the same spirit as the UP, although both share
an interest in early identification and mitigation of risks. The UP has its own set of
workproducts and approach to requirements capture: the Use-Case Model (and thus, use
cases), and Supplementary Specification for description of functions, features, and
nonfunctional requirements. Evo Planguage elements, such as the Performance
Requirement Specification, may be used within the UP Supplementary Specification. Evo's
measurement emphasis is compatible or acceptable with the UP. The upper bound of UP's
2–6 week iteration length is not consistent with Evo—too long.

Evo

backroom

Planguage

UP + Scrum

The Scrum practices are consistent with UP practices. The Scrum Product Backlog is an
acceptable portion of the UP Project Plan, and the Sprint Backlog is an acceptable version of
the UP Iteration Plan. One area of potential conflict is the presence in the UP of optional but
predefined activities; the UP indicates some dependent ordering of these optional

activities—for example, that a project vision is created before a detailed requirement is
described. Scrum's rejection of defined process and predictable steps is inconsistent with
this structure if the UP activities are viewed as a required formula. But, if the activities are
treated as optional advice, performable in any order, and without attempt to schedule their
order and duration on a project, and without assignment of tasks to individuals by a
manager, it is not in conflict with Scrum.

Scrum

Product and Sprint Backlog

See "UP as a Heavy, Defined Process versus an Agile UP Approach"

UP + XP

Most XP practices are consistent with UP practices, and many XP practices can be applied in
the context of an overarching UP project. For example, test-driven development is a
specialization of the UP continuously verify quality best practice. Since all UP workproducts
are optional it is a misunderstanding to assume the methods are fundamentally
incompatible, given XP's promotion of minimal modeling and documentation.

XP

test-driven development

However, although speaking of some XP practices within a UP project can have conceptual
integrity, the opposite is not true, as there are some differences in style and emphasis. One
area of difference is in the accepted degree of up-front modeling (diagramming, etc.). For
example, within a UP project and a two-week iteration, it is considered acceptable to spend
a halfday near the start to sketch and explore design ideas "at the whiteboard" (visual
modeling) before programming. In XP, no more than 10 or 20 minutes before programming
is considered suitable.

Another difference is in the goal of the early iterations. In the UP the goal is to identify and
drive down the high risks: technical, political, satisfying the customer, and so forth.
Although this may happen in the XP, it is not an explicit guiding principle.

A third difference is in requirements specification. The UP allows and supports the creation
of relatively detailed specifications (incrementally, over a series of iterations), assuming
that an onsite customer is not going to be present. These will usually take the form of the
Use-Case Model and Supplementary Specification.

Adoption Strategies

As always, coaching by an experienced method expert on the first project is recommended.
UP adoption is meant to be iterative, incremental, and adaptive. "Big bang" process
adoption, where many people are trained near the same time, and/or many UP projects
start at once, should be avoided.

First, executive management will benefit from education in some UP concepts (for example,
through a short seminar). An executive sponsor should be identified, and discussion of a
suitable pilot project initiated.

Then, a pilot project starts. The project should be large enough to be meaningful and
interesting, yet not bet-the-bank risky. For example, a 10-person, six-month project.

A UP coach should be responsible for leading the definition of the Development Case, and its
refinement during the elaboration phase. Ideally, the coach should be a hands-on developer
during the pilot, so that eating their own dogfood is strongly experienced, and the process is
realistically refined.

See "Signs the UP "Expert" Is Not an Iterative Expert"

To contrast that, a worst practice is if a "Methods and Practices" group within the
organization defines how the organization or a project should adopt the UP. "Armchair
process engineers" are not helpful, should be avoided, and often superimpose waterfall
values on to the UP, or promote excessive workproduct creation. Take advice on what to do
or adopt in the UP from hands-on developers and managers doing early UP projects, in
collaboration with a UP coach participating and developing as well. If corporate process
engineers are involved in UP adoption recommendations, they should discover and refine
recommendations by serving as hands-on developers during pilot projects, rather than by
speculation.

A related worst practice is to attempt to fit the UP into the organization's existing concepts
and workproduct vocabulary. For example, taking the organization's current lifecycle
phases, and believing the UP phases fit within them, or are equal to them. They won't be,
and it usually leads to waterfall superimposition. It is a similar mistake to rename the UP
artifacts (Vision, etc.) to the old names used by the organization. In short, UP adoption is
best done by incremental surrender to a new set of ideas and terms, not by dressing up an
old horse in new clothes.

There are many possible practices in the UP. Thus, it is useful in the early iterations—
assuming a prior culture of low software engineering maturity—to start simple and add
some practices as the iterations proceed.

After project completion, assuming it was successful and positive, "in-selling" of the UP
practices by the project members or customers themselves to others in the organization is
better than promotion by outside consultants or management. For example, a lunch-time
session where team members share their experiences, pros and cons, with a wider
audience.

Assuming there will be a second generation of UP projects, some of the members from the
first generation project will ideally move into process engineering roles, and help coach
these new projects. The Development Case from the prior projects should be carried
forward as a starting point. Therefore, the adoption spreads incrementally.

Another useful activity is a project retrospective that looks at the refined Development Case
and ensures it accurately reflects what worked well, and what didn't.

Fact versus Fantasy

As implied earlier, perhaps the most common fantasy regarding UP adoption is that it is
widely being applied in the iterative and adaptive manner its creators intended. Rather, a
non-trivial percentage of organizations and consulting companies are incorrectly applying it
in a predictive and waterfall spirit, with up-front specifications and planning.

Another fantasy is when the organization purchases many copies of the RUP product for
their development staff, and continue with the mistaken belief that the presence of the
installed product implies true iterative and evolutionary development is underway.

Another common and related fantasy is when the organization decides to adopt the RUP,
thinking it is simply a more detailed, well-defined, and well-documented version of what
they already expect in development (e.g., the waterfall), and they do not themselves have
to make deep changes in their expectations and behavior. For example, in the RUP, reliable
estimates for the entire project are not to be expected until the end of elaboration.

Instead, this happens:

Memo: Congratulations! We've adopted the UP. Please ensure the requirements
are finished for our upcoming UP projects so we can estimate them before moving
on to the programming phase.

Strengths versus "Other"

Strengths

 Focus on risk- and value-driven priorities.
 Emphasizes building a cohesive architecture early, preferring existing components.
 Evolutionary and incremental requirements and development, and adaptive behavior.
 Well-defined workproducts, offering a common vocabulary.
 The guidelines and best practices are a good foundation.
 Offers guidance on many disciplines, from requirements to configuration

management.
 Easily combined with techniques from other methods.
 Easily customized; encourages minimal "light" versions.
 RUP product has easily accessible useful advice, and standard project templates.
 Proven to scale to large or small projects.
 Encourages use cases where appropriate.
 Widely adopted; hence, learning and consulting resources.
 Created with many customers, refined on many projects; not a speculative process.

Other[3]

[3] Could be viewed as a weakness, strength, or deliberate desirable exclusion depending on
point of view.

 Many details.
 UP phases are often incorrectly applied in a waterfall style.
 Minimal attention to the social dynamics and communication aspects of successful

and sustainable development practices. Contrast to Scrum and XP.
 The RUP product can give the (unintended) impression of promoting a very defined

and predictable development process, as though software was mass manufacturing
rather than new product development.

History

Some of the roots of the UP/RUP exist in the work of Barry Boehm and his spiral model. Its
risk-driven and iterative approach influenced key UP/RUP contributors at Rational
Corporation, including Philippe Kruchten, Grady Booch, Mike Devlin, Rich Reitman, and
Walker Royce. Indeed, Royce collaborated with Boehm on research, writing, and projects.
Boehm's well-known "anchor point" milestones [Boehm96] became the milestones that
defined the boundaries between inception, elaboration, and construction. The Rational team
created the UP/RUP in collaboration with customers, taking input from the "Rational
Approach" they had developed through the 1980s and 1990s, and from the Objectory
process they acquired from Ivar Jacobson. The core initial development was around 1995–
98. The chief architect of the UP/RUP was Philippe Kruchten, an experienced architect or
process leader on major applications such as the new Canadian air traffic control system,

and a well-known architecture thought leader, e.g., [Kruchten95]. Although Rational had
Rational Unified Process and a commercial product in mind from the start, they also wanted
to communicate and promote the idea of a process more public domain and open—a
generalized Unified Process. This was consistent with their open Unified Modeling Language
initiative. Hence, Ivar Jacobson wrote the first book to present this view, The Unified
Software Development Process (1999) working from a draft of the RUP specification and
product being developed by Kruchten's team. Since then, many books have been written
under the appellation of simply "Unified Process" to signify similarity to the RUP and
adoption of its major ideas (the best practices, the phases, the disciplines, and so forth),
while not necessarily being strictly the Rational process.

What's Next?

The next chapter presents Evo, a very early iterative and evolutionary method. After that
are two final chapters on practice tips and a FAQ.

Recommended Readings

 An excellent introduction is The Rational Unified Process Made Easy by Per Kroll and
Philippe Kruchten.

 Another very readable introduction to the RUP is The Rational Unified Process—An
Introduction by Philippe Kruchten, its lead architect.

 Applying UML and Patterns: An Introduction to OOA/D and the Unified Process
[Larman01] takes a case-study approach to introducing the UP and OOA/D. The
concepts and workproducts are introduced incrementally over a series of case-study
iterations.

 As a caution, there are a number of so-called UP and RUP texts that give incorrect
descriptions.

Worthwhile readings that influenced the UP creators:

 "A Spiral Model of Software Development and Enhancement" by Barry Boehm, ACM
SIGSOFT Software Engineering Notes, August 1986 (the reprint in IEEE Computer,
May 1988 is often cited). A widely cited paper that describes the spiral model of
iterative and risk-driven development.

 Tom Gilb's iterative Evo method, described in Principles of Software Engineering
Management, 1988.

 Grady Booch's Object Solutions—Managing the OO Project, 1995.
 "Anchoring the Software Process" by Barry Boehm, IEEE Software, July 1996.

Describes the milestones from which the inception, elaboration, and construction
phases were inspired.

 The PMBOK (www.pmi.org). Some of the Project Management discipline was
influenced by the PMBOK.

Chapter 10. Evo

There is only one move that really counts: the next one.

—Chess master Jose Capablanca

OVERVIEW

 Classification of UP.
 Workproducts, roles, and practices.
 Demonstrate Planguage for Evo specifications.
 Common mistakes, adoption and process mixtures, strengths and weaknesses.

Evo (short for Evolutionary Project Management) is perhaps the oldest IID method with
a significant agile and adaptive quality, first taking shape in the 1960s and then published in
1976. Evo emphasizes:

 short iterations, with evolutionary delivery each iteration
 evolutionary requirements and design
 adaptive client-driven or value-driven planning
 quantifiable measurements of value and progress
 defining all quality requirements with numeric measures
 optional use of a language, Planguage, for specifications

Method Overview

Classification

In terms of cycle and ceremony, Evo classification is illustrated in Figure 10.1. For average
projects, a common length of a timeboxed iteration is one or two weeks.

Figure 10.1. Evo on the cycles and ceremony scale.

Evo recommends some initial work to define a "critical top ten" list of measurable project
objectives, and when specifications are written, Evo encourages unambiguous precision. It
also encourages brevity, promoting one page summaries. Evo avoids big up-front

specifications, although evolving specs—that could be part of a small or large set—are
acceptable if shown to be valuable.

When describing high-level requirements, a structured language call Planguage[1] is
possible; it encourages clarity, precision, and measurement. If used, it raises Evo on the
ceremony scale.

[1] Rhymes with "language."

Similar to Scrum, it has only a small set of predefined workproducts, such as an impact
estimation table. Others may be adopted from different methods as needed.

impact estimation table

In terms of the Cockburn scale, Evo covers the cells shown in Figure 10.2. Since the 1970s,
it has been applied on a wide range of projects of many sizes.

Figure 10.2. Evo on the Cockburn scale

Introduction

Evo [Gilb76, Gilb88] was created by Tom Gilb, a pioneer of iterative and evolutionary
development.

I'm including this chapter on Evo—less well known than Scrum, XP, and UP—not only
because of its inherent interest, but to balance the historical oversight of this pioneering
iterative method and to show that some agile method principles have long been part of Evo,
such as a adaptive, client-driven planning of iterations.

Agile Principles

Gilb has been an advocate for an iterative, light, and adaptive approach to systems
development since the 1960s; he first wrote about this in 1976, and his 1988 Principles of
Software Engineering Management is a milestone early book presenting an evolutionary and
iterative process.[2]

[2] Gilb also wrote the first book on software metrics, coining the term in [Gilb76], and
continues to refine Evo, e.g., [Gilb03].

Evo's evolutionary emphasis is consistent with the Shewhart/Deming cycle of Plan-Do-
Study-Act (PDSA), and makes reference to PDSA as an underlying conceptual model.

Evo is not just for software. It is applicable in a larger systems engineering context—new
software is just one solution to fulfill project objectives. For example, if more education (on
the existing software) or operational change has a better value-to-cost ratio than new
software, the former approaches are preferred.

It emphasizes—short iteration by iteration—making maximum progress towards the client's
current highest-priority requirements, for the lowest cost. And each iteration, delivering into
the hands of some stakeholders some useful results, so that early benefit and feedback is
achieved. This is the practice of client-driven adaptive planning and evolutionary delivery.

Evo is pragmatic, has some qualities similar to newer agile methods, is customer focused
and results oriented—in the spirit of the Agile Manifesto and Principles. Anything necessary
can change (based on the PDSA model) to reach the requirements (function or
performance) within the project constraints.

Agile Manifesto

One of Evo's distinguishing ideas is its emphasis on clearly defining, quantifying, estimating,
and measuring the performance requirements that need improvement over time.

these bold terms are official Evo terms

Performance includes quality requirements such as reliability, workload capacity
requirements such as throughput, and resource savings requirements such as money.
The impact of Evo steps on budgeted resource consumption is monitored both in design
activity and iteration project management activity.

example requirements

Evo requires evaluating proposed solutions for their impact on the state of these
requirements, and then actually measuring the impact of those introduced.

This structured approach and emphasis on improving the performance
characteristics, rather than just on delivering functionality, is a key part of Evo's
unique flavor.

Thus, note that in Evo there is explicit recognition that the requirements delivered may be
either functions or performance objectives (quality, workload capacity, or resource saving).

Evo expects that each iteration there is a re-evaluation of solutions which yield the highest
value to cost ratio, guided by feedback and estimates. As such, Evo requires active
stakeholder participation to steer the project each iteration—client-driven adaptive planning.
These practices are part of evolutionary project management.

adaptive planning

Measurable progress is a key principle of Evo, which takes seriously Drucker's maxim: If
you can't measure it, you can't manage it. Quantifiable measures for performance
requirements, and their regular measurement, is required. Unproven improvements, and
vague quality goals such as "usable" are discouraged.

In Evo, the value system is that management doesn't schedule the details of the entire
project, but they must be able to measure, control, and steer a dynamically evolving
project. In other words, adaptive planning.

Evo encourages precision and (where relevant) quantification in specifications. It does so by
encouraging (but not requiring) the use of a compact, structured specification language
called Planguage to record requirements—iteratively and incrementally.

Planguage

It is a misunderstanding to interpret Evo's promotion of high-quality, low-volume critical
specifications as an attempt at large up-front analysis. Evo promotes avoiding unnecessary
analysis and detail—until it is needed.

Inspection— especially of these specifications—is encouraged in Evo as an economical
method to improve quality. Indeed, research verifies this [Russell91], and Gilb has been an
active promoter of inspections for decades, including co-authoring the text Software
Inspections.

inspection

Evo also encourages a risk-driven approach, as does the Unified Process. As Gilb has aptly
said,

If you do not actively attack the risks in your project, they will actively attack you.

Lifecycle

1. In the Strategic Management cycle, stakeholders decide which solutions ready for
delivery (perhaps from the backroom activities) will actually be delivered, usually
based on highest value-to-cost and risk. This activity also includes approving
changes to objectives and solutions, analyzing feedback measurements, and
obtaining resources.

2. These cycles may be concurrent. Ideally, each week something is delivered to
stakeholders for use and feedback. In parallel, timeboxed development and
production cycles work on incrementally building solutions ready for delivery,
although it may be weeks (or longer) before they are eligible for delivery. The
analogy Evo offers is a business with the following organization:

- Backroom— products are prepared, and when ready, are "placed on a delivery
shelf" available for delivery.

- Frontroom— some eligible products are taken off the shelf and delivered to
stakeholders (see Figure 10.3).

Figure 10.3. backroom and frontroom delivery

Projects carry on, driven by the goal of maximizing stakeholder value at lowest cost, until
there are no more profitable requirements to fulfill.

Niels Malotaux, another Evo consultant, describes the lifecycle of Evo projects from his
experience working with clients [Malotaux03]:

1. A project kick-off "Evo Day" that includes the project manager, architect, and all
other development team members. Activities include presenting an overview of Evo
ideas and practices, explaining the product vision and architectural ideas, identifying
and estimating tasks for the first two-week iteration, and prioritization. Finally,
people choose and commit to a set of individual tasks for the next week.

2. Execution of the two-week iteration.[3]

[3] Malotaux has found that two-week delivery iterations are more sustainable than
one-week delivery iterations.

3. On the last day of the iteration:

- First, the project manager visits each developer and discusses the task results and
completion. If things were not completed, there is reflection on the causes.

- Second, the project manager discusses the project status with stakeholders (e.g.,
the product manager). Requirements are revisited and re-prioritized. Those chosen
for the next iteration are analyzed and specified in greater detail, with
measurements and so forth.

- Third, the project manager and development team generate a new set of tasks.
Again, developers choose and commit to the highest-priority tasks for the next week.
In a team meeting, experiences of the last iteration may be discussed for process
improvement ideas, and the product vision and evolving architecture may again be
summarized or refined, to promote a common team goal.

Workproducts, Roles, and Practices

Roles

Practices

Core Practices

Evo applies to systems engineering in general—not only software development—
although software projects are a common domain of application.

As with the other IID methods covered, Evo promotes evolutionary requirements analysis.
Yet, when requirements and design ideas are written, Evo requires analysis with respect to
a measurable evaluation of the value and impact of requirements and designs. Evo is
infused with the practice and value of measurable, measuring, and adaptive response to the
results.

Requirements Practices

Practice Description

Find stakeholders Both internal and external, friendly and foe, and across the lifecycle of
the system.

Define "top 10" key
reqs

Evo, as with other IID methods, encourages an early definition (in
Planguage) of "critical top ten" high-level requirements. They need not
all be decomposed into fine details, although those facing early

Practice Description

implementation may be. Each iteration, they are reviewed and refined.

Define function
specs

Evo functions describe what the system does. Evo does not promote
major up-front detailed functional requirements analysis, but it does
require at least clear definitions for the next iteration, optionally
described in the Function Requirement Specification, using
Planguage. example p. 232

Define performance
specs

Evo promotes describing system performance—how well the system
works, its benefits, and how it affects the environment. Written and
refined incrementally.

Performance attributes are attached to functions. Specifically, Evo
performance attributes fall into three categories: 1) quality—how well
it performs (usability, reliability, …), 2) workload capacity, and 3)
resource savings.

The Performance Requirement Specification captures this information
using Planguage. example p. 233

Define clear, and
(where possible)
measurable, specs

When specifications are written, do so in a manner and language
which exposes and minimizes misunderstanding or ambiguity. The Evo
Requirement Specification examples illustrate this.

Evo promotes a balance between too little and too much detail in
requirements. It wants clarity and detail for the key specifications you
have chosen to implement in the next short iteration. Other more
speculative or unassigned requirements can wait.

Evo's performance specifications should have measurable impact,
which should be identified. examples p. 231

Use Planguage for
specs

Planguage is Evo's structured language for specifications in both
requirements and design. It is optional, but encouraged.

Evo includes Planguage templates for its requirements and design
specifications. notation p. 231, examples p. 231

Project Management Practices

Practice Description

Evolutionary
project
management

Key ideas include:

- evolutionary delivery to stakeholders for real use and feedback

- small steps (ideally bi-weekly, or between 2–5% of total project
financial cost and time)

- steps with highest quality-to-cost ratios given highest priority
for delivery

- the existing system is preferred as the initial system base

- feedback modifies future plans and requirements; adaptive

Practice Description

planning and evolving specifications

- total systems approach; do anything that helps

- early results-orientation

discussion p. 227

Evolutionary
delivery

Evolutionary delivery emphasizes delivering a partial solution into
production early, in order to obtain early business value, and feedback to
guide and evolve future deliverables. A common delivery frequency in
Evo is weekly, or more specifically, every 2–5% of duration and budget.

In Evo, the solution chosen for delivery in the next iteration is based on
highest value-to-cost ratio and early risk reduction.

Each iteration's solution can be of a different type. For example, within a
project to replace an older mainframe payroll application, early
deliverables could be quick-fix operational changes in the existing
system, or adding a Web-based front end to the old system, while work
on the new system is underway in the backroom. discussion p. 227

Measure impact
of delivered
solutions

Evo embraces Shewhart and Deming's core principle of improvement:
PDSA. Plus, Drucker's maxim that you can't manage what you can't
measure. The study step requires measuring, each iteration, the effect of
the solution on the objectives.

This data is used to help drive evolutionary project management (act in
response to study), iteration by iteration. Evo plan table p. 229

Design Practices

Practice Description

Define design
specs

Design ideas are also recorded in Planguage, in the Design Specification,
and are incrementally evolved, as with requirements specs. example p. 234

Impact
estimation

A method to numerically analyze and compare the effectiveness of design
ideas to meet cost and performance requirements—the qualities, workload
capacity, and resource savings. The results are expressed in an
ch10lev3sec7. example p. 235

Describe how
design ideas
meet reqs

The design specifications in Evo should explain why and to what degree
they fulfill the requirements. This information is used in impact estimation,
and discourages "resume-driven design" in which over-engineered or
unfocused designs arise that are not really pertinent to business goals and
value. example p. 234

Test and Verification Practices

Practice Description

Specify tests and
measures in the
reqs

The study step in Plan-Do-Study-Act step requires measurements or
meters, in Evo terms. Although new meters can always be adopted,
Evo recommends that during performance analysis, the meters for that

Practice Description

performance attribute be defined, within the Performance Requirement
Specification. example p. 233

Specification
quality control
through early
inspection

When goals or specifications are written, research shows that defects
and misunderstanding are likely. Research also shows that early
inspection is a powerful, cheap tool to reduce those defects.

Note that specification defects have a precise meaning in Evo:
failure to observe a formal, written, required specification rule.

Gilb is an expert in the effective use of inspection— which is not the
same as informal review. The Evo quality control practice includes
sampling, and application of the Defect Detection Process, and
Defect Prevention Process. details p. 230

Configuration & Change Management

Practice Description

Specification
relationships

The Planguage specification templates contain relationship sections to
support requirements traceability. example p. 234

Evolutionary Project Management

As with Scrum, XP and UP, Evo's project management philosophy is adaptive rather than
predictive planning. And, as with the other methods, there is still attention to the long-term
vision, objectives, and a robust architecture. Some controlling principles:

adaptive planning

 Financial Control— An iteration should be between 2–5% of the total initial
financial budget before delivering some measurable results. This excludes larger
capital costs that must be incurred in an iteration, such as buying a server, as these
are "backroom" expenses.

 Deadline Control— A delivery (or frontroom) iteration should be between 2–5% of
total project time, with a lower-bound of one or two weeks. This leads to the official
Evo rule of thumb of one-week iterations for a one-year project. The Evo consultant
Niels Malotaux has found two-week delivery iterations are more sustainable than one
week.

 Value Control— Choose design ideas for the next iteration that deliver the best
stakeholder value for costs.

With these control guidelines, the next iteration is chosen in response to the latest
measurements and evolving understanding of the requirements. A misstep that doesn't
deliver expected value consumes no more than (say) 2% of resources.

Future iterations may be tentatively assigned to specific design ideas, and ordered with
respect to dependencies, but Evo encourages only very light investment in this kind of
predictive planning, as it is central to Evo to adapt the plan at each step.

Unless there is a specific stakeholder request for the next iteration, Evo recommends the
use of impact estimation table analysis to choose design ideas for the next step.

impact estimation table

For tracking and adapting, Evo also recommends the use of an impact table to record the
results of delivered solutions, and to indicate the steps of the Evo plan. See Table 10.1 for a
simplified example after the first iteration.

Table 10.1. simplified Evo plan and results table the capitalization in Evo implies
these are terms defined in Planguage elsewhere

Target Requirements Iteration 1 (plan, actual) Iteration 2 Cumulative to date

Responsive Browsing 5%, 2%[a] 10%, __ 2%

System Reliability 10%, 5% 20%, __ 5%

Capital Costs 0%, 0% 5%, __ 0%

Development Costs 2%, 2% 2%, __ 2%

[a] the percentage of the final target

Regarding evolutionary delivery: A common Evo project management question is, "If I'm
making a new plane (for example), how can I deliver it for use by stakeholders in weekly
increments?" Although evolutionary delivery of software is often possible—such as bi-weekly
refinement to a Web site, or new updates which can be downloaded—this of course will not
apply to new products with long development lead times. In this case, Evo's approach is to
work on their development in the backroom. It could be months before something from the
backroom is available for delivery. Meanwhile, Evo still requires that something of
measurable value be delivered to stakeholders each frontroom iteration (e.g., every two
weeks). For example, early documentation samples, improvements to the existing system
or operational environment, and so forth.

backroom/frontroom

The last point underlines Evo's total systems approach: Do anything that helps. It is not
limited to new software or hardware constuction. Gilb believes there is an expensive and
risky tendency to avoid looking at the existing system (when there is one) for the desired
improvements—sometimes due to technologists' delight in new technologies—and thus he
promotes in Evo a preference for considering the existing system as the base for
improvement.

Specification Quality Control (SQC) Through Early Inspection

When specifications are created (iteratively), Evo recommends the use of classic systems
engineering process control through sampling and inspection. Evo promotes defect removal
in specs, done with agility, through its Defect Detection Process and Defect Prevention
Process.

Evo's SQC draws from IBM's research and practice [e.g., MJHS90], and Gilb's experience;
he is co-author of Software Inspection (which emphasizes specification inspection).

A key idea in SQC is that specifications are not informally inspected for any kind of fault;
rather, there is only a search for defects—meaning a violation of a written rule from a rule
set or checklist that the "checker" is working against. Here's a simplified defect rule set[4] :

[4] Adapted from [Gilb03].

 Clear— They must be unambiguously clear to the intended readers.
 Scale— Performance and cost requirements must specify a scale of measure to

define the concept.

Other key practices in SQC include:

 Two to five checkers for an inspection.
 Specification pages are sampled for inspection; the entire document is not checked.

If the sampled defect level is above a threshold, the specification is not released for
use.

 The checkers do not volunteer solution or correction advice to the author. They only
note issues. It is up to the author to determine solutions or take the initiative to ask
the checkers for suggestions.

Defect prevention in Evo is a process improvement activity that comes from collecting
inspection data, reflecting on the results, and experimenting with changes in source
workproduct creation.

Planguage

Planguage is Evo's compact specification language. Figure 10.4 shows common notation for
one partial specification.

Figure 10.4. Planguage

examples: See "Workproducts"

Workproducts

Full description of Evo's workproducts and how they can be expressed in Planguage is
beyond the scope of this introduction. Nevertheless, the following examples provide a
sample of Evo's flavor. More detailed examples are given than for the Scrum, XP, and UP
chapters, as Evo examples are less well-known and less widely available.

Planguage specifications are incrementally developed over the iterations, and only to the
extent that doing so adds value.

Function Requirement Specification

Individual functions are recorded in an Evo Function Specification, using Planguage. These
could be a high-level top-ten list of functions, or detailed and decomposed functions. The
following example illustrates standard parameters (e.g., "Gist") from the Evo Planguage
template. Some statements are purposefully undefined, both for brevity and to emphasize
the normal process of partial and evolving specifications in Evo. All capitalized tag elements
(e.g., Call Center) refer to other specifications previously defined, probably hyperlinked and
clickable. Observe that opinions or "facts" in a specification are sourced to a party; Evo
expects claims to have some substantiation, or at least explicit acknowledgment that they
are wild guesses.

Tag: FLF:

Type: Function Specification

Planguage

======= Basic Information =================

"version, status, owner, stakeholders are elided"

Gist: Find lowest fare for air travel.

Description: <input: dates, airports, carriers. output: flights sorted by cost>

============= Relationships ===============

Relationships: Evo supports requirements traceability in this section.

Supra-functions: Res.Search

Sub-functions: none

Is Impacted By: { Call Center, Web Front End }

Linked To: Supports: Res.Booking

============= Measurement ===============

Measurement: Goals in Evo should be testable and measurable.

Test: T1: <correctness test 1>

============= Priority and Risk Management ==

Rationale: <Our competitors have it> <- Marketing Director

Assumptions:

A1 [before end of next year]: Competitor X doesn't upgrade

A2: < ?? >

Dependencies: Res.DB

Risks: R2, R6

Priority: Must be in first public release <- Marketing Director

============= Specific Budgets =============

Financial Budget: < ?? >

Performance Requirement Specification

Individual performance requirements (quality, workload capacity, resource saving) are
recorded in the Planguage form shown in this example.

Tag: Responsive Browsing:

Type: Workload Capacity Requirement: Response:

Budget: < ?? >

============= Basic Information ========

"version, status, owner, stakeholders are elided"

Ambition: <Many> Res.Users with <acceptable> response time.

============= Measurement ===========

Measurement: Illustrating the quantifiable emphasis in Evo.

Scale: Average HTTP response time in seconds

Meter: Automated HTTP server monitor

============= Targets ===============

Goal

[First Release]: response under 3 seconds for up to 1,000 requests per second <-
Marketing,

[Second Release]: response under 2 seconds for up to 1,000 requests per second <-
Marketing

============= Constraints ===============

Fail [First Release]: response over 6 seconds <- Marketing

============= Benchmarks ===============

Past [Old System, last year]: response under 5 seconds for up to 1,000 requests per
second <- ABC Research Report

Record [CompetitorY, this year]: response under 1 second for up to 3,000 requests per
second <- ABC Research Report

============= Relationships ===============

Relationships: Illustrates the performance requirement relates to other
performance requirements (or perhaps, directly to functions).

Is Impacted By: Res.DB.Response <- DBA

Impacts: Usability

============= Priority and Risk Management ==

Value <this level will retain 95% of first-time users> <-Marketing "assumptions,
dependencies, etc."

Design Specification

Design ideas are expressed in the Planguage template form demonstrated in this next
example.

Tag: Server Cluster:

Type: Design Idea

============ Basic Information ==============

"version, status, owner, stakeholders are elided"

Gist: Cluster of 10 application servers with an IP sprayer.

Description: < ?? >

============= Design Relationships ===========

Design Constraints: { Use Moon Spark 5000s, Use Java Technologies, Use Open Source }

Sub-Designs: < replication, fail over >

============== Impacts Relationships ==========

Impacts: design ideas must be connected to functions and/or performance
requirements

Impacts [Functions]: { Res.Search, Res.Transaction, Res.Browse }

Impacts [Intended]: { [Good] Responsive Browsing, [Good] System Reliability, <more> }

Impacts [Cost]: { Operations Budget, [if not open source] Development Budget }

Impacts [Other Designs]: { Deployment Model, Data Model }

Value: < meeting responsiveness and reliability goals will maintain customer retention at
95% <- Marketing Director >

== Impact Estimation of Design on Selected Requirements ==

Impact Estimation: a design idea should contribute to performance objectives. Its
impact on each is analyzed.

Tag: Responsive Browsing

Type: Performance Requirement Cross Reference

Scale: Average HTTP response time in seconds

Scale Impact: under 3 seconds for up to 1,000 requests per second

Scale Uncertainty: ± 1 second <- Jill Jones

Note that claims are sourced, and uncertainty and credibility estimated.

Percentage Impact: [if Use Moon Spark 5000s] 100%[5]

[5] From some baseline (such as "Past") in the requirement.

Percentage Uncertainty: ± 33%

Evidence: CompetitorX has this configuration and response

Source: Jill Jones (Chief Architect)

Credibility: 0.5 as Jill worked for CompetitorX on similar project

Tag: System Reliability

"repeat analysis using the above set of parameters"

============== Priority and Risk Management ====

"assumptions, dependencies, risks, priority, issues are elided"

Impact Estimation Table

This tool is used in Evo to analyze the impact of alternative (or complementary) design
ideas on performance requirements. Barring "obvious" priorities for the next iteration as
indicated by stakeholders, this table is used to rationally choose the set of design ideas to
implement next, based on the best benefit-to-cost ratio. Note that the horizontal and

vertical summing of impact percentages do not always accurately predict a result; they may
or may not provide a sense of aggregate impact. For example, can one sum the Responsive
Browsing impact of both a server cluster and high-performance hardware? Perhaps…

Table 10.2. simplified impact estimation table

Design Ideas ->

Requirements

Server Cluster High-performance
hardware

Sum of
Impact[a]

Responsive Browsing Baseline: 5 sec. Goal: 3 sec.

Scale and %
impact[b]

3 ± 1 sec. 100% ± 50 4 ± 1 sec. 50% ± 50 150% ±
100

Evidence and
Credibility

CompetitorX has this
configuration and response

<- Jill Jones

0.2

Moon Microsystems has
customers achieving this <-

Moon Sys Eng.

0.1

System Reliability Baseline: 3000 hours MTBF. Goal: 3500

Scale and %
impact

3200 ± 200. 40% ± 40 3100 ± 200. 20% ± 40 60% ± 80

Evidence and
Credibility

CompetitorX has this config
and "suspected" reliability <-

Jill Jones

0.2

Moon Microsystems has
customers achieving this <-

Moon Sys Eng.

0.1

Sum of Impact[c] 140% 70%

Capital/Dev Cost Baseline: $0 USD. Budget: $200K

Amount and % $20K ± 10K. 10% ± 5 $100K ± 10K. 50% ± 5 60% ± 10

Evidence and
Credibility

Bob's friend guesses this cost
on another project <- Bob

Bones

0.1

Moon firm quote <- Moon
Sales Rep.

1.0

Benefit-to-Cost
Ratio[c]

14 (140% / 10%) 1.4 (70% / 50%)

Impact
Credibility Adjust

Cost Credibility
Adjust

0.84 (14 * 3 *.2)[d]

0.08 (0.84 * .1)

0.01 (1.4 * .1* .1)

0.01 (0.01 * 1.0)

[a] Sum of impacts on a requirement may or may not be cumulative.

[b] The % impacts are with respect to the baseline.

[c] The sum of impacts of one design idea may or may not be cumulative. The total may or
may not work as an estimate for comparison.

[d] Multiplying probabilities is a heuristic to reduce total to a reasonable magnitude.0.08
(0.84 * .1)

There is a lighter alternative (for prioritization) to these tables that Evo also offers: the use
of simple benefit-cost estimates: Each design idea is given a 0-9 ranking for both benefit
and cost. Ideally, this is in a group "delphi" ranking session. The best benefit-to-cost ratio
ideas are implemented next.

Other Practices and Values

Evo has many detailed practices, tips, and guidelines. A sample of points:

 Open-ended architecture— To support evolving or changing designs, and
evolutionary delivery, Evo encourages open-ended architectures that encourage
easier extension. That is, at predictable variation points, some kind of protection is
introduced, such as an interface, data-driven declarations, and so forth.

 Safety factor— The estimated impact of a design should deliver an estimated
impact with a defined safety factor, default factor 2 (200% over the target level from
the baseline).

 Client-driven planning— If you are uncertain which step to do next, ask your
dominant stakeholder.

 Whatever adds value— Rather than a "we are building it" paradigm, focus on
"what can I do for my stakeholders next week?" The techniques (such as Planguage
and Impact Estimation) are only support to keep this focus, and should not get in the
way.

Values

Evo's key values include:

 Learn rapidly by realistic measurement.
 Deliver real value to stakeholders early, frequently, at every step.
 Be humble about complex systems: simplify and attack problems one small step at a

time
 Delegate power to the ultimate user, by focusing on end results and not methods

and well-intended bureaucracy.
 Admire, applaud and reward a team based on the flow of measurable results:

stakeholder value versus costs.

Common Mistakes and Misunderstandings

or, How to Fail with Evo

Error: Adoption mistakes— Lack of management support. Lack of training in concepts
and methods. Lack of clear quantified management objectives as the basis for evolving
towards Evo methods. Lack of clarity about the management objectives of using the method
— and how to measure these improvements in practice. Lack of a good successful pilot
project to prove it works in your environment. Lack of dramatic motivation to change from
older methods.

Error: Lack of focus on results— Self-explanatory.

Error: Giving up or not believing short iterations are possible— Giving up too easily
when managers or engineers claim they cannot find small early steps (they need training,
motivation and help). Giving up too early and falling back on old habits.

Error: Lack of management encouragement— When a team starts delivering something
of value every short iteration, that's often a revolutionary event. Management needs to
praise and encourage this result, rather than take it for granted.

Error: Failing to use value/cost priority— Not choosing solutions based on highest
value-to-cost.

Error: Customers not involved— Evo is customer and results-driven; they need to
participate in providing feedback on the results of evolutionary deliveries, and in steering
the next iteration.

Error: No measurements— It is a mistake to avoid regular measurement of the impact of
delivered solutions. Frequent numeric measurement is a significant shift for many
managers, but central to Evo.

Error: Iterations too long— Evo frontroom iterations should be 2–5% of total project
time, with a lower bound of one or two weeks.

Error: Each iteration does not end in a delivery— Evo is about evolutionary delivery on
a "weekly" basis to real stakeholders for useful results, even when backroom development
may take months.

Error: Predictive planning— It is a misunderstanding to create, at the start of the
project, a believable plan laying out exactly how many iterations there will be for a long
project, their lengths, and what will occur in each. This is contrasted with Evo or adaptive
planning. The Evo team and customer plans the next iteration, and then planning adapts
iteration by iteration, based on measurement and feedback.

Sample Projects

Gilb's view is that any project applying IID and evolutionary delivery is an example of Evo.
This of course covers thousands of projects. For an early example, the mid-1970s LAMPS
project described on p. 83 is considered an Evo project in Gilb's classification.

Process Mixtures

None of the other IID methods covered emphasize weekly evolutionary delivery, and related
Evo project management measurement.

Evo + Scrum

Most Scrum practices are compatible with Evo. The Scrum meeting, common project room,
and demos to external stakeholders at the end of each iteration enhance Evo's feedback
goals. The Scrum backlog and progress tracking approaches are also applicable additions.
Scrum does not discuss specific specification methods, and thus Evo's Planguage is still
applicable.

Evo's measurement emphasis is compatible; indeed, Jeff Sutherland, one of the Scrum
creators, takes a strong interest in measurement when applying Scrum.

Scrum's unchanging 30-day iteration length is not consistent with Evo—Evo iterations are
usually shorter.

Evo + UP

The UP is especially for software development, and usually for projects involving multiple
iterations before production delivery. Consequently, the UP could be applied to Evo

backroom development work. However, Evo's evolutionary delivery and project
management styles are not exactly in the same spirit as the UP, although both share an
interest in early identification and mitigation of risks.

The UP has its own set of workproducts and approach to requirements capture: the Use-
Case model (and thus, use cases), and Supplementary Specification for description of
functions, features, and non-functional requirements. Evo Planguage elements, such as the
Performance Requirement Specification, may be used within the UP Supplementary
Specification.

Evo's measurement emphasis is compatible or acceptable with the UP.

The upper bound of UP's 2–6 week iteration length is not consistent with Evo—too long.

Evo + XP

XP values and spirit regarding specifications are not exactly compatible with Evo. XP's value
of avoiding written or precise requirements, and preferring oral communication between
developers and requirement donors is different than Evo's emphasis that when a
specification is required, it be written with clarity and measurable qualities. However, Evo
allows a scaling down of precision on small projects; the important Evo point is value to the
client, and precision is an optional means to that end.

On the other hand, many XP development practices may be consistently applied with Evo,
such as test-driven development, pair programming, and so forth.

XP's emphasis on early results and customer-driven adaptive planning is also consistent
with Evo. The XP practice of stand-up meeting, common project room, and whole team
together supports Evo's feedback goals.

XP's 1–3 week iteration length is consistent with Evo.

Adoption Strategies

As always, coaching by an experienced method expert on the first project is recommended.
Evo is results oriented, so not much is sacred in its adoption—other than frequent
evolutionary delivery and project management.

Clear, precise, and measurable (though evolutionary) requirements are not that common or
enthusiastically developed. One approach to motivate their adoption is to focus early on
evolutionary delivery, which of course demands understanding the design ideas,
requirements, alternatives, and priorities. Thus, after a few iterations, the participants
themselves will better appreciate the value in adopting something like Planguage and
greater requirements precision, in order to guide choosing their next step and evaluating
the results of the prior one.

Gilb recommends the use of pilot projects to demonstrate the value and viability of Evo.

Fact versus Fantasy

Impact estimation tables are not consistently used by Evo adopters. This may be due to
their requiring more analysis and complexity than the priority problem often warrants. As
mentioned, a less detailed 0–9 scale for benefit and costs ratios is an Evo alternative.

One-week evolutionary delivery iterations are difficult to sustain; two weeks is easier.

Gilb reports that a significant number of Evo adopters find quantification of their most
critical objectives difficult without some coaching.

Evo's PDSA emphasis requires not only estimation and planning, but measuring. Yet, this
last step is often dropped under the pressure of work, which of course makes Evo planning
less useful.

Strengths versus "Other"

Strengths

 Early, visible results; frequent delivery to stakeholders.
 Measuring the impact of solutions and guiding improvement by measurement data,

rather than only by informal guess.
 Customer participation and steering.
 Worker engagement and satisfaction from seeing their solutions quickly

implemented.
 Planguage is a simple and compact approach to requirements specification.
 Evolutionary and incremental requirements and development, and adaptive behavior.
 Emphasizes quality through proven inspection methods and through continual

process improvement based on measurement and data.
 Practices from other methods (e.g., Scrum or XP) easily included.

Other[6]

[6] Could be viewed as a weakness, strength, or deliberate desirable exclusion depending on
point of view.

 Management and requirements overhead of estimating impacts and measuring
results.

 As with Scrum, minimal guidance within software-specific disciplines, as Evo is a
general project management and systems engineering method.

History

Gilb started some Evo practices in the early 1960s, while consulting (and living) primarily in
Europe. In 1976, he wrote about iterative development, evolutionary delivery, and
evolutionary project management in his book, Software Metrics. This was rather unique in a
period dominated by waterfall lifecycle promotion. In the late 1970s, he authored a series of
column articles in Computer Weekly UK that reiterated and further explored these practices;
these articles are arguably the earliest popular press on the subject of IID and adaptive,
evolutionary development.

In April 1981, Gilb published "Evolutionary Development" in ACM Software Engineering
Notes, and in July 1985 published "Evolutionary Delivery versus the 'Waterfall Model'" ACM
Sigsoft Software Requirements Engineering Notes. These are some of the earliest ACM or
IEEE publications related to the subject of IID and adaptive, evolutionary development.

In the 1980s he was also exposed to the work of Deming, and realized that Deming's values
and Shewhart's PDSA model captured the intent of Evo.

As mentioned in the introduction, in 1988 Gilb published Principles of Software Engineering
Management, a milestone early book describing an adaptive, iterative, and evolutionary
process, well ahead of its time.

Since then, his early work and Evo have influenced many other methods: XP, Scrum, and
the UP all owe debts to Gilb's work. The popular book Rapid Development [McConnell96]—

which examines many key best practices in software development—cites Gilb's work in 14
sections.

What's Next?

The next chapter examines some method practices in more detail, and introduces other
common tips. The final chapter is a FAQ.

Recommended Readings

 Gilb's 1988 Principles of Software Engineering Management is an important step in
studying Evo. His 2003 Competitive Engineering presents updated refinements, and
the details of Planguage; it is the current basis for studying Evo.

 Software Projects: Evolutionary versus Big-bang Delivery, Felix Redmill, John Wiley &
Sons, 1997. Redmill learned Evo from Gilb in the 1980s and managed projects with
it. This book describes his experience and lessons learned.

 Free online articles and draft books by Gilb—on Evo subjects—are available at his
Web site: www.gilb.com.

 Useful elaboration and refinements for Evo are also available for download from Niels
Malotaux at www.malotaux.nl.

Supporting or related texts that are recommended include:

 Software Inspection, by Tom Gilb and Dorothy Graham.
 Out of the Crisis, by W. Edwards Deming.
 The Deming Management Method, by W. Edwards Deming and Mary Walton.
 Quality Is Free: The Art of Making Quality Certain, by Philip Crosby.

Chapter 11. Practice Tips

Prediction is very difficult, especially if it's about the future.

—Niels Bohr

OVERVIEW

 Tips for agile or iterative projects, organized into categories such as Project
Management and Requirements.

- For example, Project Management: Multisite iterative development.
Environment: Continuous integration. Test: Test-driven development.

What practices are applied when working on iterative and agile projects? Many answers are
found in the method-specific chapters. This chapter offers other miscellaneous "tips of the
trade" and adds detail to some mentioned elsewhere. Regarding the scope and detail: This
chapter (and book) is an introduction.

Naturally, many questions arise when first adopting an iterative method, such as:

 How does one plan the iterations?
 How does continuous integration work?
 What does test-driven development look like?

The answers are organized in common discipline categories: project management,
environment, requirements, and test.

Project Management

This section summarizes some tips related to iteration timing, planning, tasks, tracking, and
other project management practices to support iterative or agile development.

There is a trend in some of these tips: The manager is not alone in doing the work of
planning, scheduling, estimating, tracking, and so forth. In agile development, it is more of
a team sport.

Multiteam or Multisite Early Development

For projects that will be composed of multiple teams, perhaps spread across different
locations, consider doing the early iterations at one location, in one common project room,
with a small group ideally composed of one or two skilled representatives from each of the
subteams. During these iterations, there is an emphasis on requirements analysis and
development to discover and build the core architecture of the system—the foundation.
Major components, and their collaborations and interfaces are ideally clarified through early
programming and testing rather than just speculative design. If UP is your method, this
covers the inception and elaboration phase.

In this way, the early project benefits from the close communication, collaboration, common
vision, and technical strength of the initial group.

Once the core is built, the representatives return to their respective locations, form larger
teams, and the remaining work is done in parallel with multiple subteams. Each
representative has developed a clearer picture of the vision and architecture, and can better
convey and maintain that for the remainder of the project. Further, each acts as a liaison to
the other teams. Also, after having spent some close time with the other subteam leaders,
there is improved communication between the subteams. Figure 11.1 illustrates.

Figure 11.1. multiteam development

Difficult Multiteam or Multisite Iteration Planning

It is a worthy goal to have all components, across all subteams or sites, integrated and
tested together to conclude the release of a common iteration. However, there are times
when relaxing this goal is helpful. For example, consider the example of a multisite (five
sites) research-oriented project spread across 16 time zones, working on a 3G telephony
system that included creation of everything from the 3G handset to the protocol stack
[Crocker02].

In this case, due to barriers in time, communication, and the difficult-to-predict research-
oriented development, it was seemingly impossible to get all teams to coordinate and
complete all work by a common iteration end date. For example, one team working on one
layer of the system might need much longer than expected, or than the other teams, to
complete the supporting goals of the iteration.

The successful solution was to establish the rule that at least two of the five teams had to
define a common, relatively short iteration with integration between the two (or more)
teams, and that no team could go "too long" without participating in a joint iteration. All the
subteam project managers and technical leaders would adaptively plan the next iteration. In
this way, the product elements were integrated in a series of disjoint iterations. Figure 11.2
illustrates.

Figure 11.2. sub-team iterations

This approach should be the exception rather than the rule. Although helpful for this
multisite research-oriented project, the preferred guideline is that all teams work together
towards a common goal and integrate on a common iteration end date.

Overlapping or "Pipelining" Activities Across Iterations

Some projects benefit from "pipelining" or overlapping certain activities across iterations,
usually requirements analysis and testing [Larman97, JPKP03]. Figure 11.3 illustrates. For
example, during iteration N, one or more people are doing requirements analysis for future
development in iteration N+1, and a test team is evaluating the release of iteration N–1. In
the latter case, defects discovered by the test team are handled in the current iteration if
there is planned slack in the iteration schedule for this (and the defect is small), or deferred
for a future iteration.

Figure 11.3. pipelining iteration work

Note that if there is a test team evaluating a prior release (probably for difficult or long-
running tests), there should still be plenty of testing for the current release. The release
should be as stable and fully tested as possible.

There may be efficiencies with pipelining, but not all projects can or should apply this
approach. Furthermore, although the example shows pipelining of both requirements and
test, it may of course be applied with only one activity. It is more appropriate for larger
projects, those with offsite requirements donors, or those with long, complex testing that
must be performed by a separate team. Examples of complex testing includes labor-
intensive manual or semi-manual GUI testing, and memory-leak stress testing where the
system needs to run for many hours or days to discover subtle leaks.

Pipelining has a seductive aura of efficiency when you look at a chart such as Figure 11.3,
but as the agile methods stress, projects and people are not machines or computer
processors.[1] There are soft issues that carry potential pitfalls [Kruchten00a].

[1] The term itself was inspired by processor architectures.

One pitfall is the slippery slope of overlap and focus. It may succeed for requirements and
test, but can be part of a trend to a more general lack of current-iteration focus in other
disciplines, such as programming. Working on past or future iteration "stuff" is not in the
spirit of "let's work together on the next short step."

Another, related pitfall is a reduction in synergy, cross-discipline insight, "whole team
together," "generalists over specialists," "customer close to developers," feedback, and
adaptation—all qualities promoted by the agile methods. Pipelining can re-introduce some of
the deficiencies of a sequential waterfall model. It requires separation of people by
discipline. For example, the developer may no longer be involved in requirements analysis
(such as at a requirements workshop), yet research shows this is desirable [KC94]. In a
degenerate case, if design work was also pipelined, the programmer would not be the
designer. This latter situation is especially inconsistent with agile and adaptive development,
where the design emerges from an interplay of some up-front speculation or design
thought, combined with programming and testing to prove, disprove, and adapt the
evolving system. The programmer and designer must be one and the same, or where
design specialization is required—such as in database or UI design—the programmer and
designer need to collaborate within the current iteration on common goals. In general,
pipelining can reduce interaction and feedback between the disciplines and people; that's
undesirable.

In conclusion, it's a double-edged sword.

Rolling Wave Adaptive versus Predictive Planning

One of the big ideas of agile and iterative development is to adapt based on feedback, and
this is not only with respect to requirements and design, but also the plan or schedule.

This is the topic of adaptive planning versus predictive planning [Fowler01]. Adaptive
planning in IID methods is a refinement of the well-known rolling wave planning
concept—more on this later. It implies that there isn't a detailed plan of all the future
iterations. There is no fixed plan of how many iterations there will be, how long they are, or
what will happen in each. In contrast, predictive planning implies there would be such an
iteration-by-iteration plan to the project end.

This does not mean there are no large-grained milestones with dates, or no thinking ahead.
In adaptive planning, there are milestones with dates, (or at least, there can be) but the
path of iterations to those milestones is left flexible or adaptive. And, the milestones
themselves may change if in the best interest of the project.

Rolling wave or adaptive planning is a key idea in agile methods. Comments on why this is a
good idea—in fact, a better approach than a detailed speculative schedule—will come later,
but first an example to help clarify the ideas:

Imagine that after two short exploratory iterations (that include programming and test) into
a project, there is enough requirements clarification to be able to say with some certainty
that the overall high-level requirements (e.g., use cases and features) are R1, R2, …, R20.
Plus, there are rough effort estimates for each, and some understanding of their
dependencies. Perhaps R2 must be done before R7, and so forth.

At this point, the customers indicate that they would like to see R1 through R10 by roughly
mid-project, and the remainder by the end. The customers ask for an estimate of when R1–
R10 can be finished. The customers may be asking for this milestone because of a demo
they want to schedule for investors, a trade show, to synchronize with other product
development, or simply because they are used to the idea of milestones.

The team does the best it can in estimating R1–R10, and believes it can finish in three
months, on July 1, given an estimate of average developer availability. Likewise for R11 to
R20, with a completion of September 1. Thus, two milestones have been established, and
the team makes a commitment to meet these goals, with an understanding that change is
possible later, in light of new insights or priorities. Figure 11.4 illustrates.

Figure 11.4. milestones estimated

Note that these milestones are more coarse grained than iterations; there may be many
iterations up to the first milestone.

Predictive planning would go further than this, it would speculate a week-by-week or
iteration-by-iteration schedule of the path to these milestones. For example, that there will
be three iterations before milestone-1, each four weeks long, that R1 and R2 will be done in
iteration-1, R3–R5 in iteration-2, and so forth. See Figure 11.5.

Figure 11.5. predictive plan

Rather, in adaptive planning—and this is the key point—we primarily plan in detail for just
the next iteration. This is not an absolute rule. We may see some obvious dependent work
to do in the follow-up iteration, or we may know that Jill the database expert will only be
available in June, or that the new servers we ordered will arrive July 15. Such presence or
absence of resources places obvious constraints on when we schedule certain tasks or
requirements. But, all other things being equal, we primarily focus on deciding what to do in
the next iteration, and defer making decisions about future iterations, unless obvious or
necessary. See Figure 11.6.

Figure 11.6. adaptive plan

In agile and adaptive planning, the precision is commensurate with the information; the
level of detail and commitment to fine-grained scheduling drop as we look further into the
future.

Avoiding far-future predictive planning and preferring short-term adaptive planning is not a
new or radical idea. It is also called rolling wave planning [Githens98], a well-known
practice promoted in the PMBOK (Project Management Body of Knowledge) [PMI00], many

management courses and texts, and government organizations. That said, there is often a
gap between published management recommendations and actual practice or attitudes.

Government oversight agency: Oh yes, we promote rolling wave planning, as indicated in
Standard-773-1. When will the weekly schedule and PERT chart for our new project be
finished?

Regardless, the essence of rolling wave planning is to plan in detail only up to some realistic
planning horizon, beyond which things are too speculative. In agile methods, that horizon is
the next iteration.

What plan do external stakeholders see? If they want or need to establish milestones, they
see a coarse-grained milestone-oriented schedule. A path of iterations to those milestones
is not shown.

Finally, to re-emphasize points made before (since this is a common misunderstanding),
adaptive planning does allow for coarse-grained milestones with dates, and can allow for
some distant iteration plans when there are obvious resource constraints.

Benefits of Rolling Wave Adaptive Planning

Why is this useful? Adaptive planning is closer to optimal in terms of working towards
milestones; each step can be the most skillful we know how to plan regarding risk,
productivity, and effectiveness because each planning step is taken with maximum—and
fresh—information. We take a step, and then ask, "Given what we now know, what is the
most skillful thing we should do in the next step to work towards our milestone goal?" And
repeat.

In contrast, a predictive plan is suboptimal. In fact, it could be close to the worst or most
risky possible path to the milestone goal because it is created with the least amount of
information, speculating into the far future. The schedule in Figure 11.5 could be a very
poor path to the goals; we can't know. It is not wise or useful to believe that five iterations
in the future, 17 weeks from today, the best thing we should do is implement requirement
R15.

Not only is predictive planning suboptimal with respect to effectiveness and risk, it doesn't
account for opportunities. If half-way into the project the marketing manager discovers our
competitor is adding the sexy Gromlit feature, a predictive plan does not account for this.
Yet, an adaptive plan does; the team can start adding Gromlits the very next iteration.
Adaptive plans embrace change and opportunity; predictive plans fight or ignore it.

In addition to supporting adaptation, another key, basic reason for not creating an early
detailed schedule is that in evolutionary methods not all the requirement and design details
are known near the start of the project. Two weeks after project initiation, you can't plan for
use case X in iteration-7 when you don't even know about use case X.

Conclusion

Although rolling wave or adaptive planning has been promoted for years in leading
management circles, there are still some inconsistent software project management texts
and courses that teach it is ideal to create a detailed predictive schedule or PERT chart of
week-by-week activities through to the end of a software project. And, that failing to follow
it is a sign of lack of skill on the part of a manager. Ironically, deviating from a speculative
plan in response to risks or opportunities is a sensible response, not a failure.

As with the waterfall model, the heart of the problem with predictive planning is that it is
misapplied to software projects. It works for mobile phone manufacturing; software is a
domain of new product development, not predictable manufacturing.

Planning: Consider Ending on "Wednesday"

If wrapping up an iteration is nontrivial (for example, on larger projects with several
subteams), consider making the last Wednesday (or Thursday) rather than Friday the goal
date for baselining the release. Although the goal is definitely Wednesday, allow Thursday
and Friday as slack days for unanticipated problems.

Thursday and Friday also provide time for group planning of the next iteration, perhaps
another requirements workshop, a group iteration assessment or review, a demo to
stakeholders, and so forth.

Further, if there is a separate test team that receives the end-of-iteration release (pipeline
testing the release of iteration N-1 during iteration N), make Thursday the day when that
team expects to start [Blaustein03], again allowing two slack days. This approach decreases
the likelihood of working over the weekend to meet a Monday start-of-iteration hard
deadline, when everyone is expected to move forward on a new iteration rather than still be
working to wrap up the release to hand over to the test team.

Planning: Whole Team Planning Meetings

Agile methods emphasize collaborative planning. An initial release planning meeting and
each iteration planning meeting are ideally held with all developers and customers present.
If the project is large and composed of subteams, at least include representatives from each
subteam.

Planning: Workers Estimate

The agile methods promote the value that the workers doing the work must estimate the
work. At the planning meetings, involve the developers in estimation of large-grained
requirements that will be allocated to iterations, and also estimation of the related finer-
grained tasks. In XP, for example, it is required that the worker who volunteers for a task
must be the one who estimates it.

Planning: Improving Estimates with Wideband Delphi

Estimation is a large topic mostly beyond the scope of this introduction. However, in
addition to the agile methods practice of workers estimating their tasks, it is worth
considering the technique of Wideband Delphi for large or valuable projects [Wiegers00].
This is an iterative, adaptive method (hence its inclusion in this chapter) complementary to
other estimation methods.[2] The practice is common in successful outsourcing companies
whose estimates have low variance to final actuals.

[2] First developed as the Delphi method at RAND Corp in 1948, and refined as Wideband
Delphi by Barry Boehm in the early 1970s.

A key point is that Wideband Delphi is used to complement an existing estimation method,
not replace it. Here are the steps:

1. Kickoff Meeting: Get at least three people (or three pairs) together to estimate. Discuss
the source documents and project for which an estimate is to be made. Discuss the
units of estimation. End the meeting.

2. Estimation: Then, each person (or pair) creates estimates. This could take minutes or
days, depending on the scope. Any specific estimation technique can be used:
COCOMO, micro-estimation, etc.

- Each person/pair creates three estimates, sometimes called the PERT
estimates: 1) most likely, 2) optimistic, 3) pessimistic.

3. Meeting: Each estimator gives their estimates to a facilitator, who displays them (see
Figure 11.7), with averages. In the purest form of this method, the owners of the
estimates are not revealed to the whole group, to reduce the influence of personality or
seniority. Finally, each estimator discusses their insights, problems, and assumptions.

Figure 11.7. Wideband Delphi sample data

4. Repeat steps 2 and 3 at least once.

- Note that this is iterative estimation refinement. The point of this step is to
provide the feedback to drive adaptation and improvement in the next iteration
of estimation.

5. Calculate the final numbers with the following PERT formula, using the averages from
the final cycle.

Note that Wideband Delphi sits on top of any other estimation method, improving it through
multiple participants, feedback, and iterative refinement.

Planning: Multiple Iteration Planning Meetings

As discussed, agile methods apply adaptive planning; thus, at each iteration (usually near
its end), there is an iteration planning meeting for the subsequent iteration, during which it
is decided what to do in the next, followed by detailed task generation.

Planning: Agile Task Generation

During each iteration planning meeting, the team generates finer-grained tasks (for
example, in the half-day to two-day range) for the iteration requests. XP promotes the
approach of either having the team work together to write these on a whiteboard, or each
team member brainstorms tasks and writes them on cards, that are grouped and stuck on a
wall. In other words, an "agile" approach to a work breakdown structure is performed.

Re-use is worthwhile here; many tasks repeat across iterations and projects. If the final
task list is only handwritten on a wall, consider taking a photo of each version, and share
these for inspiration at future planning meetings.

Planning: Don't Forget to Budget for Iteration Overhead Tasks

More frequent risk management, iteration demos, iteration planning meetings, a group
iteration assessment, a daily Scrum meeting, some average rate of unexpected defects,
infrastructure failures, and so on, all consume time, and need to be reflected in the iteration
task list. Managers new to iterative development sometimes miss accounting for these
overhead tasks.

Planning: People Estimate Their Time Budget Each Iteration

Timeboxing requires a realistic approach to time management. People have to avoid
overcommitting, as there is not much slack. So, it is helpful to calculate personal time
budgets—also an XP practice. During each iteration planning, people estimate their total
"ideal work hours" or uninterrupted attentive time for project tasks for the iteration. This
analysis may take five or ten minutes. A common average is around five hours per day—if it
is much higher, be skeptical.

Planning: Volunteering

A simple practice related to commitment, motivation, and job satisfaction is to promote
volunteering for tasks rather than task assignment by a manager. This approach is part of
XP and Scrum.

During the iteration planning meeting, after task generation, people volunteer for enough
tasks to get busy. As the days pass and they finish tasks, they volunteer for more. Hold
each daily Scrum by the "task list" wall, and the team has the basic information necessary
to volunteer.

What if no one volunteers for a particular task? Rather than answer the question
prescriptively, it is instructive to learn the agile project management attitude in a method
such as Scrum. In Scrum one would respond to this problem by saying, "It isn't the project
manager's responsibility to solve this, although she can offer advice or resources in
response to a request. We work by self-directed teams, not manager guided. It is the
team's collective problem to solve it." This level of self-direction and decentralization of
responsibility is a significant value change for some managers or organizations.

Visible Project Plans

Where possible, prefer to show all iteration tasks on a wall or whiteboard. If a daily Scrum
meeting is practiced, hold the meeting by this wall. During the meeting, when tasks are
reported complete or added, they can be crossed out or written in; likewise with the project
blocks or impediments.

Iteration Goals: Risk, Coverage, Criticality, Skills Development

What should be done in the earliest iterations? Rank requests and iterations by risk,
coverage, and criticality.

Risk includes both technical complexity and other factors such as uncertainty of effort, poor
specification, political problems, the need for a novel UI look and feel, or usability.

Coverage implies that all major parts of the system are at least touched on in early
iterations—perhaps a "wide and shallow" implementation across many components. The

goal is to discover and stabilize the major software and hardware components, their
interfaces, and collaborations. That's an important part of the overall architecture. For
example, early use case scenarios may be chosen that require execution (and thus
development) across many of the components (e.g., from UI to database). These are called
architecturally significant use cases.

Criticality refers to functions of high business value; these need at least partial
implementations in the earlier iterations, even if not technically risky. This driver may be
considered a kind of political or business risk: if the paying customer does not see early
evidence of things they care about, their confidence or sense of collaboration with the
project team drops. Early inclusion of marketplace-relevant features also makes it easier to
demo the product and garner attention.

On some projects, another early driver is skills development—one goal is to help the team
master new skills such as adopting an agile method or object technologies. On such
projects, skills development is a heavily weighted factor that tends to re-organize the
iterations into less risky or simpler requirements in early iterations, motivated by learning
rather than risk reduction goals.

Iteration Goals: What to Rank?

Use case scenarios, features, defects, and nonfunctional requirements (e.g.,
internationalization) can all be ranked with the above criteria of risk, coverage, and so on.

Use cases are often composed of many scenarios. For example, the "Process Sale" use case
has one scenario involving paying by credit, and another for paying by cash. Some of these
use cases are too complex to implement all scenarios within one reasonably short iteration;
thus, they need to be decomposed by scenario for both ranking and scheduling.

Therefore, include all types in a ranking list.

Request Type …

Process Sale–pay by credit scenario

logging feature

Handle Returns use case

log-in window not closing defect

… …

Iteration Goals: How to Rank? Dot Voting

Based on the drivers, requests are ranked. The ranking may be informal and qualitative,
generated in a group meeting by members mindful of these drivers. This approach is in the
spirit of agile modeling.

Consider using the rapid scoring method of dot voting. List the requests on a whiteboard,
or display them from a computer projector on a whiteboard. Everyone gets a whiteboard
marker pen with which they can make 20 dots (for example). As a group, and in silence (to
reduce influence), all approach the board and apply dots beside the items, reflecting the
voter's priorities. A voter can assign many dots to one item, or distribute them. On
completion, sort and discuss.

That may be sufficient. A slight refinement is to do a second round of silent dot voting to
reflect updated insight based on first round voting and discussion. This second round
provides the feedback and adaptation by which decisions improve.

The requirements ranking will be done before iteration 1, but then again before iteration 2,
and so forth. In this way, the scheduling of iterations adapts to current information and
opinion.

Iteration Goals: How to Rank? Quantitative Methods

Group discussion and something like dot voting for request ranking are often sufficient—a
collaborative, fast, and fuzzy approach very much in the agile spirit. For the more
quantitatively minded, variations on the following have been used. The example values and
weights are only suggestive; the point is that numeric values, weights, and weighted sums
can be used to reason about priorities.

Request Type AS Risk Criticality W. Sum

Process Sale-pay by credit scenario 3 2 3 15

Logging feature 2 0 1 5

Handle Returns use case 1 0 0 2

.

Weight Range

AS: achitecturally significant 2 0-3

Risk: risk, complexity, novelty 3 0-3

Criticality: early high biz value 1 0-3

The exact values should not be taken too seriously, and note that the numbers don't tell the
whole story. Even though logging is a low-risk, simple feature, it is architecturally significant
because it needs to be integrated throughout the code from the start. It would be awkward
and would diminish architectural integrity to add it as an afterthought.

Iteration Goals: Related Iteration Length?

Viewing an iteration like any project, the choices boil down to fixing time and filling it with
work, or fixing work and filling it with time. The specific approach varies in some IID
methods (such as the XP Planning Game), but general outlines follow.

Iteration Length Chosen First

First, comments on factors that affect iteration length:

 Most IID methods recommend in the 1–6 week length. Scrum is specific: 30-
calendar-day iterations.

 Smaller teams (such as 10 people) tend towards 1–3 weeks; large projects with sub-
teams (such as 200 people) need more time (4–6 weeks) because of the overhead.

 Early iterations with high rates of discovery and change need more time. Later stable
iterations can be shorter.

The steps:

1. Decide the length of the next timeboxed iteration.

2. Estimate total developer "ideal work hour" (focused effort on tasks) availability for the
iteration, taking into account the usual overheads and lost days.

3. Choose a high-priority request (feature, use case, defect, and so on). If there is no
effort estimate, or if it needs review, a new estimate is created.

4. Repeat step 3 until all available resources for the iteration are consumed.

Requests Chosen First

1. Estimate a per-day average total developer "ideal work hour" (focused effort on
tasks) availability, taking into account the usual overheads and lost days. For
example, four hours per day per developer, or 100 hours per day if there are 25
developers.

2. Choose a candidate set of requests for the iteration. If there are no effort estimates,
or they need review, new estimates are created.

3. Estimate elapsed days: total effort divided by daily availability. Round up to the
nearest (five-day) week. For example, 800 hours divided by 100 hours per day leads
to a two-week iteration.

4. If the length exceeds desired limits (e.g., three weeks for a small team, six weeks
for a massive team), shrink the goals.

Either approach is best done in a collaborative planning effort with all team members, or
subteam representatives for large projects.

Iteration Goals: Before the First Development Iteration

I've seen a project team start into iteration one, and quickly falter because the team is
impeded waiting for the technical environment to get properly established and debugged:
The source control management system, the continuous integration build machine, the
application server, project Wiki, and so forth. Strive to have this in place beforehand; it
always takes longer than expected.

Iteration Goals: The First Development Iteration

Or, what not to do. Iteration one proceeds slower than expected. So, use generous
estimates, and choose small goals among the set of high-ranking requests. Then it is more
likely that the team will successfully complete on time with less struggle, building
confidence.

If the project also includes skill transfer goals (learning about object technologies, or a new
agile method), do not dump a big bucket of new ideas and practices into iteration one. Add
them incrementally over two or three iterations. For example, if the team has not used
version control before, perhaps leave it and the related continuous integration practice for
iteration two, and just emphasize test-first development and daily Scrum meetings in
iteration one.

Iteration Goals: Use Cases and Scenarios

If use cases are being employed, it is desirable to fully complete a use case (or many use
cases) within one iteration. Planning and scheduling are straightforward, and the growing
system has functional cohesion.

This is not always practical. As mentioned in some other tips, use cases are composed of
many scenarios (related to "extensions" in Cockburn's popular use case terminology). For
example, the Process Sale use case has a scenario involving paying by credit, and another
for paying by cash. Some use cases are too complex to implement all scenarios within one
reasonably short iteration. Perhaps it would take three months to complete all scenarios of
Process Sale—undesirably long for an iteration. Thus, they need to be decomposed by
scenario for ranking, scheduling, and tracking. In this case, an iteration should complete the
scenarios that it starts; a scenario should not be split across iterations (Figure 11.8).

Figure 11.8. scenarios across iterations

Iteration Goals: Primary and Secondary Requests

By frequently tracking remaining effort estimates, it may eventually appear that not all
requests will be completed within the iteration. In timeboxed methods the response is to
remove or simplify requests, rather than extend the iteration. What to remove? On projects
with a strong customer-driven emphasis (such as XP projects), consider this approach:
During the iteration planning meeting with customers, after the requests have been chosen,
classify some as secondary that may be deferred. Not only does this support the agile spirit
of customer-driven work, it also aids expectation management.

Iteration Goals: Don't Add Requests to an Iteration

An important rule in timeboxed methods is to not allow the addition of new requests once
the iteration is underway. The product manager can't come over and ask to squeeze in the
sexy Gromlit feature. Gromlits have to wait for the next iteration. Given that an average
iteration is two or three weeks, this should not be a hardship. This rule creates an island of
sanity and control in a sea of change and chaos.[3] Newly discovered tasks related to
existing requests can be added by the team members, but not new requests.

[3] Ken Schwaber, a Scrum founder, named his Web site www.controlchaos.com to
emphasize this point.

Tracking Iteration Progress

Some methods, such as XP and Scrum, have specific tracking practices discussed in their
respective chapters. Some general iterative and agile-oriented principles and practices
include:

 Frequent—often daily—task tracking for each worker is important with timeboxed
methods; there isn't much slack in a short iteration.

 For smaller projects, a visible wall list of tasks is good. Hold the daily Scrum beside
it. Cross out tasks when done. As the Xs grow, people see and feel progress.

 Some projects apply the XP practice of writing task cards that are physically held by
the volunteer, or handed off to someone else. When complete, they are handed in to
the tracker. Many people report that the physical cards have a positive psychological
effect in making the work tangible.

 Asking people on a daily basis to self-record their remaining estimated task effort is
rarely sustained or accurate. The XP practice of a daily tracker is a more sustainable
alternative. Someone (other than the manager) visits each person each day (or
every few days) and asks and records the remaining estimates on incomplete tasks.

 Many find a Scrum Sprint Backlog a simple, useful iteration tracking tool. If a daily
tracker is asking about progress, they will be the primary person updating this
backlog.

Tracking Iteration Progress—What to Track?

Since timeboxing creates a fixed soon-coming deadline, the critical progress data are the
remaining estimated effort on unfinished tasks. This is the focus of a Scrum Sprint Backlog.

If a project also collects actual hours spent on tasks for each worker, consider using a daily
tracker to collect this. One immediately relevant use for this data is to share it with the
team members during subsequent iteration planning meetings so they can compare their
original task estimates with final actuals. This feedback helps people become more accurate
estimators—a valuable skill.

Test-driven development is an increasingly popular and valued practice in IID methods,
not only in XP. To promote the early creation of more unit tests, some agile projects track
(and update on a wall chart) the total number of unit test classes and test methods. The
counting can and should be automated with a simple scanning program that runs as part of
the continuous integration build process.

Tracking and Planning: XPlanner

If the simple "low-tech, high-touch" tools preferred in agile methods such as a whiteboard
task list, paper task cards, or the Sprint Backlog spreadsheet file are found to be insufficient
(more likely on larger projects), there are (free) open source software tools emerging to
support agile planning and tracking. An example (not an endorsement) is XPlanner,
available at www.xplanner.org. It provides support for stories, tasks, time tracking, and
metrics.

Earned Value Tracking on IID Projects

Earned value (EV) tracking is a cost and schedule progress measurement method required
on many USA government projects. Thus, it must be considered on government projects
that want to apply an IID method. The details are beyond the scope of this introduction, but
a non-obvious key concept is to measure progress in terms of the estimates (or budgets),
not only in terms of actuals. For example, if creating help Web pages for a new system was

originally budgeted at 50 person-hours, then when the work is complete, regardless of the
actual time spent (for example, 80 hours), the project is said to have "earned" 50 hours of
value. A key term in this context is the Budgeted Cost for Work Scheduled (BCWS)—the
estimates for future tasks, such as 50 person-hours for the help system.

There are a few practices experimenting with EV tracking on iterative and evolutionary
projects, although their true worth is not yet known.

One practice is to re-calculate the BCWS (estimate) values each iteration, as more
information arises. This has been called a rubber baseline.

Another practice is to apply a simple earned value recognition rule to iteration tasks.
There are alternative rules, but a common one is that as soon as an iteration task is
underway, it earns 50% of its value, in terms of progress tracking. Thus, as soon as the
help page work starts, the iteration "earns" 25 hours of progress. Progress remains at 50%
until the task is complete.

Ranking Risks

IID methods tend to be risk driven. A fast, useful method to prioritize risks is to estimate
their probability and impact (in cost, time, or effort). The estimates may be quantitative
(which are usually very speculative) or simply qualitative (for example, high-medium-low,
based on discussion and group dot voting).

The worst risks requiring proactive actions are naturally those both probable and of high
impact.

For example:

Risk Probability Impact

Insufficient number and quality of skilled object-oriented developers. H H

Demo not ready for the upcoming CEBIT convention in Hamburg. M H

… … …

Agile modeling promotes the practice of visible models, and that is especially useful for a
risk list, with associated actions and status. Display this information using whiteboards or
posters on the wall of the project room.

Managing Risks

Many iterative methods are risk driven, which includes not only tackling higher-risk
technical elements in early iterations, but also more broadly, identifying and proactively
working on all risks.

A key to successfully risk management is proactive actions owned by individuals, that are
tracked. Consider keeping owner and status information on the project room's wall display
of the risk list (see Table 11.1).

Table 11.1. risk list

Risk … Actions Owner Status

Insufficient number and quality of skilled
object-oriented developers; thus, slow

… PROACTIVE
Jill

approved in
review

Table 11.1. risk list

Risk … Actions Owner Status

development and poor, buggy design.

- Hire
temporary
consultants.

- Classroom
education and
mentoring.

- Design and
program in
pairs.

REACTIVE

- …

Jill

Team

underway

… …

Environment

The project environment includes the physical space and software tools used by the
developers. This section includes a few environment tips to support iterative and agile
development. Agile methods emphasize the importance of communication or feedback;
many of these tips promote it.

Continuous Integration

Part of the XP practices, continuous integration (CI) is also useful in other IID methods
[FF99]. CI is a refinement and more frequent version of the daily build and smoke test
practice popularized at Microsoft. Cycles average 15 to 30 minutes on many Java
technology projects. There are at least two open source CI tools: Anthill
(www.urbancode.com), and CruiseControl (cruisecontrol.sourceforge.net).

CI is somewhat more than just a frequent build-and-test tool. The details and how it works
are explained in Figure 11.9.

Figure 11.9. how continuous integration works

Why bother? If a team practices CI from day one, then the growing application is almost
always in a steady state of being integrated and tested. The "drift" from stability is on an
extremely small scale. On average, every 15 minutes only a few new components are
added. If the build is broken by an addition, it is likely to be a minor infraction. Therefore,
the system grows micro-incrementally 15 minutes by 15 minutes, 24/7. There is less need
for major end-of-iteration integration across team members or subteams.

What happens if the compile or tests fail? The CI tool sends email to the submitters and
chief programmer, and people are expected to react immediately. For example, reverting to
a previous version of the components, until the new components are debugged.

What if it takes a very long time to run the tests? Apply the "smoke test" principle promoted
by Microsoft: Choose an important set of unit and acceptance tests that can run within 15 or
30 minutes. Run the longer set less frequently, such as four times daily.

Project Wiki Webs

Most people are familiar with blogs or Weblogs, that allow one to easily write and publish to
a Web page. The older and more robust version of this idea is Wiki Web technology,
created by Ward Cunningham (one of the XP founders). XP has the value, "do the simplest
thing that could possibly work." In that vein, Cunningham has called Wikis "the simplest
online Web database that could possibly work."

Like blogs, Wiki Webs (or Wikis) allow people to edit Web pages using only their browser,
but they go farther: They allow one to easily create new pages, and hyperlinks between
Wiki pages, using only a browser and special WikiWords. Of course, these capabilities are
available with myriad tools, but Wikis make the tasks especially simple and fast. Thus, Wikis
are a popular tool on agile projects to capture project information, and as a simple
knowledge management tool.

Wikis are usually implemented as one or more Perl scripts that you install on an HTTP
server. There are many open source Wiki kits. A popular simple version is Usemod
(www.usemod.com); a popular elaborate version is Twiki (www.twiki.org)—it includes
version control and various fancy features.

You can see how Wikis work and create your own Wiki pages at the original (fascinating)
Wiki site: c2.com/cgi/wiki?WelcomeVistors. This site is also the place where the majority of
online discussion took place during the mid- and late-1990s on the creation of XP and other
agile methods, by their founders. These discussions are still available as Wiki pages.

CASE Tools and Reverse-Engineering

UML-oriented CASE tools support both forward-engineering (generation of code from
diagrams), and reverse-engineering (generation of diagrams from code). If an agile-
oriented project uses a CASE tool at all, it is most often simply for the reverse-engineering
feature, to support visualization and the more visually-oriented on the team. For example,
regeneration of noteworthy (package, class, or sequence) UML diagrams every few days to
visualize the growing code base created with a popular IDE such as Eclipse
(www.eclipse.org).

When I coach a team through an iteration, we print reverse-engineered UML diagrams
zoomed very large on a plotter (if one is available), and stick them on walls. Some
developers use the plots during discussions or short design sessions, sketching on them.

It is a misunderstanding to think that agile methods oppose UML diagrams or visual
sketching. First, it is only XP that is especially textual-source-code-centric; the other
methods are silent on the subject. Second, the XP leaders are not at all opposed to the
practices of Agile Modeling, or using a tool to reverse-engineer code to diagrams if the effort
is simple and aids communication.

Consider a Plotter

Visualization of information on the walls is promoted in agile methods; large diagrams and
font size are important for ease of viewing. Printing large zoomed documents on a laser
printer is laborious, as the partial pages have to be puzzle-pieced together. A wide plotter is
faster and easier.

Caves and Common Room

The agile methods promote development in a common room rather than separate offices, to
increase communication (Figure 11.10). It is a required practice in Scrum and XP. Of
course, people also have need for privacy. Ken Auer promotes the "caves and common
room" model in which there are also separate private office spaces (floating or dedicated)
that developers can use during non-development activities [AM02].

Figure 11.10. agile project common room with walls exposed

Liberate the Walls

Walls are valuable, but not for desks, shelves, or tables. If development is done by teams in
common project rooms (a required practice in XP and Scrum), move furniture away from
the walls. Expose them to support the agile modeling practices of using many whiteboard
spaces, and displaying as much project information (tasks, risk list, vision, and so forth) on
the walls as possible. Figure 11.11.

Figure 11.11. floor layout

Cling Sheets or Whiteboard Paint

Agile modeling promotes the use of whiteboard space and freehand drawing for creative
modeling work. In addition to true whiteboards (which may not be available), consider using
"cling sheets" or "static cling sheets." These can be purchased at most office supply stores
and come in packages like flip-chart paper. They are made of a very thin white flexible
plastic material that has a static charge; the sheets cling to most surfaces. Wallpaper them
to create a giant whiteboard space. Most important, you can use a whiteboard marker to
write and erase on them, as with any whiteboard.

Another alternative is the use of "whiteboard" paint.

Digital Cameras

Agile is about fast, simple, light. Capture hand-sketched whiteboard models or lists with a
digital camera. Print, plot, or consider placing the results on a project Wiki.

Figure 11.12. sample room elements

Requirements

This section introduces tips that support an agile, rapid, evolutionary approach to
requirements, in addition to those already covered in other chapters, such as XP's Planning
Game and story cards. Note that many of the tips emphasize face-to-face communication
and "low-tech high-touch" — common themes in agile methods.

Agile Modeling

Agile Modeling is a set of values and practices consistent and complementary to all the IID
methods, and applicable during requirements analysis. See p. 37 for a summary.

Defining and Keeping the Vision

Establishing and reiterating a common vision is frequent advice from agile leaders. It may
seem absurd to highlight such an "obvious" idea, but in over 10 years of post-project
reviews with hundreds of project members, Standish Group analysts [Johnson02] did not
find even two people who stated the same purpose or vision for their project!

Sometimes the military is used as an example of an unhealthy, rigid management system,
but modern battlefield leadership is different. Adaptation to unpredictable battle events (as
in agile development) is paramount. Therefore, the leadership emphasizes that fighters
know the mission goal or vision, rather than concentrating on a fixed plan.

Microsoft values this as well; it is key in the Microsoft Solutions Framework IID method:

Use high-level vision statements and outline specifications to get projects going.

How? Step one is to form a vision, discussed in some of the following tips, such as creating
a vision box and product sheet.

Step two is to reinforce it. Jeff Sutherland, a Scrum founder, emphasizes that one of the key
communication responsibilities of the Scrum Master during the daily Scrum meeting is to
help the team recall a common project vision aligned with the business objectives.

The Product Vision Box

This is a creative, quick practice to craft a common vision, first created and promoted by Bill
Shakelford and Jim Highsmith [Highsmith01], creator of the agile method Adaptive Software
Development. The steps are:

1. During day one of the first requirements workshop, break into several small groups.
Give each group a box (such as a cereal box).

2. The goal of each group is to create the cover (front and back) of a product box, as
though the product were to be sold in a shrink-wrap box.

3. Define and place on the box a name, graphics, a few key front-cover selling points for
the front, and details (features, operating requirements, and so on) for the back.

4. Each group presents the results.

5. Coalesce the results into a common Moore-style vision statement or common vision
box.

A Moore-Style Vision Statement

The vision boxes can be input to a simple, focused vision statement. In Geoffrey Moore's
well-known Crossing the Chasm, he recommends the following format for a vision
statement, which has been widely adopted, including within the UP:

For (target customer)

Who (statement of the need or opportunity)

The (product name) is a (product category)

That (key benefit, compelling reason to buy)

Unlike (primary competitive alternative)

Our product (statement of primary differentiation)

Following the agile modeling practice to display models publicly, this statement goes on the
wall—in large font.

Product Sheets

Marketing and requirements experts in product companies promote the early creation of a
product data sheet (feature bullets, comparisons, and so forth). It helps clarify the vision
and define high-level requirements; plus, the physical limit (one side of one page) forces
prioritization and brevity. However, this practice is not only useful for product developers; it
helps teams building internal systems who want a more agile approach to requirements

analysis. As with vision boxes, a complementary tip is to have several teams create them in
parallel and coalesce the results.

Evolutionary Requirements Workshops

Although requirements workshops are an old idea (also under the banner of JAD—Joint
Application Design—sessions), the iterative and evolutionary approach is to hold several of
them, one per iteration during the early iterations, interspersed with programming. Keep
them short and timeboxed, such as one or two days. In the first workshop, there is an
emphasis on defining a vision and scope, and identifying functions and features at a high
level (such as just the names of use cases and features). However, most non-functional
requirements (e.g., load, internationalization) need early exploration in detail, as these have
a significant architectural impact.

As an example: a project ultimately composed of 20 iterations might hold four requirements
workshops across the first four iterations. The goal after four workshops is that 80% or
more of the requirements are defined in detail, but in contrast to the waterfall, with the
benefit of insight from early programming, evaluation, and feedback. Note also that by the
end of the same four iterations, perhaps only 10% of the software is developed.

In the first workshop, for example, the team may discover and name 20 use cases (the
same applies if features rather than use cases are used). They now have an estimate that
the goal of 80% detailed requirements after four workshops will mean that 16 use cases
should be written. Yet, in the first workshop they explore and write only two (i.e., 10%) of
the highest risk and most architecturally significant in a detailed use case format. Combined
with analysis of the product's nonfunctional requirements, that's usually enough to get
started with architectural work and early programming.

Perhaps the second workshop team discovers three new use cases, eliminates two, and
writes 8/21 in detail, refining existing ones, and so on. Figure 11.13 illustrates the process.

Figure 11.13. sample completion of artifacts in 5 of 20 iterations.

Include in each workshop developers who spend time working on the software. It is useful
to demo and discuss the results of the most recent iteration. Feedback from building some
of the software is crucial to refine and evolve the growing requirements.

This is not the only way to stage evolutionary requirements analysis; pipelining (see p. 251)
is another.

The art and science of running a successful workshop is well-covered in Requirements by
Collaboration: Workshops for Defining Needs by Ellen Gottesdiener.

Tracking Requirements Across Iterations

At the very least, track the lifecycle or status of each request (feature, use case, scenario,
bug fix) as they transition through the iterations. XP does status tracking in the simplest
way that could possibly work, for example, three piles of cards: "not done," "underway,"
and "done." Similarly, the Scrum Product Backlog spreadsheet includes a status column.

For use cases that will be completed within one iteration, the use case name is the
requirements tracking tag—for example, "Handle Returns." On the other hand, when a
complex use case has to be built by different scenarios across several iterations, the
trackable requirements tag is a scenario name, not a use case name. If Cockburn's
(popular) naming style is used, each scenario has a tag such as "3a" or "4c". Thus, the
requirement tracking system can track labels such as "Process Sale-main success" or
"Process Sale-3a".

Direct User Involvement in Requirements and Product

Research [KC94] shows that project failure is reduced when there is increased direct
involvement and links between the ultimate clients or users of a new software product and
developers. Plus, as an obvious corollary, fewer indirect links via intermediaries and
customer proxies (such as business analysts). There are many techniques explicit within IID
methods to support this, such as XP's Whole Team Together (Onsite Customer), UP's
requirements workshops, and the Scrum demo to users at each iteration. Another popular
practice is to send some developers as trainees in the client or target customer setting.

Use Cases are OK

It is a misunderstanding to equate iterative or agile methods with "no detailed written
requirements." That value is unique to XP, and is enabled in XP by the presence of onsite
customers in the project room who can verbally explain or create the requirements as
needed. The other methods, although all are in favor of avoiding excessive documents,
allow or support detailed written requirements, created iteratively and interspersed with
early programming.

Unless it is an XP project, when written functional requirements are needed, consider use
cases (for example, "Provision a Switch"). XP's promotion of feature-oriented "story card"
requirements does not mean use cases are unskillful, or wrong for use in other methods.
Note, for example, that the well-known agile methodologist Alistair Cockburn (author of
Agile Software Development) is also an expert in and promoter of use cases, and author of
Writing Effective Use Cases.

Use cases have the advantage of pulling a set of requirements together—organizing them in
the context of scenarios of use. Plus, use case scenarios (e.g., "order, and pay with credit
card") make excellent goals for an iteration, because by implementing a scenario you are
forced to design and build across many architecturally significant components, from the UI
to the database, for example. And, you must early on resolve and test the quality
requirements (e.g., reliability, usability) associated with the scenarios. That said, use cases

don't fit for all products; sometimes a feature-oriented (e.g., "support EJB 2.0") or
combination approach is more relevant.

Note that meaningful use case work is not drawing a UML use case diagram, but writing
detailed use case text. In a workshop this is best done with a projector, so several people
can easily view the text.

A popular approach to writing use cases is described in Cockburn's Writing Effective Use
Cases.

Quantification Is OK

In the name of being more agile, do not succumb to being vague or sloppy about the details
of quality requirements, such as load, response times, usability, and so forth. Most of these
need quantification and means of measurement to be of much use. Evo places special
emphasis on this value. "The UI needs to be usable," "The system should be maintainable,"
"The system needs to have good performance under high load," and so forth. These
statements do not suffice, expressed verbally or in writing.

On outsourced projects—run with an agile method or otherwise— both the client and service
provider need quantified and measurable quality requirements written down in order to
avoid messy disputes. Although the Agile Manifesto encourages customer collaboration over
contract negotiation, it is a fact of life that misunderstandings about the "…ilities" often lead
to severe dissatisfaction—or law suits. I sometimes serve as an expert witness; it happens.

Agile Manifesto

GUIs with Glue

Another practical agile requirements tip is to first prototype UIs and UI navigation (in
collaboration with clients) using paper, pen, sticky notes, and so forth, on a wall. This well-
known technique goes by many names, but my favorite is Luke Hohmann's "GUIs with
glue." Use large sheets of paper to represent Web pages or windows. Place small blue sticky
notes on these sheets to represent information and pink sticky notes for UI controls (e.g., a
button).

To quickly model navigation between Web pages or windows, consider sketching a UML
statechart on a whiteboard, where the states represent the windows or pages, and the
transition events represent the UI navigation gestures (for example, clicking a button). See
Figure 11.14.

Figure 11.14. UML statechart sketch for UI navigation

A recommended text on usability engineering is Don't Make Me Think! by Steve Krug; many
texts and Web sites cover "GUIs with glue" agile flavored UI prototyping.

Brainstorming

Brainstorming is useful and quick during both requirements and joint planning. Most think
they know the technique, but surprising few follow its official—and important—rule. It is,
simply:

When hearing and recording the ideas, no one should comment or laugh.

The facilitator should record, not react. Keep the ideas flowing.

Brainwriting

Brainwriting is a fast adjunct or alternative to brainstorming during a requirements or
planning workshop. People are given many index cards or paper scraps. On the topic at
hand (e.g., requirements? tasks?), they write a short note on each card as ideas emerge.
The cards are collected, and the team does affinity clustering.

Affinity Clustering

Affinity clustering is a rapid technique to dynamically group things—such as brainwriting
cards—into cohesive sets. It is usually done by placing the cards randomly on the floor. The
team collaborates to organize the cards into the dynamic sets that emerge, such as
"database task cards" or "payment feature cards." The results can be posted in groups on
walls, or visualized in a mind map.

Mind Maps

Mind maps are another agile-oriented hand-drawing technique to quickly elicit, organize,
and expand high-level requirements during a workshop. Deceptively simple, I'm always
impressed by how they help the creative discovery process during rapid requirements
analysis (Figure 11.15). When facilitating, I sometimes take the output of a brainwriting and
affinity clustering session, and mind-map the result. There are several good Web sites; a
classic text on the subject is The Mind Map Book by the founder, Tony Buzan.

Figure 11.15. sample mind map

Team Rotation Writing

Another quick, collaborative technique for requirements or planning is rotation writing.
<N> people sit in a circle, each with a laptop computer. For five or ten minutes, they write
on the topic at hand (requirements? tasks?). Then they stop and pass their computer to
their neighbor, while they themselves receive another computer. The same approach can be
achieved with a wireless network and sharable Wiki pages. Each person starts by reviewing
the unfamiliar material, and then enhances it, inspired by the new ideas they see. Rotation
continues until each person has worked on each computer document. After the meeting,
one person receives all the documents, groups and merges the ideas, which are then later
reviewed and refined by the whole team together in a second meeting.

Test

Test-Driven Development

Test-driven development (TDD, that includes the sub-practice of test-first
development) is a key practice in XP, and is now promoted in several IID methods. An
important part of TDD is that there are automated tests for (almost) everything, and most
tests (especially unit tests) are written before the code to be tested.

This bears repetition: Unit tests are written before writing the code to be tested, imagining
that the code exists.

Further, the tests simply pass or fail. There is no need for human inspection of specific test
results. If you have 2,000 unit tests created in the TDD style, it all boils down to one
question "Did they all pass?"

A brief programming example is presented to provide a concrete sense of how this key
practice works.

Suppose Jill needs to create a Money class (in Java), to support multiple currencies, adding
money, and so forth.

Since this is a TDD project, rather than start by writing the Money class, she starts by
writing the MoneyTest class, adding one test method.

public class MoneyTest extends TestCase {

public void testSimpleAdd() {
Money m1 = new Money(12, "usd"); // ONE
Money m2 = new Money(14, "usd");
Money expected = new Money(26, "usd");
Money result = m1.add(m2); // TWO
assertEquals(expected, result); // THREE

}
} // end of class

Jill imagines, at point ONE, that there is a Java constructor in the Money class that is written
and works, and at point TWO, that a Money.add method is written and works. Notice also at
point THREE that there is an assertion that causes the test to simply fail or pass; no human
inspection of the specific results is required.

Then, Jill programs just enough of the Money class to make it pass the test testSimpleAdd,
writing the constructor to satisfy point ONE, and the add method to satisfy point TWO:

public class Money {

public Money(float value, String currency) {
// body of method ...
}

public Money add(Money other) {
// body of method ...
}
} // end of class

The implementation details are not important, but the process is. Once the code is written,
Jill runs the test. If it fails, she debugs till it passes.

Next, Jill is ready for the subtract method. She starts by adding another test to MoneyTest:

public class MoneyTest extends TestCase {

public void testSimpleAdd() {
// ...
}

public void testSimpleSubtract() { // NEW METHOD
// body of the new test ...
}

} // end of class

Then, she updates Money to make it pass this second test.

Test-first development has some practical consequences:

 Tests actually get written, which yields a host of benefits. This is obvious, but in
many projects that do not practice TDD, tests are just not written.

 It is at least a semi-enjoyable way to do testing—that makes it more sustainable.
Agile methods tend to emphasize practices that developers (eventually) like—or at
least do not dislike—doing. Traditional ("test last") testing is avoided because it is
boring or tedious. By writing the tests first, the developer is engaged in thinking
through the proper public behavior of the class not yet written. That's interesting and
creative. And, she writes the test and then builds something to make it pass. That
gives a small feeling of accomplishment.

 To expand a point made in the last bullet, by writing the tests first, the developer is
engaged in thinking through the proper public behavior of the class not yet written.
That thought process—treating the new class as a separate black box with public
operations—clarifies in the developer's mind the behavior and design of the class
before it is programmed. That thinking tends to improve the design and, as a
valuable side benefit, a test written.

Finally, note that many IID projects also practice continuous integration. All these tests,
growing constantly, become part of the continuous integration test process, re-executed on
each build cycle.

continuous integration

Fit or Fitnesse for Acceptance Testing

Ward Cunningham, a key figure behind XP, has created a simple, open-source framework
and tool to support acceptance testing: Fit. See fit.c2.com. It has become relatively popular
in the agile development community. A related tool, Fitnesse, has been developed by Bob
Martin and his team at ObjectMentor, early promoters of XP and agile development. See
www.fitnesse.org.

Chapter 12. Frequently Asked Questions

I have often regretted my answers, never my silence.

—adapted from Xenocrates

These assume an audience relatively new to iterative methods, keeping with the book's
theme as an introduction.

Question List

Q1: Is there any proof that iterative development is worthwhile, or better in
some qualities than the waterfall?

Q2: For example, will an agile or iterative method make my team more
productive?

Q3: How do you plan an iterative project?

Q4: My customer expects a week-by-week schedule and detailed PERT chart.
What should I do?

Q5: How to handle fixed-price contracts when applying an IID method?

Q6: Can IID be applied on projects or contracts (usually fixed-price) in which
we are forced to do major up-front requirements analysis?

Q7: What are typical risks and mistakes when adopting an iterative process?

Q8: How to adopt an iterative, agile process within an existing waterfall
process culture?

Q9: How to control costs if adaptive planning?

Q10: How do we measure quality in an iterative process?

Q11: How to coordinate subteams or subcontractors on a large IID project?

Q12: How to estimate overall effort or duration for an IID project?

Q13: How to estimate the duration of an IID project without having a plan of
what will happen week by week?

Q14: If we have use cases, how to schedule them with respect to iterations?

Q15: How do we track use case requirements across iterations?

Q16: How to persuade our customers (or management) to adopt IID?

Q17: We want to apply XP, but don't have an onsite customer. What do we do?

Q18: We think we are applying XP, but use fairly detailed written
specifications for the iteration rather than an onsite customer. Is that
OK?

Q19: What's going to happen with our existing test and QA department if we
adopt an IID method?

Q20: Can a project fail with an IID method?

Q21: What new skills are needed for managers and developers?

Q22: How to deal with change management in an IID method?

Q23: Is IID useful for commercial products?

Q24: We have to tell the customer what they will get and what it costs—before
starting to build it. Therefore we can't work iteratively, true?

Q25: We can't make a solid architecture if we do not know all the
requirements up front, true?

Q26: Rework (or refactoring) each iteration sounds expensive. Isn't it cheaper
to design it correctly up front?

Q27: What use are iterations for short projects of, say, three months duration?

Q28: How can we get our management to realize they don't need a final,
detailed plan on "day one"?

Q29: Our test environment is very complex and run by another organization.
How can we iterate and test?

Q30: What do we do when time, budget, and scope are all frozen but we still
want to apply an iterative or agile method?

Q31: Doesn't iterative development mean that we don't know when we're
finished?

Q32: Should I plan the work for all the future iterations to ensure the scope
and resources (e.g., people) fit the desired end date?

Q33: How do I get feedback when there is little or no user interface?

Q34: Should iteration activities overlap? For example, requirements for the
next while testing for the previous?

Q35: How long should iterations be?

Q36: How to handle the design of a database with an iterative process?

Q37: Should the customer always be in charge of what gets built each
iteration?

Q38: How to plan an iteration?

Q39: Do I give the results of every iteration to my customer?

Q40: How to do documentation for maintenance, when we want to be agile?

Q41: How can I create a work breakdown structure (WBS) without a weekly
schedule, or an iteration-by-iteration schedule?

Questions and Answers

Q1: Is there any proof that iterative development is worthwhile, or better in
some qualities than the waterfall?

A1: Yes. For the whole story, see the Evidence chapter (p. 63).

Q2: For example, will an agile or iterative method make my team more
productive?

A2: Yes, there is some evidence, both for productivity and defect reduction (p. 76).
However, beware silver-bullet "faster, cheaper" claims made speculatively by
various agile method promoters. One must also be mindful of the Hawthorne
Effect when new methods are introduced: That individual productivity and other
behaviors temporarily improve when people adopt new methods and know they
(or their project results) are being studied.

Sustainable productivity improvements only arise over a long period of effort and
change, with long-term initiatives and management support. Gerald Weinberg
once cautioned against claiming that anything would make more than a 10%
improvement—wise advice.

Perhaps more important than asking about more productivity is asking about less
failure. Software project failure rates are high, averaging 23% in the USA in 2000.
Rather than first searching for the next 2% productivity improvement, it may be a
rational higher priority to first focus on preventing some of the lost (estimated for
the USA) $50 to $70 billion that is spent each year on cancelled software projects.

Interestingly, investigation by the Standish Group into project failure indicated
that this level of failure has not been visible at the CEO and VP levels; not all
executives know how bad it is in their software groups. To quote from their 1998
report:

For years [software] project failure was simply not discussed. And it certainly was
not discussed with the CEO.

In this context, perhaps the most relevant value of IID is that it is correlated with
lower failure rates. And, through the process of early feedback, leads to products
more closely aligned with what customers really want.

Q3: How do you plan an iterative project?

A3: See tips starting on p. 248.

Q4: My customer expects a week-by-week schedule and detailed PERT chart.
What should I do?

A4: See "Rolling Wave Adaptive versus Predictive Planning" on p. 253.

One approach is to present a short seminar on IID and client-driven adaptive
planning, and propose starting the next project based on this approach. If they
are not satisfied after some time period, you will agree to revert to their desire for
a predictive plan.

If that isn't possible or doesn't work, another approach is to create the predictive
plan they desire, but then run the project with client-driven adaptive planning. At
the end of the first iteration, show the customers a demo and update them on
progress and new insights. They too will have new insights and priorities based on
this feedback. Then invite them to tell you their current priorities and refinement

of ideas. Covertly, the project may then slip into adaptive planning as the
customer directly sees the benefit of their ability to guide it iteration by iteration.

Q5: How to handle fixed-price contracts when applying an IID method?

A5: Also see the follow-on related question and answer: Can IID be applied with
contracts (usually fixed-price) in which we are forced to do major up-front
requirements analysis? (p. 303)

There are at least two ways to answer this: the ideal, and the usual.

The ideal—which has been sold with success by various consulting companies—is
to organize the project into two contract phases. Contract phase one corresponds
to inception and elaboration (or at least a good part of elaboration) in the UP. See
"Fixed-Price Contracts" on p. 18.

Note how this approach reduces the risk for the customer. In phase one they paid
for tangible results that moved the project forward, but they didn't commit
everything to the project or to one service provider. Also, it is desirable to hire
very talented people for this phase one, to create a solid foundation. But it may
thus be possible to use less expensive average resources for phase two. Finally,
for phase two, the customer will more reliably know the true costs and duration,
and will be working with a provider who has a greater chance of remaining both
solvent and sane, as the provider accepted the challenge of the project with
sufficient initial information to make an informed (rather than desperate) choice.

In summary, this approach balances the risks for the customer and service
provider.

As an aside, some consulting companies have run a refinement of this phase one
in which one developer from the customer side joined the consulting team. They
not only provided insight for the project, but insight to the culture and leaders of
the organization. During an end-of-phase demonstration to the customer, the
customer-developer herself leads the demonstration created with the consulting
team, and thus creates an in-selling effect to help the consulting company win the
phase two contract.

The more commonplace answer to the contract question is that service providers
are forced to create fixed-price bids without the luxury of the above phase one,
and are taking a larger risk. In this case, they bid however they prefer. (Note, as
an aside, that the estimation technique of WideBand Delphi can improve their
estimates—see p. 260) Yet, running the project iteratively still gives them an
advantage: Since iterative development is about tackling the high risks and hard
elements in early iterations, they will receive early feedback about how much
trouble they are really in, or not! They will discover more quickly if their estimate
of the cost or difficulty was low, and be able to take early mitigating actions, such
as hiring experienced specialists, looking for preexisting components, early
expectation management, and so forth.

Furthermore, by running the project iteratively, they will be showing early visible
results of value to the customer. There is an increased chance, through thus
winning the confidence of the customer, that they will be able to renegotiate some
of the difficult fixed-price contract terms at the suitable strategic moment.

Q6: Can IID be applied on projects or contracts (usually fixed-price) in which
we are forced to do major up-front requirements analysis?

A6: Yes. even with "the complete requirements" developing via many short iterations
has advantages.

To reiterate points from a prior answer, the team receives early feedback about
how much trouble they may be in, by building, integrating, and testing early and
often (there's nothing like programming to discover what you don't know). This
approach drives down the risks, shakes out the requirement bugs, and provides
opportunities for reacting sooner rather than later to major problems.

There will be early tangible results for the customer (user, marketing manager,
…), leading to confidence building and quality feedback. If the product needs to be
rolled out earlier than planned, there's something available.

And research suggests that developing in short, timeboxed steps is associated
with higher productivity and lower defect rates.

Q7: What are typical risks and mistakes when adopting an iterative process?

A7: Near the top of the list of mistakes or risks is that the customer or executive
management does not understand and accept the change in values and practices,
or appreciate how deep and far-reaching the changes need to be. I see this
manifest in situations like "Congratulations! We've adopted <iterative process X>.
When will the requirements be finished, so we can decide how to design the
system?" Or, "It's budget season. Please take a few weeks to identify all the
projects for next year, and how much they will cost and how long they will take."
Inconsistent culture and expectations derived from waterfall or mass-
manufacturing values clash with an iterative and agile approach. As another
example, the customer does not actively participate, iteration by iteration. And so
on.

The solution includes having an executive and customer champion who
understands and can communicate this to their peers, education seminars and
learning aides (e.g., this book) for these groups, and "post-partum" project
sessions in which the stakeholders share their experiences with other customers
and management.

Another common mistake is changing or adding to the goals of an iteration, once
underway. In a sea of constant change and chaos, some stability and control is
necessary. That comes from leaving the team alone, once they've committed to
an iteration. Save the change requests for a future step.

Another problem is using so-called iterative or agile consultants or consulting
organizations who don't really comprehend evolutionary, adaptive development.
They superimpose waterfall values on top of an iterative process, or try to recast
their old waterfall process as an iterative one. Then we get corruptions such as
misinterpreting the UP inception phase as requirements, elaboration as design,
and so forth. Or, we get promotion of excessive specifications and other
documents, instead of early programming. Or, we get predictive planning in which
a plan is created listing how many iterations there will be, their durations, and
what will occur in each. Or, we get misunderstandings such as "let's iterate over
the requirements until they are stable, then we can nail down the design in a
series of iterations."

Another risk is attempting to transition to an iterative and agile process without
coaching from someone who's been there and done that. I sometimes see well-
intentioned local managers championing the adoption of an iterative method, who
think they or their staff can lead the adoption without help. And sometimes they

can, but a timeboxed, iterative, agile approach is rather different for many teams.
Colleagues and I have seen a number of homemade adoption attempts where the
adopters didn't appreciate the synergy between the different practices, and they
were modifying the newly adopted methods unwisely. For example, claiming to
adopt XP by simply eliminating written requirements and writing unit tests
occasionally.

Using a coach who isn't steeped in the old local ways and who has the confidence
of knowing that the iterative process works is money well spent. And, because we
are talking about value changes, it is often more effective that the change agent
be from the outside. It seems to be the way of the world that we're never a
prophet in our own land, especially regarding software methods.

Another common mistake is overselling or mis-selling the advantages of an
iterative, agile method to customers or management. The popular press and a
number of agile method books still exhibit the silver-bullet syndrome. The master
consultant Gerry Weinberg advised to never promise more than a 10%
improvement, not only because greater yields are seldom sustained (and let us
not forget the Hawthorne Effect), but more can suggest the current management
and management practices are really inept, which is seldom true.

On the subject of mis-selling, note that iterative methods are not fundamentally
for improving productivity or delivery speed or reducing defects, although there is
research showing correlations. Rather, they are less ambitiously for reducing the
risk of failure and increasing the probability of creating something of value that
the stakeholders wanted. Given that recent data shows that 23% of projects fail,
this is no small feat. Issues like improved productivity are secondary when one
out of four projects simply "goes pear shaped" (as they say so evocatively in the
UK), after consuming—on average—$1.2 million USD. Note as a related point that
this same failure research indicated that the CIO or CEO has often been "shielded"
from these failure rates, and is unaware of the true extent of failure in her
development organization.

Big-bang process adoption is another common mistake: Educating many
managers and developers in the new method over a short period, and/or applying
it on many projects during early adoption. Just like a software project itself, adopt
the process iteratively and incrementally, in small steps. Start with pilot projects,
and learn from the experience.

Another risk is to try to recast the new process in terms of your current culture's
vocabulary and ideas. For example, attempting to adopt the UP but rename the
phases and workproducts to old, local names. Or, to make efforts to explain how
the new process fits into the ideas and phases of the old one, in a misguided
desire to help the new process be successfully adopted. Just surrender to the
new; make a clean break from the past.

Some organizations have a small group responsible for process, methods, best
practices, and so on. A risky adoption approach is for this group to speculatively
decide how to apply the new IID process—armchair methodology. They try to
"enhance" or "refine" it speculatively. Coupled with this problem is the related
complication of top-down process advice, which doesn't usually work. For
example, if an organization is adopting the UP, it has the concept of tailoring the
process to fit the project and organization. A risk is to let this group speculatively
create a UP tailoring, an XP tailoring, or whatever. The result will often have little
to do with what's really useful in the actual project. Rather, determine how to
adopt the new process through experimentation and by the advice of the coach

and practitioners on several pilot projects; more bottom-up than top-down.

Some organizations have a separation of software designers and programmers.
Maintaining this separation is another mistake when adopting iterative
development, although there is still need and value in expert designers such as a
chief architect. The programmer must be an active designer, as the design is not
fully pre-cast in these methods, but evolves in response to growing insight, test
results, refactoring, and so forth.

Q8: How to adopt an iterative, agile process within an existing waterfall
process culture?

A8: Suggestions include:

 Have an executive and customer champion who understands and can
communicate the ideas to their peers.

 Define a goal or reason to adopt the method, and a quantitative measure
of its success. For example, the number of failed projects per year, or the
results on satisfaction surveys for developers, managers or customers.
Measure and communicate the results. Don't expect quick or dramatic
improvement; process change takes time and skill over a series of
projects, and a new method is not a silver bullet that will revolutionize
things. The famous (and efficient) Toyota manufacturing system took over
10 years to be fully adopted.

 Present education seminars and learning aides (e.g., this book) to
executive and customer groups.

 Adopt the method with pilot projects and an incremental approach. Start
with one project and a method coach. Drive the adoption from the learning
that emerges from these early projects.

 Don't oversell. Don't claim it will improve productivity and so forth, but
propose a pilot as an experiment whose results will guide further steps—in
other words, an empirical approach.

 A failure on the early projects will—not surprisingly—kill the adoption drive.
So, mitigate that risk by using a good method coach. Choose a project big
enough to be meaningful but not so big it is dangerous; for example, five
or ten people on a six-month project is a good size. Don't introduce too
much novelty on the projects, such as many new technologies or unproven
third-party components. You don't want the pilots to fail for reasons
unrelated to the new method.

 Let the participants in the early pilot projects become the new method
leaders (or "process engineers") in subsequent projects.

 Hold "post-partum" project sessions after these early projects in which the
stakeholders share their experiences with other customers and
management. This in-selling is more powerful than executive or consultant
recommendations.

 Results speak louder than theory. Assuming the pilot projects do achieve
earlier valuable and visible results with lower risk than the prior waterfall
process, record this achievement, and communicate it.

 If the waterfall organization is resistant to the idea of short iterations,
propose instead that their next 12-month project be run as two 6-month
projects or three 4-month projects, in order to "lower the risks and show
early results." Capture a record of positive experiences with this change,
communicate it, and on the next project, suggest a shorter step: "We
improved with two 6-month steps. We think we can do even better with
three 4-month steps on the next project."

On the question of what type of pilot project to choose, XP and Scrum have a
different answer than the UP. The latter suggests a not-too-risky project, but the

former methods (especially Scrum) recommend first adopting it on the most
difficult project the organization faces. These method leaders feel confident that
their methods, applied correctly, will yield success, and that the crisis of a difficult
project provides the right fertile ground to truly abandon the old waterfall habits
and seize the new ideas wholeheartedly.

Q9: How to control costs if adaptive planning?

A9: Before answering the question directly, there's often an implication in the mind of
the questioner: That with predictive planning, costs (and schedule) is successfully
controlled. But research shows this is not true; indeed, predictive planning has a
poor track record for software projects. The root problem is the flawed assumption
that software development is predictable manufacturing rather than new product
development.

Failure research

Evo and evolutionary delivery provide one model for the answer. At some point an
overall budget or estimate is generated for the project, although it is
acknowledged as unreliable. Thereafter, take a small iteration step that represents
between 2% and 5% of the budget (or desired duration). Plus, choose a step with
a high value-to-cost ratio. Have a quantified goal (or goals) for the iteration, and
measure the impact of the step. In the worst case, we have "wasted" a small
percentage of the budget on an unsuccessful step. In the best case, we have
made a good return on the small investment.

The adaptive plan emphasizes—using the most recent information—maximizing
value for a small cost commitment.

Q10: How do we measure quality in an iterative process?

A10: The short answer is, the same as in any process, but earlier and more frequently.
Yet, there is a distinctive component I want to emphasize. A useful best practice is
to continuously verify quality, and this implies not only quality of the product, but
of the process.

A number of agile methods promote some kind of iteration assessment, which I
usually prefer to call the beer party (being Canadian). That is, at the end of each
iteration (or the start of the next), get together for a half hour as a group, and
ask some questions: what worked well, what didn't, and what are a couple of
concrete actions we could take in the next iteration to improve? Maybe Jill spent
too many hours explaining the defect tracking system to new joining consultants,
and she should take a few hours to write up a Web page summarizing the
introduction for the next incoming batch of people. Maybe the evolving set of use
cases are useless, and their creation should be stopped, or improved.

The Scrum meeting also provides a way to measure the quality of an iterative
process. We see, day by day, how things are going, what's working, and what
isn't.

Q11: How to coordinate subteams or subcontractors on a large IID project?

A11: One part of the answer involves establishing early personal liaisons between the
subteams, and a leader in each with an understanding of the project vision and
architecture. See "Multiteam or Multisite Early Development" on p. 248. That
section provides the details.

The value of forming these personal relationships with other liaison team
members is most significant during later coordination and communication. And,
having forged a common, deep understanding of the vision and architecture
lowers the risk that the subteams don't understand or create what is needed.

Another part of the answer is to establish cross-team milestones for integration
and testing (system, load, etc.) of all components. These are the macro-
iterations of the project. For example, the project may have a macro-iteration of
six weeks; at its completion, all components across all subteams are integrated.
Within this macro-iteration the subteams may choose to decompose the time and
their own work into shorter micro-iterations, such as three two-week iterations.

These macro-iteration milestones provide the heartbeat and mechanism to force
regular coordination between the subteams and subcontractors.

Note that very short macro-iterations for large projects with many subteams may
become awkward or unproductive. The overhead of pulling everything together
and testing it takes nontrivial time and resources; a two-week macro-iteration
may be too short for completion of sufficient new work, given the overhead of
integration and test.

Another proven variation on this macro-iteration approach is to relax the
requirement that all subteams must integrate, and instead only require that at
least two of the subteams must integrate. This may allow a shorter macro-
iteration, such as two weeks, as the effort of integration and test is lowered. See
"Difficult Multiteam or Multisite Iteration Planning" on p. 249.

All of these variations can (and usually should) be combined with the practice of
continuous integration—see p. 275.

Q12: How to estimate overall effort or duration for an IID project?

A12: One way to answer is, the same as before. Don't assume that scheduling the tasks
iteratively will meaningfully change productivity or duration. You may still use
parametric estimation models (such as COCOMO II), micro-estimation methods
based on work breakdown structures or use cases, and so forth.

That said, some of the IID methods, such as XP, include specific advice on how to
estimate. These are introduced in their respective chapters, although study of
dedicated method books (listed in the recommended readings sections) is needed
for full details.

However, I do want to recommend an excellent iterative and team-based
estimation technique that is complementary to other estimation techniques,
Wideband Delphi—see p. 260.

Wideband Delphi

Q13: How to estimate the duration of an IID project without having a plan of
what will happen week by week?

A13: A total effort (or duration) estimate precedes and is not dependent on detailed
task scheduling. Rather, it is primarily a function of the requirements, team size,
novelty, and so forth. Of course, scheduling issues can affect an estimated
completion date, such as if the project spans the summer months of vacation.

I get this question frequently, and the questioner usually really means to ask,
"How to estimate the dates of intermediate milestones with an IID method?"
Major milestone dates can be estimated based on common effort estimation
methods, once the goals for the milestones are decided. As always, the reliability
of the estimate is commensurate with the quality of the information and the
project's current point on the cone of uncertainty.

Q14: If we have use cases, how to schedule them with respect to iterations?

A14: Although it is desirable to fully complete a use case within an iteration—it's a
straightforward approach—it isn't always best, because some use cases are so
complex (with many scenarios) that it would take an excessively long iteration
(such as three months) to complete. Short iterations are almost always preferable
for a number of reasons. For details: See "Iteration Goals: Use Cases and
Scenarios" on p. 269.

Q15: How do we track use case requirements across iterations?

A15: To expand the question, how do we track that some scenarios of a use case have
been done, and others haven't?

The answer is dependent on the requirements tracking tool, and the way you write
use cases. Let's assume you are using the popular www.usecases.org (Cockburn)
format for use cases. In this case, for each use case there is a "main success"
scenario and various "extensions" (or "alternatives") with labels such as 3a, 3b,
etc.

If you're using a tool like Rational's RequisitePro (which adds macros to Microsoft
Word), you can use Word to textually highlight a scenario, and then mark the
selected text (e.g., the scenario 3a) as its own requirement in the RequisitePro
database, with lifecycle state information such as "approved," "underway,"
"completed."

If you are using a feature or issue-oriented tracking tool, such as Issuezilla or
Bugzilla (which is often used for new requirements, not simply defect tracking),
you can record the scenario names as labeled issues, with associated lifecycle
state. For example, scenario 3a of the Process Sale use case can have the label
"process sale-3a" and the state of "complete" in Bugzilla.

Q16: How to persuade our customers (or management) to adopt IID?

A16: Don't propose a definite adoption within the organization. Rather, suggest an
experiment, motivated from the data and trends: that IID is associated with lower
failure rates and earlier results, that it is now used by many organizations, its use
is increasing, and so forth. Some of the data in the Evidence chapter (p. 63) may
be helpful.

Then, organize a half-day seminar for the executive team, customers, and other
relevant stakeholders. Use a seminar speaker who can present the key ideas and
make a persuasive case for the experiment, but avoid overselling the benefits. It
is useful to emphasize that IID methods support early visible results and ongoing
steering by the customers; of course, customers are interested in this point. It
must also be stressed that customers will need to take an active and ongoing role
in clarifying the requirements, evaluating results, and providing feedback.

Next, get commitment for the experimental pilot project and find an executive
champion. Run the project, capture data on the experience and results, and

communicate these. Make a decision to continue, or not.

Q17: We want to apply XP, but don't have an onsite customer. What do we do?

A17: See p. 152.

Q18: We think we are applying XP, but use fairly detailed written specifications
for the iteration rather than an onsite customer. Is that OK?

A18: See p. 156.

Q19: What's going to happen with our existing test and QA department if we
adopt an IID method?

A19: In a classic waterfall environment, the QA team expects to receive a final system
for testing near the end of the project, but may not otherwise be significantly
involved in the development. Although a final QA step never hurts, it is not
sufficient or efficient—because research shows that it is cheaper to remove
defects early rather than late.

With IID methods, there are at least two approaches to working with the QA
group. The first is to allocate a QA person (or persons) to the iterative project
from the earliest iterations—either full-time or part-time. They are involved,
iteration by iteration, in the early creation and execution of tests and other
evaluations. They become members of the development team. If the project is
running in a common project room, then ideally that's where they work, although
there are times this is not possible due to the complexity of the test environment.

Microsoft takes this to the extreme by dedicating more-or-less one tester for each
developer, and they collaborate throughout the project. As an aside, Microsoft
developers do not usually practice test-first development (see p. 292); it would be
very interesting to know if the same number of independent testers would be
needed if they did test-first development.

A second approach is to deliver the internal release from each iteration to the QA
group for evaluation. While the development team is moving forward with
iteration N, the QA team is evaluating the results of iteration N-1. See
"Overlapping or "Pipelining" Activities Across Iterations" on p. 251. Their feedback
can be handled in the current iteration, or if it is too laborious and there are no
slack resources, allocated to the next.

Q20: Can a project fail with an IID method?

A20: Certainly, although I like to call IID approaches "fail early" methods, and the
waterfall a "fail late" method. A waterfall project can be like the story of the guy
who fell off the cliff:

As he was hurtling down, someone yelled, "How are you doing?" The guy replied,
"So far, so good!"

In the waterfall, the risks pile up near the end; the project can have the mirage of
running smoothly for many months while the less risky and easier work is done.
Then, pow!

On an iterative project we discover how much trouble we are in sooner rather
than later. We have a better chance to cancel the project before too much is
invested, or experiment with solutions.

Q21: What new skills are needed for managers and developers?

A21: For managers, perhaps the biggest shift—at least with methods such as XP and
Scrum—is to step back and avoid assigning tasks or directing work, not being the
taskmaster. Recall that in these methods self-directed teams and volunteering for
work is important. The manager's role is to reinforce the project vision and
company goals, manage risks, communicate the iteration goals, remove blocks,
provide resources, and track progress.

They are also responsible for the new skill of iterative and adaptive planning,
which is easier but more frequent than detailed predictive planning.

For developers, they will participate in more project management activities, such
as task identification and estimation, each iteration. Especially with XP and Scrum,
their biggest shift is perhaps the attitude of "owning" the project and its problems.
Recall that in the daily Scrum meeting, it is the team's collective responsibility to
spot and fix problems with the project or team members, not the manager's
responsibility.

On the technical side, developers require skills in how to set up and do continuous
integration, and more frequent and thorough testing than they may have
previously been used to.

Q22: How to deal with change management in an IID method?

A22: This is specific to the method, although most have in common the following
constraint: Once an iteration is underway, no changes are introduced to the
iteration. This gives the team a short stable period—some control over the chaos.

Most also have in common the practice of not treating change requests informally
via talk or email; therein lies a path to project ruin! Rather, changes are captured
in a change request (whose form ranges from a simple story card in XP, to an
entry in the Bugzilla database), and considered decisions for the requests are
made by the key stakeholders during the iteration planning meetings.

Q23: Is IID useful for commercial products?

A23: Certainly, and in fact IID methods found early and widespread adoption in the
product sector. In many software product companies of Silicon Valley, for
example, you will find IID has been commonplace for years.

Q24: We have to tell the customer what they will get and what it costs—before
starting to build it. Therefore we can't work iteratively, true?

A24: False. There are several ways to answer this. For one, if you are in such a market
(still common, for example, with fixed-bid contracts with governments), then do
what you must with up-front analysis and estimation. And, the customer might
have required a detailed predictive plan; you focus in this plan on identifying what
they want in the first and second iteration, and accept that the remaining
iterations will be less rigid. Next, start to develop in short iterations, and bring the
customer into the evaluation and feedback process. By showing the customer the
results of the early iterations quickly, you win confidence. At this point you may
say to the customer "Even though we planned <X> for iteration 3, you now have
a chance to re-choose according to your latest insight and priorities." And at this
point the customer is more likely to view this flexibility and control not as a defect
in your skill as a predictive planner, but as a more valuable way. The same
practice and psychology applies to the evolution of requirements.

In short, we make a waterfall attempt as desired by the customer, and then run
an evolutionary IID project as trust is established, to really benefit the client.

Another perspective is that even if we don't have the degree of requirements
evolution we wish, by at least organizing the "frozen" requirements work
iteratively, we gain several advantages. As the Evidence chapter shows (p. 63),
productivity, defect, and success rates may be improved. And we may still have
flexibility over the ordering of the development iterations, to meet our desire to
drive down risks early.

Customers don't usually care about fine-grained weekly scheduling. They may
want to define a milestone that <X> is completed in two months and <Y> two
months later. But, they don't have to see that you organize a two-month phase
into four iterations of your choosing.

Q25: We can't make a solid architecture if we do not know all the requirements
up front, true?

A25: False. What we do need to understand early is the architecturally significant
requirements, which is a subset of the total. Plus, architecturally influential factors
are mostly nonfunctional quality requirements, such as reliability, security, and so
forth, rather than the myriad detailed functional requirements. It is less difficult to
learn the former than the latter during early analysis. In addition, if use cases
make sense for the project, we can focus in the early phase on understanding the
subset of architecturally significant use-case scenarios (which may be 10% of the
total set), rather than all use cases.

For example, in the UP, the idea is to analyze something like 10% of the
requirements during the inception phase—those that are most architecturally
significant. Then, quickly start programming in the elaboration phase, while the
majority of the remaining functional requirements are uncovered and evolved—
perhaps in a series of requirements workshops—in parallel to programming the
core architecture.

Q26: Rework (or refactoring) each iteration sounds expensive. Isn't it cheaper
to design it correctly up front?

A26: In practice, IID projects infrequently require massive rework; it is more a
theoretical than practical concern. This is due to a combination of taking small
steps and emphasizing early testing and feedback, so that a solid path is
discovered and maintained sooner rather than later.

In addition, modern powerful refactoring tools (in several Java IDEs, for example)
make large-scale changes easier and faster.

In any event, complete and near-perfect up-front speculative design or
architecture is seldom observed, even when it has been diligently attempted.
Decades of failed attempts in waterfall projects demonstrate the difficulty—and
expense—of this approach. The reasons are varied: the constant use of new (and
unproven) technologies, high complexity, the many degrees of freedom software
solutions offer, the unreliability of the requirements on which speculative design
decisions are based, and more.

Also, bear in mind that it is only XP which promotes almost no up-front
architectural thinking, not the other IID methods. Scrum, UP, Evo (and others) all
support some degree of up-front architectural analysis and design, with a

balanced interplay of early programming and testing to prove or disprove the
ideas.

Q27: What use are iterations for short projects of, say, three months duration?

A27: Organizing the development and priorities in two- or three-week timeboxes still
helps with achieving early visible progress, and keeping the complexity
manageable. Often in these projects, most requirements are semi-reliably known
near the start; very good. If your organization has adopted the UP and its concept
of the four phases, the distinction of the first three (inception, elaboration, and
construction) is not particularly useful on such short projects; rather, simply a
series of "development" iterations prioritized by value and risk, followed by a
transition phase, is sufficient.

Q28: How can we get our management to realize they don't need a final,
detailed plan on "day one"?

A28: Through demonstration, analogy, facts and logic.

Demonstration— Create and run an IID pilot project applying the principles of
adaptive planning. Have external management and clients drive the choice of
work each iteration, and at each post-iteration demo ask "Is the project
proceeding as you want?"

Analogy— When we appreciate that building software is new product
development or discovery, we can draw analogies from other industry planning
practices. It is normal to avoid detailed predictive planning at the start of a project
in other discovery-dominant domains. For example, examine how new potential oil
fields are planned. Or a new type of car, a new bridge, or a new consumer gadget.
In each case, there's a significant exploratory phase before reliable plans are
expected.

Facts and logic— Perhaps the most relevant fact is an average of 20–40%
requirements change on medium to large software projects See "Change
Research" on p. 72. Not surprisingly, then, the historical track record of early
detailed predictive planning is poor. The problem isn't bad planners, the problem
is high degrees of novelty, uncertainty and change. An early and highly
speculative fixed plan in that context is not logical; the wrong (mass-
manufacturing) model is being applied to a discovery-dominant domain: software
development.

Q29: Our test environment is very complex and run by another organization.
How can we iterate and test?

A29: Before offering some suggestions, note there are similar organizations that do
this, iteratively. Microsoft is probably the largest example of a company that
applies IID in a complex test environment with separate testing groups.

One part of the solution is continuous integration or the more mild daily build and
smoke test practice. The separate test team adds unit or acceptance tests to the
build environment incrementally, as soon as possible.

Another element is pipelining. In this case, when the development team starts
iteration N, the test team starts evaluating the just-finished iteration N–1. See
"Overlapping or "Pipelining" Activities Across Iterations" on p. 251.

Q30: What do we do when time, budget, and scope are all frozen but we still
want to apply an iterative or agile method?

A30: The constraints are irrational, but it happens. Spend more time looking for
existing (perhaps open source) components or frameworks, contract with
specialists who have done something similar and used the reusable components,
hire consultants with an existing template system they can modify to your goals,
use the technologies most familiar to the team, don't ignore communication (e.g.,
a daily Scrum) and lots of testing in a misguided rush to save time, and as usual,
rank requirements and implement them across the iterations in rank order. When
the deadline comes up, at least you'll have the most valuable elements, if not all.

Q31: Doesn't iterative development mean that we don't know when we're
finished?

A31: It is possible to know when we're finished and what "finished" will mean. There
are several ways to tackle this dilemma. One approach is to have an initial
requirements workshop (part of the Release Planning Game in XP) in which all or
most requirements for the release are identified at a high level, such as just the
names of use cases or features (XP story cards), with some brief description. This
can be the basis for a rough scope, effort, and end-date estimate. Of course, as
the project progresses, these high-level requirements will evolve into detailed
descriptions and may expand, but this does not imply an endless moving target.
Rather, it is a temporarily moving target that over time has smaller and smaller
pertubations (see the "cone of uncertainty" on p. 18). In early iterations, the
fluctuation in the total requirements set is larger, and then it settles. On average,
perhaps 20% into the project, a more complete and stable picture emerges.

One can argue that this period of uncertainty is undesirable and that an up-front
waterfall requirements approach is thus preferred, but research shows that the
requirements change significantly in any event; evolutionary methods admit and
embrace this, waterfall-oriented methods deny or resist it.

Another variation, used in the UP (on larger projects especially), is to not expect a
definition of "complete" or an end-date until several iterations into the project, at
the end of the elaboration phase. This is analogous to exploratory drilling at an oil
field. Management doesn't expect reliable answers until after some phase of
investigation. In this approach, there are a series of requirement workshops
across the early development iterations. By the end of the last workshop (for
example, after three workshops across three iterations), the goal is to have
discovered all the requirements at a high level (such as the names of use cases)
and defined in detail around 80% of the most significant ones. At this point, there
is a relatively reliable definition of what "complete" means.

Other variants are build-to-cost (in the 1970s this was known as design-to-cost)
or timeboxing the overall project. In the first, "complete" is defined as whatever is
finished by the time a fixed budget is consumed. In the latter, "complete" is
defined as whatever is finished by a fixed project end date. Both of these
strategies may be coupled with evolutionary delivery.

Q32: Should I plan the work for all the future iterations to ensure the scope
and resources (e.g., people) fit the desired end date?

A32: Laying out a detailed, predictive schedule does not really satisfy this concern, and
in fact by doing so and following it, the team is less likely to meet the goal. The
underlying problem is superimposing a predictable manufacturing model of
planning onto new product development projects. Such a plan can give the illusion
of satisfying the concern, but since it is highly speculative, assumes low rates of
uncertainty and change, and is not feedback driven, it is less skillful than an
adaptive planning method.

Q33: How do I get feedback when there is little or no user interface?

A33: Primarily from tests and measurements. This question usually comes up for
embedded applications, middleware, or servers, where issues such as memory
footprint, memory leaks, load, throughput, responsiveness, and so on are
important questions. In a well-run IID project, a growing application is evaluated
each iteration with respect to these qualities, in the most realistic test
environment possible.

Q34: Should iteration activities overlap? For example, requirements for the
next while testing for the previous?

A34: In general, no. An exception is discussed on p. 251.

Q35: How long should iterations be?

A35: See p. 267.

Q36: How to handle the design of a database with an iterative process?

A36: Contrary to whatever fears your database experts may hold, it is both possible
and effective to apply evolutionary database design and development, especially
with the structured application of database refactorings—changes to a database
schema that improves its design while retaining both its behavioral and
informational semantics.

The details are beyond the scope of this introduction. See www.agiledata.org for
discussion of agile database development.

Q37: Should the customer always be in charge of what gets built each
iteration?

A37: Only XP recommends the customers choose the goals of the next iteration,
independent of other advisors. Most other IID methods imply or suggest a
collaboration between the customers and chief architect. In early iterations
especially, the architect is likely to have recommendations on the priority of
requests, prompted by their architectural influence or level of technical risk.

Q38: How to plan an iteration?

A38: See many of the tips starting on p. 248.

Q39: Do I give the results of every iteration to my customer?

A39: No, except for evaluation and feedback, unless your method is Evo (which
promotes evolutionary delivery each iteration). This is a common confusion with
iterative methods. In fact, there may be 10 or 20 iterations before an application
is ready for production or commercial release. The "release" of each iteration
(except the last) is an internal release for testing and baselining the growing
system. Some milestone intermediate releases may be made public for alpha
testing. That said, one of the advantages of iterative methods is that some
internal releases can become—without extraordinary effort—a production release
of lesser goals, if circumstances required.

Q40: How to do documentation for maintenance, when we want to be agile?

A40: First, define what to document by need, rather than speculation. Is there anyone
who has maintained a prior version of the product? What did they previously find

useful, or miss?

A few tips:

 Put the documentation on a project Web site, such as a Wiki.
 Within many systems there are a few key tricky or subtle elements, or

themes. Find those, highlight them, and write a short "technical memo"
[Larman01] Wiki page for each.

 It is usually useful to document different architectural views. See
[Kruchten95] for details.

 Agile documentation can be created by splitting the team into pairs, and
asking them to document in parallel on different whiteboards. One pair will
sketch a logical view of the architecture (perhaps loosely in UML notation)
and write some related whiteboard notes, emphasizing the key noteworthy
elements in that view. Another pair will sketch a deployment view, another
the security view, and so on. A digital picture of each whiteboard is taken,
and the pictures inserted on separate Wiki pages, one page for each
architectural view. Then, the pairs type in some supporting text on the Wiki
page below the picture. Using this approach, I once coached a team that
needed only three hours to create the maintenance documentation.

 Some insights are worth capturing with a digital movie; it is quick, low
effort, and often rich with information. Place the movie file on the project
Wiki. For example, consider an interview with the architect structured so
that she discusses each architectural view (logical, deployment, …) in turn.
They may be situated at a whiteboard (for sketching) while being filmed.
Likewise with an experienced maintenance person.

Q41: How can I create a work breakdown structure (WBS) without a weekly
schedule, or an iteration-by-iteration schedule?

A41: The key point to appreciate is that a WBS is not—or at least should not be—a
schedule. It should be a breakdown of work or tasks independent of how or when
they are handled.

Some WBSs are organized at the top level by major project phases—a phase-
oriented WBS. Such a schedule-oriented, predictive planning approach is not
consistent with evolutionary development and adaptive planning.

Some WBSs are organized by a decomposition of tasks within major software
design elements (subsystem-1 tasks, subsystem-2 tasks)—a design-oriented
WBS. This is acceptable if the chosen top-level design elements are sufficiently
general or high-level to be guaranteed correct (for example, vague elements such
as "UI layer"). However, a design-oriented WBS is usually a dangerous approach,
since in evolutionary development there should not be fixed, up-front decision on
the major design elements—they need to be discovered and evolved during the
early exploratory iterations.

A better approach is a discipline-oriented WBS whose top-level elements are
major project disciplines with activities that occur in parallel throughout the
project (test, change management, project management, development, design,
environment, requirements analysis). During an iteration planning session, items
from this WBS are chosen (i.e., scheduled) for the iteration.

	Table of Content
	1. Introduction
	Software Is New Product Development

	2. Iterative & Evolutionary
	Iterative Development

